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les choses
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Merci à Arsène pour ton enthousiasme communicatif au volley et ta mâıtrise approximative du canoë
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Merci à tout·e·s celleux de l’INRIA que je connais un peu moins, merci pour tout! Vos sourires
et votre bonne humeur sont communicatifs! Merci à Claire, Salwa, Stéphane, Anne-Laure, An-
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Résumé

Dans cette thèse, des modèles théoriques à niveaux d’abstraction croissants sont développés pour
aborder des questions issues d’expériences de neuroscience. Ils sont étudiés par des approches
numériques et analytiques.

Avec le laboratoire de Laurent Venance (Paris), nous avons développé un modèle du protocole ITDP
(input-timing-dependent plasticity) pour la plasticité des synapses cortico- et thalamo-striatales. Le
modèle a été calibré par des données ex vivo et permettra de déterminer la présence de plasticité
synaptique in vivo, lors d’expériences de comportement visant à déterminer le rôle des entrées cor-
ticales et thalamiques dans l’apprentissage moteur.

Au niveau des populations neuronales, j’ai étudié la modulation des comportements collectifs neu-
ronaux par les astrocytes, en particulier la synchronisation Up-Down, une alternance spontanée
entre des périodes de forte activité collective et des périodes de silence. J’ai proposé des modèles
de fréquence de décharge et de réseaux de neurones à spikes de populations interconnectées de neu-
rones et d’astrocytes. Ils proposent des explications sur la façon dont les astrocytes induisent les
transitions Up-Down.
Les astrocytes sont aussi probablement impliqués dans la génération des crises d’épilepsie, pendant
lesquelles la synchronisation neuronale est altérée. Sur la base des modèles précédents, j’ai développé
un réseau neurone-astrocyte avec une connectivité en clusters, montrant la transition entre des dy-
namiques Up-Down et des événements de très forte activité mimant une crise d’épilepsie.

Enfin, au niveau du cerveau lui-même, j’ai étudié la théorie standard de la consolidation, selon laque-
lle la mémoire à court terme dans l’hippocampe permet la consolidation de la mémoire à long terme
dans le néocortex. J’ai cherché à expliquer ce phénomène en intégrant des hypothèses biologiques
– taille du néocortex expliquant la lenteur de l’apprentissage, et neurogenèse dans l’hippocampe
expliquant l’effacement de sa mémoire – dans un modèle de champs neuronaux interconnectés qui
reproduit bien les principales caractéristiques de la théorie.

Mots clés : neurosciences computationnelles, plasticité dépendante de la synchronisa-
tion des entrées, astrocytes, synchronisation, champs neuronaux, théorie de la consoli-
dation des systèmes
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Abstract

In this thesis, theoretical models with increasing levels of abstraction are developed to address
questions arising from neuroscience experiments. They are studied using numerical and analytical
approaches.

With Laurent Venance’s laboratory (Paris), we have developed an ITDP (input-timing-dependent
plasticity) protocol model for the plasticity of cortico- and thalamo-striatal synapses. The model has
been calibrated with ex vivo data and will be used to determine the presence of synaptic plasticity
in vivo, in behavioral experiments aimed at determining the role of cortical and thalamic inputs in
motor learning.

At the level of neuronal populations, I have studied the modulation of neuronal collective behaviors
by astrocytes, in particular Up-Down synchronization, a spontaneous alternation between periods
of high collective activity and periods of silence. I have proposed rate and spiking neural network
models of interconnected populations of neurons and astrocytes. They offer explanations of how
astrocytes induce Up-Down transitions.
Astrocytes are also probably involved in the generation of epileptic seizures, during which neuronal
synchronization is impaired. Based on the above models, I have developed a neuron-astrocyte net-
work with a cluster connectivity, showing the transition between Up-Down dynamics and events of
very high activity mimicking an epileptic seizure.

Finally, at the level of the brain itself, I studied the standard theory of consolidation, according to
which short-term memory in the hippocampus enables the consolidation of long-term memory in the
neocortex. I have sought to explain this phenomenon by integrating biological hypotheses – the size
of the neocortex explaining the slowness of learning, and neurogenesis in the hippocampus explaining
the erasure of its memory – into a model of interconnected neural fields that well reproduces the
main features of the theory.

Key words: computational neuroscience, input-timing-dependent plasticity, astrocytes,
synchronization, neural fields, systems consolidation theory
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Chapter 1

An introduction to models and
levels of abstraction in
computational neuroscience

1.1 The computational approach in neuroscience and the dif-
ferent levels of abstraction

In order to connect brain processes observations and theories, modelling approaches have been widely
used in neuroscience in the last decades [208]. Indeed, models constitute a useful tool to clarify or
quantify a phenomenon. A key step in their development is the identification and implementation of
the relevant elements for the phenomenon description. Among the different types of models, those
constituted with mathematical equations or algorithms are of particular interest in neuroscience,
since they can be used for simulation and/or theoretical analysis, and can be assessed and fitted
with results of corresponding experiments.

The field that uses such models in neuroscience is named computational, theoretical or mathemat-
ical neuroscience [225]. This research area aims to model mechanistics and cognitive observations
with biologically plausible systems, which is a different approach from artificial neural networks for
instance, even if many exchanges occur between the disciplines [210]. Various models have been
introduced to study neuroscience issues at multiple spatiotemporal scales, which go from the de-
tailed mechanisms generating action potentials to cognitive processes, such as memory, and their
predictions can be assessed with biological or psychological experiments [225, 92].
Depending on the spatiotemporal scales studied, different abstraction levels are chosen. For example
in neural networks, it is often useful to “summarize” the detailed mechanisms of action potentials
integration and formation into a simple firing rate function, since the aim here is to prioritize details
at that scale (network), while further simplifying details at others smaller (cellular) and larger (brain
area) scales [36]. Each model at a given level of abstraction could be seen as a dimensionality reduc-
tion of lower level models. This simplification is permitted by the fact that there is a large number
of parameter space dimensions along which parameters can fluctuate without having a significant
impact on pertinent higher level features. For example, in mammals, individual synaptic weights
are usually small and have individually little influence on the postsynaptic neurons. Presence or
absence of an individual synapse is therefore usually not significant at the overall level of neuronal
population [129, 237]. Such dimensions are “removed” or replaced by averages or homogeneized
quantities, and only dimensions that have a significant effect on the higher-level system characteris-
tics are kept [152]. The ways to reduce the size of the parameter space go from simple methods, such
as averaging or considering an asymptotic behaviour [240], to nonlinear and complex approachs [192].

In this thesis, models at different spatiotemporal scales and suitable levels of abstraction were
developed, see figure 1.1, and used to study some topics in neuroscience. We provide in the following
introduction a rapid overview of classical models in computational neuroscience at different spatial
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levels of abstraction, with a detailed focus on models of interest to better understand the works
carried out during this thesis.

Figure 1.1: Different levels of spatial abstraction in computational neuroscience. The color code is
the same for the different drawings: red for excitatory neurons, blue for inhibitory neurons and green
for astrocytes. Models presented here are used in the differents chapters of the thesis, at a single-cell
and synapse scale in chapter 2, networks in chapter 3 and spatial continuum (rate in chapter 3 and
neural fields in chapter 4).

1.2 Single-cell and synapse dynamics modelling

1.2.1 Overview

A single brain cell is a complex biophysical entity, which can interact with multiple other cells [92].

Neurons The brain’s basic processing units are thought to be neurons. A well-known model of their
dynamics is the Hodgkin-Huxley model [109]. This mathematical model describes how action poten-
tials are formed and propagated. It is defined by four nonlinear differential equations (1.1)(1.3)(1.4)
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(1.5), that reproduce the electrical dynamics, by describing ion channels and ion current flows. The
total current per unit area I(t) is defined as:

I(t) = C
du

dt
+
∑
k

Ik(t) (1.1)

with the voltage u, the capacity C and the sum of the ionic currents defined by∑
k

Ik(t) = gNam
3h(u− ENa) + gKn

4(u− EK) + gL(u− EL) (1.2)

gNa, gK and gL are respectively the sodium, potassium and leak conductances per unit area. ENa,
EK and EL denote respectively the sodium, potassium and leak equilibrium potentials. The three
gating variables m, n and h evolve according to

dm

dt
= αm(u)(1−m)− βm(u)m (1.3)

dn

dt
= αn(u)(1− n)− βn(u)n (1.4)

dh

dt
= αh(u)(1− h)− βh(u)h (1.5)

αi and βi, for i ∈ {m,n, h}, are rate constants dependent on the voltage u.

To better visualize the behaviours of this model, methods of phase plane analysis and dimension
reduction can be useful [92]. These are generic tools that can be used in many models in theoretical
neuroscience.
Similar single-neuron models exist with simpler expressions, for example the Morris-Lecar model [169],
the FitzHugh-Nagumo [80, 174], or the Hindmarsch-Rose [3]. But the Hodgkin-Huxley also serves
as a basis for detailed biophysical neuron models with more types of currents. Indeed the set of ion
channels is different from one neuron to the next and determines its electrical characteristics [132].
Using similar descriptions, there also exist models named compartmental models that describe the
arrangment of synapses on the dendritic tree. Indeed, these details of the subcellular structure has
an important effect on signals integration [35].

Synapses Neurons are not isolated entities but are interconnected, they transmit and receive action
potentials through synapses. The synaptic transmission process consists schematically in a release of
neurotransmitters into the synaptic cleft by a presynaptic neuron, which will activate receptors and
induce a postsynaptic current [165]. Both detailed biophysical or simple phenomenological models
exist to describe synaptic kinetics [196]. An example of such phenomenological model is the descrip-
tion of the synaptic conductance gsyn(t) with an alpha function [229]:

gsyn(t) = Gsyn
t− t0
τ

e
1−(t−t0)

τ (1.6)

With Gsyn the peak amplitude and τ a time constant. This function peaks at a time t = t0 + τ .

Tripartite synapse: modulation by astrocytes Synaptic transmission is not only an affair of
neurons, it can be modulated by astrocytes. In the past three decades, it has become clear that these
star-shaped glial cells not only procure a structural support, but also have a role in signaling through
interactions with neurons at a “tripartite synapse” [58]. This structure is typically constituted with
a pre- and postsynapse enveloped by an astrocyte extension (named process). While astrocytes do
not generate action potentials, they can detect neurotransmitters, such as glutamate, and encode
this signal into the dynamics of their cytosolic Ca2+. In response, they can release molecules named
gliotransmitters, such as glutamate, which will activate neurons [183]. Nevertheless, it is important
to note that it is still uncertain whether the concept of gliotransmission is effective in vivo [204].
Astrocytic dynamics in computational models of tripartite synapses can be either defined in an
abstract way, or be more descriptive, with the details of membrane transport processes for exam-
ple [181, 157]. All in all, computational models that include astrocytes share similar features with
those describing neurons.
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Modelling Dynamic Synapses Synapses are dynamical entities, that can strengthen or weaken
with time in a way that depends on past neuronal activity. This process is called synaptic plasticity,
and occurs through mechanisms at different timescales [196]. For example, short-term synaptic
plasticity is a widespread form of fast modulation of synaptic efficacy (timescale from 10 ms to a
few minutes). This activity-dependent process can cause both potentiation and depression [105].
Different phenomenological models exist to describe this effect, such as the model of Tsodyks and
Markram [227, 228], where a set of differential equations describes the evolution of the fractions of
synaptic resources in respectively the recovered (x), active (y), and inactive states (z):

dx

dt
=

z

τrec
− uxδ(t− tsp) (1.7)

dy

dt
= − y

τI
+ uxδ(t− tsp) (1.8)

dz

dt
=
y

τI
− z

τrec
(1.9)

With the different time constants: tsp is the timing of presynaptic spikes, τI is the decay constant
of postsynaptic currents, and τrec is the recovery time from synaptic depression.
Furthermore, the variable u describes the effective “use” of synaptic resources, that increases for
each presynaptic spike and decreases towards its initial value with a time constant τfacil:

du

dt
= − u

τfacil
+ U(1− u)δ(t− tsp) (1.10)

Another form of plasticity occurring at a larger timescale is long-term plasticity, through long-term
potentiation (LTP) and long-term depression (LTD). LTP and LTD are respectively a persistent
strengthening and decrease in synaptic strength, triggered by short activity sequences and main-
tained over large time periods [220]. Several biological processes underly this type of plasticity that
some models aimed to detail [106, 196], but a usual modelling choice is a simple rate-based descrip-
tion, such as the Hebbian learning [209], covariance [207], Oja’s [179] or Bienenstock-Cooper-Munro
(BCM) [27] rules.

For instance, the BCM rule modulates the LTP-LTD modification threshold θM depending on aver-
age postsynaptic activity y, typically by computing the power of the mean of y, scaled by a parameter
y0 :

θM = Ep[y/y0] (1.11)

with y computed as:

y =
∑
i

wixi (1.12)

xi is the ith presynaptic activity, and wi the synaptic weight, which evolves according to:

dwi
dt

= y(y − θM )xi − εwi (1.13)

with ε a positive constant.
Nevertheless, synaptic weight modifications do not only rely on mean firing rates, but also on
the specific temporal order of pre- and postsynaptic spikes, a phenomenon known as spike-timing-
dependent plasticity (STDP) [39].

1.2.2 An example: a spike-timing-dependent plasticity model

STDP is a biological process through which synaptic weights can be strengthened (LTP) or decreased
(LTD) in an activity-dependent way, following the timing between pre and postsynaptic spikes [81].
In the last two decades, this phenomenon has been extensively investigated and experimentally stud-
ied for different types of synapses [39].

Experimentally, STDP results are measured by an iteration (around 100 times, with a 0.1 Hz fre-
quency) of pre (tpre) and post-synaptic (tpost) paired stimulations. We note ∆t = tpost − tpre the
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interval between the two activations, see figure 1.2 (A). The STDP experiments are most often
carried out ex vivo or in vitro, so that the firing of one postsynaptic neuron can be finely tuned.
Figure 1.2 (B) represents schematically the modifications of synaptic weights as a function of the
interval between the pre and post spikes ∆t. In the case ∆t > 0, LTP is induced, while for ∆t < 0,
LTD is observed. This type of plasticity is classified as Hebbian. These changes do not happen
anymore for large ∆t values, typically for |∆t| > 50 ms [232].

Figure 1.2: Spike-timing-dependent plasticity (STDP) protocol for a Hebbian plasticity, adapted
from Brzosko et al. (2019) [39]. (A) STDP is carried out through repeated paired pre- and post-
synaptic spikes separated by ∆t of the order of a few milliseconds, that induce synaptic weight
modifications (∆W ). (B) For a classic Hebbian case, pre-before-post spike pairings induce long-
term potentiation (LTP), while post-before-pre pairings induce long-term depression (LTD). The
percentage of change in synaptic weight is a measure of synaptic plasticity.

Theoretically, several models detailing pre- and postsynaptic spikes timing were proposed to repro-
duce STDP results. Such models can take the form of an abstract exponentially decaying synaptic
rule [196], to mimic the figure 1.2 (B) for the synaptic weight w:

∆w = A sign(tpre − tpost)exp(−|tpre − tpost|/τSTDP) (1.14)

With A the baseline value and τSTDP a time scale that corresponds to the time window for the
spikes interaction. While this rule is very simple, STDP models can take the form of more complex
phenomenological approaches [49], and can include detailed biophysical components that describe
different intracellular pathways [97].
We describe here a model of STDP inbetween detailed biophysical and more phenomenological mod-
els, developed by Graupner and Brunel in 2012 [98], which provides an understanding of the link
between calcium dynamics and the observed diversity of synaptic plasticity.

This model describes a single synapse receiving pre- and postsynaptic spikes. Its state is described
by ρ(t), a synaptic efficacy variable, which evolves according to the stochastic differential equation:

τ
dρ

dt
= −ρ(1− ρ)(ρ∗ − ρ) + γp(1− ρ)Θ[c(t)− θp]− γdρΘ[c(t)− θd] +Noise(t) (1.15)

The t dependency of ρ have not been noted in the equation for an easier comprehension.
τ is a time constant of the synaptic efficacy modifications, whose value is between a few seconds to
minutes. The evolution of ρ(t) without stimulations is described by the first term on the right-hand
side, a cubic function. Thus, there are three stationary states for the noiseless equations: two stable
states corresponding to a low (ρ = 0) and a high efficacy (ρ = 1), and an unstable boundary inbe-
tween (ρ∗ = 0.5).
The two other terms represent the way calcium concentration c(t) controls plasticity. Indeed, it
has been shown that increases in postsynaptic calcium concentration play a key role in long-term
plasticity [97]. If c(t) > θp, ρ(t) tends to increase, and if θp > c(t) > θd, ρ(t) tends to decrease (Θ
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denotes the Heaviside function). θp and θd are respectively named the potentiation and depression
thresholds. γp and γd are the rates of potentiation and depression. The last term is an activity-
dependent noise term. Therefore, the model is a bistable model where calcium levels can induce
switches between a low (ρ = 0) and a high efficacy state (ρ = 1).

The dynamics of calcium concentration c(t) is determined by the pre and post spikes:

dc

dt
= − c

τCa
+ Cpre

∑
i

δ(t− ti −D) + Cpost

∑
j

δ(t− tj) (1.16)

Cpre and Cpost are the amplitudes of the calcium signals induced by the pre- and postsynaptic spikes,
D is the delay between the presynaptic spike and its induced calcium response. In absence of stim-
ulations, the calcium concentration decays exponentially with time constant τCa (few milliseconds).

Analytical solution for transition probabilities: The probabilities that ρ will transition from
an initial value ρ0 towards 1 or 0 are denoted respectively U and D. With this stochastic model,
their expressions are:

U(ρ0) =
1

2

1 + erf

−ρ∗ − ρ̄+ (ρ̄− ρ0)e−nT/τeff√
σ2
ρ(1− e−2nT/τeff)

 (1.17)

D(ρ0) =
1

2

1− erf

−ρ∗ − ρ̄+ (ρ̄− ρ0)e−nT/τeff√
σ2
ρ(1− e−2nT/τeff)

 (1.18)

with τeff a characteristic time scale

τeff =
τ

Γp + Γd
(1.19)

ρ̄ and σρ are respectively the average value and the standard deviation of ρ at the end of the whole
process.

ρ̄ =
Γp

Γp + Γd
(1.20)

σ2
ρ =

σ2(αp + αd)

Γp + Γd
(1.21)

and αa, for a = p or d, is the average fraction of time spent above a given threshold

αa =
1

nT

∫ nT

0

Θ[c(t)− θa]dt (1.22)

with Γa = γaαa.
These equations and analyses will be used in Chapter 2.

To conclude, this model explains the links between calcium signals induced by pre and post spikes
timing and plasticity results. In particular, this framework has been applied to model STDP between
corticostriatal and thalamostriatal synapses interactions [164].
The low complexity of the model and the possibility of mathematical predictions are interesting
features that could be useful for modelling at a network level.

1.3 Networks

1.3.1 Overview

To obtain a model of what happens when individual cells are assembled into networks, one could
gather the biophysical mechanisms in single cells and synapses to build realistic networks. However,
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it would be too computationally expensive to integrate such biophysically detailed models as they
are, as a large number of units have to be simulated. Therefore, the biological mechanisms at this
lower scale are abstracted in simpler formulas, which are still thought to reproduce biologically re-
alistic behaviours [152, 146].
The networks that have been most studied in computational neuroscience are neural networks, but
networks with different unit cells are increasingly investigated. Indeed, as astrocytes also form in-
terconnected networks (communicate through gap junctions) [94, 112], and neurons and astrocytes
can interact (with neuro- and gliotransmitters) [73], large mixed neurons-astrocytes networks have
started to be studied [181].
All in all, networks in computational neuroscience can differ with the cell types considered, the types
of connections, the topology, and the equations that govern their individual behaviour.

As in the previous section, neural network models can be highly detailed or simplified to isolate
key features, as in the well-known Hopfield network, an attractor model [111]. This neural network,
similar to an Ising model, is typically used to model memory storage and recalling of patterns. In
this model, each neuron i is in a state Si = ±1 which evolves probabilistically according to the input
potential hi(t),

Prob{Si(t+ ∆t) = +1|hi(t)} = g(hi(t)) (1.23)

Where g is a gain function that bounds values between 0 and 1. The input potential hi(t) is itself
dependent on the other neuron states Sj(t):

hi(t) =
∑
j

wijSj(t) (1.24)

Where wij denotes the synaptic weight between neurons i and j.

The network can store and recall M memory patterns, which are fixed points of the dynamics.
Their configurations are defined as {piµ = ±1; 1 ≤ i ≤ N}, for a pattern µ. If all neurons satisfy
Si(t) = Si(t+ ∆t) = pµi , then the pattern µ is properly encoded. Synaptic weights are expressed as
a function of these patterns:

wij = c
M∑
µ=1

pµi p
µ
j (1.25)

with c a positive constant.
In this model, neuron states are thus binary. Below, we detail another well-known type of neural net-
work, composed of integrate-and-fire neurons, which describes a little bit more the neural dynamics,
while staying computationally and analytically accessible.

1.3.2 An example: integrate-and-fire networks

These simplified neuron models have been widely used in studies of neural coding, memory, and
network dynamics [92]. They present the advantage to be easily fitted to experimental data.
In these models, whenever the membrane potential Vi exceeds a firing threshold Vth, a spike is
produced, see figure 1.3. The membrane potential is then reset to a value Vr. In some integrate-
and-fire models, a short refractory period in the dynamics is also added after a spike.

As an illustration, we focus here on a network composed of a simple form of integrate-and-fire
neurons, leaky integrate-and-fire neurons, developed by Jercog et al. (2017) [116]. Despite the
simplicity of the individual cells modelling, this network has been used to model complex oscillatory
behaviours, like the Up-Down dynamics. This regime is characterized by the spontaneous alternation
between periods of high collective activity (Up state) and periods of silence (Down state).
The model is constituted by NE excitatory neurons and NI = NE/4 inhibitory neurons.

In this network, the membrane potential V Xi of neuron i within the population X (X = E for
excitatory neurons and X = I for inhibitory neurons) evolves according to

τE
dV Ei (t)

dt
= −(V Ei (t)− VL) + IErec,i(t) + IEext,i(t)− Ia,i(t) (1.26)
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Figure 1.3: Illustration of a leaky integrate-and-fire neuron dynamics, adapted from Blum Moyse
and Berry (2022) [29]. The membrane potential V E of a neuron (here excitatory) in a network
evolves as a function of time. Whenever the membrane potential crosses the firing threshold Vth
(dashed line), a spike is emitted and the membrane potential is reset to Vr (dashdotted line).

τI
dV Ii (t)

dt
= −(V Ii (t)− VL) + IIrec,i(t) + IIext,i(t) (1.27)

with i ∈ {1, ..., NX}. VL is the leaky potential. IIext,i(t) is an external input, with in particular a
gaussian white noise part σX

√
τXηi(t). Where σX is the noise standard deviation and ηi(t) is a

random value with uniform distribution between 0 and 1. The synaptic current IXrec,i(t) is defined
by

IXrec,i(t) = JXEsE(t) + JXIsI(t) (1.28)

where the synaptic variables sX integrate the spikes or release events emitted by all the neurons in
population X:

τXr
duX(t)

dt
= −uX(t) + τX

∑
k

NX∑
j=1

δ(t− tkj − dkj ) (1.29)

τXd
dsX(t)

dt
= −sX(t) + uX(t) (1.30)

with tkj the kth spike (or release) time of cell j of population X, dkj its transmission delay (uniformly

distributed between dXmin and dXmax), and τXr and τXd the rise and decay times of the synapse,
respectively. τX is a normalizing time constant. Please note that there is a single variable sX , which
integers (through uX) the spikes of all neurons of the population X. This model is thus an hybrid
model between the single cell and the population scales.

In addition, the excitatory neurons displayed an after hyperpolarization current, which evolves
according to

τa
dIa,i(t)

dt
= −Ia,i(t) + β

∑
k

δ(t− tki ) (1.31)

This after hyperpolarization current is one of the possible mechanisms that could induce Up to Down
transitions.

Stationary solutions and stability Analytical analyses of neural networks are most often car-
ried out within the “mean-field” framework [74]. This approach can be applied to weakly coupled
networks with regular firing [141], where the input received by a neuron is averaged. It can also be
used for strongly coupled networks with irregular firing, where the fluctuations of the synaptic input
are taken into account [38].

The second type of analysis can thus be applied to the model described above, which allows to
find stable states (attractors) [141, 11]. In this approach, the stochastic equations (1.26) (1.27) can
be expressed in terms of Fokker-Planck equations describing the temporal evolution of the neuron
depolarization distribution PX(V X , t) [45].

τX
∂PX

∂t
(V X , t) =

σX
2(t)

2

∂2PX

∂V X
2 (V X , t) +

∂

∂V X
[
(V X(t)− IXrec(t)− IXext(t))PX(V X , t)

]
(1.32)
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This equation is associated with the boundary conditions:

PX(Vth, t) = 0 (1.33)

∂PX

∂t
(Vth, t) = −2rX(t)τX

σX2(t)
(1.34)

∂PX

∂t
(V +
r , t)−

∂PX

∂t
(V −r , t) = −2rX(t)τX

σX2(t)
(1.35)

lim
V X→−∞

PX(V X , t) = 0 (1.36)

lim
V X→−∞

V XP (V X , t) = 0 (1.37)

Stationary solutions PX(V X , t) = PX0 (V X) of equation (1.32) that respect the boundary conditions
(1.33) to (1.37) are given by

PX0 (V X) =
2rX,0τX
σX

exp

(
− (V X − IX,0)2

σ2
X

)∫ Vth−IX,0
σX

VX−IX,0
σX

Θ

(
u− Vr − IX,0

σX

)
eu

2

du (1.38)

Applying the normalization condition for a probability distribution∫ Vth

−∞
PX0 (V X)dV X = 1 (1.39)

to equation (1.38) gives the self-consistent (nullclines) mean-field equations for the equilibrium firing
rates (rX,0) [38]:

rX,0 =
1

τX

[∫ ∞
0

dy

y
e−y

2

(e2yyXt − e2yyXr )

]−1

(1.40)

with

yXr =
Vr − IX,0

σX
yXt =

Vth − IX,0
σX

(1.41)

and with the currents:

IE,0 = VL,E +NEJEErE,0τE +NIJEIrI,0τI + Ia (1.42)

II,0 = VL,I +NEJIErE,0τE +NIJIIrI,0τI (1.43)

The stability of these solutions can be determined using linear perturbation analysis [141, 197]. For
that purpose, a small perturbation δrXe

λt to the equilibrium firing rate is introduced, such as

rX = rX0 + δrXe
λt (1.44)

the corresponding perturbation of the synaptic variable sX is computed as

δsY = SY (λ)δrY (t)eλt (1.45)

with the synaptic response function

SY (λ) =
e−λd

Y

(1 + λτYr )(1 + λτYd )
(1.46)

Finally, δrX can be computed as
δrX = RX(λ)δIX(t)eλt (1.47)

with
δIX(t) = JXEδsE(t)− JXIδsI(t) (1.48)
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The neuronal response function RX(λ) is defined by:

RX(λ) =
rX,0

σX(1 + λτX)

∂U
∂y (yXt , λτX)− ∂U

∂y (yXr , λτX)

U(yXt , λτX)− U(yXr , λτX)
(1.49)

with

U(y, λ) =
ey

2

Γ
[

1+λ
2

]M (
1− λ

2
,

1

2
,−y2

)
+

2yey
2

Γ
[
λ
2

]M (
1− λ

2
,

3

2
,−y2

)
(1.50)

Where M is a confluent hypergeometric function.

After solving equation (1.47) for δrX , we find the eigenvalue equation:

FEE(λ)(1 + FII(λ))− FII(λ)− FEI(λ)FIE(λ) = 1 (1.51)

with
FXY (λ) = JXYRX(λ)SY (λ) (1.52)

The eigenvalues λ are found by solving equation (1.51) numerically.

