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Notations

The following notations are used in this thesis. The abbreviation iff. means “if and only if”, and s.t. means
“such that”.

Bachmann-Landau notations

• Given two functions f, g, we write f(n) = O(g(n)) when f(n) ≤ g(n) · k for some absolute constant k

for n lare enough. The Õ notation ignores polynomial factors in n: Õ(f(n)) := O(polylog(f(n))) =

O(log(n)k) for some absolute constant k. We will sometimes omit O or Õ as we always focus on the
asymptotic complexities in this thesis.

• f = Θ(g) means that for n large enough, there exists absolute constants k1, k2 such that k1g(n) ≤
f(n) ≤ k2g(n).

Vectors

• Vectors are denoted in bold topped with an arrow, as v⃗. We amalgamate vectors in Rn and points in
Rn. Even if not explicit, vi stands for the i-th coordinate of v⃗, for i ∈ [n] := {1, ..., n}.

• For a vector v⃗ ∈ Rn, ∥v⃗∥ =
√∑n

i=1 v
2
i is the Euclidean norm of v⃗. v⃗

∥⃗v∥ is the vector v⃗ normalized.

• For two vectors u⃗, v⃗ ∈ Rn, ⟨u⃗|⃗v⟩ =
∑

i ui ·vi denotes their scalar product, and θ(u⃗, v⃗) = arccos
(

⟨u⃗|⃗v⟩
∥u⃗∥∥⃗v∥

)
denotes their non-oriented angle. u⃗ and v⃗ are orthogonal (u⃗ ⊥ v⃗) if ⟨u⃗|⃗v⟩ = 0.

• We denote the concatenated vector of u⃗ = (ui)i∈[n] and v⃗ = (vi)i∈[m] by (u⃗∥v⃗) = (u⃗1, . . . , u⃗n, v⃗1, . . . , v⃗m).

• For a vector v⃗ = (v0, . . . , vn−1), we denote v⃗|[i,j] the vector (vi, . . . , vj−1) restricted on coordinates i to
j − 1.

Matrices

• For a complex matrix U we denote U⊤ its transpose, and U† its conjugate transpose. U is a unitary
matrix iff. UU† = U†U = I.

• For U,U ′ two matrices, we denote U ⊗ U ′ their tensor product (or Kronecker product), and for n ∈ N,
U⊗n := U ⊗ · · · ⊗ U︸ ︷︷ ︸

n times

.

• Quantum states are denoted with the ket notation |·⟩. Two juxtaposed quantum states can be written
indifferently |ϕ⟩ ⊗ |ψ⟩ = |ϕ⟩|ψ⟩ = |ϕ, ψ⟩.

Codes

• We denote codes by the Gothic character C (as in the text C already denotes configurations and C a
check cost). In Chapter 6, as there is no ambiguity, we simply use C.

• For x = (x0, . . . , xn−1) ∈ Fn
q and M = (Mi,j)0≤i<r−1

0≤j<n−1

∈ Fr×n
q , we define their row-wise star product

x ⋆M := (xjMi,j)0≤i<r−1
0≤j<n−1

.

1
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1. Introduction

1.1. Background and issues

Public-key cryptography. In 1977, Rivest, Shamir and Adleman introduced the famous RSA encryption
protocol [RSA77] after a party with plenty of wine [Sin99]. The security of this cryptosystem relies on a
surprisingly simple idea: picking two large prime numbers p and q, it is easy to compute their product
N = p · q, while it is very hard from N to recover p and q. One can use N as a public key to encrypt
messages, and the secret key (p, q) allows decrypting. A spy who gets an encrypted message has to solve
this hard problem if they want to decrypt it without knowing the secret key. This protocol may have been
secretly discovered by the British GCHQ twelve years before and only declassified in 1997 [Coc73], but this
is a different story.

Alice
Randomly chooses a secret key SK
Deduces her public key PK = f(SK)

Computes DecryptSK(c) = m

Bob
Secretly writes message m

PK

c = EncryptPK(m)

Eve

Spies and learns PK and c. Attacks:
• Recover secret key SK from PK (hard)
• Reverse EncryptPK to read m (hard)

X X

Figure 1.1: Encryption protocol: Bob sends a message non-understandable to anyone but Alice. Both agree
on an efficiently computable one-way function f(SK) = PK such that DecryptSK = Encrypt−1

PK .

Several decades of research passed and the RSA problem attracted a lot of attention, but no one has
been able to solve it for large numbers. Factoring a number in the order of 22048 using a classical computer
would take 300 trillion years [Lab19], which is more than the time since the beginning of the universe (“only”
13.8 billion years ago). So there was strong confidence in the hardness of this problem and in the security of
cryptosystems based on it.

Quantum information theory. Since the 80s, several physicists suggested the idea of a computer that
takes profit from quantum laws, instead of confining it to classical physics, in order to enlarge the possibilities
of computations. The motivation for constructing such a computer would be quantum simulation [Fey82]
that has applications in molecular chemistry and materials study.

In 1994, Shor published a breakthrough article [Sho94] in which he showed that the factorization problem
would be efficiently solved by a quantum computer. Consequently, it theoretically breaks all the cryptosystems
based on this problem like RSA and, killing two birds with one stone, also those based on the discrete
logarithm problem [DH76; JMV01] that are also widely used. In stride during the late 90s, the first small
quantum calculators were constructed [CGK98]. In addition to academic laboratories, several actors have
begun to take an interest in the development of a quantum computer, among them giant companies (Google,
IBM, Microsoft, Alibaba), specialized start-ups (D-Wave, Rigetti, Pasqal, Quandela, Alice & Bob, ...) and

3



4 CHAPTER 1. INTRODUCTION

Alice
Randomly chooses a secret key SK. PK = f(SK)
Signs her document m: s = SignSK(m)

Bob

Verifies if V erifyPK(s) = m.

PK

(m, s)

Eve

Spies and learns PK, m and s. Attacks:
• Recover secret key SK from PK (hard)

• Forge (m′, s′) st. V erifyPK(s′) = m′ (hard)

X X

Figure 1.2: Electronic signature: certify that a document authentically comes from Alice. Both agree on an
efficiently computable one-way function f(SK) = PK such that SignSK = V erify−1

PK .

national departments of defense (NSA according to Edward Snowden’s leaks [RG14], and surely many other
states). The obstacles remain significant: quantum error correction is required to face the decoherence of the
qubits, and a good choice of architecture is needed to construct all the quantum gates that perform correctly.

Will a practical quantum computer ever exist? As this thesis does not deal with divination we sadly
cannot answer this question. One can remember the beginnings of the classical computer that is today
incredibly ubiquitous but originally started with a first attempt by Babbage whose architecture was not
viable for scaling. The NMR architecture of the first quantum calculators was not either, but many other
leads are being explored1. Until a practical quantum computer is constructed, or a discovery in physics states
the impossibility of its construction... there is no knowledge about it, only questions, hopes, and beliefs.

Post-quantum cryptography. There is, however, one certainty: We cannot leave our digital security
based on an arbitrary gamble. In the mid-2010s, began to emerge the idea that our security systems must be
resistant to potential quantum attacks. The NSA stated that the US government should use quantum-safe
cryptography, so in 2016, the American National Institute of Standards and Technology (NIST) announced a
competition for quantum-safe encryption and digital signature schemes. Despite its “national” prerogatives,
the choice of standardized schemes by the NIST influences the adoption of those schemes worldwide.

New cryptographic problems were proposed from either lattice theory, codes, multivariate polynomials,
or isogenies. After five years during which cryptanalysts from all around the world searched for security
flaws, four schemes were finally selected. Will be standardized: Kyber [Bos+18] for encryption, Dilithium
[Duc+19], Falcon [Fou+18], and Sphincs+ [Ber+19] for digital signatures. The three first listed are lattice-
based, and the last one is hash-based. Lattices seem to provide good performances, i.e. fast running time
and short sizes of the keys and ciphers or signatures. However, having almost all the standardized schemes
based on a single class of problems exposes to the danger of a potential attack that would break them all, as
Shor’s did with pre-quantum cryptography. Thus, in 2022, the NIST launched a second call for additional
digital signatures. Once again, lattice and codes are under the spotlight.

The important question is: Are these schemes as secure as we think? Only time can allow us to trust a
security system after a crowd of cryptanalysts tried unsuccessfully to solve their underlying problems. They
have been less studied than that of RSA. To date, it is difficult to fully assess their current claimed security.

1You will find at this link a timeline sourced and regularly updated with the progress in the development of the quantum
computer: https://en.wikipedia.org/wiki/Timeline_of_quantum_computing_and_communication.

https://en.wikipedia.org/wiki/Timeline_of_quantum_computing_and_communication
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1.2. Contributions

Starting my Ph.D. years in this context, I wanted to contribute to the global effort of estimating the hardness
of the problems on which our security will rely. How fast and with what material resources can an attacker
solve them? This is the question I tried to answer. My work has focused on two of these problems at the
core of lattice-based and code-based cryptography:

• Shortest Vector Problem (SVP): A lattice is the set of all integer linear combinations of the vectors of
a given basis. The well-named SVP asks to find the shortest vector in a lattice.

• Decoding problem (DP): A code is the set of all vectors product of its given generator matrix by any
vector. The decoding problem asks to find the nearest code vector from a noisy one.

New faster algorithm to solve SVP using quantum walks

We present in Chapter 4 a new quantum algorithm that heuristically solves the Shortest Vector Problem
using quantum walks. This is the first improvement in the asymptotic running time of quantum sieving
algorithms since the work of Laarhoven [Laa15], bringing down the time from 20.265n+o(n) to 20.257n+o(n).

Our algorithm belongs to sieving algorithms [NV08], a class of heuristic algorithms that start with long
lattice vectors and iteratively construct shorter ones by summing lattice vectors pairwise until it finds one
short enough. The main idea behind our algorithm is to replace Grover’s search in Laarhoven’s algorithm
with a quantum walk to search for pairwise reducing vectors. A quantum walk algorithm finds a subset in
a larger set satisfying a wanted property. Typically in our case, we wanted to find a subset that contains
two vectors that reduce together. It was not a priori clear how to adapt the algorithm to integrate quantum
walks as there are many ways of constructing them and most of them do not give speedups. We have used
the MNRS framework [Mag+11] combined with a locality-sensitive filtering (LSF) technique [Bec+16] to find
more efficiently pairs of close vectors, as they have higher chances of reducing.

Our result shows that filtering twice does have a benefit, contrary to what was believed previously.
Moreover, our running time goes below the conditional lower bound that [KL21] stated for a restricted class
of sieving algorithms. Our generalization of their framework has opened new horizons for more efficient
sieving algorithms. We also show the best classical fits our framework, as well as the previous best quantum
algorithm. We finally present two space-time tradeoffs. The first one is computed for fixed quantum memory,
to make our algorithm flexible in the case the qubits are a limited resource, so the algorithm runs with less
quantum memory and a higher time to compensate. Similarly, we present a tradeoff for fixed QRAM.

This result comes from joint work with André Chailloux and previously appeared in the proceedings of
ASIACRYPT 2021 [CL21].

A new filtering technique and its application to solving SVP with low memory

Chapter 5 explores a variant of the sieve, the k-sieve, and gets improved tradeoffs. The k-sieve sums k points
together to find shorter ones, and its memory requirements reduce when k increases. Reducing the memory
would make the attack more materially practical, especially when it comes to quantum memory which is very
limited for implementations.

Searching reducing k-tuples in a sieving step is a problem that reduces to the configuration problem, i.e.
searching k vectors satisfying given constraints on their pairwise scalar products. The choice of the target
configuration impacts time and memory. Taking a balanced configuration with all scalar products equal
minimizes the memory. On the other hand, searching for unbalanced k-tuples slightly increases the memory
to in counterpart reduce the running time. It is another tool that helped us to get better time-memory
tradeoffs.

We introduce a new filtering technique tailored for the k-sieve. It extends the construction of random
product codes (RPC) of [Bec+16]. A k-RPC is an efficiently decodable code such that each codeword
belongs to a k-tuple that sums to the null vector. We use it to describe a new framework for the k-sieve
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and get improved tradeoffs for classical and quantum 3-sieve and 4-sieve algorithms. It looks for k-tuples
of lattice points each such that their sum is shorter. We first perform a filtering step: we use a k-RPC to
construct lists L1, . . . , Lk such that each Li contains lattice points close to a codeword Ai in the k-RPC
where A1 + · · ·+Ak = 0⃗. This forms a tuple-filter L1 × · · · × Lk in which the k-tuples of vectors are more
likely to reduce than by taking k random vectors. We then use known algorithms on configuration search on
these k-tuples of lists to find reducible ones, [HK17] for the classical setting and [Kir+19] for the quantum
one. All our quantum algorithms require only a polynomial number of qubits. Here too, our results prove
that the conditional optimality of [KL21] can be beaten.

This is based on joint work with André Chailloux and these results appeared in PQCrypto 2023 [CL23].

Quantum security analysis of Wave

Chapter 6 focuses on the cryptanalysis of the Wave code-based signature scheme. Its security relies on the
hardness of forging a signature and distinguishing the secret key from a uniform. The best known attacks
do this by tackling two instances of the Decoding Problem. We improve the message attack on Wave in
the quantum setting that slightly reduces its claimed security respectively by 1, 3, and 5 bits for the three
security levels in the NIST submission [Ban+23].

Our algorithm uses the Information Set Decoding (ISD) framework [Pra62; FS09], whose idea is to find
many solutions to a simpler instance of the decoding problem, and then to check whether one of these
solutions allows to find a whole solution of good weight to the DP instance that one wanted to solve. Our
work proposes an improved way to compute the candidate sub-solutions. Our algorithm combines different
approaches. It is based on Wagner’s algorithm [SS81] with the idea of [Sen11] to search for a solution to
the decoding problem considering exponentially many syndromes, known as the Decoding One Out of Many
problem. We adapt this algorithm in the quantum setting in a way inspired by state-of-the-art [CDE21], and
improve it by adding a smoothing technique of [Bri+20]. We also develop a complete time complexity analysis
for the four best known attacks on Wave: message and forgery in both classical and quantum settings. For
each of them, we provide explicit expressions in the function of the Wave parameters. So the claimed security
level can easily be updated with new sets of parameters using our formulas.

This work resulted in a preprint [Loy23] and took part in a joint submission [Ban+23] to the NIST
with Gustavo Banegas, Kévin Carrier, André Chailloux, Alain Couvreur, Thomas Debris-Alazard, Philippe
Gaborit Pierre Karpman, Ruben Niederhagen, Nicolas Sendrier, Benjamin Smith, and Jean-Pierre Tillich.

1.3. Outline of the thesis.

• Chapter 1 is the introduction. You are here!

• Chapter 2 provides preliminaries on quantum information theory.

• Chapter 3 defines the Shortest Vector Problem (SVP) and introduces the best known method to solve
it, called lattice sieving.

• Chapter 4 presents a new algorithm for SVP using quantum walks that improves the best asymptotic
time. As a direct application, this reduces the theoretical quantum security of lattice-based schemes.

• Chapter 5 describes a new tailored filtering technique for the k-sieve, and its application provides better
time-memory tradeoffs.

• Chapter 6 estimates the security of Wave, a code-based digital signature scheme.

• Chapter 7 concludes with an overview of the results and the possible directions for future research.



2. Quantum computing

In this chapter, we review concepts from quantum information theory relevant to this thesis.

2.1. Quantum circuit model

Before designing complex quantum algorithms, we need to define the lowest-level operations: the quantum
circuits. All the circuits presented here are said “agnostic”, meaning that they do not depend on the
architecture of the computer on which they are implemented.

Classical computing stores and processes information coded in the form of states of electronic components.
Similarly, we speak about quantum computing when data are coded by states of quantum particles. Then
classical physics no longer stands and quantum physics theory takes over. That allows us to exploit the
particular properties of these particles to do operations that were proven impossible with classical computing,
such as constructing superposed or entangled states. And this can speed up calculations.

2.1.1. Qubits

In classical computing, the smallest information processing unit is called a bit. It has a value of 0 or 1 and
can change from one state to another, but its state is always fixed and unique at a precise instant. Whereas
for a quantum particle, its state can be a quantum superposition of 0 and 1 at the same time. Physically,
these values can be coded by atoms, photons, or nuclear spins for example. If we measure it, there are
probabilities of obtaining 0 or 1, but is it impossible to predict in advance which result we will find. Once
it is measured, the particle loses its quantum behavior and stays in the state we measured. We say that
the particle collapses. However, probabilities alone are not enough to explain some behaviors of a quantum
particle like the interference effect. Thus, amplitudes are used to characterize its state. Physically this notion
is related to the wave function of the particle.

Let |0⟩ :=
(
1
0

)
and |1⟩ :=

(
0
1

)
be two basis vectors representing the two pure states.

Definition 2.1 (Qubit). A qubit at a quantum state |ψ⟩ can be described by its amplitudes (α, β) ∈ C2:

|ψ⟩ = α|0⟩+ β|1⟩ =
(
α
β

)
,

where |α|2 (resp. |β|2) is the probability of finding the state 0 (resp. 1) when we perform a measurement.
To make sense we then must have |α|2 + |β|2 = 1.

If we manipulate a register with n qubits, we can consider a basis (|0...00⟩, |0...01⟩, ..., |1...11⟩). Let us
rewrite it (|0⟩, |1⟩, ..., |2n − 1⟩) for simplicity, where the first notation is the binary writing of the second one.
A register with n qubits can be in any superposition in this form:

|ψ⟩ =
2n−1∑
j=0

αj |j⟩, where

2n−1∑
j=0

|αj |2 = 1.

7
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|0⟩

|1⟩

|ψ⟩

x

y

z

θ

φ

Figure 2.1: Geometrical representation of the qubit |ψ⟩ = α|0⟩+β|1⟩ on the Bloch sphere, where α = cos
(
θ
2

)
and β = eiφ sin

(
θ
2

)
. The probability to measure 0 (or 1) only depends on angle θ. Angle φ is the phase of

the state. Bloch sphere is a more precise representation than Schrödinger’s cat popular image, which does
not represent the phase φ (and requires the strong hypothesis that cats respect quantum laws).

2.1.2. Quantum gates

Once we have data stored in qubits, we would like to process it. Quantum circuits generalize the idea of
classical circuits, where theAND,OR, andNOT gates are replaced by quantum gates. As qubits are elements
of C2, we can represent a quantum gate by a unitary matrix, i.e. a matrix U such that U†U = UU† = I,
where U† is the conjugate transpose of U . We can transform a state |ψ⟩ into |ψ′⟩ = U |ψ⟩ by applying the
gate of unitary U . Notice that for one qubit (a 2-dimensional complex vector), the dimension of its matrix
is 2× 2. Here are a few usually used quantum gates.

Pauli matrices.

I =

(
1 0
0 1

)
Identity gate.

X =

(
0 1
1 0

)
Bitflip gate, or quantum NOT-gate: adds π to angle θ (see figure 2.1).

Y =

(
0 −i
i 0

)

Z =

(
1 0
0 −1

)
Phaseflip gate: adds π to angle φ (see figure 2.1).

These are the single-qubit Pauli gates. The n-qubits Pauli matrices are obtained from these four matrices
by taking a tensor product of n of these matrices. We define this operation just below.

Hadamard gate.

H =
1√
2

(
1 1
1 −1

)
Applying Hadamard’s gate H on the state |0⟩ gives |+⟩ := H|0⟩ = 1√

2
(|0⟩+ |1⟩). Measuring this state gives

an equal probability of observing |0⟩ or |1⟩, and the same for |1⟩. Notice that H2 = I.
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Phase rotation. This single-qubit gate adds an angle ϕ to the phase (see figure 2.1).

Rϕ =

(
1 0
0 eiϕ

)
One can construct two-qubit gates from single-qubit ones, and the dedicated matrix operation is as follows.

Definition 2.2 (Tensor product or Kronecker product). The tensor product of matrices A = (ai,j) ∈ Cn×n′

and B = (bi,j) ∈ Cm×m′
is

A⊗B :=


a1,1B a1,2B · · · a1,n′B
a2,1B a2,2B · · · a2,n′B

...
...

...
an,1B an,2B · · · an,n′B

 ∈ C(n·m)×(n′·m′).

As an example, the tensor product of A =

(
a1,1 a1,2
a2,1 a2,2

)
and B =

(
b1,1 b1,2
b2,1 b2,2

)
is

A⊗B =


a1,1b1,1 a1,1b1,2 a1,2b1,1 a1,2b1,2
a1,1b2,1 a1,1b2,2 a1,2b2,1 a1,2b2,2
a2,1b1,1 a2,1b1,2 a2,2b1,1 a2,2b1,2
a2,1b2,1 a2,1b2,2 a2,2b2,1 a2,2b2,2

 .

For two single-qubit gates A and B, their tensor product A⊗B represents a two-qubit gate of dimension
4 × 4. Indeed, if we consider two qubits |ψ⟩ and |ψ′⟩, applying A on |ψ⟩ and B on |ψ′⟩ is equivalent to
applying A⊗B on |ψ⟩ ⊗ |ψ′⟩, i.e. (A|ψ⟩)(B|ψ′⟩) = (A⊗B)|ψ⟩|ψ′⟩).

Controlled-NOT gate. This gate operates on two qubits. The first one is called the controlled qubit. If
the first one, called the controlled qubit, has the value 1 then the second qubit is flipped.

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


The sub-matrix X =

(
0 1
1 0

)
on the bottom right can be replaced by any unitary matrix. It leads to only

applying a gate under the condition that the first qubit is |1⟩, which implements the quantum version of the
IF...THEN operation.

Theorem 2.3 (Solovay-Kitaev theorem ). [NC00, Appendix 3] With H, CNOT and Rπ/4, it is possible to
construct an approximation of any possible quantum circuit. For an approximation up to an error ϵ, it only
requires a number polylog(1/ϵ) of these gates.

This theorem will allow us to measure the complexity of n-qubit gates.

Complexity evaluation. We consider here quantum circuits with 1 or 2-qubit gate, without any locality
constraint, meaning that we can apply a 2-qubit gate from a universal set of gates to any pair of qubits in
constant time. We only study asymptotic running time here so we are not interested in the choice of this
universal gate set, as they are all essentially equivalent from the Solovay-Kitaev theorem.

We use the textbook gate model where the time complexity of a quantum circuit is the number of gates
used. A circuit is said efficient if it can be implemented with a number of gates polynomial in the size of
the input. The width of a circuit is the number of qubits it operates on, including the ancilla qubits. This
quantity is important as it represents the number of qubits that have to be manipulated simultaneously and
coherently. We will call this quantity quantum memory.
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Another quantity of interest is the depth of the circuit, which is important as a high-depth quantum
circuit will be much harder to achieve because of decoherence. Moreover, while the number of gates is a good
measure of time when each gate has to be computed separately, depth is a good measure of time when we
can perform many gates at the same time, typically when we have multiple quantum processors.

When we will know much more precisely what quantum architectures look like, it will be possible to make
these models more precise and replace the gate model with something more adequate. The gate model is
still the most widely used in the scientific community and is very practical to compare different algorithms.
We will use the gate model as our main model for computing quantum times but we will also include other
interesting figures of merit, such as Quantum Random Access Memory, that we will develop in Section 2.2.

One of the properties inherent to quantum particles is quantum superposition. We saw that a
Hadamard gate maps a state |0⟩ to a quantum superposition H|0⟩ = 1√

2
(|0⟩ + |1⟩). The Quantum Fourier

Transform generalizes it by constructing a uniform quantum superposition over n qubits.

Definition 2.4 (Quantum Fourier Transform). Let |k⟩ be a register of n qubits, and N = 2n. The quantum
Fourier transform (QFT) is the following operation

QFTN |k⟩ :=
1√
N

N−1∑
j=0

(
e2iπ/N

)jk
|j⟩.

QFTN is a linear function. In its matrix form, denoting ω := e2iπ/N , it can be written

QFTN =
1√
N


1 1 · · · 1
1 ω · · · ωN−1

1 ω2 · · · ω2(N−1)

...
...

...
1 ωN−1 · · · ω(N−1)(N−1)

 .

QFTN |0n⟩ = H⊗n|0n⟩ is the uniform quantum superposition over all states on n qubits. Note that for
N = 2 we recover QFT2 = H.

Theorem 2.5. [Sho94] The QFT2n can be exactly implemented with O(n2) gates H and controlled-R2π/2m

for 1 ⩽ m ⩽ n, or approximately implemented with O(n · log(n)) of these gates.

Another important aspect in quantum computing is entanglement. When two particles are entangled,
if we measure one then the other is immediately impacted. For example, consider the 2-qubit register
1√
2
|00⟩+ 1√

2
|11⟩, that can be obtained by applying the quantum circuit of Figure 2.2. If we measure any of

the two qubits, we get the same probability of measuring 0 or 1. But if we then measure the other one, we
will necessarily get the same measurement.

|0⟩

|0⟩ H •

⊕
Figure 2.2: Entanglement circuit. The left gate is the Hadamard H, and the right two-qubit is a CNOT-gate,
where the above qubit is the controlled one.

Query to a function. For a function f that we are able to compute classically or quantumly, the oracle
to f is the following operation:

Of : |a⟩|0n⟩ → |a⟩|f(a)⟩.

From a classical circuit that computes f with T gates, Of can be constructed with O(T ) quantum gates.
Note that the oracle entangles the two registers. Indeed, if we measured the second one and obtain the
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state |f(a0)⟩ for some a0, then the first one will transform to a quantum superposition of the a’s such that
f(a) = f(a0).

2.1.3. Shor’s algorithm

A famous algorithm in the quantum circuit model is Shor’s algorithm [Sho94], which factorizes a given integer
N . We do not enter into the computational details, but here is a high-level idea of the algorithm. It considers
a periodic function f(i) = xi mod N for a randomly chosen x. We denote n := ⌈log2(n)⌉, QFTN the
quantum Fourier transform and Of the query oracle to function f . Then it applies the following quantum
circuit, whose measurement provides a value that can be used to recover the period of f with good probability.

|0n⟩

|0n⟩ QFTN
Of

QFTN

Figure 2.3: Quantum circuit in Shor’s algorithm. The right-most boxes represent the measurements.

Knowing r the period of f , we have by definition f(r) = f(0), i.e. xr = 1 mod N . If x is well chosen,
this allows to write (xr/2 + 1)(xr/2 − 1) = 0 mod N , so (xr/2 + 1)(xr/2 − 1) = k ·N for some k. Then, we
can hope that one of these (xr/2± 1) has a non-trivial common factor with N . Otherwise, we choose another
random x until we succeed, which happens with a good probability.

Complexity. The time complexity of this circuit is the number of its elementary gates. By Theorem 2.5,
we know that the Quantum Fourier Transform can be implemented with O(n · log(n)) elementary gates.
Evaluating the function f : i 7→ xi mod N can be done in efficient time (O(n2 log(n)), then the call to the
query oracle Of is so. The measurements take time 1. Then, it solves the factorization problem in polynomial

time. For comparison, the best (known) classical factoring algorithm [BJP06] runs in time of about 2
3
√

log(N).

Implications on cryptography. The consequences of this algorithm are daunting. If we can find the
periodicity of a function, then we can easily solve the problems of factorization and discrete logarithm,
which are precisely the problems on which the security of the worldwide used RSA [RSA77], elliptic curves
encryption [NIS91] and Diffie-Hellman key exchange [DH76] rely. To our knowledge to this day, in the classical
model, no algorithm does it in polynomial time. While here in the quantum circuit model, Shor’s algorithm
solves it in a polynomial time, completely breaking its security. This is the reason why we must update our
security systems by choosing problems resistant to quantum attacks. We will present in Chapters 3 and 6
two of the structures that offer problems believed to be hard, namely lattices and codes.

2.2. Quantum random access memory

Quantum computing relies on physical and technical advances to build a usable quantum computer. Since
we cannot predict how far these advances will go, there exist several computing models.

QRACM

The Quantum Random Access Memory is an operation added to the quantum circuit model. We denote by
QRACM the quantum-accessible classical memory. Considering N classical registers x0, ..., xN−1 ∈ {0, 1}
stored in memory, then a QRACM operation consists of applying the following unitary

Ox : |i⟩|b⟩ → |i⟩|xi ⊕ b⟩.



12 CHAPTER 2. QUANTUM COMPUTING

In the QRACM model, the above unitary is considered to be constructed efficiently. In particular, we
assume that given list L there exists an efficient quantum circuit for 1√

|L|

∑
i |i⟩|0⟩ →

1√
|L|

∑
i |i⟩|L[i]⟩. With

a QRACM access to L, this can be done by applying Hadamard gates to state |0⟩ to create a superposition
over all indices, and then by querying L[i] for each i in the superposition.

Definition 2.6 (Quantum superposition of a list). Given a list L, we call the quantum superposition of L
the state |ψL⟩ := 1√

|L|

∑
x∈L |indL(x)⟩|x⟩, where indL(x) denotes the index of the element x in the list L. In

the QRAM model, if L is classically stored and quantumly accessible then there exists an efficient quantum
algorithm that constructs the state |ψL⟩.

QRAQM

The Quantum Random Access to Quantum Memory (QRAQM) authorizes access to data in superposition.
Assume that the quantum circuit holds qubits registers x0, ..., xN−1. A QRAQM operator does the following:

Ox :

(
N−1⊗
j=0

|xj⟩

)
|i⟩|0⟩ →

(
N−1⊗
j=0

|xj⟩

)
|i⟩|xi⟩

Computational models

There are several computing models, here ranked from the most realistic to the most futuristic:

• Classical

• Quantum circuit model (and low qubit model: only use log(n) or poly(n) quantum memory)

• Quantum circuit model with efficient QRACM

• Quantum circuit model with efficient QRACM and QRAQM

It is very premature to know whether QRAM operations will be efficiently available one day for quantum
computers. This would definitely require a major hardware breakthrough, but so would quantum computing
in general. Some proposals for efficiently building QRAM operations exists, such as [GLM08], even though
its robustness has been challenged in [Aru+15]. To this day it is still subject to controversy [GR04; Ber09;
JR23] and research is still going on [All+23].

This uncertainty limits future possible uses we can predict. For concrete applications in business, it
makes sense to avoid operations that we may not be able to implement. However, the logic of cryptanalysis
is reversed. For the aim of security, we must consider that the adversaries have access to the best possible
resources, in order to protect ourselves from the worst-case scenario by choosing the most robust security.
It is more reasonable to be pessimistic when it comes to security, and to protect oneself too much than not
enough, even if it means adjusting security settings afterwards. Indeed, in the case QRAM exists one day
and if the settings of used cryptosystems neglected to take it into account, then encrypted files from before
will be decryptable. It is not a risk that one can tolerate.

Even in case QRAM never sees the light of day, this computing model remains interesting to explore. If
we find a quantum algorithm that efficiently solves a cryptographic problem, we may wonder if there exists
one in classical. De-quantization has already happened in the past. There could also be “de-QRAMisation”
of some quantum algorithms [JS20]. Furthermore, building quantum algorithms in this computing model
makes it possible to better understand the structure of objects that we manipulate (lattices, codes, etc.). So
all the work within the QRAM model will not be lost even in that situation.

2.3. Search algorithms
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2.3.1. Grover’s algorithm

Introduced in 1996, Grover’s algorithm [Gro96] was presented as searching for a solution in a database. For
one with N entries, classically, it is impossible to get a better complexity than Θ(N) queries, by examining
each entry one by one until we find a solution. The quantum Grover algorithm solves this search problem in
O(
√
N/t) queries and with O(

√
N log(N)) other gates.

Let n be an integer and N = 2n. We are given arbitrary x1, ..., xN ∈ {0, 1}n. The goal is to find an
i such that xi = 1, and to output “no solution” if there is no such i. We assume we know the number of
such solutions i, denoted t, or at least an approximation of t. This problem was first presented as a search
in an unordered database. In the original article, Grover fixed t = 1, which has been generalized. The idea
of the algorithm is to separate “good” (xi = 1) and “bad” (xi = 0) indices i, and increase step by step
the amplitudes of the “good” state. The action of the algorithm can be understood thanks to geometric
arguments. First, we set:

θ := asin

(√
t

N

)
= acos

(√
N − t
N

)

|G⟩ := 1√
t

∑
i∈[N ]
xi=1

|i⟩ and |B⟩ := 1√
N − t

∑
i∈[N ]
xi=0

|i⟩

|U⟩ := 1√
N

∑
i∈[N ]

|i⟩ =
√

t

N
|G⟩+

√
N − t
N

|B⟩

|U⟩ is the uniform state over all indices. |G⟩ and |B⟩ stand respectively for the “good” and “bad” states,
depending of the xi’s values. We consider the 2-dimensional space induced by |G⟩ and |B⟩. It will be the
basis on which we will take measurements. We can represent this on a circle of radius 1.

θ

|G⟩

|B⟩
|U⟩

Figure 2.4: Geometrical representation of the initial state of the N -qubit register.

Geometrically, θ represents the angle between the states |B⟩ and |U⟩. We know that t
N is the probability

of measuring a good solution, so
√
t/N is the amplitude of the “good” state |G⟩ at the beginning of the

algorithm. Thus we have θ = asin(
√
t/N). So, we can write the following relation:

cos(θ)|B⟩+ sin(θ)|G⟩ = |U⟩ = 1√
N

N−1∑
i=0

|i⟩.

Grover’s algorithm will require Hadamard gates H, and R|i⟩ =
{
−|i⟩ if |i⟩ ≠ |0n⟩
|0n⟩ else.

which is realizable

in O(n) elementary gates. It also requires an efficient query oracle Ox|i⟩ = (−1)xi |i⟩. Notice that if this
oracle uses RAM, then its use in Grover’s procedure will require quantumly accessible xi for the QRAM
operations.
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Lemma 2.7. Ox acts as a reflection through |B⟩ in the plane Span{|B⟩, |G⟩}, and H⊗nRH⊗n as a reflection
through |U⟩.

Proof. Ox|i⟩ = (−1)xi |i⟩ does not change the state |B⟩ if applied on, because we have in this case xi = 0.
And for all other states |i⟩, it changes its sign. So by definition, it is a reflection through |B⟩. Then,

H⊗nRH⊗n = H⊗n
(
2|0n⟩⟨0n| − I

)
H⊗n = 2|U⟩⟨U | − I which is a reflection through |U⟩.

A Grover step is G = H⊗nRH⊗nOx, which corresponds to a reflection through |B⟩ followed by a reflection
through |U⟩. The algorithm starts with |U⟩ and at each iteration of G, we move forward by the angle 2θ.
Each application of G performs only one query to the oracle Ox.

θ

|G⟩

|B⟩

|U⟩

(a) Ox, reflection through |B⟩.

θ

+2θ

|G⟩

|B⟩

|U⟩

(b) H⊗nRH⊗n, reflection through |U⟩.

Now we have to choose the number k, the number of iterations of G. By the above, the probability of
measuring a good solution (state |G⟩) after k applications of G is

Pr(k) = sin
(
(2k + 1)θ

)2
.

If we choose k too low or even too high, we see that the probability is not optimal. To maximize this
probability, we want (2k + 1)θ ≈ π

2 , so we set k ≃ π
4θ −

1
2 .

