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Abstract

In the context of the energy transition and the need for decarbonization through the use of renewable

energies (i.e., the energy transition), the building industry assumes a pivotal role due to its potential

to generate local renewable energy and its substantial energy consumption. Buildings (and by

extension the energy grid) have two key components which are central to this thesis, the energy

subsystem (i.e., the technical component and in essence the direct flexibility) and the human

occupants (i.e., the social, indirect flexibility, component, which is key to determining the energy

performance of any building). In most cases, the emphasis is placed on controllable direct flexibility.

However, there is a need for the two components to work together to produce flexibility services

both for the grid and the building (in the context of self-consumption).

This thesis explores the potential synergy that exists between the human occupant and a building’s

energy subsystem in the context of energy flexibility using the Predis-MHI platform (a living lab

within the GreEN-ER building) and its users as an experimental setup. This setup was constituted

by a 22kWp solar PV station, the demand of the building, EV charging stations, and a 50kWh

battery. For this research, we identified EV charging (in particular the plugging in and unplugging)

as an indirect flexibility resource.

Our investigation follows a three-part methodology to address the challenges associated with

human-interfaced buildings, first, we propose a Mixed Integer Linear Programming optimization

approach to assess the available potential of indirect flexibility and subsequently to dimension

direct flexibility. The second aspect entailed the control of direct flexibilities, for this, we proposed

and implemented a Machine Learning based Model Predictive Controller. Lastly, to gain insight

into the interplay between the direct and indirect flexibilities, we propose a co-simulation approach

based on a Mixed Integer Linear Programming optimization and a Multi-Agent System simulation

of the stochastic behavior of EV users concerning charging their vehicles. This co-simulation is

envisioned to allow for the testing of different scenarios (and rules, especially in the context of a

local energy community).

Our findings show that indirect flexibilities are not only essential to the energy transition, but they

are quantifiable, with a discernible impact on the overall performance of the building system. In the

case of our test bed, the estimated potential of the indirect flexibility in terms of self-consumption

is approximately 8% (1,700.00 kWh) annually. The Machine Learning-based Model Predictive

Controller combined with the reactive controller of the 50kWh battery also showed promise despite

a decreased performance particularly attributed to the low quality of EV demand forecasts. Lastly,

the co-simulation indicates that if mobilized, indirect flexibility can be utilized as a primary energy

flexibility resource contrary to current practice where direct flexibility is the preferred resource for

providing energy flexibility.



Résumé

Dans le contexte de la transition énergétique et du besoin de décarbonisation par l’utilisation

d’énergies renouvelables ("la transition énergétique"), l’industrie du bâtiment joue un rôle central en

raison de son potentiel de production d’énergie renouvelable locale et de sa consommation d’énergie

significative. Les bâtiments (et par extension le réseau énergétique) ont deux composantes clés qui

sont au cœur de cette thèse, le sous-système énergétique ("la composante technique" et par essence

la flexibilité directe) et les occupants humains ("la composante sociale", la flexibilité indirecte, qui

est essentielle pour déterminer la performance énergétique de n’importe quel bâtiment). Dans la

plupart des cas, l’accent est mis sur la flexibilité directe contrôlable. Cependant, il est nécessaire que

les deux composantes travaillent ensemble pour produire des services de flexibilité à la fois pour le

réseau et pour le bâtiment (dans le contexte de l’autoconsommation).

Cette thèse explore la synergie potentielle qui existe entre l’occupant humain et le sous-système

énergétique d’un bâtiment dans le contexte de la flexibilité énergétique en utilisant la plateforme

Predis-MHI (un laboratoire vivant au sein du bâtiment GreEN-ER) et ses utilisateurs comme

dispositif expérimental. Cette configuration était constituée d’une station solaire photovoltaïque de

22 kWc, de la demande du bâtiment, de stations de recharge pour VE et d’une batterie de 50 kWh.

Pour cette recherche, nous avons identifié la recharge des VE (en particulier le branchement et le

débranchement) comme une ressource de flexibilité indirecte.

Notre étude suit une méthodologie en trois parties pour relever les défis associés aux bâtiments à

interface humaine. Nous proposons tout d’abord une approche d’optimisation par programmation

linéaire en nombres entiers pour évaluer le potentiel disponible de flexibilité indirecte et, par la suite,

pour dimensionner la flexibilité directe. Le deuxième aspect concerne le contrôle des flexibilités

directes, pour lequel nous avons proposé et mis en œuvre un contrôleur prédictif de modèle basé

sur l’apprentissage automatique. Enfin, pour mieux comprendre l’interaction entre les flexibilités

directes et indirectes, nous proposons une approche de co-simulation basée sur une optimisation

de programmation linéaire en nombres entiers et une simulation de système multi-agents du

comportement stochastique des utilisateurs de VE en ce qui concerne la recharge de leurs véhicules.

Cette co-simulation est conçue pour permettre de tester différents scénarios (et règles, en particulier

dans le contexte d’une communauté énergétique locale).

Nos résultats montrent que les flexibilités indirectes sont non seulement essentielles à la transition

énergétique, mais qu’elles sont aussi quantifiables, avec un impact perceptible sur la performance

globale du système de construction. Dans le cas de notre banc d’essai, le potentiel estimé de

la flexibilité indirecte en termes d’autoconsommation est d’environ 8% (1 700 kWh) par an. Le

contrôleur prédictif de modèle basé sur l’apprentissage automatique combiné au contrôleur réactif

de la batterie de 50 kWh s’est également avéré prometteur malgré une baisse de performance

attribuée en particulier à la faible qualité des prévisions de la demande des VE. Enfin, la co-

simulation indique que si elle est mobilisée, la flexibilité indirecte peut être utilisée comme une

ressource de flexibilité énergétique primaire, contrairement à la pratique actuelle où la flexibilité

directe est la ressource préférée pour fournir une flexibilité énergétique.



Nomenclature

BESS Battery Energy Storage System.

BMS Battery Management System.

CAES Compressed Air Energy Storage.

CCUS Carbon Capture Utilization and Storage.

CO2 Carbon Dioxide.

DSEF Demand Side Energy Flexibility.

EDF Electricité de France.

ENSE3 École Nationale Supérieure de l’Énergie, l’Eau et

l’Environnement.

ESS Energy Storage System.

EV Electric Vehicle.

G2ELab Grenoble Electrical Engineering Laboratory.

GAM Generalized Additive Model.

GHG Greenhouse Gas.

GreEn-ER Grenoble Énergie - Enseignement et Recherche).

GWP Global Warming Potential.

HICS Human-in-the-Control System.

HVAC Heating Ventilation and Cooling.

IEA International Energy Agency.

IPCC Intergovernmental Panel on Climate Change.

KPI Key Performance Indicators.

LGBM Light Gradient Bossting Machine.

LOH Level Of Hydrogen.

MAE Mean Absolute Error.

MAS Multi-Agent System.

MHI Monitoring and Habitat Intelligence.

MILP Mixed Integer Linear Programming.

ML Machine Learning.

ML-MPC Machine Learning based Model Predictive Controller.

MPC Model Predictive Control.

MSE Mean Squared Error.

NaNiCl Sodium Nickel Chloride.



NaS Sodium Sulfur.

NASA National Aeronautics and Space Administration.

NEEG Net Energy Exchange with the Grid.

NiCd Nickel-Cadmium.

NZEB Net Zero Energy Building.

obFMU Occupant Behaviour Functional Mock-up Unit.

OmegAlpes Generation of Optimization Models As Linear Pro-

gramming for Energy Systems.

PCM phase change material.

PHS Pumped Hydro Storage.

PID Proportional Integral Derivative.

PV Photovoltaic.

RED Renewable Energy Directive.

RER Renewable Energy Resources.

R2 Coefficient of Determination.

RTE Réseau de Transport d’Électricité.

SCES super Capacitor Energy Storage.

SEM Small and Medium-sized Enterpris.

SMES superconducting magnetic energy storage.

SOC State of Charge.

SOH State of Health.

SVM Support Vector Machine.

TCM Thermo-Chemical Material.

TES Thermal Energy Storage.

TRL Technology Readiness Level.

UML Unified Modeling Language.

V2G Vehicle to Grid.

V2H Vehicle to Home.

V2V Vehicle to Vehicle.

XGBoost eXtreme Gradient Boosting Machine.
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Thesis Structure

j The thesis is structured as follows:

▶ Chapter 1: This chapter is a foundation chapter and as such provides essential definitions,

and introduces and explains key concepts that are essential for understanding and

addressing the main theme of this thesis.

▶ Chapter 2: In this chapter, we discuss the scientific lock of this thesis and pose our

research questions. Additionally, we introduce our experimental setup (a living lab).

▶ Chapter 3: This chapter addresses the scientific lock related to indirect flexibilities. We

introduce a framework for quantifying indirect flexibilities and further demonstrate

a battery dimensioning methodology that takes into account the identified indirect

flexibility in our experimental setup.

▶ Chapter 4: This chapter focuses on direct flexibilities and is made up of two parts, the

first addresses the question of the complexity of control systems for direct flexibilities.

The second part details the implementation of a Model Predictive Controller for a 50

kWh battery in our experimental setup. This chapter provides a first insight into the

interaction between direct and indirect flexibilities in (smart) buildings.

▶ Chapter 5: This chapter builds on the work proposed in chapters 2 and 3. We propose a

Multi-Agent System based simulation for evaluating the implications of the interactions

between direct (the 50kWh battery) and the indirect (a local energy community) flexibility

on the global energy performance of the building under study.

▶ Chapter 6: This is the concluding chapter of the thesis. In this chapter, we provide a

global conclusion of the work presented in this thesis, our perspectives, the limitations of

our work, and the future works that we envision as a continuation of this work.
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The purpose of this chapter is to present an introduction to the subject
matter, the chapter starts by giving a brief overview of why energy
flexibility is important and the role it plays in the transitioning of our
current electrical networks to the smart Grid (i.e., the grid 2.0). Thus,
this chapter puts together fundamental concepts and essential definitions
that are central to the global theme of the thesis.

1.1 The Energy Transition

Today, climate change is one of the most significant challenges

faced by humankind [1]. Studies indicate that these anticipated

changes are primarily due to an increased (and still increasing)

concentration of Greenhouse Gases (GHG), such as carbon diox-

ide (CO2), methane (CH4), etc. These GHGs trap heat energy in

the atmosphere, resulting in rising global temperatures. Thus,

by adding more GHGs to the atmosphere, humans are in effect

enhancing the greenhouse effect. Current estimates point to an

average increase in temperature of 2.7°C by the end of the century.

More alarmingly, The Intergovernmental Panel on Climate Change

(IPCC) [2] confirms that barring any positive change in GHG emis-

sions, the global average temperature would be 1.5°C hotter than

pre-industrial times by 2040. NASA [3] estimates that current CO2

concentrations are approximately 420 ppm1 and the global average

temperature is approximately 1.1°C above pre-industrial levels, see

Figure 1.1. Thus, we have already exceeded the initial 350 ppm

target proposed by James Hansen [4].

If not mitigated, global warming and consequently climate change

is expected to result in rising global temperatures, increased fre-

quency and intensity of extreme weather events, and changing

weather patterns, which pose significant risks to human health,

biodiversity, and ecosystems at large [5]. Many studies have identi-

fied human activities, mainly the extraction and use of energy for

industrial, domestic, and transportation purposes (which usually

involves the burning of fossil fuels) as a major source of green-

house gasses, and consequently a major contributor to the global

warming phenomenon [1, 6].

In this thesis, we endeavor to harness the potential energy flexibil-

ity inherently available in buildings and local energy communities.

Our primary objective is to maximize the use of local Renewable



2 1 Towards a Sustainable Future: Socio-Technical Solutions for the Grid

Figure 1.1: Vital signs of the planet

(source [3])

1: A low-carbon energy landscape

that capitalizes on both technologi-

cal (such as Renewable Energy Re-

sourcess) and social interventions

(such energy sobriety) to ensure re-

liable, sustainable and efficient de-

livery of energy (using different vec-

tors) to the end user).

Energy Resources by capitalizing on both technical and social in-

terventions (i.e., the direct and indirect flexibilities respectively) to

establish a socio-technical approach to harnessing energy flexibility

at the building and local community level.

This chapter provides insights into how direct and indirect en-

ergy flexibilities play a pivotal role in our decarbonization efforts.

We discuss in particular energy storage systems which are direct

flexibilities and the role of human actors (individually and col-

lectively as local energy communities) in transitioning towards a

sustainable low carbon energy future. Furthermore, this chapter

lays the foundation for the ensuing discourse by introducing and

discussing pivotal concepts, defining key terminologies, and high-

lighting the rationale behind the need for these socio-technical

solutions. Through this research work, we hope to contribute to the

advancement of research in a sustainable energy transition which

should ultimately lead to a more resilient and adaptive energy

landscape
1
.

