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Notations

The following notations are used in this thesis. The abbreviation iff. means "if and only if", and s.t. means "such that".

Bachmann-Landau notations

• Given two functions f, g, we write f (n) = O(g(n)) when f (n) ≤ g(n) • k for some absolute constant k

for n lare enough. The O notation ignores polynomial factors in n: O(f (n)) := O(polylog(f (n))) = O(log(n) k ) for some absolute constant k. We will sometimes omit O or O as we always focus on the asymptotic complexities in this thesis.

• f = Θ(g) means that for n large enough, there exists absolute constants

k 1 , k 2 such that k 1 g(n) ≤ f (n) ≤ k 2 g(n).

Vectors

• Vectors are denoted in bold topped with an arrow, as ⃗ v. We amalgamate vectors in R n and points in R n . Even if not explicit, v i stands for the i-th coordinate of ⃗ v, for i ∈ [n] := {1, ..., n}.

• For a vector ⃗ v ∈ R n , ∥⃗ v∥ = n i=1 v 2 i is the Euclidean norm of ⃗ v. ⃗ v ∥⃗ v∥ is the vector ⃗ v normalized.

• For two vectors ⃗ u, ⃗ v ∈ R n , ⟨⃗ u|⃗ v⟩ = i u i • v i denotes their scalar product, and θ(⃗ u, ⃗ v) = arccos ⟨⃗ u|⃗ v⟩ ∥⃗ u∥∥⃗ v∥ denotes their non-oriented angle. ⃗ u and ⃗ v are orthogonal (⃗ u ⊥ ⃗ v) if ⟨⃗ u|⃗ v⟩ = 0.

• We denote the concatenated vector of ⃗ u = (u i ) i∈ [n] and ⃗ v = (v i ) i∈[m] by (⃗ u∥⃗ v) = (⃗ u 1 , . . . , ⃗ u n , ⃗ v 1 , . . . , ⃗ v m ).

• For a vector ⃗ v = (v 0 , . . . , v n-1 ), we denote ⃗ v | [i,j] the vector (v i , . . . , v j-1 ) restricted on coordinates i to j -1.

Matrices

• For a complex matrix U we denote U ⊤ its transpose, and U † its conjugate transpose. U is a unitary matrix iff. U U † = U † U = I.

• For U, U ′ two matrices, we denote U ⊗ U ′ their tensor product (or Kronecker product), and for n ∈ N,

U ⊗n := U ⊗ • • • ⊗ U n times
.

• Quantum states are denoted with the ket notation |•⟩. Two juxtaposed quantum states can be written indifferently |ϕ⟩ ⊗ |ψ⟩ = |ϕ⟩|ψ⟩ = |ϕ, ψ⟩.

Codes

• We denote codes by the Gothic character C (as in the text C already denotes configurations and C a check cost). In Chapter 6, as there is no ambiguity, we simply use C.

• For x = (x 0 , . . . , x n-1 ) ∈ F n q and M = (M i,j ) 0≤i<r-1 0≤j<n-1 ∈ F r×n q , we define their row-wise star product

x ⋆ M := (x j M i,j ) 0≤i<r-1 0≤j<n-1 .

1. Introduction

Background and issues

Public-key cryptography. In 1977, Rivest, Shamir and Adleman introduced the famous RSA encryption protocol [START_REF] Rivest | A Method for Obtaining Digital Signatures and Public-key Cryptosystems[END_REF] after a party with plenty of wine [START_REF] Singh | The Code Book[END_REF]. The security of this cryptosystem relies on a surprisingly simple idea: picking two large prime numbers p and q, it is easy to compute their product N = p • q, while it is very hard from N to recover p and q. One can use N as a public key to encrypt messages, and the secret key (p, q) allows decrypting. A spy who gets an encrypted message has to solve this hard problem if they want to decrypt it without knowing the secret key. This protocol may have been secretly discovered by the British GCHQ twelve years before and only declassified in 1997 [START_REF] Cocks | A note on 'non-secret encryption[END_REF], but this is a different story. Several decades of research passed and the RSA problem attracted a lot of attention, but no one has been able to solve it for large numbers. Factoring a number in the order of 2 2048 using a classical computer would take 300 trillion years [START_REF]Breaking RSA Encryption -an Update on the State-of-the-Art[END_REF], which is more than the time since the beginning of the universe ("only" 13.8 billion years ago). So there was strong confidence in the hardness of this problem and in the security of cryptosystems based on it.

Alice

Quantum information theory. Since the 80s, several physicists suggested the idea of a computer that takes profit from quantum laws, instead of confining it to classical physics, in order to enlarge the possibilities of computations. The motivation for constructing such a computer would be quantum simulation [START_REF] Feynman | Simulating Physics with Computers[END_REF] that has applications in molecular chemistry and materials study.

In 1994, Shor published a breakthrough article [START_REF] Shor | Algorithms for Quantum Computation: Discrete Logarithms and Factoring[END_REF] in which he showed that the factorization problem would be efficiently solved by a quantum computer. Consequently, it theoretically breaks all the cryptosystems based on this problem like RSA and, killing two birds with one stone, also those based on the discrete logarithm problem [START_REF] Diffie | New directions in cryptography[END_REF][START_REF] Johnson | The Elliptic Curve Digital Signature Algorithm (ECDSA)[END_REF] that are also widely used. In stride during the late 90s, the first small quantum calculators were constructed [START_REF] Isaac | Experimental Implementation of Fast Quantum Searching[END_REF]. In addition to academic laboratories, several actors have begun to take an interest in the development of a quantum computer, among them giant companies (Google, IBM, Microsoft, Alibaba), specialized start-ups (D-Wave, Rigetti, Pasqal, Quandela, Alice & Bob, ...) and

Alice

Randomly chooses a secret key SK. P K = f (SK) Signs her document m: s = Sign SK (m)

Bob

Verifies if V erif y P K (s) = m. P K (m, s)

Eve

Spies and learns P K, m and s. Attacks:

• Recover secret key SK from P K (hard)

• Forge (m ′ , s ′ ) st. V erif y P K (s ′ ) = m ′ (hard) X X Figure 1.2: Electronic signature: certify that a document authentically comes from Alice. Both agree on an efficiently computable one-way function f (SK) = P K such that Sign SK = V erif y -1 P K .

national departments of defense (NSA according to Edward Snowden's leaks [START_REF] Rich | NSA seeks to build quantum computer that could crack most types of encryption[END_REF], and surely many other states). The obstacles remain significant: quantum error correction is required to face the decoherence of the qubits, and a good choice of architecture is needed to construct all the quantum gates that perform correctly. Will a practical quantum computer ever exist? As this thesis does not deal with divination we sadly cannot answer this question. One can remember the beginnings of the classical computer that is today incredibly ubiquitous but originally started with a first attempt by Babbage whose architecture was not viable for scaling. The NMR architecture of the first quantum calculators was not either, but many other leads are being explored 1 . Until a practical quantum computer is constructed, or a discovery in physics states the impossibility of its construction... there is no knowledge about it, only questions, hopes, and beliefs.

Post-quantum cryptography. There is, however, one certainty: We cannot leave our digital security based on an arbitrary gamble. In the mid-2010s, began to emerge the idea that our security systems must be resistant to potential quantum attacks. The NSA stated that the US government should use quantum-safe cryptography, so in 2016, the American National Institute of Standards and Technology (NIST) announced a competition for quantum-safe encryption and digital signature schemes. Despite its "national" prerogatives, the choice of standardized schemes by the NIST influences the adoption of those schemes worldwide.

New cryptographic problems were proposed from either lattice theory, codes, multivariate polynomials, or isogenies. After five years during which cryptanalysts from all around the world searched for security flaws, four schemes were finally selected. Will be standardized: Kyber [START_REF] Bos | CRYSTALS -Kyber: a CCA-secure module-lattice-based KEM[END_REF] for encryption, Dilithium [START_REF] Ducas | CRYSTALS-Dilithium, Algorithm Specifications and Supporting Documentation[END_REF], Falcon [START_REF] Fouque | Falcon: Fast-Fourier Lattice-basedCompact Signatures over NTRU[END_REF], and Sphincs+ [START_REF] Daniel | The SPHINCS+ Signature Framework[END_REF] for digital signatures. The three first listed are latticebased, and the last one is hash-based. Lattices seem to provide good performances, i.e. fast running time and short sizes of the keys and ciphers or signatures. However, having almost all the standardized schemes based on a single class of problems exposes to the danger of a potential attack that would break them all, as Shor's did with pre-quantum cryptography. Thus, in 2022, the NIST launched a second call for additional digital signatures. Once again, lattice and codes are under the spotlight.

The important question is: Are these schemes as secure as we think? Only time can allow us to trust a security system after a crowd of cryptanalysts tried unsuccessfully to solve their underlying problems. They have been less studied than that of RSA. To date, it is difficult to fully assess their current claimed security. 1 You will find at this link a timeline sourced and regularly updated with the progress in the development of the quantum computer: https://en.wikipedia.org/wiki/Timeline_of_quantum_computing_and_communication.

Contributions

Starting my Ph.D. years in this context, I wanted to contribute to the global effort of estimating the hardness of the problems on which our security will rely. How fast and with what material resources can an attacker solve them? This is the question I tried to answer. My work has focused on two of these problems at the core of lattice-based and code-based cryptography:

• Shortest Vector Problem (SVP): A lattice is the set of all integer linear combinations of the vectors of a given basis. The well-named SVP asks to find the shortest vector in a lattice.

• Decoding problem (DP): A code is the set of all vectors product of its given generator matrix by any vector. The decoding problem asks to find the nearest code vector from a noisy one.

New faster algorithm to solve SVP using quantum walks

We present in Chapter 4 a new quantum algorithm that heuristically solves the Shortest Vector Problem using quantum walks. This is the first improvement in the asymptotic running time of quantum sieving algorithms since the work of Laarhoven [START_REF] Laarhoven | Search problems in cryptography, From fingerprinting to lattice sieving[END_REF], bringing down the time from 2 0.265n+o(n) to 2 0.257n+o (n) . Our algorithm belongs to sieving algorithms [START_REF] Nguyen | Sieve algorithms for the shortest vector problem are practical[END_REF], a class of heuristic algorithms that start with long lattice vectors and iteratively construct shorter ones by summing lattice vectors pairwise until it finds one short enough. The main idea behind our algorithm is to replace Grover's search in Laarhoven's algorithm with a quantum walk to search for pairwise reducing vectors. A quantum walk algorithm finds a subset in a larger set satisfying a wanted property. Typically in our case, we wanted to find a subset that contains two vectors that reduce together. It was not a priori clear how to adapt the algorithm to integrate quantum walks as there are many ways of constructing them and most of them do not give speedups. We have used the MNRS framework [START_REF] Magniez | Search via Quantum Walk[END_REF] combined with a locality-sensitive filtering (LSF) technique [START_REF] Becker | New directions in nearest neighbor searching with applications to lattice sieving[END_REF] to find more efficiently pairs of close vectors, as they have higher chances of reducing.

Our result shows that filtering twice does have a benefit, contrary to what was believed previously. Moreover, our running time goes below the conditional lower bound that [START_REF] Kirshanova | Lower bounds on lattice sieving and information set decoding[END_REF] stated for a restricted class of sieving algorithms. Our generalization of their framework has opened new horizons for more efficient sieving algorithms. We also show the best classical fits our framework, as well as the previous best quantum algorithm. We finally present two space-time tradeoffs. The first one is computed for fixed quantum memory, to make our algorithm flexible in the case the qubits are a limited resource, so the algorithm runs with less quantum memory and a higher time to compensate. Similarly, we present a tradeoff for fixed QRAM.

This result comes from joint work with André Chailloux and previously appeared in the proceedings of ASIACRYPT 2021 [START_REF] Chailloux | Lattice sieving via quantum random walk[END_REF].

A new filtering technique and its application to solving SVP with low memory

Chapter 5 explores a variant of the sieve, the k-sieve, and gets improved tradeoffs. The k-sieve sums k points together to find shorter ones, and its memory requirements reduce when k increases. Reducing the memory would make the attack more materially practical, especially when it comes to quantum memory which is very limited for implementations.

Searching reducing k-tuples in a sieving step is a problem that reduces to the configuration problem, i.e. searching k vectors satisfying given constraints on their pairwise scalar products. The choice of the target configuration impacts time and memory. Taking a balanced configuration with all scalar products equal minimizes the memory. On the other hand, searching for unbalanced k-tuples slightly increases the memory to in counterpart reduce the running time. It is another tool that helped us to get better time-memory tradeoffs.

We introduce a new filtering technique tailored for the k-sieve. It extends the construction of random product codes (RPC) of [START_REF] Becker | New directions in nearest neighbor searching with applications to lattice sieving[END_REF]. A k-RPC is an efficiently decodable code such that each codeword belongs to a k-tuple that sums to the null vector. We use it to describe a new framework for the k-sieve and get improved tradeoffs for classical and quantum 3-sieve and 4-sieve algorithms. It looks for k-tuples of lattice points each such that their sum is shorter. We first perform a filtering step: we use a k-RPC to construct lists L 1 , . . . , L k such that each L i contains lattice points close to a codeword A i in the k-RPC where A 1 + • • • + A k = ⃗ 0. This forms a tuple-filter L 1 × • • • × L k in which the k-tuples of vectors are more likely to reduce than by taking k random vectors. We then use known algorithms on configuration search on these k-tuples of lists to find reducible ones, [START_REF] Herold | Improved algorithms for the approximate k-list problem in Euclidean norm[END_REF] for the classical setting and [START_REF] Kirshanova | Quantum algorithms for the approximate k-list problem and their application to lattice sieving[END_REF] for the quantum one. All our quantum algorithms require only a polynomial number of qubits. Here too, our results prove that the conditional optimality of [START_REF] Kirshanova | Lower bounds on lattice sieving and information set decoding[END_REF] can be beaten. This is based on joint work with André Chailloux and these results appeared in PQCrypto 2023 [START_REF] Chailloux | Classical and quantum 3 and 4-sieves to solve SVP with low memory[END_REF].

Quantum security analysis of Wave

Chapter 6 focuses on the cryptanalysis of the Wave code-based signature scheme. Its security relies on the hardness of forging a signature and distinguishing the secret key from a uniform. The best known attacks do this by tackling two instances of the Decoding Problem. We improve the message attack on Wave in the quantum setting that slightly reduces its claimed security respectively by 1, 3, and 5 bits for the three security levels in the NIST submission [START_REF] Banegas | Wave Support Documentation[END_REF].

Our algorithm uses the Information Set Decoding (ISD) framework [Pra62; FS09], whose idea is to find many solutions to a simpler instance of the decoding problem, and then to check whether one of these solutions allows to find a whole solution of good weight to the DP instance that one wanted to solve. Our work proposes an improved way to compute the candidate sub-solutions. Our algorithm combines different approaches. It is based on Wagner's algorithm [START_REF] Schroeppel | (2 n/4 ) Algorithm for Certain NP-Complete Problems[END_REF] with the idea of [START_REF] Sendrier | Decoding one out of many[END_REF] to search for a solution to the decoding problem considering exponentially many syndromes, known as the Decoding One Out of Many problem. We adapt this algorithm in the quantum setting in a way inspired by state-of-the-art [START_REF] Chailloux | Classical and Quantum algorithms for generic Syndrome Decoding problems and applications to the Lee metric[END_REF], and improve it by adding a smoothing technique of [START_REF] Bricout | Ternary Syndrome Decoding with Large Weight[END_REF]. We also develop a complete time complexity analysis for the four best known attacks on Wave: message and forgery in both classical and quantum settings. For each of them, we provide explicit expressions in the function of the Wave parameters. So the claimed security level can easily be updated with new sets of parameters using our formulas.

This work resulted in a preprint [START_REF] Loyer | Quantum security analysis of Wave[END_REF] and took part in a joint submission [START_REF] Banegas | Wave Support Documentation[END_REF] to the NIST with Gustavo Banegas, Kévin Carrier, André Chailloux, Alain Couvreur, Thomas Debris-Alazard, Philippe Gaborit Pierre Karpman, Ruben Niederhagen, Nicolas Sendrier, Benjamin Smith, and Jean-Pierre Tillich.

Outline of the thesis.

• Chapter 1 is the introduction. You are here!

• Chapter 2 provides preliminaries on quantum information theory.

• Chapter 3 defines the Shortest Vector Problem (SVP) and introduces the best known method to solve it, called lattice sieving.

• Chapter 4 presents a new algorithm for SVP using quantum walks that improves the best asymptotic time. As a direct application, this reduces the theoretical quantum security of lattice-based schemes.

• Chapter 5 describes a new tailored filtering technique for the k-sieve, and its application provides better time-memory tradeoffs.

• Chapter 6 estimates the security of Wave, a code-based digital signature scheme.

• Chapter 7 concludes with an overview of the results and the possible directions for future research.

Quantum computing

In this chapter, we review concepts from quantum information theory relevant to this thesis.

Quantum circuit model

Before designing complex quantum algorithms, we need to define the lowest-level operations: the quantum circuits. All the circuits presented here are said "agnostic", meaning that they do not depend on the architecture of the computer on which they are implemented.

Classical computing stores and processes information coded in the form of states of electronic components. Similarly, we speak about quantum computing when data are coded by states of quantum particles. Then classical physics no longer stands and quantum physics theory takes over. That allows us to exploit the particular properties of these particles to do operations that were proven impossible with classical computing, such as constructing superposed or entangled states. And this can speed up calculations.

Qubits

In classical computing, the smallest information processing unit is called a bit. It has a value of 0 or 1 and can change from one state to another, but its state is always fixed and unique at a precise instant. Whereas for a quantum particle, its state can be a quantum superposition of 0 and 1 at the same time. Physically, these values can be coded by atoms, photons, or nuclear spins for example. If we measure it, there are probabilities of obtaining 0 or 1, but is it impossible to predict in advance which result we will find. Once it is measured, the particle loses its quantum behavior and stays in the state we measured. We say that the particle collapses. However, probabilities alone are not enough to explain some behaviors of a quantum particle like the interference effect. Thus, amplitudes are used to characterize its state. Physically this notion is related to the wave function of the particle.

Let |0⟩ := 1 0 and |1⟩ := 0 1 be two basis vectors representing the two pure states.

Definition 2.1 (Qubit). A qubit at a quantum state |ψ⟩ can be described by its amplitudes (α, β) ∈ C 2 :

|ψ⟩ = α|0⟩ + β|1⟩ = α β ,
where |α| 2 (resp. |β| 2 ) is the probability of finding the state 0 (resp. 1) when we perform a measurement. To make sense we then must have |α| 2 + |β| 2 = 1.

If we manipulate a register with n qubits, we can consider a basis (|0...00⟩, |0...01⟩, ..., |1...11⟩). Let us rewrite it (|0⟩, |1⟩, ..., |2 n -1⟩) for simplicity, where the first notation is the binary writing of the second one. A register with n qubits can be in any superposition in this form:

|ψ⟩ = 2 n -1 j=0 α j |j⟩,
where and β = e iφ sin θ 2 . The probability to measure 0 (or 1) only depends on angle θ. Angle φ is the phase of the state. Bloch sphere is a more precise representation than Schrödinger's cat popular image, which does not represent the phase φ (and requires the strong hypothesis that cats respect quantum laws).

2 n -1 j=0 |α j | 2 = 1.

Quantum gates

Once we have data stored in qubits, we would like to process it. Quantum circuits generalize the idea of classical circuits, where the AND, OR, and NOT gates are replaced by quantum gates. As qubits are elements of C 2 , we can represent a quantum gate by a unitary matrix, i.e. a matrix U such that U † U = U U † = I, where U † is the conjugate transpose of U . We can transform a state |ψ⟩ into |ψ ′ ⟩ = U |ψ⟩ by applying the gate of unitary U . Notice that for one qubit (a 2-dimensional complex vector), the dimension of its matrix is 2 × 2. Here are a few usually used quantum gates.

Pauli matrices.

I =

1 0 0 1 Identity gate.

X = 0 1 1 0 Bitflip gate, or quantum NOT-gate: adds π to angle θ (see figure 2.1).

Y = 0 -i i 0 Z = 1 0 0 -1
Phaseflip gate: adds π to angle φ (see figure 2.1).

These are the single-qubit Pauli gates. The n-qubits Pauli matrices are obtained from these four matrices by taking a tensor product of n of these matrices. We define this operation just below. Phase rotation. This single-qubit gate adds an angle ϕ to the phase (see figure 2.1).

Hadamard gate.

H = 1 √ 2 1 1 1 -1
R ϕ = 1 0 0 e iϕ
One can construct two-qubit gates from single-qubit ones, and the dedicated matrix operation is as follows.

Definition 2.2 (Tensor product or Kronecker product). The tensor product of matrices A = (a i,j

) ∈ C n×n ′ and B = (b i,j ) ∈ C m×m ′ is A ⊗ B :=      a 1,1 B a 1,2 B • • • a 1,n ′ B a 2,1 B a 2,2 B • • • a 2,n ′ B . . . . . . . . . a n,1 B a n,2 B • • • a n,n ′ B      ∈ C (n•m)×(n ′ •m ′ ) .
As an example, the tensor product of

A = a 1,1 a 1,2 a 2,1 a 2,2 and B = b 1,1 b 1,2 b 2,1 b 2,2 is A ⊗ B =     a 1,1 b 1,1 a 1,1 b 1,2 a 1,2 b 1,1 a 1,2 b 1,2 a 1,1 b 2,1 a 1,1 b 2,2 a 1,2 b 2,1 a 1,2 b 2,2 a 2,1 b 1,1 a 2,1 b 1,2 a 2,2 b 1,1 a 2,2 b 1,2 a 2,1 b 2,1 a 2,1 b 2,2 a 2,2 b 2,1 a 2,2 b 2,2     .
For two single-qubit gates A and B, their tensor product A ⊗ B represents a two-qubit gate of dimension 4 × 4. Indeed, if we consider two qubits |ψ⟩ and |ψ ′ ⟩, applying A on |ψ⟩ and B on |ψ

′ ⟩ is equivalent to applying A ⊗ B on |ψ⟩ ⊗ |ψ ′ ⟩, i.e. (A|ψ⟩)(B|ψ ′ ⟩) = (A ⊗ B)|ψ⟩|ψ ′ ⟩).
Controlled-NOT gate. This gate operates on two qubits. The first one is called the controlled qubit. If the first one, called the controlled qubit, has the value 1 then the second qubit is flipped.

CN OT =     1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0    
The sub-matrix X = 0 1 1 0 on the bottom right can be replaced by any unitary matrix. It leads to only applying a gate under the condition that the first qubit is |1⟩, which implements the quantum version of the IF...T HEN operation.

Theorem 2.3 (Solovay-Kitaev theorem ). [NC00, Appendix 3] With H, CN OT and R π/4 , it is possible to construct an approximation of any possible quantum circuit. For an approximation up to an error ϵ, it only requires a number polylog(1/ϵ) of these gates.

This theorem will allow us to measure the complexity of n-qubit gates.

Complexity evaluation. We consider here quantum circuits with 1 or 2-qubit gate, without any locality constraint, meaning that we can apply a 2-qubit gate from a universal set of gates to any pair of qubits in constant time. We only study asymptotic running time here so we are not interested in the choice of this universal gate set, as they are all essentially equivalent from the Solovay-Kitaev theorem.

We use the textbook gate model where the time complexity of a quantum circuit is the number of gates used. A circuit is said efficient if it can be implemented with a number of gates polynomial in the size of the input. The width of a circuit is the number of qubits it operates on, including the ancilla qubits. This quantity is important as it represents the number of qubits that have to be manipulated simultaneously and coherently. We will call this quantity quantum memory.

Another quantity of interest is the depth of the circuit, which is important as a high-depth quantum circuit will be much harder to achieve because of decoherence. Moreover, while the number of gates is a good measure of time when each gate has to be computed separately, depth is a good measure of time when we can perform many gates at the same time, typically when we have multiple quantum processors.

When we will know much more precisely what quantum architectures look like, it will be possible to make these models more precise and replace the gate model with something more adequate. The gate model is still the most widely used in the scientific community and is very practical to compare different algorithms. We will use the gate model as our main model for computing quantum times but we will also include other interesting figures of merit, such as Quantum Random Access Memory, that we will develop in Section 2.2.

One of the properties inherent to quantum particles is quantum superposition. We saw that a Hadamard gate maps a state |0⟩ to a quantum superposition H|0⟩ = 1 √ 2 (|0⟩ + |1⟩). The Quantum Fourier Transform generalizes it by constructing a uniform quantum superposition over n qubits.

Definition 2.4 (Quantum Fourier Transform). Let |k⟩ be a register of n qubits, and N = 2 n . The quantum Fourier transform (QFT) is the following operation

QF T N |k⟩ := 1 √ N N -1 j=0 e 2iπ/N jk |j⟩.
QF T N is a linear function. In its matrix form, denoting ω := e 2iπ/N , it can be written

QF T N = 1 √ N        1 1 • • • 1 1 ω • • • ω N -1 1 ω 2 • • • ω 2(N -1) . . . . . . . . . 1 ω N -1 • • • ω (N -1)(N -1)        . QF T N |0 n ⟩ = H ⊗n |0 n ⟩
is the uniform quantum superposition over all states on n qubits. Note that for N = 2 we recover QF T 2 = H. Theorem 2.5. [START_REF] Shor | Algorithms for Quantum Computation: Discrete Logarithms and Factoring[END_REF] The QF T 2 n can be exactly implemented with O(n 2 ) gates H and controlled-R 2π/2 m for 1 ⩽ m ⩽ n, or approximately implemented with O(n • log(n)) of these gates.

Another important aspect in quantum computing is entanglement. When two particles are entangled, if we measure one then the other is immediately impacted. For example, consider the 2-qubit register

1 √ 2 |00⟩ + 1 √ 2 |11⟩
, that can be obtained by applying the quantum circuit of Figure 2.2. If we measure any of the two qubits, we get the same probability of measuring 0 or 1. But if we then measure the other one, we will necessarily get the same measurement. Query to a function. For a function f that we are able to compute classically or quantumly, the oracle to f is the following operation:

O f : |a⟩|0 n ⟩ → |a⟩|f (a)⟩.
From a classical circuit that computes f with T gates, O f can be constructed with O(T ) quantum gates. Note that the oracle entangles the two registers. Indeed, if we measured the second one and obtain the state |f (a 0 )⟩ for some a 0 , then the first one will transform to a quantum superposition of the a's such that f (a) = f (a 0 ).

Shor's algorithm

A famous algorithm in the quantum circuit model is Shor's algorithm [START_REF] Shor | Algorithms for Quantum Computation: Discrete Logarithms and Factoring[END_REF], which factorizes a given integer N . We do not enter into the computational details, but here is a high-level idea of the algorithm. It considers a periodic function f (i) = x i mod N for a randomly chosen x. We denote n := ⌈log 2 (n)⌉, QF T N the quantum Fourier transform and O f the query oracle to function f . Then it applies the following quantum circuit, whose measurement provides a value that can be used to recover the period of f with good probability. Knowing r the period of f , we have by definition f (r) = f (0), i.e. x r = 1 mod N . If x is well chosen, this allows to write (x r/2 + 1)(x r/2 -1) = 0 mod N , so (x r/2 + 1)(x r/2 -1) = k • N for some k. Then, we can hope that one of these (x r/2 ± 1) has a non-trivial common factor with N . Otherwise, we choose another random x until we succeed, which happens with a good probability.

|0 n ⟩ |0 n ⟩ QF T N O f QF T N
Complexity. The time complexity of this circuit is the number of its elementary gates. By Theorem 2.5, we know that the Quantum Fourier Transform can be implemented with O(n • log(n)) elementary gates. Evaluating the function f : i → x i mod N can be done in efficient time (O(n 2 log(n)), then the call to the query oracle O f is so. The measurements take time 1. Then, it solves the factorization problem in polynomial time. For comparison, the best (known) classical factoring algorithm [START_REF] Buhler | Factoring integers with the number field sieve[END_REF] runs in time of about 2

3 √ log(N ) .
Implications on cryptography. The consequences of this algorithm are daunting. If we can find the periodicity of a function, then we can easily solve the problems of factorization and discrete logarithm, which are precisely the problems on which the security of the worldwide used RSA [START_REF] Rivest | A Method for Obtaining Digital Signatures and Public-key Cryptosystems[END_REF], elliptic curves encryption [START_REF] Nist | Digital Signature Standard[END_REF] and Diffie-Hellman key exchange [START_REF] Diffie | New directions in cryptography[END_REF] rely. To our knowledge to this day, in the classical model, no algorithm does it in polynomial time. While here in the quantum circuit model, Shor's algorithm solves it in a polynomial time, completely breaking its security. This is the reason why we must update our security systems by choosing problems resistant to quantum attacks. We will present in Chapters 3 and 6 two of the structures that offer problems believed to be hard, namely lattices and codes.

Quantum random access memory

Quantum computing relies on physical and technical advances to build a usable quantum computer. Since we cannot predict how far these advances will go, there exist several computing models.

QRACM

The Quantum Random Access Memory is an operation added to the quantum circuit model. We denote by QRACM the quantum-accessible classical memory. Considering N classical registers x 0 , ..., x N -1 ∈ {0, 1} stored in memory, then a QRACM operation consists of applying the following unitary

O x : |i⟩|b⟩ → |i⟩|x i ⊕ b⟩.
In the QRACM model, the above unitary is considered to be constructed efficiently. In particular, we assume that given list L there exists an efficient quantum circuit for 1

√ |L| i |i⟩|0⟩ → 1 √ |L| i |i⟩|L[i]⟩.
With a QRACM access to L, this can be done by applying Hadamard gates to state |0⟩ to create a superposition over all indices, and then by querying L[i] for each i in the superposition.

Definition 2.6 (Quantum superposition of a list). Given a list L, we call the quantum superposition of L the state |ψ L ⟩ := 1 √ |L| x∈L |ind L (x)⟩|x⟩, where ind L (x) denotes the index of the element x in the list L. In the QRAM model, if L is classically stored and quantumly accessible then there exists an efficient quantum algorithm that constructs the state |ψ L ⟩.

QRAQM

The Quantum Random Access to Quantum Memory (QRAQM) authorizes access to data in superposition. Assume that the quantum circuit holds qubits registers x 0 , ..., x N -1 . A QRAQM operator does the following:

O x : N -1 j=0 |x j ⟩ |i⟩|0⟩ → N -1 j=0 |x j ⟩ |i⟩|x i ⟩

Computational models

There are several computing models, here ranked from the most realistic to the most futuristic:

• Classical

• Quantum circuit model (and low qubit model: only use log(n) or poly(n) quantum memory)

• Quantum circuit model with efficient QRACM

• Quantum circuit model with efficient QRACM and QRAQM It is very premature to know whether QRAM operations will be efficiently available one day for quantum computers. This would definitely require a major hardware breakthrough, but so would quantum computing in general. Some proposals for efficiently building QRAM operations exists, such as [START_REF] Giovannetti | Quantum Random Access Memory[END_REF], even though its robustness has been challenged in [START_REF] Arunachalam | On the robustness of bucket brigade quantum RAM[END_REF]. To this day it is still subject to controversy [GR04; Ber09; JR23] and research is still going on [START_REF] Allcock | Constant-depth circuits for Uniformly Controlled Gates and Boolean functions with application to quantum memory circuits[END_REF].

This uncertainty limits future possible uses we can predict. For concrete applications in business, it makes sense to avoid operations that we may not be able to implement. However, the logic of cryptanalysis is reversed. For the aim of security, we must consider that the adversaries have access to the best possible resources, in order to protect ourselves from the worst-case scenario by choosing the most robust security. It is more reasonable to be pessimistic when it comes to security, and to protect oneself too much than not enough, even if it means adjusting security settings afterwards. Indeed, in the case QRAM exists one day and if the settings of used cryptosystems neglected to take it into account, then encrypted files from before will be decryptable. It is not a risk that one can tolerate.

Even in case QRAM never sees the light of day, this computing model remains interesting to explore. If we find a quantum algorithm that efficiently solves a cryptographic problem, we may wonder if there exists one in classical. De-quantization has already happened in the past. There could also be "de-QRAMisation" of some quantum algorithms [START_REF] Jaques | Low-gate Quantum Golden Collision Finding[END_REF]. Furthermore, building quantum algorithms in this computing model makes it possible to better understand the structure of objects that we manipulate (lattices, codes, etc.). So all the work within the QRAM model will not be lost even in that situation.