Algorithm 1 Grover’s search [Gro96]

Require: x1, . . . , xN ; the number t (or its approximation) of solutions xi = 1
Ensure: i ∈ [N ] such that xi = 1, or “no solution”

Initialize a register |0n⟩.
Apply H⊗n on the whole register to get the state |U⟩ := H⊗n|0n⟩
Set θ := asin(

√
t/N)

for k ≈ π
4θ −

1
2 iterations do ▷ nearest integer approximation

Apply Ox ▷ Reflection through |B⟩
Apply H⊗nRH⊗n ▷ Reflection through |U⟩

Measure and check if the resulting i is a solution.

Theorem 2.8 (Grover’s search [Gro96; Boy+98]). Let N = 2n. We are given x1, ..., xN ∈ {0, 1} and an
efficiently implementable unitary Ox : |i⟩|b⟩ → |0⟩|b ⊕ xi⟩, such that there are t solutions i ∈ [N ] that verify
xi = 1. Grover’s quantum algorithm returns a solution i with probability greater than 1/2 using O(

√
|L|/t)

calls to Of . If t is unknown, it can be estimated and the running time is Õ(
√
|L|/t).
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|0n⟩ H⊗n G G . . . G

k ≃ π
4θ −

1
2 iterations

Figure 2.6: Quantum circuit of Grover’s algorithm where G = (H⊗nRH⊗n)Ox. This representation is
equivalent to the pseudocode of Algorithm 1.

Grover’s search can find an element ei satisfying a certain wanted property within a given quantumly
accessible list L = {e1, . . . , eN}. The description of the check function f : L 7→ {0, 1} encapsulates the
definition of what we call a “solution”. We then fix that ∀i ∈ [N ], xi := f(ei). Therefore applying Grover
returns the index i of one of the solutions ei ∈ L such that f(ei) = 1; if such a solution exists. Assuming the

efficiency of QRAM operations, this takes time Õ(
√
|L|/t) where t is the number of solutions.

2.3.2. Amplitude Amplification

Amplitude Amplification [Bra+02] generalizes Grover’s algorithm. We are given a check function f : Zn →
{0, 1}, and we suppose we have an algorithm A which returns a solution z such that f(z) = 1 with a success
probability of p. The Amplitude Amplification returns a solution with a success probability 1− ϵ > 1/2.

We assume we have the gatesH, R, the oracle functionOf |z⟩ = (−1)f(z)|z⟩, and a unitary that implements
A.

Algorithm 2 Amplitude Amplification

Require: The probability p of success of the algorithm A.
Ensure: z ∈ Zn such that f(z) = 1, or “no solution”

Initialize a register |0n⟩.
Apply H⊗n on the whole register to get the state |U⟩ := H⊗n|0n⟩
for O(1/√p) iterations do
Apply Of ▷ Reflection through |B⟩
Apply ARA−1 ▷ Reflection through |U⟩

Measure and check if the resulting z is a solution.

Remark that Grover’s algorithm takes Of = Ox, A = H⊗n, and p = t
N .

Theorem 2.9 (Amplitude amplification [Bra+02]). Let A be an algorithm without measurements that finds
a solution z ∈ Z2n such that f(z) = 1 with a success probability p. Amplitude amplification on A returns a
solution with probability 1/2 using O(1/√p) queries to Of .

|0n⟩ H⊗n AA AA . . . AA

1√
p iterations

Figure 2.7: Quantum circuit of the amplitude amplification where AA = (ARA−1)Of .

Moreover, one can make the success probability of these algorithms go exponentially close to 1 by repeating
them a constant number of times:

Proposition 2.10. [Bra+02] Grover’s algorithm can have a success probability of 1− 2−η with O(η
√
|L|/t)

queries to the function oracle Of . Respectively, Amplitude Amplification with O(η/√p) queries to Of succeeds
with probability 1− 2−η.
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When we refer to Grover or quantum amplification, it will be implicit that we consider this version that
erases the error.

2.3.3. Quantum Walks

A random walk is an algorithm that, given a set {x1, . . . , xN}, returns a subset v of fixed size that satisfies
a desired property if such v exists. In this case, v is said “marked”. Quantum walks adapt classical random
walks to the quantum setting. The difference is that in classical ones, we start from a vertex in a graph and
move to a randomly chosen neighbor vertex until we find a marked one; while quantum walks construct a
quantum superposition of all neighbor vertices. So we walk to all the neighbor vertices at the same time
somehow, and this speeds up the search for solution.

The MNRS quantum walk framework [Mag+11].

The constraints to “walk” from a subset v to another are modeled by edges of an undirected graph G = (V,E),
where V is the set of vertices and E ⊆ V × V is the set of edges. We do not allow self-loops which means
that ∀v ∈ V, (v, v) /∈ E and as the graph is undirected there is (v, u) ∈ E ⇒ (u, v) ∈ E. There is a subset

M ⊆ V of marked vertices and the goal of the walk is to find one v ∈ M . Let ϵ = |M |
|V | be the fraction of

marked vertices.
We denote δ the spectral gap of the graph G. For a regular graph, if λ1 > ... > λ|V | are the eigenvalues

of the normalized adjacency matrix of G, then δ = λ1 −maxi=2...n |λi|. This value is non-negative but small
(δ ≪ 1) and is correlated to the number of steps needed to reach a random vertex in the graph. Roughly
speaking, no matter from which vertex we start, after Θ( 1δ ) steps to a random neighbor, we will arrive at a
random vertex in G. Let also N(v) = {u : (v, u) ∈ E} be the set of neighbors of v. For any vertex v, we
define |pv⟩ = 1√

|N(v)|

∑
u∈N(v) |u⟩. We now define the following quantities:

• Setup step S (cost S) constructs the quantum state

1√
|V |

∑
v∈V

|v⟩|pv⟩.

• Update step U (cost U) consists in applying the unitary

U : |v⟩|0⟩ → |v⟩|pv⟩.

In order to compute the update cost U , we consider time of classically going from one vertex v to one
of its neighbors in N(v). Then, we can use this procedure in quantum superposition to construct the
unitary U .

• Check step C (cost C) computes the check function f : V → {0, 1} where f(v) = 1 if v ∈ M and 0
otherwise.

S U . . . U C CU1/
√
δ CU1/

√
δ. . .

1/
√
δ iterations

1/
√
ϵ iterations

Figure 2.8: Circuit of a quantum walk of the MNRS framework.
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We provide a very rough sketch of the quantum walk. The setup costs S. The update operation U is
applied ⌊1/

√
δ⌋ times, then we check if the obtained vertex is marked using the check operation C. This

process CU⌊1/
√
δ⌋ takes time ⌈1/

√
δ⌉ · U + C and has a probability of success ϵ. So we perform an Amplitude

Amplification that has 1√
ϵ
iterations so that a measurement would give a marked vertex with high probability.

Conserving the above notations, this leads to the following proposition.

Proposition 2.11. [Mag+11] There exists a quantum walk algorithm that finds a marked element in time

S +
1√
ϵ

(
U√
δ
+ C

)
.

Reusable quantum walks.

In case we do not only search after one but K marked vertices, one can perform a quantum walk from scratch
K times, which would cost

K ·
(
S +

1√
ϵ

(
U√
δ
+ C

))
.

Instead, [Bon+23] showed how to run the setup S only a single time, and then repeat K/
√
ϵ times the

rest of the circuit. This restarts the walk from an already computed quantum superposition, and from there
recovers a uniform random superposition used to search the next marked vertex. For some regimes, the cost
to find K marked elements becomes

S +
K√
ϵ

(
U√
δ
+ C

)
.

S U . . . U C CU1/
√
δ CU1/

√
δ. . .

1/
√
δ iterations

K/
√
ϵ iterations

Figure 2.9: Quantum circuit of a reusable quantum walk.

These reusable quantum walks only apply in certain cases, such as when searching for a marked vertex
can be expressed as a collision problem.

Collision problem and Johnson graph.

Here is a notorious problem with a large range of applications.

Definition 2.12 (Collision problem). Given n ∈ N, a set S and a function f : S → {0, 1}n, find x1, . . . , xk ∈ S
such that f(x1) = · · · = f(xk).

A standard way to solve a collision problem by a quantum walk would be to replace one element from a
vertex v ⊆ S with another one xnew ∈ S\{v}, then check if v contains some x2, . . . xk that forms together a
solution with xnew, and repeat until such a collision is found. A graph that encapsulates this process is the
Johnson graph.

Definition 2.13 (Johnson graph). We are given a set S of size n. For parameters n, r such that r ≤ n,
J(n, r) denotes the Johnson graph. Each vertex v in this graph is a set of r distinct (unordered) elements
in S as well as some additional data D(v) that depends on the random walk we want to perform. Every
possible vertex with this definition appears once in the graph. Two vertices v = (x1, . . . , xr, D(v)) and
v′ = (x′1, . . . , x

′
r, D(v′)) form an edge in J(n, r) if and only if we can go from v to v′ by removing exactly one

value and then adding another one from set S.
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Figure 2.10: Johnson graph J(5, 2). There is a set S of n = 5 points. Each vertex contains r = 2 elements
from S. And there is an edge between two vertices iff. they differ by exactly one element. (Author of the
figure: Tilman Piesk)

Lemma 2.14. [Wol23] The spectral gap of a Johnson graph J(n, r) is δ = n
r(n−r) . Then δ ≈ 1

r when r ≪ n.

Classical walks do not help to solve the collision problem faster. However, in the quantum model, Johnson
graphs are very standard to perform quantum walks on. To improve the complexity of the algorithm, the
basic idea is that when the update step replaces one element in the vertex v with a new xnew from S, it also
checks if xnew belongs to a collision with some other elements in v. This might increase the update time,
but makes the check step immediate, as it is already done during the update. The additional data D(v) is
computed during the setup and then updated at each step. It aims to reduce the time to find the elements
in v that collide with xnew, if they exist. What it contains depends on what is relevant to the collision
problem we want to solve. To get the optimal time of the walk, it is often a question of balancing the time to
compute D(v) and the time to check using D(v) whether xnew forms a solution. We will go into more detail
in Chapter 4, where we will present an example application.

A time analysis of quantum walks on the Johnson graph was done in [Amb07] when studying the element
distinctness problem. There, Ambainis presented a quantum data structure that uses efficient QRAM that
allows in particular insertion and deletion in O(log(n)) time where n is the database size while maintaining
this database in quantum superposition. Another paper [Ber+13] on a quantum algorithm for the subset-sum
problem using quantum walks also presents a detailed analysis of a quantum data structure based on radix
trees to perform efficient insertion and deletion in quantum superposition. All of these data structures require
as many QRAM registers as the number of registers to store the whole database and this running time holds
only in the QRAM model.



3. Lattice sieving

Definition 3.1 (Lattice). Given a basis B = {b1, . . . , bn} ⊂ Rm of linearly independent vectors, the lattice
L ⊂ Rm generated by basis B is the set of all integer linear combinations of vectors of B:

L =

{
n∑

i=1

λibi, λi ∈ Z

}

A lattice is said of full-rank if n = m. In the following, we will only consider full rank lattices for simplicity.
The determinant of L is detL = |detB|. Notice that the basis B is not unique, and one can give another
basis of the same lattice by applying an arbitrary unimodular transformation.

3.1. Lattice-based cryptography

3.1.1. Lattice problems

For a lattice L, we denote by convention λ1(L) the length of a shortest non-zero vector of L. Notice that by
definition, lattices are symmetric to the point 0⃗. So there are always at least two vectors of length λ1(L),
and this is why we say a shortest vector and not the.

Definition 3.2 (Exact-SVP − Shortest Vector Problem). Given a lattice L, find a shortest non-zero vector
x⃗ ∈ L i.e. of norm ∥x⃗∥ = λ1(L).

Definition 3.3 (Approximate γ-SVP). Given a lattice L and γ > 1, find a non-zero vector x⃗ ∈ L such that
∥x⃗∥ ≤ γ · λ1(L).

The bigger the approximation factor γ is, the easier γ-SVP becomes. For γ = 1, γ-SVP and SVP are the
same problem. For cryptanalytic uses, solving γ-SVP for small γ and not necessarily a shortest is sufficient
[Alb+19]. One can apply Minkowski theorem to get an upper bound λ1(L) ≤

√
n · | detL|1/n, or use the

estimation of the length of a shortest vector given by the SVP challenge [Sch+]:

λ1(L) ≈ 1.05 · Γ(n/2 + 1)1/n√
π

· (detL)1/n

where Γ(z) :=
∫ +∞
0

tz−1e−tdt is the extension of the factorial function.

• • • •
• • •
• • • •

b1b2

•

Figure 3.1: Given b1 and b2 two basis vectors that generate a lattice, the Shortest Vector Problem asks to
recover the vector in green.

The Shortest Vector Problem is a central problem in complexity theory and the foundation of many
cryptographic constructions. The average-case to worst-case reductions [Ajt99; Reg09] ensure cryptographic

19



20 CHAPTER 3. LATTICE SIEVING

schemes relying on SVP to be secure as long as there exists a lattice where finding a short vector is hard.
However, in practice, lattice-based cryptographic schemes are not directly based on SVP but on the problems
that follow.

Definition 3.4 (Closest Vector Problem (CVP)). Given a lattice L and a target vector t⃗ ∈ Rn, find the
vector x⃗ ∈ L the closest to t⃗.

Definition 3.5 (NTRU [HPS98]). Let q ≥ 2, R := Z/f(x)Z[x] a polynomial ring, and f, g ∈ R be “short”
with f invertible mod q. Given h := f−1 · g mod q, find f and g.

The NTRU problem is equivalent to solving the Shortest Vector Problem in the lattice Lh,q = {(x, y) ∈
R2 : xh− y = 0 mod q}.

Definition 3.6 (LWE − Learning With Errors [Reg05]). Let n,m, q be positive integers, χ be a probability
distribution on Z (often a Gaussian) and s be a uniformly random vector in Zn

q . We are given m independent
samples (ai, ai · si + ei) where the ai’s are uniformly random on Zn

q and the errors ei follows distribution χ.
Find the secret s.

The LPN problem (Learning Parity with Noise), closely related to code-based problems, can be seen as
an instance of LWE for modulus q = 2.

Definition 3.7 (SIS − Short Integer Solution [Ajt96a]). Given a matrix A ∈ Zm×n, find a vector x⃗ ∈
[−β, β]m\{0} for some β such that Ax⃗ = 0 mod q.

The SIS problem is the dual variant of LWE: solving SIS in a given lattice L ⊂ Rn is exactly LWE in the
dual lattice L⊥ := {x⃗ ∈ Rn | ⟨x⃗|⃗y⟩ = 0,∀y⃗ ∈ L}.

3.1.2. Lattice-based schemes overview

The general idea of encryption and signature protocols was briefly introduced in Figures 1.1 and 1.2 in the
introduction. To construct cryptographic schemes, we need a function that is efficiently computable and
hard to reverse. Lattice structure provides such one-way functions. Indeed, one can generate a basis of short
vectors that stands for the secret key, and then modify it to end up with a “bad” basis of very long vectors that
constitutes the public key. Reversing this function, i.e. computing a good basis from a bad one, is equivalent
to solving the NP-hard Shortest Vector Problem. [DW22] gave the conditions to construct schemes: any
lattice makes it possible to design an identification scheme, a decodable lattice gives an encryption scheme
and a Gaussian sampleable lattice an electronic signature scheme.

• • • • • •

• • • • •

• • • • • •

• • • • •

• • • • • •

• • • • •

0⃗ b1

b2

(a) Good basis of L: (b1, b2).
Secret key.

=⇒
easy

⇐=
hard

X

X

• • • • • •

• • • • •

• • • • • •

• • • • •

• • • • • •

• • • • •

0⃗

b′1

b′2

(b) Bad basis of L: (b′1, b′2).
Public key.

Figure 3.2: Bases (b1, b2) and (b′1, b
′
2) generate the same lattice L.

Ajtai [Ajt96b] showed how to generate hard lattice problems for cryptographic uses and [GGH97] used
it to create the historically first lattice-based signature scheme, which relies on the Closest Vector Problem.
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The NTRU scheme [HPS98; HPS01] followed, based on the eponymous problem. These original schemes
were broken by [NR09]. [GPV08] introduced a “Hash-and-Sign” framework for signatures which provides
provable security, and reduces to worst-case lattice problems. However, the megabytes-long signatures made
them unusable in practice. [Lyu09] proposed a signature scheme based on the Fiat-Shamir framework [FS86]
relying on the Shortest Vector problem in ideal lattices. This time, the performance of the scheme was close to
being practical. On the encryption side, [Reg09] introduced a provably secure lattice-based scheme. [Gen09]
proposed Fully Homomorphic Encryption, a form of encryption that enables computations on plaintexts
without decryption. Most FHE schemes are based on either the LWE problem or its Ring or Modular
variants for storing plaintexts. Structured lattices, such as ideal lattices, Ring, or Modular versions, are
useful for reducing the size of the keys and the running time of the protocols in comparison to generic
lattices. However, we will not develop on structured lattices.

As no efficient algorithm is known to solve lattice problems, lattice-based cryptography is believed to
be quantum-safe. Then lattice-based cryptography gained a lot of visibility during the NIST call for post-
quantum cryptography. Among the four submissions to be standardized, three are based on lattice problems.
CRYSTALS-KYBER [Bos+18] is an encryption scheme relying on the modular version of the LWE/SIS
problem. CRYSTALS-Dilithium [Duc+19] is an electronic signature scheme from the Fiat-Shamir [FS86]
framework, and it is also based on MLWE-MSIS. And FALCON [Fou+18] is a “Hash-and-Sign” scheme
relying on a variant of the NTRU problem.

In 2023, the NIST launched a new call for post-quantum signatures [NIS23]. Among the lattice-based
submissions, HAWK relies on the lattice isomorphism problem, HuFu and Squirrels rely on the LWE/SIS
problem, and EagleSign, HAETAE and Racoon rely on its modular version M-LWE/M-SIS.

3.1.3. Cryptanalysis

Lattice-based cryptography mostly relies on the hardness of LWE, its dual version SIS, and their struc-
tured Ring or Modular variants. Attacks fall into different categories: lattice reduction [LLL82; SE94],
combinatorics [BKW03; Bud+20] or algebraic attacks [AG11]. In this work, we consider generic lattices,
not depending on their specific structure, so we will focus on lattice reduction. To defeat a lattice-based
cryptosystem, one can run the BKZ algorithm [SE94], which itself uses an SVP-solver as a subroutine. It
returns a reduced basis of the lattice, that is enough to compute in polynomial time the solution to the LWE
instance underlying the scheme. The hardness of the attack can be estimated by the complexity of solving
the Shortest Vector Problem in a chosen cost model (See Section 2.2).

Problem of the scheme
(R-LWE, M-SIS, NTRU...)

→ LWE → Lattice reduction
(BKZ)

→ SVP → Cost model → Number of
security bits

Figure 3.3: Cascade of problem reductions.

All the fastest known algorithms to solve SVP run in exponential time in n the lattice dimension − or
even super-exponential in the case of enumeration [Kan83]. The current best enumeration algorithm [Alb+20]
runs in time n0.125n, and [ANS18] showed that quantum gives a quadratic gain. It only requires a polynomial
memory. The other methods run in time and memory 2cn+o(n) for some constant c = Θ(1). Among these
algorithms there are sieving [KS01; NV08; MV10], Voronoi cell [MV10], and Gaussian sampling [Agg+15].
To this day, only sieving algorithms are competitive for large dimensions. Sieving is a class of heuristic
algorithms, therefore the returned vector has no guarantee to be exactly the shortest, and the algorithm may
not succeed on arbitrary lattices. But actually, an approximate solution to SVP suffices for cryptanalysis
purposes [Alb+19], and sieving has largely proven its efficiency in practice as all the 20 records to the SVP
challenge [Sch+] are due to sieving algorithms.
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3.2. Sieving algorithms

A sieving algorithm starts with a list of long lattice vectors and successively applies sieving steps to diminish
the norms of the vectors. After a few sieving steps, we hope to find a short vector. Such algorithms solve
approximate SVP in time and space 2Ω(n), with n the dimension of the lattice. The NV-sieve, originally
introduced in [NV08], constructs shorter vectors by summing vectors from the input list by pairs.

There also exists provable sieving algorithms [Agg+15; Agg+21], whose analysis does not rely on heuris-
tics. But these algorithms run in practice much faster than the theoretical asymptotic time of their proven
analyses. Heuristic algorithms in counterpart, despite that they rely on an approximation of reality, their
analysis provides a good estimation of the running time of the attacks. This explains why the analysis of
sieving algorithms requires a heuristic and unfortunately, why we cannot work without it. The relevance of
the heuristic has been studied, and for now it gives good estimations of the running time.

3.2.1. The NV-sieve

Given a list of lattice vectors of norm at most R and a reducing factor γ < 1, a sieving step will return a list
of lattice vectors of norm at most γR. To obtain these reduced vectors, the NV-sieve computes the difference
of each pair of vectors in the input list and fills the output list with those that are of norm at most γR.
Then, it iteratively builds lists of shorter lattice vectors by applying the sieve step. The first list of lattice
vectors can be sampled with Klein’s algorithm [Kle00] for example. As the norms of the list vectors reduce
by a factor γ < 1 at each sieving step, the output list will hopefully contain a non-zero shortest lattice vector
after a polynomial number of iterations of the NV-sieve step.

Algorithm 3 NV-sieve step [NV08]

Require: List L of N lattice vectors of norm at most R, a reducing factor γ < 1.
Ensure: List Lout of N lattice vectors of norm at most γR.
for x⃗1 ∈ L do
for x⃗2 ∈ L do
if ∥x⃗1 − x⃗2∥ ≤ γR then add x⃗1 − x⃗2 to Lout

return Lout

Algorithm 4 Solve SVP by the sieving method

Require: basis B of a lattice L, a reducing factor γ < 1.
Ensure: a short vector of L (probably)
L← generate N lattice vectors using Klein’s algorithm on basis B
while L does not contain a short vector do
L← Sieve-step(L, γ)

return min(L)

Klein’s algorithm initializes a list with long vectors and we denote their greatest norm R. After applying
a sieving step only poly(n) times, the output vectors are of norm at most R · γpoly(n) with γ < 1, and this
value is exponentially smaller than the initial norm. The list will then hopefully contain a short vector. The
number of while loop iterations is polynomial in n so it does not affect the asymptotic time. We only need
to estimate the running time of the sieving step.

We present here two simplifications of notation. First, we will only consider the case R = 1. Indeed,
all the sieving algorithms we consider will be independent of R, and one can easily normalize the vectors.
Also, in practice, we take γ ≈ 1 (typically γ = 1− 1

poly(n) ). We will fix γ = 1 to simplify the analysis of the

algorithm.

The sieve step described in Algorithm 3 succeeds under the following heuristic.
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Heuristic 3.8. Lattice points of norm at most 1 are distributed uniformly at random on the sphere Sn−1 :=
{x⃗ ∈ Rn : ∥x⃗∥ = 1}.

Actually, random uniform points in the ball {x⃗ ∈ Rn : ∥x⃗∥ ≤ 1} are with high probability very close to
the border of the ball, so on the outer sphere Sn−1. It is easier to intuit this phenomenon when one thinks
in high dimensions. There is more volume in the area of the border of the sphere, called a “shell”, and when
we increase the dimension, the volume concentrates even more on the border. For example, we already see
that the ball of dimension 3 has a shell whose ratio volume is wider than that in dimension 2. Thus, uniform
vectors of norm at most 1 are with a high probability of norm very close to 1 for the high dimensions n used
for cryptography. A simplification we can do is then to consider that uniform points are exactly lying on the
sphere Sn−1 of radius 1. The heuristic consists in assuming that lattice vectors are distributed as uniform
points with this simplification, ignoring the structure of the lattice. The relevance of this heuristic has been
studied in [NV08] and confirmed by experiments. It becomes invalid when the vectors become short, but in
this case, we can assume we have solved SVP.

Figure 3.4: Distribution of norms of uniformly random vectors in the ball of radius 1 and dimension n.

The function of density for the vector norm x of dimension n is fn(x) = V olumeBall(n,x)
V olumeBall(n,1) = xn, with

V olumeBall(n, x) = πn/2xn

Γ(n
2 +1) . For high dimensions, we can see the high concentration near the norm 1.

Complexity analysis of the NV-sieve

We introduce here a geometry notion that will be useful for the complexity analysis of sieving algorithms.
Recall that Sn−1 := {x⃗ ∈ Rn : ∥x⃗∥ = 1}. The spherical cap of center s⃗ and angle α is defined as follows

Hs⃗,α := {x⃗ ∈ Sn−1 | θ(x⃗, s⃗) ≤ α} = {x⃗ ∈ Sn−1 | ⟨x⃗|⃗s⟩ ≥ cos(α)}.

Proposition 3.9 ([Bec+16], Lemma 2.1). For arbitrary angle α ∈ (0, π/2) and a vector x⃗ ∈ Sn−1, the ratio
of the volume of a spherical cap Hx⃗,α to the volume of the sphere Sn−1 is

Vn(α) := poly(n) · sinn(α).

In other words, for an arbitrary angle α ∈ (0, π/2), if we fix s⃗ ∈ Sn−1 and consider a uniformly random
vector x⃗ ∈ Sn−1, then we have

Pr
x⃗∈Sn−1

[⟨x⃗|⃗s⟩ ≥ cos(α)] = Pr
x⃗∈Sn−1

[⃗x ∈ Hs⃗,α] = Vn(α).

The sieving step starts with a list L of lattice vectors, randomly distributed on the sphere Sn−1 according
to the heuristic 3.8. We first need to know how many vectors are required in input to end up with as many
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vectors in output. Indeed, having to deal with too many vectors just wastes time, and on the contrary, taking
too few vectors leads to quickly running out of vectors and not finding a short one. Therefore the size of the
lists must be kept constant and minimal.

A pair of vectors x⃗1, x⃗2 ∈ L yields a reduced vector with norm ∥x⃗1 − x⃗2∥ ≤ 1 if and only if their angle
satisfies θ(x⃗1, x⃗2) ≤ π

3 . Then, each random pair in L reduces with probability Vn(π/3) by Proposition 3.9.
Since there are O(|L|2) pairs of points in L, we have on average |L|2 · Vn(π/3) pairs in L that reduce.
This quantity needs to be equal to |L| in order to keep the input and output list sizes equal. So we set
|L| = 1/Vn(π/3) = (4/3)n/2+o(n) = 20.208n+o(n).

•
0⃗

π
3 1

1

•x⃗

Figure 3.5: Subtracting any vector from the green area with x⃗ yields a shorter vector.

Proposition 3.10. [NV08] The NV-sieve heuristically solves SVP in time 20.415n+o(n) and space 20.208n+o(n).

Proof. The NV-sieve step checks each pair in list L, so its time complexity is |L|2 = 20.415n+o(n), and we
perform poly(n) sieve steps. Its space complexity is the number of vectors we need to store at the same time,
so the space complexity is |L| = 20.208n+o(n).

Complexity analysis of the quantum NV-sieve

Algorithm 5 Quantum NV-sieve step

Require: List L of N lattice vectors of norm at most 1, a reducing factor γ < 1.
Ensure: List Lout of N lattice vectors of norm at most γ.

for x⃗1 ∈ L do
x⃗2 ← Grover on L\{x⃗1}
if ∥x⃗1 − x⃗2∥ ≤ γ then add x⃗1 − x⃗2 to Lout

return Lout

Proposition 3.11. The quantum NV-sieve heuristically solves SVP in time 20.311n+o(n) using classical
memory in 20.208n+o(n) under the assumption of efficient QRACM.

Proof. The quantum NV-sieve step replaces the exhaustive search for a reducing x⃗2 in L by a Grover’s search
in L. The time complexity is |L|

√
|L| = 20.311n+o(n) and it requires a classical memory quantumly accessible

of size |L| = 20.208n+o(n).

Sieving in practice. The Gauss-Sieve [MV10], another family of sieving algorithms, is more used than
the NV-sieve in practice. Despite having no known bound on its time complexity, it usually performs faster
than the implementations of the NV-sieve. The idea of the Gauss-Sieve is to start with a short list of vectors
and then sample new lattice vectors. Vectors are reduced by pairs too and newly computed shorter vectors
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replace the longer ones in the list. There have been several subexponential improvements, like the dimension
for free [Duc17; DLW20] and progressive sieving [LM18]. All the top 20 current highest records [Sch+] for
solving SVP have been reached thanks to sieving algorithms. To this day, the highest dimension where SVP
has been solved is d = 186, while the order of the dimensions for lattices concretely used in schemes remains
far superior. For example, the dimension of the lattice used in Dilithium [Duc+19, Table 2] is 475.

3.3. Locality Sensitive Filtering

A great improvement of the sieving algorithms is to use Neighbor Nearest Search (NNS) techniques. The
NNS problem is: given a list L of vectors, preprocess L such that one can efficiently find the nearest vector
in L to a target vector given later. Applied in the NV-sieve, the preprocessing step partitions the input list
into several buckets of lattice points, with each bucket being associated with a hash function. During the
querying step, when we search for each point x⃗ in the list a reducing one, we search for a reducing one in the
buckets where x⃗ is inserted instead of looking at the whole list, which is much larger.

A method to solve NNS was locality-sensitive hashing (LSH) introduced in [IM98] and then improved in
[Cha02; And+14; AR15; TT07]. It uses a hash function that has a high probability for two elements to collide
if they are close, and a low one if they are far. More recently, [Bec+16] improved NNS for the Euclidean
norm by introducing locality-sensitive filtering (LSF). The latter technique uses the structure of random
product codes that allies both the randomness of the distribution and an efficient list-decoding algorithm,
which provides a great improvement in lattice sieving.

3.3.1. Random Product Code and Hypercone Filters

Definition 3.12 (Random Product Code (RPC)). We assume n = m · b, for m = Õ(n) and a block size b.
The vectors in Rn will be identified with tuples of m vectors in Rb. A random product code C of parameters
(n,m,B) on subsets of Rn and of size Bm is defined as a code of the form C = Q · (C1 × C2 × · · · × Cm),
where Q is a uniformly random rotation over Rn and the subcodes C1, . . . ,Cm are sets of B vectors, sampled
uniformly and independently random over the sphere

√
1/m ·Sb−1, so that codewords are points of the sphere

Sn−1 := {x⃗ ∈ Rn : ∥x⃗∥ = 1}. We can have a full description of C by storing mB points corresponding to the
codewords of C1, . . . ,Cm and by storing the rotation Q.

Random product codes have the interesting property of being efficiently decoded in some parameter range:

Proposition 3.13 ([Bec+16]). Let N be a number exponential in n, and C be a random product code of

parameters (n,m,B) with m = Õ(n) and Bm = No(1). For any x⃗ ∈ Sn−1 and α ∈ [0, π/2], there is an
algorithm that computes the set C ∩ Hx⃗,α in time No(1) · |C ∩ Hx⃗,α|.

Claim 3.14. [Bec+16, Lemma 5.1, proof in Appendix C] Points in a random product code are indistinguish-
able from uniformly and independently random points on Sn−1.

Definition 3.15 (Hypercone filter). A filter is characterized by a center c ∈ Sn−1 and an angle α, that
defines a hypercone. A filter of center c is said α-close with a vector x⃗ ∈ Sn−1 iff. c and x⃗ are of angle
at most α. The filter is associated with a set fα(c), often called “bucket” in the literature, that is initially
empty and can be filled with α-close vectors.

Condition of reduction.

In the NV-sieve (Algorithms 3 and 5), we searched pairs of vectors of angle at most π/3 in the list L. To
add a filtering layer, we preprocess the list by filling each filter bucket fα(⃗s) with α-close vectors in L.
Then, for each vector x⃗ in L, we search for a reducing one within its filters instead of checking the much
larger whole list. Vectors in x⃗’s filters have a higher probability of reducing with x⃗ in comparison with
random vectors from L. We will quantify this, but first of all, let us do an observation that leads to a
quite useful simplification. Notice that for any angle α ∈ [π/3, π/2] and ϵ > 0 such that ϵ < α, we have
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Vn(α − ϵ) = poly(n) · sinn(α − ϵ) = Vn(α) · (ϵ′)n with ϵ′ = cos ϵ − sin(ϵ) cos(α)
sin(α) < 1 for α > ϵ. This leads to

Vn(α)≫ Vn(α− ϵ). So the probability for a point to be at angle α with the center of the cap is exponentially
higher than to be at angle α − ϵ. That justifies that, for a filter of center s⃗ and angle α, vectors in Hs⃗,α lie
very close to the border of the cap. So we do the following simplification.

Claim 3.16. We consider that vectors in a filter bucket fα(⃗s) of center s⃗ and angle α are actually lying on
the border of the filter Bs⃗,α := {x⃗ ∈ Sn−1 | θ(x⃗, s⃗) = α}. A vector x⃗ ∈ Bs⃗,α then can be decomposed into

x⃗ = cos(α)⃗s+ sin(α)y⃗

for some y⃗ of norm 1 and orthogonal to s⃗. Such vector y⃗ is called a residual vector of x⃗ in the filter fα(⃗s).

Lemma 3.17. Let s⃗ ∈ Sn−1 and α ∈ (0, π/2], and a random vector x⃗ random uniform in f⃗s. Decompose
x⃗ = cos(α)⃗s+sin(α)y⃗ with y⃗ ⊥ s⃗ and ∥y⃗∥ = 1. Then the distribution of y⃗ is uniform in an (n−2)-dimensional
sphere inside the orthogonal complement of s⃗.

Proof. x⃗ is uniformly distributed and its uniformity is invariant under rotations. Then the distribution of
sin(α)y⃗ is invariant under rotation around s⃗. Normalizing gives the uniformity of y⃗ in Sn−2.

0⃗

s⃗
x⃗

y⃗

•⋄

α

Sn−1

Figure 3.6: The vector x⃗ is in the filter of center s⃗ and angle α. The blue arrow represents the non-normalized
vector sin(α)y⃗.

Proposition 3.18. Let a filter of center s⃗ and angle α ∈
[
π
3 ,

π
2

]
. Given vectors x⃗1, x⃗2 ∈ Bs⃗,α, we can write

x⃗1 = cos(α)⃗s + sin(α)y⃗1 and x⃗2 = cos(α)⃗s + sin(α)y⃗2 for some y⃗1, y⃗2 of norm 1 and orthogonal to s⃗. For
α ∈

[
π
3 ,

π
2

]
we have the equivalence

θ(x⃗1, x⃗2) ⩽
π

3
⇐⇒ θ(y⃗1, y⃗2) ⩽ 2 arcsin

(
1

2 sin(α)

)
.

Proof. We denote for simplicity θy := θ(y⃗1, y⃗2). Combining both equations gives the condition, for any
α ∈

[
π
3 ,

π
2

]
,

∥x⃗1 − x⃗2∥2 ⩽ 1⇔ sin2(α)∥y⃗1 − y⃗2∥2 ⩽ 1⇔ sin2(α)(2− 2 cos(θy)) ⩽ 1⇔ cos(θy) ⩾ 1− 1

2 sin2(α)

⇔ θy ⩽ arccos

(
1− 1

2 sin2(α)

)
= 2arcsin

(
1

2 sin(α)

)
One can easily check using a computing engine that the final equality is verified for all α ∈

[
π
3 ,

π
2

]
.