The equilirium firing rates are stable when all the corresponding eigenvalues have negative real parts.
If at least one eigenvalue has a positive real part, the system is unstable.
These equations and analyses will be used in Chapter 3.

We have seen with this “mean-field” analysis, that it is possible to study a high-dimensional stochas-
tic network by averaging over its degrees of freedom, so that the understanding is made easier. Thus,
at an higher abstraction scale, other models similarly consider a continuum limit to model large net-
works.

1.4 Spatial continuum

1.4.1 Overview

At many locations in the brain, one can consider that large groups of cells display similar features
at least approximately. These properties make it relevant to describe these populations with a mean
activity rather than the detailed spike trains of each neuron. For instance, the Kuramoto model is
used to approximate the dynamics of a population of N neurons with phase oscillators [136].
For that purpose, the description of neural activity is considered in the spatial continuum limit.

This consideration began with a characterization of the proportion of activated neurons per unit of
time for a given volume. It was used to model the way large scale brain activity is initiated and
propagated [26]. This work has then been extended [99], and in 1972 the so-called neural rate models
were introduced by Wilson and Cowan [239, 240]. These models describe the activity dynamics in
large homogeneous groups of spiking neurons, and are named rate models, neural masses, or theories
of population dynamics.

Still in the 1970s, the neural field framework was introduced, in particular by Wilson and Cowan [239,
240], Nunez [178] and Amari [9]. These equations model the spatiotemporal evolution of coarse-
grained variables such as the synaptic or firing rate activity in large neural populations [51]. These
models can display different dynamics, such as periodic patterns (spatially and temporally) [70],
localised areas of activity named bumps [128], travelling waves [72], spatiotemporal canards [15]
and so on. These models have been used to investigate a wide range of neural mechanisms, such as
short-term memory processes [137], visual hallucinations [34], or EEG rhythms [117].

1.4.2 Examples: a firing rate and a neural field model

1.4.2.1 A firing rate model with adaptation

We here detail the rate equations developed in [116, 197], that express as a firing rate model the
spiking network situation of the subsection 1.3.2 for interacting excitatory (E) and inhibitory (I)
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neural populations. This model describes rX , the firing rate of the population X averaged over the
neurons in X, as a function of time. rE is the average rate of the excitatory neurons population and
rI is the average rate of the excitatory neurons population, their evolutions are defined by:

τE
drE
dt

= −rE(t) + φE(IE(t)− a(t) + σξE(t)) (1.53)

and

τI
drI
dt

= −rI(t) + φI(II(t) + σξI(t)) (1.54)

where τX is the time constant of population X, the final term σξX(t) describes a Ornstein-Uhlenbeck
process with zero mean and standard deviation σ. φ is the transfer function:

φX(x) = gX [x− θX ]+ (1.55)

with rectification [z]+ = z if z > 0 and 0 otherwise.

IX(t) is a recurrent input defined as:

IX(t) = JXErE(t) + JXIrI(t) (1.56)

The synaptic couplings JXY describe the strength of the connection from population Y to X. They
verify JXE > 0 (excitatory), JXI < 0 (inhibitory).

The dynamics of the adaptation current a(t) (the rate equivalent of the after hyperpolarization
current in equation (1.31) of the spiking network model) is given by:

τa
da

dt
= −a(t) + βrE(t) (1.57)

Fixed points and stability With the external noisy input σξX(t) neglected, and in the case
where rates evolve much faster than the adaptation, the E and I nullclines of equations (1.53) (1.54)
are defined as the points where drE

dt = 0 and drI
dt = 0:

rE0 = gE [JEErE0 − JEIrI − a0 − θE ]+ (1.58)

rI0 = gI [JIErE0 − JIIrI0 − θI ]+ (1.59)

with
a0 = βrE0 (1.60)

The intersection of the nullclines define the fixed points rE0 and rI0.

The stability of these fixed points can be determined by linearization of the dynamics. It is possible
to study it by adding a small perturbation to the equilibrium firing rate, rX = rX0 + δrXe

λt and to
compute the eigenvalues λ of the system by solving the resulting equations at first order in δrX s.
Formally, this boils down to compute the Jacobian matrix J of the system at the fixed points.

Indeed, with ~δr =

(
rE − rE0

rI − rI0

)
, we have after the linearization:

d ~δr

dt
= J ~δr (1.61)

with

J =

(
∂GE
∂rE

(rE0, rI0) ∂GE
∂rI

(rE0, rI0)
∂GI
∂rE

(rE0, rI0) ∂GI
∂rI

(rE0, rI0)

)
(1.62)

with GE , GI the right-hand-sides of respectively the (1.53) and (1.54) equations.

To find the eigenvalues λ one solves equation (1.61) and get ~δr = εeλt. Solving for λ can be done
by solving the characteristic equation of J , |J − λI| = 0, where I is the identity matrix.

The equilirium firing rates are stable when all the corresponding eigenvalues have negative real parts.
If at least one eigenvalue has a positive real part, the system is unstable.
These equations and analyses will be used in Chapter 3.
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1.4.2.2 A neural field with synaptic depression and smooth firing response

A neural field model introduces the space dimension with a space-dependent function w(x−y) which
defines the connectivity between two neurons at locations x and y. We then focus on a bump study
in a piecewise smooth neural field with synaptic depression, developed by Kilpatrick and Bressloff
(2010) [126, 127]. The equation of the neural field representing the local activity of a population of
neurons at position x and time t, u(x, t), is given by:

τ
∂u

∂t
(x, t) = −u(x, t) +

∫ ∞
−∞

dyw(x− y)q(y, t)f(u(y, t)− κ) (1.63)

τ is the membrane time constant. The second term on the right-hand side is the synaptic input,
where f is the firing rate function, and κ the firing rate threshold. The synaptic weights between
neurons at positions x and y is denoted by w(x−y). In the classic equation of neural fields, q(y, t) = 1
and the firing rate function f is a heaviside function. In Kilpatrick and Bressloff (2010) [126, 127],
the authors study a smooth firing rate function, and introduce synaptic depression.

Indeed, the factor q(x, t) represents a fraction of available presynaptic resources, which evolves
according to

∂q

∂t
(x, t) =

1− q(x, t)
α

− βq(x, t)f(u(x, t)− κ) (1.64)

Here, synaptic resources reduce at a rate βf , and recover with the timescale α.

With f defined as a heaviside function Θ, a stationary bump solution (U(x), Q(x)) can be defined
in the activated area R[U ] = (−a, a), with a the half-width of the bump.

U(x) =

∫ a

−a
Q(y)w(x− y)dy (1.65)

Q(x) = 1− αβ

1 + αβ
Θ(U(x)− κ) (1.66)

See figure 1.4 (A) for a plot of a bump profile with the so-called mexican hat kernel, w(x − y) =
e−|x−y| −Ae−|x−y|/σ. The bump boundary conditions can be written as

U(±a) = κ (1.67)

Because of the discontinuity in Q(x), see figure 1.4 (A), the local stability cannot be easily deter-
mined with a linearization of the Heaviside function in equations (1.63) (1.64). A regular method in
neural field analysis is to compute the associated Evans function, but here this approach has been
shown to improperly evaluate the stability domains [127]. Thus, linear stability analysis is here
carried out by adding a small perturbation to the bump, which would shift the bump boundaries.

Concretely, the variables u(x, t) and q(x, t) can be written as u(x, t) = U(x) + εψ(x, t) and q(x, t) =
Q(x) + εφ(x, t) in equations (1.63) (1.64) (for ε� 1), which gives:

∂ψ(x, t)

∂t
= −ψ(x, t) +

1

ε

∫ ∞
−∞

w(x− y)Q(y) [Θ(U(y) + εψ(y, t)− κ)−Θ(U(y)− κ)] dy

+

∫ ∞
−∞

w(x− y)φ(y, t)Θ(U(y) + εψ(y, t)− κ)dy

(1.68)

∂φ(x, t)

∂t
= −φ(t)

α
− β

ε
Q(x) [Θ(U(x) + εψ(x, t)− κ)−Θ(U(x)− κ)]

− βφ(x, t)Θ(U(x) + εψ(x, t)− κ)
(1.69)

The perturbations of the bump boundary ε∆±(t) are written in the threshold conditions
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u(a+ ε∆+(t), t) = κ = u(−a+ ε∆−(t), t) (1.70)

After expansion to first order in ε in equation (1.70) and identification with the expression u(x, t) =
U(x) + εψ(x, t), it is found that ∆± ≈ ±ψ(±a, t)/|U ′(a)|.

To smooth out the discontinuities in equations (1.68) and (1.69), the field Φ(x, t) can be intro-
duced [127],

Φ(x, t) =

∫ a+ε∆−

−a+ε∆+

w(x− y)φ(y, t)dy (1.71)

Then ψ(x, t) and Φ(x, t) are written in a separable form as ψ(x, t) = ψ(x)eλt and Φ(x, t) = Φ(x)eλt.
Here to ensure the fact Φ(±a, t) sign is constant, λ must be real. Then the resulting equation is
solved for Φ(x), which gives the eigenvalue equation

(λ+ 1)ψ(x) =γw(x+ a)ψ(−a)G(ψ(−a))

(
1− βΘ(ψ(−a))

λ+ α−1 + β

)
+ γw(x− a)ψ(a)G(ψ(a))

(
1− βΘ(ψ(a))

λ+ α−1 + β

) (1.72)

With γ−1 = |U ′(±a)| and

G(X) =

{
1 if X > 0
(1 + αβ)−1 if X < 0

(1.73)

The discrete eigenvalues spectrum can be found by considering x = ±a and fixing the signs of ψ(±a).
This leads to three cases, see figure 1.4 (C): (Left) ψ(±a) opposite signs (shifts), (Middle) ψ(±a) > 0
(expansions), and (Right) ψ(±a) < 0 (contractions). The exact results for λ are not detailed here,
but the stability domains are shown in figure 1.4 (B) for the so-called mexican hat kernel. However
we should keep in mind that since this analysis is based on real eigenvalues only, these results are
only sufficient conditions for the bump’s instability.

A similar analysis can be studied with spike frequency adaptation [126, 127] . This process cor-
responds to an adaptation current increase, and can be implemented in the neural field model by
introducing a dynamic threshold κ(x, t) into the firing rate function:

τ
∂u

∂t
(x, t) = −u(x, t) +

∫ ∞
−∞

dyw(x− y)f(u(y, t)− κ(y, t)) (1.74)

∂κ

∂t
(x, t) = −(κ(x, t)− κ0) + ηf(u(x, t)− θ) (1.75)

Here, when u(x, t) is above the parameter θ, the threshold κ(x, t) increases from its initial value κ0

to κ0 + η. These equations and analyses for synaptic depression and spike frequency adaptation will
be used in Chapter 4.

1.5 Conclusion

This introduction aimed at displaying a rapid overview of the modelling approaches in computational
neuroscience at different spatial levels of abstraction: single-cell and synapse, network and continuum
limit. Figure 1.1 summarizes the main methods presented in this chapter by order of level of
abstraction. I have focused during this thesis on models which allowed mathematical analyses, by
personal choice.
A more in depth attention was paid to models that have been used and further developed during this
thesis: the calcium-based spike-timing-dependent plasticity (chapter 2), the leaky integrate-and-fire
network (chapter 3), the rate (chapter 3) and neural field with adaptation (chapter 4) models. The
following chapters will present the different projects of the thesis, organized following this increasing
level of spatial abstraction.
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Figure 1.4: Stationary bump and stability analysis in a network with synaptic depression, adapted
from Bressloff (2012) [33]. A mexican hat connectivity kernel has been used for w(x−y). (A) Bump
stationary solution of width 2a centered around 0, U(x) is represented with a solid curve and Q(x)
with a dashed line. (B) Plots for different values of κ, presenting the bump width a as a function
of β, the amplitude of synaptic depression. These curves were determined using equation (1.67).
Unstable domains (gray lines) are determined by the piecewise smooth stability method presented
above. Numerically stable bump domains are represented with a solid line. (C) Schemas of a shift
(Left), expansion (Middle) and contraction (Right) perturbation.
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Chapter 2

A model for
input-timing-dependent plasticity

2.1 Experimental context to study corticostriatal and thala-
mostriatal plasticities

2.1.1 From STDP to ITDP

The basal ganglia are a group of subcortical nuclei in the brains of vertebrates. They are strongly
connected with the cerebral cortex, the thalamus, and the limbic system. Basal ganglia are im-
plicated in the detection of external signals and the establishment of suitable behaviours through
motivation and reward. In particular, cortex-thalamus-basal ganglia loops play a key role in the
adaptive control of behavior and in procedural learning [243]. This latter refers to the ability to ac-
quire motor and cognitive skills progressively and automatically [134]. The main input nucleus of the
basal ganglia, the striatum, integrates glutamatergic signals from the cerebral cortical and thalamic
nuclei, then transfers the information to the basal ganglia’s output areas. The striatal-projecting
neurons (the medium-sized spiny neurons, MSNs) play the role of similarity sensors between patterns
of cortical and thalamic activity [67]. MSNs are contacted by cortical afferents on dendritic spines,
and by thalamic afferents on dendritic shafts [214].

The neurobiological mechanisms of this integration process remain largely undetermined. To charac-
terize them, researchers Marie Vandecasteele, Elodie Perrin, Nicolas Gervasi and Laurent Venance
(CIRB, Collège de France, Paris) investigated the plasticity rules at the corticostriatal (CS) and
thalamostriatal (TS) synapses and how they combined on their striatal target, the MSNs.
Indeed, CS long-term plasticity is a fundamental mechanism to form habits based on goal-directed
behaviours [244, 187]. To better characterize the implication of the striatum and thalamus in proce-
dural learning, it is fundamental to understand TS plasticity, which has been less studied than CS
plasticity, and the interactions between the two synaptic processes.

A paper published by the Venance group (Mendes et al. (2020) [164]) analyzed the spike-timing-
dependent plasticity, STDP (see the general introduction chapter 1), at both the CS and TS synapses.
They investigated the CS and TS synaptic plasticity and their interactions at a single neuron level
with patch-clamp recordings, with a brain slice preparation. They also developed a calcium-based
mathematical model of the coupled CS and TS plasticity that is derived from the Graupner and
Brunel STDP model [98] presented in subsection 1.2.2. Their findings pointed out the key role of
precise timing in cortical and thalamic activity for the memory engram of striatal synapses. Tha-
lamic inputs would have an important influence on the CS plasticity map, in particular they could
induce LTD in CS-STDP plasticity [164], and might play a role in enabling flexible behaviour for
procedural learning.

Although the STDP is a Hebbian learning rule mimicking physiological realities, the naturalistic
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validity of this protocol has been questioned [149, 150]. For instance, the injection of somatic cur-
rent that is used to generate postsynaptic spikes does not mimic any physiological event. STDP is
a good experimental paradigm to study Hebbian plasticity, but it would be interesting to develop
more physiological protocols.

Contrary to STDP which requires the injection of current to the postsynaptic neuron, in ITDP
experiments the postsynaptic neuron is not directly manipulated since only the synaptic inputs
are stimulated and induce sub- or suprathreshold responses [144], see figure 2.1 (B). The temporal
correlation of afferent inputs determines the plasticity in ITDP. Thalamic (tTS) and cortical (tCS)
stimulations are separated by a delay ∆t. We define this delay as ∆t = tTS − tCS.
Typically |∆t| = 15 ms, and for each experiment, pairings were repeated 100 times with a 1 Hz
frequency.

A B

Figure 2.1: ITDP protocol for corticostriatal (CS) and thalamostriatal (TS) synaptic plasticities,
adapted from Perrin (2022) [186]. (A) Schema of the brain slice with the positions of stimulating
electrodes: the secondary somatosensory cortex (S2) and the parafascicular nucleus of the thalamus
(Pf). The recording location is the dorsolateral striatum. After baseline stimulations, the ITDP
protocol is applied, then CS and TS changes are recorded during 50 mn. (B) An example of an
ITDP protocol, here a “CS supra then TS sub” protocol. The cortical stimulation happens before the
thalamic stimulation. The resulting striatal excitatory postsynaptic potential (EPSP) is represented
below. In all other cases stimulations can also be suprathreshold (supra) or subthreshold (sub),
spaced with |∆t| = 15 ms. For each experiment, pairings were repeated 100 times with a 1 Hz
frequency.

2.1.2 ITDP experiments

During her thesis, Elodie Perrin carried out ITDP experiments at corticostriatal and thalamostriatal
synapses for 16 conditions, see figure 2.1 (A). Indeed stimulations can be suprathreshold (supra) or
subthreshold (sub), TS then CS (∆t < 0) or CS then TS (∆t > 0), spaced with |∆t| = 15 ms or
|∆t| = 100 ms (control). These experiments allowed to better understand the interplay of these
two plasticities. Their results indicating the plasticity modifications (LTP, LTD, or nothing) are
summarized in figure 2.2.

As mathematical models were created for STDP (see the general introduction chapter 1), we devel-
oped a model for ITDP based on similar principles. Computational modelling would allow to better
grasp the underlying neurobiological mechanisms, but also it could help predict plasticity evolutions
in other experiments where plasticity measurements cannot be achieved, such as in vivo experiments.
Indeed after the fit of our model on ex vivo ITDP data, we try to apply it to behavioural exper-
iments on mice carried out by Marie Vandecasteele, where only cortical and thalamic spike trains
were accessible.

2.1.3 Motor training and motor adaptation effects

Another experiment was carried out to study CS and TS plasticities during a motor adaptation
task. The protocol consisted in training mice on a motor task, which is walking back and forth on
a regular horizontal scale, for 10 days. The 11th day, the scale was changed to a scale with missing
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Figure 2.2: Experimental results of the ITDP experiments, for the D1 (part of the striatum) MSNs
neurons. CS and TS synapses can be either potentiated (LTP), depressed (LTD) or do not change
(Ø). These data will be used to fit the parameters of our computational model.

bars, see figure 2.3. During these motor tasks, local field potential (LFP) signals in cortical and
thalamic neurons were recorded. The LFP corresponds to the electric potential in the extracellular
space around neurons, recorded with electrodes [64]. From that signal, it is possible to infer action
potentials emitted by the neurons surrounding locally the recording electrodes, through spike sorting
algorithms [6, 37] Our role would be then to determine whether LTP, LTD, or nothing is expected
to happen with such recorded spike trains as inputs in our fitted model, since the synaptic weight
measurements cannot be achieved in vivo, but only ex vivo or in vitro.

The final purpose of these experiments is to determine the functional role of each input to the MSNs
(cortical or thalamic) in learning. For instance, thalamocortical synapses have been hypothesized
as sending “reset” messages when the animal encounters a situation not according to the learned
task [166, 30].

Figure 2.3: Experimental setup of the horizontal scale experiment, to study CS and TS plasticities
in a motor adaptation task, adapted from Perrin (2022) [186]. First, mice are trained with the first
pattern during 10 days (30 passages each day). Then, the 11th day after 5 passages on the first scale
pattern, the second pattern is used for 5 passages. During these tasks, LFP signals in the cortex
and in the thalamus are recorded.

Two types of data were given to us:

• A LFP signal with 2 channels, downsampled at 1.25 kHz

• Spike trains, 3 from the cortex and 4 from the thalamus. They were extracted from the “total”
LFP signal with 2× 32 channels at 20 kHz.

For now, this experiment is not finished and future more precise recordings will be carried out. In
this chapter we analyzed the first experimental samples we have.
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Figure 2.4: Schematic representation of the two-compartment (CS and TS) model, inspired by a
schema in Mendes et al. (2020) [164]. MSNs are contacted by cortical afferents on dendritic spines,
and by thalamic afferents on dendritic shafts. The total calcium concentration is a result of the
different contributions cX , cXX and cXY .

2.2 Presentation of the model and data analysis methods

2.2.1 Computational model of ITDP fitted with experimental data

The model is inspired by STDP models from Graupner and Brunel (2012) [98] and from Mendes et
al. (2020) [164], with the differences mentioned above which characterize ITDP. Figure 2.4 presents
schematically the main elements of the model.

Each type of synapse (CS and TS) has a synaptic efficacy ρXi(t), where X = {CS,TS} and
i ∈ {1, ..., n} with n the number of synapses of a given compartment (CS or TS). ρXi has two
stable states, up or down, and one unstable. Switches occur between these states according to the
fluctuations of the total concentration of calcium ions ctot

X (t). Mathematically, ρXi(t) is assumed to
satisfy the stochastic differential equation derived from Graupner and Brunel (2012) [98]:

τXdρXi = [−ρXi(1− ρXi)(ρ∗X − ρXi) + γpX (1− ρXi)Θ(ctot
X (t)− θpX )

− γdXρXiΘ(ctot
X (t)− θdX )]dt+ dNXi(t)

(2.1)

The t dependency of ρ have not been noted in the equation for an easier comprehension.
τX denotes the typical time of the synaptic efficacy evolution, the parameter ρ∗X denotes the switch-
ing point between those trajectories eventually converging to the upstate (ρXi > ρ∗X) and those
converging to the downstate (ρXi < ρ∗X).

When calcium concentration exceeds the potentiation threshold θpX , ρXi increases at a rate denoted
γpX . Similarly, depression steps in when ctot

X (t) exceeds a threshold θdX and contributes to reduce
the synaptic efficacy at rate γdX .

Finally the term dNX(t) is assumed to be a calcium-dependent Gaussian noise. It is defined, with
ηXi(t) a Gaussian white noise, by:

dNXi(t) = σX
√
τX

√
Θ(cX(t)− θpX ) + Θ(cX(t)− θdX )ηXi(t) (2.2)

The total change in synaptic strength WX was estimated from the proportion U and D of synapses
that are respectively potentiated (from stable state 0 to 1) and depressed (from stable state 1 to 0)
after ITDP.

WX

(
1−D
1− U

)
= a+

b

1 + e−s(
1−D
1−U −d)

(2.3)
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with d = 1
s log

(
∆−es
1−∆

)
, b = (LTP − LTD)(1 + e−sd), a = LTP − b and ∆ = LTP−LTD

LTP−1 , where LTD

represents the maximal depression, LTP represents the maximal potentiation, and s is a parameter
controlling the sensitivity of synaptic changes.

There are four cases depending on whether CS and TS stimulations are subthresholds (sub) or
suprathresholds (supra).
In case of two sub stimulations, to reproduce the sublinear EPSP summation, ctot

X is modeled as a

quadratic sum: ctot
X =

√
c2X + c2XX + c2XY . In case of two supra stimulations: ctot

X = cX+cXX+cXY .
If the X stimulation is supra and the Y stimulation is sub: ctot

X = cX + cXX + cXY . Finally if the X

stimulation is sub and the Y stimulation is supra: ctot
X =

√
c2X + c2XX + cXY .

where cX is the amplitude of the calcium peaks after an external spike on a synapse of a X com-
partment,

dcX
dt

= − 1

τCaX
cX + CX

K∑
k=1

δ(t− tkX −DX) (2.4)

cXX is the amplitude of the calcium peaks after an external spike on another synapse of a X
compartment,

dcXX
dt

= − 1

τCaX
cXX + CXX

K∑
k=1

δ(t− tkX −DX −DXX) (2.5)

and with cXY , the amplitude of the calcium peaks after an external spike on another synapse of a
Y compartment,

dcXY
dt

= − 1

τCaY
cXY + CXY

K∑
k=1

δ(t− tkX −DY −DXY ) (2.6)

If a stimulation is suprathreshold, CX = Csupra
X , otherwise if the stimulation is subthreshold,

CX = Csub
X . Same variations apply for CXX and CXY amplitudes.

Please note that each synapse has a different synaptic efficacy ρXi , due to different initial conditions.

The former equations can be solved,

cX(t) = CXexp

(
− t− t

0
X −DX

τCaX

)
(2.7)

if t − t0X −DX > 0, cX(t) = 0 otherwise. Similar formulas apply for CXX (with DX + DXX) and
CXY (with DY +DXY ).

We find the analytical transition probabilities formulas in Graupner and Brunel (2012) [98] supple-
mentary materials, presented in introduction (equations (1.17) to (1.22)). The equations adapted
to our model are:

U(ρX0
) =

1

2

1 + erf

−ρX∗ − ρX + (ρX − ρX0
)e−nT/τXeff√

σ2
ρ(1− e−2nT/τXeff )

 (2.8)

D(ρX0) =
1

2

1− erf

−ρX∗ − ρX + (ρX − ρX0
)e−nT/τXeff√

σ2
ρX (1− e−2nT/τXeff )

 (2.9)

with

ρX =
ΓXp

ΓXp + ΓXd
(2.10)

σ2
ρX =

σ2(αXp + αXd)

ΓXp + ΓXd
(2.11)
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τXeff
=

τ

ΓXp + ΓXd
(2.12)

ΓXa = γXaαXa , with a=p or d.

αXa =
1

nT

∫ nT

0

Θ[ctot
X − θa]dt (2.13)

Thanks to these analytical transition probabilities, we can estimate our parameters in a much faster
way than with the total numerical simulation. We adjusted our model with experimental results
of ITDP experiments provided by Laurent Venance and Nicolas Gervasi, thanks to a Covariance
Matrix Adaptation Evolutionary Strategy (CMA-ES) algorithm [1]. This algorithm is used for
derivative-free global optimization (see pygmo online documentation [2]). The resulting parameters
are presented in table 2.1. Once we get the parameters, we used them in the numerical simulation
for 20 synapses (equations (2.1) to (2.6)). Results are presented in figure 2.7.

2.2.2 Motor task experiment recordings analysis, to determine for each
cortical or thalamic spike if it is associated with a sub- or suprathresh-
old MSN response

The LFP signals are recorded either from S2 (cortex) or from Pf (thalamus), two areas that send
inputs to the striatum. To use the in vivo extracted cortical and thalamic spike trains as inputs
in our model (to infer in vivo CS and TS plasticities), the type of induced MSN response (sub or
supra) must be determined for each spike.
For that purpose, it is necessary to localize when many cortical or thalamic neurons spike at the
same time. Indeed, a large input of collective firing is needed to induce a suprathreshold response
in MSNs, see figure 2.5. Striatal and cortical recordings in Mahon (2001) [154] show that MSN
firing can occur with the largest EPSPs, which were systematically coincident with large amplitude
electroencephalography (EEG) patterns (spindle waves) in the cortex. A similar reasoning can be
applied to the LFP signals in the experiment of Perrin.
Therefore, the analysis of the LFP signal could determine if there is an oscillatory behaviour at a
particular frequency correlated with spikes emission. Then, the signal could be filtered to only get
that frequency.

Figure 2.5: MSNs supratheshold depolarizations coincide with large amplitude EEG spindle waves,
adapted from Mahon (2001) [154]. We can observe on both figures the correlation between a
suprathreshold response in a MSN and an EEG motif (spinle wave). (A) A cortical EEG (top) and
spontaneous intracellular activity of a MSN (bottom) were recorded at the same time. (B) Cortical
EEGs (top) and related suprathreshold synaptic depolarizations (bottom) are superimposed.

Thus, if a spike occurs in a collective firing phase (“supra pattern”), it is likely to induce a
suprathreshold response in the striatum. Otherwise, an associated subthreshold response would
be more probable. In the model, the spikes that would coincide with a “supra pattern” in the fil-
tered LFP would be associated with calcium amplitudes Csupra

X , Csupra
XX , Csupra

XY and ctot
X summation

for a supra stimulation. Other spikes apart from these patterns would be associated with calcium
amplitudes Csub

X , Csub
XX , Csub

XY and ctot
X summation for a sub stimulation.

To identify this possible correlation, several methods can be used: the spike-triggered averaging, the
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autocorrelogram, and the distribution of phases.

• The spike-triggered average is the average stimulus (here LFP, noted X(t)) preceding a spike.
This method is used to determine the response characteristics of a neuron, through the spikes
generated when a time-varying stimulus is received. To compute it, the stimulus in the time
window preceding each spike is extracted, and the resulting stimuli are averaged [205]. If
the stimulus has a zero mean, these response properties can be estimated by computing the
average of the spike-triggered average.

