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Preface

Resumé

Cette thèse présente une étude détaillée sur les transitions de phase, se concentrant
principalement sur le modèle q-Potts. Elle utilise une combinaison de méthodologies
numériques et analytiques pour explorer un large spectre de sujets en mécanique statis-
tique, incluant la dynamique associée aux transitions de phase du premier ordre, les im-
pacts de la topologie du réseau sur les processus d’équilibrage, et l’évolution des systèmes
désordonnés corrélés à longue portée critique sous le flot du groupe de renormalisation.

La première partie de l’étude aborde la dynamique vers l’équilibre au travers d’une
transition de phase de premier ordre, en exploitant la limite de grand q du modèle Potts
en dimension d = {2, 3} après un refroidissement instantané. En utilisant l’algorithme de
Monte Carlo de ”heat bath”, l’existence d’états quasi stable, le phénomène de ”freezing”
du système et le mécanisme de ”coarsening” ultérieur sont minutieusement explorés. De
plus, le rôle de la topologie du réseau dans la dynamique du système, et notamment son
effet sur les tendances à la congélation, est analysé.

La deuxième partie de la thèse examine le modèle (q ≤ 4)-Potts critique en deux dimen-
sions avec du désordre corrélé à longue distance via des calculs de Monte Carlo et en
tenant compte de différentes distributions de désordre. Un des principaux résultats est
l’obtention et l’exploration d’un diagramme de phase avec la description d’un point fixe
du flux du groupe de renormalisation du modèle pour q ∈ [1, 4]. Ce diagramme de phase
est obtenu en mesurant la dimension fractale des amas FK du modèle de q-Potts au point
auto-dual pour différentes valeurs de l’exposant de la loi de puissance a et intensités de
désordre r.

Les dernières sections de l’étude étendent l’analyse pour englober des calculs pertur-
batifs dans le cadre du groupe de renormalisation, générant de nouvelles valeurs pour
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les exposants critiques à longue portée. L’application de la méthode du groupe de
renormalisation valide les études numériques, confirmant notamment l’existence d’un
nouveau point fixe attractif ”à longue portée”. Un des résultats principaux est le calcul
de l’exposant thermique νLR pour les modèles Potts et Ising, et les déterminations des
conditions sous lesquelles la conjecture de Weinrib-Halperin peut être violée pour les
distributions de désordre non-Gaussiennes au point fixe.

En résumé, cette recherche contribue à une compréhension plus profonde des comporte-
ments du modèle q-Potts avec ou sans désordre. Ces conclusions ouvrent de nouvelles
voies pour explorer les transitions de phase et les phénomènes critiques en mécanique
statistique.

Abstract

This thesis provides a comprehensive investigation into phase transitions, concentrating
predominantly on the q-Potts model. It uses a combination of numerical and analyt-
ical methodologies to delve into a broad spectrum of topics within statistical mechan-
ics, including dynamics associated with first-order phase transitions, impacts of lattice
topology on equilibration processes, and the evolution of critical long-range correlated
disordered systems under the renormalization group flow.

The first part of the study address the equilibration dynamics through a first-order phase
transition, exploiting the large q limit of the Potts model in dimension d = {2, 3} follow-
ing instantaneous quenches. Utilizing the heat bath Monte Carlo algorithm, the com-
plexities of metastability, the system’s freezing phenomena, and the subsequent escape-
coarsening mechanism are thoroughly explored. Additionally, the role of lattice topology
in system dynamics, especially its effect on freezing tendencies, is analyzed.

The second part of the thesis scrutinizes the critical disordered two-dimensional (q ≤ 4)-
Potts model, leveraging Monte Carlo methodologies and accounting for varying disorder
distributions. A key accomplishment here is the formulation and exploration of a phase
diagram that illustrates the fixed point of the renormalization group flow of the model
for q ∈ [1, 4]. This phase diagram is created by measuring the fractal dimension of the
q-Potts FK clusters at the self-dual point under different power-law exponent a values
and disorder intensities r.

The latter sections of the study extend the analysis to encompass perturbative calcu-
lations via renormalization group computations, generating new values for long-range
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critical exponents. The application of the renormalization group method validates the
numerical studies, particularly confirming the existence of a novel ”long-range” fixed
point attracting the model. One of the key outcomes is the ascertainment of the thermal
exponent νLR for the Potts and Ising models, and the circumstances under which the
Weinrib-Halperin conjecture can be violated for a non-Gaussian disorder distribution at
this very fixed point.

In summary, this research contributes a more profound understanding of the q-Potts
model’s behaviors with and without disorder. These findings open new avenues for
exploring phase transitions and critical phenomena in statistical mechanics.

Aims and layout of the thesis

The general aim of this thesis is to deepen the knowledge around phase transitions in
statistical physics models. The thesis is basically divided into two parts. The first part
is about the out-of-equilibrium dynamics through a first-order thermal ferromagnetic-
paramagnetic phase transition. The second part is about the study of the influence
of a long-range correlated weak quenched disorder on a second-order phase transition.
The Potts model [1–4] is used to achieve this goal since it allows the analysis of both
phenomena.

The thesis is organized as follows: before splitting it into the two main parts, a general
introduction to phase transitions is given. Here, the mathematical tools and physical
concepts employed are mostly introduced. The introduction is an ”operative” one, indeed
concepts do not follows the classic flow of a statistical physics book. Instead, notion are
introduced as and when required to describe the particular facets of the phenomenon in
analysis.

On one hand, the first part is based on the findings presented in [5,6] about the kinetics
of the Potts ferromagnetic-paramagnetic transition. The results obtained in this part
are mostly numerical.

On the other hand, the second part is rooted in the findings of [7,8] about the influence
of disorder on phase transitions. In this part, new analytical results will be compared
with new numerical results.

Finally, the conclusion section will synthesize and merge all the findings of this PhD
work.
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1. Universal d = 2 low temperature dynamics in the (q ≫ 1)-Potts model and
location of the (pseudo)-spinodal temperature.

2. Characterization of the d = 3 dynamics of the cubic (q ≫ 1)-Potts model
with location of the (pseudo)-spinodal and definition of a topological cri-
terium to distinguish whether the dynamics will freeze or not.

3. Numerical phase diagram of the long-range random bond Potts, Ising and
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Chapter 1

General and common introduction

1.1 Phenomenology and historical introduction

It is a common knowledge that substances like water appear in different states of ag-
gregation or phases. They can indeed exist in the liquid, solid (ice), or gas (vapor)
phases.
In these three states of matter, atoms and molecules are arranged and aggregated in
an extremely different way. For example, in ice, there is a crystalline structure, while
water does not have one. Also, in water, molecules are kept together by means of weak
hydrogen bonds, while this does not happen in gases, leading to a lower density in the
latter. This induces intrinsic and fundamental physical differences among the distinct
states. Indeed, these phases do not share the same mechanical properties, heat capacity,
or optical features, etc.
Another piece of shared and common knowledge is that lowering liquid water’s tempera-
ture to about Ts = 0◦ C brings it to ice, while heating water around Tg = 100◦ C makes it
boil. Ts and Tg are the so called critical temperatures of the solidification and vaporiza-
tion phase transitions, respectively. As could be simply understood by its name, a phase
transition is a physical transformation between two different phases. These transition
phenomena are ubiquitous in the most diverse domains of science, ranging from the sim-
ple liquid-gas transition described before, to the ferromagnetic-paramagnetic transition
in the Ising model, to which all the statistical physicists refer, to the more disparate
industrial processes in nuclear plants.
The mathematical and physical description of these phenomena is far from being as easy
as its definition, so it is better to start with a simple phenomenological analysis. One
can start by considering a generic experiment in which a piece of solid is in contact with
an external bath. After some time, the solid and the bath reach thermal equilibrium
and share the same temperature. Temperature is thus a tunable parameter describing
the experimental setting. As has been said for water, tuning its temperature leads to
a phase transition, the same can be done in this generic experiment. Temperature is
therefore the simplest example of what, in statistical physics, is a control parameter.
Other examples of this kind of parameter are magnetic field (h), pressure, etc.
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4 General and common introduction

The experimentalist also needs something to properly describe the different phases of the
transition in analysis. What is usually done in these cases is to define a so called order
parameter. This is a parameter that assumes two strongly different values being on one
side or the other of the transition threshold. For this experiment, an order parameter,
which usually is an intensive quantity (i.e. independent of the size of the system), can
be the density (ρ) of the material, being extremely different in the liquid phase and in
the solid phase. It is not always simple to define an order parameter, and there are
also transitions which happen without such a quantity. In the following part of this
manuscript, this is going to be analyzed in a deeper way.
So, the experimentalist can tune the control parameter (T ) and measure the order pa-
rameter (ρ(T )) as a function of the control one, building what is called a phase diagram,
see for example Fig. (1.1). By building such diagrams, the experimentalist can locate
the point in the order parameter curve where a net and sharp change emerges. At this
point, the order parameter assumes what is called a critical value, which manifests to
the experimentalist that a phase transition has occurred. Thus, building such diagrams
provides an helpful point of view in the description of the global behavior of the piece
of material in analysis.
The study of phase transitions has brought significant contributions to the field of sta-
tistical physics. It has allowed for a better understanding of the behavior of matter
and systems at different temperatures, pressures, and other control parameters, and has
provided insights into the fundamental nature of the universe.
Specifically, these studies have led to the development of powerful theoretical tools,
such as the renormalisation group, scaling theory and numerical algorithms, that can
be used to describe a wide variety of phenomena. These tools have been used to make
predictions about the behavior of complex systems, such as magnets, fluids, and even
the early universe, and have been verified through numerous experimental studies.
Moreover, by studying phase transitions, scientists were led to the discovery of new states
of matter, such as the Bose-Einstein condensate, which has opened up new avenues of
research in condensed matter physics and beyond. The investigation of phase transitions
has also yielded practical applications, including the development of novel materials with
tailored properties, as well as the design of industrial processes.
In the following there is just an extremely short list of books and articles coming from
studies related to phase transitions and statistical physics that have been crucial in a
direct or indirect way, for building the mathematical and physical set up who lead to
the writing this thesis:
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• 1738 - Daniel Bernoulli publishes ”Hydrodynamica,” in which he presents his kinetic theory
of gases, laying the foundation for statistical physics, [9].

• 1872 - Ludwig Boltzmann formulates the concept of entropy in statistical mechanics,
explaining the connection between the microscopic behavior of atoms and the macroscopic
behavior of matter, [10].

• 1905 - Albert Einstein introduces the concept of Brownian motion, [11].

• 1938 - László Tisza and Lev Landau independently develop the concept of phase tran-
sitions, describing the sudden changes in the behavior of matter that occur at critical
points, [12,13].

• 1944 - Lars Onsager solves the bidimensional Ising model, providing a mathematical frame-
work for understanding phase transitions and establishing the field of critical phenom-
ena, [14].

• 1957 - Hugh Everett Broadbent and John Michael Hammersley, contributed to the math-
ematical field of percolation theory, which studies the behavior of connected clusters in a
random graph. [15].

• 1970s - Kenneth Wilson develops the renormalisation group, a powerful mathematical
tool for understanding critical phenomena and phase transitions, which allows physicists
to study the behavior of systems at all scales, [16].

• 1973 - Rodney Baxter solves the d = 2 Ising model by developing the method of corner
transfer matrices, which becomes a powerful technique for solving a wide range of d = 2
statistical models, like the Potts’one. [17]

• 1975 - Philip W. Anderson proposes Anderson localization, describing the phenomenon of
disorder-induced localization of electronic states in disordered systems, [18].

• 1984 - Giorgio Parisi proposes the replica symmetry breaking solution to the glass transi-
tion problem, which explains the complex behavior of glasses and disordered systems and
led it to the nobel prize in 2021, [19,20].

• 1985 - Amnon Aharony and Dietrich Stauffer propose the concept of percolation tran-
sitions, which describe the abrupt change in connectivity of a system as a function of a
control parameter, [21,22].

1.2 Thermodynamics of phase transition

Phase transitions are collective phenomena that arise due to interactions among an
extensive number of entities, such as particles, spins, etc. To describe these phenomena
properly in an actual thermodynamic setup, the thermodynamic limit is crucial. This
limit is defined as the number of entities being sent to infinity, as long as the volume of the
system. This is because the critical point is usually located by spotting non-analyticities
of the thermodynamic potential, such as the Helmholtz free energy [23]. These non-
analyticities manifest themselves only in this particular limit. Thus, since it is needed
to deal with an infinite number of interacting particles, the branch of theoretical physics
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tailored for these kinds of analyses is statistical physics, as appointed before. The basic
principles of Statistical Physics are stated in many works; here is just a short list: [23–28].
Again, using the mathematical and physical tools provided by this theoretical set-
ting, various phenomena can be studied, ranging from simple gas-liquid transitions
to Bose-Einstein condensation in ultra-cold atoms [29], as well as percolation [30] and
paramagnetic-ferromagnetic phase transitions [28], which are crucial for the understand-
ing of this work.
To initiate a phase transition, the control parameter, such as temperature, magnetic field,
or occupation probability, needs to be triggered below (or above) the critical point. Dur-
ing a transition, a phase becomes unstable under the given thermodynamic conditions,
resulting in a sharp change of physical observables, including the most important order
parameter. Thanks to the order parameter it is possible to give information and char-
acterize the features of the phase in analysis. The most common order parameters are
magnetization density [28], probability of being in a percolating cluster [30], mass density
etc. The order parameter has to be selected depending on the analysed transition, and as
said previously, this is not always an easy task. For thermal phase transitions, the order
parameter has a vanishing thermal value above the critical point and a non-vanishing
value below it, and this makes less complicated its choice. The deeper the system is in
that phase, the greater the value of the average of the order parameter. This statistical
average is calculated with respect to the probability distribution function that defines
the statistical ensemble describing the system [23].
Once selected the proper order parameter, one aims to locate the critical curves of
the control parameters in the phase diagram and investigate the so called critical phe-
nomenon that occur near the phase transition, when a critical phenomenon is present.
The presence or not of the so called critical phenomenon, leads to distinction and classi-
fication between different classes of phase transitions. Indeed, these can be categorized
based on different criteria such as the presence or absence of an order parameter and the
nature of the transition (continuous or discontinuous). A common way of classification
is based on the behavior of the order parameter close to the critical point.
In continuous phase transitions or second order ones, the order parameter changes
smoothly as the control parameter is varied and critical exponents describe the scal-
ing behavior of thermodynamic quantities close to the critical point. Examples of con-
tinuous phase transitions include the Ising model, liquid-gas transitions and supercon-
ducting transitions [24, 25]. In all the second order phase transitions one can study the
formerly mentioned critical phenomenon. Indeed, at the critical points, systems have
a peculiar scale invariance behaviour due to the divergence of the correlation length,
see Sec. (1.3). Observables, thus, follows particular power laws and unusual properites
arise, i.e. emergent behaviour. In essence, critical phenomena, happering in second order
phase transitions, encompass the distinctive behavior observed in physical systems when
they approach their critical points. These phenomena are marked by scale invariance
and power-law scaling. Another peculiar distinction, regarding second order phase tran-
sitions, is the one due to the fact that these can belong to a certain class of universality.
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Indeed, two completely different systems made by different microscropic constituents,
can have the same macroscopic behavior close to the phase transition, i.e. the same
critical expontents. Phenomena sharing the same critical exponents, thus, belong to the
same universality class. Universality classes and critical exponents are concept that will
be better analysed in the followings section, see Sec. (1.3).
Conversely, discontinuous or first order phase transitions represent a type of phase trans-
formation where a system’s characteristics undergo non-continuous changes. The first
order label is derived from mathematical continuity concepts and relates to the shift seen
in the system’s thermodynamic properties. These transitions exhibit a sudden shift in
these variables that can’t be mapped with a continuous function, leading to a discontin-
uous order parameter. A latent factor, such as latent heat, typically characterizes these
transitions. This refers to the energy either absorbed or released by a system during
a phase transition under stable temperature and pressure conditions. This principle is
particularly applicable to transitions such as melting (from solid to liquid) and evap-
oration (from liquid to gas), where heat is absorbed, and solidification (from liquid to
solid) and condensation (from gas to liquid), where heat is released. In first order phase
transitions, hysteresis can occur. This is a phenomenon where the transition tempera-
ture of a system is not only reliant on the current conditions but also on the system’s
past states. Hysteresis is exemplified by the temperature difference at which a substance
melts and freezes. During a first order transition, both initial and final phases can exist
simultaneously. For example, during the melting process (from solid to liquid), both the
solid and liquid states can be present at the melting point.
Topological phase transitions [31,32], instead, are another class of phase transitions that
do not involve an order parameter but are characterized by changes in the topology of
the system’s ground state or excited states. These transitions can even occur at zero
temperature, dragged by quantum fluctuaions and examples include the quantum Hall
effect and Superfluid-Mott Insulator in the Bose-Hubbard model [33, 34]. Those two
latter kinds of transition, will not be considered in this thesis, while first and second
order ones will be extensively deepened respectively in the first and second part of this
thesis.
The phase diagrams in Fig. (1.1), in which the control parameters versus the order pa-
rameters are shown, giving two examples of the two kinds of phase transitions mentioned
before.
In the analysis of critical phenomena, mean-field theories [23, 24, 28] have proven to
be very useful in capturing the overall behavior of macroscopic systems, although they
cannot reproduce details such as the functional form of order parameters and peculiarities
of critical phenomena. However, these provide insight into what is happening and help
the understanding of the quantitative behavior of real systems. In contrast, another
theory called scaling theory [25,35] has been successful in describing the phenomenology
of phase transitions and has been justified by the development of renormalisation group
ideas [16, 25], which allow for the calculation of critical exponents. These two latter
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ρ

ρG

ρL

µLG µ

m

T/Tc1

1

0

Figure 1.1. Phase diagram for the liquid-gas first order phase transition on the left and for the
ferromagnetic-paramagnetic second order phase transition in the Ising model on
the right. On the y axis the order parameter is shown while on the x axis there is
the control parameter. TC and µLG are the critical points.

tools, contrary to mean field theories, will be largely used to obtain the results given by
this work.
As said previously, phase transitions involve an huge number of interacting entities. This,
is mathematically modelled by the, already quoted, thermodynamic limit. This is then
defined by, V → ∞, N → ∞, with V/N = O(1), where V is the volume of the system
and N , is its number of particles or spins. This limit applies to all intensive quantities,
such as density of energy and density of magnetization, and it is responsible of the non-
analyticites at the transition point. To locate the sought non-analyticites it is needed
to define the statistical ensemble and the thermodynamic potential [23] employed. If
not explicitely stated, in this work, the ensemble is the canonical one and its related
thermodynamic potential is the Helmotz free energy, F .

1.2.1 Ferromagnetic-paramagnetic transition and the Ising model

It is, thus, possible to give a brief describtion of a well known phase transition, the
ferromagnetic-paramagnetic one in the bidimensional Ising model, to warmp up with
the tools and methods. This model gives a simplified version of an actual ferromagnet
whose Hamiltonian has been coarsened up until only the degrees of freedom describing
a magnetic properties are left, i.e. the so called Ising classical spins, si. The Ising
model [2, 4, 14, 23–25, 28, 36], is the milestone of the statistical toy-models, but is far
from being poor of interesting features. Indeed, its study has contributued strongly
in the developent of an enormous number of tools and concepts, extremely important
in statistical physics, and beyond. In dimensions d, on a discrete regular lattice, it is
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defined by the Hamiltonian:

HI({si}) = −J
∑
⟨i,j⟩

sisj , (1.1)

where there are N = Ld of such si spins on the vertices of this generic lattice, whose side
is L. The sum is restricted to nearest neighbors on the lattice, ⟨i, j⟩. J is the coupling
constant describing the interaction among spins. In particular, the value of such spins
is discrete, i.e.

si =

®
+1 spin up,
−1 spin down.

(1.2)

This Hamiltonian has a Z2 symmetry, indeed HI({si}) = HI({−si}), i.e. flipping all
the spins conserves the energy of the model. The sign of J , defines if the energy is the
lowest when spins are all aligned i.e. all up (down), or antialigned. In the first case, J
is strictly positive, J ≥ 0 and the model handled is a ferromagnetic one. This is the one
who passes trough a ferromagnetic-paramagnetic transition, and it is the model analysed
in this chapter. By contrary, if J is strictly negative the model is an anti-ferromagnetic
model, and will not be considered in this thesis. As already savored, for the transition
in analysis, this energy function, is minimised by having all the spins in the up (down)
state. This configuration is the ground state of the ferromagnetic Ising model. It is
evident its double degenerancy. This model, does not contain an intrinsic dynamics.
Thus, to describe an eventual phase transition, it needs to be coupled to a thermal
reservoir, usually called thermal bath, as prescribed by the canonical formulation. The
system thus, exchange energy with the bath, and, at thermal equilibrium the concept of
temperature comes into play and this can be used as control parameter. In this model

the magnetization density m =
1

N

N∑
i=1

⟨si⟩ serves as the order parameter. The symbol

⟨· · ·⟩ means mean value with respect to the chosen statistical ensemble. So, in the ground
states the magnetisation is equal to, m0 = 1. This is just a naive explication, indeed
to prove that the state with magnetisation m0 = 1 is a stable ground state one can
use the Peirl’s argument, [37]. Also, being d = 2 < duc, where duc is the upper critical
dimension, implies that mean field techniques, which usually simplify the computations,
are not exact. Thus one is left to solve the model in fully glory à la Onsager, [14],
or by means of numerical simulation and scaling arguments. Solving the model means
computing the partition function and the free energy, to whom all physical observable
are linked. The partition function is simply defined by:

Z =
∑
{si}

e−βHI({si}), (1.3)



10 General and common introduction

where β is the inverse temperature, i.e. β = 1/kBT , with kB the renowed Boltzmann
factor and

∑
si

(· · · ) the sum over all the possible spin configuration of the model. The

free energy F , it is instead defined by:

F = − 1

β
logZ, (1.4)

and finally, in the canonical ensemble at equilibrium:

⟨si⟩ =
1

Z
∑
{si}

sie
−βHI({si}). (1.5)

Onsager solution is way beyond the aim of this introduction, for this reason details
will not be given on this. Still, by using thermodynamics principles is it possible, with a
simple argument, to give some informations about the phases of the model. In particular,

F = ⟨H⟩ − TS, (1.6)

where ⟨H⟩ is the internal energy and S is the entropy of the system.
The minima of the free energy correspond to thermodynamical stable states. Of course,
the ground state is located at the absoulute minimum. Thus, in F there is an energy-
entropy competition. The interplay between the contributions of energy and entropy in
a system can result in a phase transition at a specific temperature.
Setting the control parameter, T → 0, it is obtained that the free energy is equivalent
to the internal energy, and in a system with ferromagnetic couplings between adjacent
spins, the energy is minimized when these are aligned, as stated before. However, at finite
temperatures, thermal agitation comes into play and the entropic factor is woken up.
Indeed, entropy can cause the spins to reorient and misalign. At infinite temperature,
for example, the entropic contribution dominates, and spins point in completely random
directions to maximize entropy. This means that the internal energy goes to zero. The
order parameter assumes very different values at low and high temperatures, indeed:

m =

®
±1, T → 0

0, T → ∞.
(1.7)

What does this mean? This is an evidence of the appearence of a phase transition at
a certain temperature Tc, since the order parameter assumes extremely different as a
function of the control parameter.
Yet, this transition is far from being fully mathematically characterised. Indeed, empha-
sis should still be placed on the fact that a divergence in the thermodynamic potential
is possible only if N → ∞, since the Z function is a sum of positive and analytic terms.
Also, due to the Z2 symmetry the magnetization should be zero for each T . How it is
possible to have the ordered state, so?
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(a) Above Tc. (b) Below Tc.

Figure 1.2. Disordered and ordered configuration in the bidimensional ferromagnetic Ising
model with nearest neighbour interaction on an L = 30 square lattice. Black
spins are pointing down (si = −1), while red ones are pointing up (si = +1). The
Wolff algorithm, [38], has been employed to obtain the equilibrium configuration.

The transition, moreover, breaks also the ergodicity [23, 24, 28] of the system. This, is
a feature of certain systems whereby they explore all feasible configuration over time,
and each of these has an equal probability of occurring. In simpler terms, a system is
regarded as ergodic if its average behavior over time is equivalent to its behavior ob-
served over multiple identical systems, i.e. ensemble average. As a result, the statistical
features of a system can be deduced by averaging across numerous identical systems
rather than monitoring its behavior over time, this is known as Gibbs hypothesis and it
is very important in statistical physics, [23]. To see this ergodicity breaking, one needs
to introduce the concept of time and a certain generic spin dynamics into play. Once
this has been done, one can notice that statistical average of the magnetisation ⟨si⟩ and

the temporal one si =
1

tmes

∫ tmes

0
dt′si(t

′), with tmes finite, are conceptually different.
In fact, in the low temperature phase the statistical average is always supposed to be
zero, but this is not the case for the time average. This means that ergodicity is bro-
ken. Indeed, one needs to sent tmes to infinity and wait for an extremely rare thermal
fluctuation who made all the spins flip in order to restore ergodicity.
Also, to properly describe the phenomenon and solve these problems, one needs to
introduce a pinning field, h, and the concept of spontaneous symmetry breaking. The
Hamiltonian becomes, thus:

HI({si}, h) = −J
∑
⟨i,j⟩

sisj − h

N∑
i=1

si. (1.8)
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The h field models the small residual magnetic field that is not detectable by instruments
and is normally present during experiments. This, indeed, breaks the Z2 symmetry and
describe the spontaneous breaking of this symmetry at the critical point. The right way
to obtain a non zero magnetisation is thus,

m = lim
h→0+

lim
N→∞

⟨si⟩ = − lim
h→0−

lim
N→∞

⟨si⟩. (1.9)

Once the h field has been added to the model, one can also consider it as a control
parameter and study the magnetisation in function of this. One obtains that the m = 0
whenever h = 0, while it is m ̸= 0 for h ̸= 0. A discontinuoity in m comes out. What
does this mean? To answer one can notice that,

m = − 1

N

∂F
∂h

. (1.10)

Thus, a discontinuity in m is trivially related to a non analiticity in F . This means that
the transition with respect to the magnetic field is a first order one or discontinous one.
In short, during the transition, the Z2 symmetry is spontaneously broken and this is
modelled by the addiction of the pinning field. This kind of transitions are called tran-
sition with spontaneous symmetry breaking (SSB). For a transition with spontaneous
symmetry breaking, self-evidently, the system has phases with different symmetry ele-
ments.

1.3 Statistical field theory: coarse graining a first approach

If one is not interested in the individual micro-state but aims to study the model’s phe-
nomenology in a broader sense, a shift in approach may lead to valuable insights from
a lattice point of view. Particularly, in the vicinity of the critical point, it is possible to
develop a continuous formulation and employ field theory tools such as Feynman dia-
grams to examine the critical point’s neighborhood i.e. to study the critical phenomenon
in second order phase transitions. This region is crucial for understanding the model’s
phenomenology [25,39].
The motivation behind limiting the validity of field theories to the vicinity of the critical
point lies in the coarse graining process involved in constructing such theories. To build
these theories, one must introduce some fundamental observables in statistical physics,
namely, the correlation function and the correlation length [39].
The correlation function, which is a covariance, is defined as:

G(r) = ⟨sisj⟩ − ⟨si⟩⟨sj⟩, (1.11)

where, r represents the distance between the positions of spin i and spin j. It is worth
noting that, due to the spatial translational invariance, this quantity depends solely on
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the distance between the two spins. One can write:

G(r) = e−r/ξ. (1.12)

Here, ξ denotes the correlation length, which represents the typical length scale at which
the correlation function deviates from zero. In other words, it characterizes the system
by indicating the length scale below which spin fluctuations are correlated. Notably, the
correlation length is divergent (in the thermodynamic limit) at the transition point. This
can be explained by the fact that a collective phenomenon, involving all the system’s
entities, happen at the transition point [23, 24]. Consequently, thermal fluctuations of
these variables are correlated at all length scales.
Therefore, in the vicinity of the critical point, one can follow the below-mentioned pro-
cedure. Given that ξ ≫ l, where l is the lattice spacing, one can divide the lattice into
boxes of a certain linear size lbox, such that a ≪ lbox ≪ L. These boxes can be repre-
sented by a spatial variable x, which corresponds to their center. Then, observables can
be averaged within these boxes, and for each position x, a continuous value ϕ(x) can be
assigned as follows: ϕ(x) = 1

(lbox)d

∑
i∈ box

si. This operation is known as coarse graining,

and thanks to its construction, ϕ(x) is a smooth field. This, is ensured by the fact that
boxes are correlated being, ξ ≫ lbox. This approach provides information about the
system from a coarser viewpoint, and the order parameter is represented as a field ϕ(x).
This is a field description of a lattice model or a statistical field theory.
By utilizing the model’s symmetries, one can construct the ϕ4 action, denoted by S[ϕ(x)],
see Eq. (1.13). This action allows the characterisation of the phenomenology of phase
transitions by using coefficients such as r(T ) and c(T ), as well as quantum field theory
techniques like Feynman diagrams [39]. In practice, these coefficients are challenging to
compute from axioms, so intuitive arguments are used to fix them phenomenologically,
ensuring that they accurately reproduce the continuous transition when crossing Tc.

S[ϕ(x)] =
∫
ddx

1

2
r(T )ϕ2(x) +

1

2
c(T )(∇ϕ(x))2 + ϕ4(x) + · · · (1.13)

With the ϕ4 action, one can study the second order phase transition in the Ising model,
particularly the critical phenomenon i.e. compute the critical exponents [39]. The actual
computation of these goes beyond the sake of this introduction. But, it is well known
that for this type of model, physical observables follow power laws in proximity of the
critical point.
For the Ising model, in dimension d, one has:
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m ∼ |T − Tc|β (1.14)
χ ∼ |T − Tc|−γ (1.15)
ξ ∼ |T − Tc|−ν (1.16)

Cv ∼ |T − Tc|−α (1.17)
G(r) ∼ r−(d−2+η) (1.18)

where χ =
∂m

∂h

∣∣
h=0

is the magnetic susceptibility, and Cv =
∂⟨H⟩
∂T

is specific heat per
spin.
The set, {α, β, γ, η} are the critical exponents of the Ising transition [28,39].
It happens that models with the more disparate microscopic details have the same critical
exponents, i.e. they are in the same class of universality. This is one of the most beautiful
results of statistical physics [16] and it is due to the fact that, at the transition point, or
in its neighborhood, the entities of the system are correlated at every scale, so one loses
the importance of microscopic details. More precisely, these exponents do not depend
on the Hamiltonian, as long as it brings to a transition of the second order, nor on the
lattice details. They only depend on the dimensionality d, which is far from being a
microscopic detail, and on the tensorial dimension of the order parameter1, D, which is
a scalar for what concerns this thesis. (d,D) form a class of universality.
This overall structure close to the critical point is actually common to all equilibrium
critical phenomena, and these ideas are strongly related to one of the most important
tools of statistical field theory, the renormalisation group (RG). With this tool one can
study critical phenomena in second order phase transitions and compute the critical
exponents of Eq. (1.14). The second part of this thesis is rooted in this method, thus a
more precise introduction to this will be given in the following.

1.4 Phase transition and the Potts model

The Potts model is a comprehensive and versatile model used to investigate phase transi-
tions [1,2,4]. It is an extension of the Ising model where the spin variables have q integer
values (often interpreted as colors) and are coupled ferromagnetically to their nearest
neighbors, favoring equal spin values (colors). The analysis of its critical properties has
been instrumental in the development of the conformal field theory apparatus [40] and,
more recently, the bootstrap approach has been applied to this problem [41–43]. The
impact of quenched randomness on the order and universality of phase transitions has
been mainly studied using weakly disordered Potts ferromagnets as a paradigm [8,44–47].
The second part of this thesis focuses on the study of this particular phenomenon for

1Indeed, the order parameter can be a scalar, a vector, a matrix.
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long-range correlated disorders. In addition to statistical physics, this model is widely
used in many research fields, such as biophysics and bioinformatics to investigate pro-
tein evolution and folding [48, 49], quantitative social sciences and network theory [50],
or high-energy physics [51] to study the quark gluon plasma-hadron first order phase
transition in the scattering of heavy ions. The model is defined by:

Z =
∑
{si}

e−βHP ({si}), (1.19)

with the Hamiltonian given by:

HP [{si}] = −J
∑
⟨i,j⟩

δsi,sj , (1.20)

where J > 0, si = {1, . . . , q} and the sum runs over nearest-neighbors on the lattice
(each bond contributing once to the sum). In this work periodic boundary conditions
are always considered. At the critical temperature, the model experiences an equilibrium
phase transition that can be either of the first or second order, depending on the value
of q and the dimension of the space, d. In two dimensions (d = 2), the transition is of
second order for 2 ≤ q ≤ 4, while for q > 4, it is of first order. In d = 3, instead the
transition become of the first order already for q > 2. In the first part of this thesis, the
analysis of the discontinuous phase transitions will be crucial. In particular, the large q
limit (q ≫ 1 and q → ∞) will be employed to study the kinetics of the ferromagnetic
paramagnetic transition in the Potts model. For this reason, it is worth to determine
the critical temperature in this very limit, in d = 2 and d = 3. The critical temperature
is determined by various factors such as the coupling strength (J), the dimension (d),
and the coordination of the lattice (z). On the square lattice, z = 4 and [1,2,4], lead to:

T square
c =

J

log
(
1 +

√
q
) → T square

c ≃ 2J

log q
, for q ≫ 1. (1.21)

(kB = 1 henceforth). On the triangular and honeycomb lattices the critical temperatures
are given by implicit expressions [2]:

(i) 0 = x3 − 3x+ 2− q triangular z = 6 ,

(ii) 0 = x3 − 3x2 − 3(q − 1)x+ 3q − 1− q2 honeycomb z = 3 ,
(1.22)

with x = eβcJ and β = 1/T . In the large q limit βcJ ≫ 1, implying x3 ≫ x2 ≫ x, and

T triang
c ≃ 3J

log q
, T honey

c ≃ 3J

2 log q
. (1.23)
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Therefore, in the three cases

Tc ≃
zJ

2 log q
, for q ≫ 1. (1.24)

and Tc decreases logarithmically with q.
The critical temperature, Tc, in d = 3 dimensions has not been rigorously determined
analytically, in contrast to the situation in d = 2. Instead, numerical simulations can be
used to obtain Tc as a function of q. However, it is possible to obtain an approximate
value of Tc by comparing the probability of a paramagnetic state to that of a ferromag-
netic state. This approach has been used in several recent studies [5, 6], and provides
a reasonably accurate estimate of Tc for large values of q. The argument proceeds as
follows (hereafter assuming J = 1). Just like the Ising case, at high temperatures, the
system is disordered and paramagnetic. Thus, the probability of each disordered state
can be approximated by Pdis ≃ qN/Z. On the other hand, at low temperatures, the
system is ordered and ferromagnetic. For each completely ordered state, the probability
can be approximated by Pord ≃ eβNz/2Z, where z is the coordination number of the
lattice and β = 1/T . A visual representation of this argument is provided in Fig. (1.3).
At the critical temperature Tc, these two probabilities should be equal.

eβcNz/2 = qN , (1.25)

and thus β∗(q) ≃ (2/z) log(q), where the index β∗ is used to differentiate it from the
exact value βc. Note that this argument is valid in any dimension.

0

disordered: qNordered: eβdNz/2

TTc

Figure 1.3. Different phases and their total Boltzmann weight as a function of the temperature
for the d dimensional q states Potts model, taken from [6].

In d = 2, z = 4 for the square lattice, this simple argument predicts β∗(q) = 1

2
log(q).

The exact result, given in Eq. (1.21), [4] is βc(q) = log (1 +
√
q) =

1

2
log(q) + q−

1
2 + · · · .

Thus in the large q limit, β∗(q) goes to the exact result with a correction O(1/
√
q).

One can also consider the case of the triangular lattice with z = 6. The argument’s
prediction is β∗(q) =

1

3
log(q). The critical value is obtained by solving the equation:

x3 − 3x+ 2− q = 0, Eq. (i) (1.22) with x = eβc . For q > 4, the solution is given by:

x = 2 cosh

®
2

3
log

Ç√
q

2
+
(q
4
− 1
) 1

2

å´
. (1.26)
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In the large q limit, the leading orders are βc(q) =
1

3
log(q)+q−2/3+O(q−1) which again

converges toward β∗(q). For the honeycomb lattice with z = 3, one needs to solve the
equation: x3−3x2−3(q−1)x+3q−1− q2 = 0, Eq. (ii) (1.22), for which it is obtained

βc(q) =
2

3
log(q) +

√
5− 1

2
q−1/3 + · · · , compared with β∗(q) = 2

3
log(q). Thus this naive

argument gives a good approximation in d = 2 in the large q limit.
After verifying the argument in a bidimensional setting, the analysis is extended to
the three-dimensional case. However, unlike the bidimensional scenario, no theoretical
predictions for the critical temperature are available for comparison. Therefore, the
determination of the critical temperature relies on numerical measurements.
To illustrate this, one can consider the cubic lattice where, in the large q limit, β∗ =
1
3 log(q). To numerically determine the critical temperature for finite q, two simulations
are conducted for each q value.
In the first simulation, the system starts from a completely ordered state at zero tem-
perature and the temperature is gradually increased to a high value T1. The simulation
is continued until a disordered state is reached, which indicates that the critical tem-
perature has been crossed. This process is repeated with decreasing T1 values, and the
smallest temperature value that yields a disordered state before a fixed large time (cho-
sen as tmax = 20000× L3 updates) is defined as T+

c . A non-local cluster algorithm, the
Swendsen–Wang algorithm [52], is used for all simulations due to its smaller autocorre-
lation time near the critical point compared to local algorithms.
In the second simulation, the system starts from a completely disordered state and is
gradually cooled to a low temperature T2. The simulation is continued until an ordered
state is reached. This process is repeated with increasing T2 values, and the highest
temperature value at which an ordering is observed within a time less than tmax is defined
as T−

c . The critical temperature is defined as Tc = (T+
c +T−

c )/2, with ∆Tc = |T−
c −T+

c |/2.
The simulations are performed on cubic lattices with periodic boundary conditions of
size L = 32 for q ≤ 10 and L = 10 for larger values of q. The results are presented in
Figure (1.4), which confirms the results obtained in [53,54] for q = 3 and q = 4.
For large values of q and quenches from high to low temperatures, metastability must be
considered [55], this phenomenon will be introduced in Sec. (2.4). In essence, metastable
states of a certain dynamical evolution are essentially points of temporary equilibrium
or relative minima in the free energy landscape, see Fig. (2.6). A dynamic system can
get trapped in these states for prolonged periods before eventually finding its way to
the absolute lowest energy state, or the global minimum. This issue can impact the
estimation of the critical temperature. In fact, one might mistakenly assume that the
system has reached equilibrium after a certain lengthy duration, leading to incorrect
assumptions about the system’s relative positioning with respect to T−

c . In reality,
the system may still be stuck in a metastable state. As the parameter q increases,
the measured T−

c value is often underestimated because the span of the metastable
state expands with q, necessitating more time to reach the true equilibrium state, [55].
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Therefore, to mitigate the impact of metastability, only small system sizes (L = 10) are
simulated when dealing with large q values. The plot in Figure (1.4) shows βc = 1/Tc
as a function of q, which is compared with the value β∗ = log(q)/3. For large q values,
the measurements are close to the expected value, although a small deviation exists due
to the effect of metastability. A fit to the form log(q)/3 + aq−b is also presented, with
excellent agreement and a = 0.27(1) and b = 0.35(3). The value b = 1/3 is imposed in
Figure (1.4) and in the subsequent analysis, with a ≃ 0.267. Thus, one can concludes
saying that for large values of q, Tc(q) ≃ 3/ log(q).
From the fit in Fig. (1.4), it can be obtained Tc(q = 100) ≃ 3/ log(100) × (1 − 0.0339),
Tc(q = 1000) ≃ 3/ log(1000)× (1− 0.0103) and Tc(q = 10000) ≃ 3/ log(q)× (1− 0.0035),
i.e. small deviations that are taken into account in the following.
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β c

q

log(q)/3+0.267 q-1/3

β∗ =log(q)/3
Data

Figure 1.4. βc as a function of q for the cubic lattice. This is compared to β∗ and a best fit to
the form log (q)/3 + aq−1/3, taken from [6].

Thus, after this analysis, it can be said that in the large q limit, also for the cubic lattice,

Tc ≃
zJ

2 log q
, for q ≫ 1. (1.27)

with z = {3, 4, 6, 6} respectively for the honeycomb, square, triangular and cubic lattices.
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1.5 Kinetic point of view of phase transitions

While the thermodynamical (equilibrium) theory of phase transitions is centered around
the characterization of the equilibrium phases of a certain phase transition, the kinetic
theory investigates how, dynamically, those phases are formed. In this section, principles
and tools of this theory are given for non disordered (pure) systems. This section aims
in introducing to the first part of the thesis.
As said previously, the Potts or the Ising models are not featured with an intrinsic
dynamics. One, so, couples the spin degrees of freedom to a certain thermal bath at a
temperature T and introduces thermal fluctuations into play. Because of this, spins can
change their state following a given dynamics. For the sake of this introduction, the so
called Glauber dynamics [27,56–58] suits perfectly.
The Glauber dynamics for the Ising model, on a regular lattice with coordination z = 4,
for example, follows these rules:

1. At a certain instant of time, a spin of the system is chosen randomly, si(t).

2. The Sum =
∑

j∈N (i)

sj(t) is computed. In this realm, j ∈ N (i) means the set

of neighbors of the i-spin.

3. The energy difference of the eventual flip of the i spin, ∆E = 2×si(t)×Sum,
is computed.

4. The spin is actually flipped, i.e. , si(t+ δt) = −si(t) with probability,

Pflip =
e−β∆E

1 + e−β∆E .

5. Iterate.

In studies of equilibrium, the properties of the transition are completely determined
once the partition function is computed. However, in non-equilibrium studies, the prop-
erties and features of the phenomenon depend on the chosen dynamics. Nonetheless, if
equilibrium is ultimately achieved, different types of dynamics should lead to the same
equilibrium properties.
This is guaranteed if the dynamics satisfies a certain condition known as the detailed
balance condition [27]. The chosen dynamical settings in this work adhere to all the
conditions imposed by the detailed balance condition. As a result, all the simulated
dynamical processes using different microscopic dynamical rules ultimately converge to
the same equilibrium properties. The subsequent sections will provide more information
on algorithms and the detailed balance condition.
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Therefore, with this knowledge, the analysis of the equilibration processes towards a first
order phase transition can begin, which is one of the objectives of this thesis.
Readers interested in a comparable dynamic analysis can refer to Burioni’s work [59],
which uses the Ising model and explores continuous phase transitions. Specifically, this
study investigates quench dynamics across various lattice structures, including fractal
ones.

1.5.1 Quench dynamics and the Potts model

As mentioned several times, the ferromagnetic Potts model in d = 2 undergoes a
ferromagnetic-paramagnetic phase transition when brought to a sub-critical tempera-
ture. The most common approach to simulate this phenomenon is to quench it from
a super-critical temperature to a sub-critical one. This involves starting with a disor-
dered configuration, Ti → ∞, and then rapidly quenching to T ≤ Tc. As a result, the
microscopic spin dynamics begin to align the spins. For the Potts model, this means
that larger and larger clusters of spins with the same color gradually start to appear.
This phenomenon continues until the equilibrium configuration is reached. Typically,
the equilibrium configuration comprises large islands with flat and stable interfaces, or,
if the temperature is very close to zero, a completely ordered state of spins with the same
color. This is a simplified view of the equilibration phenomenon. In reality, by tuning
parameters such as the final temperature T , the number of states q, the dimensionality
d, and the lattice topology, one can experience extremely different dynamical regimes.
This makes the Potts model a perfect laboratory for analysing this transition.
Indeed, the primary focus of the first part of this thesis is to investigate how the different
dynamical behaviors of the process, by which equilibrium is reached in this particular
ferromagnetic-paramagnetic first order phase transition, are influenced by these param-
eters.
An example of a disordered initial lattice configuration and a partially ordered final
configuarion, is shown in Fig. (1.5) through snapshots of the lattice at the initial and
final time.

1.5.2 Out-of-equilibrium statistical physics tools

To address these phenomena, some out-of-equilibrium techniques are necessary. In fact,
when the system experiences the shock of passing instantaneously from Ti → ∞ to
T < Tc, it needs to stabilize. To do so, it reorganizes itself to minimize the free energy
in the new phase. Because the quench is very rapid, the system does not have the
means to equilibrate without exploring some out-of-equilibrium steady states. In fact,
by performing a quasi-static transformation (i.e. changing the control parameter very
slowly), the system finds its final configuration by going through only equilibrium states,
which are usually analyzed by equilibrium statistical mechanics and thermodynamics.
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(a) Initial disordered configuration after 10 Monte
Carlo steps.

(b) Evolved configuration with cluster of aligned
spin and some flat interfaces after 3·106 Monte
Carlo steps.

Figure 1.5. Example of initial and final configuration for a Potts model simulation with q = 104,
T = 0.90Tc and L = 1000.