1.1.1 The Energy Transition and the Future Grid

Given the identified cause of climate change (increased concen-

tration of GHGs due to human activities), it is undeniable that

avoiding the impending dangers of climate change would require

a shift towards more sustainable and ecological practices, particu-

larly in the energy sector (since it is the single largest contributor of

GHGs). The energy transition has been conceived and developed

to address this impending crisis as a key solution to reduce GHG

emissions from the energy sector [7].

The energy transition is a vital tool in the quest to alter the current

trajectory of a global climate crisis (i.e. climate change) by replacing

existing fossil fuel-based energy systems with more sustainable,

environmentally friendly, and low-emissions alternatives (these

are usually Renewable Energy Resources (RERs)) whilst also con-

sciously reducing our energy demand (through energy efficiency

and conservation means) [8]. According to Olave et al [9], the

energy transition is not only restricted to a technology change
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from fossil fuels to RERs, but also encompasses social, economic,

and environmental aspects of the development of clean energies.

This transition also offers a range of other environmental benefits,

which ultimately translate to a safer and cleaner environment and

by extension a healthier eco-system.

There is no doubt that the energy transition is critical to climate

change mitigation and should be treated with utmost urgency.

Despite the emphasis on technology transformation and energy

efficiency [10], these two are not the only core pillars of the energy

transformation, discussed below are solutions that are critical for

achieving the energy transition:

▶ Increasing Renewable Energy adoption: The transition to

a low-carbon or carbon-neutral energy system requires a

significant increase in the adoption of RERs, such as solar,

wind, hydro, geothermal, and biomass. This is possibly

the foundation on which the other pillars of the energy

transition are built. RERs by nature are intermittent and less

predictable, these qualities present a myriad of problems

such as low inertia, degraded power quality, and high-level

uncertainties for the grid operator [11]. The smart (and more

resilient) grid, which is the grid of the future (i.e., grid 2.0)

has been conceived as a possible solution for mitigating the

above-mentioned issues.

▶ Improving Energy Efficiency: The term energy efficiency

emphasizes using less energy to do at least the same work

or to produce the same results [12]. For this reason, energy

efficiency is often referred to as the fifth fuel, following

traditional fuels coal, natural gas, nuclear, and RERs [13].

Energy efficiency is not only linked to environmental benefits,

but also has positive implications with regard to commercial,

and industrial competitiveness and energy security [14].

The goal of energy efficiency measures is to reduce the

energy demand (without affecting the quality of services)

and consequently reduce GHG emissions. Several measures

exist for achieving energy efficiency, these include but are not

limited to; upgrading building insulation and, using more

efficient electrical appliances.

▶ Decarbonization: Engie [15] defines decarbonization as “all

measures through which a business sector, or an entity – a

government, an organization – reduces its carbon footprint,

primarily its greenhouse gas emissions, carbon dioxide (CO2)

and methane (CH4), in order to reduce its impact on the cli-

mate”. Again, this process involves a shift towards low and

zero-carbon alternatives, however, Carbon Capture Utiliza-

tion and Storage (CCUS) is critical here. The IEA estimates
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that for 95% of carbon capture and 5% of carbon utilization

in 2050 (used for synthetic fuels, as is the case with [16]),

the currently identified global geological carbon storage ca-

pacity largely exceeds the estimated storage requirement.

CCUSs are crucial as they imply removing GHGs from the

atmosphere and consequently will aid in climate change

mitigation.

▶ Electrification: Here, the concept is to use low or zero-

emissions electrical energy in place of fossil fuel-based

options. A typical and highly visible example would be

the ongoing electrification of the transportation sector, or

the electrification of heating (using efficient heat pumps) in

buildings [17]. Electrification allows sectors that are highly de-

pendent on energy to provide services to transition towards

low-carbon energy alternatives (in this case, electricity). Here

the gains are usually twofold; efficiency gains, as the electric

alternatives are usually offered with relatively higher effi-

ciencies [18] and reduced environmental impact, especially

if the electricity is sourced from RERs.

▶ Smart Grids: Often described as the grid of the future, smart

grids are one of the key pillars of the energy transition. The

smart grid has emerged as a solution to new energy carriers

and the decentralization of generation. Smart grids have been

conceived to utilize advanced communications, control, opti-

mization, and automation technologies to provide intelligent

and often real-time responses to changes in grid parameters

[19]. Smart grids offer improved efficiency, resilience, and

overall effectiveness of energy systems.

▶ Energy Flexibility: Energy flexibility, according to Lund et

al [20], can be defined as the ability of an energy network

to adapt its generation or demand in response to external

signals. Flexibility can be provided from the demand side,

supply side, or by using energy storage systems. Energy

flexibility is essential because it offers a solution to one of the

fundamental problems of any electrical grid; maintaining

equilibrium between demand and supply. Energy flexibility

provides services such as load shifting, valley filling, and

peak shaving, two concepts that could improve RER uti-

lization and ultimately reduce the need for peaking plants

(which are usually fossil fuel based and expensive). Demand-

Side Energy Flexibility (DSEF) is particularly important as

it bolsters an often-ignored pillar of the energy transition,

behavioral change.

▶ Behavioral Change: Behavioral change is perhaps the single

most important pillar after RER adoption but is often over-
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2: Conservation effort here refers to

the conscious decisions individuals

or groups of individuals make to

use less energy.

3: This would represent a 69.07%

excess in energy production relative

to the energy demand)

looked. Human behavior is the driving factor for the demand

for all energy-related goods and services. That is to say, indi-

vidual choices and the norms of society will play a key role in

reducing energy demand and achieving energy conservation

[13] and energy sobriety [21]. The IEA [17] estimates that 55%

of emissions reduction measures and initiatives require at

least a mixture of low-carbon technology and active engage-

ments from the citizenry. The IEA has identified 3 main types

of behavioral change that would yield the highest results:

1. Reducing energy waste: here the emphasis is on us-

ing energy wisely, especially in buildings; bordering

on energy conservation, energy sobriety, and energy

efficiency.

2. Switching transportation mode: Using non-fossil fuel-

based solutions for short trips (bicycles, walking, etc.)

and using public transport and ride sharing for longer

trips as opposed to using cars (which become even more

inefficient if their passenger capacity is under-utilized).

3. Materials efficiency gains: here, the message is simply

to consume less and can be expanded to mean improv-

ing the design to improve product longevity, using

materials that reduce energy requirement (building

insulation for example), reuse and recycle, etc.

1.1.2 2050: Carbon Neutral Scenarios

The energy transition by its very definition implies a vision of

the future in which 100% of our energy requirements would be

sourced from RERs (such as solar, geothermal, and wind). To

achieve this goal sustainably we must simultaneously reduce our

energy demand through energy efficiency and conservation
2

(in-

cluding energy sobriety) efforts. Multiple studies [22, 23], have

been conducted to evaluate 100% renewable energy scenarios

and ultimately conclude that a change in technology and grid

infrastructure is required to ultimately achieve this goal. For ex-

ample in France Dubilly et al [22] estimate that there would exist

a rooftop potential of 1,268 TWh
3

per annum for solar PV with a

corresponding demand of 750 TWh [24] by 2050 (Figure 1.2).

Using rooftops means we optimize the use of land resources (and

do not exploit otherwise unused land resources). However, there

is still a high energy requirement for manufacturing and replacing

these solar panels. Arguably, as the energy mix becomes less

carbon intensive, and the technology improves, the associated

energy and environmental costs are expected to reduce in the

future. Additionally, owing to the nature of solar PV technology, it
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is intermittent, very susceptible to extrinsic factors, and available

for a limited period of the day, a 100% solar scenario would typically

require storage infrastructure to be deployed in the network.

Figure 1.2: 2050 Energy Projections

for France (a) Technical potential for

wind and solar power generation

in France compared with estimated

load level by 2050, (b) Evolution of

annual electricity demand in the Na-

tional Low-Carbon Strategy (includ-

ing French overseas departments)

(source [24])

Storage is a fundamental requirement of the future grid, Katie

Fehrenbacher [25] emphasizes this point in her statement: “A next-

generation smart grid without energy storage is like a computer

without a hard drive: severely limited”. Thus, pointing to the

fundamental need for energy flexibility services (in the form of

energy storage systems or any other). In the case of a 100% solar

PV scenario as proposed by Dubilly et al [22], both short-term

(intraday, interday, etc.) and long-term (seasonal) storage. The

short-term storage would be required to deal with intermittency

and nighttime unavailability whilst the long-term storage would

serve the seasonal supply-demand paradigm that exists in most of

Europe (higher solar production in summer coupled with lower

demand and conversely lower generation and increased demand

in winter).

Additionally, A recent study by Hodencq et al [26] which consid-

ered the sizing of a solar PV system (solar PV panels and batteries)

for an energy community with 20 houses in France and Germany

found that 100% self-sufficiency does not translate into a reduction

in carbon emissions reduction. The study considered a positive

behavioral response (i.e., reduction in demand in response to

having solar PV as an energy source) from the participant in the

community and a battery usage period of 8 years. Results from

the study, illustrated in Figure 1.3, indicate that for France (as is

the case with most countries), the reduction in carbon emissions

becomes negative beyond self-sufficiency of between 24% and 35%

(depending on the Global Warming Potential (GWP) of the solar PV

components). The results for Germany were the same, however, the

inflection point was between 74% and 80%, which was relatively

higher and was attributed to the higher carbon intensity of the

German grid relative to the French one. It is key to note that this

study did not account for future changes in the GWP of solar PV

panels and batteries (a downward trend is anticipated owing to

the increasing RER penetration in grids where these components

are manufactured). Thus, there is a need to reevaluate the efficacy

of such scenarios in the face of changing energy mixes.
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Figure 1.3: (a) Yearly greenhouse gas (GHG) emissions of the energy consumption of a household in France as a function

of self-sufficiency rates for minimal, median, and maximal PV panels Global Warming Potential (GWP), with associated

batteries and PV sizing, (b) zoomed in between 0 and 40% of self-sufficiency (source: [26] )

1.1.3 Self-Consumption and its Role in the Energy

Transition

An examination of the concept of self-consumption is highly rel-

evant to the scope of this thesis, as self-consumption is pivotal

to the central theme, which revolves around improving building

(and by extension local energy communities’) self-consumption by

mobilizing both direct and indirect flexibilities.

Self-consumption is a concept that has become increasingly neces-

sary given the increased adoption of RERs, especially distributed

energy resources and the advent of the prosumer (producer

and consumer of electrical energy). The concept emphasizes the

local consumption of energy produced from on-site resources.

Luthander et al [27] define self-consumption (in the context of

solar PV) in simple terms as locally produced electricity that is

consumed directly by the producer (as illustrated in Figure 1.4,

which often is the owner of the PV system.

Figure 1.4: Self-consumption defini-

tion with storage (source: [28])

The concept contrasts with the traditional vertically integrated
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approach where production is distant and separated from con-

sumption. As RERs become more prevalent in the energy mix,

especially where they are integrated into buildings or at the com-

munity scale, self-consumption becomes more necessitated.

Consuming at source (i.e., self-consumption) would mean that

the intermittency is not seen on the grid and that buildings and

communities become more energy independent. The concept was

initially conceived on an individual scale (usually a single building)

but has evolved beyond the individual’s boundary to the boundary

of a local community as depicted in Figure 1.5. The main drawback

for the individual scale was that it required storage infrastructure

(which at the building scale is usually chemical storage in the

form of batteries) which can be financially and environmentally

expensive. Collective self-consumption was thus conceived to

reduce or potentially eliminate the need for storage by taking into

account the different demand profiles within a community.

Figure 1.5: Self-consumption at various scales (from individual to community scale collective), (source: [29])

Thus, the individual self-consumption definition given by Luthander

et al [27] has been expanded to take into account a community

of different types of actors. According to Electricité de France

(EDF) [30] (and by extension the French government), “Collective
self-consumption is a system governed by laws and regulations. It allows
locally produced electricity to be shared between producers and consumers
connected to the public distribution network, within the same geographi-
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cal area". These local consumers or producers can be residential,

commercial, or local authorities.

1.2 Demand-Side Energy Flexibility

Energy flexibility is not a new concept and has indeed been in

use for a few decades, as identified by Ehrhardt-Martinez et al

[31]. Energy Flexibility represents a foundational component of a

building’s energy sub-system which we mobilize in this thesis to

improve self-consumption (both at the building and community

scale). Demand-Side Energy Flexibility (DSEF) can be described

as measures and actions that facilitate a change in the demand in

response to external signals from the grid (mainly imbalance as a

result of high RER penetration) [32]. Because buildings constitute

a large proportion of energy consumption (approximately 43%

[33] in Europe, and 44% [34] in France), DSEF in the context of this

document will focus on buildings and communities. As already

mentioned in chapter 1.1.1, energy flexibility is an essential pillar

for achieving our energy transition goals. DSEF often implies a

change in energy users’ behavior and is often associated with

changing consumption patterns in response to changing supply,

changing price [35, 36], or social signals (i.e., nudges) [37]. DSEF is

usually implemented to achieve either an upward modulation of

the load (i.e., valley filling) or a downward modulation of the load

(i.e., load curtailment, peak shaving) [38], see Figure 1.6.