Search algorithms

Grover's algorithm

Introduced in 1996, Grover's algorithm [START_REF] Grover | A fast quantum mechanical algorithm for database search[END_REF] was presented as searching for a solution in a database. For one with N entries, classically, it is impossible to get a better complexity than Θ(N ) queries, by examining each entry one by one until we find a solution. The quantum Grover algorithm solves this search problem in O( N/t) queries and with O( √ N log(N )) other gates. Let n be an integer and N = 2 n . We are given arbitrary x 1 , ..., x N ∈ {0, 1} n . The goal is to find an i such that x i = 1, and to output "no solution" if there is no such i. We assume we know the number of such solutions i, denoted t, or at least an approximation of t. This problem was first presented as a search in an unordered database. In the original article, Grover fixed t = 1, which has been generalized. The idea of the algorithm is to separate "good" (x i = 1) and "bad" (x i = 0) indices i, and increase step by step the amplitudes of the "good" state. The action of the algorithm can be understood thanks to geometric arguments. First, we set:

θ := asin t N = acos N -t N |G⟩ := 1 √ t i∈[N ] x i =1 |i⟩ and |B⟩ := 1 √ N -t i∈[N ] x i =0 |i⟩ |U ⟩ := 1 √ N i∈[N ] |i⟩ = t N |G⟩ + N -t N |B⟩
|U ⟩ is the uniform state over all indices. |G⟩ and |B⟩ stand respectively for the "good" and "bad" states, depending of the x i 's values. We consider the 2-dimensional space induced by |G⟩ and |B⟩. It will be the basis on which we will take measurements. We can represent this on a circle of radius 1. Geometrically, θ represents the angle between the states |B⟩ and |U ⟩. We know that t N is the probability of measuring a good solution, so t/N is the amplitude of the "good" state |G⟩ at the beginning of the algorithm. Thus we have θ = asin( t/N ). So, we can write the following relation: If we choose k too low or even too high, we see that the probability is not optimal. To maximize this probability, we want (2k + 1)θ ≈ π 2 , so we set k ≃ π 4θ -1 2 .

cos(θ)|B⟩ + sin(θ)|G⟩ = |U ⟩ = 1 √ N N -1 i=0 |i⟩.
H ⊗n RH ⊗n = H ⊗n 2|0 n ⟩⟨0 n | -I H ⊗n = 2|U ⟩⟨U | -I which is a reflection through |U ⟩. A Grover step is G = H ⊗n RH ⊗n O x ,
Algorithm 1 Grover's search [START_REF] Grover | A fast quantum mechanical algorithm for database search[END_REF] Require: x 1 , . . . , x N ; the number t (or its approximation) of solutions Grover's search can find an element e i satisfying a certain wanted property within a given quantumly accessible list L = {e 1 , . . . , e N }. The description of the check function f : L → {0, 1} encapsulates the definition of what we call a "solution". We then fix that ∀i ∈ [N ], x i := f (e i ). Therefore applying Grover returns the index i of one of the solutions e i ∈ L such that f (e i ) = 1; if such a solution exists. Assuming the efficiency of QRAM operations, this takes time O( |L|/t) where t is the number of solutions.

x i = 1 Ensure: i ∈ [N ] such that x i = 1,

Amplitude Amplification

Amplitude Amplification [Bra+02] generalizes Grover's algorithm. We are given a check function f : Z n → {0, 1}, and we suppose we have an algorithm A which returns a solution z such that f (z) = 1 with a success probability of p. The Amplitude Amplification returns a solution with a success probability 1 -ϵ > 1/2.

We assume we have the gates H, R, the oracle function O f |z⟩ = (-1) f (z) |z⟩, and a unitary that implements A.

Algorithm 2 Amplitude Amplification Require: The probability p of success of the algorithm A. Remark that Grover's algorithm takes O f = O x , A = H ⊗n , and p = t N . Theorem 2.9 (Amplitude amplification [START_REF] Brassard | Quantum amplitude amplification and estimation[END_REF]). Let A be an algorithm without measurements that finds a solution z ∈ Z 2 n such that f (z) = 1 with a success probability p. Amplitude amplification on A returns a solution with probability 1/2 using O(1/ √ p) queries to O f . Moreover, one can make the success probability of these algorithms go exponentially close to 1 by repeating them a constant number of times: Proposition 2.10. [Bra+02] Grover's algorithm can have a success probability of 1 -2 -η with O(η |L|/t) queries to the function oracle O f . Respectively, Amplitude Amplification with O(η/ √ p) queries to O f succeeds with probability 1 -2 -η .

Ensure: z ∈ Z n such that f (z) = 1,
|0 n ⟩ H ⊗n AA AA . . . AA 1 √ p iterations
When we refer to Grover or quantum amplification, it will be implicit that we consider this version that erases the error.

Quantum Walks

A random walk is an algorithm that, given a set {x 1 , . . . , x N }, returns a subset v of fixed size that satisfies a desired property if such v exists. In this case, v is said "marked". Quantum walks adapt classical random walks to the quantum setting. The difference is that in classical ones, we start from a vertex in a graph and move to a randomly chosen neighbor vertex until we find a marked one; while quantum walks construct a quantum superposition of all neighbor vertices. So we walk to all the neighbor vertices at the same time somehow, and this speeds up the search for solution.

The MNRS quantum walk framework [START_REF] Magniez | Search via Quantum Walk[END_REF].

The constraints to "walk" from a subset v to another are modeled by edges of an undirected graph G = (V, E), where V is the set of vertices and E ⊆ V × V is the set of edges. We do not allow self-loops which means that ∀v ∈ V, (v, v) / ∈ E and as the graph is undirected there is

(v, u) ∈ E ⇒ (u, v) ∈ E.
There is a subset M ⊆ V of marked vertices and the goal of the walk is to find one

v ∈ M . Let ϵ = |M |
|V | be the fraction of marked vertices.

We denote δ the spectral gap of the graph G. For a regular graph, if λ 1 > ... > λ |V | are the eigenvalues of the normalized adjacency matrix of G, then δ = λ 1 -max i=2...n |λ i |. This value is non-negative but small (δ ≪ 1) and is correlated to the number of steps needed to reach a random vertex in the graph. Roughly speaking, no matter from which vertex we start, after Θ( 1 δ ) steps to a random neighbor, we will arrive at a random vertex in G. Let also N (v) = {u : (v, u) ∈ E} be the set of neighbors of v. For any vertex v, we define

|p v ⟩ = 1 √ |N (v)| u∈N (v) |u⟩.
We now define the following quantities:

• Setup step S (cost S) constructs the quantum state 1 |V | v∈V |v⟩|p v ⟩.
• Update step U (cost U) consists in applying the unitary

U : |v⟩|0⟩ → |v⟩|p v ⟩.
In order to compute the update cost U, we consider time of classically going from one vertex v to one of its neighbors in N (v). Then, we can use this procedure in quantum superposition to construct the unitary U .

• Check step C (cost C) computes the check function f : V → {0, 1} where f (v) = 1 if v ∈ M and 0 otherwise. S U . . . U C CU 1/ √ δ CU 1/ √ δ . . . 1/ √ δ iterations 1/ √ ϵ iterations
Figure 2.8: Circuit of a quantum walk of the MNRS framework.

We provide a very rough sketch of the quantum walk. The setup costs S. The update operation U is applied ⌊1/ √ δ⌋ times, then we check if the obtained vertex is marked using the check operation C. This process CU ⌊1/ √ δ⌋ takes time ⌈1/ √ δ⌉ • U + C and has a probability of success ϵ. So we perform an Amplitude Amplification that has 1 √ ϵ iterations so that a measurement would give a marked vertex with high probability. Conserving the above notations, this leads to the following proposition.

Proposition 2.11. [START_REF] Magniez | Search via Quantum Walk[END_REF] There exists a quantum walk algorithm that finds a marked element in time

S + 1 √ ϵ U √ δ + C .
Reusable quantum walks.

In case we do not only search after one but K marked vertices, one can perform a quantum walk from scratch K times, which would cost

K • S + 1 √ ϵ U √ δ + C .
Instead, [START_REF] Bonnetain | Finding many Collisions via Reusable Quantum Walks[END_REF] showed how to run the setup S only a single time, and then repeat K/ √ ϵ times the rest of the circuit. This restarts the walk from an already computed quantum superposition, and from there recovers a uniform random superposition used to search the next marked vertex. For some regimes, the cost to find K marked elements becomes

S + K √ ϵ U √ δ + C . S U . . . U C CU 1/ √ δ CU 1/ √ δ . . . 1/ √ δ iterations K/ √ ϵ iterations
Figure 2.9: Quantum circuit of a reusable quantum walk.

These reusable quantum walks only apply in certain cases, such as when searching for a marked vertex can be expressed as a collision problem.

Collision problem and Johnson graph.

Here is a notorious problem with a large range of applications. Definition 2.12 (Collision problem). Given n ∈ N, a set S and a function f

: S → {0, 1} n , find x 1 , . . . , x k ∈ S such that f (x 1 ) = • • • = f (x k ).
A standard way to solve a collision problem by a quantum walk would be to replace one element from a vertex v ⊆ S with another one x new ∈ S\{v}, then check if v contains some x 2 , . . . x k that forms together a solution with x new , and repeat until such a collision is found. A graph that encapsulates this process is the Johnson graph. Definition 2.13 (Johnson graph). We are given a set S of size n. For parameters n, r such that r ≤ n, J(n, r) denotes the Johnson graph. Each vertex v in this graph is a set of r distinct (unordered) elements in S as well as some additional data D(v) that depends on the random walk we want to perform. Every possible vertex with this definition appears once in the graph. Two vertices v = (x 1 , . . . , x r , D(v)) and v ′ = (x ′ 1 , . . . , x ′ r , D(v ′ )) form an edge in J(n, r) if and only if we can go from v to v ′ by removing exactly one value and then adding another one from set S. Lemma 2.14. [START_REF] De | Quantum Computing: Lecture Notes[END_REF] The spectral gap of a Johnson graph J(n, r) is δ = n r(n-r) . Then δ ≈ 1 r when r ≪ n.

Classical walks do not help to solve the collision problem faster. However, in the quantum model, Johnson graphs are very standard to perform quantum walks on. To improve the complexity of the algorithm, the basic idea is that when the update step replaces one element in the vertex v with a new x new from S, it also checks if x new belongs to a collision with some other elements in v. This might increase the update time, but makes the check step immediate, as it is already done during the update. The additional data D(v) is computed during the setup and then updated at each step. It aims to reduce the time to find the elements in v that collide with x new , if they exist. What it contains depends on what is relevant to the collision problem we want to solve. To get the optimal time of the walk, it is often a question of balancing the time to compute D(v) and the time to check using D(v) whether x new forms a solution. We will go into more detail in Chapter 4, where we will present an example application.

A time analysis of quantum walks on the Johnson graph was done in [START_REF] Ambainis | Quantum Walk Algorithm for Element Distinctness[END_REF] when studying the element distinctness problem. There, Ambainis presented a quantum data structure that uses efficient QRAM that allows in particular insertion and deletion in O(log(n)) time where n is the database size while maintaining this database in quantum superposition. Another paper [START_REF] Daniel | Quantum Algorithms for the Subset-Sum Problem[END_REF] on a quantum algorithm for the subset-sum problem using quantum walks also presents a detailed analysis of a quantum data structure based on radix trees to perform efficient insertion and deletion in quantum superposition. All of these data structures require as many QRAM registers as the number of registers to store the whole database and this running time holds only in the QRAM model.

Lattice sieving

Definition 3.1 (Lattice). Given a basis B = {b 1 , . . . , b n } ⊂ R m of linearly independent vectors, the lattice L ⊂ R m generated by basis B is the set of all integer linear combinations of vectors of B:

L = n i=1 λ i b i , λ i ∈ Z
A lattice is said of full-rank if n = m. In the following, we will only consider full rank lattices for simplicity. The determinant of L is det L = | det B|. Notice that the basis B is not unique, and one can give another basis of the same lattice by applying an arbitrary unimodular transformation.

Lattice-based cryptography

Lattice problems

For a lattice L, we denote by convention λ 1 (L) the length of a shortest non-zero vector of L. Notice that by definition, lattices are symmetric to the point ⃗ 0. So there are always at least two vectors of length λ 1 (L), and this is why we say a shortest vector and not the. Definition 3.2 (Exact-SVP -Shortest Vector Problem). Given a lattice L, find a shortest non-zero vector ⃗ x ∈ L i.e. of norm ∥⃗ x∥ = λ 1 (L). Definition 3.3 (Approximate γ-SVP). Given a lattice L and γ > 1, find a non-zero vector

⃗ x ∈ L such that ∥⃗ x∥ ≤ γ • λ 1 (L).
The bigger the approximation factor γ is, the easier γ-SVP becomes. For γ = 1, γ-SVP and SVP are the same problem. For cryptanalytic uses, solving γ-SVP for small γ and not necessarily a shortest is sufficient [START_REF] Albrecht | The general sieve kernel and new records in lattice reduction[END_REF]. One can apply Minkowski theorem to get an upper bound λ 1 (L) ≤ √ n • | det L| 1/n , or use the estimation of the length of a shortest vector given by the SVP challenge [Sch+]:

λ 1 (L) ≈ 1.05 • Γ(n/2 + 1) 1/n √ π • (det L) 1/n
where Γ(z) := +∞ 0 t z-1 e -t dt is the extension of the factorial function.

• • • • • • • • • • • b 1 b 2 • Figure 3
.1: Given b 1 and b 2 two basis vectors that generate a lattice, the Shortest Vector Problem asks to recover the vector in green.

The Shortest Vector Problem is a central problem in complexity theory and the foundation of many cryptographic constructions. The average-case to worst-case reductions [Ajt99; Reg09] ensure cryptographic 19 schemes relying on SVP to be secure as long as there exists a lattice where finding a short vector is hard. However, in practice, lattice-based cryptographic schemes are not directly based on SVP but on the problems that follow. Definition 3.4 (Closest Vector Problem (CVP)). Given a lattice L and a target vector ⃗ t ∈ R n , find the vector ⃗ x ∈ L the closest to ⃗ t. Definition 3.5 (NTRU [START_REF] Hoffstein | NTRU: A ring-based public key cryptosystem[END_REF]). Let q ≥ 2, R := Z/f (x)Z[x] a polynomial ring, and f, g ∈ R be "short" with f invertible mod q. Given h := f -1 • g mod q, find f and g.

The NTRU problem is equivalent to solving the Shortest Vector Problem in the lattice L h,q = {(x, y) ∈ R 2 : xh -y = 0 mod q}. Definition 3.6 (LWE -Learning With Errors [START_REF] Regev | On lattices, learning with errors, random linear codes, and cryptography[END_REF]). Let n, m, q be positive integers, χ be a probability distribution on Z (often a Gaussian) and s be a uniformly random vector in Z n q . We are given m independent samples (a i , a i • s i + e i ) where the a i 's are uniformly random on Z n q and the errors e i follows distribution χ. Find the secret s.

The LPN problem (Learning Parity with Noise), closely related to code-based problems, can be seen as an instance of LWE for modulus q = 2. Definition 3.7 (SIS -Short Integer Solution [START_REF] Ajtai | Generating hard instances of lattice problems[END_REF]). Given a matrix A ∈ Z m×n , find a vector ⃗ x ∈ [-β, β] m \{0} for some β such that A⃗ x = 0 mod q.

The SIS problem is the dual variant of LWE: solving SIS in a given lattice L ⊂ R n is exactly LWE in the dual lattice

L ⊥ := {⃗ x ∈ R n | ⟨⃗ x|⃗ y⟩ = 0, ∀⃗ y ∈ L}.

Lattice-based schemes overview

The general idea of encryption and signature protocols was briefly introduced in Figures 1.1 and 1.2 in the introduction. To construct cryptographic schemes, we need a function that is efficiently computable and hard to reverse. Lattice structure provides such one-way functions. Indeed, one can generate a basis of short vectors that stands for the secret key, and then modify it to end up with a "bad" basis of very long vectors that constitutes the public key. Reversing this function, i.e. computing a good basis from a bad one, is equivalent to solving the NP-hard Shortest Vector Problem. [START_REF] Ducas | On the Lattice Isomorphism Problem, Quadratic Forms, Remarkable Lattices, and Cryptography[END_REF] gave the conditions to construct schemes: any lattice makes it possible to design an identification scheme, a decodable lattice gives an encryption scheme and a Gaussian sampleable lattice an electronic signature scheme.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • ⃗ 0 b 1 b 2 (a) Good basis of L: (b1, b2).
Secret key. Ajtai [START_REF] Ajtai | Generating Hard Instances of Lattice Problems (Extended Abstract)[END_REF] showed how to generate hard lattice problems for cryptographic uses and [GGH97] used it to create the historically first lattice-based signature scheme, which relies on the Closest Vector Problem.

=⇒ easy

⇐= hard X X • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • ⃗ 0 b ′ 1 b ′ 2 (b) Bad basis of L: (b ′ 1 , b ′ 2 ). Public key.
The NTRU scheme [HPS98; HPS01] followed, based on the eponymous problem. These original schemes were broken by [START_REF] Phong | Learning a parallelepiped: Cryptanalysis of GGH and NTRU signatures[END_REF]. [START_REF] Gentry | Trapdoors for hard lattices and new cryptographic constructions[END_REF] introduced a "Hash-and-Sign" framework for signatures which provides provable security, and reduces to worst-case lattice problems. However, the megabytes-long signatures made them unusable in practice. [START_REF] Lyubashevsky | Fiat-Shamir with aborts: Applications to lattice and factoring-based signatures[END_REF] proposed a signature scheme based on the Fiat-Shamir framework [START_REF] Fiat | How to Prove Yourself: Practical Solution to Identification and Signature Problems[END_REF] relying on the Shortest Vector problem in ideal lattices. This time, the performance of the scheme was close to being practical. On the encryption side, [START_REF] Regev | On lattices, learning with errors, random linear codes, and cryptography[END_REF] introduced a provably secure lattice-based scheme. [START_REF] Gentry | Fully Homomorphic Encryption Using Ideal Lattices[END_REF] proposed Fully Homomorphic Encryption, a form of encryption that enables computations on plaintexts without decryption. Most FHE schemes are based on either the LWE problem or its Ring or Modular variants for storing plaintexts. Structured lattices, such as ideal lattices, Ring, or Modular versions, are useful for reducing the size of the keys and the running time of the protocols in comparison to generic lattices. However, we will not develop on structured lattices.

As no efficient algorithm is known to solve lattice problems, lattice-based cryptography is believed to be quantum-safe. Then lattice-based cryptography gained a lot of visibility during the NIST call for postquantum cryptography. Among the four submissions to be standardized, three are based on lattice problems. CRYSTALS-KYBER [START_REF] Bos | CRYSTALS -Kyber: a CCA-secure module-lattice-based KEM[END_REF] is an encryption scheme relying on the modular version of the LWE/SIS problem. CRYSTALS-Dilithium [START_REF] Ducas | CRYSTALS-Dilithium, Algorithm Specifications and Supporting Documentation[END_REF] is an electronic signature scheme from the Fiat-Shamir [START_REF] Fiat | How to Prove Yourself: Practical Solution to Identification and Signature Problems[END_REF] framework, and it is also based on MLWE-MSIS. And FALCON [START_REF] Fouque | Falcon: Fast-Fourier Lattice-basedCompact Signatures over NTRU[END_REF] is a "Hash-and-Sign" scheme relying on a variant of the NTRU problem.

In 2023, the NIST launched a new call for post-quantum signatures [START_REF]Post-Quantum Cryptography: Digital Signature Schemes[END_REF]. Among the lattice-based submissions, HAWK relies on the lattice isomorphism problem, HuFu and Squirrels rely on the LWE/SIS problem, and EagleSign, HAETAE and Racoon rely on its modular version M-LWE/M-SIS.

Cryptanalysis

Lattice-based cryptography mostly relies on the hardness of LWE, its dual version SIS, and their structured Ring or Modular variants. Attacks fall into different categories: lattice reduction [LLL82; SE94], combinatorics [BKW03; Bud+20] or algebraic attacks [START_REF] Arora | New algorithms for learning in presence of errors[END_REF]. In this work, we consider generic lattices, not depending on their specific structure, so we will focus on lattice reduction. To defeat a lattice-based cryptosystem, one can run the BKZ algorithm [START_REF] Schnorr | Lattice basis reduction: improved practical algorithms and solving subset sum problems[END_REF], which itself uses an SVP-solver as a subroutine. It returns a reduced basis of the lattice, that is enough to compute in polynomial time the solution to the LWE instance underlying the scheme. The hardness of the attack can be estimated by the complexity of solving the Shortest Vector Problem in a chosen cost model (See Section 2.2).

Problem of the scheme

(R-LWE, M-SIS, NTRU...) → LWE → Lattice reduction (BKZ) → SVP → Cost model → Number of security bits Figure 3.3: Cascade of problem reductions.
All the fastest known algorithms to solve SVP run in exponential time in n the lattice dimension -or even super-exponential in the case of enumeration [START_REF] Kannan | Improved algorithms for integer programming and related lattice problems[END_REF]. The current best enumeration algorithm [START_REF] Albrecht | Faster Enumeration-based Lattice Reduction: Root Hermite Factor k 1/(2k) in Time k k/8+o(k)[END_REF] runs in time n 0.125n , and [START_REF] Aono | Quantum Lattice Enumeration and Tweaking Discrete Pruning[END_REF] showed that quantum gives a quadratic gain. It only requires a polynomial memory. The other methods run in time and memory 2 cn+o(n) for some constant c = Θ(1). Among these algorithms there are sieving [KS01; NV08; MV10], Voronoi cell [START_REF] Micciancio | Faster exponential time algorithms for the shortest vector problem[END_REF], and Gaussian sampling [START_REF] Aggarwal | Solving the shortest vector problem in 2 n time via discrete Gaussian sampling[END_REF]. To this day, only sieving algorithms are competitive for large dimensions. Sieving is a class of heuristic algorithms, therefore the returned vector has no guarantee to be exactly the shortest, and the algorithm may not succeed on arbitrary lattices. But actually, an approximate solution to SVP suffices for cryptanalysis purposes [START_REF] Albrecht | The general sieve kernel and new records in lattice reduction[END_REF], and sieving has largely proven its efficiency in practice as all the 20 records to the SVP challenge [Sch+] are due to sieving algorithms.

Sieving algorithms

A sieving algorithm starts with a list of long lattice vectors and successively applies sieving steps to diminish the norms of the vectors. After a few sieving steps, we hope to find a short vector. Such algorithms solve approximate SVP in time and space 2 Ω(n) , with n the dimension of the lattice. The NV-sieve, originally introduced in [NV08], constructs shorter vectors by summing vectors from the input list by pairs.

There also exists provable sieving algorithms [Agg+15; Agg+21], whose analysis does not rely on heuristics. But these algorithms run in practice much faster than the theoretical asymptotic time of their proven analyses. Heuristic algorithms in counterpart, despite that they rely on an approximation of reality, their analysis provides a good estimation of the running time of the attacks. This explains why the analysis of sieving algorithms requires a heuristic and unfortunately, why we cannot work without it. The relevance of the heuristic has been studied, and for now it gives good estimations of the running time.

The NV-sieve

Given a list of lattice vectors of norm at most R and a reducing factor γ < 1, a sieving step will return a list of lattice vectors of norm at most γR. To obtain these reduced vectors, the NV-sieve computes the difference of each pair of vectors in the input list and fills the output list with those that are of norm at most γR. Then, it iteratively builds lists of shorter lattice vectors by applying the sieve step. The first list of lattice vectors can be sampled with Klein's algorithm [START_REF] Klein | Finding the closest lattice vector when it's unusually close[END_REF] for example. As the norms of the list vectors reduce by a factor γ < 1 at each sieving step, the output list will hopefully contain a non-zero shortest lattice vector after a polynomial number of iterations of the NV-sieve step.

Algorithm 3 NV-sieve step [START_REF] Nguyen | Sieve algorithms for the shortest vector problem are practical[END_REF] Require: List L of N lattice vectors of norm at most R, a reducing factor γ < 1. Ensure: List L out of N lattice vectors of norm at most γR.

for

⃗ x 1 ∈ L do for ⃗ x 2 ∈ L do if ∥⃗ x 1 -⃗ x 2 ∥ ≤ γR then add ⃗ x 1 -⃗ x 2 to L out return L out
Algorithm 4 Solve SVP by the sieving method Require: basis B of a lattice L, a reducing factor γ < 1. Ensure: a short vector of L (probably)

L ← generate N lattice vectors using Klein's algorithm on basis B while L does not contain a short vector do L ← Sieve-step(L, γ) return min(L) Klein's algorithm initializes a list with long vectors and we denote their greatest norm R. After applying a sieving step only poly(n) times, the output vectors are of norm at most R • γ poly(n) with γ < 1, and this value is exponentially smaller than the initial norm. The list will then hopefully contain a short vector. The number of while loop iterations is polynomial in n so it does not affect the asymptotic time. We only need to estimate the running time of the sieving step.

We present here two simplifications of notation. First, we will only consider the case R = 1. Indeed, all the sieving algorithms we consider will be independent of R, and one can easily normalize the vectors. Also, in practice, we take γ ≈ 1 (typically γ = 1 -1 poly(n) ). We will fix γ = 1 to simplify the analysis of the algorithm.

The sieve step described in Algorithm 3 succeeds under the following heuristic.

Heuristic 3.8. Lattice points of norm at most 1 are distributed uniformly at random on the sphere S n-1 :=

{⃗ x ∈ R n : ∥⃗ x∥ = 1}.
Actually, random uniform points in the ball {⃗ x ∈ R n : ∥⃗ x∥ ≤ 1} are with high probability very close to the border of the ball, so on the outer sphere S n-1 . It is easier to intuit this phenomenon when one thinks in high dimensions. There is more volume in the area of the border of the sphere, called a "shell", and when we increase the dimension, the volume concentrates even more on the border. For example, we already see that the ball of dimension 3 has a shell whose ratio volume is wider than that in dimension 2. Thus, uniform vectors of norm at most 1 are with a high probability of norm very close to 1 for the high dimensions n used for cryptography. A simplification we can do is then to consider that uniform points are exactly lying on the sphere S n-1 of radius 1. The heuristic consists in assuming that lattice vectors are distributed as uniform points with this simplification, ignoring the structure of the lattice. The relevance of this heuristic has been studied in [START_REF] Nguyen | Sieve algorithms for the shortest vector problem are practical[END_REF] and confirmed by experiments. It becomes invalid when the vectors become short, but in this case, we can assume we have solved SVP. 

(x) = V olumeBall(n,x) V olumeBall(n,1) = x n , with V olumeBall(n, x) = π n/2 x n Γ( n 2 +1
) . For high dimensions, we can see the high concentration near the norm 1.

Complexity analysis of the NV-sieve

We introduce here a geometry notion that will be useful for the complexity analysis of sieving algorithms. Recall that S n-1 := {⃗ x ∈ R n : ∥⃗ x∥ = 1}. The spherical cap of center ⃗ s and angle α is defined as follows

H ⃗ s,α := {⃗ x ∈ S n-1 | θ(⃗ x,⃗ s) ≤ α} = {⃗ x ∈ S n-1 | ⟨⃗ x|⃗ s⟩ ≥ cos(α)}.
Proposition 3.9 ([Bec+16], Lemma 2.1). For arbitrary angle α ∈ (0, π/2) and a vector ⃗ x ∈ S n-1 , the ratio of the volume of a spherical cap H ⃗ x,α to the volume of the sphere S n-1 is

V n (α) := poly(n) • sin n (α).
In other words, for an arbitrary angle α ∈ (0, π/2), if we fix ⃗ s ∈ S n-1 and consider a uniformly random vector ⃗ x ∈ S n-1 , then we have

Pr ⃗ x∈S n-1 [⟨⃗ x|⃗ s⟩ ≥ cos(α)] = Pr ⃗ x∈S n-1 [⃗ x ∈ H ⃗ s,α ] = V n (α).
The sieving step starts with a list L of lattice vectors, randomly distributed on the sphere S n-1 according to the heuristic 3.8. We first need to know how many vectors are required in input to end up with as many vectors in output. Indeed, having to deal with too many vectors just wastes time, and on the contrary, taking too few vectors leads to quickly running out of vectors and not finding a short one. Therefore the size of the lists must be kept constant and minimal.

A pair of vectors ⃗ x 1 , ⃗ x 2 ∈ L yields a reduced vector with norm ∥⃗ x 1 -⃗ x 2 ∥ ≤ 1 if and only if their angle satisfies θ(⃗ x 1 , ⃗ x 2 ) ≤ π 3 . Then, each random pair in L reduces with probability V n (π/3) by Proposition 3.9. Since there are O(|L| 2 ) pairs of points in L, we have on average |L| 2 • V n (π/3) pairs in L that reduce. This quantity needs to be equal to |L| in order to keep the input and output list sizes equal. So we set

|L| = 1/V n (π/3) = (4/3) n/2+o(n) = 2 0.208n+o(n) . • ⃗ 0 π 3 1 1 • ⃗ x Figure 3
.5: Subtracting any vector from the green area with ⃗ x yields a shorter vector.

Proposition 3.10. [START_REF] Nguyen | Sieve algorithms for the shortest vector problem are practical[END_REF] The NV-sieve heuristically solves SVP in time 2 0.415n+o(n) and space 2 0.208n+o(n) .

Proof. The NV-sieve step checks each pair in list L, so its time complexity is |L| 2 = 2 0.415n+o(n) , and we perform poly(n) sieve steps. Its space complexity is the number of vectors we need to store at the same time, so the space complexity is |L| = 2 0.208n+o (n) .

Complexity analysis of the quantum NV-sieve

Algorithm 5 Quantum NV-sieve step Require: List L of N lattice vectors of norm at most 1, a reducing factor γ < 1. Ensure: List L out of N lattice vectors of norm at most γ.

for

⃗ x 1 ∈ L do ⃗ x 2 ← Grover on L\{⃗ x 1 } if ∥⃗ x 1 -⃗ x 2 ∥ ≤ γ then add ⃗ x 1 -⃗ x 2 to L out return L out
Proposition 3.11. The quantum NV-sieve heuristically solves SVP in time 2 0.311n+o(n) using classical memory in 2 0.208n+o(n) under the assumption of efficient QRACM.

Proof. The quantum NV-sieve step replaces the exhaustive search for a reducing ⃗ x 2 in L by a Grover's search in L. The time complexity is |L| |L| = 2 0.311n+o(n) and it requires a classical memory quantumly accessible of size |L| = 2 0.208n+o (n) .

Sieving in practice. The Gauss-Sieve [START_REF] Micciancio | Faster exponential time algorithms for the shortest vector problem[END_REF], another family of sieving algorithms, is more used than the NV-sieve in practice. Despite having no known bound on its time complexity, it usually performs faster than the implementations of the NV-sieve. The idea of the Gauss-Sieve is to start with a short list of vectors and then sample new lattice vectors. Vectors are reduced by pairs too and newly computed shorter vectors replace the longer ones in the list. There have been several subexponential improvements, like the dimension for free [Duc17; DLW20] and progressive sieving [START_REF] Laarhoven | Progressive lattice sieving[END_REF]. All the top 20 current highest records [Sch+] for solving SVP have been reached thanks to sieving algorithms. To this day, the highest dimension where SVP has been solved is d = 186, while the order of the dimensions for lattices concretely used in schemes remains far superior. For example, the dimension of the lattice used in Dilithium [Duc+19, Table 2] is 475.

Locality Sensitive Filtering

A great improvement of the sieving algorithms is to use Neighbor Nearest Search (NNS) techniques. The NNS problem is: given a list L of vectors, preprocess L such that one can efficiently find the nearest vector in L to a target vector given later. Applied in the NV-sieve, the preprocessing step partitions the input list into several buckets of lattice points, with each bucket being associated with a hash function. During the querying step, when we search for each point ⃗ x in the list a reducing one, we search for a reducing one in the buckets where ⃗ x is inserted instead of looking at the whole list, which is much larger.

A method to solve NNS was locality-sensitive hashing (LSH) introduced in [IM98] and then improved in [Cha02; And+14; AR15; TT07]. It uses a hash function that has a high probability for two elements to collide if they are close, and a low one if they are far. More recently, [START_REF] Becker | New directions in nearest neighbor searching with applications to lattice sieving[END_REF] improved NNS for the Euclidean norm by introducing locality-sensitive filtering (LSF). The latter technique uses the structure of random product codes that allies both the randomness of the distribution and an efficient list-decoding algorithm, which provides a great improvement in lattice sieving.

Random Product Code and Hypercone Filters

Definition 3.12 (Random Product Code (RPC)). We assume n = m • b, for m = O(n) and a block size b. The vectors in R n will be identified with tuples of m vectors in R b . A random product code C of parameters (n, m, B) on subsets of R n and of size B m is defined as a code of the form

C = Q • (C 1 × C 2 × • • • × C m ),
where Q is a uniformly random rotation over R n and the subcodes C 1 , . . . , C m are sets of B vectors, sampled uniformly and independently random over the sphere 1/m•S b-1 , so that codewords are points of the sphere S n-1 := {⃗ x ∈ R n : ∥⃗ x∥ = 1}. We can have a full description of C by storing mB points corresponding to the codewords of C 1 , . . . , C m and by storing the rotation Q.

Random product codes have the interesting property of being efficiently decoded in some parameter range: [START_REF] Becker | New directions in nearest neighbor searching with applications to lattice sieving[END_REF]). Let N be a number exponential in n, and C be a random product code of parameters (n, m, B) with m = O(n) and B m = N o(1) . For any ⃗ x ∈ S n-1 and α ∈ [0, π/2], there is an algorithm that computes the set

Proposition 3.13 ([
C ∩ H ⃗ x,α in time N o(1) • |C ∩ H ⃗ x,α |.
Claim 3.14. [Bec+16, Lemma 5.1, proof in Appendix C] Points in a random product code are indistinguishable from uniformly and independently random points on S n-1 . Definition 3.15 (Hypercone filter). A filter is characterized by a center c ∈ S n-1 and an angle α, that defines a hypercone. A filter of center c is said α-close with a vector ⃗ x ∈ S n-1 iff. c and ⃗ x are of angle at most α. The filter is associated with a set f α (c), often called "bucket" in the literature, that is initially empty and can be filled with α-close vectors.

Condition of reduction.

In the NV-sieve (Algorithms 3 and 5), we searched pairs of vectors of angle at most π/3 in the list L. To add a filtering layer, we preprocess the list by filling each filter bucket f α (⃗ s) with α-close vectors in L. Then, for each vector ⃗ x in L, we search for a reducing one within its filters instead of checking the much larger whole list. Vectors in ⃗ x's filters have a higher probability of reducing with ⃗ x in comparison with random vectors from L. We will quantify this, but first of all, let us do an observation that leads to a quite useful simplification. Notice that for any angle α ∈ [π/3, π/2] and ϵ > 0 such that ϵ < α, we have

V n (α -ϵ) = poly(n) • sin n (α -ϵ) = V n (α) • (ϵ ′ ) n with ϵ ′ = cos ϵ -sin(ϵ) cos(α) sin(α) < 1 for α > ϵ. This leads to V n (α) ≫ V n (α -ϵ).
So the probability for a point to be at angle α with the center of the cap is exponentially higher than to be at angle α -ϵ. That justifies that, for a filter of center ⃗ s and angle α, vectors in H ⃗ s,α lie very close to the border of the cap. So we do the following simplification.