This is not the case for instantaneous quenches. The references [27, 58, 60–62] provide
a comprehensive and detailed explanation of equilibrium and non-equilibrium states.
However, delving into such topics is beyond the scope of this thesis. It is sufficient to
understand that the thermodynamic ordered and disordered states, occurring in the low
and high temperature phases, represent the equilibrium states. States other than these
two are classified as non-equilibrium states. There are various approaches to this kind
of out-of-equilibrium physics, but, for the purposes of this thesis, the numerical one is
the most useful. Indeed, the equilibration phenomena have been extensively simulated
by means of massive Monte Carlo simulations.

Monte Carlo-Markov chains

A Markov process can be either continuous or discrete in time and is a stochastic pro-
cess. For simplicity, a discrete formulation of the process is introduced. The process
is represented by a state variable xt, where t ∈ {1, . . . , Tfin} and xt ∈ Ω, which is the
space of all possible configurations that can be explored by the stochastic process. The
dimension of this space is ∥ Ω ∥= 2N for the Ising model and ∥ Ω ∥= qN for the Potts
model.
The distinguishing characteristic of a Markov process, setting it apart from other stochas-
tic processes, is its memorylessness or Markovian property. This means that the prob-
ability of transitioning from a current state xt to the next state in time xt+1 depends
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solely on xt, i.e. the current state.

Pi,j = Pi→j = P(xt+1 = j|xt = i, xt−1 = it−1, ..., x0 = i0)

= P(xt+1 = j|xt = i), ∀t, i, j, it−1, ..., i0 allowed.
(1.28)

It is worth noting that the probability distribution function Pi,j depends on the target
state j. The transition probabilities Pi,j can be organized into a non-negative matrix “P,
where the rows add up to one, i.e. a stochastic matrix:

“P =



P1,1 P1,2 P1,3 . . . P1,N

P2,1 P2,2 P2,3 . . . P2,N

P3,1 P3,2 P3,3 . . . P3,N

...
...

...
. . .

...

PN,1 PN,2 PN,3 . . . PN,N


. (1.29)

One has:

•Pi,j > 0, ∀ i, j, (1.30)

•
∑
j

Pi,j = 1, ∀ i. (1.31)

Markov chains play a critical role in the development of Monte Carlo numerical meth-
ods [63], enabling the sampling of ensemble probability distribution functions such as
the canonical distribution. To accomplish this, the chain explores all reachable configu-
rations through an ergodic random walk, following mathematical rules that characterize
the chain’s dynamics. To ensure convergence of the chain to the correct sampled distri-
bution, in this case the Boltzmann distribution, one must establish the microscopic spin
dynamics rules that satisfy the detailed balance condition [27,58,64].
This is defined by:

πeq({si})P{si}→{s′i} = πeq({s′i})P{s′i}→{si}. (1.32)

Where,
• {si} and {s′i} are two spin configurations differing by just one spin.
• P{si}→{s′i} is the transition probability to go from the configuration {si} to {s′i}.
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For a spin model, one defines π(t)({si}) as the time dependent configuration probability,
which is straightforwardly, the probability of having such spin configutation {si} at time
t.
At equilibrium, this is described by the ensemble physics, i.e.

πeq({si}) =
1

Z
e−βHP ({si}). (1.33)

Heat bath algorithm

An example of Markovian Monte Carlo dynamics for spin systems is the Glauber dy-
namics [27,56–58], which is described in Section (1.5).
However, for the type of transition studied in this work, a more appropriate spin dy-
namics needs to be defined. This is known as the heat bath dynamics [65], named
for simulating the dynamics of a system coupled with a heat source much larger than
the system itself, a heat reservoir. At each time step, a spin is randomly selected and
(eventually) modified. For a system with N spins, one Monte Carlo step consists of N
updates. The heat bath rules are formally defined by:

1. By using an uniform probability distribution, a random spin k, between the
N available, is chosen.

2. A new state n ∈ {1, · · · , q}, is chosen for the spin sk, no matter its old value.
This, with a probability proportional to the Boltzmann weight, eβEn . This
value is drawn from a so called heat bath, thus:

P{si}→{s′i} = Pn(sk = n) =
e−βEn

q∑
m=1

e−βEm
, (1.34)

where:
• {s′i} = {s1, .., sk = n, .., sN}, the transition probability depends only

on the state in which sk = n.
• En = HP ({s1, .., sk = n, .., sN}) is the energy of the system if the kth

spin assumes the value n ∈ {1, .., q} ∈ N.

Few things must be noticed:

• The transition probabilities depend only on the final state.
• The algorithm is a single spin flip, where only one spin is changed at each update.
• The probabilities add up to one, and so a spin is modified for each step, even if it is

possible to choose the old color again. This corresponds to a ”rejection” in Monte
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Carlo terms. However, this is highly unlikely in the large q case, except for certain
situations with ordered and stable states.

• This dynamics is non-conservative, meaning that modifying the color of the spins
at each update necessarily modifies the magnetization and energy.

It can be proven that the heat bath dynamics fulfils the detailed balance condition,
Eq. (1.32) and this ensures the convergence of the numerical method to the right canon-
ical equilibrium state. Indeed:

• To move from a state in which sk = n to a state with sk = n′ there is a
probability Pn′(sk = n′).

• To move back to the state with sk = n there is a probability Pn(sk = n).

thus:

πeq({s1, .., sk = n′, .., sN})Pn(sk = n) = πeq({s1, .., sk = n, .., sN})Pn′(sk = n′)

e−βE
′
n

Z
e−βEn

q∑
m=1

e−βEm
=
e−βEn

Z
e−βE

′
n

q∑
m=1

e−βEm

(1.35)

The heat bath dynamics algorithm is well-suited for the type of transition being analyzed.
At low temperatures and for large q, an algorithm like the Glauber one would require
many Monte Carlo steps to find the correct transition, i.e. the color which lowers the
energy. This is not the case with the heat bath dynamics. In fact, a spin is flipped
regardless of its initial state, and rejection in the large q case are extremely rare. This,
makes this algorithm much more efficient, in particular it is q times faster than the usual
Glauber algorithm. This allows to use rather large lattice sizes.

Continuous time Monte Carlo method

Another important feature can be added to the algorithm to avoid getting too slow in
certain situations. The Continuous time Monte Carlo method [66–68] can be used for this
purpose. This method is extremely helpful in simulating systems at low temperatures
close to a stable configuration. When the system reaches such configurations and T is
very close to 0, the algorithm evolves very slowly because it rejects almost every proposed
spin-change. This is because for T → 0 or β → ∞, the Boltzmann factor e−βE → 0,
and the algorithm wastes time while trying to randomly update the configuration. After
a large number of Monte Carlo steps, the system may evolve, but it quickly returns
to the starting stable state, where it falls again. These states cause the algorithm to
visit all possible configurations of the system in an extremely slow way. Although this
dynamic behavior is reasonable for a system cooled down to low temperatures, it can
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waste a significant amount of computer time. To simplify things and speed up the
algorithm, one can say that the system will spend a certain amount of time, sampled
from a suitable probability distribution, in the current stable state before moving to an
excited one. One, thus, can skip all the useless time-steps and move straight to the time
when the excitation is reached. In this method, the time step changes depending on how
long one need to wait before the system moves to the next state. In the simulations of
Chapter (2), a continuous-time heat bath algorithm has been employed to obtain some
of the most important results of this thesis.
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1.6 Disordered systems

Disordered systems, which exhibit randomness or disorder in their underlying structure,
have been extensively studied across various scientific disciplines and engineering fields.
The exploration of disorder systems, spanning condensed matter physics, statistical me-
chanics, materials science, and complex networks, has yielded valuable insights into the
behavior of complex systems.
Disorder can manifest in physical systems through diverse sources, including material
impurities, random particle interactions, or heterogeneous environments. While disorder
was initially viewed as an undesirable aspect to be minimized or eliminated, it has become
increasingly evident that disorder can profoundly influence the properties and behavior
of systems. In fact, disorder can give rise to intriguing phenomena, such as phase
transitions, localization and the emergence of novel collective effects [19,20,44,69,70].
However, comprehending and characterizing disorder systems present significant chal-
lenges due to their inherent complexity and randomness. Unlike pure systems charac-
terized by well-defined and predictable interactions, disordered systems exhibit intricate
and nontrivial behavior. Consequently, studying disordered systems often necessitates
sophisticated theoretical frameworks, advanced computational methodologies, and ex-
perimental techniques.
Disordered systems and spin models are intimately connected in the realm of condensed
matter physics and statistical mechanics. Spin models provide a powerful framework
for studying the complex behavior of such systems. These models have been exten-
sively investigated both theoretically and numerically. Theoretical approaches involve
techniques like mean-field theory, renormalisation group methods, and replica theory
to capture the complex interplay between disorder and spin interactions. While those
techniques are rather powerful, the complexity of the problem makes impossible to not
use Monte Carlo simulation to study such phenomena.
In this section, and in general when dealing with disordered system in this work, the
equilibrium of the spin systems under analysis is restored. This implies that thermal
equilibrium has been attained, and the spins no longer undergo flipping according to a
particular stochastic dynamics. In other words, the interaction between the spins and
the thermal bath can be disregarded. However, the analysis becomes significantly more
intriguing and diverse when randomness or disorder is introduced into the system. This
has led to incredible breakthroughs in the fields of physics and statistical physics. Two
Nobel laureates, Anderson [18] and Parisi [19,20], are particularly emblematic examples.
Their works have paved the way for numerous enthusiastic studies across diverse domains
of theoretical and applied physics, spanning over more than a generation [44,46,69–76].
In this work, the term ”disorder” has two distinct meanings. The first one, which has
already been mentioned, refers to the disordered paramagnetic configuration of the spin
system. This occurs when the system is above its critical temperature or in a metastable
disordered state where the magnetization (order parameter) is zero. The second meaning,



General and common introduction 27

which is crucial for this section, pertains to the random selection of physical parameters
such as the spin couplings Ji,j from a probability distribution function. A simple example
of such a distribution could be a Gaussian centered at zero with unit variance. This
distribution results in random alternations of positive and negative couplings on the
lattice, favoring the alignment or antialignment of the spins, respectively. It is evident
that this disorder has an impact on the physical properties of the system’s phase.
The objective of this section is to familiarize the reader with the realm of disordered
systems, enabling a better understanding of the influence of such randomness on phase
transitions and facilitating comprehension of the second conceptual part of this thesis.
The setup of the addition of disorder to the study is the following:

1. One starts by studying the pure system at thermal equilibrium.
2. Addiction of disorder to the pure system.
3. Examination of the effects of randomness.

The primary focus of this work lies in bidimensional classical spin systems that undergo
a second order phase transition. The objective is to examine the impact of randomness
when the system is at criticality, specifically to study the effects of disorder on the critical
phenomenon.

1.6.1 Different disorders

Disorder can be of the quenched or of the annealed type. Quenched disorder refers to a
type of disorder that remains unchanged or ”frozen” throughout the system’s evolution
or analysis. In essence, the disorder remains constant and unaffected by the system’s
behavior or the passage of time. This form of disorder typically arises from random or
disordered parameters, such as impurities scattered within a material or randomly dis-
tributed interactions within a spin system. Quenched disorder is considered an inherent
property of the system and is often modeled as static or spatially correlated. It can
significantly impact the system’s behavior, leading to phenomena such as localization,
modification of the phase transitions, or the emergence of glassy behavior.
In contrast, annealed disorder refers to a type of disorder that is treated as dynamic
and subject to change over time. Here, the disorder is not fixed but rather fluctuates or
averages out during the system’s evolution. Annealed disorder is commonly associated
with a statistical average or ensemble approach, wherein the disorder is treated as a
random variable sampled or averaged over. It is often assumed to be uncorrelated or
independent of the system’s variables. Annealed disorder is frequently employed in
theoretical calculations or simulations to simplify the analysis of complex systems.
In the light of this, one can define two kind of averages: the quenchend and annealed
averages and, by consequence, the quenched (Fq) and annealed (Fa) free enrgies. The
quenched average involves fixing the disorder (i.e. the set of couplings Ji,j) for each
thermal integration over the spins. This means that the couplings {Ji,j} are considered
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constant or frozen within a particular realization of the disorder. The average is then
taken over different realizations of the disorder. On the other hand, the annealed average
treats the disorder and degrees of freedom (spins) on the same footing. The disorder
and spins fluctuate together, implying that the time scale of variation for the disorder
and spins is the same.
If one calls ⟨· · ·⟩ =

∫
Ds (· · · ) e−H({si},{Ji,j}) the canonical thermal average and E[· · · ] =∫

DJ (· · · )P(Ji,j) the average over the disorder distribution P(Ji,j), one has:

Fq = − 1

β

∫
DJ P(Ji,j) log

∫
Ds e−H({si},{Ji,j}) = − 1

β
E [log (Z)] , (1.36)

Fa = − 1

β
log

∫
DJ P(Ji,j)

∫
Ds e−H({si},{Ji,j}) = − 1

β
log (E [Z]) , (1.37)

with H({si}, {Ji,j}) a generic spin Hamiltonian at a fixed disorder {Ji,j} while DJ and
Ds are generic differentials that run over all the values of the bond disorder and of the
spins, being them on lattice edges and vertices or in the continuous space. At high
temperatures, where the effect of disorder-induced frustration is negligible, the annealed
average may be valid. However, at low temperatures, the spins freeze into a state
determined by the specific values of the quenched disorder, and the annealed average is
generally incorrect. In this work, the only average computed is the quenched one, which
will be referred to as simply F , to keep the notation light. However, Eq. (1.36) is made
unworkable by the average of the logarithm of a partition function. Thus, one need to
introduce a common trick in disordered system, the replica trick, to deal with it, see
Sec. (1.6.4).
Another distinction that can be made is between weak and strong disorder: Weak dis-
order refers to a situation where the disorder has a relatively minor influence on the
behavior of the system. The system’s behavior and properties are primarily determined
by the underlying order or regularity, with disorder introducing only minor deviations
or fluctuations i.e. the disorder does not modify the phases on one side or the other of
the transition. Weak disorder is often associated with scenarios where disorder can be
treated as a small perturbation to an otherwise pure system. Analytical techniques, such
as perturbation theory, can be employed to study weak disorder effects. An instance of
this type of disorder is demonstrated by employing random couplings, all of which are
ferromagnetic in nature.
On the contrary, strong disorder refers to a scenario where disorder assumes a prominent
role and exerts a profound influence on the characteristics of the system’s phases. In
particular, the presence of disorder leads to significant modifications in these phases.
In such cases, the properties of the system are predominantly governed by the disorder,
resulting in behavior that is qualitatively distinct from that of a pure system. Strong dis-
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order can give rise to various phenomena such as glassy behaviors, phase transitions, and
localization effects. An illustrative example of this type of disorder is the incorporation
of random couplings involving both antiferromagnetic and ferromagnetic interactions.
In this work, the emphasis is on weak quenched disorder, which remains fixed and does
not alter the phases undergoing transition. For this reason, in this section, only features
and properties of this kind of disorder will be introducted. Thus, rather important
concepts in disordered systems studies like frustration, glassiness or self averageness will
not be touched.

1.6.2 Random bond Potts model

The choice of utilizing the disordered Potts model [77] to study phase transitions is
motivated by its versatility and its ability to capture the effects of disorder. In particular,
by tuning the parameter q, various scenarios can be explored, ranging from percolation
(q → 1), Ising model (q = 2) and Potts (q > 2). Moreover, the disordered Potts model
allows for the investigation of both continuous and discontinuous phase transitions for
different values of q, see Sec. (1.4). In particular, this model provides a framework to
study how the introduction of different types of disorder can smooth a first order phase
transition into a second order one. This last phenomenon will not be touched in this
thesis, since the focus is on the modification of the critical behaviour (continuous phase
transition) due to the perturbation given by the disorder. To say it better, and to give
an insight on what will be in the second part of the thesis, the d = 2 pure Potts model
is represented at criticality by its continuous formulation in the conformal field theory
(CFT) approach. Disorder will be added as a small perturbation to this theory at the
non-disordered pure fixed point (P) to study whether the model flows to another fixed
point or not. If a flow occurs, the objective is to characterize this fixed point(s) that
emerges as a result of the flow.
It is important to note that the P fixed point, is characterized by an interacting theory.
This aspect adds significant interest to the study, particularly in comparison to studies
that focus on perturbing non-interacting free field theories.
This thesis solely concentrates on bond-type disorders in spin models, while acknowl-
edging that disorders can also be present on the sites of the model, which give rise to
distinct phenomena, see all the literature on the random field Ising model [78]. Incorpo-
rating disorder into the model involves employing a probability distribution function to
randomly draw the couplings or bonds. This implies that:

J → Ji,j = Jc + δJi,j . (1.38)
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where Jc is deterministic and δJi,j is stochastic. Is it simple to understand that now the
couplings are position dependent. Thus,

Hdis
P ({si}, {Ji,j}) = −

∑
⟨i,j⟩

Ji,jδsi,sj . (1.39)

This approach enables the examination of the influence of disorder on the system’s
behavior and the resulting phase transitions. When dealing with critical random Potts,
β = 1/kBT is usually put to 1, the same will be done in this thesis. One is thus left
with Ji,j to be tuned in order to be at criticality. How to be at the critical point will be
explained in the following. β = 1, so, implies that the partition function reads:

Zdis
P ({Jij}) =

∑
{si}

e−Hdis
P ({si}, {Ji,j})

=
∑
{si}

∏
⟨i,j⟩

1 + (eJi,j − 1)︸ ︷︷ ︸
v({Ji,j})

δsi,sj


=
∑
{si}

∏
⟨i,j⟩

[
1 + v({Ji,j})δsi,sj

]
.

(1.40)

Considering Eq. (1.40), it is common and useful to extend the number of states, q, of
the Potts spins to real numbers and map the Potts model to a random cluster model
using the following approach.
In the Potts model, if two neighboring spins si and sj are in the same state, the δ-
function equals 1, contributing to a reduction in the configuration’s energy by a factor
of −Ji,j . These spins are said to share a bond, suggesting that they belong to the same
cluster. When summing over all possible spin configurations in the partition function, it
is equivalent to summing over all possible bond configurations, see Fig. (1.6). In other
words, if a configuration contains a bond between two neighboring spins, it signifies that
they are in the same state.
Let G(V,E) be a generic graph belonging to the space G of all graphs. G(V,E) consists
of activated bonds (neighboring spins in the same state) with |E| edges and |V | vertices,
where E represents the set of possible edges and |E| is the number of edges, and V
represents the set of possible vertices and |V | is the number of vertices. Let Cc(G) denote
the number of connected components of this graph. Notably, in the partition function,
there is a product of |E| terms composed of two subterms, namely (1 + v(Ji,jδi,j)),
representing the presence (v(Ji,jδi,j)) or absence (1) of a bond. This can be expressed
as:
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Zdis
P ({Jij}) = · · · =

∑
{si}

∏
⟨i,j⟩

[
1 + v({Ji,j})δsi,sj

]

=
∑
G⊂G

qCc(G)

Ñ ∏
⟨i,j⟩∈E

v(Ji,j)

é
=
∑
G⊂G

qCc(G)

Ö ∏
⟨i,j⟩∈E

eJi,j︸︷︷︸
1/(1−p(Ji,j))

(1− e−Ji,j )︸ ︷︷ ︸
p(Ji,j)

è
=
∑
G⊂G

qCc(G)

à
∏

⟨i,j⟩∈E

p(Ji,j)

(1− p(Ji,j))

∏
⟨i,j⟩/∈E

1− p(Ji,j)

1− p(Ji,j)︸ ︷︷ ︸
1

í
=
∑
G⊂G

qCc(G)

Ñ ∏
⟨i,j⟩∈E

p(Ji,j)
∏

⟨i,j⟩/∈E

1− p(Ji,j)
∏
⟨i,j⟩

1

1− p(Ji,j)

é
=

�
�

�
��∏

⟨i,j⟩

eJi,j
∑
G⊂G

qCc(G)

Ñ ∏
⟨i,j⟩∈E

p(Ji,j)
∏

⟨i,j⟩/∈E

1− p(Ji,j)

é
=
∑
G⊂G

qCc(G)

Ñ ∏
⟨i,j⟩∈E

p(Ji,j)
∏

⟨i,j⟩/∈E

1− p(Ji,j)

é
︸ ︷︷ ︸
π(G) i.e. probability of a certain graph.

=
∑
G⊂G

qCc(G)π(G).

(1.41)

In the third-to-last line, a global and insignificant factor has been removed. This method
of constructing the partition function is known as the Fortuin-Kasteleyn (FK) construc-
tion [2,4,79], where p(Ji,j) = 1− e−Ji,j represents the probability of adding a bond to a
so called FK-cluster. In this formulation, the Potts model is equivalent to the random
cluster model [79]. By promoting q to real numbers and employing this formulation, this
model becomes a powerful tool with a wide range of applications.
The exactly same random cluster construction can be done in the pure Potts case where
Ji,j = J, ∀(i, j). In this case, things become simpler since v({Ji,j}) → v = eJ − 1 and
thus the partion functions reads:

ZP ({Jij}) = · · · =
∑
G∈G

qCc(G)v|E(G)|. (1.42)
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∑
{ }

=
∑

{ }

Figure 1.6. Sketch of the mapping between the sum over the spins configurations and the
sum over the bond configurations. The q-degenerancy is represented by bonds of
different colours.

One is left with the location of the critical point (line). It is well known [2–4,80] that for
the Potts model and for its random version, duality between the low temperature and
high temperature expansions of the partition function fixes the critical line to be:

(eJ1 − 1)(eJ2 − 1) = q. (1.43)

Where J1, J2 and q need to be fixed. One can thus, simply use bimodal couplings
fulfilling Eq. (1.43) to be on the, so called, self-dual critical line.
Thus:

Ji,j =


J1, with probability 1/2.

J2, with probability 1/2.

(1.44)

1.6.3 Percolation

Percolation is a fascinating phenomenon that has captivated the interest of researchers in
various scientific disciplines. It is a concept that merge the field of statistical physics with
diverse areas such as materials science, network theory, epidemiology, and transportation
systems.
At its core, percolation is concerned with the study of connectivity in random or dis-
ordered systems. It investigates how the arrangement of components or elements in a
system affects the emergence of a continuous path or cluster spanning across the sys-
tem. This path, known as the percolating cluster, plays a crucial role in determining the
system’s behavior and properties.
In a percolation process, the system is typically represented as a lattice or a network of
interconnected nodes. Each node or site can be in one of two states: occupied or vacant.
The occupation of sites is determined probabilistically, following a certain probability
distribution. As the occupation probability is varied, the system undergoes a phase
transition from a disconnected state to a connected state, thus the occupation probability
Pocc is the control parameter.
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The critical point of percolation, known as the percolation threshold, Pocc
c , represents

the transition point where the percolating cluster emerges and spans the entire system.
Below this threshold, the system consists of isolated clusters, while above the threshold,
a giant connected cluster emerges, connecting the sites from one extremity of the system
to the others. This means, that the probability of having a giant cluster, which is zero
on the left of the treshold and non-zero on its right, is the order parameter, Pgiant.
Percolation theory provides a framework to analyze the properties of percolating clusters
and their behavior near the critical point. It enables the study of various quantities,
such as cluster size distribution, cluster connectivity, fractal dimension of clusters and
the scaling behavior of the percolation process.
Understanding percolation phenomena has significant implications in many practical
applications. For example, it helps to analyze the flow of fluids through porous media,
the conductivity of materials, the spread of diseases in a population, and the resilience
of networks to failures. It also serves as a fundamental model for exploring the behavior
of complex systems and the emergence of collective phenomena.
For the sake of this thesis, it is important to distinguish between two kinds of percolation
processes. The first one is the one shown in Fig. (1.7) in which the percolating cluster
is made up of random bonds connecting vertices of the square lattice; this is called
bond percolation. Alternatively, one can study the percolation of sites/vertices shown in
Fig. (1.8), in which the giant cluster is composed of sites/vertices of the square lattice.

(a) Pocc < Pocc
c , implying Pgiant = 0. (b) Pocc > Pocc

c , implying Pgiant ̸= 0.

Figure 1.7. Example of not-percolating (a) and percolating (b) clusters of random bond (black
lines) on a square lattice.

The location of the critical point depends on geometric properties, such as the underlying
lattice topology and the type of percolation being analyzed. For a more detailed analysis,
the interested reader is referred to the review by Saberi [30].
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(a) Pocc < Pocc
c , implying Pgiant = 0. (b) Pocc > Pocc

c , implying Pgiant ̸= 0.

Figure 1.8. Example of not-percolating (a) and percolating (b) clusters of random sites (black
dots) on a square lattice.

The percolation transition is of a continuous nature (second order), allowing for the
study of critical phenomena and the computation of critical exponents in the thermo-
dynamic limit. This limit corresponds to the scenario where the number of vertices of
the square lattice graph tends to infinity, along with the number of components of the
percolating/giant cluster.

• The order parameter goes as Pgiant ∼ (Pocc − Pocc
c )β for Pocc > Pocc

c .

• The characteristic size of the largest (finite) clusters diverges as
lfinite ∼ |Pocc − Pocc

c |−ν .

• The characteristic mass (number of sites in the cluster) of the largest (finite)
clusters diverges as mfinite ∼ |Pocc − Pocc

c |−1/σ.

• The large clusters are fractals and their fractal dimension df ∼ 1/νσ.

Percolation problems sharing the same critical exponents are in the same universality
class.
The upper critical dimension i.e. the space dimension above which mean field results
are exact is dpercuc = 6.
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Potts and bond percolation

If one considers a bond percolation problem, each bond-configuration on the underlying
lattice, is related to a sub-graph of the lattice itself, G with |E| bonds. It is easy, thus,
to write the probability of such configurations, considering edge independent occupancy
probabilty and Nb as the total number of possible bonds:

π(G) = Pocc|E(G)|
(1− Pocc)(Nb − |E(G)|). (1.45)

Thus, one can sum over all the possible graphs to obtain the partition function of the
percolation problem, or:

ZPerc =
∑
G∈G

Pocc|E(G)|
(1− Pocc)(Nb − |E(G)|). (1.46)

Now if one comes to the Potts model and takes the partion function defined in Eq. (1.42)
by imposing v = 1− e−J =

Pocc

1− Pocc
one obtains:

ZP ({Jij}) =
∑
G∈G

qCc(G)v|E(G)| =
∑
G∈G

qCc(G)Pocc|E(G)|
(1− Pocc)−|E(G)|. (1.47)

It is evident that, apart from a trivial and graph-independent factor (1−Pocc)Nb , in the
limit of q → 1, the Potts model is formally equivalent to a percolation model. To ensure
this equivalence, it is important to take the limit of q → 1 rather than abruptly setting
q = 1, in order to avoid obtaining a trivial and constant partition function.
The same reasoning can be applied when considering edge-dependent occupancy proba-
bility and the disordered Potts model.
This mapping between the Potts model and bond percolation has been made possible
due to the analytical continuation of the Potts partition function to real values of q.
For the purpose of this thesis, only the mapping between the Potts model and bond
percolation is necessary. However, it is also possible to map the Potts model to a site
percolation problem.

1.6.4 Field theory and the disorder-perturbation

To characterize the impact of disorder on phase transitions and critical phenomena, a
common approach involves introducing a small disorder perturbation of a weak nature
to a pure model at its critical point. This allows for observing whether the perturbation
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causes the model to flow to another critical point. The influence of disorder on phase
transitions will be discussed in Section (1.6.5), while the purpose of this section is to
introduce a perturbed continuous formulation of the Potts model.
Specifically, at the critical point, the two-dimensional (pure) Potts model can be repre-
sented by a conformal field theory using an action (SPotts) composed of primary fields
with well known scaling dimension [25, 39, 44–46, 81, 82]. The detailed form of this
action is not necessary for the purpose of this thesis. In the presented perturbation
scenario, quantities such as correlation functions are computed using a conformal boot-
strap approach, requiring only the scaling dimensions of the fields and the Coulomb-gas
representation [8, 82].
However, to describe the disordered Potts model within the continuous framework, it is
necessary to include the disorder perturbation. In the case of random bond models, this
perturbation locally couples with the energy fields, as evident from the lattice formulation
mentioned in Eq. (1.39). Therefore, at the critical point, one can express this as:

S = SPotts + g

∫
d2 xϕ(x) ε(x), (1.48)

where x is a generic position in a continuous space, ϕ(x) is a generic disorder-perturbation
operator2 with scaling dimension hϕ, ε(x) is the continuous representation of the energy
density of the Potts model, i.e. a scaling operator with scaling dimension hε [25, 39],
and g is a scaling variable, see Sec.(1.7) for the definitions of these quantities. It is,
still, important to put emphasis on the fact that SPotts, being the perturbed action,
is an interacting one. This will make the analysis more difficult but interesting at the
same time. The reader will find a chapter on how to deal with this kind of problems in
Section (1.7.3).
Being at criticality means that J(x) = Jc + δJ(x) (see Eq. (1.38) for a lattice version)
satisfies Eq. (1.43). To proceed with the computations, one requires certain tools to
handle the perturbation term and the disorder field ϕ(x) ∝ δJ(x).

2In this work operators are always commuting entities.
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The replica trick

The replica trick, initially introduced by Edwards and Anderson in [83], is a powerful
mathematical technique that has led to breakthroughs in statistical physics and the the-
ory of disordered systems, including the development of the replica symmetry breaking
scenario and the recognition of Parisi’s Nobel Prize in 2021 [19]. This approach involves
creating multiple replicas or copies of the system, performing calculations based on the
number of replicas, and subsequently analytically extending the results back to the orig-
inal case. By employing this method, it becomes possible to compute quantities that
are challenging to obtain directly.

log(Z) = lim
n→0

Zn − 1

n
= lim

n→0

en log(Z) − 1

n
= lim

n→0

n log(Z) + 1
2 (n log(Z))2 + · · ·
n

= · · · = log(Z).

(1.49)

One can use this formula during the calculation of quenched free energies, being:

F = −E [log(Z)] = − lim
n→0

E
ïZn − 1

n

ò
. (1.50)

If n is taken to be an integer positive number3 one can write:

E [Zn] =

∫
Ds(1) · · · Ds(n)E

[
e−H({s1}, {Ji,j}) · · ·H({sn}, {Ji,j})

]
=

∫ n∏
α=1

Ds(α)E
ï
e−H({s(α)}, {Ji,j})

ò
,

(1.51)

with the same set of couplings {Ji,j} for each replica. To be clear, one identifies the
differential Ds(α) =

∏N
i=1 dsi, where α labels the replicas from 1 to n and i labels one

of the N spins in each replica. Eq. (1.51) is much simpler to compute compared to
Eq. (1.36).
However, considering n as an integer and taking the limit n→ 0 after the thermodynamic
computation is far from being a straightforward operation. These replicated quantities
need to be handled with special care [20].

3Not evident at all, since one has to take the limit n → 0.
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Another useful formulation of this technique is presented in [84]. It involves computing
the quenched average of a generic observable, denoted as E[⟨O⟩].

E[⟨O⟩] = E
ï
1

Z

∫
DsO({si})e−H({si}, {Ji,j})

ò
= E
ï
lim
n→0

Zn−1

∫
DsO({si})e−H({si}, {Ji,j})

ò
(1.52)

= lim
n→0

∫
Ds(1) · · · Ds(n) 1

n

N∑
α=1

Ä
O({s(α)})

ä
E

[
exp

{
−

n∑
α=1

H({s(α)}, {Ji,j})

}]
.

In both formulations, it is evident that the spin configuration has been replicated n times
at a fixed disorder.
Although a lattice Hamiltonian has been used in this section, the trick applies in the
same way to actions of the form of Eq. (1.48).
Usually, the distribution of the disorder is included in the action as an auxiliary term
(Saux[ϕ(x)]). Therefore, after replicating the Potts action and the perturbation term,
one obtains:

S(n) = Saux +

n∑
α=1

S(α)−Potts + g

n∑
α=1

∫
d2 xϕ(x) ε(α)(x). (1.53)

In the RG computation performed in [44], the average over the (uncorrelated Gaussian)
disorder distribution is explicitly computed. This averaging process produces a term that
couples two different replicas at the same position, which is commonly observed in studies
of disordered systems: g1

n∑
α=1

∫
d2xε(α)(x)ε(β)(x). Similarly, this term is generated from

the action of Eq. (1.53), without averaging over the disorder, through the operator
product expansion (OPE) in the RG procedure, see Sections (1.7.3, 4.2.3). Therefore, it
is worth incorporating this replica-replica term into the action, resulting in:

S(n) = Saux +
n∑

α=1

S(α)−Potts + g
n∑

α=1

∫
d2 xϕ(x) ε(α)(x) + g1

n∑
α ̸=β=1

∫
d2 xε(α)(x)ε(β)(x)

︸ ︷︷ ︸
S(α)−pert

= Saux +

n∑
α=1

î
S(α)−Potts + S(α)−pert

ó
. (1.54)

At this stage of the computation, the reason why the average over disorder is not explic-
itly performed is twofold. Firstly, there is no need to specify the form of the disorder in
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terms of its cumulants. Secondly, when utilizing a disorder with long-range correlations,
challenging non-local terms do not arise during the computation [7, 8].
With this in mind, one can express the replicated partition function in the perturbation
scheme (g, g1 ≪ 1) as:

Zn =

∫
DϕDs(1) · · · Ds(n)eS

(n)
(1.55)

=

∫
DϕDs(1) · · · Ds(n) exp

Saux +
n∑

α=1

S(α)−Potts

︸ ︷︷ ︸
S∗

+
n∑

α=1

S(α)−pert


=

∫
DϕDs(1) · · · Ds(n) exp [S∗]× exp

[
g

n∑
α=1

∫
d2 xϕ(x) ε(α)(x)+

+ g1

n∑
α ̸=β=1

∫
d2 xε(α)(x)ε(β)(x)

]
.

Now, calling Z∗ =
∫
DϕDs(1) · · · Ds(n) exp

î
Saux +

∑n
α=1 S(a)−Potts

ó
and ⟨· · ·⟩S∗ the av-

erage computed with eS
∗ as weighting factor, one has:

Zn = Z∗〈1 + g
n∑

α=1

∫
d2 xϕ(x)ε(α)(x) + g1

n∑
α ̸=β=1

∫
d2 xε(α)(x)ε(β)(x)+

+
1

2!
g2

n∑
α=1

n∑
β=1

∫∫
d2 xd2 y ϕ(x)ε(α)(x)ϕ(y)ε(β)(y)+ (1.56)

+
1

2!
g21

n∑
α=1

n∑
β=1

∫∫
d2 xd2 y ϕ(x)ε(α)(x)ϕ(y)ε(β)(y)+

+ g × g1

n∑
α=1

n∑
β ̸=γ=1

∫∫
d2 xd2 y ϕ(x)ε(α)(x) ε(β)(y)ε(γ)(y) + · · ·

〉
S∗ .

Thus, one will effectively compute the average over the disorder at the level of correlation
functions and will need to specify the disorder distribution. Eq. (1.56) will serve as the
core of the perturbative RG computation in the second part of the thesis.
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1.6.5 The influence of the disorder on phase transitions: the Harris and
extended Harris criteria

To address the question of the influence of disorder on phase transitions, an impor-
tant criterion needs to be introduced: the Harris criterion. The Harris criterion, orig-
inally proposed by Harris in 1974 [85], provides a framework for understanding the
impact of disorder on phase transitions, particularly in the case of uncorrelated disor-
der (e.g. E [J(x)J(y)] ∝ δ(x − y)). This criterion was later extended by Weinrib and
Halperin in 1983 to also include correlated disorders (e.g. E [J(x)J(y)] ∝ |x − y|−a for
large distances).
In pure systems without disorder, the critical behavior of phase transitions is charac-
terized by power-law scaling and universal properties determined by the symmetry and
dimensionality of the system, as discussed previously. However, the introduction of dis-
order can have a significant impact on the critical behavior, potentially leading to a
change in the universality class of the phase transition, meaning that the system flows
towards a new critical point.
The relevance of disorder refers to its effect on modifying the critical exponents, causing
them to deviate from their values in the absence of disorder. If disorder is relevant,
it alters the critical behavior, while if it is irrelevant, the critical behavior remains
unchanged, falling into the same universality class as the pure system. The usual Harris
criterion [85] states that uncorrelated disorder is relevant when the specific heat exponent
of the pure system is positive, i.e. αpure > 0. Conversely, when the disorder is irrelevant,
αpure < 0, the critical behavior remains unaffected, and the system belongs to the same
universality class as the pure system. In the case where αpure = 0, the criterion is
inconclusive.
The concept of relevance and irrelevance of disorder will be revisited when the Renor-
malisation Group (RG) is introduced, see Sec. (1.7). In the RG framework, the relevance
or irrelevance of disorder is determined by examining the flow of disorder-related oper-
ators during the RG transformation. Through the RG flow, operators have their RG
eigenvalue (spatial dimension - scaling dimension of such operator). If the eigenvalue of
a disorder-related operator becomes negative under the RG transformation, it is consid-
ered irrelevant, indicating that disorder effects become less and less pronounced at larger
length scales. In this scenario, the critical behavior of the system remains dominated
by the pure, disorder-free fixed point. Conversely, if the eigenvalue of a disorder-related
operator becomes positive, it is considered relevant, meaning that disorder effects are
more and more important at larger length scales and the model is described by a new
random-fixed point.
The extended Harris criterion, proposed by Weinrib and Halperin [86], takes into account
the power-law decay exponent of the disorder correlations. It states that when a < d,
where d is the spatial dimension of the system, the disorder is irrelevant if aνpure > 0,
and relevant otherwise. When a > d, the extended Harris criterion reduces to the usual
Harris criterion.
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These criteria are based on the observation that disorder introduces fluctuations and
inhomogeneities in the system. If these fluctuations are strong enough, they can alter
the behavior of critical modes and influence the scaling properties of the system.
The proof of the extended4 criterion follows the arguments presented in works such
as [85–87]:

Consider a disordered spin system in d dimensions at a temperature T ≳ Tc, where
Tc is the critical temperature after the introduction of disorder. The disorder
in the system exhibits long-range correlations, characterized by E [J(x)J(y)] ∝
|x−y|−a for large distances. The system can be divided into blocks labeled by their
positions x, each with a size of ξ(T ) ≫ 1. Here, ξ(T ) represents the correlation
length of the disordered model at the operating temperature. ξ(T ≳ Tc) ≫ 1 and
ξ(Tc) diverges. Due to the presence of impurities, each block possesses its own
local critical temperature, denoted as Tc(x).
Spins within the same block are correlated, while spins belonging to different
blocks are not. Consequently, it is possible to view each block as a collective entity,
analogous to a super-spin. To analyze the behavior of the system, an isotropic
correlation function can be defined as g(|x− y|) = E [Tc(x)Tc(y)]− E

[
Tc(x)

2
]
. It

is observed that for long distances, the disorder follows an algebraic decay law,
leading to g(|x|) ∼ |x|−a.
Introducing the reduced temperature t =

T − Tc
Tc

and its local version t(x) =

T − Tc(x)

Tc
, where E[t(x)] = t, one can note that t ∼ ξ−ν

pure close to the critical
point.
The goal of this analysis is to determine whether the system can undergo a uniform
transition, meaning that all blocks behave ferromagnetically below the global Tc
and paramagnetically above it. In simpler terms, it examines whether the local
critical temperatures Tc(x) are such that all blocks are on the same side of the
transition.
If this is not the case, it implies that the disorder shifts the local critical tempera-
tures in a way that some blocks are on one side of the transition while others are
on the other side. As a result, an uniform transition becomes impossible, leading
to a modified critical behavior with different critical exponents compared to the
pure model.

4It is easy to obtain the usual Harris criterion by putting a = 0, for example.
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To proceed, one can calculate the fluctuations of the local critical temperatures:

∆2 =
1

ξ2d

∫
ξd
dd x

∫
ξd
dd yE [t(x)t(y)]− E

[
t(x)2

]
(1.57)

=
1

T 2
c ξ

2d

∫
ξd
dd x

∫
ξd
dd y g(|x− y|)

∝ ξ−d
∫ ξ

0
dxxd−1g(x)

∝ ξ−d
∫ ξ

0
dxxd−1−a

∼


ξ−d × constant, if a > d.

ξ−d × log(ξ), if a = d.

ξ−a, if a < d.

The transition is considered uniform if the fluctuations of the local critical tem-
peratures, denoted as ∆2, and the quadratic deviation of the working temperature
from the global critical temperature, denoted as t, are of the same order. In other
words, the ratio ∆2/t2 tends to zero as t approaches zero. This condition implies
the following relationship:

∆2

t2
∼


t−dν

pure−2, if a > d.

t−dν
pure−2 × log

(
t−ν

pure), if a = d.

taν
pure−2, if a < d.

(1.58)

To determine the stability of the pure system, the following conditions need to be
satisfied: ®

dνpure − 2 = −αpure > 0, if a ≥ d, Usual Harris.
aνpure − 2 > 0, if a < d, Extended Harris.

(1.59)

Where αpure = 2− dνpure is obtained through hyperscaling relations [86].
It should be noted that for a < d, one has aνpure − 2 < dνpure − 2, indicating that
the extended criterion is more restrictive than the usual one.
In the case of uncorrelated disorder, g(|x−y|) → δ(|x−y|), one recovers the usual
Harris criterion [85]:

Critical behaviour =


Untouched, if αpure < 0.

Modified, if αpure > 0.

Criterion is inconclusive, if αpure = 0.

(1.60)
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It is important to note that these criteria only determine whether the critical behavior
is modified or not, but they do not provide information about how it is modified or
where the new random-fixed point is located. To address these deeper questions, a
renormalisation group analysis is required.

1.7 Perturbative real space renormalisation group

The renormalisation group (RG) is a powerful theoretical framework in physics that has
had a transformative impact on the understanding of critical phenomena and system
behavior across varying length scales. It finds its origins in the early development of
quantum field theory and statistical mechanics.
The concept of the RG can be traced back to the pioneering work of Kadanoff in the
1960s [88] and Wilson in the early 1970s [16]. Wilson introduced a systematic approach
to analyze the effects of fluctuations in physical systems, proposing the RG as a method
to examine how a system’s behavior changes when observed at different energy scales.
Wilson’s key insight involved dividing a system into two distinct parts: high-energy and
low-energy modes. By integrating out the high-energy modes, responsible for short-range
fluctuations, he demonstrated that the low-energy effective theory remains unchanged
while its parameters are modified. This process, known as ”renormalisation”, enables
consistent treatment of divergences and yields physically meaningful predictions.
The RG gained significant momentum in the field of particle physics with the emergence
of quantum chromodynamics (QCD), the theory of strong interactions. Through RG
analysis, the understanding of asymptotic freedom, the phenomenon where the coupling
constant decreases at high energies, represented a major breakthrough [89].
In condensed matter physics, the RG has played a pivotal role in comprehending phase
transitions and critical phenomena. For instance, Kadanoff’s work on the Ising model
showcased the efficacy of RG techniques in describing the universal properties of critical
systems [88], laying the groundwork for the modern understanding of universality classes
and scaling laws.
Since its inception, the RG has evolved into a versatile and widely applicable tool across
various domains of physics. Its applications span from quantum field theory and con-
densed matter physics to cosmology and complex systems. The development of different
RG schemes, such as the Wilsonian RG, the functional RG, the RG in the real space and
the RG in the momentum space has further expanded its scope and applicability, [25].
The term ”renormalisation group” can be considered somewhat misleading because the
transformations employed do not constitute a group in the conventional group theory
sense. Additionally, the concept of renormalisation in quantum field theory is not a
fundamental requirement, despite some technical similarities. Instead, the crucial aspect
lies in the process of coarse graining and scale invariance.
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In this work, the real space renormalisation group technique is employed to investigate
the perturbed q-Potts interacting and conformal field theory in two dimensions, d = 2.
The application of the RG method allows for the study of the system’s behavior under
renormalisation transformations, which help to understand its critical properties.
While a comprehensive review of all RG techniques is beyond the scope of this thesis, this
section will provide with the necessary information to facilitate a general understanding
of the results presented in the second part of the thesis. The reader is referred to
[25,39,44], from which this introductory section is inspired, for a deeper introduction to
this technique.
It must be stressed that the RG is a framework which needs to be adapted and reshaped
depending on the problem in analysis.

1.7.1 The RG idea

The fundamental concept of the renormalisation group approach is that there exists a
continuous family of transformations for the coupling constants involved in the statistical
description of a physical theory, corresponding to changes in the length scale of the
system under analysis.
In any physical system, interactions take place at various length scales. The RG pro-
cedure is based on the assumption that these scales are locally interconnected. Conse-
quently, it becomes possible to describe physical phenomena by disregarding interactions
that are irrelevant at a specific scale. This concept can be visualized using a shell struc-
ture, where each scale corresponds to an effective action containing relevant parameters
and degrees of freedom.
It is worth noting that a small change in a particular parameter, which might be in-
significant at one scale, can be amplified through the other scales, resulting in significant
macroscopic changes. This behavior arises from the hierarchical structure of interactions
within the system.
To apply the RG procedure, one begins by selecting a desired length scale through an
appropriate choice of action. The subsequent step involves finding a procedure that
facilitates the transition to the next length scale. In the context of statistical physics,
this entails averaging fluctuations within a specific range of length, denoted as r, which
serves as the RG scale. It is essential for r to be larger than the lattice spacing l
(for discrete systems) and smaller than the correlation length of the physical entities,
denoted as ξ. By integrating out these fluctuations, one obtains a system with a new
lattice spacing, denoted as l′ = r× l, or equivalently, a new length scale x′ = x/r, where
x is the length scale before rescaling. This effectively allows for the examination of the
system at a different length scale.
Following the averaging process, the unaffected degrees of freedom can be described using
a new effective action. This procedure, corresponds to the coarse graining discussed in
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Section (1.3). By iteratively applying the coarse graining operation, it becomes possible
to compute amplifying or de-amplifying factors, denoted as λi, which are the eigenvalues
of the linearized version of the RG transformation. If a coupling constant is amplified,
it is referred to as a relevant coupling, whereas if it is reduced, it is termed an irrelevant
coupling.