Figure 1.6: Benefits of Demand-Side

Energy Flexibility (source: [39])

Based on how these flexibilities are activated and used for pro-

viding flexibility services to the energy network, DSEFs can be

classified into three main groups, encompassing both the social and

technical dimensions of the socio-technical system upon which this

thesis is based. In the subsequent subsections, these classifications

will be comprehensively discussed, bringing to light the distinct

characteristics of each classification as well as their significance to

a building’s energy system (and by extension the grid).
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1.2.1 Direct Flexibilities

Direct flexibility refers to the ability of an energy system to rapidly

and directly respond to changes in energy demand or supply. We

[40] defined direct flexibilities as “devices within the global energy

system that can be fully automated/controlled using software or a

control signal and can significantly affect the overall performance

of the global energy system”. For this type of flexibility, the user

is typically not involved in the process and consequently, there is

no cognitive strain on the user (as they have no decisions to make

concerning the external signals).

Since this type of flexibility involves the use of smart or connected

devices to take measurements and actuate in response to signals

their performance is guaranteed, however, there is a high capital

expenditure associated with their initial acquisition [41]. Addi-

tionally, a high level of computation is required to aggregate data

from multiple devices, compute an optimal strategy and resend

the control signal to the devices. Batteries are a typical example

of direct flexibilities; they can act as a consumption or production

unit in response to an external signal and deal with fluctuations

(provided the battery can meet the requirements).

Direct flexibilities are often but not exclusively implemented at

the lower levels of the grid (i.e. at the demand side such as at

the building and community levels) and can be integrated with

smart grid technologies to optimize energy use and reduce costs.

By enabling a more responsive and adaptable energy system,

direct flexibility measures can help to facilitate the integration of

renewable energy sources and reduce the need for new energy

infrastructure.

1.2.2 Indirect Flexibilities

From literature [40, 41] indirect flexibilities can be described as

“actors in the global system (in this context the building or member

of an EC) who cannot be controlled directly using software or

control signals”. Here there is a reliance on human behavior to

achieve upward or downward modulation of the demand, hence

the use of actors in the definition. Thus, these energy flexibilities

are dependent on the end consumer (i.e. the human in the loop [42])

altering their consumption in response to some form of signal (these

could be price signals [35, 36], or social signals [37]). Compared to

direct flexibilities, which can react in a short time scale, indirect

flexibilities typically involve some amount of cognitive strain on the

end user to first comprehend the signal and subsequently decide

which kind of action to take, thus indirect flexibilities typically

have a relatively slower reaction time [40]. Unlike direct energy
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flexibility, there is a large range of devices that can be used for this

kind of flexibility, as it does not require specialized devices but

rather a conscious effort to use or not use energy (or a device) at a

specific time.

There are many implementations of indirect energy flexibilities;

these include real-time pricing and time-of-use tariffs which use

pricing signals to encourage behavioral change to achieve changes

in energy demand. Additionally, more recent studies have focused

on using social signals to influence end-user behavior, usually

to reduce the demand (peak shaving) [38]. These social signal

implementations of indirect flexibilities usually have feedback as a

key element in their design. According to Shahid et al [38], Social

Signal based DSEF can be classified into three main groups; (i) com-

parative Norms, (ii) Injunctive Norms, and (iii) Pro-Environmental

nudges. Figure 1.7 below provides an overview of available signal-

ing used for indirect flexibility.

Figure 1.7: Types of signaling used

for Indirect Flexibilities (source:

[38])

1.2.3 Hybrid Flexibilities

These Flexibilities as their name suggests are a hybrid of direct

and indirect flexibilities. Hybrid flexibility is usually a controllable

device that is dependent on the human in the loop to make it

available for direct control. Thus, there are two components to this

type of flexibility; the first is the human, who for example has to

plug in their electric vehicle in response to a pro-environmental

nudge (i.e., the indirect flexibility component).

The second component is the directly controllable aspect of flexi-

bility, thus, for the EV example, once the vehicle is plugged in it

is possible to use control signals to further optimize the charging

of the vehicle to further maximize the benefit from charging the

EV (this could be maximizing the self-consumption rate of the

building). Hybrid Flexibilities bring into the fold devices that

otherwise would be difficult to use as direct flexibility but have the

capability. For example, a dishwasher or washing machine could

be directly controllable but its availability is subject to the washing
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schedule of the human actor, thus these devices are not ideal for

use as direct flexibilities.

Figure 1.8: Indirect Flexibility Use

case of nudges, using a washing ma-

chine as direct flexibility

However, The Human in this case could be nudged to schedule

their laundry for days on which there is a high RER production on

the grid (using a day ahead alert as was done in [43]). This would

imply that the end user would only have to decide the day to do

their laundry and not the hour or minute as the washing machine

could be programmed to start on the reception of a signal, thereby

reducing the cognitive strain associated with a purely indirect

implementation, Figure 1.8 illustrates this example.

� Highlights:

▶ Direct Flexibility is directly controllable and provides

high-performance guarantees since they do not require

human interactions to activate them. For this type of

energy flexibility, the end-user of the energy is not

expected to do much and their energy needs are still

met.

▶ Indirect Flexibility is dependent on the human in the

control system, in this regard their performance is not

guaranteed, and their response time is slow. Because hu-

mans cannot be controlled, and we can only encourage

them to change their behavior, we need to use signaling

that can be processed easily without introducing a cog-

nitive strain in order to effectively harness this flexibility.

For this type of Flexibility, the end-user of the energy is

expected to change their energy usage patterns (change

the time of use or reduce their demand etc.).
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1.2.4 Impact of Human Behavior on Building Energy

Consumption

Buildings have been identified as one of the main consumers of

energy in most economies. The IEA [44] estimates that buildings

accounted for 30% of final energy consumption and consequently

27% of emissions attributed to the electrical sector. Janda [45] in

2009 described human behavior as a key parameter that is often

ignored during the conception of building systems Studies show

that the physical properties of a building and the equipment or

appliances used in the said building account for approximately

50% of a building’s energy demand, while the other 50% is largely

influenced by occupants and their behavior [46]. Thus, occupant

behavior is undoubtedly one of the key factors in determining how

effective any energy subsystem in a building would be [47, 48].

Figure 1.9: Proposed framework

(based on prototype building mod-

els suite) for simulating occupant

behavior (stochastic) in American

buildings – based on Occupant Be-

haviour Functional Mock-up Unit

(obFMU) (source: [49])

In recent times, the importance of human behavior has been

acknowledged and implemented in widely used building energy

efficiency models such as the suite of prototype building models

[50] which was initially based on deterministic models but has

been upgraded to stochastic models as was proposed by He et al

[49], see Figure 1.9. These prototype models classify occupants into

three behavioral styles; austerity, normal, and wasteful. Further,

some work has been done to use Multi-Agent System (MAS) based

simulation to model the stochastic behavior of human occupants in

relation to energy systems in buildings [51–53]. Additionally, some

research has been carried out on the application of agent-based

simulation for modeling participant behavior in Local Energy

communities [54, 55].

Energy models can be improved to better reflect the ground truth

by factoring human behavior into these energy models. This would

not only imply simulation results that are closer to reality but

would also serve as a stepping stone to better understanding the

role of humans in control systems.
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1.3 The Position of Humans in Control Systems

This sub-chapter is essential as it addresses the complex socio-

technical system, which is embodied within buildings and their

subsystems, with specific emphasis on the energy subsystem. Be-

cause humans (i.e., the occupants) represent the social component

of a building’s energy subsystem, which we desire to operate in

an optimal manner, it is imperative to understand the role of the

human in the system. This sub-chapter provides insight into how

humans interact with and influence control systems.

Control engineering has mostly been focused on the research, devel-

opment, and implementation of automation and control solutions

for machines and devices. For many systems, this approach is well

warranted and effective, however, for systems whose performance

is dependent on humans (e.g., buildings), it is imperative to factor

the human into the control strategy, and thus the Human-in-the-

Control System (HICS) concept. HICS in the context of control

theory refers to the inclusion of the actions of humans into a control

system in order to improve the performance of the said system.

Whilst the definition of HICS provides a general overview of the

concept, the question of where the human should be placed (i.e.,

the role of the human) in the loop arises. Tariq Samad [56] pro-

poses four categories of HICS which he basis on the fundamental

closed-loop control architecture with controller and plant (system

under control) as depicted in Figure 1.10.

Figure 1.10: Fundamental closed-

loop control architecture (source:

[56])

These four categories proposed by Samad [56] are:

▶ Human-in-the-Plant: In this category, the human is part of

the plant and is only subject to the control actions taken by the

controller (i.e., the automation). Thus, the human here does

not directly affect change to the control system but is, however,

a consideration in the control strategy, see Figure 1.11 (a).

A typical implementation of this is seen in many buildings

where the temperature set-point is managed centrally, and the

environmental conditions within the building are controlled

to minimize energy use, reduce equipment stress, and ensure

occupant comfort.

▶ Human-in-the-Controller: For this category, the human is in

the controller and actively contributes to the actions taken by
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the controller. Thus, the human can directly provide input for

the control system, Figure 1.11 (b). This can be illustrated using

buildings equipped with temperature control interfaces,

in such buildings, the occupant can directly change the

temperature set-point thereby causing the control strategy to

change in order to meet their thermal comfort requirements.

▶ Human-Machine Symbiosis: Here, the human is both a part

of the control system and the subject of the control (see Figure

1.11 (c)). According to Samad, “The control of these devices
must also integrate human actions with computerized reactions”.

Abbink et al [57] further describe this human-machine shared

control as “humans and robots interacting congruently in a

perception-action cycle to perform a dynamic task that either

the human or the robot could execute individually under

ideal circumstances”. This type of control can be illustrated

using neuroprosthetics which utilize sensory feedback to

the brain coupled with neural electrode measurements to

control the movement of the prosthetic.

▶ Humans-in-Control-loops: Here, the emphasis is not on a

single system, which could be in any of the three categories

highlighted above interacting with each other as a singular

system (Figure 1.11 (d)). Thus, there are multiple loops with

humans interacting with both the plant and the controller

that interact with each other to form one system. Thus,

such systems typically incorporate both the human-in-the-

plant and the human-in-the-controller as subsystems of a

larger system. A typical example would be an airplane, here

the pilot would be the human-in-the-controller, whilst the

passengers would be the humans-in-the-plant.

Figure 1.11: Four categories of Human-in-the-Control System (HICS) control systems based on the Fundamental closed-

loop control architecture (a) Human-in-the-Plant, (b) Human-in-the-Controller, (c) Human-Machine symbiosis, and (d)

Humans-in-Control-Loops (source: [56])
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1.3.1 Energy Storage Systems and Their Role in the

Energy Transition

Energy Storage Systems (ESS), a typical example of direct energy

flexibilities, as highlighted in chapter 1.1.1 are a key element for

the future grid allowing for the integration of intermittent and

distributed RERs. Different technologies exist for ESSs, however,

they can largely be classified as mechanical storage, chemical

storage, thermal storage, and electromagnetic [58], Figure 1.12

shows various types of energy storage technologies and their

maturity as of 2017. In the context of buildings, and even at the

community scale, chemical storage in the form of batteries (lead

acid and much recently lithium-based chemistries) is the most

often used and available storage solution [38]. This has largely

been influenced by their compactness, and recent development in

lithium-based technologies [40], driving a drop in the financial

cost of energy storage even to the point of grid parity in some

economies [59].

Figure 1.12: Overview of the maturity of energy storage technologies (Thermo-Chemical Materials (TCMs), phase change

materials (PCMs), Super Conducting Magnetic Energy Storage (SMES), Super Capacitor Energy Storage (SCES), Sodium

Nickel Chloride (NaNiCl) batteries, Thermal Energy Storage (TES), Nickel-Cadmium (NiCd) batteries, Sodium Sulfur

(NaS) batteries, and Pumped Hydro Storage (PHS)) as of 2017 with Technology Readiness Level (TRL) on the y-axis and

market development on the x-axis

(source: [60])

Battery Energy Storage Systems (BESSs) enable and encourage

self-consumption at both the building and community scale by

allowing these buildings and communities to reach higher rates

of self-consumption, which would have otherwise been difficult

to achieve. Thus, BESSs offer flexible services to buildings and

communities and can be used for DSEF services such as peak

shaving and valley filling services [61, 62]. Additionally, BESSs
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are scalable and are capable of dealing with rapidly changing

demand or production (i.e., highly responsive) making them ideal

for managing and mitigating the issues associated with high RER

penetration in the grid. BESS can be used as distributed resources,

thus they can be aggregated and used for grid-scale services such as

maintaining equilibrium (and providing ancillary services) [63].

Battery Energy Storage Systems despite being widely used are

limited in that they are only useful for providing short-term energy

storage, and evidently might not be the most efficient ESS for

providing other forms of energy besides electrical energy. For

example, other ESSs such as Pumped Hydro Storage (PHS) and

Compressed Air Energy Storage (CAES) are more suited for long

and medium-term energy storage requirements. Similarly, a BESS

would suffer efficiency losses in converting from electrical energy

to heat energy whereas a heat battery would not. Thus, the choice

of Energy Storage System is dependent on factors such as (but not

limited to) the duration of energy storage, the final energy desired,

and the quantity of energy to be stored.