Corollary 3.19. Consider a filter of center s⃗ ∈ Sn−1 and angle α ∈ (0, π/2]. Let x⃗1, x⃗2 ∈ Sn−1 be random
vectors such that θ(x⃗1, s⃗) = θ(x⃗2, s⃗) = α. Then the pair (x⃗1, x⃗2) reduces with probability Vn−1(θ

∗
α) where

θ∗α := 2 arcsin

(
1

2 sin(α)

)
.

As the angle θ∗ is larger than π/3, we have Vn(θ∗) ≥ Vn(π/3). The left term can be interpreted as the
probability that two random vectors in a shared filter of angle α reduce together, while the right one is the
probability that two random vectors in Sn−1 reduce together.
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3.3.2. Sieving with locality-sensitive filtering

Before presenting the algorithms, let us remember that the algorithms stand under the following assumptions.

• Heuristic 3.8. The input lattice points are uniformly randomly distributed on the sphere Sn−1 :=
{x⃗ ∈ Rn : ∥x⃗∥ = 1}.

• Claim 3.14. The points of a random product code are indistinguishable from random independent
points in Sn−1.

We recall that the spherical cap of center s⃗ and angle α is denoted Hs⃗,α := {x⃗ ∈ Sn−1 | θ(x⃗, s⃗) ≤ α}.

Proposition 3.20 ([Bec+16] with the correction of [Laa15]). Let angles α, β, θ ∈
(
0, π2

)
be such that cos(θ) ≤

min
{

cos(α)
cos(β) ,

cos(β)
cos(α)

}
. For two vectors x⃗1, x⃗2 ∈ Sn−1 such that ⟨x⃗1, x⃗2⟩ = cos(θ), the ratio of the volume of the

wedge Hx⃗1,α ∩Hx⃗2,β to the volume of the sphere Sn−1 is

Wn(α, β, θ) := poly(n) ·
(
1− γ2

)n/2
with γ =

√
cos2(α) + cos2(β)− 2 cos(α) cos(β) cos(θ)

sin2(θ)
.

And in particular, when α = β,

Wn(α, θ) :=Wn(α, α, θ) = poly(n) ·
(
1− 2 cos2(α)

1 + cos(θ)

)n/2

.

Then given two random uniform and independent vectors x⃗1, x⃗2 ∈ Sn−1, we have Pr⃗s∈Sn−1 [⃗s ∈ Hx⃗1,α ∩
Hx⃗2,β ] =Wn(α, β, θ).

x⃗1 •
x⃗2•

0⃗

α
θ β

Sn−1

Figure 3.7: The spherical cap Hx⃗1,α is the intersection of the red area with the sphere Sn−1, and Hx⃗2,β is
the intersection of the blue area with Sn−1. The wedge Hx⃗1,α ∩Hx⃗2,β with ⟨x⃗1 |⃗x2⟩ = cos(θ) in purple at the
intersection of the two caps.

Classical NV-sieve with LSF.

Theorem 3.21. [Laa15] There exists a classical algorithm that heuristically solves SVP in dimension n in
time and memory 20.292n+o(n).

Proof. The algorithm searches all the pairs (x⃗1, x⃗2) ∈ L2 of angle π/3, so that they yield shorter vectors by
subtracting one to the other. We start by sampling a random product code C (Definition 3.12) to generate
the filters (Step 2). Wn(α, β, π/3) is the probability for two reducing vectors to share a common filter, so we
set its size such that |C| · Wn(α, β, π/3) = 1, ensuring a high probability to find the reducing pair through
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Algorithm 6 Classical NV-sieve with locality-sensitive filtering [Bec+16]

Require: List L with N lattice vectors of norm at most 1, reducing factor γ < 1; angles α, β ∈ (0, π/2].
Ensure: List Lout of N lattice vectors of norm at most γ.
1: Lout = {}
2: Sample a random product code C and initialize the buckets fβ (⃗s) at empty for each s⃗ ∈ C
3: for each x⃗ ∈ L do
4: Compute C ∩ Hx⃗,β ▷ Set of all β-close filters of x⃗.
5: for each s⃗ ∈ (C ∩ Hx⃗,β), add x⃗ to the bucket fβ (⃗s).

6: for each x⃗1 ∈ L do
7: Compute F = C ∩ Hx⃗1,α ▷ Set of all α-close filters of x⃗1.
8: Construct the set B =

(⋃
s⃗∈F fβ(c)

)
\{x⃗1} ▷ Set of all vectors sharing a bucket with x⃗1

9: for x⃗2 ∈ B do
10: if ∥x⃗1 − x⃗2∥ ≤ γ then add x⃗1 − x⃗2 to Lout

11: return Lout

a collision in a filter. Then, for each code word c ∈ C, it generates a filter associated with a bucket fβ(c).
The preprocessing step corresponds to the lines 3-5. For each x⃗1 ∈ L, it uses the efficient list decoding
algorithm from Proposition 3.13 to compute all the codewords in C that are of angle at most β with x⃗1.

This constructs the set C ∩ Hx⃗1,β in time O (|C ∩ Hx⃗1,β |) = O
(

Vn(β)
Wn(α,β,π/3)

)
. The querying step (Lines

6-10) computes, for each x⃗1 ∈ L, the set F = C ∩ Hx⃗1,α of all filter centers of angle at most α with x⃗1.

This takes time O (|C| · Vn(α)) = O
(

Vn(α)
Wn(α,β,π/3)

)
. It then construct the joined set B =

(⋃
c∈F fα(⃗s)

)
\{x⃗1},

filled with all vectors sharing a bucket with x⃗1. Then for each x⃗2 in B, if x⃗1 − x⃗2 is of norm at most γ,
it adds it to the output list Lout. This takes time |B| = |L| · Vn(α). The overall cost of this algorithm is

then Vn(β)
Wn(α,β,π/3)

+ |L| · Vn(α), where |L| = 1
Vn(π/3)

. Taking α = β = π
3 gives an algorithm of both time and

memory in 20.292n+o(n).

There is a modified version of this algorithm [Laa15, Section 13-4-4] that keeps the memory minimum.
Instead of filling the buckets with all their close vectors, which has a high memory cost, we add the vectors
sequentially to their buckets. The time complexity does not change but the memory requirement is kept at
the minimum memory amount N .

Theorem 3.22. [Laa15] There exists a classical algorithm that solves SVP in dimension n in time 20.292n+o(n)

using memory 20.208n+o(n).

Quantum NV-sieve with LSF.

Theorem 3.23. There exists a quantum algorithm that heuristically solves SVP in dimension n in time
20.265n+o(n) and memory 20.208n+o(n) under the assumption of efficient QRACM operations.

Proof. Lattice points are assumed randomly uniformly distributed on the sphere Sn−1 by Heuristic 3.8. As in
the classical version (Algorithm 6), the size of the code is |C| = 1

Wn(α,β,π/3)
, and the preprocessing step takes

time Vn(β)
Wn(α,β,π/3)

. The queries step replaces the exhaustive classical search by a Grover’s search, which takes

time
√
|B| =

√
|L| · Vn(α) under the assumption that QRACM operations are efficiently implementable.

Then the overall time is Vn(β)
Wn(α,β,π/3)

+
√

Vn(α)
Vn(π/3)

. Choosing α = β = arccos
(√

3
2

)
leads to the result.

The same trick as for the classical version reduces the required memory toN = 20.208n+o(n), by sequentially
adding the vectors to their buckets.
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Algorithm 7 Quantum NV-sieve with locality-sensitive filtering [Laa15]

Require: List L with N lattice vectors of norm at most 1, reducing factor γ < 1; angles α, β ∈ (0, π/2].
Ensure: List Lout of N lattice vectors of norm at most γ.
1: Lout = {}
2: Sample a random product code C and initialize the buckets fβ(c) at empty for each c ∈ C
3: for each x⃗1 ∈ L do
4: Compute C ∩ Hx⃗1,β ▷ Set of all β-close filters of x⃗1.
5: For each c ∈ (C ∩ Hx⃗,β), add x⃗1 to the bucket fβ(c).

6: for each x⃗1 ∈ L do
7: Compute F = C ∩ Hx⃗1,α ▷ Set of all β-close filters of x⃗1.

8: x⃗2 ← Grover on set
(⋃

c∈F fβ(c)
)
\{x⃗1} with function fcheck : x⃗2 7→

{
1 if ∥x⃗1 − x⃗2∥ ≤ γ
0 otherwise.

9: Add x⃗1 − x⃗2 to list Lout

10: return Lout

Conditional optimality. [KL21] have shown that the hypercone filters [Bec+16] are optimal in the lattice
sieving setting for the Euclidean norm. Based on this result, they gave a conditional lower bound within the
framework of running a lattice sieve with pairwise NNS techniques and showed that the [Bec+16] algorithm
is optimal in the classical model. However, as we will show later, it is possible to go below this conditional
lower bound by considering algorithms that do not fit in their framework. Indeed, in Chapter 4, we will study
a new algorithm that uses quantum walks to find close vectors, instead of a simple Grover’s search. They
also claim that “Similar optimality results extend to the tuple sieving results of Herold–Kirshanova-Laarhoven
[HKL18], the pairwise sieve with quantum speedups [Laa15]”. We will see in Chapter 5 that the running time
of this algorithm is not absolutely optimal either, as we use a different filtering technique from theirs.

Quantum filtering. The quantum algorithm 7 still performs the calculation of the closest filters classically.
After our work, [Hei21] has proposed to use Grover’s search to sample a random product code. The filter
buckets are only constructed as a quantum superposition of centers, and this gives a quadratic speed up on
the cost of computing all the relevant filters of a given query vector. Applied to the sieving, it gives the
following theorem.

Theorem 3.24. There exists a quantum algorithm that heuristically solves SVP in time 20.2571n+o(n) and
20.2075n+o(n) memory.

3.4. k-Sieves

Sieving algorithms reach the best time complexities to solve SVP, but they have the drawback of requiring
an exponentially large memory. A way to reduce it is by the k-sieve, introduced in [BLS16]. The idea is
to sum k lattice points instead of pairs at each sieving step. This decreases the number N of lattice points
that we need at each step to find the same number N of shorter lattice points. However, this will drastically
increase the time to perform the sieving step. For instance, a naive exhaustive search of each k-tuple takes
time O(Nk), and the fact that N is smaller does not outweigh this increased exponent.

Definition 3.25 (Approximate k-List problem). Given k lists L1 . . . , Lk of equal exponential (in n) size N
and whose elements are i.i.d. uniformly chosen vectors from Sn−1, the approximate k-list problem is to find
N k-tuples (x⃗1, . . . , x⃗k) ∈ L1 × · · · × Lk satisfying ∥x⃗1 + · · ·+ x⃗k∥ ≤ 1.

This problem reduces to the sieving problem. Its condition ∥x⃗1 + · · ·+ x⃗k∥ ≤ 1 can be rewritten

∥x⃗1 + · · ·+ x⃗k∥2 =

k∑
i=1

∥x⃗i∥2 + 2

k∑
i,j ̸=i

⟨x⃗i |⃗xj⟩.
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Figure 3.8: Space and time asymptotic complexities for the naive k-sieve. The space N = 2mn+o(n) decreases
when k increases, but the running timeNk = 2tn+o(n) explodes. The sizeN will be expressed in Theorem 3.28.

It means that a tuple reduces if some constraints on its scalar products ⟨x⃗i |⃗xj⟩ are verified. This motivates
the introduction of vector configurations.

Algorithm 8 Naive k-Sieve

Require: Lists L1, . . . , Lk of N lattice vectors of norm at most 1, a reducing factor γ < 1.
Ensure: List Lout of N lattice vectors of norm at most γ.

for (x⃗1, . . . , x⃗k) ∈ L1 × · · · × Lk do

if
∥∥∥∑k

i=1 x⃗i

∥∥∥ ≤ γ then add
∑k

i=1 x⃗i to Lout

return Lout

Definition 3.26 (Configuration). The configuration C of k vectors x⃗1, . . . , x⃗k ∈ Sn−1 is the Gram matrix
of the vectors x⃗i, i.e. Ci,j = ⟨x⃗i |⃗xj⟩, with necessarily ∀i, Ci,i = 1. A configuration is said balanced when
Ci,j = −1/k for i ̸= j, and Ci,i = 1. In this case, the tuple points will form the summits of a regular
polyhedron inscribed in the sphere. For I ⊂ [k], we denote by C[I] the |I| × |I| submatrix of C obtained by
restricting C to the rows and columns whose indexes are in I.

Notice that if two random vectors x⃗i, x⃗j satisfy Ci,j ≤ ⟨x⃗i |⃗xj⟩, then we will have Ci,j ≈ ⟨x⃗i |⃗xj⟩ with high
probability. This will be formalized later in Lemma 3.16.

x⃗1

x⃗2 x⃗3

•

• •
×

(a) Balanced configuration
C1,2 = C1,3 = C2,3 = − 1

2
.

x⃗1

x⃗2
x⃗3

•

• •×

(b) Configuration with C1,2 ≈ −0.4,
C1,3 ≈ −0.2 and C2,3 ≈ −0.8.

Definition 3.27 (Configuration problem). Let k ∈ N and ϵ > 0. We are given k lists L1, . . . , Lk all of
exponential (in n) size N whose elements are i.i.d. uniform from Sn−1. For a given target configuration
C = (Ci,j)i,j∈[k] ∈ Rk×k, the configuration problem consists in finding a 1 − o(ϵ) fraction of all k-tuples
(x⃗1, . . . , x⃗k) ∈ L1 × · · · × Lk such that ⟨x⃗i |⃗xj⟩ ≤ Ci,j for all i ̸= j.

The configuration C can be chosen among the set of symmetric positive semi-definite matrices in Rk×k

with ∀i, Ci,i = 1. A k-tuple (x⃗1, . . . , x⃗k) satisfying C implies ∥
∑

i x⃗i∥ =
∑

i,j Ci,j = 1tC1, where 1 is a column
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vector of 1’s. Thus a k-tuple satisfying configuration C is a solution to the approximate k-list problem if and
only if we have 1tC1 ≤ 1. Actually, considering the configuration problem brings an additional constraint,
the k-tuples have to satisfy a constraint on their configuration instead of just having ∥

∑
i x⃗i∥ ≤ 1.

Theorem 3.28. [HK17, Theorem 1] The probability that a k-tuple of i.i.d. uniformly random points on
Sn−1 satisfies a given configuration C ∈ Rk×k is det(C)n/2.

Remark. Both Lemmas 3.9 for the volume of a spherical cap and 3.20 for the volume of a wedge can be
obtained by applying the above theorem. It suffices to choose well the configurations. Let be α, β ∈ (0, 1)
and consider two vectors v⃗, w⃗ ∈ Sn−1 of angle at most θ ∈ (0, π/2) with β ≥ α cos(θ) and α ≥ β cos(θ). Then
we can recover the formula of the wedge from 3.20:

Pr
s∈Sn−1

[⟨⃗v|s⟩ ≥ α, ⟨w⃗|s⟩ ≥ β | ⟨⃗v|w⃗⟩ ≥ cos(θ)] =
Pr⃗v,w⃗,s∈Sn−1 [⟨⃗v|s⟩ ≥ α, ⟨w⃗|s⟩ ≥ β, ⟨⃗v|w⃗⟩ ≥ cos(θ)]

Pr⃗v,w⃗∈Sn−1 [⟨⃗v|w⃗⟩ ≥ cos(θ)]

=

∣∣∣∣∣∣
1 cos(θ) α

cos(θ) 1 β
α β 1

∣∣∣∣∣∣
n/2

∣∣∣∣ 1 cos(θ)
cos(θ) 1

∣∣∣∣n/2
by applying Theorem 3.28.

=
(1− cos2(θ) + 2αβ cos(θ)− α2 − β2)n/2

(1− cos2(θ))n/2

= (1− γ2)n/2 with γ :=

√
α2 + β2 − 2αβ cos(θ)

sin2(θ)
.

After a sieving step with all lists of size N , we want to get Nk · det(C)n/2 k-tuples satisfying the chosen
configuration C so that they are reducing k-tuples. We need this number of solutions to be equal to N . So
we can deduce the required size for N , in the function of the target configuration:

N = Õ

((
1

det(C)

) n
2(k−1)

)
. (3.1)

The k-Sieve aims to improve the time-memory tradeoffs, as searching for tuples requires less memory than
searching for pairs. The required memory amount decreases when k increases. However, we have to pay the
price by a higher time complexity. For a fixed k, the minimum value of N is reached when the configuration
C is balanced. In particular, with a balanced configuration for k = 2 we require 20.208n points ; 20.189n points
for k = 3 and 20.172n for k = 4. Figure 3.8 displays some other values for higher k. Considering non-balanced
configurations leads to not reaching the lower bound for memory but it can improve time. This is useful to
get better time-memory tradeoffs.

Proposition 3.29 (Size of the filtered lists Li(xj) given Ci,j [Kir+19]). We are given a configuration C ∈
Rk×k and lists L1, . . . Lk ⊂ Sn−1 each of size |Lj |. For x⃗1, . . . , x⃗i ∈ Sn−1, we denote

Lj(x⃗1, . . . , x⃗i) := {x⃗j ∈ Lj : ⟨x⃗1 |⃗xj⟩ ≤ C1,j , . . . , ⟨x⃗i |⃗xj⟩ ≤ Ci,j}.

Then, for a i-tuple x⃗1, . . . , x⃗i satisfying the configuration C[1 . . . i], the expected size of Lj(x⃗1, . . . , x⃗i) is

E(|Lj(x⃗1, . . . , x⃗i)|) = |Lj | ·
(
det(C[1, . . . , i, j])

det(C[1, . . . , i])

)n/2

.

In particular,

E(|Lj(x⃗i)|) = |Lj | ·
(
1− C2

i,j

)n/2
.
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k-List algorithms The first classical algorithm for the configuration problem for k ≥ 2 was given by
[BLS16]. The idea is to fix a first vector x⃗1 ∈ L1 and to construct L2(x⃗1), then fix x⃗2 ∈ L2(x⃗1) to construct
L3(x⃗1, x⃗2), and so on until constructing Lk(x⃗1, . . . , x⃗k−1). A tuple (x⃗1, . . . x⃗k) taken in these lists yields
one solution to the configuration problem. It then iterates on each x⃗1 ∈ L1 to find all the solutions. This
algorithm was later improved by [HK17] by also constructing intermediate lists Li(x⃗1, . . . , x⃗i−1) at each level
i. The algorithm [HKL18] adds locality-sensitive filtering to the algorithm [HK17] to speed up pairwise
searches. It applies the filtering described in Algorithm 6 where the angle constraint becomes acos(Ci,j)
instead of π

3 . [Kir+19] proposed quantum versions of BLS and HKL algorithms, and they show that a hybrid
version performs more efficiently, by starting with HKL and then continuing with BLS. This hybrid version
tends to have the same tradeoffs as the quantum BLS algorithm when k is high. [Kir+19, Appendix B]
also adds pairwise filtering in their quantum hybrid algorithm. It is not straightforward to know how to
optimally combine the k-sieve structure with filtering. We will see in Chapter 5 a new way to add filtering to
the k-sieve, that is complementary to the pairwise filtering approach of previous works. We will bring more
details on k-List algorithms in Chapter 5. Tables 5.4 and 5.5 recap the time and memory complexities of
these algorithms, respectively in the classical and quantum settings.



4. Lattice sieving via quantum walks

The work in this chapter has been published in ASIACRYPT 2021 [CL21] and is a joint work with André
Chailloux.

4.1. Overview

Sieving with LSF. A sieving step starts from a list L of N := (4/3)n/2 of lattice vectors in dimension n
of norm at most 1, and outputs N lattice vectors of norm at most γ < 1. We actually take γ very close to
1 at each iteration to simplify the analysis. The 2-sieve searches reducing pairs of vectors, i.e. of angle at
most π

3 . Please look at Section 3.2.1 for more details on sieving algorithms.
[Bec+16] presented an initial framework for sieving with LSF to solve SVP which we presented in Sec-

tion 3.3. Their algorithm samples a random product code which generates centers of the filters. Then, during
the preprocessing step, it goes through the input list and inserts each list vector into all its nearest filters.
During the querying step, for each list vector, it searches for a reducing one within its filters. [Laa15] replaced
the classical exhaustive search of the querying part with Grover’s search, which describes a new best quantum
algorithm for SVP. Doubling the filtering layer did not improve the complexity, so it was believed useless.

Quantum walks. We introduced quantum walks in Section 2.3.3. Given a set of elements S = {x1, . . . , xN},
a quantum walk is an algorithm that finds a subset v ⊆ S of size r that satisfies a wanted property, if such
”marked vertex” v exists. Typically in our case, we want to find a subset v that contains two vectors that
reduce together. The main idea behind our algorithm is to replace Grover’s searches in the quantum sieve
of [Laa15] with quantum walks. It was not a priori clear how to adapt the algorithm to integrate quantum
walks as there are many ways of constructing them and most of them do not give speedups.

Contributions. In this chapter, we present a new quantum sieving algorithm for solving SVP using quan-
tum walks. This is the first improvement in the asymptotic running time of quantum sieving algorithms since
the work of Laarhoven [Laa15], bringing down the time from 20.2653d+o(d) to 20.2570d+o(d). We also show that
the state-of-the-art classical and quantum sieving algorithms actually fit into our framework. Finally, we
present two trade-offs: for fixed quantum memory and for fixed QRAM, and we show that the best classical
and previous best quantum algorithms fit our framework.

Outline. In Section 4.2, we present the general framework we use for our sieving algorithm. Next, we
perform a first study of its complexity in Section 4.3, whose Section 4.4 improves with an additional idea,
the sparsification. In Section 4.5, we present the space-time trade-offs. In Section 4.6, we present how a
later improvement of the circuit of quantum walks slightly improves our attack. Finally, we discuss the
results in Section 4.7 and talk about the parallelization of our algorithm as well as possible improvements.
The SageMath code used for the numerical results of this chapter is available here: https://github.com/

johanna-loyer/sieving-via-QRW.

4.2. Framework for sieving algorithms using filtering

Notations. Sn−1 is the sphere in Rn of radius 1. The spherical cap of center s⃗ ∈ Sn−1 and angle α is
Hs⃗,α := {x⃗ ∈ Sn−1 | θ(x⃗, s⃗) ≤ α}. Proposition 3.9 gave the ratio volume of the spherical cap Vn(α) =
Pr⃗x∈Sn−1 [⃗x ∈ Hs⃗,α], and Proposition 3.20 gave those of the wedge Wn(α, θ) = Pr⃗s∈Sn−1 [⃗s ∈ Hx⃗1,α ∩Hx⃗2,α].

The core idea behind the framework of our sieving algorithms is the following:
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1. Prefilter the list vectors,

2. Search all reduced pairs within each filter,

3. Repeat steps 1. and 2. until most of the reduced pairs are found.

Our algorithm takes as input a parameter cα ∈ (0, 1) which is linked with the size of the filters during
the preprocessing step. We will discuss later how to choose it optimally.

Algorithm 9 Framework for sieving with LSF prefiltering

Input: List L of N lattice vectors of norm at most 1, reducing factor γ < 1 and parameter cα ∈ (0, 1).
Output: List Lout of N lattice vectors of norm at most γ.
Algorithm:

1: Lout := {}
2: Fix the angle α ∈ [π/3, π/2] such that N · Vn(α) = N cα .
3: while |Lout| ≤ N do ▷ NBREP repeats
4: Sample a random product code C of size 1/Vn(α) and denote its codewords s⃗i
5: for each x⃗ in L do
6: s⃗i ← Decode(x⃗,C) ▷ Algorithm from Proposition 3.13
7: Add x⃗ to the bucket fα(⃗si)

8: for each filter numbered i ∈ [N1−cα ] do
9: Sol← FindAllReducing(fα(⃗si)) ▷ Finds Nζ solutions

10: Lout ← Lout ∪ Sol
11: return Lout

The FindAllReducing(fα(⃗si)) subroutine starts from a list of vectors x⃗1, . . . , x⃗Ncα ∈ fα(⃗si) and outputs
all vectors of the form x⃗i − x⃗j (with i ̸= j) of norm lower than γ. We want to find asymptotically all the
solutions and not strictly all of them. Sometimes, there are no solutions so the algorithm outputs an empty
list.

Complexity analysis of framework algorithm 9

We first present the heuristic arguments and simplifying assumptions we use for our analysis. All of them
were introduced and discussed previously.

Heuristic and simplifying assumptions. We remind the reader that the complexity analysis of the
algorithms presented in this chapter relies on the following assumptions:

• Heuristic 3.8. The input lattice points are uniformly randomly distributed on the sphere Sn−1 :=
{x⃗ ∈ Rn : ∥x⃗∥ = 1}.

• Claim 3.14. The points of a random product code are indistinguishable from random independent
points in Sn−1.

• Claim 3.16. Given a point s⃗ ∈ Sn−1, we assume that a random vector x⃗ of angle at most α with s⃗ is
exactly at angle α, and then can be decomposed x⃗ = cos(α)⃗s + sin(α)y⃗ with y⃗ ⊥ s⃗ and ∥y⃗∥ = 1. The
residual vector y⃗ is random uniform in Sn−2 an orthogonal complement to s⃗.

• We suppose that there exists a quantum circuit that efficiently implements QRACM and QRAQM
operations. (See Section 2.2)
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1. Prefiltering (lines 4-7) We start by sampling a random product code C (defined in Part 3.12) of size
1/Vn(α) whose codewords are denoted s⃗i. For each point x⃗ ∈ L, we compute Hx⃗,α ∩ C using the efficient
decoding algorithm. We pick inside it a codeword s⃗i and update the corresponding buckets fα(⃗si). We
have |C| = N1−cα and we chose α such that Vn(α) = N−(1−cα), so the expected value of |Hv⃗,α ∩ C| is
|C| · Vn(α) = 1. For each point x⃗, we can compute Hv⃗,α ∩ C in time No(1)|Hv⃗,α| using the algorithm from
Proposition 3.13. From there, we can conclude that we can compute the filters for the N points in time
O(N).

After preprocessing the list L of size N , each α-filter is filled with N · Vn(α) = N cα vectors on average.
Those N cα points are randomly distributed in this filter. The number of filters is

NbFilters := N1−cα =
1

Vn(α)
.

2. Find all solutions within an α-filter (lines 8-10) Within an α-filter, two vectors reduce if their
respective residual vectors in the filter are of angle at most θ∗α whose expression is given in Corollary 3.19.
The expected number of reducing pairs is N2cα · Vn−1(θ

∗
α) =: Nζ .

•
0⃗

π
3 α

×• s⃗
•

•x⃗1

x⃗2

θ∗αy⃗1

y⃗2

Figure 4.1: Given s⃗ ∈ Sn−1, and x⃗1, x⃗2 ∈ fα(⃗s), then we have θ(x⃗1, x⃗2) = π/3 ⇔ θ(y⃗1, y⃗2) = θ∗α. The point
denoted × is the center of the sphere Sn−2 of points orthogonal to s⃗.

We denote by T (FAR) the running time of the FindAllReducing algorithm. We will see in the next Section
a proposal of such a subroutine with its complexity analysis. The querying step runs a FindAllReducing
subroutine for each of the α-filters which are at number N1−cα . So it runs in time NbFilters · T (FAR). The
average number of solutions found is Nζ for each call to FindAllReducing, so we find N1−cα+ζ solutions in
total after one iteration in while loop. Notice that we can have ζ < 0, which means that we can find on
average much less than one solution for each call to FindAllReducing.

3. Number of repeats (while loop 3) Each call to FindAllReducing finds Nζ reduced vectors. After
searching all the solutions within every filter, we expect to find |C| ·Nζ = N1−cα+ζ solutions.

To complete the sieve, we need N reduced lattice vectors. Thus steps 1. and 2. have to be repeated until
we reach this number of solutions. The number of repetitions of the while loop is

NbRep = max{1, N1−(1−cα+ζ)+o(1)} = max{1, N cα−ζ+o(1)}.

Let us summarize this complexity analysis in the following proposition.

Proposition 4.1. Consider cα ∈ [0, 1] and angle α ∈ [π/3, π/2] satisfying N · Vn(α) = N cα . We are given
a subroutine FindAllReducing that finds Nζ in time T (FAR).
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The Algorithm 9 with this subroutine and parameter cα runs in time

T = NbRep · (N +NbFilters · T (FAR))

Notice that the above running time only depends on cα (since α and ζ derives from cα) and on the running
time of the FindAllReducing subroutine. This framework encompasses state-of-the-art classical and quantum
sieving algorithms.

State-of-the-art classical algorithm. In order to retrieve the algorithm of [Laa15, Algorithm 13.3] (The-
orem 3.22 in this thesis), we take cα → 0, which implies α→ π/3. We can compute θ∗π/3 ≈ 1.23rad ≈ 70.53o

and ζ = −0.4094. The FindAllReducing subroutine simply performs an exhaustive search among all the pairs
in an α-filter. In this case, we have T (FAR) = O(1). From the above proposition, we get a total running
time of T = N1.4094+o(1) = 20.2925n+o(n).

State-of-the-art quantum algorithm. We take cα = 0.2782. This value actually corresponds to the
case where ζ = 0, so we have on average Nζ = 1 solution per α-filter. For the FindAllReducing subroutine,
we can apply Grover’s algorithm on pairs of vectors in the filter of size N cα . It finds a solution in time√
N2cα = N cα , so T (FAR) = N cα . Putting this together, we obtain an overall time T = N1+cα+o(1) =

N1.2782+o(1) = 20.2653n+o(n). So we get the same complexities as the algorithm [Laa15] (Algorithm 7 in this
thesis) in the low memory regime with N = 20.2075n+o(n) classical memory.

4.3. Finding reducing pairs by quantum walks

We focus now on describing an algorithm for FindAllReducing whose input is a list of vectors in a filter of
center s⃗ ∈ Sn−1 and angle α ∈ [π/3, π/2], and we want to return a list of all the reducing pairs within fα(⃗s).
We describe here such a subroutine that uses quantum walks to achieve this. Once we find a marked vertex,
it contains a pair (y⃗i, y⃗j) such that θ(y⃗i, y⃗j) ≤ θ∗α from which we directly get a reducible pair (x⃗i, x⃗j).

4.3.1. Constructing the graph

We consider the unordered list Lx = {x⃗1, . . . , x⃗Ncα } ⊆ fα(⃗s) of distinct points with α satisfying Vn(α) =
N−(1−cα). For each i ∈ [N cα ], we can write x⃗i = cos(α)⃗s+sin(α)y⃗i where each y⃗i is of norm 1 and orthogonal
to s⃗. Let Ly = {y⃗1, . . . , y⃗Ncα } be the list of all the corresponding residual vectors of the x⃗i’s in Lx. Recall
from Proposition 3.18 that a pair (x⃗i, x⃗j) reduces if their residual vectors y⃗i, y⃗j satisfy θ(y⃗i, y⃗j) ≤ θ∗α :=

2 arcsin( 1
2 sin(α) ).

We will present a quantum walk to find pair (y⃗i, y⃗j) such that θ(y⃗i, y⃗j) ≤ θ∗α more efficiently than Grover’s
search. The graph in which we perform the walk is the usual one for the collision problem, the Johnson
graph (see Section 2.3.3). Our quantum walk takes two extra parameters cV ∈ [0, cα] and cβ ∈ [0, cV ]. From

these two parameters, let β ∈
[
π
3 ,

π
2

]
such that Vn(β) = N cβ−cV and ρ0 such that Nρ0 = Vn(β)

Wn(β,θ∗
α) . We

start by sampling a random product code Cβ with parameters

[
(n− 1), log(n− 1), N

ρ0+cV −cβ
log(n−1)

]
which has

therefore Nρ0+cV −cβ = 1
Wn(β,θ∗

α) points denoted t⃗1, . . . , t⃗Nρ0+cV −cβ . We perform our quantum walk on a

graph G = (V,E) where each vertex v ∈ V contains:

• An unordered list Lv
y = {y⃗1, . . . , y⃗NcV } of distinct points taken from Ly.

• For each t⃗i ∈ Cβ , we store the list of elements of Jv (⃗ti) := fβ (⃗ti)∩Lv
y, using a QRAQM data structure

allowing us to efficiently add and delete in quantum superposition. Notice that we have on average

|Jv (⃗ti)| = N cV · Vn(β) = N cβ ,

and we need to store in total |Cβ | ·N cβ = N cV +ρ0 such elements in total for each vertex.
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• A bit that says whether the vertex is marked (we detail the marked condition below).

The vertices of G consist of the above description for all possible lists Lv
y. We set that (v, w) ∈ E if we

can go from Lv
y to Lw

y by changing exactly one element. In other words,

(v, w) ∈ E ⇔ ∃y⃗old ∈ Lv
y,∃y⃗new ∈ Ly\Lv

y st. Lw
y =

(
Lv
y\{y⃗old}

)
∪ {y⃗new}.

This means the graph G is a Johnson graph J(N cα , N cV ) where each vertex also has some additional
information as we described above.

Condition for a vertex to be marked. We first define the set M0 of vertices that contain a reducing
pair of points.

M0 := {v ∈ V : ∃y⃗i, y⃗j ∈ Lv
y, y⃗j ̸= y⃗i, θ(y⃗i, y⃗j) ≤ θ∗α}.

Ideally, we would want to mark each vertex in M0, however, this would induce a too-large update cost when
updating the bit that specifies whether the vertex is marked or not. Instead, we will consider marked vertices
subsets of M0 for which the update can be done more efficiently, but losing only a small fraction of these
vertices. For each Jv (⃗ti) = {y⃗′1, . . . , y⃗

′
|Jv (⃗ti)|}, we define J̃v (⃗ti) = {y⃗′j ∈ Jv (⃗ti), j ≤ min{|Jv (⃗ti)|, 2N cβ}}

which consists of the first 2N cβ elements of Jv (⃗ti), considering a global ordering of elements of Ly, for

example with respect to their index and J̃v (⃗ti) consists of the 2N
cβ elements of Jv (⃗ti) which are the smallest

with respect to this ordering. In the case where |Jv (⃗ti)| ≤ 2N cβ , we set J̃v (⃗ti) = Jv (⃗ti). We define the set
of marked elements M as follows:

M := {v ∈ V : ∃⃗t ∈ Cβ ,∃y⃗i, y⃗j ∈ J̃v (⃗t), y⃗j ̸= y⃗i, st. θ(y⃗i, y⃗j) ≤ θ∗α}.

The reason for using such a condition for marked vertices is that when we perform an update, hence
removing a point y⃗old from a vertex and adding a point y⃗new, we will just need to look at the points in J̃v (⃗t)
for t⃗ ∈ Hy⃗new,β ∩ Cβ which can be done faster than by looking at all the points of the vertex. If we used

Jv (⃗t) instead of J̃v (⃗t) then the argument would be simpler but we would only be able to argue about the
average running time of the update but the quantum walk framework requires to give an upper bound of the
update time for any pair of adjacent vertices. Also notice that each vertex still contain the sets Jv (⃗ti) (from

which one can easily compute J̃v (⃗ti)).