1.7.2 RG procedure on a discrete lattice

The name ”real space RG” derives from the fact that the RG transformation, described
in this section, occurs in position space on a lattice or a continuous space.
To be more clear, one can consider a statistical spin system defined on a regular lattice
with spacing l, where d > 1 denotes the dimensionality of the space. The system is
described by a Hamiltonian H(si, ck), where ck represents the set of all possible coupling
constants allowed by the symmetry and nature of the spin degrees of freedom. It’s worth
noting that there is a change in notation here. Previously, the couplings were denoted as
Ji,j . However, these specific couplings are just an example within the more general set
ck, which encompasses other interactions such as next-to-nearest neighbor interactions
and so on.
Typically, the couplings in the statistical theory are defined with the inclusion of the
inverse Boltzmann weight, which is also the case in this study. Consequently, for a given
value of ck, a correlation length ξ(ck) is associated. As usual, this effectively measures
the extent of correlation between spins. A smaller value of ξ(ck) corresponds to a more
accurate perturbative description of the statistical theory.
Based on this understanding, comes the idea of scale-transforming l → r × l. Through
this transformation, a correspondence is established between a correlation length on a
lattice with spacing l and one with a lattice spacing l′ = r × l, specifically ξ′ = ξ/r < ξ.
If such a transformation exists, it can lead to a simpler or solvable reformulation of the
problem.
It is important to note that in the case of a critical theory, where ξ → ∞, the scale
invariance preserves the correlation length.
The degrees of freedom within a sphere of radius r × l, where l ≪ r × l ≪ ξ, can
be treated as a single entity. Therefore, one can imagine magnifying the lattice and
considering these spins as a collective unit. This division of the system into blocks Bk
with rd spins allows for the assignment of a value to each block according to a reasonable
statistical rule f :

s
(1)
i = f({s(0)i } ∈ Bk). (1.61)

After applying the rule of Eq. (1.61) to all the spins, only the lattice spacing is rescaled
back to its original value, without altering the spin values, in order to obtain the same
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lattice as the initial one. This procedure is referred to as an RG step and is schematically
represented in the following Figure (1.9).

c′k

s
(1)
z = f({si}(0) ∈ Bk)

Block transformation

on scale r.

Rescaling back to the

initial lattice spacing, l.

r × l

s
(0)
i

s
(0)
j

r

l

ck

Before rescaling.

s
(1)
z

c′′k

l

Figure 1.9. Graphical sketch of the RG procedure on a lattice with initial lattice spacing l. r
is the RG scale, the red square represent the block Bk and f(· · · ) is the statistical
rule that assigns a value to the new spin, s(1)z . The sets, ck, c′k, and c′′k are respec-
tively the original couplings, the couplings after the block transformation, and the
couplings once the system has been scaled back to the original lattice spacing.

There is a wide range of choices for the law f , with decimation and majority rule being
the most common ones [39]. However, what truly matters is the asymptotic behavior in
the limit of a large number of RG steps, nRG ≫ 1. Therefore, different laws may lead
to the same physical picture.
An important requirement for these transformations is that they must preserve the
partition function after each RG step, i.e.

Z(nRG+1)(c
(nRG+1)
k ) = Z(nRG)(c

(nRG)
k ). (1.62)

The invariance of the partition function implies the invariance of the entire probability
measure.
Hence, the partition function at the (nRG + 1)-step is connected to the effective Hamil-
tonian, denoted as H(nRG+1). For the procedure to be successful, it is crucial that the
functional form of the Hamiltonian at the (nRG+1)-step remains the same as that at the
nRG-step. The difference lies in the couplings used in the Hamiltonians. To guarantee
this consistency, it is essential to start with all the possible and permissible couplings
from the beginning of the computation.
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Couplings, flow and fixed points

At this stage, one can associate the set of all couplings {c(nRG)} = {c(nRG)
1 , c

(nRG)
2 , · · · , c(nRG)

k }
with the effective Hamiltonian H(nRG). This set of couplings forms a manifold in the cou-
pling space. Each RG step corresponds to the movement of a point within this manifold,
following a certain law:

{c(nRG)} = T ({c(nRG)}). (1.63)

By iterating the RG steps, one can traverse the coupling manifold by following the
trajectories determined by a generic and typically nonlinear map T .
After applying Eq. (1.63), the correlation length should be measured with respect to the
rescaled lattice spacing:

ξ(c(nRG+1)) = r−1ξ(c(nRG)). (1.64)

Therefore, at each iteration, the correlation length decreases, indicating a progressive
coarsening of the system.
Upon studying the RG trajectories, it is commonly observed that they exhibit a smooth
convergence towards specific fixed points. These fixed points are characterized by the
property that the couplings remain unchanged under the RG transformation, represent-
ing stationary points of the flow:

c∗ = T (c∗). (1.65)

At these fixed points, the correlation length can be either zero or infinite, indeed:

ξ(c∗) = r−1ξ(c∗). (1.66)

It is well known that when the correlation length diverges, the system is at a critical
point. Therefore, fixed points with a diverging correlation length correspond to critical
points, while fixed points with a vanishing correlation length are referred to as trivial
fixed points.
Additionally, fixed points can be classified as follows:

• Attractive: The flow converges towards this point.
• Repulsive: The flow diverges close to this point.
• Mixed: The flow can either converge or diverge depending on the direction of the

flow close to this point.
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Figure 1.10. The figure illustrates the trajectories of the RG flow (black) along with an attrac-
tive fixed point (green) and a repulsive fixed point (red).

One can gain insights into the nature of a fixed point by examining a linearized version
of the flow in its vicinity, where the coupling constant is perturbed as c = c∗ + δc, with
δc being infinitesimal. This can be expressed as:

c∗ + δc′ = T (c∗ + δc) ≃ T (c∗) +M δc, (1.67)

By introducing the notation δc′a = Ma,b δcb, where Ma,b is the matrix defined as the
partial derivative of Ta with respect to cb, Ma,b =

∂Ta
∂cb

, one can identify the eigenvalues

λi and eigenvectors ∆i of M. Consequently, it becomes possible to define a linear
combination of the shifts δca as follows:

gi =
∑
a

∆i
aδca. (1.68)

The scaling variable gi is so named because it possesses the property of undergoing
multiplicative transformations under RG transformations, meaning that it transforms
as:

g′i =
∑
a

∆i
aδc

′
a =

∑
a,b

∆i
aMa,bδcb =

∑
b

λi∆i
b δcb = λi gi = ryi gi. (1.69)

The eigenvalues λi are commonly expressed as functions of the RG scale r, λi = ryi ,
where yi are (improperly) called the eigenvalues of the RG transformation.



General and common introduction 49

• If yi > 0, the scaling variable gi is considered relevant, indicating that this
variable drives the flow away from the fixed point.

• If yi < 0, the scaling variable gi is considered irrelevant, indicating that this
variable is suppressed and tends towards zero under the RG flow.

• If yi = 0, the scaling variable gi is considered marginal, meaning that its
value remains unchanged under the RG transformation.

An important clarification regarding notation needs to be made. The scaling variables
consist of shifts in the Hamiltonian’s couplings c, and they are coupled to the scaling
operator. Therefore, for these reasons, they are referred to as couplings. If the usage of
the term could potentially cause confusion, it will be explicitly stated.
To conclude, one can list the properties of the RG flow:

• RG trajectories intersect only at fixed points.

• Activation of a relevant scaling variable in the Hamiltonian at a fixed point
causes the system to move away from that fixed point.

• During the flow, trajectories can come close to other fixed points, leading
to crossover phenomena between the fixed points.

1.7.3 Field theoretical formulation

In the vicinity of a critical point, which is the focus of this work, a statistical system
can be described by a statistical field theory associated with a generic action, denoted
as S (see Sec.(1.3) and Eq.(1.48)). The partition function can be related to this action
through a functional integral, given by:

Z({c}, l) =
∫

Dψ e−S(ψ, {c}). (1.70)

Here, {c}, represents the manifold of couplings, and l corresponds to the previous lat-
tice spacing. In a continuous theory, l serves as a cutoff, preventing ultraviolet (UV)
divergences from arising. Usually the UV cutoff is implied.
If one imagine to be at a new fixed point, described by S∗, with nrel relevant scaling
variables, {u1, · · · , unrel} associated to the fields {ψ1, · · · , ψnrel}, one has:

S = S∗ +

nrel∑
i=1

gi

∫
dd xψi(x), (1.71)



50 General and common introduction

which has exactly the same form as Eq. (1.48), thus, S∗ can and will be an interacting
theory in this study.
When a scaling transformation is applied in the RG step, one has:

x→ x′ = x/r,

gi → g′i = ryi gi, (1.72)
dd x→ dd x′ = r−d dd x,

ψi → ψ′
i = r(d−yi)ψi, with d− yi = hi, the scaling dimension.

When one scales back the system to the original cutoff in the RG procedure, the cou-
plings, g, get rescaled by rd−hi , based on simple dimensional analysis.
The action is designed to be independent of the parameter r, and to achieve this, one
derives the scaling behavior of the ψ operator as shown in Eq. (1.72). Through this
scaling analysis, one can define the scaling dimension, denoted as hi.
Having established the concept of scaling dimension, an important result can be derived
concerning the two-point correlation function:

G(|x1 − x2|) = ⟨ψi(x1)ψi(x2)⟩S∗ =
1

|x1 − x2|2hi
. (1.73)

The proof is beyond the scope of this thesis but can be found in [25,39].
Thus, to summarize, a change in the coupling constants c and, consequently g, resulting
from a rescaling by r, leaves the physical features of the theory unaltered. One can choose
r to be infinitesimally close to 1, r = 1 + δr and obtain an infinitesimal modification of
the couplings, i.e.

ga → g′a = ga +
dga
dr

δr +O((δr)2). (1.74)

Thus, one can express the RG transformation through a differential equation, called
β-function:

βa({g}) = r
dga
dr

, (1.75)

whose zeros correspond to fixed points of the theory, where the couplings are not mod-
ified. The β-functions are often known in the form of a perturbative expansion of the
coupling constants. In the literature, the concept of β-functions and RG-loops is fre-
quently encountered. Here is a breakdown:
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In this formalism, β-functions at the 0-loop level have only linear terms in the couplings
g. They can be computed easily using simple dimensional analysis [25], by using the
results of Section (4.3.1). β-functions at the 1-loop level have quadratic terms in the
couplings. They are related to the three-point function of the scaling operators [25].
β-functions at the 2-loops level have cubic terms in the couplings and are generally
more challenging to calculate. They are related to the four-point function of the scaling
operators. Some 2-loops β-functions will be computed in [8] and in the second part of
this work.
To provide a clearer understanding of the RG procedure in the continuous limit and the
concept of ”loops”, one can imagine that 1-loop corresponds to ”putting in the same
block” two operators. After the rescaling, a law describing the collapse, usually referred
to as the contraction, of these two operators, in the same RG-block, is required. This
defines the field in the rescaled version of the lattice. In d = 2 dimensions, which is the
relevant dimensionality for this study, conformal field theory (CFT) provides a precise
way to do this operation, by using contraction rules. These are known as the operator
product expansions (OPE), [8,25,39]. At the 2-loops level, three operators are collapsed
together, making the calculations more challenging.
A complete introduction to CFT and OPE goes beyond the scope of this thesis. Nev-
ertheless, simple and useful OPE contraction rules, for the scaling operators relevant to
the description of the physics of the Ising and Potts model are given in Sec (4.2.3). One
can consider these rules as the general law, f(· · · ), used in the discrete part of the RG
introduction. Essentially, these rules provide a way to represent the merging or collaps-
ing operators by projecting them onto another operator with appropriate weights. In
Fig. (1.11) there is a graphical representation of these concepts.

Concretely, in this situation, the objective is to examine the behavior of the corre-
lation between specific operators in the limit where these operators are very close
to each other while being infinitely far away from other operators in the theory
(not represented in Fig. (1.11)) i.e.

lim
|x1−x2|≫|x1−xl|

⟨ψi(x1)ψi(x2)
nope∏
l=2

ψl(xl)⟩S∗ , (1.76)

with
nope∏
l=2

ψl(xl) = Ψ and nope the number of operators in the game.

The idea of the OPE is that, in this limit, Eq. (1.76) can be written in the following
form:

∑
k

Cijk(|x1 − x2|)⟨ψk(xk)Ψ⟩S∗ , (1.77)
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where the index k runs over scaling operators and the position xk is the new
position of the operator ψk, projected on Ψ. It can be proven, see [25, 39], that
the function Cijk has the form:

Cijk(|x1 − x2|) =
cijk

|x1 − x2|hi+hj−hk
, (1.78)

where cijk are universal structure constants to be computed.

ϵ-expansion

The apporach that will be used in the computations is the ϵ-expansion scheme, [25,39].
This technique is particularly useful when studying systems that exhibit two or more
nearby renormalisationmalization group (RG) fixed points and involve a small parame-
ter, typically denoted as ϵ. This parameter is often related to the system’s dimensionality,
d, or the number of states, q, in the case of Potts models. By adjusting ϵ, one can bring
the two fixed points into close proximity.
The ϵ-expansion serves as a useful tool in situations where one aims to characterize a
fixed point, referred to as the new fixed point, even when information is available just
about a, so called, trivial fixed point. By employing the ϵ-expansion, universal proper-
ties associated with the new fixed point can be inferred by utilizing information obtained
from the trivial fixed point. By expressing physical quantities as series expansions in
terms of the parameter ϵ, a systematic framework is established for describing the be-
havior of the new fixed point and determining its critical exponents, scaling dimensions,
and other relevant properties. This perfectly aligns with the objective of Section (4.3),
where RG computations are performed. As an illustrative example, one can consider
the uncorrelated disordered Potts model analyzed in [44]. Starting from the well known
and ”trivial” pure Potts fixed point, the goal is to compute the new critical exponents
at the (eventual) newly emerged critical points as a function of ϵ = q − 2. Notably,
when q = 2, the new (eventual) random fixed point and the pure fixed point coincide,
since that short-range disorder is a marginal perturbation in this case. Contrastingly,
the standard example of ϵ-expansion in textbooks involves studying a ϕ4 theory, see
Eq. (1.13), near (below) the upper-critical dimension, employing ϵ = 4 − d as a small
parameter. At d = 4, the mean field results hold true, and the system is described by the
Gaussian fixed point. However, as d deviates from 4, the mean field approach becomes
inadequate, and the system is governed by the Wilson-Fisher fixed point (WF), [25].
This WF point, at exactly d = 4, collapses with the Gaussian one. In this scenario, the
perturbed theory corresponds to a free field theory.
In this approach, the β-functions are expanded perturbatively with respect to the pa-
rameter ϵ. While a comprehensive exploration of the entire ϵ-expansion theory is beyond
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Figure 1.11. Graphical illustration of the RG procedure. The Operator Product Expansion
(OPE) is utilized to express operators after the length rescaling. Therefore, the
C-coefficients are associated with this transformation. In this example, two fields
ϕ are projected onto a Φ field, while the three ψ fields are projected onto a Ψ
field. The new fields, Φ and Ψ are fixed by the OPE of the model.
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the scope of this thesis, an illustrative example can be provided to demonstrate its ap-
plication.

In this simple example, one considers a single coupling parameter g and an in-
finitesimal RG transformation. Without loss of generality, one can put the trivial
fixed point located at gtrivial = 0 and the new fixed point at g = gnew = O(ϵ). It
is assumed that the β-function is analytic in g and, for sufficiently small values of
g, its form is fully determined by its zeros.

β(g) = r
dg

dr
= −V (g − gtrivial) (g − gnew) = −V g (g − gnew), (1.79)

with V a generic constant of O(1). Being present just a single coupling, the RG
stability matrix is given by:

dβ(g)

dg
= −V (g − gnew)− V g, (1.80)

and thus one has:®
At g = gtrivial = 0 The RG eigenvalue is: Vgnew = O(ϵ).

At g = gnew → The RG eigenvalue is: − Vgnew = O(ϵ).
(1.81)

If Vgnew > 0, the trivial fixed point is unstable and, for g > 0, the flow goes
towards the new fixed point at gnew.
If now one consider another coupling, called, g1 which is a scaling variable at the
trivial fixed point, one has that its β-function for small g and g1, with g1 ≪ g, is :

β(g1) = r
dg1
dr

= y1g1 + X g g1 +O(g2, g21) (1.82)

Here, X represents a constant and y1 is the RG eigenvalue associated with the
scaling variable g1.
Consequently, at this order, the RG eigenvalue of g1 at the new fixed point can
be expressed as y1 +X gnew, indicating that it is modified by an amount of O(ϵ).
This concept lies at the core of the ϵ-expansion technique.

1.7.4 RG-procedure: conformal perturbation theory with ϵ-expansion

To summarize and emphasize the key points for better comprehension of the second part
of the thesis, the employed RG procedure for a disordered system in a conformal d = 2
scenario, unfolds as follows:
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• In the case of a two-dimensional system (d = 2), one can leverage results
from Conformal Field Theory (CFT). This includes utilizing knowledge
about the interacting action of the statistical system at the trivial fixed
point, denoted as S∗, as well as the Operator Product Expansion (OPE)
involving scaling operators such as ε and ϕ, for example. Additionally, the
scaling dimensions of these operators, denoted as hε and hσ, are also taken
from these results.

• The analysis of the system begins by perturbing the action at the known
fixed point using relevant scaling variables and scaling operators. This is
done within a replicated formalism:

S(n) = S∗+g
n∑

α=1

∫
d2 xϕ(x) ε(α)(x) + g1

n∑
α ̸=β=1

∫
d2 xε(α)(x) ε(β)(x)

︸ ︷︷ ︸
perturbation with respect to the trivial fixed point.

• A series of RG steps, as described in Section (1.7.3), are performed.

• By using:

Zn = Z∗〈1 + g
n∑

α=1

∫
d2 xϕ(x)ε(α)(x) + g1

n∑
α ̸=β=1

∫
d2 xε(α)(x)ε(β)(x)+

+
1

2!
g2

n∑
α=1

n∑
β=1

∫∫
d2 xd2 y ϕ(x)ε(α)(x)ϕ(y)ε(β)(y)+

+
1

2!
g21

n∑
α=1

n∑
β=1

∫∫
d2 xd2 y ϕ(x)ε(α)(x)ϕ(y)ε(β)(y)+

+ g × g1

n∑
α=1

n∑
β ̸=γ=1

∫∫
d2 xd2 y ϕ(x)ε(α)(x) ε(β)(y)ε(γ)(y) + · · ·

〉
S∗

and by exploiting the partition function’s invariance under RG transforma-
tions, the renormalisation of the couplings g and g1 can be calculated.

• The β-functions of the analyzed new fixed points are determined through
an ϵ-expansion.

• By examining the stability of these β-functions, one can understand the flow
of the RG trajectories.

• The characteristics of the new fixed points are studied by linearizing the
flow near these fixed points.

• Critical exponents of the new fixed points are computed.





Part I

Dynamics out-of-equilibrium
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Chapter 2

Low-temperature dynamics of the Potts
model in the q ≫ 1 limit

Preface

Using as a starting point the work on the large q-Potts model done in [55], this chap-
ter, derived from the papers [5, 6], focuses on out-of-equilibrium statistical physics and
represents the first conceptual block of this thesis.

Synthesis of the results

The study conducted a combination of analytic arguments and numerical simulations
using the Potts model on square, triangular, honeycomb, and cubic lattices with N = Ld,
a final temperature T and q ∈ {4, · · · ,∞}. All the lattice have periodic boundary
conditions and the parameters L, q and T will be explicitely stated for every case. In this
chapter, it is identified a temperature range around the critical one in which the q → ∞
model remains metastable after both lower and upper critical quenches. Even for not-so-
large values of q, the lifetime of the metastable states can exceed any numerical reachable
time-span for sub-critical quenches. Also, it is determined the spinodal crossover between
a region in which metastable states appears and a region where this phenomen is not
present at the temperature Ts = 2Tc(q)/z. In the sub-spinodal region, for large q a
freezing of the dynamics blocks the equilibration process in the square and honeycomb
lattices. The proper physical time scale of the freezing regime has been found and tested
numerically. Once rescaling by this very time the dynamics is found to be universal for
any q and T in the phase space region: q ≫ 1 and T ≤ Ts. In the triangular lattice no
freezing is observed. Additionally, the study found that freezing exists also for the cubic
lattice with the same coordination number as the trinagular one. It is proposed, that
the unitary structure of the lattices, composed of a central spin linked to its z neighbors,
is responsible for the different behaviors at low temperatures. For lattices with cyclic
unitary structure, there is no freezing, but if it is acyclic, the dynamics will freeze in
blocked states.

— 59 —
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2.1 Introduction

One of the peculiarities of studying the ferromagnetic Potts model is that, for q > qc = 4,
the phase transition is of first order. As a result, the quench dynamics across this
transition not only involves the well-known coarsening phenomena but also the features
of metastability and nucleation. The interplay between these phenomena is not yet fully
understood [27,90–97].
This chapter presents a study of the equilibration dynamics in the large q bidimensional
ferromagnetic Potts model based on the results of [55]. The focus is on the coarsening
process, the low-temperature freezing, and the metastability close to criticality. The
influence of the final reduced temperature T/Tc(q) and the number of states q on the
dynamical properties is also analyzed. A significant finding of this study is the location
of the crossover temperature below which high-temperature metastability in sub-critical
quenches is no longer important, i.e. the (pseudo)-spinodal1 [98], for various lattice
geometries, in d = {2, 3}. A very important result of this work is that a freezing behavior
is observed for the square and honeycomb lattice topologies but not for the triangular
lattice topology. The relevant time-scale is of Arrhenius form, eJ/T , and independent of
q for q ≫ 1. Once taken into account this proper time, dynamic scaling is universal.
Thus, some questions may arise: what causes the dynamics to block for the square
and honeycomb lattices but not for the triangular lattice, and what are the lattice
properties that induce these two types of behavior? Following previous research findings,
it was proposed that the presence or absence of freezing in the dynamics is determined
by topological conditions related to the lattice’s coordination number [99–101]. This
hypothesis is tested in the current work by studying the cubic lattice case, which has
the same coordination number as the two-dimensional triangular lattice. It is shown
that freezing also occurs in the cubic lattice. The existence of a (pseudo)-spinodal
temperature with freezing for quenches below this temperature up to a universal time-
scale eJ/T is observed for the cubic lattice too. It is argued that the unitary structure of
the lattices, consisting of a central spin connected to its z neighbors (external spins) is
responsible for the different behaviors at low temperatures. A lattice is called cyclic if
any pair of external spins can be connected by a path in the unitary structure without
going through the central spin, and acyclic otherwise. It is found that lattices with cyclic
unitary structures exhibit no freezing, while those that are acyclic have blocked states
that freeze the dynamics.

2.2 The growing lenght, R(t)

The phenomenon under consideration in this chapter is the dynamics of equilibration
following a sudden quench from infinite temperature at a time t = 0− to a subcritical
temperature T of the large q-Potts model in dimensions d = {2, 3}. It is worth noting

1Actual spinodals are a well defined object just in mean field theories.
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that q ≫ 1, so, it is highly likely that the configuration is composed of a, so called,
”sand” of completely different spins. This means that there are no spins with neighbors
in the same state, or, as will be frequently stated in this thesis, the spins have not formed
any bonds with their neighbors.

Figure 2.1. Example of initial configuration, t = 0−, on a d = 2 square lattice L = 100, with
q = 104. Each colour represents a spin state.

After the quench, the system passes through the first order paramagnetic-ferromagnetic
phase transition line, and an ordering process will eventually take place after a certain
time. However, for certain values of the parameters q and T , metastability can act
against ordering, and it may happen that the latter blocks ordering for rather long
times2. In these cases, the spins are not able to create stable bonds, and a paramagnetic
metastable state persists in the ferromagnetic phase. This will be analyzed in Sec. (2.4).
If ordering starts, spins create bonds with their neighbors, and ferromagnetic clusters of
same-color spins will substitute the sand configuration.
To describe this dynamical process, one needs to define an essential observable: the
growing length R(t; q, T/Tc). This is the typical linear size of a spin domain and is
computed by measuring the density of energy at a given time t for a certain value of the
number of spins’ states q and at a certain temperature T . Specifically, it is given by the
density of energy, N−1HP (si) = e(t; q, T/Tc). It should be noted that the Hamiltonian is
not time-dependent. However, the spin configuration of the system during the dynamical
process evolves every Monte Carlo step (t), and thus the density of energy depends on
time and on parameters such as q and T . For this reason, every measurement is done
for a certain value of q and T , and quantities like the growing length or the energy have
a parametric dependence on those parameters. However, when it is not useful, this will
be implied to keep the notation light. By construction, the energy is associated with the
total interface between different clusters, so one can measure R(t) by using the density

2≃ 104 − 106 Monte Carlo steps, depding on T/Tc and q, [55].
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of energy, i.e.

R(t; q, T/Tc) = l × e(t→ ∞; q, T/Tc)

e(t→ ∞; q, T/Tc)− e(t; q, T/Tc)
. (2.1)

With l the lattice spacing, put to 1 for the sake of simplicity. For a random initial
condition, e(t = 0) ≃ 0 for all q and T/Tc. At very low temperature e(t → ∞) ̸= 0,
(e.g. , for the square lattice, e(t → ∞) ≃ −2J) for all q ≥ 2 and R(t = 0) ≃ 1. In
Fig. (2.2) it is shown an example of spin configuration with an R(t) = 5.

Figure 2.2. Square lattice during the equilibration, L = 100, q = 103, T = Tc/4, R(t) = 5.

By measuring R(t), the dynamical regimes explored by the system can be understood and
characterized as discussed in the following Sections (2.4), (2.5) and (2.6). For instance,
in the disordered metastable state studied in Section (2.4), e(tdis; q, T/Tc) ≃ 0, leading
to R(t) ≃ 1. Therefore, the duration of the system’s disordered state can be determined
by observing the time during which R(t) ≃ 1.
The frozen/blocked regime, instead, is one of the most important for this thesis. It is
identified by measuring R(t), which remains constant but different from 1 for relatively
long times [102] and Sec. (2.5).
Another crucial dynamical regime is the coarsening regime, studied in Section (2.6),
characterized by R(t) ∼ t1/2 [27, 27,58,90,90–93].
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The nucleation phenomenon, depicted by an extremely rapid increase of R(t), is not
essential for the analysis in this thesis. The interested reader is referred to [103] and the
references therein for a deeper analysis.
Finally, the ordered phase is reached when the linear size of the lattice is reached by
R(t).
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Figure 2.3. Different regimes shown by means of a log-log plot of R(t) for a Potts model with
q = 104 on a square lattice with L = 103. In the key the reduced tempera-
tures are shown, together as the curve t1/2, useful to locate the coarsening. For
T/Tc = {0.92, 0.90} metastability is observed as first dynamical regime. Then, this
is escaped by nucleation. For the T/Tc = {0.92, 0.90} curves, the dynamics freezes
after a short transient. This regime is escaped, lately, and the dynamics becomes
of a coarsening kind. Last, for the T/Tc = 0.20 curve, freezing is observed for all
the simulation time span.

2.3 Stochastic microscopic dynamics

This study focuses on sub-critical quenches, where a completely disordered configuration
serves as the initial condition. The system is then quenched to a subcritical temperature,
T < Tc, at t = 0, and subsequent temperature updates are performed using Monte
Carlo simulations. To update the system, a spin value is randomly selected and flipped
according to a microscopic stochastic rule. In a system with N spins, N update attempts
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correspond to a single time-step. Heat bath dynamics [65] is preferred over Glauber as
it allows each move to be a Monte Carlo update, with a rejection occurring only when
the new random color is the same as the starting one, which is highly unlikely due to the
large q value, see Sec.(1.5.2). A continuous time version of the algorithm can be easily
implemented. Details on the transition probabilities and their large q and low T limits
are provided in Sec. (2.3.1).

2.3.1 Large q or T → 0 limits of the heat bath rules on the square lattice

To provide a concrete example, the square lattice heat bath rules will be explicitly
analyzed in this study. These rules are valid for any q > 4. By considering all possible
local configurations and their central spin flip evolution, the ordering phenomenon can be
analyzed step by step. Fig. (2.4) provides a representation of these local configurations
for the square lattice and q > 4.

(0) : (1) : (2) : (3) :

(4) :

(8) :

(5) : (6) : (7) :

(9) : (10) : (11) :

Figure 2.4. All the possible local configurations for q > 4, inspired from [55].

In accordance with the scheme introduced in [55] and depicted in Fig. (2.4), the number
of neighboring spins, sj , that take the same value as a spin si is counted and denoted as
n1. An hierarchy is then constructed in decreasing order of frequency of appearance for
the number of neighbors taking other spin values, denoted as n2, n3, etc. Each possible
configuration can be represented by [n1, n2, . . . ] where only non-zero values of ni are
included. In the case of the square lattice, there are 12 possible local configurations that
are labeled with an integer k = {0, . . . , 11}, as shown in Fig. (2.4).
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Thus, all possible single spin flip transitions can be expressed as:

(0) : [4] → (0), (7). (1) : [3, 1] → (1), (4), (8).

(2) : [2, 2] → (2), (2), (9). (3) : [2, 1, 1] → (3), (5), (10).

(4) : [1, 3] → (4), (1), (8). (5) : [1, 2, 1] → (5), (3), (10).

(6) : [1, 1, 1, 1] → (6), (11). (7) : [0, 4] → (7), (0).

(8) : [0, 3, 1] → (8), (1), (4). (9) : [0, 2, 2] → (9), (2).

(10) : [0, 2, 1, 1] → (10), (3), (5). (11) : [0, 1, 1, 1, 1] → (11), (6).

(2.2)

The formulæ presented below are derived from the following reasoning. The first con-
figuration, denoted as (0), represents a single spin surrounded by four neighbors with
the same color. The central spin can either retain its current value, resulting in the (0)
configuration on the right-hand side of the arrow, or flip to a different value, resulting
in the new configuration (7) : [0, 4]. So, by applying the heat bath rules from Eq. (1.34),
the local configuration (0) will remain the same with probability ∝ e4βJ and change with
probability ∝ (q− 1) e0 for each of the possible (q− 1) values of the flipped central spin.
Normalizing the transition probabilities and setting J = 1, one obtains:

P0→0 =
e4β

e4β + q − 1
, P0→7 =

q − 1

e4β + q − 1
. (2.3)
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Following the same kind of analysis, one can write all the other transition probabilities:

P1→1 =
e3β

e3β + eβ + q − 2
. P1→4 =

eβ

e3β + eβ + q − 2
. P1→8 =

q − 2

e3β + eβ + q − 2
.

P2→2 =
2e2β

2e2β + q − 2
. P2→9 =

q − 2

2e2β + q − 2
.

P3→3 =
e2β

e2β + 2eβ + q − 3
. P3→5 =

2eβ

e2β + 2eβ + q − 3
. P3→10 =

q − 3

e2β + 2eβ + q − 3
.

P4→4 =
eβ

eβ + e3β + q − 2
. P4→1 =

e3β

eβ + e3β + q − 2
. P4→8 =

q − 2

eβ + e3β + q − 2
.

P5→5 =
2eβ

2eβ + e2β + q − 3
. P5→3 =

e2β

2eβ + e2β + q − 3
. P5→10 =

q − 3

2eβ + e2β + q − 3
.

P6→6 =
4eβ

4eβ + q − 4
. P6→11 =

q − 4

4eβ + q − 4
.

P7→7 =
q − 1

e4β + q − 1
. P7→0 =

e4β

e4β + q − 1
.

P8→8 =
q − 2

e3β + eβ + q − 2
. P8→1 =

e3β

e3β + eβ + q − 2
. P8→4 =

eβ

e3β + eβ + q − 2
.

P9→9 =
q − 2

2e2β + q − 2
. P9→2 =

2e2β

2e2β + q − 2
.

P10→10 =
q − 3

e2β + 2eβ + q − 3
. P10→3 =

e2β

e2β + 2eβ + q − 3
. P10→5 =

2eβ

e2β + 2eβ + q − 3
.

P11→11 =
q − 4

4eβ + q − 4
. P11→6 =

4eβ

4eβ + q − 4
.

(2.4)

In the limit of large q, the transition probabilities can be simplified significantly. Us-
ing the relation eβ = eβcTc/T = (1 +

√
q)Tc/T ≃ qTc/2T , one can derive that P11→11

approaches:
• i) 0 for T < Tc/2.
• ii) 1 for Tc/2 < T < Tc.

in this limit. Similar simplifications hold for the probabilities involving states (6) and
(11), whereas other probabilities take on values of either 0 or 1 for T < Tc. In summary,
the limits of the transition probabilities are:
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P0→0 = 1. P0→7 = 0.

P1→1 = 1. P1→4 = 0. P1→8 = 0.

P2→2 = 1. P2→9 = 0.

P3→3 = 1. P3→5 = 0. P3→10 = 0.

P4→4 = 0. P4→1 = 1. P4→8 = 0.

P5→5 = 0. P5→3 = 1. P5→10 = 0.

P6→6 = 1 / 0. P6→11 = 0 / 1.

P7→7 = 0. P7→0 = 1.

P8→8 = 0. P8→1 = 1. P8→4 = 0.

P9→9 = 0. P9→2 = 1.

P10→10 = 0. P10→3 = 1. P10→5 = 0.

P11→11 = 0 / 1. P11→6 = 1 / 0.

(2.5)

The transition probabilities involving (6) and (11) states are presented for T < Tc/2 and
Tc/2 < T < Tc, respectively.
Furthermore, it can be observed that the rules for T < Tc/2 in the large q limit are iden-
tical to those for finite q in the limit T → 0. By utilizing these rules, more information
on the evolution of the system can be provided for both the cases of q → ∞ and T → 0.
For the large q limit, the initial configuration exclusively consists of a ”sand” of (11)
states. If T > Tc/2, the state (11) is stable, and the system remains disordered indef-
initely. Conversely, if T < Tc/2, the (11) states transition into (6) states. In certain
instances, a spin connecting to another spin may already be in a (6) state, resulting in
the formation of a (3) state. Further details regarding the particular value of Tc/2 will
be discussed in Sec. (2.4.2), for each lattice topology.

After a certain number of iterations, all the states in the system will become (0), (1), (2),
or (3) states. These states are stable, meaning they will not evolve unless a neighboring
spin is flipped, see Eq. (2.5).
In the case of finite q and zero temperature, the dynamics is similar to the large q limit.
The main difference is that the initial configuration can contain states other than (11).
Although this difference does not significantly impact influentely the dynamics, it will
still be discussed in Sec. (2.5).
A similar analysis can be conducted for the microscopic updating heat bath rules on the
honeycomb, triangular and cubic lattices. The honeycomb lattice has 6 states in the heat
bath formulation, making the analysis even simpler than for the square lattice with the
12 states discussed earlier [55]. On the other hand, the triangular lattice has 30 states3,

3Just in the case of the triangular lattice, conventional Metropolis updates have been utilized [63].
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Figure 2.5. An example of transitions is presented which, starting from a fully disordered con-
figuration (a), result in partial ordering of the system. In (b), a blue circled spin
changes its value to form a bond with its right neighbor. In (c), an orange circled
spin evolves to have the same color as its right neighbor. As a result, two (6) states
appear in (b) and a (3) state appears in (c). The spins that have the same color
are shown in grey, while the blue bonds indicate non-trivial interactions between
spins, as employed in [55]. Plot taken from [5].

which makes it more tedious to write a heat bath algorithm. However, in the zero-
temperature limit, the transition probabilities become simpler and more manageable.
Results at finite temperature using the three four lattice geometries are presented in
Sections (2.6, 2.7.2, 2.7.3, 2.7.4).

2.4 Metastable regime

At the critical temperature Tc, a phase transition separates the system into an ordered
and a disordered phase. It might be naively expected that starting from an initial
disordered configuration at super-critical temperature and suddenly lowering the tem-
perature below the critical value would cause the system to order after a short transient
period. However, simple considerations demonstrate that this does not always occur,
particularly in the infinite q limit. The dynamics of the system can remain stuck in a
metastable paramagnetic state, even at T < Tc, for rather long time intervals. This is
because the ordered and disordered phases, separated by a first order transition, create
a mixed phase region in the vicinity of Tc [58], resulting in metastability. The numerical
analysis in Section (2.7) will show that, for finite but still large q, R(t) remains close to
one in the metastable state, i.e. R(tmet) ≃ 1, for rather long time intervals, see [55] for
a more precise description.
Although this thesis will not include it, the investigation of metastable states and spin
dynamics presents a significant and complex subject in the field of spin glasses, as demon-
strated in [104], for instance.
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2.4.1 Gibbs-Dhuem criterion

To properly describe the phenomenon discussed, the use of the Gibbs-Dhuem criterion
is helpful [105]. In order to achieve equilibrium, it is necessary to be in an absolute
minimum of a suitable thermodynamic potential, such as the Helmholtz free energy:

F = ⟨H⟩ − TS. (2.6)

This potential is minimized at finite temperature by maximizing the entropy and min-
imizing the internal energy. The minimum of the free energy must be so for all in-
finitesimal variations of each phase space variable. One can expand ∆F in a series of
infinitesimal variations near an equilibrium point:

∆F = δF +
1

2
δ2F +

1

3!
δ3F +

1

4!
δ4F + . . . (2.7)

To be in the equilibrium configuration, the condition δF = 0 is necessary. If, in addition,
one has δ2F , δ3F , δ4F , · · · > 0, the equilibrium is stable, meaning that the system is in
the absolute minimum. If instead δ2F > 0 but δ3F , δ4F , · · · < 0, the equilibrium
is metastable. This indicates that the system is in a relative minimum and that the
absolute minimum could be reached with some thermal perturbation. A certain barrier
must be crossed to reach the stable equilibrium configuration, which can take extremely
long times, even infinitely long. If δ2F < 0, the equilibrium is unstable, indicating that
the system is at a maximum of the free energy and that a very small perturbation can
cause the system to collapse into a more stable state.
The spinodal curve is defined by the condition δ2F = 0. It provides important informa-
tion regarding the metastability limit of the equilibrium [105].
In the study of phase transitions, spinodals are well-defined objects only in mean field
theory. Therefore, this work deals exclusively with (pseudo)-spinodals, see [106] for more
insights on this phenomenon. These serve as the threshold below which metastability is
not observed.

2.4.2 Spinodals in the Potts Model

In the following, the location of the (pseudo)-spinodal temperature, in the q → ∞ limit,
will be determined. In this limit, the critical temperatures of the square, triangular,
honeycomb and cubic lattice Potts models are given by Eq. (1.27) which can also be
expressed as:

eβcJ ≃ q2/z. (2.8)

One can start by locating the upper (pseudo)-spinodal by considering, as a starting point,
a fully ordered state at T < Tc and looking for the smallest super-critical temperature
above which the system starts to disorder. The Boltzmann equilibrium weight of one (out
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Figure 2.6. Metastable, unstable, and stable equilibria are represented by a relative minimum, a
maximum, and an absolute minimum of a thermodynamic potential with respect to
a phase space variable. The direction of the eventual dynamical evolution triggered
by a thermal fluctuation is indicated by the violet arrow.

of q) fully ordered configurations, one of the ground states, is P1ground = eβ(zJ/2)N/Z,
with Z the partition function and N the number of spins. A first excited state is obtained
from this ground state by changing a single spin to any of the other q − 1 orientations.
The energy gap is Eexc − E1ground = zJ and the ratio of the two probabilities tends to
Pexc/P1ground ≃ qe−βzJ in the large q limit. Accordingly, the change of a spin can occur,
in the large q limit, if and only if eβzJ < q. On the square, triangular and honeycomb
lattices one can use Eq. (2.8) to prove that the disordering dynamics can be active only
for:

β < βc/2 or T > 2Tc. (2.9)

Thus, starting from a completely ordered state, the system either i) remains blocked in
this ground state at any temperature T < 2Tc or ii) disorders completely at T > 2Tc.
Next, one can consider the case in which the initial state is disordered at T > Tc
and determine the highest sub-critical temperature below which the ordering process
can start to occur. This is the lower (pseudo)-spinodal. This temperature is also of
particular interest for this thesis and will be used in the following Sections. Because of
the q → ∞ limit, typically, each spin takes a different value. The energy of such a fully
disordered configuration vanishes, Edis = 0, and its probability weight is Pdis = qN/Z.
After a quench to a sub-critical temperature, one of the N available spins will try to
align with one of its neighbors. The energy of a state with a bond is then Ebond = −J
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and its probability Pbond = (eβJ/q)Pdis. The condition to start ordering is then:

Pbond

Pdis
≥ 1 ⇒ eβJ ≥ q ≃ eβcJz/2 ⇒ β ≥ zβc

2
or T ≤ 2Tc

z
= Ts. (2.10)

0
2Tc
z

= Ts
2TcTc

T

Metastable region

Lower spinodal Upper spinodal

Figure 2.7. Sketch of the (pseudo)-spinodals postions.

Resuming:

Lattice Dimensions Coordination Number Tc(q ≫ 1) Ts(q ≫ 1)

Honeycomb d = 2 z = 3 3J/2 log(q) 2Tc/3

Square d = 2 z = 4 2J/ log(q) 2Tc/4

Triangular d = 2 z = 6 3J/ log(q) 2Tc/6

Cubic d = 3 z = 6 3J/ log(q) 2Tc/6

Table 2.1. Critical temperature and (pseudo)-spinodal for different lattice geometries in d = 2
and d = 3.

Taking into account the outcomes of the metastability analysis [55] and summarizing
these observations, one can conclude that the non-trivial ordering process, in the infinite
q limit, is restricted to a quench from a disordered state to T ≤ 2Tc/z = Ts. Depending
on the nature of the lattice, the phase ordering kinetics at T ≤ 2Tc/z may traverse
temporarily blocked states (see Sec.(2.5)) characterized by intriguing patterns, like the
ones depicted in Fig.(2.9) for the square geometry. These are typical zero temperature
blocked states, similar to the ones analyzed in [102,107–109]. Conversely, for Ts < T < Tc
the dynamics become stuck in relatively prolonged metastable states [55], which can
persist indefinitely as q → ∞.
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2.5 Blocked state regime

However, in practice, this does not mean that after a quench to T ≤ 2Tc/z the state
will order completely, this is a very important regime for this study and thus will be
analysed deeply. This particular states have been found in the square, honeycomb and
cubic lattice topology. In this section the main focus is on the square lattice, for the sake
of simplicity, and every time a different lattice is used is explicitely stated. However,
different subsections for each lattice toplogies are present in the following section (2.7).

2.5.1 Blocked states at q → ∞

For the moment, the focus is put on the square lattice problem. Indeed, by using heat
bath rules in the q ≫ 1 limit [1, 2], each spin will try to align with one of its neighbors.
Thus, after a full update of the lattice, all the spins will have created a ”satisfied” bond
with a random neighbor. At the next update, any of these bonds can break if one of the
spins in the pair changes to take the value of another neighbor.
It is easy to observe that if a spin has the same value as two of its neighbors, E2bonds =
−2J , it will then be much more stable than if it aligns with only one of its neighbors,
Ebond = −J . If the two bonds form a corner, as shown in Fig. (2.8), then another spin
which close a square will have a large probability to take the same value, adding two
more bonds. It is then easy to see that squares and rectangles form the most stable
structures. Consequently, after a few iterations, the configurations are filled with small
squares and rectangles. In particular, one observes the existence of so called T -junctions
which were identified as the main reason for which blocked states occur in finite q-Potts
models at zero temperature [102,110,111].
Typical snapshots displaying this geometrical phenomen, are shown in Fig. (2.9), after
a quench of the square lattice Potts model towards T < Tc/2. In the infinite q limit, the
dynamics at T < Tc/2 is at effectively vanishing temperature, and these configurations
are stable. Thus, this run has only partially ordered on the square lattice. This, can be
easily seen by considering the spin labelled by (1) and (3) in Fig. (2.8), and the q → ∞
limit of the heat bath transition rules. Indeed, the orange spin (1), being in configuration
(1) of Fig. (2.4), can only go stay in (1) or go to configurations (4), (8), but in the infinite
q limit, the stochastic rules imposes that it is stable in (1) with probability 1 since:

P1→1 =
e3β

e3β + eβ + q − 2
→ 1, for q ≫ 1,

P1→4 =
eβ

e3β + eβ + q − 2
→ 0, for q ≫ 1,

P1→8 =
q − 2

e3β + eβ + q − 2
→ 0, for q ≫ 1.

(2.11)
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3 3

11

Figure 2.8. Example of the formation of a T-junction on the square lattice. In the top part
of the figure a bond between spins is explicitely drawn. It is, in anyways, implied
whenever two neighbouring spins are in the same state.

Same analysis can be done for the two (3) spins, the red and the green ones. They could
flip to build states (5) or (10), but in the q → ∞ limit, they are obliged to keep their
colours and remain in (3):

P3→3 =
e2β

e2β + 2eβ + q − 3
→ 1, for q ≫ 1,

P3→5 =
2eβ

e2β + 2eβ + q − 3
→ 0, for q ≫ 1,

P3→10 =
q − 3

e2β + 2eβ + q − 3
→ 1, for q ≫ 1.