The recent development in battery technology has accelerated the

transition to electric mobility (Electric Vehicles (EVs)). As pointed

out in chapter 1.1.1, EVs are essential to the energy transition.

However, EVs, because they typically are equipped with BESS and

directly consume electrical energy represent a new paradigm for

mobilizing energy flexibility at the building and community scale

(and even at the grid scale).

The rapid development and improvement of the energy density

of Battery Energy Storage Systems have played a pivotal role in

driving the transition to electric vehicles (EVs). EVs have emerged as

a key component of the energy transition, offering a sustainable and

efficient alternative to traditional combustion engine vehicles. With

their ability to store and deliver electricity, batteries empower EVs to

reduce greenhouse gas emissions, promote energy independence,

and contribute to a cleaner and greener transportation ecosystem.

1.3.2 Electric Mobility as an Energy Flexibility

Global EV adoption has soared exponentially, with the IEA [64]

estimating that approximately 10 million EVs were sold in 2022

(i.e., 1 in every 70 cars sold), similarly, RER uptake in buildings is

also growing.

The Electrification of the transportation sector translates to an

increase in electrical energy demand, with particular challenges

for grid operators especially given the increased uptake of BEVs.

The storage potential of EVs if untapped would be underutilized,

as it is estimated that vehicles remain parked for 95% of the
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time. Underutilizing EV batteries would consequently reduce the

benefits of electrifying the transportation sector. Tertiary buildings

offer an interesting prospect for utilizing EV batteries. Most EV

owners would typically go to work and park their EVs on the

premises or nearby, the otherwise untapped storage potential of

such EVs could be harnessed to offer flexibility services to the

building. These Flexibility services include charging with solar

PV electricity to maximize self-consumption and can be achieved

by activating additional services related to the storage capacity

such as Vehicle to Grid (V2G), Vehicle to Vehicle (V2V), Vehicle to

Home (V2H) [65, 66](see Figure 1.13) which translate into benefits

such as peak shaving, load shifting and valley filling.

For any of these additional services to work, bidirectional charging

must be enabled, this implies that both the vehicle and the charging

infrastructure must be capable of bidirectional energy flow. The

key benefit of these services is that the energy storage component

of a BEV becomes an extension of the grid (this is the case only

when the vehicle is plugged in). At the grid scale, these batteries

are capable of reducing the effects of having intermittent and

distributed RERs on power quality and can be used to reduce peaks

in demand. Typically, some form of aggregation is required to scale

up the capacity of individual batteries to meet the requirements of

the larger grid. Uncertainties such as the availability of vehicles,

available capacity to discharge (from the vehicle), etc. imply that

control systems need to be in place to fully realize the potential

of V2G [67]. For V2H and V2V, the need for an aggregator might

not be warranted, however, there is still a need for coordination

between vehicles (for V2V), and buildings (for V2H).

Figure 1.13: Framework for Electric

Vehicle Charging, including Vehicle

to Grid (V2G), Vehicle to Vehicle

(V2V), and Vehicle to Grid (V2G)

(source: [66])
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4: Recycling of some components

(particularly the precious metals)

is typically financially more viable

compared to other components.

1.3.3 Environmental Impact of Battery Storage Systems

Due to the proliferation of BEVs, Lithium-based batteries (which

have a high energy density) have seen a high uptake in the last

decade. Skarvelis-Kazakos et al. [68] estimate that EVs have the

potential of producing between 3.6 GWh and 17.6 GWh of waste

battery capacity by 2030 in Scotland alone. Mrozik et al [69] further

point out that a large fraction of end-of-life lithium-based batteries

ends up in landfills. Additionally, the technology available for

recycling these batteries is not in itself eco-friendly (high energy

requirements) or efficient thus implying high financial costs
4

and

in some cases making sourcing new materials a more feasible

solution [70–72].

Whilst current battery storage technology presents environmental

concerns, second-life applications for lithium-based technologies

in particular hold a lot of promise. Martinez-Laserna et al [73]

defined the second-life usage of batteries as the repurposing bat-

teries that may no longer be considered viable for their originally

intended purpose for alternative and usually less demanding oper-

ations. Thus, batteries that would have otherwise been described

as expended can be repurposed and used for renewable energy

purposes, thus extending the life of these batteries, and reducing

their environmental impact as is being implemented by Nissan

[74] and Renault [75].

Additionally, research is being carried out to develop more sustain-

able storage technology alternatives such as Sodium batteries [76]

and solid-state batteries [77]. Alternatively, Alami et al [78] have

proposed a small-scale, modular compressed air energy storage

system, whilst some research has also been directed at small-

scale pumped-hydroelectric systems [79] that could have potential

applications in buildings and energy communities.

Extending the boundary from the individual building to the local

community implies a mix of different energy demand profiles

(especially when the community is comprised of both residential

and commercial buildings), which would imply a better utilization

of the local RER and consequently translate to lower storage

requirements and the lower associated carbon footprint.

1.4 Local Energy Communities

Local energy communities have emerged as a means to re-structure

our current vertically integrated energy systems and facilitate active

citizen participation in the energy transition as these communities

encourage the adoption of RERs [80]. Furthermore, Local energy
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communities can be effectively mobilized as a response to the need

for energy flexibility services from the demand side of the grid.

According to the European Commission, “Energy communities

organize collective and citizen-driven energy actions that help pave

the way for a clean energy transition while moving citizens to the

fore. They contribute to increasing public acceptance of renewable

energy projects and make it easier to attract private investments

in the clean energy transition.” By participating in local energy

communities, individuals can potentially benefit from a reduced

energy bill (due to consuming local RER or energy conservation),

increased energy efficiency and conservation, and an increased

level of energy awareness [27, 81].

The EU’s Renewable Energy Directive (RED II) provides two defi-

nitions for energy communities, the renewable energy community

[82], and the citizen energy community [83]. Frieden et al [84]

provide a comparison of the two definitions, which are highlighted

in Table 1.1.

Energy communities are essential for the energy transition as they

enable concepts such as collective self-consumption and conse-

quently influence individual behaviors (participants subscribe to a

common goal, which is usually sustainability). Local energy com-

munities are not restricted to renewable energy production, but

could also provide services such as aggregated demand, and ag-

gregated storage services (using conventional batteries and BEVs).

One major merit for energy communities for the energy transition

is that because it involves the active participation of individuals

in the energy economy, it allows for a restructuring of the energy

sector (to a more prosumer/citizen-focused energy sector).
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Table 1.1: Comparison of renewable energy communities, and citizen energy communities

Renewable Energy Community Citizen Energy Community

“A legal entity:

1. which, in accordance with the applicable
national law, is based on open and vol-
untary participation, is autonomous, and
is effectively controlled by shareholders or
members that are located in the proximity
of the renewable energy projects that are
owned and developed by that legal entity.

2. the shareholders or members of which are
natural persons, SEMs, or local authori-
ties, including municipalities

3. the primary purpose of which is to pro-
vide environmental, economic, or social
community benefits for its shareholders
or members or for the local areas where it
operates, rather than financial profits.”

"A legal entity that:

1. is based on voluntary and open partic-
ipation and is effectively controlled by
members or shareholders that are natu-
ral persons, local authorities, including
municipalities, or small enterprises.

2. has for its primary purpose to provide envi-
ronmental, economic, or social community
benefits to its members or shareholders or
to the local areas where it operates rather
than to generate financial profits.

3. may engage in generation, including from
renewable sources, distribution, supply,
consumption, aggregation, energy storage,
energy efficiency services or charging ser-
vices for electric vehicles or provide other
energy services to its members or share-
holders."

Requires geographical proximity (defined at

the national level)

No geographical limitation applied

Large companies are excluded from mem-

bership

Large and medium-scale companies can par-

ticipate but are excluded from effective con-

trol

Restricted to renewable energy sources only Technology neutral, not restricted to renew-

able energy sources.

1.5 Conclusion

The energy transition is undoubtedly a key instrument in averting

the impending climate crisis, and as discussed in chapter 1.1.1, the

concept not only entails the use of technology but also includes a

fundamental change in how we view, generate, transport, and use

energy. Thus, a fundamental change in mindset and behavior is

also required from all stakeholders in the energy system, including

the end-user. The end-user is particularly important, especially in

the residential (building) sector, because the occupant (end-user)

ultimately consumes the energy, not the building. Additionally,

since buildings account for a large proportion of energy demand

in most countries, it is not a far-fetched idea to emphasize efforts

in this sector.

E-mobility presents an excellent opportunity to solve two issues at

the same time, i.e., sustainable transportation and energy storage,
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the latter being pertinent to the high penetration of RERs in

the electric grid. The concept of self-consumption, both at the

community and building scale, can benefit from the use of E-

mobility solutions as energy flexibilities (indirect in this case).

Energy flexibilities, both direct and indirect, exist in any building

system and should not be viewed independently of each other.

Perhaps the emphasis has remained on the control of direct flexi-

bilities due to their very nature, they can easily be controlled using

software or a control signal. Indirect flexibilities on the other hand

depend on the end user, the human, and cannot be controlled (not

in the same sense as machines and devices). Thus, the leveraging

of indirect flexibilities would require the use of communication

channels such as feedback indicators and nudges to effect a change

in behavior towards a desired optimal.

The scientific lock of this thesis is therefore on mechanisms and con-

cepts, which facilitate the use of both direct and indirect flexibilities

in a non-residential building (and by extension local energy com-

munities). The subsequent chapter will provide more insights into

the problem being explored and ultimately present the scientific

questions that this thesis seeks to answer.
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This chapter has two main parts; the first focuses on the scientific lock of
this thesis and presents our main research question (from which we derived
four sub-questions). The second part presents the experimental setup, a
living lab, which allows us to study the building (a socio-technical system)
and its sub-systems, with specific emphases on the energy sub-system.

2.1 Introduction: The Smart Building - A

Conduit for Improving Building Energy

Performance using the

Human-in-the-Control-System

Smart buildings (a building with a decision-aided energy system),

similar to smart grids, play a crucial role in achieving the energy

transition by utilizing data (often real-time) related to the use of the

building and the behavior of occupants (this can usually be inferred

from sensor data) to efficiently manage the various sub-systems

within the building to achieve high energy performance.

Since buildings are typically end nodes (and can be described as

micro-grids) in the electrical network, smart buildings essentially

enable innovations and concepts higher up in the network such

as smart communities and by extension smart districts. Earlier

definitions of smart or intelligent buildings were centered around

reducing human inputs (or interactions) with the building, however,

this definition has evolved to include the building occupant’s (i.e.,

the human-in-the-system) interaction and its consequence on the

global building system (and by extension the energy sub-system)

[85], see Figure 2.1.

Building on this notion, Wurtz et al [42] describe the smart building

as an adaption of the smart grid concept at the level of the building

micro-grid, one with an energy sub-system equipped with multi-

source, multi-demand, and multi-storage sub-systems, which are

coordinated and managed using information and communication

technology. A definition that ultimately focuses on the technical

aspects of the building.

From a social and environmental point of view, Clements-Croome

[86] describes a smart building as “one that is responsive to the
requirements of occupants, organizations, and society. It is sustainable
in terms of energy and water consumption besides being lowly polluting
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Figure 2.1: The evolution of buildings. (Source: [85])

in terms of emissions and waste: healthy in terms of well-being for the
people living and working within it; and functional according to the user
needs”.

Buckman et al [85] described such an advanced functioning build-

ing as a building whose performance, occupant’s comfort (envi-

ronmental and visual), and occupant’s satisfaction are maximized

whilst simultaneously minimizing its energy consumption over a

long lifetime.

The smart building is a technological solution to energy manage-

ment at all levels of the grid (buildings will be expected to be grid

responsive [88] and should be able to adapt to changing boundary

requirements [87]) however, the concept should not be viewed as

only a technical solution but as a socio-technical solution [89]. In-

deed, the concept requires the use of sensors and actuators (largely

facilitated by the Internet of Things) and presents an opportunity

for energy efficiency and conservation gains using information

and automation [90].

Automations, however, typically are unable to fully take into

account the behavior of humans, Wurtz et al [42] point out that their

experience and experiments with smart buildings and occupants

show that occupants will try to defeat automation (and smart

systems) if they do not fully understand them. Therefore, there is a

need for occupant engagement (i.e.,indirect flexibility) in addition

to automation (i.e., direct flexibility) in realizing the full potential

of smart buildings in optimizing building demand.
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Figure 2.2: Key technologies in

smart buildings (IOT – Internet of

Things, HVAC- Heating Ventilation

and Airconditioning) (Source: [87])

Furthermore, the smart building presents the opportunity to har-

ness and assess the interaction of the direct (sensors, actuators, and

controllable loads) and indirect (the occupants) flexibilities. Since

real-time monitoring is a core feature [87] of the smart building’s

concept, it provides the opportunity to optimize all parameters

effectively and efficiently within the building’s system (comfort,

satisfaction, energy efficiency, etc.).