Once we have found such a pair (y⃗i, y⃗j), we can immediately recover the corresponding lattice vectors
(x⃗i, x⃗j) and compute their difference to get a shorter vector.

4.3.2. Complexity analysis

Let us first consider the following lemma that will be useful in the complexity analysis of our algorithm.

Lemma 4.2. Consider a vector s⃗ ∈ Sn−1, an angle α ∈ (0, π/2], and a set S = {⃗s1, . . . , s⃗M} of i.i.d.
uniformly random vectors in Sn−1. We assume we have MVn(α) = Nx with a constant x > 0. Then we
have:

Pr[|S ∩Hs⃗,α| ≥ 2Nx] ≤ e−Nx

3 .

Proof. For any i ∈ [M ], both x⃗i and s⃗ are independent and uniform random points on the sphere Sn−1, so
by definition 3.9 we have ∀i ∈ [M ],Pr[⃗xi ∈ Hs⃗,α] = Pr[⃗s ∈ Hx⃗i,α] = Vn(α). So we immediately have that
E[|S ∩ Hx⃗i,α|] = MVn(α). Let Xi be the random variable which is equal to 1 if x⃗i ∈ Hs⃗,α and is equal to

0 otherwise. Let Y =
∑M

i=1Xi so E[Y ] = Nx. Y is equal to the quantity |S ∩ Hs⃗,α|. We then apply the
multiplicative Chernoff bound. As a reminder, it states that if X1, ..., XM are independent random variables

taking values in {0, 1}, Y =
∑M

i=1 and δ > 0, then we have Pr[Y ≥ (1 + δ)E[Y ]] ≤ e−
δ2E[Y ]

3 . In our context,

we get Pr[Y ≥ 2Nx] ≤ e−Nx

3 , which is the desired result.
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We are now ready to analyze the different costs of our quantum walk. For a fixed chosen β ∈
[
π
3 ,

π
2

]
,

Hy⃗i,β
∩ Cβ is the set of β-close filters to the vector y⃗i, and we have on average

|Hy⃗i,β
∩ Cβ | = Nρ0+cV −cβ · Vn(β) = Nρ0 .

Using Lemma 4.2, we have for each i ∈ [N cV ],

Pr[|Hy⃗i,β
∩ Cβ | > 2Nρ0 ] ≤ e−Nρ0

3 (4.1)

and using a union bound, we have for any absolute constant ρ0 > 0:

Pr[∀i ∈ [N cα ], |Hy⃗i,β
∩ Cβ | ≤ 2Nρ0 ] ≥ 1−N cαe−

Nρ0
3 = 1− o(1). (4.2)

So for a fixed α-filter, we have with high probability that each |Hy⃗i,β
∩ Cβ | is bounded by 2Nρ0 and we

assume we are in this case. The sets Hy⃗i,β
∩Cβ can hence be constructed in time Nρ0+o(1) using the efficient

list decoding algorithm (Proposition 3.13) with code Cβ .

We consider the quantum walk [Mag+11]-framework, whose complexity was analyzed in Proposition 2.11.
We have to express the costs of the setup, update, check, ϵ the fraction of marked vertices, and δ the spectral
gap of the graph.

Setup cost. In order to construct a full vertex v from a list Lv
y = {y⃗1, . . . , y⃗NcV }, the main cost is to

construct the lists Jv (⃗ti) = fβ (⃗ti) ∩ Lv
y. To do this, we start from empty lists Jv (⃗ti). For each y⃗i ∈ Lv

y,

we construct the list fβ(y⃗i) ∩ Cβ and for each codeword t⃗j in this set, we add y⃗i in J
v (⃗ti). This takes time

N cV ·Nρ0+o(1). We can construct a uniform superposition of the vertices by performing the above procedure
in quantum superposition. This can also be done in N cV ·Nρ0+o(1) since we use a quantum data structure
that performs these insertions in Jv (⃗ti) efficiently. The setup cost is then

S = N cV +ρ0+o(1).

Update cost. We show here how to go from a vertex v with associated list Lv
y to a vertex w with Lw

y =(
Lv
y\{y⃗old}

)
∪ {y⃗new}. The vertex v also contains the lists Jv (⃗ti) = fβ (⃗ti)∩Lv

y for each t⃗i ∈ Cβ that need to

be updated. In order to get the lists Jw (⃗ti), we first compute Hy⃗old,β
∩ Cβ and for each t⃗i in this set, we

remove y⃗old from Jv (⃗ti). Then, we compute Hy⃗new,β ∩ Cβ and for each t⃗i in this set, we add y⃗new to Jv (⃗ti),

and thus we obtain all the Jw (⃗ti). Constructing the two lists takes time on average Nρ0+o(1) and we then
perform at most 2Nρ0 deletion and insertion operations which are done efficiently. So the update of the filter
lists takes time Nρ0+o(1).

If v was marked and y⃗old is not part of the reducible pair then we do not change the last registers for
Lw
y . If v was not marked, then we have to ensure that adding y⃗new does not make it marked. So we need to

check whether there exists y⃗0 ̸= y⃗new such that

∃⃗t ∈ Cβ : y⃗0, y⃗new ∈ J̃w (⃗t) and (y⃗new, y⃗0) are reducible.

If such a point y⃗0 exists, it necessarily lies in the set
⋃

t⃗∈Hy⃗new,β∩Cβ
J̃v (⃗t) which is of size at most 2Nρ0 ·2N cβ =

4Nρ0+cβ . We perform a Grover’s search on this set to determine whether there exists a y⃗0 ∈
⋃

t⃗∈Cβ
J̃v (⃗t)

that reduces with y⃗new, and this takes time N
ρ0+cβ+o(1)

2 . In conclusion, the average update time is

U = Nρ0+o(1) +N
ρ0+cβ+o(1)

2 ≤ Nmax
{
ρ0,

ρ0+cβ
2

}
+o(1)

.

Checking cost. Each vertex has a bit that says whether it is marked or not, which is already checked
during the update step, so we have

C = 1.
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Fraction of marked vertices ϵ.

Proposition 4.3. ϵ ≥ Θ
(
min

{
N2cV · Vn(θ∗α), 1

})
.

Proof. We consider a random vertex v in the graph. A sufficient condition for v to be marked is to satisfy
the following two events :

• E1 : ∃⃗t ∈ Cβ ,∃y⃗i, y⃗j ̸= y⃗i ∈ Jv (⃗t), st. θ(y⃗i, y⃗j) ≤ θ∗α.

• E2 : ∀⃗t ∈ Cβ , |Jv (⃗t)| ≤ 2N cβ .

The second property implies that ∀⃗t ∈ Cβ , Jv (⃗t) = J̃v (⃗t) and in that case, the first property implies that v
is marked. We now bound the probability of each event in Lemmas 4.4 and 4.5.

Lemma 4.4. Pr[E1] ≥ Θ
(
min

{
N2cV Vn(θ∗α), 1

})
.

Proof. For a fixed pair y⃗i, y⃗j ̸= y⃗i ∈ Lv
y, we have Pr[θ(y⃗i, y⃗j) ≤ θ∗α] = Vn(θ∗α). Since there are Θ(N2cV ) such

pairs, if we define the event E0 as: ∃y⃗i, y⃗j ̸= y⃗i ∈ Lv
y, st. θ(y⃗i, y⃗j) ≤ θ∗α, we have

Pr[E0] ≥ Θ
(
min

{
N2cV Vn(θ∗α), 1

})
.

Now we assume E0 holds and we try to compute the probability that E1 is truly conditioned on E0. So we
assume E0 and let y⃗i, y⃗j ̸= y⃗i ∈ Lv

y, st. θ(y⃗i, y⃗j) ≤ θ∗α. For each code point t⃗ ∈ Cβ , we have

Pr[⃗yi, y⃗j ∈ Jv (⃗t)] = Pr[⃗t ∈ Hy⃗i,β
∩Hy⃗j ,β

] =Wn(β, θ
∗
α).

Therefore, we have

Pr[∃⃗t ∈ Cβ , y⃗i, y⃗j ∈ Jv (⃗t)] = 1− (1−Wn(β, θ
∗
α))

|Cβ |. (4.3)

Since |Cβ | = 1/Wn(β, θ
∗
α), we can conclude

Pr[E1|E0] ≥ Pr[∃⃗t ∈ Cβ , y⃗i, y⃗j ∈ Jv (⃗t)] = 1− (1−Wn(β, θ
∗
α))

|Cβ | ≥ Θ(1),

which implies Pr[E1] ≥ Pr[E1|E0] · Pr[E0] ≥ Θ
(
max

{
N2cV Vn(θ∗α), 1

})
.

Lemma 4.5. Pr[E2] ≥ 1− |Cβ |e−
N

cβ

3 .

Proof. For each t⃗ ∈ Cβ , we have using Lemma 4.2 that Pr[|Jv (⃗t)| ≤ 2N cβ ] ≥ 1 − e−N
cβ

3 . Using a union
bound, we have

Pr[∀⃗t ∈ Cβ , |Jv (⃗t)| ≤ 2N cβ ] ≥ 1− |Cβ |e−
N

cβ

3 .

We can now finish the proof of our Proposition. We have

ϵ ≥ Pr[E1 ∧ E2] ≥ Pr[E1] + Pr[E2]− 1

≥ Θ
(
max

{
N2cV Vn(θ∗α), 1

})
− |Cβ |e−

N
cβ

3

≥ Θ
(
max

{
N2cV Vn(θ∗α), 1

})
The last inequality comes from the fact that |Cβ | · e−Ncβ /3 is vanishing doubly exponentially in n (N is
exponential in n) so it is negligible compared to the first term and is absorbed by the Θ(·).

Spectral gap δ. We are in a J(N cα , N cV ) Johnson graph so we have δ ≈ N−cV .
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Running time of the quantum walk. The running time T1 of the quantum walk is (omitting the o(1)
terms and the O(·) notations)

T1 = S +
1√
ϵ

(
U√
δ
+ C

)
= N cV +ρ0 +

1

max
{
1, N cV

√
Vn(θ∗α)

} (Nmax
{
ρ0,

ρ0+cβ
2

}
+

cV
2

)

In this running time, we can find one marked vertex with a high probability if it exists. We repeat this

quantum walk until we find asymptotically all the solutions, whose expected number is max
{

Nζ

2 , 1
}
.

Algorithm 10 FindAllReducing procedure

Require: Set of vectors fα(⃗s)
Ensure: List Lout with N

ζ pairwise-reduced vectors
1: Lout = {}
2: Compute the list of residual vectors Ly := {y⃗i = (x⃗i − cos(α)⃗s)/ sin(α), x⃗i ∈ fα(⃗s)}
3: Pick a random product code Cβ .
4: while Lout < Nζ do
5: Run our quantum walk to find a reduced pair y⃗i, y⃗j ∈ Ly.
6: Recover the corresponding lattice vectors x⃗i, x⃗j ∈ fα(⃗s) ▷ Share indices i, j in their respective lists
7: if x⃗i − x⃗j /∈ Lout then add x⃗i − x⃗j to Lout.

8: return Lout

For ζ > 0, there are Nζ different solutions that can be found in each α-filter. Each iteration finds a
solution, so this algorithm finds a list of solutions of asymptotic size Nζ in time

T (FAR) = max{Nζ , 1} · T1.

If ζ > 0, our algorithm finds Θ(Nζ) solutions in time NζT1 and if ζ ≤ 0, our algorithm finds one solution
in time T1 with probability Θ(N−ζ).

Classical memory. We have to store at the same time in classic memory the N list vectors of size n, and
the buckets of the α-filters. Each vector is in No(1) α-filter, so our algorithm requires a classical space of size
N1+o(1).

QRAM requirements of the quantum walk. Each vertex v in the graph stores all the Jv (⃗ti) which
together take space N cV +ρ0 . We store a superposition of vertices so we need N cV +ρ0 quantum registers
and the same amount of QRAQM because we perform insertions and deletions in the database in quantum
superposition. All the operations require QRACM access to the whole list Ly which is classically stored and
is of size N cα . Therefore, we also require N cα QRACM.

4.3.3. Optimal parameters

Our algorithm takes in argument three parameters:

• cα ∈ [0, 1], N cα is the number of vectors per α-filter,

• cV ∈ [0, cα], N
cV is the number of vectors per vertex,

• cβ ∈ [0, cV ], N
cβ is the number of vectors per β-filter.

From these three parameters, we can express all the other variables we use, whose we recall their expressions
as they are scattered throughout the previous sections:
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• α ∈ [π/3, π/2] that satisfies Vn(α) = 1
N1−cα . α is the angle of the first layer of filtering (code C).

• θ∗α = 2arcsin
(

1
2 sin(α)

)
. θ∗α is the target angle for pairs of residual vectors, given by Proposition 3.18.

• β ∈ [π/3, π/2] that satisfies Vn(β) = 1

NcV −cβ
. β is the angle of the second layer of filtering (code Cβ).

• ρ0 ≥ 1 such that Nρ0 = Vn(β)
Wn(β,θ∗

α) . N
ρ0 is the number of β-filters for which a vertex vector has to be

inserted in not to miss any solution collision.

• ζ ≥ 0 such that Nζ = N2cα · Vn(θ∗α). Nζ is the average number of solutions found per call to
FindAllReducing.

Plugging the value of T (FAR) from the end of Section 4.3.2 in Proposition 4.1, we find that the total
running time of our quantum sieving algorithm with parameters c, cV , cβ is

T = N cα−ζ

N +N1−cα max{Nζ , 1}

N cV +ρ0 +
N

max
{
ρ0,

ρ0+cβ
2

}
+

cV
2

max
{
1, N cV

√
Vn(θ∗α)

}
 .

We ran a numerical optimization over cα, cV , cβ to get our optimal running time, summed up in the
following theorem.

Proposition 4.6. Our algorithm with parameters

cα ≈ 0.3301 , cV ≈ 0.1952 , cβ ≈ 0.0603

heuristically solves SVP on dimension n in time T = N1.2555+o(1) = 20.2605n+o(n), uses a classical memory
of size N1+o(1) = 20.2075n+o(n), a quantum memory of size N0.2555+o(1) = 20.0530n+o(n), QRACM of size
N0.3301+o(1) = 20.0685n+o(n), and QRAQM of size N0.2555+o(1) = 20.0530n+o(n).

With these parameters, we obtain the values of the other parameters:

α ≈ 1.1388 rad, θ∗α ≈ 1.1661 rad, β ≈ 1.3745 rad

ρ0 ≈ 0.0603, ζ ≈ 0.0745.

As well as the quantum walk costs:

S = N cV +ρ0 = N0.2555, U = Nρ0 = N0.0603, C = 1, ϵ = δ = N−cV = N−0.1952.

The equality ρ0 = cβ allows to balance the time of the two operations during the update step. With these

parameters we also obtain S = U/
√
ϵ δ = N cV +ρ0 = N0.2555d, which balances the overall time complexity.

Notice that with these parameters, we can rewrite the time expression as

T = N cα−ζ
(
N +N1−cα+ζ+cV +ρ0

)
= N1+cα−ζ +N1+cV +ρ0 .

Also, having cV +ρ0 = cα−ζ equalizes the walk cost with the initialization cost. From our previous analysis,
we require QRACM of size N cα and quantum memory and QRAQM of size N cV +ρ0 .

4.4. Adding sparsification

For the second layer of filtering, each point is inserted in Nρ0 β-filters t⃗i ∈ Cβ . The value ρ0 was fixed in

order to make sure that if a pair y⃗i, y⃗j exists in a vertex v, then it will appear on one of the Jv (⃗ti) for t⃗i ∈ Cβ .
However, we can relax this and only mark a small fraction of these vertices, by taking a fourth parameter ρ
that will replace the choice of ρ0 above. This will reduce the probability for a vertex to be marked, as we
miss solutions, but having a smaller ρ will reduce the overall running time of our quantum random walk.

The construction is exactly the same as in the previous section, except we replace ρ0 with a freely chosen
ρ ∈ (0, ρ0]. This implies that |Cβ | = Nρ+cV −cβ . We can perform the same analysis as above.
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Time analysis of this quantum walk in the regime ζ + ρ− ρ0 > 0. We consider the regime where
ζ + ρ − ρ0 > 0 and ρ ∈ (0, ρ0] (in particular ζ > 0, since ρ0 > 0). This regime ensures that even if we have
fewer marked vertices, then there are on average more than one marked vertex, so our algorithm finds at
least one solution with a constant probability.

The analysis of the walk is exactly the same as in Section 4.3.2, each repetition of the quantum random
walk takes time T1 with

T1 = S +
1√
ϵ

(
1√
δ
U + C

)
with

S = N cV +ρ, U = Nmax{ρ,
ρ+cβ

2 }+o(1), C = 1, ϵ = N2cV Nρ−ρ0Vn(θ∗α), δ = N−cV .

The only thing to develop is the computation of ϵ. We perform the same analysis as above but with
|Cβ | = Nρ+cV −cβ . This means that Equation 4.3 of Lemma 4.4 becomes

Pr[∃⃗t ∈ Cβ : y⃗i, y⃗j ∈ Jv (⃗t)] = 1− (1−Wn(β, θ
∗
α))

|Cβ |

≥ |Cβ | · Wn(β, θ
∗
α) = Nρ−ρ0 .

which gives the extra term Nρ−ρ0 in ϵ. Another issue is that now, we can only extract Nζ+ρ−ρ0 solutions

each time we construct the graph, we have therefore to repeat this procedure to find Nζ+ρ−ρ0

2 solutions with
this graph and then repeat the procedure with a new code Cβ . The algorithm becomes:

Algorithm 11 FindAllReducing procedure with free parameter ρ

Require: Set of vectors fα(⃗s)
Ensure: List Lout of half of the all pairwise reduced vectors in fα(⃗s)
1: Lout = {}
2: Compute the set of residual vectors f ′α(⃗s) := {y⃗i = (x⃗i − cos(α)⃗s)/ sin(α), x⃗i ∈ fα(⃗s)}
3: Pick a random product code Cβ .

4: while Lout <
Nζ

2 do
5: Run our quantum walk with free ρ on set f ′α(⃗s) to find a reduced pair y⃗i, y⃗j ∈ f⃗s,α.
6: Recover the corresponding lattice vectors x⃗i, x⃗j ∈ fα(⃗s) ▷ Share indices i, j in their respective lists
7: if x⃗i − x⃗j /∈ Lout then add x⃗i − x⃗j to Lout.

8: return Lout

With this procedure, we also find Θ(Nζ) solutions in time NζT1 and FAR1 = NζT1 (Recall that we are
in the case ζ ≥ ζ + ρ− ρ0 > 0). Actually, optimal parameters will be when cβ = 0 and ρ→ 0.

Complexity analysis

This change implies that some reducing pairs are missed. For the quantum random walk complexity, this
only changes the probability, denoted ϵ, so that a vertex is marked. Indeed, it is equal to the one so that
there happens a collision between two vectors through a filter, which is no longer equal to the existence of
a reducing pair within the vertex. Indeed, to have a collision, there is the supplementary condition of both
vectors of a reducing pair are inserted in the same filter, which is of probability Nρ0−ρ. So we get a higher
value of ϵ = N2cV Vn(θ∗α) ·Nρ0−ρ.

However, this increase is compensated by the reducing of the costs of the setup (N cV +ρ+o(1)) and the

update (2Nmax{ρ,
ρ+cβ

2 }+o(1)).
A numerical optimisation over ρ, cα, cV and cβ leads to the following theorem.

Theorem 4.7. Our algorithm with a free ρ with parameters

ρ→ 0 , cα ≈ 0.3696 , cV ≈ 0.2384 , cβ = 0
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heuristically solves SVP on dimension n in time T = N1.2384+o(1) = 20.2570n+o(n), uses QRAM of maximum
size N0.3696 = 20.0767n, a quantum memory of size N0.2384 = 20.0495n and uses a classical memory of size
N1+o(1) = 20.2075n+o(n).

With these parameters, we obtain the values of the other parameters:

α ≈ 1.1514 rad, θ∗α ≈ 1.3104 rad, β ≈ 1.1112 rad, ζ ≈ 0.1313.

As well as the quantum walk costs:

S = N cV +ρ = N0.2384, U = Nρ = No(1), C = 1, ϵ = δ = N−cV = N−0.2384.

We also have ρ0 = 0.107 so we are in the regime where ζ+ρ−ρ0 > 0. As in the previous time complexity
stated in Theorem 4.6, we reach the equality S = U/

√
ϵδ, which allows to balance the time of the two steps

of the quantum random walk: the setup and the search itself.

Notice that with these parameters, we can rewrite the time

T = N cα−ζ
(
N +N1−cα+ζ+cV +ρ

)
= N1+cα−ζ +N1+cV +ρ.

With our optimal parameters, we have ρ = 0 and cα − ζ = cV , which equalizes the random walk step with
the initialization step. From our previous analysis, the amount of required QRAM is N cα and the amount
of quantum memory needed is N cV .

4.5. Space-time tradeoffs

By varying the values cα, cV , cβ and ρ, we can obtain tradeoffs between QRAM and time, and between
quantum memory and time. All the following results come from numerical observations based on the formulas
from our complexity analysis of time, quantum memory and QRAM.

4.5.1. Tradeoff for fixed quantum memory.

We computed the minimized time when we add the constraint that the quantum memory must not exceed
2Mn. For a chosen fixed M , the quantum memory is denoted is 2µMn = 2Mn and the corresponding minimal
time by 2τMn. The variation of M also impacts the required QRAM to run the algorithm, which we denote
by 2γMn. We get a tradeoff between time and quantum memory in Figure 4.2a, and the evolution of QRAM
in function of M for a minimal time is in Figure 4.2b.

For more than 20.0495n quantum memory, increasing it does not improve the time complexity anymore.
An important fact is that for a fixed M the corresponding value τM from figure 4.2a and γM from Figure
4.2b can be achieved simultaneously with the same algorithm.

We observe that from M = 0 to 0.0495 these curves are very close to affine. Indeed, the function that
passes through the two extremities points is of the expression 0.2653− 0.1670M . The difference between τM
and its affine approximation does not exceed 4 · 10−5. In the same way, the difference between γM and its
affine average function of the expression 0.0578 + 0.3829M is inferior to 2 · 10−4. All this is summarized in
the following theorem.

Theorem 4.8 (Tradeoff for fixed quantum memory). There exists a quantum algorithm using quantum
random walks that solves SVP on dimension n which for a parameter M ∈ [0, 0.0495] heuristically runs in
time 2τMn+o(n), uses QRAM of maximum size 2γMn, a quantum memory of size 2µMn and a classical memory
of size 20.2075n where

τM ∈ 0.2653− 0.1670M + [−2 · 10−5; 4 · 10−5]

γM ∈ 0.0578 + 0.3829M − [0; 2 · 10−4] ; µM =M.
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(a) Time in function of available quantum memory. (b) QRAM in function of available quantum memory
for minimized time.

Figure 4.2: Tradeoff for fixed quantum memory.

4.5.2. Tradeoff for fixed QRAM.

We also get a tradeoff between QRAM and time. For a chosen fixed M ′, the QRAM is denoted by 2γM′n =
2M

′n, and the corresponding minimal time by 2τM′n. The required quantum memory is denoted 2µM′n. Note
that 2µM′n is also the amount of the required quantum QRAM. This provides a tradeoff between time and
QRAM in figure 4.3a, and the evolution of quantum memory in function of M ′ is in figure 4.3b.

(a) Time in function of available QRACM. (b) Quantum memory in function of available
QRACM for minimized time.

Figure 4.3: Tradeoff for fixed QRACM.

For more than 20.0767n QRACM, increasing it does not improve the time complexity. The difference
between the function τM ′ and its average affine function of the expression 0.2926 − 0.4647 ·M ′ does not
exceed 6 · 10−4. This affine function is an upper bound of τM ′ . From M ′ = 0 to 0.0579 the function γM ′ is at
0. Then, it is close to the affine function of the expression 2.6356(M ′−0.0579). So γM ′ can be approximated
by max{2.6356(M ′ − 0.0579), 0}, and the difference between γM ′ and this approximation does not exceed
9 · 10−4. All this is summarized in the following theorem.

Theorem 4.9 (Tradeoff for fixed QRACM). There exists a quantum algorithm using quantum random walks
that solves SVP on dimension n which for a parameter M ′ ∈ [0, 0.0767] heuristically runs in time 2τM′n+o(n),
uses QRACM of size poly(d) · 2γM′n, a quantum memory of size poly(n) · 2µM′n and uses a classical memory
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of size poly(d) · 20.2075n where

τM ′ ∈ 0.2927− 0.4647M ′ − [0; 6 · 10−4] ; γM ′ =M ′

µM ′ ∈ max{2.6356(M ′ − 0.0579), 0}+ [0; 9 · 10−4].

Best lattice sieves within our framework

Finally, the following table presents some values of the combined above tradeoffs.

Time τM ′ 0.2925 0.2827 0.2733 0.2653 0.2621 0.2598 0.2570
QRACM γM ′ 0 0.02 0.04 0.0578 0.065 0.070 0.0767
QRAQM µM ′ 0 0 0 0 0.0190 0.0324 0.0495
Comment [Bec+16] alg. [Laa15] alg. Thm 4.7.

Table 4.1: Time, QRAM and quantum memory complexities for our algorithm.

The left-most column complexities are obtained when we choose parameters cα, cV , cβ such that no QRAM
nor quantum memory are used, and that the time is optimized under this constraint. In this case, we can argue
that they are exactly at 0, not only O(poly(n)). With such a setting, the algorithm fits in the classical model.
And we exactly recover the complexity of the best classical lattice sieve [Bec+16]. Then, if we authorize the
use of QRAM and poly(n) qubits, we then recover the previous best quantum algorithm [Laa15], whose
results are displayed in the fourth column. The last column repeats the result of our Theorem 4.7 where the
parameters are fixed to optimize the time.

4.6. Reusable quantum walks

At the end of this work, we wondered if there could be a more thoughtful way to find k different marked
vertices than to run the whole random walk O(k) times. The authors of [Bon+23] found a way that gives
a slight improvement in the complexity of our algorithm. We summarized their results in Section 2.3.3, and
here is an application. The time complexity of our FindAllReducing subroutine, by Theorem 4.7, is

FAR1 = Nρ0 ·Nζ−ρ0

(
S +

1√
ϵ

(
U√
δ
+ C

))
. (4.4)

With reusable quantum walks, the setup of cost S can only be run one time, that leads to a time complexity
in

FAR1 = Nρ0

(
S +

Nζ−ρ0

√
ϵ

(
U√
δ
+ C

))
. (4.5)

Theorem 4.10. [Bon+23, Appendix C] There exists a quantum algorithm that heuristically solves SVP in
time 20.2563n+o(n).

Proof. Redoing the numerical optimization gives parameters

cα ≈ 0.3875 ; cV ≈ 0.27,

which gives ζ ≈ 0.1568 and ρ0 ≈ 0.1214. The costs of the quantum walk become

S ≈ N0.27 ; ϵ ≈ N−0.2 ; δ ≈ N−0.27 ; U = C = 1.

This gives FAR1 ≈ N0.27. Using these parameters in Equation 4.5 gives that the total running time to solve
SVP is in N1.2347 = 20.2563n+o(n).
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4.7. Discussion

Impact on lattice-based cryptography. Going from a running time of 20.2653n+o(n) to 20.2563n+o(n)

reduces the security claims based on the analysis of the SVP (usually via the BKZ algorithm). For example,
if one claims 128 bits of quantum security using the above exponent then one must reduce this claim to
124 bits of quantum security. With the previous claimed security level 2128 = 20.265n, we have n ≈ 483, so
with the new best exponent we get 20.257n = 2124. This can usually be fixed with a slight increase in the
parameters but cannot be ignored if one wants to have the same security claims as before.

Parallelization. One thing we have not talked about in this article is whether our algorithm parallelizes
well. Algorithm 9 seems to parallelize very well, and we argue that it is indeed the case.

For this algorithm, the best classical algorithm takes c → 0. In this case, placing each v⃗ ∈ L in its
corresponding α-filters can be done in parallel, and with N processors (or N width) it can be done in time
poly(n). Then, there are N separate instances of FindAllReducing which can be also perfectly parallelized
and each one also takes time poly(n) when c → 0. The while loop is repeated N−ζ = N0.409n times so the
total running time (here depth) is N0.409n+o(n) with a classical circuit of width N . Such a result surpasses
already the result from [Bec+16] that achieves depth N1/2 with a quantum circuit of width N using parallel
Grover search.

In the quantum setting, our algorithm also parallelizes quite well. If we consider our optimal parameters
(c = 0.3696) with similar reasoning, our algorithm will parallelize perfectly with N1−c processors (so that
there is exactly one for each call to FindAllReducing i.e. for the quantum random walk). Unfortunately, after
that, we do not know how to parallelize well within the quantum walk. When we consider circuits of width
N , our optimizations did not achieve better than a depth of N0.409+o(1) which is the classical parallelization.
This is also the case if we use Grover’s algorithm as in [Laa15] for the FindAllReducing and we use parallel
Grover search as in [Bec+16] so best known (classical or quantum) algorithm with lower depth that uses a
circuit of width N is the classical parallel algorithm described above.



5. k-Sieves with tailored k-RPC filtering

The work in this chapter has been published in PQCrypto 2023 [CL23] and is a joint work with André
Chailloux.

5.1. Overview

k-Sieve. Reducing the memory requirement would make the attack more materially practical, especially
when it comes to quantum memory which is very limiting for implementations. A way to reduce memory is
by the k-sieve introduced in [BLS16] and then improved by [HK17; HKL18; Kir+19]. The idea is to sum k
lattice points instead of pairs at each sieving step in order to find shorter ones. This decreases the number
N of lattice points that we need at each step to find the same number N of shorter lattice points. However,
this will drastically increase the time to perform the sieving step. The goal is to keep relatively low memory
but also try to limit the time.

Configurations. Two main ideas have significantly improved the complexity of k-sieving algorithms: pair-
wise LSF [Bec+16; HKL18] (explained in Section 3.3) and configurations (Definition 3.26). For k > 2, one
can replace the reducibility constraint ∥x⃗1 + · · ·+ x⃗k∥ ≤ 1 (starting from vectors of norm 1) with constraints
of the form ⟨x⃗i |⃗xj⟩ ≤ Ci,j for some well-chosen Ci,j . This is known as the configuration problem. The
main advantage is that now we only have constraints on pairs of points instead of on k-tuples, and we can
use much more efficient algorithms performing for example pairwise LSF. Searching for unbalanced target
configurations increases the memory but in counterpart can reduce the running time.

Contributions. In this chapter, we introduce a new filtering technique tailored for k-sieving and use it to
describe new sieving algorithms whose time-memory tradeoffs improve the state-of-the-art in some regimes.
We show how to extend the construction of random product codes of [Bec+16] as a means of performing LSF
tailored for k-sieving. Our code will also be efficiently decodable and its codewords can be partitioned into
subsets {A1, . . . ,Ak} each of size k such that A1 + · · ·+Ak = 0⃗.

While previous k-sieve algorithms start from a configuration problem and then use pairwise LSF; our
framework performs the following: we filter the input list of lattice vectors using our tailored code structure to
get lists L1, . . . , Lk respectively centered around k codewords A1, . . . ,Ak summing to the null-vector. Then,
we solve a simpler instance of the configuration problem in the k filtered lists. The k-tuples (x⃗1, . . . , x⃗k) ∈
L1×· · ·×Lk are more likely to reduce than random k-tuples. Based on this framework, we describe classical
sieves for k = 3 and 4 that introduce improved time-memory tradeoffs in some regimes. We use the k-Lists
algorithm [Kir+19] inside our framework, and this improves the time for k = 3 and gives new tradeoffs for
k = 4. All our quantum algorithms also have the advantage of requiring only a polynomial number of qubits
(in the lattice dimension n).

Please refer to figures 5.7 for space-time tradeoffs of classical algorithms and 5.8 for quantum ones.

Outline. Section 5.2 presents a new code structure for the filtering step tailored for k-sieving and as an
application we present a new framework to solve SVP. We describe some instances within this framework
in the classical model in Section 5.3 and in the quantum model in Section 5.4. We finally discuss the
results in Section 5.5. The SageMath code used for the numerical results of this chapter is available here:
https://github.com/johanna-loyer/3-4-sieve.

5.2. k-RPC and Framework of the k-sieve with tailored filtering

47

https://github.com/johanna-loyer/3-4-sieve


48 CHAPTER 5. K-SIEVES WITH TAILORED k-RPC FILTERING

5.2.1. Filtering with k-Tuple Random Product Codes

We recall Definition 3.12 of a Random Product Codes (RPC). We assume n = m · b, for m = O(polylog(n))
and a block size b. The vectors in Rn are identified with tuples of m vectors in Rb. A random product code
C of parameters (n,m,B) on subsets of Rn and of size Bm is defined as a code of the form

C = Q · (C1 × C2 × · · · × Cm)

where Q is a uniformly random rotation over Rn and the subcodes C1, . . . ,Cm are sets of B vectors, sampled
uniformly and independently random over the sphere

√
1/m ·Sb−1, so that codewords are points of the sphere

Sn−1. Claim 3.14 states that the code points of a random product code C behave like random points of the
sphere Sn−1. Random product codes can be easily decoded with the algorithm given in Proposition 3.13. So
given a point x⃗ ∈ Sn−1, an angle α ∈ (0, π/2) and a random product code C, one can efficiently compute the
set of the M nearest codewords in C to x⃗, and this takes a time proportional to M .

Each codeword of the RPC constitutes the center of a filter (See Definition 3.15). For the 2-sieve with
Locality Sensitive Filtering, one inserts each list vector into its nearest filters, and then for each vector one
searches a reducing one within its filters. It provides the current best algorithms to solve SVP both classically
[Bec+16] (Algorithm 6) and quantumly as we saw in the previous chapter (Algorithm 9). However, the k-
sieve for k > 2 searches k-tuples such that x⃗1 + · · · + x⃗k is reduced. So, searching within one unique filter
does not permit one to quickly find a solution without having to check a lot of non-reducing elements. So we
will slightly modify the construction of the random product code to take into account a configuration.

k-Tuple Random Product Code (k-RPC). We start with the case k = 3 to describe our k-RPC
construction. Instead of constructing fully random codes C1, . . . ,Cm, we will construct random codes Ci with
the following property:

∀A1 ∈ Ci,∃A2,A3 ∈ Ci st. A1 +A2 +A3 = 0⃗.

×

A1•

A2

• A3•

⋄

⋄ ⋄

•
x⃗1

•x⃗2

•
x⃗3

Figure 5.1: Each k-RPC codeword belongs to a k-tuple (A1, . . . ,Ak) that sums to 0⃗. Each codeword Ai is
the center of a filter fAi

, that will allow during a sieving step to search a reducing tuple (x⃗1, . . . , x⃗k) within
the tuple-filter fA1

× · · · × fAk
.