(2.12)

For this reason, flat interfaces are stables and these highly symmetrical geometrical
structures appears in snapshots of the lattice, see Fig. (2.9).

The typical linear size of the blocked states in d = 2

In this Section, by using the similarity of the q → ∞ model quenched to T/Tc ≤ 2/z and
the finite q model quenched to zero temperature exploited in Sec. (2.3.1) more insights
on these frozen state will be given. The similarity between the two limits discussed,
is proven in Fig. (2.10) where it is shown the growing length R as a function of time
in various cases of interest. In the square lattice model with q → ∞ quenched to
T < Tc/2 the dynamics eventually block, in the way illustrated in Fig. (2.8), with R
approaching, very quickly at t ≃ 10, a plateau at Rp ≃ 3.63 in lattice spacing units,
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(a) Blocked state. (b) Figure (a) magnified, 100 × 100 section of
the lattice.

(c) Figure (a) magnified again, 10 × 10 section
of the lattice.

Figure 2.9. Snapshots of the lattice to see blocked states for the Potts model at T = 0.40Tc < Ts
with q = 104, L = 103. The last two figures have been magnified to see better the
interfaces. In (c), the presence of T -junctions, flat interfaces and corners is evident.

l = 1. Besides, the zero temperature quench of a q = 103 model shows a very similar
behavior, with asymptotically blocked states of the same kind, and roughly the same
value of Rp. It has been checked that the similarity persists for all q ≥ 102 quenched to
T = 0. Exceptions to the equivalence are found for sufficiently small q. For example,
for q = 10, Rp fluctuates from sample to sample. Indeed, one can show that the value
of the plateau has a weak dependence on q. Using a lattice with L = 103, one measures
Rp ≃ 3.898(1) for q = 102, Rp = 3.635(1) for q = 103, and Rp = 3.632(1) for q = 105,
this last value being compatible with the infinite q one. A detailed check of all cases
between q = 10 and q = 102 has not been done, and the analysis is thus focused on
large enough q. Moreover, for large lattices such as L = 103 and q = 10, even at zero
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temperature, some samples can escape the temporarily blocked configurations and reach
a nearly equilibrated state.

 1

 2

 3

 4

 5

 6

 7

 8

100 101 102 103

R

t

SL, q → ∞, T< Tc/2
SL, q=1000, T=0

HL, q → ∞, T< 2 Tc/3
HL, q=2, T=0

TL, q → ∞, T < Tc/3
TL, q=1000, T=0

 t1/2 

Figure 2.10. The growing length R vs. t of the Potts model on the square (SL), honeycomb
(HL) and triangular (TL) lattices with L = 103. Different curves correspond to
values of q and T given in the key. Note the absence of freezing in the triangular
lattice case. Taken from [5].

The same equivalence is observed on the honeycomb lattice, with coordination number
z = 3, see the other pair of curves in Fig. (2.10), which approach Rp ≃ 4. The curves
show data for the infinite q limit with the condition T < 2Tc/3, and the zero temperature
quench of the Ising model, q = 2. The latter case was already considered in [112] where
it was observed that R saturates to a value Rp ≃ 4 after a rather short time, t ≃ 10.
This is due to the existence of frozen configurations on the odd-coordinated honeycomb
lattice, see Sec. (6.1) in [112]. Then, for this lattice, the behavior at T < 2Tc/3 and
infinite q is similar to the one at T = 0 for any q ≥ 2.
Last, one can also analyse data for the triangular lattice for the the infinite q limit with
the condition T < Tc/3 and at T = 0 and q = 103. For this lattice, the dynamics does
not block. For the largest times, the growing length R(t) ∼ t1/2 as expected for standard
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curvature driven coarsening. The absence of blocking states at zero temperature for the
triangular lattice is known since a very long time [57, 99] and was discussed in a recent
work for small values of q [108]. An argument explainig this particular behavior will be
given in Sec. (2.8.2).

2.5.2 Blocked states on the square lattice at finite q: the proper time tS

One may consider, again, the blocked configuration obtained after a quench from a
disordered initial state to T < Tc/2 in the q infinite limit of the Potts model on a L = 10
square lattice. Such a configuration is shown in the (a) panel of Fig. (2.11), where the
state in which each boundary spin is has been highlighted, using the notation introduced
in Sec. (2.3.1). For this particular configuration, a direct inspection shows that only four
types of states exist, (0), (1), (2) and (3). The (3) states, shown as green squares ■, lie
on the corners of the interfaces. They are spins with two neighbors taking the same value
and two neighbors taking different values from the central one and being also different
from each other. The (2) states, shown as a blue crosses (X), are blinking states: the
central spin has two neighbors with the same value and two neighbors with an identical
value which is, however, different from the central one. For the configuration shown in
the (a) panel of Fig. (2.11), there is only one blinking state (close to the upper right
corner). The (1) states, shown as red crosses (+), are spins at a flat interface with three
neighbors being identical to the central one and one neighbor taking a different value.
The (0) states, corresponding to spins in the bulk of the domains, are not shown.
Following the transition rules in Eq. (2.5), the states (0), (1) and (3) are stable and the
corresponding spins cannot flip. Only the (2) state can change, producing the configu-
ration shown in the (b) panel of Fig. (2.11). Note that under this update, the central
spin in the (2) state changes but the state (2) is not modified. As a consequence of
the flip of the central spin, the four neighboring spins will also change state but again
for stable states: two (1) states are changed in (3) states, one (3) state in a (1) state
and a (1) state in a (0) state. Thus, in this new configuration, only the same spin in
the (2) state can change, which will produce again the configuration of the (a) panel in
Fig. (2.11). In the infinite q limit, the only evolution corresponds to blinking between
the configurations shown in the (a) and (b) panels of Fig. (2.11).
Next, it is considered the case of a large but finite q with the condition eβ > q corre-
sponding to a low temperature T < Tc/2. The starting point is the configuration in
panel (a) of Fig. (2.11). According to the general rules for heat bath dynamics, a (0)
state changes to a (7) state with probability ≃ qe−4β, a (1) state changes to a (4) state
with probability ≃ e−2β and to a (8) state with probability ≃ qe−3β, a (2) state changes
to another (2) state with probability ≃ 1/2 and to a (9) state with probability ≃ qe−2β,
and a (3) state changes to a (5) state with probability ≃ e−β and to a (10) state with
probability ≃ qe−2β.
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x
Figure 2.11. Snapshots of the Potts model in the large q limit at low temperature. The lattice

is a squared one with periodic boundary conditions and L = 10. The domains
within which the spins take the same value are painted with the same color. See
the text for details on the convention used to identify the states of the spins on
the domain walls, shown with small data-points with different form and color.
The neighboring configurations differ by a single spin flip. Taken from [5].

In the large q limit with the condition T < Tc/2, e−β is very small and qe−β < 1. Then
the dominant changes are the flips of spins in the (2) state toward another (2) state
(thus a blinking) and the next leading changes are the spins in the (3) state changed in
a (5) state. The flip of a spin in the (2) state will again produce the configuration shown
in the (b) panel of Fig. (2.11), which will almost surely flip back to the configuration in
panel (a), etc. Thus this leads to the same blinking behavior as in the infinite q limit.
But for a large and finite q, after a time ≃ eβ, a spin in a (3) state can also flip. Such an
example is shown in the (c) panel of Fig. (2.11). The spin which changed value (from red
to yellow) is now in a (5) state, shown as a purple triangle (▲). One can also observe the
appearance of another (2) state just below. Of course, the spin in the (5) state is short
lived (the probability that it flips back to its previous value is ≃ 1 − 2e−β). But there
exists a finite probability ≃ 1/2 that the blinking state below is updated first, producing
the configuration shown in the (d) panel of Fig. (2.11). It can be seen that the (5) state
is changed in a (more stable) (3) state, while the blinking state moves down. Next, there
is a finite probability that the new (2) state changes color to produce the configuration
seen in the (e) panel of Fig. (2.11). This configuration contains again a short lived (5)
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state. Thus, from this state, there is a large probability to end in the configuration
shown in the (f) panel of Fig. (2.11).
The conclusion is that starting from configuration (a), one will observe blinking between
(a) and (b) configurations until, after a time ≃ eβ, a transition to a (c) configuration
occurs. Next, with a finite probability, the state evolves to the (d) configuration and,
again with a finite probability, it goes to the (e) configuration from which it evolves to
the (f) configuration. This shows that the time scale for quitting the low temperature
and large q blocked state is given by:

tS ≃ eβJ × tMCs/l
2 = eJ/T × tMCs/l

2. (2.13)

where the coupling constant J has been restored, and tMCs/l
2 is just the Monte Carlo

time step scale per surface unit, put to 1 for simplicity. This proper time is a major
result of this work. The same time-scale was found with different arguments by Spirin
et al [113] and Ferrero & Cannas [114].
Finally, one can note that this simple scenario is valid for all values of T and q as far
as the conditions e−2β ≪ e−β and qe−4β ≪ e−β are satisfied. This can be rephrased
by saying that one expects an universal behavior at low temperature and for large q.
In the next Sections, these predictions will be tested with numerical simulations. It is
worth stressing that a very similar phenomenology is found on the honeycomb lattice
and cubic lattice, while a different one, with no blocked states and no plateau in R, on
the triangular one.

2.6 Escaping freezing: the coarsening regime

Another fundamental dynamical regime, for the spins kinetics theory, is the coarsening
one [27, 27, 90, 90–93]. In general, the class of phenomena in which there is a driven
growth process of a new phase inside the old one are called coarsening phenomena.
In the Potts case, coarsening is determined by a surface tension mechanism. When a
subcritical quench has been done, the system is forced to start ordering, if it is not stuck
in metastable states. When one has coarsening, the interior part of the new domains is
thermodynamically at equilibrium. The dynamical game is all played by the interfaces
between new and old phase, i.e. ordered phase and the ”sand” made by many (11) local
states. Interfaces are not always stable, indeed for the Potts model one has:

• An interface is stable if is flat.
• An interface is unstable if a curvature is present.

The following plot (2.12), by means of a sketch of a square lattice, shows an example of
flat and curved interfaces.
There is curvature driven process who leads to the ”ordering” of some paramagnetic
phase and stabilization of the system. During this process, R(t) grows until it becomes
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Figure 2.12. Example of flat (continuous line) and curved (dashed line) interfaces. Also a
T-junction is present on the right.

as big as the lattice side L. R(t) ≃ L is the witness of the fact that the system has reached
the equilibrium. A graphical example on how domains coarsen is given in Fig. (2.13).

(a) t ≃ 500 Monte Carlo steps (b) t ≃ 1500 Monte Carlo steps

(c) t ≃ 250× 103 Monte Carlo steps (d) t ≃ 1× 106 Monte Carlo steps
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(a) t ≃ 1.5× 106 Monte Carlo steps (b) t ≃ 2× 106 Monte Carlo steps

Figure 2.13. Coarsening of domains for a Potts model with q = 103, T = 0.80Tc, L = 1000.

2.6.1 Dynamical scaling hypothesis

In the studying of coarsening dynamics, an important hypothesis has to be done. This
is called dynamical scaling hypothesis and it states that:

A long time after the quench, if one studies the system properties in the scaling
limit r ≫ ξ, with r a generic distance and ξ is the correlation length, these can
be described by an unique proper length scale which is indeed R(t).
R(t) is universal in this regime and follows an algebraic law in t: R(t) ∼ t1/zd ,
where zd is called dynamical exponent and characterize the kind of dynamics.
Also, measuring distances in R(t) units, one notice that the structures of spin
clusters are statistically equivalent at different times. This holds if R(t) is smaller
than the linear size L and for R(t) much greater than the lattice spacing l, i.e. l ≪
R(t) ≪ L. For spins systems with non-conservative dynamics, i.e. the order
parameter is not kept fixed during the dynamics e.g. the heat bath, zd = 1/2,
[27, 115]. The exponent is universal and thus, independent of the parameters
defining the model, which enter all in a prefactor, λq(T/Tc):

R(t; q, T/Tc) ≃ [λq(T/Tc)t]
1/2. (2.14)

2.7 Characterisation of the dynamics: parameter dependence

In this Section the analysis of the parameters (q and T/Tc) dependence of the growing
length R is analysed. The aim is proving the hypothesis (2.14) and finding the explicit
form of the pre-factor λq(T/Tc). In the first part of this Section the work is done with
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the square lattice. By the end of it, data for honeycomb lattice, which confirms the same
kind of universality found on the square one, are given. The triangular lattice has been
considered too, but, in this case, one observe a different behavior.

2.7.1 Freezing on the square lattice

In the left panels of Fig. (2.14), it is shown R vs. t for q = 102 and 106 (from top to
bottom) and the reduced temperatures T/Tc given in the keys. In the right panels the
time is rescaled by tS = eJ/T , the time-scale that has been identified in Eq. (2.13).
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Figure 2.14. The growing length R vs. t for q = 102 (a) and (b), and 106 (c) and (d) in a square
lattice system with L = 103 and various values of T/Tc written in the keys. In
the right panels (b) and (d) is shown a rescaled version in which time is divided
by tS = eJ/T . The horizontal dotted line is at the plateau Rp ≃ 3.63 and the
inclined dashed line is the expected asymptotic t1/2 law. Taken from [5].

First of all, for both q, the curves show the crossover at T/Tc = 1/2, with Ts = Tc/2.
At very short times, the data for T/Tc > 1/2 demonstrate the early establishment of
the (high-temperature) metastable state with R ≃ Rm ≃ 1 and later evolution via the
multi-nucleation process [116], while the early evolution of the curves at T/Tc < 1/2
is temperature independent and rapidly approaches Rp ≃ 3.63, to only later enter the
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Figure 2.15. The growing length R vs. t/tS in the square lattice model with q = 102, 104

and 106 at T/Tc = 0.40, and with q = 103 at T/Tc = 0.45, 0.35 and 0.25. The
horizontal dotted lines are at the plateau Rp ≃ 3.63 and the inclined dashed line
is the expected asymptotic t1/2 law.

coarsening regime. Curves where T > Tc/2 have a different scaling with respect to the
sub-spinodal ones. This is a non trivial check of the spinodal location.
The case q = 102 is analysed in more detail. At low relative temperature, up to T/Tc ≃
0.30, R makes a small initial jump from R(0) ≃ 1 to a finite value Rp ≃ 3.63 and
keeps this value during a time, which one can call tp, that increases as one decreases
the temperature. Next, at later times, there is a crossover towards a regime with the
R(t) ≃ t1/2 characteristic of the standard curvature driven coarsening [27, 90–93]. At
higher relative temperatures, there is a similar initial rapid increase to Rp ≃ 3.63, next
an inflection point, and then the coarsening regime. This can be seen up to T/Tc ≃ 0.5.
For even higher relative temperature, R keeps a small value close to one, corresponding to
the disordered metastable state, and this for longer and longer times tm as one increases
the temperature. For example, for T/Tc = 0.95, the metastable state survives up to
tm ≃ 102. Next, R increases very rapidly up to a large value Rl. After this very
rapid variation, R increases very slowly first and next faster towards the conventional
coarsening regime with R(t) ≃ t1/2. Note that Rl increases as one increases T/Tc, and
tm practically diverges at T/Tc ≃ 0.99. More details on the multi-nucleation processes
taking place above Tc/2 are given in [116].
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In summary, for q = 102 one observes:

• At T/Tc ≤ 0.5, there is an initial jump of R to Rp ≃ 3.63, a value that
remains constant up to a time tp which increases as T/Tc decreases. After-
wards, the dynamics reach the coarsening regime with R growing as t1/2.

• At T/Tc > 0.5, the system remains in the metastable high-temperature state
with a very small value Rm up to a time tm which increases with T/Tc. At
later times, t > tm, it is observed a jump towards a finite value Rl which
increases in a way similar to the increase of tm. Next, the typical length
grows very slowly, and finally reaches the curvature driven t1/2 law.

The situation is similar for other values of q, see the other left panel in Fig. (2.14),
a system with q = 106. The main difference is that for T/Tc > 0.5, after the jump
towards Rl, one observes that the slow growth is replaced by a long-lasting plateau as q
is increased. This is particularly clear for large q, see the third left panel in Fig. (2.14).
This change of behavior at T/Tc ≃ 0.5 = 2/z is even better seen if time is rescaled by the
time-scale tS(q, T/Tc) = eJ/T , determined in the previous section. In the right panels
of Fig. (2.14), it is shown R as a function of t/tS(q, T/Tc). It is found that, for each q,
R first goes to a plateau at temperatures T/Tc ≤ 0.5 up to a rescaled time t/tS ≃ 10−2

which does not depend on q (confirmed by other values of q not shown). For longer
times, the plateau will be escaped in a universal way and for longer (rescaled) times,
the coarsening regime will be reached with R(t) ≃ t1/2. Note that for q = 104 and
q = 106, the curves are identical for T/Tc ≤ 0.5. For q = 102, the scaling is not as good
for T/Tc close to 0.5. This is in agreement with the previous observation that the zero
temperature behavior becomes universal for large q and with deviations up to q ≃ 102.
Then, for T/Tc < 0.5, it is claimed that the behavior of R is universal if one introduces
a rescaling of time by eJ/T such that4:

R(t, T/Tc, q) ≃ f(e−J/T t) with f(x) ≃

{
3.63 for x≪ 1,

x1/2 for x≫ 1.
(2.15)

As usual with with these kinds of scaling laws, the coarsening behavior is restricted to
R≫ l, with l the lattice spacing, and R≪ L with L the system side where equilibration
of at least some samples comes into play. The main finding is that for large q (q ≥ 103,
thus q = 103 is the lower bound value which defines the large q limit) and small T
(T/Tc ≤ 0.5), after a short transient the system reaches a state equivalent to the blocked
state at zero temperature, with Rp determined by the lattice geometry and microscopic

4In [117, 118] a rather weak dependence of λq(T = Tc/2) on q was claimed. Differently from here, in
those papers only small values of q, q = 2, 3, 8, and the special temperature T = Tc/2 were considered.
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dynamics, and that this blocked state survives up to tp ≃ R2
p e

J/T = R2
p tS , when the

dynamics crosses over to the conventional coarsening one. In the above equation, the
physical scales have been restored to have a dimensionful quantity. The dynamical
behavior, for the square lattice, can thus be resumed by the dynamical phase diagram
of Fig. (2.16), which represents one of the main results of this thesis [5].

q = 103
q = 104
q = 105
q = 106

q = 109

q = ∞

0 T = Tc/2 T = Tc
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Figure 2.16. A sketch of the phase diagram of the 2d Potts square-lattice model. The
(T/Tc(q) ≤ 1, q ≫ 4) plane with the crossover lines between different types of
dynamic behavior are displayed. The black dots sitting on the limit between the
(pink) metastability and (white) multi-nucleation regions were obtained in [55].
This work focuses on the dynamics in the (light green) regime T < Tc(q)/2
while [116] concentrates on the multi-nucleation and further coarsening arising
in the white region.
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Snapshots

In the previous subsection, it is argued that there is universal behavior as a function of
temperature after a proper rescaling. This was shown by considering the behavior of the
growing length R(t, q, T/Tc). In this section this result is confirmed by showing some
snapshots of a system with L = 102 and q = 102, see Fig. (2.17). The instantaneous
configurations at the times at which R = {5, 10, 20, 40 and 80} are shown, from left
to right, as reached at the relative temperatures T/Tc = {0.2, 0.3, 0.4, 0.5} from top to
bottom. The main observation is that the snapshots look very much the same for fixed
value of R(t). The same check has been done also for other values of the number of
states, q = 103 up to 106, and they also look the same for the same R and relative
temperatures T/Tc.

Figure 2.17. Snapshots at R(t) = {5, 10, 20, 40 and 80} (left to right), L = 102 and q = 102.
From top to bottom T/Tc = {0.2, 0.3, 0.4 and 0.5}.
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2.7.2 Still freezing on the honeycomb lattice

To check the universality of the results over the lattice kind one can do some measure-
ments using a honeycomb lattice. This is from a square lattice of linear size L× L. At
each site, the spin is connected to the left and right, and alternating, to the upper or
lower raw. For a more detailed description, see [112]. One can recall that the critical
temperature is given by eβcJ ≃ q2/3 in the large q limit. In Fig. (2.18), the time and
reduced temperature dependence of the growing length R in a system with L = 103 and
q = 104 is studied. In this case Tc ≃ 0.162. The time-dependence of R is similar to the
one found on the square lattice with the same q, see Fig. (2.14). Again, at low temper-
atures, i.e. T < 2Tc/3, R first goes to a plateau at Rp ≃ 4, the same value obtained in
the infinite q limit after a quench towards T < 2Tc/3, see Fig. (2.10). In the right part
of Fig. (2.18), one can see that this plateau exists during a time ≃ eJ/T (as was the case
on the square lattice for T < Tc/2). At temperatures above 2Tc/z the system remains
in the high temperature metastable state with R ≃ 1 until a sudden jump in R towards
Rl takes it out of it. Rl increases with T .
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Figure 2.18. The time and temperature dependence of the growing length R in the Potts model
with q = 104 on the honeycomb lattice with periodic boundary conditions and
L = 103. In (a) bare data for many T/Tc(q) given in the key. In (b) R against t
rescaled by tS = eJ/T for four temperatures T < 2Tc/z and also one temperature
T > 2Tc/z which approaches the asymptotic t1/2 without scaling at short times.
The dashed inclined line is the curvature driven law t1/2.

2.7.3 Coarsening on the triangular lattice

The triangular lattice case in now considered. One needs to remember that it has a
coordination number z = 6. In the large q limit, eβcJ ≃ q1/3 and the interesting regime
is the one of quenches below Tc/3. Differently from what observed on the square and
honeycomb lattices, in such quenches there is no plateau in R and the growing length
is not strongly slowed down. This was already observed in [68] for the q = 102 model
at T = 0.1, while Tc = 0.635 for this q. One can see the results, also for q = 102, in
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Fig. (2.19) for various values of T/Tc. It is observed that R does not depend on T for
small T/Tc and a plateau is not found. For the smallest value T/Tc = 0.15, R takes the
same value as for the zero temperature shown in Fig. (2.10) (either at q = 103 or in the
infinite q limit). Only for T/Tc = 0.4 > T/Tc = 1/3 one can see a small deviation. For
large values of T/Tc the behavior is similar to the one of the other lattices. The time
dependence of R at T/Tc = 0.90 for the square and honeycomb lattice models has also
been included, in Fig. (2.19).
Note that the measurements using the triangular lattice at a finite temperature have
been done with a Metropolis algorithm [63] since the heat bath one is difficult and very
tedious to be implemented. One thus, has to rescale the time by a factor ≃ q to compare
the two. It has been found that with a factor 50, the behavior of R is similar for the
three lattices at T/Tc = 0.90.
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Figure 2.19. The growing length R vs. t for the triangular lattice model with q = 102 and
L = 103 at different values of T/Tc given in the key. For comparison, results for
the square lattice (SL) and the honeycomb lattice (HL) at T/Tc = 0.90 are also
shown. The dashed inclined line is the curvature driven law t1/2.

2.7.4 What happens in d = 3? The cubic lattice

In this section, results for the evolution after quenches at low temperatures on the cubic
lattice are presented. In particular, one wants to test if the below the (pseudo)-spinodal
temperature, Ts = 2Tc/z, freezing decorates the dynamics. For earlier works on the
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cubic lattice, one can see [119]. In this section, quenches at various values of T (small)
such that T ≤ Ts(q) =

Tc(q)

3
≃ 1

log(q) + 3× 0.267q−1/3
are considered.
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Figure 2.20. R(t) vs t for q = 100 and an L = 400 on a cubic lattice. In the key, the temperature
(not the reduced one) is given, while the dotted line represents the usual freezing
plateau.

Starting from the case q = 100 for which one has Tc(q = 100) ≃ 0.6279 and thus one
expects Ts(q = 100) = 0.2093. In Fig. (2.20), it is shown R(t) as a function of the time
t after the quench at temperatures 0.05 ≤ T ≤ 0.4 as described in the caption. One
should notice that now, measures are taken with respect to T , and not T/Tc. Indeed,
since Tc is estimated, in this case, it is safer to measure just with respect to T . The
data are for cubic lattice with a linear size L = 400 and periodic boundary conditions.
It is checked that there are no finite size corrections to the behavior of R(t) except for
R(t) ≃ L. At early times, up to t ≃ 10, it is observed the same behavior of R(t) for all
values of T ≤ 0.2 ≃ Ts(q = 100). For this temperature range, R(t) goes, at a later time,
towards a plateau with value ≃ 3.1, as shown in the figure with a dashed line. R(t) will
remain on this plateau up to a time which increases while decreasing T . This indicates
that, at small times, the dynamics for T ≤ Ts(q = 100) is first described by a blocked
state corresponding to a zero temperature fixed point. The lower the temperature, the
longer it takes to escape from this blocked point. For T > Ts(q = 100), one observes that
R(t) is a function of the temperature for all the times and there is no blocked state. In
Fig. (2.21) it is shown R(t) as a function of t/tS(T ) with tS(T ) = e1/T the usual rescaling
function (and the proper time of the dynamics in this regime). It is observed that R(t)
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Figure 2.21. R(t) vs t/tS for q = 100 and an L = 400 on a cubic lattice. In the key, the
temperature (not the reduced one) is given, while the dotted line represents the
usual freezing plateau.

escapes the plateau on a universal curve as a function of t/tS(T ) for T ≤ Ts(q = 100) in
the same way as it was was observed for the square lattice in the previous sections, [5].
Note that while the collapse after rescaling is obvious for small temperatures, it is less
obvious, from Fig. (2.20), that the change of regime takes place exactly at T = Ts. This
is because q = 102 is not large enough. Next, it is shown, in Fig. (2.22), some similar
data but for q = 104 and for which Tc ≃ 0.3244 and Ts ≃ 0.1081. In Fig. (2.22), one
observes a deviation starting for T = 0.110 > Ts and larger temperatures. Thus one
expects that the change of behavior at T = Ts will become sharper as one increases
q. This is also observed in d = 2, [5]. This q dependence also appears in the value of
the growing length at the freezing plateau. The same measurements, for various values
of q, ranging from q = 10 up to q = 105, are also repeated. It is always observed the
same behavior for q ≥ 100. (For q = 10, the plateau is observed only at a very small
temperature, up to 0.1, while Ts ≃ 0.4). For the cubic lattice, thus, it is determined that
the value of the plateau to be at R(q) ≃ 2.774 + const × q−3/4. This value corresponds
to the freezing at zero temperature.
Another thing to be noticed is that, at t ≃ 1 one expects E(t ≃ 1) ≃ −N/2 with N the
number of spins. Then R(1) ≃ 1.2. In Fig. (2.22), this value is shown as a thin dotted
line. For each value of temperature smaller than Ts ≃ 0.1081, the first shown point for
R(t), corresponding to t = 1, is above this line, while it is below for T > Ts. This is due
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Figure 2.22. R(t) vs t/tS for q = 104 and an L = 400 on a cubic lattice. In the key, the
temperature (not the reduced one) is given, while the dotted line represents the
usual freezing plateau. The thin dotted line represents R(t) = 1.2 is the growing
length related to an energy, E =-N/2, the energy one expects, if no metastability
is present, after a time t ≃ 1.

to the metastability which occurs for these temperatures. This is a non trivial check of
the location of the spinodal.
In summary, one observes blocking for the cubic lattice even if zc = zt = 6 > zs,
see Fig. (2.20). The behavior of R(t) in this case, is very different from the one of
the triangular lattice, see Fig. (2.19). Thus, it is found that the energy barrier to be
overcome to unleash the dynamics corresponds to a single spin-flip, which is the same
as what is found in d = 2 for the square lattice [5]. Again, in the low-temperature sub-
spinodal region it is necessary to wait a time which scales as the Arrhenius form ∼ eJ/T

before being able to escape from a blocked configuration and equilibrate, see Fig. (2.21)
and (2.22).

2.8 Physical argument to freezing

The different behavior on the cubic and triangular lattices naturally raise the question:
what is the mechanism who leads to this very different behaviors? In this section an
argument to answer to this question is given by comparing the dynamics on the cubic
and triangular lattices.
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2.8.1 Frozen dynamics on the square lattice at T = 0

Before entering in the cubic vs. triangular analysis it is reminded why the dynamics is
frozen at T = 0 on the square lattice for q ≥ 3, see also Sec. (2.5). This comes from the
possibility of having particular configurations of spins as the one shown in Fig. (2.23).
The dotted line is drawn to highlight the lattice geometry underneath, and will always
be included in the next sections, since the geometric lattice properties are crucial to
understanding the physical behavior.

Figure 2.23. Frozen configuration at T = 0 for the square lattice.

The four spins in the centre are completely stable. If one tries to change the red spin in
a green or blue spin, it would break two bonds while creating only one new bond. So, an
increase of the energy which is forbidden at T = 0. The same is true for the blue spin
and for any of the two central green spins, changing colour would break three bonds and
create only one new one. So, the four spins at the centre are frozen, it corresponds to
the so called T -junctions. Freezing for the square lattice at zero temperature is due to
the existence of many such T -junctions and stable corners, see [102] for a more detailed
description.
It is simple to check that similar corners exist on the honeycomb lattice leading also to
freezing. For the honeycomb, the coordination number is z = 3, in that case, two colours
(q = 2) are enough to freeze the lattice [120]. One starts from a configuration at an infi-
nite temperature such that the lattice is completely disordered and spins are maximally
uncorrelated. One can consider the case of a general dimension and lattice. As already
mentioned earlier, Ts ≃ 1/ log (q) in the large q limit. After an initial instantaneous
quench at T < Ts = 1/ log (q), each update will change the value of a spin to be equal
to one of its neighbors. Indeed, for any not-bonded spin, flipping to a value equal to a
neighboring spin will give a contribution to the free energy of e1/T larger than the lost
contribution due to the entropy, q. After a time t ≃ O(1), corresponding to the update
of all the spins, a bond will be created among most spins and one of their neighbors
chosen in a random way. At this stage, each spin is still completely unstable, even at
T = 0. It can change and create a bond with any of the others neighbors without an en-
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ergy cost. Then, these bonded spins, with the aim of minimising the free energy, create,
eventually, other bonds. At this point, the dimension and the type of lattice become
important, so one needs to consider different cases in the following. For simplicity, it is
considered the case of a quench at T = 0.

2.8.2 Not frozen dynamics on the triangular lattice at T = 0

Next, one considers the case of the triangular lattice at T = 0 and check if similar blocked
corners can exist or not. To do so, one can start by considering hexagonal plaquettes, as
shown in Fig. (2.24). Here the red central spin has two bonds, i.e. it has two neighbors

Figure 2.24. Starting configuration for the triangular lattice

with the same colour. One assumes that the four other spins around this central one
have different values (shown as different colours) and this in order to ensure that the
red spin can not flip to another value. The aim is to determine if it is possible to build
a frozen configuration with a fixed central red spin. One first considers the green spin
on the left. This spin needs to be connected with three neighbors green spins, as shown
in Fig. (2.25) to ensure that it can not become red. The same is true for the magenta
spin on the right. Then, one needs the configuration shown in Fig. (2.25):

Figure 2.25. Intermediate configuration on the triangular lattice.

Next, one considers the blue spin. It needs to be connected with two other neighboring
spins which must be the two shown in Fig. (2.26). Clearly, there is no way to make the
orange spin stable since it can only have a bond with a single spin. Then, this orange
spin will become blue or magenta, allowing next the central red spin to flip to the same
colour. This means that one can not build a blocked part of the configuration starting
from the red triangle.
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Figure 2.26. Not blocked configuration on the triangular lattice.

Note that it is still possible to obtain blocked configurations on the triangular lattice, but
with much more complicated configurations involving many spins and occurring with a
very small probability, as found in [108]. One can argue that they require three different
colours and produce the so called three-hexagon state (with a small probability). But
these structures have a very large growing length, a fraction of the linear size, and are
controlled by a time that scales as L2 log (L). So, they do have no common point with
the blocked states on the square lattice having a finite growing length reached after a
finite time.

2.8.3 Frozen dynamics on the cubic lattice at T = 0

One can now apply the very same argument but on the cubic lattice. As before, a
one-bond kind of structure is useless for the aim, being fully unstable, thus the analysis
is done directly with the interesting configuration. In Fig. (2.27), it is shown how this
lattice is made and its unitary structure, made up of the highlighted yellow bonds plus
the red satisfied ones. For any lattice, by definition, the unitary structure is made up of a
central spin connected with its z neighbors, called external spins. There exist two types
of unitary structures. The first type, which is called cyclic, for which one can connect
any pair of external spins by a path in the unitary structure without going through
the central spin. The triangular lattice is cyclic. For the second type, which is called
acyclic, the path needs to go through the central spin. The square lattice (with nearest
neighbors), the hexagonal lattice and the cubic lattice are acyclic.
In this configuration, again, the central spin has two neighbors with the same colour
and four different neighbors. One considers that the green, orange, magenta and blue
spins have already two satisfied bonds (not shown in Fig. (2.27) to avoid making the plot
unreadable). They are all connected with the central one and two of them (the red) have
a satisfied bond. For each of these spins, one knows three out of six neighbors. Next,
one considers one of the neighbors, say the green one, and, as done in the triangular
case, its unitary structure is analaysed. One knows that it has two green neighbors and
a red one. It is assumed that the other three neighbors have colours different from red
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Figure 2.27. Unitary structure of the cubic lattice.

and at the maximum one neighbor which is orange, magenta and blue. One needs to
remind also that the argument holds in the limit of large q and at an earlier time, so one
expects that many different colours are present. Thus, the green spin will remain green.
The exact same reasoning can be done for the other neighbors. One soon notices the
common and the different features with respect to the triangular lattice. Even if they
share the same coordination number, here, the graph made by the unitary structure has
less edge and it is acyclic, while the triangular and hexagonal plaquette are cyclic. One
can take, for example, the orange spin and observe the unitary structure with the red
one in the centre. One notices that the orange spin can only influence this structure by
means of one eventual bond. While, in the triangular lattice each spin at the vertex of
a hexagon, including the ones not in the centre, can influence the unitary structure of a
neighboring hexagon by using up to three bonds, as shown in Fig. (2.28).
This difference is very important because this leads to the cyclicity of the unitary struc-
ture and thus, to the mutual influence and connectivity among spins in it. In the cubic
lattice, indeed, external spins are not mutually influenced, as happens in the triangular
one. In fact, as shown previously, the blinking of a far away spin can lead to the un-
blocking of the dynamical behavior. In the cubic case, instead, one does not have events
able to activate the dynamics. What is seen is that soon, as in the square lattice case,
the system reaches a blocked configuration in which highly regular rectangular, cubic,
and square domains are present. Here, so, a generalization of the results of [5] holds,
see [6]. Indeed, going to finite temperatures and finite q one got exactly the same proper
time as the one found in the square lattice.
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Figure 2.28. Unitary structure of the triangular lattice.

Last, it was found [56,57,99,121] that for the square lattice with next-to-nearest neigh-
bors interactions, the freezing behavior disappears. It is simple to argue that with the
addition of next to nearest neighbors the unitary structure becomes cyclic for this lattice,
explaining the absence of freezing.

2.9 Conclusions

Exploiting the q → ∞ limit of the heat bath Monte Carlo algorithm [55] it is identified
the temperature interval [2Tc/z, 2Tc] in which high or low temperature initial conditions
are metastable after sudden sub-critical or upper-critical quenches, respectively, with z
the coordination of the lattice. In other words, the (pseudo)-spinodals have been located.
In the q → ∞ limit, the metastability is ever lasting while, for finite q, the initial states
will eventually die out. Once this done, the focus has been on sub-critical quenches
for temperatures below the lowest temperatures at which nucleation is observed, that
is T < 2Tc/z. For these processes, it is showed that on the square, honeycomb and
cubic lattices, after a rapid evolution, the systems temporarily block in configurations
that are typical of the asymptotic states of the zero temperature dynamics [102, 108].
At non-vanishing temperature these states are not fully blocking and the systems escape
them in a time-scale tS ≃ eJ/T independently of q for large q (see also [113, 114]). The
proper curvature driven coarsening then takes over with the universal algebraic growing
length R ≃ (t/tS)

1/2. On the triangular lattice no freezing is observed, similarly to what
was found in [57, 99, 109], and R is independent of temperature, for T/Tc < 2/z = 1/3,
within the numerical accuracy.
Next, with a mixture of numerical data and physical argument, it is explained what leads
to different low-temperature dynamical behaviors in the cubic and triangular lattices.
This sharp change in the dynamics is attributed to the different topology of the lattice’s
unitary structures. In particular, when this is an acyclic graph, the spin-flips bring the
system to a rather stable and highly symmetric blocked configuration, which is aban-
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doned, thanks to thermal fluctuations, after an exponential time of the Arrhenius kind,
tS = e1/T . When, instead, the structure is cyclic, spins of the unitary structure have a
large ”radius” of influence making impossible the blocking behavior. This dynamics is,
thus, of the coarsening kind even at very low temperature.



Part II

Disorder at criticality
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Chapter 3

Spin models with long-range correlated
disorder: a numerical apporach

Preface

This chapter delves into the random-bond Potts model with long-range correlated dis-
order, drawing heavily from the research presented in the article [7]. Inspired by Chate-
lain’s innovative approaches in his work [122], a novel method of generating the disorder
distribution has been developed, leading to the new findings detailed in this section.
This chapter represents the computational part of the latter half of the thesis.

Synthesis of the results

The bidimensional q-Potts model with long-range bond correlated disorder is examined
in this chapter of the study. Following a similar approach as done by Chatelain in
[122], a bimodal distribution of disorder is implemented by introducing auxiliary spin-
variables, which exhibit correlation through a power-law decay function. The universal
behavior of various observables, focusing on the thermal (ν) and order parameter (β)
critical exponents, is obtained by using Monte Carlo techniques. The q = {1, 2, 3}-
Potts models are investigated for different values of the power-law decay exponent a.
The simulations align with previous theoretical and numerical results for q = 1 and
q = 2. What is proposed in this work is a phase diagram for q ∈ [1, 4]. Specifically, it
is established that the system reaches a fixed point with either finite or infinite long-
range disorder, depending on the specific values of q and a. Additionally, it is explored
the influence of cumulants order higher than the second in the disorder distribution by
sampling the auxiliary spin-variables from different statistical models. While the primary
characteristics of the phase diagram are determined by the first and second cumulants
alone, it is argued that certain universal effects associated with the infinite disorder fixed
point are influenced by the higher cumulants of the disorder distribution.
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3.1 Introduction

In this section, the focus is on the bond-disordered q-Potts model, where the couplings
exhibit random fluctuations around a fixed positive value. The aim is to examine the
influence of the distribution of these fluctuations, i.e. the disorder, on the critical proper-
ties of the model. The relevance of the disorder is determined by referencing the Harris
criterion [85] and its generalizations [86, 123], see Section (1.6.5), which consider the
correlation properties of the disorder distribution. Of particular interest is the case of
uncorrelated disorder, where the coupling fluctuations are independent and identically
distributed. According to the Harris criterion, the critical properties of the pure (P) sys-
tem are affected by the disorder when its thermal exponent νP exceeds one, νP > 1 [85].
This criterion holds true for the q-Potts model with q > 2.
In the presence of relevant disorder, an intriguing scenario arises where the system
maintains a continuous phase transition while being characterized by a different and
stable renormalisation group (RG) fixed point, instead of the trivial pure one. This
situation has been established for the two-dimensional Potts model with uncorrelated
disorder. For q > 2, a stable RG fixed point, referred to as the Short-Range (SR) point,
has been identified [44,124,125], which governs the critical properties of the model. The
thermal exponent νSR and the order-parameter exponent βSR have been computed using
RG techniques applied to a perturbed conformal field theory [44], and their values have
been verified through various numerical tests [125–127].
In this chapter it is explored the case where the disorder is on the couplings {J(x)}.
At each position x, these are randomly selected from homogeneouses and isotropics
distributions. The first cumulant of these distributions, denoted as E[J(x)] = E[J ],
usually, is not a function of the space variable. The focus is on distributions where the
second cumulant, defined as g(|x − y|) = E[J(x)J(y)] − E[J ]2, decreases according to a
power-law for large distances. Specifically, g(|x|) ∝ (r − 1)2|x|−a for |x| ≫ 1, where a is
a positive parameter. The parameter r determines the strength of disorder and is chosen
to be greater than one, i.e. r ∈ [1,∞], as discussed in Section (3.2.1). The case where
r = 1 corresponds to the pure Potts model, Section (3.2.2), while r = ∞ represents the
infinite disorder point, which is extensively discussed in Section (3.2.5). The numerical
approach used to implement these distributions closely follows the one introduced by
Chatelain in [122], where the pure Potts model is coupled with the Ashkin-Teller model.
However, most of the presented results are obtained using a replicated Ising model,
Section (3.2.1), which differs from the approach in [122] for cumulants of order higher
than two. It has been verified that the main findings regarding the phase diagram of
these models remain unaffected by the higher cumulants of these distributions.
The extended Harris criterion [86, 123] determines in which region of the parameters
(q, a) the disorder is relevant and when its long-range properties prevail over the short-
range ones, see Sec. (1.6.5). When a > 2 the critical behavior of the system is expected
to be the same as the one with uncorrelated disorder. The regions (q < 2, a < 2/νP )
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and (q > 2, a < 2/νSR), where the disorder is relevant and dominated by the long-range
correlations, are much less understood, especially for general values of q.
For q = 1, as explained in Section (3.3.2), both the pure Potts model and the Potts model
with bimodal short-range disorder can be mapped to the Bernoulli bond percolation (Bp)
model, where the activation of edges follows independent probabilities (pure percolation).
On the other hand, the long-range disordered (q = 1)-Potts model corresponds to a
one-parameter family (parameterized by the disorder strength r) of long-range bond
percolation models, where the activation of two distant edges is correlated by a power-
law function with exponent a. In the context of d-dimensional long-range percolation,
a 1-loop order renormalisation group (RG) computation was conducted in [123] using a
double expansion in ϵ (ϵ = 6− d) and δ (δ = 4− a). The study revealed the existence of
a new stable RG point, referred to as the LRp (long-range percolation) point, driven by
the long-range nature of the correlations. Although these theoretical predictions were
valid only near six dimensions and for a close to 4, they motivated several numerical
investigations [128–132] on d = 2 long-range percolation models with a > 0. These
models were constructed using level sets of fractional Gaussian free fields with Hurst
exponent H = −a/2. Since the thermal exponent of the pure (q = 1)-Potts model is
νP = 4/3, the long-range disorder becomes relevant for a < 3/2. The general consensus
in [128–132] was that for a < 3/2, the percolation transition is described by the LRp
point. In this work is used an approach that recovers the critical behavior, as studied
in [128–132], at the r = ∞ point of a Potts model coupled with a fractional Gaussian
field or n-Ising, see Sec. (3.2.1). It will be demonstrated that regardless of the value of
r, these long-range percolation models are described by the Bernoulli percolation (Bp)
point for a > 3/2 and the LRp point for a < 3/2. In other words, for each a, there exists
a unique fixed point that remains stable in the direction of decreasing r. It is worth
noting that when coupling the Potts model to n-replicated Ising models, the numerical
investigations of LRp-type points become more precise, particularly for small values of
a. In Section (3.3.6), it will be argued that some universal properties of the LRp points
may depend on the higher cumulants of the disorder distribution.
The case of q = 2 corresponds to the bond disordered Ising model, which has been
extensively studied in the past. In this case, the crossover exponent is 2/νP = 2. For
a ≥ 2, the short-range (SR) and the pure (P) points coincide, and the disorder effects
lead to logarithmic corrections to the scaling relations [133]. However, for 1 ≲ a < 2,
a stable long-range (LR) point is observed. The existence of this LR point has been
proven in [134] and [135] using the Ising massive free fermion representation. Numerical
tests of these predictions have been conducted in [136] for the case of a = 1. It was also
observed in [135] that the LR point loses its stability for a ≲ 1. The question of whether
the system undergoes a smeared phase transition or flows towards an infinite disorder
fixed point remains open in this regime. In [122,137], the long-range disordered (q = 2)
and (q = 4)-Potts models were investigated for values of a below one, 0 < a < 1. It was
observed that, for all these values of a, the Monte Carlo measurements of β/ν were very
close to the value of the LRp point.
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The objective of this chapter is to provide the phase diagram of the Potts model in the
parameter space (q, a) numerically, covering the range (q, a) ∈ (0, 4]×(0,∞), before delv-
ing into an analytical renormalisation group (RG) analysis. This goal is accomplished
by investigating the disordered q = {1, 2, 3}-Potts models for various values of a. These
three values of q are chosen to represent the three distinct regions where short-range
disorder is respectively irrelevant, marginally relevant, and relevant, in terms of their
impact on the critical behavior.