A =
1

N

N∑
i=1

X(ti) (2.14)

where ti is the time of the ith spike, X(ti) represents the stimulus presented during the tem-
poral window preceding that time, and N is the total number of spikes.

In our study our time window was centered around the spike time, with limits ±1 s.

• The correlation between a signal and a delayed version of itself is known as autocorrelation.
It is frequently employed in signal processing, for example to locate missing frequencies in
inferred signals, or to detect periodic signals that are hidden by noise [101].

The definition of the autocorrelation function between times t1 and t2 is

RXX(t1, t2) = E[X(t1)X(t2)] (2.15)

In our study, our time window was centered around the spike time, with limits ±1 s. For
each spike, we consider all inter-spike intervals in this time window. Then we compute the
distribution of these autocorrelations.

• Data generated from EEG recordings show that brain dynamics is noisy, nonstationary, non-
linear, and can exhibit temporal discontinuities. The Hilbert transform (HT), a linear operator
like the FFT, is useful for studying nonstationary signals because it expresses frequency as a
rate of change in phase, allowing the frequency to shift with time. Indeed, brain recordings
often display several time-varying frequencies [86]. In our study, we filtered the LFP signal
(Xfilter) for theta bands (5-12 Hz), beta (15-35 Hz) and gamma (40-100 (52-98 because of noise
at 50 Hz in this experiment)). Then for each spike at ti we compute φ, by applying a hilbert
transform to determine which phase of the filtered LFP corresponds, and an angle function to
get the phase angle:

φ = angle(HT(Xfilter(ti))) (2.16)

Finally, we computed the distribution of these phase angles φ.

2.3 Fit of the model to ex vivo ITDP data to infer corticos-
triatal and thalamostriatal plasticities from in vivo LFP
recordings

2.3.1 Computational model fit

We present the outcomes of the fitted model as an illustration, whose parameters resulting from the
calibration are presented in table 2.1.
In the control conditions |∆t| = 100 ms, since the two stimulations are spaced by a large time
interval, the calcium concentration (Ca) traces are relatively independent so that the effect of the
nonlinear summation is limited, see figure 2.6 (A). This way, the maximum of the Ca traces never
reaches any plasticity threshold (θpX and θdX ) and the evaluation of the synaptic weights WX en-
dures no change, see figure 2.6 (B).
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Table 2.1: Parameters used for the ITDP model. Fitted parameters were found using CMA-ES
algorithm with experimental data.

Parameter Value Definition
Fixed parameters

s 2 slope parameter
LTP 2.5 maximal potentiation value
LTD 0.5 maximal depression value

Fitted parameters
τCS 140 s time const. for synaptic efficacy eq., CS
τTS 140 s time const. for synaptic efficacy eq., TS
ρ∗CS 0.234 switching point for synaptic efficacy eq., CS
ρ∗TS 0.270 switching point for synaptic efficacy eq., TS
γpCS

858 LTP rate, CS
γpTS

952 LTP rate, TS
γdCS

694 LTD rate, CS
γdTS

735 LTD rate, TS
θpCS 24.9 LTP threshold, CS
θpTS 25 LTP threshold, TS
θdCS

22.6 LTD threshold, CS
θdCS

22.9 LTD threshold, TS
σCS 1.12 noise const., CS
σTS 1.12 noise const., TS
τCaCS 0.0212 s time const. for calcium conc. eq., CS
τCaTS 0.0542 s time const. for calcium conc. eq., TS
Csupra

CS 15.9 Amplitude for synaptic calcium conc. eq., CS, supra
Csupra

TS 22.5 Amplitude for synaptic calcium conc. eq., TS, supra
Csupra

CSCS 4.56 Amplitude for calcium conc. eq., CS → CS, supra
Csupra

TSTS 0.648 Amplitude for calcium conc. eq., TS → TS, supra
Csupra

CSTS 22.2 Amplitude for calcium conc. eq., TS → CS, supra
Csupra

TSCS 15.3 Amplitude for calcium conc. eq., CS → TS, supra
Csub

CS 7.68 Amplitude for calcium conc. eq., CS, sub
Csub

TS 15.0 Amplitude for calcium conc. eq., TS, sub
Csub

CSCS 2.20 Amplitude for calcium conc. eq., CS → CS, sub
Csub

TSTS 0.432 Amplitude for calcium conc. eq., TS → TS, sub
Csub

CSTS 14.8 Amplitude for calcium conc. eq., TS → CS, sub
Csub

TSCS 7.40 Amplitude for calcium conc. eq., CS → TS, sub
DCS 0.00765 s Delay for calcium conc. eq., CS
DTS 0.00774 s Delay for calcium conc. eq., TS
DCSCS 0.0131 s Delay for calcium conc. eq., CS → CS
DTSTS 0.0106 s Delay for calcium conc. eq., TS → TS
DCSTS 0.000874 s Delay for calcium conc. eq., TS → CS
DTSCS 0.000623 s Delay for calcium conc. eq., CS → TS

For the |∆t| = 15 ms conditions, typical Ca traces show a rapid rise shortly after the stimulation,
followed by an exponential decay, see figure 2.7 (A). In general, CS and TS calcium concentration
evolutions display little difference. That is coherent with the experimental data showing similar
platicity results in both types of synapses in most conditions. The only case where CS and TS
synapses exhibit different plasticities is when a CS stimulation inducing a suprathreshold response
in MSNs is followed by a TS stimulation inducing a subthreshold response with a delay ∆t =
tTS − tCS = +15 ms, see figure 2.2 (CS then TS column, supra-sub line). In this situation, no
plasticity is noticed in TS synapses while LTP is observed in CS synapses. The simulation of this
condition displays that the maximal amplitude between the CS and TS Ca traces are noticeably
distinct, see figure 2.7 (A) (CS then TS column, supra-sub line). While the TS Ca maximum stays
slightly below the thresholds, the CS one rises above the LTP threshold θpCS . Since the synaptic
efficacy depends on the average fraction of time spent above a given threshold, see equation (2.13),
this effect contributes to potentiation, see equation (2.1). The repetition of the same organization
of stimulations leads to WTS = 1, i.e. no plasticity in TS synapses, and WCS = LTP, i.e. LTP in
CS synapses, see figure 2.7 (B) (CS then TS column, supra-sub line).
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Figure 2.6: Results of numerical implementations of the model with the parameters fitted on ex-
perimental data for control conditions (|∆t| = 100 ms), supra or sub stimulations, for TS then CS
(∆t < 0) or CS then TS (∆t > 0) pairings. In all cases no plasticity occurs, in accordance with
experimental controls. The different conditions are organized following the presentation of figure 2.2,
for an easy comparison between numerical and experimental results. (A) Calcium concentrations
of CS (blue) and TS (dotted red) synapses. Black lines are LTP thresholds (solid line for θpCS

and
dotted line for θpTS

), gray lines represent LTD thresholds (solid line for θdCS
and dotted line for

θdTS
). Synapses can be potentiated when calcium traces rise above LTP threshold θpX . Synapses

can be depressed when calcium traces rise above LTD threshold θdX and stay under LTP threshold
θdX . (B) After a 100 times repetition of the process, followed by a waiting period, the plasticity
ratios WX are computed. For each panel WCS are on the left side and WTS are on the right side.
These numerical plasticity outcomes reproduce correctly the experimental control conditions.

For all |∆t| = 15 ms conditions, the outcomes WX values of our model reproduced correctly the
experimental results: LTP, LTD, or nothing (see figure 2.7 (B) for numerical results that can be
compared to the experimental data in figure 2.2).

2.3.2 Application to predict corticostriatal and thalamostriatal plastici-
ties in mice performing motor learning and motor adaptation tasks
(LFP frequency analysis results)

To use the in vivo extracted cortical and thalamic spike trains as inputs in our model (to infer in vivo
CS and TS plasticities), it is necessary to identify whether these spikes are associated with sub- or
suprathreshold MSN responses. For that purpose, the identification of collective cortical or thalamic
firing behaviours could establish the distinction between sub and supra for a given spike. Indeed a
supratheshold MSN response could happen if a large number of cortical or thalamic neurons fire at
the same time.
Therefore, we analyzed the LFP signals (one recorded in the thalamus and one recorded in the cor-
tex) coupled with a sample of spike trains (4 recorded in the thalamus and 3 recorded in the cortex)
by computing the spike-triggered average, the autocorrelogram and the phases distribution for beta,
gamma and theta frequency ranges. Figure 2.8 presents an example of such analysis for a thalamic
LFP recording and spike train. The spike-triggered average (figure 2.8 (A)) displays an oscillatory
behaviour around 0 s, with a frequency around 8.3 Hz which is in the range of theta rythms (5-12
Hz). Consistently, the phase distribution for the LFP filtered for theta frequencies (figure 2.8 (C,
left)) highlights a more important phase, compared to phase distributions for the LFP filtered for
beta and gamma frequencies (figure 2.8 (C, middle and right)). The autocorrelogram (figure 2.8 (B))
also highlights slight oscillations, but which would need to be more precisely quantified.
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Figure 2.7: Results of numerical implementations of the model with the parameters fitted on ex-
perimental data for all conditions with |∆t| = 15 ms, supra or sub stimulations, for TS then CS
(∆t < 0) or CS then TS (∆t > 0) pairings. The different conditions are organized following the
presentation of figure 2.2, for an easy comparison between numerical and experimental results. (A)
Calcium concentrations of CS (blue) and TS (dotted red) synapses. Black lines are LTP thresholds
(solid line for θpCS

and dotted line for θpTS
), gray lines represent LTD thresholds (solid line for

θdCS
and dotted line for θdTS

). Synapses can be potentiated when calcium traces rise above LTP
threshold θpX . Synapses can be depressed when calcium traces rise above LTD threshold θdX and
stay under LTP threshold θdX . (B) After a 100 times repetition of the process, followed by a waiting
period, the plasticity ratios WX are computed. For each panel WCS are on the left side and WTS are
on the right side. These numerical plasticity outcomes reproduce correctly the experimental ITDP
measurements presented in figure 2.2.

All in all, these analyses point out that there is an oscillatory behaviour at a particular frequency,
that is many neurons fire synchronously. Such large concentrated inputs could lead to suprathreshold
responses in the MSNs [154]. Thus, the identification of supratheshold conditions makes possible the
use of experimental recordings as inputs in our computational model, which has not been achieved
yet due to the lack of experimental data.

2.4 Discussion

ITDP experiments have pointed out a significant role of the thalamus in corticostriatal plasticity,
which is consistent with former STDP studies on the same circuits [164]. To better understand this
plasticity process, we developed an ITDP computational model which successully reproduced the
experimental results for the 16 conditions on CS and TS plasticities. However some points would
need to be improved. It seems that the LTP (θpX) and LTD (θdX) thresholds are too similar, it
would be important to further investigate whether improvements could be achieved in that direc-
tion. Similarly the model does not seem robust enough since the calcium concentration amplitudes,
see figures 2.6 and 2.7, are only slightly below or above thresholds θpX , θdX (depending on the
condition). Thus, little variations δ∆t could significantly change the resulted plasticity. The fit of
the model would need to include δ∆t variations to improve the robustness of the model. Another
point is that this model has no spatial structure, it could be interesting in the future to consider it.
Actually the distance between CS and TS synapses seems to play an important role in plasticity,
since it impacts the calcium dynamics [100].

Another experiment was then to train mice on a motor learning task, which involves the striatum,
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Figure 2.8: Thalamic LFP correspondance with a thalamic spike train analysis reveals oscillations.
(A) The spike-triggered average displays an oscillatory behaviour around 0 s, with a frequency
around 8.3 Hz which is in the range of theta rythms. (B) The autocorrelogram highlights slight os-
cillations. (C) Phase distribution for a filtered LFP for theta (left), beta (middle) and gamma (right)
bands. The phase distribution for the LFP filtered for theta frequencies highlights a more important
phase, compared to phase distributions for the LFP filtered for beta and gamma frequencies.

and record the LFP signals to infer spikes in cortical and thalamostriatal neurons. Our role would
be then to determine whether LTP, LTD or nothing is expected to happen with such spike trains
(since LTP or LTD cannot be measured in vivo). The final purpose of these experiments is to deter-
mine the functional role of each input to the MSNs (cortical or thalamic) in learning. For instance,
thalamocortical synapses have been hypothesized as sending a “reset” message when the animal
encounters a situation not according to the learned task [166, 30].
In order to apply our computational model to in vivo recorded cortical and thalamic spike trains
as inputs, it must be determined whether they are associated with sub- or suprathreshold MSN
responses. This can be done through the LFP analysis linked with spike trains, to identify collec-
tive cortical or thalamic firing behaviours which could induce suprathreshold MSN responses. The
analysis of a few samples gave encouraging signs that this distinction between sub and supra can be
identified, but signals lack precision. More recordings will be carried out by the experimentalists in
a near future with a more performant electrode (more channels). These new data will be analyzed
the same way we did in this chapter, and could be used in our model. The model’s outcomes will
then be compared with the ex vivo ITDP measurements that will be carried out on sacrificed mice
24 hours after the last motor adaptation task.

We have seen in this chapter a model at a cell and synapse scale. When considering more cells
interacting through multiple synapses, it is useful to reduce a bit more the complexity of the cell
and synaptic dynamics description. We will see in the next chapter a modelling study at a network
level.
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Chapter 3

Modulation of neural collective
behaviours by astrocytes

3.1 Neuronal synchronization functions and interplay with
astrocytes

Neurons receive and emit action potentials, that often display synchronized behaviours. Interestingly,
while we have seen in the last chapter that the synchronization between spike times at a cellular
scale carries important information, the synchronization at a network scale would diminish the
complexity of the information received by each neuron [16]. Therefore, it does not seem that large-
scale synchronization could constitute a form of time-coded information [87]. Instead, the specific
features of synchronization behaviours, such as beta rythms between 12.5 and 30 Hz, point towards
a functional function for the processing of neural information [68].

Several cognitive phenomena were linked to neural network synchronization, such as memory for-
mation [16], directed attention [167], and sensory inputs processing [18]. Furthermore, impairments
in synchronization can be observed in some pathological states, such as epiletic seizures [118].

More recently, it has been highlighted that neuronal synchronization phenomena could be modu-
lated by astrocytes [182, 10] (these effects will be further specified in the sections below). Because
of the fact that an astrocyte is affected by a large number of synapses, gliotransmission may also
contribute in the effect of neuronal synchronization. An improved understanding of the synchro-
nization process could be achieved through analysis of bidirectional interactions between astrocytes
and neuronal cells [156].

In this chapter, we study how astrocytes could modulate collective behaviours such as Up-Down
oscillation dynamics in section 3.2 and epileptic seizures in section 3.3. We modeled the first issue
with a rate model, and since synchronization patterns depend not only on the dynamical properties
of individual oscillators but also on the underlying structural connectivity [247], we developed an
integrate-and-fire network used for both sections. These two different models have been analyzed
through equilibrium and stability analysis.

3.2 A rate and a spiking model to study cortical Up-Down
dynamics modulation by astrocytes

The following study has been published: Blum Moyse, L., & Berry, H. (2022). Modelling the
modulation of cortical Up-Down state switching by astrocytes. PLoS Computational Biology, 18 (7),
e1010296. https://doi.org/10.1371/journal.pcbi.1010296. The section below is extracted with a few
adaptation from this article.
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3.2.1 Experimental studies report a possible role of astrocyte dynamics
in Up-Down states generation

Collective behaviors are characterized by the emergence of a coherent group behavior on the basis
of simple interactions between the individuals of the group. Understanding the relationship be-
tween the properties of the individuals and the coordinated behavior at the population level usually
demands theoretical approaches, for instance from theoretical physics [46, 103, 44]. Among the nu-
merous forms of collective behaviors reported in the brain, Up-Down dynamics are characterized by
spontaneous switches between periods of intense firing of the whole neuronal population (Up state)
and periods of silence (Down state), even in the absence of external inputs [218, 56, 54, 212].

The cellular and network mechanisms at the origin of cortical Up-Down dynamics are still not well
understood. For a large part, the phenomenon seems intrinsic to the cortical networks since it has
been observed in cortical slices [54] and survives in vivo when the connections between cortex and
thalamus, its main source of inputs, are lesioned [218]. A number of theoretical studies have proposed
intrinsic mechanisms to explain cortical Up-Down dynamics, i.e., mechanisms that originate from
the neurons themselves [20, 50, 108, 24]. These proposals usually postulate some sort of activity-
dependent negative feedback of the firing rate, according to which individual neurons tend to decrease
their firing rate after sustained periods of firing, and to increase it after sustained periods of silence.
In the simplest cases, this negative feedback can rely on a slow adaptation current [50, 219, 224, 42]
or short term plasticity [108, 24], for instance.

However, the existence of a rhythm generation mechanism intrinsic to the neurons of the network
does not mean that the input from other brain regions cannot play a role. Several experimental
studies have evidenced that oscillatory inputs from the thalamus do strongly impact or even trigger
cortical Up-Down dynamics [194, 59, 143]. In agreement with these observations, several theoretical
studies have been proposed to study Up-Down dynamics in the framework of the interplay between
an intrinsic activity-dependent negative feedback of the firing rate and an external input to the
network [110, 147, 116].

Recently, astrocytes have been identified by experimental studies as a new potential actor of popu-
lation oscillations in the brain [142, 22, 40]. Astrocytes are non-neuronal neural cells that, together
with oligodendrocytes, ependymal cells and microglia form the glial cells [115, 230]. Astrocytes can
ensheath synaptic elements, thus forming a “tripartite” synapse where signalling information can
flow between the presynaptic neuron, the postsynaptic neuron and the astrocyte [185, 14]. Indeed,
at the tripartite synapse, astrocytes integrate neuronal activity as a complex transient signal of their
intracellular Ca2+ concentration [199, 211]. In addition, astrocytic intracellular Ca2+ signals can,
at least under certain conditions, trigger the release by the astrocyte of neuroactive molecules called
gliotransmitters that may in turn modulate neuronal information transfer [203, 177]. The existence
in physiological conditions of such a bilateral signalling between neurons and astrocytes is still de-
bated among experimental neuroscientists, in particular regarding the impact of gliotransmitters on
neurons [204, 76]. But if confirmed, it could explain the accumulated experimental evidence of the
implication of astrocytes in information treatment in the brain [180, 102, 203].

Recently, a series of experimental studies has suggested that astrocytes are another intrinsic mecha-
nism for the generation of Up-Down dynamics in cortical networks [189, 190]. In cortical slices, they
have observed that increasing the calcium activity of a single astrocyte is enough to roughly double
the probability to observe an Up state in the surrounding neurons, with no change of the ampli-
tude nor the duration of these Up states [189]. In vivo experiments further showed that increasing
calcium activity in a local population of astrocytes was temporally correlated to a shift of the local
population of neurons to the Up-Down regime [190].

In spite of these significant experimental observations, the mechanism by which astrocytes modulate
Up-Down cortical dynamics is still unknown. In particular, it is not understood how the modulation
by astrocytes interact or rely on the other identified mechanisms of Up-Down state generation
in the neurons. Here, we propose a mathematical model to explore the possible mechanisms by
which astrocytes control the emergence of Up-Down dynamics of their surrounding neuronal network
populations. To that aim, we extended the model proposed by [116] for Up-Down dynamics in a
network of excitatory and inhibitory cortical neurons with a population of astrocytes. This provided
us with theoretical tools to understand how the release of gliotransmitters by the astrocytes alters
the dynamics of neuronal network towards the emergence of Up-Down dynamics.
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3.2.2 Neuron-astrocytes computational models, equilibrium and stability
analyses

3.2.2.1 Rate model

JEE

-JEI

JIE

JIAJAE
JEA

JAA

-JII

JAI

A

E Ia

Figure 3.1: Interactions between the three populations of the model. E for excitatory
neurons, I for inhibitory neurons and A for astrocytes. a represents the adaptation mechanism of
E cells. Lines terminated with a full circle represent positive interactions whereas those terminated
with a bar represent inhibition (of I cells on E and I, and adaptation a on E cells). JXY represent
the synaptic strength from the Y population toward the X population. In case of inhibition these
terms are negative.

The model of Jercog et al. (2017) [116] presented in the subsubsection 1.4.2.1 of the first chapter
was designed to study the emergence of Up-Down dynamics in a neural network composed of an
excitatory population E connected to an inhibitory population I in a all-to-all manner. Here, we
extended it to account for the impact of astrocytes on the network (figure 3.1).

Astrocytes express a variety of receptors at their membranes, that bind the neurotransmitters or
neuromodulators released by the presynaptic elements at the tripartite synapse, including gluta-
mate, GABA, acetylcholine or dopamine [185, 230, 61]. Through these receptors, neuronal activity
is integrated inside the astrocyte, which eventually converges in a complex signal of astrocytic intra-
cellular Ca2+ [199, 211]. In response to this Ca2+ transient, astrocytes can, at least under certain
conditions, release in the synapse a variety of molecules, referred to as “gliotransmitters”. Upon
binding to the pre or postsynaptic element of the tripartite synapse, gliotransmitters can in turn
hyperpolarize or depolarize the neuronal membrane [204, 203, 177]. Interestingly, whereas the as-
trocytic cytosolic calcium transients are very slow events, especially in the soma (around 10-20 sec
on average), gliotransmitter release events are much faster (around 1 sec) [190, 28].

According to this oversimplifying birds-eye view of neuron-astrocyte interactions, the astrocytic re-
sponse to presynaptic neuronal activity is similar to the process of neuronal integration: presynaptic
neuronal activity is integrated in astrocytes as a calcium trace that triggers a peak-like release of
gliotransmitters that in turn affects postsynaptic membrane voltage. The major differences are i) in-
tegration time-scales and gliotransmitter release dynamics in astrocytes are different from electrical
signalling in neurons and ii) the equivalent of inhibitory/depolarizing neuronal inputs that decrease
the membrane potential does not seem to exist for astrocytic Ca2+. To model astrocyte activity, we
thus opted for same formalism of rate equations (1.53) or (1.54), but with different time scales and
expressed the rate of gliotransmitter release by the astrocyte as

τA
drA
dt

= −rA(t) + φA(IA(t) + σξA(t)) (3.1)

with the constraint τA � τI and τA � τE . To our knowledge, there are no a priori reasons to
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consider that external inputs to the cortical network under study are restricted to a given subtype
of brain cells, either excitatory neurons, inhibitory neurons or astrocytes. Therefore, we fed an
oscillatory external input was to all cell populations, including astrocytes (variable ξA above).

Whereas one expects positive values for the firing threshold θX of neurons in equation (1.55) (i.e.
neurons remain silent below a threshold of their input), we will favor negative values for θA, in order
to account for the spontaneous calcium activity of astrocytes [230].

We now can give a definition for the three internal recurrent inputs:

IX(t) = JXErE(t) + JXIrI(t) + JXArA(t) (3.2)

with now X = {E, I,A}. The synaptic couplings JXY (with X,Y = {E, I,A}), describe the strength
of the connection from population Y to X. They verify JXE > 0 (excitatory), JEI < 0, JII < 0
(inhibitory) and JAX ≥ 0 (i.e. both E and I increase the rate of gliotransmitter release in astrocytes).

A fixed-point and linear stability analysis of the rate model defined by equations (1.53) to (1.55)
and (3.1) (3.2) is provided below, in subsubsection 3.2.2.1. The values of the parameters in the
equations above are given in Table 3.1.

Table 3.1: Parameters used for the rate model equations (1.53) to (1.55) and (3.1) (3.2).

Parameter Value Definition Parameter Value Definition
τE 10 ms time const., E τI 2 ms time const., I
τA 20 ms time const., A τa 500 ms time const., adaptation
θI 25 threshold, I θA -3.5 threshold, A
JEE 5 s strength, E→ E JEI -1 s strength, I→ E
JII -0.5 s strength, I→ I JIE 10 s strength, E→ I
JAA 0.1 s strength, A→ A JEA 1 s strength, A→ E
JIA 0.5 s strength, A→ I gE 1 Hz gain, E
gI 4 Hz gain, I gA 1 Hz gain, A

σ 3.5
√

2 noise std θE ∈ [−10, 20] threshold, E
β ∈ [0, 10]s strength, adaptation JAE 0.5 s strength, E→ A
JAI 0.5 s strength, I→ A

Fixed points and linear stability analyses

Noiseless model. We start with the rate model defined by equations (1.53) to (1.55)
and (3.1) (3.2), and first neglect the external noisy input. In this case, the nullclines of the system
are given by

rE = gE [IE − a− θE ]+ (3.3)

rI = gI [II − θI ]+ (3.4)

rA = gA[IA − θA]+ (3.5)

a = βrE (3.6)

Note that because of the rectification functions in equations (3.3) to (3.5), the values of the rates
at a fixed point cannot be negative. The rate model equations (1.53) to (1.55) and (3.1) (3.2)
being a piecewise-smooth system, a rigorous analysis of the stability of its fixed points would require
dedicated analysis methods [66]. Here, we leave this analysis for further work and assume that
all fixed points remain far from the switching manifolds where the arguments of the rectification
functions change signs and proceed to linear stability analysis in each of the respective regions.

A Down or silent state can be characterized as a fixed-point where both neuronal populations are
silent, i.e. rE = rI = 0 spks/s. equations (3.6) means that adaptation a also vanishes in such a Down
state. The rectification functions of equations (3.3) and (3.4) impose θE ≥ 0 and θI ≥ 0 for the Down
fixed-point to exist. Indeed θE < 0 would mean from equation (3.3) that rA < 0 at the fixed-point
(since rE = 0 spks/s), which is not compatible with equation (3.5). Hence the Down state exists only
if θE ≥ 0 or θI ≥ 0. If, in addition θA ≥ 0, the Down state is (rE , rI , rA, a) = (0, 0, 0, 0). Assuming
that all the rectification functions in equations (1.53) (1.54) (3.1) vanish in the neighborhood of the
fixed point, we find that this Down state is stable by linear stability analysis (eigenvalues of the
Jacobian:{−1/τE ,−1/τI ,−1/τA,−1/τa}).
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In the case θA < 0 (still with θI ≥ 0 and θE ≥ 0), we assume that the argument of the rectification
function in equation (3.1) is strictly positive, while the rectification functions in equations (1.53)
and (1.54) vanish. The nullcline for rA, equations (3.5) then becomes rA = gA(JAArA − θA).
Therefore, there still is a positive Down fixed-point (rE , rI , rA, a) = (0, 0,−gAθA/(1− gAJAA), 0)
but only for:

θE > −gAJEAθA/(1− gAJAA), (3.7)

as well as θI > −gAJIAθA/(1 − gAJAA) and gAJAA < 1. Close to this fixed-point, the Jacobian
matrix reads 

−1/τE 0 0 0
0 −1/τI 0 0
0 0 (gAJAA − 1) /τA 0
β 0 0 −1/τa

 (3.8)

so stability is granted whenever gAJAA < 1, i.e as soon as the equilibrium value for rA exists.

To find an Up state fixed-point with non-zero rates we follow [116] and substitute the value of the
adaptation at equilibrium a = βrE , assuming that the arguments of all the rectification functions of
equations (1.53) (1.54) (3.1) are strictly positive. This yields:

rE =
hEθE + fEIθI + fEAθA

|M |
, (3.9)

rI =
fIEθE + (hI − βJ ′AA)θI + (fIA + JIAβ)θA

|M |
(3.10)

and

rA =
fAEθE + (fAI + JAIβ)θI + (hA − βJ ′II)θA

|M |
(3.11)

with

J ′XY = JXY −
1

gX
, (3.12)

hX = J ′Y Y J
′
ZZ − JY ZJZY , (3.13)

fXY = JXZJZY − JXY J ′ZZ , (3.14)

and
|M | = JAEfEA + JAI(fIA + JIAβ) + J ′AA(hA − βJ ′II) (3.15)

One condition for the UP state fixed-point to exist is that the right hand side of equations (3.9) (3.10)
(3.11) are positive. Given our reference parameters (table 3.1), the condition on rI , i.e., rI > 0 is
the most restrictive condition. In other words, when θE and β are varied, equation (3.10) is the first
one to become positive. Moreover, with our reference parameters, it turns out that the determinant
|M | < 0. The condition for the existence of the Up state fixed-point thus becomes

β <
fIEθE + hIθI + fIAθA

J ′AAθI − JIAθA
. (3.16)

since J ′AAθI − JIAθA < 0 with our reference parameters (table 3.1).