We assume n = m · b for m = O(polylog(n)) and a block size b. The vectors in Rn will be identified with
tuples of m vectors in Rb. An k-Tuple Random Product Code C of parameters (n,m,B) is defined as a code
of the form

C = Q · (C1 × C2 × · · · × Cm) .

where Q is a uniformly random rotation over Rn and the subcodes C1, . . . ,Cm are each constructed as follows:

1. Pick B/3 random vectors A1
1, . . . ,A

B/3
1 sampled uniformly at random over the sphere

√
1/m · Sb−1.

2. For each i ∈ [B/3], pick a random vector Aj
2 sampled uniformly at random over the sphere

√
1/m ·Sb−1

with the condition ⟨Aj
1|A

j
2⟩ = − 1

2m .
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3. For each i ∈ [B/3], let Aj
3 be the unique point on the sphere

√
1/m · Sb−1 st. Aj

1 +Aj
2 +Aj

3 = 0⃗.

The code C is then the set of points {A1
1,A

1
2,A

1
3, . . . ,A

B/3
1 ,A

B/3
2 ,A

B/3
3 }.

Notice that Aj
3 = −(Aj

1 +Aj
2) is of the correct norm 1√

m
. Indeed,

∥Aj
3∥2 = ∥ − (Aj

1 +Aj
2)∥2 = ∥Aj

1∥2 + ∥A
j
2∥2 + 2⟨Aj

2|A
j
1⟩ =

2

m
− 2

2m
=

1

m
.

We can generalize this construction for any constant k to get a k-RPC of codewords {Aj
i}i∈[k],j∈[B/3] such

that

∀A1 ∈ Ci,∃A2, . . .Ak ∈ Ci st.
k∑

i=1

Ai = 0⃗.

1. Pick B/k random vectors A1
1, . . . ,A

B/k
1 sampled uniformly at random over the sphere

√
1/m · Sb−1.

2. For each j ∈ [B/k], pick a random vector Aj
2 sampled uniformly at random over the sphere

√
1/m·Sb−1

with the condition ⟨Aj
1|A

j
2⟩ = − 1

(k−1)m . Then, for i ∈ [|2, k − 1|], pick random vectors Aj
i such that

for each previous i′ ∈ [i], ⟨Aj
i |A

j
i′⟩ = −

1
(k−1)m .

3. For each j ∈ [B/k], let Aj
k be the unique point on the sphere

√
1/m · Sb−1 such that

∑k
i=1 A

j
i = 0⃗.

The code C is then the set of points {Aj
i}i∈[k],j∈[B/3].

As before, we can check that Aj
k = −

∑k−1
j=1 A

j
i is of the correct norm 1√

m
:

∥Aj
k∥

2 =

k−1∑
j=1

∥Aj
i∥

2 +

k−1∑
i=1

k−1∑
i′=1
i′ ̸=i

⟨Aj
i |A

j
i′⟩

=
k − 1

m
+ (k − 1)(k − 2) · −1

(k − 1)m
=
k − 1

m
− k − 2

m
=

1

m
.

For each j ∈ [B/k], we actually take ⟨Aj
i |A

j
i′⟩ = −1/(k−1) for i ̸= i′, because this balanced configuration

optimizes the number of k-tuples whose vectors are respectively close to the centers Aj
i (See Proposition

3.28).

Proposition 5.1. Let C be a random product code with triangles of parameters (n,m,B) with m = log(n)
and Bm = NO(1). For any x⃗ ∈ Sn−2 and angle α, one can compute Hx⃗,α ∩ C in time No(1) · |Hx⃗,α ∩ C|.

Proof. The decoding algorithm of Proposition 3.13 uses only the product structure of the code and not
how the codes C1, . . . ,Cm are constructed. The same algorithm will therefore also efficiently decode k-tuple
random product codes.

We recall Definition 3.15: a hypercone filter fs of center s and angle α is a set that can be filled with
vectors of angle at most α with s.

Definition 5.2 (Tuple-filter). Let C be a k-RPC with codewords (Aj
i ) for i ∈ [k] and j ∈ [|C| /k] such that

∀j ∈ [|C|/k],
∑k

i=1 A
j
i = 0⃗. Given angle α and some j, we call (fAj

1
, . . . , fAj

k
) a tuple-filter, where each fAj

i

is a filter.

k-RPC filtering. We are given a list L of lattice vectors assumed to be i.i.d. uniformly random over Sn−1.
We choose an angle α and sample a k-RPC C containing 1/V(α) codewords, each one being the center of
a filter. Choosing the code size at 1/V(α) makes that any point x⃗ ∈ Sn−1 is on average at angle α to its
nearest codeword. For each vector in the list L, we decode it to its nearest unique codeword A ∈ C. This
step, called prefiltering, separates L into disjoint sublists, each one of size |L| · V(α). We focus on only one
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tuple of filters of centers A1, . . . ,Ak respectively associated to the lists L1, . . . , Lk, that are empty at the
beginning. By Claim 3.16, the angle between any x⃗ ∈ Li and Ai is α with high probability. We simplify by
considering that it is always the case. So for x⃗ ∈ Sn−1 of angle α with a center of filter A, we can write for
some y⃗ ⊥ A,

x⃗ = cos(α)A+ sin(α)y⃗.

We call y⃗ the residual vector of x⃗ on the filter of center A and angle α. While filling the list Li with the x⃗,
we fill in parallel a list Ri with their residual vectors y⃗ in its filter of center Ai. Note that the points in Li

are i.i.d. uniformly random over the (n-1)-dimensional sphere {x⃗ ∈ Rn : ∥x⃗∥ = 1, θ(x⃗,Ai) = α}, which is
isometric to the sphere Sn−2 on which the residual vectors are i.i.d. uniformly random.

×

× ×

x⃗1y⃗1

x⃗2

y⃗2
x⃗3

y⃗3

×

A1

A2 A3

•⋄

•⋄ •⋄

Figure 5.2: List vectors x⃗i ∈ Li in their filters of centers Ai and angle α and their respective residual vectors
y⃗i ∈ Ri. Attention: For the sake of readability, red arrows represent the non-normalized vectors sin(α)y⃗i.
(Also see Figure 3.6 that illustrates Claim 3.16). Please keep in mind that this scheme is in dimension n = 3
and that in high dimensions the volume ratios are exacerbated.

The following lemmas give us the equivalence between the problem of searching a tuple of list vectors
x⃗’s satisfying a configuration C and searching a tuple of residual vectors y⃗’s satisfying a configuration C ′,
depending on C and the angle α of the filters.

Lemma 5.3. Using the above notations for the lists Li’s and Ri’s, a k-tuple (x⃗1, . . . , x⃗k) ∈ L1 × · · · × Lk is
reducing iff. their residual vectors (y⃗1, . . . , y⃗k) ∈ R1 × · · · ×Rk satisfy∑

1⩽i<j⩽k

⟨y⃗i |⃗yj⟩ ⩽
1− k cos2(α)
2 sin2(α)

:= Ik(α). (5.1)

Proof. For x⃗i ∈ Li, we have x⃗i = cos(α)Ai + sin(α)y⃗i. Claim 3.16 ensures the randomness of the points y⃗i
in the sphere Sn−2, so we have for i ̸= j, ⟨Ai |⃗yj⟩ ≈ 0 with high probability. We consider the equality for
simplicity. For i ̸= j, x⃗i ∈ Li and x⃗j ∈ Lj , we obtain:

⟨x⃗i |⃗xj⟩ = cos2(α)⟨Ai|Aj⟩+ sin2(α)⟨y⃗i |⃗yj⟩. (5.2)

Then we have∥∥∥∥∥
k∑

i=1

x⃗i

∥∥∥∥∥
2

=

∥∥∥∥∥
k∑

i=1

cos(α)Ai + sin(α)y⃗i

∥∥∥∥∥
2

=

∥∥∥∥∥
k∑

i=1

sin(α)y⃗i

∥∥∥∥∥
2

as

k∑
i=1

Ai = 0⃗

= k sin2(α) + 2 sin2(α)

 ∑
1⩽i<j⩽k

⟨y⃗i |⃗yj⟩

 . (5.3)

In the case the tuple (x⃗1, . . . , x⃗k) is reducing, we have
∥∥∥∑k

i=1 x⃗i

∥∥∥2 ⩽ 1, hence the wanted result. Notice

also that we can translate the norm condition
∥∥∥∑k

i=1 x⃗i

∥∥∥2 ⩽ 1 directly into a norm condition of the residual

vectors
∥∥∥∑k

i=1 y⃗i

∥∥∥2 ⩽ 1
sin2(α)

.
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Lemma 5.4. Let C ∈ Rk×k be a configuration, and α an angle. If a k-tuple x⃗1, . . . , x⃗k satisfies C then their
residual vectors y⃗1, . . . , y⃗k on a filter of angle α satisfies the configuration C ′(α) with for i ̸= j,

C ′
i,j(α) = −

1

sin2(α)

(
Ci,j +

cos2(α)

k − 1

)
Proof. As already justified in the previous proof (Equation 5.2), for i ̸= j we have ⟨x⃗i |⃗xj⟩ = cos2(α)⟨Ai|Aj⟩+
sin2(α)⟨y⃗i |⃗yj⟩. The configuration C gives constraints over the scalar products ⟨x⃗i |⃗xj⟩, and C ′(α) over the
scalar products ⟨y⃗i |⃗yj⟩ ; and ⟨Ai|Aj⟩ is fixed at −1/(k − 1). Rewriting the above equation with it gives

Ci,j = cos2(α) · −1
k−1 + sin2(α)C ′

i,j . Hence the result.

If we consider a balanced configuration C for the x⃗i’s, then we have for i ̸= j, Ci,j = −1/k all equal.
For residual vectors on a filter of angle α, this also implies C ′

i,j(α) all equal for i ̸= j. There are C ′
i,j at

number
∑k−1

i=1 i = k · (k − 1)/2. Thus for i ̸= j we will have C ′
i,j(α) =

2
k·(k−1) · Ik(α), with Ik(α) as defined

in Lemma 5.3.

As Ik(α) ⩾ −1, the constraints over the vectors y⃗i’s are relaxed in comparison with the input vectors x⃗i.
This allows more flexibility to choose a configuration to reduce the running time, and this is the intuition
behind why the prefiltering step allows finding solutions more easily.

5.2.2. Framework adapted for the k-sieve

The idea behind the framework of our sieving algorithms remains the same as in Chapter 4 but is generalized
for the k-sieve algorithm for any k ≥ 2:

1. Prefilter the list vectors with a k-RPC,

2. Search all reduced tuples within each filter,

3. Repeat steps 1. and 2. until all the reduced points are found.

Algorithm 12 k-Sieve Framework with LSF prefiltering

Require: List L of lattice vectors of norm at most 1 ; reducing factor γ < 1.
1: Parameters: k ∈ N ; angle α ∈ (0, π/2] ; target configuration C.

Ensure: List Lout of lattice vectors of norm at most γ.
2: Lout = ∅
3: while |Lout| < |L| do ▷ NbRepα,C repeats

4: Sample a k-RPC code C of size k · 1/V(α) ▷ Its codewords will be denoted Aj
i

5: Initialize the lists Lj
i = ∅ for i ∈ [k], j ∈ [|C|/k]

6: for each x⃗ ∈ L do
7: Aj

i ← Decode(x⃗,C) ▷ Algorithm from Proposition 3.13.

8: y⃗←
(
x⃗− cos(α)Aj

i

)
/ sin(α) ▷ Residual vector of x⃗ in the filter of center Aj

i

9: Lj
i ← Lj

i ∪ {x⃗} ; R
j
i ← Rj

i ∪ {y⃗}
10: for each tuple-filter numbered j ∈ [|C|/k] do
11: Sol⃗y ← FindAllReducing

(
(Rj

i )i, C
′(α)

)
▷ Find all (y⃗i)i ∈ R

j
1 × · · · ×R

j
k satisfying C ′(α)

12: SolΣx⃗ ←
{∑k

i=1 x⃗i : (y⃗i)i ∈ Sol⃗y
}

▷ x⃗i ∈ Lj
i and y⃗i ∈ R

j
i share the same index i

13: Lout ← Lout ∪ SolΣx⃗

14: return Lout
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Complexity analysis of the framework algorithm 12

Heuristic and simplifying assumptions. We remind the reader that the complexity analysis of the
algorithms presented in this chapter relies on the following assumptions:

• Heuristic 3.8. The input lattice points are uniformly randomly distributed on the sphere Sn−1 :=
{x⃗ ∈ Rn : ∥x⃗∥ = 1}.

• Claim 3.14. The points of a random product code are indistinguishable from random independent
points in Sn−1.

• Claim 3.16. Given a point s⃗ ∈ Sn−1, we assume that a random vector x⃗ of angle at most α with s⃗ is
exactly at angle α, and then can be decomposed x⃗ = cos(α)⃗s + sin(α)y⃗ with y⃗ ⊥ s⃗ and ∥y⃗∥ = 1. The
residual vector y⃗ is random uniform in Sn−2 an orthogonal complement to s⃗.

Proposition 3.9 has given the volume of the spherical cap of center s ∈ Sn−1, which is Vn(α) := {x⃗ ∈
Sn−1 : θ(s, x⃗) ≤ α} = poly(n) · sinn/2(α). Notice that when we work with residual vectors in Sn−2 the
sphere in Rn−1, we would write Vn−1. But since Vn and Vn−1 are asymptotically equivalent, we will just be
writing V for simplicity of notations.

1. Prefiltering (lines 4-9). We start by sampling a k-RPC C (Defined in Part 5.2.1) of size k ·1/V(α). Its
codewords are denoted (Aj

i )i,j for i ∈ [k] and j ∈ [|C|/k] (we suppose these values are integers by simplicity).

For a fixed j ∈ [|C|/k] and for i1 ̸= i2 ∈ [k] we have ⟨Aj
i1
|Aj

i2
⟩ = − 1

k−1 , that implies
∑k

i=1 A
j
i = 0⃗.

Once the code is sampled, we can start the so-called prefiltering step. For each vector x⃗ ∈ L, we efficiently
compute its nearest codeword in C using the algorithm from Proposition 5.1. If it returns center Aj

i , then we

add x⃗ to its associated list Lj
i . We also compute x⃗’s residual vector y⃗ =

(
x⃗−cos(α)Aj

i

)
/ sin(α) (by Claim 3.16)

and we add it to list Rj
i . Given a residual vector in Rj

i , we will be able to recover its corresponding vector

in Lj
i by just looking at the same index.

There are tuple-filters (Aj
i )i∈[k] at number

NbFilters := |C|/k = O
(

1

V(α)

)
. (5.4)

As we compute the nearest filter in amortized time O(1) for each vector in L, the prefiltering step takes
time |L|.

2. Find all solutions within a tuple-filter (lines 10-13). We started with a list L and we wanted
to solve a configuration problem, and after the prefiltering step, we can consider easier instances of the
configuration problem on the sublists of L. The subroutine FindAllReducing solves one of these instances at
a time, and we run it over each of the 1/V(α) tuple-filters.

Let’s fix some j ∈ [|C|/k] and consider the instance of a configuration problem on the k lists (Rj
i )i with

configuration C ′(α). The subroutine then has to find all the k-tuples within Rj
1 × · · · ×R

j
k that satisfies the

configuration C ′(α). As we focus on only one filter at a time, in the following we will no longer write the j
in exponent to lighten the notations.

The number of solutions the subroutine has to return is given by the following lemma.

Lemma 5.5. With the same notations as before and for fixed j ∈ [|C|/k], the expected number of tuples in
the tuple-filter associated with the lists R1 × · · · ×Rk satisfying configuration C ′(α) is on average

|Solf | = O
(
|R1|k · det(C ′(α))n/2

)
= O

(
|L|kV(α)k · det (C ′(α))

n/2
)
.

Proof. There are |R1|k tuples in R1 × ... × Rk as the lists are all of same size |R1| = |L| · V(α). Any tuple
(y⃗1, ..., y⃗k) from this set has probability det(C ′(α))n/2 to satisfy configuration C ′(α). Hence the expected
number of tuples satisfying C ′(α).
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Any subroutine with these inputs and outputs may suit the framework. For example, in the case k = 2,
we described in Section 4 a 2-sieve fitting this framework, where the subroutine uses quantum random walks
to find the reducing pairs of vectors. We denote the time complexity of the subroutine FindAllReducing with
parameters α and C by T (FARC′(α)).

3. Number of repeats (while loop 3). After searching all the solutions within every tuple-filters, by
Theorem 3.28 we expect to find the following number of solutions:

|Solall| = |L|k · det(C)n/2. (5.5)

To complete the sieve step, we are required to find |L| reduced lattice vectors. Thus steps 1. and 2. have
to be repeated until enough solutions have been found. The missed solutions are the ones such that a part
of the solution is in one tuple-filter and the rest is in another. By doing a new prefiltering, it changes the
partitions of the sphere, and this allows us to find some of these missing solutions.

Lemma 5.6. The number of repetitions in the while loop is

NbRepα,C = O
(
max

{
1,

|Solall|
|Solf | ·NbFilters

})

= O

max

1,
|L1|k det(C)n/2

|L1|kVk(α) det (C ′(α))
n/2 · 1

V(α)




= O

(
max

{
1,

det(C)n/2

Vk−1(α) det (C ′(α))
n/2

})
.

The overall time complexity of an algorithm based on this framework is given in the following theorem.

Theorem 5.7. Let α ∈ (0, π/2] be an angle and a configuration C ∈ Rk×k, and C ′(α) the configuration on
the residual vectors (See Lemma 5.4). Given an algorithm that solves the configuration problem C ′(α) for k
lists in time T (FARC′(α)), Algorithm 12 solves SVP in time

T (k-sieve) := NbRepα,C ·
(
|L|+NbFiltersα · T (FARC′(α))

)
where NbRepα,C is given by Lemma 5.6 and NbFiltersα = O

(
1

V(α)

)
by Equation 5.4.

The above theorem is the main technical contribution of our work. The main novelty is the angle α which
can be freely chosen. Taking an angle α = π/2 means that we do not perform any tailored LSF.

Optimization of the parameters. The Ci,j ’s are parameters to optimize to get the minimal overall time
of the k-sieve, and they obey the constraints on memory and reduceness of the tuples. We also require that
the inner algorithm for solving the configuration problem with C ′(α) uses at most memory M . There is also
the prefiltering angle α ∈ (0, π/2] that has to be optimized. In the next sections, we will present algorithms
that fit in the framework 12 and for each one we will specify the optimal values for C and α we have obtained
by numerical optimization. The code is available on https://github.com/johanna-loyer/3-4-sieve.

5.3. Classical k-sieves

We use Theorem 5.7 to know the overall complexity of the k-sieve, so the only thing to explicit is the inner
algorithm running in time T (FARC′(α)) as well as the parameters C and α. This subroutine has to solve

a configuration problem in the input lists L1, . . . , Lk for the configuration C = (Ci,j)i,j∈[k] ∈ Rk×k. The
subroutine has to find a 1− o(1) fraction of the k-tuples (x⃗1, . . . , x⃗k) ∈ L1× · · · ×Lk such that ⟨x⃗i |⃗xj⟩ ≤ Ci,j

for all i ̸= j for some ϵ > 0. By Lemma 5.4, we can solve this problem by solving R1, . . . , Rk for configuration
C ′(α). We present here our 3-sieve and 4-sieve classical algorithms. Actually, in both cases, the inner
algorithm will use a classical 2-sieve algorithm so we first give formulas for the configuration problem with
k = 2.

https://github.com/johanna-loyer/3-4-sieve
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5.3.1. Classical 2-sieve

We present here the best-known algorithm for classical 2-sieve. While these are known results, we will need
this analysis for our 3-sieve and 4-sieve algorithms.

Proposition 5.8. Take k = 2, lists L1, L2 of random points of norm 1 with |L1| = |L2|, a target configuration

C =

(
1 C12

C12 1

)
. Let α st. V(α) = 1

|L1| . Algorithm 12 with parameter α constructs a list Lout of pairs of

points (x⃗1, x⃗2) with (x⃗1, x⃗2) ∈ L1 × L2 such that ⟨x⃗1 |⃗x2⟩ ≤ C12, in time T using memory M where

|Lout| = O
(
|L1|2 det(C)n/2

)
= O

(
|L1|2

(
1− C2

12

)n/2)
T = O

(
|L1|2

det(C)n/2

det (C ′(α))
n/2

)
= O

(
|L1|2

(1− C2
12)

n/2

(1− C ′
12(α)

2)
n/2

)
.

M = O (max{|L1|, |Lout|})

where recall that C ′
12(α) =

1
sin2(α)

·
(
C12 + cos2(α)

)
. Notice that |Lout| corresponds asymptotically to all the

pairs (x⃗1, x⃗2) ∈ L1 × L2 such that ⟨x⃗1 |⃗x2⟩ ≤ C12 so we find here asymptotically all solutions.

Proof. We use Theorem 5.7 with k = 2 and some parameter α to get

T = O
(

NbRepα,C12
·
(
|L1|+

1

V(α)
· T (FARC′

12(α)
)

))
. (5.6)

Recall that here, FARC′
12(α)

computes the running time of finding all solution pairs with inner product smaller
than C ′

12(α) when starting with lists of size |R1| = |L1|V(α). We perform an exhaustive search on the pairs
of points to find all solutions so

T (FARC′
12(α)

) = O
(
max{1, |L1|2V2(α)}

)
.

We take α such that V(α) = 1
|L1| so Equation 5.6 becomes T = O

(
NbRepα,C12

· |L1|
)
. Finally, from

Lemma 5.6, we have

NbRepα,C12
= O

(
max

{
1,

det(C)n/2

Vk−1(α) det (C ′(α))
n/2

})
= |L1| ·

det(C)n/2

det (C ′(α))
n/2

,

which allows us to conclude that

T = O

(
|L1|2

det(C)n/2

det (C ′(α))
n/2

)
.

As a special case, we can take |L1| = |L2| = 20.2075n, C12 = −1/2 which gives Lout = |L1|, T = 20.292n and
M = |L1|. This is the exact same complexity as [Bec+16], the best known classical algorithm asymptotically,
that actually fits our framework.

5.3.2. Classical 3-sieve

We now consider the case of k = 3. Our subroutine will construct the following intermediate lists:

1. Construct L12 = {(x⃗1, x⃗2) ∈ L1 × L2 : ⟨x⃗1 |⃗x2⟩ ≤ C12} and L13 = {(x⃗1, x⃗3) ∈ L1 × L3 : ⟨x⃗1 |⃗x3⟩ ≤ C23}.

2. For each x⃗1 ∈ L1, let L12(x⃗1) = {x⃗2 ∈ L2 : (x⃗1, x⃗2) ∈ L12} and L13(x⃗1) = {x⃗3 ∈ L3 : (x⃗1, x⃗3) ∈ L13}.

3. For each x⃗1 ∈ L1, compute L123(x⃗1) = {(x⃗2, x⃗3) ∈ L12(x⃗1) × L13(x⃗1) : ⟨x⃗2 |⃗x3⟩ ≤ C23}. For each
x⃗1 ∈ L1, triples (x⃗1, x⃗2, x⃗3) are solutions when (x⃗2, x⃗3) ∈ L123(x⃗1).

Now that we defined all intermediate lists, we can write the algorithm we use for solving the inner
configuration problem with k = 3.
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Algorithm 13 FindAllReducing classical 3-sieve

Require: lists L1, L2, L3 of vectors i.i.d. in Sn−1 with |L1| = |L2| = |L3| ; target configuration C ∈ R3×3.
Ensure: list Lout of all 3-tuples in L1 × L2 × L3 satisfying configuration C.
Lout := ∅.
construct L12 and L13 using a 2-sieve algorithm with angle parameter α′, from which you can recover lists
L12(x⃗1) and L13(x⃗1)
for each x⃗1 ∈ L1:

compute L123(x⃗1) using a 2-sieve algorithm with angle parameter α′′

for each (x⃗2, x⃗3) ∈ L123(x⃗1), do Lout := Lout ∪ {(x⃗1, x⃗2, x⃗3)}.
return Lout

Complexity of Algorithm 13.

Construction of the lists L12 and L13. As a direct consequence of Proposition 5.8, we have:

Lemma 5.9. Let T12 (resp. T13) be the time to compute L12 (resp. L13). Let α such that |L1| = 1/V(α).
We have

T12 = O

(
|L1|2

(
1− C2

12

)n/2
(1− C ′

12(α)
2)

n/2

)

T13 = O

(
|L1|2

(
1− C2

13

)n/2
(1− C ′

13(α)
2)

n/2

)

Construction of the lists L23(x⃗1). For a fixed x⃗1, notice that the lists L2(x⃗1) and L3(x⃗1) do not contain
points uniformly distributed on the sphere since they have an inner-product constraint with x⃗1 so we cannot
apply Proposition 5.8 directly. Fix x⃗1 ∈ L1 and let x⃗2 ∈ L2 and x⃗3 ∈ L3. For simplicity of calculations,
we consider the case where ⟨x⃗1 |⃗x2⟩ = C12, ⟨x⃗1 |⃗x3⟩ = C13 and ⟨x⃗2 |⃗x3⟩ = C23. This approximation is justified
from Heuristic 3.8. So we write

x⃗2 = C12x⃗1 +
√
1− C2

12y⃗2 ; x⃗3 = C13x⃗1 +
√
1− C2

13y⃗3 (5.7)

where y⃗2, y⃗3 are orthogonal to x⃗1 and of norm 1. Also, if x⃗2 (resp. x⃗3) is a random vector satisfying
⟨x⃗1 |⃗x2⟩ = C12 (resp. ⟨x⃗1 |⃗x3⟩ = C13) then y⃗2 (resp. y⃗3) is a random unit vector. Let Y23 := ⟨y⃗2 |⃗y3⟩. We have

⟨x⃗2 |⃗x3⟩ = C12C13 +
√
1− C2

12

√
1− C2

13Y23

which implies

Y23 =
C23 − C12C13√
1− C2

12

√
1− C2

13

.

We can now use Proposition 5.8,which gives the running time T23(x⃗1) of computing L23(x⃗3). Let Y =(
1 Y23
Y23 1

)
and let α′ such that V(α′) = 1

|L2 (⃗x1)| . We have

T23(x⃗1) = O
(
NbRepα′,Y · |L2(x⃗1)|

)
.

Now, let T23 be the running of computing all the lists L23(x⃗1) since the number of x⃗1 is |L1|, we have

T23 = |L1| · T23(x⃗1) = O
(
|L1| · NbRepα′,Y · |L2(x⃗1)|

)
(5.8)

= O

(
|L1| · |L2(x⃗1)|2 ·

(
1− Y 2

23

)n/2
(1− Y ′

23(α
′)2)

n/2

)
(5.9)

with Y ′
23(α) =

1
sin2(α)

(
Y23 + cos2(α′)

)
. Putting everything together, we have the following
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Proposition 5.10. Let |L1| a list size and C a 3×3 configuration matrix with negative non-diagonal entries.
Let |L2(x⃗1)| = |L1|(1 − C2

12)
n/2. Let α′ such that V(α′) = 1

|L2 (⃗x1)| . Algorithm 13 solves FARc
3(|L1|, C) in

time T12 + T13 + T23 with

T12 = T23 = O
(
|L1|2(1− C2

12)
n/2
)

T123 = |L1||L2(x⃗1)|2
(
1− Y 2

23

)n/2
(1− Y ′

23(α
′)2)

n/2

where

Y23 =
1√

1− C2
12

√
1− C2

13

· (C23 + C12C13)

Y ′
23(α) =

1

sin2(α)

(
Y23 + cos2(α′)

)
.

Let |L12| = |L1|2
(
1− C2

12

)n/2
. This algorithm uses memory M = max{|L1|, |L12|}.

Complexity of the classical 3-sieve.

The above was the analysis of the classical 3-sieve after the first filtering. We now apply Theorem 5.7 with
k = 3 in order to obtain the running of our classical 3-sieve algorithm within our framework (Algorithm 12).

Theorem 5.11. There is a classical algorithm with parameter α that solves the 3-sieve problem for a
configuration C and lists of size |L| that runs in time T and that uses memory M with

T = O
(

NbRepα,C ·
(
|L|+ 1

V(α)
· T (FARc

3 (|L1|, C ′(α)))

))
,

and

M = max{|L|, |L1|, |L12|, |L123|}.

where |L1| = |L| ·V(α), |L12|, |L123| can be taken from Proposition 3.29 and FARc
3(|L1|, C) = T12+T13+T123

where each T12, T13, T123 can be taken from Proposition 5.10.

Proposition 5.12. There exists a classical algorithm for SV P using 3-sieve that runs in time 20.338n+o(n)

and uses memory 20.1887n+o(n).

Proof. Take the above proposition with a configuration matrix C such that C12 = C13 = C23 = − 1
3 ,

α = 1.2954rad and |L| = 20.1887n. We apply Proposition 5.11; We write C ′
12(α) = C ′

13(α) = C ′
23(α) ≈ −0.32

and |L1| = |L| · V(α) = 20.133n. We have, (omitting o(n) factors in the exponent)

NbRepα,C = 20.070n ;
1

V(α)
= 20.055n ; T (FARc

3(|L1|, C ′)) = 20.213n

Putting everything together, we indeed have a running time of 20.070n ·20.055n ·20.213n = 20.338n. The memory
M = max{|L|, |Lout|, |Lint|} where Lint is the intermediate list used in FARc

3(|L1|, C ′(α)). We have

|Lint| = |L1|2
(
1− C ′

12(α)
2
)n/2

= 20.1887n.

This implies that the memory used is M = 20.1887n.

Space-time tradeoff. We also extend this algorithm where we fix the available memory to something
more than the minimal memory 20.1887n. We present here a list of points that we obtain, showing the general
behaviour of our algorithm:
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1
n log2(Memory) 0.1887 0.19 0.2 0.2075 0.22 0.24 0.26 0.272 0.286

1
n log2(Time) 0.338 0.334 0.328 0.325 0.320 0.313 0.307 0.304 0.304
Angle α (rad) 1.2954 1.305 1.329 1.346 1.366 1.408 1.470 π/2 π/2

Table 5.1: Time complexity of our classical 3-sieving algorithm for a fixed memory constraint. α is the
optimal angle used in the first prefiltering. Also see Figure 5.3 for a plot corresponding to this algorithm.

Figure 5.3: Time T = 2tn+o(n) for classical 3-sieves as a function of available memory 2mn+o(n) = 2M .
(Theorem 5.11).

5.3.3. Classical 4-sieve

We now consider the case k = 4. For our inner algorithms, we start with 4 lists L1, L2, L3, L4. There are
actually several strategies of merging the lists. Here we choose to perform the following merges:

1. Construct L12 = {(x⃗1, x⃗2) ∈ L1 × L2 : ⟨x⃗1 |⃗x2⟩ ≤ C12} and L34 = {(x⃗3, x⃗4) ∈ L3 × L4 : ⟨x⃗3 |⃗x4⟩ ≤ C34}.

2. Construct L1234 = {((x⃗1, x⃗2), (x⃗3, x⃗4)) ∈ L12 × L34 : (x⃗1, x⃗2, x⃗3, x⃗4) satisfies configuration C}.

Using these lists, we consider the following algorithm:

Algorithm 14 FindAllReducing classical 4-sieve

Require: lists L1, L2, L3, L4 of vectors i.i.d. in Sn−1 with |L1| = |L2| = |L3| = |L4| ; target configuration
C ∈ R4×4 with C12 = C34 and C13 = C14 = C23 = C24.

Ensure: list Lout of all 4-tuples (x⃗1, x⃗2, x⃗3, x⃗4) ∈ L1 × L2 × L3 × L4 satisfying configuration C.
Construct L12 and L34 using our classical 2-sieve algorithm.
Start from L12 and L34 and use our classical 2-sieve algorithm to compute L1234.
return L1234.

We then use the above algorithm as the FindAllReducing subroutine in Algorithm 12 to describe our entire
algorithm for 4-sieve. The algorithm presented here is usually inefficient in memory because the lists L12

and L13 are large. However, thanks to our initial α-filtering, we start from smaller lists L1, L2, L3, L4 so the
intermediate lists will be small as well.
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Complexity of Algorithm 14.

Lemma 5.13. Let T12 be the time to compute L12 (which is also the time to compute L34 by symmetry).
Let α such that V(α) = 1

|L1| . Then

T12 = O

(
|L1|2

(
1− C2

12

)n/2
(1− C ′

12(α)
2)

n/2

)

This comes directly from the analysis of our simplified 2-sieve algorithm (Proposition 5.8). The size of
the intermediate lists L12 and L34 is then

|L12| = |L1|2 ·
(
1− C2

12

)n/2
(5.10)

We now look at the time to compute L1234. Elements of L12 are of squared norm R2 = 2 + 2C12, using
∥x⃗1 + x⃗2∥2 = ∥x⃗1∥2 + ∥x⃗2∥2 + 2⟨x⃗1 |⃗x2⟩.

Lemma 5.14. Let z⃗12 ∈ L12 and z⃗34 ∈ L34. If θ(⃗z12, z⃗34) = arccos
(

sin2(α)
2R2 − 1

)
then ∥⃗z12+ z⃗34∥2 ≤ sin2(α).

Proof. We write

∥⃗z12 + z⃗34∥2 = ∥⃗z12∥2 + ∥⃗z34∥2 + 2⟨⃗z12 |⃗z34⟩ = 2R2 + 2⟨⃗z12 |⃗z34⟩

By taking ⟨⃗z12 |⃗z34⟩ = R2
(

r20
2R2 − 1

)
, we obtain indeed ∥⃗z12 + z⃗34∥2 ≤

(
− 1

sin(α)

)2
.

Lemma 5.15. Let T1234 be the time to compute L1234. Let Y = − 1
sin(α) ·

1
4+4C12

− 1. Let α′ such that

V(α′) = 1
|L12| . We have

T1234 = O

(
|L12|2

(
1− Y 2

)n/2
(1− Y ′(α′)2)

n/2

)
,

with Y ′(α′) = 1
sin2(α)

(
Y + cos2(α′)

)
.

By combining the above 2 propositions, we have

Theorem 5.16. Algorithm 14 runs in time T = 2T12 + T1234 where T12 and T1234 can be taken respectively
from Lemma 5.13 and Lemma 5.15.

To conclude, we can plug this theorem again in Theorem 5.7 to get our results. Recall that we work with
4-tuples of residual vectors after an initial α-filtering so we look for 4-tuples of residual points (y⃗1, y⃗2, y⃗3, y⃗4)
st. ∥y⃗1 + y⃗2 + y⃗3 + y⃗4∥ ≤ 1

sin(α) (see Equation 5.3). Regarding memory requirements, we have that the

memory M of our algorithm satisfies M = max{|L1|, |L12|, |L1234|}.
This algorithm gives a smooth space-time tradeoff from low memory to the point where the memory

is 20.0275n and the time is 20.292n, corresponding precisely to the complexity of the 2-sieve algorithm (and
indeed corresponds to the case where our 4-sieve algorithm performs independently two 2-sieve algorithms).
When looking at the minimal memory setting, so M = 20.1724n, this algorithm performs poorly, as the time
is 20.418n. However, when looking at intermediate memory requirements, there are some ranges when the
algorithm performs quite well. For example, when taking M = 20.1887n, this algorithm performs better than
the 3-sieve classical algorithm we presented before, as we can see in Figure 5.7. We put below a list of values
of interest. As in the previous case, the less memory we are allowed, the more it is interesting to perform a
tailored prefiltering step. We put below a list of values and the corresponding angle α used in the prefiltering
step.
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Figure 5.4: Time T = 2tn+o(n) for classical 4-sieves as a function of available memory 2mn+o(n) = 2M .
(Theorem 5.16).

log2(Memory)/n 0.1724 0.175 0.18 0.1887 0.193 0.198 0.203 0.2075
log2(Time)/n 0.418 0.380 0.352 0.324 0.315 0.306 0.298 0.2925
Angle α (rad) 1.278 1.315 1.350 1.401 1.425 1.457 1.494 π/2

Table 5.2: Time complexity of our classical 4-sieving algorithm for a fixed memory constraint. α is the
optimal angle used in the prefiltering. Also see Figure 5.4 for a plot corresponding to this algorithm.