3.2 The long-range bond disordered q-Potts model

The model is defined by the usual partition function:

Zdis
P ({Ji,j}) =

∑
{si}

exp


Ñ∑

⟨i,j⟩

Ji,jδsi,sj

é, (3.1)

where the spin si, living on the lattice vertex i, takes q possible states, si = {1, · · · , q}.
The i, j identifies the edge connecting the neighbouring sites i and j and the δk,l is the
Kronecker delta. The set of couplings {Ji,j} is made of random variables drawn from a
given distribution, the average over which will be indicated by the notation E[· · · ].
The critical exponents of the model defined in Eq. (3.1) have been obtained by measuring
the properties of its Fortuyn-Kasteleyn (FK) clusters [79,138]. The FK clusters are the
connected sets of bonds that enter in the geometric representation of the Potts partition
function, see Section (1.6.2). As done in Eq. (1.41), from Eq. (3.1), one gets:

Zdis
P ({Ji,j}) =

∑
{si}

∏
⟨i,j⟩

î
1 + (eJi,j − 1)δsi,sj

ó
=
∑
G∈G

qCc(G)

Ñ ∏
⟨i,j⟩∈G

eJi,j − 1

é
=
∑
G∈G

∏
⟨i,j⟩∈G

Ä
1− e−Ji,j

ä ∏
⟨i,j⟩/∈G

Ä
e−Ji,j

ä
qCc(G),

(3.2)

where the sum is over the set G of activated edges or bonds and Cc(G) is the number of
connected components of the graph G, in the FK construction, also called as FK clusters.
It is important to recall that an isolated spin counts as a connected component. A bond
connects two equal spins with probability p(Ji,j) = 1− e−Ji,j .
Self-averaging observables will be considered [87], such as the thermal (ν) and the order-
parameter (β) critical exponents. More specifically, for q = {1, 2, 3}, the ratio β/ν will
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be computed from the measure of the FK fractal dimension df by using:

df = 2− β

ν
, (3.3)

see Section (3.3). The exponent ν, instead, is extracted, for q = 3, from the FK clusters
wrapping probability, defined in Eq. (3.30). This ν determines the finite size scaling
of the probability defined in Eq. (3.31). In Section (3.3.3), the Ising (q = 2) spin-
spin correlation function, which is a non self-averaging observable is considered. The
multifractal behavior of this quantity, see Eq. (3.28), is measured and compared with
recent predictions [135].

3.2.1 Implementation of disorder

In the simulations, a quenched bimodal disorder has been incorporated, where the cou-
plings randomly assume two values, either Ji,j = J1 or Ji,j = J2, with an equal chance
of occurrence. The values of J1 and J2 are not selected independently; instead, they are
chosen in a way that fulfills the following self-dual condition:

(eJ1 − 1)(eJ2 − 1) = q. (3.4)

The self-dual line expressed in Equation (3.4) represents a critical boundary, i.e. a line
of critical points, that separates a paramagnetic phase from a ferromagnetic phase [80],
as explained in Section (1.6.2).
To simulate this disorder, a random variable σi = {−1, 1} is assigned to each vertex of
the square lattice, and the following relation can be established:

Ji,j(R) = Ji,j(B) =
J1 + J2

2
+ σi

J1 − J2
2

, (3.5)

where Ji,j(R) and Ji,j(B) represent the couplings associated with the edge on the right
and the edge at the bottom of a specific site i. The Figure (3.1) visually demonstrates
the relationship between the σi configurations and the Ji,j configurations, as defined by
Equation (3.5).
Alternatively, it is possible to introduce an edge random variable σi,j and define Ji,j =
(J1 + J2)/2 + σi,j(J1 − J2)/2 as a choice. It is expected that all these different setups
are equivalent in terms of universal properties. The chosen setup in this work is simply
the most convenient for numerical simulations.
The distribution of disorder is determined by the configuration σi. In this case, the
considered distributions have a vanishing first moment.

E [σi] = 0, (3.6)
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Figure 3.1. A specific configuration {σi} is depicted in the figure, where blue-filled circles rep-
resent sites with σi = 1, and red-filled circles represent sites with σi = −1. The
corresponding set of couplings {Ji,j}, associated with the edges, can be derived
from Equation (3.5). In the figure, the blue (red) colored edges represent Ji,j = J1
(Ji,j = J2) couplings. This illustration is adapted from [7].

which forces the couplings to take values J1 or J2 with the same probability. The
couplings then fluctuate around the value (J1 + J2)/2:

Ji,j = E[Ji,j ] + δJi,j , E[Ji,j ] =
J1 + J2

2
. (3.7)

One can then consider a {σi} distribution whose second cumulant has a power-law
decaying:

E [σi σk] ∼ |i− k|−a for |i− k| ≫ 1. (3.8)

This, of course, correlates the fluctuations of the couplings at distant edges:

E
î
δJi,j(X) δJk,l(Y )

ó
=

(J1 − J2)
2

4
E [σi σk]

∼ |i− k|−a for |i− k| ≫ 1, (3.9)

where {X,Y } = {R,B}.
Once the {σi} distribution is chosen, satisfying the relation Eq. (3.4), the phase diagram
of the q-Potts model Eq. (3.1) depends only on the ratio r,

r =
J1
J2

∈ [1,∞], (3.10)
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that parametrizes the disorder strength. One can assume, without loss of generality,
that J2 ≤ J1. In the simulations, the system’s behavior is examined by varying the
parameter r. By doing so, the stability of the renormalisation group (RG) fixed points is
investigated along this direction. Meanwhile, the relationship expressed in Equation (3.4)
ensures that the system remains at the critical temperature.
Two examples of disordered distributions of {σi} are provided below: one follows a
Gaussian distribution, while the other follows a non-Gaussian distribution.

n-replicated Ising model

One can consider n independent critical Ising models with spins σ(a) ∈ {0, 1}, where
a = {1, · · · , n}. The variables σi in Eq. (3.5) are determined as follows:

σi =
∏
a=1

σ
(a)
i , (3.11)

and their statistical properties are determined by the correlation functions of the n
independent Ising models. Specifically, for the first two moments, one has:

E [σi] = 0, E [σi σj ] ∼ |i− j|
−n
4 for |i− j| ≫ 1, (3.12)

where the critical Ising spin-spin correlation function scale as: ⟨σ(a)i σ
(a)
i ⟩ ∼ |i − j|−1/4,

with ⟨· · ·⟩ the usual canonical thermal average for the Ising model. Comparing with
Eq. (3.8), one has:

a =
n

4
. (3.13)

The advantage of this choice lies in the ease and efficiency of simulating the n-Ising
models. However, a limitation is that a cannot be varied continuously. It is important
to note that the distribution described above is non-Gaussian, as the critical Ising point
does not follow a Gaussian distribution.

Fractional Gaussian free fields

The second example is associated with the percolation point of the level sets of a frac-
tional Gaussian random field characterized by a negative Hurst exponent, H = −a/2.
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Consider an L×L square lattice with vertices i having coordinates i = (ih, iv). Introduce
a set of random variables ϕi that define a discrete fractional Gaussian free field.

ϕi =


L∑

(l,m)̸=(0,0)

cl,m
Sl,m

exp

Å
2π

L
(l ih +miv)

ã
, if (l,m) ̸= (0, 0)

c0,0, if (l,m) = (0, 0)

(3.14)

where Sl,m =

∣∣∣∣2 cosÅ2πlL ã+ 2 cos

Å
2πm

L

ã
− 4

∣∣∣∣
1− a/2

2 and the cl,m are independent
random Gaussian variables with mean 0 and variance 1, i.e. cl.m ∈ N (0, 1). Using the
properties of the Fourier transform, the covariance E[ϕiϕj ] has the following asymptotic
limit:

E[ϕi ϕj ] ∼ |i− j|−a for |i− j| ≫ 1. (3.15)

The σi variables are defined by:

σi =

®
0, if ϕi > 0

1, if ϕi < 0,
(3.16)

The expectation E[σi] = 0 implies the presence of the level 0. It is worth noting that the
clusters formed by the σi variables do not correspond to the percolation threshold. In
spin-percolation physics, it is known [132] that the critical level is greater than 0. These
σi variables are solely required for constructing the bond distribution, as discussed in
Section (3.2.1). However, it can be demonstrated that the Fortuin-Kasteleyn (FK)
clusters formed by these bonds are indeed at the percolation transition. Hence, one can
conclude that:

E[σi σj ] ∼ |i− j|−a for |i− j| ≫ 1, (3.17)

and a long-range correlated disorder.

3.2.2 Pure Potts model (r=1)

The pure case occurs when r = 1, resulting in all couplings taking the same value as
defined in Equation (3.10). On the square lattice, the critical point P corresponds to
J1 = J2 = Jc = log (1 +

√
q).

In the continuum limit, the critical point P is described by the Potts conformal field
theory, and its energy spectrum has been known for a long time [81]. Recently, a
bootstrap approach [139–143] has been proposed to study cluster connectivity properties,
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which has been utilized in [144–146] to provide exact Potts correlation functions and a
comprehensive characterization of the symmetry representation of its states.
The thermal and order-parameter critical exponents νP and βP of the pure Potts model
have been determined for any value of q ∈ [0, 4], as documented in [147] and related
references. Table (3.1) presents the values of νP and βP /νP for q = {1, 2, 3}:

q νP βP /νP

1 4/3 5/48

2 1 1/8

3 5/6 2/15

Table 3.1. Pure critical exponents for different q values.

3.2.3 Short-range disordered Potts (a ≥ 2)

When a ≥ 2, the disorder becomes effectively uncorrelated. In Fourier space, the con-
tribution of the power-law tail |x|−a is of the order O(ka−2). In the limit of long wave-
lengths (k → 0), this contribution remains finite for a ≥ 2. Therefore, at large distances,
the properties of a long-range distribution are effectively equivalent to those of a delta
function.
The phase diagram of uncorrelated disorder has been well understood, and a renormal-
isation group (RG) analysis has been conducted in [44]. This analysis serves as the
starting point for the computations carried out in Section (4.3).
In the case of q < 2, the P point remains the only stable fixed point under weak disorder,
preserving the universality of the pure model. On the other hand, for q > 2, the
system is driven towards a stable SR point. When q = 2, the disorder is considered
marginal, resulting in the P and SR points coinciding. In this case, universal logarithmic
corrections to the P universality class emerge [133]. Table (3.2) presents the critical
exponents for q = 3, which have been computed perturbatively in [44,124].

In the case of uncorrelated disorder, it can be demonstrated through power counting
analysis i.e. analysing the RG relevance of scaling operators, that only the first two
cumulants of the distributions play a role in determining the long-distance behavior of
the system [44].
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q νSR βSR/νSR

3 ∼ 1.02 ∼ 0.134655

Table 3.2. Short-Range critical exponents for q = 3.

3.2.4 Long-range disordered Potts (a < 2)

For a < 2, the power-law decay of the disorder distribution needs to be taken into ac-
count. As mentioned in the Introduction (3.1) and discussed in Section (1.6.5), according
to the extended Harris criterion [86,123], the long-range part of the distribution becomes
relevant and dominates the short-range behavior in the cases of (q < 2, a < 2/νP ) and
(q > 2, a < 2/νSR).
In [86,123], it was also observed that if an additional sub-dominant term E[δJ(x)δJ(y)] →
E[δJ(x)δJ(y)] +w0|x− y|−b exists in the disorder correlations, with b > a, then the LR
point should be stable. Applying the extended Harris criterion, it is expected that when
b > a, b > 2/νLR, indicating that the perturbation is irrelevant. Conversely, when
b < a, the additional b-term becomes dominant, leading to b < 2/νLR. Based on these
observations, a strong conjecture, named Weinrib-Halperin conjecture [86], can be made:

νLR =
2

a
, for any q. (3.18)

The validity of the aforementioned relation has been established through perturbative
renormalisation group (RG) computations in various long-range disordered models, such
as Gaussian disordered Ising models [86, 123, 134, 135], at one or two-loop orders. Fur-
thermore, it is widely accepted that Equation (3.18) holds true at all orders of pertur-
bation [148,149]. In Section (3.3.5), the relation given by Equation (3.18) for q = 3 will
be numerically tested.
Moreover, in Section (4.5.2) new analytical results will be presented, focusing on the
violation of this conjecture in the case of non-Gaussian disorders and the (q = 3)-Potts
model.

3.2.5 The infinite disorder point (r = ∞): the q-colored critical pure
percolation

The r → ∞ point, along with the pure point, r = 1, are the only points where exact
results can be obtained for any value of q. From Equation (3.4), in the limit r → ∞,
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one has J1 → ∞ and J2 → 0, with rJ2 ∼ − log(J2) → ∞. Specifically:

E [δJi,jδJk,l] =
(r − 1)2J2

2

4
E [σiσk] ∼ (rJ2)

2E [σiσk] . (3.19)

The r = ∞ limit corresponds to the maximum level of disorder that can be considered.
In this limit, Equation (3.2) simplifies significantly. With probability one, an edge with
coupling J1 will have a bond present (1− e−J1 = 1), while there will be no bond present
on an edge with J2 (1 − e−J2 = 0). Consequently, once a configuration of σi, and thus
the associated couplings Ji,j , is drawn, only the graph where the edges (i, j) associated
with J1 are activated contributes to the partition function, as shown in Figure (3.2).
The edges with J2 are not activated.

Figure 3.2. Given the configuration of σi and therefore of Ji,j shown in Fig. (3.1), the only
random cluster graph G in Eq. (3.2) that does not vanish in the limit r → ∞ it is
shown. Notice that the σi = 1 cluster, formed of blue spins, are different from the
ones of the FK bonds (black lines)

The disorder average free-energy, for instance, can be written as:

E [logZ({Ji,j}] = log q × E [# (J1-clusters)] ∼ log q × E [# (σ = +1-clusters)] (3.20)

The ∼ symbol denotes that the scaling behavior is the same. The disordered Potts model
at r = ∞ is closely related to the site percolation model based on the σ clusters (spin
clusters). Specifically, the probability distribution of the r = ∞ Fortuin-Kasteleyn (FK)
clusters, aside from a trivial dependence on q, is identical to that of the σ clusters. In the
construction outlined in Equation (3.5), the (ij(R)) and (ij(B)) edges are always either
both activated or both not activated. At the lattice level, the r = ∞ FK clusters differ
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from the σ clusters, as illustrated in Figure (3.2). However, their universal properties,
such as their fractal dimension and the correlation length exponent ν, remain the same,
as discussed in the subsequent Section (3.3.1).
Considering that spin clusters and FK clusters only differ at their boundaries for each
value of a, it is possible to compare the spin clusters and FK clusters specifically for the
case of a = 1/4. In this case, the σ variables correspond to Ising spins at the critical
point. For an Ising cluster with a linear size R, the number of spins on the boundary
scales as ∼ Rd

b
f , with dbf = 11/8 = 1.375. One can note that the Ising spin boundaries

are described by the CLE3 loops, and dbf = 11/8 is the fractal dimension of the CLE3
loops [150]. This value is much smaller than the number of spins within the cluster,
which scales as ∼ Rdf with df = 187/96 ≃ 1.948. Therefore, it can be expected that the
FK clusters for a = 0.25 will have the same fractal dimension df = 2− 5/96 as the Ising
spin clusters.
When a > 2, the system is considered short-range and is described by the Bernoulli
critical point Bp [151]. For a < 2, the extended Harris criterion can be applied using
νBp = 4/3. For a > 2/νBp = 3/2, the system remains at the Bp point, while for
a < 3/2, a new LRp fixed point, as mentioned in the Introduction (3.1), emerges.
In Section (3.3.1), this behavior will be tested, and the exponent βLRp/νLRp will be
computed.
It is crucial to emphasize that the LRp point exists at r = ∞ for any q, and its critical
exponents depend on a but not on q. As will be discussed further, as shown in Fig-
ures (3.10) and (3.12), the LRp point is distinct from the LR point for q > 1, which
represents the finite disorder fixed point. The LRp point and the LR point exchange
stability when a exceeds a specific value a∗(q), i.e. a > a∗(q).
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3.3 Phase diagrams from Monte Carlo measures of
q = {1, 2, 3}-Potts

In this section, the numerical results that led to the construction of the phase diagram
shown in Figure (3.3) will be presented.

1 1.5 2 2.5 3 3.5 4
0

1

2

3

q

a

Bp

LRp

Short-Range

(SR, finite disorder)
Irrelevant

(P)

Long-Range

(LR, finite disorder)

Long-Range percolation
(LRp, Infinite disorder)

Figure 3.3. Phase diagram of the disordered bidimensional q-Potts model for (q, a) ∈ (0, 4] ×
(0,∞).

The simulations were conducted on square lattices with periodic boundary conditions.
Unless otherwise stated, the averaging was performed over one million disordered sam-
ples. For each value of q and a, the average autocorrelation time τa,q(L) was determined.
Subsequently, for each disorder sample, the thermal averaging was performed by running
100× τa,q(L) updates after an equal number of updates for thermalization.
Unless otherwise specified, the results presented in the following sections were obtained
using the n-Ising disorder distribution described in Section (3.2.1).
For each value of n = {1, · · · , 8}, corresponding to the values of a given in Equa-
tion (3.13), the coupling configurations Ji,j were generated according to Equation (3.5).
The FK clusters were then constructed by connecting spins of the same value with a
probability p(Ji,j) = 1 − e−Ji,j , as described in Equation (3.2). For a lattice of size L,
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the number of spins M(Ji,j , L) in the largest FK cluster was computed for each coupling
configuration. Finally, the average over the coupling distribution is performed,

M(L) = E [M(L, {Ji,j})] , (3.21)

to extract the fractal dimension df by the scaling

M(L) ≃ Ldf . (3.22)

More specifically, recalling the relation Eq. (3.3), one can use Eq. (3.22) to compute an
effective magnetic dimension:

β

ν
(L) = − log

ï
m(L)

m(L/2)

ò
/ log [2] , (3.23)

where m(L) = M(L)/L2 is the average magnetization. The above data, computed for
different q, a and r are the ones shown in the plots β/ν vs. L below. The ratio β/ν is
then evaluated in the scaling limit:

β

ν
= lim

L→∞

β

ν
(L). (3.24)

3.3.1 The infinite disorder point (r = ∞): LRp and Bp fixed points

Here, the results for the q-colored percolation model, found at the infinite disorder point
r = ∞, see Section (3.2.5) are collected. It is important to recall that the critical
exponents at the infinite disorder point do not depend on the value of q.
Figure (3.4) displays the effective exponent β/ν(L) as a function of L for different val-
ues of a ranging from 0.25 to 2.00. The corresponding scaling limit results βLRp/νLRp,
obtained through a best fit analysis of all the collected data, including sub-leading cor-
rections, are summarized in Table (3.3).

a βLRp/νLRp

0.25 0.0522(4)

0.5 0.086(2)

0.75 0.103(2)

1, 1.25, 1.5, 1.75, 2 ∼ 0.105

Table 3.3. Best fit of the critical exponent βLRp/νLRp for different values of a. Notice that for
a = {1.5, 1.75, 2} the system is described by the Bp point where βBp /νBp = 5/48 ∼
0.105. However, for a ≥ 1, the numerical simulations cannot distinguish between the
LRp point and the Bp point.
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Figure 3.4. The r = ∞ long-range disorder: β/ν vs. L for the values of a shown in the caption.

As discussed in Section (3.2.5), for a = 0.25, the βLRp/νLRp must correspond to the
fractal dimension of the Ising clusters. The latter has been considered in [152, 153] and
argued to be:

βLRp

νLRp
= 2− 187

96
=

5

96
∼ 0.0521. (3.25)

The results presented in Table (3.3) show a very good agreement with the expected value
of 5/96, as indicated by the dashed line in Figure (3.4).
It is important to emphasize that, according to the Harris criterion, one would expect
βLRp/νLRp < βBp/νBp for a < 3/2. However, as a increases, the difference between
βLRp/νLRp and βBp/νBp becomes very small, and the numerical simulations cannot
effectively distinguish between these two fixed points. In fact, for a = 1 and a = 1.25,
the value of βLRp/νLRp seems to be slightly larger than 5/48. Similar observations were
also reported in [130]. Due to the presence of significant finite-size corrections, it is
challenging to accurately predict the asymptotic value in this regime.
In the following Potts observables at finite value of disorder r, where the scaling behavior
is in general expected to depend on q, are considered.
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3.3.2 The q = 1 phase diagram

In this section, the phase diagram of the q = 1 Potts model is considered. For a > 2,
the disorder is effectively short-range and irrelevant, as shown in Figure (3.3). This
irrelevance of short-range disorder can also be understood through a simple lattice ar-
gument. On the critical line given by Equation (3.4) for r = 1, where J1 = J2 = Jc =
log (1 +

√
1) = log(2), the system is exactly at the Bernoulli percolation (Bp) critical

point with p = 1 − e−Jc = pc = 1/2. By introducing disorder, i.e. setting r > 1, the
dual line given by Equation (3.4) enforces the relation 1 − e−J1 − e−J2 = 0 for q = 1.
Taking into account that each bond J1 and J2 occurs with equal probability, the density
of activated bonds remains p = 1

2(1− e−J1)+ 1
2(1− e−J2) = 1/2. Thus, regardless of the

value of r, the system remains at the Bp point. For 3/2 = 2/νBp < a < 2, the long-range
disorder remains irrelevant, and the system is still described by the Bp point.
Next, the effective exponent β/ν(L) is measured for various values of the disorder
strength r. For a < 3/2, the numerical measurements clearly show that the system
undergoes a flow from the Bp point to the LRp point located at r = ∞, as discussed in
Section (3.2.5) and Section (3.3.1).
To illustrate this, the results for the model with a = 1/4 are first presented. In the left
panel of Figure (3.5), β/ν(L) is shown as a function of the size L for different values
of r, including r = {1, 2, 5, 10, 100, and ∞}. It can be observed that for all values of
r > 1, this exponent approaches the value of r = ∞ with a crossover function of the
disorder. The expected value of 5/96 at r = ∞, as predicted by [152], is shown as a
blue dashed line. The value of βBp/νBp = 5/48 for r = 1 corresponding to Bernoulli
percolation is shown as a red dashed-dotted line. Therefore, regardless of the amount of
disorder, the long-distance behavior is governed by the infinite disorder fixed point. In
the right panel of Figure (3.5), Pw(L), defined in Equation (3.30), is shown. For r = 1,
it converges to the exact value for Bernoulli percolation, as given by [154]:

Bernoulli clusters: lim
L→∞

Pw(L) = 0.69046 (3.26)

which is represented by the red dashed-dotted line. For any value of r > 1, it converges
to the same value as at the LRp point, albeit with a crossover function dependent on
the disorder strength.
Moreover, in addition to the fractal dimension, the wrapping probability provides further
evidence that the FK clusters exhibit the same behavior as the Ising spin clusters at
the LRp point. For spin clusters, this probability can be computed using the results
from [155] and is given by:

Ising clusters: lim
L→∞

Pw(L) = 0.515884 . (3.27)

This is shown as a blue dashed line in the right part of Fig. (3.5). The agreement is
perfect.
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Figure 3.5. q = 1 Potts model with a = 0.25. The left panel shows β/ν vs. L while the right
panel shows the wrapping probability Pw(L) vs. L.

Coming back to the β/ν exponent, similar behaviors are observed for the others values
of a. In Fig. (3.6), one can see β/ν(L) for a = 0.75 and a = 1.5. Again, for all values of
r, the large size limit is the one reported in Table (3.3).

Figure 3.6. β/ν vs. L for the q = 1 Potts model with long-range disorder with a = 0.75 in the
left panel and with a = 1.50 in the right panel.

It is possible, therefore, to summarize the numerical findings for q = 1 in Fig. (3.7).
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Figure 3.7. Fixed point stability, obtained via the measurements of the β/ν critical exponent,
for q = 1. The red zone represents a unique fixed point, the Bp one. There is no
flow while tuning r. The arrows describe a flow between two fixed points. The red
line represents again the Bp fixed point and the blue line is a line of fixed points,
the LRp ones.

3.3.3 The q = 2 phase diagram

In this section, the q = 2 case is examined in detail. In the short-range regime with
a ≥ 2, the disorder is marginal, and the P and SR fixed points coincide. For values of
a such that a∗(2) < a < 2, the existence of the LR fixed point predicted in [134, 135] is
numerically investigated. This LR fixed point corresponds to a finite disorder strength
r∗LR, where 1 < r∗LR <∞. The exact value of a∗(2) is estimated to fall within the interval
1/2 < a∗(2) < 3/4, although the precise determination is not within the scope of this
study. When a < a∗(2), the system exhibits only two fixed points: the P and the LRp
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(r = ∞) fixed points. In this case, the LRp fixed point becomes stable, leading to a flow
from the P point to the LRp point.
The different behaviors of the system are depicted in Fig. (3.8), in particular:

• In the left panel, it is shown the measured values of β/ν(L) for a = 1/4. It is clearly
possible to observe that for all values of disorder, the effective magnetic exponent
goes to the same value as the infinite disorder one, βLRp/νLRp = 5/96 ∼ 0.0521,
see Table (3.3). A similar behavior for a = 0.5, with β/ν(L) → 0.086 in the L→ ∞
limit is obtained. This, is again very close to the value βLRp/νLRp reported in
Table (3.3).

• In the middle panel, the data for a = 1 are shown. One can observe three different
large size limits:

1. For r = 1 the magnetic exponent is the one of the short-range Ising, βP /νP =
1/8 = 0.125.

2. For r = ∞ the magnetic exponent is close to the value βBp/νBp = 5/48. As
already mentioned for the case of infinite disorder, see Section (3.3.1), for a ≃ 1,
it is difficult to distinguish the LRp point from the Bp point.

3. For any finite disorder, there is an unique large size limit, limL→∞ β/ν(L) =
βLR/νLR ≃ 0.115− 0.120.

This corresponds to the LR fixed point. The curves converge to the curve with
a finite disorder r ≃ 10, that is the value in which one can observe the smallest
corrections. A similar behavior is obtained for a = 0.75 and a = 1.25 with the
scaling limit limL→∞ β/ν(L) ≃ 0.108 and limL→∞ β/ν(L) ≃ 0.122 respectively.

• The right panel shows the measured values of β/ν(L) for a = 1.75. In that case,
the measurements for finite disorder also converge to a single value βLR/νLR which
is very close to the P=SR value βP /νP = 1/8. For all values of a ≥ 3/2, due to
strong finite size corrections, one finds values close to the P=SR ones.

When 3/2 ≤ a < 2, the LR point is in close proximity to the P fixed point, making
it difficult to distinguish between them using the β/ν exponent alone. Therefore, an
alternative method for confirming the existence of the LR point will be considered.
Specifically, the moments of the spin-spin correlation function will be examined. Being:

E[⟨s(0)s(x)⟩n] ≃ x−ηn . (3.28)

The focus is on determining the exponents ηn, where η1 = 2β/ν corresponds to the
exponent computed previously using the dimensions of FK clusters. The exponents ηn
for n > 1 provide new insights. In a study conducted by the authors of [135], the
exponent η2 was computed for the range 0.995 ≤ a < 2. At the lowest order in disorder,
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Figure 3.8. q = 2 Potts model with long-range disorder: β/ν vs. L for a = 0.25 on the left,
a = 1.00 on the middle and a = 1.75 on the right.

the following result was obtained:

η2 =
1

2
− (2− a)

4
+O((2− a)2). (3.29)

The lower range of a = 0.995 in the computation corresponds to the stability limit of
the perturbative fixed point at the second order.
The measured values of η1 and η2 for various values of a are reported in Table (3.4).
It is worth noting that the values of η1 can be compared to the values of β/ν obtained
previously, and they are found to be consistent. For each value of a, the measurements
were performed at a fixed value of disorder r chosen to minimize scaling corrections in
the measurement of the fractal dimension. The last column of the table contains the first
order prediction ηp2 from Eq. (3.29). The obtained results are also shown in Fig. (3.9). It

can be observed that there is good agreement between the measured η2 and the predicted
value ηp2 for 1.5 ≤ a ≤ 2.0. For smaller values of a, the deviation becomes larger, but
it is expected to be proportional to (a − 2)2, which corresponds to the second order
correction. Interestingly, for a ≤ 0.5, it is found that η1 ≃ η2.
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a η1(= 2β/ν) η2 r ηp
2

0.25 0.100 0.101 100 0.0625

0.50 0.167 0.172 100 0.125

0.75 0.209 0.243 10 0.1875

1.00 0.233 0.298(2) 10 0.25

1.25 0.242(2) 0.351(2) 5 0.3125

1.50 0.246 0.389 5 0.375

1.75 0.251 0.444 2 0.4375

2.00 0.250 0.491 1 0.50

Table 3.4. η1 and η2 measured with the disorder r for 0.25 ≤ a < 2. ηp2 = 1/2 − (2 − a)/4
is the predicted value of Eq. (3.29) at the first order. Errors bars on the measured
values η1 and η2 are shown in parenthesis and are smaller than one on the last digit
otherwise.

At the r = ∞ disorder point, the random FK clusters and spin variables are completely
determined by the disorder configurations, and thermal fluctuations are frozen. This
implies that the distribution function S(p12(x)) of the probability p12 that the spin s(0)
and s(x) belong to the same FK cluster takes the form S(y) = a0δy,0 + a1δy,1, with
a0 + a1 = 1. This, in turn, implies η1 = η2. Therefore, the fact that at finite r, where
the spin degrees of freedom are not frozen, one obtains η1 ∼ η2, serves as a non-trivial
test of the fact that the infinite disorder point describes the physics of the system for
these values of a. The conclusions of the analysis done are summarised in Fig. (3.10).

3.3.4 The q = 3 phase diagram

In the short-range regime a > 2, the disorder becomes relevant and the critical properties
are described by the SR fixed point. This fixed point is located at a finite disorder
strength r∗SR, specifically r∗SR = 6.08(12) [156]. In this regime, the system exhibits two
fixed points: the SR fixed point for 1 < r <∞ and the Bp fixed point for r = ∞. These
fixed points have been observed for all values of q up to infinity [151,157,158]. The r = 1
point corresponds to the P point for q ∈ [1, 4], while for q > 4 it corresponds to a first
order phase transition.
When a < 2, the long-range disorder becomes relevant for a < 2/νSR ∼ 1.96. The
numerical simulations strongly suggest the existence of a stable LR fixed point, which
is located at a finite disorder strength 1 < r∗SR < r∗LR. It is interesting to note that the
LR point tends to merge with the LRp fixed point, which is located at a critical value
a∗(3) slightly smaller than 0.75.
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Figure 3.9. q = 2 Potts model with long-range disorder: η1, η2 and ηp2 vs a.

The numerical results for q = 3 are depicted in Fig. (3.11). Similar to the q = 2 case,
three different behaviors are observed:

• In the left panel, β/ν for a = 1/4 is shown. For all values of disorder r > 1, in the
large size limit, the effective magnetic exponent goes to the value βLRp/νLRp = 5/96
while it goes to the value of the pure q = 3-Potts model βP /νP = 2/15 for r = 1.
One can observe a similar behavior for a = 0.5 with βLRp/νLRp ≃ 0.09.

• In the middle panel, results for a = 1 are shown. These, have three different large
size limits:

1. For r = 1, the magnetic exponent is the one of the pure q = 3-Potts model
βP /νP = 2/15.

2. For r = ∞, the magnetic exponent goes towards a value ≃ 5/48. Notice that
this is the same as the one mention in the section above for q = 2 and a = 1:
it is important to recall that at this point the exponents do not depend on q.

3. For any finite disorder, a unique limit is obtained with βLR/νLR ∼ 0.12 corre-
sponding to a LR fixed point with finite disorder r ≃ 10.
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Figure 3.10. Fixed point stability, obtained via the measurements of the β/ν critical expo- nent,
for q = 2. The dashed line represents the crossover with the purely SR physics
at a = 2. The arrows describe a flow between two fixed points. The orange line
represents the P (unique) fixed point, the red one the Bp (unique) fixed point,
while the blue and magenta curves are lines of fixed points, respectively the LRp
and the LR ones. a∗(2) indicates the crossover between the LR and LRp points
and one can locate it slightly below a = 0.75.

A similar behavior is observed for a = 0.75, 1.25 with βLR/νLR ∼ 0.11 and βLR/νLR ∼
0.13 respectively.

• In the right panel, results for a = 1.75 are shown. For a = 1.50 and a = 1.75,
β/ν is compatible, at large distances, with either with the P and the SR values,
reported in Table (3.1) and in Table (3.2), which are very close. The measurements
therefore do not allow to discriminate between these two values, but according to
the arguments discussed in Section (3.2.4), it is possible to conjecture the LR point
will merge with the SR point at a ∼ 1.96, as illustrated in Fig. (3.12).
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Figure 3.11. q = 3 Potts model with long-range disorder: β/ν vs. L for a = 0.25 on the left,
a = 1.00 on the middle and a = 1.75 on the right.

In conclusion, for a < a∗(3) ≃ 3/4, it is found that the system flows to the LRp point,
while for a∗(3) < a < 1.96, one finds the LR at some intermediate value of disorder with
βBp/νBp < βLR/νLR < βSR/νSR.
The results are summarized in Fig. (3.12).

3.3.5 Thermal behavior for the q = 3-Potts model with long-range
correlated disorder

In this section, the exponent ν is measured as a function of a to test Eq. (3.18). One
way to measure it is by considering the wrapping probability of the FK clusters, defined
by:

Pw(r, J1, L) = Prob. of having a wrapping FK cluster on a lattice of size L. (3.30)
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Figure 3.12. Fixed point stability, obtained via the measurements of the β/ν critical exponent,
for q = 3. The dashed line represents the crossover with the purely SR physics at
a = 1.96. The arrows describe a flow between two fixed points. The orange line
represents the P (unique) fixed point, the red line the Bp (unique) fixed point
and the cyan one the SR (unique) fixed point. The blue and magenta curves are
lines of fixed points, respectively the LRp and the LR ones. a∗(3) represents the
crossover between the LR and LRp points and it is found to be located slightly
below a = 0.75.

This is a quantity which is constant at the critical point for a fixed value r = J2/J1. J1
is coupled to the thermal behavior and it is expected:

Pw(r, J1(1 + ϵ), L) = f(ϵL1/ν)

≃ f(0) + f ′(0)ϵL1/ν +
f ′′(0)

2
ϵ2L2/ν +

f ′′′(0)

3!
ϵ3L3/ν + · · ·

(3.31)



124 Spin models with long-range correlated disorder: a numerical apporach

for a small ϵ, which measures the deviation from the critical point. Pw(r, J1, L) should
also depend on r and one expect also corrections to scaling. These dependencies can be
ignored if one considers the derivative:

P ′
w(ϵ) =

Pw(r, J1(1 + ϵ), L)− Pw(r, J1(1− ϵ), L)

2ϵ

≃ f ′(0)L1/ν +
f ′′′(0)

3!
ϵ2L3/ν + · · ·

(3.32)

One can compute 1/ν by considering P ′
w at the first order, but the results are not

convergent for large L. This is due to the fact that the errors on the measurement grow
like the inverse of ϵ. While averaging over one million samples of disorder configurations,
one founds that errors bars allow us to decrease ϵ only down to 0.01. For this value, the
second correction can not be neglected. Then, it is considered:

P̃ ′
w(ϵ) =

4P ′
w(ϵ)− P ′

w(2ϵ)

3
= f ′(0)L1/ν(1 +O(ϵ4L4/ν)). (3.33)

Figure 3.13. ν vs. L for the various values of a shown in the caption.
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In Fig. (3.13), are shown the results for the effective ν as a function of L obtained from
a two point fit of the data to the form of Eq. (3.33) for a ≥ 0.75 and also the value 2/a
as a dotted line. For each value of a, one can choose the value of r which seems closer to
the critical point with the least finite size corrections. For a ≥ 1.25, the data for r = 5
have been used, while for a = 0.75 and 1.00, one can use the data for r = 10. Note
that for a = 0.75, one still has large error bars even if for this value of a, the average
is done over 10 millions samples of disorder configurations (the same statistics is used
for a = 1.00, with much smaller error bars, for a > 1, the average is done over 1 million
samples). For a = 0.75, it is also observed, in Fig. (3.13), that there are strong finite
size corrections. For smaller values of a, it was not possible to obtain convergent results
with the simulation implemented. Note that this corresponds to values of a for which
one expects that the critical point is at an infinite disorder.
In conclusion, it is observed that the value of ν increase slowly as one decreases a. For
1 ≤ a < 2, ν is close to the prediction in Eq. (3.18). For a = 0.75, it seems to be bigger
than expected with ν ≃ 3.5, but in this case, strong finite size corrections are found. For
smaller value of a, it was not possible to measure ν.

3.3.6 The effects of higher disorder cumulants

In this section, the focus is on the q = 1 case, where the disordered Potts model can be
mapped to a long-range percolation model using the level sets of a fractional Gaussian
free field (fGFF) with negative Hurst exponent H = −a/2 [128–132].
By using the fGFF, it is possible to generate a long-range disorder distribution, creating
a one-parameter family of Gaussian long-range percolation models for the (q = 1)-Potts
model. It has been observed through simulations that all these models flow to the
point r = ∞, as shown in Fig. (3.14). At this point, the long-range percolation models
are expected to exhibit the same critical properties as those studied in [128–132]. In
particular, with the use of toric boundary conditions, the model coincides with the one
studied in [132] at r = ∞.
In this approach, it becomes possible to directly compare the LRp points obtained using
different disorder distributions, including non-Gaussian ones. The disorder distribution
generated by the n-replicated Ising model is an example of such non-Gaussian distribu-
tions. In the following analysis, the suffix I is used for the disorder distribution generated
by the n-replicated Ising model, while the suffix G refers to the distribution based on
the fractional Gaussian free field (fGFF).
For both distributions, the Gaussian (fGFF) and non-Gaussian (Ising models) ones,
Eq. (3.18) yields the same value for the percolation thermal exponent ν = 2/a = 8.
However, the situation is different for the exponent β. Specifically, the critical case a =
1/4 can be examined in more detail. Table (3.5) presents the results of Monte Carlo mea-
surements for

(
βLRp/νLRp

)
I
, obtained using the Ising distribution, and

(
βLRp/νLRp

)
G

,
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Figure 3.14. β/ν vs. L at q = 1 with a = 0.25 and disorder generated by using fGFF, see
Section (3.2.1).

obtained using the fGFF distribution. These results can be directly compared with the
measurements reported in [130].

a
(
βLRp/νLRp

)
I

(
βLRp/νLRp

)
G

(
βLRp/νLRp

)
G

[130]

0.25 0.0522(4) 0.0721(9) 0.0640(4)

Table 3.5. Comparison of βLRp/νLRp for Gaussian and non-Gaussian disorders.

The exponents
(
βLRp/νLRp

)
G

and
(
βLRp/νLRp

)
I

obtained respectively with the fGFF
and with the Ising model seems different. Note that the numerical result

(
βLRp/νLRp

)
I

agrees perfectly with the Ising model: as argued earlier, for the non-Gaussian disorders
with n = 1-Ising copies, the FK clusters have the same fractal dimensions as the Ising
spin clusters.
The above results can be explained by noticing that, differently from the short-range
disorder, in a long-range disorder, the terms generated by the higher cumulants of the
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distribution can be relevant. One can conclude that the higher cumulants do not change
the existence and the stability of an LRp point but can modify certain critical exponents.
This phenomenon gives a crucial motivation on the study done in [8], and will be analysed
in the next Sections (4.3.4).
As far the exponent βLRp/νLRp is concerned, one can doubt that the differences seen in
the simulations are just due to the numerical precision. This is particularly true when a
is increasing, see Table (3.3). However, it is possible to mention the measure of another
universal property which is clearly different between the (LRp)G and the (LRp)I and
therefore supports the conclusion above. Indeed in [132] and in [159] the torus two-point
connectivity pG12(r) and pI12(r) of, respectively, the fGFF level sets and the Ising clusters
were considered. It was argued that:

pG12(r) = aG0 r
−2(βLRp/νLRp)

G ×
ï
1 + cG

( r
L

)1.875
+ o

Å( r
L

)4ãò
, (3.34)

pI12(r) = aI0 r
−2(βLRp/νLRp)

I ×
[
1 + cI

( r
L

)
+ o

( r
L

)]
, (3.35)

where aG0 and aI0 are non-universal constants. The cG and cI are universal quantities
that depend on the ratio Lh/Lv between the horizontal and the vertical torus size and
on the structure constants of the eventual CFT behind, see [160]. The cI is known and
it has been computed in [159] while cG, investigated in [132], is not known exactly.
The exponent x of the sub-leading term (r/L)x is computed on the assumption that
there exists a local CFT describing the critical point. This gives [160]:

x = 2− 1

ν
. (3.36)

The exponents in Eq. (3.35) are then obtained by using ν = 1/8 (x = 1.875) for the
Gaussian distribution and ν = 1 (x = 1) for the Ising one. For the Ising case, where
the existence of a CFT behind is well established, the form for pI12 has to be considered
exact. For the fGFF, the CFT predictions (3.35), with ν = 2/a, were tested numerically
only for values of a > 1 [132]. For pG12 one can extend the results of [132] to a = 1/4, by
assuming an analytical a−dependence on the critical exponents for all values of a < 3/2.
So one can see that the sub-leading term exponents depend strongly on the disorder
distribution.

3.4 Conclusions

In this chapter, the long-range disordered two-dimensional q-Potts model is studied us-
ing Monte Carlo techniques. The disorder is introduced through a bimodal distribution
coupled to auxiliary spin degrees of freedom, which can follow either the n-Ising dis-
tribution or the fractional Gaussian free field (fGFF) distribution. These distributions
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have the same first cumulant and exhibit a long-range power-law decay in their second
cumulant.
The main focus is on the fractal dimension of the q-Potts FK clusters at the self-dual
point for different values of the power-law exponent a and disorder strength r. The
results are summarized in the phase diagram shown in Fig. (3.3), which represents the
main finding of this work.
The infinite disorder (r = ∞) fixed point, LRp (Long-range percolation), is considered
first. At this point, the thermal fluctuations of the Potts degrees of freedom are frozen,
and the disorder averages coincide with those of a LRp model. The critical exponents of
LRp do not depend on q. The measured values of βLRp/νLRp are reported in Table (3.3),
and it is observed that the Monte Carlo measurements using the Ising distribution are
more precise than those using the fGFF distribution. This allows for more accurate in-
vestigations of the LRp physics, especially for small values of a where the fGFF methods
are more challenging to implement.
For q = 1, it is found that the LRp point is attractive for a < 3/2, while for a ≥ 3/2 the
system is described by the Bernoulli percolation (Bp) critical point. For q = 2 and q = 3,
the existence of a long-range (LR) point at finite disorder, is established. It is observed
that the stability between the LR point and the LRp point exchanges at a certain value
a∗(q) depending on q.
The above results are supported by the study of other observables. For q = 2, the
multifractal behavior of the spin-spin correlations is measured, see Table (3.4), and the
results are consistent with theoretical predictions in their valid region, especially for
1.5 < a < 2. For lower values of a where theoretical predictions are lacking, the results
rule out the occurrence of a softening of the transition and instead support the system
being driven to the LRp point. For q = 3, the thermal exponent νLR is measured by
studying the wrapping probability of the FK clusters, see Fig. (3.13), and the results are
consistent with the theoretical prediction of Eq. (3.18) for a wide range of a.
It is worth noting that the obtained results and the phase diagram are valid for different
disorder distributions. However, there are some universal effects of the higher cumu-
lants at the LRp point. For example, at a = 1/4, the exponent βLRp differs between
the Gaussian and non-Gaussian distributions, see Table (3.5). Additionally, the higher
cumulants are expected to have clear effects on the universal finite-size properties of the
FK connectivities, see Eq. (3.35).



Chapter 4

Spin models with long-range correlated
disorder: an RG apporach

Preface

This chapter introduces the new conclusions drawn from [8] on the Potts model with
disordered correlations over a long-range, complementing the numerical findings from
Chapter (3) and [7]. The chapter also adapts the renormalisation group strategy from
[44]. This section embodies the analytical portion of this thesis’s second half.

Synthesis of the results

In this chapter, new analytical results on two-dimensional q-Potts models (q ≥ 2) in
the presence of bond disorder correlations which decay algebraically with distance with
exponent a, are provided. In particular, the results are valid for the long-range bond
disordered Ising model (q = 2). A renormalisation group perturbative approach based
on conformal perturbation theory is implemented. The renormalisation group scheme
used in [44] for the short-range disorder is extended to the long-range case. The used
approach is based on a 2-loops order double ϵ-expansion in the positive parameters (2−a)
and (q − 2). It will be shown that the Weinrib-Halperin conjecture for the long-range
thermal exponent can be violated for a non-Gaussian disorder. The central charges of
the long-range fixed points is computed finding a very good agreement with numerical
measurements. These analytical results, are confirmed by the numerical simulations of
the previous chapter and of [7].

4.1 Introduction

In this chapter, the focus is on studying the two-dimensional q−Potts model with long-
range correlated bond disorder. The phase diagram of this model, as depicted again in
Figure (3.3), is proposed based on Monte Carlo simulations done in [7] and explained in
Chapter (3). The critical behavior of the system depends on two key parameters: the

— 129 —
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number of spin states q and the power-law decay exponent a characterizing the disorder
correlations.
The phase diagram consists of four critical points that govern the system’s behavior:

• The pure (P) point: this point corresponds to the system without any dis-
order. It serves as a trivial point for comparing the effects of disorder in
the other regions of the phase diagram and build the perturbation theory
around it.

• The short-range (SR) point: at this point, the dominant influence on the
system comes from the short-range part of the disorder distribution.

• The long-range (LR) point: the LR point represents a region where the
disorder’s long-range nature becomes significant. The disorder strength at
this point is finite, and it plays a crucial role in determining the critical
behavior of the system.

• The long-range percolation (LRp) point: this point corresponds to an infi-
nite disorder strength. The LRp point is of particular interest due to the
fact that it describes a particular kind of percolation physics.