Figure 2.3: Qualitative model rep-

resenting smart buildings with the

human-in-the-loop (source: [89])

Consequently, there is a need for a multi-disciplinary research

approach towards the development of the smart building concept

to yield models such as the one depicted in Figure 2.3, which allow

for the physiological (comfort and satisfaction) and psychological

(perceptions and feelings) aspects of the occupant to be accounted

for [42].

The smart building allows for the real-time monitoring and control

of the technical components (i.e., the direct flexibility) of the socio-

technical system (the building system). Additionally, the meters in

such buildings allow for the estimation of the impact of occupant

behavior, which brings us to the main scientific question on which

the central theme of this thesis is based:
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Main Research Question

“To what extent can human (occupant) behavior, which is
the social component of the building system, be effectively
mobilized and integrated with technical and highly controllable
solutions to facilitate the delivery of energy flexibility services
at the building and local energy community scale”.

Thus, the main objective of this thesis is to evaluate the interaction

between both the indirect and direct flexibility which may be

present in a building (and by extension a local energy community)

with the goal of providing services at both the community and

building scale. We decomposed this main question as will be

highlighted in the subsequent sub-chapters.

2.2 Indirect Flexibilities in Buildings

Engaging Occupants in the micro-grid that is the building provides

a means of activating indirect flexibilities. Indeed, these devices

(which without human intervention are unavailable for flexibility

purposes) exist in most buildings (i.e., commercial, residential,

etc.), for example, the electric oven in a residential building whose

usage is dependent on the cooking schedule of the occupant or

EV charging stations attached to a tertiary building. Once a device

or service has been identified as having the potential to provide

indirect flexibility services, the question then arises:

SQ.1

“What methodologies can be employed to validate the potential
and accurately quantify the impact of an identified indirect
flexibility on the energy performance of a building?”

To realize the full benefit of the available indirect flexibility, it

is essential that we can quantify and model it. This allows for

said indirect flexibility to be accounted for in the conception and

operational planning of building systems. However, since there

is a high dependency on the human actor (occupant), and at the

building scale this could be just one person, it is not a far-fetched

idea to add a direct flexibility to provide (in a support sense) the

same services as the indirect flexibility.
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2.3 Battery Storage as Direct Flexibilities in

Smart Buildings

Given the definition of direct flexibility (chapter 1.2.1), battery

storage can be a direct flexibility in buildings. Batteries are, however,

not without costs (both financial and environmental), and as such

there is a need to ensure that they are optimally sized.

Undoubtedly an oversized battery will yield the desired results

but would not merit the cost, especially the environmental costs

(there is the possibility that the cost might outweigh the benefit),

conversely an undersized battery will not meet the performance

requirements of the system and ultimately lead to shortfalls in

the overall performance of the system. Literature shows that a

lot of work has been done to propose optimal sizing approaches

for battery storage systems for buildings. Typically, these sizings

are done using data related to the demand and the production (if

any exists) or grid electricity pricing with the objective to either

minimize environmental impact [26, 91], minimize financial cost

[92, 93] or to maximize the buildings self-consumption [94, 95].

Despite varying methodologies and objectives, literature generally

has one thing in common; indirect flexibilities are not considered

for the sizing of direct flexibilities at the building scale. Thus, we

will tackle the question:

SQ.2

“How does one effectively account for indirect flexibility in the
optimal dimensioning of direct flexibilities (battery storage)?”

In the context of storage, it is also imperative to effectively control

the charging and discharging of the battery to ensure optimal per-

formance of the energy system whilst minimizing the degradation

of the battery. In this regard, we will tackle the question:

SQ.3

“Given an energy system, what is the appropriate level of
complexity and computational cost that ensures optimal and
efficient use of a battery energy storage system?”

Storage is a key component of the smart building concept (both

residential and commercial buildings) as illustrated in Figure 2.2,

and just like any other subsystem in the building, its usage is highly

dependent on occupant activity and behavior. As both the human

and storage (i.e.,battery) are present in the building microgrid and



28 2 Harnessing Flexibilities as a Sub-Service of the Smart Building

there exists some co-dependence between these two actors it is

also imperative to study the interaction between them.

2.4 Interactions Between Direct and Indirect

Flexibilities: A Socio-Technical Problem

Both direct and indirect flexibilities can be utilized at the building

scale, with the direct flexibility being easier to control and with

better performance guarantees, however, the indirect flexibilities

are less expensive and easier to implement. Due to the stochastic

nature of indirect flexibilities, we must be able to evaluate and

assess their interactions both from a technical and social point of

view. Thus, we arrive at the question:

SQ.4

“How do we evaluate and quantify the impact of the synergy
between direct and indirect flexibilities on a building’s energy
performance?”

Furthermore, energy communities (see chapter 1.4) present an

interesting opportunity to harness indirect flexibilities, in that,

they are typically composed of individuals who share a common

goal, which is typically to reduce their environmental impact.

Participants in such energy communities would typically be more

willing to adjust the consumption patterns (i.e.,load shifting, valley

filling, etc.) or conserve energy altogether. Thus, these participants

can be considered as potentially ideal candidates for mobilizing

indirect flexibilities.

Modeling human behavior is a complex task as there is no hard

fast rule to achieving a representative model. This complexity is

perhaps increased in commercial/office buildings or in an energy

community where there are multiple human actors with varying

levels of interest and enthusiasm to participate.

Living labs provide the opportunity to design, test, and optimize

ideas and concepts. Thus, for the work presented in this thesis, we

consider a living lab setup as elaborated in the next sub-chapter.
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1: The Quadruple Helix Model of

innovation is an innovation model

which stipulates that there are four

major actors in the innovation sys-

tem: science, policy, industry, and

society

2.5 The Experimental Setup: Living Lab - a Tool

for Investigating the Interactions Between

the Social and Technical Components of a

Building

The Living lab concept presents a space for conception, develop-

ment, testing validation, and co-creating during the various stages

of both the design and commercialization process [96]. According

to the European Network of Living Labs [97], “Living Labs are
real-life test and experimentation environments that foster co-creation
and open innovation among the main actors of the Quadruple Helix
Model1”. Indeed, the concept has not been standardized and it is

therefore unclear how to operationalize living labs and further

how to measure their outcomes [98]. However, for applications in

the energy domain, the results are quantifiable and measurable.

2.5.1 The Predis-MHI Platform

The Predis – MHI (Monitoring and Habitat Intelligence) platform

is a living lab that is housed in the GreEn-ER building. This is a

smart building, commissioned in 2015, that is owned and operated

by Grenoble Institute of Technology’s school of Energy, Water,

and Environment (École Nationale Supérieure de l’Énergie, l’Eau

et l’Environnement - ENSE3). It houses the Grenoble Electrical

Engineering lab with a total floor area of approximately 27000m2

(6 floors, each with 4500m2).

Figure 2.4: Pictorial view of the

GreEn-ER building highlighting the

parts dedicated to the Predis-MHI

platform (source [99])

The platform which is the demonstration zone of the GreEn-

ER building was conceived to achieve net-zero energy status.

The platform is constituted of 600m2 of floor space composed of
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2: Jupyter Notebook can be found

online at GitLab: Predis-MHI Data

Analysis

offices, lecture rooms, and experimental rooms which make up

the demand, a Heating Ventilation and Cooling (HVAC) system,

22kWp of solar PV, four EV charging stations (each with two

charging leads) and a 50 kWh lithium-ion battery (see Appendix A

for more information) [40, 99], see Figure 2.4. Typically, the demand

for the platform is comprised of lighting, HVAC, electrical outlets

(typically computers), and EV charging stations. The platform not

only allows for innovation and experimentation of technological

solutions but also allows for the evaluation of the human element

(i.e., the building’s occupant). Thus, allowing for the development

and testing of solutions in real-life settings.

For the rest of this chapter, the Predis-MHI platform is considered

to be a tertiary building with an energy system as depicted in

Figure 2.5.

Figure 2.5: Electrical System of the

Predis-MHI platform (diagram in-

spired by the OmegAlpes graphical

representation [100]) (source: [99])

Hourly Data from the platform is considered for the case studies

presented in subsequent chapters of this thesis (Figure 2.6 shows

the annual energy consumed and produced, see Appendix B.3
2
).

The data collected and used consists of:

1. Consumption data: data related to consumption of the plat-

form; this consists of lighting, HVAC, and electrical outlets.

2. solar PV data: hourly data related to the on-site 22kWp solar

PV system.

3. EV charging station data: This data provides the energy

consumption of the 4 charging stations present on-site. These

charging stations are considered as the indirect flexibility for

the building.

https://gricad-gitlab.univ-grenoble-alpes.fr/NanaKofi/thesis_energy_flexibility/-/blob/main/notebooks/Chapter_2_Predis_MHI_Data_Analysis.ipynb
https://gricad-gitlab.univ-grenoble-alpes.fr/NanaKofi/thesis_energy_flexibility/-/blob/main/notebooks/Chapter_2_Predis_MHI_Data_Analysis.ipynb
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Figure 2.6: Summary of Predis-MHI energy data (a) energy demand and production (b) demand for the 4 individual

chargers (Available online: GitLab: Predis-MHI Data Analysis)

2.6 Conclusion

In this chapter, we have posed our main research question:

To what extent can human (occupant) behavior, which is the social
component of the building system, be effectively mobilized and integrated
with technical and highly controllable solutions to facilitate the delivery
of energy flexibility services at the building and local energy community
scale.

This central question borders on the interaction between the social

and technical components of the socio-technical system which is

the energy subsystem of a building. Delving further, we further

decomposed this main question into four sub-questions which are

summarized below:

1. What methodologies can be employed to validate the po-

tential and accurately quantify the impact of an identified

indirect flexibility on the energy performance of a building?

2. How does one effectively account for indirect flexibility in the

optimal dimensioning of direct flexibilities (battery storage)?

3. Given an energy system, what is the appropriate level of

complexity and computational cost that ensures optimal and

efficient use of a battery energy storage system?

4. How do we evaluate and quantify the impact of the synergy

between direct and indirect flexibilities on a building’s energy

performance?

Furthermore, we introduced the Predis-MHI platform, a living

lab within G2ELab, which for this work is considered to be an

office building. Since the platform is part of a smart building and

was designed to be a Net Zero Energy Building (NZEB)
3

3: NZEB refers to a prosumer build-

ing with a high energy performance

that yields an annual energy bal-

ance (produced energy - consumed

energy) of zero (or close to zero)

, it can

https://gricad-gitlab.univ-grenoble-alpes.fr/NanaKofi/thesis_energy_flexibility/-/blob/main/notebooks/Chapter_2_Predis_MHI_Data_Analysis.ipynb
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be described as already having a high energy performance
4

4: Performance here is subject to oc-

cupant behavior as well as the effec-

tiveness of the energy management

strategies put in place within the

building.

. This

platform allows for the testing of different strategies (occupant

engagement, nudging, model predictive controllers) and provides

real-time feedback regarding the effectiveness of such strategies.

Gitlab Repository

A Jupyter Notebook with data

analysis for Predis-MHI is avail-

able online at GitLab: Predis-

MHI Data Analysis Additionally,

see Appendix B.1 for a list of all

available notebooks

Additionally, the satisfaction and comfort of occupants can be

estimated to an extent (using occupant feedback). To address the

research questions posed, the subsequent chapter will address the

first two questions. Thus, the subsequent chapter will address the

question related to quantifying and validating identified indirect

flexibilities and will also delve into the sizing of direct flexibilities

with indirect flexibilities as a consideration.

https://gricad-gitlab.univ-grenoble-alpes.fr/NanaKofi/thesis_energy_flexibility/-/blob/main/notebooks/Chapter_2_Predis_MHI_Data_Analysis.ipynb
https://gricad-gitlab.univ-grenoble-alpes.fr/NanaKofi/thesis_energy_flexibility/-/blob/main/notebooks/Chapter_2_Predis_MHI_Data_Analysis.ipynb
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In this chapter, we address two out of the four sub-questions we stated in
chapter 2. Thus, the chapter has two main parts, the first part presents
a framework for quantifying the potential available from an identified
indirect flexibility. In the second part, we proposed a methodology for
dimensioning direct flexibilities (i.e., stationary batteries) which considers
the available indirect flexibility. Furthermore, in each of these two parts,
we applied our proposed methodologies to our experimental setup as a
use case and present the results obtained.

3.1 Introduction

Self-consumption can be increased by reducing the size of the local

on-site generation or by increasing the demand, both solutions

contradict the objectives of the energy transition. In this light, an

often-proposed solution to increase a building’s self-consumption

is to use storage (usually battery storage) as it is directly control-

lable and allows for the intermittency associated with renewable

energy resources to be mitigated if not eliminated. Batteries despite

their usefulness and role in the energy transition are not without

drawbacks, especially when one considers the environmental im-

pact related to the manufacturing and recycling of these battery

storage devices and the safety risks associated with their use (al-

beit mitigated by Battery Management Systems). However, in this

chapter, we explore the concept of indirect flexibility, especially

from the perspective of a smart building.