5.4. Quantum k-sieves

We now study quantum algorithms within our framework. In the quantum setting, we still use Theorem 5.7
and once again, we only need to describe the running time and amount of memory used for the subroutine.
Here the input lists Li are stored classically and are assumed to be quantumly accessible, i.e. for any given
list L, we can efficiently construct the uniform superposition over all its elements |ψL⟩ := 1√

|L|

∑
ℓ |ℓ⟩|L[ℓ]⟩.

In the following, we will not necessarily write the first register for simplicity1.

5.4.1. Quantum 3-sieve

In the case k = 3, the FindAllReducing quantum subroutine starts with classical lists L1, L2, L3 that are
quantumly accessible, and it outputs a list containing all triples in L1 × L2 × L3 satisfying a given target
configuration C.

To find one solution, our algorithm constructs a uniform quantum superposition over all triples and then
applies two Grover’s algorithms in order to get a quantum superposition of candidate solutions. This whole
process is then repeated inside an amplitude amplification to get a superposition over the solutions, that we
measure, and we repeat this whole process until we have found all the solutions.

As a reminder, (See Proposition 3.29), given a configuration C, we use the following notation: for i, j ∈ [k],
i ̸= j and y⃗j ∈ Lj ,

Li(y⃗j) := {y⃗i ∈ Li : ⟨y⃗i |⃗yj⟩ ≤ Ci,j}.

1This simplification was already done in [Kir+19]. At no point do we use the fact that we do not have the first register, this
is just for simplicity of notations.
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Algorithm 15 FindAllReducing quantum 3-sieve

Require: lists L1, L2, L3 of vectors i.i.d. in Sn−1 with |L1| = |L2| = |L3| ; a target configuration C ∈ R3×3.
Ensure: list Lout containing all 3-triples in L1 × L2 × L3 satisfying configuration C.
Lout := ∅
while |Lout| < |Sol| do
Construct state |ψL1⟩|ψL2⟩|ψL3⟩
Apply Grover on the second register to get state |ψL1⟩|ψL2 (⃗y1)

⟩|ψL3⟩
Apply Grover on the third register to get state |ψL1

⟩|ψL2 (⃗y1)
⟩|ψL3 (⃗y1)

⟩
Apply Amplitude Amplification to get state |ψSol⟩, the uniform superposition of all solutions
Take a measurement and get some (y⃗1, y⃗2, y⃗3)
if (y⃗1, y⃗2, y⃗3) satisfies configuration C then add it to Lout

return Lout

Complexity of Algorithm 15.

We first analyse the complexity to find one solution during one single iteration from the while-loop.

Initialization. We assume that lists L1, L2 and L3 of i.i.d. random points are classically stored and
quantumly accessible. So the state |ψL1⟩|ψL2⟩|ψL3⟩ can be constructed efficiently.

Grover on the second register. The algorithm then applies Grover’s algorithm on the second register
such that the two first registers become

|ψL1
⟩|ψL2 (⃗y1)

⟩ = 1√
|L1|

1√
|L2(y⃗1)|

∑
y⃗1∈L1

∑
y⃗2∈L2 (⃗y1)

|⃗y1⟩|⃗y2⟩.

It only keeps in the quantum superposition the elements y⃗2 ∈ L2 such that ⟨y⃗1 |⃗y2⟩ ≤ C12 for each superposed
y⃗1 from the first register. So the state ends up with a quantum superposition of all pairs in L1×L2 eligible to

form the beginning of a triple-solution. This application of Grover’s algorithm takes time T2 =
√

|L2|
|L2 (⃗y1)|

=

(1− C2
12)

−n/4 by Proposition 3.29.

Grover on the third register. Similarly, we also apply Grover’s algorithm on the third register to get
the state |ψL1

⟩|ψL2 (⃗y1)
⟩|ψL3 (⃗y1)

⟩ equal to

1√
|L1|

1√
|L2(y⃗1)|

1√
|L3(y⃗1)|

∑
y⃗1∈L1

∑
y⃗2∈L2 (⃗y1)

∑
y⃗3∈L3 (⃗y1)

|⃗y1⟩|⃗y2⟩|⃗y3⟩

in time T3 =
√

|L3|
|L3 (⃗y1)|

= (1− C2
13)

−n/4. The sizes |L2(y⃗1)| and |L3(y⃗1)| do not depend on the choice of y⃗1,

that is why we can write their corresponding normalizing factors before the sum over the y⃗1’s.

Amplitude amplification. The goal is now to construct a uniform quantum superposition over all el-
ements of the set of solutions Sol := {(y⃗1, y⃗2, y⃗3) ∈ L1 × L2 × L3 satisfying C}, by applying a quantum
amplitude amplification. Let A be unitary that maps |0⟩|0⟩|0⟩ to the state |ψL1

⟩|ψL2 (⃗y1)
⟩|ψL3 (⃗y1)

⟩ constructed
so far.

Lemma 5.17. The operation A : |0⟩|0⟩|0⟩ → |ψL1
⟩|ψL2 (⃗y1)

⟩|ψL3 (⃗y1)
⟩ is repeated TAA times inside the ampli-

tude amplification to construct state |ψSol⟩ (with probability 1− o(1)), where

TAA = O
(√
|L1|/|Sol| ·

√
|L2(y⃗1)|

√
|L3(y⃗1)|

)
= O

(√
|L3

i |/|Sol| · (1− C
2
12)

n/4(1− C2
13)

n/4

)
.
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Proof. Performing a measurement of state |ψL1⟩|ψL2 (⃗y1)
⟩|ψL3 (⃗y1)

⟩ gives a triplet solution (y⃗1, y⃗2, y⃗3) with some
probability p, we are going to specify. There are |L1| possible y⃗1 and |Sol| “good” ones belonging to a solution,
so the probability of measuring a good y⃗1 is |Sol|/|L1|. Then given a y⃗1, a pair (y⃗2, y⃗3) ∈ L2(y⃗1) × L3(y⃗1)
forms the solution together with y⃗1 with probability 1

|L2 (⃗y1)|
1

|L3 (⃗y1)|
.

Finally, the probability to measure a solution is thus p = |Sol|/|L1| · 1
L2 (⃗y1)

1
L3 (⃗y1)

. By Theorem 2.10, the

number of iterations of amplitude amplification is O
(
1/
√
p
)
, hence the top line. The bottom line is obtained

by expressing the sizes of L2(y⃗1) and L3(y⃗1) using Proposition 3.29.

Subroutine complexity.

Proposition 5.18 (FindAllReducing quantum 3-sieve). Let |L1| a list size and C a 3×3 configuration matrix
with negative non-diagonal entries. Algorithm 15 solves FARq

3(|L1|, C) in time |Sol| · (T2 + T3) · TAA where

|Sol| = |L1|3 · det(C)n/2

T2 = (1− C2
12)

−n/4 ; T3 = (1− C2
13)

−n/4

TAA = O
(√
|L3

i |/|Sol| · (1− C
2
12)

n/4(1− C2
13)

n/4

)
After simplification, the time complexity of Algorithm 15 can be written

T (FARq
3(|L1|, C)) =

√
|Li|3 · |Sol| ·

(
(1− C2

12)
n/2 + (1− C2

13)
n/2
)
.

This algorithm uses classical memory |L1| and quantum memory poly(n) qubits.

Complexity of the quantum 3-sieve.

The above was the analysis of the algorithm we use as the subroutine FindAllReducing in Algorithm 12 for
quantum 3-sieve. The lists given in input of Algorithm 15 are then the lists of residual vectors R1, R2, R3,
which are of size |R1| = |L1| = |L| · V(α) ; and it return residual vectors that satisfy the target configuration
C ′(α). Using Theorem 5.7 in the case k = 3 gives the overall time complexity of our quantum 3-sieve
algorithm.

Theorem 5.19. There is a quantum algorithm with parameter α that solves the 3-sieve problem for a
configuration C ∈ R3×3 and lists of size |L|, that runs in time

T = O
(

NbRepα,C

(
|L|+ 1

V(α)
· T (FARq

3(|L1|, C ′(α)))

))
where |L1| = |L| · V(α) and T (FARq

3(|L1|, C ′(α))) given by Proposition 5.18. This algorithm uses quantum-
accessible classical memory M = |L| and quantum memory poly(d).

Minimal memory parameters.

Proposition 5.20. There is a quantum algorithm that solves SVP in dimension n using 3-sieve that runs
in time T = 20.3098d+o(n), quantum-accessible classical memory M = 20.1887n+o(n) and poly(n) quantum
memory.

Proof. We take a balanced configuration C with C12 = C13 = C23 = −1/3, α = 1.2343rad and |L| =
20.1887n = M . We apply Proposition 5.19: We write C ′

12(α) = C ′
13(α) = C ′

23(α) ≈ −0.31 and |L1| =
|L| · V(α) = 20.1055n. We have

NbRepα,C = 20.1055n ;
1

V(α)
= 20.0832n ;

T (FASq
3(|L1|, C ′)) = 20.1210n.

Putting everything together, we have a running time of
20.1055n · 20.0832n · 20.1210n = 20.3098.
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Space-time tradeoffs. We also extend this algorithm where we fix the available memory to something
more than the minimal memory 20.1887n.

log2(Memory)/n 0.1887 0.189 0.190 0.1904
log2(Time)/n 0.3069 0.3050 0.3040 0.3039

α (rad) 1.2153 1.2191 1.2255 1.2233

Table 5.3: Time complexity of our quantum 3-sieving algorithm for a fixed memory constraint. α is the
optimal angle used in the prefiltering. Also see Figure 5.5 for a plot corresponding to this algorithm.

Figure 5.5: Space-time tradeoffs for quantum 3-sieves algorithms with time 2tn+o(n) as a function of available
memory 2mn+o(n) (Theorem 5.19). The left graphic shows the comparison between the quantum BLS and
our improved version adding k-RPC prefiltering. The right graphic adds the extremities of the tradeoff of
[Kir+19, Appendix B], the quantum hybrid with pairwise filtering.

5.4.2. Quantum 4-sieve

This algorithm and its analysis are very similar to Algorithm 15. As previously, we first analyze the complexity
to find one solution during one single iteration from the while-loop.

Complexity of Algorithm 16.

Initialization. Lists Li for i = 1, 2, 3, 4 are assumed stored classically and quantumly accessible, so we can
construct the state |ψL1⟩|ψL2⟩|ψL3⟩|ψL4⟩.

Grover on the second register. The algorithm applies Grover’s algorithm over the second register such
that the two first registers become

|ψL1
⟩|ψL2 (⃗y1)

⟩ = 1√
|L1|

1√
|L2(y⃗1)|

∑
y⃗1∈L1

∑
y⃗2∈L2 (⃗y1)

|⃗y1⟩|⃗y2⟩,

which takes time T2 =
√

|L2|
|L2 (⃗y1)|

= (1− C2
12)

−n/4.

Grover on the third register. Another Grover’s algorithm is then performed over the third register |ψL3⟩
such that it becomes the quantum superposition over all elements of L3(y⃗1, y⃗2), for y⃗1 ∈ L1 and y⃗2 ∈ L2(y⃗1)
being elements in quantum superposition in the two first registers. Let Z = |L1| · |L2(y⃗1)| · |L3(y⃗1, y⃗2)|. The
three first registers then become the state



5.4. QUANTUM K-SIEVES 63

Algorithm 16 FindAllReducing quantum 4-sieve

Require: lists L1, L2, L3, L4 of vectors i.i.d. in Sn−1 with |L1| = |L2| = |L3| = |L4| ; a target configuration
C ∈ R4×4.

Ensure: list Lout containing all 4-triples in L1 × L2 × L3 × L4 satisfying configuration C.
Lout := ∅
while |Lout| < |Sol| do
Construct |ψL1⟩|ψL2⟩|ψL3⟩|ψL4⟩
Apply Grover on the second register to get state |ψL1

⟩|ψL2 (⃗y1)
⟩|ψL3

⟩|ψL4
⟩

Apply Grover on the third register to get state |ψL1
⟩|ψL2 (⃗y1)

⟩|ψL3 (⃗y1 ,⃗y2)
⟩|ψL4

⟩
Apply Grover on the fourth register to get state:

|ψL1
⟩|ψL2 (⃗y1)

⟩|ψL3 (⃗y1 ,⃗y2)
⟩|ψL4 (⃗y1 ,⃗y2)

⟩

Apply Amplitude Amplification to get state |ψSol⟩, the uniform superposition of all solutions
Take a measurement and get some (y⃗1, y⃗2, y⃗3, y⃗4)
if (y⃗1, y⃗2, y⃗3, y⃗4) satisfies configuration C then add it to Lout

return Lout

|ψL1
⟩|ψL2 (⃗y1)

⟩|ψL3 (⃗y1 ,⃗y2)
⟩ = 1√

Z

∑
y⃗1∈L1

∑
y⃗2∈L2 (⃗y1)

∑
y⃗3∈L3 (⃗y1 ,⃗y2)

|⃗y1⟩|⃗y2⟩|⃗y3⟩.

Performing this Grover’s algorithm takes time T3 =
√

|L3|
|L3 (⃗y1 ,⃗y2)|

. Proposition 3.29 gives |L3(y⃗1, y⃗2)| =

|L3| ·
(

det(C[1,2,3])
det(C[1,2])

)n/2
. Note that these notations for partial configurations are given in Definition 3.26. So

we can rewrite T3 =
(

det(C[1,2,3])
det(C[1,2])

)−n/4

.

Grover on the fourth register. Analogously to what was done over the third register, we perform
Grover’s algorithm over the fourth one |ψL4⟩. For Z ′ = |L1| · |L2(y⃗1)| · |L3(y⃗1, y⃗2)| · |L4(y⃗1, y⃗2)|, this operation
allows to construct the state |ψL1

⟩|ψL2 (⃗y1)
⟩|ψL3 (⃗y1 ,⃗y2)

⟩|ψL4 (⃗y1 ,⃗y2)
⟩ equal to

1√
Z ′

∑
y⃗1∈L1

∑
y⃗2∈L2 (⃗y1)

∑
y⃗3∈L3 (⃗y1 ,⃗y2)

∑
y⃗4∈L4 (⃗y1 ,⃗y2)

|⃗y1⟩|⃗y2⟩|⃗y3⟩|⃗y4⟩.

This takes time T4 =
(

det(C[1,2,4])
det(C[1,2])

)−n/4

.

Amplitude amplification. We then want to construct a uniform quantum superposition over all elements
of the set of solutions Sol := {(y⃗1, y⃗2, y⃗3, y⃗4) ∈ L1 × L2 × L3 × L4 satisfying C}, by applying a quantum
amplitude amplification.

Lemma 5.21. The operation |0⟩|0⟩|0⟩|0⟩ → |ψL1
⟩|ψL2 (⃗y1)

⟩|ψL3 (⃗y1 ,⃗y2)
⟩|ψL4 (⃗y1 ,⃗y2)

⟩ is repeated TAA times inside
the amplitude amplification to construct state |ψSol⟩ (with probability 1− o(1)), where

TAA =

√
|L1|
|Sol|

√
|L2(y⃗1)|

√
|L3(y⃗1, y⃗2)|

√
|L4(y⃗1, y⃗2)|

=
|Li|2√
|Sol|

· (1− C2
12)

n/4 ·
(
det(C[1, 2, 3])

det(C[1, 2])

)n/4

·
(
det(C[1, 2, 4])

det(C[1, 2])

)n/4

where notation C[I] with a set of indexes I was introduced in Definition 3.26.
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Proof. The reasoning is the same as for the proof of Lemma 5.17. Performing a measurement of state
|ψL1⟩|ψL2 (⃗y1)

⟩|ψL3 (⃗y1 ,⃗y2)
⟩|ψL4 (⃗y1 ,⃗y2)

⟩ gives a 4-tuple solution (y⃗1, y⃗2, y⃗3, y⃗4) with some probability p, we are
going to specify. The probability of measuring a good y⃗1 is |Sol|/|L1|. Then given a y⃗1, a triple (y⃗2, y⃗3, y⃗4)
forms the solution together with y⃗1 with probability 1/(|L2(y⃗1)| · |L3(y⃗1, y⃗2)| · |L4(y⃗1, y⃗2)|). Finally, the

probability of success to measure a solution is thus p = |Sol|
|L1| · 1/ (|L2(y⃗1)| · |L3(y⃗1, y⃗2)| · |L4(y⃗1, y⃗2)|). By

Theorem 2.10, the number of iterations of amplitude amplification is O
(
1/
√
p
)
, hence the top line. The

bottom line is obtained by expressing the sizes of L2(y⃗1), L3(y⃗1, y⃗2) and L4(y⃗1, y⃗2) using Proposition 3.29.

Measurement gives a 4-tuple (y⃗1, y⃗2, y⃗3, y⃗4) solution to the configuration problem. We need to repeat this
whole process until we find all the solutions at number |Sol|. Notice that the same operations are performed
over L3 and over L4, which implies that an optimal configuration will necessarily respect the symmetry
C13 = C14 and C23 = C24. In the end, this subroutine FindAllReducing runs in time

T (FARq
4) = |Sol| · (T2 + T3 + T4) · TAA,

and this leads to the following theorem.

Proposition 5.22. Given lists L1, L2, L3, L4 ⊂ Sn−1 of same size |Li| with i.i.d. uniformly random vectors,
and a configuration C ∈ R4×4 with C13 = C14 and C23 = C24, there exists an algorithm that finds all the
|Sol| 4-tuples in L1 × L2 × L3 × L4 satisfying configuration C in time

T (FARq
4) = |Li|2

√
|Sol|

((
1

1− C2
12

)n/2

+

(
det(C[1, 2, 3])

1− C2
12

)n/4
)
.

Complexity of the quantum 4-sieve.

The above was the analysis of the quantum 4-sieve after the prefiltering. We use this algorithm as the
subroutine in our framework for k = 4. Using Theorem 5.7 in this case, we recover the overall time complexity
of our quantum 4-sieve algorithm.

Theorem 5.23. There is a quantum algorithm with parameter α that solves the 3-sieve problem for a
configuration C and lists of size |L| that runs in time T with

T = O
(

NbRepα,C

(
|L|+ 1

V(α)
T (FARq

4(|L1|, C ′(α)))

))
and uses quantum-accessible classical memory M = |L| and quantum memory poly(d), and where |L1| =
|L| · V(α) and T (FARq

4(|L1|, C ′(α))) given by Proposition 5.22.

Minimal memory parameters.

Proposition 5.24. There is a quantum algorithm that solves SVP in dimension n using 4-sieve that runs in
time T = 20.3276n+o(n) using quantum-accessible classical memory M = 20.1724n+o(n) and quantum memory
poly(n).

Proof. We take a balanced configuration C with Ci,j = −1/4 for i ̸= j, α ≈ 1.3131rad and |L| = 20.1724n =M .
We apply Theorem 5.23: We write C ′

i,j ≈ −0.244 for i ̸= j and |L1| = |L| · V(α) = 20.124n. We have

NbRepα,C = 20.1069n ;
1

V(α)
= 20.0484n ; T (FARq

4(|L1|, C ′)) = 20.1722n.

Putting everything together, we have a running time of 20.1069n · 20.0484n · 20.1722n = 20.3276n.
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Time-optimizing parameters.

Proposition 5.25. There exists an algorithm that solves SVP in dimension n in time T = 20.3120n+o(n)

using quantum-accessible classical memory M = 20.1813n+o(n) and quantum memory poly(n).

Proof. We take a configuration C with C12 ≈ −0.386, C13 = C14 ≈ −0.229, C23 = C24 ≈ −0.230 and C34 ≈
−0.200. We take α ≈ 1.313rad and |L| = 20.1813n =M . We apply Proposition 5.23: We write C ′

12 ≈ −0.386,
C ′

13 = C ′
14 ≈ −0.229, C ′

23 = C ′
24 ≈ −0.224 and C ′

34 ≈ −0.189. We set |L1| = |L| · V(α) = 20.1259n. We have

NbRepα,C = 20.1254 ;
1

V(α)
= 20.0554n;

FARq
4(|L1|, C ′) = 20.1312n.

Putting everything together, we have a running time of 20.1254n · 20.0554n · 20.1312n = 20.3120n.

Figure 5.6: Space-time tradeoffs for quantum 4-sieves algorithms with time 2tn+o(n) as a function of available
memory 2mn+o(n) (Theorem 5.23). The left graphic shows the comparison between the quantum BLS and
our improved version adding k-RPC prefiltering. The right graphic adds the extremities of the tradeoff of
[Kir+19, Appendix B], the quantum hybrid with pairwise filtering.
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5.5. Discussion

Figure 5.7: Time 2tn+o(n) for classical k-sieves as a function of available memory 2mn+o(n).

Parameters setting t m α Reference

k = 3

Min. memory + tailored LSF 0.338 0.1887 1.2954 Sec. 5.3.2
Min. memory + LSF 0.3588 0.1887 - [HKL18]
Min. memory 0.3962 0.1887 - [HK17]
No memory constraint + LSF 0.3041 0.3041 - [HKL18]

k = 4

Memory-opt. config. + LSF 0.3766 0.1724 - [HKL18]
Memory-opt, tailored LSF 0.418 0.1724 1.278 Section 5.3.3
Memory-opt. config. 0.424 0.1724 - [HK17]
Fixed memory, tailored LSF 0.3224 0.1887 1.401 Section 5.3.3
Time-opt. config. + LSF 0.3419 0.2181 - [HKL18]

Table 5.4: Classical 3 and 4-sieves, corresponds to the graph in Figure 5.7.

We first analyze our results for classical algorithms (see Figure 5.7). For the 3-sieve, our algorithm
performs better in the minimal memory regime. However, when we do not restrict memory, we obtain the
same running time 20.3041n+o(n) as in [HKL18] and our method does not give improvements here. For 4-sieve
algorithms, the situation is a little different. We use a different approach than the ones studied in previous
work. We essentially combine sequentially two 2-sieve algorithms. However, we first perform our tailored
LSF on 4-tuples of points to speed up this process. As Figure 5.7 shows, this algorithm does not perform well
in the minimal memory regime (M = 20.1723n+o(n)) but then works much better for slightly larger memories,
outperforming our 3-sieve algorithm and also the best previously known running time for 4-sieve, which used
more memory.

We must notice however that it is hard to make direct comparisons with previous work in the classical
setting as those are mainly done for Gauss-sieve and we present results for NV-sieve which has better space-
time tradeoffs asymptotically. However, our results do show that tailored LSF significantly improves the
algorithms we study, and we leave it as future work to extend this idea to the Gauss sieve.

In the quantum setting (see Figure 5.8), we use the same algorithms as in [Kir+19] so the comparison can
be made more directly. Our algorithm uses our tailored filtering and then applies Algorithm 4.1 of [Kir+19],
which is not the best algorithm for the configuration problem for low values of k. What we show is that this
algorithm benefits from this prefiltering. The results should be compared with the state-of-the-art Algorithm
B.2 of [Kir+19]. However, only the extremities of the tradeoffs of their algorithm were given, represented by
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Figure 5.8: Time 2tn+o(n) for quantum k-sieves as a function of available memory 2mn+o(n).

Parameters setting t m α Reference

k = 3

Memory-opt, tailored LSF 0.3069 0.1887 1.2153 Sec. 5.4.1
Memory-opt. config. 0.3349 0.1887 - [Kir+19], Alg. 4.1
Memory-opt. config. + LSF 0.3266 0.1887 - [Kir+19], Alg. B.2
Time-opt. config. 0.3306 0.1907 - [Kir+19], Alg. 4.1 and 4.2
Time-opt, tailored LSF 0.3039 0.1904 1.2233 Sec. 5.4.1
Time-opt. config. + LSF 0.2908 0.2908 - [Kir+19], Alg. B.2

k = 4

Memory-opt, tailored LSF 0.3276 0.1724 1.3131 Sec. 5.4.2
Memory-opt. config. 0.3419 0.1724 - [Kir+19], Alg. 4.1
Memory-opt. config. + LSF 0.3178 0.1724 - [Kir+19], Alg. B.2
Time-opt. config. 0.3289 0.1796 - [Kir+19], Alg. 4.1
Time-opt. config. 0.3197 0.1731 - [Kir+19], Alg. 4.2
Time-opt, tailored LSF 0.313 0.1800 1.2887 Sec. 5.4.2
Time-opt. config. + LSF 0.3013 0.3013 - [Kir+19], Alg. B.2

Table 5.5: Quantum 3 and 4-sieves, corresponds to the graph in Figure 5.8.

triangles on the graphs of Figure 5.8. For k = 3 in the minimal memory regimeM = 20.1887n+o(n), we achieve
time T = 20.3069n+o(n) improving the time T = 20.3266n+o(n) of Algorithm B.2 in [Kir+19]. For k = 4, our
algorithm does not work well for the lowest memory regime but gives a new interesting space-time tradeoff.

Notice that as in previous algorithms cited here, our quantum algorithms require quantumly accessible
classical memory (QRACM) and poly(n) qubits.

The goal of the construction of k-RPC and applications on low k-sieves was to check if this kind of filtering
had an interest. It was believed before that doing two layers of filtering was useless, and we showed that
on the contrary, the k-sieves benefit from it. Here again, the conditional bound of [KL21] cannot apply as
our framework expands the k-sieve algorithms to be considered. With the algorithms proposed in previous
sections, taking higher k diminishes the advantages of k-RPC filtering, until making it disappear for high
k. But our algorithm structure remains a basic approach, and there are a lot of different other ways to mix
k-RPC filtering, pairwise BDGL filtering, and merging the lists.
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6. Security analysis of Wave

This chapter is based on the work [Loy23] which is currently a preprint, and took part in a joint submission
[Ban+23] to the NIST with Gustavo Banegas, Kévin Carrier, André Chailloux, Alain Couvreur, Thomas
Debris-Alazard, Philippe Gaborit Pierre Karpman, Ruben Niederhagen, Nicolas Sendrier, Benjamin Smith,
and Jean-Pierre Tillich.

6.1. Overview

Code-based cryptography. Codes were originally introduced by Hamming [Ham50] to correct errors
caused by noisy data transmission or unstable storage. The idea is to encode the data by adding some
redundancy. Then, to access the data, one uses a decoding algorithm that allows one to recover the initial
data even if it has been partially altered. There is however a limit to the number of errors that a decoding
algorithm can correct.

The differences with a lattice lie in the definition space (Rn for lattices; Fn
q for codes) and the metric

(Euclidian distance for lattices; Hamming, Lee, rank, etc., for codes...). Previously in this thesis (RPC in
Definition 3.12), we saw how to use codes as a tool to solve lattice problems. In this chapter, we study a proper
code problem: the Decoding Problem (DP). The Decoding Problem is NP-hard in the worst case [BMT78]
and is believed to be hard for a random code, thus cryptographic schemes can rely on its hardness. The
first code-based encryption scheme is the McEliece scheme [McE78], which is already resistant to quantum
attacks like Shor’s, but has very large keys. The goal for designers is to choose a code that allows good
performances (fast decoding and small key sizes), but whose structure is not too obvious to the attacker so
that the Decoding Problem with this code remains computationally hard.

In the previous NIST call for post-quantum encryption schemes [NIS22], Classic McEliece [Ber+22] was a
finalist but was not standardized because of its large public key size, despite its strong and most conservative
security. From this batch of schemes, let us also cite BIKE [Ara+21], based on a binary version of NTRU, a
lattice problem that becomes a code-based one.

In 2023, NIST’s call for digital signature schemes saw once again several code-based schemes emerge.
FuLeeca [Rit+23] is based on Lee metric, LESS [Bal+23a] and MEDS [Cho+23b] are based on code equiv-
alence problems; but different security vulnerabilities have been quickly found for these three last schemes.
CROSS [Bal+23b] and SDitH [Agu+23] rely on a restricted Decoding Problem, and MIRA [Ara+23b],
MiRitH [Adj+23] and RYDE [Ara+23a] use the rank metric version of DP. Finally, PERK [Aar+23] is based
on the permuted kernel problem, a specific instance of the code equivalence problem. Two of the code-
based submissions are based on a rather new code structure (U,U + V ), with modified Reed-Muller code for
Enhanced pqsigRM [Cho+23a] and ternary for Wave [Ban+23].

Contributions. For each of the four best known attacks on Wave, we do a complete time complexity
analysis and provide explicit expressions as functions of Wave parameters. So the claimed security level
can easily be updated with new sets of parameters using our formulas. We then apply our theorems to the
Round-1 parameter selection, whose results are summarized in Table 6.3. We describe a quantum smoothed
Wagner’s algorithm based on the combined approaches of [Sen11], [Bri+20], and [CDE21], and our new
algorithm provides an improved message attack on Wave.

Outline. We first recall in Section 6.2 basic information about code cryptographic problems particularly in
the particular case of Wave, the ISD framework, and list merging. Section 6.3 presents key attacks based on
ISD and Dumer’s algorithm. Then Section 6.4 presents message attacks based on ISD andWagner’s algorithm.
In Section 6.5, we conclude and comment on the obtained results. The SageMath code used for the numerical
results of this chapter is available here: https://github.com/johanna-loyer/WaveISDcryptanalysis.git.
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6.2. Code-based cryptography

Notations.

Fq denotes a q-ary finite field. Vectors are in raw notation, written in bold and their coordinates are in plain,
with x = (xi)i. The weight considered in this chapter is the Hamming weight denoted |x| := |{i : xi ̸= 0}|. For
a vector x = (x0, . . . , xn−1), we denote by x|[i,j] the vector (xi, . . . , xj−1) restricted on coordinates i to j − 1.

For a matrix H we denote by H⊤ its transpose. For x = (x0, . . . , xn−1) ∈ Fn
q and M = (Mi,j)0≤i<r,0≤j<n−1 ∈

Fr×n
q , we define x ⋆M := (xjMi,j)0≤i<r,0≤j<n their row-wise star product.

6.2.1. Code problems and Wave

Definition 6.1 (Code [n, k]q). A linear code C of length n and dimension k over Fq is a k-dimensional
subspace of Fn

q . The elements of C are called codewords. The rate of C is defined as k/n. A matrix

G ∈ Fk×n
q verifying C = {xG | x ∈ Fk

q} is called a generator matrix of C, and a matrix H ∈ F(n−k)×n
q

verifying C = {y ∈ Fn
q | yH

⊤ = 0} is called a parity check matrix of C. For any y ∈ Fn
q , the vector yH⊤ is

called the syndrome of y (relatively to H). The dual code of C is C⊥ = {xH | x ∈ Fn−k
q }.

Problem 6.2 (Decoding Problem − DPH,s,w). Given a parity check matrix H ∈ F(n−k)×n
q , a syndrome

s ∈ Fn−k
q and a target weight w ∈ [|0, n|], find a vector e ∈ Fn

q such that |e| = w and eH⊤ = s.

The problem DPH,s,w is hard on average for H uniformly distributed in F(n−k)×n
q and s = eH⊤ with e

a uniform vector in Fn
q of weight |e| = w. The best known algorithms have a polynomial complexity when

q−1
q (n − k) ≤ w < k + q−1

q (n − k), and exponential otherwise. Notice that to find a codeword with a given
target weight, one can solve an instance of DPH,s=0,w. This problem is believed to be as hard as DPH,s,w with
an arbitrary s.

Proposition 6.3. For a uniformly random matrix H ∈ F(n−k)×n
3 , we expect the solutions to the DPH,s,w prob-

lem to be on average

(
n
w

)
2w

3n−k .

Proof. There are

(
n
w

)
2w words of length n and weight w in F3. For some e ∈ Fn

3 and H ∈ F(n−k)×n
3 , the

vector eH⊤ has 3n−k possible values, so the probability that for a given e it gives the correct one is 1
3n−k .

Remark. There does not necessarily exist a solution to generic instances of the DP problem. But in the
Wave settings, there is always at least one solution on average, and there are even exponentially many ones.

Let us introduce some notions about code specific to the Wave signature scheme [DST19].

Definition 6.4 (Generalized ternary (U,U + V )-code). We consider integers n, k, kU , kV with n even such
that n > k > 0, k = kU + kV , 0 < kU < n/2 and 0 < kV < n/2. For i from 0 to n/2, let a = (ai)i, b = (bi)i,

c = (ci)i and d = (di)i denote vectors in Fn/2
3 such that ∀i ∈ [0, n/2], aici ̸= 0 and aidi − bici ̸= 0.

The ternary linear codes U (resp. V ) are of length n/2 and dimension kU (resp. kV ) and admits generator

matrix GU and parity check matrix HU ∈ F(n/2−kU )×n/2
3 (resp. GV and HV ∈ F(n/2−kV )×n/2

3 ). Then, the
generalized ternary (U,U+V )-code C associated to (HU ,HV ,a,b, c,d) has the following parity check matrix

H =

(
d ⋆HU −b ⋆HU

−c ⋆HV a ⋆HV

)
.

The dual of code associated to (HU ,HV ,a,b, c,d) is a (U,U+V )-code associated to (GU ,GV ,−c,d,a,−b).

Definition 6.5 (Type-U and type-V codewords). We consider a generalized ternary (U,U +V )-code C and
retake the above notations. Given a chosen target weight t, we call a type-U codeword in C a word u ∈ U
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of form u⃗ = (a ⋆ u∥c ⋆ u) and of weight |u| = t/2. And a type-V codeword in C is a word v ∈ V of form
v = (b ⋆ v∥d ⋆ v) and of weight |v| = t/2.

Wave uses a permuted generalized ternary (U,U + V )-code of length n and dimension k admitting a

parity check matrix H ∈ F(n−k)×n
3 that constitutes the public key. Are also fixed a weight w, and dimensions

kU for code U and kV for V . The signature of a message m by Wave is an e ∈ Fn
3 such that |e| = w and

eH⊤ = h(m) ∈ F(n−k)
3 , where h is a hash function. A signer with their secret key U, V can use them to

efficiently compute such a e to sign their message m.

Proposition 6.6 ([Sen23] p.6). Consider a generalized ternary (U,U+V )-code C whose code U has dimension
kU and V dimension kV . For a target weight t, we expect the number of type-U codewords of C to be on

average

(
n/2
t/2

)
2t/2

3n/2−kU
, and the number of type-V codewords of C to be on average

(
n/2
t/2

)
2t/2

3n/2−kV
.