• Referring to Fig. (3.3), the solid black, dashed cyan, dashed orange and
dashed red lines indicate respectively the exchange of stability between the
P-SR, the SR-LR, the P-LR and the LR-LRp fixed points. The P-SR and
SR-LR lines are conjectured to be described respectively by the equations
a = 2/νP (q) and a = 2/νSR(q). The SR-LR line is derived in Eq. (4.72)
and in Eq. (4.88). The exact location of LR-LRp line is beyond reach for
the RG expansion employed, still it is possible to predict the existence of
such line, see the Eq. (4.88) and the Eq. (4.95).

To provide a comprehensive understanding of long-range disorder systems, a brief intro-
duction was provided in Section (3.1). Additionally, interested readers can refer to [7]
and its references for further details on the topic.
Long-range disordered models have been extensively studied using a renormalisation
group (RG) approach in the past. Several RG computations, such as those in [86, 123],
or in [148] and [161–163], have focused on the vicinity of the upper critical dimension
d ∼ dc. For example, for the Ising model, dc = 4, while for pure long-range percolation,
dc = 6, [123]. These computations are valid for small values of (4 − a), where a is
the power-law decay exponent of the disorder correlations. At the perturbation order
(typically 1-loop), a stable long-range (LR) fixed point was found, and the associated
thermal exponent νLR. It was determined to be νLR = 2/a. This result is known as the
Weinrib-Halperin conjecture [86].
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In the case of the long-range bond-disordered Ising model in d = 3 dimensions, Prudnikov
and collaborators [162, 163] performed a 2-loops RG analysis for 2 < a < 3. They
discovered a significant violation of the Weinrib-Halperin conjecture, which could not be
solely attributed to the approximation scheme used. Monte Carlo simulations have not
provided conclusive evidence regarding this violation [164–166].
In d = 2 dimensions, analytic results for long-range disordered systems are scarce and
limited to the long-range disordered Ising model [134, 135]. The Ising model in d = 2
has the advantage of being describable by a free fermion field theory [167]. Dudka [135]
performed a 2-loops RG computation based on a double ϵ-expansion in (2 − a) and
(2− d), supporting the Weinrib-Halperin conjecture in this case.
In this work, a new RG perturbative approach based on conformal perturbation theory,
see Sec. (1.7) will be presented. This will be done extending the RG scheme used in [44]
to the long-range disorder case. This approach allows to derive new analytic results for
the unexplored region of q ≥ 2 and a < 2, with a− 2 ≪ 1, q− 2 ≪ 1, and (q− 2)/(a− 2)
finite. The central charge of the long-range Ising and Potts models is computed and
compared to numerical transfer matrix results. Additionally, the long-range correlation
length exponent νLR is determined at 2-loops order. In other words, the main goal
of this chapter is to analytically investigate and verify the phase diagram depicted in
Figure (3.3) for the region near q = 2 and a = 2.
It is worth noting that the existing theoretical literature has primarily focused on Gaus-
sian disorder distributions. However, unlike short-range disorder, the terms arising
from higher cumulants can be relevant and may affect universal observables. This
phenomenon has been highlighted in [7]. The role of higher cumulants has not been
adequately explored so far. In this study, it will be provided an analytical evidence
supporting the validity of the Weinrib-Halperin conjecture in the presence of Gaussian
disorder. Indeed, it is found that the conjecture holds true for Gaussian disorder, where
the thermal exponent νLR is indeed equal to 2/a. However, analysing a non-Gaussian
disorder distribution, which inherently possess higher cumulants, it is possible to demon-
strate a violation of the Weinrib-Halperin conjecture. This emphasizes the notable im-
pact that higher cumulants have on the universal behavior of systems with long-range
correlated disorder.

4.2 Field theoretical Potts model in the replica approach

In Section (1.6.4) and Section (1.7), the approach of addressing the impact of disorder
perturbation on the pure Potts interacting theory using a field theoretical framework
was introduced and will be the one used to obtain the results of this chapter. However,
it is valuable to briefly summarize the lattice scenario to maintain connection with the
initial point, namely the random bond Potts model on the square lattice. Furthermore,
the continuous replicated formulation, which was derived in the Introduction (1.6.4),



132 Spin models with long-range correlated disorder: an RG apporach

will be briefly summarized to establish notation and conventions that are helpful for the
essential renormalisation group (RG) calculations.

4.2.1 Lattice formulation

For this reason, one considers the lattice random bond Potts Hamiltonian:

Hdis
P ({si}, {Ji,j}) = −

∑
⟨i,j⟩

Ji,jδsi,sj , (4.1)

where the sum runs over the nearest neighbours of a two dimensional regular lattice of
side L. The δ is the usual Kronecker function, and the N = L2 spins can take q discrete
values, with q ∈ {2, 3}. The Ji,j , are random bimodal variables, the so called random
bond and they are defined by:

Ji,j =
J1 + J2

2
+ σi,j

J1 − J2
2

, (4.2)

where J1, J2 are deterministic values while the σi,j are stochastic auxiliary variables, the
quenched disorder:

σi,j =

®
+1, with probability pi,j = 1/2

−1, with probability 1− pi,j = 1/2,
(4.3)

living on lattice bonds1. For the sake of keeping the notation light, couples of lattices
indices will be called with greek letters, (i, j) → ρ.

ρ1=(i,j)

ρ2=(k,l)

Figure 4.1. A particular configuration of the auxiliary variables, σ, is shown. Black (red)
bonds correspond to σρ = 1 (σρ = −1). The corresponding set of couplings {Jρ},
associated to the edges, follow from the Eq. (4.2). The dotted line represent the
distance |ρ1 − ρ2| between two bonds. Circle, instead, represent q-Potts spins on
lattice vertices.

1In [7], these live on lattice vertices, but since a continuum limit will be soon taken, there is no reason
in doing this.
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The set of {σi} variables introduce the long-range correlations between bonds:

E[σρ1σρ2 ] ∼ |ρ1 − ρ2|−a, for distances ≫ l, the lattice spacing, (4.4)

and can be sampled from different probabilities distribution functions (PDFs). The
symbol E[· · · ], stands for the disorder average:

E [· · · ] = 1∑
{σ}

exp (Saux(σ))

∑
{σ}

exp (Saux(σ)) [· · · ] , (4.5)

with eS
aux

the probability distribution function.

4.2.2 Continuous replicated formulation

Doing the continuum limit of this perturbed lattice theory, close to the Pure (P) critical
point, one obtains the following action:

S[s(x), σ(x)] = Saux[σ(x)] + SPotts[s(x)] + Spert[s(x), σ(x)] (4.6)

Spert[s(x), σ(x)] = g0LR

∫
|x|>l

d2xσ(x)ε(x), (4.7)

where, the variable g0LR represents a coupling constant that possesses dimensions. It
serves as a parameter to quantify the strength of disorder and is commonly known as
the ”bare coupling.” σ(x) is the continuum version of the auxiliary spin variable, ε(x) is
the energy Potts fields, corresponding to the scaling limit of δsi,sj and l is the ultraviolet
(UV) cutoff of the field theroy coming from the lattice formulation. In this particular
section, in contrast to Section (1.6.4), the auxiliary field is referred to as σ instead of ϕ to
emphasize its origin from the spins. The SPotts[s(x)] represent the critical Potts action,
where the s(x) are its degrees of freedom. To streamline the notation, the dependence
on (x) for the fields will be implied when it is not necessary for clarity. In a CFT
approach, one can choose the most convenient representation of the Potts action, but,
for the aims of this study, one does not need to specify these details. As usually done
in disordered systems, the action is replicated and one compute the mth moment of the
logarithm of the partition function. One must note another change in notation: in this
case, m represents the number of replicas of the model, while n denotes the number of
uncorrelated copies of the Ising model performed in Chapter (3) to numerically tune the
exponent a.

S(m)[s(α), σ] = Saux[σ] +
m∑
α=1

Ä
S(α)-Potts[s(α)] + S(α)-pert[s(α), σ]

ä
, (4.8)
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By considering only these two terms in the action, the effects of short-range (SR) disorder
are neglected in the renormalisation group (RG) calculations. However, it is important
to note that this SR perturbation is marginal for the case of q = 2, but becomes relevant
for q > 2. Additionally, it will be demonstrated that the operator product expansion
(OPE) automatically generates a relevant (or marginal for q = 2) SR term.
Furthermore, it has been observed that when the dimensionality a is greater than the
spatial dimension d = 2, the LR disorder collapses into a SR disorder, as described
in [7]. To account for this behavior and provide a complete description of the critical
behavior, another term of the form

m∑
α ̸=β=1

g0SR

∫
|x|>l

d2 x, ε(α)(x)ε(β)(x), [44] can be added

”by hand”. It is worth nothing that, in this very term, one does not consider diagonal
terms α = β. This omission is due to the fact that, as demonstrated in [45], the operator
product expansion (OPE) will project these terms onto the identity operator, resulting
in a negligible constant contribution to the free energy of the model. In this context, it
can be said that these terms ”renormalise the identity.”

S(α)-pert =
m∑
α=1

g0LR

∫
|x|>l

d2xσ(x)ε(α)(x) +
m∑

α ̸=β=1

g0SR

∫
|x|>l

d2xε(α)(x)ε(β)(x). (4.9)

And, consequently:

Zm =

∫
DσDs e

S(m)
=

∫
DσDs exp

(
Saux +

m∑
α=1

S(α)-Potts + S(α)-pert

)

=

∫
DσDs exp

Å
Saux +

m∑
α=1

S(α)-Potts +
m∑
α=1

g0LR

∫
|x|>l

d2xσ(x)ε(α)(x)+

+

m∑
α ̸=β=1

g0SR

∫
|x|>l

d2xε(α)(x)ε(β)(x)

ã
=

∫
DσDs exp(S∗)× exp

Å m∑
α=1

g0LR

∫
|x|>l

d2xσ(x)ε(α)(x)+

+
m∑

α ̸=β=1

g0SR

∫
|x|>l

d2xε(α)(x)ε(β)(x)

ã
,

(4.10)

where S∗ is defined by: S∗ = Saux +
m∑
α=1

S(α)-Potts,
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Z∗ =
∫

DσDs exp

Å
Saux +

m∑
α=1

S(α)-Potts
ã

and Ds =
m∏
α
ds(α).

As mentioned in Section (1.6.4), it is common practice, especially in the case of short-
range disorder, to integrate over the auxiliary degrees of freedom, resulting in an effective
action perturbed by Potts energy-energy terms. However, in the case of long-range
correlated disorder, integrating over the auxiliary variables would lead to a non-local
energy-energy perturbation. Therefore, it is preferable to retain the σ as a dynamical
variable in order to keep local terms. Also, in this way, the computations are general with
respect to the disorder distribution. The specific probability density function (PDF),
related to Saux, will be selected when necessary.
In any case, the PDF must respect the following constraint:

•E[σ(x)] = 0,

•E[σ(x)σ(y)] = |x− y|−a, (4.11)
•E[σ(x)σ(y)σ(z)] = 0.

Of course there are disorder distributions that share the properties Eq. (4.11) and differ
in higher cumulants. As an example, one can mention the distribution chosen in [122],
where the disorder field σ coincides with the polarization density field of a d = 2 Ashkin-
Teller (AT) model. In this case the Saux is the action which describes the AT critical
line, which in turn can be expressed in term of a compactified (and orbifolded) free scalar
field [168]. In [7], instead, it is considered σ(x) =

∏n
i σi(x), where σi is a spin field of i-th

copy of a d = 2 critical Ising model. In this case, the Saux is the action of n-uncoupled
Ising model. Otherwise, most of the previous works considered scale-invariant Gaussian
disorder distribution, see Section (4.3.4) for more details.
By expanding the perturbation term in a series, it is obtained, see Eq. (1.56):

Zm = Z∗
〈
1 +

m∑
α=1

g0LR

∫
|x|>l

d2xσ(x)ε(α)(x) +

m∑
α ̸=β=1

g0SR

∫
|x|>l

d2xε(α)(x)ε(β)(x)+

+
1

2!

m∑
α ̸=β=1

m∑
γ ̸=δ=1

(g0SR)
2

∫∫
|x−y|>l

d2xd2y ε(α)(x)ε(β)(x) ε(γ)(y)ε(δ)(y)+

+
1

2!

m∑
α=1

m∑
β=1

(g0LR)
2

∫∫
|x−y|>l

d2x d2y σ(x)ε(α)(x)σ(y)ε(α)(y)+ (4.12)

+
m∑
α=1

m∑
β ̸=γ=1

g0LRg
0
SR

∫∫
|x−y|>l

d2xd2y σ(x)ε(α)(x) ε(β)(y)ε(γ)(y) + · · ·+O(g3)
〉
S∗
.
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Here, ⟨· · · ⟩S∗ represents the average with respect to the disorder distribution S∗, and g3
denotes the terms in the form of (g0LR)3, (g0SR)3, (g0LR)2g0SR, (g0SR)2g0LR.
To simplify the notation, the symbol ⟨· · · ⟩S∗ will be implied when unnecessary during
calculations and will be restored when useful. Also, it must be noticed that the average,
⟨· · ·⟩S∗ , factorizes for therms of the kind:

⟨σ(x)ε(α)(x)σ(y)ε(α)(y)⟩S∗ = E[σ(x)σ(y)] ⟨ε(α)(x) ε(α)(y)⟩, (4.13)

where ⟨· · ·⟩ is simply the average with respect to the replicated Potts action, S(α−Potts).
With this in place, one is ready to begin the approach of the RG computation in the
way introduced in Section (1.7.4).

4.2.3 Physical set up, RG scheme and OPE rules

In this study, the analysis is conducted with Virasoro primary operators [39], namely σ
and ε, which have known scaling dimensions denoted as hσ and hε, respectively. Since
a perturbative ϵ-expansion is being performed around the P fixed point, the principles
of conformal field theory (CFT) and the operator product expansion (OPE) guarantee
the following relations:

• 1-loop: lim
x→y

σ(x)σ(y) → Cσσ(|x− y|)1(x) + irrelevant fields,

where Cσσ(|x− y|) = E [σ(x)σ(y)1(∞)] = |x− y|−2hσ .

• 1-loop: lim
x→y

ε(x)ε(y) → Cεε(|x− y|)1(x) + irrelevant fields, (4.14)

where Cεε(|x− y|) = ⟨ε(x)ε(y)1(∞)⟩ = |x− y|−2hε .

• 2-loops: lim
x→y→z

σ(x)σ(y)σ(z) → Cσσσ(|x− y|, |y − z|)σ(x) + irrelevant fields,

where Cσσσ(|x− y|, |y − z|) = E [σ(x)σ(y)σ(z)σ(∞)] .

• 2-loops: lim
x→y→z

ε(x)ε(y)ε(z) → Cεεε(|x− y|, |y − z|) ε(x) + irrelevant fields,

where Cεεε(|x− y|, |y − z|) = ⟨ε(x)ε(y)ε(z)ε(∞)⟩.

It is important to note that the operators σ and ε are averaged with respect to the action
S∗, so the brackets ⟨· · · ⟩S∗ are implied. Thus, Equation (4.14) should be interpreted
as follows: the contraction of two or more σ or ε operators, projected onto a different
operator located far away (infinite distance), yields that far operator multiplied by an
amplitude. At the 1-loop level, this amplitude is determined by Equation (1.73), while
at the 2-loop level, it needs to be computed and is a crucial aspect of the calculation.
It is worth mentioning that for the OPE to be applicable, two ε fields must be in the
same replica, so the replica index will be implied in those cases.
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The utilization of OPE rules in the RG computation, as explained in Section (1.7), is
justified by the phenomenon that occurs during the coarse-graining process. Operators
located at different but sufficiently close points in space collapse into a single point,
effectively becoming far away from the identity, σ, or ε operators onto which they are
projected. In practice, these operators are considered to be at infinity.
From Equation (4.4), it can be easily deduced that hσ = a/2. Additionally, it is well-
known that hε = 2− 1/νP [44], where νP represents the critical exponent of the corre-
lation length for the P model.
The RG procedure is based on the double ϵ-expansion of the following quantities:

ϵSR = 2− 2hε, ϵLR = 2− hσ − hε, (4.15)

hϵSR = 2hε and hϵLR = hσ + hε represent the scaling dimension of the ε(α)ε(α) operator
(the SR one) and of the σε(α) operator (the LR one). In terms of the physical variable
a and q, one can notice that:

ϵLR = 1− a

2
+
ϵSR
2
, 2ϵLR − ϵSR = 2− a, (4.16)

and:

ϵSR = 4− 6π

2π − arccos

Å
q − 2

2

ã =
4

3
(q − 2) +O

Ä
(q − 2)2

ä
, [44]. (4.17)

For the case of q = 2, the value of ϵSR is zero. However, to ensure a unified treatment
of both the Potts model and the Ising model, the analysis is kept general, and ϵSR will
be appropriately sent to zero when considering the Ising model.
It is important to note that the computations are restricted to a region where (q−2) ≪ 1
and (2 − a) ≪ 1 to ensure that ϵLR and ϵSR are small. This restriction allows for a
perturbative analysis of the system.
Therefore, one can consider:

• s = ϵSR
ϵLR

→ O(1) for q ≳ 2 and (2− a) finite,

• s = ϵSR
ϵLR

→ o(1) for q = 2 and (2− a) finite, i.e. the Ising limit.
(4.18)
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4.3 Renormalisation group computation

In this section, the real space renormalisation group (RG) scheme for the aforemen-
tioned model is explicitly developed. This will be carried out by following the guidelines
provided in [25,44], as well as in Section (1.7).
This scheme is particularly adapted when one deals with perturbations around a confor-
mal (in general not a free-field) action. This can be compared to previous RG approaches
to long-range disordered models, where the unperturbed action was a free-field action:
for instance a vector [86] or a tensor of free-scalar-fields [123], or again a Majorana free
fermion [135]. The RG transformations in these previous works were carried out in the
momentum space by using the form of the free-theory bare propagator. In this work
and in [8], instead, one uses the bootstrap data of the unperturbed CFT, that provides
the space dependence of the three and the four-point functions of primary fields.
It is a very general result in CFTs that the 0-loops order RG recursion relations are
determined by the scaling dimensions of the relevant perturbation operators and their
operator product expansion (OPE), as established in [25]. In the upcoming analysis,
these results will be re-derived specifically for the model in question. It will be shown
that also the 1-loop order is completely fixed by these scaling dimensions. Furthermore,
the computation will be extended to the 2-loops level to provide a more comprehensive
understanding of the system.
The procedure involves ensuring the conservation of the partition function under RG
transformations. To initiate the computation, the RG scale factor r can be introduced,
where r = (1 + δr).
With the introduction of the RG scale factor, the RG computation can now commence.

1. To begin, one expands the perturbation term as shown in Equation (4.12).

2. Next, the integral cutoffs are rescaled by a factor of r, such that l → l(1 +
δr) = lr.

3. The next step involves integrating out the fluctuations over scales between
the original ultraviolet (UV) cutoff l and the rescaled cutoff lr.

4. After integrating out the fluctuations over the intermediate scales, the sys-
tem is set back to the original UV cutoff l.

5. In order to maintain the physical quantities invariant under the renormali-
sation group (RG) transformation, such as the partition function, the bare
coupling constants g0LR, g0SR need to be adjusted. This leads to the compu-
tation of the new set of renormalized coupling constants. Specifically, one
computes the renormalized dimensionless couplings gLR(r), gSR(r) in terms
of the bare couplings
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In Fig. (1.11), a schematic representation of the procedure that will be explicitly carried
out in this section is depicted.
The rescaling step explicitly affects the integrals in Equation (4.12) through the length
dependence of operators and the cutoff of the integrals. For a generic coupling term
(g0X)

k, where X = {LR, SR} and k is an integer power, the effect of rescaling can be
expressed as follows:

(g0X)
k

∫
|x−y|>l

d2x d2y (· · · ) → (g0X)
k

∫
|x−y|>lr

d2x d2y (· · · ) =

= (g0X)
k

∫
|x−y|>l

d2x d2y (· · · ) − (g0X)
k

∫
l<|x−y|<lr

d2x d2y (· · · ) .
(4.19)

The term with the cutoff l contributes in the usual manner to the partition function.
As for the second term, from now on, the lower bound (l < |x − y|) of the integral will
not be considered. This lower bound contributes to non-universal terms, which will be
disregarded for the computation of universal critical exponents.
Therefore, terms of the form:

−(g0X)
k

∫
|x−y|<r

d2x d2y (· · · ) , (4.20)

will contribute to the renormalisation of the coupling constants {(g0X)k} in Equation (4.12).
For simplicity, one assumes the lattice spacing is set to 1, so l = 1. Again, it is important
to remind that the symbol ⟨· · ·⟩S∗ is implied.

4.3.1 0-loops or dimensional analysis

When considering terms of order (g0X)1, one can perform what is referred to as a 0-loops
computation.
For a generic scaling operator O(x) with scaling dimension hO, Equation (4.19) implies:

(g0X)
1

∫
|x|>l

d2x O(x) → (g0X)
1

∫
|x|>lr

d2(x) O(x)

= (g0X)
1r2−hO

∫
|x|>l

d2(x) O(x)

(4.21)
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At the ”0-loop” level, one can neglect fast fluctuating terms in the range l < |x| < lr,
which simplifies Equation (4.19). Then, by setting back the UV cutoff to its initial value
l, the coupling is rescaled by r2−hO , resulting in:

(g0X)
1 r2−hO . (4.22)

Another way to arrive at the same result is by considering dimensionless couplings. This
can be achieved by noting that:

Jg0SRK = r−2+2hε ,Jg0LRK = r−2+hσ+hε ,
(4.23)

where the J· · ·K denotes the dimension of the quantity inside the brackets, and r repre-
sents the RG length scale. By making the couplings dimensionless, one obtains:

gSR = g0SR r
2−2hε = g0SR r

ϵSR ,

gLR = g0LR r
2−hσ−hε = g0LR r

ϵLR .
(4.24)

The following equation, represents the renormalisation of the coupling constants when
a RG length rescaling of r has been performed at the 0-loops level:

g0SR → g0SR r
ϵSR ,

g0LR → g0LR r
ϵLR .

(4.25)
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4.3.2 1-loop analysis

At 1-loop level, the contributions to the RG renormalisation come from the interactions
between perturbative fields when these approach each other at distances smaller than the
RG scale, r. In particular, the first order contributions originate from the contribution
of two colliding perturbative fields.
One can proceed with the 1-loop computation. At this stage, the fast modes cannot be
discarded anymore, and all terms of the form of Equation (4.20) need to be considered. In
other words, the rescaling of the cutoffs in the integrals becomes crucial in the calculation.

(· · · )(g0X)2
∫∫

|x−y|<r

d2x d2y (· · · ) , (4.26)

In the 1-loop computation, terms involving (g0LR)
2 and (g0SR)

2 in Equation (4.12) are
considered. These terms renormalise the short-range (SR) term of the action in Equa-
tion (4.8). Additionally, the term involving g0LR g0SR in Equation (4.12) renormalises the
long-range (LR) term of the action.
Due to the RG rescaling, the operators contract with each other, with x → y. This
allows the application of the OPE rules from Equation (4.14). From this point onwards,
a shorter notation will be employed to express the operators involved, such as ε(α)(x)
becoming εαx and σ(x) becoming σx.

One begins by considering the first contribution to the short-range term, εαxε
β
x, which

renormalises the coupling g0SR, as done in [44]:

→ 1

2

m∑
α,β=1

(g0LR)
2

∫∫
|x−y|<r

d2x d2y σxε
α
x σy

α ̸= β

εβy

=
1

2

m∑
α ̸=β=1

(g0LR)
2

∫
d2xεαxε

β
x 1∞

∫
|x−y|<r

d2y Cσσ(|x− y|)

=
1

2

m∑
α ̸=β=1

(g0LR)
2

∫
d2xεαxε

β
x

∫
|x−y|<r

d2y |x− y|−2hσ︸ ︷︷ ︸
OPE amplitude, Eq. (4.14).

= π(g0LR)
2

Ç
r2−2hσ

2− 2hσ

å m∑
α ̸=β=1

∫
d2xεαxε

β
x

= π(g0LR)
2

Å
r2ϵLR−ϵSR

2ϵLR − ϵSR

ã
︸ ︷︷ ︸

renormalises g0SR

m∑
α ̸=β=1

∫
d2xεαxε

β
x︸ ︷︷ ︸

SR term

.

(4.27)

Notice, that α ̸= β in order to renormalize εαxε
β
x and not the identity, 1.
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Then, one computes the second 1-loop contribution to the coupling g0SR, [44]:

→ 1

2

m∑
α ̸=β=1

m∑
γ ̸=δ=1

(g0SR)
2

∫∫
|x−y|<r

d2x d2y εαxε
β
x ε

γ
yε
δ
y

α = δ, β ̸= γ

=
1

2
C(g0SR)2

m∑
β ̸=γ=1

(g0SR)
2

∫
d2xεβxε

γ
x 1∞

∫
|x−y|<r

d2y Cεε(|x− y|)

=
1

2
C(g0SR)2

m∑
β ̸=γ=1

(g0SR)
2

∫
d2xεβxε

γ
x

∫
|x−y|<r

d2y |x− y|−2hε︸ ︷︷ ︸
OPE amplitude, Eq. (4.14).

= C(g0SR)2 π(g
0
SR)

2

Ç
r2−2hε

2− 2hε

å m∑
β ̸=γ=1

∫
d2xεβxε

γ
x

= 4π(m− 2)(g0SR)
2

Å
rϵSR

ϵSR

ã
︸ ︷︷ ︸

renormalises g0SR

m∑
β ̸=γ=1

∫
d2xεβxε

γ
x︸ ︷︷ ︸

SR term

.

(4.28)

The factor C(g0SR)2 arises from the requirement that certain conditions on the replica
indices need to be satisfied in order to obtain the SR term. In this case, α = δ is needed
to ensure that two ε operators belong to the same replica and can contract when they
are close to each other. Consequently, β ̸= γ to avoid the contraction of the other two ε
operators, which would lead to the renormalisation of the identity operator. There are
C(g0SR)2 = 4(m− 2) ways to satisfy these conditions.
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Now, one considers the new and unique 1-loop contribution to the LR term, σxεαx ,
renormalising g0LR, which arises from:

→
m∑
α=1

m∑
β ̸=γ=1

g0LRg
0
SR

∫∫
|x−y|<r

d2x d2y σx εαx ε
β
y

α = β ̸= γ

εγy

= C(g0SRg
0
LR)

m∑
γ=1

g0SRg
0
LR

∫
d2xσxε

γ
x 1∞

∫
|x−y|<r

d2y Cεε(|x− y|)

= C(g0SRg
0
LR)

m∑
γ=1

g0SRg
0
LR

∫
d2xσxε

γ
x

∫
|x−y|<r

d2y |x− y|−2hε︸ ︷︷ ︸
OPE amplitude, Eq. (4.14).

= C(g0SRg
0
LR) π g

0
LRg

0
SR

Ç
r2−2hε

2− 2hε

å m∑
γ=1

∫
d2xσxε

γ
x

= 4π(m− 1)g0LRg
0
SR

Å
rϵSR

ϵSR

ã
︸ ︷︷ ︸

renormalises g0LR

m∑
γ=1

∫
d2xσxε

γ
x︸ ︷︷ ︸

LR term

,

(4.29)

where C(g0SRg
0
LR) = 2(m− 1).

1-loop couplings renormalisation

Resuming all the contributions, it is found:

g0SR → g0SR r
ϵSR + π(g0LR)

2

Å
r2ϵLR−ϵSR

2ϵLR − ϵSR

ã
+ 4π(m− 2)(g0SR)

2

Å
rϵSR

ϵSR

ã
,

g0LR → g0LR r
ϵLR + 4π(m− 1)g0LRg

0
SR

Å
rϵSR

ϵSR

ã
,

(4.30)

which provides the renormalized coupling constants at the 1-loop level, in the limit as
m→ 0:

g0SR → g0SR r
ϵSR + π(g0LR)

2

Å
r2ϵLR−ϵSR

2ϵLR − ϵSR

ã
− 8π(g0SR)

2

Å
rϵSR

ϵSR

ã
,

g0LR → g0LR r
ϵLR − 4πg0LRg

0
SR

Å
rϵSR

ϵSR

ã
,

(4.31)
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4.3.3 2-loops analysis

The 2-loops order is of great importance when drawing conclusions from approximate
RG computations. The results at this order depend on the interactions of three fields
at low distances, which provide insights into the four-point correlation functions of the
unperturbed conformal field theory (CFT). In CFT, the four-point correlation func-
tion contains valuable information about the theory’s spectrum and structure constants,
making it a central object in the bootstrap approach [39]. It is worth noting that there
are cases where properties valid at the first loop order can be broken at the second loop
order, highlighting the significance of the 2-loops computations. An important example
of this is discussed in Section (4.5.2).
Similar to the 1-loop case, it is necessary to calculate contributions to g0LR and g0SR in
the action defined in Eq.(4.8) that arise from terms involving (g0SR)

3, (g0LR)3, (g0LR)2g0SR,
and g0LR(g

0
SR)

2 in the expansion of Eq.(4.12). These contributions can be computed in
the following form:

(· · · )(g0X)3
∫∫∫

|x−y|,|y−z|<r

d2x d2y (· · · ) . (4.32)

To maintain a lighter manuscript, the notation will be simplified as much as possible.
For instance, the identity operators will be implied. It is important to note that the
operators are interacting within the same RG block, meaning that, after the rescaling
process one has: x→ y → z.
The contributions arising at the 2-loop order can be expressed in terms of the following
four integrals:

(i)
(g0SR)

3

6

m∑
α ̸=β=1

m∑
γ ̸=δ=1

m∑
η ̸=ϕ=1

∫∫∫
|x−y|,|y−z|<r

d2x d2y d2z εαxε
β
x ε

γ
yε
δ
y ε

η
zε
ϕ
z .

(ii)
g0SR(g

0
LR)

2

2

m∑
α=1

m∑
β=1

m∑
γ ̸=δ=1

∫∫∫
|x−y|,|y−z|<r

d2x d2y d2z σxε
α
x σyε

β
y ε

γ
zε
δ.

(iii)
(g0LR)

3

6

m∑
α=1

m∑
β=1

m∑
γ=1

∫∫∫
|x−y|,|y−z|<r

d2x d2y d2z σxε
α
x σyε

β
y σzε

γ
z .

(iv)
(g0SR)

2g0LR
2

m∑
α ̸=β=1

m∑
γ ̸=δ=1

m∑
η=1

∫∫∫
|x−y|,|y−z|<r

d2x d2y d2z εαxε
β
x ε

γ
xε
δ
x σzε

η
z .

(4.33)
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The subsequent integrals are computed using Dotsenko’s approach [44,169]. Specifically,
these integrals are assessed as an ϵ-expansion, and non-singular or regular terms are
disregarded as they do not influence the universal critical exponents.
Starting from the (i) contribution:

→
(g0SR)

3

6

m∑
α ̸=β=1

m∑
γ ̸=δ=1

m∑
η ̸=ϕ=1

∫∫∫
|x−y|,|y−z|<r

d2x d2y d2z εαx

β=γ ̸=α,ϕ

εβx ε
γ
y

δ=η ̸=α,ϕ

εδy ε
η
zε
ϕ
z

= (g0SR)
3

m∑
α ̸=ϕ=1

∫
d2xεαxε

ϕ
x

C′
g3SR

6

∫
|x−y|,|y−z|<r

d2y d2z Cεε(|x− y|)Cεε(|y − z|)

= (g0SR)
3

m∑
α ̸=ϕ=1

∫
d2xεαxε

ϕ
x

C′
g3SR

6

∫
|x−y|,|y−z|<r

d2y d2z |x− y|−2hε |y − z|−2hε

︸ ︷︷ ︸
I′
g3
SR

= (g0SR)
3I ′
g3SR︸ ︷︷ ︸

renormalises g0SR

m∑
α ̸=ϕ=1

∫
d2xεαxε

ϕ
x︸ ︷︷ ︸

SR term

,

(4.34)

where the combinatorial factor and the integral are given by:

C′
g3SR

= 3 · 2 · 2 · 2(m− 2)(m− 3) = 24(m− 2)(m− 3) (4.35)

I ′
g3SR

=
C′
g3SR

6

∫
|x−y|,|y−z|<r

d2y d2z |x− y|−2hε |y − z|−2hε = 16π2(m− 2)(m− 3)
r2ϵSR

ϵ2SR
,

as previously done in [44].
The result of I ′

g3SR
is obtained through a simple change of variables and the application

of the formula:

∫
d2 y |y|2a |1− y|2b = π

Γ(1 + a)Γ(1 + b)Γ(−1− a− b)

Γ(−a)Γ(−b)Γ(2 + a+ b)
. (4.36)

This formula is commonly used in such computations. For a more detailed explanation,
the interested reader is referred to [169].
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There is another contribution to the SR term, but coming from a different contraction:

→
(g0SR)

3

6

m∑
α ̸=β=1

m∑
γ ̸=δ=1

m∑
η ̸=ϕ=1

∫∫∫
|x−y|,|y−z|<r

d2x d2y d2z εαx

α=γ, β=δ,
α,β ̸=ϕ

εβx ε
γ
y

γ=η ̸=ϕ

εδy ε
η
zε
ϕ
z (4.37)

= (g0SR)
3

m∑
α ̸=ϕ=1

∫
d2xεαxε

ϕ
x

C′′
g3SR

6

∫
|x−y|,|y−z|<r

d2y d2z Cεεε(|x− y|, |y − z|)Cεε(|x− y|)

= (g0SR)
3

m∑
α ̸=ϕ=1

∫
d2xεαxε

ϕ
x

C′′
g3SR

6

∫
|x−y|,|y−z|<r

d2y d2z ⟨ εxεyεzε∞ ⟩|y − z|−2hε

︸ ︷︷ ︸
I′′
g3
SR

= (g0SR)
3I ′′
g3SR︸ ︷︷ ︸

renormalises g0SR

m∑
α ̸=ϕ=1

∫
d2xεαxε

ϕ
x︸ ︷︷ ︸

SR term

,

where the combinatorial factor and the integral are given by:

C′′
g3SR

= 3 · 2 · 2 · 2(m− 2) = 24(m− 2) (4.38)

I ′′
g3SR

=
C′′
g3SR

6

∫
|x−y|,|y−z|<r

d2y d2z ⟨ εxεyεzε∞ ⟩|y − z|−2hε = 4(m− 2)

Å
4π2

r2ϵSR

ϵ2SR
− 2π2

r2ϵSR

ϵSR

ã
= 8π2(m− 2)

r2ϵSR

ϵ2SR
(2− ϵSR) .

The computation of the integral I ′′
g3SR

is quite technical. Fortunately, in the appendix
of [44], the same integral is computed using a Coulomb-gas representation [169–172].
Additionally, a similar integral is computed in [8] for the renormalisation of LR terms,
which will be extensively discussed in this thesis. For a more detailed explanation, the
interested reader is referred to Eq. (4.42) in the thesis.
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Now, the (ii) integral:

→
g0SR(g

0
LR)

2

2

m∑
α=1

m∑
β=1

m∑
γ ̸=δ=1

∫∫∫
|x−y|,|y−z|<r

d2x d2y d2z σx

α ̸=β,δ

εαx σy

β=γ

εβy ε
γ
zε
δ
z (4.39)

= g0SR(g
0
LR)

2
m∑

α ̸=δ=1

∫
d2xεαxε

δ
x

C′
gSR g2LR

2

∫
|x−y|,|y−z|<r

d2y d2z Cσσ(|x− y|)Cεε(|y − z|)

= g0SR(g
0
LR)

2
m∑

α ̸=δ=1

∫
d2xεαxε

δ
x

C′
gSR g2LR

2

∫
|x−y|,|y−z|<r

d2y d2z |x− y|−2hσ |y − z|−2hε

︸ ︷︷ ︸
I′
gSR g2

LR

= g0SR(g
0
LR)

2I ′
gSR g2LR︸ ︷︷ ︸

renormalises g0SR

m∑
α ̸=δ=1

∫
d2xεαxε

δ
x︸ ︷︷ ︸

SR term

,

where the combinatorial factor and the integral are given by:

C′
gSR g2LR

= 2 · 2(m− 2) = 4(m− 2) (4.40)

I ′
gSR g2LR

=
C′
gSRgLR

2

∫
|x−y|,|y−z|<r

d2y d2z |x− y|−2hσ |y − z|−2hε = 8π2 (m− 2)
r2ϵLR

ϵSR(2ϵLR − ϵSR)
.

In [8], this integral is computed using the method developed in [44]. The integral is
solved using Eq. (4.36), following a similar formal approach as in Eq. (4.34). The unique
difference lies in the exponent of the |x−y| term, which does not modify the computation
scheme.
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Still, there is another contribution coming from the same (ii) integral, but with a different
contraction:

→
g0SR(g

0
LR)

2

2

m∑
α=1

m∑
β=1

m∑
γ ̸=δ=1

∫∫∫
|x−y|,|y−z|<r

d2x d2y d2z σx

α=β ̸=δ

εαx σy

β=γ ̸=δ

εβy ε
γ
zε
δ
z (4.41)

= g0SR(g
0
LR)

2
m∑

α ̸=δ=1

∫
d2xεαxε

δ
x

C′′
gSRg

2
LR

2

∫
|x−y|,|y−z|<r

d2y d2z Cεεε(|x− y|, |y − z|)Cσσ(|x− y|)

= g0SR(g
0
LR)

2
m∑

α ̸=δ=1

∫
d2xεαxε

δ
x

C′′
gSRg

2
LR

2

∫
|x−y|,|y−z|<r

d2y d2z ⟨ εxεyεzε∞ ⟩|x− y|−2hσ

︸ ︷︷ ︸
I′′
gSR g2

LR

= g0SR(g
0
LR)

2I ′′
gSRg

2
LR︸ ︷︷ ︸

renormalises g0SR

m∑
α ̸=δ=1

∫
d2xεαxε

δ
x︸ ︷︷ ︸

SR term

,

where the combinatorial factor and the integral are given by:

C′′
gSRg

2
LR

= 2

I ′′
gSRg

2
LR

=
C′′
gSRg

2
LR

2

∫
|x−y|,|y−z|<r

d2y d2z ⟨ εxεyεzε∞ ⟩ |x− y|−2hσ

= π2

 8

ϵSR
+

16π

3
√
3

ϵLR − ϵSR
2ϵLR − ϵSR

− 4ϵSR
2ϵLR − ϵSR︸ ︷︷ ︸

B(ϵLR,ϵSR)

 r2ϵLR

2ϵLR

= π2
ï

8

ϵSR
+ B(ϵLR, ϵSR)

ò
r2ϵLR

2ϵLR
,

(4.42)

computed in, [8], following the method developed in [44].
One can rewrite the term B(ϵLR, ϵSR) just in function of the ration s, getting:

B =

ï
16π

3
√
3

ϵLR − ϵSR
(2ϵLR − ϵSR)

− 4ϵSR
2ϵLR − ϵSR

ò
(4.43)

=
16π

3
√
3

(1− s)

(2− s)
− 4s

(2− s)
.
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In particular, to compute I ′′
gSRg

2
LR

, one uses a Coulomb-gas representation [169–172] of
the four-point Potts correlation function:

⟨ε(0)ε(1)ε(y)ε(∞)⟩ = −
2Γ
[
−2

3

]2
√
3Γ
[
−1

3

]4 |y|(ϵSR−2)|y − 1|(
4
3
− ϵSR

3
)× (4.44)

×
∫
d2u|u|(4−2ϵSR)|u− 1|(−

8
3
+

2ϵSR
3

)|u− y|−
8
3
+

2ϵSR
3 .

The operators are positioned at {0, 1, y and ∞}, with a change of variable to simplify
the computation. The goal is to evaluate the multi-complex integral, similar to the
procedure outlined in Appendix D of [44]. The only distinction lies in the exponent of
the |y − 1| term:

I ′′
gSRg

2
LR

→ 2π

∫
d|z||z|−1+2ϵLR

∫
d2y|y|−2+ϵSR |1− y|−

2
3
− 4

3
ϵSR+2ϵLR×

×
∫
d2u|u|4−2ϵSR |u− 1|−

8
3
+ 2

3
ϵSR |u− z|−

8
3
+ 2

3
ϵSR , (4.45)

and getting Eq. (4.42).
One is left with the last integrals which renormalise g0LR, starting from (iii), one has:

→
(g0LR)

3

6

m∑
α=1

m∑
β=1

m∑
γ=1

∫∫∫
|x−y|,|y−z|<r

d2x d2y d2z σx

α=β

εαx σy

β=γ

εβy σzε
γ
z (4.46)

= (g0LR)
3
m∑
α=1

∫
d2xσxε

α
x

C′
g3LR

6

∫
|x−y|,|y−z|<r

d2y d2z Cεεε(|x− y|, (|y − z|))Cσσσ(|x− y|, (|y − z|))

= (g0LR)
3
m∑
α=1

∫
d2xσxε

α
x

C′
g3LR

6

∫
|x−y|,|y−z|<r

d2y d2z ⟨ εxεyεzε∞ ⟩E [σxσyσzσ∞]

︸ ︷︷ ︸
I′
g3
LR

= (g0LR)
3I ′
g3LR︸ ︷︷ ︸

renormalises g0LR

m∑
α=1

∫
d2xσxε

α
x︸ ︷︷ ︸

LR term

,
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where the combinatorial factor and the integral are given by:

C′
g3LR

= 1

I ′
g3LR

=
1

6

∫
|x−y|,|y−z|<r

d2y d2z ⟨ εxεyεzε∞ ⟩E [σxσyσzσ∞] . (4.47)

This integral is computed in [8]. Specifically, when evaluating this integral, it is necessary
to specify the fourth cumulant of the disorder distribution. The computation for this
contribution has been carried out for both a Gaussian disorder distribution and another
specific non-Gaussian distribution. In the case of the non-Gaussian distribution, the
auxiliary spins are once again described by Potts energies, denoted as ε. This explicit
computation will be presented in Sec. (4.3.4).
There is another contribution to the LR term, but coming from a different contraction:

→
(g0LR)

3

6

m∑
α=1

m∑
β=1

m∑
γ=1

∫∫∫
|x−y|,|y−z|<r

d2x d2y d2z σx

α ̸=β

εαx σy

β=γ ̸=α

εβy σzε
γ
z (4.48)

= (g0LR)
3
m∑
α=1

∫
d2xσxε

α
x

C′′
g3LR

6

∫
|x−y|,|y−z|<r

d2y d2z Cσσσ(|x− y|, (|y − z|))Cεε(|y − z|)

= (g0LR)
3
m∑
α=1

∫
d2xσxε

α
x

C′′
g3LR

6

∫
|x−y|,|y−z|<r

d2y d2zE [σxσyσzσ∞] |y − z|−2hε

︸ ︷︷ ︸
I′′
g3
LR

= (g0LR)
3I ′′
g3LR︸ ︷︷ ︸

renormalises g0LR

m∑
α=1

∫
d2xσxε

α
x︸ ︷︷ ︸

LR term

,

where the combinatorial factor and the integral are given by:

C′′
g3LR

= 3(m− 1)

I ′′
g3LR

=
C′′
g3LR

6

∫
|x−y|,|y−z|<r

d2y d2zE [σxσyσzσ∞] |y − z|−2hε .
(4.49)

Again, this integral is computed in [8]. In particular, in the computation is necessary to
specify the fourth cumulant of the disorder distribution, see Sec. (4.3.4).
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The last integral that renormalizes g0LR is (iv):

→
(g0SR)

2g0LR
2

m∑
α ̸=β=1

m∑
γ ̸=δ=1

m∑
η=1

∫∫∫
|x−y|,|y−z|<r

d2x d2y d2z εαx

β=γ
α ̸=γ,δ

εβx ε
γ
y

δ=η

εδy σzε
η
z (4.50)

= (g0SR)
2g0LR

m∑
α=1

∫
d2xσxε

α
x

C′
g2SRgLR

2

∫
|x−y|,|y−z|<r

d2y d2z Cεε(|x− y|)Cεε(|y − z|)

= (g0SR)
2g0LR

m∑
α=1

∫
d2xσxε

α
x

C′
g2SRgLR

2

∫
|x−y|,|y−z|<r

d2y d2z |x− y|−2hε |y − z|−2hε

︸ ︷︷ ︸
I′
g2
SR

gLR

= (g0SR)
2g0LR I ′

g2SRgLR︸ ︷︷ ︸
renormalises g0LR

m∑
α=1

∫
d2xσxε

α
x︸ ︷︷ ︸

LR term

.

One can note that I ′
g2SRgLR

is essentially equal to I ′
g3SR

, up to a constant term. The
computation of I ′

g3SR
has already been performed and presented in Eq. (4.35)

Thus:

C′
g2SRgLR

= 2 · 2 · 2(m− 2)(m− 1) = 8(m− 2)(m− 1) (4.51)

I ′
g2SRgLR

=
C′
g2SRgLR

2

∫
|x−y|,|y−z|<r

d2y d2z |x− y|−2hε |y − z|−2hε = 16π2(m− 2)(m− 1)
r2ϵSR

ϵ2SR
.
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The last contribution to g0LR comes from the same integral (iv) as mentioned earlier, but
with a different contraction:

→
(g0SR)

2g0LR
2

m∑
α ̸=β=1

m∑
γ ̸=δ=1

m∑
η=1

∫∫∫
|x−y|,|y−z|<r

d2x d2y d2z εαx

α=δ, β=γ

εβx ε
γ
y

δ=η

εδy σzε
η
z (4.52)

= (g0SR)
2g0LR

m∑
α=1

∫
d2xσxε

α
x

C′′
g2SRgLR

2

∫
|x−y|,|y−z|<r

d2y d2z Cεεε(|x− y|, |y − z|)Cεε(|y − z|)

= (g0SR)
2g0LR

m∑
α=1

∫
d2xσxε

α
x

C′′
g2SRgLR

2

∫
|x−y|,|y−z|<r

d2y d2z ⟨ εxεyεzε∞ ⟩|y − z|−2hε

︸ ︷︷ ︸
I′′
g2
SR

gLR

.