Claim 3.16. We consider that vectors in a filter bucket f α (⃗ s) of center ⃗ s and angle α are actually lying on the border of the filter

B ⃗ s,α := {⃗ x ∈ S n-1 | θ(⃗ x,⃗ s) = α}. A vector ⃗ x ∈ B ⃗ s,α then can be decomposed into ⃗ x = cos(α)⃗ s + sin(α)⃗ y
for some ⃗ y of norm 1 and orthogonal to ⃗ s. Such vector ⃗ y is called a residual vector of ⃗ x in the filter f α (⃗ s).

Lemma 3.17. Let ⃗ s ∈ S n-1 and α ∈ (0, π/2], and a random vector ⃗ x random uniform in f ⃗ s . Decompose ⃗ x = cos(α)⃗ s+sin(α)⃗ y with ⃗ y ⊥ ⃗ s and ∥⃗ y∥ = 1. Then the distribution of ⃗ y is uniform in an (n-2)-dimensional sphere inside the orthogonal complement of ⃗ s.

Proof. ⃗ x is uniformly distributed and its uniformity is invariant under rotations. Then the distribution of sin(α)⃗ y is invariant under rotation around ⃗ s. Normalizing gives the uniformity of ⃗ y in S n-2 . Proposition 3.18. Let a filter of center ⃗ s and angle α ∈ π 3 , π 2 . Given vectors ⃗ x 1 , ⃗ x 2 ∈ B ⃗ s,α , we can write ⃗ x 1 = cos(α)⃗ s + sin(α)⃗ y 1 and ⃗ x 2 = cos(α)⃗ s + sin(α)⃗ y 2 for some ⃗ y 1 , ⃗ y 2 of norm 1 and orthogonal to ⃗ s. For α ∈ π 3 , π 2 we have the equivalence

⃗ 0 ⃗ s ⃗ x ⃗ y • ⋄ α S n-1
θ(⃗ x 1 , ⃗ x 2 ) ⩽ π 3 ⇐⇒ θ(⃗ y 1 , ⃗ y 2 ) ⩽ 2 arcsin 1 2 sin(α) .
Proof. We denote for simplicity θ y := θ(⃗ y 1 , ⃗ y 2 ). Combining both equations gives the condition, for any

α ∈ π 3 , π 2 , ∥⃗ x 1 -⃗ x 2 ∥ 2 ⩽ 1 ⇔ sin 2 (α)∥⃗ y 1 -⃗ y 2 ∥ 2 ⩽ 1 ⇔ sin 2 (α)(2 -2 cos(θ y )) ⩽ 1 ⇔ cos(θ y ) ⩾ 1 - 1 2 sin 2 (α) ⇔ θ y ⩽ arccos 1 - 1 2 sin 2 (α) = 2arcsin 1 2 sin(α)
One can easily check using a computing engine that the final equality is verified for all α ∈ π 3 , π 2 . Corollary 3.19. Consider a filter of center ⃗ s ∈ S n-1 and angle α

∈ (0, π/2]. Let ⃗ x 1 , ⃗ x 2 ∈ S n-1 be random vectors such that θ(⃗ x 1 ,⃗ s) = θ(⃗ x 2 ,⃗ s) = α. Then the pair (⃗ x 1 , ⃗ x 2 ) reduces with probability V n-1 (θ * α ) where θ * α := 2 arcsin 1 2 sin(α)
.

As the angle θ * is larger than π/3, we have V n (θ * ) ≥ V n (π/3). The left term can be interpreted as the probability that two random vectors in a shared filter of angle α reduce together, while the right one is the probability that two random vectors in S n-1 reduce together.

Sieving with locality-sensitive filtering

Before presenting the algorithms, let us remember that the algorithms stand under the following assumptions.

• Heuristic 3.8. The input lattice points are uniformly randomly distributed on the sphere S n-1 := {⃗ x ∈ R n : ∥⃗ x∥ = 1}.

• Claim 3.14. The points of a random product code are indistinguishable from random independent points in S n-1 .

We recall that the spherical cap of center ⃗ s and angle α is denoted

H ⃗ s,α := {⃗ x ∈ S n-1 | θ(⃗ x,⃗ s) ≤ α}.
Proposition 3.20 [START_REF] Becker | New directions in nearest neighbor searching with applications to lattice sieving[END_REF] with the correction of [START_REF] Laarhoven | Search problems in cryptography, From fingerprinting to lattice sieving[END_REF]). Let angles α, β, θ ∈ 0, π 2 be such that cos(θ) ≤ min cos(α) cos(β) , cos(β) cos(α) . For two vectors

⃗ x 1 , ⃗ x 2 ∈ S n-1 such that ⟨⃗ x 1 , ⃗ x 2 ⟩ = cos(θ), the ratio of the volume of the wedge H ⃗ x1,α ∩ H ⃗ x2,β to the volume of the sphere S n-1 is W n (α, β, θ) := poly(n) • 1 -γ 2 n/2 with γ = cos 2 (α) + cos 2 (β) -2 cos(α) cos(β) cos(θ) sin 2 (θ) .
And in particular, when α = β,

W n (α, θ) := W n (α, α, θ) = poly(n) • 1 - 2 cos 2 (α) 1 + cos(θ) n/2
.

Then given two random uniform and independent vectors Classical NV-sieve with LSF.

⃗ x 1 , ⃗ x 2 ∈ S n-1 , we have Pr ⃗ s∈S n-1 [⃗ s ∈ H ⃗ x1,α ∩ H ⃗ x2,β ] = W n (α, β, θ). ⃗ x 1 • ⃗ x 2 • ⃗ 0 α θ β S n-1
Theorem 3.21. [START_REF] Laarhoven | Search problems in cryptography, From fingerprinting to lattice sieving[END_REF] There exists a classical algorithm that heuristically solves SVP in dimension n in time and memory 2 0.292n+o(n) .

Proof. The algorithm searches all the pairs (⃗ x 1 , ⃗ x 2 ) ∈ L 2 of angle π/3, so that they yield shorter vectors by subtracting one to the other. We start by sampling a random product code C (Definition 3.12) to generate the filters (Step 2). W n (α, β, π/3) is the probability for two reducing vectors to share a common filter, so we set its size such that |C| • W n (α, β, π/3) = 1, ensuring a high probability to find the reducing pair through Algorithm 6 Classical NV-sieve with locality-sensitive filtering [START_REF] Becker | New directions in nearest neighbor searching with applications to lattice sieving[END_REF] Require: List L with N lattice vectors of norm at most 1, reducing factor γ < 1; angles α, β ∈ (0, π/2]. Ensure: List L out of N lattice vectors of norm at most γ. 1: L out = {} 2: Sample a random product code C and initialize the buckets f β (⃗ s) at empty for each ⃗ s ∈ C 3: for each ⃗ x ∈ L do 4:

Compute C ∩ H ⃗ x,β ▷ Set of all β-close filters of ⃗ x.

5:

for each ⃗ s ∈ (C ∩ H ⃗ x,β ), add ⃗ x to the bucket f β (⃗ s). 6: for each ⃗ x 1 ∈ L do 7: Compute F = C ∩ H ⃗ x1,α ▷ Set of all α-close filters of ⃗ x 1 . 8: Construct the set B = ⃗ s∈F f β (c) \{⃗ x 1 } ▷ Set of all vectors sharing a bucket with ⃗ x 1 9: for ⃗ x 2 ∈ B do 10: if ∥⃗ x 1 -⃗ x 2 ∥ ≤ γ then add ⃗ x 1 -⃗ x 2 to L out 11: return L out
a collision in a filter. Then, for each code word c ∈ C, it generates a filter associated with a bucket f β (c). The preprocessing step corresponds to the lines 3-5. For each ⃗ x 1 ∈ L, it uses the efficient list decoding algorithm from Proposition 3.13 to compute all the codewords in C that are of angle at most

β with ⃗ x 1 . This constructs the set C ∩ H ⃗ x1,β in time O (|C ∩ H ⃗ x1,β |) = O Vn(β)
Wn(α,β,π/3) . The querying step (Lines 6-10) computes, for each ⃗ x 1 ∈ L, the set F = C ∩ H ⃗ x1,α of all filter centers of angle at most α with ⃗ x 1 .

This takes time

O (|C| • V n (α)) = O Vn(α) Wn(α,β,π/3) . It then construct the joined set B = c∈F f α (⃗ s) \{⃗ x 1 }, filled with all vectors sharing a bucket with ⃗ x 1 . Then for each ⃗ x 2 in B, if ⃗ x 1 -⃗ x 2 is of norm at most γ, it adds it to the output list L out . This takes time |B| = |L| • V n (α).
The overall cost of this algorithm is then

Vn(β) Wn(α,β,π/3) + |L| • V n (α), where |L| = 1 Vn(π/3) . Taking α = β = π
3 gives an algorithm of both time and memory in 2 0.292n+o(n) .

There is a modified version of this algorithm [Laa15, Section 13-4-4] that keeps the memory minimum. Instead of filling the buckets with all their close vectors, which has a high memory cost, we add the vectors sequentially to their buckets. The time complexity does not change but the memory requirement is kept at the minimum memory amount N .

Theorem 3.22. [START_REF] Laarhoven | Search problems in cryptography, From fingerprinting to lattice sieving[END_REF] There exists a classical algorithm that solves SVP in dimension n in time 2 0.292n+o(n) using memory 2 0.208n+o(n) .

Quantum NV-sieve with LSF. Theorem 3.23. There exists a quantum algorithm that heuristically solves SVP in dimension n in time 2 0.265n+o(n) and memory 2 0.208n+o(n) under the assumption of efficient QRACM operations.

Proof. Lattice points are assumed randomly uniformly distributed on the sphere S n-1 by Heuristic 3.8. As in the classical version (Algorithm 6), the size of the code is |C| = 1 Wn(α,β,π/3) , and the preprocessing step takes time

Vn(β)
Wn(α,β,π/3) . The queries step replaces the exhaustive classical search by a Grover's search, which takes time |B| = |L| • V n (α) under the assumption that QRACM operations are efficiently implementable.

Then the overall time is

Vn(β) Wn(α,β,π/3) + Vn(α) Vn(π/3) . Choosing α = β = arccos √ 3 2
leads to the result.

The same trick as for the classical version reduces the required memory to N = 2 0.208n+o(n) , by sequentially adding the vectors to their buckets.

Algorithm 7 Quantum NV-sieve with locality-sensitive filtering [START_REF] Laarhoven | Search problems in cryptography, From fingerprinting to lattice sieving[END_REF] Require: List L with N lattice vectors of norm at most 1, reducing factor γ < 1; angles α, β ∈ (0, π/2]. Ensure: List L out of N lattice vectors of norm at most γ.

1: L out = {} 2: Sample a random product code C and initialize the buckets f β (c) at empty for each c ∈ C 3: for each ⃗ x 1 ∈ L do 4:

Compute C ∩ H ⃗ x1,β ▷ Set of all β-close filters of ⃗ x 1 .

5:

For each c ∈ (C ∩ H ⃗ x,β ), add ⃗ x 1 to the bucket f β (c).

6: for each ⃗ x 1 ∈ L do 7:

Compute F = C ∩ H ⃗ x1,α ▷ Set of all β-close filters of ⃗ x 1 . 8: ⃗ x 2 ← Grover on set c∈F f β (c) \{⃗ x 1 } with function f check : ⃗ x 2 → 1 if ∥⃗ x 1 -⃗ x 2 ∥ ≤ γ 0 otherwise. 9:
Add ⃗ x 1 -⃗ x 2 to list L out 10: return L out Conditional optimality. [START_REF] Kirshanova | Lower bounds on lattice sieving and information set decoding[END_REF] have shown that the hypercone filters [START_REF] Becker | New directions in nearest neighbor searching with applications to lattice sieving[END_REF] are optimal in the lattice sieving setting for the Euclidean norm. Based on this result, they gave a conditional lower bound within the framework of running a lattice sieve with pairwise NNS techniques and showed that the [START_REF] Becker | New directions in nearest neighbor searching with applications to lattice sieving[END_REF] algorithm is optimal in the classical model. However, as we will show later, it is possible to go below this conditional lower bound by considering algorithms that do not fit in their framework. Indeed, in Chapter 4, we will study a new algorithm that uses quantum walks to find close vectors, instead of a simple Grover's search. They also claim that "Similar optimality results extend to the tuple sieving results of Herold-Kirshanova-Laarhoven [START_REF] Herold | Speed-ups and time-memory tradeoffs for tuple lattice sieving[END_REF], the pairwise sieve with quantum speedups [START_REF] Laarhoven | Search problems in cryptography, From fingerprinting to lattice sieving[END_REF] ". We will see in Chapter 5 that the running time of this algorithm is not absolutely optimal either, as we use a different filtering technique from theirs.

Quantum filtering. The quantum algorithm 7 still performs the calculation of the closest filters classically. After our work, [START_REF] Heiser | Improved Quantum Hypercone Locality Sensitive Filtering in Lattice Sieving[END_REF] has proposed to use Grover's search to sample a random product code. The filter buckets are only constructed as a quantum superposition of centers, and this gives a quadratic speed up on the cost of computing all the relevant filters of a given query vector. Applied to the sieving, it gives the following theorem.

Theorem 3.24. There exists a quantum algorithm that heuristically solves SVP in time 2 0.2571n+o(n) and 2 0.2075n+o(n) memory.

k-Sieves

Sieving algorithms reach the best time complexities to solve SVP, but they have the drawback of requiring an exponentially large memory. A way to reduce it is by the k-sieve, introduced in [START_REF] Shi Bai | Tuple lattice sieving[END_REF]. The idea is to sum k lattice points instead of pairs at each sieving step. This decreases the number N of lattice points that we need at each step to find the same number N of shorter lattice points. However, this will drastically increase the time to perform the sieving step. For instance, a naive exhaustive search of each k-tuple takes time O(N k ), and the fact that N is smaller does not outweigh this increased exponent. Definition 3.25 (Approximate k-List problem). Given k lists L 1 . . . , L k of equal exponential (in n) size N and whose elements are i.i.d. uniformly chosen vectors from S n-1 , the approximate k-list problem is to find

N k-tuples (⃗ x 1 , . . . , ⃗ x k ) ∈ L 1 × • • • × L k satisfying ∥⃗ x 1 + • • • + ⃗ x k ∥ ≤ 1.
This problem reduces to the sieving problem. Its condition It means that a tuple reduces if some constraints on its scalar products ⟨⃗ x i |⃗ x j ⟩ are verified. This motivates the introduction of vector configurations.

∥⃗ x 1 + • • • + ⃗ x k ∥ ≤ 1 can be rewritten ∥⃗ x 1 + • • • + ⃗ x k ∥ 2 = k i=1 ∥⃗ x i ∥ 2 + 2 k i,j̸ =i ⟨⃗ x i |⃗ x j ⟩.

Algorithm 8 Naive k-Sieve

Require: Lists L 1 , . . . , L k of N lattice vectors of norm at most 1, a reducing factor γ < 1. Ensure: List L out of N lattice vectors of norm at most γ.

for

(⃗ x 1 , . . . , ⃗ x k ) ∈ L 1 × • • • × L k do if k i=1 ⃗ x i ≤ γ then add k i=1 ⃗ x i to L out return L out
Definition 3.26 (Configuration). The configuration C of k vectors ⃗ x 1 , . . . , ⃗ x k ∈ S n-1 is the Gram matrix of the vectors ⃗ x i , i.e. C i,j = ⟨⃗ x i |⃗ x j ⟩, with necessarily ∀i, C i,i = 1. A configuration is said balanced when C i,j = -1/k for i ̸ = j, and C i,i = 1. In this case, the tuple points will form the summits of a regular polyhedron inscribed in the sphere. Notice that if two random vectors ⃗ x i , ⃗ x j satisfy C i,j ≤ ⟨⃗ x i |⃗ x j ⟩, then we will have C i,j ≈ ⟨⃗ x i |⃗ x j ⟩ with high probability. This will be formalized later in Lemma 3.16.

⃗ x 1 ⃗ x 2 ⃗ x 3 • • • × (a) Balanced configuration C1,2 = C1,3 = C2,3 = -1 2 . ⃗ x 1 ⃗ x 2 ⃗ x 3 • • • × (b) Configuration with C1,2 ≈ -0.4, C1,3 ≈ -0.2 and C2,3 ≈ -0.8.
Definition 3.27 (Configuration problem). Let k ∈ N and ϵ > 0. We are given k lists L 1 , . . . , L k all of exponential (in n) size N whose elements are i.i.d. uniform from S n-1 . For a given target configuration

C = (C i,j ) i,j∈[k] ∈ R k×k , the configuration problem consists in finding a 1 -o(ϵ) fraction of all k-tuples (⃗ x 1 , . . . , ⃗ x k ) ∈ L 1 × • • • × L k such that ⟨⃗ x i |⃗ x j ⟩ ≤ C i,j for all i ̸ = j.
The configuration C can be chosen among the set of symmetric positive semi-definite matrices in R k×k with ∀i,

C i,i = 1. A k-tuple (⃗ x 1 , . . . , ⃗ x k ) satisfying C implies ∥ i ⃗ x i ∥ = i,j C i,j = 1 t C1
, where 1 is a column vector of 1's. Thus a k-tuple satisfying configuration C is a solution to the approximate k-list problem if and only if we have 1 t C1 ≤ 1. Actually, considering the configuration problem brings an additional constraint, the k-tuples have to satisfy a constraint on their configuration instead of just having ∥ i ⃗ x i ∥ ≤ 1.

Theorem 3.28. [HK17, Theorem 1] The probability that a k-tuple of i.i.d. uniformly random points on S n-1 satisfies a given configuration C ∈ R k×k is det(C) n/2 . Remark. Both Lemmas 3.9 for the volume of a spherical cap and 3.20 for the volume of a wedge can be obtained by applying the above theorem. It suffices to choose well the configurations. Let be α, β ∈ (0, 1) and consider two vectors ⃗ v, ⃗ w ∈ S n-1 of angle at most θ ∈ (0, π/2) with β ≥ α cos(θ) and α ≥ β cos(θ). Then we can recover the formula of the wedge from 3.20:

Pr s∈S n-1 [⟨⃗ v|s⟩ ≥ α, ⟨⃗ w|s⟩ ≥ β | ⟨⃗ v|⃗ w⟩ ≥ cos(θ)] = Pr ⃗ v,⃗ w,s∈S n-1 [⟨⃗ v|s⟩ ≥ α, ⟨⃗ w|s⟩ ≥ β, ⟨⃗ v|⃗ w⟩ ≥ cos(θ)] Pr ⃗ v,⃗ w∈S n-1 [⟨⃗ v|⃗ w⟩ ≥ cos(θ)] = 1 cos(θ) α cos(θ) 1 β α β 1 n/2 1 cos(θ) cos(θ) 1 n/2
by applying Theorem 3.28.

= (1 -cos 2 (θ) + 2αβ cos(θ) -α 2 -β 2 ) n/2 (1 -cos 2 (θ)) n/2 = (1 -γ 2 ) n/2 with γ := α 2 + β 2 -2αβ cos(θ) sin 2 (θ) .
After a sieving step with all lists of size N , we want to get N k • det(C) n/2 k-tuples satisfying the chosen configuration C so that they are reducing k-tuples. We need this number of solutions to be equal to N . So we can deduce the required size for N , in the function of the target configuration:

N = O 1 det(C) n 2(k-1)
.

(3.1)

The k-Sieve aims to improve the time-memory tradeoffs, as searching for tuples requires less memory than searching for pairs. The required memory amount decreases when k increases. However, we have to pay the price by a higher time complexity. For a fixed k, the minimum value of N is reached when the configuration C is balanced. In particular, with a balanced configuration for k = 2 we require 2 0.208n points ; 2 0.189n points for k = 3 and 2 0.172n for k = 4. Figure 3.8 displays some other values for higher k. Considering non-balanced configurations leads to not reaching the lower bound for memory but it can improve time. This is useful to get better time-memory tradeoffs.

Proposition 3.29 (Size of the filtered lists L i (x j ) given C i,j [START_REF] Kirshanova | Quantum algorithms for the approximate k-list problem and their application to lattice sieving[END_REF]). We are given a configuration C ∈ R k×k and lists

L 1 , . . . L k ⊂ S n-1 each of size |L j |. For ⃗ x 1 , . . . , ⃗ x i ∈ S n-1 , we denote L j (⃗ x 1 , . . . , ⃗ x i ) := {⃗ x j ∈ L j : ⟨⃗ x 1 |⃗ x j ⟩ ≤ C 1,j , . . . , ⟨⃗ x i |⃗ x j ⟩ ≤ C i,j }.
Then, for a i-tuple ⃗ x 1 , . . . , ⃗ x i satisfying the configuration C[1 . . . i], the expected size of

L j (⃗ x 1 , . . . , ⃗ x i ) is E(|L j (⃗ x 1 , . . . , ⃗ x i )|) = |L j | • det(C[1, . . . , i, j]) det(C[1, . . . , i]) n/2 .
In particular,

E(|L j (⃗ x i )|) = |L j | • 1 -C 2 i,j n/2 .
k -List algorithms The first classical algorithm for the configuration problem for k ≥ 2 was given by [START_REF] Shi Bai | Tuple lattice sieving[END_REF]. The idea is to fix a first vector ⃗ x 1 ∈ L 1 and to construct L 2 (⃗ x 1 ), then fix ⃗ x 2 ∈ L 2 (⃗ x 1 ) to construct L 3 (⃗ x 1 , ⃗ x 2 ), and so on until constructing L k (⃗ x 1 , . . . , ⃗ x k-1 ). A tuple (⃗ x 1 , . . . ⃗ x k ) taken in these lists yields one solution to the configuration problem. It then iterates on each ⃗ x 1 ∈ L 1 to find all the solutions. This algorithm was later improved by [START_REF] Herold | Improved algorithms for the approximate k-list problem in Euclidean norm[END_REF] by also constructing intermediate lists L i (⃗ x 1 , . . . , ⃗ x i-1 ) at each level i. The algorithm [START_REF] Herold | Speed-ups and time-memory tradeoffs for tuple lattice sieving[END_REF] adds locality-sensitive filtering to the algorithm [START_REF] Herold | Improved algorithms for the approximate k-list problem in Euclidean norm[END_REF] to speed up pairwise searches. It applies the filtering described in Algorithm 6 where the angle constraint becomes acos(C i,j ) instead of π 3 . [START_REF] Kirshanova | Quantum algorithms for the approximate k-list problem and their application to lattice sieving[END_REF] proposed quantum versions of BLS and HKL algorithms, and they show that a hybrid version performs more efficiently, by starting with HKL and then continuing with BLS. This hybrid version tends to have the same tradeoffs as the quantum BLS algorithm when k is high. [Kir+19, Appendix B] also adds pairwise filtering in their quantum hybrid algorithm. It is not straightforward to know how to optimally combine the k-sieve structure with filtering. We will see in Chapter 5 a new way to add filtering to the k-sieve, that is complementary to the pairwise filtering approach of previous works. We will bring more details on k-List algorithms in Chapter 5. Tables 5.4 and 5.5 recap the time and memory complexities of these algorithms, respectively in the classical and quantum settings.

Lattice sieving via quantum walks

The work in this chapter has been published in ASIACRYPT 2021 [START_REF] Chailloux | Lattice sieving via quantum random walk[END_REF] and is a joint work with André Chailloux.

Overview

Sieving with LSF. A sieving step starts from a list L of N := (4/3) n/2 of lattice vectors in dimension n of norm at most 1, and outputs N lattice vectors of norm at most γ < 1. We actually take γ very close to 1 at each iteration to simplify the analysis. The 2-sieve searches reducing pairs of vectors, i.e. of angle at most π 3 . Please look at Section 3.2.1 for more details on sieving algorithms. [START_REF] Becker | New directions in nearest neighbor searching with applications to lattice sieving[END_REF] presented an initial framework for sieving with LSF to solve SVP which we presented in Section 3.3. Their algorithm samples a random product code which generates centers of the filters. Then, during the preprocessing step, it goes through the input list and inserts each list vector into all its nearest filters. During the querying step, for each list vector, it searches for a reducing one within its filters. [START_REF] Laarhoven | Search problems in cryptography, From fingerprinting to lattice sieving[END_REF] replaced the classical exhaustive search of the querying part with Grover's search, which describes a new best quantum algorithm for SVP. Doubling the filtering layer did not improve the complexity, so it was believed useless.

Quantum walks. We introduced quantum walks in Section 2.3.3. Given a set of elements S = {x 1 , . . . , x N }, a quantum walk is an algorithm that finds a subset v ⊆ S of size r that satisfies a wanted property, if such "marked vertex" v exists. Typically in our case, we want to find a subset v that contains two vectors that reduce together. The main idea behind our algorithm is to replace Grover's searches in the quantum sieve of [START_REF] Laarhoven | Search problems in cryptography, From fingerprinting to lattice sieving[END_REF] with quantum walks. It was not a priori clear how to adapt the algorithm to integrate quantum walks as there are many ways of constructing them and most of them do not give speedups.

Contributions.

In this chapter, we present a new quantum sieving algorithm for solving SVP using quantum walks. This is the first improvement in the asymptotic running time of quantum sieving algorithms since the work of Laarhoven [START_REF] Laarhoven | Search problems in cryptography, From fingerprinting to lattice sieving[END_REF], bringing down the time from 2 0.2653d+o(d) to 2 0.2570d+o (d) . We also show that the state-of-the-art classical and quantum sieving algorithms actually fit into our framework. Finally, we present two trade-offs: for fixed quantum memory and for fixed QRAM, and we show that the best classical and previous best quantum algorithms fit our framework.

Outline. In Section 4.2, we present the general framework we use for our sieving algorithm. Next, we perform a first study of its complexity in Section 4.3, whose Section 4.4 improves with an additional idea, the sparsification. In Section 4.5, we present the space-time trade-offs. In Section 4.6, we present how a later improvement of the circuit of quantum walks slightly improves our attack. Finally, we discuss the results in Section 4.7 and talk about the parallelization of our algorithm as well as possible improvements. The SageMath code used for the numerical results of this chapter is available here: https://github.com/ johanna-loyer/sieving-via-QRW.

Framework for sieving algorithms using filtering

Notations. S n-1 is the sphere in R n of radius 1. The spherical cap of center ⃗ s ∈ S n-1 and angle α is

H ⃗ s,α := {⃗ x ∈ S n-1 | θ(⃗ x,⃗ s) ≤ α}. Proposition 3.9 gave the ratio volume of the spherical cap V n (α) = Pr ⃗ x∈S n-1 [⃗ x ∈ H ⃗ s,α ],
and Proposition 3.20 gave those of the wedge

W n (α, θ) = Pr ⃗ s∈S n-1 [⃗ s ∈ H ⃗ x1,α ∩ H ⃗ x2,α ].
The core idea behind the framework of our sieving algorithms is the following:

1. Prefilter the list vectors, 2. Search all reduced pairs within each filter, 3. Repeat steps 1. and 2. until most of the reduced pairs are found.

Our algorithm takes as input a parameter c α ∈ (0, 1) which is linked with the size of the filters during the preprocessing step. We will discuss later how to choose it optimally.

Algorithm 9 Framework for sieving with LSF prefiltering Input: List L of N lattice vectors of norm at most 1, reducing factor γ < 1 and parameter c α ∈ (0, 1). Output: List L out of N lattice vectors of norm at most γ. Algorithm:

1: L out := {} 2: Fix the angle α ∈ [π/3, π/2] such that N • V n (α) = N cα . 3: while |L out | ≤ N do ▷ NB REP repeats 4:
Sample a random product code C of size 1/V n (α) and denote its codewords ⃗ s i 5:

for each ⃗ x in L do 6:

⃗ s i ← Decode(⃗ x, C) ▷ Algorithm from Proposition 3.13 7:
Add ⃗ x to the bucket f α (⃗ s i )

8:

for each

filter numbered i ∈ [N 1-cα ] do 9: Sol ← FindAllReducing(f α (⃗ s i )) ▷ Finds N ζ solutions 10: L out ← L out ∪ Sol 11: return L out
The FindAllReducing(f α (⃗ s i )) subroutine starts from a list of vectors ⃗ x 1 , . . . , ⃗ x N cα ∈ f α (⃗ s i ) and outputs all vectors of the form ⃗ x i -⃗ x j (with i ̸ = j) of norm lower than γ. We want to find asymptotically all the solutions and not strictly all of them. Sometimes, there are no solutions so the algorithm outputs an empty list.

Complexity analysis of framework algorithm 9

We first present the heuristic arguments and simplifying assumptions we use for our analysis. All of them were introduced and discussed previously.

Heuristic and simplifying assumptions. We remind the reader that the complexity analysis of the algorithms presented in this chapter relies on the following assumptions:

• Heuristic 3.8. The input lattice points are uniformly randomly distributed on the sphere S n-1 := {⃗ x ∈ R n : ∥⃗ x∥ = 1}.

• Claim 3.14. The points of a random product code are indistinguishable from random independent points in S n-1 .

• Claim 3.16. Given a point ⃗ s ∈ S n-1 , we assume that a random vector ⃗ x of angle at most α with ⃗ s is exactly at angle α, and then can be decomposed ⃗ x = cos(α)⃗ s + sin(α)⃗ y with ⃗ y ⊥ ⃗ s and ∥⃗ y∥ = 1. The residual vector ⃗ y is random uniform in S n-2 an orthogonal complement to ⃗ s.

• We suppose that there exists a quantum circuit that efficiently implements QRACM and QRAQM operations. (See Section 2.2)

1. Prefiltering (lines 4-7) We start by sampling a random product code C (defined in Part 3.12) of size 1/V n (α) whose codewords are denoted ⃗ s i . For each point ⃗ x ∈ L, we compute H ⃗ x,α ∩ C using the efficient decoding algorithm. We pick inside it a codeword ⃗ s i and update the corresponding buckets f α (⃗ s i ). We have |C| = N 1-cα and we chose α such that V n (α) = N -(1-cα) , so the expected value of

|H ⃗ v,α ∩ C| is |C| • V n (α) = 1. For each point ⃗ x, we can compute H ⃗ v,α ∩ C in time N o(1) |H ⃗ v,α
| using the algorithm from Proposition 3.13. From there, we can conclude that we can compute the filters for the N points in time O(N ).

After preprocessing the list L of size N , each α-filter is filled with N • V n (α) = N cα vectors on average. Those N cα points are randomly distributed in this filter. The number of filters is

NbFilters := N 1-cα = 1 V n (α)
.

2. Find all solutions within an α-filter (lines 8-10) Within an α-filter, two vectors reduce if their respective residual vectors in the filter are of angle at most θ * α whose expression is given in Corollary 3.19. The expected number of reducing pairs is

N 2cα • V n-1 (θ * α ) =: N ζ . • ⃗ 0 π 3 α × • ⃗ s • • ⃗ x 1 ⃗ x 2 θ * α ⃗ y 1 ⃗ y 2 Figure 4.1: Given ⃗ s ∈ S n-1 , and ⃗ x 1 , ⃗ x 2 ∈ f α (⃗ s), then we have θ(⃗ x 1 , ⃗ x 2 ) = π/3 ⇔ θ(⃗ y 1 , ⃗ y 2 ) = θ * α .
The point denoted × is the center of the sphere S n-2 of points orthogonal to ⃗ s.

We denote by T (FAR) the running time of the FindAllReducing algorithm. We will see in the next Section a proposal of such a subroutine with its complexity analysis. The querying step runs a FindAllReducing subroutine for each of the α-filters which are at number N 1-cα . So it runs in time NbFilters • T (FAR). The average number of solutions found is N ζ for each call to FindAllReducing, so we find N 1-cα+ζ solutions in total after one iteration in while loop. Notice that we can have ζ < 0, which means that we can find on average much less than one solution for each call to FindAllReducing.

3. Number of repeats (while loop 3) Each call to FindAllReducing finds N ζ reduced vectors. After searching all the solutions within every filter, we expect to find |C| • N ζ = N 1-cα+ζ solutions.

To complete the sieve, we need N reduced lattice vectors. Thus steps 1. and 2. have to be repeated until we reach this number of solutions. The number of repetitions of the while loop is

NbRep = max{1, N 1-(1-cα+ζ)+o(1) } = max{1, N cα-ζ+o(1) }.
Let us summarize this complexity analysis in the following proposition. State-of-the-art classical algorithm. In order to retrieve the algorithm of [Laa15, Algorithm 13.3] (Theorem 3.22 in this thesis), we take c α → 0, which implies α → π/3. We can compute θ * π/3 ≈ 1.23rad ≈ 70.53 o and ζ = -0.4094. The FindAllReducing subroutine simply performs an exhaustive search among all the pairs in an α-filter. In this case, we have T (FAR) = O(1). From the above proposition, we get a total running time of T = N 1.4094+o(1) = 2 0.2925n+o(n) .

State-of-the-art quantum algorithm. We take c α = 0.2782. This value actually corresponds to the case where ζ = 0, so we have on average N ζ = 1 solution per α-filter. For the FindAllReducing subroutine, we can apply Grover's algorithm on pairs of vectors in the filter of size N cα . It finds a solution in time

√ N 2cα = N cα , so T (FAR) = N cα .
Putting this together, we obtain an overall time T = N 1+cα+o(1) = N 1.2782+o(1) = 2 0.2653n+o(n) . So we get the same complexities as the algorithm [START_REF] Laarhoven | Search problems in cryptography, From fingerprinting to lattice sieving[END_REF] (Algorithm 7 in this thesis) in the low memory regime with N = 2 0.2075n+o(n) classical memory.