Key attacks. From the proposition just above, for some values of weight t the number of type-U codewords
is higher than those expected for a random code, given by Proposition 6.3. Then, one can use this fact to
exhibit a type-U or type-V codeword, that provides a distinguisher of the Wave public key from the uniform,
namely solving the DWKn,kU ,kV

problem. This is the goal of key attacks on Wave. Notice that one can run
this attack directly on the (U,U + V )-code but also on its dual code. We draw the attention of the reader to
the work of [Sen23] for further details on type-U and type-V words.

Problem 6.7 (The Distinguishing Wave Keys Problem DWKn,kU ,kV
). Given H ∈ F(n−(kU+kV ))×n

3 , decide
whether H has been chosen uniformly at random or among parity-check matrices of permuted generalized
(U,U + V )-codes where U has dimension kU , and V dimension kV .

Message attacks. Another way to attack Wave is by forging a message-signature pair (e, s) ∈ Fn
3 × Fn−k

3

such that |e| = w and eH⊤ = s. This consists in solving the DOOMn,k,w problem, which is hard if DPn,k,w

is hard. This problem was introduced in [JJ02] for F2 and [Sen11] presented an approach for solving it.

Problem 6.8 (Decoding One Out of Many DOOMn,k,w). Given an arbitrary large list S of syndromes in

Fn−k
q , a parity check matrix H ∈ F(n−k)×n

q and a target weight w, find s ∈ S and e ∈ Fn
q such that |e| = w

and eH⊤ = s.

6.2.2. Information Set Decoding (ISD) Framework

Attacks on the Decoding Problem are commonly1 based on the Information Set Decoding (ISD) framework
that received several refinements. Introduced by Prange [Pra62], the idea is to pick a random subset of
indices, that gives a submatrix H′′ and subsyndrome s′′, compute the unique e′′ such that e′′H′′ = s′′, and
repeat the process until it forms a complete e with good weight |e| = w. Stern and Dumer [Ste88; Dum91]
improved it by taking advantage of the Generalized Birthday Paradox, and Schroeppel and Shamir [SS81]
extended this idea by using Wagner’s approach [Wag02]. We use here a framework similar to [FS09], which
uses the parity check matrix instead of the generator matrix. Another variant uses representation techniques
[MMT11; Bec+12], but this refinement only provides a very slight gain in the Wave setting as shown in
[Bri+20]. With nearest-neighbour techniques [MO15; BM17; BM18; Car+22] the gain in asymptotic factors
is compensated by a high overhead. For these reasons, we will not deal with these techniques in this thesis
and restrict our cryptanalysis to algorithms [Pra62; Dum91; SS81]. We refer the reader to [Deb23] for a
more detailed introduction to code-based theory and ISD algorithms, and more specifically for the successive
generalizations of the ISD algorithms you may look at [Eti23].

To solve the problem DPH,s,w, the idea behind ISD is to rewrite H into a systematic form and then to

solve an easier instance DPH′′,s′′,p, where H′′ ∈ F(k+ℓ)×ℓ
q and s′′ ∈ Fℓ

q for parameters ℓ the length of the s′′

1A recent paper [Car+22] presented a way to make the statistical decoding [Jab01] perform better than ISD algorithms in
some regimes. Except for this algorithm, all the known attacks on DP for the sixty last years were based on the ISD framework.
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and p the target weight of e′′. We need to find many solutions e′′ ∈ Fk+ℓ
q to the subproblem DPH′′,s′′,p to

hope to get one of them that gives a complete solution e = (e′∥e′′) ∈ Fn
3 to the DPH,s,w problem.

In order to analyse the complexity of the ISD framework, we will need the following lemma.

Lemma 6.9. Let e ∈ Fn
3 be a vector of weight w and parameters ℓ, p. Let us define the subvectors e′ ∈ Fn−k−ℓ

3

and e′′ ∈ Fk+ℓ
3 such that e = (e′∥e′′). We say that e is well cut if |e′| = w − p and |e′′| = p. The probability

that a random e ∈ Fn
3 of weight w is well cut is

PrGoodCut =

(
k + ℓ
p

)(
n− k − ℓ
w − p

)
(
n
w

) . (6.1)

Classical ISD algorithm.

Theorem 6.10. We are given a classical algorithm that finds NbSolFound solutions to DPH′′,s′′,p in time
TDPH′′,s′′,p , among the NbSol(DPH′′,s′′,p) total solutions to DPk+ℓ,ℓ,p. PrGoodCut is defined as in Proposi-
tion 6.9, and NbSol(DPH,s,w) denotes the number of solutions to the DPH,s,w problem. Then the classical
Information Set Decoding framework (Algorithm 17) solves DPH,s,w in time

TDP = max

{
TDPH′′,s′′,p ,

TDPH′′,s′′,p

NbSol(DPH,s,w) · PrGoodCut · NbSolFound
NbSol(DPH′′,s′′,p)

}
.

The term on the left inside the max is the complexity when only one iteration of Steps 1-4 in the ISD
suffices, while the term on the right is the one for several iterations.

Algorithm 17 Classical ISD

Input: H0 ∈ Fn×(n−k)
3 , syndrome s ∈ Fn−k

3 , weight w.
Parameters ℓ ∈ [0, n− k] and p ∈ [max{0, w − (n− k − ℓ)},min{w, k + ℓ}]
Output: e ∈ Fn

3 such that eH⊤
0 = s and |e| = w.

1: Pick a random permutation of columns π and apply H← π(H0)
2: Apply a partial Gaussian Elimination on H to transform it into a systematic form H =(

In−k−ℓ H′

0 H′′

)
∈ Fn×(n−k)

q where H′ ∈ F(k+ℓ)×(n−k−ℓ)
q and H′′ ∈ F(k+ℓ)×ℓ

q , and a syndrome

s = (s′∥s′′) ∈ Fn−k
q with s′ ∈ Fn−k−ℓ

q and s′′ ∈ Fℓ
q.

3: Solve the subproblem DPH′′,s′′,p: Construct a list of vectors (e′′, e′′H′′⊤) ∈ Fk+ℓ
q × Fℓ

q such that

|e′′| = p and e′′H′′⊤ = s′′.
4: Test step. For each e′′ found during Step 3, recover the complete vector e = (e′∥e′′) that satisfies

eH⊤ = s, and check if |e| = w.
5: Repeat Steps 1-4 until Step 4 succeeds and gives a e ∈ Fn

3 such that eH⊤ = s and |e| = w.
6: return e0 = π−1(e). It verifies e0H

⊤
0 = s and |e0| = w.

Proof. We use the same notations as above.
Steps 1-2. Applying a random permutation of columns and a partial Gaussian elimination on H can be

done in polynomial time.
Step 3. This step takes time TDPH′′,s′′,p that depends on the choice of the subroutine. It returns

NbSolFound solutions to the DPH′′,s′′,p subproblem.

Step 4 From an e′′ ∈ Fk+ℓ
3 such that e′′H′′⊤ = s′′, one can efficiently compute e′ = s′−e′′H′⊤ ∈ Fn−k−ℓ

3 .
The vector e = (e′∥e′′) then satisfies eH⊤ = s. There are NbSolFound solutions that need to be checked
for weight. The check time is dominated in the sum by the time of Step 3.

Step 5. Suppose there is a precise solution e that we want to find where e = (e′∥e′′) with e′ ∈ Fk+ℓ
3

and e′′ ∈ Fn−k−ℓ
3 . The probability that e is “well cut” i.e. for e there is |e′| = w − p and |e′′| = p, is given
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by Lemma 6.9. Then, supposing e is well cut, one iteration of steps (1-4) returns a list containing a fraction
NbSolFound

NbSol(DPH′′,s′′,p)
of the solutions to the DPH′′,s′′,p subproblem. As there are NbSol(DPH,s,w) such solutions

e, the probability that one iteration returns a solution is

PrFindSol = min

{
1, NbSol(DPH,s,w) · PrGoodCut ·

NbSolFound

NbSol(DPH′′,s′′,p)

}
. (6.2)

To get a solution with probability 1−o(1), one has to repeat steps (1-4) a number 1/PrF indSol of iterations.
Once we have found a solution e such that eH⊤ = s, then π−1(e)H⊤

0 , and this achieves the algorithm.

Putting everything together gives the result.

Quantum ISD algorithm.

Notations. We recall that given a quantumly accessible list L, indL(x) denotes the index of element x in
the list L. The quantum superposition of a list L is the quantum state |ψL⟩ = 1√

|L|

∑
x∈L |indL(x)⟩|x⟩ (See

Definition 2.6).

Theorem 6.11. We are given an algorithm that constructs a quantum superposition of NbSolFound so-
lutions to DPH′′,s′′,p in time TDPH′′,s′′,p , among the NbSol(DPH′′,s′′,p) total solutions to this subproblem.
PrGoodCut is defined in Proposition 6.9, and NbSol(DPH,s,w) denotes the number of solutions to DPH,s,w.
Then, Algorithm 18 solves DPH,s,w in quantum time

TDP = max

TDPH′′,s′′,p ,
TDPH′′,s′′,p√

NbSol(DPH,s,w) · PrGoodCut · NbSolFound
NbSol(DPH′′,s′′,p)

 .
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Algorithm 18 Quantum ISD

Input: H0 ∈ Fn×(n−k)
3 , syndrome s ∈ Fn−k

3 , weight w.
Parameters ℓ ∈ [0, n− k] and p ∈ [max{0, w − (n− k − ℓ)},min{w, k + ℓ}]
Output: e0 ∈ Fn

3 such that e0H
⊤
0 = s and |e0| = w.

1: Pick a random permutation of columns π and apply H← π(H0)
2: Apply a partial Gaussian Elimination on H to transform it into a systematic form H =(

In−k−ℓ H′

0 H′′

)
∈ Fn×(n−k)

q where H′ ∈ F(k+ℓ)×(n−k−ℓ)
q and H′′ ∈ F(k+ℓ)×ℓ

q , and a syndrome

s = (s′∥s′′) ∈ Fn−k
q with s′ ∈ Fn−k−ℓ

q and s′′ ∈ Fℓ
q.

3: Solve the subproblem DPH′′,s′′,p: Apply the procedure that constructs in quantum superposition a

list L of e′′ ∈ Fk+ℓ
3 such that |e′′| = p and e′′H′′⊤ = s′′, i.e.

|0⟩ → 1√
|L|

∑
(e′′,y)∈L

|indL(e′′)⟩|e′′⟩,

where indL(e
′′) is the index of the tuple (e′′,y = e′′H′′⊤) in list L.

4: Test step. From a vector e′′ we can compute the complete candidate solution e ∈ Fn
3 such that eH⊤ = s,

so there exists a procedure

|0⟩ → |Ψ⟩ := 1√
|L|

∑
(e′′,y)∈L

e=(s′−e′′H′⊤∥e′′)

|indL(e′′)⟩|e⟩.

The vectors e in the second register then satisfy eH⊤ = s. Apply Grover, iterating on the operation
|0⟩ → |Ψ⟩, to only keep the e’s in the superposition which are of weight w.

5: Apply a Amplitude Amplification on steps 1-4 to find a good permutation π in Step 1 with high
probability.

6: Measure e. Return e0 = π−1(e). It satisfies e0H
⊤
0 = s and |e0| = w.

Proof. Steps 1,2. These steps do not change from the classical version and are efficiently done.

Step 3. This operation takes time TDPH′′,s′′,p that depends on the choice of the subroutine. It returns
a quantum superposition |ψL⟩ over |L| = NbSolFound solutions to the DPH′′,s′′,p subproblem. All the y in
tuples in L in this state are equal to y = s′′ as it is an output condition of the subroutine. So we can discard
this last register that can now be considered classical.

Step 4. After discarding the classical register |s′′⟩, we add a zero quantum register to |ψL⟩ to get the
state

1√
|L|

∑
(e′′,y)∈L

|indL(e′′)⟩|0⟩|e′′⟩

where indL(e
′′) is the index of the tuple (e′′, e′′H′′⊤) in list L.

We apply the efficient quantum circuit |0⟩|e′′⟩ 7→ |s′ −H′e′′⟩|e′′⟩ on its two last registers to get the state

|Ψ⟩ := 1√
|L|

∑
(e′′,y)∈L

e′=s′−H′e′′

|indL(e′′)⟩|e′⟩|e′′⟩ =
1√
|L|

∑
(e′′,y)∈L

e=(s′−H′e′′∥e′′)

|indL(e′′)⟩|e⟩.

This state is a uniform quantum superposition over candidate solutions e ∈ Fn
3 that satisfy eH⊤ = s. We

need to only keep those that are of good weight w, so we apply a Grover search [Gro96] that iterates the
procedure |0⟩ → |Ψ⟩. Tts check function takes e and returns 1 if |e| = w, and 0 otherwise. It returns the
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L1 L2

0

▷◁b

b

y1=e1H
⊤ e2e1 y2=e2H

⊤

e1 + e2 y1 + y2

Figure 6.1: Merging lists L1 and L2 on the b first coordinates.

following quantum superposition over solutions to DPH,s,w

1√
Z

∑
(e′′,y)∈L

e=(s′−H′e′′∥e′′)
|e|=w

|indL(e′′)⟩|e⟩,

where Z is the number of such solutions e. This requires at most
√
|L| =

√
NbSolFound Grover iterations.

Step 5. Suppose there is a precise solution e that we want to find where e = (e′∥e′′) with e′ ∈ Fk+ℓ
3

and e′′ ∈ Fn−k−ℓ
3 . Lemma 6.9 gives the probability that e is “well cut”, i.e. |e′| = w − p and |e′′| = p.

Then, supposing e is well cut, one iteration of steps (1-4) returns a list in quantum superposition containing
a fraction NbSolFound

NbSol(DPH′′,s′′,p)
of the solutions to the DPH′′,s′′,p subproblem. One iteration of Steps 1-4 returns a

solution with probability PrFindSol whose expression is in Equation 6.2. To get a solution with a probability
close to 1, we apply an amplitude amplification on this process, which takes 1/

√
PrFindSol iterations. Then

we measure and find a solution to DPH,s,w.

DOOM variant of the ISD.

[Sen11] presented an approach for solving more efficiently the DOOM problem. Instead of having only one
syndrome s in the input of the ISD frameworks 17 and 18, the adversary takes an arbitrarily large list S
of syndromes. At the end of the algorithm, the adversary wins if they get a pair (e0, s) ∈ Fn

3 × S such
that e0H0 = s. The subroutine of the third step is also adapted in function: it takes in input a list S′′ of
the restricted syndromes s′′, and outputs solutions (e′′, s′′) ∈ Fk+ℓ

3 × Fℓ
3 to the subproblem, where s′′ are

restrictions of the s ∈ S on their ℓ last coordinates. The time complexity of this variant stays the same as
the one given in Theorem 6.10 for classical and in Theorem 6.11 for quantum. This approach will be applied
and explained in more detail in Section 6.4 in the context of message attacks on Wave.

6.2.3. List merging

Subroutines within the ISD algorithms will make great use of list merging. Merging two lists L1 and L2 on
the b first coordinates means constructing the following list.

L1 ▷◁b L2 :=
{
(e1 + e2,y1 + y2) : (e1,y1) ∈ L1, (e2,y2) ∈ L2, (y1 + y2)|[0:b] = 0

}
(6.3)
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Size of the merged list.

For lists L1 and L2 randomly sampled in Fn
3 × Fℓ

3, their merged list is of expected size |L1 ▷◁b L2| = |L1|·|L2|
3b

on average. Then for lists L1, L2 already merged so that their vectors have already their b0 first coordinates
at zero, we have on average for b ≥ b0,

|L1 ▷◁b L2| =
|L1| · |L2|
3b−b0

. (6.4)

Classical merging.

We want to construct the merged list L = L1 ▷◁b L2. We sort L1 by lexicographic order according to its second
tuple elements y1, which takes time |L1| · log(|L1|). Then, for each (e2,y2) ∈ E2, we search (e1,y1) ∈ L1 such
that y1 + y2 values 0 on its b first coordinates. Thanks to the sorting, for each e2 one can find a solution
in L2 (if it exists) in time log |L1| by dichotomic search. For each collision found on y1 and y2, we add
(e1+e2,y1+y2) to L. So the classical merging takes time (|L1|+ |L2|) · log |L1|. Hence the following lemma.

Lemma 6.12. Given lists L1 and L2, one can construct the list L1 ▷◁b L2 for an arbitrary b in time
Õ(|L1|, |L2|, |L1 ▷◁b L2|).

Quantum merging.

We are given a list L1 classically stored and assumed quantumly accessible, and a procedure |0⟩ → |ψL2
⟩

that returns in time T the uniform quantum superposition on the list L2,

|ψL2
⟩ = 1√

|L2|

∑
(e2,y2)∈L2

|indL2
(e2)⟩|e2⟩|y2⟩. (6.5)

We sort L1 in the lexicographic order according to its second tuple elements y1, which takes time |L1| ·
log(|L1|). We define the following function:

matchL1
(e2,y2) =

{
(e1,y1) ∈ L1 such that (y1 + y2)|[0:b] = 0 if it exists,

⊥ otherwise.

If several such (e1,y1)’s match, the function will arbitrarily return the first one by lexicographic order.
However, if lists L1, L2 are random and there is |L1| ≤ |L2|, then there will be on average at most one such
tuple in L1. So we make this assumption by simplicity from here2.

The function matchL1 is efficiently implementable by performing a dichotomic search as L1 is sorted and
assumed quantumly accessible. We then apply this circuit on |ψL2⟩ using an auxiliary register:

1√
|L2|

∑
(e2,y2)∈L2

|indL2
(e2)⟩|matchL1

(e2,y2)⟩|e2⟩|y2⟩.

While the classical merging ran a for loop on L2 to check, in the quantum model we replace it with Grover’s
search [Gro96] that iterates on the procedure |0⟩ → |ψL2⟩. We define the Grover check function as follows:
Given (e2,y2), it returns 1 if matchL1(e2,y2) ̸=⊥, and 0 else. Applying Grover requires at most

√
|L2|

iterations, and returns the following state, where the non-⊥ elements are removed from the superposition.

1√
|L1 ▷◁b L2|

∑
(e2,y2)∈L2

matchL1
(e2,y2)=(e1,y1)̸=⊥

|indL2(e2)⟩|e1⟩|y1⟩|e2⟩|y2⟩.

2When we will apply quantum merging further in this work, we will manipulate random lists L1, L2 such that |L1|2 = |L2|,
so there will be at most one solution with very high probability. This allows us to consider that this quantum merging process
constructs a quantum superposition over the list L1 ▷◁b L2 without missing any element.
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And finally, by simply summing, swapping and reassembling the registers, we get the state

1√
|L1 ▷◁b L2|

∑
(e2,y2)∈L2

matchL1
(e2,y2)=(e1,y1) ̸=⊥

|indL2
(e2)⟩|e1 + e2⟩|y1 + y2⟩|e2,y2⟩,

where the last register |e2,y2⟩ cannot be discarded because of the requirement of the reversibility of the
process, but it will not be used anymore. The previous state then can be rewritten

|ψL1▷◁bL2
⟩|Aux⟩ := 1√

|L1 ▷◁b L2|

∑
(e,y)∈L1▷◁bL2

e=e1+e2,e1∈L1,e2∈L2

|indL2
(e2)⟩|e⟩|y⟩|Aux⟩. (6.6)

This whole process takes time (|L1|+ T
√
|L2|) · log |L1|.

Lemma 6.13. Given a list L1 classically stored and quantumly accessible, and a procedure that returns the
quantum state |ψL2⟩ (Eq. 6.5) in time T , for |L1| ≤ |L2|, there exists a quantum algorithm that returns the

state |ψL1▷◁bL2
⟩ (Eq. 6.6) for an arbitrary b in time Õ(|L1|, T

√
|L2|).

6.3. Key attacks on DWK

We are given a public (U,U + V )-code with generator matrix G ∈ F(kU+kV )×n
3 and parity check matrix

H ∈ F(n−(kU+kV ))×n
3 . The point of this attack is to solve the Distinguishing Wave Keys Problem 6.7, which

can be done by finding a type-U or type-V word e of weight t in the public code or its dual. [Sen23] pointed
out that type-U words outnumber type-V ones, so the attacker can restrain their search to only type-U words
as they are easier to find. The parameter t can be chosen as the attacker wants under the condition that
the number of such words has to be higher than in a random code. The former condition, by combining
Propositions 6.3 and 6.6, is equivalent to

3n−2·kV >

(
n
t

)
2t. (6.7)

So the time complexity of this key attack is the minimum between the time of solving the problems DPH,0,t

and DPG,0,t′ , respectively to find a type-U word in the public code and in its dual, with t and t′ are freely
chosen such that they respect Equation 6.7. In this section, we present how to solve DPH,0,t and these
algorithms can directly be adapted to the dual version.

6.3.1. Classical key attack

The best known classical key attack on Wave is due to [Sen23], who applies Dumer’s algorithm [Dum91]
within the ISD framework [FS09]. We start by constructing the following lists.

E1 := {(x1 ∥ 0
k+ℓ
2 ) | x1 ∈ F

k+ℓ
2

3 , |x1| = p/2} ; L1 := {(e′′1 , e′′1H
′′⊤) : e′′1 ∈ E1}

E2 := {(0
k+ℓ
2 ∥ x2) | x2 ∈ F

k+ℓ
2

3 , |x2| = p/2} ; L2 := {(e′′2 , e′′2H
′′⊤) : e′′2 ∈ E2}

(6.8)

Both these initial lists are of size(
(k + ℓ)/2
p/2

)
2p/2 = Õ

((
k + ℓ
p

)1/2

2p/2

)
. (6.9)

We apply classical merging from Lemma 6.12 on the lists L1 and L2 to get the merged list L1 ▷◁ℓ L2 filled
with elements of form (e′′, e′′H′′⊤) = (e′′,0). We can see in Equation 6.8 that vectors e′′1 ∈ E1 and e′′2 ∈ E2
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have disjoint sets of non-zero coordinates. Therefore, their sum e′′ that we get through the merged list is in
form e′′ = e′′1 +e′′2 = (x1∥x2) with |x1| = |x2| = p/2. So all the e′′ for (e′′, e′′H′⊤) ∈ L obtained are of weight
p by construction, which ensures the correctness of the algorithm. Using this process as a subroutine within
the ISD framework leads to the following theorem.

Theorem 6.14. We are given a generalized ternary (U,U+V )-code C of dimensions (n, k, kU , kV ). Fix ISD
parameters ℓ, p, and a target weight t. There exists a classical algorithm that solves the DWKn,kU ,kV

problem
for code C in time

T = max

{(
k + ℓ
p

)1/2

2p/2,

3n/2−kU

(
n
t

)1/2

2(t−p)/2

(
k + ℓ
p

)1/2(
n− k − ℓ
t− p

)
}
.

Proof. L1 and L2 are of the same size given by Equation 6.9. Constructing the initial lists takes time O(|L1|)
and merging L1 ▷◁ℓ L2 takes time Õ(|L1|) by Lemma 6.12. So Dumer’s subroutine runs in time

TDPH′′,s′′,p = Õ(|L1|) = Õ

((
k + ℓ
p

)1/2

2p/2

)
.

The merged list is of expected size |L1|·|L2|·3−ℓ = Õ
((

k + ℓ
p

)
2p · 3−ℓ

)
, by Equation 6.4. Proposition 6.3

gives the number of solutions to the DP subproblem: NbSol(DPH′′,0,p) =

(
k + ℓ
p

)
2p. And Proposition 6.6

gives the number of solutions to the DP problem in the (U,U + V )-code: NbSol(DPH,0,t) =

(
n/2
t/2

)
2t/2

3n/2−kV
.

Applying Theorem 6.10 with these amounts gives the time complexity of the ISD framework with a Dumer
subroutine. Simplifying the expression directly gives the result.

Remark. We have observed that Wagner algorithm does not perform better than Dumer in this setting,
i.e. one does not get profit from taking additional levels in the merging tree. The reason is that the condition
in Equation 6.7 forces the target weight t to remain quite small. And this impacts the number of vectors one
can generate with this weight, which is low in comparison to those with higher weights (as we are in ternary).
Additional merging levels are useful when there are sufficiently many vectors, which is not the case here, but
it will have an advantage in a different setting, for the message attacks, as we will see in Section 6.4.

Numerical results.

The time complexity is optimal when both initial lists are of maximal size, i.e. by fixing p such that(
k + ℓ
p

)1/2

2p/2 = 3ℓ. Parameters ℓ and t are obtained by numerical optimization to minimize the time

complexity of the attack. As a result, we obtain as optimal parameters l ≈ 0.01, t ≈ 0.21 and p ≈ 0.003.
With these values, the ISD algorithm with a Dumer subroutine solves DWKn,kU ,kV

in time 20.0161n+o(n) i.e.
2138 for the set of Wave parameters (I); in time 20.0165n+o(n) i.e. 2206 for set (III); and in time 20.0167n+o(n)

i.e. 2274 for (V).
The sets of Wave parameters (I), (III) and (V ) can be found in the following table.
With this choice of parameters, the algorithm finds |L| solutions in time |L|, so in amortized time O(1)

per solution. The o(n) terms above encapsulate the hidden polynomial terms, as our analysis only focused
on the asymptotic complexity. These results are summarized in the first column of Table 6.3.

6.3.2. Quantum key attack

The quantum key attack algorithm has a very similar structure to the classical one. We use the quantum ver-
sion of the ISD framework (Algorithm 18), which performs a quantum Amplitude Amplification (Theorem 2.9
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Table 6.1: Sets of Wave parameters as selected in [Ban+23] (NIST submission, round 1) and the corresponding
required security levels in the number of bits.

Classic Quantum n k w kU
(I) 128 64 8576 4288 7668 2966
(III) 192 96 12544 6272 11226 4335
(V) 256 128 16512 8256 14784 5704

[Bra+02]) instead of a classical while loop. This makes a quadratic gain over the number of iterations of
the algorithm. Within the ISD framework, we also replace the classical Dumer subroutine with its quantum
merging variant.

Let us define the following lists. Note that the list L2 does not need to be classically written at any
moment of the algorithm.

E1 := {(x1 ∥ 0
2(k+ℓ)

3 ) | x1 ∈ F
k+ℓ
3

3 , |x1| = p/3} ; L1 := {(e′′1 , e′′1H
′′⊤) : e′′1 ∈ E1}

E2 := {(0
k+ℓ
3 ∥ x2) | x2 ∈ F

2(k+ℓ)
3

3 , |x2| = 2p/3} ; L2 := {(e′′2 , e′′2H
′′⊤) : e′′2 ∈ E2}

(6.10)

The lists are no longer of equal size. Indeed, to balance the running times, the list in quantum superpo-
sition is taken quadratically larger than the classical one:

|L1| = Õ

((
k + ℓ
p

)1/3

2p/3

)
and |L2| = |L1|2. (6.11)

The algorithm starts by classically constructing the list L1. It also constructs the uniform quantum
superposition over the elements of L2: |ψL2

⟩ = 1√
|L2|

∑
(e2,y2)∈L2

|indL2
(e2)⟩|e2⟩|y2⟩, where indL2

(e2) is the

index of the tuple (e2,y) in the list L2. We apply a quantum merging (Lemma 6.13) on L1 and |ψL2
⟩ to

get the state |ψL1▷◁ℓL2⟩, which contains the quantum superposition of all the e′′ = (e′′1 + e′′2) for e′′1 ∈ E1

and e′′2 ∈ E2 such that e′′H′′⊤ = 0 Please look at Equation 6.6 for an explicit expression of this quantum
state. As by construction e′′1 ∈ E1 and e′′1 ∈ E1 have disjoint set of non-zero coordinates, then e′′ is of weight
|e′′| = |e′′1 |+ |e′′2 | = p/3+2/3 = p. So we end up with a quantum superposition of |L1 ▷◁ℓ L2| solutions to the
DPH′′,0,p subproblem. Using this as a subroutine within the ISD framework leads to the following theorem.

Theorem 6.15. Let us fix parameters ℓ, p, t and set k := kU + kV . There exists a quantum algorithm under
the QRAM model assumption that solves DWKn,kU ,kV

in time

T = max

{(
k + ℓ
p

)1/2

2p/2,

3n/4−kU/2

(
n
t

)1/4

2t/4−p/2

(
n− k − ℓ
t− p

)1/2

}
.

Proof. Sizes of lists L1 and L2 are given in Equation 6.11 just above. Constructing the initial classical list
takes time |L1|, and constructing the initial quantum state |ψL2⟩ can be done in efficient time by a Quantum
Fourier Transform and then applying the circuit |e′′2⟩|0⟩ 7→ |e′′2⟩|e′′2H

′′⊤⟩.
The quantum merging takes time |L1| +

√
|L2| by Lemma 6.13. On average we can expect |L1 ▷◁ℓ

L2| =
(
k + ℓ
p

)
2p · 3−ℓ := NbSolFound by Equation 6.4. This is also equal, up to a polynomial factor,

to NbSol(DPH′′,0,p) the number of solutions to the DP subproblem, By Proposition 6.3. And Proposi-
tion 6.6 gives the number of solutions to the DP problem in the (U,U + V )-code which is NbSol(DPH,0,t) =(
n/2
t/2

)
2t/2

3n/2−kU
. Plugging these values into the Theorem 6.11 with the same notations provides the result.
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Numerical results

The time complexity is optimal when the list L2 is of maximal size, so when p is fixed such that

(
k + ℓ
p

)1/3

2p/3 =

3ℓ. Parameters ℓ and t are obtained by numerical optimization to minimize the time complexity of the attack.
We give here the optimal ISD parameters and the associated time complexities for each set of parameters of
Wave given in Table 6.1.

The time complexity is optimal for t ≈ 0.21, l ≈ 0.0052 and p ≈ 0.0024. The ISD algorithm with a
quantum Dumer subroutine solves DWKn,kU ,kV

for the set of Wave parameters (I) in time 20.0094n+o(n) i.e.
280 bits of quantum security; for the set (III) in time 20.0096n+o(n) i.e. 2120; and for the set (V) in time
20.0097n+o(n) i.e. 2160. The slight differences in the time exponents come from the fact that the dimensions
kU , kV are not exactly linear in n. These results are summarized in the second column of Table 6.3.

6.4. Message attacks on DOOM

This attack consists in forging a signature by solving the problem DOOMn,k,w (Problem 6.8) that we remind

here: Given a list S of syndromes in Fn−k
3 and a matrix H, find e ∈ Fn

3 and s ∈ S such that eH⊤ = s. Once
again we use the ISD framework, but here we use Wagner algorithm [SS81] as a subroutine instead of just
Dumer’s [Dum91].

6.4.1. Classical message attack

The best known classical message attack algorithm is the smoothed Wagner algorithm from [Bri+20] based
on the approach from [Sen11] to solve DOOM. Choose parameter a the tree depth of Wagner algorithm.
Wagner algorithm [SS81] can be seen as a generalisation of Dumer [Dum91], where taking Wagner with a = 1
exactly describes Dumer’s algorithm.

First lists.

We start by constructing the first-level lists L
(0)
1 , . . . , L

(0)
2a−1 of size |L(0)

i | = 3ℓ/a, where for i = 1 to 2a− 1 we
sample

E
(0)
i ⊆

{
(0

k+ℓ
2a ∥...∥0

k+ℓ
2a−1 ∥ x︸︷︷︸

ith block

∥0
k+ℓ
2a−1 ∥...∥0

k+ℓ
2a−1 ) | x ∈ F

k+ℓ
2a−1

3 , |x| = p

2a − 1

}
.

L
(0)
i :=

{
((e′′,0), e′′H′′⊤) : e′′ ∈ E(0)

i

}
(6.12)

And with the DOOM approach, the last list is filled with 3ℓ/a syndromes restricted on their ℓ last coor-
dinates

L
(0)
2a ⊆

{
((0, s′′),−s′′) : s = (s′∥s′′) ∈ S, s′ ∈ Fn−k−ℓ

3 , s′′ ∈ Fℓ
3

}
. (6.13)

The aim to store elements in the form ((e′′, s′), e′H⊤ − s′′) is to merge them on their last elements and
get at the end some for which e′′H⊤ − s′′ = 0 and be able to recover the corresponding e′′ and s′′. To be
formal, let us precise the tuple addition (e1, s1) + (e2, s2) = (e1 + e2, s1 + s2).

Notice that we need the list size to be lower than the number of words of weight p we can generate from

F
k+ℓ
2a−1

3 , i.e. we require

3ℓ/a ≤
(
(k + ℓ)/(2a − 1)
p/(2a − 1)

)
2p/(2

a−1).

Actually, as [Bri+20] has already shown and that we recover in our numerical optimizations, the optimal
choice for p in high weight w is to take it at the maximum, i.e. p = k + ℓ. Then by rewriting the condition
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on a with this value of p gives this simplified formula:

3ℓ/a ≤ 2
k+ℓ
2a−1 . (6.14)

Merging tree.

For Wagner algorithm, we consider a binary merging tree with at the first level the lists L
(0)
1 , . . . , L

(0)
2a−1 and

L
(0)
2a defined in Equations 6.12 and 6.13. To pass from the j-th level to the (j +1)-th we merge pairwise lists

using Lemma 6.12, for odd i:

L
(j+1)
(i+1)/2 := L

(j)
i ▷◁(j+1)ℓ/a L

(j)
i+1 (6.15)

By construction, every ((e′′, s′′),y) ∈ L(j)
(i+1)/2 will satisfy y = e′′H′′⊤ − s′′ and |e′′| = j p

2a−1 .

At each floor, the size of this newly merged list is |L(j+1)
(i+1)/2| =

|L(j)
i |·|L(j)

i+1|
3ℓ/a

, so by recurrence it remains

constant at 3ℓ/a on average. Please refer to Figure 6.2 to visualize the merging process.

At the end of Wagner algorithm, we get a final list L
(a)
1 filled with tuples in form (e′′, s′′, e′′H⊤−s′′ = 0),

and by construction, we have |e′′| = p. At each level in the merging tree, the list sizes are 3ℓ/a on average,
so at the end we find as many solutions (e′′, s′′) to the DPH′′,s′′,p subproblem.

Algorithm 19 Classical Wagner algorithm for DOOM [Bri+20]

Input: H′′ ∈ F(k+ℓ)×ℓ
3 , a list S of target syndromes s′′1 , . . . , s

′′
3ℓ/a
∈ Fℓ

3

length ℓ, target weight p, tree depth a.
Output: List of (e′′, s′′) ∈ Fk+ℓ

3 × S such that |e′′| = p and e′′H′′⊤ = s′′

1: Sample lists E
(0)
i , L

(0)
i for i = 1 to 2a using Equation 6.12.

2: for j = 0 to a− 1 do
3: for i = 1 to 2(a−j) do
4: Merge L

(j+1)
(i+1)/2 = L

(j)
i ▷◁(j+1)ℓ/a L

(j)
i+1.

5: return L
(a)
1

Proposition 6.16. Let us fix parameters ℓ, p, a such that 3ℓ/a ≤ 2
k+ℓ
2a−1 (See Equation 6.14). There exists a

classical algorithm that solves DOOMn,k,w in time

T = max

3ℓ/a,
3n−k−ℓ

2w−p

(
n− k − ℓ
w − p

)
 .