= (g0SR)
2g0LR I ′′

g2SRgLR︸ ︷︷ ︸
renormalises g0LR

m∑
α=1

∫
d2xσxε

α
x︸ ︷︷ ︸

LR term

As before, one has that I ′′
g2SRgLR

is essentially equal to I ′′
g3SR

, apart from a constant term.
The computation of I ′′

g3SR
has already been performed and presented in Eq. (4.38), thus

one has:

C′′
g2SRgLR

= 2 · 2(m− 1) = 4(m− 1)

I ′′
g2SRgLR

=
C′′
g2SRgLR

2

∫
|x−y|,|y−z|<r

d2y d2z ⟨ εxεyεzε∞ ⟩|y − z|−2hε

= 4π2(m− 1) (2− ϵSR)
r2ϵSR

ϵ2SR
.

(4.53)
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4.3.4 Computation of Idis: Gaussian and non-Gaussian disorders

The computation of Idis = I ′
g3LR

+ I ′′
g3LR

can now be performed. The result is dependent
on the fourth cumulant of the disorder distribution, as mentioned earlier. The Gaussian
and a non-Gaussian cases will be distinguished.
As non-Gaussian disorder (dis = NG), it will be considered a disorder made by Potts
energies, different from the m replicas, as auxiliary variables i.e.

non-Gaussian disorder instance: {σ → ε, ϵLR → ϵSR, a = 2− ϵSR}, (4.54)

yielding:

ING =

XXXXXXXXXXXXXXXXX

1

6

∫
|x−y|,|y−z|<r

d2y d2z ⟨ εxεyεzε∞ ⟩2

︸ ︷︷ ︸
0, since does not contains singularities, [44].

+

−1

2

∫
|x−y|,|y−z|<r

d2y d2z ⟨ εxεyεzε∞ ⟩ |y − z|−2hε

︸ ︷︷ ︸
∝I′′

gSR g2
LR

or I′′
g3
SR

= π2
Å
2− 4

ϵSR

ã Ç
r2ϵSR

2ϵSR

å
. (4.55)

This particular non-Gaussian instance, has been choosed in order to make the compu-
tations easily done by following [44].
Now, one can consider a Gaussian disorder (dis = G) distribution that satisfies Eq. (4.11).
As in [148], the corresponding action Saux is represented in terms of the non-local lapla-
cian

(
−∂2

)(2−a)/2 [132,173]. In particular one can take:

σ(x) = σx, Saux =

∫
d2xσx

(
−∂2

) 2−a
2 σx. (4.56)

In this case, one can use Wick’s theorem, for which:

E [σxσyσzσ∞] = E [σxσy]�����E [σzσ∞]︸ ︷︷ ︸
1

+E [σxσz]�����E [σyσ∞]︸ ︷︷ ︸
1

+�����E [σxσ∞]︸ ︷︷ ︸
1

E [σyσz]

= E [σxσy] + E [σxσz] + E [σyσz] .

(4.57)
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One gets:

IG =
1

6

∫
|x−y|,|y−z|<r

d2y d2z ⟨ εxεyεzε∞ ⟩E [σxσyσzσ∞] +

− 1

2

∫
|x−y|,|y−z|<r

d2y d2zE [σxσyσzσ∞] |y − z|−2hε

=
3

6

∫
|x−y|,|y−z|<r

d2y d2z ⟨ εxεyεzε∞ ⟩ |x− y|−2hσ+

− 2

2

∫
|x−y|,|y−z|<r

d2y d2zE [σxσy] |y − z|−2hε+

hhhhhhhhhhhhhhhhhhh

−1

2

∫
|x−y|,|y−z|<r

d2y d2z |y − z|−2hσ−2hε

︸ ︷︷ ︸
0, since does not contains singularities, [44].

=
1

2

∫
|x−y|,|y−z|<r

d2y d2z ⟨ εxεyεzε∞ ⟩ |x− y|−2hσ

︸ ︷︷ ︸
∝I′

gSR g2
LR

+

−
∫

|x−y|,|y−z|<r

d2y d2z |x− y|−2hσ |y − z|−2hε

︸ ︷︷ ︸
∝I′

gSR g2
LR

)

=
π2

2

Å
8

ϵSR
+ B(ϵLR, ϵSR)

ã
r2ϵLR

2ϵLR
− 4π2

r2ϵLR

ϵSR(2ϵLR − ϵSR)

= π2
ÅB(ϵLR, ϵSR)

2
− 4

2ϵLR − ϵSR

ãÅ
r2ϵLR

2ϵLR

ã
. (4.58)

So, summarising the results of Idis in this way:

Idis = π2
Å
Cdis − 4

2ϵLR − ϵSR

ãÅ
r2ϵLR

2ϵLR

ã
. (4.59)

with:

Cdis =
®
B(s)/2, for a G disorder,
2 = −B(ϵSR, ϵSR)/2 = −B(s = 1)/2, in this particular NG case .

(4.60)
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In both cases, one observes that the renormalisability of the theory, in particular the fact
that the divergences of type ϵ−2

SR or ϵ−2
LR are absorbed in the definition of the renormalized

couplings, is broken for m ̸= 0 by the above term. The renormalisability is however re-
established in the limit m→ 0. This phenomena is also discussed in [148]. Analogously
to their observations, it is expected that there should be additional counterterms that
cancel in the limit m → 0. As the interest is on the disordered limit m → 0, the
renormalisability in this limit is enough. This is satisfied when Cdis takes the form of
Eq. (4.60).
It is important to notice that, in the NG case, one has:

B(ϵLR → ϵSR, ϵSR) = B(s = 1) = −4 = −2CNG . (4.61)

2-loops couplings renormalisation

Resuming, the contributions:

1. (g0SR)
3
[
I ′
g3SR

+ I ′′
g3SR

]
+ g0SR(g

0
LR)

2
[
I ′
gSRg

2
LR

+ I ′′
gSRg

2
LR

]
renormalises g0SR.

2. (g0LR)
3
[
I ′
g3LR

+ I ′′
g3LR

]
︸ ︷︷ ︸

Idis

+g0LR(g
0
SR)

2
[
I ′
g2SRgLR

+ I ′′
g2SRgLR

]
renormalises g0LR.

Thus:

g0SR → g0SR r
ϵSR + π(g0LR)

2

Å
r2ϵLR−ϵSR

2ϵLR − ϵSR

ã
+ 4π(m− 2)(g0SR)

2

Å
rϵSR

ϵSR

ã
+ (4.62)

+ 16π2(m− 2)(g0SR)
3
[
(m− 3) +

(
1− ϵSR

2

)]År2ϵSR

ϵ2SR

ã
+

+ 8π2g0SR(g
0
LR)

2

ï
(m− 2)

2ϵLR
ϵSR(2ϵLR − ϵSR)

+
1

ϵSR
+

B(ϵLR, ϵSR)
8

òÅ
r2ϵLR

2ϵLR

ã
,

g0LR → g0LR r
ϵLR + 4π(m− 1)g0LRg

0
SR + (g0LR)

3 Idis+

+ 4π2(m− 1)g0LR(g
0
SR)

2 [4(m− 2) + 2− ϵSR]

Å
r2ϵSR

ϵ2SR

ã
.

The factor B(ϵLR, ϵSR), obtained from Eq. (4.42), can be expressed as:
B(s) = 16π

3
√
3

(1− s)

(2− s)
− 4s

(2− s)
, where s = ϵSR

ϵLR
.

It is important to handle this factor, B(s), with care when studying the Potts or Ising
models. Specifically, one needs to consider the Ising limit, as explained in Section (4.2.3)
In the limit where m→ 0, at 2−loops:
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g0SR → g0SR r
ϵSR + π(g0LR)

2

Å
r2ϵLR−ϵSR

2ϵLR − ϵSR

ã
− 8π(g0SR)

2

Å
rϵSR

ϵSR

ã
+

+ 32(g0SR)
3π2
Å

4

ϵSR
+ 1

ãÅ
r2ϵSR

2ϵSR

ã
+

+ 8π2g0SR(g
0
LR)

2

ï
− 1

ϵSR
+

B(ϵLR, ϵSR)
8

òÅ
r2ϵLR

2ϵLR

ã
,

g0LR → g0LR r
ϵLR − 4πg0LRg

0
SR

Å
rϵSR

ϵSR

ã
+ (g0LR)

3Idis

+ 8π2g0LR(g
0
SR)

2

ï
6

ϵSR
+ 1

òÅ
r2ϵSR

2ϵSR

ã
.

(4.63)

Except for the 0-loops contributions, the other terms are not dimensionless. To im-
plement the rescaling process back to the original cutoff, it is necessary to introduce
dimensionless couplings. In this case, one has the following expressions:

gSR = rϵSR

ï
g0SR − 8π(g0SR)

2

Å
rϵSR

ϵSR

ã
+ π(g0LR)

2

Å
r2ϵLR−ϵSR

2ϵLR − ϵSR

ã
+

+ 8π2g0SR(g
0
LR)

2

Å
− 1

ϵSR
+

B(ϵLR, ϵSR)
8

ãÅ
r2ϵLR

2ϵLR

ã
+ 32π2(g0SR)

3

Å
4

ϵSR
+ 1

ãÅ
r2ϵSR

2ϵSR

ãò
= rϵSR g0SR.

(4.64)

gLR = rϵLR

ï
g0LR − 4πg0LRg

0
SR

Å
rϵSR

ϵSR

ã
+ 8π2g0LR(g

0
SR)

2

Å
6

ϵSR
+ 1

ãÅ
r2ϵSR

2ϵSR

ã
+

+ π2(g0LR)
3

Å
Cdis − 4

ϵLR − ϵSR

ãÅ
r2ϵLR

2ϵLR

ãò
= rϵLR g0LR.

(4.65)
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4.3.5 β-functions and fixed points

Another important step in the RG procedure is the computation of the β-functions.
These functions describe the variations of the coupling constants with respect to changes
in the length scale r, and can be expressed as follows:

βSR = r
dgSR
dr

= ϵSR gSR − 8πg2SR + π g2LR + 32π2g3SR + π2B gSRg2LR +O(g4),

βdisLR = r
dgLR
dr

= ϵLRgLR − 4πgLRgSR + π2Cdis g3LR + 8π2g2SRgLR +O(g4),

(4.66)

The notation βdis is employed to indicate that the coefficient Cdis of g3LR is fixed once
the disorder is determined. In the particular cases considered here one has that Cdis is
defined by Eq. (4.60) with B defined in Eq. (4.43).
Again, it must be noticed that, often in the thesis, a shortened notation is used to
represent B. However, it is important to note that B depends on (ϵLR, ϵSR) or s. This
implies that B takes on different values depending on whether we are analyzing the 3-
Potts model or the Ising model (where ϵSR = 0), or if one is considering a generic disorder
or the specific instance of non-Gaussian disorder where {σ → ε, ϵLR → ϵSR, a = 2−ϵSR}.
It is also worth noting that in the double expansion procedure, B must remain finite.
Therefore, one has B = O(ϵLR, ϵSR), which means that at least 2−a = O(ϵSR) or ϵSR =
O(ϵLR) equivalently. This allows for controlled predictions in the case of the 3-Potts
model where ϵSR ̸= 0. To approach the Ising limit with a < 2, one sets ϵSR = o(2− a),
as indicated in Eq. (4.60).
An important validation of the renormalisability of the theory arises from the fact that
the divergent terms, proportional to ∼ 1/ϵLR and ∼ 1/ϵSR, obtained from the 2-loops
computations in Eqs. (4.64, 4.65), are ”absorbed” by the 1-loop terms.
Given this is possible to compute the position of the fixed or critical points, i.e. the
stationary points of the couplings’ flow, i.e. one can look for {g∗,SRSR , g∗,SRLR } such as
βSR(g

∗,SR
SR , g∗,SRLR ) = O(ϵ3) and βdisLR(g

∗,SR
SR , g∗,SRLR ) = O(ϵ3). The SR point is located at:

g∗,SRSR =
ϵSR
8π

+
ϵ2SR
16π

+O(ϵ3), g∗,SRLR = 0. (4.67)

In the same way, one can look for the stationary points: {g∗,LRSR , g∗,LRLR } and thus the
location of the LR point is found at:

g∗,LRSR =
ϵLR
4π

+
ϵ2LR
8π

Ä
Cdis + 1

ä
− ϵLRϵSR Cdis

16π
+O(ϵ3), (4.68)
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g∗,LRLR =

…
2− ϵSR

ϵLR

Ü
ϵLR
2π

+
−BϵLR(2ϵLR − ϵSR) + Cdis

(
8ϵ2LR + ϵ2SR − 6ϵLRϵSR

)
− 2ϵLRϵSR

16π

Å
2− ϵSR

ϵLR

ã ê
+O(ϵ3). (4.69)

4.4 Stability analysis

The stability of a RG fixed point is established by linearizing the flow in the vicinity of
that point, which leads to the 2× 2 stability matrix:

M =

à
∂

∂ gSR
βSR (g∗SR, g

∗
LR)

∂

∂ gLR
βSR (g∗SR, g

∗
LR)

∂

∂ gSR
βLR (g∗SR, g

∗
LR)

∂

∂ gLR
βLR (g∗SR, g

∗
LR)

í
. (4.70)

The fixed point under consideration is stable if the real part of the eigenvalues is negative.
When g∗LR = 0, the matrix M is diagonal at all orders. This can be also be understood by
recalling that βLR ∝ gLR and by further observing that ∂/∂gLRβSR ∝ gLR as the terms
that contributes to the normalization to gSR have an even number of LR interactions.

P stability

The P point, g∗LR = g∗SR = 0 has then the eigenvalues ϵLR and ϵSR. It is unstable if
either ϵSR > 0 (or 2 < q ≤ 4) or if ϵLR > 0 (or a < 2). Since the case 2 ≤ q ≤ 4 and
a < 2 is considered in the present work, the pure point is always unstable. In Fig. (3.3),
the P point do not describe anymore the critical behavior of the system in this region of
parameters.

SR stability

In the SR case, the results do not depend on the distribution of the disorder and it is
found that, at 2−loops, the eigenvalues are:

λSR1 = −ϵSR +
ϵ2SR
2
, λSR2 = ϵLR − ϵSR

2
−
ϵ2SR
8
. (4.71)

The first eigenvalue is always negative, λSR1 < 0, in the regime of parameters of this
study as 0 < ϵSR ≤ 1 for 2 < q ≤ 4, see Eq. (4.17). The SR point is therefore stable
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provided that the second eigenvalue is negative, λSR2 < 0. This happens when:

a > 2−
ϵ2SR
4

= 2

Å
1−

ϵ2SR
8

ã
. (4.72)

A comment must be done on the above result. The SR correlation length exponent νSR,
computed in [44], and re-derived in Section (4.5.2), is:

νSR = 1 +
ϵ2SR
8

+O(ϵ3). (4.73)

Using Eq. (4.73) in Eq. (4.72), one recovers the extended Harris criterion [86] according
to which the LR/SR change of stability occurs at a = 2/νSR. This is also the equation
defining the curve shown in Fig. (3.3). In RG terms, this criterion simply states that,
at the SR point, the LR perturbation is irrelevant.

LR stability

The goal, in this part, is to obtain an expansion at order ϵ2 of the stability matrix
eigenvalues Eq. (4.70). One can approach the problem using a first order perturbation
scheme and write:

M =M (0) +M (1), (4.74)

where M0 has O(ϵ) element:

M (0) =

Ñ
−4ϵLR + ϵSR

»
2− ϵSR

ϵLR
ϵLR

−2
»

2− ϵSR
ϵLR

ϵLR 0

é
, (4.75)

while M (1) has O(ϵ2) entries:

M
(1)
1,1 = ϵ2LR

Å
4− 2Cdis + B

2

ã
+ ϵLRϵSR

Å
Cdis − B

4

ã
, (4.76)

M
(1)
1,2 =

ϵ2LR
(
8Cdis + 2B

)
+ ϵSRϵLR

(
−2− 6Cdis − B

)
+ Cdisϵ2SR

8
»
2− ϵSR

ϵLR

, (4.77)

M
(1)
2,1 =

ϵ2LR
(
16− 8Cdis + 2B

)
+ ϵSRϵLR

(
−6 + 6Cdis − B

)
− Cdisϵ2SR

4
»
2− ϵSR

ϵLR

, (4.78)

M
(1)
2,2 = Cdis

(
ϵ2LR − ϵSRϵLR

2

)
. (4.79)

One wants to find the correction:

λ1 = λ
(0)
1 + λ

(1)
1 , λ2 = λ

(0)
2 + λ

(1)
2 , (4.80)
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where λ(0)1,2 are the eigenvalues of the unperturbed matrix M0 (of order ϵ) and the λ(1)1,2

are the first order correction (so of order ϵ2). When ϵSR > 0 the matrix M (0) is diago-
nalizable. One has:

A−1M0A =

(
−2ϵLR 0

0 −2ϵLR + ϵSR

)
, (4.81)

where:

A =

Ö
1√

2− ϵSR
ϵLR

√
2− ϵSR

ϵLR

2

1 1

è
. (4.82)

The zero order (corresponding to 1−loop order in the RG computation) eigenvalues are
therefore:

λ
(0)
1 = −2ϵLR, λ

(0)
2 = −2ϵLR + ϵSR, (4.83)

and the corresponding eigenvectors:

∣∣∣λ(0)1

∂
=

Ñ
1√

2− ϵSR
ϵLR

1

é
,
∣∣∣λ(0)2

∂
=

Ñ√
2− ϵSR

ϵLR

2

1

é
. (4.84)

Note that when ϵSR = 0 the eigenvalues of M (0) is double degenerate but the rank of
A is one (and not invertible). The matrix M (0) is an example of a so called defective
matrix, whose eigenvectors span a space smaller than its dimension (in this case 2). The
λ
(1)
1,2 are found by:

λ
(1)
1 =

〈
λ01
∣∣M (1)

∣∣λ01〉 , λ
(1)
2 =

〈
λ02
∣∣M (1)

∣∣λ02〉 , (4.85)

which is equivalent to:

λ
(1)
1 =

Ä
A−1M (1)A

ä
11
, λ

(1)
2 =

(
A−1M1A

)
22
. (4.86)
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One finds:

λLR1 = −2ϵLR −
ϵ2LR
2

Ä
−2 + B − 2Cdis

ä
+
ϵ3LR
ϵSR

Ä
4 + B − 2Cdis

ä
, (4.87)

λLR2 = −2ϵLR + ϵSR + ϵ2LR
Ä
3 + B − 2Cdis

ä
−
ϵ3LR
ϵSR

Ä
4 + B − 2Cdis

ä
− ϵSRϵLR

4

Ä
B − 2Cdis

ä
.

In the Gaussian case Eq. (4.60) the formula get simplified. One finds that the LR point
is attractive between:

a∗ < a <
2

νSR
, a∗ = 2− (2ϵSR)

1/2 +
5

4
ϵSR − 1

32
√
2
ϵ
3/2
SR . (4.88)

The upper bound is in agreement with the numerical results of [7] and with the extended
Harris criterion [86]. Regarding the lower bound, for 3−Potts one finds a∗ = 1.6. This
prediction is qualitatively far from the numerical results in [7], where a∗num ∼ 0.75. The
fact that a∗ = 1.6 is quite different from the numerical findings does not put in question
the validity of the RG approach. Indeed 2 − a∗ > 1 and one cannot pretend to find a
quantitative agreement with a small 2− a expansion. However, the 2-loop computation
shows a qualitative agreement with the fact that there should be a value a∗ below which
the LR point loses stability.
It is quite manifest that one cannot obtain the result of Ising by setting ϵSR = 0 in the
previous equation: indeed one finds a singularity, which can be traced back to the fact
that the matrix A is not invertible. One has to take the limit more carefully.
It is much more simple to diagonalize the matrix M with ϵSR = 0:

M1,1(ϵSR = 0) = −4ϵLR + ϵ2LR

Å
4− 2Cdis +

BIsing
2

ã
, (4.89)

M1,2(ϵSR = 0) =
√
2ϵLR + ϵ2LR

Ç
Cdis√
2
+

BIsing

2
√
2

å
, (4.90)

M2,1(ϵSR = 0) = −2
√
2ϵLR + 2

√
2ϵ2LR

Ç
1− Cdis

2
+

BIsing
8

å
, (4.91)

M2,2(ϵSR = 0) = Cdisϵ2LR. (4.92)

where, from Eq. (4.43) one derives:

BIsing = B(ϵLR, ϵSR = 0) = B(s = 0) =
8π

3
√
3
. (4.93)
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Obtaining:

λLR,Ising
1 = −2ϵLR +

ϵ2LR
4

Ä
8 + BIsing − 2Cdis

ä
+ 2iϵ

3/2
LR , (4.94)

λLR,Ising
2 = −2ϵLR +

ϵ2LR
4

Ä
8 + BIsing − 2Cdis

ä
− 2iϵ

3/2
LR .

The eigenvalues have an imaginary term, in accordance with the findings of [135]. Some
comments are in order. Concerning to the origin of the imaginary terms, one observes
that, at the 1-loop order, the LR Ising stability matrix is not diagonalizable (note that
M is a real and not symmetric function) it has a single eigenvector. At the 2-loop order,
this is solved by creating a pair of complex eigenvalues, conjugate one to the other. A
second observation is that the LR stability depends on the coefficient Cdis and therefore
on the fourth cumulant of the disorder distribution. For a Gaussian disorder, Eq. (4.60)
is verified, the real parts of the two eigenvalues, expressed in terms of a, take the form:

Re
î
λLR,Ising
1

ó
= Re

î
λLR,Ising
2

ó
=

1

2
(a− 2) a. (4.95)

This implies the existence of an interval, a∗ < a < 2, with a∗ = 0 for which the LR
remain attractive. An analogous phenomena was observed in [135] where the interval
of stability was a∗ < a < 2 with a∗ ∼ 1. In [7], it is shown that below this value the
system is attracted to an infinite disorder fixed point. The numerical simulations in [7]
are consistent with a value of a∗num ∼ 0.75. The same reasoning done for 3-Potts can be
done in the Ising case. Indeed the observation that a∗ = 0 differs from the numerical
findings does not undermine the validity of the RG approach since one cannot expect to
obtain quantitative agreement using a small 2 − a expansion for this ”far away” value.
However, the 2-loop computation does exhibit a qualitative agreement with the notion
that there exists a critical value a∗ below which the LR point loses stability.

4.5 Critical exponents

In this section, the effective central charge cXeff and the correlation length exponent
νX for the fixed points X = {SR,LR} are computed. The values of cLReff and νLR are
presented as new results. To assess the validity of the developed theory, the value of
cLReff for the Ising model is compared to observations obtained from simulations.

4.5.1 Central charge and Zamolodchikov c-theorem

The central charge c is a significant universal quantity that characterizes the conformal
algebra upon which the theory is constructed [82]. It determines the universal critical
finite size corrections of various observables [174], and its value can be measured through
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the study of these corrections [160]. In this work, the focus is on the finite size effects of
the free energy F in a critical statistical model defined on a torus of dimensions N ×L.
The central charge appears in the sub-leading and universal term of the large L expansion
of the free energy [174,175]:

βcF
NL

= f0 −
cπ

6L2
+O

(
L−4

)
, (4.96)

where βc is the critical temperature and f0 is the free-energy density, which is a non-
universal quantity.
For the pure model, the central charge cP is known exactly [168]. Its ϵSR expansion is:

c = cP =
1

2
+

7ϵSR
8

−
9ϵ2SR
32

−
9ϵ3SR
128

+O(ϵ4SR). (4.97)

It should be noted that when ϵSR = 0, one reaches the Ising point where the well-known
result cPIsing = 1/2 is obtained.
In the case of the quenched bond-disordered Potts model, the free energy is a self-
averaging observable. Analogously to the pure case, the effective central charge ceff is
defined as the coefficient appearing in the large L expansion of the average free energy:

E
ï
βcF
NL

ò
= f0 −

ceffπ

6L2
+O

(
L−4

)
. (4.98)

Zamolodchikov c-theorem

To compute the central charge, the Zamolodchikov c-theorem [176] is employed, which
states that one needs to identify a function C (gSR, gLR) of the couplings satisfying the
following condition:

βSR
∂

∂gSR

C (gSR, gLR) + βLR
∂

∂gLR

C (gSR, gLR) = −6π2 ⟨Θ(0)Θ(1)⟩ , (4.99)

where Θ(x) is the trace of the stress-energy tensor. This latter is related, by the renor-
malisability of the theory, to the perturbation terms by:

Θ(x) = βSR

n∑
α ̸=β

ε(a)(x)ε(b)(x) + βLR
∑
a

σ(x)ε(a)(x). (4.100)

Using: ∞
n∑
a̸=b

ε(a)(0)ε(b)(0)
∑n

c ̸=d
ε(a)(1)ε(b)(1)

∫
= 2n(n− 1), (4.101)
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〈
n∑
a

σ(0)ε(a)(0)
∑n

b
σ(1)ε(b)(1)

〉
= n, (4.102)∞

n∑
a̸=b

ε(a)(0)ε(b)(0)
n∑
c

σ(1)ε(c)(1)

∫
= 0, (4.103)

one has:

⟨Θ(0)Θ(1)⟩ = 2n(n− 1)β2SR + nβ2LR. (4.104)

To compare the central charge with Monte Carlo results, the 1-loop order is enough, so
one does not need to deal with Cdis. At this order, the β functions, for the system with
n-replicas, are:

βSR = ϵSRgSR + 4π(n− 2)g2SR + πg2LR,

βLR = ϵLRgLR + 4π(n− 1)gSRgLR. (4.105)

Using the above equations, one can verify that a solution of Eq. (4.99) is:

C (gSR, gLR) = C (0, 0)− 6π2n

Å
(n− 1)ϵSRg

2
SR +

1

2
ϵLRg

2
LR+

+
8π

3
(n− 2)(n− 1)g3SR + 2π(n− 1)g2LRgSR

ã
. (4.106)

The effective central charge cXeff at the X fixed point, X = {SR,LR}, is obtained by:

cXeff = lim
n→0

1

n
C
Ä
g∗,XSR , g

∗,X
LR

ä
. (4.107)

The central charge of the pure q−Potts model, see Eq. (4.97), fixes the initial condition
C (0, 0) = cP . Using Eq. (4.106), one obtains the Eqs. (4.108) and (4.109).

Comparison of predictions and measurements

To compare with numerical results, the 1-loop order is sufficient. Ineed, the numerical
precision is not enough to probe 2-loop corrections. At 1-loop order it is obtained:

cSReff =
1

2
+

7ϵSR
8

−
9ϵ2SR
32

−
5ϵ3SR
128

+O(ϵ4SR), (4.108)

cLReff =
1

2
+

7ϵSR
8

−
9ϵ2SR
32

−
9ϵ3SR
128

−
ϵ3LR
2

+
3ϵLR

2ϵSR
8

+O(ϵ4). (4.109)

At the SR point, one recovers the result of [177], while the effective charge at the LR
point represents a new result. In particular, at the Ising point, expressed in terms of a,
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one has:

cLR,Ising
eff =

1

2
− 1

2

(
1− a

2

)3
+O(ϵ4LR). (4.110)

It is worth commenting the fact that at the LR fixed point the cLR,Ising
eff < 1/2 = cP, thus,

the RG flow make the effective central charge diminish. This is observed and checked
also numerically in Fig. (4.2). One should note that the Zamalochicov c-theorem claims
that the central charge decreseas for unitary theory under the RG flow. Still, in the
cases studied, due to the fact that the theory is non-unitary, this is inconclusive.
In Fig. (4.2) the comparison between the results Eq. (4.110) and the numerical results
for the long-range Ising model is shown. The reader is referred to Chapter (3) for a
detailed definition of the lattice model used for simulations. In particular, the LR bond
disordered Ising model is simulated by varying two parameters, the power decay exponent
a and the disorder strength r, see Eq. (3.10)2. In Fig. (4.2), the effective central charge
obtained from measurements of the averaged free energy on strips of size N = 105 and
L = {4, · · · , 8} with periodic boundary conditions along the short direction is shown.
The measurements are done by averaging over 106 strips. The ceff , denoted c(4, 8) in
the following, is obtained by fitting the results for different L by the Eq. (4.98) while
including a L−4 correction. For the Ising model, a fit to this form gives c(4, 8) = 0.495998
in place of the exact result 1/2. This value is shown as a dashed line in Fig. (4.2). The
prediction Eq. (4.110) to which one subtracts 0.5− 0.495998 = 0.004002 is, also, shown.
Next, the numerical results for the LR points are showed. For each value of a, c(4, 8) is
computed for the value of disorder strength r with the less correction to the scaling in
the magnetisation measurements as done in [7]. The following values of disorder were
used: a/r = {0.75/10, 1.0/10, 1.25/5, 1.50/3, 1.75/2, 2/2}. For a ∈ {1, 2}, the agreement
between the measurements and the RG predictions Eq. (4.110) is excellent. For the
smallest value of a considered, a = 0.75, the effective central charge at the LR fixed
point with r = 10 is the same as the one for the LR with an infinite disorder (also
shown in Fig. (4.2) for all values of a). This is in agreement with the finding in [7] and
Chapter (3), that a∗ ≃ 0.75 is the lower limit of stable LR fixed point for the Ising
model.

4.5.2 Correlation length exponent

In the replica approach, the averaged energy two-point correlation function is expressed
as:

⟨εxεy⟩S∗ = E [⟨εxεy⟩] ∝ lim
m→0

1

m

∞
m∑
α=1

εαx

m∑
β=1

εβy

∫
S∗

. (4.111)

2This r should not be confused with the renormalisation group length scale.
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Figure 4.2. Effective central charge c(4, 8), for the Ising model, measured at the LR fixed points
indicated as LR in the key. This is compared with the prediction Eq. (4.110) shown
as RG in the key. The inset shows a magnified view for a close to 2. The effective
central charge for the LR model with infinite disorder, indicated by LR, r = ∞ in
the key is also shown. SR, in the key, is instead the value measured for the Ising
model at the SR fixed point.

One is, thus, interested in the renormalisation of the replica symmetric field:

εsym
x =

n∑
α=1

εαx . (4.112)

The procedure followed for the renormalisation of operators is similar to to the one done
to renormalise the couplings, Sec. (4.3). Indeed one imposes the conservation of the
correlation function:

〈
m∑
α=1

εαz

〉
S∗

=

∫
DσDs

m∑
α=1

εαz e
S(m)∫

DσDs eS
(m)

(4.113)

= · · · =
〈 m∑
α=1

εαz

[
1 +

m∑
α=1

g0LR

∫
|x|>l

d2xσxε
α
x +

m∑
α ̸=β=1

g0SR

∫
|x|>l

d2xεαxε
β
x+
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+
1

2!

m∑
α ̸=β=1

m∑
γ ̸=δ=1

(g0SR)
2

∫∫
|x−y|>l

d2xd2y εαxε
β
x ε

γ
yε

δ
y+

+
1

2!

m∑
α=1

m∑
β=1

(g0LR)
2

∫∫
|x−y|>l

d2x d2y σxε
α
x σyε

β
y + · · ·+O(g3)

]〉
S∗
,

over RG transformations and can, thus, compute how the operator, εsymz , gets renor-
malised: εsym → εsym

′ . Following the scheme of Sec. (4.3) one has to compute contri-
bution of the form:

(· · · )(g0X)1
∫

|x|<r

d2x (· · · ) + (· · · )(g0X)2
∫∫

|x−y|<r

d2x d2y (· · · ) , (4.114)

where X = {LR, SR}. One realizes soon that in the RG procedure there is a mixing
between the ε and σ fields. The 2× 2 matrix Zεsym, σ is defined by:(

εsym′

σ′

)
= Zεsym, σ ×

(
εsym

σ

)
, (4.115)

where the εsym′ and σ′ are the renormalized fields, one has to take into account. However,
from the analysis of the combinatorial factors associated to the RG expansion diagrams,
it is observed that the matrix Zεsym, σ takes the form:

Zεsym, σ =

(
Zε Zεσ

m× Zσε m× Zσσ

)
, (4.116)

where Zε,Zεσ, Zσε, Zσσ are non-vanishing contributions. Therefore, in the limit m→ 0
the εsym′ does not get mixed with σ. On the other hand, σ is not anymore an eigenvector
of the RG transformation. The renormalisation of εsym′ depends only on Zε.
One can compute Zε, at 2-loops order that, in the m→ 0 limit from Eq. (4.113).
At 1-loop the unique contribution is given by:
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→ g0SR

m∑
α=1

m∑
β ̸=γ=1

∫
|x−z|<r

d2x

α=β ̸=γ

εαz ε
β
xε
γ
x

= 2(m− 1)g0SR

∫
|x−z|<r

d2x |x− z|−2hε

m∑
γ=1

εγz

= 4π(m− 1)g0SR
rϵSR

ϵSR︸ ︷︷ ︸
renormalises εsym

m∑
γ=1

εγz .

(4.117)

At 2-loops one has four contribution:

1) →
g0SR
2

m∑
α=1

m∑
β ̸=γ=1

m∑
δ ̸=η=1

∫∫
|x−z|<r

d2xd2y

α=β ̸=η

εαz ε
β
x

γ=δ ̸=η

εγxε
δ
yε
η
y

= 4(m− 1)(m− 2)(g0SR)
2

∫
|x−z|<r

d2x

∫
|y−z|<r

d2y |x− y|−2hε |x− z|−2hε

m∑
η=1

εηz

= 32π2(m− 1)(m− 2)(g0SR)
2 r

2ϵSR

2ϵ2SR︸ ︷︷ ︸
renormalises εsym

m∑
η=1

εηz .

(4.118)

2) →
g0SR
2
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α=1

m∑
β ̸=γ=1

m∑
δ ̸=η=1

∫∫
|x−z|<r

d2xd2y

α=β=δ

εαz ε
β
x

γ=η

εγxε
δ
yε
η
y

= 2(m− 1)(g0SR)
2

∫
|x−z|<r

d2x

∫
|y−z|<r

d2y ⟨εxεyεzε∞⟩|x− y|−2hε

m∑
α=1

εαz

= 8π2(m− 1)(g0SR)
2 (2− ϵSR)

r2ϵSR

2ϵ2SR︸ ︷︷ ︸
renormalises εsym

m∑
α=1

εαz .

(4.119)

This first two terms were already computed in [44]. One is left with the computation of
the contribution coming from the LR terms:
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3) →
g0LR
2

m∑
α=1
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β=1

m∑
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εαz σxε
β
xσyε
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εαz
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Å
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ϵSR(2ϵLR − ϵSR)

ã
r2ϵLR
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εαz .

(4.120)

4) →
g0LR
2
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m∑
β=1

m∑
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εαz σxε
β
xσyε

γ
y

= 2(m− 1)(g0LR)
2

∫
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d2x

∫
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α=1

εαz

= π2(g0LR)
2

Å
4

ϵSR
+

B
2

ã
r2ϵLR
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m∑
α=1

εαz .

(4.121)

Thus, collecting all the terms one obtains:

εsym
′
= lim

m→0

[
4π(m− 1)g0SR

rϵSR

ϵSR
+ 32π2(m− 1)(m− 2)(g0SR)

2 r
2ϵSR

2ϵ2SR
+ (4.122)

8π2(m− 1)(g0SR)
2 (2− ϵSR)

r2ϵSR
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B
2

ã
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2ϵLR
+

+ π2(m− 1)(g0LR)
2

Å
8ϵLR

ϵSR(2ϵLR − ϵSR)

ã
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2ϵLR
+
]
εsym

=
[
1− 4πg0SR

rϵSR

ϵSR
+ 4π2(g0SR)

2

Å
2 +

12

ϵSR

ã
r2ϵSR

2ϵSR
+

− 4π2(g0LR)
2

Å
1

2ϵLR − ϵSR
− B

8

ã
r2ϵLR

2ϵLR

]
εsym

= Zε × εsym. (4.123)

By consequence:
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Zε = 1− 4πg0SR
rϵSR

ϵSR
+ 4π2(g0SR)

2

Å
2 +

12

ϵSR

ã
r2ϵSR

2ϵSR
+

− 4π2(g0LR)
2

Å
1

2ϵLR − ϵSR
− B

8

ã
r2ϵLR

2ϵLR
.

(4.124)

At this stage, one can compute the function:

γε = r
d

dr
logZε, (4.125)

that actually enters in the Callan-Symanzik equations [44]. In terms of the normalized
variables, one has:

γε = −4πgSR + 8π2g2SR + π2g2LR
B
2
. (4.126)

The renormalized energy scaling exponent hX′
ε at the fixed point X = {SR,LR} is given

by: [44]:

hX
′

ε = hε − γε(g
∗,X
SR , g

∗,X
LR ). (4.127)

This also gives the thermal exponent at the X point:

1

νX
= 2− h

′,X
ε . (4.128)

Using the expansion:

hε = 1− ϵSR
2

+O
(
ϵ3SR
)
, (4.129)

and the location Eq. (4.67) of the SR fixed point in Eq. (4.127), one recovers the result
of [44]:

h
′,SR
ε = 1 +

ϵ2SR
8
,

1

νSR
= 1−

ϵ2SR
8
. (4.130)

The new result concerns the LR thermal exponent, associated to the LR fixed point.
Using its location Eq. (4.68) in the Eq. (4.127), one has:

h
′,LR
ε = hε + ϵLR +

1

4

Å
Cdis − B(s)

2

ã
ϵLR (2ϵLR − ϵSR) +O(ϵ3). (4.131)
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The Ising model is obtained by setting ϵSR = 0 in Equation (4.131):

Ising: h′,LR
ε = 2− a

2
+

1

2

Å
Cdis −

BIsing
2

ã(
1− a

2

)2
+O

(
(2− a)3

)
, (4.132)

where, ϵLR is expressed in terms of the long-range parameter a.

One can soon notice, by using Eq. (4.128), that to obtain νLR =
2

a
, one needs to have

Cdis =
B(s)
2

. This is the case for a Gaussian disorder, see Eq. (4.60). So, one finds,
by using the Equations (4.15, 4.17, 4.16) that νLR = 2/a, both for Ising (s = 1) and
3−Potts, confirming the results previously obtained in the literature [86,123,135].
Otherwise, for the instance of non-Gaussian disorder of Eq. (4.54), one can see a clear
breaking of the Weinrib-Halperin conjecture. This can be seen by considering the
3−Potts case and Eq. (4.60). In particular, in this case the coefficient B, simplifies,
since it depends only on ϵSR, thus B(ϵSR, ϵSR) = B(s = 1) = −4. Thus, one has that
CNG = −B(s = 1)/2 = 2. Inserting in Eq. (4.131), for the 3-Potts model, one obtains:

h
′,LR
ε = 1 +

ϵSR
2

+ ϵ2SR +O(ϵ3) = 1 +
(2− a)

2
+ (2− a)2 +O((2− a)3), (4.133)

and by consequence:

1

νLR
= 2− h

′,LR
ε = 1− (2− a)

2
− (2− a)2 +O((2− a)3) (4.134)

=
a

2
− (2− a)2 +O((2− a)3).

Which is clearly different from a/2. This violation is not visible at 1-loop level. This is
an example showing the importance of the 2-loops computation.
A remark on the specific selection of the non-Gaussian distribution is necessary. Indeed,
it is not the one that has been simulated in [7]. This choice, once again, was made to
simplify analytical computations as much as possible and to illustrate the violation of the
Weinrib-Halperin conjecture. Moreover, it is not feasible to numerically detect the vio-
lation of this conjecture since the corrections are of the order O((2−a))3. The numerical
precision in Fig. (3.13) does not permit measurements with this level of accuracy.
One can comment on the argument given in [123] of the Weinrib-Halperin conjecture [86]
according to which νLR = 2/a is an exact result. This has been confirmed, for the Ising
model with a Gaussian disorder, by the RG computations of Honkonen et al. [148], who
claimed its validity at every RG-loop, in this thesis and in [8] by the previously derived
Eq. (4.132) at 2-loops. It is common, in this kind of argument to re-derive the Extended
Harris criterion by using the RG-relevance (irrelevance) of the LR perturbation by using
the scaling dimensions of the scaling fields.
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In particular, the LR coupling, g0LR is relevant (irrelevant) when it RG eigenvalue yLR
is greater (smaller) than 0. One computes yLR as:

yLR = d− hϵLR = 2− hσ − hε = 2− a

2
− (2− 1

νP
) (4.135)

= −a
2
+

1

νP
, (4.136)

Here, hε = (2− 1
νP

) or (2− 1
νSR ), as indicated in Eq. (3.36), contingent on the value of

q, and whether one flows from the P or the SR fixed point due to the long-range (LR)
perturbation. One obtains the extended Harris criterion:

Relevance of the LR disorder, if yLR > 0 →


a <

2

νP
, for q < 2.

a <
2

νSR,
for q > 2.

(4.137)

Exactly the same reasoning can be done to obtain the relevance of the SR disorder, i.e.

ySR = 2− 2hε = −2 +
2

2νP
, (4.138)

and thus:

Relevance of the SR disorder, if ySR > 0 → νP < 1, or q > 2. (4.139)

In [123] and in Sec (3.2.4), the Extended Harris is used to obtain the Weinrib-Halperin
conjecture:

Should there exist an additional sub-dominant term in the disorder correlations,
E[δJ(x)δJ(y)] → E[δJ(x)δJ(y)] + w0|x − y|−b, where b > a, i.e. one adds to
the LR fixed point a new LR perturbation whose two point functions goes as
w0|x − y|−b, the LR point would then be stable. By implementing the extended
Harris criterion, it can be deduced that if b > a, then b > 2/νLR, signifying the
perturbation to be irrelevant. In contrast, if b < a, the additional b-term turns
dominant, resulting in b < 2/νLR. This is possible just if νLR = 2

a for all q.

In the scenario under analysis, a significant note is that the term σεLR, which is added
as a new perturbation at the LR fixed point, ceases to be a scaling field at the LR point.
In other words, it is no longer an eigenvector of the RG transformation. The Extended
Harris criterion must be derived by utilizing the scaling dimensions of scaling fields. This
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offers a way around the Weinrib argument [123], and allows for the explanation of the
obtained result of Eq. (4.134).

4.6 Conclusions

In this study, the two-dimensional q-Potts model with long-range quenched bond disorder
is investigated using RG methods. The focus is on the region where q ≥ 2 and the decay
exponent a is smaller than the space dimension, a < 2. This region is characterized by the
relevance of both the short-range and long-range properties of the disorder distribution.
A replica approach is employed to perform a 2-loop order RG calculation based on a
perturbed conformal field theory described by Eq. (4.8). The RG procedure involved a
double expansion in the small parameters (2− a) and (q− 2), with (2− a)/(q− 2) being
kept finite.
The renormalisation of the couplings gSR and gLR appearing in the replicated theory
Eq. (4.8) is computed, and the results are encoded in the recursion relation Eq. (4.66).
The presence of two non-trivial fixed points in the RG flow, namely the SR and LR
points, is established, where the dynamics is dominated by the short-range and long-
range interactions, respectively. The stability of these fixed points is found to be con-
sistent with the phase diagrams studied in [7] and previous works, such as [135] for the
q = 2 Ising point. Notably, the RG calculation predicted the existence of an interval
a∗(q) < a < 2/νSR(q) where the LR point remains stable for any q ≥ 2.
A significant result of this study is the determination of the thermal exponent νLR
for the Potts model, Eq. (4.131) and the Ising model Eq. (4.132). It is observed that
the Weinrib-Halperin conjecture νLR = 2/a held for a Gaussian disorder but could be
violated for other disorder distributions with different fourth cumulants. An example of
a non-Gaussian disorder distribution is provided in Section (4.3.4), where the expression
for νLR one obtains by Eq. (4.134).
To validate the theory, the LR effective central charge Eq. (4.109) is computed. The
comparison between the theoretical predictions and transfer-matrix calculations for the
long-range Ising model is presented in Figure (4.2), demonstrating a close agreement.