Considering that in the neighborhood of the Up fixed-point, all the rectification functions of the
model are positive, the Jacobian matrix reads

−1+gE(JEE−β)
τE

gEJEI
τE

gEJEA
τE

gIJIE
τI

−1+gIJII
τI

gIJIA
τI

gAJAE
τA

gAJAI
τA

−1+gAJAA
τA

 .

It is possible to obtain analytical expressions for the eigenvalues of this matrix, however these
expressions are too complex to be really useful, even to determine their signs. We therefore estimated
their values numerically to explore stability of the Up fixed-point, with numerical estimation of the
sign of the real part of the eigenvalues of the matrix. Note finally that in regions where both the Up
state and the Down state fixed-points are stable, the existence of a third, unstable and intermediate
fixed-point can be evidenced by numerical analysis.
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The effect of noise on the model. The addition of noise however complicates the above
picture. In particular, spontaneous Up-Down transitions can occur even in the region where the
Down state is stable and the Up state unstable, through a dynamical regime whereby noise triggers
the Down to Up switches and adaptation triggers the reverse Up to Down transitions. In [116], it
is proposed that this subregion can be estimated to start when the Up state is unstable under the
sole influence of adaptation, a condition that can be deduced from equation (3.16) with β = 0:

θE < −hIθI + fIAθA
fIE

(3.17)

Likewise, the symmetrical regime exists in the region where the Up state is stable and the Down
state unstable, for which Up-to-Down transitions are triggered by noise and Down-to-Up switches
by adaptation. [116] proposes to delineate this region by the situation where adaptation in the Up-
state is large enough to counterbalance the effect of θE , i.e. βrE + θE > 0, where rE is given by
equation (3.9), which yields

β >
−θE(JAEfEA + JAIfIA + J ′AAhA)

fEIθI + fEAθA + (hE − J ′AAJ ′II − JAIJIA)θE
(3.18)

3.2.2.2 Stochastic spiking network model

We also modeled the three-population {E, I,A} system of figure 3.1 by expressing it as a stochastic
spiking network model instead of the firing rate framework of subsubsection 3.2.2.1. Following the
same principle as above, where we used a classical neuron rate equation to model astrocyte gliotrans-
mitter release, we used here leaky integrate and fire equations to model both neuronal membrane
potential and the release of gliotransmitters by astrocytes. Hence, the membrane potential of the
two populations of neurons reads:

τE
dV Ei
dt

= −(V Ei − VL) + IErec,i(t) + IEext,i(t)− κaIa,i(t) (3.19)

τI
dV Ii
dt

= −(V Ii − VL) + IIrec,i(t) + IIext,i(t) (3.20)

and similarly, we model gliotransmitter release from the astrocytes as:

τA
dGAi
dt

= −(GAi −GAL) + IArec,i(t) + IAext,i(t) (3.21)

with i ∈ {1, ..., NX}. GAi is thus a phenomenological dimensionless variable that integrates the
neuronal and astrocytic inputs to astrocyte i. According to the integrate-and-fire principle, whenever
the membrane voltage of a neuron of population X exceeds its threshold θX at time t, a spike is
emitted and the membrane voltage is reset to V Xr . Similarly, when GAi exceeds the threshold
Gth, astrocyte i emits a gliotransmitter release event, and GAi resets to Gr. Gliotransmitter release
events and spikes are then integrated in the corresponding synaptic variable sX (see equations (1.29)
and (1.30)).

For the simulations of the spiking model, we assumed the following connectivity rules:

• full connectivity for neuron-to-neuron connections and for astrocyte-to-astrocyte connections.
The latter emulates the organization of astrocytes as a syncytium. This biological concept
corresponds to the idea that all astrocytes of a local region are somehow interconnected together
into single functional network [230].

• only a fraction (10%) of the E or I neurons are subjected to gliotransmission from the astro-
cytes. These neurons are chosen at random (uniform distribution).

• 50 % of the astrocytes, chosen uniformly at random, receive inputs from the E or I neurons.

The latter two connectivity rules account from the observation that only part of the synapses of
a given brain region are tripartite synapses contacted by astrocytes. The exact fraction seems to
be quite variable from one region to the other, from 10 % to 90 % [230]. Therefore, our choice
corresponds to a lower range of parameters.

One specificity of the original spiking model of Jercog et al. (2017) [116] is to account for synaptic
variables by a single pair of variables uX , sX for each population, which can thus be considered as
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population variables instead of individual cell variables. Their equations (1.29) (1.30) were presented
in the subsection 1.3.2 of the first chapter.

Here we follow this model and define the recurrent input to each population X = {E, I,A} as a
population-level input as:

IXrec,i(t) = CXEi JXEsE(t) + CXIi JXIsI(t) + CXAi JXAsA(t) (3.22)

where the A→ E connectivity CEAi = 1 for 10% of the E neurons i (chosen uniformly at random) and
0 for the others (the same for CIAi ). For the (E, I) → A connectivity, we used CAEi = CAIi = 1 for
50% of the astrocytes (chosen uniformly at random) and 0 for the others. All the others connectivities
(CEIi , CEEi , CIEi , CIIi , C

AA
i ) were set to 1 (all-to-all connectivity).

Note that signal transmission in astrocytes is much slower than in neurons since it is based on
reaction-diffusion (calcium signalling) instead of the propagation of an action potential [190, 28, 230].
To account for this important difference in timescales, we used transmission delays that were on the
order of milliseconds for neurons ([0, 1] ms) but on the order of seconds for astrocytes ([0.5, 1.5] s,
see Table 3.2).

In addition, the excitatory neurons displayed an after hyperpolarization (AHP) current. Its equa-
tion (1.31)is presented in the subsection 1.3.2 of the first chapter. The external input current
IXext,i(t) = σX

√
τXηi(t) is a Gaussian white noise term.

Initial conditions were set as V Xi = Vr + (Vth − Vr)ηi and GAi = Gr + (Gth − Gr)ηi, where ηi is a
random value with uniform distribution between 0 and 1. Unless indicated, we simulated the spiking
network model using NE = 4,000 excitatory neurons, NI = 1,000 inhibitory neurons and NA = 2, 000
astrocytes. Each of these 2,000 astrocytes thus impacts 400 excitatory and 100 inhibitory neurons
by gliotransmitter release, whereas half of them are individually impacted by the activity of the
totality of the 4,000 E and 1,000 I neurons.

The values of the parameters in the equations above are given in Table 3.2. A fixed-point and linear
stability analysis of the spiking model defined by equations (3.19) to (3.22), and (1.29) to (1.31), is
provided below, in subsubsection 3.2.2.2.

Table 3.2: Parameters used for the spiking model equations (3.19) to (3.22), and (1.29)
to (1.31).

Parameter Value Definition Parameter Value Definition
τE 20 ms time const., E τI 10 ms time const., I
τA 160 ms time const., A τa 500 ms time const., adaptation
τE 1 ms time const., uE τI 1 ms time const., uI
τA 1 ms time const., uA JEE 1.4 mV strength, E→ E
JEI -1.4 mV strength, I→ E JII -1 mV strength, I→ I
JIE 1.25 mV strength, E→ I JAA 0.16 strength, A→ A
JAE 0.053 strength, E→ A JEA 22 mV strength, A→ E
JIA 4.4 mV strength, A→ I JAI 0.058 strength, I→ A
β 1 ms time const., adaptation κa 600 strength, adaptation
σE 3 mV noise std, E σI 3 mV noise std, I
σA 3 noise std, A Vr 14 mV reset membr. pot.
Gr 9 reset gliotrans. release Vth 20 mV spike-threshold
Gth 13 gliotrans. release thresh. τEd 23 ms decay time, E
τ Id 1 ms decay time I τAd 2 ms decay time, A
τEr 8 ms rise time, E τ Ir 1 ms rise time, I
τAr 8 ms rise time, A dEmin 0 ms min. delay, E
dImin 0 ms min. delay, I dEmax 1 ms max. delay, E
dImax 0.5 ms max. delay, I dAmin 500 ms min. delay,A
dAmax 1.5 s max. delay, A V EL 7.6 mV leak potential, E
V IL 6.5 mV leak potential, I GAL 7 leak gliotrans. rate, A

Fixed points and linear stability analyses
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Analysis of the spiking model defined by equations (3.19) to (3.22), and (1.29) to (1.31), was
carried out as follows. The nullclines of the population averaged rates are obtained from the
equilibrium firing rate (rX,0), which is given by the self consistent mean-field equation [38]:

rX,0 =
1

τX

[∫ ∞
0

dy

y
e−y

2

(e2yyXt − e2yyXr )

]−1

(3.23)

with

yXr =
Vr − IX,0

σX
yXt =

Vth − IX,0
σX

(3.24)

and with the currents:
IE,0 = VL,E + Irec,E − κaβrE,0 (3.25)

II,0 = VL,I + Irec,I (3.26)

IA,0 = VL,A + Irec,A (3.27)

Irec,X = CXENEJXErE,0τE + CXINIJXIrI,0τI + CXANAJXArA,0τA (3.28)

where CXY is the connectivity (0.1 for astrocyte to neuron connection, 0.5 for neuron to astrocytes,
1.0 otherwise). Note that we replaced Ia,0 = βrE,0. These self-consistent equations are solved by
finding the intersection between the right and the left side of equation (3.23). The fixed points
are the intersections of the three surfaces rE,0, rI,0 and rA,0. The stability of these fixed points is
determined with the sign of the eigenvalue λ [38, 197, 141]. Solving the system

δrE = FEE(λ)δrE + FEI(λ)δrI + FEA(λ)δrA

δrI = FIE(λ)δrE + FII(λ)δrI + FIA(λ)δrA

δrA = FAE(λ)δrE + FAI(λ)δrI + FAA(λ)δrA

(3.29)

for the perturbations around the fixed-point, δrE , δrI and δrA, one gets the condition (omitting the
dependences on λ for readability):

(FEE − 1)(FII − 1)(FAA − 1) + FEIFIAFAE + FEAFIEFAI

−(FEE − 1)FIAFAI − FEIFIE(FAA − 1)− FEA(FII − 1)FAE = 0
(3.30)

with
FXY (λ) = JXYRX(λ)SY (λ) (3.31)

and the synaptic response function SY (λ)

SY (λ) =
e−λd

Y

(1 + λτYr )(1 + λτYd )
(3.32)

In this equation, RX(λ) is the neuronal response function defined as

RX(λ) =
rX,0

σX(1 + λτX)

∂U
∂y (yXt , λτX)− ∂U

∂y (yXr , λτX)

U(yXt , λτX)− U(yXr , λτX)
(3.33)

with

U(y, λ) =
ey

2

Γ
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2
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,−y2

)
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2yey
2
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2
,

3

2
,−y2

)
(3.34)

with M is a confluent hypergeometric function. Stability is assessed by solving equation (3.30) for
λ numerically. The fixed point is stable when its real part is negative.

3.2.2.3 Parameter estimation

The experimental data available for parameter estimation of the two models above exhibit strong
variability. In [116], for instance, the numbers used to quantify the experimental measurements
(distribution of duration of Up or Down phases, CV of the firing rates) vary significantly from one
repetition of the experiment to the other. Over the seven repetitions of the same experiments (their
Figure 2A and B), the mean duration of the Up phases varies from 0.24s to 0.73s, for example. With
other experimentalists, using other experimental setups, and recording on different cortical regions,
the variability would probably be even larger. Therefore, the classical methodologies for parameter
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estimation would at best allow to match one specific repetition of a given experiment, where our
objective here is to get a more generic overview of this system. Therefore, we have opted for an ad
hoc method to set the values of the parameters. When available, we have set the initial guess for the
parameters to rough estimates from the literature. For instance, the quantification of propagation
delays of calcium waves in 3D astrocytes made in [28] sets an order of magnitude of around 1 to 2
sec for the maximal delay of astrocytes dAmax. For the other parameters, we used bifurcation studies
like those shown below to locate regions of the parameter space in which model simulations are
approximately in agreement with the variation range of the main experimental quantities of [116].
The results are given in table 3.1 and table 3.2.

3.2.2.4 Automatic segmentation of Up and Down phases

We quantified the statistics of Up and Down phases in rate model or spiking network simulations on
the basis of the mean firing rate time series. In spiking network simulations, we first computed the
mean population rate from the raster plot, using a sliding window of 10 ms and counting the total
number of spikes emitted by all neurons (excitatory and inhibitory) in the window. Automatic seg-
mentation of the firing rate time series into Up phases and Down phases was achieved by smoothing
the sampling rate using a sliding window of +/− 50 points around each data point and replacing
each data point by the median over the window. Transition of the smoothed data curve through
a threshold of 1.0 Hz from below was considered a switch from a Down to a Up state, whereas
transition from above signaled a reverse switch, from Up to Down state. The first and last phases
of a simulation were systematically discarded and not accounted for in the statistics.

3.2.3 Modelling the modulation of cortical Up-Down state switching by
astrocytes

3.2.3.1 Rate model

We first illustrate the dynamics of the rate model described in subsubsection 3.2.2.1 by the simple
numerical simulations of figure 3.2. In the absence of astrocytes (i.e. with JIA = JEA = JAI =
JAE = 0 s, figure 3.2a), the model with the parameters of the figure is silent: the firing rate of the
inhibitory neurons rI vanishes, and that of the excitatory neurons, rE , is also zero most of the time,
except for small fluctuations due to external noise. Accordingly, adaptation is essentially off. We
then added gliotransmission between excitatory neurons and astrocytes in figure 3.2b keeping all
other parameters identical to figure 3.2a. Adding gliotransmission drastically changes the dynamics
that now exhibits spontaneous transitions between long periods of silence for all neuronal populations
and shorter periods of high firing rates for the excitatory and inhibitory neurons (around 10 and 5
Hz, respectively). In other words, astrocyte activity in the rate model switches the dynamics from
silent to a Up-Down oscillatory dynamics, in agreement with experimental observations in vivo [190].
During an Up state, adaptation slowly increases and eventually triggers the Up-to-Down transition
that ends the Up state.

Note that the average values of rE , rI and rA during the Up and Down states in the simulation of
the figure match the values predicted by the stability analysis in subsubsection 3.2.2.1. In particular,
this analysis states that in the Down fixed-point, one expects rA = −gAθA/(1 − gAJAA) while the
neuronal rates vanish. In agreement, the rate of gliotransmitter release by the astrocytes rA remains
elevated during the Down states of figure 3.2b, even though the neurons are silent.

To analyze further these simulation results, figure 3.3 summarizes the fixed-point and linear stability
analysis in subsubsection 3.2.2.1 in the (β, θE)-parameter plan. In the absence of noise, figure 3.3A,
the system behavior is determined by two straight lines: the Down steady-state exists (and is stable)
only on the right hand side of the line defined by equation (3.7) whereas the Up steady-state exists
for the half-plan below the line defined by equation (3.16). This defines two regions of mono-stability,
one where the Up state is the only fixed-point (U-region) and the other where the Down state in
the only one (D-region). The region where both the Up state and the Down state exist is a region
of bistability (“Bist.” in the figure) where the dynamics converges to the Up or the Down state
depending on the initial conditions. Finally, in the region where neither the Up nor the Down fixed-
points exist, the arguments of the rectification functions regularly switch from positive to negative
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a. no astrocytes

b. with astrocytes

Figure 3.2: Astrocytes in the rate model of subsubsection 3.2.2.1 switch the dynamics
from silent to Up-Down. (A) In the absence of astrocytic impact on the neurons (JEA = JAE =
JIA = JAI = 0 s) the neurons are in a silent state with vanishing firing rates rE (red) and rI (blue)
and adaptation a (black), corresponding to a Down-state fixed point. Please note the difference of
y-scale between panels (A) and (B). (B) When gliotransmission between astrocytes and neurons is
accounted for (JEA = 1, JIA = JAI = JAE = 0.5 s), with no change of the other parameters, the
dynamics switches to Up-Down dynamics. All other parameters given in Table 3.1.

and back. This yields a regime of oscillations (“Osc”-region), that is a specific manifestation of the
non-smooth character of the model.

With noise (figure 3.3B-C), spontaneous Up-Down transitions are expected to occur in the bistable
and oscillatory regions of the noiseless system, but also in sub-regions of its U- and D-regions (see
subsubsection 3.2.2.1). Altogether, this defines three dynamical regimes: low values of β and θE are
predicted to give rise to a regime of perpetual high firing rates, i.e. a stable Up state. Conversely,
large values of the excitatory neuron threshold θE are expected to yield a silent regime, or Down
state, where neuronal firing rates vanish. Between those two regions, the system is predicted to
switch spontaneously between periods of high population rates and periods or collective silence,
i.e. U ↔ D dynamics. A theoretical estimation for the frontier between the U and the U ↔ D
region with noise is given by equation (3.18) (figure 3.3, dashed black lines). Comparing with the
percentage of the simulation-time spent in the Up state shows that in all the cases illustrated in
figure 3.3B-C this expression indeed correctly positions the D-region on the plan, although it strongly
underestimates its size. Likewise equation (3.17) (figure 3.3, dashed green lines) indeed indicates the
transition between the D and the U ↔ D regions, although, here again, the predicted size of the D
region is strongly underestimated.

Remarkably, this frontier between U ↔ D and D is very sensitive to modifications of gliotransmission
couplings (the JXAs and JAXs): the presence of astrocytes indeed pushes this frontier to larger values
of θE . The cyan star in figure 3.3B-C locates the parameter values used in figure 3.2. Without
astrocytes, the star is located on the right hand side of the frontier between the U ↔ D and the
D region, thus explaining the silent state of figure 3.2a. With the addition of gliotransmission, the
frontier moves rightwards, so that now, the star is located inside the U ↔ D region. This explains
the Up-Down regimes of figure 3.2B and C.

Taken together, these results indicate that astrocyte activity can indeed switch the network dynamics
from silence to the Up-Down regime by altering the phase diagram of the dynamics. The effect of
gliotransmission on the model dynamics is not drastic, in particular gliotransmission does not change
the nature or the number of bifurcation points in the system. However, it displaces the frontiers
separating dynamical regimes, thus allowing the expression of Up-Down dynamics for a larger range
of values of the firing threshold of the excitatory neurons.

49

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0058/these.pdf 
© [L. Blum Moyse], [2023], INSA Lyon, tous droits réservés



Figure 3.3: Prediction of the dynamical regimes of the model. Diagram as a function of
the adaptation strength β and the threshold of the excitatory neurons θE . (A) In the absence of
noise, the deterministic model exhibits two regions of monostability: the “U”-region where the Up
state fixed-point is the only one, and the “D”-region where the Down state fixed-point is the unique
fixed-point. Both fixed-points coexist in the bistable region “Bist.” whereas the dynamics oscillates
in the “Osc.” region. Those regions are precisely delimited by equation (3.7) and equation (3.16).
(B-C) With noise, three main regimes are predicted: a purely Up state in the bottom left part of
the plan, a purely Down state in the right part of the plan and spontaneous transitions between
Up and Down states in-between (U ↔ D). The color-code indicates the percentage of time spent
in the Up state during a simulation. (C) Simulations were carried out with astrocytes (JEA = 1,
JIA = JAI = JAE = 0.5 s), or (B) in their absence (JIA = JAI = JEA = JAE = 0 s). The cyan
star locates the parameters of figure 3.2, which shows in particular that gliotransmission pushes the
frontiers of the Up-Down region further to the right, effectively switching the dynamics to the Up-
Down regime. Equation (3.17) and equation (3.18) are theoretical estimates of the frontiers between
U ↔ D and D or U ↔ D and U . All other parameters given in Table 3.1.

3.2.3.2 Stochastic spiking network model

To assess the above mechanisms in a more biophysically realistic circuit, we next expressed the
circuit of figure 3.1 as a stochastic spiking network model, with leaky integrate-and-fire neurons
and astrocytes (subsubsection 3.2.2.2). Using the same illustration as for the firing rate model
above, we start in figure 3.4 with a network devoid of astrocytes, i.e. for which JAE = JAI = 0
and JEA = JIA = 0 mV. The neurons exhibit a very short firing phase at the beginning of the
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stimulation due to our choice of random initial conditions but quickly converges back to a silent
state.
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Figure 3.4: Without astrocytes (JAE = JAI = 0 mV, JIA = JEA = 0 mV), the stochastic
spiking network of subsubsection 3.2.2.2 is in a silent state. (A) Membrane voltages of
two randomly chosen cells, one excitatory (red) neuron, one inhibitory (blue) neuron, as well as the
average AHP current (black). (B) The spike rastergram that locates with points the spike times of
a randomly-chosen subset of the neurons (one neuron = one row), and (C) the corresponding mean
population rates are shown using the same color-code. The short initial burst of activity is due to the
initial conditions where every cell is initiated randomly between its resting potential and the spiking
threshold. NE = 4, 000 excitatory neurons, NI = 1000 inhibitory neurons. Other parameters given
in Table 3.2.

Adding gliotransmission between astrocytes and neurons strongly affects the dynamics (figure 3.5):
periods of nearly complete neuronal silence now spontaneously switch to periods of high collective
neuronal firing, during which roughly all neurons fire on the order of 2 to 15 spikes. The raster
plot of figure 3.5B also suggests the factors that trigger Down-to-Up transitions: Up states are
systematically initiated by a strong firing activity in the subset of excitatory neurons that are
contacted by the astrocytes (neurons numbers 50 to 70 in the raster plot). This first wave of
excitation then is transmitted to the whole populations of neurons (E and I), thus forming an Up
state.

Hence, our biophysical model of stochastic spiking neurons confirms that astrocyte activity can
switch the neuronal network from silent to Up-Down dynamics. During the Up states, the mean
population firing rate of the spiking network is similar to te one exhibited by the firing rate model,
i.e. around 10 Hz for inhibitory neurons and 5 Hz for excitatory ones (compare figure 3.5C with
figure 3.2B), confirming the good match between the rate and spiking models despite the dissimilarity
of their spatiotemporal scales. The distributions of the duration of the Up and Down states are
estimated in figure 3.5D. For Down states the distributions is peaked around 0.5 seconds whereas
it is much broader for Up states, with a large part of the durations comprised between 0.5 and 1.3
seconds. On average, the Down states are twice shorter than the Up states: 459 ± 336 ms for the
Down states versus 1, 031± 575 ms for the Up.

However, unlike the neurons that collectively synchronize their firing as successive Up and Down
phases, the rate of gliotransmission events by astrocytes does not exhibit strong evidence of alterna-
tion between distinct activity phases (figure 3.5, green). The membrane potential of the individual
neurons is strongly bimodal, fluctuating around a lower mean value during Down phases and around
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Figure 3.5: With astrocytes, (JAE > 0 mV, JAI > 0 mV), the stochastic spiking network
switches to a Up-Down dynamic regime. (A) Membrane voltages of three randomly chosen
cells, one excitatory (red) neuron, one inhibitory (blue) neuron and the astrocyte (green) as well as
the average AHP current (black). (B) The spike rastergram, (C) corresponding synaptic variables sX
and (D) mean population rates are shown with the same color-code. (E) Distribution of Up (orange)
and Down (purple) state durations for E and I cells (based on 200 independent simulations of 20
sec each, resulting in a total of 2273 Up states and 2356 Down). For each simulation, NE = 4000
excitatory neurons, NI = 1000 inhibitory neurons and NA = 2000 astrocytes. Other parameters
given in Table 3.2. For readability, the first phase of the simulation, characterized by a short very
active up state, was discarded.

a larger mean during Up phases, on top of which spikes are emitted (figure 3.5A, blue, red). In
strong contrast, the dynamics of the gliotransmitter release variables GAi is devoid of such alter-
nations, rather appearing to fluctuate around a single, stationary mean (figure 3.5A, green). This
opposition is also visible in the raster plot (figure 3.5B): the neuronal spikes are strongly synchronized
and their presence almost totally restricted to the Up phases, whereas the astrocytic gliotransmitter
release events are emitted at an intermediate frequency, but with no clear variation of frequency
between Up and Down phases. The evolution of the population synaptic variables, the sXs of
equations (1.29) (1.30) (3.22), provides another evidence that the neuronal and astrocytic dynamics
are different (figure 3.5C): the astrocytic variable sA (green) fluctuates around a low but constant

52

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0058/these.pdf 
© [L. Blum Moyse], [2023], INSA Lyon, tous droits réservés



mean, independently of the Up and Down phases of the neurons that strongly condition the neuronal
synaptic variables sE (red) and sI (blue). Of course, the reason why the astrocytic release events are
hardly synchronized along the Up and Down phases contrarily to the spiking activity of the neuronal
populations is the difference of timescales for information transmission in those cells: on the order
of millseconds for neurons versus seconds for astrocytes (the dXmin and dXmax of Table 3.2).

c. Population rates
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Figure 3.6: Without astrocytes (JAE = JAI = 0 mV, JIA = JEA = 0 mV) but with large
amplitude of the stochastic external input (σX =5 mV), the stochastic spiking network
of subsubsection 3.2.2.2 exhibits spontaneous transitions between Up and Down states,
i.e. an Up-Down regime. However the difference between the phases is less marked than the
dynamics observed with astrocytes. (A) Membrane voltages of two randomly chosen cells, one
excitatory (red) neuron, one inhibitory (blue) neuron, as well as the average AHP current (black).
(B) The spike rastergram and (C) the corresponding mean population rates are shown using the
same color-code. All parameters are identical to those of figure 3.4, except for the amplitude of
the noise to the neurons σE = σI = 5 mV. NE = 4000 excitatory neurons, NI = 1000 inhibitory
neurons.

Therefore, in the simulations of figure 3.5, astrocytes provide the neurons with a constant, basal
level of gliotransmission events that fuels their spontaneous collective alternation between Up and
Down firing phases. Nevertheless, this background stochastic level of astrocytic input to the neurons
is more than an additional random external input to the neurons. To show this, we went back to
the spiking model without astrocytes of figure 3.4 and increased the random external input to the
neurons. Figure 3.4 showed that the network is silent with the default value of the standard deviation
of the random external input noise, σX= 3 mV (table 3.2). Increasing σX to 5 mV does give rise
to an Up-Down regime with spontaneous alternation of Up and Down phases (figure 3.6). However,
the difference between the resulting Up and Down phases is much less marked than in the Up-Down
regimes with astrocytes: the subliminal individual membrane voltages are nomore clearly bimodal
(figure 3.6A), and the difference between firing rates in Up and Down phases is much lower, with a
significant firing activity during Down phases (figure 3.6B,C).