Finding reducing pairs by quantum walks

We focus now on describing an algorithm for FindAllReducing whose input is a list of vectors in a filter of center ⃗ s ∈ S n-1 and angle α ∈ [π/3, π/2], and we want to return a list of all the reducing pairs within f α (⃗ s).

We describe here such a subroutine that uses quantum walks to achieve this. Once we find a marked vertex, it contains a pair (⃗ y i , ⃗ y j ) such that θ(⃗ y i , ⃗ y j ) ≤ θ * α from which we directly get a reducible pair (⃗ x i , ⃗ x j ).

Constructing the graph

We consider the unordered list cα) . For each i ∈ [N cα ], we can write ⃗ x i = cos(α)⃗ s+sin(α)⃗ y i where each ⃗ y i is of norm 1 and orthogonal to ⃗ s. Let L y = {⃗ y 1 , . . . , ⃗ y N cα } be the list of all the corresponding residual vectors of the ⃗ x i 's in L x . Recall from Proposition 3.18 that a pair (⃗ x i , ⃗ x j ) reduces if their residual vectors ⃗ y i , ⃗ y j satisfy θ(⃗ y i , ⃗ y j ) ≤ θ * α := 2 arcsin( 1 2 sin(α) ). We will present a quantum walk to find pair (⃗ y i , ⃗ y j ) such that θ(⃗ y i , ⃗ y j ) ≤ θ * α more efficiently than Grover's search. The graph in which we perform the walk is the usual one for the collision problem, the Johnson graph (see Section 2.3.3). Our quantum walk takes two extra parameters c

L x = {⃗ x 1 , . . . , ⃗ x N cα } ⊆ f α (⃗ s) of distinct points with α satisfying V n (α) = N -(1-
V ∈ [0, c α ] and c β ∈ [0, c V ]. From these two parameters, let β ∈ π 3 , π 2 such that V n (β) = N c β -c V and ρ 0 such that N ρ0 = Vn(β) Wn(β,θ * α )
. We start by sampling a random product code C β with parameters (n -1), log(n -1), N

ρ 0 +c V -c β log(n-1) which has therefore N ρ0+c V -c β = 1 Wn(β,θ * α ) points denoted ⃗ t 1 , . . . , ⃗ t N ρ 0 +c V -c β .
We perform our quantum walk on a graph G = (V, E) where each vertex v ∈ V contains:

• An unordered list L v y = {⃗ y 1 , . . . , ⃗ y N c V } of distinct points taken from L y .
• For each ⃗ t i ∈ C β , we store the list of elements of J v ( ⃗ t i ) := f β ( ⃗ t i ) ∩ L v y , using a QRAQM data structure allowing us to efficiently add and delete in quantum superposition. Notice that we have on average

|J v ( ⃗ t i )| = N c V • V n (β) = N c β ,
and we need to store in total |C β | • N c β = N c V +ρ0 such elements in total for each vertex.

• A bit that says whether the vertex is marked (we detail the marked condition below).

The vertices of G consist of the above description for all possible lists L v y . We set that (v, w) ∈ E if we can go from L v y to L w y by changing exactly one element. In other words,

(v, w) ∈ E ⇔ ∃⃗ y old ∈ L v y , ∃⃗ y new ∈ L y \L v y st. L w y = L v y \{⃗ y old } ∪ {⃗ y new }.
This means the graph G is a Johnson graph J(N cα , N c V ) where each vertex also has some additional information as we described above.

Condition for a vertex to be marked. We first define the set M 0 of vertices that contain a reducing pair of points.

M 0 := {v ∈ V : ∃⃗ y i , ⃗ y j ∈ L v y , ⃗ y j ̸ = ⃗ y i , θ(⃗ y i , ⃗ y j ) ≤ θ * α }.
Ideally, we would want to mark each vertex in M 0 , however, this would induce a too-large update cost when updating the bit that specifies whether the vertex is marked or not. Instead, we will consider marked vertices subsets of M 0 for which the update can be done more efficiently, but losing only a small fraction of these vertices. For each

J v ( ⃗ t i ) = {⃗ y ′ 1 , . . . , ⃗ y ′ |J v ( ⃗ ti)| }, we define J v ( ⃗ t i ) = {⃗ y ′ j ∈ J v ( ⃗ t i ), j ≤ min{|J v ( ⃗ t i )|, 2N c β }} which consists of the first 2N c β elements of J v ( ⃗ t i ),
considering a global ordering of elements of L y , for example with respect to their index and J v ( ⃗ t i ) consists of the 2N c β elements of J v ( ⃗ t i ) which are the smallest with respect to this ordering. In the case where

|J v ( ⃗ t i )| ≤ 2N c β , we set J v ( ⃗ t i ) = J v ( ⃗ t i ).
We define the set of marked elements M as follows:

M := {v ∈ V : ∃ ⃗ t ∈ C β , ∃⃗ y i , ⃗ y j ∈ J v ( ⃗ t), ⃗ y j ̸ = ⃗ y i , st. θ(⃗ y i , ⃗ y j ) ≤ θ * α }.
The reason for using such a condition for marked vertices is that when we perform an update, hence removing a point ⃗ y old from a vertex and adding a point ⃗ y new , we will just need to look at the points in J v ( ⃗ t) for ⃗ t ∈ H ⃗ y new ,β ∩ C β which can be done faster than by looking at all the points of the vertex. If we used J v ( ⃗ t) instead of J v ( ⃗ t) then the argument would be simpler but we would only be able to argue about the average running time of the update but the quantum walk framework requires to give an upper bound of the update time for any pair of adjacent vertices. Also notice that each vertex still contain the sets J v ( ⃗ t i ) (from which one can easily compute J v ( ⃗ t i )).

Once we have found such a pair (⃗ y i , ⃗ y j ), we can immediately recover the corresponding lattice vectors (⃗ x i , ⃗ x j ) and compute their difference to get a shorter vector.

Complexity analysis

Let us first consider the following lemma that will be useful in the complexity analysis of our algorithm.

Lemma 4.2. Consider a vector ⃗ s ∈ S n-1 , an angle α ∈ (0, π/2], and a set S = {⃗ s 1 , . . . ,⃗ s M } of i.i.d. uniformly random vectors in S n-1 . We assume we have M V n (α) = N x with a constant x > 0. Then we have:

Pr[|S ∩ H ⃗ s,α | ≥ 2N x ] ≤ e -N x 3 .
Proof. For any i ∈ [M ], both ⃗ x i and ⃗ s are independent and uniform random points on the sphere S n-1 , so by definition 3.9 we have ∀i ∈

[M ], Pr[⃗ x i ∈ H ⃗ s,α ] = Pr[⃗ s ∈ H ⃗ xi,α ] = V n (α). So we immediately have that E[|S ∩ H ⃗ xi,α |] = M V n (α). Let X i be the random variable which is equal to 1 if ⃗ x i ∈ H ⃗ s,α and is equal to 0 otherwise. Let Y = M i=1 X i so E[Y ] = N x . Y is equal to the quantity |S ∩ H ⃗ s,α |.
We then apply the multiplicative Chernoff bound. As a reminder, it states that if X 1 , ..., X M are independent random variables taking values in {0, 1}, Y = M i=1 and δ > 0, then we have Pr

[Y ≥ (1 + δ)E[Y ]] ≤ e -δ 2 E[Y ] 3 . In our context, we get Pr[Y ≥ 2N x ] ≤ e -N x
3 , which is the desired result.

We are now ready to analyze the different costs of our quantum walk. For a fixed chosen β ∈ π 3 , π 2 , H ⃗ y i ,β ∩ C β is the set of β-close filters to the vector ⃗ y i , and we have on average

|H ⃗ y i ,β ∩ C β | = N ρ0+c V -c β • V n (β) = N ρ0 . Using Lemma 4.2, we have for each i ∈ [N c V ], Pr[|H ⃗ y i ,β ∩ C β | > 2N ρ0 ] ≤ e -N ρ 0 3 (4.1)
and using a union bound, we have for any absolute constant ρ 0 > 0:

Pr[∀i ∈ [N cα ], |H ⃗ y i ,β ∩ C β | ≤ 2N ρ0 ] ≥ 1 -N cα e -N ρ 0 3 = 1 -o(1). (4.2)
So for a fixed α-filter, we have with high probability that each |H ⃗ y i ,β ∩ C β | is bounded by 2N ρ0 and we assume we are in this case. The sets H ⃗ y i ,β ∩ C β can hence be constructed in time N ρ0+o(1) using the efficient list decoding algorithm (Proposition 3.13) with code C β .

We consider the quantum walk [Mag+11]-framework, whose complexity was analyzed in Proposition 2.11. We have to express the costs of the setup, update, check, ϵ the fraction of marked vertices, and δ the spectral gap of the graph.

Setup cost. In order to construct a full vertex v from a list L v y = {⃗ y 1 , . . . , ⃗ y N c V }, the main cost is to construct the lists

J v ( ⃗ t i ) = f β ( ⃗ t i ) ∩ L v y .
To do this, we start from empty lists J v ( ⃗ t i ). For each ⃗ y i ∈ L v y , we construct the list f β (⃗ y i ) ∩ C β and for each codeword ⃗ t j in this set, we add ⃗ y i in J v ( ⃗ t i ). This takes time N c V • N ρ0+o(1) . We can construct a uniform superposition of the vertices by performing the above procedure in quantum superposition. This can also be done in N c V • N ρ0+o(1) since we use a quantum data structure that performs these insertions in J v ( ⃗ t i ) efficiently. The setup cost is then

S = N c V +ρ0+o(1) .
Update cost. We show here how to go from a vertex v with associated list L v y to a vertex w with L w y = L v y \{⃗ y old } ∪ {⃗ y new }. The vertex v also contains the lists J v ( ⃗ t i ) = f β ( ⃗ t i ) ∩ L v y for each ⃗ t i ∈ C β that need to be updated. In order to get the lists J w ( ⃗ t i ), we first compute H ⃗ y old ,β ∩ C β and for each ⃗ t i in this set, we remove ⃗ y old from J v ( ⃗ t i ). Then, we compute H ⃗ y new ,β ∩ C β and for each ⃗ t i in this set, we add ⃗ y new to J v ( ⃗ t i ), and thus we obtain all the J w ( ⃗ t i ). Constructing the two lists takes time on average N ρ0+o(1) and we then perform at most 2N ρ0 deletion and insertion operations which are done efficiently. So the update of the filter lists takes time N ρ0+o(1) .

If v was marked and ⃗ y old is not part of the reducible pair then we do not change the last registers for L w y . If v was not marked, then we have to ensure that adding ⃗ y new does not make it marked. So we need to check whether there exists ⃗ y 0 ̸ = ⃗ y new such that

∃ ⃗ t ∈ C β : ⃗ y 0 , ⃗ y new ∈ J w ( ⃗ t) and (⃗ y new , ⃗ y 0 ) are reducible. If such a point ⃗ y 0 exists, it necessarily lies in the set ⃗ t∈H ⃗ y new ,β ∩C β J v ( ⃗ t) which is of size at most 2N ρ0 •2N c β = 4N ρ0+c β .
We perform a Grover's search on this set to determine whether there exists a ⃗ y 0 ∈ ⃗ t∈C β J v ( ⃗ t) that reduces with ⃗ y new , and this takes time N ρ 0 +c β +o(1) 2

. In conclusion, the average update time is

U = N ρ0+o(1) + N ρ 0 +c β +o(1) 2 ≤ N max ρ0, ρ 0 +c β 2 +o(1) .
Checking cost. Each vertex has a bit that says whether it is marked or not, which is already checked during the update step, so we have

C = 1.
Fraction of marked vertices ϵ.

Proposition 4.3. ϵ ≥ Θ min N 2c V • V n (θ * α ), 1 .
Proof. We consider a random vertex v in the graph. A sufficient condition for v to be marked is to satisfy the following two events :

• E 1 : ∃ ⃗ t ∈ C β , ∃⃗ y i , ⃗ y j ̸ = ⃗ y i ∈ J v ( ⃗ t), st. θ(⃗ y i , ⃗ y j ) ≤ θ * α . • E 2 : ∀ ⃗ t ∈ C β , |J v ( ⃗ t)| ≤ 2N c β .
The second property implies that ∀ ⃗ t ∈ C β , J v ( ⃗ t) = J v ( ⃗ t) and in that case, the first property implies that v is marked. We now bound the probability of each event in Lemmas 4.4 and 4.5.

Lemma 4.4.

Pr[E 1 ] ≥ Θ min N 2c V V n (θ * α ), 1 .
Proof. For a fixed pair ⃗ y i , ⃗

y j ̸ = ⃗ y i ∈ L v y , we have Pr[θ(⃗ y i , ⃗ y j ) ≤ θ * α ] = V n (θ * α ).
Since there are Θ(N 2c V ) such pairs, if we define the event E 0 as:

∃⃗ y i , ⃗ y j ̸ = ⃗ y i ∈ L v y , st. θ(⃗ y i , ⃗ y j ) ≤ θ * α , we have Pr[E 0 ] ≥ Θ min N 2c V V n (θ * α ), 1 .
Now we assume E 0 holds and we try to compute the probability that E 1 is truly conditioned on E 0 . So we assume E 0 and let ⃗ y i , ⃗

y j ̸ = ⃗ y i ∈ L v y , st. θ(⃗ y i , ⃗ y j ) ≤ θ * α . For each code point ⃗ t ∈ C β , we have Pr[⃗ y i , ⃗ y j ∈ J v ( ⃗ t)] = Pr[ ⃗ t ∈ H ⃗ y i ,β ∩ H ⃗ y j ,β ] = W n (β, θ * α ).
Therefore, we have

Pr[∃ ⃗ t ∈ C β , ⃗ y i , ⃗ y j ∈ J v ( ⃗ t)] = 1 -(1 -W n (β, θ * α )) |C β | . (4.3) Since |C β | = 1/W n (β, θ * α ), we can conclude Pr[E 1 |E 0 ] ≥ Pr[∃ ⃗ t ∈ C β , ⃗ y i , ⃗ y j ∈ J v ( ⃗ t)] = 1 -(1 -W n (β, θ * α )) |C β | ≥ Θ(1), which implies Pr[E 1 ] ≥ Pr[E 1 |E 0 ] • Pr[E 0 ] ≥ Θ max N 2c V V n (θ * α ), 1 . Lemma 4.5. Pr[E 2 ] ≥ 1 -|C β |e -N c β 3 . Proof. For each ⃗ t ∈ C β , we have using Lemma 4.2 that Pr[|J v ( ⃗ t)| ≤ 2N c β ] ≥ 1 -e -N c β 3 . Using a union bound, we have Pr[∀ ⃗ t ∈ C β , |J v ( ⃗ t)| ≤ 2N c β ] ≥ 1 -|C β |e -N c β 3 .
We can now finish the proof of our Proposition. We have

ϵ ≥ Pr[E 1 ∧ E 2 ] ≥ Pr[E 1 ] + Pr[E 2 ] -1 ≥ Θ max N 2c V V n (θ * α ), 1 -|C β |e -N c β 3 ≥ Θ max N 2c V V n (θ * α ), 1
The last inequality comes from the fact that |C β | • e -N c β /3 is vanishing doubly exponentially in n (N is exponential in n) so it is negligible compared to the first term and is absorbed by the Θ(•).

Spectral gap δ. We are in a J(N cα , N c V ) Johnson graph so we have δ ≈ N -c V .

Running time of the quantum walk. The running time T 1 of the quantum walk is (omitting the o(1) terms and the O(•) notations)

T 1 = S + 1 √ ϵ U √ δ + C = N c V +ρ0 + 1 max 1, N c V V n (θ * α ) N max ρ0, ρ 0 +c β 2 + c V 2
In this running time, we can find one marked vertex with a high probability if it exists. We repeat this quantum walk until we find asymptotically all the solutions, whose expected number is max N ζ 2 , 1 .

Algorithm 10 FindAllReducing procedure

Require: Set of vectors f α (⃗ s) Ensure: List L out with N ζ pairwise-reduced vectors 1: L out = {} 2: Compute the list of residual vectors L y := {⃗ y i = (⃗ x i -cos(α)⃗ s)/ sin(α), ⃗ x i ∈ f α (⃗ s)} 3: Pick a random product code C β . 4: while L out < N ζ do 5:
Run our quantum walk to find a reduced pair ⃗ y i , ⃗ y j ∈ L y .

6:

Recover the corresponding lattice vectors ⃗ x i , ⃗ x j ∈ f α (⃗ s) ▷ Share indices i, j in their respective lists

7: if ⃗ x i -⃗ x j / ∈ L out then add ⃗ x i -⃗ x j to L out . 8: return L out
For ζ > 0, there are N ζ different solutions that can be found in each α-filter. Each iteration finds a solution, so this algorithm finds a list of solutions of asymptotic size N ζ in time Classical memory. We have to store at the same time in classic memory the N list vectors of size n, and the buckets of the α-filters. Each vector is in N o(1) α-filter, so our algorithm requires a classical space of size N 1+o(1) . QRAM requirements of the quantum walk. Each vertex v in the graph stores all the J v ( ⃗ t i ) which together take space N c V +ρ0 . We store a superposition of vertices so we need N c V +ρ0 quantum registers and the same amount of QRAQM because we perform insertions and deletions in the database in quantum superposition. All the operations require QRACM access to the whole list L y which is classically stored and is of size N cα . Therefore, we also require N cα QRACM.

T (FAR) = max{N ζ , 1} • T 1 . If ζ > 0,

Optimal parameters

Our algorithm takes in argument three parameters:

• c α ∈ [0, 1], N cα is the number of vectors per α-filter, • c V ∈ [0, c α ], N c V is the number of vectors per vertex, • c β ∈ [0, c V ], N c β
is the number of vectors per β-filter.

From these three parameters, we can express all the other variables we use, whose we recall their expressions as they are scattered throughout the previous sections:

• α ∈ [π/3, π/2] that satisfies V n (α) = 1 N 1-cα .
α is the angle of the first layer of filtering (code C).

• θ * α = 2 arcsin 1 2 sin(α) . θ * α is the target angle for pairs of residual vectors, given by Proposition 3.18.

• β ∈ [π/3, π/2] that satisfies V n (β) = 1 N c V -c β .
β is the angle of the second layer of filtering (code C β ).

• ρ 0 ≥ 1 such that N ρ0 = Vn(β) Wn(β,θ * α ) . N ρ0 is the number of β-filters for which a vertex vector has to be inserted in not to miss any solution collision.

• ζ ≥ 0 such that N ζ = N 2cα • V n (θ * α ). N ζ
is the average number of solutions found per call to FindAllReducing.

Plugging the value of T (FAR) from the end of Section 4.3.2 in Proposition 4.1, we find that the total running time of our quantum sieving algorithm with parameters c, c V , c β is

T = N cα-ζ   N + N 1-cα max{N ζ , 1}   N c V +ρ0 + N max ρ0, ρ 0 +c β 2 + c V 2 max 1, N c V V n (θ * α )     .
We ran a numerical optimization over c α , c V , c β to get our optimal running time, summed up in the following theorem.

Proposition 4.6. Our algorithm with parameters c α ≈ 0.3301 , c V ≈ 0.1952 , c β ≈ 0.0603 heuristically solves SVP on dimension n in time T = N 1.2555+o(1) = 2 0.2605n+o(n) , uses a classical memory of size N 1+o(1) = 2 0.2075n+o(n) , a quantum memory of size N 0.2555+o(1) = 2 0.0530n+o(n) , QRACM of size N 0.3301+o(1) = 2 0.0685n+o(n) , and QRAQM of size N 0.2555+o(1) = 2 0.0530n+o (n) .

With these parameters, we obtain the values of the other parameters: As well as the quantum walk costs:

S = N c V +ρ0 = N 0.2555 , U = N ρ0 = N 0.0603 , C = 1, ϵ = δ = N -c V = N -0.1952 .
The equality ρ 0 = c β allows to balance the time of the two operations during the update step. With these parameters we also obtain S = U/ √ ϵ δ = N c V +ρ0 = N 0.2555d , which balances the overall time complexity. Notice that with these parameters, we can rewrite the time expression as

T = N cα-ζ N + N 1-cα+ζ+c V +ρ0 = N 1+cα-ζ + N 1+c V +ρ0 .
Also, having c V + ρ 0 = c α -ζ equalizes the walk cost with the initialization cost. From our previous analysis, we require QRACM of size N cα and quantum memory and QRAQM of size N c V +ρ0 .

Adding sparsification

For the second layer of filtering, each point is inserted in N ρ0 β-filters ⃗ t i ∈ C β . The value ρ 0 was fixed in order to make sure that if a pair ⃗ y i , ⃗ y j exists in a vertex v, then it will appear on one of the J v ( ⃗ t i ) for ⃗ t i ∈ C β . However, we can relax this and only mark a small fraction of these vertices, by taking a fourth parameter ρ that will replace the choice of ρ 0 above. This will reduce the probability for a vertex to be marked, as we miss solutions, but having a smaller ρ will reduce the overall running time of our quantum random walk.

The construction is exactly the same as in the previous section, except we replace ρ 0 with a freely chosen ρ ∈ (0, ρ 0 ]. This implies that |C β | = N ρ+c V -c β . We can perform the same analysis as above.

Time analysis of this quantum walk in the regime ζ + ρ -ρ 0 > 0. We consider the regime where ζ + ρ -ρ 0 > 0 and ρ ∈ (0, ρ 0 ] (in particular ζ > 0, since ρ 0 > 0). This regime ensures that even if we have fewer marked vertices, then there are on average more than one marked vertex, so our algorithm finds at least one solution with a constant probability.

The analysis of the walk is exactly the same as in Section 4.3.2, each repetition of the quantum random walk takes time T 1 with

T 1 = S + 1 √ ϵ 1 √ δ U + C with S = N c V +ρ , U = N max{ρ, ρ+c β 2 }+o(1) , C = 1, ϵ = N 2c V N ρ-ρ0 V n (θ * α ), δ = N -c V .
The only thing to develop is the computation of ϵ. We perform the same analysis as above but with

|C β | = N ρ+c V -c β . This means that Equation 4.3 of Lemma 4.4 becomes Pr[∃ ⃗ t ∈ C β : ⃗ y i , ⃗ y j ∈ J v ( ⃗ t)] = 1 -(1 -W n (β, θ * α )) |C β | ≥ |C β | • W n (β, θ * α ) = N ρ-ρ0 .
which gives the extra term N ρ-ρ0 in ϵ. Another issue is that now, we can only extract N ζ+ρ-ρ0 solutions each time we construct the graph, we have therefore to repeat this procedure to find N ζ+ρ-ρ 0 2 solutions with this graph and then repeat the procedure with a new code C β . The algorithm becomes:

Algorithm 11 FindAllReducing procedure with free parameter ρ Require: Set of vectors f α (⃗ s) Ensure: List L out of half of the all pairwise reduced vectors in f α (⃗ s)

1: L out = {} 2: Compute the set of residual vectors f ′ α (⃗ s) := {⃗ y i = (⃗ x i -cos(α)⃗ s)/ sin(α), ⃗ x i ∈ f α (⃗ s)} 3: Pick a random product code C β . 4: while L out < N ζ 2 do 5:
Run our quantum walk with free ρ on set f ′ α (⃗ s) to find a reduced pair ⃗ y i , ⃗ y j ∈ f ⃗ s,α .

6:

Recover the corresponding lattice vectors ⃗ x i , ⃗ x j ∈ f α (⃗ s) ▷ Share indices i, j in their respective lists 7:

if ⃗ x i -⃗ x j / ∈ L out then add ⃗ x i -⃗ x j to L out .

8: return L out

With this procedure, we also find Θ(N ζ ) solutions in time N ζ T 1 and FAR 1 = N ζ T 1 (Recall that we are in the case ζ ≥ ζ + ρ -ρ 0 > 0). Actually, optimal parameters will be when c β = 0 and ρ → 0.

Complexity analysis

This change implies that some reducing pairs are missed. For the quantum random walk complexity, this only changes the probability, denoted ϵ, so that a vertex is marked. Indeed, it is equal to the one so that there happens a collision between two vectors through a filter, which is no longer equal to the existence of a reducing pair within the vertex. Indeed, to have a collision, there is the supplementary condition of both vectors of a reducing pair are inserted in the same filter, which is of probability N ρ0-ρ . So we get a higher value of ϵ = N 2c V V n (θ * α ) • N ρ0-ρ . However, this increase is compensated by the reducing of the costs of the setup (N c V +ρ+o(1) ) and the update (2N max{ρ, ρ+c β 2 }+o(1) ). A numerical optimisation over ρ, c α , c V and c β leads to the following theorem.

Theorem 4.7. Our algorithm with a free ρ with parameters ρ → 0 , c α ≈ 0.3696 , c V ≈ 0.2384 , c β = 0 heuristically solves SVP on dimension n in time T = N 1.2384+o(1) = 2 0.2570n+o(n) , uses QRAM of maximum size N 0.3696 = 2 0.0767n , a quantum memory of size N 0.2384 = 2 0.0495n and uses a classical memory of size N 1+o(1) = 2 0.2075n+o (n) .

With these parameters, we obtain the values of the other parameters:

α ≈ 1.1514 rad, θ * α ≈ 1.3104 rad, β ≈ 1.1112 rad, ζ ≈ 0.1313.
As well as the quantum walk costs:

S = N c V +ρ = N 0.2384 , U = N ρ = N o(1) , C = 1, ϵ = δ = N -c V = N -0.2384 .
We also have ρ 0 = 0.107 so we are in the regime where ζ + ρ -ρ 0 > 0. As in the previous time complexity stated in Theorem 4.6, we reach the equality S = U/ √ ϵδ, which allows to balance the time of the two steps of the quantum random walk: the setup and the search itself.

Notice that with these parameters, we can rewrite the time

T = N cα-ζ N + N 1-cα+ζ+c V +ρ = N 1+cα-ζ + N 1+c V +ρ .
With our optimal parameters, we have ρ = 0 and c α -ζ = c V , which equalizes the random walk step with the initialization step. From our previous analysis, the amount of required QRAM is N cα and the amount of quantum memory needed is N c V .

Space-time tradeoffs

By varying the values c α , c V , c β and ρ, we can obtain tradeoffs between QRAM and time, and between quantum memory and time. All the following results come from numerical observations based on the formulas from our complexity analysis of time, quantum memory and QRAM.

Tradeoff for fixed quantum memory.

We computed the minimized time when we add the constraint that the quantum memory must not exceed 2 M n . For a chosen fixed M , the quantum memory is denoted is 2 µ M n = 2 M n and the corresponding minimal time by 2 τ M n . The variation of M also impacts the required QRAM to run the algorithm, which we denote by 2 γ M n . We get a tradeoff between time and quantum memory in Figure 4.2a, and the evolution of QRAM in function of M for a minimal time is in Figure 4.2b. For more than 2 0.0495n quantum memory, increasing it does not improve the time complexity anymore. An important fact is that for a fixed M the corresponding value τ M from figure 4.2a and γ M from Figure 4.2b can be achieved simultaneously with the same algorithm.

We observe that from M = 0 to 0.0495 these curves are very close to affine. Indeed, the function that passes through the two extremities points is of the expression 0.2653 -0.1670M . The difference between τ M and its affine approximation does not exceed 4 • 10 -5 . In the same way, the difference between γ M and its affine average function of the expression 0.0578 + 0.3829M is inferior to 2 • 10 -4 . All this is summarized in the following theorem.

Theorem 4.8 (Tradeoff for fixed quantum memory). There exists a quantum algorithm using quantum random walks that solves SVP on dimension n which for a parameter M ∈ [0, 0.0495] heuristically runs in time 2 τ M n+o(n) , uses QRAM of maximum size 2 γ M n , a quantum memory of size 2 µ M n and a classical memory of size 2 0.2075n where τ M ∈ 0.2653 -0.1670M + [-2 • 10 -5 ; 4 4.5.2. Tradeoff for fixed QRAM.

• 10 -5 ] γ M ∈ 0.0578 + 0.3829M -[0; 2 • 10 -4 ] ; µ M = M.
We also get a tradeoff between QRAM and time. For a chosen fixed M ′ , the QRAM is denoted by 2 γ M ′ n = 2 M ′ n , and the corresponding minimal time by 2 τ M ′ n . The required quantum memory is denoted 2 µ M ′ n . Note that 2 µ M ′ n is also the amount of the required quantum QRAM. This provides a tradeoff between time and QRAM in figure 4.3a, and the evolution of quantum memory in function of M ′ is in figure 4.3b. For more than 2 0.0767n QRACM, increasing it does not improve the time complexity. The difference between the function τ M ′ and its average affine function of the expression 0.2926 -0.4647 • M ′ does not exceed 6 • 10 -4 . This affine function is an upper bound of τ M ′ . From M ′ = 0 to 0.0579 the function γ M ′ is at 0. Then, it is close to the affine function of the expression 2.6356(M ′ -0.0579). So γ M ′ can be approximated by max{2.6356(M ′ -0.0579), 0}, and the difference between γ M ′ and this approximation does not exceed 9 • 10 -4 . All this is summarized in the following theorem.

Theorem 4.9 (Tradeoff for fixed QRACM). There exists a quantum algorithm using quantum random walks that solves SVP on dimension n which for a parameter M ′ ∈ [0, 0.0767] heuristically runs in time 2 τ M ′ n+o(n) , uses QRACM of size poly(d) • 2 γ M ′ n , a quantum memory of size poly(n) • 2 µ M ′ n and uses a classical memory of size poly(d) • 2 0.2075n where

τ M ′ ∈ 0.2927 -0.4647M ′ -[0; 6 • 10 -4 ] ; γ M ′ = M ′ µ M ′ ∈ max{2.6356(M ′ -0.0579), 0} + [0; 9 • 10 -4 ].
Best lattice sieves within our framework Finally, the following table presents some values of the combined above tradeoffs. The left-most column complexities are obtained when we choose parameters c α , c V , c β such that no QRAM nor quantum memory are used, and that the time is optimized under this constraint. In this case, we can argue that they are exactly at 0, not only O(poly(n)). With such a setting, the algorithm fits in the classical model. And we exactly recover the complexity of the best classical lattice sieve [START_REF] Becker | New directions in nearest neighbor searching with applications to lattice sieving[END_REF]. Then, if we authorize the use of QRAM and poly(n) qubits, we then recover the previous best quantum algorithm [START_REF] Laarhoven | Search problems in cryptography, From fingerprinting to lattice sieving[END_REF], whose results are displayed in the fourth column. The last column repeats the result of our Theorem 4.7 where the parameters are fixed to optimize the time.

Reusable quantum walks

At the end of this work, we wondered if there could be a more thoughtful way to find k different marked vertices than to run the whole random walk O(k) times. The authors of [START_REF] Bonnetain | Finding many Collisions via Reusable Quantum Walks[END_REF] found a way that gives a slight improvement in the complexity of our algorithm. We summarized their results in Section 2.3.3, and here is an application. The time complexity of our FindAllReducing subroutine, by Theorem 4.7, is

FAR 1 = N ρ0 • N ζ-ρ0 S + 1 √ ϵ U √ δ + C . (4.4)
With reusable quantum walks, the setup of cost S can only be run one time, that leads to a time complexity in This gives FAR 1 ≈ N 0.27 . Using these parameters in Equation 4.5 gives that the total running time to solve SVP is in N 1.2347 = 2 0.2563n+o(n) .

FAR 1 = N ρ0 S + N ζ-ρ0 √ ϵ U √ δ + C . ( 4 

Discussion

Impact on lattice-based cryptography. Going from a running time of 2 0.2653n+o(n) to 2 0.2563n+o(n) reduces the security claims based on the analysis of the SVP (usually via the BKZ algorithm). For example, if one claims 128 bits of quantum security using the above exponent then one must reduce this claim to 124 bits of quantum security. With the previous claimed security level 2 128 = 2 0.265n , we have n ≈ 483, so with the new best exponent we get 2 0.257n = 2 124 . This can usually be fixed with a slight increase in the parameters but cannot be ignored if one wants to have the same security claims as before.

Parallelization. One thing we have not talked about in this article is whether our algorithm parallelizes well. Algorithm 9 seems to parallelize very well, and we argue that it is indeed the case. For this algorithm, the best classical algorithm takes c → 0. In this case, placing each ⃗ v ∈ L in its corresponding α-filters can be done in parallel, and with N processors (or N width) it can be done in time poly(n). Then, there are N separate instances of FindAllReducing which can be also perfectly parallelized and each one also takes time poly(n) when c → 0. The while loop is repeated N -ζ = N 0.409n times so the total running time (here depth) is N 0.409n+o(n) with a classical circuit of width N . Such a result surpasses already the result from [START_REF] Becker | New directions in nearest neighbor searching with applications to lattice sieving[END_REF] that achieves depth N 1/2 with a quantum circuit of width N using parallel Grover search.

In the quantum setting, our algorithm also parallelizes quite well. If we consider our optimal parameters (c = 0.3696) with similar reasoning, our algorithm will parallelize perfectly with N 1-c processors (so that there is exactly one for each call to FindAllReducing i.e. for the quantum random walk). Unfortunately, after that, we do not know how to parallelize well within the quantum walk. When we consider circuits of width N , our optimizations did not achieve better than a depth of N 0.409+o(1) which is the classical parallelization. This is also the case if we use Grover's algorithm as in [START_REF] Laarhoven | Search problems in cryptography, From fingerprinting to lattice sieving[END_REF] for the FindAllReducing and we use parallel Grover search as in [START_REF] Becker | New directions in nearest neighbor searching with applications to lattice sieving[END_REF] so best known (classical or quantum) algorithm with lower depth that uses a circuit of width N is the classical parallel algorithm described above.

k-Sieves with tailored k-RPC filtering

The work in this chapter has been published in PQCrypto 2023 [START_REF] Chailloux | Classical and quantum 3 and 4-sieves to solve SVP with low memory[END_REF] and is a joint work with André Chailloux.