Self-consumption was originally conceived on an individual scale,

where the owner (or the building for which the RER is installed) of

the RER was the only consumer of the on-site energy production.

For a lot of buildings, the demand profile does not allow for

the maximum utilization of the on-site energy resource without

socio-technical interventions. Collective self-consumption was

thus conceived as one such socio-technical solution which allowed

prosumer buildings to share any excess energy with other nearby

buildings. The concept draws on the different demand profiles

(residential, commercial, and tertiary profiles) that may exist in a

community, mobilizing the diversity in demand profiles as an asset

to better utilize the energy from local RERs. In France for example,

collective self-consumption has been possible since 2017 and allows

locally produced electricity to be shared amongst members of the

collective self-consumption community as long as they are within
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1: decisions that are based on knowl-

edge and ultimately benefit the

global system

2: Réseau de Transport d’Électricité

("Electricity Transmission Network")

the French Transmission Network

Operator

3: Based on forecasts established

by RTE on electricity consumption,

each day is classified according to a

color code where

▶ green: “reasonable” level of

consumption

▶ orange: “high” consumption

▶ red: “abnormally high con-

sumption, with risk of power

failure”.

4: The energy crisis refers to an an-

ticipated electricity supply deficit of

approximately 10% in France. This

crisis was a result of the shut down

of nuclear plants for maintenance,

design flaws identified in a gener-

ation of nuclear reactors and the

gas and oil supply issues associated

with the Russia-Ukraine war.

the defined geographical limits (i.e., within a 2 km radius [84])

[30].

A third alternative, changing consumption patterns to follow the

generation profile of the available RER (i.e., indirect flexibility),

allows for the further increase of self-consumption even in the face

of other technological or socio-technical solutions. This solution is

less emphasized, largely because it requires the participation of

humans (often in the form of behavioral change). However, recent

literature shows a growing interest in harnessing this indirect

flexibility to improve self-consumption [101, 102] and also to provide

ancillary service for the extended grid [37, 103]. Since humans

cannot be controlled but can be aided to take informed
1

decisions,

harnessing this flexibility requires the use of signals, there is,

however, no hard fast rule to designing and implementing such

signals.

At the building scale, these indirect flexibilities do exist and there

is no precise rule for identifying them; however, a good rule of

thumb is to mobilize devices with high demand and frequent

usage (frequent usage might have high priority). For example,

in a household where there is minimal cooking, an oven despite

being a high-power device will have very little impact, lighting

on the other hand could be more useful as a flexibility since it is

more frequently used. Once identified, the next step would be to

quantify the potential impact of the indirect flexibility.

The significance and impact of indirect flexibilities at the grid

scale have been emphasized by the French Ecowatt/Eco-gestes

initiative which was scaled up to a national level in the face of

the energy crisis of 2022 (winter). The French administration [104]

describes Ecowatt as a citizens’ initiative which has been set up and

is solely managed by the French transmissions system operator

RTE
2
. Ecowatt in effect is a mobile application (also available as a

web page) that provides real-time forecasts of electricity demand

in France and signals users based on a color scheme
3

if there is a need to reduce their consumption. Eco-gestes (eco

gestures) are recommended actions that can be taken by users

to effectuate the demand reduction (i.e., demand response using

indirect flexibilities). According to the French administration, the

service had as of December 1st, 2022, the service had 470,000

SMS subscribers and the application had been downloaded by

approximately 300,000 users, which grew to 700,000 by December

4th, 2022 [104] (133.33% growth in 3 days). Ultimately, an 11%

reduction in demand was achieved and the anticipated energy

crisis
4

was averted in France [105]. Several hypotheses can be

ascribed to this significant reduction, key amongst them are:
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5: The self-consumption definition

does not penalize export and as

such the optimizer maximizing self-

consumption as an objective func-

tion consequently represents min-

imizing the import from the grid.

This is especially true when bat-

tery efficiency and self-discharge are

taken into account

6: Natural self-consumption refers

to the self-consumption before any

external influences such as batteries

or demand side flexibility.

▶ The success of the Ecowatt campaign: That is to say, the

Ecowatt application was effective and influenced users to

reduce their demand (this could have been by energy sobriety

[21] or energy conservation [13]).

▶ Increased inflation: During the winter of 2022/2023, infla-

tion in France was approximately 5.2%, a doubling of the

previous year’s value of 2.8% [106]. That is to say, the reduced

purchasing power influenced the demand for power

▶ Higher tariffs for industrial and commercial users: Domes-

tic users in France were shielded from the volatile electricity

tariffs, however, this was not the case for commercial and in-

dustrial users, thus, with soaring energy prices, these sectors

could have reduced their electricity demand in response to

the increasing cost of electricity.

Whilst self-consumption is central to this thesis, the Net Energy

Exchange with the Grid (NEEG) indicator is also of particular

interest. By definition, NEEG represents "the absolute quantity of
energy that is either injected or extracted from the grid" [54]. Thus, by

decreasing the NEEG, the self-consumed energy would be effec-

tively increased. Simoiu et al [107] demonstrated that, minimizing

the NEEG is more effective as an objective than maximizing the

self-consumption
5
.

3.2 Quantifying Indirect Flexibility in Buildings

To make responsible choices with regards to the consumption

of energy and the management of energy-dependent services

within any building, it is important to have useful information.

Thus, there is a need to quantify the impact of the available

indirect flexibility (this is the available potential of the flexibility)

on the building’s energy performance. Li et al [108] in their article

“Ten Questions Concerning Energy Flexibility in Buildings” assert

that energy flexibility is often quantified using Key Performance

Indicators (KPIs) such as the financial cost of electricity [109]. Self-

consumption given its important role at all levels of the grid is one

of such KPI [110].

We propose a methodology for quantifying an identified indirect

flexibility resource using self-consumption as a metric. The pro-

posed methodology utilizes a Mixed Integer Linear Programming

(MILP) approach and was applied to the Predis-MHI platform

(living lab within the premises of G2ELab) as a use case. This

methodology consisted of four key steps (Figure 3.1) ; (i) estimate

the metric with no flexibility to serve as a baseline (in our use

case this is the natural self-consumption
6
), (ii) optimize the met-
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8: MILP problems are easier to for-

mulate when the problem is already

linear. For problems that have non-

linear components, linearization ap-

proaches need to e applied and these

can increase the complexity and diffi-

culty in formulating the MILP prob-

lem

ric (self-consumption) using the indirect flexibility as decision

variables, (iii) optimize the metric with the direct flexibility as a

decision variable, and (iv) optimize the metric with both direct

and indirect flexibilities as decision variables. The first two steps

are usually sufficient to indicate how much indirect flexibility

potential exists. Step (iv) provides an indication of how the two

flexibilities interact from a technical standpoint. It should be noted

that self-consumption was chosen as a metric for our experimental

setup, as there exists a solar PV system, however, other metrics

such as carbon emissions can be considered.

Figure 3.1: Summary of methodol-

ogy for evaluating indirect flexibility

potential)

3.2.1 Mixed Integer Linear Programming for Energy

System Scheduling and Sizing

Mixed Integer Linear Programming (MILP) optimizers are re-

garded as a capable, effective, and reliable tool for finding the

global optimal provided the problem to be solved is linear (or can

easily be linearized). MILPs are often used in the literature [100, 111,

112] for optimizing problems related to energy systems (production

and consumption scheduling, equipment sizing, etc) related to

energy systems. Marocco et al [111] state that, energy dispatching

problems can be handled using rule-based energy management

strategies, however, second-layer scheduling which may require

more advanced methods may rely on MILPs. In this regard, Moretti

et al [113] proposed a single layer MILP based algorithm for the

predictive design and optimal dispatching of microgrids, their

solution was compared to existing rule-based strategies (heuristic

approach) and was found to not only result in cheaper electricity

cost but also higher system reliability and RER penetration in the

energy mix. MILPs have also been effectively applied to the sizing

of different types of energy systems [26, 100, 111, 112, 114]. One key

advantage of MILPs is that given a well-formulated problem, a

MILP will converge and produce a global optimum
7

7: It is possible to have a set of solu-

tions that provide the same value for

the objective function (The W effect

as described by [115]). This method

provides the solution in the set on

which it converges first

[116].

Additionally, MILP problems are relatively easier to formulate
8

(resulting in relatively faster and less costly computations), with

Arcurie et al [117] asserting that a MILP problem only become
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infeasible under two conditions; (i) when the defined objective

function can be improved without limit (i.e., the optimal solution

is unbounded), and (ii) when at least two of the defined constraints

contradict one another.

Since by definition linear programming requires the problem to

be linear, non-linear parts of a system (or problem) cannot be rep-

resented without some form of linearization, MILP however can

account for some linearities some linear phenomena using integers.

Further, non-linear components of the system such as efficiencies

and failure probabilities can be accounted for as a constant value

or by applying linearization techniques such as decomposition

[118] and piecewise linearization [117, 119]. Further, Urbanucci et

al [118] point out that MILPs when dealing with system sizing

problems require a single optimization of the problem for the

entire time horizon which can be computationally costly. These

issues can be solved using different approaches as proposed by

literature, including: (i) simulation period reduction [114], (ii) prob-

lem decomposition methods [120, 121], and (iii) the sliding window

technique (usually applied to scheduling problems) [122].

To further emphasize the usefulness and suitability of MILPs for

modeling and optimizing energy systems, modeling tools such

as OMEGAlpes utilize MILPs. OMEGAlpes is an open-source

multi-carrier energy modeling tool developed in Python to aid in

the preliminary design of energy systems at the building-district

scale [100].

Radet et al [121] propose in their work a methodology that makes

use of both simulation period reduction (i.e., using clustering)

and decomposition, allowing for both the investment (slow) and

operational dynamics (relatively faster) to be accounted for in

the planning and operation of microgrids. This work introduces

two-time scales (i.e., one for dynamic investments and the other for

operations) and proposes a method for bridging the gap between

the two timescales.

For this study, a battery was the recurring investment, thus, the

State of Health (SOH) at the end of each year was used as a decision

variable to determine if a new investment was warranted. In the

event of an investment, the subsequent year (i.e., the start of a new

time block) would have a new battery, fully charged and capable of

discharging its full capacity. This approach consequently allowed

for cost evolution to be accounted for in the model and also enabled

the control of the system (i.e., a battery) aging using the SOH of

the battery. Additionally the use of clustering and decomposition

to reduce the size of the problem allowed for the simulation of a

horizon of 20 years without incurring high computational costs

[121].
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10: Minimizing the exchange with

the grid consequently implies maxi-

mizing the self-consumption as dis-

cussed in chapter 3.1, Thus we con-

sider NEEG as the objective func-

tion but use self-consumption as our

evaluation metric outside of the op-

timization

11: 𝑃𝑒𝑥𝑝𝑜𝑟𝑡 (𝑡) is considered to be a

negative value following node nota-

tion

12: Considering the definition of

self-consumption, then the self-

consumption would in effect be in-

creasing whilst the NEEG is decreas-

ing.

3.2.2 A Mixed Integer Linear Programming Approach for

Indirect Energy Flexibility Potential Assessment at

the Building Scale

Using the Predis - MHI platform as a test case, a MILP formulation

was developed to assess the available potential of indirect flexibility

to maximize the building’s (i.e., the platform’s) self-consumption.

The EV chargers (more specifically the charging of EVs) were iden-

tified as a potential source of indirect flexibility. In this regard, the

objective of the MILP was to maximize the self-consumption of the

building, given the 22kWp solar PV system. The MILP formulation

employs a sliding window approach (i.e., the optimization is done

for a 24-hour sub-horizon for a horizon of 1 year). The formulation

for self-consumption did not employ the classical definition
9

9: Self-consumption is the ratio of

self-consumed energy to the total

energy produced on-site. This for-

mulation does not constrain or pe-

nalize export and in the face of bat-

tery efficiency, will essentially really

maximize self-consumption.

as

proposed by [123], but used the Net Energy Exchanged with the

Grid (NEEG)
10

[54] formulation. Thus, the objective function of

the MILP was defined as [40]:

objective = min

∑
𝑡

[
𝑃import (𝑡) − 𝑃exports (𝑡)

]
× timestep (3.1)

Where:

▶ 𝑃𝑒𝑥𝑝𝑜𝑟𝑡(𝑡) is the power exported from the Predis-MHI plat-

form to the electric grid at the time 𝑡 11
.

▶ 𝑃𝑖𝑚𝑝𝑜𝑟𝑡(𝑡) is the power imported from the grid at the time

step 𝑡.

The NEEG indicator was chosen as it represents the dependence

of the building on the grid (the sum of energy injected into or

extracted from the grid). Consequently, minimizing the NEEG of

the building would result in maximum self-consumed energy
12

[107]. It is also noteworthy that sizing of solar PV systems with

an objective function to maximize self-consumption would not

yield an optimal solar PV size as no solar would imply 100% self-

consumption. Thus, for sizing applications also, the NEEG proves a

more suitable objective function compared to self-consumption.