Moreover, the range of external input amplitudes that give rise to Up-Down regimes without astro-
cytes is much more narrow than with astrocytes. Mean-field fixed-point and linear stability analysis
of the stochastic spiking network model is shown in figure 3.7 (see subsubsection 3.2.2.2). Two
bifurcation diagrams are compared: in figure 3.7a, astrocytes are absent, like in the simulations of
figure 3.4, whereas figure 3.7b shows the same diagram when astrocytes are present, like in figure 3.5.
These bifurcation diagrams show the evolution of the fixed points and their stability when one varies
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Figure 3.7: Linear stability analysis of the spiking network model. (A) Without or (B) with
astrocytes along the intensity of the noisy external input to the neurons σX . In both cases, a bistable
region is observed, ended by a saddle-node bifurcation for large σX . However, the bistable region
is drastically reduced in the absence of astrocytes, as evidenced by the width of the gray-shaded
region, that locates the range of σX values for which Up-Down regimes are observed in numerical
simulations of the network. These bifurcation diagrams show the evolution of the stable (solid lines)
and unstable (dotted lines) fixed points of the equilibrium rates rE,0 (red), rI,0 (blue) and rA,0
(green). In (A), the insets show a zoom out around the bistability region without astrocytes. See
subsubsection 3.2.2.2 for details on linear stability analysis. The dashed cyan vertical line indicates
the β value used for numerical simulations in figure 3.4 and figure 3.5. Other parameters are given
in Table 3.2. Note in particular that the diagram was obtained using σE = σI ≡ σX and keeping a
constant σA = 3.

the amplitude of the external noisy input, i.e. the standard deviation of the stochastic input to the
E and I neurons, σX . Without astrocytes, the diagram shows a stable fixed-point corresponding to
a low firing rate for low σX values and a second stable fixed-point yielding a larger firing rate at
large σX values. In a narrow range of σX values ([4.4, 4.5] mV), the two stable fixed points co-exist,
together with a third intermediate unstable one (dashed line), thus evidencing a region of bistable
dynamics (magnified in the inset). We also indicate with a gray-shaded region the parameter range
where simulations of the spiking model evidence spontaneous transitions between Up and Down
phases (like in figure 3.6). The prediction of the mean-field analysis is not very precise regarding the
location of the bistability region, which is probably a finite-size effect related to the finite number of
neurons and astrocytes in the simulations. However, the theoretical analysis agrees very well with
the narrowness of the bistability region observed in simulations, which confirmes that noise-induced
Up-Down regimes with the parameter values of Table 3.2 are observed only for a limited range of
input intensities in the absence of astrocytes. In particular, this range is very far from the value
σX = 3 mV used in the previous simulations, explaining the silent state figure 3.4.

Astrocytes modify the bifurcation diagram (figure 3.7B): the values of the firing rates of the neurons
in the Up and Down stable fixed-point are roughly the same as without astrocytes, but the range of
σX values for which bistability and Up-Down regimes are observed is incomparably larger, extending
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to much lower values. In particular, the bistability region now includes the value σX = 3 mV, thus
the Up-Down regime observed in figure 3.4. Note also that the bifurcation analysis predicts that
the rate of emission of gliotransmission events by the astrocytes should be very similar either in
the Up or the Down state, in strong opposition to the neuronal firing rates. This explains the
observation that the gliotransmission emission rate in figure 3.5 did not vary much between Up and
Down phases: all variables do follow the bistable dynamics of the whole system, but the branches
of stable fixed-points for the astrocytes are much closer to each other than those for the neuronal
firing rates.

Hence, as for the firing rate model studied in subsubsection 3.2.3.1 above, adding astrocytes in the
spiking model does not drastically alter the nature or number of bifurcations, but relocates the
bistability region in the parameter space so that a point in the parameter space that is out of the
bistability region without astrocytes can find itself inside the bistability region by the addition of
astrocytes, thus exhibiting Up-Down regime.

As a final remark, all the above results were obtained with JAI > 0, i.e. a scenario where the firing
activity of the inhibitory neurons directly increases the probability of gliotransmitter release by the
astrocytes. However, we checked that the absence of this specific interaction does not jeopardize
the validity of our conclusions here. We show in figure 3.8 the results obtained with the rate model
(figure 3.8A) or the spiking network model (figure 3.8B) when the strength of I → A interactions
vanishes (JAI = 0), while keeping all the other parameters as in Table 3.1 or Table 3.2. This
figure evidences a handful of changes compared to the scenario JAI > 0 illustrated above, but the
simulation results are still very similar (compare figure 3.8A with figure 3.3 with or figure 3.8B with
figure 3.5), so that the conclusions drawn above are still valid in the absence of I→ A interactions.

3.2.4 Discussion

Up-Down cortical dynamics have primarily been observed during sleep or anesthesia. However,
similar dynamical regimes have also been reported in the cortex during quiet wakefulness [188,
151] or during a task [200, 69]. Therefore making sense of these dynamics is important for our
understanding of brain operations in general, not only during sleep or anesthesia. The cellular
mechanisms that support the emergence of spontaneous Up to Down and Down to Up transitions in
the cortex are however still unclear. The hypothesis that these transitions could be controlled by a
mechanism intrinsic to the neurons of the considered cortical region has been explored by a number of
theoretical or computational studies [20, 50, 108, 24]. However recent experimental studies reported
the implication of other types of intrinsic brain cells, in particular astrocytes [190, 189, 202].

These results motivated us to propose our rate model equations (1.53) to (1.55) and (3.1) (3.2). The
main novelties here are i) to introduce the impacts of astrocytes in the dynamics of neuronal networks
in the Up-Down regime and ii) to account for the influence of astrocytes using a rate equation
with a similar mathematical structure as the firing rate equation of the neurons. Modelling the
gliotransmitter release activity of astrocytes using a rate equation similar to the firing rate equation
of the neurons enabled us to preserve the mathematical tractability of the model. We acknowledge
that using equation (3.1) or equation (3.21) is a strongly simplified modelling of gliotransmission.
However, it has the advantage of preserving the main biological ingredients of gliotransmission while
keeping the model simple enough for the analytical study of its stability. We believe that the
possibility to rely simulation results on an underlying sound theoretical analysis was important for
the present article, and this is the reason why we have chosen to keep these population synapses.

In our numerical simulations, the addition of gliotransmission from astrocytes was sufficient to
transform a neural network prepared in the Down, silent state into a dynamical regime of spontaneous
alternations between Up and Down states. The inclusion of astrocytes in our model therefore
provided us with the opportunity to explore how astrocytes alter the dynamics of the neuronal
firing rates in a way that switches them to the Up-Down alternation regime. A major conclusion
from our model is that gliotransmission probably does not have a drastic effect on the underlying
dynamics of the network. Adding gliotransmission does not modify the number nor the type of the
observed bifurcations, it only alters the values of the parameters at which these bifurcations occur.
As a result, gliotransmission can transform a silent neural network model into a network exhibiting
Up-Down dynamics, with no change of the neuron-related parameters, and no alterations of the
neural mechanisms that control the transitions between Up and Down phases. Moreover, our model
suggests that the fundamental differences of signal integration in neurons versus astrocytes may
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Figure 3.8: Results of the rate model of equations (1.53) to (1.55) and (3.1) (3.2) (A) or the spiking
network model of equations (3.19) to (3.22), and (1.29) to (1.31) (B) obtained in the presence of
astrocytes, but with JAI = 0 mV, i.e. with no direct effect of inhibitory neurons on astrocytic
gliotransmitter release. All parameters were as indicated in Table 3.1 or Table 3.2, except for the
value of JAI that was set to 0. Refer to figure 3.3C and figure 3.5 for the color-codes and parameters
of panels (A) and (B), respectively.

be crucial in the emergence of Up-Down regimes. In particular, the signaling delay in our spiking
network model was kept three orders of magnitude larger in astrocytes compared to neurons, i.e.
seconds versus milliseconds. This difference of timescales turned out to be crucial for the network
dynamics illustrated in figure 3.5 where a stationary background of astrocytic gliotransmission events
triggers spontaneous transitions between synchronized Up and Down phases of neuronal firing.

The main limitation of our models are the simplification assumptions that we made to express the
impact of astrocytes on the neural network model. The modelling literature proposes mathematical
descriptions of the process of gliotransmitter release from astrocytes that are much more complex
or accurate than the simple phenomenological expressions used here, see e.g., [61] for a recent
account. However the price to pay for the added complexity would be a restriction of the available
mathematical understanding of the system dynamics. Future numerical simulation works will be
needed to assess whether the inclusion of such more complex descriptions comes with changes of
the main conclusions of the present study. We also adopted the modelling choice made by [116] for
their spiking model where the synapse dynamics are modelled using a single population variable,
integrating the spikes emitted by the whole population into a single variable that can then be fedback
to the other cells. This choice limits the range of modelling exploration regarding connectivity. It
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forbids models where the inputs received by an astrocyte is restricted to a subset of the neurons or,
conversely, those where gliotransmission from an astrocyte targets only a subset of the synapses of a
neuron. On the other hand, though, this modelling choice greatly facilitates theoretical (mean-field)
analysis of the stochastic network model. We leave for future works the study of models that would
incorporate the main ingredients of our models above, but with real individual synapses and / or
more realistic sparse neuron-neuron connectivity [219]. This would make it possible to associate
a spatial embedding to the network thus enabling the study of slow wave propagation [42] or to
compare Up-Down regimes during sleep with those observed during anasthesia [224].

Experimental reports indicate that astrocytes form roughly 20 to 40 % of all glial cells [230]. On the
other hand, estimates of the ratio between glial cells and neurons in human cortex varies from 1.5 to
more than 2 in humans [230]. Altogether, those numbers yield an astrocyte:neuron number ratio in
the human cortex that ranges from 1:3 to 1:1. The numbers chosen for our simulations of the spiking
network model are in good agreement with these experimental reports, with an astrocyte:neuron
number ratio of 1:2.5. Additional comparisons can be made with the in vivo experiments reported
in [116] from multichannel silicon microelectrode recordings in the somatosensory cortex of urethane-
anesthetized rats. As explained in subsubsection 3.2.2.3, we have set parameter values so that the
model simulations exhibit behaviors similar to the experiments of [116]. We now give a more detailed
account of the match between model and data. The distributions of Up or Down phase duration
in the experiment shown in figure 2A of [116] are broad, with Down phases lasting from less than
100 ms to 1.5 s and Up phases reaching larger maximal values, up to 2 s. Our simulation results
exhibit similar broad distributions, at least for Up states, a consequence of the large variability of
the Up state durations (figure 3.5D). The coefficient of variations from the in vivo experiment of
figure 2A [116] were 0.61 and 0.70, for Up and Down phases, respectively, to be compared with 0.56
and 0.73 for our simulations. The mean values of the phase durations are also very well replicated
by our simulations: 1.03 and 0.46 s for Up and Down phases, respectively, vs 0.65 and 0.38 in the
experiment of [116], figure 2A. The instantaneous population rate during Up phases in these in vivo
experiments is around 4 to 6 Hz in [116] (their Figure 1C), a value that is similar to the population
rate of excitatory neurons in our simulations (figure 3.5D). Taken together, we thus conclude from
those quantitative comparisons that our simulation results exhibit Up and Down phases that agree
well with available experimental data.

The main experimentally-testable prediction made by our work is arguably the possibility of a dy-
namical regime where the astrocytic gliotransmitter release events are only weakly synchronized to
the succession of Up and Down phases of the neuron firing state. In this regime the population
frequency of gliotransmitter release events does not change much in Up phases compared to Down
phases. Experimental testing of this prediction would consist in measuring simultaneously the activ-
ity of a local population of neurons using e.g., multi-channel silicon microelectrodes while monitoring
the gliotransmitter events from astrocytes from the same local area. Gliotransmitter release events
are difficult to monitor experimentally, even with glutamate-sensitive fluorescent reporters (see e.g.,
fig. 7D in [190]). Monitoring intracellular calcium activity could constitute a good proxy to locate
glutamate release events by astrocytes. However, recent experimental studies have challenged the
relation between calcium signals recorded from astrocyte cell bodies from those initiated in the fine
processes, that are expected to contact the synapses [199, 211, 28]. Therefore, experimental testing
of the above dynamical regime would probably need the measure of local calcium signals, within
the fine astrocyte processes that form the so-called ”gliapil”. At any rate, this predicted dynamical
regime is supported by activity-dependent release of gliotransmitters by astrocytes, which existence
and impact on the neurons in physiological conditions is still debated among experimental neu-
roscientists [204, 76]. Therefore, according to the work presented here, experimental observation
of astrocytes releasing gliotransmitters at a roughly constant rate while neurons undergo succes-
sive Up and Down firing phases, should be interpreted as an argument in favor of the existence of
gliotransmission, and not against it.
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Synchronized neural activities are important characteristics for an healthy brain function, which
occur within a wide range of spatiotemporal scales. But anormal synchronized behaviours can be
observed in some neurological disorders [118].

3.3 How are astrocytes involved in epileptic seizures?

3.3.1 Epileptic seizures could result from impaired network synchroniza-
tion linked with astrocytic dysfunctions

One of the main disorders in which altered neuronal interactions play a crucial role is epilepsy.
This disease is characterized by the presence of regular and unpredictable seizures [206]. A seizure is
defined as a “transient of signs and/or symptoms due to abnormal excessive or synchronous neuronal
activity in the brain” [79].

Figure 3.9: Example of a recorded seizure: spike rastergram and the corresponding mean firing rate,
adapted from Truccolo et al. (2011) [226]. (A) Rastergram. Neurons are vertically sorted according
to their mean firing rate during the seizure. Neural firing rates become more synchronized at the
end of the seizure. Its termination happens abruptly, and is followed by a long silent period (around
20 s). (B) The mean firing rate is stationary before the seizure onset, then rise significantly.

Figure 3.9 presents an example of an experimental recording (rastergram and mean spike rate) of
a seizure. It is interesting to note that desynchronization has been observed before the onset of
seizures or shortly after, and high levels of synchronization were recorded at the end of seizures
(which could induce or facilitate the termination) [118].

Within this network synchronization perpsective, a particular attention has been paid to coexist-
ing synchronous and asynchronous oscillations in networks of identical coupled oscillators, named
chimera states [13, 155, 25]. It has been shown that these chimera states could coalesce into a glob-
ally synchronous motion in finite size networks [242, 139]. This process has been suggested to be
a possible mechanism for the onset of the seizure, but it is still unclear what causes this rapid collapse.

Among the different factors that could be responsible for the synchronization behaviour alteration
in seizures, it appears that astrocyte dysfunctions could play a role. Indeed astrocyte alterations in
K+ buffering, astrocyte immune responses, gap junctions, glutamate uptake, or astrocyte signaling
have all been suggested to be linked with human or experimental epilepsy [206, 55, 184]. This latter
effect is studied in this chapter to investigate another aspect of modulation by astrocytes of neural
synchronization.
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Indeed, we have seen in section 3.2 that neurons and astrocytes can interact in particular through
bidirectional glutamate exchanges, which has for consequence that astrocytes can modulate the
neuronal activity synchronization. Therefore, dysfunctions in that signalling system could make the
neuron-astrocyte network more excitated, which may perturbate neuronal synchronization and favor
seizures.

Here we propose a neuron-astrocyte network with a modular connectivity, adapted from our prece-
dent work. The organization of cells in clusters is here considered to be in more accordance with
biological reality and to take into account that a seizure could be a collapse of activity patterns.
A small-world like network has also been developed, its results will be briefly presented as they do
not display any seizure-like event. However, they represent an interesting extension to the former
study of Up-Down dynamics modulation.

3.3.2 Modular and small-world connectivity

The integrate-and-fire model described in the previous section 3.2 had no spatial structure, the
synaptic connections were described as mean synapses (i.e. a single synaptic variable sX for all
cells in the population X). In addition to facilitate analytical analysis, this feature allowed to
strongly decrease computational costs. But in the context of spatially-explicit neuron positions,
this modelling option cannot be used and we had to employ individual synapses (i.e. one synaptic
variable sX,i per neuron). Since this came with a huge increase in computational costs, we coded the
model in C++ using parallel computing in collaboration with Jonathan Rouzaud-Cornabas. This
optimized code allowed us to simulate large networks with discrete synapses.
The synaptic variables sX,i and uX,i are now unique for each post-synaptic cell.

τXr
duX,i
dt

= −uX,i + τX
∑
k

NX∑
j=1

CXYij δ(t− tkj − dkj ) (3.35)

τXd
dsX,i
dt

= −sX,i + uX,i (3.36)

For i ∈ {1, ..., NX}.
The structure is defined by the connectivity matrices CXY . Clusters of cells with equal sizes are
defined, with connections between cells within a cluster, between neighbour clusters (inter-cluster
local connection) and remote ones (shortcuts). To build the 9 connectivity matrices between the 3
populations (E, I and A cells), we begin to build a ring lattice on which cells are arranged following
a recurrent pattern, see figure 3.10. For a cell labeled i, with i from 0 to N − 1, the value i mod 7
determines which type of cell it is. The following algorithm is applied to this lattice:

1. Construct a regular ring lattice, with N nodes, each node labeled i ∈ 0 . . . N − 1.
If (i mod 7 = 1, 2, 5 or 6), then i defines an E cell (notation i ∈ E)
If (i mod 7 = 0), then i defines an I cell (notation i ∈ I)
If (i mod 7 = 3 or 4), then i defines an A cell (notation i ∈ A)

2. Construct a graph where each node is connected to K neighbours, K/2 on each side. That is,
there is an edge (i, j) if and only if [234],

0 < |i− j| mod

(
N − 1− K

2

)
≤ K

2
(3.37)

If i ∈ A and j ∈ A, then K = KA

If (i /∈ A and j ∈ A) or (i ∈ A and j /∈ A),

If i mod 10 = 0, then K = KNA

Else K = 0

Else K = KN

3. Construct the clusters. For p from 0 to D,

If (i ∈ A and j /∈ A), then for each i there is a connection with all j cells between
Np/D +N/(2D) and N(p+ 1)/D
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Figure 3.10: Schematic plot of the network structure. The nodes (cells) are numbered from 0 to N-1,
and their number determines to which population they belong, excitatory neurons (E), inhibitory
neurons (I) or astrocytes (A). See more details of these rules in the text. Cells are organized
in clusters with connections within a cluster, between adjacent clusters, and shortcuts connecting
remote ones. Each element of the network is defined in a different step of the algorithm, indicated
in brackets.

If (i /∈ A and j ∈ A), then no connections

Else for each i there is a connection with all j cells between Np/D and N(p+ 1)/D

4. For every node i = 0, . . . , N − 1 take every connection, and rewire it with probability βrw.
Rewiring is done by replacing (i, j) with (i, k) where k is chosen uniformly at random from all
possible nodes.

Afterwards, connectivity matrices CXY are extracted, see figure 3.11.
The complexity of this algorithm is due to the mix between different topological components (small-
world part to connect neighbour cells in step 2, clusters in step 3, and rewiring in step 4), as well as
the different interactions between the three cell populations, defined in step 1. Indeed the relative
number of connections and the connectivity rules between the populations are computed so that the
properties of the original spiking model presented in section 3.2 are preserved. Before rewiring:

• within a cluster, apart from recurrent connections, there is a full connectivity for neuron-to-
neuron connections and for astrocyte-to-astrocyte connections (step 3, third condition).

• The inter-cluster local connections between neurons (step 2 with K = KN ) concerns a small
number of connections, see figure 3.11, so that it represents a negligible variation in the mean
number of connections per neuron.

• only a fraction (10%) of the E or I neurons are subjected to gliotransmission from the nearest
astrocytes (step 2 with K = KNA), uniformely distributed across clusters.

• 50 % of the astrocytes in each cluster receive inputs from the E or I neurons of the same cluster
(step 3, if i ∈ A and j /∈ A).

Finally, the rewiring process preserves the total number of connections (step 4).

The introduction of this topology represents the main modification of the original model (see sec-
tion 3.2). But some modifications in individual cell dynamics have also been introduced, see table 3.3.
First, JXY have been rescaled to maintain the properties of the dynamics with the smaller number
of connections per neuron in this model. Furthermore, JAE value was a bit increased compared to
the rescaled value. The increase of astrocyte inputs strength enhances the general excitability of the
system, which may lead to a seizure-like event.
Moreover, the after hyperpolarization current was removed (κa = 0). Since interestingly it appeared
to be unnecessary to induce Up to Down transitions in the modular network, we decided for sim-
plification purposes to study the model behaviour without adaptation. The effect of adaptation in
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Figure 3.11: Connectivity matrices CXY between all populations. The network is organized in 10
clusters with connections between neighbour clusters and shortcuts conneting remote clusters. The
proportions of connections between cell populations of the former section 3.2 have been preserved.
Neurons are almost all connected inside a cluster, and astrocytes receive inputs from half the neurons
in their cluster, while they contact 10% of the neurons.

this network would need to be further characterized in the future.

The initial conditions for astrocyte gliotransmitter release were fixed lower than the mean, that is
instead of GAi = GAL + (Gth −Gr)ηi, it is

GAi = GAL +
3

4
(Gth −Gr)ηi (3.38)

With ηi a random value with a uniform distribution between 0 and 1.
These initial conditions were chosen to study the impact of a possible increase of astrocytes excitation
(from the under-excitated initial conditions to a mean value) on the overall dynamics. To observe
the transient dynamics before the transition towards a more excitated state (see figure 3.13), the
maximal transmission delay of astrocyte was extended (from 1.5 s to 3 s).

Comparison with a small-world network To study whether a transition to a seizure-like
event could emerge for different networks, a small-world like topology was examined. The resulting
connectivity matrices (see figure 3.12) were obtained using an algorithm similar to the one previously
described.

As for the modular network, some modifications in individual cell dynamics have been introduced for
the synaptic weights JXY , the after hyperpolarization current has been removed and the maximal
delay transmission for astrocyte has been extended, see table 3.4. The initial conditions for astrocyte
gliotransmitter release were also fixed lower than the mean, see equation (3.38).

3.3.3 Modular excitatory, inhibitory neuron and astrocyte network ex-
hibits spontaneous seizure-like events, contrary to the small-world
network

The separation of the model into segragated clusters induces localized patterns of neural Up-Down
activity, see the rastergram in figure 3.13 (A) before t = 7.5 s. We can observe a synchronization
between the pattern of different clusters, some can be in a concomitant Up or Down phase at the
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Table 3.3: Parameters used for the modular spiking model which differ from those used
in the model of section 3.2 or have been introduced

Parameter Value Definition
JEE 140 mV strength, E→ E
JEI -140 mV strength, I→ E
JIE 125 mV strength, E→ I
JII -100 mV strength, I→ I
JAE 8 strength, E→ A
JEA 220 mV strength, A→ E
JAI 5.8 strength, I→ A
JIA 44 mV strength, A→ I
JAA 16 strength, A→ A
κa 0 strength, adaptation
dAmax 3 s max. delay, A
KN 20 Mean degree for neurons receiving neuron connections
KA 20 Mean degree for astrocytes receiving astrocyte connections
KNA 175 Mean degree for neurons receiving astrocyte connections
βrw 0.01 Rewiring parameter
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Figure 3.12: Connectivity matrices CXY between all populations for a small-world like organization
for neurons. Cells are connected with their nearest neighbors and a few shortcuts connect remote
cells. The proportions of connections between cell populations of the former section have been
preserved.

same time. Unlike the neurons, the rate of gliotransmission events by astrocytes does not exhibit
strong evidence of alternation between distinct activity phases, as in the previous section 3.2.
An interesting phenomenon occurs around t = 7.5 s. We observe a generalized silent period of
approximately 1 s for all neural clusters. Afterthat, some neural areas began to spike heavily, which
is then followed by an important rise in gliotransmission. After this seizure-like onset, we can observe
more neural and astrocyte areas being “ recruited” in this excessive firing. This effect is well seen on
the mean population rates, see figure 3.13 (B), after the silent period and the onset around t = 7.5
s, the mean rate in each cell population increases progressively.

This transition would be due to a slight increase in the astrocyte gliotransmitter release, since initial
conditions were fixed lower than the mean.
Without astrocytes, the neural network remains in a silent state (figure not represented here).
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Table 3.4: Parameters used for the small-world like spiking model which differ from
those used in the model of section 3.2 or have been introduced

Parameter Value Definition
JEE 70 mV strength, E→ E
JEI -70 mV strength, I→ E
JIE 62.5 mV strength, E→ I
JII -50 mV strength, I→ I
JAE 0.8 strength, E→ A
JEA 220 mV strength, A→ E
JAI 0.58 strength, I→ A
JIA 44 mV strength, A→ I
JAA 1.6 strength, A→ A
κa 0 strength, adaptation
dAmax 3 s max. delay, A
KN 180 Mean degree for neurons receiving neuron connections
KA 85 Mean degree for astrocytes receiving astrocyte connections
KNA 175 Mean degree for neurons receiving astrocyte connections
βrw 0.01 Rewiring parameter

No seizure like-event was observed in a small-world like network Contrary to the dynamics
in the modular network, no seizure transition was observed in the small-world like network for similar
individual cell parameters, see figure 3.14.
However, the Up-Down dynamics is preserved. While it is less synchronized than in the previous
section 3.2, with some kind of spatial segregation in cell activities, it is less clustered than for the
modular network (figure 3.13).

3.3.4 Discussion

Over 50 million individuals worldwide suffer epilepsy, the third most prevalent neurological condition.
Approximately 30 to 40 percent of epilepsy patients experience drug-resistant seizures, a number
that has remained mostly consistent over the past ten years despite major attempts to create new
antiepileptic medications [161]. Therefore, further research needs to be carried out to identify the
mechanisms underlying seizure generation. Here, I have used a network perspective to approach
this phenomenon, in agreement with previous models centered at synchronization dynamics [118]
or chimera states collapse [13, 242]. These phenomena may in part be modulated by astrocytes
dysfunctions, which have been shown to have a role in the synchronization of neural networks in
epilepsy [206, 55, 184]. Studies on the impact of astrocytes alterations in epilepsy could represent
new therapeutic perspectives [124].

These observations motivated us to propose a modular neuron-astrocyte network to understand
whether astrocytes effect on synchronization could lead to a seizure-like event. This work is still
under development but provides first tracks on the link between astrocytes and seizures. We have
seen that patterns of Up-Down dynamics arise in a clustered connectivity. After a short period of
global silence, this activity can converge into a full-spiking pattern when gliotransmission reaches a
certain level, which should be specified in the future.

An important limit of our work is that once a seizure-like event has begun, our network cannot go
back to its initial condition. The conditions for seizure termination have indeed been less investigated
both experimentally [201, 248, 168] and theoretically [135] than those for the seizure onset. In our
model, this termination may maybe occur through astrocyte regulation of synaptic depression and
facilitation [62].
But an important future axis of this study would be to add a spatial-dependency to the connectivity,
in particular to investigate calcium waves in astrocytes. Indeed it is not clear whether calcium waves
could induce seizure-like events [107] or be triggered by them [17].
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A

B

Figure 3.13: Spontaneous coalescence of cluster-activities into a seizure-like event. The initial con-
ditions for astrocyte gliotransmitter release were fixed lower than the mean. (A) Spike rastergram
with the color code: green for astrocytes, red for excitatory neurons and blue for inhibitory neurons.
Before t = 7.5 s, we can observe a synchronization between the different clusters, some can be in a
same Up or Down phase. Unlike the neurons, the astrocyte activity does not exhibit an Up-Down
dynamics (as observed in section 3.2). After t = 7.5 s, we observe a global silent short duration,
before a massive firing behaviour begins in some cells, for most clusters. (B) mean population rates
with the same color code. The mean firing increases abruptly after a short silent period, as observed
in the rastergram.

3.4 General conclusion

In this chapter we simulated and analyzed an integrate-and-fire and a rate model to study Up-Down
dynamics, and the same integrate-and-fire model was adapted in a preliminary study on astrocyte
role on seizure-like events in epilepsy. A key element of this framework is the simplicity of the
gliotransmission modelling used here, which has the advantage of preserving the main biological
ingredients of gliotransmission while keeping the model simple enough for the analytical study of its
stability.

We hope that this model could be adapted to explain other types of synchronization behaviour, such
as neural oscillations [233, 71]. We wish also to adapt it with a realistic spatial structure, which
in particular could allow us to model calcium waves propagation [78]. Another future axis we wish
to investigate would be to adapt this model to characterize the mechanisms of action of candidate
drugs.
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Figure 3.14: Up-Down dynamics in a small-world like network. A global synchronized behaviour can
be observed but also some clusters of activity. The initial conditions for astrocyte gliotransmitter
release was fixed lower than its mean. (A) Spike rastergram, (B) mean population rates with the
same color code, green for astrocytes, red for excitatory neurons and blue for inhibitory neurons.