Overview

k -Sieve. Reducing the memory requirement would make the attack more materially practical, especially when it comes to quantum memory which is very limiting for implementations. A way to reduce memory is by the k-sieve introduced in [BLS16] and then improved by [HK17; HKL18; Kir+19]. The idea is to sum k lattice points instead of pairs at each sieving step in order to find shorter ones. This decreases the number N of lattice points that we need at each step to find the same number N of shorter lattice points. However, this will drastically increase the time to perform the sieving step. The goal is to keep relatively low memory but also try to limit the time.

Configurations. Two main ideas have significantly improved the complexity of k-sieving algorithms: pairwise LSF [Bec+16; HKL18] (explained in Section 3.3) and configurations (Definition 3.26). For k > 2, one can replace the reducibility constraint ∥⃗ x 1 + • • • + ⃗ x k ∥ ≤ 1 (starting from vectors of norm 1) with constraints of the form ⟨⃗ x i |⃗ x j ⟩ ≤ C i,j for some well-chosen C i,j . This is known as the configuration problem. The main advantage is that now we only have constraints on pairs of points instead of on k-tuples, and we can use much more efficient algorithms performing for example pairwise LSF. Searching for unbalanced target configurations increases the memory but in counterpart can reduce the running time.

Contributions. In this chapter, we introduce a new filtering technique tailored for k-sieving and use it to describe new sieving algorithms whose time-memory tradeoffs improve the state-of-the-art in some regimes. We show how to extend the construction of random product codes of [START_REF] Becker | New directions in nearest neighbor searching with applications to lattice sieving[END_REF] as a means of performing LSF tailored for k-sieving. Our code will also be efficiently decodable and its codewords can be partitioned into subsets {A 1 , . . . , A k } each of size k such that

A 1 + • • • + A k = ⃗ 0.
While previous k-sieve algorithms start from a configuration problem and then use pairwise LSF; our framework performs the following: we filter the input list of lattice vectors using our tailored code structure to get lists L 1 , . . . , L k respectively centered around k codewords A 1 , . . . , A k summing to the null-vector. Then, we solve a simpler instance of the configuration problem in the k filtered lists. The k-tuples (⃗ x 1 , . . . , ⃗ x k ) ∈ L 1 × • • • × L k are more likely to reduce than random k-tuples. Based on this framework, we describe classical sieves for k = 3 and 4 that introduce improved time-memory tradeoffs in some regimes. We use the k-Lists algorithm [START_REF] Kirshanova | Quantum algorithms for the approximate k-list problem and their application to lattice sieving[END_REF] inside our framework, and this improves the time for k = 3 and gives new tradeoffs for k = 4. All our quantum algorithms also have the advantage of requiring only a polynomial number of qubits (in the lattice dimension n).

Please refer to figures 5.7 for space-time tradeoffs of classical algorithms and 5.8 for quantum ones.

Outline. Section 5.2 presents a new code structure for the filtering step tailored for k-sieving and as an application we present a new framework to solve SVP. We describe some instances within this framework in the classical model in Section 5.3 and in the quantum model in Section 5.4. We finally discuss the results in Section 5.5. The SageMath code used for the numerical results of this chapter is available here: https://github.com/johanna-loyer/3-4-sieve.

k-RPC and

Framework of the k-sieve with tailored filtering 5.2.1. Filtering with k-Tuple Random Product Codes

We recall Definition 3.12 of a Random Product Codes (RPC). We assume n = m • b, for m = O(polylog(n)) and a block size b. The vectors in R n are identified with tuples of m vectors in R b . A random product code C of parameters (n, m, B) on subsets of R n and of size B m is defined as a code of the form

C = Q • (C 1 × C 2 × • • • × C m )
where Q is a uniformly random rotation over R n and the subcodes C 1 , . . . , C m are sets of B vectors, sampled uniformly and independently random over the sphere 1/m•S b-1 , so that codewords are points of the sphere S n-1 . Claim 3.14 states that the code points of a random product code C behave like random points of the sphere S n-1 . Random product codes can be easily decoded with the algorithm given in Proposition 3.13. So given a point ⃗ x ∈ S n-1 , an angle α ∈ (0, π/2) and a random product code C, one can efficiently compute the set of the M nearest codewords in C to ⃗ x, and this takes a time proportional to M . Each codeword of the RPC constitutes the center of a filter (See Definition 3.15). For the 2-sieve with Locality Sensitive Filtering, one inserts each list vector into its nearest filters, and then for each vector one searches a reducing one within its filters. It provides the current best algorithms to solve SVP both classically [START_REF] Becker | New directions in nearest neighbor searching with applications to lattice sieving[END_REF] (Algorithm 6) and quantumly as we saw in the previous chapter (Algorithm 9). However, the ksieve for k > 2 searches k-tuples such that ⃗ x 1 + • • • + ⃗ x k is reduced. So, searching within one unique filter does not permit one to quickly find a solution without having to check a lot of non-reducing elements. So we will slightly modify the construction of the random product code to take into account a configuration. k -Tuple Random Product Code (k-RPC). We start with the case k = 3 to describe our k-RPC construction. Instead of constructing fully random codes C 1 , . . . , C m , we will construct random codes C i with the following property:

∀A 1 ∈ C i , ∃A 2 , A 3 ∈ C i st. A 1 + A 2 + A 3 = ⃗ 0. × A 1 • A 2 • A 3 • ⋄ ⋄ ⋄ • ⃗ x 1 • ⃗ x 2 • ⃗ x 3 Figure 5.1: Each k-RPC codeword belongs to a k-tuple (A 1 , . . . , A k ) that sums to ⃗ 0. Each codeword A i is
the center of a filter f Ai , that will allow during a sieving step to search a reducing tuple (⃗ x 1 , . . . , ⃗ x k ) within the tuple-filter

f A1 × • • • × f A k .
We assume n = m • b for m = O(polylog(n)) and a block size b. The vectors in R n will be identified with tuples of m vectors in R b . An k-Tuple Random Product Code C of parameters (n, m, B) is defined as a code of the form

C = Q • (C 1 × C 2 × • • • × C m ) .
where Q is a uniformly random rotation over R n and the subcodes C 1 , . . . , C m are each constructed as follows:

1. Pick B/3 random vectors A 1 1 , . . . , A B/3 1 sampled uniformly at random over the sphere 1/m • S b-1 .

2. For each i ∈ [B/3], pick a random vector A j 2 sampled uniformly at random over the sphere 1/m•S b-1 with the condition ⟨A j 1 |A j 2 ⟩ = -1 2m .

3. For each i ∈ [B/3], let A j 3 be the unique point on the sphere 1/m • S b-1 st.

A j 1 + A j 2 + A j 3 = ⃗ 0. The code C is then the set of points {A 1 1 , A 1 2 , A 1 3 , . . . , A B/3 1 , A B/3 2 , A B/3 3 }. Notice that A j 3 = -(A j 1 + A j 2 ) is of the correct norm 1 √ m . Indeed, ∥A j 3 ∥ 2 = ∥ -(A j 1 + A j 2 )∥ 2 = ∥A j 1 ∥ 2 + ∥A j 2 ∥ 2 + 2⟨A j 2 |A j 1 ⟩ = 2 m - 2 2m = 1 m .
We can generalize this construction for any constant k to get a k-RPC of codewords

{A j i } i∈[k],j∈[B/3] such that ∀A 1 ∈ C i , ∃A 2 , . . . A k ∈ C i st. k i=1 A i = ⃗ 0. 1. Pick B/k random vectors A 1 1 , . . . , A B/k 1
sampled uniformly at random over the sphere 1/m • S b-1 .

2. For each j ∈ [B/k], pick a random vector A j 2 sampled uniformly at random over the sphere 1/m•S b-1 with the condition

⟨A j 1 |A j 2 ⟩ = -1 (k-1)m . Then, for i ∈ [|2, k -1|], pick random vectors A j i such that for each previous i ′ ∈ [i], ⟨A j i |A j i ′ ⟩ = -1 (k-1)m .
3. For each j ∈ [B/k], let A j k be the unique point on the sphere 1/m • S b-1 such that

k i=1 A j i = ⃗ 0. The code C is then the set of points {A j i } i∈[k],j∈[B/3] .
As before, we can check that

A j k = - k-1 j=1 A j i is of the correct norm 1 √ m : ∥A j k ∥ 2 = k-1 j=1 ∥A j i ∥ 2 + k-1 i=1 k-1 i ′ =1 i ′ ̸ =i ⟨A j i |A j i ′ ⟩ = k -1 m + (k -1)(k -2) • -1 (k -1)m = k -1 m - k -2 m = 1 m .
For each j ∈ [B/k], we actually take ⟨A j i |A j i ′ ⟩ = -1/(k -1) for i ̸ = i ′ , because this balanced configuration optimizes the number of k-tuples whose vectors are respectively close to the centers A j i (See Proposition 3.28).

Proposition 5.1. Let C be a random product code with triangles of parameters (n, m, B) with m = log(n) and B m = N O(1) . For any ⃗ x ∈ S n-2 and angle α, one can compute

H ⃗ x,α ∩ C in time N o(1) • |H ⃗ x,α ∩ C|.
Proof. The decoding algorithm of Proposition 3.13 uses only the product structure of the code and not how the codes C 1 , . . . , C m are constructed. The same algorithm will therefore also efficiently decode k-tuple random product codes.

We recall Definition 3.15: a hypercone filter f s of center s and angle α is a set that can be filled with vectors of angle at most α with s.

Definition 5.2 (Tuple-filter). Let C be a k-RPC with codewords (A

j i ) for i ∈ [k] and j ∈ [|C| /k] such that ∀j ∈ [|C|/k], k i=1 A j i = ⃗ 0.
Given angle α and some j, we call (f A j 1 , . . . , f A j k ) a tuple-filter, where each f A j i is a filter.

k-RPC filtering. We are given a list L of lattice vectors assumed to be i.i.d. uniformly random over S n-1 . We choose an angle α and sample a k-RPC C containing 1/V(α) codewords, each one being the center of a filter. Choosing the code size at 1/V(α) makes that any point ⃗ x ∈ S n-1 is on average at angle α to its nearest codeword. For each vector in the list L, we decode it to its nearest unique codeword A ∈ C. This step, called prefiltering, separates L into disjoint sublists, each one of size |L| • V(α). We focus on only one tuple of filters of centers A 1 , . . . , A k respectively associated to the lists L 1 , . . . , L k , that are empty at the beginning. By Claim 3.16, the angle between any ⃗ x ∈ L i and A i is α with high probability. We simplify by considering that it is always the case. So for ⃗ x ∈ S n-1 of angle α with a center of filter A, we can write for some ⃗ y ⊥ A, ⃗ x = cos(α)A + sin(α)⃗ y.

We call ⃗ y the residual vector of ⃗ x on the filter of center A and angle α. While filling the list L i with the ⃗ x, we fill in parallel a list R i with their residual vectors ⃗ y in its filter of center A i . Note that the points in L i are i.i.d. uniformly random over the (n-1)-dimensional sphere {⃗ x ∈ R n : ∥⃗ x∥ = 1, θ(⃗ x, A i ) = α}, which is isometric to the sphere S n-2 on which the residual vectors are i.i.d. uniformly random.

× × × ⃗ x 1 ⃗ y 1 ⃗ x 2 ⃗ y 2 ⃗ x 3 ⃗ y 3 × A 1 A 2 A 3 • ⋄ • ⋄ • ⋄ Figure 5
.2: List vectors ⃗ x i ∈ L i in their filters of centers A i and angle α and their respective residual vectors ⃗ y i ∈ R i . Attention: For the sake of readability, red arrows represent the non-normalized vectors sin(α)⃗ y i . (Also see Figure 3.6 that illustrates Claim 3.16). Please keep in mind that this scheme is in dimension n = 3 and that in high dimensions the volume ratios are exacerbated.

The following lemmas give us the equivalence between the problem of searching a tuple of list vectors ⃗ x's satisfying a configuration C and searching a tuple of residual vectors ⃗ y's satisfying a configuration C ′ , depending on C and the angle α of the filters.

Lemma 5.3. Using the above notations for the lists L i 's and R i 's, a k-tuple

(⃗ x 1 , . . . , ⃗ x k ) ∈ L 1 × • • • × L k is reducing iff. their residual vectors (⃗ y 1 , . . . , ⃗ y k ) ∈ R 1 × • • • × R k satisfy 1⩽i<j⩽k ⟨⃗ y i |⃗ y j ⟩ ⩽ 1 -k cos 2 (α) 2 sin 2 (α) := I k (α).
(5.1) Proof. For ⃗ x i ∈ L i , we have ⃗ x i = cos(α)A i + sin(α)⃗ y i . Claim 3.16 ensures the randomness of the points ⃗ y i in the sphere S n-2 , so we have for i ̸ = j, ⟨A i |⃗ y j ⟩ ≈ 0 with high probability. We consider the equality for simplicity. For i ̸ = j, ⃗ x i ∈ L i and ⃗ x j ∈ L j , we obtain:

⟨⃗ x i |⃗ x j ⟩ = cos 2 (α)⟨A i |A j ⟩ + sin 2 (α)⟨⃗ y i |⃗ y j ⟩.
(5.2)

Then we have

k i=1 ⃗ x i 2 = k i=1 cos(α)A i + sin(α)⃗ y i 2 = k i=1 sin(α)⃗ y i 2 as k i=1 A i = ⃗ 0 = k sin 2 (α) + 2 sin 2 (α)   1⩽i<j⩽k ⟨⃗ y i |⃗ y j ⟩   .
(5.3)

In the case the tuple (⃗ x 1 , . . . , ⃗ x k ) is reducing, we have Lemma 5.4. Let C ∈ R k×k be a configuration, and α an angle. If a k-tuple ⃗ x 1 , . . . , ⃗ x k satisfies C then their residual vectors ⃗ y 1 , . . . , ⃗ y k on a filter of angle α satisfies the configuration C ′ (α) with for i ̸ = j,

C ′ i,j (α) = - 1 sin 2 (α) C i,j + cos 2 (α) k -1
Proof. As already justified in the previous proof (Equation 5.2), for i ̸ = j we have ⟨⃗ x i |⃗ x j ⟩ = cos 2 (α)⟨A i |A j ⟩+ sin 2 (α)⟨⃗ y i |⃗ y j ⟩. The configuration C gives constraints over the scalar products ⟨⃗ x i |⃗ x j ⟩, and C ′ (α) over the scalar products ⟨⃗ y i |⃗ y j ⟩ ; and ⟨A i |A j ⟩ is fixed at -1/(k -1). Rewriting the above equation with it gives

C i,j = cos 2 (α) • -1 k-1 + sin 2 (α)C ′ i,j
. Hence the result.

If we consider a balanced configuration C for the ⃗ x i 's, then we have for i ̸ = j, C i,j = -1/k all equal. For residual vectors on a filter of angle α, this also implies C ′ i,j (α) all equal for i ̸ = j. There are

C ′ i,j at number k-1 i=1 i = k • (k -1)/2. Thus for i ̸ = j we will have C ′ i,j (α) = 2 k•(k-1) • I k (α)
, with I k (α) as defined in Lemma 5.3.

As I k (α) ⩾ -1, the constraints over the vectors ⃗ y i 's are relaxed in comparison with the input vectors ⃗ x i . This allows more flexibility to choose a configuration to reduce the running time, and this is the intuition behind why the prefiltering step allows finding solutions more easily.

Framework adapted for the k-sieve

The idea behind the framework of our sieving algorithms remains the same as in Chapter 4 but is generalized for the k-sieve algorithm for any k ≥ 2:

1. Prefilter the list vectors with a k-RPC, 2. Search all reduced tuples within each filter, 3. Repeat steps 1. and 2. until all the reduced points are found.

Algorithm 12 k-Sieve Framework with LSF prefiltering

Require: List L of lattice vectors of norm at most 1 ; reducing factor γ < 1.

1: Parameters: k ∈ N ; angle α ∈ (0, π/2] ; target configuration C. Ensure: List L out of lattice vectors of norm at most γ.

2: L out = ∅ 3: while |L out | < |L| do ▷ NbRep α,C repeats 4: Sample a k-RPC code C of size k • 1/V(α)
▷ Its codewords will be denoted A j i 5:

Initialize the lists

L j i = ∅ for i ∈ [k], j ∈ [|C|/k] 6:
for each ⃗ x ∈ L do 7:

A j i ← Decode(⃗ x, C) ▷ Algorithm from Proposition 3.13.

8:

⃗ y ← ⃗ x -cos(α)A j i / sin(α) ▷ Residual vector of ⃗ x in the filter of center A j i 9:

L j i ← L j i ∪ {⃗ x} ; R j i ← R j i ∪ {⃗ y} 10:
for each tuple-filter numbered j ∈ [|C|/k] do 11:

Sol ⃗ y ← FindAllReducing (R j i ) i , C ′ (α) ▷ Find all (⃗ y i ) i ∈ R j 1 × • • • × R j k satisfying C ′ (α) 12: Sol Σ⃗ x ← k i=1 ⃗ x i : (⃗ y i ) i ∈ Sol ⃗ y ▷ ⃗ x i ∈ L j i and ⃗ y i ∈ R j i share the same index i 13: L out ← L out ∪ Sol Σ⃗ x 14: return L out
Complexity analysis of the framework algorithm 12

Heuristic and simplifying assumptions. We remind the reader that the complexity analysis of the algorithms presented in this chapter relies on the following assumptions:

• Heuristic 3.8. The input lattice points are uniformly randomly distributed on the sphere S n-1 := {⃗ x ∈ R n : ∥⃗ x∥ = 1}.

• Claim 3.14. The points of a random product code are indistinguishable from random independent points in S n-1 .

• Claim 3.16. Given a point ⃗ s ∈ S n-1 , we assume that a random vector ⃗ x of angle at most α with ⃗ s is exactly at angle α, and then can be decomposed ⃗ x = cos(α)⃗ s + sin(α)⃗ y with ⃗ y ⊥ ⃗ s and ∥⃗ y∥ = 1. The residual vector ⃗ y is random uniform in S n-2 an orthogonal complement to ⃗ s.

Proposition 3.9 has given the volume of the spherical cap of center s ∈ S n-1 , which is

V n (α) := {⃗ x ∈ S n-1 : θ(s, ⃗ x) ≤ α} = poly(n) • sin n/2 (α).
Notice that when we work with residual vectors in S n-2 the sphere in R n-1 , we would write V n-1 . But since V n and V n-1 are asymptotically equivalent, we will just be writing V for simplicity of notations.

1. Prefiltering (lines 4-9). We start by sampling a k-RPC C (Defined in Part 5.2.1) of size k • 1/V(α). Its codewords are denoted (A j i ) i,j for i ∈ [k] and j ∈ [|C|/k] (we suppose these values are integers by simplicity). For a fixed j ∈ [|C|/k] and for i 1

̸ = i 2 ∈ [k] we have ⟨A j i1 |A j i2 ⟩ = -1 k-1 , that implies k i=1 A j i = ⃗ 0.
Once the code is sampled, we can start the so-called prefiltering step. For each vector ⃗ x ∈ L, we efficiently compute its nearest codeword in C using the algorithm from Proposition 5.1. If it returns center A j i , then we add ⃗ x to its associated list L j i . We also compute ⃗ x's residual vector ⃗ y = ⃗ x-cos(α)A j i / sin(α) (by Claim 3.16) and we add it to list R j i . Given a residual vector in R j i , we will be able to recover its corresponding vector in L j i by just looking at the same index.

There are tuple-filters (

A j i ) i∈[k] at number NbFilters := |C|/k = O 1 V(α)
.

(5.4)

As we compute the nearest filter in amortized time O(1) for each vector in L, the prefiltering step takes time |L|.

2. Find all solutions within a tuple-filter (lines 10-13). We started with a list L and we wanted to solve a configuration problem, and after the prefiltering step, we can consider easier instances of the configuration problem on the sublists of L. The subroutine FindAllReducing solves one of these instances at a time, and we run it over each of the 1/V(α) tuple-filters.

Let's fix some j ∈ [|C|/k] and consider the instance of a configuration problem on the k lists (R j i ) i with configuration C ′ (α). The subroutine then has to find all the k-tuples within R j 1 × • • • × R j k that satisfies the configuration C ′ (α). As we focus on only one filter at a time, in the following we will no longer write the j in exponent to lighten the notations.

The number of solutions the subroutine has to return is given by the following lemma.

Lemma 5.5. With the same notations as before and for fixed j ∈ [|C|/k], the expected number of tuples in the tuple-filter associated with the lists

R 1 × • • • × R k satisfying configuration C ′ (α) is on average |Sol f | = O |R 1 | k • det(C ′ (α)) n/2 = O |L| k V(α) k • det (C ′ (α)) n/2 .
Proof. There are

|R 1 | k tuples in R 1 × ... × R k as the lists are all of same size |R 1 | = |L| • V(α).
Any tuple (⃗ y 1 , ..., ⃗ y k ) from this set has probability det(C ′ (α)) n/2 to satisfy configuration C ′ (α). Hence the expected number of tuples satisfying C ′ (α).

Any subroutine with these inputs and outputs may suit the framework. For example, in the case k = 2, we described in Section 4 a 2-sieve fitting this framework, where the subroutine uses quantum random walks to find the reducing pairs of vectors. We denote the time complexity of the subroutine FindAllReducing with parameters α and C by T (FAR C ′ (α) ).

Number of repeats (while loop 3).

After searching all the solutions within every tuple-filters, by Theorem 3.28 we expect to find the following number of solutions:

|Sol all | = |L| k • det(C) n/2 .
(5.5)

To complete the sieve step, we are required to find |L| reduced lattice vectors. Thus steps 1. and 2. have to be repeated until enough solutions have been found. The missed solutions are the ones such that a part of the solution is in one tuple-filter and the rest is in another. By doing a new prefiltering, it changes the partitions of the sphere, and this allows us to find some of these missing solutions.

Lemma 5.6. The number of repetitions in the while loop is

N bRep α,C = O max 1, |Sol all | |Sol f | • N bF ilters = O   max    1, |L 1 | k det(C) n/2 |L 1 | k V k (α) det (C ′ (α)) n/2 • 1 V(α)      = O max 1, det(C) n/2 V k-1 (α) det (C ′ (α)) n/2
.

The overall time complexity of an algorithm based on this framework is given in the following theorem.

Theorem 5.7. Let α ∈ (0, π/2] be an angle and a configuration C ∈ R k×k , and C ′ (α) the configuration on the residual vectors (See Lemma 5.4). Given an algorithm that solves the configuration problem C ′ (α) for k lists in time T (FAR C ′ (α) ), Algorithm 12 solves SVP in time

T (k-sieve) := NbRep α,C • |L| + NbFilters α • T (FAR C ′ (α) )
where NbRep α,C is given by Lemma 5.6 and

NbFilters α = O 1 V(α)
by Equation 5.4.

The above theorem is the main technical contribution of our work. The main novelty is the angle α which can be freely chosen. Taking an angle α = π/2 means that we do not perform any tailored LSF.

Optimization of the parameters. The C i,j 's are parameters to optimize to get the minimal overall time of the k-sieve, and they obey the constraints on memory and reduceness of the tuples. We also require that the inner algorithm for solving the configuration problem with C ′ (α) uses at most memory M . There is also the prefiltering angle α ∈ (0, π/2] that has to be optimized. In the next sections, we will present algorithms that fit in the framework 12 and for each one we will specify the optimal values for C and α we have obtained by numerical optimization. The code is available on https://github.com/johanna-loyer/3-4-sieve.

Classical k-sieves

We use Theorem 5.7 to know the overall complexity of the k-sieve, so the only thing to explicit is the inner algorithm running in time T (FAR C ′ (α) ) as well as the parameters C and α. This subroutine has to solve a configuration problem in the input lists L 1 , . . . , L k for the configuration

C = (C i,j ) i,j∈[k] ∈ R k×k . The subroutine has to find a 1 -o(1) fraction of the k-tuples (⃗ x 1 , . . . , ⃗ x k ) ∈ L 1 × • • • × L k such that ⟨⃗ x i |⃗ x j ⟩ ≤ C i,j
for all i ̸ = j for some ϵ > 0. By Lemma 5.4, we can solve this problem by solving R 1 , . . . , R k for configuration C ′ (α). We present here our 3-sieve and 4-sieve classical algorithms. Actually, in both cases, the inner algorithm will use a classical 2-sieve algorithm so we first give formulas for the configuration problem with k = 2.

Algorithm 13 FindAllReducing classical 3-sieve

Require: lists L 1 , L 2 , L 3 of vectors i.i.d. in S n-1 with |L 1 | = |L 2 | = |L 3 | ; target configuration C ∈ R 3×3 . Ensure: list L out of all 3-tuples in L 1 × L 2 × L 3 satisfying configuration C.
L out := ∅. construct L 12 and L 13 using a 2-sieve algorithm with angle parameter α ′ , from which you can recover lists L 12 (⃗ x 1 ) and L 13 (⃗ x 1 ) for each ⃗ x 1 ∈ L 1 : compute L 123 (⃗ x 1 ) using a 2-sieve algorithm with angle parameter α ′′ for each (⃗

x 2 , ⃗ x 3 ) ∈ L 123 (⃗ x 1 ), do L out := L out ∪ {(⃗ x 1 , ⃗ x 2 , ⃗ x 3 )}. return L out Complexity of Algorithm 13.
Construction of the lists L 12 and L 13 . As a direct consequence of Proposition 5.8, we have: Lemma 5.9. Let T 12 (resp. T 13 ) be the time to compute L 12 (resp. L 13 ). Let α such that |L 1 | = 1/V(α). We have

T 12 = O |L 1 | 2 1 -C 2 12 n/2 (1 -C ′ 12 (α) 2 ) n/2 T 13 = O |L 1 | 2 1 -C 2 13 n/2 (1 -C ′ 13 (α) 2 ) n/2
Construction of the lists L 23 (⃗ x 1 ). For a fixed ⃗ x 1 , notice that the lists L 2 (⃗ x 1 ) and L 3 (⃗ x 1 ) do not contain points uniformly distributed on the sphere since they have an inner-product constraint with ⃗ x 1 so we cannot apply Proposition 5.8 directly. Fix ⃗ x 1 ∈ L 1 and let ⃗ x 2 ∈ L 2 and ⃗ x 3 ∈ L 3 . For simplicity of calculations, we consider the case where ⟨⃗

x 1 |⃗ x 2 ⟩ = C 12 , ⟨⃗ x 1 |⃗ x 3 ⟩ = C 13 and ⟨⃗ x 2 |⃗ x 3 ⟩ = C 23 .
This approximation is justified from Heuristic 3.8. So we write

⃗ x 2 = C 12 ⃗ x 1 + 1 -C 2 12 ⃗ y 2 ; ⃗ x 3 = C 13 ⃗ x 1 + 1 -C 2 13 ⃗ y 3 (5.7)
where ⃗ y 2 , ⃗ y 3 are orthogonal to ⃗ x 1 and of norm 1. Also, if ⃗ x 2 (resp. ⃗ x 3 ) is a random vector satisfying ⟨⃗ x 1 |⃗ x 2 ⟩ = C 12 (resp. ⟨⃗ x 1 |⃗ x 3 ⟩ = C 13 ) then ⃗ y 2 (resp. ⃗ y 3 ) is a random unit vector. Let Y 23 := ⟨⃗ y 2 |⃗ y 3 ⟩. We have

⟨⃗ x 2 |⃗ x 3 ⟩ = C 12 C 13 + 1 -C 2 12 1 -C 2 13 Y 23
which implies

Y 23 = C 23 -C 12 C 13 1 -C 2 12 1 -C 2 13 .
We can now use Proposition 5.8,which gives the running time

T 23 (⃗ x 1 ) of computing L 23 (⃗ x 3 ). Let Y = 1 Y 23 Y 23 1 and let α ′ such that V(α ′ ) = 1 |L2(⃗ x1)| . We have T 23 (⃗ x 1 ) = O NbRep α ′ ,Y • |L 2 (⃗ x 1 )| .
Now, let T 23 be the running of computing all the lists L 23 (⃗ x 1 ) since the number of ⃗ x 1 is |L 1 |, we have

T 23 = |L 1 | • T 23 (⃗ x 1 ) = O |L 1 | • NbRep α ′ ,Y • |L 2 (⃗ x 1 )| (5.8) = O |L 1 | • |L 2 (⃗ x 1 )| 2 • 1 -Y 2 23 n/2 (1 -Y ′ 23 (α ′ ) 2 ) n/2
(5.9)

with Y ′ 23 (α) = 1 sin 2 (α) Y 23 + cos 2 (α ′ ) .
Putting everything together, we have the following Table 5.1: Time complexity of our classical 3-sieving algorithm for a fixed memory constraint. α is the optimal angle used in the first prefiltering. Also see Figure 5.3 for a plot corresponding to this algorithm. 

Classical 4-sieve

We now consider the case k = 4. For our inner algorithms, we start with 4 lists L 1 , L 2 , L 3 , L 4 . There are actually several strategies of merging the lists. Here we choose to perform the following merges:

1. Construct L 12 = {(⃗ x 1 , ⃗ x 2 ) ∈ L 1 × L 2 : ⟨⃗ x 1 |⃗ x 2 ⟩ ≤ C 12 } and L 34 = {(⃗ x 3 , ⃗ x 4 ) ∈ L 3 × L 4 : ⟨⃗ x 3 |⃗ x 4 ⟩ ≤ C 34 }. 2. Construct L 1234 = {((⃗ x 1 , ⃗ x 2 ), (⃗ x 3 , ⃗ x 4 )) ∈ L 12 × L 34 : (⃗ x 1 , ⃗ x 2 , ⃗ x 3 , ⃗ x 4 ) satisfies configuration C}.
Using these lists, we consider the following algorithm:

Algorithm 14 FindAllReducing classical 4-sieve

Require: lists L 1 , L 2 , L 3 , L 4 of vectors i.i.d. in S n-1 with |L 1 | = |L 2 | = |L 3 | = |L 4 | ; target configuration C ∈ R 4×4 with C 12 = C 34 and C 13 = C 14 = C 23 = C 24 . Ensure: list L out of all 4-tuples (⃗ x 1 , ⃗ x 2 , ⃗ x 3 , ⃗ x 4 ) ∈ L 1 × L 2 × L 3 × L 4 satisfying configuration C.
Construct L 12 and L 34 using our classical 2-sieve algorithm. Start from L 12 and L 34 and use our classical 2-sieve algorithm to compute L 1234 . return L 1234 .

We then use the above algorithm as the FindAllReducing subroutine in Algorithm 12 to describe our entire algorithm for 4-sieve. The algorithm presented here is usually inefficient in memory because the lists L 12 and L 13 are large. However, thanks to our initial α-filtering, we start from smaller lists L 1 , L 2 , L 3 , L 4 so the intermediate lists will be small as well. Table 5.2: Time complexity of our classical 4-sieving algorithm for a fixed memory constraint. α is the optimal angle used in the prefiltering. Also see Figure 5.4 for a plot corresponding to this algorithm.

Quantum k-sieves

We now study quantum algorithms within our framework. In the quantum setting, we still use Theorem 5.7 and once again, we only need to describe the running time and amount of memory used for the subroutine.

Here the input lists L i are stored classically and are assumed to be quantumly accessible, i.e. for any given list L, we can efficiently construct the uniform superposition over all its elements |ψ L ⟩ :=1 √ |L| ℓ |ℓ⟩|L[ℓ]⟩. In the following, we will not necessarily write the first register for simplicity 1 .

Quantum 3-sieve

In the case k = 3, the FindAllReducing quantum subroutine starts with classical lists L 1 , L 2 , L 3 that are quantumly accessible, and it outputs a list containing all triples in L 1 × L 2 × L 3 satisfying a given target configuration C.

To find one solution, our algorithm constructs a uniform quantum superposition over all triples and then applies two Grover's algorithms in order to get a quantum superposition of candidate solutions. This whole process is then repeated inside an amplitude amplification to get a superposition over the solutions, that we measure, and we repeat this whole process until we have found all the solutions.

As a reminder, (See Proposition 3.29), given a configuration C, we use the following notation: for i, j

∈ [k], i ̸ = j and ⃗ y j ∈ L j , L i (⃗ y j ) := {⃗ y i ∈ L i : ⟨⃗ y i |⃗ y j ⟩ ≤ C i,j }.
Algorithm 15 FindAllReducing quantum 3-sieve

Require: lists L 1 , L 2 , L 3 of vectors i.i.d. in S n-1 with |L 1 | = |L 2 | = |L 3 | ; a target configuration C ∈ R 3×3 . Ensure: list L out containing all 3-triples in L 1 × L 2 × L 3 satisfying configuration C. L out := ∅ while |L out | < |Sol| do Construct state |ψ L1 ⟩|ψ L2 ⟩|ψ L3 ⟩
Apply Grover on the second register to get state |ψ L1 ⟩|ψ L2(⃗ y 1 ) ⟩|ψ L3 ⟩ Apply Grover on the third register to get state |ψ L1 ⟩|ψ L2(⃗ y 1 ) ⟩|ψ L3(⃗ y 1 ) ⟩ Apply Amplitude Amplification to get state |ψ Sol ⟩, the uniform superposition of all solutions Take a measurement and get some (⃗ y 1 , ⃗ y 2 , ⃗ y 3 ) if (⃗ y 1 , ⃗ y 2 , ⃗ y 3 ) satisfies configuration C then add it to L out return L out Complexity of Algorithm 15.