Given the objective defined in eqn 3.1 above, there was the need

to define constraints to ensure that the system operated within

technically feasible limits. The optimization was therefore subject

to the constraints defined below:

1. A battery state of charge(SOH) limit constraint confines the

battery SOH within the defined maximum (i.e ≤ 100%) and

minimum (i.e., ≥ 0%) boundaries:
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13: Charging with energy from the

grid is not allowed and as such, there

is a possibility that the energy in

the battery goes too low before the

solar energy is available due to self-

discharge.

𝑆𝑂𝐶Min × Cap
bat

≤ 𝐸bat(𝑡) ≤ 𝑆𝑂𝐶Max × 𝐶𝑎𝑝
bat

(3.2)

where 𝑆𝑂𝐶Min×Cap and 𝑆𝑂𝐶Max×𝐶𝑎𝑝
bat

are the minimum

and maximum energy allowed in the battery respectively

(given the battery capacity 𝐶𝑎𝑝𝑏𝑎𝑡) and 𝐸𝑏𝑎𝑡 is thus, the

energy in the battery (given in kWh) at time step 𝑡 and is

denoted by:

𝐸bat(𝑡) = 𝐸bat(𝑡 − 1) × [1 − Δ𝑠𝑑] −
[
𝑃batin

(𝑡) × 𝜂charge +
𝑃batout

(𝑡)
𝜂discharge

]
× timestep (3.3)

▶ 𝑃batin
and 𝑃batout

refer to the charge and discharge power

of the battery respectively.

▶ 𝜂charge and 𝜂discharge refer to the efficiency associated

with charging and discharging the battery respectively

▶ Δ𝑠𝑑 is the self-discharge rate of the battery.

Given that self-discharge is a consideration, and the problem

is decomposed into 24-hour sub-problems, it is important to

ensure the SOH at the end of each 24 hours is high enough

to ensure that the constraint in eqn 3.1 is not violated in the

next 24-hour period
13

. This was formulated as:

𝐸bat(𝑇 + 1) ≥ 1.1 × 𝑆𝑂𝐶Min × 𝐵𝑎𝑡𝑡𝑒𝑟𝑦
Capacity

(3.4)

where 𝑇 is the last time step in the set[1, 2, 3, ..., 𝑇] and the

final battery energy 𝐸bat(𝑇) is bounded by the constraint

defined in eqn 3.3:

2. For safety and technical reasons, charge and discharge power

limits were defined as:

𝑃batin
(𝑡) × 𝑆𝑡𝑎𝑡𝑒battery(𝑡) ≤ 𝑃batMax

in

(𝑡) (3.5)

𝑃batout
(𝑡) × [1 − 𝑆𝑡𝑎𝑡𝑒battery(𝑡)] ≥ 𝑃batMax

out

(𝑡) (3.6)

Where:

▶ 𝑃batMax
in

and 𝑃batMax
out

are the maximum charge and

discharge power of the battery.

▶ 𝑆𝑡𝑎𝑡𝑒battery is a binary value, used to ensure that simul-

taneous charging and discharging of the battery does

not occur in the same time step. For this purpose, the

battery is considered to be charging when 𝑆𝑡𝑎𝑡𝑒battery(𝑡)
has a value of 1 and discharging when 𝑆𝑡𝑎𝑡𝑒battery(𝑡)
has a value of 0.

3. Given that the grid connection to the building has a limit,

a maximum connection capacity was added as a constraint.
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Additionally, to prevent the use of grid-sourced electricity

for charging the battery a grid constraint was defined as:

𝑃maximport
(𝑡) ≥ 𝑃import(𝑡) ≤ 𝑃load(𝑡) (3.7)

4. In the MILP, EV chargers have to provide the same quantity of

energy that was originally used for the 24-hour sub-problem

under consideration, this was ensured by:

𝐸Charger
X

historical

=

𝑇∑
𝑡

𝑃Charger
X

(𝑡) × 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 (3.8)

where:

▶ 𝐸Charger
X

historical

is the energy originally consumed by

charger X (where X belongs to the set of charger IDs

1, 2, 3, 4) for the optimization 24-hour horizon.

▶ 𝑃Charger
X

is the output power of charger X at the time 𝑡.

The building and by extension the chargers are not accessible

24 hours a day, and as such, it is necessary to account for the

building’s operating hours in the optimization. This is given

by:

𝑇∑
𝑡

𝑃Charger
X

(𝑡), 𝑖 𝑓 𝑡 < 𝑇𝑜𝑝𝑒𝑛𝑜𝑟𝑡 > 𝑇𝑐𝑙𝑜𝑠𝑒 (3.9)

Where𝑇𝑜𝑝𝑒𝑛 and𝑇𝑐𝑙𝑜𝑠𝑒 refer to the opening and closing hours

of the GreEn-ER building respectively.

5. To ensure a power balance in the energy system:

𝑃batin
(𝑡) + 𝑃batout

(𝑡) −
[
𝑃load(𝑡) +

∑
𝑋

𝑃charger𝑋(𝑡)
]
+ 𝑃𝑃𝑉 (𝑡) + 𝑃import(𝑡) + 𝑃export(𝑡) = 0 (3.10)

Since self-consumption (see Figure 1.4) is the KPI used to assess

the available indirect flexibility potential, it was defined mathe-

matically as [123]:

Self-consumption =

∫ 𝑇

𝑡
min

[
𝑃𝑃𝑉 (𝑡) − 𝑃𝑏𝑎𝑡𝑖𝑛 (𝑡) − 𝑃𝑏𝑎𝑡𝑜𝑢𝑡 (𝑡) − 𝜉(𝑡), 𝑃load

]∫ 𝑇

𝑡
𝑃𝑃𝑉 (𝑡)

(3.11)

where 𝜉(𝑡) refers to the losses in the energy system.

The MILP formulation above was solved using the commercially

available solver Gurobi [124] and was applied to the case study

described in the subsequent
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3.2.3 Case Study: Evaluating the Indirect Flexibility

Available in the Predis-MHI Platform

As already indicated above, the charging stations (here it is the

plugging-in and unplugging of EVs) were identified as a poten-

tial indirect flexibility that could be harnessed to provide load-

shifting services for the building, the objective being to improve

the building’s self-consumption. Given that the building is smart

and equipped with multiple sensors, the data related to the pro-

duction, consumption, and EV chargers was extracted from the

building’s Building Management System, a summary presented in

Table 3.1.

Table 3.1: Summary of Predis-MHI energy data

DATA 2020 2021 2022 TOTAL

Charger 1 demand [kWh] 614.00 2,151.05 1,122.00 3,887.04

Charger 2 demand [kWh] 1,345.00 2,940.00 2,244.00 6,538.00

Charger 3 demand [kWh] 0.00 1070.00 1750.00 2,820.00

Charger 4 demand [kWh] 0.00 446.00 1,484.00 1930.000

Total charger demand [kWh] 1,968.00 6,607.00 6,600.00 15,175.04

Predis-MHI demand (no

chargers) [kWh]

13,957.00 18,874.00 20,761.00 53,592.00

Total demand [kWh] 15,925.00 25,481.05 27,361.00 68,767.04

PV Production [kWh] 20,062.00 20,910.00 22,960.00 63,932.00

There is no data related to the 50kWh battery as its role will be

modeled in the MILP adhering to the technical constraints of the

battery storage unit. The technical parameters used in the MILP

optimization are detailed in Table 3.2. Power export to the grid

and charging power (of the battery) are considered to be negative

for this optimization.

Analyzing the existing behavior, which can be inferred from the

time of charging (extracted from the charging station data). It was

observed that the preferred time to charge was 08:00 – 11:00 AM,

Figure 3.2. Figure 3.3 reiterates this and further shows that EV

users plugged in the most at 09:00, this is likely the time EV users

arrive on-site.

Considering Figure 3.2, it can be seen that this behavior of EV

users is less than ideal, as the peak sun hours are between 11:00

and 15:00. Figure 3.2 also shows that charging took place when

the building was not accessible, a plausible explanation for this

phenomenon is the charging of the school’s EV which remains

on-site. Additionally, one of the EV users in the building arrives

around 06:00 and accounts for the higher charge rates between

05:00 and 08:00.
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Table 3.2: Technical parameters for

the Predis-MHI use case optimiza-

tion

Parameter Unit Value

Battery Energy Storage Unit

Nominal capacity kWh 50

Maximum charge kW 40

Maximum discharge kW 40

Maximum SOH % 100

Minimum SOH % 20

Efficiency % 95

EV Chargers

Nominal Capacity kW 14

Start of availability hour 8

End of availability hour 20

Grid

Grid connection capacity kW 20

Figure 3.2: Charger Utilization

against annual mean PV Production

for the period 1th January 2020 – 31th

December 2022 (3 years)

Figure 3.3: EV Plug-in time for the

four chargers installed on the GreEn-

ER site for the period 1th January

2020 to 31th December 2022
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14: For a detailed monthly evalua-

tion, see the Jupyter Notebook avail-

able online at: GitLab: Indirect Flex-

ibility Assessment

Since self-consumption is the metric for evaluating the available

potential for the identified indirect flexibility; an evaluation of

the data (solar PV production, and demand) for the period 1th

January 2020 to 31th December 2022 (3 years) show that there

exists a significant potential to improve the self-consumption of

the platform as shown in Figure 3.4
14

. This potential is at its

highest during the summer months (when production is high, and

demand is relatively low) and lowest during the winter months

(when production is lowest, and demand is relatively high).

Figure 3.4: Average self-

consumption potential for the

Predis-MHI platform (a) Full

period, (b) Best case (June), and (c)

Worst case (December)

Three Scenarios were considered as follows:

▶ Scenario 1 – EV chargers only (Indirect): This scenario

was intended to evaluate the full potential of the available

indirect flexibility from the EV charging stations. Thus, in this

Scenario, we did not consider the direct flexibility (i.e., the

50kWh battery was excluded). In this scenario, we maximized

self-consumption by optimizing the charging of EVs only.

▶ Scenario 2 – Battery only (Direct): This scenario was in-

tended to indicate the magnitude of gain associated with

the use of the 50kWh battery (i.e., the direct flexibility) as a

strategy to maximize self-consumption (which is the defined

objective function). Thus, for this scenario, we make use of

the historical demand curves for the EV charging stations and

only optimized the scheduling of the battery charging and

discharging to maximize the building’s self-consumption.

▶ Scenario 3 – Battery and EV Chargers (Indirect + Direct):

This was a hybrid scenario; for this use case, we exploited

both the batteries and EV charging to maximize the building’s

self-consumption. The goal here is to provide an insight into

how the two flexibilities would interact and provide a first

https://gricad-gitlab.univ-grenoble-alpes.fr/NanaKofi/thesis_energy_flexibility/-/blob/main/notebooks/Chapter_3_indirect_flexibility_assessment.ipynb
https://gricad-gitlab.univ-grenoble-alpes.fr/NanaKofi/thesis_energy_flexibility/-/blob/main/notebooks/Chapter_3_indirect_flexibility_assessment.ipynb
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15: see Jupyter notebook available

at GitLab: Predis-MHI Data Analy-

sis for more details on the effect of

Covid on the energy system

insight into how optimally dimensioned our system is in the

face of the identified indirect flexibility.

Before assessing the potential indirect flexibility, the natural self-

consumption of the building was evaluated for each of the 3

years in the study period to serve as a reference. The natural self-

consumption was found to be 28% in 2020, 46% in 2021, and 44%

in 2022. The lower performance in 2020 can be attributed to the

COVID-19 confinements in France which resulted in lower energy

consumption in the building
15

.

Figure 3.5: Summary of Predis-MHI

self-consumption resulting from in-

direct flexibility potential assess-

ment (Jupyter Notebook available

online at: GitLab: Indirect Flexibility

Assessment)

Figure 3.5 shows a summary of the self-consumption achieved for

each of the scenarios in 2020, 2021, and 2022. The results indicate

that using only the EV chargers, it was possible to increase the

self-consumption of the platform by approximately 2.81% (i.e.,

563.94 kWh) in 2020 and approximately 8.65% in 2021 (i.e., 1,810.81

kWh) and 7.34% in 2022 (i.e., 1,687.56 kWh). In the case of the

battery-only scenario, the self-consumption increased by 20.85%,

25.27%, and 27.40% for 2020, 2021, and 2022, respectively.