We have worked in this chapter with cell networks, but also with rate models. This framework
is useful for large populations modelling. We will see in the next chapter another type of spatial
continuum model, suitable for tissue-level description.
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Chapter 4

Modelling systems memory
consolidation with neural fields

4.1 Systems memory in computational cognitive neuroscience

How cognition emerges from biological processes in the brain is a question addressed by cognitive
neuroscience. Historically, studies of patients with cognitive impairments induced by brain damages
have played a important role in the establishment of the discipline [41].
Important research areas in cognitive neuroscience include higher mental processes, perception, and
memory storage. Research in this latter field has for example identified several types of memory,
a declarative (explicit) form concerned with facts and events and a procedural (implicit) form con-
cerned with the knowledge about perceptual and motor procedures [7].

When studying memory storage, it is convenient to consider two scales: the molecular problem of
memory [123], which investigates how memories are encoded, and the systems problem of mem-
ory, which studies where memories are located [171]. This latter category deals with issues such
as which neural systems underly procedural memory (amygdala and emotional memory, cerebellum
and memory for motor acts, striatum and habits memory), or declarative memory [7]. For the lat-
ter an important issue is its dependency to the medial temporal system. Indeed, a key feature of
declarative memory is that the medial temporal lobe is involved in memory storage and retrieval for
a limited period of time [83].

This phenomenon has been modeled by artificial neural networks (connectionist models) [215, 160,
122, 162, 8, 104, 113], which allowed a greater comprehension of the process. However to our
knowledge, in these models, some neurobiological mechanisms that could be pertinent – and which
will be discussed in the following section – have been ignored. We tried here to approach this issue
with a more biological-grounded modelling framework, by using neural fields. We believe that this
type of model could be suitable for systems memory issues. So far, models of neural fields have
already been used in computational cognitive neuroscience to study learning and memory in sensory
cortices [175], with self-organizing maps [133]. In spite of the fact that the modelling of systems
memory organization occurs at a larger spatial scale since it connects different brain areas, we propose
to restrict the model to the different representations of a same memory in the different brain areas.
The neural field model we propose in this part connects interacting maps of representations.

4.2 A neural field framework to model the standard consol-
idation theory

The following study is a preprint that will be soon submitted to the Journal of Theoretical Biology:
Blum Moyse, L., & Berry, H. (2023). Modelling memory consolidation at a systems level with neural
fields. The section below is extracted with a few adaptation from this article.
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4.2.1 Introduction to standard consolidation theory and neural fields

4.2.1.1 Standard consolidation theory

Memories are believed to be biologically encoded as physical traces in the brain, or engrams. It
is assumed that these engrams are formed through the strengthening of synaptic connections in
neuronal ensembles, i.e. populations of neurons involved in a memory representation or a com-
putational task [120]. The process through which recently encoded memories are converted into
more stable long-term stored information is referred to as consolidation [130]. This term includes
two mechanisms that occur at distinct spatial and time scales; synaptic and systems consolidation.
Synaptic consolidation is achieved through fast mechanisms (a few hours), like long-term potentia-
tion (LTP) [159]. The most common form of LTP is qualified as Hebbian, it strengthens synapses
between neurons that fire simultaneously, which stabilizes a memory trace. ITDP, which was studied
in chapter 2, is an example of a mode of synaptic consolidation. These processes are embodied in
the wider changes invoked by systems consolidation. This second type of consolidation describes
the gradual reorganization of memory patterns across different brain areas, which can endure weeks,
months, or even years [130].

Systems consolidation theories were introduced following neuropsychological observations of mem-
ory impairments in patients with medial temporal lobe (MTL) damages. The MTL includes the
hippocampus and adjacent neocortical areas (perirhinal, entorhinal, parahippocampal) [216]. These
lesions induce anterograde amnesia for declarative memories. Anterograde amnesia refers to the
inability to form new memories. This disability concerns in most cases declarative memories, mem-
ories that can be consciously recalled [215, 216]. These studies introduced the idea that there exist
different memory systems associated with different brain areas. MTL injuries are also responsible
for temporally-graded retrograde amnesia for declarative memories. Temporally-graded retrograde
amnesia refers to a forgetting of memories encoded in the past, where the loss is more important
for recent events. Interestingly the wider the damages were, the more ancient the erased memories
were. This amnesia goes from 1-2 years when lesions are restricted to the hippocampus (a part of the
MTL), to a situation where all past memories are forgotten when damages include the whole MTL
and surrounding cortical regions. These studies indicate that recent declarative memories would
initially depend on the MTL, before being transferred to a durable storage place, possibly cortical
areas. Since then, many animal studies have examined the impact of hippocampal and cortical
lesions on memory [83].

These different studies led Marr to propose the first computational model describing systems con-
solidation in 1971 [158]. In this model, it is suggested that a new event is quickly encoded in the
hippocampus and that with time this memory will be progressively “transferred” to the neocortex,
through repetitive replays of the patterns during sleep. Following this pioneering work, several inter-
esting connectionist models have conceptualized the features of the standard consolidation theory and
highlighted results coherent with neuropsychological observations [215, 160, 122, 162, 8, 104, 113].
These ideas have led to a contemporary model of systems memory consolidation, often referred to the
standard consolidation theory (SCT) [235, 215] or the standard model of systems consolidation1 , see
figure 4.1 (a). According to this theory, a new experience and its several features are first encoded in
different associative cortical modules. This information is then quickly transmitted and integrated
by the hippocampus, which forms a compressed memory trace. This hippocampal pattern will be
repeatedly reactivated offline, which will activate the corresponding neocortical representations. In-
deed the reactivation of memory patterns can occur during “offline” states, typically during sleep,
or during “online” states, when an experience, or retrieval cue, is related to this existing memory.
These replays result in a gradual strengthening of neocortical connections, which leads to a pattern
incorporated with pre-existing neocortical representations and solid enough to be independent of the
hippocampus. These representations are supposed then to decay rapidly in the hippocampus while
then can remain for years in the neocortex. On the one hand, the hippocampus learns quickly online,
and is essential for the offline slow learning of the neocortex. According to connectionist modelling,
this progressive neocortical learning would allow to prevent catastrophic interference and replace-
ment of existing neocortical patterns with new ones [160, 198]. On the other hand, the encoded
memories are rapidly erased in the hippocampus, while they are long-term in the neocortex. The

1We focus on the widespread standard consolidation theory here, although interesting alternative views exist, such
as the multiple trace theory or the trace transformation theory, which will be addressed in the discussion.
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clearance of hippocampal memories would be important because of its limited storage capacity [238].

At this point, the reader may wonder which neurobiological mechanisms are at stake to explain the
differences in learning speed and memory stability between the hippocampus and the neocortex. To
our knowledge, these aspects have not yet been addressed in the previous models of SCT.

Indeed previous models proposed larger learning rates for hippocampal or cortico-hippocampal con-
nections than for neocortical ones [215, 160, 122, 162, 8, 104, 113]. However, it seems unlikely that
variations in LTP speeds induce learning differences of the order of several days or weeks [148].
Instead, this discrepancy could be explained by structural plasticity (i.e. plasticity of the synaptic
wiring) [48]. Indeed the hippocampus counts many pre-existing connections. So stimulations can
rapidly strengthen these synapses. This fast encoding is unlikely to happen in the much larger neo-
cortical networks. The high number of cells involves the fact that a pre-existing connection between
two neocortical neurons has a low probability to exist. But a new stabilized connection can be
formed through hippocampal replays. There is a turnover of synapses, new ones are created and
weak ones disappear. If two neocortical neurons become connected through this “random” process,
then the repetitive hippocampal reactivations would strengthen this new connection. This incre-
mental process would result in memories slowly consolidated in associative cortical modules [85, 148].

In parallel with their reinforcement, little is understood about the clearance of memories [60]. While
regular hippocampal memories erasure seems to be a required aspect of SCT models[160, 83], im-
plemented as larger forgetting rates for hippocampal or cortico-hippocampal connections than for
neocortical ones [215, 160, 122, 162, 8, 104, 113], its neurobiological origin has been little investi-
gated. An interesting hypothesis is that the dentate gyrus (DG) in the hippocampus, a brain area
where neurogenesis occurs throughout life, would be involved in the gradual erasure of hippocam-
pal memories [84, 131]. This effect can be explained by the perturbation of hippocampal network
stability as newborn neurons integrate progressively (over several weeks) since these newborn cells
are highly excitable. To restore network homeostasis, offsetting mechanisms are engaged. Under
these processes, excitability of pre-existing neurons is lowered or their synapses weakened (synaptic
scaling), which hinders progressively the reactivation of hippocampal engrams. It is important to
note that the erasure is not likely to happen directly through the replacement of the neurons in
the engram, since it seems that they would persist for longer times [145]. This model has been
implemented in hippocampal networks, where the addition of new neurons to the DG layer induced
memory degradation [63, 163, 236]. It seems that the fate of a memory is determined by the bal-
ance between the consolidation and decay processes: if a memory is never reactivated, it gradually
disappears. Contrary to those in the hippocampus, neocortical memories, once consolidated, could
perdure through online replays via retrieval cues. Indeed it is important to note that a retrieval
cue will stimulate only a part of the neocortical pattern. That is why the neocortex is dependent
on the hippocampus to retrieve its whole pattern at the beginning, while when all connections are
established this neocortical engram can be retrieved independently (see figure 4.2).

To summarize, the standard consolidation theory describes the interactions between a fast-learner,
fast-forgiver hippocampus whose repetitive memory replays allow a progressive consolidation of pat-
terns in a slow-learner, long-term neocortex. This theory has been developed in some connectionist
models [215, 160, 122, 162, 8, 104], which addressed various founding questions surrounding mem-
ory organization. However to our knowledge, in these models, little attention has been paid to the
neurobiological mechanisms underlying the differences in encoding speeds and durability between
the two brain areas. As presented above, the slow learning of the neocortex could be due to its large
size. This would imply a long necessary time to bind distant areas, as opposed to a more “compact”
hippocampus. But once established, the neocortical connections can be maintained through retrieval
cues. These reactivations providing long-term existence would be prevented for hippocampal mem-
ories, due to a local decrease of excitation in reaction to the integration of highly excitable newborn
DG neurons. To assess whether these proposed mechanisms could lead to SCT, we developed a
computational model to follow the temporal dynamics of memory reorganization.
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Figure 4.1: Interactions between the different brain areas involved in the standard consolidation
theory. (a) Standard consolidation theory. An engram is initially present in neocortical areas
(red), in a weak form, and in the hippocampus (dentate gyrus in green and CA regions in blue),
in a stable form. After some days the distribution of the memory is reorganized. Connections
are consolidated in the neocortex, while neocortico-hippocampal and hippocampal connections are
degraded. (b) Simplified trisynaptic pathway, which is the circuit considered in our model. The
different connections between three brain areas, the neocortex, the dentate gyrus, and CA regions
are represented here.

4.2.1.2 Neural fields

Contrary to previous SCT connectionist models, we chose to represent the involved process with
neural fields. This modelling approach consists of a continuum representation of large-scale biolog-
ical neural networks. The models are characteristically composed of nonlinear integro-differential
equations, with related kernels standing for spatial distributions of neural connections [33, 52]. We
believe that this framework is particularly suitable to model SCT for two reasons. First, the whole
process involves a complex combination of mechanisms occurring at various time scales, which makes
it challenging to model. Reduced models such as neural fields enable us to still have a comprehension
of this complexity, allowing for estimations and to some extent mathematical analysis. Second, our
approach consists in articulating SCT, which involves interactions at a tissue level, with neurobio-
logical mechanisms. And neural fields, while modelling large areas, keep a close relationship with
biophysical realism and have been useful in comprehending some neurobiological processes such as
epilepsy, encoding of visual stimuli, the representation of head direction or working memory, which
is of particular interest for our addressed issues [33]. This last process corresponds to the tempo-
rary storage, on the time scale of seconds, of information in the brain. According to experiments,
during a recall task, sensory inputs can be followed by a persistent activity for spatially defined
clusters of neurons in the neocortex [95]. This stationary pulse known as a bump of activity corre-
sponds to a class of solutions in neural field theory and has also been studied for multiple bumps
patterns [138, 75]. We propose for our model that these bumps represent the different parts of an
encoding and retrieved memory pattern. Differently from working memory thus, we consider here
short and long-term memories, which imply synaptic modifications (see more explanations below).

In the subsubsection 1.4.2.2 of the introductory chapter 1, we presented a neural field equation (1.63)
with synaptic depression. In its simplest form (with q(x, t) = 1 for all x, t), the neural field equation
which in particular supports stationary bumps [9] is given by:

∂u

∂t
(x, t) = −u(x, t) +

∫ ∞
−∞

dyw(x− y)f(u(y, t)− κ) + Iext(x, t) (4.1)

This equation describes the evolution of the activity u(x, t). The membrane time constant of around
10 ms, is often not explicitly written. Iext(x, t) represents an external input, w(X) is the synaptic
weight distribution with distance X, and f is the firing rate function, typically a sigmoid function.

f(u− κ) =
1

1 + e−βf (u−κ)
(4.2)

where βf is the gain and κ is the threshold.
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For a synaptic weight kernel chosen as

w(X) =

(
1− |X|

σ

)
e−
|X|
σ (4.3)

A stationary bump solution u0(x), obtained by simplifying the firing rate function as a heaviside
function (i.e. f(u− κ) = Θ(u− κ) when βf −→∞), is given by

u0(x) =

∫ a

−a
dyw(x− y) = W (x+ a)−W (x− a) (4.4)

With
W (X) = Xe−

|X|
σ (4.5)

The bump width 2a is determined considering the boundary conditions:

u0(±a) = κ (4.6)

This founding equation constitutes the basis of our model. We extended it in several ways.

First, the synaptic current can be modulated by two negative feedbacks, the spike frequency adap-
tation and the synaptic depression, which are detailed in the papers of Kilpatrick and Bressloff [127,
126] (see the subsubsection 1.4.2.2 of the introductory chapter 1). The importance of these two pro-
cesses for our model will be explained in the methods subsection 4.2.2. Spike frequency adaptation,
see equation (4.11), describes the attenuation of firing rate after a prolonged period of firing, often
due to a calcium-activated potassium current. This process can be implemented as an increase in
the threshold κ(x, t) [53]. The characteristic time scale of the process has been experimentally found
to lie between 40 and 120 ms [153].
Synaptic depression, see equation (4.13), is the phenomenon of presynaptic resource depletion. This
process can as well be introduced in the system of equations with the variable q(x, t) in the nonlocal
term. This synaptic scaling factor q(x, t) represents the proportion of these resources. The charac-
teristic time scale for depletion is estimated to be between 10 and 330 ms, and the one for ressources
recovery has been experimentally shown to lie between 200 and 800 ms [5].
We also add a feedback mechanism for the threshold. As evoked above, insertion of highly excitable
newborn neurons can lead to a decrease of the intrinsic excitability of mature neurons by modifying
the intensity of currents. This mechanism can be implemented in terms of an increase in the thresh-
old value.

Second, we introduce synaptic dynamics by introducing Hebbian plasticity and a decay expression
for the kernel w(x, y), see details in the subsection 4.2.2 with equations (4.17) (4.18) (4.20). Learning
plasticity rules in neural field models can take the form of an immediate modulation of the kernel
depending on the neurons activities [4]. However in the case of long-lasting synaptic modifications it
is interesting to introduce a differential equation with a characteristic larger timescale. A rate-based
plasticity rule preserving temporal correlations has been introduced for connections between pre-
and post-synaptic neural fields [195], used in particular for topographic maps [89, 65]. However
such temporal correlations are not important for our model, and we preferred a simpler Hebbian ex-
pression for learning to preserve mathematical and computational tractability. Furthermore, a core
feature explaining the differences of learning speeds between the neocortex and the hippocampus is
the distance separating distinct areas of an engram. Thus importantly we include in our Hebbian
plasticity rule a modulation by the distance between neurons. To model the different distances
between the pattern areas, which are assumed to be more remote in the neocortex, we introduce a
shift term in the connectivity kernel (see equation (4.16) in the subsection 4.2.2). This learning rule
introduced in a neural field however broke the continuity of activity [82], that is why we introduced
a continuity function to maintain the continuity of neural fields, see the subsection 4.2.2 for details.
In addition to this learning rule, our plasticity equation includes a slow decay term, to represent the
degradation of memories in the absence of reactivation.
Another particularity of our model is the connection of three different neural fields, corresponding
to the neocortex (C) and the hippocampus separated into the dentate gyrus (D) and the CA regions
(H), merged for the sake of simplicity. These brain areas are connected following a particular struc-
ture, the trisynaptic pathway [19], see figure 4.1 (b).
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Finally, the model is submitted to a long temporal sequence composed of a repetition of phases, see
figure 4.2. The initial encoding is simulated by an external two-bumps input on the neocortex, which
then propagates to the dentate gyrus and CA regions fields. It is important to note that the infor-
mation of this bumps signal resides in the location and widths of these bumps. Afterwards, cycles
composed of hippocampal replays (HR)– assumed to occur offline, during sleep– and retrieval cues
(RC) – assumed to occur online, during a waking period– take place repeatedly. One cycle corre-
sponds approximately to one day. Hippocampal replays are stimulated by an external homogeneous
input on CA regions, assumed to represent slow-wave sleep [130]. This stimulation will activate
briefly all the neurons of the field, but only neurons involved in the pattern with increased synaptic
weights will reactivate bumps for a long time. A retrieval cue corresponds to a single-bump input
on the neocortex. It represents an experience partially similar to the encoded pattern (2 bumps),
which is likely to reactivate the memory. The neocortical engram can be reactivated either via the
hippocampal fields at the beginning of the sequence, or independently when its synaptic weights are
consolidated, see figure 4.2.

4.2.2 Description of the model

The system consists in three connected 1D neural fields, each one representing a brain area. The
different variables are indexed with α to refer to the area they describe, the neocortex (α = C),
dentate gyrus (α = D) and CA regions (α = H), see figure 4.2. x is the position in a neural field
and t is time. Let us present the differential equations defining the model’s dynamics:

Activity The evolution of activity uα(x, t) in region α, at position x and time t, is described by

∂uα

∂t
(x, t) = −uα(x, t) + Iα(x, t) + Iαext(x, t) (4.7)

Where Iαext(x, t) corresponds to an input current and Iα(x, t) is the synaptic current.

External currents Iαext(x, t) is applied at the beginning of each step: the encoding, hippocampal
replay (HR) or retrieval cue (RC) step, see the introduction subsection 4.2.1 and figure 4.2 for the
biological importance of these steps. Each external stimulation is maintained for a short period of
time (see table 4.2).
For the initial encoding input, the external current in the neocortex (C) is a rectangular function,
located around positions AC and BC , with widths equals to 2a. These characteristics define the
information contained in the memory pattern. We introduce the set Zα = {Aα, Bα}.

ICext(x, t) = GCExt
∑
z∈ZC

[
Θ(x− (z − a))−Θ(x− (z + a))

]
iC(t) (4.8)

iC(t) is a switch function equals to 1 when the stimulus is applied, 0 otherwise. For retrieval cues
the signal indicator is partial, only one area AC or BC (alternating) is stimulated.
During hippocampal replay steps the external current in CA regions (H) is uniform over space,
equals to GHExt. All H neurons are stimulated for a brief time, however neurons implicated in the
engram will fire for a longer duration due to stronger synaptic weights.

Synaptic current Iα(x, t) represents the averaged neural population activity, over the domain of
integration Γα.

Iα(x, t) =
∑
β∈E

Gαβ
∫

Γβ
dyqβ(y, t)wαβtot(x, y, t)f(uβ(y, t)− κβtot(y, t)) (4.9)

Where E = {C,D,H} is the set of field indexes. The constants Gαβ represent the trisynaptic
circuit, see figure 4.1 (b). Gαβ > 0 means that the β field sends connections the α field. Moreover,
to equilibrate the total currents received by each field, we fix Gαβ = 1 for fields α which receive only
one field β, while for other connections Gαβ = 0.5, see table 4.2.
καtot(x, t) is the threshold, qα(x, t) is the synaptic scaling factor and wαβtot(x, y, t) describes the synaptic
weights.
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Figure 4.2: Temporal sequence describing standard consolidation theory key moments. (Left)
Different steps of the computational model. (a) The first diagram represents the encoding phase,
where two external signals arrive on the neocortical field at two distinct positions, AC and BC . The
activated neocortical neurons that constitute now the pattern fire, which activates other neurons in
the two other hippocampal fields (D, H), at positions AD and BD (and AH and BH). AD and BD

are closer to each other than AC and BC , so that synaptic weights between them grow faster. After
the encoding, cycles of hippocampal replay and retrieval cue steps come one after another, which
allows consolidation. (b) The hippocampal replay step occurs during sleep. We modeled it by a
spatially constant external stimulation on CA regions (H). (c) The retrieval cue is a partial signal
on only AC or BC in the neocortex. (d,e) Newborn neurons are regularly generated in the dentate
gyrus. In our model we emulate the effect of this process on the stability of hippocampal engrams.
We introduce newborn neurons in the dentate gyrus (D). Following experimental suggestions [84],
we modeled newborn neurons in D for neurons in the neighbourhood of the pattern by reducing their
threshold. Indeed new neurons are more excitable, so they fire a lot. Because of that, the neurons of
the pattern in the hippocampus receive a high current, so that their thresholds evolve and increase,
in a homeostatic process of synaptic scaling. Thus when external stimuli arrive, the insertion of
newborn neurons tends to silence the firing of the pre-existing neurons of the engram. And when
a memory pattern is not reactivated, it slowly disappears. (Right) Summary of the steps for the
whole process. After the encoding phase, cycles of hippocampal replay and retrieval cue steps come
one after another. The time between two steps there is a long waiting period, 100 times longer than
the duration of a pattern reactivation.
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Adaptive thresholds The threshold καtot(x, t) is composed of two parts,

καtot(x, t) = κα(x, t) + καn(x, t) (4.10)

The evolution of κα(x, t) follows spike frequency adaptation [127, 126, 53].

τκ
∂κα

∂t
(x, t) = −(κα(x, t)− κin) + ηκfa(uα(x, t)− κin) (4.11)

In the original studies of this equation, the baseline threshold in the first term of the equation
and the threshold in the firing function were different parameters [53, 127, 126]. However, detailed
biophysical models indicate that it would be more biologically realistic to use the same parameter
in the two terms [23]. That is why we employed here a single parameter κin.

In our model the presence of several connected neural fields which are quickly activated one after the
other, see figure 4.2, modifies the total currents in the activity equation (4.7). This variation takes
place quickly at the beginning of a phase, shortly after the stimulation. Spike frequency adaptation
occurring at this timescale results in our model in an increase of the threshold from its initial value κin

to a value κin +ηκ. This adaptation maintains the bump width, which characterizes the information
of the memory pattern (see the subsection 4.2.4 for the relation between these threshold values and
their width). Numerically, see subsection 4.2.3, for the adaptation to properly and quickly enough
adjust to preserve the bump width, it was found necessary to use fa, a firing function smoother than
f with βfa < βf .

The second term of the threshold καtot(x, t) is καn(x, t), which represents the progressive adaptation
mechanism responsible for the local decrease of excitation in reaction to the integration of highly
excitable newborn DG neurons. This process prevents the retrieval of hippocampal memories (D and
H), see the introduction subsection for biological details 4.2.1. We propose an evolution equation
similar to the one for spike frequency adaptation, however with a much slower timescale (τκn >> τκ)
and a lower adaptation threshold (θn < κin).

τκn
∂καn
∂t

(x, t) = −καn(x, t) + ηκnΘ(uα(x, t)− θn) (4.12)

A heaviside function Θ was used here for simplicity (the effects of a smoother firing rate function
would need to be studied in the future).
To model the high excitability of newborn D neurons, the threshold of the neurons located around the
areas involved in the engram is lowered at a value gnκin with gn < 1. We only consider neighbour
neurons because more distant neurons would have a very small effect, see figure 4.2 (d)(e). The
domain of these newborn neurons can be written as⋃

z∈ZD

(
[z − a− δn, z − a] ∪ [z + a, z + a+ δn]

)
with δn the width of newborn neurons subarea. Since these neurons fire continuously for a long
time even in the absence of input, the slow adaptation term καn(x, t) in the two hippocampal fields
(D and H) reaches its stationary value ηκn . This will prevent the activation of bumps by external
currents at the following steps since the thresholds would already be too high.

In addition to biological realism, it was necessary to distinguish the dentate gyrus and the CA regions
in our model. Indeed, if instead only one hippocampal field was implemented, the highly excitable
newborn neurons would have affected also the neocortical field, which would have prevented retrieval.
Here, since the dentate gyrus does not send direct connections to the neocortex, only the dentate
gyrus itself and the CA regions field are impacted by the local threshold rise due to neurogenesis.

Synaptic scaling The evolution of the synaptic scaling factor qα(x, t) follows synaptic depression,
as proposed by Kilpatrick and Bressloff (2010) [127, 126].

∂qα

∂t
(x, t) =

1− qα(x, t)

αq
−mα

q (x, t)qα(x, t)fa(uα(x, t)− καtot(x, t)) (4.13)

In our model this term is responsible for the disappearance of the bump after a certain time. In
contrast to the original equation however, we introduce an activity dependent term for synaptic
depletion

mα
q (x, t) = βqu

α(x, t) (4.14)
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The effect of this term is to maintain bump durations roughly constant when learning weights evolve
and/or neurogenesis is applied.

Synaptic weights The kernel wαβtot(x, y, t) is defined as:

wαβtot(x, y, t) = w(x−∆αβ(x)− y) + γαβηαβs (x, t)sαβ(x, y, t) (4.15)

• w(X) are the permanent weights between a post-synaptic neuron at position x and a presy-
naptic neuron at position y. They characterize the connectivity.

w(X) =

(
1− |X|

σ

)
e−
|X|
s (4.16)

The position-dependent shift ∆αβ(x) = (Bα − Bβ) sgn(x) emulates the difference in size of
the neorcortical and hippocampal fields. Despite the intrinsic difference of distances between
pattern locations (|AC − BC | > |AD − BD| and |AD − BD| = |AH − BH |), ∆αβ(x) allows
to force the permanent connection between AC and AH (or AD), BC and BH (or BD). For
instance, for x = AC ,
w(AC −∆CH(AC)−AH) = w(AC −∆CC(AC)−AC) = w(0) = 1, i.e. the weight between AC

and AC is the same as between AC and AH .

• The second term γαβηαβs (x, t)sαβ(x, y, t) represents synaptic plasticity. In this expression, γαβ

are positive constants, that are assumed to be larger for intra than for inter-field connections,
γαα > γαβ for α 6= β, to represent stronger interactions within one brain area.
sαβ(x, y, t) is a variable that represents the learning weights.

∂sαβ

∂t
(x, y, t) = Lαβ(x, y, t)− Fαβ(x, y, t) (4.17)

The first term Lαβ(x, y, t) is a bounded, distance-dependent, Hebbian [91] learning rule.

Lαβ(x, y, t) = (1− sαβ(x, y, t))d(x, y)× f(uα(x, t)− καtot(x, t))f(uβ(y, t)− κβtot(y, t)) (4.18)

Where the distance modulates the learning rate.

d(x, y) =
Ad
σd
e−|x−y|/σd (4.19)

The closer x and y positions are, the larger d(x, y) is and the quicker the learning process occurs.
Especially since |AC − BC | > |AD − BD| (|AH − BH | = |AD − BD|), we get d(AD − BD) >
d(AC −BC), i.e. the process is faster in the hippocampus (D, H) than in the neocortex (C).
The second term Fαβ is a forgetting, decay term, which occurs much more slowly than the
first term (c0 << 1).

Fαβ(x, y, t) =

{
c0

sαβ(x,y,t)
if sαβ(x, y, t) > 0

0 if sαβ(x, y, t) = 0
(4.20)

The sαβ(x, y, t) variable decays until their minimal value, 0.
Between two steps or when patterns cannot be retrieved, neurons do not fire for a long time.
So that Lαβ(x, y, t) vanishes and the forgetting term Fαβ(x, y, t) becomes progressively larger,
until sαβ(x, y, t) = 0.