We first analyse the complexity to find one solution during one single iteration from the while-loop.

Initialization. We assume that lists L 1 , L 2 and L 3 of i.i.d. random points are classically stored and quantumly accessible. So the state |ψ L1 ⟩|ψ L2 ⟩|ψ L3 ⟩ can be constructed efficiently.

Grover on the second register. The algorithm then applies Grover's algorithm on the second register such that the two first registers become

|ψ L1 ⟩|ψ L2(⃗ y 1 ) ⟩ = 1 |L 1 | 1 |L 2 (⃗ y 1 )| ⃗ y 1 ∈L1 ⃗ y 2 ∈L2(⃗ y 1 ) |⃗ y 1 ⟩|⃗ y 2 ⟩.
It only keeps in the quantum superposition the elements ⃗ y 2 ∈ L 2 such that ⟨⃗ y 1 |⃗ y 2 ⟩ ≤ C 12 for each superposed ⃗ y 1 from the first register. So the state ends up with a quantum superposition of all pairs in L 1 × L 2 eligible to form the beginning of a triple-solution. This application of Grover's algorithm takes time

T 2 = |L2| |L2(⃗ y 1 )| = (1 -C 2 12
) -n/4 by Proposition 3.29.

Grover on the third register. Similarly, we also apply Grover's algorithm on the third register to get the state |ψ L1 ⟩|ψ L2(⃗ y 1 ) ⟩|ψ L3(⃗ y 1 ) ⟩ equal to

1 |L 1 | 1 |L 2 (⃗ y 1 )| 1 |L 3 (⃗ y 1 )| ⃗ y 1 ∈L1 ⃗ y 2 ∈L2(⃗ y 1 ) ⃗ y 3 ∈L3(⃗ y 1 ) |⃗ y 1 ⟩|⃗ y 2 ⟩|⃗ y 3 ⟩ in time T 3 = |L3| |L3(⃗ y 1 )| = (1 -C 2 13 ) -n/4
. The sizes |L 2 (⃗ y 1 )| and |L 3 (⃗ y 1 )| do not depend on the choice of ⃗ y 1 , that is why we can write their corresponding normalizing factors before the sum over the ⃗ y 1 's. Amplitude amplification. The goal is now to construct a uniform quantum superposition over all elements of the set of solutions Sol := {(⃗ y 1 , ⃗ y 2 , ⃗ y 3 ) ∈ L 1 × L 2 × L 3 satisfying C}, by applying a quantum amplitude amplification. Let A be unitary that maps |0⟩|0⟩|0⟩ to the state |ψ L1 ⟩|ψ L2(⃗ y 1 ) ⟩|ψ L3(⃗ y 1 ) ⟩ constructed so far.

Lemma 5.17. The operation A : |0⟩|0⟩|0⟩ → |ψ L1 ⟩|ψ L2(⃗ y 1 ) ⟩|ψ L3(⃗ y 1 ) ⟩ is repeated T AA times inside the amplitude amplification to construct state |ψ Sol ⟩ (with probability 1 -o(1)), where

T AA = O |L 1 |/|Sol| • |L 2 (⃗ y 1 )| |L 3 (⃗ y 1 )| = O |L 3 i |/|Sol| • (1 -C 2 12 ) n/4 (1 -C 2 13 ) n/4 .
Space-time tradeoffs. We also extend this algorithm where we fix the available memory to something more than the minimal memory 2 0.1887n . log 2 (Memory)/n 0.1887 0.189 0.190 0.1904 log 2 (Time)/n 0.3069 0.3050 0.3040 0.3039 α (rad)

1.2153 1.2191 1.2255 1.2233

Table 5.3: Time complexity of our quantum 3-sieving algorithm for a fixed memory constraint. α is the optimal angle used in the prefiltering. Also see Figure 5.5 for a plot corresponding to this algorithm. 

Quantum 4-sieve

This algorithm and its analysis are very similar to Algorithm 15. As previously, we first analyze the complexity to find one solution during one single iteration from the while-loop.

Complexity of Algorithm 16.

Initialization. Lists L i for i = 1, 2, 3, 4 are assumed stored classically and quantumly accessible, so we can construct the state |ψ L1 ⟩|ψ L2 ⟩|ψ L3 ⟩|ψ L4 ⟩.

Grover on the second register. The algorithm applies Grover's algorithm over the second register such that the two first registers become

|ψ L1 ⟩|ψ L2(⃗ y 1 ) ⟩ = 1 |L 1 | 1 |L 2 (⃗ y 1 )| ⃗ y 1 ∈L1 ⃗ y 2 ∈L2(⃗ y 1 ) |⃗ y 1 ⟩|⃗ y 2 ⟩, which takes time T 2 = |L2| |L2(⃗ y 1 )| = (1 -C 2 12 ) -n/4 .
Grover on the third register. Another Grover's algorithm is then performed over the third register |ψ L3 ⟩ such that it becomes the quantum superposition over all elements of L 3 (⃗ y 1 , ⃗ y 2 ), for ⃗ y 1 ∈ L 1 and ⃗ y 2 ∈ L 2 (⃗ y 1 ) being elements in quantum superposition in the two first registers.

Let Z = |L 1 | • |L 2 (⃗ y 1 )| • |L 3 (⃗ y 1 , ⃗ y 2 )|.
The three first registers then become the state Time-optimizing parameters.

Proposition 5.25. There exists an algorithm that solves SVP in dimension n in time T = 2 0.3120n+o(n) using quantum-accessible classical memory M = 2 0.1813n+o(n) and quantum memory poly(n).

Proof. We take a configuration C with C 12 ≈ -0.386, C 13 = C 14 ≈ -0.229, C 23 = C 24 ≈ -0.230 and C 34 ≈ -0.200. We take α ≈ 1.313rad and |L| = 2 0.1813n = M . We apply Proposition 5.23: We write C ′ 12 ≈ -0.386,

C ′ 13 = C ′ 14 ≈ -0.229, C ′ 23 = C ′ 24 ≈ -0.224 and C ′ 34 ≈ -0.189. We set |L 1 | = |L| • V(α) = 2 0.1259n . We have NbRep α,C = 2 0.1254 ; 1 V(α) = 2 0.0554n ; FAR q 4 (|L 1 |, C ′ ) = 2 0.
1312n . Putting everything together, we have a running time of 2 0.1254n • 2 0.0554n • 2 0.1312n = 2 0.3120n . Table 5.4: Classical 3 and 4-sieves, corresponds to the graph in Figure 5.7.

Discussion

We first analyze our results for classical algorithms (see Figure 5.7). For the 3-sieve, our algorithm performs better in the minimal memory regime. However, when we do not restrict memory, we obtain the same running time 2 0.3041n+o(n) as in [START_REF] Herold | Speed-ups and time-memory tradeoffs for tuple lattice sieving[END_REF] and our method does not give improvements here. For 4-sieve algorithms, the situation is a little different. We use a different approach than the ones studied in previous work. We essentially combine sequentially two 2-sieve algorithms. However, we first perform our tailored LSF on 4-tuples of points to speed up this process. As Figure 5.7 shows, this algorithm does not perform well in the minimal memory regime (M = 2 0.1723n+o(n) ) but then works much better for slightly larger memories, outperforming our 3-sieve algorithm and also the best previously known running time for 4-sieve, which used more memory.

We must notice however that it is hard to make direct comparisons with previous work in the classical setting as those are mainly done for Gauss-sieve and we present results for NV-sieve which has better spacetime tradeoffs asymptotically. However, our results do show that tailored LSF significantly improves the algorithms we study, and we leave it as future work to extend this idea to the Gauss sieve.

In the quantum setting (see Figure 5.8), we use the same algorithms as in [START_REF] Kirshanova | Quantum algorithms for the approximate k-list problem and their application to lattice sieving[END_REF] so the comparison can be made more directly. Our algorithm uses our tailored filtering and then applies Algorithm 4.1 of [START_REF] Kirshanova | Quantum algorithms for the approximate k-list problem and their application to lattice sieving[END_REF], which is not the best algorithm for the configuration problem for low values of k. What we show is that this algorithm benefits from this prefiltering. The results should be compared with the state-of-the-art Algorithm B.2 of [START_REF] Kirshanova | Quantum algorithms for the approximate k-list problem and their application to lattice sieving[END_REF]. However, only the extremities of the tradeoffs of their algorithm were given, represented by triangles on the graphs of Figure 5.8. For k = 3 in the minimal memory regime M = 2 0.1887n+o(n) , we achieve time T = 2 0.3069n+o(n) improving the time T = 2 0.3266n+o(n) of Algorithm B.2 in [START_REF] Kirshanova | Quantum algorithms for the approximate k-list problem and their application to lattice sieving[END_REF]. For k = 4, our algorithm does not work well for the lowest memory regime but gives a new interesting space-time tradeoff. Notice that as in previous algorithms cited here, our quantum algorithms require quantumly accessible classical memory (QRACM) and poly(n) qubits.

The goal of the construction of k-RPC and applications on low k-sieves was to check if this kind of filtering had an interest. It was believed before that doing two layers of filtering was useless, and we showed that on the contrary, the k-sieves benefit from it. Here again, the conditional bound of [START_REF] Kirshanova | Lower bounds on lattice sieving and information set decoding[END_REF] cannot apply as our framework expands the k-sieve algorithms to be considered. With the algorithms proposed in previous sections, taking higher k diminishes the advantages of k-RPC filtering, until making it disappear for high k. But our algorithm structure remains a basic approach, and there are a lot of different other ways to mix k-RPC filtering, pairwise BDGL filtering, and merging the lists.

Code-based cryptography

Notations.

F q denotes a q-ary finite field. Vectors are in raw notation, written in bold and their coordinates are in plain, with x = (x i ) i . The weight considered in this chapter is the Hamming weight denoted |x| := |{i : x i ̸ = 0}|. For a vector x = (x 0 , . . . , x n-1 ), we denote by x | [i,j] the vector (x i , . . . , x j-1 ) restricted on coordinates i to j -1. For a matrix H we denote by H ⊤ its transpose. For x = (x 0 , . . . , x n-1 ) ∈ F n q and M = (M i,j ) 0≤i<r,0≤j<n-1 ∈ F r×n q , we define x ⋆ M := (x j M i,j ) 0≤i<r,0≤j<n their row-wise star product.

Code problems and Wave

Definition 6.1 (Code [n, k] q ). A linear code C of length n and dimension k over F q is a k-dimensional subspace of F n q . The elements of C are called codewords. The rate of C is defined as k/n. A matrix

G ∈ F k×n q verifying C = {xG | x ∈ F k
q } is called a generator matrix of C, and a matrix H ∈ F

(n-k)×n q verifying C = {y ∈ F n q | yH ⊤ = 0} is called a parity check matrix of C. For any y ∈ F n q , the vector yH ⊤ is called the syndrome of y (relatively to H). The dual code of

C is C ⊥ = {xH | x ∈ F n-k q }.
Problem 6.2 (Decoding Problem -DP H,s,w ). Given a parity check matrix H ∈ F (n-k)×n q , a syndrome s ∈ F n-k q and a target weight w ∈ [|0, n|], find a vector e ∈ F n q such that |e| = w and eH ⊤ = s.

The problem DP H,s,w is hard on average for H uniformly distributed in F

(n-k)×n q and s = eH ⊤ with e a uniform vector in F n q of weight |e| = w. The best known algorithms have a polynomial complexity when q-1 q (n -k) ≤ w < k + q-1 q (n -k), and exponential otherwise. Notice that to find a codeword with a given target weight, one can solve an instance of DP H,s=0,w . This problem is believed to be as hard as DP H,s,w with an arbitrary s. Proposition 6.3. For a uniformly random matrix H ∈ F (n-k)×n 3

, we expect the solutions to the DP H,s,w problem to be on average n w

2 w 3 n-k .
Proof. There are n w 2 w words of length n and weight w in F 3 . For some e ∈ F n 3 and H ∈ F

(n-k)×n 3

, the vector eH ⊤ has 3 n-k possible values, so the probability that for a given e it gives the correct one is 1 3 n-k .

Remark. There does not necessarily exist a solution to generic instances of the DP problem. But in the Wave settings, there is always at least one solution on average, and there are even exponentially many ones. Let us introduce some notions about code specific to the Wave signature scheme [START_REF] Debris-Alazard | Wave: A New Family of Trapdoor One-Way Preimage Sampleable Functions Based on Codes[END_REF].

Definition 6.4 (Generalized ternary (U, U + V )-code). We consider integers n, k, k U , k V with n even such that n > k > 0, k = k U + k V , 0 < k U < n/2 and 0 < k V < n/2. For i from 0 to n/2, let a = (a i ) i , b = (b i ) i , c = (c i ) i and d = (d i ) i denote vectors in F n/2 3 such that ∀i ∈ [0, n/2], a i c i ̸ = 0 and a i d i -b i c i ̸ = 0.
The ternary linear codes U (resp. V ) are of length n/2 and dimension k U (resp. k V ) and admits generator matrix G U and parity check matrix

H U ∈ F (n/2-k U )×n/2 3 (resp. G V and H V ∈ F (n/2-k V )×n/2 3
). Then, the generalized ternary (U, U +V )-code C associated to (H U , H V , a, b, c, d) has the following parity check matrix

H = d ⋆ H U -b ⋆ H U -c ⋆ H V a ⋆ H V .
The dual of code associated to (

H U , H V , a, b, c, d) is a (U, U + V )-code associated to (G U , G V , -c, d, a, -b).
Definition 6.5 (Type-U and type-V codewords). We consider a generalized ternary (U, U + V )-code C and retake the above notations. Given a chosen target weight t, we call a type-U codeword in C a word u ∈ U of form ⃗ u = (a ⋆ u∥c ⋆ u) and of weight |u| = t/2. And a type-V codeword in C is a word v ∈ V of form v = (b ⋆ v∥d ⋆ v) and of weight |v| = t/2.

Wave uses a permuted generalized ternary (U, U + V )-code of length n and dimension k admitting a parity check matrix H ∈ F (n-k)×n 3 that constitutes the public key. Are also fixed a weight w, and dimensions k U for code U and k V for V . The signature of a message m by Wave is an e ∈ F n 3 such that |e| = w and

eH ⊤ = h(m) ∈ F (n-k) 3
, where h is a hash function. A signer with their secret key U, V can use them to efficiently compute such a e to sign their message m. Proposition 6.6 ([Sen23] p.6). Consider a generalized ternary (U, U +V )-code C whose code U has dimension k U and V dimension k V . For a target weight t, we expect the number of type-U codewords of C to be on average n/2 t/2

2 t/2
3 n/2-k U , and the number of type-V codewords of C to be on average n/2 t/2

2 t/2 3 n/2-k V .
Key attacks. From the proposition just above, for some values of weight t the number of type-U codewords is higher than those expected for a random code, given by Proposition 6.3. Then, one can use this fact to exhibit a type-U or type-V codeword, that provides a distinguisher of the Wave public key from the uniform, namely solving the DWK n,k U ,k V problem. This is the goal of key attacks on Wave. Notice that one can run this attack directly on the (U, U + V )-code but also on its dual code. We draw the attention of the reader to the work of [START_REF] Sendrier | Wave Parameter Selection[END_REF] for further details on type-U and type-V words.

Problem 6.7 (The Distinguishing Wave Keys Problem

DWK n,k U ,k V ). Given H ∈ F (n-(k U +k V ))×n 3
, decide whether H has been chosen uniformly at random or among parity-check matrices of permuted generalized (U, U + V )-codes where U has dimension k U , and V dimension k V .

Message attacks. Another way to attack Wave is by forging a message-signature pair (e, s) ∈ F n 3 × F n-k 3 such that |e| = w and eH ⊤ = s. This consists in solving the DOOM n,k,w problem, which is hard if DP n,k,w is hard. This problem was introduced in [JJ02] for F 2 and [START_REF] Sendrier | Decoding one out of many[END_REF] presented an approach for solving it. Problem 6.8 (Decoding One Out of Many DOOM n,k,w ). Given an arbitrary large list S of syndromes in

F n-k q
, a parity check matrix H ∈ F

(n-k)×n q and a target weight w, find s ∈ S and e ∈ F n q such that |e| = w and eH ⊤ = s.

Information Set Decoding (ISD) Framework

Attacks on the Decoding Problem are commonly 1 based on the Information Set Decoding (ISD) framework that received several refinements. Introduced by Prange [START_REF] Prange | The use of information sets in decoding cyclic codes[END_REF], the idea is to pick a random subset of indices, that gives a submatrix H ′′ and subsyndrome s ′′ , compute the unique e ′′ such that e ′′ H ′′ = s ′′ , and repeat the process until it forms a complete e with good weight |e| = w. Stern and Dumer [Ste88;[START_REF] Dumer | On minimum distance decoding of linear codes[END_REF] improved it by taking advantage of the Generalized Birthday Paradox, and Schroeppel and Shamir [START_REF] Schroeppel | (2 n/4 ) Algorithm for Certain NP-Complete Problems[END_REF] extended this idea by using Wagner's approach [START_REF] Wagner | A generalized birthday problem[END_REF]. We use here a framework similar to [START_REF] Finiasz | Security Bounds for the Design of Code-based Cryptosystems[END_REF], which uses the parity check matrix instead of the generator matrix. Another variant uses representation techniques [START_REF] May | Decoding random linear codes in O(2 0.054n )[END_REF][START_REF] Becker | Decoding Random Binary Linear Codes in 2 n/20 : How 1 + 1 = 0 Improves Information Set Decoding[END_REF], but this refinement only provides a very slight gain in the Wave setting as shown in [START_REF] Bricout | Ternary Syndrome Decoding with Large Weight[END_REF]. With nearest-neighbour techniques [MO15; BM17; BM18; Car+22] the gain in asymptotic factors is compensated by a high overhead. For these reasons, we will not deal with these techniques in this thesis and restrict our cryptanalysis to algorithms [Pra62; Dum91; SS81]. We refer the reader to [START_REF] Debris-Alazard | Code-based Cryptography: Lecture Notes[END_REF] for a more detailed introduction to code-based theory and ISD algorithms, and more specifically for the successive generalizations of the ISD algorithms you may look at [START_REF] Etinski | Generalized Syndrome Decoding Problem and its Application to Post-Quantum Cryptography[END_REF].

To solve the problem DP H,s,w , the idea behind ISD is to rewrite H into a systematic form and then to solve an easier instance DP H ′′ ,s ′′ ,p , where H ′′ ∈ F and p the target weight of e ′′ . We need to find many solutions e ′′ ∈ F k+ℓ q to the subproblem DP H ′′ ,s ′′ ,p to hope to get one of them that gives a complete solution e = (e ′ ∥e ′′ ) ∈ F n 3 to the DP H,s,w problem. In order to analyse the complexity of the ISD framework, we will need the following lemma. Lemma 6.9. Let e ∈ F n 3 be a vector of weight w and parameters ℓ, p. Let us define the subvectors e ′ ∈ F n-k-ℓ 3 and e ′′ ∈ F k+ℓ 3 such that e = (e ′ ∥e ′′ ). We say that e is well cut if |e ′ | = w -p and |e ′′ | = p. The probability that a random e ∈ F n 3 of weight w is well cut is .

P rGoodCut = k + ℓ p n -k -ℓ w -p n w . ( 6 
The term on the left inside the max is the complexity when only one iteration of Steps 1-4 in the ISD suffices, while the term on the right is the one for several iterations.

Algorithm 17 Classical ISD

Input: H 0 ∈ F n×(n-k) 3 , syndrome s ∈ F n-k 3 , weight w. Parameters ℓ ∈ [0, n -k] and p ∈ [max{0, w -(n -k -ℓ)}, min{w, k + ℓ}] Output: e ∈ F n
3 such that eH ⊤ 0 = s and |e| = w. 1: Pick a random permutation of columns π and apply H ← π(H 0 ) 2: Apply a partial Gaussian Elimination on H to transform it into a systematic form

H = I n-k-ℓ H ′ 0 H ′′ ∈ F n×(n-k) q
where H ′ ∈ F (k+ℓ)×(n-k-ℓ) q and H ′′ ∈ F (k+ℓ)×ℓ q

, and a syndrome s = (s ′ ∥s ′′ ) ∈ F n-k q with s ′ ∈ F n-k-ℓ q and s ′′ ∈ F ℓ q . 3: Solve the subproblem DP H ′′ ,s ′′ ,p : Construct a list of vectors (e ′′ , e ′′ H ′′⊤ ) ∈ F k+ℓ q × F ℓ q such that |e ′′ | = p and e ′′ H ′′⊤ = s ′′ . 4: Test step. For each e ′′ found during Step 3, recover the complete vector e = (e ′ ∥e ′′ ) that satisfies eH ⊤ = s, and check if |e| = w. Proof. We use the same notations as above.

Steps 1-2. Applying a random permutation of columns and a partial Gaussian elimination on H can be done in polynomial time.

Step 3. This step takes time T DP H ′′ ,s ′′ ,p that depends on the choice of the subroutine. It returns N bSolF ound solutions to the DP H ′′ ,s ′′ ,p subproblem.

Step 4 From an e ′′ ∈ F k+ℓ 3 such that e ′′ H ′′⊤ = s ′′ , one can efficiently compute e ′ = s ′ -e ′′ H ′⊤ ∈ F n-k-ℓ

3

. The vector e = (e ′ ∥e ′′ ) then satisfies eH ⊤ = s. There are N bSolF ound solutions that need to be checked for weight. The check time is dominated in the sum by the time of Step 3.

Step 5. Suppose there is a precise solution e that we want to find where e = (e ′ ∥e ′′ ) with e ′ ∈ F k+ℓ 3 and e ′′ ∈ F n-k-ℓ

3

. The probability that e is "well cut" i.e. for e there is |e ′ | = w -p and |e ′′ | = p, is given by Lemma 6.9. Then, supposing e is well cut, one iteration of steps (1-4) returns a list containing a fraction To get a solution with probability 1 -o(1), one has to repeat steps (1-4) a number 1/P rF indSol of iterations.

Once we have found a solution e such that eH ⊤ = s, then π -1 (e)H ⊤ 0 , and this achieves the algorithm.

Putting everything together gives the result.

Quantum ISD algorithm.

Notations. We recall that given a quantumly accessible list L, ind L (x) denotes the index of element x in the list L. The quantum superposition of a list L is the quantum state

|ψ L ⟩ = 1 √ |L| x∈L |ind L (x)⟩|x⟩ (See Definition 2.6).
Theorem 6.11. We are given an algorithm that constructs a quantum superposition of N bSolF ound solutions to DP H ′′ ,s ′′ ,p in time T DP H ′′ ,s ′′ ,p , among the N bSol(DP H ′′ ,s ′′ ,p ) total solutions to this subproblem. P rGoodCut is defined in Proposition 6.9, and N bSol(DP H,s,w ) denotes the number of solutions to DP H,s,w . Then, Algorithm 18 solves DP H,s,w in quantum time 

T DP = max
= I n-k-ℓ H ′ 0 H ′′ ∈ F n×(n-k) q
where H ′ ∈ F (k+ℓ)×(n-k-ℓ) q and H ′′ ∈ F (k+ℓ)×ℓ q

, and a syndrome s = (s ′ ∥s ′′ ) ∈ F n-k q with s ′ ∈ F n-k-ℓ q and s ′′ ∈ F ℓ q . 3: Solve the subproblem DP H ′′ ,s ′′ ,p : Apply the procedure that constructs in quantum superposition a list L of e ′′ ∈ F k+ℓ 3 such that |e ′′ | = p and e ′′ H ′′⊤ = s ′′ , i.e.

|0⟩ → 1

|L| |ind L (e ′′ )⟩|e⟩.

The vectors e in the second register then satisfy eH ⊤ = s. Apply Grover, iterating on the operation |0⟩ → |Ψ⟩, to only keep the e's in the superposition which are of weight w. 5: Apply a Amplitude Amplification on steps 1-4 to find a good permutation π in Step 1 with high probability. 6: Measure e. Return e 0 = π -1 (e). It satisfies e 0 H ⊤ 0 = s and |e 0 | = w.

Proof. Steps 1,2. These steps do not change from the classical version and are efficiently done.

Step 3. This operation takes time T DP H ′′ ,s ′′ ,p that depends on the choice of the subroutine. It returns a quantum superposition |ψ L ⟩ over |L| = N bSolF ound solutions to the DP H ′′ ,s ′′ ,p subproblem. All the y in tuples in L in this state are equal to y = s ′′ as it is an output condition of the subroutine. So we can discard this last register that can now be considered classical.

Step |ind L (e ′′ )⟩|e⟩.

This state is a uniform quantum superposition over candidate solutions e ∈ F n 3 that satisfy eH ⊤ = s. We need to only keep those that are of good weight w, so we apply a Grover search [START_REF] Grover | A fast quantum mechanical algorithm for database search[END_REF] Step 5. Suppose there is a precise solution e that we want to find where e = (e ′ ∥e ′′ ) with e ′ ∈ F k+ℓ 3 and e ′′ ∈ F n-k-ℓ 3 . Lemma 6.9 gives the probability that e is "well cut", i.e. |e ′ | = w -p and |e ′′ | = p. Then, supposing e is well cut, one iteration of steps (1-4) returns a list in quantum superposition containing a fraction N bSolF ound N bSol(DP H ′′ ,s ′′ ,p ) of the solutions to the DP H ′′ ,s ′′ ,p subproblem. One iteration of Steps 1-4 returns a solution with probability P rF indSol whose expression is in Equation 6.2. To get a solution with a probability close to 1, we apply an amplitude amplification on this process, which takes 1/ √ P rF indSol iterations. Then we measure and find a solution to DP H,s,w .

DOOM variant of the ISD.

[Sen11] presented an approach for solving more efficiently the DOOM problem. Instead of having only one syndrome s in the input of the ISD frameworks 17 and 18, the adversary takes an arbitrarily large list S of syndromes. At the end of the algorithm, the adversary wins if they get a pair (e 0 , s) ∈ F n 3 × S such that e 0 H 0 = s. The subroutine of the third step is also adapted in function: it takes in input a list S ′′ of the restricted syndromes s ′′ , and outputs solutions (e ′′ , s ′′ ) ∈ F k+ℓ 3 × F ℓ 3 to the subproblem, where s ′′ are restrictions of the s ∈ S on their ℓ last coordinates. The time complexity of this variant stays the same as the one given in Theorem 6.10 for classical and in Theorem 6.11 for quantum. This approach will be applied and explained in more detail in Section 6.4 in the context of message attacks on Wave.

List merging

Subroutines within the ISD algorithms will make great use of list merging. Merging two lists L 1 and L 2 on the b first coordinates means constructing the following list.

L 1 ▷◁ b L 2 := (e 1 + e 2 , y 1 + y 2 ) : (e 1 , y 1 ) ∈ L 1 , (e 2 , y 2 ) ∈ L 2 , (y 1 + y 2 ) | [0:b] = 0 (6.3)
Size of the merged list.

For lists L 1 and L 2 randomly sampled in

F n 3 × F ℓ 3 , their merged list is of expected size |L 1 ▷◁ b L 2 | = |L1|•|L2| 3 b
on average. Then for lists L 1 , L 2 already merged so that their vectors have already their b 0 first coordinates at zero, we have on average for b ≥ b 0 ,

|L 1 ▷◁ b L 2 | = |L 1 | • |L 2 | 3 b-b0 . (6.4)
Classical merging.

We want to construct the merged list L = L 1 ▷◁ b L 2 . We sort L 1 by lexicographic order according to its second tuple elements y 1 , which takes time 

|L 1 | • log(|L 1 |).
O(|L 1 |, |L 2 |, |L 1 ▷◁ b L 2 |).
Quantum merging.

We are given a list L 1 classically stored and assumed quantumly accessible, and a procedure |0⟩ → |ψ L2 ⟩ that returns in time T the uniform quantum superposition on the list L 2 ,

|ψ L2 ⟩ = 1 |L 2 | (e2,y 2 )∈L2 |ind L2 (e 2 )⟩|e 2 ⟩|y 2 ⟩. (6.5) 
We sort L 1 in the lexicographic order according to its second tuple elements y 1 , which takes time |L 1 | • log(|L 1 |). We define the following function:

match L1 (e 2 , y 2 ) = (e 1 , y 1 ) ∈ L 1 such that (y 1 + y 2 ) | [0:b] = 0 if it exists, ⊥ otherwise.
If several such (e 1 , y 1 )'s match, the function will arbitrarily return the first one by lexicographic order. However, if lists L 1 , L 2 are random and there is |L 1 | ≤ |L 2 |, then there will be on average at most one such tuple in L 1 . So we make this assumption by simplicity from here2 . The function match L1 is efficiently implementable by performing a dichotomic search as L 1 is sorted and assumed quantumly accessible. We then apply this circuit on |ψ L2 ⟩ using an auxiliary register:

1 |L 2 | (e2,y 2 )∈L2
|ind L2 (e 2 )⟩|match L1 (e 2 , y 2 )⟩|e 2 ⟩|y 2 ⟩.

While the classical merging ran a for loop on L 2 to check, in the quantum model we replace it with Grover's search [START_REF] Grover | A fast quantum mechanical algorithm for database search[END_REF] that iterates on the procedure |0⟩ → |ψ L2 ⟩. We define the Grover check function as follows: Given (e 2 , y 2 ), it returns 1 if match L1 (e 2 , y 2 ) ̸ =⊥, and 0 else. Applying Grover requires at most |L 2 | iterations, and returns the following state, where the non-⊥ elements are removed from the superposition.

1 

|L 1 ▷◁ b L 2 | (e2,y 2 )∈L2

Key attacks on DWK

We are given a public (U, U + V )-code with generator matrix G ∈ F (k U +k V )×n 3

and parity check matrix

H ∈ F (n-(k U +k V ))×n 3
. The point of this attack is to solve the Distinguishing Wave Keys Problem 6.7, which can be done by finding a type-U or type-V word e of weight t in the public code or its dual. [START_REF] Sendrier | Wave Parameter Selection[END_REF] pointed out that type-U words outnumber type-V ones, so the attacker can restrain their search to only type-U words as they are easier to find. The parameter t can be chosen as the attacker wants under the condition that the number of such words has to be higher than in a random code. The former condition, by combining Propositions 6.3 and 6.6, is equivalent to

3 n-2•k V > n t 2 t . (6.7)
So the time complexity of this key attack is the minimum between the time of solving the problems DP H,0,t and DP G,0,t ′ , respectively to find a type-U word in the public code and in its dual, with t and t ′ are freely chosen such that they respect Equation 6.7. In this section, we present how to solve DP H,0,t and these algorithms can directly be adapted to the dual version.

Classical key attack

The best known classical key attack on Wave is due to [START_REF] Sendrier | Wave Parameter Selection[END_REF], who applies Dumer's algorithm [START_REF] Dumer | On minimum distance decoding of linear codes[END_REF] within the ISD framework [START_REF] Finiasz | Security Bounds for the Design of Code-based Cryptosystems[END_REF]. We start by constructing the following lists.

E 1 := {(x 1 ∥ 0 k+ℓ 2 ) | x 1 ∈ F k+ℓ 2 3 , |x 1 | = p/2} ; L 1 := {(e ′′ 1 , e ′′ 1 H ′′⊤ ) : e ′′ 1 ∈ E 1 } E 2 := {(0 k+ℓ 2 ∥ x 2 ) | x 2 ∈ F k+ℓ 2 3 , |x 2 | = p/2} ; L 2 := {(e ′′ 2 , e ′′ 2 H ′′⊤ ) : e ′′ 2 ∈ E 2 } (6.8)
Both these initial lists are of size

(k + ℓ)/2 p/2 2 p/2 = O k + ℓ p 1/2
2 p/2 . (6.9)

We apply classical merging from Lemma 6.12 on the lists L 1 and L 2 to get the merged list L 1 ▷◁ ℓ L 2 filled with elements of form (e ′′ , e ′′ H ′′⊤ ) = (e ′′ , 0). We can see in Equation 6.8 that vectors e ′′ 1 ∈ E 1 and e ′′ 2 ∈ E 2 ]) instead of a classical while loop. This makes a quadratic gain over the number of iterations of the algorithm. Within the ISD framework, we also replace the classical Dumer subroutine with its quantum merging variant. Let us define the following lists. Note that the list L 2 does not need to be classically written at any moment of the algorithm.

E 1 := {(x 1 ∥ 0 2(k+ℓ) 3 ) | x 1 ∈ F k+ℓ 3 3 , |x 1 | = p/3} ; L 1 := {(e ′′ 1 , e ′′ 1 H ′′⊤ ) : e ′′ 1 ∈ E 1 } E 2 := {(0 k+ℓ 3 ∥ x 2 ) | x 2 ∈ F 2(k+ℓ) 3 3 , |x 2 | = 2p/3} ; L 2 := {(e ′′ 2 , e ′′ 2 H ′′⊤ ) : e ′′ 2 ∈ E 2 } (6.10)
The lists are no longer of equal size. Indeed, to balance the running times, the list in quantum superposition is taken quadratically larger than the classical one:

|L 1 | = O k + ℓ p 1/3 2 p/3 and |L 2 | = |L 1 | 2 . (6.11)
The algorithm starts by classically constructing the list L 1 . It also constructs the uniform quantum superposition over the elements of L 2 : 

|ψ L2 ⟩ = 1 √ |L2| (e2,y 2 )∈L2
,k V in time T = max k + ℓ p 1/2 2 p/2 , 3 n/4-k U /2 n t 1/4 2 t/4-p/2 n -k -ℓ t -p 1/2 .
Proof 

Numerical results

The time complexity is optimal when the list L 2 is of maximal size, so when p is fixed such that k + ℓ p 1/3 2 p/3 = 3 ℓ . Parameters ℓ and t are obtained by numerical optimization to minimize the time complexity of the attack. We give here the optimal ISD parameters and the associated time complexities for each set of parameters of Wave given in Table 6.1. The time complexity is optimal for t ≈ 0.21, l ≈ 0.0052 and p ≈ 0.0024. The ISD algorithm with a quantum Dumer subroutine solves DWK n,k U ,k V for the set of Wave parameters (I) in time 2 0.0094n+o(n) i.e. 2 80 bits of quantum security; for the set (III) in time 2 0.0096n+o(n) i.e. 2 120 ; and for the set (V) in time 2 0.0097n+o(n) i.e. 2 160 . The slight differences in the time exponents come from the fact that the dimensions k U , k V are not exactly linear in n. These results are summarized in the second column of Table 6.3.