Proof. By Lemma 6.12, each merging step takes time 3ℓ/a, so Wagner’s subroutine 19 takes time TDPH′′,s′′,p =

3ℓ/a to find NbSolFound = 3ℓ/a solutions. By Proposition 6.3, the solutions to the DP problem are at number

NbSol(DPH,s,w) =

(
n
w

)
2w

3n−k , and the solutions to the subproblem are at number NbSol(DPH′′,s′′,p) =(
k + ℓ
p

)
2p. We apply the classical ISD algorithm 17 with a Wagner subroutine, and the Theorem 6.10 with

these values directly conducts to the result.

Smoothing

The discreteness of integer parameter a makes the time complexity of Wagner algorithm evolve by stairs,
which is not optimal for the majority of its points. [Bri+20] introduced a smoothed Wagner algorithm, whose

idea is to start with longer lists and a stricter first merging. The lists L
(0)
i are merged pairwise on m bits
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ℓ

3ℓ/a

e′′1H′′⊤ · · · e′′7H
′′⊤ s′′

L
(0)
1 L

(0)
2 L

(0)
3 L

(0)
4 L

(0)
5 L

(0)
6 L

(0)
7 S

▷◁ℓ/a ▷◁ℓ/a ▷◁ℓ/a ▷◁ℓ/a

ℓ/a

L
(1)
1 L

(1)
2 L

(1)
3 L

(1)
4

0 0 0 0

▷◁2ℓ/a ▷◁2ℓ/a

L
(2)
1 L

(2)
2

0 0

2ℓ/a

aℓ/a = ℓ

▷◁ℓ

L
(3)
1 e′′H′′⊤

−s′′

= 0

(0)

(1)

(2)

(a = 3)

(Levels j)

Figure 6.2: Wagner subroutine for a = 3. There are 2a− 1 = 7 initial lists of e′′H′′⊤, plus the syndromes list

S. At each level, the lists are merged on ℓ/a more coordinates, until the final list L
(a)
1 filled with elements in

the form ((e′′, s′′),0), where pairs (e′′, s′′) are solutions to the DOOMk+ℓ,k,p subproblem.

such that these merged lists are of size 2λ for well-chosen m and λ. From there we merge on λ
log2 3 more

coordinates at each level, until merging on all the ℓ coordinates.

Algorithm 20 Classical smoothed Wagner algorithm for DOOM [Bri+20]

Input: H′′ ∈ F(k+ℓ)×ℓ
3 , target syndromes s′′1 , . . . , s3ℓ/a ∈ Fℓ

3

length ℓ, target weight p, tree depth a.
Output: List of (e′′, s′′) ∈ Fk+ℓ

3 × S such that |e′′| = p and e′′H′′⊤ = s′′

1: Compute λ and m using Equations 6.16 and 6.18.

2: Sample lists E
(0)
i , L

(0)
i for i = 1 to 2a − 1, and L

(0)
2a using Equation 6.12.

3: for i = 1 to 2a do
4: Merge L

(1)
(i+1)/2 = L

(0)
i ▷◁m L

(0)
i+1

5: for j = 1 to a− 1 do
6: for i = 1 to 2(a−j) do
7: Merge L

(j+1)
(i+1)/2 = L

(j)
i ▷◁m+(j+1)λ L

(j)
i+1

8: return L
(a)
1

Proposition 6.17. Let a be the largest integer such that 3ℓ/a < 2(k+ℓ)/(2a−1). If a ≥ 3, the classical smoothed
Wagner algorithm can find 2λ solutions to DPH′′,s′′,p in time O(2λ) with

λ =
1

a− 2

(
ℓ log(3)− 2 · k + ℓ

2a − 1

)
. (6.16)

Proof. We restate the proof from [Bri+20] adapted in the context of DOOM (it only changes 2a to 2a − 1 in
the formulae).

We are given parameters k and ℓ, and we fix a at the largest integer such that 3ℓ/a < 2
k+ℓ
2a−1 to respect

the requirement stated in Equation 6.14, and we suppose that a ≥ 3. At the first level in the tree, we take
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ℓ

2
k+ℓ
2a−1

e′′1H′′⊤ · · · e′′7H
′′⊤ s′′

▷◁m ▷◁m ▷◁m ▷◁m

m

0 0 0 02λ


▷◁m+λ/ log2(3)

▷◁m+λ/ log2(3)

0 0

m+ λ
log2(3)

2λ



m+ (a− 1) λ
log2(3)

= ℓ

▷◁m+2λ/ log2(3)

02λ



(0)

(1)

(2)

(a = 3)

(Levels j)

Figure 6.3: Smoothed Wagner algorithm for a = 3. The first merging is operated on a small number of
coordinates m, and then we merge on λ/ log2 3 more coordinates at each level.

lists L
(0)
i with the maximum possible size |L(0)

i | = 2
k+ℓ
2a−1 . We firstly merge on m ≤ ℓ/a coordinates (Steps

2-4 in Algorithm 20). In order to obtain lists of size 2λ at the second level, we have to choose m such that(
2

k+ℓ
2a−1

)2
3m

= 2λ i.e. λ =
2(k + ℓ)

2a − 1
−m log2 3 (6.17)

The (a− 1) next merging steps are designed such that merging two lists of size 2λ gives a new list of size
2λ, which means that we merge on λ/ log2 3 coordinates. In the final list, we have to put a constraint on all
coordinates, therefore λ and m have to verify:

m+ (a− 1)
λ

log2 3
= ℓ. (6.18)

By combining Equations 6.17 and 6.18, We get the expression of λ as given in the statement of the

proposition, and m = 1
a−2

(
2(k+ℓ)(a−3)
log2 3(2a−1) − ℓ

)
. The order a is chosen to be the largest integer such that

3ℓ/(a−1) < 2
k+ℓ
2a−1 , so λ and m are positive and 2λ ≤ 2

k+ℓ
2a−1 .

Theorem 6.18. There exists a classical algorithm that solves DOOMn,k,w in time

T = max


(

3ℓ

2
k+ℓ

2a−1

) 1
a−2

,
3n−k−ℓ

2w−p

(
n− k − ℓ
w − p

)
 .

The left term in the max is improved in comparison with Proposition 6.16 for ISD with non-smoothed
Wagner. This corresponds to the case of a single iteration of the ISD algorithm.

Proof. By Proposition 6.16, the classical smoothed Wagner algorithm takes times 2λ =

(
3ℓ

2
k+ℓ

2a−1

) 1
a−2

. There

are NbSol(DPH,s,w) =

(
n
w

)
2w

3n−k solutions for a random code. The time complexity of the ISD classical

algorithm 17 with smoothed Wagner subroutine is given by Theorem 6.10 that directly conducts to the
result.
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Numerical results.

As we said before, taking p = k+ℓ is optimal. Parameters ℓ and a are then chosen by numerical optimization.
The optimal a in this setting is here a = 5 and ℓ ≈ 0.05. The optimal values of ℓ may slightly vary in function
of Wave parameters due to the fact that they are not exactly linear.

Without smoothing. The ISD algorithm with Wagner’s subroutine with the set of Wave parameters (I)
solves DWKn,kU ,kV

in time 20.0153n+o(n) i.e. 2130. For set (III) it solves it in time 20.0156n+o(n) i.e. 2196, and
for set (V) in time 20.0158n+o(n) i.e. 2261.

With smoothing. The ISD algorithm with smoothed Wagner’s subroutine for set (I) solves DWKn,kU ,kV

in time 20.0151n+o(n) i.e. 2129. For set (III) it solves it in time 20.0155n+o(n) i.e. 2194, and for set (V) in time
20.0157n+o(n) i.e. 2258.

We see that the smoothing slightly improves the message attack on Wave and grabs a few security bits.
The results with the smoothing are summarized in the third column of Table 6.3.

Previous work [FS09] considered the tree depth a as a float instead of an integer, in order to give a
complexity approximation of a smoothed Wagner algorithm. If we optimize the time complexity of the non-
smoothed Wagner from Proposition 6.16 with a allowed to be a float, the difference is of only one or two bits
of security less in comparison with the analysis of the smoothed Wagner algorithm from [Bri+20]. Indeed,
for set (I), the number of security bits is 128, for (III) it is 192, and for (V ), 256. So considering a float a
provides a tight lower bound in this setting.

6.4.2. Quantum message attack

Notations. We recall that given a quantumly accessible list L, indL(x) denotes the index of element x in
the list L. The quantum superposition of a list L is the quantum state |ψL⟩ = 1√

|L|

∑
x∈L |indL(x)⟩|x⟩ (See

Definition 2.6).

For the quantum message attack, we combine DOOM approach from [Sen11], quantum Wagner algorithm
of [CDE21] and smoothing from [Bri+20]. The merging tree has the same structure as in the smoothed
classical algorithm presented in the previous section. Quantum mergings (see Lemma 6.13) are performed
on the right-most side of the tree, and classical mergings (see Lemma 6.12) are performed everywhere else.

Algorithm 21 Quantum Wagner algorithm for DOOM

Input: H′′ ∈ F(k+ℓ)×ℓ
3 , list S of target syndromes in Fℓ

3

length ℓ, target weight p, tree depth a.
Output: List in quantum superposition of (e′′, s′′) ∈ Fk+ℓ

3 × S such that |e′′| = p and e′′H′′⊤ = s′′

1: Sample lists L
(0)
i for i = 1 to 2a − 1 using Equations 6.12 and 6.13.

2: Construct state |ψ
L

(0)
2a
⟩, quantum superposition of 32ℓ/a syndromes s′′ ∈ Fℓ

3

3: for j = 0 to a− 1 do
4: for i = 1 to 2(a−j) − 1 do
5: Classically merge L

(j+1)
(i+1)/2 = L

(j)
i ▷◁(j+1)ℓ/a L

(j)
i+1

6: Quantumly merge L
(j+1)
(2a−j+1)/2 = L

(j)
2a−j−1 ▷◁(j+1)ℓ/a L

(j)
2a−j

7: return |ψ
L

(a)
1
⟩

Proposition 6.19. We are given n, k, w. Let fix parameters ℓ, p and a such that 3ℓ/a ≤ 2
k+ℓ
2a−1 . There exists
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ℓ
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e′′1H
′′⊤ · · · e′′7H

′′⊤
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Figure 6.4: Quantum Wagner algorithm (Proposition 6.19 and Algorithm 21). Dashed-line boxes represent
lists that are not classically constructed but of which we have an algorithm that constructs a quantum
superposition of the elements.
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a quantum algorithm that solves DOOMn,k,w in time

T = max

3ℓ/a,

√√√√√ 3n−k−ℓ

2w−p

(
n− k − ℓ
w − p

)
 .

Proof. Quantum Wagner algorithm does the classical merges in time 3ℓ/a, and the quantum ones in time
3ℓ/a×

√
32ℓ/a

3ℓ/a
= 3ℓ/a. So the whole Wagner algorithm takes time TDPH′′,s′′,p = 3ℓ/a Proposition 6.3 gives

the number of solutions to the DP problem NbSol(DPH,s,w) =

(
n
w

)
2w

3n−k , and to the DP subproblem

NbSol(DPH′′,s′′,p) =

(
k + ℓ
p

)
2p ·3−ℓ. Applying Theorem 6.10 with these amounts gives the time complexity

of the ISD algorithm with Wagner algorithm as a subroutine, and this directly leads to the result.

Algorithm 22 Quantum smoothed Wagner algorithm for DOOM

Input: H′′ ∈ F(k+ℓ)×ℓ
3 , list S of target syndromes in Fℓ

3

length ℓ, target weight p, tree depth a.
Output: List in quantum superposition of (e′′, s′′) ∈ Fk+ℓ

3 × S such that |e′′| = p and e′′H′′⊤ = s′′

1: Sample lists L
(0)
i for i = 1 to 2a − 1 using Equations 6.12 and 6.13.

2: Compute λ and m using Theorem 6.20.
3: Construct state |ψ

L
(0)
2a
⟩, quantum superposition of 32ℓ/a syndromes s′′ ∈ Fℓ

3

4: for i = 1 to 2a − 2 do
5: Classically merge L

(1)
(i+1)/2 = L

(0)
i ▷◁m L

(0)
i+1

6: Quantumly merge L
(1)
2a−1 = L

(0)
2a−1 ▷◁m L

(0)
2a

7: for j = 1 to a− 1 do
8: for i = 1 to 2(a−j) − 1 do
9: Classically merge L

(j+1)
(i+1)/2 = L

(j)
i ▷◁m+(j+1)λ L

(j)
i+1

10: Quantumly merge L
(j+1)
(2a−j+1)/2 = L

(j)
2a−j−1 ▷◁m+(j+1)λ L

(j)
2a−j

11: return |ψ
L

(a)
1
⟩

Theorem 6.20. We are given n, k, w. Let fix parameters ℓ, p and a ≥ 3 such that 3ℓ/a ≤ 2
k+ℓ
2a−1 . There

exists a quantum algorithm that solves DOOMn,k,w in time

T = max


(

3ℓ

2
k+ℓ

2a−1

) 1
a−2

,

√√√√√ 3n−k−ℓ

2w−p

(
n− k − ℓ
w − p

)
 .

Proof. The logic is the same as in the classical smoothed Wagner algorithm, but the optimal list sizes obey a

different balance. The order a is chosen at the largest integer such that 3ℓ/a < 2
k+ℓ
2a−1 to respect the condition

set in the Equation 6.14. The classical lists L
(0)
i for i = 1 to 2a − 1 are chosen of maximal size 2

k+ℓ
2a−1 =: 2γ .

The list L
(0)
2a in quantum superposition is of size 2γ

′
. The classical list L

(j)
i for j > 0 and 0 ≤ i < 2a are of

size 2λ, and the quantum list for levels (j > 0) are of size 22λ. The classical merging from level (0) to level
(1) is done on the m first elements.

Now we need to choose γ, γ′, λ and m. The classical merging from level (0) to level (1) puts the constraint
λ = 2γ −m log2 3. And the quantum merging requires 2λ = γ′ + γ −m log2 3. So we can deduce from the
above that λ = γ′ − γ. For the classical part of the merging tree for level (1) and more, the constraints
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ℓ

2γ

e′′1H
′′⊤ e′′2H

′′⊤ · · · e′′7H
′′⊤ s′′

 2γ
′

▷◁m ▷◁m ▷◁m

▷◁m

ℓ/a

2λ

0 0 0
0


22λ

▷◁m+ λ
log2(3)

▷◁m+ λ
log2(3)

0
0

2ℓ/a

ℓ

▷◁ℓ

e′′H′′⊤
−s′′

= 0

(0)

(1)

(2)

(3)

(Levels j)

Figure 6.5: Quantum smoothed Wagner algorithm (Proposition 6.20 and Algorithm 22). Dashed-line boxes
represent lists that are not classically constructed but of which we have an algorithm that constructs a
quantum superposition of the elements.
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on λ and m remain the same as in Proposition 6.17 so their expressions are already given (respectively) by

Equations 6.16 and 6.18, where λ = 1
a−2

(
ℓ log(3)− 2(k+ℓ)

2a−1

)
.

The first-level classical merges take time 2γ , the first quantum merges take time 2max{γ,λ+γ
2 }, and all

the other merges take time 2λ, which dominates as λ ≥ γ. So the quantum smoothed Wagner subroutine

takes time TDPH′′,s′′,p = 2λ to construct a list in quantum superposition with 22
λ

solutions to the DPH′′,s′′,p

subproblem.

Proposition 6.3 gives the number of solutions to the DP problem NbSol(DPH,s,w) =

(
n
w

)
2w

3n−k , and to

the DP subproblem NbSol(DPH′′,s′′,p) =

(
k + ℓ
p

)
2p · 3−ℓ. Theorem 6.11 with these amounts gives the time

complexity of the quantum ISD algorithm with smoothed Wagner algorithm as a subroutine, and this directly
leads to the result.

Numerical results.

As said before, taking p = k + ℓ is optimal. Parameters ℓ and a are then chosen by numerical optimization.

Without smoothing. Taking l ≈ 0.032 and a = 6 is optimal. The quantum ISD algorithm with quantum
Wagner’s subroutine with the set of Wave parameters (I) solves DWKn,kU ,kV

in time 20.0093n+o(n) i.e. 279.
For set (III) it solves it in time 20.0096n+o(n) i.e. 2120, and for set (V) in time 20.0098n+o(n) i.e. 2161.

With smoothing. Taking l ≈ 0.034 and a = 6 is optimal. The quantum ISD algorithm with smoothed
quantum Wagner’s subroutine with the set of Wave parameters (I) solves DWKn,kU ,kV

in time 20.0091n+o(n)

i.e. 278. For set (III) it solves it in time 20.0094n+o(n) i.e. 2117, and for set (V) in time 20.0095n+o(n) i.e. 2156.
These results are summarized in the fourth column of Table 6.3.

Table 6.2: Number of quantum security bits for message attacks.

Algorithm (I) (III) (V)
ISD + Wagner [CDE21] 79 120 161

Our estimation in [Ban+23] 77 117 157
ISD + Smoothed Wagner (Thm. 6.20) 78 117 156

We see that quantum Wagner algorithm benefits from smoothing, by respectively decreasing the security
by respectively 1, 3 and 5 security bits for sets (I), (III) and (V). And we correct the claimed quantum
security level of [Ban+23], whose estimation did not rely on the analysis of an explicitly described algorithm,
which is now formalized by our theorem 6.20. The estimation only differs by plus or minus one security bit,
and the slight underestimation in case (V) maintains the security level far from the required threshold at 128
security bits.

6.5. Discussion

Table 6.3 summarizes Wave security against all the attacks studied in this work.
The Wave parameters (recalled in Table 6.1) were chosen such that the time of both the classical attacks,

on key and on message, are superior and the closest to the required number of security bits. Sendrier [Sen23]
explained the process to deduce the optimal parameters from the tradeoff between these two classical attacks,
as each one gives opposite constraints on the parameters.

Table 6.3 reveals a visible gap between the minimal number of required security bits and the ones obtained
for key attacks. This is a consequence of the discreteness of the Wave parameters that prevent exactly reaching
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Table 6.3: Security levels of Wave instances. λ bits of security indicate that the most efficient known attacks
require a time 2λ to execute.

Classical Quantum

Setting
Key attack Message attack Key attack Message attack
Thm. 6.14 Thm. 6.18 Thm. 6.15 Thm. 6.20

(I) 138 129 80 78
(III) 206 194 120 117
(V) 274 258 160 156

the minimum number of security bits for both attacks. They may exist solutions to smooth this tradeoff to
gain on the size of the key, and we let it at an open question.

For message attacks, the parameters in [Ban+23] were chosen using estimations, not based on an explicitly
described algorithm. Our analysis in Section 6.4 shows that there exists a classical algorithm that gets close
time complexity to the lower bound from [FS09] but does not reach it. For quantum message attacks, our
algorithm recovered the estimated security level with a slight difference of one security bit.

We also notice that the key attack benefits more from the quantum setting than the message attacks. The
reason is that Grover’s algorithm has a stronger impact when there is only one search on a large range, as
in Dumer’s algorithm, instead of on several fragmented small ones as happens in Wagner algorithm. Notice
also that quantum security is not a limiting factor. A quadratic gain, which is the best that we can get from
simply applying Grover, is not even reached. Moreover, the time analysis of the quantum attacks was done
without considering the extra time of QRAM operations. Future practical implementations of these attacks
then can be way more demanding in running time.

Therefore the classical attacks are then what determines the security of Wave, and hence the choice of
its optimal parameters. All the best known attacks at this day rely on the Decoding Problem, which is a
well-studied problem. It is however an open problem to determine if there exists a better key-distinguishing
attack that uses the structure of the (U,U + V )-code, potentially by avoiding going through the Decoding
Problem.
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7. Conclusion: Open problems

As each answer raised new questions during this thesis, please find below some open problems and leads for
further work.

Lattice sieving

What complexities do we obtain by applying both filtering techniques from [Bec+16] and
[CL23] to k-sieves? In Chapter 5, we introduced the k-RPC filtering, a new LSF technique tailored for
the k-sieve. A natural extension is to combine k-RPC prefiltering and then search close vectors through usual
[Bec+16] pairwise filtering. Such an algorithm will certainly give better time-memory tradeoffs than both
algorithms on their own. We can in addition consider other techniques: unbalanced configurations [Kir+19]
and sparsification as it was done in [CL21].

What are the optimal merging trees of classical k-sieves? In Chapter 5 we presented classical
algorithms for the 3 and 4-sieves, and it happened that for our two algorithms, the best strategies to merge
the lists differed. If we want to generalize the k-sieve algorithm for higher k, we have to understand what is
the optimal merging strategy depending on k. We have also to find which layout of the filtering layers gives
the best complexities.

In practice, how do the new k-sieves perform? It would be interesting to see how practical Gauss-Sieve
benefits from k-RPC in practice by implementing algorithms 13 and 14.

How much do k-sieves benefit from quantum walks? As sieving algorithms rely on a collision problem,
incorporating quantum walks in sieving algorithms is very promising. Indeed, in Chapter 4 we saw that the
time exponent of the SVP-solver was decreased from 20.265n to 20.257n in the quantum model with assumed
efficient QRAM. So, the k-sieve might also benefit from quantum walks. Such an algorithm for k = 3 for
example may give an even better time exponent than the current best attack on SVP.

Do quantum algorithms exist to solve SVP in exponential time without QRAM? All SVP-
solving algorithms running in super-exponential time stand in either the classical model or the quantum
circuit model with QRAM. Quantum enumeration does not require QRAM, but runs in super-exponential
time. No algorithm has been found that gets profit from the quantum circuit model without QRAM, and
still runs in exponential time. As the quantum circuit model is the one that will happen with the highest
probability and in the closest future, it can be interesting to look at what can be done without QRAM, or at
least without assuming efficient QRAM. A lead would be not to access lattice vectors from a database, but
to construct a quantum sampling of vectors by adapting Klein’s algorithm [Kle00] to be usable by Grover’s
search [Gro96], and then find collisions through the approach proposed in [JS20].

Can quantum filtering improve sieving algorithms? [Hei21] introduced a way to do quantumly the
search of the nearest filters, which was previously done classically including in quantum algorithms. Our
attempt to use their technique in our quantum walk algorithm from Chapter 4 was not fruitful. However, it
may give something interesting to use it within the k-sieve framework presented in Chapter 5.
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Codes

How lattice techniques can be adapted to codes? Codes are another important lead for post-quantum
cryptography. They have strong links with lattices due to their close structures, however only a few transfers
of techniques have been done between these two research fields. Algorithms for the Decoding Problem can
benefit from filtering and sieving techniques, as suggested by the results of [GJN23]. The follow-up would
be to explore the code-sieving algorithms in the classical model, in the quantum model with QRACM (using
Grover’s search [Gro96]) and with QRAQM (using quantum walks [Mag+11]).

Can message attacks on Wave be improved? Considering an unbalanced merging tree may lead to a
speed up, as [Sch22] found for the XOR problem. In this case, smoothing will be different and may have a
higher impact on the time complexity. Quantum walks [KT17] may also be interesting to solve the decoding
problem in this regime.

Can key attacks on Wave be improved? In Chapter 6 we presented attacks on the Wave scheme.
Quantum attacks may be improved by the quantum ISD framework [Kir18] and nearest-neighbor techniques
[MMT11; Bec+12]. Using ternary (U,U + V ) codes in digital signatures is very recent. Our work is only
the second one to estimate the quantum security of Wave, with previously [CDE21]. To be confident in this
scheme, it really needs to be more looked at to check if it does resist attacks. In particular, does there exist
a key-distinguisher that does not go through the Decoding Problem by exploiting the particular structure of
the (U,U + V ) code?
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Thibauld Feneuil, Philippe Gaborit, Antoine Joux, Matthieu Rivain, Jean-Pierre Tillich, and
Adrien Vinc cotte. “RYDE specifications”. In: NIST PQC (2023). url: https://pqc-ryde.
org/assets/downloads/RYDE_Specifications.pdf (cit. on p. 69).
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[Bec+16] Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. “New directions in nearest neigh-
bor searching with applications to lattice sieving”. In: ACM-SIAM Discrete Algorithms (2016).
url: https://doi.org/10.1137/1.9781611974331.ch2 (cit. on pp. 5, 23, 25, 27–29, 33,
45–48, 54, 91).

[Ber+13] Daniel J. Bernstein, Stacey Jeffery, Tanja Lange, and Alexander Meurer. “Quantum Algorithms
for the Subset-Sum Problem”. In: PQCrypto. Ed. by Philippe Gaborit. Vol. 7932. Lecture Notes
in Computer Science. Springer, 2013, pp. 16–33. url: https://doi.org/10.1007/978-3-642-
38616-9%5C_2 (cit. on p. 18).

[Ber+19] Daniel J. Bernstein, Andreas Hülsing, Stefan Kölbl, Ruben Niederhagen, Joost Rijneveld, and
Peter Schwabe. “The SPHINCS+ Signature Framework”. In: SIGSAC (2019). url: https:
//dl.acm.org/doi/pdf/10.1145/3319535.3363229 (cit. on p. 4).

https://inria.hal.science/hal-01870620/document
https://inria.hal.science/hal-01870620/document
https://dl.acm.org/doi/pdf/10.1145/2746539.2746553
https://dl.acm.org/doi/pdf/10.1145/2746539.2746553
https://bikesuite.org/files/v5.0/BIKE_Spec.2022.10.10.1.pdf
https://bikesuite.org/files/v5.0/BIKE_Spec.2022.10.10.1.pdf
https://pqc-ryde.org/assets/downloads/RYDE_Specifications.pdf
https://pqc-ryde.org/assets/downloads/RYDE_Specifications.pdf
https://pqc-mira.org/assets/downloads/mira_spec.pdf
https://pqc-mira.org/assets/downloads/mira_spec.pdf
http://dx.doi.org/10.1088/1367-2630/17/12/123010
https://www.less-project.com/LESS-2023-06-01.pdf
https://www.less-project.com/LESS-2023-06-01.pdf
https://www.cross-crypto.com/CROSS_Specification.pdf
https://wave-sign.org/wave_documentation.pdf
https://eprint.iacr.org/2012/026.pdf
https://eprint.iacr.org/2012/026.pdf
https://doi.org/10.1137/1.9781611974331.ch2
https://doi.org/10.1007/978-3-642-38616-9%5C_2
https://doi.org/10.1007/978-3-642-38616-9%5C_2
https://dl.acm.org/doi/pdf/10.1145/3319535.3363229
https://dl.acm.org/doi/pdf/10.1145/3319535.3363229


BIBLIOGRAPHY 95

[Ber+22] Daniel J. Bernstein, Tung Chou, Carlos Cid, Jan Gilcher, Tanja Lange, Varun Maram, Ingo von
Maurich, Rafael Misoczki, Ruben Niederhagen, Edoardo Persichetti, Christiane Peters, Nicolas
Sendrier, Jakub Szefer, Cen Jung Tjhai, Martin Tomlinson, and Wen Wang. “Classic McEliece:
conservative code-based cryptography: cryptosystem specification”. In: NIST PQC (2022). url:
https://classic.mceliece.org/mceliece-spec-20221023.pdf (cit. on p. 69).

[Ber09] Daniel J. Bernstein. “Cost analysis of hash collisions: Will quantum computers make SHARCS
obsolete?” In: SHARCS (2009). url: http://repository.tue.nl/663426 (cit. on p. 12).

[BJP06] J. P. Buhler, H. W. Lenstra Jr., and Carl Pomerance. “Factoring integers with the number field
sieve”. In: LNM (2006). url: https://link.springer.com/chapter/10.1007/BFb0091539
(cit. on p. 11).

[BKW03] A. Blum, A. Kalai, and H. Wasserman. “Noise-tolerant learning, the parity problem, and the
statistical query model”. In: J. ACM (2003). url: https://dl.acm.org/doi/pdf/10.1145/
792538.792543 (cit. on p. 21).

[BLS16] Shi Bai, Thijs Laarhoven, and Damien Stehlé. “Tuple lattice sieving”. In: LMS J. Comput. Math.
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[Sch22] André Schrottenloher. “Improved Quantum Algorithms for the k-XOR Problem”. In: SAC
(2022). url: https://eprint.iacr.org/2021/407.pdf (cit. on p. 92).

[SE94] C.-P. Schnorr and M. Euchner. “Lattice basis reduction: improved practical algorithms and
solving subset sum problems”. In: Math. Programming (1994). url: https://link.springer.
com/content/pdf/10.1007/BF01581144.pdf (cit. on p. 21).

[Sen11] Nicolas Sendrier. “Decoding one out of many”. In: PQCrypto (2011). url: https://eprint.
iacr.org/2011/367.pdf (cit. on pp. 6, 69, 71, 75, 80, 84).

[Sen23] Nicolas Sendrier. “Wave Parameter Selection”. In: PQCrypto (2023). url: https://eprint.
iacr.org/2023/588.pdf (cit. on pp. 71, 77, 88).

[Sho94] Peter W. Shor. “Algorithms for Quantum Computation: Discrete Logarithms and Factoring”.
In: FOCS. 1994, pp. 124–134. url: https://arxiv.org/pdf/quant-ph/9508027.pdf (cit. on
pp. 3, 10, 11).

[Sin99] Simon Singh. The Code Book. Doubleday, 1999, pp. 279–292. url: https://cryptome.org/
ukpk-alt.htm (cit. on p. 3).

[SS81] Richard Schroeppel and Adi Shamir. “A T = O(2n/2), S = O(2n/4) Algorithm for Certain NP-
Complete Problems”. In: SIAM (1981). url: https://epubs.siam.org/doi/epdf/10.1137/
0210033 (cit. on pp. 6, 71, 80).

[Ste88] Jacques Stern. “A method for finding codewords of small weight”. In: Coding Theory. 1988.
url: https://link.springer.com/chapter/10.1007/BFb0019850 (cit. on p. 71).

[TT07] Kengo Terasawa and Yuzuru Tanaka. “Spherical LSH for approximate nearest neighbor search
on unit hypersphere”. In: WADS (2007), pp. 27–38. url: https://link.springer.com/
chapter/10.1007/978-3-540-73951-7_4 (cit. on p. 25).

[Wag02] David Wagner. “A generalized birthday problem”. In: CRYPTO (2002). url: https://www.
enseignement.polytechnique.fr/informatique/profs/Francois.Morain/Master1/Crypto/

projects/Wagner02.pdf (cit. on p. 71).

[Wol23] Ronald de Wolf. Quantum Computing: Lecture Notes. 2023. url: https://homepages.cwi.
nl/~rdewolf/qcnotes.pdf (cit. on p. 18).

https://dl.acm.org/doi/pdf/10.1145/1568318.1568324
https://www.washingtonpost.com/world/national-security/nsa-seeks-to-build-quantum-computer-that-could-crack-most-types-of-encryption/2014/01/02/8fff297e-7195-11e3-8def-a33011492df2_story.html
https://www.washingtonpost.com/world/national-security/nsa-seeks-to-build-quantum-computer-that-could-crack-most-types-of-encryption/2014/01/02/8fff297e-7195-11e3-8def-a33011492df2_story.html
https://www.washingtonpost.com/world/national-security/nsa-seeks-to-build-quantum-computer-that-could-crack-most-types-of-encryption/2014/01/02/8fff297e-7195-11e3-8def-a33011492df2_story.html
https://www.washingtonpost.com/world/national-security/nsa-seeks-to-build-quantum-computer-that-could-crack-most-types-of-encryption/2014/01/02/8fff297e-7195-11e3-8def-a33011492df2_story.html
https://www.ce.cit.tum.de/fileadmin/w00cgn/lnt/_my_direct_uploads/FuLeeca.pdf
https://www.ce.cit.tum.de/fileadmin/w00cgn/lnt/_my_direct_uploads/FuLeeca.pdf
http://doi.acm.org/10.1145/359340.359342
http://doi.acm.org/10.1145/359340.359342
https://latticechallenge.org/
https://latticechallenge.org/
https://eprint.iacr.org/2021/407.pdf
https://link.springer.com/content/pdf/10.1007/BF01581144.pdf
https://link.springer.com/content/pdf/10.1007/BF01581144.pdf
https://eprint.iacr.org/2011/367.pdf
https://eprint.iacr.org/2011/367.pdf
https://eprint.iacr.org/2023/588.pdf
https://eprint.iacr.org/2023/588.pdf
https://arxiv.org/pdf/quant-ph/9508027.pdf
https://cryptome.org/ukpk-alt.htm
https://cryptome.org/ukpk-alt.htm
https://epubs.siam.org/doi/epdf/10.1137/0210033
https://epubs.siam.org/doi/epdf/10.1137/0210033
https://link.springer.com/chapter/10.1007/BFb0019850
https://link.springer.com/chapter/10.1007/978-3-540-73951-7_4
https://link.springer.com/chapter/10.1007/978-3-540-73951-7_4
https://www.enseignement.polytechnique.fr/informatique/profs/Francois.Morain/Master1/Crypto/projects/Wagner02.pdf
https://www.enseignement.polytechnique.fr/informatique/profs/Francois.Morain/Master1/Crypto/projects/Wagner02.pdf
https://www.enseignement.polytechnique.fr/informatique/profs/Francois.Morain/Master1/Crypto/projects/Wagner02.pdf
https://homepages.cwi.nl/~rdewolf/qcnotes.pdf
https://homepages.cwi.nl/~rdewolf/qcnotes.pdf

	Introduction
	Background and issues
	Contributions
	Outline of the thesis.

	Quantum computing
	Quantum circuit model
	Qubits
	Quantum gates
	Shor's algorithm

	Quantum random access memory
	Search algorithms
	Grover's algorithm
	Amplitude Amplification
	Quantum Walks


	Lattice sieving
	Lattice-based cryptography
	Lattice problems
	Lattice-based schemes overview
	Cryptanalysis

	Sieving algorithms
	The NV-sieve

	Locality Sensitive Filtering
	Random Product Code and Hypercone Filters
	Sieving with locality-sensitive filtering

	k-Sieves

	Lattice sieving via quantum walks
	Overview
	Framework for sieving algorithms using filtering
	Finding reducing pairs by quantum walks
	Constructing the graph
	Complexity analysis
	Optimal parameters

	Adding sparsification
	Space-time tradeoffs
	Tradeoff for fixed quantum memory.
	Tradeoff for fixed QRAM.

	Reusable quantum walks
	Discussion

	k-Sieves with tailored k-RPC filtering
	Overview
	k-RPC and Framework of the k-sieve with tailored filtering
	Filtering with k-Tuple Random Product Codes
	Framework adapted for the k-sieve

	Classical k-sieves
	Classical 2-sieve
	Classical 3-sieve
	Classical 4-sieve

	Quantum k-sieves
	Quantum 3-sieve
	Quantum 4-sieve

	Discussion

	Security analysis of Wave
	Overview
	Code-based cryptography
	Code problems and Wave
	Information Set Decoding (ISD) Framework
	List merging

	Key attacks on DWK
	Classical key attack
	Quantum key attack

	Message attacks on DOOM
	Classical message attack
	Quantum message attack

	Discussion

	Conclusion: Open problems