This additional sαβ(x, y, t) factor would introduce a discontinuity in the activity [82]. We
therefore add a continuity function ηαβs (x, t) in equation (4.15) to maintain the continuity in
uαβ(x, t) expression.

ηαβs (x, t) =

[∫
Γβ
dyw(x−∆αβ(x)− y)Θ(sαβ(x, y, t))− κin

]
+

(4.21)
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Symbol Definition
Time varying functions

uα Activity
f Firing function
fa Firing function for κα and qα equations
Iα Synaptic current
Iαext External current
sαβ Learning weight
ηαβs Continuity function
καtot Threshold
κα Threshold - adaptation
καn Threshold - neurogenesis
qα Synaptic scaling factor

Time independent functions
w Permanent weight
W Integral of the permanent weight
d Distance function

Table 4.1: Main functions used for the neural field model

where

[·]+ =

{
· if · > 0

0 if · ≤ 0
(4.22)

When sαβ(x, y, t) > 0, i.e. for neurons of the pattern, the integral in equation (4.21) corre-
sponds to the received bump current of one field, which is κin at boundaries. This guarantees
continuity at boundaries, see the subsection 4.2.4 for more details.

4.2.3 The three connected neural fields with spike frequency adaptation,
synaptic depression and synaptic weight dynamics reproduce the
main features of the standard consolidation theory

The whole process begins with the encoding step which is followed by repeated cycles of hippocampal
replay (HR) and retrieval cue (RC) step, see figure 4.2 (Right). Between active phases are 100 times
longer inactive periods. First, we study below the consolidation mechanism, then the forgetting
effect of neurogenesis is tested on consolidated memory patterns. Figure 4.2 is used as a visual
support throughout this results subsection as a guide to the different phases of the process.
For conveniance, throughout this paper we name neurons within the excited region around Aα

([Aα − a,Aα + a]) or Bα ([Bα − a,Bα + a]), as respectively Aα or Bα neurons.

Furthermore, learning weights sαβ(x, y, t) are shown instead of wαβtot(x, y, t), because they constitute
a relevant and concise measure of synaptic plasticity, since they are bounded between 0 and 1.

4.2.3.1 Consolidation

Encoding The process is initiated by the encoding step, where an external signal stimulates two
distinct areas around the positions AC and BC , in the neocortex (C), see the schematized process
in figure 4.2 (a) and the corresponding numerical simulation in figure 4.3 (a). Activated cortical
(C) neurons then induce firing in the dentate gyrus (D), and when CA regions (H) neurons receive
inputs from C and D, they are activated. Neurons fire at these two locations during a certain
time before slow adaptation shuts them down. During this firing period learning weights values
increase, seeequation (4.18). During encoding, all the weights increase between neurons located in
an engram location ([Aα−a,Aα+a] and [Bα−a,Bα+a]) because of Hebbian synaptic plasticity (see
equation (4.18)). However as illustrated in supplementary figure S 1 (b) (c), the weights between
neurons in Aα and Bα increase much slower. The AC − BC weights increase more slowly than the
AD − BC ones, which in turn increase more slowly than the AD − BD weights. This is due to the
distance-modulated learning rate of equation (4.19). Therefore, in our model consolidation is slower
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Parameter Value Definition
Structure and positions

E - Set of field indexes
C - Neocortex field index
D - Dentate gyrus field index
H - CA regions field index
AC -16 Position of the C left pattern location
BC 16 Position of the C right pattern location
AD -10 Position of the D left pattern location
BD 10 Position of the D right pattern location
AH -10 Position of the H left pattern location
BH 10 Position of the H right pattern location
a 0.9 Bump widths in all fields

GCC 1 Amplitude of the current from C to C
GDD 1 Amplitude of the current from D to D
GHH 1 Amplitude of the current from H to H
GCH 1 Amplitude of the current from H to C
GCD 0 Amplitude of the current from D to C
GHD 0.5 Amplitude of the current from D to H
GHC 0.5 Amplitude of the current from C to H
GDC 1 Amplitude of the current from C to D
GDH 0 Amplitude of the current from H to D
σ 1.5 Width of the permanent weights

Firing rate
βf 250 Gain of the firing function
βfa 50 Gain of the firing function for κα and qα equations

Learning kernels
γ 1.5 Constant for intra-field learning weights (γαα = γ)
cr 0.2 Factor for the constant for inter-field learning weights (γαβ = cr × γ, α 6= β)
Ad 3 Amplitude of the distance function
σd 9 Width of the distance function
c0 8.10−7 Decay rate

Thresholds
κin 0.54 Baseline threshold
τκ 0.8 Time scale for spike frequency adaptation
ηκ 0.54 Strength for spike frequency adaptation
τκn 1000 Time scale of the slow adaptation related to neurogenesis
ηκn 0.5 Strength of the slow adaptation related to neurogenesis
θn 0.001 Baseline threshold for slow adaptation related to neurogenesis

Synaptic scaling
αq 800 Time scale of synaptic resources recovery
βq 0.01 Inverse of the time scale of synaptic resources depletion

External currents
GCExt 1.5 Amplitude of the external current in C
GHExt 0.87 External current value in H
− 1.8 Duration of the external stimulation in C
− 1.2 Duration of the external stimulation in H

Neurogenesis
δn 0.32 Width of the newborn neurons area
gn 0.1 Factor of newborn neurons reduced threshold

Numerical parameters
xm1 -30 Left extremity of a field
xm2 30 Right extremity of a field
dx 0.08 Spatial increment
dt 0.1 Time increment

Table 4.2: Parameters values used for the neural field model. Because of the abstract nature of
the model, units were not taken into account here. See the subsection 4.2.5 for a discussion on the
timescale parameters.
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in the neocortex (C) because the locations of the memory pattern are further away than in the
hippocampus, see the methods subsection 4.2.2.

Hippocampal replay A way to consolidate is through the repeated reactivations during sleep,
which originated in the hippocampus, see the schematized hippocampal replays in figure 4.2 (b) and
the numerical simulation in figure 4.3 (b) and in supplementary figure S 2. During hippocampal
replay, an external signal stimulates all neurons of the CA regions (H) field. However, only the
neurons involved in the pattern locations fire for a long time. Indeed, the current they receive has a
higher value, since their learning weights are stronger. This firing in H leads to pattern reactivations
in C and D, see figure 4.3 (b). The two parts of the memory pattern being active, the cross-learning
weights can grow and thus consolidate the engram, see supplementary figure S 2 (b)(c).

Retrieval cue Since the learning weights between Aα and Bα grow faster in the hippocampus,
memory in the early steps of the process can be retrieved only with the hippocampal neurons, as
illustrated in the numerical simulation of figure 4.3 (c). During this step, only the BC location
is stimulated. Retrieval is achieved when this stimulation of BC leads to the activation of AC .
However at the initial stages of the process, the activation of AC is not direct from BC to AC , it
goes via the hippocampus. Indeed, at the initial stage the weights between AC and BC are small.
So the signal from BC is first sent to hippocampal fields. Inside the hippocampus, the AD − BD
or AH − BH weights are strong enough to reactivate AD or AH . This two-bump signal is then
sent back to the neocortex via the strong AH −AC weights, which allows the complete reactivation
of AC , see figure 4.3 (c). With the two locations of the neocortical memory pattern being active
([AC − a,AC + a] and [BC − a,BC + a]), the cross-learning weights can grow in the neocortex and
thus consolidate the engram, see figure 4.4 (a) and supplementary figure S 3 (b)(c).
To illustrate further that the neocortex is dependent on the hippocampal fields for its engram
retrieval in these initial stages, we did the same simulation but with impaired learning weights
connections in the hippocampal fields, between them and the neocortical field (setting the constants
γαβ = 0 for all α, β, except for γCC in equation (4.15)). In this configuration, the complete
neocortical pattern cannot be retrieved (figure 4.3 (d)) and no cross-learning weights consolidation
can occur (supplementary figure S 4 (b)(c)). Hence, memory cannot be retrieved without a functional
hippocampus during the initial stages of the consolidation process.

End of consolidation After approximately 6 cycles (equivalent to six days) of retrieval cue and
hippocampal replay steps, the learning weights are fully consolidated everywhere, see figure 4.4 (a).
In particular, strong weights connect AC and BC in the neocortex, which was the longest process.
The simulation of a retrieval cue step with impaired learning weights connections as presented in
the above paragraph, highlights a complete neocortical pattern retrieval, see figure 4.3 (e). Contrary
to the initial stages of the consolidation process where neocortical pattern retrieval was not possible
without the hippocampus learning weights (figure 4.3 (d)), at the end of consolidation retrieval can
happen independently of the hippocampal fields (figure 4.3 (d)), since of AC−BC weights are strong
enough.

4.2.3.2 Forgetting

During this consolidation process, we have seen how the neocortical pattern was progressively consol-
idated through hippocampal pattern reactivations. We evoked in the introduction the fact that while
neocortical memories, once consolidated, can remain for years, it seems that hippocampal patterns
disappear, and the neocortical pattern becomes independent of the hippocampus. To understand
this other part of the double dynamics (consolidation/erasure), we followed the neurogenesis hy-
pothesis. This theory states that adult neurogenesis in the dentate gyrus (D), disturbs hippocampal
circuits and thus leads to an impossibility to retrieve the pattern. And when a pattern is never
retrieved, it slowly disappears. To model neurogenesis, we did not replace neurons of the pattern.
Indeed, the neurons involved in a pattern seem on the opposite to have a survival advantage [145].
Instead, we focus on neurons that are located in the neighbourhood of the pattern (further away from
the pattern, no significant effects is expected). These newborn neurons fire a lot, so the thresholds
of neurons around them adapt and stay high. Upon stimulation, the neurons of the hippocampal
patterns are not activated because of their large threshold, see figure 4.3 (f)(g).
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Figure 4.3: Snapshots in the temporal sequence of firing rates in the three fields, neocortex (C),
dentate gyrus (D) and CA regions (H). (a) The encoding step shows faster learning in hippocampal
fields than in neocortical ones. The initial stimuli are two bumps around positions AC and BC in
the neocortical field. They activate C neurons which in turn activate D neurons. Then since C and
D neurons fire, H neurons can be activated. In the end, neurons shutdown, due to the depletion
of synaptic resources. (b) The hippocampal replay step allows engrams reactivation. We modeled
hippocampal reactivation by sending a stimulus uniform over space on H. All H neurons receive this
input, but only those involved in the pattern fire for a long time, because of their non zero learning
weights. Activated H neurons lead to firing in C neurons, which then activate D neurons.

78

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0058/these.pdf 
© [L. Blum Moyse], [2023], INSA Lyon, tous droits réservés



(c) The retrieval cue step allows engrams reactivation. This step consists in stimulating only the
AC or BC location of the neocortex (here BC). Retrieval is exhibited by subsequent activation
of AC . A signal is sent on only BC in the neocortical field. The weights between AC and BC

are still small, C is still dependent on H to recover the whole pattern. Thus, BC neurons first
activate BD, then BH neurons are activated by BC and BH neurons, which will activate AH

neurons thanks to the strong enough BH − AH learning weights. Finally, the AH neurons activate
AC neurons via the strong AC − AH weights, leading to the whole pattern recovery.(d,e) The
retrieval cue stimulation with hippocampal “lesion” is obtained by cancelling the constants γαβ in
the hippocampal fields, between them and the neocortical field (γαβ = 0 for all α, β except γCC).
(d) Neocortical engram reactivation depends on hippocampal fields during the retrieval cue steps.
Only the Bα neurons, directly stimulated by the partial retrieval cue, fire. Memory cannot be
retrieved without a functional hippocampus. (e) Neocortical engram reactivation is independent of
hippocampal fields during the retrieval cue steps at the end of consolidation. The Aα neurons are also
activated, since AC −BC weights are strong enough at this stage. Memory is here retrieved without
a functional hippocampus. (f,g) When neurogenesis is effective, neurons in the neighbourhood of the
pattern in the dentate gyrus field are modeled as highly excitable newborn neurons (lower threshold,
see the subsection 4.2.2). The thin lines in the D field show the continuous firing of those new neurons.
As a result, the thresholds of the neurons in the vicinity adapt and stay high. (f) Neurogenesis in
the dentate gyrus prevents the reactivation of hippocampal engrams during the hippocampal replay
phase. The neurons of the hippocampal pattern stay silent in response to the replay pattern, due
to the high thresholds caused by the excitable newborn D neurons. (g) Neurogenesis in the dentate
gyrus prevents the reactivation of hippocampal engrams during neocortical retrieval cues. C neurons
fire since there are no direct connections from D to C. However nothing fires in the hippocampal
fields, due to the high thresholds caused by the excitable newborn D neurons. The retrieval cue
activates the whole pattern in C independently of the hippocampal fields.

Figure 4.4: The learning weights sCC(AC , BC , t), sHH(AH , BH , t) evolution in the neural fields
model highlights the slow learning, stable memory features of the neocortex and the fast learn-
ing, unstable memory features of the hippocampus. Each point is a measure of the learning
weights sCC(AC , BC , t) (red circles) and sHH(AH , BH , t) (blue triangles) at the beginning of a step.
sDD(AD, BD, t) is not shown here, since it displays the same dynamics as sHH(AH , BH , t). (a) The
neocortex is a slower learner than the hippocampus. During the consolidation phase, AH −BH rise
faster than AC − BC learning weights. sHH(AH , BH , t) reach the maximal value 1 after approx-
imately 4 steps, while for neocortical ones it is achieved in 12 steps. This difference is explained
by the distance-dependent plasticity rule (see equation (4.19)), since the distance between AC , BC

is larger than between AH , BH (|AC − BC | > |AH − BH |). (b) The hippocampus forgets the
pattern, while it remains stable in the neocortex. When neurogenesis is effective, the hippocampal
pattern cannot be retrieved (see figure 4.3 (f) (g)), so that sHH(AH , BH , t) slowly decrease (see
equations (4.17) (4.20)). On the opposite, the neocortical pattern can be retrieved independently of
the hippocampal fields during the retrieval cue steps (see figure 4.3 (g)), so that sCC(AC , BC , t) are
maintained at the maximum value 1.

79

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0058/these.pdf 
© [L. Blum Moyse], [2023], INSA Lyon, tous droits réservés



Hippocampal patterns are never retrieved, contrary to neocortical patterns during retrieval cues
since the C pattern is now strong enough to be retrieved entirely. So after approximately 300 cycles
– equivalent to 300 days), which represent approximately 43 weeks – we can observe the complete
erasure of hippocampal patterns while the neocortical pattern is still strong, see figure 4.4 (b) and
supplementary figure S 5 (c)(d). The final test of the neocortical partial retrieval cue is achieved,
see figure S 5 (b). The neocortical pattern is well retrieved, independently of the hippocampal fields.

4.2.4 Effect of learning weights on bump solutions and stability analyses

This subsection focuses on the effect of the learning weights on the existence and the stability of
stationary bumps solutions. We assume that the width of the bump is conserved accross the fields,
i.e. aC = aD = aH = a, which is verified numerically. To carry out an analytical treatment
of existence and stability of bumps we consider the case where all learning weights are at their
equilibrium value, after the consolidation process, with the decay term Fαβ(x, y, t) neglected, since
c0 << min(d(x, y)). In fact this leads to a dimension reduction of the system, since bumps profiles
will all be the same. Which is not the case for transient learning weights due to the differences of
timescales in and between fields. Furthermore, the term of the threshold καn(x, t) is not considered
here, due to its large time scale. It could be used as a slow-varying parameter in continuation
bifurcation analysis. The spike frequency adaptation and the synaptic depression effects are studied
separatly.

Throughout this analysis we will use the results of the papers [127, 126], that are restricted to a
single field, but we adapt them to our model composed of three connected neural fields, with learning
weights.

4.2.4.1 Spike frequency adaptation

Existence of stationary bumps solution As is usual in the field, we first set the firing func-
tions as heaviside functions (βf −→ ∞, βfa −→ ∞). In this case a stationary bump solution(
uα0 (x), κα0 (x), sαβ0 (x, y)

)
satisfies equations (4.23) (4.24) (4.25):

uα0 (x) =


∑
β∈E

GαβJαβ(x, a) if x /∈ R[uα0 ]∑
β∈E

Gαβ [Jαβ(x, a)ξs − (ξs − 1)κin] if x ∈ R[uα0 ]
(4.23)

κα0 (x) =

{
κin if x /∈ R[κα0 ]

κin + ηκ if x ∈ R[κα0 ]
(4.24)

sαβ0 (x, y) =

{
0 if x /∈ R[uα0 ] or y /∈ R[uβ0 ]

1 if x ∈ R[uα0 ], y ∈ R[uβ0 ]
(4.25)

With

Jαβ(x, a) =
∑
z∈Zβ

[
W (x−∆αβ(x)− (z − a))−W (x−∆αβ(x)− (z + a))

]
(4.26)

R[uα0 ] is the excited region for uα0 , which corresponds also to the location where learning weights
have a non-zero value, defined as

R[uα0 ] =
⋃
z∈Zα

[z − a, z + a] (4.27)

The bump boundaries are defined by the threshold conditions:

uα0 (z ± a) = κin + ηκ = 2× 2ae−2a/s (4.28)

R[κα0 ], the excited region for κα0 is different

R[κα0 ] =
⋃
z∈Zα

[z − b, z + b] (4.29)
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Figure 4.5: Shape of a bump in the C field. (Left) With no learning, all sαβ0 (x, y) = 0 along the

whole field (Right) with synaptic modifications at their maximum value, all sαβ0 (x, y) = 1 in the
pattern areas.

with b implied in the relation
uα0 (z ± b) = κin = 2ae−2a/s (4.30)

Please note that b > a.

The factor ξs is defined as:
ξs = 1 + γ(1 + cr)4a (4.31)

The second term of ξs represents the sum over the fields and the bumps of the integral of the learning
weights. The term ξs accounts for the learning weights in the neural fields model. In absence of
learning, ξs = 1, otherwise ξs > 1. We will study its effect on the existence of bumps and on their
stability. We introduce the total weights defined as the sum of the synaptic plasticity term with
learning weight at equilibrium and the permanent weights.

wαβtot(x, y) = w(x−∆αβ(x)− y) + γαβηαβs (x)sαβ0 (x, y) (4.32)

where

ηαβs (x) =

[
Jαβ(x, a)− κin

]
+

(4.33)

Two bump profiles in the C field with all sαβ0 (x, y) = 0 and all sαβ0 (x, y) = 1 are presented in
respectively in figures 4.5 (Left) and (Right). We can observe the continuity of the solution even
with learning weights. The bump boundaries a are maintained with plasticity, but inside R[uC0 ] the
amplitude of the bump is larger.

Stability of the bumps Following the computations of Kilpatrick and Bressloff (2010) [127], we
develop equation (4.7) with uα(x, t) = uα0 (x)+εφαu(x, t), where φαu(x, t) are smooth perturations and
ε << 1. Since we truncate the results at first order, learning weights perturbations do not appear,
as well as for threshold perturbations. Please note that the linear stability equations we derive here
thus will not reflect the underlying translation invariance of the system.
We then assume separability φαu(x, t) = eλtψαu (x).
The calculations are detailed in Kilpatrick and Bressloff (2010) [127], the modifications of our analysis
compared to [127] is mainly that the value above which the threshold starts increasing and the
baseline threshold are both equal to κin, which simplifies the analysis. More specifically, in our
model, the three fields connections and the learning weights add a 2 factor multiplying the permanent
weights, and induce a modification of the spatial derivative of uα0 (x). In fact the factor πu takes into
account different left and right derivatives, see equation (4.35).
The general equation can be written as:

(λ+ 1)ψαu (x) =
∑
β∈E

Gαβ
∑
z∈Zβ

[
wαβtot(x, z − a)

ψβu(z − a)

|u′β0 (z − a)|
+ wαβtot(x, z + a)

ψβu(z + a)

|u′β0 (z + a)|

]
(4.34)
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and the factor
1

|u′α0 (z + σa)|
=

{
πu if ψαu (z + σa) > 0
πu
ξs

if ψαu (z + σa) < 0
(4.35)

with

πu =
1

2(w(0)− w(2a))
(4.36)

The essential spectrum is located at λ = −1. The discrete spectrum is obtained by setting x = z±a,
with z = Aα or Bα. At these boundaries ηαs (x) = 0, erasing the learning weights terms. Furthermore
the distance between two bumps, even in the nearest case in D,H, is large enough so that the
permanent weights values between them are neglectable. Moreover, all learning weights are equal.
Therefore, we can assume that uα0 (x), κα0 (x) are equal at their bump boundaries independently of
the field. We also consider ψαu (x), ψακ (x) equals for each boundary. This simplification allows the
analytical analysis below.
Moreover, within the linear regime, infinitesimal changes in uα will only perturb the threshold in a
neighborhood of x = z ± b, so that φακ(z ± a, t) = 0.
There are four classes of solutions which determine the discrete spectrum: expansion, contraction,
leftward shift and rightward shift of the stationary bump solution.

Expansion case: ∀β ∈ E,∀z ∈ Zβ ,∀σ ∈ {−1, 1}, ψβu(z + σa) > 0[
2πu[w(0)− w(2a)]− (λ+ 1)

][
2πu[w(0) + w(2a)]− (λ+ 1)

]
= 0 (4.37)

λ± =
w(0)± w(2a)

w(0)− w(2a)
− 1 ≤ 0 (4.38)

These eigenvalues are independent of ξs. With our parameter values, we find that λ− = 0 and
λ+ > 0, uncovering a degenerate case for which we cannot conclude on the stability.

Contraction case: ∀β ∈ E,∀z ∈ Zβ ,∀σ ∈ {−1, 1}, ψβu(z + σa) < 0

λ± =
1

ξs

w(0)± w(2a)

w(0)− w(2a)
− 1 ≤ 0 (4.39)

Figure 4.6 presents the evolution of the contraction eigenvalues with γ (ξs = 1 + γ(1 + cr)4a). With
our parameter values the bump is stable to contraction perturbation, with increasing stability when
γ increases.
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0.0

Figure 4.6: Learning weights stabilize the bump in case of a contraction perturbation. Eigenvalues
λ decrease as γ increases (which increases ξs, as ξs = 1 + γ(1 + cr)4a).

Leftward shift case: This case corresponds to a class of solutions where ∀β ∈ E,∀z ∈ Zβ ,
ψβu(z + a) < 0 and ψβu(z − a) > 0.[

2πuw(0)− (λ+ 1)

][
2πu/ξsw(0)− (λ+ 1)

]
− 1/ξs

[
2πuw(2a)

]2

= 0 (4.40)
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λ± = 2πu
(1 + 1/ξs)w(0)±

√
(1 + 1/ξs)2w(0)2 − 4[w(0)2 − 1/ξsw(2a)2]

2
− 1 (4.41)

These eigenvalues are real for small ξs values (complex eigenvalues violate the initial assumption
that λ are real), where λ± ≤ 0 and ξs > 1. When ξs increases, λ+ decreases and λ− increases, see
figure 4.7. Therefore, we cannot conclude on the effect of learning weights on shift perturbations.
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Figure 4.7: It is not possible to conclude on the influence of learning weights in case of a shift
perturbation. These eigenvalues are real for small γ values, where λ± ≤ 0. λ+ decreases and λ−
increases as γ increases (which increases ξs, as ξs = 1 + γ(1 + cr)4a).

Rightward shift case: This case corresponds to a class of solutions where ∀β ∈ E,∀z ∈ Zβ ,
ψβu(z + a) > 0 and ψβu(z − a) < 0.
The spectrum associated with rightward shifts is identical to that of leftward shifts due to the re-
flection symmetry of the system.

As a conclusion, learning weights stabilize the system through contraction, but have no effects on
stability in case of an expansion perturbation. The eigenvalues are all negative. We cannot conclude
on their influence on the shift behaviour since it increases one eigenvalue and diminish the other
one.
This method can only provide sufficient conditions for instability but not stability of a bump. So
there could be unstable modes not detected by this analysis, although numerical simulations suggest
that this is not the case for the parameters of the model.

4.2.4.2 Synaptic depression

We now study the effect of the learning weights on the existence of bumps and stability in presence
of synaptic depression.
We have seen in the previous subsection that for spike frequency adaptation φκ(z ± a, t) = 0, so it
will not be detailed here.
With the parameters values used in our model, there is no stationary bump solution when synaptic
depression is added (it shuts the neural bump activities down). We still develop the analysis, which
could be used in the future to study the effect of the learning weights on an alternative system, but
we do not compute values of eigenvalues and thus, we do not conclude here on stability behaviours.
We consider the original equation with mα

q (x, t) = βq.

Existence of stationary bumps solution On setting the firing functions as a heaviside func-
tions, a stationary bump solution

(
uα0 (x), qα0 (x), sαβ0 (x, y)

)
satisfies equations (4.42) (4.43) (4.25):

uα0 (x) =


1

1+αqβq

∑
β∈E

GαβJαβ(x, a) if x /∈ R[uα0 ]

1
1+αqβq

∑
β∈E

Gαβ [Jαβ(x, a)ξs − (ξs − 1)κin] if x ∈ R[uα0 ]
(4.42)

The excited region and bumps boundaries are defined by the same conditions described in equa-
tions (4.27) and (4.28).
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qα0 (x) =

{
1 if x /∈ R[uα0 ]

1
1+αqβq

if x ∈ R[uα0 ]
(4.43)

The equilibrium solution of the learning weight factor sαβ0 (x, y) was defined in (4.25).

We remind that for our parameter values, this bump solution does not exist.

Stability of the bumps Following Kilpatrick and Bressloff (2010) [127], we develop the equa-
tions (4.7) (4.11) with uα(x, t) = uα0 (x) + εφαu(x, t) and qα(x, t) = qα0 (x) + εφαq (x, t), where ψαu (x, t),
φαq (x, t) are smooth perturations and ε << 1. With a method similar to the one developed in the
previous subsubsection 4.2.4.1, we find the general equation:

(λ+ 1)ψαu (x) =∑
β∈E

Gαβ
∑
z∈Zβ

∑
σ∈{−1,1}

wαβtot(x, z + σa)

[
1− βqΘ(ψβu(z + σa))

(λ+ 1/αq + βq)

]
G(ψβu(z + σa))

ψβu(z + σa)

|u′β0 (z + σa)|
(4.44)

1
|u′α0 (z+σa)| is defined as in equation (4.35), but with πu defined here as:

πu =
1 + αqβq

2(w(0)− w(2a))
(4.45)

The function G(X) is written as:

G(X) =

{
1 if X > 0
(1 + αqβq)

−1 if X < 0
(4.46)

Here also, there are four classes of solutions which determine the discrete spectrum: expansion,
contraction, leftward shift and rightward shift of the stationary bump solution.

Expansion case: This case corresponds to a class of solutions where ∀β ∈ E,∀z ∈ Zβ ,∀σ ∈
{−1, 1}, ψβu(z + σa) > 0. With the simplified equation, since all ψβu(z + σa) have the same sign, all
ψβu(z + σa) are equal and all ψβu(z + σa) > 0. Finally λ satisfies the equation

(λ+ α−1
q + βq)(λ+ 1) = (λ+ α−1

q )(1 + αqβq)Ω (4.47)

With

Ω =
w(0) + w(2a)

w(0)− w(2a)
(4.48)

The solutions of this equation are:

λ± =
Ω(1 + αqβq)− (1 + α−1

q + βq)±
√

(Ω(1 + αqβq)− (1 + α−1
q + βq))2 + 4(Ω− 1)(α−1

q + βq)

2
(4.49)

These eigenvalues are independent of ξs, thus stability does not depend on γ.