Message attacks on DOOM

This attack consists in forging a signature by solving the problem DOOM n,k,w (Problem 6.8) that we remind here: Given a list S of syndromes in F n-k 3 and a matrix H, find e ∈ F n 3 and s ∈ S such that eH ⊤ = s. Once again we use the ISD framework, but here we use Wagner algorithm [START_REF] Schroeppel | (2 n/4 ) Algorithm for Certain NP-Complete Problems[END_REF] as a subroutine instead of just Dumer's [START_REF] Dumer | On minimum distance decoding of linear codes[END_REF].

Classical message attack

The best known classical message attack algorithm is the smoothed Wagner algorithm from [START_REF] Bricout | Ternary Syndrome Decoding with Large Weight[END_REF] based on the approach from [START_REF] Sendrier | Decoding one out of many[END_REF] to solve DOOM. Choose parameter a the tree depth of Wagner algorithm. Wagner algorithm [START_REF] Schroeppel | (2 n/4 ) Algorithm for Certain NP-Complete Problems[END_REF] can be seen as a generalisation of Dumer [START_REF] Dumer | On minimum distance decoding of linear codes[END_REF], where taking Wagner with a = 1 exactly describes Dumer's algorithm.

First lists.

We start by constructing the first-level lists L

(0) 1 , . . . , L (0) 2 a -1 of size |L (0) i | = 3 ℓ/a
, where for i = 1 to 2 a -1 we sample

E (0) i ⊆ (0 k+ℓ 2 a ∥...∥0 k+ℓ 2 a -1 ∥ x ith block ∥0 k+ℓ 2 a -1 ∥...∥0 k+ℓ 2 a -1 ) | x ∈ F k+ℓ 2 a -1 3 , |x| = p 2 a -1 . L (0) i := ((e ′′ , 0), e ′′ H ′′⊤ ) : e ′′ ∈ E (0) i (6.12)
And with the DOOM approach, the last list is filled with 3 ℓ/a syndromes restricted on their ℓ last coordinates

L (0) 2 a ⊆ ((0, s ′′ ), -s ′′ ) : s = (s ′ ∥s ′′ ) ∈ S, s ′ ∈ F n-k-ℓ 3 , s ′′ ∈ F ℓ 3 . (6.13)
The aim to store elements in the form ((e ′′ , s ′ ), e ′ H ⊤ -s ′′ ) is to merge them on their last elements and get at the end some for which e ′′ H ⊤ -s ′′ = 0 and be able to recover the corresponding e ′′ and s ′′ . To be formal, let us precise the tuple addition (e 1 , s 1 ) + (e 2 , s 2 ) = (e 1 + e 2 , s 1 + s 2 ).

Notice that we need the list size to be lower than the number of words of weight p we can generate from

F k+ℓ 2 a -1 3 
, i.e. we require

3 ℓ/a ≤ (k + ℓ)/(2 a -1) p/(2 a -1) 2 p/(2 a -1) .
Actually, as [START_REF] Bricout | Ternary Syndrome Decoding with Large Weight[END_REF] has already shown and that we recover in our numerical optimizations, the optimal choice for p in high weight w is to take it at the maximum, i.e. p = k + ℓ. Then by rewriting the condition on a with this value of p gives this simplified formula:

3 ℓ/a ≤ 2 k+ℓ 2 a -1 .
(6.14)

Merging tree.

For Wagner algorithm, we consider a binary merging tree with at the first level the lists

L (0) 1 , . . . , L (0) 
2 a -1 and L (0) 2 a defined in Equations 6.12 and 6.13. To pass from the j-th level to the (j + 1)-th we merge pairwise lists using Lemma 6.12, for odd i: L 

(j+1) (i+1)/2 := L (j) i ▷◁ (j+1)ℓ/a L ( 
(j+1) (i+1)/2 | = |L (j) i |•|L (j) i+1 | 3 ℓ/a
, so by recurrence it remains constant at 3 ℓ/a on average. Please refer to Figure 6.2 to visualize the merging process.

At the end of Wagner algorithm, we get a final list L (a)

1 filled with tuples in form (e ′′ , s ′′ , e ′′ H ⊤ -s ′′ = 0), and by construction, we have |e ′′ | = p. At each level in the merging tree, the list sizes are 3 ℓ/a on average, so at the end we find as many solutions (e ′′ , s ′′ ) to the DP H ′′ ,s ′′ ,p subproblem. 

i , L

for i = 1 to 2 a using Equation 6.12. 2: for j = 0 to a -1 do 3:

for i = 1 to 2 (a-j) do 4: Merge L (j+1) (i+1)/2 = L (j) i ▷◁ (j+1)ℓ/a L (j) i+1 . 5: return L (a) 1
Proposition 6.16. Let us fix parameters ℓ, p, a such that 3 ℓ/a ≤ 2 k+ℓ 2 a -1 (See Equation 6.14). There exists a classical algorithm that solves DOOM n,k,w in time

T = max        3 ℓ/a , 3 n-k-ℓ 2 w-p n -k -ℓ w -p        .
Proof. By Lemma 6.12, each merging step takes time 3 ℓ/a , so Wagner's subroutine 19 takes time T DP H ′′ ,s ′′ ,p = 3 ℓ/a to find N bSolF ound = 3 ℓ/a solutions. By Proposition 6.3, the solutions to the DP problem are at number

N bSol(DP H,s,w ) = n w 2 w
3 n-k , and the solutions to the subproblem are at number N bSol(DP H ′′ ,s ′′ ,p ) = k + ℓ p 2 p . We apply the classical ISD algorithm 17 with a Wagner subroutine, and the Theorem 6.10 with these values directly conducts to the result.

Smoothing

The discreteness of integer parameter a makes the time complexity of Wagner algorithm evolve by stairs, which is not optimal for the majority of its points. [START_REF] Bricout | Ternary Syndrome Decoding with Large Weight[END_REF] introduced a smoothed Wagner algorithm, whose idea is to start with longer lists and a stricter first merging. The lists L (0) i are merged pairwise on m bits ℓ

3 ℓ/a        e ′′ 1 H ′′⊤ • • • e ′′ 7 H ′′⊤ s ′′ L (0) 1 L (0) 2 L (0) 3 L (0) 4 L (0) 5 L (0) 6 L (0) 7 S ▷◁ ℓ/a ▷◁ ℓ/a ▷◁ ℓ/a ▷◁ ℓ/a ℓ/a L (1) 1 L (1) 2 L (1) 3 L (1) 4 0 0 0 0 ▷◁ 2ℓ/a ▷◁ 2ℓ/a L (2) 1 L (2) 2 0 0 2ℓ/a aℓ/a = ℓ ▷◁ ℓ L (3) 1 e ′′ H ′′⊤ -s ′′ = 0 (0) (1) 
(2) (a = 3) (Levels j) Figure 6.2: Wagner subroutine for a = 3. There are 2 a -1 = 7 initial lists of e ′′ H ′′⊤ , plus the syndromes list S. At each level, the lists are merged on ℓ/a more coordinates, until the final list L (a)

1 filled with elements in the form ((e ′′ , s ′′ ), 0), where pairs (e ′′ , s ′′ ) are solutions to the DOOM k+ℓ,k,p subproblem. such that these merged lists are of size 2 λ for well-chosen m and λ. From there we merge on λ log 2 3 more coordinates at each level, until merging on all the ℓ coordinates. 

for i = 1 to 2 a -1, and L (0) 2 a using Equation 6.12.

3: for i = 1 to 2 a do 4: Merge L (1) (i+1)/2 = L (0) i ▷◁ m L (0) i+1 5: for j = 1 to a -1 do 6: for i = 1 to 2 (a-j) do 7: Merge L (j+1) (i+1)/2 = L (j)
i ▷◁ m+(j+1)λ L (j) i+1 8: return L (a) 1 Proposition 6.17. Let a be the largest integer such that 3 ℓ/a < 2 (k+ℓ)/(2 a -1) . If a ≥ 3, the classical smoothed Wagner algorithm can find 2 λ solutions to DP H ′′ ,s ′′ ,p in time O(2 λ ) with λ = 1 a -2 ℓ log(3) -2 • k + ℓ 2 a -1 . (6.16)

Proof. We restate the proof from [START_REF] Bricout | Ternary Syndrome Decoding with Large Weight[END_REF] adapted in the context of DOOM (it only changes 2 a to 2 a -1 in the formulae). We are given parameters k and ℓ, and we fix a at the largest integer such that 3 ℓ/a < 2 k+ℓ 2 a -1 to respect the requirement stated in Equation 6.14, and we suppose that a ≥ 3. At the first level in the tree, we take = 2 λ i.e. λ = 2(k + ℓ) 2 a -1 -m log 2 3 (6.17)

The (a -1) next merging steps are designed such that merging two lists of size 2 λ gives a new list of size 2 λ , which means that we merge on λ/ log 2 3 coordinates. In the final list, we have to put a constraint on all coordinates, therefore λ and m have to verify: m + (a -1) λ log 2 3 = ℓ. (6.18)

By combining Equations 6.17 and 6.18, We get the expression of λ as given in the statement of the proposition, and m = 1 a-2 2(k+ℓ)(a-3) log 23(2 a -1) -ℓ . The order a is chosen to be the largest integer such that 3 ℓ/(a-1) < 2 k+ℓ 2 a -1 , so λ and m are positive and 2 λ ≤ 2 k+ℓ 2 a -1 . Theorem 6.18. There exists a classical algorithm that solves DOOM n,k,w in time

T = max        3 ℓ 2 k+ℓ 2 a-1 1 a-2 , 3 n-k-ℓ 2 w-p n -k -ℓ w -p       
.

The left term in the max is improved in comparison with Proposition 6.16 for ISD with non-smoothed Wagner. This corresponds to the case of a single iteration of the ISD algorithm. As we said before, taking p = k +ℓ is optimal. Parameters ℓ and a are then chosen by numerical optimization. The optimal a in this setting is here a = 5 and ℓ ≈ 0.05. The optimal values of ℓ may slightly vary in function of Wave parameters due to the fact that they are not exactly linear.

Without smoothing. The ISD algorithm with Wagner's subroutine with the set of Wave parameters (I) solves DWK n,k U ,k V in time 2 0.0153n+o(n) i.e. 2 130 . For set (III) it solves it in time 2 0.0156n+o(n) i.e. 2 196 , and for set (V) in time 2 0.0158n+o(n) i.e. 2 261 .

With smoothing. The ISD algorithm with smoothed Wagner's subroutine for set (I) solves DWK n,k U ,k V in time 2 0.0151n+o(n) i.e. 2 129 . For set (III) it solves it in time 2 0.0155n+o(n) i.e. 2 194 , and for set (V) in time 2 0.0157n+o(n) i.e. 2 258 .

We see that the smoothing slightly improves the message attack on Wave and grabs a few security bits. The results with the smoothing are summarized in the third column of Table 6.3.

Previous work [START_REF] Finiasz | Security Bounds for the Design of Code-based Cryptosystems[END_REF] considered the tree depth a as a float instead of an integer, in order to give a complexity approximation of a smoothed Wagner algorithm. If we optimize the time complexity of the nonsmoothed Wagner from Proposition 6.16 with a allowed to be a float, the difference is of only one or two bits of security less in comparison with the analysis of the smoothed Wagner algorithm from [START_REF] Bricout | Ternary Syndrome Decoding with Large Weight[END_REF]. Indeed, for set (I), the number of security bits is 128, for (III) it is 192, and for (V ), 256. So considering a float a provides a tight lower bound in this setting.

Quantum message attack

Notations. We recall that given a quantumly accessible list L, ind L (x) denotes the index of element x in the list L. The quantum superposition of a list L is the quantum state |ψ L ⟩ = 1 √ |L| x∈L |ind L (x)⟩|x⟩ (See Definition 2.6).

For the quantum message attack, we combine DOOM approach from [START_REF] Sendrier | Decoding one out of many[END_REF], quantum Wagner algorithm of [START_REF] Chailloux | Classical and Quantum algorithms for generic Syndrome Decoding problems and applications to the Lee metric[END_REF] and smoothing from [START_REF] Bricout | Ternary Syndrome Decoding with Large Weight[END_REF]. The merging tree has the same structure as in the smoothed classical algorithm presented in the previous section. Quantum mergings (see Lemma 6.13) are performed on the right-most side of the tree, and classical mergings (see Lemma 6.12) are performed everywhere else. for i = 1 to 2 a -1 using Equations 6.12 and 6.13. for i = 1 to 2 (a-j) -1 do 

(2)

(3) (Levels j) for i = 1 to 2 a -1 using Equations 6.12 and 6.13. 2: Compute λ and m using Theorem 6.20. for i = 1 to 2 (a-j) -1 do 

⟩

Theorem 6.20. We are given n, k, w. Let fix parameters ℓ, p and a ≥ 3 such that 3 ℓ/a ≤ 2 k+ℓ 2 a -1 . There exists a quantum algorithm that solves DOOM n,k,w in time

T = max          3 ℓ 2 k+ℓ 2 a-1 1 a-2 , 3 n-k-ℓ 2 w-p n -k -ℓ w -p          .
Proof. The logic is the same as in the classical smoothed Wagner algorithm, but the optimal list sizes obey a different balance. The order a is chosen at the largest integer such that 3 ℓ/a < 2 k+ℓ 2 a -1 to respect the condition set in the Equation 6.14. The classical lists L (0) i for i = 1 to 2 a -1 are chosen of maximal size 2 k+ℓ 2 a -1 =: 2 γ . The list L (0) 2 a in quantum superposition is of size 2 γ ′ . The classical list L (j) i for j > 0 and 0 ≤ i < 2 a are of size 2 λ , and the quantum list for levels (j > 0) are of size 2 2λ . The classical merging from level (0) to level (1) is done on the m first elements. Now we need to choose γ, γ ′ , λ and m. The classical merging from level (0) to level (1) puts the constraint λ = 2γ -m log 2 3. And the quantum merging requires 2λ = γ ′ + γ -m log 2 3. So we can deduce from the above that λ = γ ′ -γ. For the classical part of the merging tree for level (1) and more, the constraints on λ and m remain the same as in Proposition 6.17 so their expressions are already given (respectively) by Equations 6.16 and 6.18, where λ = 1 a-2 ℓ log(3) -2(k+ℓ) 2 a -1 . The first-level classical merges take time 2 γ , the first quantum merges take time 2 max{γ, λ+γ 2 } , and all the other merges take time 2 λ , which dominates as λ ≥ γ. So the quantum smoothed Wagner subroutine takes time T DP H ′′ ,s ′′ ,p = 2 λ to construct a list in quantum superposition with 2 2 λ solutions to the DP H ′′ ,s ′′ ,p subproblem. Proposition 6.3 gives the number of solutions to the DP problem N bSol(DP H,s,w ) = n w 2 w

ℓ 2 γ    e ′′ 1 H ′′⊤ e ′′ 2 H ′′⊤ • • • e ′′ 7 H ′′⊤ s ′′            2 γ ′ ▷◁ m ▷◁ m ▷◁ m ▷◁ m ℓ/a 2 λ        0 0 0 0                2 2λ
3 n-k , and to the DP subproblem N bSol(DP H ′′ ,s ′′ ,p ) = k + ℓ p 2 p • 3 -ℓ . Theorem 6.11 with these amounts gives the time complexity of the quantum ISD algorithm with smoothed Wagner algorithm as a subroutine, and this directly leads to the result.

Numerical results.

As said before, taking p = k + ℓ is optimal. Parameters ℓ and a are then chosen by numerical optimization.

Without smoothing. Taking l ≈ 0.032 and a = 6 is optimal. The quantum ISD algorithm with quantum Wagner's subroutine with the set of Wave parameters (I) solves DWK n,k U ,k V in time 2 0.0093n+o(n) i.e. 2 79 . For set (III) it solves it in time 2 0.0096n+o(n) i.e. 2 120 , and for set (V) in time 2 0.0098n+o(n) i.e. 2 161 .

With smoothing. Taking l ≈ 0.034 and a = 6 is optimal. The quantum ISD algorithm with smoothed quantum Wagner's subroutine with the set of Wave parameters (I) solves DWK n,k U ,k V in time 2 0.0091n+o(n) i.e. 2 78 . For set (III) it solves it in time 2 0.0094n+o(n) i.e. 2 117 , and for set (V) in time 2 0.0095n+o(n) i.e. 2 156 . These results are summarized in the fourth column of Table 6.3. Table 6.2: Number of quantum security bits for message attacks. Algorithm (I) (III) (V) ISD + Wagner [START_REF] Chailloux | Classical and Quantum algorithms for generic Syndrome Decoding problems and applications to the Lee metric[END_REF] 79 120 161 Our estimation in [START_REF] Banegas | Wave Support Documentation[END_REF] 77 117 157 ISD + Smoothed Wagner (Thm. 6.20) 78 117 156

We see that quantum Wagner algorithm benefits from smoothing, by respectively decreasing the security by respectively 1, 3 and 5 security bits for sets (I), (III) and (V). And we correct the claimed quantum security level of [START_REF] Banegas | Wave Support Documentation[END_REF], whose estimation did not rely on the analysis of an explicitly described algorithm, which is now formalized by our theorem 6.20. The estimation only differs by plus or minus one security bit, and the slight underestimation in case (V) maintains the security level far from the required threshold at 128 security bits.

Discussion

Table 6.3 summarizes Wave security against all the attacks studied in this work.

The Wave parameters (recalled in Table 6.1) were chosen such that the time of both the classical attacks, on key and on message, are superior and the closest to the required number of security bits. Sendrier [START_REF] Sendrier | Wave Parameter Selection[END_REF] explained the process to deduce the optimal parameters from the tradeoff between these two classical attacks, as each one gives opposite constraints on the parameters. Table 6.3 reveals a visible gap between the minimal number of required security bits and the ones obtained for key attacks. This is a consequence of the discreteness of the Wave parameters that prevent exactly reaching the minimum number of security bits for both attacks. They may exist solutions to smooth this tradeoff to gain on the size of the key, and we let it at an open question.

For message attacks, the parameters in [START_REF] Banegas | Wave Support Documentation[END_REF] were chosen using estimations, not based on an explicitly described algorithm. Our analysis in Section 6.4 shows that there exists a classical algorithm that gets close time complexity to the lower bound from [START_REF] Finiasz | Security Bounds for the Design of Code-based Cryptosystems[END_REF] but does not reach it. For quantum message attacks, our algorithm recovered the estimated security level with a slight difference of one security bit.

We also notice that the key attack benefits more from the quantum setting than the message attacks. The reason is that Grover's algorithm has a stronger impact when there is only one search on a large range, as in Dumer's algorithm, instead of on several fragmented small ones as happens in Wagner algorithm. Notice also that quantum security is not a limiting factor. A quadratic gain, which is the best that we can get from simply applying Grover, is not even reached. Moreover, the time analysis of the quantum attacks was done without considering the extra time of QRAM operations. Future practical implementations of these attacks then can be way more demanding in running time.

Therefore the classical attacks are then what determines the security of Wave, and hence the choice of its optimal parameters. All the best known attacks at this day rely on the Decoding Problem, which is a well-studied problem. It is however an open problem to determine if there exists a better key-distinguishing attack that uses the structure of the (U, U + V )-code, potentially by avoiding going through the Decoding Problem.

Conclusion: Open problems

As each answer raised new questions during this thesis, please find below some open problems and leads for further work.

Lattice sieving

What complexities do we obtain by applying both filtering techniques from [START_REF] Becker | New directions in nearest neighbor searching with applications to lattice sieving[END_REF] and [START_REF] Chailloux | Classical and quantum 3 and 4-sieves to solve SVP with low memory[END_REF] to k-sieves? In Chapter 5, we introduced the k-RPC filtering, a new LSF technique tailored for the k-sieve. A natural extension is to combine k-RPC prefiltering and then search close vectors through usual [START_REF] Becker | New directions in nearest neighbor searching with applications to lattice sieving[END_REF] pairwise filtering. Such an algorithm will certainly give better time-memory tradeoffs than both algorithms on their own. We can in addition consider other techniques: unbalanced configurations [START_REF] Kirshanova | Quantum algorithms for the approximate k-list problem and their application to lattice sieving[END_REF] and sparsification as it was done in [START_REF] Chailloux | Lattice sieving via quantum random walk[END_REF].

What are the optimal merging trees of classical k-sieves? In Chapter 5 we presented classical algorithms for the 3 and 4-sieves, and it happened that for our two algorithms, the best strategies to merge the lists differed. If we want to generalize the k-sieve algorithm for higher k, we have to understand what is the optimal merging strategy depending on k. We have also to find which layout of the filtering layers gives the best complexities.

In practice, how do the new k-sieves perform? It would be interesting to see how practical Gauss-Sieve benefits from k-RPC in practice by implementing algorithms 13 and 14.

How much do k-sieves benefit from quantum walks? As sieving algorithms rely on a collision problem, incorporating quantum walks in sieving algorithms is very promising. Indeed, in Chapter 4 we saw that the time exponent of the SVP-solver was decreased from 2 0.265n to 2 0.257n in the quantum model with assumed efficient QRAM. So, the k-sieve might also benefit from quantum walks. Such an algorithm for k = 3 for example may give an even better time exponent than the current best attack on SVP. Do quantum algorithms exist to solve SVP in exponential time without QRAM? All SVPsolving algorithms running in super-exponential time stand in either the classical model or the quantum circuit model with QRAM. Quantum enumeration does not require QRAM, but runs in super-exponential time. No algorithm has been found that gets profit from the quantum circuit model without QRAM, and still runs in exponential time. As the quantum circuit model is the one that will happen with the highest probability and in the closest future, it can be interesting to look at what can be done without QRAM, or at least without assuming efficient QRAM. A lead would be not to access lattice vectors from a database, but to construct a quantum sampling of vectors by adapting Klein's algorithm [START_REF] Klein | Finding the closest lattice vector when it's unusually close[END_REF] to be usable by Grover's search [START_REF] Grover | A fast quantum mechanical algorithm for database search[END_REF], and then find collisions through the approach proposed in [START_REF] Jaques | Low-gate Quantum Golden Collision Finding[END_REF].

Can quantum filtering improve sieving algorithms? [START_REF] Heiser | Improved Quantum Hypercone Locality Sensitive Filtering in Lattice Sieving[END_REF] introduced a way to do quantumly the search of the nearest filters, which was previously done classically including in quantum algorithms. Our attempt to use their technique in our quantum walk algorithm from Chapter 4 was not fruitful. However, it may give something interesting to use it within the k-sieve framework presented in Chapter 5. 91

  Figure 1.1: Encryption protocol: Bob sends a message non-understandable to anyone but Alice. Both agree on an efficiently computable one-way function f (SK) = P K such that Decrypt SK = Encrypt -1 P K .
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 21 Figure 2.1: Geometrical representation of the qubit |ψ⟩ = α|0⟩ + β|1⟩ on the Bloch sphere, where α = cos θ 2

Figure 2 . 2 :

 22 Figure 2.2: Entanglement circuit. The left gate is the Hadamard H, and the right two-qubit is a CNOT-gate, where the above qubit is the controlled one.
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 23 Figure 2.3: Quantum circuit in Shor's algorithm. The right-most boxes represent the measurements.

Figure 2

 2 Figure 2.4: Geometrical representation of the initial state of the N -qubit register.

  which corresponds to a reflection through |B⟩ followed by a reflection through |U ⟩. The algorithm starts with |U ⟩ and at each iteration of G, we move forward by the angle 2θ. Each application of G performs only one query to the oracle O x . H ⊗n RH ⊗n , reflection through |U ⟩. Now we have to choose the number k, the number of iterations of G. By the above, the probability of measuring a good solution (state |G⟩) after k applications of G is Pr(k) = sin (2k + 1)θ 2 .
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 27 Figure 2.7: Quantum circuit of the amplitude amplification where AA = (ARA -1 )O f .
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 2 Figure 2.10: Johnson graph J(5, 2). There is a set S of n = 5 points. Each vertex contains r = 2 elements from S. And there is an edge between two vertices iff. they differ by exactly one element. (Author of the figure: Tilman Piesk)
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 3 Figure 3.2: Bases (b 1 , b 2 ) and (b ′ 1 , b ′ 2 ) generate the same lattice L.
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 34 Figure 3.4: Distribution of norms of uniformly random vectors in the ball of radius 1 and dimension n. The function of density for the vector norm x of dimension n is f n (x) = V olumeBall(n,x)V olumeBall(n,1) = x n , with V olumeBall(n, x) = π n/2 x n

Figure 3 . 6 :

 36 Figure 3.6: The vector ⃗ x is in the filter of center ⃗ s and angle α. The blue arrow represents the non-normalized vector sin(α)⃗ y.

Figure 3 . 7 :

 37 Figure 3.7: The spherical cap H ⃗ x1,α is the intersection of the red area with the sphere S n-1 , and H ⃗ x2,β is the intersection of the blue area with S n-1 . The wedge H ⃗ x1,α ∩ H ⃗ x2,β with ⟨⃗ x 1 |⃗ x 2 ⟩ = cos(θ) in purple at the intersection of the two caps.
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 3 Figure 3.8: Space and time asymptotic complexities for the naive k-sieve. The space N = 2 mn+o(n) decreases when k increases, but the running time N k = 2 tn+o(n) explodes. The size N will be expressed in Theorem 3.28.

  For I ⊂ [k], we denote by C[I] the |I| × |I| submatrix of C obtained by restricting C to the rows and columns whose indexes are in I.

  Proposition 4.1. Consider c α ∈ [0, 1] and angle α ∈ [π/3, π/2] satisfying N • V n (α) = N cα . We are given a subroutine FindAllReducing that finds N ζ in time T (FAR).The Algorithm 9 with this subroutine and parameter c α runs in timeT = NbRep • (N + NbFilters • T (FAR))Notice that the above running time only depends on c α (since α and ζ derives from c α ) and on the running time of the FindAllReducing subroutine. This framework encompasses state-of-the-art classical and quantum sieving algorithms.

  our algorithm finds Θ(N ζ ) solutions in time N ζ T 1 and if ζ ≤ 0, our algorithm finds one solution in time T 1 with probability Θ(N -ζ ).

α

  ≈ 1.1388 rad, θ * α ≈ 1.1661 rad, β ≈ 1.3745 rad ρ 0 ≈ 0.0603, ζ ≈ 0.0745.

( a )

 a Time in function of available quantum memory. (b) QRAM in function of available quantum memory for minimized time.

Figure 4 . 2 :

 42 Figure 4.2: Tradeoff for fixed quantum memory.

  (a) Time in function of available QRACM. (b) Quantum memory in function of available QRACM for minimized time.

Figure 4 . 3 :

 43 Figure 4.3: Tradeoff for fixed QRACM.

. 5 )

 5 Theorem 4.10. [Bon+23, Appendix C] There exists a quantum algorithm that heuristically solves SVP in time 2 0.2563n+o(n) . Proof. Redoing the numerical optimization gives parameters c α ≈ 0.3875 ; c V ≈ 0.27, which gives ζ ≈ 0.1568 and ρ 0 ≈ 0.1214. The costs of the quantum walk become S ≈ N 0.27 ; ϵ ≈ N -0.2 ; δ ≈ N -0.27 ; U = C = 1.

k i=1 ⃗ x i 2 ⩽ 1 ,

 21 hence the wanted result. Notice also that we can translate the norm condition k i=1 ⃗ x i 2 ⩽ 1 directly into a norm condition of the residual vectors k i=1 ⃗ y i 2 ⩽ 1 sin 2 (α) .
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 53 Figure 5.3: Time T = 2 tn+o(n) for classical 3-sieves as a function of available memory 2 mn+o(n) = 2 M . (Theorem 5.11).

Figure 5

 5 Figure 5.4: Time T = 2 tn+o(n) for classical 4-sieves as a function of available memory 2 mn+o(n) = 2 M . (Theorem 5.16).
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 5 Figure 5.5: Space-time tradeoffs for quantum 3-sieves algorithms with time 2 tn+o(n) as a function of available memory 2 mn+o(n) (Theorem 5.19). The left graphic shows the comparison between the quantum BLS and our improved version adding k-RPC prefiltering. The right graphic adds the extremities of the tradeoff of [Kir+19, Appendix B], the quantum hybrid with pairwise filtering.
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 5 Figure 5.6: Space-time tradeoffs for quantum 4-sieves algorithms with time 2 tn+o(n) as a function of available memory 2 mn+o(n) (Theorem 5.23). The left graphic shows the comparison between the quantum BLS and our improved version adding k-RPC prefiltering. The right graphic adds the extremities of the tradeoff of [Kir+19, Appendix B], the quantum hybrid with pairwise filtering.
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 5 Figure 5.7: Time 2 tn+o(n) for classical k-sieves as a function of available memory 2 mn+o(n) .
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 58 Figure 5.8: Time 2 tn+o(n) for quantum k-sieves as a function of available memory 2 mn+o(n) .

5 :

 5 Repeat Steps 1-4 until Step 4 succeeds and gives a e ∈ F n 3 such that eH ⊤ = s and |e| = w. 6: return e 0 = π -1 (e). It verifies e 0 H ⊤ 0 = s and |e 0 | = w.

T, syndrome s ∈ F n-k 3 ,

 3 DP H ′′ ,s ′′ ,p , T DP H ′′ ,s ′′ ,p N bSol(DP H,s,w ) • P rGoodCut • N bSolF ound N bSol(DP H ′′ ,s ′′ ,p ) weight w. Parameters ℓ ∈ [0, n -k] and p ∈ [max{0, w -(n -k -ℓ)}, min{w, k + ℓ}] Output: e 0 ∈ F n 3 such that e 0 H ⊤ 0 = s and |e 0 | = w. 1: Pick a random permutation of columns π and apply H ← π(H 0 ) 2: Apply a partial Gaussian Elimination on H to transform it into a systematic form H

  Figure 6.1: Merging lists L 1 and L 2 on the b first coordinates.

Algorithm 20 ×

 20 Classical smoothed Wagner algorithm for DOOM [Bri+20] Input: H ′′ ∈ F (k+ℓ)×ℓ 3 , target syndromes s ′′ 1 , . . . , s 3 ℓ/a ∈ F ℓ 3 length ℓ, target weight p, tree depth a. Output: List of (e ′′ , s ′′ ) ∈ F k+ℓ 3 S such that |e ′′ | = p and e ′′ H ′′⊤ = s ′′ 1: Compute λ and m using Equations 6.16 and 6.18. 2: Sample lists E (0) i , L

Figure 6

 6 Figure6.3: Smoothed Wagner algorithm for a = 3. The first merging is operated on a small number of coordinates m, and then we merge on λ/ log 2 3 more coordinates at each level.

Proof.

  By Proposition 6.16, the classical smoothed Wagner algorithm takes times 2 λ = (DP H,s,w ) = n w Numerical results.

Algorithm 21

 21 Quantum Wagner algorithm for DOOM Input: H ′′ ∈ F (k+ℓ)×ℓ 3 , list S of target syndromes in F ℓ 3 length ℓ, target weight p, tree depth a. Output: List in quantum superposition of (e ′′ , s ′′ ) ∈ F k+ℓ 3 × S such that |e ′′ | = p and e ′′ H ′′⊤ = s ′′ 1: Sample lists L (0) i

2 :

 2 Construct state |ψ L (0) 2 a⟩, quantum superposition of 3 2ℓ/a syndromes s ′′ ∈ F ℓ 3 3: for j = 0 to a -1 do 4:

⟩

  j -1 ▷◁ (j+1)ℓ/a L (j) 2 a-j 7: return |ψ L (a) 1 Proposition 6.19. We are given n, k, w. Let fix parameters ℓ, p and a such that 3 ℓ/a ≤ 2 k+ℓ 2 a -1 . There exists ℓ

Figure 6 . 4 :

 64 Figure 6.4: Quantum Wagner algorithm (Proposition 6.19 and Algorithm 21). Dashed-line boxes represent lists that are not classically constructed but of which we have an algorithm that constructs a quantum superposition of the elements.

3 :

 3 Construct state |ψ L (0) 2 a⟩, quantum superposition of 3 2ℓ/a syndromes s ′′ ∈ F ℓ 3 4: for i = 1 to 2 a -2 do for j = 1 to a -1 do 8:

  j -1 ▷◁ m+(j+1)λ L (j) 2 a-j 11: return |ψ L (a) 1

Figure 6 . 5 :

 65 Figure 6.5: Quantum smoothed Wagner algorithm (Proposition 6.20 and Algorithm 22). Dashed-line boxes represent lists that are not classically constructed but of which we have an algorithm that constructs a quantum superposition of the elements.