Chapter 5

Conclusions

This thesis has extensively examined various aspects within the field of statistical me-
chanics, with a specific focus on the q-Potts model. Both numerical and analytical
approaches were employed to investigate a broad range of topics, [5–8].
Firstly, the study offers valuable insights into dynamics associated with first-order phase
transitions, including spinodals, metastability, freezing, equilibration, and the impact of
lattice topology on these dynamics.
Secondly, the research explored critical long-range disordered systems. The primary
achievement was the construction of the phase diagram illustrated in Figure (3.3), which
was further verified through perturbative analysis using renormalization group compu-
tations. As a result of this analysis, novel values for the long-range critical exponents
were determined.
In the initial section of the thesis, the focus was on the exploration of the q → ∞ limit
of the heat bath Monte Carlo algorithm [55]. During this investigation, the (pseudo)-
spinodals were identified in the temperature interval of [2Tc/z, 2Tc]. Within this tem-
perature spectrum, both high and low temperature starting conditions proved to be
metastable following either sudden sub-critical or upper-critical quenches. In the infi-
nite q scenario, metastability persists indefinitely, while for finite q situations, the initial
states will ultimately disappear.
The investigation then shifted to sub-critical quenches for temperatures below the sub-
spinodal point, specifically for T < 2Tc/z. During these processes, it was observed that
on the square, honeycomb, and cubic lattices, systems temporarily freeze in configu-
rations typical of the ultimate states of zero-temperature dynamics [102, 108]. These
states, not being fully blocking at non-zero temperatures, allow the systems to break
free over a time-scale of tS ≃ eJ/T , applicable to large q values. After this escape, the
expected curvature-driven coarsening resumes with the universally growing length scal-
ing as R ≃ (t/tS)

1/2. Contrarily, on the triangular lattice, no freezing was observed,
similar to previous findings [57,99,109], and the scaling of R is temperature independent
for T/Tc < 2/z = 1/3, as per the numerical accuracy available.
Following this, through a combination of numerical evidence and physical reasoning, the
factors leading to the distinct low-temperature dynamics seen in the cubic and triangular
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lattices were elucidated. The significant shift in dynamics was attributed to the differing
topology of the lattices’ unitary structures. Specifically, when these structures form an
acyclic graph, the spin-flips transition the system to a stable, highly symmetric blocked
configuration. However, thermal fluctuations allow the system to break away from this
state after an Arrhenius time-scale, tS = e1/T . In contrast, when the basic structure is
cyclic, the influence radius of the unitary structure’s spins is broad enough to prevent
the system from blocking. Hence, even at very low temperatures, the dynamics follow a
coarsening pattern.
Also, regarding the second part of the thesis, the focus is on an analysis of the disordered
two-dimensional q-Potts model, utilizing Monte Carlo methods. The disorder element
is introduced by employing a bimodal distribution, linked with auxiliary spin degrees
of freedom, following either the Ising distribution or the fractional Gaussian free field
(fGFF) distribution. These distributions exhibit a common first cumulant and a long-
range power-law decay in their second cumulant.
The primary objective of this second part is the exploration of the fractal dimension of
the q-Potts FK clusters at the self-dual point for different power-law exponent a values
and disorder strength r. The collective results are encapsulated in the phase diagram
displayed in Fig. (3.3), highlighting a major discovery of this study.
The initial focus is on the infinite disorder (r = ∞) fixed point, called LRp (Long-range
percolation). The critical exponents of LRp are not influenced by q. The measured
βLRp/νLRp values are presented in Table (3.3). It is noteworthy that the Monte Carlo
measurements implementing the Ising distribution exhibit greater precision compared
to those utilizing the fGFF distribution, thereby enabling more accurate investigations
of the LR physics. This is particularly advantageous for smaller a values, where fGFF
methods pose greater implementation challenges.
For q = 1, it is determined that the LRp point exhibits attraction for a < 3/2, while for
a ≥ 3/2, the system aligns with the Bernoulli percolation (Bp) critical point. For q = 2
and q = 3, there is verification of the presence of a LR point at finite disorder. A notable
observation is that the stability interchange between the LR and the LRp points occurs
at a specific a∗(q) value that depends on q.
Corroborating the above findings are studies of other observables. For q = 2, the multi-
fractal nature of the spin-spin correlations is measured, see Table (3.4), and the findings
align with theoretical predictions, especially for the 1.5 < a < 2 range. For smaller
a values, where theoretical predictions are absent, the findings rule out a softening of
the transition, supporting the system’s alignment towards the LRp point. For q = 3,
the thermal exponent νLR is measured by studying the wrapping probability of the FK
clusters, see Fig. (3.13), with the findings aligning with the theoretical prediction of
Eq. (3.18) for a wide a range.
It is noteworthy that the findings and the phase diagram are applicable across different
disorder distributions. However, there are some universal effects of the higher cumulants
at the LRp point. For instance, at a = 1/4, the βLRp exponent varies between Gaussian



Conclusions 177

and non-Gaussian distributions (refer to Table (3.5)). Moreover, the higher cumulants
are projected to have significant impacts on the universal finite-size characteristics of
the FK connectivities (see Eq. (3.35)).
Then in the last chapter, the two-dimensional q-Potts model, with long-range quenched
bond disorder, is explored using RG methods. The area of focus is where q ≥ 2 and
the decay exponent a is less than the space dimension, i.e. a ≲ 2. This region is
characterized by the relevance of both the short-range and long-range properties of the
disorder distribution.
A replica methodology is applied to conduct a 2-loop order RG calculation, based on a
perturbed conformal field theory, described by Eq. (4.8). The RG procedure involves a
double expansion in the minor parameters 2− a and q− 2, with the (2− a)/(q− 2) ratio
maintained as finite.
The renormalization of the gSR and gLR couplings present in the replicated theory
Eq. (4.8) is calculated. The results are presented in the recursion relation Eq. (4.66).
The existence of two non-trivial fixed points in the RG flow, specifically the SR and LR
points, is confirmed. Here, the dynamics are dominated by either short-range or long-
range interactions. The stability of these fixed points aligns with the phase diagrams
studied in [7] and earlier works such as [135], in relation to the q = 2 Ising point. Im-
portantly, the RG calculation predicts the presence of an interval a∗(q) < a < 2/νSR(q),
where the LR point remains stable for any q ≥ 2.
A major outcome of this study is the determination of the thermal exponent νLR for the
Potts model, Eq.(4.131) and the Ising model Eq.(4.132). It is noted that the Weinrib-
Halperin conjecture νLR = 2/a holds true for a Gaussian disorder but can be violated for
other disorder distributions with different fourth cumulants. A non-Gaussian disorder
distribution example is provided in Section (4.3.4), where the νLR expression obtained
through Eq. (4.134) is discussed.
To corroborate the theory, the LR effective central charge Eq.(4.109) is computed. The
comparison between the theoretical predictions and the transfer-matrix calculations for
the long-range Ising model is presented in Figure(4.2), demonstrating close alignment.
In summary, the results provide a deep understanding of the q-Potts model’s behavior
under different conditions. This understanding, portrayed in a comprehensive phase
diagram, offers new insights into the nature of phase transitions and the role of disorder
in such transitions.



178 Conclusions

5.1 Acknowledgments

I would like to express my heartfelt gratitude to all those who have contributed to the
successful completion of my PhD journey. This thesis represents the culmination of years
of hard work, dedication, and support from all of you.
First and foremost, I am deeply indebted to my supervisor, Marco Picco, whose guidance,
wisdom, and unwavering support have been instrumental in shaping the direction of my
research. Your mentorship and encouragement have been invaluable throughout this
journey. I extend my appreciation to the members of my thesis committee, for their
insightful feedback, constructive criticism, and expertise that have significantly enhanced
the quality of this work.
I want to express my gratitude to my research collaborators Raoul Santachiara and Leti-
cia Cugliandolo. Your willingness to collaborate and share your expertise has enriched
my research and broadened my horizons. Our joint efforts have been truly rewarding.
I extend my appreciation to my family, especially my parents, for their unwavering belief
in my abilities and their unending encouragement. Your sacrifices and support have been
the cornerstone of my academic journey, love you.
I am profoundly thankful to Justine (and her family), for her love, patience, and un-
derstanding during this demanding phase of my life. Your support and encouragement
provided the emotional strength I needed to persevere through challenges, and your be-
lief in me never wavered. You are the best company I could ask for! To a life full of love,
joy and...holidays together! Our best days are not yet behind us! Love you.
To my colleagues in the lab, your lunch at ”11.30”, your support, and the shared en-
thusiasm for bullshits and coffeine have made the lab a stimulating and enjoyable en-
vironment. The countless hours we spent together in the pursuit of ... something...will
forever be cherished.
I am grateful to my friends in academia, who have been both mentors and companions on
this academic journey. Your insights, discussions, and shared experiences have shaped
my intellectual growth and made this journey more fulfilling.
Beyond the academic sphere, I want to acknowledge the support of my ALL my friends,
· · · diverging list. Your friendship, laughter, and moments of respite from the academic
rigor have been a vital source of balance and emotional sustenance.
I would also like to extend my gratitude to my (present and past) housemates, for
creating a warm and supportive living environment. Your friendship and understanding
of my demanding schedule have made daily life more manageable.
To everyone who has played a part, whether big or small, in my academic and personal
development, I extend my deepest appreciation. This thesis is as much a reflection of
your collective contributions as it is of my own efforts.



Conclusions 179

Thank you all for being a part of this incredible journey.
Francesco Chippari





Bibliography

[1] R. B. Potts, “Some generalised order-disorder transformations,” Proc. Cambridge
Phil. Soc., vol. 48, p. 106, 1952.

[2] F. Y. Wu, “The potts model,” Rev. Mod. Phys., vol. 54, p. 235, 1982.
[3] R. J. Baxter, S. B. Kelland, and F. Y. Wu, “Equivalence of the potts model or

whitney polynomial with an ice-type model,” J. Phys. A: Math. Gen., vol. 9, p. 397,
1976.

[4] R. J. Baxter, Exactly solved models in statistical mechanics. Elsevier, 2016.
[5] F. Chippari, L. F. Cugliandolo, and M. Picco, “Low-temperature universal dynam-

ics of the bidimensional potts model in the large q limit,” Journal of Statistical
Mechanics: Theory and Experiment, vol. 2021, no. 9, p. 093201, 2021.

[6] F. Chippari and M. Picco, “Freezing vs. equilibration dynamics in the potts
model,” Journal of Statistical Mechanics: Theory and Experiment, vol. 2023, no. 2,
p. 023201, 2023.

[7] F. Chippari, M. Picco, and R. Santachiara, “Long-range quenched bond disorder
in the bidimensional potts model,” Journal of Statistical Mechanics: Theory and
Experiment, vol. 2023, no. 4, p. 043301, 2023.

[8] F. Chippari, M. Picco, and R. Santachiara, “Two-dimensional ising and potts
model with long-range bond disorder: a renormalization group approach,” arXiv
preprint arXiv:2306.01887, 2023.

[9] D. Bernoulli, Hydrodynamica. Geneva: Sumptibus Cramer and Perachon, 1738.
[10] L. Boltzmann, “Weitere studien über das wärmegleichgewicht unter gasmolekülen,”

Sitzungsberichte der kaiserlichen Akademie der Wissenschaften in Wien, vol. 66,
pp. 275–370, 1872.

[11] A. Einstein, “Über die von der molekularkinetischen theorie der wärme geforderte
bewegung von in ruhenden flüssigkeiten suspendierten teilchen,” Annalen der
Physik, vol. 322, no. 8, pp. 549–560, 1905.

[12] L. Landau, “Theory of phase transitions,” Journal of Physics (USSR), vol. 11,
pp. 91–122, 1937.

[13] L. Tisza, “Generalization of the bloch-landau theory of ferromagnetic instability,”
Nature, vol. 141, no. 3572, pp. 913–914, 1938.

— 181 —



182 BIBLIOGRAPHY

[14] L. Onsager, “Crystal statistics. i. a two-dimensional model with an order-disorder
transition,” Physical Review, vol. 65, no. 3-4, pp. 117–149, 1944.

[15] S. R. Broadbent and J. M. Hammersley, “Percolation processes: I. crystals and
mazes,” in Mathematical proceedings of the Cambridge philosophical society,
vol. 53, pp. 629–641, Cambridge University Press, 1957.

[16] K. G. Wilson, “Renormalization group and critical phenomena: I renormalization
group and the kadanoff scaling picture,” Physical review B, vol. 4, no. 9, p. 3174,
1971.

[17] R. J. Baxter, “Potts model at the critical temperature,” Journal of Physics C:
Solid State Physics, vol. 6, p. L445, nov 1973.

[18] P. W. Anderson, “Absence of diffusion in certain random lattices,” Physical Review
B, vol. 21, no. 2, p. 109, 1975.

[19] G. Parisi, “Nobel lecture: Multiple equilibria,” arXiv preprint arXiv:2304.00580,
2023.

[20] M. Mézard, G. Parisi, and M. A. Virasoro, Spin glass theory and beyond: An
Introduction to the Replica Method and Its Applications, vol. 9. World Scientific
Publishing Company, 1987.

[21] D. Stauffer, “Monte carlo study of biased diffusion at the percolation threshold,”
Journal of Physics A: Mathematical and General, vol. 18, no. 10, p. 1827, 1985.

[22] D. Stauffer and A. Aharony, “Introduction to percolation theory,” CRC press,
1994.

[23] R. C. Tolman, The principles of statistical mechanics. Courier Corporation, 1979.
[24] K. Huang, “Statistical mechanics, john wiley & sons,” New York, 1963.
[25] J. Cardy, Scaling and renormalization in statistical physics, vol. 5. Cambridge

university press, 1996.
[26] L. D. Landau and E. M. Lifshitz, Statistical Physics: Volume 5, vol. 5. Elsevier,

2013.
[27] P. L. Krapivsky, S. Redner, and E. Ben-Naim, A kinetic view of statistical physics.

Cambridge University Press, 2010.
[28] L. F. Cugliandolo, “Advanced statistical physics: Phase transitions,” Master

course, 2017.
[29] A. Griffin, D. W. Snoke, and S. Stringari, Bose-einstein condensation. Cambridge

University Press, 1996.
[30] A. A. Saberi, “Recent advances in percolation theory and its applications,” Physics

Reports, vol. 578, pp. 1–32, 2015.
[31] J. Kosterlitz and D. Thouless, “Ordering, metastability and phase transitions in



BIBLIOGRAPHY 183

two-dimensional systems,” Journal of Physics C: Solid State Physics, vol. 6, no. 7,
p. 1181, 1973.

[32] J. M. Kosterlitz, “Kosterlitz–thouless physics: a review of key issues,” Reports on
Progress in Physics, vol. 79, no. 2, p. 026001, 2016.

[33] M. P. Fisher, P. B. Weichman, G. Grinstein, and D. S. Fisher, “Boson localization
and the superfluid-insulator transition,” Physical Review B, vol. 40, no. 1, p. 546,
1989.

[34] L. Amico and V. Penna, “Dynamical mean field theory of the bose-hubbard model,”
Physical Review Letters, vol. 80, no. 10, p. 2189, 1998.

[35] L. P. Kadanoff, “Scaling and universality in statistical physics,” Physica A:
Statistical Mechanics and its Applications, vol. 163, no. 1, pp. 1–14, 1990.

[36] R. Baxter, “Onsager and kaufman’s calculation of the spontaneous magnetization
of the ising model,” Journal of Statistical Physics, vol. 145, no. 3, pp. 518–548,
2011.

[37] R. B. Griffiths, “Peierls proof of spontaneous magnetization in a two-dimensional
ising ferromagnet,” Physical Review, vol. 136, no. 2A, p. A437, 1964.

[38] U. Wolff, “Collective monte carlo updating for spin systems,” Physical Review
Letters, vol. 62, no. 4, p. 361, 1989.

[39] G. Mussardo, “Statistical field theory: An introduction to exactly solved models
in statistical physics (2nd edn),” Statistical Field Theory: An Introduction to
Exactly Solved Models in Statistical Physics (2nd edn, 2020.

[40] P. Di Francesco, P. Mathieu, and D. Sénéchal, Conformal Field Theory. Springer-
Verlag, 1997.

[41] V. Gorbenko, S. Rychkov, and B. Zan, “Walking, weak first-order transitions, and
complex cfts ii. two-dimensional potts model at q>4,” SciPost Phys., vol. 5, p. 050,
2018.

[42] M. Picco, S. Ribault, and R. Santachiara, “On four-point connectivities in the
critical 2d potts model,” SciPost Phys., vol. 7, p. 044, 2019.

[43] Y. He, J. L. Jacobsen, and H. Saleur, “Geometrical four-point functions in the two-
dimensional critical q-state potts model: The interchiral conformal bootstrap,”
Journal of High Energy Physics, vol. 2020, no. 12, pp. 1–60, 2020.

[44] Vl. Dotsenko, M. Picco, and P. Pujol, “Renormalisation-group calculation of corre-
lation functions for the 2D random bond Ising and Potts models,” Nuclear Physics
B, vol. 455, pp. 701–723, 1995.

[45] Vl. Dotsenko, M. Picco, and P. Pujol, “Spin-spin critical point correlation functions
for the 2d random bond ising and potts models,” Physics Letters B, vol. 347,
pp. 113–119, 1995.



184 BIBLIOGRAPHY

[46] V. S. Dotsenko, V. S. Dotsenko, M. Picco, and P. Pujol, “Renormalization group
solution for the two-dimensional random bond potts model with broken replica
symmetry,” Europhysics Letters, vol. 32, no. 5, p. 425, 1995.

[47] G. Delfino, “Exact results for quenched bond randomness at criticality,” Physical
Review Letters, vol. 118, no. 25, p. 250601, 2017.

[48] M. Bisardi, J. Rodriguez-Rivas, F. Zamponi, and M. Weigt, “Modeling Sequence-
Space Exploration and Emergence of Epistatic Signals in Protein Evolution,”
Molecular Biology and Evolution, vol. 39, 11 2021. msab321.

[49] T. Garel and H. Orland, “Mean-field model for protein folding,” EPL (Europhysics
Letters), vol. 6, no. 4, p. 307, 1988.

[50] C. Bisconti, A. Corallo, L. Fortunato, A. A. Gentile, A. Massafra, and P. Pellè,
“Reconstruction of a real world social network using the potts model and loopy
belief propagation,” Frontiers in psychology, vol. 6, p. 1698, 2015.

[51] S. A. Bass, M. Gyulassy, H. Stoecker, and W. Greiner, “Signatures of quark-gluon
plasma formation in high energy heavy-ion collisions: a critical review,” Journal
of Physics G: Nuclear and Particle Physics, vol. 25, no. 3, p. R1, 1999.

[52] J.-S. Wang and R. H. Swendsen, “Cluster monte carlo algorithms,” Physica A:
Statistical Mechanics and its Applications, vol. 167, no. 3, pp. 565–579, 1990.

[53] W. Janke and R. Villanova, “Three-dimensional 3-state potts model revisited with
new techniques,” Nuclear Physics B, vol. 489, no. 3, pp. 679–696, 1997.

[54] C.-K. Hu and K.-S. Mak, “Monte carlo study of the potts model on the square
and the simple cubic lattices,” Phys. Rev. B, vol. 40, pp. 5007–5014, Sep 1989.

[55] O. Mazzarisi, F. Corberi, L. F. Cugliandolo, and M. Picco, “Metastability in the
potts model: exact results in the large q limit,” Journal of Statistical Mechanics:
Theory and Experiment, vol. 2020, no. 6, p. 063214, 2020.

[56] B. Derrida, “Non-trivial exponents in coarsening phenomena,” Physica D:
Nonlinear Phenomena, vol. 103, no. 1, pp. 466–477, 1997. Lattice Dynamics.

[57] B. Derrida, P. M. C. de Oliveira, and D. Stauffer, “Stable spins in the zero tem-
perature spinodal decomposition of 2d potts models,” Physica A, vol. 224, p. 604,
1996.

[58] L. F. Cugliandolo, “Out of equilibrium dynamics of complex systems,” Master
course, 2011.

[59] R. Burioni, D. Cassi, F. Corberi, and A. Vezzani, “Phase-ordering kinetics on
graphs,” Physical Review E, vol. 75, no. 1, p. 011113, 2007.

[60] F. S. Gnesotto, F. Mura, J. Gladrow, and C. P. Broedersz, “Broken detailed
balance and non-equilibrium dynamics in living systems: a review,” Reports on
Progress in Physics, vol. 81, no. 6, p. 066601, 2018.



BIBLIOGRAPHY 185

[61] F. Mori, S. N. Majumdar, and G. Schehr, “Distribution of the time of the maximum
for stationary processes,” Europhysics Letters, vol. 135, no. 3, p. 30003, 2021.

[62] F. Corberi, C. Attanasio, and O. Mazzarisi, “Out of equilibrium problems in clas-
sical spin models of statistical mechanics,” PhD dissertation.

[63] W. K. Hastings, “Monte carlo sampling methods using markov chains and their
applications,” 1970.

[64] K. A. Fichthorn and W. H. Weinberg, “Theoretical foundations of dynamical monte
carlo simulations,” The Journal of chemical physics, vol. 95, no. 2, pp. 1090–1096,
1991.

[65] M. Ullrich, “Comparison of swendsen-wang and heat-bath dynamics,” Random
Structures & Algorithms, vol. 42, no. 4, pp. 520–535, 2013.

[66] A. Bortz, M. Kalos, and J. Lebowitz, “A new algorithm for monte carlo simulation
of ising spin systems,” Journal of Computational Physics, vol. 17, no. 1, pp. 10–18,
1975.

[67] M. Newman and G. Barkema, Monte carlo methods in statistical physics chapter
1-4, vol. 24. Oxford University Press: New York, USA, 1999.

[68] G. N. Hassold and E. A. Holm, “A fast serial algorithm for the finite temperature
quenched potts model,” Computers in Physics, vol. 7, no. 1, pp. 97–107, 1993.

[69] L. F. Cugliandolo and J. Kurchan, “Analytical solution of the off-equilibrium dy-
namics of a long-range spin-glass model,” Physical Review Letters, vol. 71, no. 1,
p. 173, 1993.

[70] G. Biroli, G. Semerjian, and M. Tarzia, “Anderson model on bethe lattices: density
of states, localization properties and isolated eigenvalue,” Progress of Theoretical
Physics Supplement, vol. 184, pp. 187–199, 2010.

[71] M. Mézard, G. Parisi, and R. Zecchina, “Analytic and algorithmic solution of
random satisfiability problems,” Science, vol. 297, no. 5582, pp. 812–815, 2002.

[72] L. Berthier and G. Biroli, “Theoretical perspective on the glass transition and
amorphous materials,” Reviews of modern physics, vol. 83, no. 2, p. 587, 2011.

[73] G. Parisi and F. Zamponi, “Mean-field theory of hard sphere glasses and jamming,”
Reviews of Modern Physics, vol. 82, no. 1, p. 789, 2010.

[74] S. Franz and G. Parisi, “Recipes for metastable states in spin glasses,” Journal de
Physique I, vol. 5, no. 11, pp. 1401–1415, 1995.

[75] F. Krzakała, A. Montanari, F. Ricci-Tersenghi, G. Semerjian, and L. Zdeborová,
“Gibbs states and the set of solutions of random constraint satisfaction problems,”
Proceedings of the National Academy of Sciences, vol. 104, no. 25, pp. 10318–
10323, 2007.

[76] C. Cammarota and G. Biroli, “Ideal glass transitions by random pinning,”



186 BIBLIOGRAPHY

Proceedings of the National Academy of Sciences, vol. 109, no. 23, pp. 8850–8855,
2012.

[77] B. Berche and C. Chatelain, “Phase transitions in two-dimensional random
potts models,” in Order, Disorder and Criticality: Advanced Problems of Phase
Transition Theory, pp. 147–199, World Scientific, 2004.

[78] N. G. Fytas, V. Martín-Mayor, M. Picco, and N. Sourlas, “Review of recent devel-
opments in the random-field ising model,” Journal of Statistical Physics, vol. 172,
pp. 665–672, 2018.

[79] C. M. Fortuin and P. W. Kasteleyn, “On the random-cluster model: I. introduction
and relation to other models,” Physica, vol. 57, no. 4, pp. 536–564, 1972.

[80] W. Kinzel and E. Domany, “Critical properties of random Potts models,” Physical
Review B, vol. 23, no. 7, p. 3421, 1981.

[81] P. Di Francesco, H. Saleur, and J. B. Zuber, “Relations between the coulomb gas
picture and conformal invariance of two-dimensional critical models,” Journal of
Statistical Physics, vol. 49, no. 1-2, p. 57–79, 1987.

[82] S. Ribault, “Conformal field theory on the plane,” arXiv preprint arXiv:1406.4290,
2014.

[83] S. F. Edwards and P. W. Anderson, “Theory of spin glasses,” Journal of Physics
F: Metal Physics, vol. 5, no. 5, p. 965, 1975.

[84] T. Castellani and A. Cavagna, “Spin-glass theory for pedestrians,” Journal of
Statistical Mechanics: Theory and Experiment, vol. 2005, no. 05, p. P05012, 2005.

[85] A. B. Harris, “Effect of random defects on the critical behaviour of Ising models,”
Journal of Physics C: Solid State Physics, vol. 7, no. 9, p. 1671, 1974.

[86] A. Weinrib and B. I. Halperin, “Critical phenomena in systems with long-range-
correlated quenched disorder,” Physical Review B, vol. 27, p. 413, 1983.

[87] L. F. Cugliandolo, “Advanced statistical physics: 5. quenched random systems,”
2019.

[88] L. P. Kadanoff, “Scaling laws for ising models near t c,” Physics Physique Fizika,
vol. 2, no. 6, p. 263, 1966.

[89] H. D. Politzer, “Reliable perturbative results for strong interactions?,” Physical
Review Letters, vol. 30, no. 26, p. 1346, 1973.

[90] A. J. Bray, “Theory of phase-ordering kinetics,” Advances in Physics, vol. 51, no. 2,
pp. 481–587, 2002.

[91] A. Onuki, Phase transition dynamics. Cambridge University Press, 2004.
[92] S. Puri and V. Wadhawan, eds., Kinetics of phase transitions. Taylor and Francis

Group, 2009.



BIBLIOGRAPHY 187

[93] M. Henkel and M. Pleimling, Non-Equilibrium Phase Transitions: ageing and
Dynamical Scaling Far from Equilibrium. Springer-Verlag, 2010.

[94] J. D. Gunton, M. S. Miguel, and P. S. Sahni, “Phase transitions and critical
phenomena,” in Phase Transitions and Critical Phenomena (C. Domb and J. L.
Lebowitz, eds.), vol. 8, New York: Academic, 1983.

[95] K. Binder, “Theory of first order phase transitions,” Rep. Prog. Phys., vol. 50,
p. 783, 1987.

[96] D. W. Oxtoby, “Homogeneous nucleation: theory and experiment,” J. Phys.:
Condens. Matter, vol. 4, p. 7627, 1992.

[97] K. F. Kelton and A. L. Greer, Nucleation in Condensed Matter. Amsterdam:
Elsevier, 2010.

[98] E. S. Loscar, E. E. Ferrero, T. S. Grigera, and S. A. Cannas, “Nonequilibrium
characterization of spinodal points using short time dynamics,” J. Chem. Phys.,
vol. 131, p. 024120, 2009.

[99] P. S. Sahni, D. J. Srolovitz, G. S. Grest, M. P. Anderson, and S. A. Safran,
“Kinetics of ordering in two dimensions. ii. quenched systems,” Phys. Rev. B,
vol. 38, p. 2705, 1983.

[100] M. Anderson, D. Srolovitz, G. Grest, and P. Sahni, “Computer simulation of grain
growth—i. kinetics,” Acta Metallurgica, vol. 32, no. 5, pp. 783–791, 1984.

[101] E. A. Holm, J. A. Glazier, D. J. Srolovitz, and G. S. Grest, “Effects of lat-
tice anisotropy and temperature on domain growth in the two-dimensional potts
model,” Phys. Rev. A, vol. 43, pp. 2662–2668, Mar 1991.

[102] J. Olejarz, P. Krapivsky, and S. Redner, “Zero-temperature coarsening in the 2d
potts model,” Journal of Statistical Mechanics: Theory and Experiment, vol. 2013,
no. 06, p. P06018, 2013.

[103] F. Corberi, L. F. Cugliandolo, M. Esposito, and M. Picco, “Multinucleation in
the first-order phase transition of the 2d potts model,” in Journal of Physics:
Conference Series, vol. 1226, p. 012009, IOP Publishing, 2019.

[104] A. Barrat, R. Burioni, and M. Mézard, “Dynamics within metastable states in a
mean-field spin glass,” Journal of Physics A: Mathematical and General, vol. 29,
no. 5, p. L81, 1996.

[105] P. Papon, J. Leblond, and P. H. Meijer, Physics of Phase Transitions. Springer,
2002.

[106] E. S. Loscar, E. E. Ferrero, T. S. Grigera, and S. A. Cannas, “Nonequilibrium
characterization of spinodal points using short time dynamics,” The Journal of
chemical physics, vol. 131, no. 2, 2009.

[107] M. Ibáñez de Berganza, E. E. Ferrero, S. A. Cannas, V. Loreto, and A. Petri,



188 BIBLIOGRAPHY

“Phase separation of the potts model in the square lattice,” The European Physical
Journal Special Topics, vol. 143, no. 1, pp. 273–278, 2007.

[108] J. Denholm and S. Redner, “Topology-controlled potts coarsening,” Phys. Rev. E,
vol. 99, p. 062142, 2019.

[109] J. Denholm, “High-degeneracy potts coarsening,” Phys. Rev. E, vol. 103, p. 012119,
2021.

[110] I. M. Lifshitz, “Kinetics of ordering during second-order phase transitions,” JETP,
vol. 42, p. 1354, 1962.

[111] J. Glazier, M. Anderson, and G. S. Grest, “Coarsening in the 2-dimensional soap
froth and the large q potts model - a detailed comparison,” Phil. Mag. B, vol. 62,
p. 615, 1990.

[112] T. Blanchard, L. F. Cugliandolo, M. Picco, and A. Tartaglia, “Critical percolation
in the dynamics of the 2d ferromagnetic ising model,” J. Stat. Mech., vol. 113201,
2017.

[113] V. Spirin, P. L. Krapivsky, and S. Redner, “Fate of zero-temperature ising ferro-
magnets,” Phys. Rev. E, vol. 63, p. 036118, 2001.

[114] E. E. Ferrero and S. A. Cannas, “Long-term ordering kinetics of the two-
dimensional q-state potts model,” Physical Review E, vol. 76, no. 3, p. 031108,
2007.

[115] Y. Kondratiev, E. Lytvynov, and M. Röckner, “Equilibrium kawasaki dynamics of
continuous particle systems,” Infinite Dimensional Analysis, Quantum Probability
and Related Topics, vol. 10, no. 02, pp. 185–209, 2007.

[116] F. Corberi, L. F. Cugliandolo, M. Esposito, O. Mazzarisi, and M. Picco,
“How many phases nucleate in the bidimensional potts model?,” arXiv preprint
arXiv:2103.07709, 2021.

[117] M. Loureiro, J. Arenzon, and L. Cugliandolo, “Curvature-driven coarsening in the
two-dimensional potts model,” Physical Review E, vol. 81, no. 2, p. 021129, 2010.

[118] M. Loureiro, J. Arenzon, and L. Cugliandolo, “Geometrical properties of the potts
model during the coarsening regime,” Physical Review E, vol. 85, no. 2, p. 021135,
2012.

[119] M. P. Anderson, G. S. Grest, and D. J. Srolovitz, “Computer simulation of nor-
mal grain growth in three dimensions,” Philosophical Magazine B, vol. 59, no. 3,
pp. 293–329, 1989.

[120] H. Takano and S. Miyashita, “Ordering process in the kinetic ising mxodel on the
honeycomb lattice,” Phys. Rev. B, vol. 48, p. 7221, 1993.

[121] J. Viñals and J. D. Gunton, “Fixed points and domain growth for the potts model,”
Phys. Rev. B, vol. 33, pp. 7795–7798, Jun 1986.



BIBLIOGRAPHY 189

[122] C. Chatelain, “Griffiths phase and critical behavior of the two-dimensional Potts
models with long-range correlated disorder,” Physical Review E, vol. 89, p. 032105,
2014.

[123] A. Weinrib, “Long-range correlated percolation,” Physical Review B, vol. 29,
pp. 387–395, 1984.

[124] A. W. Ludwig, “Infinite hierarchies of exponents in a diluted ferromagnet and their
interpretation,” Nuclear Physics B, vol. 330, no. 2-3, pp. 639–680, 1990.

[125] M. Picco, “Numerical results for the two-dimensional random-bond three-state
Potts model,” Physical Review B, vol. 54, no. 21, p. 14930, 1996.

[126] J. L. Jacobsen and J. Cardy, “Critical behaviour of random-bond Potts models: a
transfer matrix study,” Nuclear Physics B, vol. 515, no. 3, pp. 701–742, 1998.

[127] C. Chatelain and B. Berche, “Magnetic Critical Behavior of Two-Dimensional
Random-Bond Potts Ferromagnets in Confined Geometries,” Physical Review E,
vol. 60, p. 3853, 1999.

[128] S. Prakash, S. Havlin, M. Schwartz, and H. E. Stanley, “Structural and dynam-
ical properties of long-range correlated percolation,” Physical Review A, vol. 46,
pp. R1724–R1727, 1992.

[129] J. Schmittbuhl, J. P. Vilotte, and S. Roux, “Percolation through self-affine sur-
faces,” Journal of Physics A: Mathematical and General, vol. 26, no. 22, pp. 6115–
6133, 1993.

[130] J. Zierenberg, N. Fricke, M. Marenz, F. P. Spitzner, V. Blavatska, and W. Janke,
“Percolation thresholds and fractal dimensions for square and cubic lattices with
long-range correlated defects,” Physical Review E, vol. 96, no. 6, 2017.

[131] C. P. de Castro, M. Luković, G. Pompanin, R. F. S. Andrade, and H. J. Herrmann,
“Schramm-Loewner evolution and perimeter of percolation clusters of correlated
random landscapes,” Scientific Reports, vol. 8, no. 1, 2018.

[132] N. Javerzat, S. Grijalva, A. Rosso, and R. Santachiara, “Topological effects and
conformal invariance in long-range correlated random surfaces,” SciPost Phys.,
vol. 9, p. 050, 2020.

[133] V. S. Dotsenko and V. S. Dotsenko, “Critical behaviour of the 2D Ising model with
impurity bonds,” Journal of Physics C: Solid State Physics, vol. 15, no. 3, p. 495,
1982.

[134] M. A. Rajabpour and R. Sepehrinia, “Explicit Renormalization Group for D=2
Random Bond Ising Model with Long-Range Correlated Disorder,” Journal of
Statistical Physics, vol. 130, pp. 815–820, 2008.

[135] M. Dudka, A. A. Fedorenko, V. Blavatska, and Y. Holovatch, “Critical behavior
of the two-dimensional Ising model with long-range correlated disorder,” Physical
Review B, vol. 93, p. 224422, 2016.



190 BIBLIOGRAPHY

[136] F. Á. Bagaméry, L. Turban, and F. Iglói, “Two-dimensional ising model with self-
dual biaxially correlated disorder,” Physical Review B, vol. 72, no. 9, 2005.

[137] C. Chatelain, “Infinite disorder and correlation fixed point in the Ising model with
correlated disorder,” European Physical Journal: Special Topics, vol. 226, p. 805,
2017.

[138] P. Kasteleyn and C. Fortuin, “Phase transitions in lattice systems with random
local properties,” Physical Society of Japan Journal Supplement, vol. 26, p. 11,
1969.

[139] M. Picco, R. Santachiara, J. Viti, and G. Delfino, “Connectivities of Potts Fortuin–
Kasteleyn clusters and time-like Liouville correlator,” Nuclear Physics B, vol. 875,
pp. 719–737, 2013.

[140] B. Estienne and Y. Ikhlef, “Correlation functions in loop models,” arXiv preprint
arXiv:1505.00585, 2015.

[141] M. Picco, S. Ribault, and R. Santachiara, “A conformal bootstrap approach to
critical percolation in two dimensions,” SciPost Phys., vol. 1, p. 009, 2016.

[142] M. Picco, S. Ribault, and R. Santachiara, “On four-point connectivities
in the critical 2d Potts model,” SciPost Phys., vol. 7, p. 044, 2019.

[143] S. Ribault, “Diagonal fields in critical loop models,” arXiv preprint
arXiv:2209.09706, 2022.

[144] J. L. Jacobsen and H. Saleur, “Bootstrap approach to geometrical four-point func-
tions in the two-dimensional critical Q-state Potts model: A study of the s-channel
spectra,” arXiv preprint arXiv:1809.02191, 2018.

[145] R. Nivesvivat and S. Ribault, “Logarithmic CFT at generic central charge: from
Liouville theory to the Q-state Potts model,” SciPost Phys., p. 021, 2021.

[146] J. L. Jacobsen, S. Ribault, and H. Saleur, “Spaces of states of the two-dimensional
O(n) and Potts models,” arXiv:2208.14298, 2022.

[147] J. Jacobsen, Loop Models and Boundary CFT, vol. 853, ch. 4, pp. 141–181.
Springer Science & Business Media, 2012.

[148] J. Honkonen and M. Y. Nalimov, “Crossover between field theories with
short-range and long-range exchange or correlations,” Journal of Physics A:
Mathematical and General, vol. 22, p. 751, 1989.

[149] A. L. Korzhenevskii, A. A. Luzhkov, and H.-O. Heuer, “Critical behaviour of
systems with long-range correlated quenched defects,” Europhysics Letters, vol. 32,
no. 1, p. 19, 1995.

[150] S. Sheffield and W. Werner, “Conformal loop ensembles: The markovian char-
acterization and the loop-soup construction,” Annals of Mathematics, vol. 176,
p. 1827, 2012.



BIBLIOGRAPHY 191

[151] J. Cardy and J. L. Jacobsen, “Critical behavior of random-bond Potts models,”
Physical Review Letters, vol. 79, no. 21, p. 4063, 1997.

[152] A. Coniglio and W. Klein, “Clusters and Ising critical droplets: a renormalisation
group approach,” Journal of Physics A: Mathematical and General, vol. 13, no. 8,
p. 2775, 1980.

[153] C. Vanderzande, “Fractal dimensions of Potts clusters,” Physica A Statistical
Mechanics and its Applications, vol. 185, no. 1, pp. 235–239, 1992.

[154] H. T. Pinson, “Critical percolation on the torus,” Journal of Statistical Physics,
vol. 75, no. 5, pp. 1167–1177, 1994.

[155] T. Blanchard, “Wrapping probabilities for Potts spin clusters on a torus,” Journal
of Physics A: Mathematical and Theoretical, vol. 47, p. 342002, 2014.

[156] M. Picco, “Unpublished,” 2022.
[157] M. Picco, “Weak randomness for large q-state Potts models in two dimensions,”

Physical Review Letters, vol. 79, no. 16, p. 2998, 1997.
[158] J. L. Jacobsen and M. Picco, “Large-q asymptotics of the random-bond Potts

model,” Physical Review E, vol. 61, no. 1, p. R13, 2000.
[159] M. Picco and R. Santachiara, “On the CFT describing the spin clusters in 2d Potts

model,” Journal of Statistical Mechanics: Theory and Experiment, vol. 2022, no. 2,
p. 023102, 2022.

[160] N. Javerzat, M. Picco, and R. Santachiara, “Two-point connectivity of two-
dimensional critical Potts random clusters on the torus,” Journal of Statistical
Mechanics: Theory and Experiment, vol. 2020, no. 2, p. 023101, 2020.

[161] A. L. Korzhenevskii, A. A. Luzhkov, and W. Schirmacher, “Critical behavior of
crystals with long-range correlations caused by point defects with degenerate in-
ternal degrees of freedom,” Phys. Rev. B, vol. 50, pp. 3661–3666, 1994.

[162] V. V. Prudnikov and A. A. Fedorenko, “Critical behaviour of 3d systems with
long-range correlated quenched defects,” Journal of Physics A: Mathematical and
General, vol. 32, pp. L399–L405, 1999.

[163] V. V. Prudnikov, P. V. Prudnikov, and A. A. Fedorenko, “Field-theory approach
to critical behavior of systems with long-range correlated defects,” Phys. Rev. B,
vol. 62, pp. 8777–8786, 2000.

[164] H. G. Ballesteros and G. Parisi, “Site-diluted three-dimensional ising model with
long-range correlated disorder,” Phys. Rev. B, vol. 60, pp. 12912–12917, Nov 1999.

[165] V. V. Prudnikov, P. V. Prudnikov, S. V. Dorofeev, and V. Y. Kolesnikov, “Monte
carlo studies of critical behaviour of sys- tems with long-range correlated disorder,”
Condens. Matter Phys., vol. 8, p. 213, 2005.

[166] S. Kazmin and W. Janke, “Critical exponents of the ising model in three dimen-



192 BIBLIOGRAPHY

sions with long-range power-law correlated site disorder: A monte carlo study,”
Phys. Rev. B, vol. 105, p. 214111, Jun 2022.

[167] G. Murthy, “Explicit renormalization-group analysis of the D=2 random-bond
Ising model,” Phys. Rev. B, vol. 36, pp. 766–768, 1987.

[168] H. Saleur, “Partition functions of the two-dimensional Ashkin-Teller model on the
critical line,” Journal of Physics A: Mathematical and General, vol. 20, p. L1127,
1987.

[169] V. S. Dotsenko, “Série de cours sur la théorie conforme,” 2006.
[170] Vl. S. Dotsenko and V. Fateev, “Conformal algebra and multipoint correlation

functions in 2d statistical models,” Nuclear Physics B, vol. 240, pp. 312–348, 1984.
[171] Vl. S. Dotsenko and V. Fateev, “Four-point correlation functions and the operator

algebra in 2d conformal invariant theories with central charge c ≤ 1,” Nuclear
Physics B, vol. 251, pp. 691–734, 1985.

[172] Vl. S. Dotsenko and V. Fateev, “Operator algebra of two-dimensional conformal
theories with central charge c ≤ 1,” Physics Letters B, vol. 154, pp. 291–295, 1985.

[173] M. F. Paulos, S. Rychkov, B. C. van Rees, and B. Zan, “Conformal invariance in
the long-range Ising model,” Nuclear Physics B, vol. 902, pp. 246–291, 2016.

[174] H. W. J. Blöte, J. L. Cardy, and M. P. Nightingale, “Conformal invariance, the
central charge, and universal finite-size amplitudes at criticality,” Phys. Rev. Lett.,
vol. 56, pp. 742–745, Feb 1986.

[175] I. Affleck, “Universal term in the free energy at a critical point and the conformal
anomaly,” Phys. Rev. Lett., vol. 56, pp. 746–748, Feb 1986.

[176] A. B. Zamolodchikov, ““Irreversibility” of the flux of the renormalization group in
a 2D field theory,” Soviet Journal of Experimental and Theoretical Physics Letters,
vol. 43, p. 730, 1986.

[177] A. W. Ludwig and J. L. Cardy, “Perturbative evaluation of the conformal anomaly
at new critical points with applications to random systems,” Nuclear Physics B,
vol. 285, pp. 687–718, 1987.


	List of publications
	Major results
	General and common introduction
	Phenomenology and historical introduction
	Thermodynamics of phase transition
	Ferromagnetic-paramagnetic transition and the Ising model

	Statistical field theory: coarse graining a first approach
	Phase transition and the Potts model
	Kinetic point of view of phase transitions
	Quench dynamics and the Potts model
	Out-of-equilibrium statistical physics tools

	Disordered systems
	Different disorders
	Random bond Potts model
	Percolation
	Field theory and the disorder-perturbation
	The influence of the disorder on phase transitions: the Harris and extended Harris criteria

	Perturbative real space renormalisation group
	The RG idea
	RG procedure on a discrete lattice
	Field theoretical formulation
	RG-procedure: conformal perturbation theory with -expansion


	Dynamics out-of-equilibrium
	Low-temperature dynamics of the Potts model in the q 1 limit
	Introduction
	The growing lenght, R(t)
	Stochastic microscopic dynamics
	Large q or T0 limits of the heat bath rules on the square lattice

	Metastable regime
	Gibbs-Dhuem criterion
	Spinodals in the Potts Model

	Blocked state regime
	Blocked states at q 
	Blocked states on the square lattice at finite q: the proper time tS

	Escaping freezing: the coarsening regime
	Dynamical scaling hypothesis

	Characterisation of the dynamics: parameter dependence
	Freezing on the square lattice
	Still freezing on the honeycomb lattice
	Coarsening on the triangular lattice
	What happens in d=3? The cubic lattice

	Physical argument to freezing
	Frozen dynamics on the square lattice at T=0
	Not frozen dynamics on the triangular lattice at T=0
	Frozen dynamics on the cubic lattice at T=0

	Conclusions


	Disorder at criticality
	Spin models with long-range correlated disorder: a numerical apporach
	Introduction
	The long-range bond disordered q-Potts model
	Implementation of disorder
	Pure Potts model (r=1)
	Short-range disordered Potts (a2)
	Long-range disordered Potts (a<2)
	The infinite disorder point (r=): the q-colored critical pure percolation

	Phase diagrams from Monte Carlo measures of q={1,2,3}-Potts
	The infinite disorder point (r=): LRp and Bp fixed points
	The q=1 phase diagram
	The q=2 phase diagram
	The q=3 phase diagram
	Thermal behavior for the q=3-Potts model with long-range correlated disorder
	The effects of higher disorder cumulants

	Conclusions

	Spin models with long-range correlated disorder: an RG apporach
	Introduction
	Field theoretical Potts model in the replica approach
	Lattice formulation
	Continuous replicated formulation
	Physical set up, RG scheme and OPE rules

	Renormalisation group computation
	0-loops or dimensional analysis
	1-loop analysis
	2-loops analysis
	Computation of Idis: Gaussian and non-Gaussian disorders
	-functions and fixed points

	Stability analysis
	Critical exponents
	Central charge and Zamolodchikov c-theorem
	Correlation length exponent

	Conclusions

	Conclusions
	Acknowledgments

	Bibliography