Contraction case: This case corresponds to a class of solutions where ∀β ∈ E,∀z ∈ Zβ ,∀σ ∈
{−1, 1}, ψβu(z + σa) < 0. With the simplified equation, since all ψβu(z + σa) have the same sign, all
ψβu(z + σa) are equal and all ψβu(z + σa) < 0. The solution is

λ = Ω/ξs − 1 (4.50)

Assuming Ω > 0 and ξs ≥ 1, the stability is increased by learning weights when γ increases (since
ξs = 1 + γ(1 + cr)4a).
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Leftward shift case: This case corresponds to a class of solutions where ∀β ∈ E,∀z ∈ Zβ ,
ψβu(z + a) < 0 and ψβu(z − a) > 0.

With the simplified equation, since all ψβu(z + a) (respectively ψβu(z − a)) have the same sign, all
ψβu(z + a) (ψβu(z − a)) are equal.

The resulting equation is[
Γβq (λ)− πu(λ+ α−1

q )2w(0)

][
Γβq (λ)− πu/ξs(λ+ α−1

q )2w(0)

]
− 1/ξs

[
πu(λ+ α−1

q )2w(2a)

]2

+
λαqβq/ξsγu

1 + αqβq

[
[Γβq (λ)− πu(λ+ α−1

q )2w(0)]2w(0)− [πu(λ+ α−1
q )2w(2a)]2w(2a)

]
= 0

(4.51)

With
Γβq (λ) = (λ+ α−1

q + βq)(λ+ 1) (4.52)

The roots of the equation can be searched numerically, and must satisfy the conditions ψβu(z+a) < 0
and ψβu(z−a) > 0. But, since we do not compute them for any set of parameters, we cannot conclude
on the effect of learning weights on stability in this case.

Rightward shift case: This case corresponds to a class of solutions where ∀β ∈ E,∀z ∈ Zβ ,
ψβu(z+a) > 0 and ψβu(z−a) < 0. Due to the symmetry of the system, the spectrum associated with
rightward shifts is identical to that of leftward shifts.

As a conclusion, even without computing eigenvalues with a given set of parameters, it was still
possible to estimate the stability behaviours, provided that equilibrium bump solutions exist. As
in the previous subsubsection 4.2.4.1, we found that learning weights stabilize the system through
contraction, but have no effects on stability in case of an expansion perturbation. However, we
cannot conclude on their influence on the shift behaviour since we did not compute eigenvalues
values.

All in all, this subsection provided an analytical framework to study the three neural fields model
with spike frequency adaptation, synaptic depression and learning weights.

4.2.5 Discussion

Summary The standard consolidation theory describes two interacting memory storage systems.
The neocortex needs several days to consolidate its memory pattern through its different regions,
but this memory can remain for years. The consolidation of the latter is ensured by the reactivations
of the hippocampal engram which is fastly strengthened but also erased within a few weeks [215].
Previous computational models have reproduced SCT processes and addressed various questions [215,
160, 122, 162, 8, 104, 113]. However, to our knowledge, little attention has been paid to the underly-
ing neurobiological processes responsible for the differences in learning and the erasure of memories
between the neocortex and the hippocampus. We proposed in this paper a computational model of
SCT including two current hypotheses:

• The slow consolidation in the neocortex could be explained by its large structure, implying
long durations to connect remote areas of the same memory pattern.

• The forgetting of hippocampal memories could be due to adult neurogenesis in the dentate
gyrus and disturbing memory retrieval.

These two considerations, within a complex spatial structure of three interconnected brain areas
(neocortex, dentate gyrus, and CA regions) and following a temporal process composed of two kinds
of important steps (hippocampal replay and retrieval cue) make the whole process challenging to
model. This complexity, as well as the tissue-level scale of the theory, makes the neural field the-
ory an appealing framework for SCT modelling. We proposed here an original neural field model
unifying the different elements mentioned above, with original components compared with classic
neural field models; such as interactions between three coupled neural fields, synaptic plasticity, or
a long temporal sequence. Our numerical simulations reproduced the main features of the standard
consolidation theory, summarized in figure 4.8. The neocortical pattern, initially dependent on the
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Figure 4.8: Evolution from a dependent to an independent neocortical pattern retrieval in the
connected neural fields. The retrieval cue is a partial signal on only AC or BC in the neocortex, here
BC (vertical red arrow). (a) At the beginning of the whole process, when the neocortex is dependent
on the hippocampus, the activity is transmitted following 1 −→ 2 −→ 3 −→ 4. AC is activated via the
hippocampal fields. (b) However at the end of the process, the cortical weights between AC and
BC are strong enough to activate each other directly (1 −→ 2), independently of the hippocampus
whose pattern retrieval is prevented by neurogenesis in the dentate gyrus.

fastly constituted hippocampus for retrieval, becomes independent at the end of the consolidation,
while the hippocampal pattern disappears.

After the encoding step, connections between neocortical modules are weaker than those in the hip-
pocampus, because of the larger distance between them. Therefore, at this stage pattern retrieval in
the neocortex needs neocortex-hippocampus connections (see figure 4.8 (a)). However with increas-
ing time, hippocampal replay as well as retrieval cue steps induce bumps of firing and thus learning
weights consolidation in the three fields, especially for connections located more remotely and in
particular in the neocortex. This explains why distance-dependent learning rate takes more time to
achieve highly consolidated synaptic weights in the model.
In parallel with the learning dynamics, the effect of dentate gyrus neurogenesis on the stability of
hippocampal memories has also been studied. Newborn highly excitable neurons, modeled here by
a reduction of the thresholds of a small fraction of dentate gyrus neurons, were introduced. Their
continuous firing prevented the reactivation of both dentate gyrus and CA region patterns, due to
threshold adaptations in nearby pattern neurons. Hippocampal memory retrieval is thus inhibited
as soon as the neurogenesis is significant, i.e. at long timescales. Here, at long times the neocortical
engram is the only one to be retrieved during the retrieval cue steps (see figure 4.8 (b)), since it does
not receive direct inputs from the dentate gyrus, and thus is saved from erasure.

Finally, we provided an analytical framework to study the bump solutions and their stability for the
three neural fields model with spike frequency adaptation, synaptic depression and learning weights.
In particular this analysis shows that learning weights would stabilize the system when a contraction
perturbation is applied.

Future directions Our computational model is highly simplified and would need to be improved
in many ways. First, the learning weight equations might be refined to achieve expressions with a
stronger biophysical support, as the adaptation of STDP for neural fields [195], while maintaining the
continuum. In particular the phenomenological continuity function ηαβs (x, t) could be re-evaluated,
and replaced by another mechanism providing continuity of the bump solutions, an important fea-
ture in neural field models.
Further, to approach biological reality, it is important to question the pertinence of the use of neural
fields for hippocampus networks since neural fields have been developed to model neocortical net-
works instead [51].

Moreover, the timescales used in our model are questionable. We take for reference the time con-
stant for the neural activity uα(x, t) which has been fixed equal to 1 in our model, but which is
estimated to be around 10 ms experimentally [5]. In our model the synaptic resources recovery
rate αq in synaptic depression equation (4.13), should lie between 20 and 80 (since experimentally
estimated to be between 200 and 800 ms [5]). However, the numerical value used in our simulations
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is αq = 800.
Similarly, the spike frequency timescale τκ should be between 4 and 12 (experimentally estimated
to be between 40 and 120 ms [153]). But in our numerical simulations we used τκ = 0.8.
These differences between the experimental values and those used for our parameters can be ex-
plained by the complexity of the process to model. Indeed multiple timescales are present in this
model, including those mentioned above, the activity-dependent synaptic resources depeletion rate
mα
q (x, t) (equations (4.13) (4.14)), the timescale for the threshold related to neurogenesis τκn (equa-

tion (4.12)), the distance-dependent learning rate d(x, y) (equations (4.18) (4.19)), the forgetting
rate c0 (equation (4.20)), the duration of the stimulations Iαext(x, t) (equation (4.8) for ICext(x, t)).
So importantly, the values of these temporal parameters must be reevaluate in future works, to be
closer to biological reality.
Furthermore some additional phenomenological mechanisms can be discussed. In the equation (4.12)
for the threshold related to neurogenesis κn

α(x, t), a heaviside function was used for simplicity. But
the effects of a smoother firing rate function would need to be studied in the future. In addi-
tion, the phenomenological introduction of an activity dependent synaptic resources depeletion rate
mα
q (x, t) = βqu

α(x, t) in equations (4.13) (4.14) was necessary in this model, but further research
must be carried out to study whether this mechanism is physiological or should be removed from
the equations.

This model succinctly studied the neurogenesis mechanism leading to the erasure of memories, and
would need to be further developed to be fully understood as it has been in some detailed refer-
ences [63, 163, 236, 21]. In particular, its integration in a neural field model in coordination with the
different homeostasis processes could be investigated in more detail. Another interesting hypothesis
for forgetting is evoked by experiments of silencing of engrams [223, 121].
Our model aimed to provide a proof of principle and a selection for the main ingredients to include
in the model. It would then be interesting to test whether similar results can be obtained with a
more realistic neural network. Such a model would allow more complex pattern configurations and
more accurate learning weight dynamics rules. More detailed attention to anatomical properties of
the circuits would be of great interest [193] and more realistic synaptic plasticity equations could be
implemented [222].

Here, we focused on the widespread standard consolidation theory. However, there exist other mod-
els and questions around systems memory consolidation concepts.
For instance, the multiple trace theory suggests that some of the hippocampus patterns are con-
served in the long term. This theory follows observations of hippocampal damages that produced
temporally-graded retrograde amnesia only for semantic memories, but not for episodic ones [172].
The trace transformation theory further proposes that with a selection that depends on the circum-
stances at retrieval, the neocortical or the hippocampal memory which could both prevail [241]. On
the other hand, the more recent concept of active systems consolidation studies into more detail
the influence of sleep on consolidation [130]. Another interesting related phenomenon which has
already been modeled in some connectionist models [8, 104], is systems memory reconsolidation.
In this approach, it is the replay of an already consolidated memory, which can involve again the
hippocampus [173].

In addition to these theories, some models suggest that the prefrontal cortex might play a key role
in memory organization [140]. On the one hand, the prefrontal cortex is involved in the processing
and integration of ancient neocortical memories and seems to inhibit hippocampal activity when
new information is too similar to an already stored neocortical pattern [83, 191]. This has been
included in a recent connectionist model [114]. On the other hand, the prefrontal cortex has also
been identified to be a location for working memory [119]. It has been introduced in a computational
model studying the link between working and long-term memory, while the hippocampus was seen
as the place of intermediate-term memory [77]. Tonegawa also studied the role of the prefrontal
cortex and the basolateral amygdala in memory reorganization [223].

Finally, the stability analyses results in the subsection 4.2.4 were not assessed numerically through
the different perturbations. It is an important work to establish in the future, in particular because
this analysis only provides conditions for instability. Furthermore, the synaptic depression analysis
was carried out with mα

q (x, t) = βq, but it will be important to study the case mα
q (x, t) = βqu

α(x, t),
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used in our numerical simulations.

4.3 General conclusion

We proposed in this chapter a complex model of interacting neural fields with learning rules to model
a cognitive neuroscience issue, the systems memory reorganization.

This work will have to be improved in the future, but can be seen as an insight to further use neural
fields modelling for cognitive computational neuroscience. Neural fields have already been used
to model several cognitive processes [175] such as vision [34], or learning and memory in sensory
cortices [133]. We believe that this framework constitutes an appropriate compromise between
cognitive fidelity, biological fidelity and complexity.
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Conclusion and perspectives

Since the previous chapters were already discussed, we provide here a general conclusion and per-
spectives about the modelling approaches in theoretical neuroscience.

During this thesis, several issues in neuroscience have been addressed: synaptic plasticity at corticos-
triatal and thalamostriatal synapses (chapter 2), modulation of Up-Down oscillations by astrocytes
(chapter 3, section 3.2), the role of astrocytes in epileptic seizures (chapter 3, section 3.3), and the
systems memory reorganization between the neocortex and the hippocampus (chapter 4). There is
still some work to carry out to close the open topics. The new experimental data for the ITDP
model at corticostriatal and thalamostriatal synapses will need to be analyzed, and the computa-
tional model will likely need some modifications. Moreover, to characterize the role of astrocytes in
epileptic seizures, it will be crucial to examine in more detail the dynamics for different astrocytes
parameters. I could continue to contribute to both projects in the future.

For each issue to model, appropriate features have been identified and implemented at the relevant
abstraction level. Schematically, models can be organized into two classes of abstraction levels [146].
Detailed biophysical models are made with many realistic elements assessed experimentally. This
method allows an in-depth comparison with experimental data. However its complexity makes it
hard to tune parameters, whose values are of primary importance for the approriate modelling of
the phenomenon. More abstract models with few parameters allow to overcome this problem, which
provides a better understanding of the system. Moreover, the range of parameter values are often
wider, which makes the model more robust. But these adavantages go hand in hand with a loss in
accuracy of the prediction. It is important to underly that the abstraction level concerns low level
elements (for example biochemical signalling), but also high level ones (for example social dynam-
ics). Only the characteristics judged necessary to explain a given phenomenon are taken into account.

To identify a suitable level of abstraction for a phenomenon, it is important to know the possible
experimental measurements so that the outcomes of the model can be assessed experimentally. A
recording can be seen as an abstracted description of a real process, and knowing the level of reduc-
tion of such data guide the modelling approach. For examples, the calcium-based model presented
in the introduction was developed in close relationship with experimental STDP experiments [98],
the integrate-and-fire networks are adapted to be compared with rastergrams obtained by spike-
sorting [116], and neural fields have proven to be suitable models to be compared with EEG and
MEG data [117].

All in all, various levels of abstraction are necessary in computational neuroscience to deal with a
wide range of spatiotemporal scales, from biophysical to cognitive processes.
However, a large issue, that is shared with other complex systems research fields, is that some
macroscopic scale dynamics cannot be accurately modeled without microscopic descriptions. Indeed,
precise models can often only be found at much smaller scales (for instance, biophysical single-cell
and synapse dynamics) [125]. In recent years, a multiscale framework, named equation-free mod-
elling [221], has been developed to compute coarse-level processes for models described at a finer
scale. Such algorithms identify which microscopic simulations lead to the macroscopic behaviour [90].

The equation-free framework is part of the model-based methods presented throughout this thesis,
organized following a bottom-up approach, see figure C 1 (Right). The basis of this method is to
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Figure C 1: Insight of bottom-up and top-down modelling methods and mathematical tools in neu-
roscience, adapted from Siettos and Starke (2016) [213]. Two main approaches can be distinguished,
a top-down, data-driven (Left) and a bottom-up, model-based one (Right). The latter method is
the one which has been used throughout this thesis.

consider first a mathematical model, and study whether complex dynamics can emerge from these
equations [213].
Nevertheless, this method is not the only one used in computational neuroscience, another facet
is the top-down approach, see figure C 1 (Left). Contrary to the bottom-up case, this method is
data-driven [217]. It starts from measurements of brain dynamics (for instance, EEG, LFP or fMRI),
then models are built to reproduce the recordings. This approach can be seen as an inverse problem
solving, whose aim is to infer brain organization and mechanisms from macroscale observations [213].
Various methods exist within the top-down approach, examples include linear tools such as simple
correlation and coherence [31] or Granger causality [96, 246], and nonlinear methods such as mutual
information graphs [231] or manifold learning algorithms (for instance, ICA [43] or ISOMAP [12]).

Some recent studies attempt to combine both bottom-up and top-down approaches to link mech-
anistics dynamics to large scale recordings [93]. For instance, dynamic causal modeling (DCM)
is a framework based on nonlinear ODEs describing groups of neurons (bottom-up), that aims to
infer the effective connectivity of networks (top-down) [88]. DCM has been applied to various pro-
cesses such as visual perception [245], emotion [176], and also to disorders such as depression [170],
schizophrenia [57], or bipolar disorder [32].

To conclude with a more personal perspective, I wish that the interactions between all the different
approaches to understand cognitive processes; through various disciplines and methods, experimental
or theoretical, with different spatiotemporal and abstraction scales, could lead to positive applica-
tions such as better medical treatments for brain related disorders, and that the understanding of
human behaviour could lead to more appropriate public policies [47].
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Ramı́rez-Jarqúın, and F. Tecuapetla. The Thalamostriatal Projections Contribute to the
Initiation and Execution of a Sequence of Movements. Neuron, 100(3):739–752.e5, Nov. 2018.

[68] A. D. Ekstrom, M. J. Kahana, J. B. Caplan, T. A. Fields, E. A. Isham, E. L. Newman, and
I. Fried. Cellular networks underlying human spatial navigation. Nature, 425(6954):184–188,
Sept. 2003.

[69] T. A. Engel, N. A. Steinmetz, M. A. Gieselmann, A. Thiele, T. Moore, and K. Boahen.
Selective modulation of cortical state during spatial attention. Science, 354(6316):1140–1144,
Dec. 2016.

[70] B. G. Ermentrout and J. D. Cowan. A mathematical theory of visual hallucination patterns.
Biological Cybernetics, 34(3):137–150, 1979.

[71] G. Ermentrout and C. Chow. Modeling neural oscillations. Physiology & Behavior, 77(4-
5):629–633, Dec. 2002.

[72] G. B. Ermentrout and J. B. McLeod. Existence and uniqueness of travelling waves for a neural
network. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 123(3):461–
478, 1993.

[73] T. Fellin. Communication between neurons and astrocytes: Relevance to the modulation of
synaptic and network activity. Journal of Neurochemistry, 108(3):533–544, Feb. 2009.

[74] J. Feng. Computational Neuroscience: A Comprehensive Approach. CRC Press, Oct. 2003.

[75] F. Ferreira, W. Erlhagen, and E. Bicho. Multi-bump solutions in a neural field model with
external inputs. Physica D: Nonlinear Phenomena, 326:32–51, July 2016.

[76] T. A. Fiacco and K. D. McCarthy. Multiple lines of evidence indicate that gliotransmission
does not occur under physiological conditions. The Journal of Neuroscience, 38(1):3–13, Jan.
2018.

[77] F. Fiebig and A. Lansner. Memory consolidation from seconds to weeks: A three-stage neural
network model with autonomous reinstatement dynamics. Frontiers in Computational Neuro-
science, 8, July 2014.

[78] S. Finkbeiner. Calcium waves in astrocytes-filling in the gaps. Neuron, 8(6):1101–1108, June
1992.

94

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0058/these.pdf 
© [L. Blum Moyse], [2023], INSA Lyon, tous droits réservés



[79] R. S. Fisher, W. V. E. Boas, W. Blume, C. Elger, P. Genton, P. Lee, and J. Engel. Epileptic
Seizures and Epilepsy: Definitions Proposed by the International League Against Epilepsy
(ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia, 46(4):470–472, Apr. 2005.

[80] R. FitzHugh. Mathematical models of threshold phenomena in the nerve membrane. The
Bulletin of Mathematical Biophysics, 17(4):257–278, Dec. 1955.

[81] A. Foncelle, A. Mendes, J. Jedrzejewska-Szmek, S. Valtcheva, H. Berry, K. T. Blackwell, and
L. Venance. Modulation of Spike-Timing Dependent Plasticity: Towards the Inclusion of a
Third Factor in Computational Models. Frontiers in Computational Neuroscience, 12:49, July
2018.

[82] M. Fotouhi, M. Heidari, and M. Sharifitabar. Continuous neural network with windowed
Hebbian learning. Biological Cybernetics, 109(3):321–332, June 2015.

[83] P. W. Frankland and B. Bontempi. The organization of recent and remote memories. Nature
Reviews Neuroscience, 6(2):119–130, 2005.
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annakopoulos, and V. Ibáñez. Frontal theta event-related synchronization: Comparison
of directed attention and working memory load effects. Journal of Neural Transmission,
113(10):1477–1486, Oct. 2006.

[168] F. Mormann, T. Kreuz, R. G. Andrzejak, P. David, K. Lehnertz, and C. E. Elger. Epileptic
seizures are preceded by a decrease in synchronization. Epilepsy Research, 53(3):173–185, Mar.
2003.

[169] C. Morris and H. Lecar. Voltage oscillations in the barnacle giant muscle fiber. Biophysical
Journal, 35(1):193–213, July 1981.

[170] D. R. Musgrove, L. E. Eberly, B. Klimes-Dougan, Z. Basgoze, K. M. Thomas, B. A. Mueller,
A. Houri, K. O. Lim, and K. R. Cullen. Impaired Bottom-Up Effective Connectivity Between
Amygdala and Subgenual Anterior Cingulate Cortex in Unmedicated Adolescents with Major
Depression: Results from a Dynamic Causal Modeling Analysis. Brain Connectivity, 5(10):608–
619, Dec. 2015.

[171] L. Nadel. Multiple Memory Systems: What and Why. Journal of Cognitive Neuroscience,
4(3):179–188, July 1992.

[172] L. Nadel and M. Moscovitch. Memory consolidation, retrograde amnesia and the hippocampal
complex. Current Opinion in Neurobiology, 7(2):217–227, Apr. 1997.
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[206] G. Seifert, G. Carmignoto, and C. Steinhäuser. Astrocyte dysfunction in epilepsy. Brain
Research Reviews, 63(1):212–221, May 2010.

[207] T. J. Sejnowski. Storing covariance with nonlinearly interacting neurons. Journal of Mathe-
matical Biology, 4(4):303–321, 1977.

[208] T. J. Sejnowski, C. Koch, and P. S. Churchland. Computational Neuroscience. Science,
241(4871):1299–1306, Sept. 1988.

[209] T. J. Sejnowski and G. Tesauro. The Hebb Rule for Synaptic Plasticity: Algorithms and
Implementations. In Neural Models of Plasticity, pages 94–103. Elsevier, 1989.

[210] A. Shai and M. E. Larkum. Branching into brains. eLife, 6:e33066, Dec. 2017.

[211] E. Shigetomi, S. Patel, and B. S. Khakh. Probing the complexities of astrocyte calcium
signaling. Trends in cell biology, 26(4):300–312, Apr. 2016.

[212] Y. Shu, A. Hasenstaub, and D. A. McCormick. Turning on and off recurrent balanced cortical
activity. Nature, 423(6937):288–293, May 2003.

[213] C. Siettos and J. Starke. Multiscale modeling of brain dynamics: From single neurons and
networks to mathematical tools. WIREs Systems Biology and Medicine, 8(5):438–458, Sept.
2016.

[214] Y. Smith, A. Galvan, T. J. Ellender, N. Doig, R. M. Villalba, I. Huerta-Ocampo, T. Wichmann,
and J. P. Bolam. The thalamostriatal system in normal and diseased states. Frontiers in
Systems Neuroscience, 8, 2014.

[215] L. R. Squire and P. Alvarez. Retrograde amnesia and memory consolidation: A neurobiological
perspective. Current Opinion in Neurobiology, 5(2):169–177, Apr. 1995.

[216] L. R. Squire, C. E. Stark, and R. E. Clark. The medial temporal lobe. Annual Review of
Neuroscience, 27(1):279–306, July 2004.

[217] C. Stam. Nonlinear dynamical analysis of EEG and MEG: Review of an emerging field. Clinical
Neurophysiology, 116(10):2266–2301, Oct. 2005.

[218] M. Steriade, A. Nunez, and F. Amzica. Intracellular analysis of relations between the slow
(< 1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram. The
Journal of Neuroscience, 13(8):3266–3283, Aug. 1993.

[219] E. M. Tartaglia and N. Brunel. Bistability and up/down state alternations in inhibition-
dominated randomly connected networks of LIF neurons. Scientific reports, 7(1):11916, Sept.
2017.

[220] C. Tetzlaff, C. Kolodziejski, I. Markelic, and F. Wörgötter. Time scales of memory, learning,
and plasticity. Biological Cybernetics, 106(11-12):715–726, Dec. 2012.

[221] C. Theodoropoulos, Y.-H. Qian, and I. G. Kevrekidis. “Coarse” stability and bifurcation anal-
ysis using time-steppers: A reaction-diffusion example. Proceedings of the National Academy
of Sciences, 97(18):9840–9843, Aug. 2000.
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Supplementary materials
(Chapter 4)
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Figure S 1: The encoding phase shows faster learning in hippocampal fields than in neocortical
ones. (a) Firing rates in the three fields, neocortex (C), dentate gyrus (D) and CA regions (H). The
initial stimuli are two bumps around positions AC and BC in the neocortical field. They activate
C neurons which in turn activate D neurons. Then since C and D neurons fire, H neurons can be
activated. In the end, neurons shutdown, due to the depletion of synaptic resources. (b) Intra and
(c) inter-field learning weights at the end of the encoding phase. Learning weights within the Aα

part of each pattern are at their maximum. Indeed, neurons inside this location are very close to
each other, so their weights grow fast. On the opposite the weights between the Aα and Bα parts
are smaller, since the distance is more important. Especially these cross weights are still smaller in
C than in D and H fields, since the distance between AC and BC is larger than those between AD

and BD (or AH and BH). Thus in our model, distance is the main reason why the neocortex is a
slow learner and the hippocampus a fast learner.
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Figure S 2: The hippocampal replay step allows engrams reactivation. (a) Firing rates in the three
fields, neocortex (C), dentate gyrus (D) and CA regions (H). We modeled hippocampal reactivation
by sending a spatially uniform stimulus on H. All H neurons receive this input, but only those
involved in the pattern fire for a long time, because of their non zero learning weights. Activated
H neurons lead to firing in C neurons, which then activate D neurons. (b) Intra and (c) inter-
field learning weights at the end of the hippocampal replay phase (solid lines) compared to learning
weights at the end of the encoding phase (dotted lines). Weights consolidate thanks to pattern
reactivation, in particular in the neocortex.
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Figure S 3: The retrieval cue step allows engrams reactivation. This step consists in stimulating only
the AC or BC location of the neocortex (here BC). Retrieval is exhibited by subsequent activation
of AC . (a) Firing rates in the three fields, neocortex (C), dentate gyrus (D) and CA regions (H). A
signal is sent on only BC in the neocortical field. The weights between AC and BC are still small, C
is still dependent on H to recover the whole pattern. Thus, BC neurons first activate BD then BH

neurons, which will activate AH neurons thanks to the strong enough BH − AH learning weights.
Finally, the AH neurons activate AC neurons via the strong AC −AH weights, leading to the whole
pattern recovery. (b) Intra and (c) inter-field learning weights at the end of the retrieval cue process
(solid lines) compared to learning weights at the end of the encoding phase (dotted lines). Weights
are consolidated thanks to pattern reactivation, in particular in the neocortex.
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Figure S 4: Neocortical engram reactivation depends on hippocampal fields during the retrieval cue
steps. The retrieval cue stimulation with hippocampal “lesion” is obtained by cancelling the learning
weights amplitudes in the hippocampal fields, between them and the neocortical field (γαβ = 0 for
all α,β except γCC). (a) Firing rates in the three fields, neocortex (C), dentate gyrus (D) and CA
regions (H). Only the Bα neurons, directly stimulated by the partial retrieval cue, fire. Memory
cannot be retrieved without a functional hippocampus. (b) The intra and (c) inter-field learning
weights between the Aα and Bα cannot be consolidated in absence of firing of the whole pattern.
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Figure S 5: Neurogenesis in the dentate gyrus prevents the reactivation of hippocampal engrams.
(a) Firing rates in the three fields, neocortex (C), dentate gyrus (D) and CA regions (H), during the
hippocampal replay phase. Neurons in the neighbourhood of the pattern in the dentate gyrus field are
modeled as highly excitable newborn neurons (lower threshold, see the methods subsection 4.2.2).
The thin lines in the D field show the continuous firing of those new neurons. As a result, the
thresholds of the neurons in the vicinity adapt and stay high. Therefore, the neurons of the pattern
stay silent in response to the replay pattern. (b) During neocortical retrieval cues, C neurons fire
since there are no direct connections from D to C. However nothing fires in the hippocampal fields.
The retrieval cue activates the whole pattern in C independently of the hippocampal fields. (c)
Intra and (d) inter-field learning weights after 325 cycles with neurogenesis (solid lines). Learning
weights are fully consolidated in the neocortex and have disappeared in hippocampal fields.
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