  Lemma 2.7. O x acts as a reflection through |B⟩ in the plane Span{|B⟩, |G⟩}, and H ⊗n RH ⊗n as a reflection through |U ⟩.Proof. O x |i⟩ = (-1) xi |i⟩ does not change the state |B⟩ if applied on, because we have in this case x i = 0. And for all other states |i⟩, it changes its sign. So by definition, it is a reflection through |B⟩. Then,

	Grover's algorithm will require Hadamard gates H, and R|i⟩ =	-|i⟩ if |i⟩ ̸ = |0 n ⟩ |0 n ⟩ else.	which is realizable

in O(n) elementary gates. It also requires an efficient query oracle O x |i⟩ = (-1) xi |i⟩. Notice that if this oracle uses RAM, then its use in Grover's procedure will require quantumly accessible x i for the QRAM operations.

  Let N = 2 n . We are given x 1 , ..., x N ∈ {0, 1} and an efficiently implementable unitary O x : |i⟩|b⟩ → |0⟩|b ⊕ x i ⟩, such that there are t solutions i ∈ [N ] that verify x i = 1. Grover's quantum algorithm returns a solution i with probability greater than 1/2 using O( |L|/t) calls to O f . If t is unknown, it can be estimated and the running time is O( |L|/t). Quantum circuit of Grover's algorithm where G = (H ⊗n RH ⊗n )O x . This representation is equivalent to the pseudocode of Algorithm 1.

	or "no solution" Apply H ⊗n on the whole register to get the state |U ⟩ := H ⊗n |0 n ⟩ Initialize a register |0 n ⟩. Set θ := asin( t/N ) for k ≈ π 4θ -1 2 iterations do ▷ nearest integer approximation Apply O x ▷ Reflection through |B⟩ Apply H ⊗n RH ⊗n ▷ Reflection through |U ⟩ Measure and check if the resulting i is a solution. H ⊗n G G . . . k ≃ π 4θ -1 2 iterations Theorem 2.8 (Grover's search [Gro96; Boy+98]). |0 n ⟩ Figure 2.6:	G

  or "no solution" Initialize a register |0 n ⟩. Apply H ⊗n on the whole register to get the state |U ⟩ := H ⊗n |0 n ⟩

	for O(1/ √ p) iterations do
	Apply O f	▷ Reflection through |B⟩
	Apply ARA -1	▷ Reflection through |U ⟩
	Measure and check if the resulting z is a solution.

  We are given a classical algorithm that finds N bSolF ound solutions to DP H ′′ ,s ′′ ,p in time T DP H ′′ ,s ′′ ,p , among the N bSol(DP H ′′ ,s ′′ ,p ) total solutions to DP k+ℓ,ℓ,p . P rGoodCut is defined as in Proposition 6.9, and N bSol(DP H,s,w ) denotes the number of solutions to the DP H,s,w problem. Then the classical Information Set Decoding framework (Algorithm 17) solves DP H,s,w in timeT DP = max T DP H ′′ ,s ′′ ,p , T DP H ′′ ,s ′′ ,p N bSol(DP H,s,w ) • P rGoodCut • N bSolF ound N bSol(DP H ′′ ,s ′′ ,p )

	.1)
	Classical ISD algorithm.
	Theorem 6.10.

  DP H ′′ ,s ′′ ,p ) of the solutions to the DP H ′′ ,s ′′ ,p subproblem. As there are N bSol(DP H,s,w ) such solutions e, the probability that one iteration returns a solution is

	N bSolF ound			
	N bSol(P rF indSol = min 1, N bSol(DP H,s,w ) • P rGoodCut •	N bSolF ound N bSol(DP H ′′ ,s ′′ ,p )	.	(6.2)

  (e ′′ ,y)∈L |ind L (e ′′ )⟩|e ′′ ⟩, where ind L (e ′′ ) is the index of the tuple (e ′′ , y = e ′′ H ′′⊤ ) in list L. 4: Test step. From a vector e ′′ we can compute the complete candidate solution e ∈ F n 3 such that eH ⊤ = s, so there exists a procedure

	|0⟩ → |Ψ⟩ :=	1 |L|	(e ′′ ,y)∈L
			e=(s ′ -e ′′ H ′⊤ ∥e ′′ )

  4. After discarding the classical register |s ′′ ⟩, we add a zero quantum register to |ψ L ⟩ to get the state 1 |L| (e ′′ ,y)∈L |ind L (e ′′ )⟩|0⟩|e ′′ ⟩ where ind L (e ′′ ) is the index of the tuple (e ′′ , e ′′ H ′′⊤ ) in list L. We apply the efficient quantum circuit |0⟩|e ′′ ⟩ → |s ′ -H ′ e ′′ ⟩|e ′′ ⟩ on its two last registers to get the state

	|Ψ⟩ :=	1 |L| (e ′′ ,y)∈L	|ind L (e ′′ )⟩|e ′ ⟩|e ′′ ⟩ =	1 |L| (e ′′ ,y)∈L
		e ′ =s ′ -H ′ e ′′		e=(s ′ -H ′ e ′′ ∥e ′′ )

  Then, for each (e 2 , y 2 ) ∈ E 2 , we search (e 1 , y 1 ) ∈ L 1 such that y 1 + y 2 values 0 on its b first coordinates. Thanks to the sorting, for each e 2 one can find a solution in L 2 (if it exists) in time log |L 1 | by dichotomic search. For each collision found on y 1 and y 2 , we add (e 1 + e 2 , y 1 + y 2 ) to L. So the classical merging takes time(|L 1 | + |L 2 |) • log |L 1 |.Hence the following lemma. Lemma 6.12. Given lists L 1 and L 2 , one can construct the list L 1 ▷◁ b L 2 for an arbitrary b in time

  )⟩|e 1 ⟩|y 1 ⟩|e 2 ⟩|y 2 ⟩. L2 (e 2 )⟩|e 1 + e 2 ⟩|y 1 + y 2 ⟩|e 2 , y 2 ⟩, where the last register |e 2 , y 2 ⟩ cannot be discarded because of the requirement of the reversibility of the process, but it will not be used anymore. The previous state then can be rewritten This whole process takes time(|L 1 | + T |L 2 |) • log |L 1 |.Lemma 6.13. Given a list L 1 classically stored and quantumly accessible, and a procedure that returns the quantum state |ψ L2 ⟩ (Eq. 6.5) in time T , for |L 1 | ≤ |L 2 |, there exists a quantum algorithm that returns the state |ψ L1▷◁ b L2 ⟩ (Eq. 6.6) for an arbitrary b in time O(|L 1 |, T |L 2 |).

	1 |L 1 ▷◁ b L 2 | |ind L2 (e 2 And finally, by simply summing, swapping and reassembling the registers, we get the state (e2,y 2 )∈L2 match L 1 (e 2 ,y 2 )=(e 1 ,y 1 )̸ =⊥ e=e 1 +e 2 ,e 1 ∈L 1 ,e 2 ∈L 2 |ψ L1▷◁ b L2 ⟩|Aux⟩ := 1 |L 1 ▷◁ b L 2 | (e,y)∈L1▷◁ b L2 |ind L2 (e 2 )⟩|e⟩|y⟩|Aux⟩.	(6.6)
	match L 1	(e 2 ,y 2 )=(e 1 ,y 1 )̸ =⊥

|ind

Table 6 .

 6 1: Sets of Wave parameters as selected in[START_REF] Banegas | Wave Support Documentation[END_REF] (NIST submission, round 1) and the corresponding required security levels in the number of bits.

		Classic Quantum	n	k	w	k U
	(I)	128	64	8576	4288	7668	2966
	(III)	192	96	12544	6272	11226	4335
	(V)	256	128	16512	8256	14784	5704
	[						

  |ind L2 (e 2 )⟩|e 2 ⟩|y 2 ⟩, where ind L2 (e 2 ) is the index of the tuple (e 2 , y) in the list L 2 . We apply a quantum merging (Lemma 6.13) on L 1 and |ψ L2 ⟩ to get the state |ψ L1▷◁ ℓ L2 ⟩, which contains the quantum superposition of all the e ′′ = (e ′′ 1 + e ′′ 2 ) for e ′′ 1 ∈ E 1 and e ′′ 2 ∈ E 2 such that e ′′ H ′′⊤ = 0 Please look at Equation 6.6 for an explicit expression of this quantum state. As by construction e ′′ 1 ∈ E 1 and e ′′ 1 ∈ E 1 have disjoint set of non-zero coordinates, then e ′′ is of weight|e ′′ | = |e ′′ 1 | + |e ′′ 2 | = p/3 + 2/3 = p.So we end up with a quantum superposition of |L 1 ▷◁ ℓ L 2 | solutions to the DP H ′′ ,0,p subproblem. Using this as a subroutine within the ISD framework leads to the following theorem. Theorem 6.15. Let us fix parameters ℓ, p, t and set k := k U + k V . There exists a quantum algorithm under the QRAM model assumption that solves DWK n,k U

  . Sizes of lists L 1 and L 2 are given in Equation 6.11 just above. Constructing the initial classical list takes time |L 1 |, and constructing the initial quantum state |ψ L2 ⟩ can be done in efficient time by a Quantum Fourier Transform and then applying the circuit |e ′′ 2 ⟩|0⟩ → |e ′′ 2 ⟩|e ′′ 2 H ′′⊤ ⟩. The quantum merging takes time |L 1 | + |L 2 | by Lemma 6.13. On average we can expect |L 1 ▷◁ ℓ

	L 2 | =	k + ℓ p	2 p • 3 -ℓ := N bSolF ound by Equation 6.4. This is also equal, up to a polynomial factor,
	to N bSol(DP H ′′ ,0,p ) the number of solutions to the DP subproblem, By Proposition 6.3. And Proposi-
	tion 6.n/2		
	t/2		

6 gives the number of solutions to the DP problem in the (U, U + V )-code which is N bSol(DP H,0,t ) =

  will satisfy y = e ′′ H ′′⊤ -s ′′ and |e ′′ | = j p 2 a -1 . At each floor, the size of this newly merged list is |L

	j) i+1	(6.15)
	(j) By construction, every ((e ′′ , s ′′ ), y) ∈ L (i+1)/2	

  Algorithm 19 Classical Wagner algorithm for DOOM[START_REF] Bricout | Ternary Syndrome Decoding with Large Weight[END_REF] 

	Input: H ′′ ∈ F	(k+ℓ)×ℓ 3	, a list S of target syndromes s ′′ 1 , . . . , s ′′ 3 ℓ/a ∈ F ℓ

3 length ℓ, target weight p, tree depth a. Output: List of (e ′′ , s ′′ ) ∈ F k+ℓ 3 × S such that |e ′′ | = p and e ′′ H ′′⊤ = s ′′ 1: Sample lists E

Table 6 .

 6 3: Security levels of Wave instances. λ bits of security indicate that the most efficient known attacks require a time 2 λ to execute.

		Classical		Quantum	
	Setting	Key attack Message attack Key attack Message attack Thm. 6.14 Thm. 6.18 Thm. 6.15 Thm. 6.20
	(I)	138	129	80	78
	(III)	206	194	120	117
	(V)	274	258	160	156

This simplification was already done in[START_REF] Kirshanova | Quantum algorithms for the approximate k-list problem and their application to lattice sieving[END_REF]. At no point do we use the fact that we do not have the first register, this is just for simplicity of notations.

(k+ℓ)×ℓ q and s ′′ ∈ F ℓ q for parameters ℓ the length of the s ′′ 1 A recent paper[START_REF] Carrier | Statistical Decoding 2.0: Reducing Decoding to LPN[END_REF] presented a way to make the statistical decoding[START_REF] Al | A statistical decoding algorithm for general linear block codes[END_REF] perform better than ISD algorithms in some regimes. Except for this algorithm, all the known attacks on DP for the sixty last years were based on the ISD framework.

When we will apply quantum merging further in this work, we will manipulate random lists L 1 , L 2 such that |L 1 | 2 = |L 2 |, so there will be at most one solution with very high probability. This allows us to consider that this quantum merging process constructs a quantum superposition over the list L 1 ▷◁ b L 2 without missing any element.

t/2 

n/2-k U . Plugging these values into the Theorem 6.11 with the same notations provides the result.

w 

n-k solutions for a random code. The time complexity of the ISD classical algorithm 17 with smoothed Wagner subroutine is given by Theorem 6.10 that directly conducts to the result.

Remerciements

Classical 2-sieve

We present here the best-known algorithm for classical 2-sieve. While these are known results, we will need this analysis for our 3-sieve and 4-sieve algorithms.

Proposition 5.8. Take k = 2, lists L 1 , L 2 of random points of norm 1 with |L 1 | = |L 2 |, a target configuration

Algorithm 12 with parameter α constructs a list L out of pairs of points (⃗ x 1 , ⃗ x 2 ) with (⃗ x 1 , ⃗ x 2 ) ∈ L 1 × L 2 such that ⟨⃗ x 1 |⃗ x 2 ⟩ ≤ C 12 , in time T using memory M where

where recall that C ′ 12 (α) = 1 sin 2 (α) • C 12 + cos 2 (α) . Notice that |L out | corresponds asymptotically to all the pairs (⃗ x 1 , ⃗ x 2 ) ∈ L 1 × L 2 such that ⟨⃗ x 1 |⃗ x 2 ⟩ ≤ C 12 so we find here asymptotically all solutions.

Proof. We use Theorem 5.7 with k = 2 and some parameter α to get

• T (FAR C ′ 12 (α) ) .

(5.6)

Recall that here, FAR C ′ 12 (α) computes the running time of finding all solution pairs with inner product smaller than C ′ 12 (α) when starting with lists of size |R 1 | = |L 1 |V(α). We perform an exhaustive search on the pairs of points to find all solutions so V k-1 (α) det (C ′ (α))

det (C ′ (α)) n/2 , which allows us to conclude that

.

As a special case, we can take |L 1 | = |L 2 | = 2 0.2075n , C 12 = -1/2 which gives L out = |L 1 |, T = 2 0.292n and M = |L 1 |. This is the exact same complexity as [START_REF] Becker | New directions in nearest neighbor searching with applications to lattice sieving[END_REF], the best known classical algorithm asymptotically, that actually fits our framework.

Classical 3-sieve

We now consider the case of k = 3. Our subroutine will construct the following intermediate lists:

Now that we defined all intermediate lists, we can write the algorithm we use for solving the inner configuration problem with k = 3. Proposition 5.10. Let |L 1 | a list size and C a 3 × 3 configuration matrix with negative non-diagonal entries.

where

Complexity of the classical 3-sieve.

The above was the analysis of the classical 3-sieve after the first filtering. We now apply Theorem 5.7 with k = 3 in order to obtain the running of our classical 3-sieve algorithm within our framework (Algorithm 12).

Theorem 5.11. There is a classical algorithm with parameter α that solves the 3-sieve problem for a configuration C and lists of size |L| that runs in time T and that uses memory M with Proposition 5.12. There exists a classical algorithm for SV P using 3-sieve that runs in time 2 0.338n+o(n) and uses memory 2 0.1887n+o(n) .

Proof. Take the above proposition with a configuration matrix C such that C 12 = C 13 = C 23 = -1 3 , α = 1.2954rad and |L| = 2 0.1887n . We apply Proposition 5.11; We write

Putting everything together, we indeed have a running time of 2 0.070n • 2 0.055n • 2 0.213n = 2 0.338n . The memory

We have

This implies that the memory used is M = 2 0.1887n .

Space-time tradeoff. We also extend this algorithm where we fix the available memory to something more than the minimal memory 2 0.1887n . We present here a list of points that we obtain, showing the general behaviour of our algorithm:

Complexity of Algorithm 14.

Lemma 5.13. Let T 12 be the time to compute L 12 (which is also the time to compute L 34 by symmetry). Let α such that V(α) = 1 |L1| . Then

This comes directly from the analysis of our simplified 2-sieve algorithm (Proposition 5.8). The size of the intermediate lists L 12 and L 34 is then

(5.10)

We now look at the time to compute L 1234 . Elements of L 12 are of squared norm R 2 = 2 + 2C 12 , using

Proof. We write

Lemma 5.15. Let T 1234 be the time to compute

|L12| . We have

By combining the above 2 propositions, we have Theorem 5.16. Algorithm 14 runs in time T = 2T 12 + T 1234 where T 12 and T 1234 can be taken respectively from Lemma 5.13 and Lemma 5.15.

To conclude, we can plug this theorem again in Theorem 5.7 to get our results. Recall that we work with 4-tuples of residual vectors after an initial α-filtering so we look for 4-tuples of residual points (⃗ y 1 , ⃗ y 2 , ⃗ y 3 , ⃗ y 4 ) st. ∥⃗ y 1 + ⃗ y 2 + ⃗ y 3 + ⃗ y 4 ∥ ≤ 1 sin(α) (see Equation 5.3). Regarding memory requirements, we have that the memory M of our algorithm satisfies

This algorithm gives a smooth space-time tradeoff from low memory to the point where the memory is 2 0.0275n and the time is 2 0.292n , corresponding precisely to the complexity of the 2-sieve algorithm (and indeed corresponds to the case where our 4-sieve algorithm performs independently two 2-sieve algorithms). When looking at the minimal memory setting, so M = 2 0.1724n , this algorithm performs poorly, as the time is 2 0.418n . However, when looking at intermediate memory requirements, there are some ranges when the algorithm performs quite well. For example, when taking M = 2 0.1887n , this algorithm performs better than the 3-sieve classical algorithm we presented before, as we can see in Figure 5.7. We put below a list of values of interest. As in the previous case, the less memory we are allowed, the more it is interesting to perform a tailored prefiltering step. We put below a list of values and the corresponding angle α used in the prefiltering step.

Proof. Performing a measurement of state |ψ L1 ⟩|ψ L2(⃗ y 1 ) ⟩|ψ L3(⃗ y 1 ) ⟩ gives a triplet solution (⃗ y 1 , ⃗ y 2 , ⃗ y 3 ) with some probability p, we are going to specify. There are |L 1 | possible ⃗ y 1 and |Sol| "good" ones belonging to a solution, so the probability of measuring a good ⃗ y 1 is |Sol|/|L 1 |. Then given a ⃗ y 1 , a pair (⃗ y 2 , ⃗ y 3 ) ∈ L 2 (⃗ y 1 ) × L 3 (⃗ y 1 ) forms the solution together with ⃗ y 1 with probability

Finally, the probability to measure a solution is thus p

. By Theorem 2.10, the number of iterations of amplitude amplification is O 1/ √ p , hence the top line. The bottom line is obtained by expressing the sizes of L 2 (⃗ y 1 ) and L 3 (⃗ y 1 ) using Proposition 3.29.

Subroutine complexity.

Proposition 5.18 (FindAllReducing quantum 3-sieve). Let |L 1 | a list size and C a 3 × 3 configuration matrix with negative non-diagonal entries. Algorithm 15 solves

After simplification, the time complexity of Algorithm 15 can be written

This algorithm uses classical memory |L 1 | and quantum memory poly(n) qubits.

Complexity of the quantum 3-sieve.

The above was the analysis of the algorithm we use as the subroutine FindAllReducing in Algorithm 12 for quantum 3-sieve. The lists given in input of Algorithm 15 are then the lists of residual vectors

; and it return residual vectors that satisfy the target configuration C ′ (α). Using Theorem 5.7 in the case k = 3 gives the overall time complexity of our quantum 3-sieve algorithm.

Theorem 5.19. There is a quantum algorithm with parameter α that solves the 3-sieve problem for a configuration C ∈ R 3×3 and lists of size |L|, that runs in time

where

given by Proposition 5.18. This algorithm uses quantumaccessible classical memory M = |L| and quantum memory poly(d).

Minimal memory parameters.

Proposition 5.20. There is a quantum algorithm that solves SVP in dimension n using 3-sieve that runs in time T = 2 0.3098d+o(n) , quantum-accessible classical memory M = 2 0.1887n+o(n) and poly(n) quantum memory.

Proof. We take a balanced configuration C with C 12 = C 13 = C 23 = -1/3, α = 1.2343rad and |L| = 2 0.1887n = M . We apply Proposition 5.19: We write

Putting everything together, we have a running time of 2 0.1055n • 2 0.0832n • 2 0.1210n = 2 0.3098 .

Algorithm 16 FindAllReducing quantum 4-sieve 

Apply Amplitude Amplification to get state |ψ Sol ⟩, the uniform superposition of all solutions Take a measurement and get some (⃗

Performing this Grover's algorithm takes time

. Note that these notations for partial configurations are given in Definition 3.26. So we can rewrite

.

Grover on the fourth register. Analogously to what was done over the third register, we perform Grover's algorithm over the fourth one |ψ L4 ⟩.

|⃗ y 1 ⟩|⃗ y 2 ⟩|⃗ y 3 ⟩|⃗ y 4 ⟩.

This takes time

. Amplitude amplification. We then want to construct a uniform quantum superposition over all elements of the set of solutions 

where notation C[I] with a set of indexes I was introduced in Definition 3.26.

Proof. The reasoning is the same as for the proof of Lemma 5.17. Performing a measurement of state |ψ L1 ⟩|ψ L2(⃗ y 1 ) ⟩|ψ L3(⃗ y 1 ,⃗ y 2 ) ⟩|ψ L4(⃗ y 1 ,⃗ y 2 ) ⟩ gives a 4-tuple solution (⃗ y 1 , ⃗ y 2 , ⃗ y 3 , ⃗ y 4 ) with some probability p, we are going to specify. The probability of measuring a good ⃗ y 1 is |Sol|/|L 1 |. Then given a ⃗ y 1 , a triple (⃗ y 2 , ⃗ y 3 , ⃗ y 4 ) forms the solution together with ⃗ y 1 with probability 1/(|L 2 (⃗ y

Finally, the probability of success to measure a solution is thus p

. By Theorem 2.10, the number of iterations of amplitude amplification is O 1/ √ p , hence the top line. The bottom line is obtained by expressing the sizes of L 2 (⃗ y 1 ), L 3 (⃗ y 1 , ⃗ y 2 ) and L 4 (⃗ y 1 , ⃗ y 2 ) using Proposition 3.29.

Measurement gives a 4-tuple (⃗ y 1 , ⃗ y 2 , ⃗ y 3 , ⃗ y 4 ) solution to the configuration problem. We need to repeat this whole process until we find all the solutions at number |Sol|. Notice that the same operations are performed over L 3 and over L 4 , which implies that an optimal configuration will necessarily respect the symmetry C 13 = C 14 and C 23 = C 24 . In the end, this subroutine FindAllReducing runs in time

and this leads to the following theorem.

Proposition 5.22. Given lists L 1 , L 2 , L 3 , L 4 ⊂ S n-1 of same size |L i | with i.i.d. uniformly random vectors, and a configuration C ∈ R 4×4 with C 13 = C 14 and C 23 = C 24 , there exists an algorithm that finds all the |Sol| 4-tuples in

.

Complexity of the quantum 4-sieve.

The above was the analysis of the quantum 4-sieve after the prefiltering. We use this algorithm as the subroutine in our framework for k = 4. Using Theorem 5.7 in this case, we recover the overall time complexity of our quantum 4-sieve algorithm.

Theorem 5.23. There is a quantum algorithm with parameter α that solves the 3-sieve problem for a configuration C and lists of size |L| that runs in time T with

and uses quantum-accessible classical memory M = |L| and quantum memory poly(d), and where

given by Proposition 5.22.

Minimal memory parameters.

Proposition 5.24. There is a quantum algorithm that solves SVP in dimension n using 4-sieve that runs in time T = 2 0.3276n+o(n) using quantum-accessible classical memory M = 2 0.1724n+o(n) and quantum memory poly(n).

Proof. We take a balanced configuration C with C i,j = -1/4 for i ̸ = j, α ≈ 1.3131rad and |L| = 2 0.1724n = M . We apply Theorem 5.23: We write C ′ i,j ≈ -0.244 for i ̸ = j and

Putting everything together, we have a running time of 2 0.1069n • 2 0.0484n 

Security analysis of Wave

This chapter is based on the work [START_REF] Loyer | Quantum security analysis of Wave[END_REF] which is currently a preprint, and took part in a joint submission [START_REF] Banegas | Wave Support Documentation[END_REF] to the NIST with Gustavo Banegas, Kévin Carrier, André Chailloux, Alain Couvreur, Thomas Debris-Alazard, Philippe Gaborit Pierre Karpman, Ruben Niederhagen, Nicolas Sendrier, Benjamin Smith, and Jean-Pierre Tillich.

Overview

Code-based cryptography. Codes were originally introduced by Hamming [START_REF] Hamming | Error detecting and error correcting codes[END_REF] to correct errors caused by noisy data transmission or unstable storage. The idea is to encode the data by adding some redundancy. Then, to access the data, one uses a decoding algorithm that allows one to recover the initial data even if it has been partially altered. There is however a limit to the number of errors that a decoding algorithm can correct.

The differences with a lattice lie in the definition space (R n for lattices; F n q for codes) and the metric (Euclidian distance for lattices; Hamming, Lee, rank, etc., for codes...). Previously in this thesis (RPC in Definition 3.12), we saw how to use codes as a tool to solve lattice problems. In this chapter, we study a proper code problem: the Decoding Problem (DP). The Decoding Problem is NP-hard in the worst case [START_REF] Berlekamp | On the Inherent Intractability of Certain Coding Problems[END_REF] and is believed to be hard for a random code, thus cryptographic schemes can rely on its hardness. The first code-based encryption scheme is the McEliece scheme [START_REF] Mceliece | A public-key cryptosystem based on algebraic coding theory[END_REF], which is already resistant to quantum attacks like Shor's, but has very large keys. The goal for designers is to choose a code that allows good performances (fast decoding and small key sizes), but whose structure is not too obvious to the attacker so that the Decoding Problem with this code remains computationally hard.

In the previous NIST call for post-quantum encryption schemes [START_REF]PQC Standardization Process: Announcing Four Candidates to be Standardized, Plus Fourth Round Candidates[END_REF], Classic McEliece [START_REF] Daniel | Classic McEliece: conservative code-based cryptography: cryptosystem specification[END_REF] was a finalist but was not standardized because of its large public key size, despite its strong and most conservative security. From this batch of schemes, let us also cite BIKE [START_REF] Aragon | BIKE -Bit Flipping Key Encapsulation[END_REF], based on a binary version of NTRU, a lattice problem that becomes a code-based one.

In 2023, NIST's call for digital signature schemes saw once again several code-based schemes emerge. FuLeeca [START_REF] Ritterhoff | FuLeeca: Algorithm Specifications and Supporting Documentation[END_REF] is based on Lee metric, LESS [START_REF] Baldi | LESS: Linear Equivalence Signature Scheme[END_REF] and MEDS [START_REF] Chou | MEDS: Matrix Equivalence Digital Signature[END_REF] are based on code equivalence problems; but different security vulnerabilities have been quickly found for these three last schemes. CROSS [START_REF] Baldi | CROSS: Codes and Restricted Objects Signature Scheme[END_REF] and SDitH [START_REF] Aguilar | The Syndrome Decoding in the Head (SD-in-the-Head) Signature Scheme[END_REF] rely on a restricted Decoding Problem, and MIRA [START_REF] Aragon | MIRA Specifications[END_REF], MiRitH [START_REF] Adj | MiRitH (MinRank in the Head)[END_REF] and RYDE [START_REF] Aragon | RYDE specifications[END_REF] use the rank metric version of DP. Finally, PERK [START_REF] Aaraj | PERK[END_REF] is based on the permuted kernel problem, a specific instance of the code equivalence problem. Two of the codebased submissions are based on a rather new code structure (U, U + V ), with modified Reed-Muller code for Enhanced pqsigRM [START_REF] Cho | Enhanced pqsi-gRM: Code-Based Digital Signature Scheme with Short Signature and Fast Verification for Post-Quantum Cryptography[END_REF] and ternary for Wave [START_REF] Banegas | Wave Support Documentation[END_REF].

Contributions. For each of the four best known attacks on Wave, we do a complete time complexity analysis and provide explicit expressions as functions of Wave parameters. So the claimed security level can easily be updated with new sets of parameters using our formulas. We then apply our theorems to the Round-1 parameter selection, whose results are summarized in Table 6.3. We describe a quantum smoothed Wagner's algorithm based on the combined approaches of [START_REF] Sendrier | Decoding one out of many[END_REF], [START_REF] Bricout | Ternary Syndrome Decoding with Large Weight[END_REF], and [START_REF] Chailloux | Classical and Quantum algorithms for generic Syndrome Decoding problems and applications to the Lee metric[END_REF], and our new algorithm provides an improved message attack on Wave.

Outline. We first recall in Section 6.2 basic information about code cryptographic problems particularly in the particular case of Wave, the ISD framework, and list merging. Section 6.3 presents key attacks based on ISD and Dumer's algorithm. Then Section 6.4 presents message attacks based on ISD and Wagner's algorithm. In Section 6.5, we conclude and comment on the obtained results. The SageMath code used for the numerical results of this chapter is available here: https://github.com/johanna-loyer/WaveISDcryptanalysis.git.

have disjoint sets of non-zero coordinates. Therefore, their sum e ′′ that we get through the merged list is in form e ′′ = e ′′ 1 + e ′′ 2 = (x 1 ∥x 2 ) with |x 1 | = |x 2 | = p/2. So all the e ′′ for (e ′′ , e ′′ H ′⊤ ) ∈ L obtained are of weight p by construction, which ensures the correctness of the algorithm. Using this process as a subroutine within the ISD framework leads to the following theorem. Theorem 6.14. We are given a generalized ternary (U, U + V )-code C of dimensions (n, k, k U , k V ). Fix ISD parameters ℓ, p, and a target weight t. There exists a classical algorithm that solves the DWK n,k U ,k V problem for code C in time

Proof. L 1 and L 2 are of the same size given by Equation 6.9. Constructing the initial lists takes time O(|L 1 |) and merging L 1 ▷◁ ℓ L 2 takes time O(|L 1 |) by Lemma 6.12. So Dumer's subroutine runs in time 3 n/2-k V . Applying Theorem 6.10 with these amounts gives the time complexity of the ISD framework with a Dumer subroutine. Simplifying the expression directly gives the result.

Remark. We have observed that Wagner algorithm does not perform better than Dumer in this setting, i.e. one does not get profit from taking additional levels in the merging tree. The reason is that the condition in Equation 6.7 forces the target weight t to remain quite small. And this impacts the number of vectors one can generate with this weight, which is low in comparison to those with higher weights (as we are in ternary). Additional merging levels are useful when there are sufficiently many vectors, which is not the case here, but it will have an advantage in a different setting, for the message attacks, as we will see in Section 6.4.

Numerical results.

The time complexity is optimal when both initial lists are of maximal size, i.e. by fixing p such that k + ℓ p 1/2 2 p/2 = 3 ℓ . Parameters ℓ and t are obtained by numerical optimization to minimize the time complexity of the attack. As a result, we obtain as optimal parameters l ≈ 0.01, t ≈ 0.21 and p ≈ 0.003. With these values, the ISD algorithm with a Dumer subroutine solves DWK n,k U ,k V in time 2 0.0161n+o(n) i.e. 2 138 for the set of Wave parameters (I); in time 2 0.0165n+o(n) i.e. 2 206 for set (III); and in time 2 0.0167n+o(n) i.e. 2 274 for (V). The sets of Wave parameters (I), (III) and (V ) can be found in the following table. With this choice of parameters, the algorithm finds |L| solutions in time |L|, so in amortized time O(1) per solution. The o(n) terms above encapsulate the hidden polynomial terms, as our analysis only focused on the asymptotic complexity. These results are summarized in the first column of Table 6.3.

Quantum key attack

The quantum key attack algorithm has a very similar structure to the classical one. We use the quantum version of the ISD framework (Algorithm 18), which performs a quantum Amplitude Amplification (Theorem 2.9 CHAPTER 7. CONCLUSION: OPEN PROBLEMS

Codes

How lattice techniques can be adapted to codes? Codes are another important lead for post-quantum cryptography. They have strong links with lattices due to their close structures, however only a few transfers of techniques have been done between these two research fields. Algorithms for the Decoding Problem can benefit from filtering and sieving techniques, as suggested by the results of [START_REF] Guo | A New Sieving-Style Information-Set Decoding Algorithm[END_REF]. The follow-up would be to explore the code-sieving algorithms in the classical model, in the quantum model with QRACM (using Grover's search [START_REF] Grover | A fast quantum mechanical algorithm for database search[END_REF]) and with QRAQM (using quantum walks [START_REF] Magniez | Search via Quantum Walk[END_REF]).

Can message attacks on Wave be improved? Considering an unbalanced merging tree may lead to a speed up, as [START_REF] Schrottenloher | Improved Quantum Algorithms for the k-XOR Problem[END_REF] found for the XOR problem. In this case, smoothing will be different and may have a higher impact on the time complexity. Quantum walks [START_REF] Kachigar | Quantum Information Set Decoding Algorithms[END_REF] may also be interesting to solve the decoding problem in this regime.

Can key attacks on Wave be improved? In Chapter 6 we presented attacks on the Wave scheme. Quantum attacks may be improved by the quantum ISD framework [START_REF] Kirshanova | Improved Quantum Information Set Decoding[END_REF] and nearest-neighbor techniques [START_REF] May | Decoding random linear codes in O(2 0.054n )[END_REF][START_REF] Becker | Decoding Random Binary Linear Codes in 2 n/20 : How 1 + 1 = 0 Improves Information Set Decoding[END_REF]. Using ternary (U, U + V ) codes in digital signatures is very recent. Our work is only the second one to estimate the quantum security of Wave, with previously [START_REF] Chailloux | Classical and Quantum algorithms for generic Syndrome Decoding problems and applications to the Lee metric[END_REF]. To be confident in this scheme, it really needs to be more looked at to check if it does resist attacks. In particular, does there exist a key-distinguisher that does not go through the Decoding Problem by exploiting the particular structure of the (U, U + V ) code?