Combining the battery and EV charging however did not provide

any significant improvement over the battery-only scenario, 0.34%

and 1.36% and 1.56% in 2020, 2021, and 2022 respectively, see Table

3.3. This reduced influence (see Figure 3.5 and Table 3.3) of the

indirect flexibility on the building’s self-consumption (from 2.81%

to 0.34% gain in 2020, 8.65% to 1.36% gain in 2021 and 7.34% to

1.56% gain in 2022) when both the direct and indirect flexibilities

are mobilized in the direct + indirect scenario relative to the gains

in the indirect flexibility only scenario could be the result of one of

the two phenomena described below:

https://gricad-gitlab.univ-grenoble-alpes.fr/NanaKofi/thesis_energy_flexibility/-/blob/main/notebooks/Chapter_2_Predis_MHI_Data_Analysis.ipynb
https://gricad-gitlab.univ-grenoble-alpes.fr/NanaKofi/thesis_energy_flexibility/-/blob/main/notebooks/Chapter_2_Predis_MHI_Data_Analysis.ipynb
https://gricad-gitlab.univ-grenoble-alpes.fr/NanaKofi/thesis_energy_flexibility/-/blob/main/notebooks/Chapter_3_indirect_flexibility_assessment.ipynb
https://gricad-gitlab.univ-grenoble-alpes.fr/NanaKofi/thesis_energy_flexibility/-/blob/main/notebooks/Chapter_3_indirect_flexibility_assessment.ipynb
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16: The coefficient is a multiplier

that is applied to the original de-

mand curve to represent an increase

in demand. Thus,3 in this case im-

plies using three times the original

EV demand

▶ Given the consumption profile and the demand of the EV

chargers, the self-consumption has reached its maximum

and will not be increased further even if the demand for EVs

increases.

▶ The Battery is potentially oversized and is overcompensat-

ing, thus, not allowing for the full potential of the indirect

flexibility to be realized.

A parametric study was carried out where the EV demand was

increased by applying a growth coefficient) and applied to the

Direct + Indirect scenario (i.e., scenario 3) and maintaining the

current 50 kWh battery. The results, see Figure 3.6, show that by

doubling the current consumption (applying a growth coefficient

of 2) the self-consumption could be increased from 72.32% (in the

reference case with a growth coefficient of 1) to 76.17%, representing

a 3.85% increase in 2021 and 73.17% to 75.81% representing a 2.64%

increase in 2022. The results indicate that the building’s platform

has not been maxed-out and consequently the battery could be

oversized.

Additionally, from Figure 3.6 (b and c) it is observed that, beyond

a coefficient of three
16

, the improvements in self-consumption pro-

vided by the EV chargers begin to plateau (i.e., the self-consumption

rate has reached a point where any further significant increase

would require an exponential increase in battery storage capacity.

Table 3.3: Summary of flexibility potential assessment results

Year

Reference

Self-consumption

[%]

Optimal Self-

consumption[%]

Gain from

reference scenario

[%]

Gain from direct

only scenario [%]

Indirect Flexibility only

2020 27.38 30.20 2.81 -

2021 45.68 54.34 8.65 -

2022 44.21 51.56 7.34 -

Direct Flexibility only

2020 27.38 48.24 20.85 -

2021 45.68 70.96 25.27 -

2022 44.21 71.61 27.40 -

Direct + Indirect Flexibilities

2020 27.38 48.54 21.15 0.30

2021 45.68 72.32 26.64 1.36

2022 44.21 73.17 28.96 1.56
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Figure 3.6: Sensitivity of Predis-MHI’s self-consumption to growing EV demand (i.e., the indirect flexibility) considering

the use of both the direct and indirect flexibilities (i.e., scenario 3) for (a) 2020, (b) 2021 and (c) 2022 (growth coefficient

is a multiplier applied to the existing EV demand) (Jupyter Notebook available online at: GitLab: Indirect Flexibility

Assessment)

3.3 Mobilizing Indirect Flexibility for the

Optimal Dimensioning of Stationary Battery

Energy Storage Systems

From the assessment carried out in chapter 3.1.3, we concluded

that the battery was potentially oversized. This was not a far-

fetched conclusion since the sizing was done following sizing

methodologies proposed in literature such as [26, 92, 94] which do

not take into account any indirect flexibilities. These approaches

typically take into account the load and available on-site RER

production and apply optimization over a given horizon to arrive

at an optimal size. In most cases, the demand is not disaggregated,

and this approach yields good results. In the case of Predis-MHI

(which is a smart building), the demand is disaggregated, and it is

possible to take into account any identified indirect flexibilities.

To account for indirect flexibility, it is prudent to first account for

the dynamics associated with the problem. In most cases, there

will be two-time scales, the shorter time scale which accounts for

the human interest in using the device associated with the indirect

flexibility, and the longer time scale which will consequently affect

the optimal size of the battery (or direct flexibility being sized.

Thus, there is a need to apply a time-scale decomposition method

as was applied by Radet et al [121].

https://gricad-gitlab.univ-grenoble-alpes.fr/NanaKofi/thesis_energy_flexibility/-/blob/main/notebooks/Chapter_3_indirect_flexibility_assessment.ipynb
https://gricad-gitlab.univ-grenoble-alpes.fr/NanaKofi/thesis_energy_flexibility/-/blob/main/notebooks/Chapter_3_indirect_flexibility_assessment.ipynb
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3.3.1 Case Study: Considering Indirect Flexibility for the

Optimal Sizing of a Battery for Predis-MHI

A MILP approach that builds on the formulation defined in chapter

3.2.2 was developed. For this sizing, the objective function was

defined as:

objective = min[𝐶𝑎𝑝
bat

] (3.12)

Where 𝐶𝑎𝑝
bat

is the battery capacity. Since the optimization here

has two distinct time scales (in this case 1 day and 1 year – 365

days) eqns 3.2 to 3.10 were modified such that they accounted for

these two time scales. For example, eqn 3.2 was modified based on

the decomposition method used in [121] such that [125]:

𝑆𝑂𝐶Min × Cap
bat

≤ 𝐸bat(𝑝𝑑, 𝑡) ≤ 𝑆𝑂𝐶Max × 𝐶𝑎𝑝
bat

(3.13)

Where 𝑝𝑑 is the long-term time scale (i.e., 365 days), referred to as

the period, and 𝑡 represents the short-term time scale (24 hours)

referred to as the timestep. Because there was a need to ensure

continuity over the entire long-term horizon for the battery in terms

of SOH (i.e., the energy in the battery), the starting energy in the

battery for each sub-horizon (short-term problem) was formulated

as:

𝐸bat(pd, t) =
{
𝐸bat initial , if 𝑝𝑑 = 0 and 𝑡 = 0

𝐸bat(𝑝𝑑 − 1, 𝑇 + 1), if 𝑝𝑑 > 0 and 𝑡 = 0

(3.14)

Where 𝐸bat (𝑝𝑑 − 1, 𝑡) is the energy in the battery and 𝑇 is the final

step of the previous period, 𝑝𝑑 − 1 and 𝐸bat initial is the energy at

the start of the optimization (i.e., 𝑝𝑑 = 0 and 𝑡 = 0) and is denoted

by:

𝐸bat initial = 𝐸bat(0, 0) = 𝐸bat(𝑃𝐷, 𝑇) (3.15)

Where 𝑃𝐷 is the final period in the set of periods defined as

{0, 1, 2, . . . , 𝑃𝐷}. The starting SOH for any period except the

initial period 0 is the final SOH for the previous period 𝑝𝑑 − 1,

denoted by 𝐸bat(𝑝𝑑 − 1, 𝑇 + 1).

Because self-consumption is a metric for evaluating this sizing,

a target self-consumption was added to the optimization as a

constraint and defined as:
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18: 70% was chosen as it represents

the point with the highest differ-

ence in capacity between the 2 ap-

proaches

𝑆𝐶target =

∑𝑃𝐷
𝑝𝑑

∑𝑇
𝑡 𝑃load(𝑝𝑑, 𝑡) − 𝑃import(𝑝𝑑, 𝑡)∑𝑃𝐷

𝑝𝑑

∑𝑇
𝑡 𝑃𝑝𝑣(𝑝, 𝑡)

(3.16)

Thus, the optimal battery size should yield a self-consumption rate

equal to the target provided as an input.

Based on the problem formulation detailed above, two optimiza-

tions were run, the first only considered the battery as a flexibility

and followed conventional sizing, whilst the second included the

EV chargers as an indirect flexibility. This study considered the

period 1th January 2021 to 31th December 2021 and considered

target self-consumption rates from 44% to 78%
17

17: Lower threshold determined by

the natural self-consumption and

the upper determined by the plateau

depicted in Figure Figure 3.6

, and considered

the same technical parameters listed in 3.2.

Table 3.4: Summary of battery sizing results using the direct only (conventional) and the proposed direct + indirect

approaches

Target

self-consumption

[%]

Battery Capacity -

Direct Flexibility

only [kWh]

Battery Capacity

-Direct and

Indirect

Flexibility [kWh]

Capacity

Difference [kWh]

Percentage

Reduction

Achieved [%]

46.00 0.19 0.00 0.19 100.00

48.00 1.50 0.00 1.50 100.00

50.00 3.07 0.00 3.07 100.00

52.00 4.77 0.00 4.77 100.00

54.00 6.65 0.00 6.65 100.00

56.00 8.65 1.54 7.11 82.17

58.00 10.84 3.77 7.08 65.25

60.00 13.28 6.16 7.13 53.66

62.00 16.21 8.64 7.56 46.65

64.00 19.76 11.37 8.38 42.43

66.00 24.00 14.63 9.36 39.02

68.00 29.49 18.99 10.51 35.62

70.00 36.49 25.57 10.92 29.92

72.00 46.05 37.54 8.51 18.49

74.00 61.34 55.59 5.74 9.37

76.00 86.84 81.26 5.58 6.43

The results as depicted in Figure 3.7 and summarized in Table

3.4 reiterate the results of the assessment carried out initially in

chapter 3.2.3. From Figure 3.7 it can be seen that for a target

self-consumption of 54%, the conventional approach required a

6.65 kWh battery whilst the proposed method required 0 (Zero)

kWh. Further, to achieve a 70%
18

self-consumption, the direct-only
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Figure 3.7: Optimal sizing of battery

for Predis-MHI using direct flexibil-

ity only(red curve), direct and in-

direct flexibilities (blue curve), and

the associated percentage reduction

in battery capacity (green curve).

(Jupyter Notebook available online

at: GitLab: Optimal Battery Sizing)

approach resulted in a battery size of 36.49 kWh whilst the direct

+ indirect approach resulted in a relatively smaller battery size of

25.57 kWh (representing a reduction of 29.92% in the required

battery capacity).

Further, by applying the battery capacities resulting from these

two strategies to the EV charger and battery scenario (scenario

3) in chapter 3.2.3 and studying the optimal charging behavior

proposed by the optimizer, we see that having the smaller battery

capacity implies less flexibility in terms of human behavior in order

to achieve the set target of 70% (see Figure 3.8, where indirect +

direct requires more charging at peak sun hours).

Figure 3.8: Comparison of charg-

ing frequency for direct only and

direct & indirect sizing strategies

(target self-consumption rate=70%)

using both direct and indirect flex-

ibilities for optimizing the Predis-

MHI building’s self-consumption.

(Jupyter Notebook available online

at: GitLab: Optimal Battery Sizing)

https://gricad-gitlab.univ-grenoble-alpes.fr/NanaKofi/thesis_energy_flexibility/-/blob/main/notebooks/Chapter_3_Battery_sizing.ipynb
https://gricad-gitlab.univ-grenoble-alpes.fr/NanaKofi/thesis_energy_flexibility/-/blob/main/notebooks/Chapter_3_Battery_sizing.ipynb
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� Highlights:

▶ Mobilizing Indirect flexibility has little to no costs as-

sociated, thus, for Predis-MHI we could improve our

self-consumption from approximately 46% to 54% (con-

sidering 2021) using only human behavior and therefore

avoid a substantial financial investment.

▶ Since this flexibility is highly dependent on the behavior

of humans in the control system, its performance is not

guaranteed and consequently, a hybrid system with both

direct and indirect flexibilities is recommended.

▶ For our use cases, we considered self-consumption as the

key metric of evaluation. Other metrics such as Carbon

emissions, self-production, and financial cost can also

be used (the proposed methodology is not restricted to

self-consumption).

3.4 Conclusion

In this chapter, we identified EV chargers, particularly the plugging-

in and the unplugging of EVs as a potential indirect flexibility. In

this instance, the human actor is the driver (i.e., owner of the EV)

who is required to plug in their vehicle to charge it and unplug it to

stop the charging as a load-shifting service to the building with the

goal of maximizing the use of energy from the on-site 22 kWp solar

PV system. Building on this idea, we proposed a methodology for

assessing and quantifying the indirect flexibility potential using

self-consumption as an evaluation metric. Self-consumption is,

however, an effective metric for scenarios where a solar PV system

already exists.

Whilst the evaluation of available potential and sizing were eval-

uated using self-consumption, the Net Energy Exchanged with

the Grid was considered more effective as an objective function.

The proposed methodology can, however, be applied using differ-

ent objective functions and is not limited to the self-consumption

metric, for example minimizing the carbon impact related to the

building’s energy use and is not restricted to usage in tertiary

buildings only.

Additionally, a new approach to sizing direct flexibilities, in partic-

ular battery storage was also proposed. This approach considers

the available indirect flexibility and was found to reduce the need

for high storage capacity.



3.4 Conclusion 51

The Predis-MHI was considered a tertiary building and used as

a case study for the proposed approaches. We found that the

building’s self-consumption could be increased by up to 9% using

indirect flexibilities only. This was particularly interesting since it

meant no financial investment from the building owner, cheaper or

no cost energy for charging the EV (benefit for the EV user), and a

reduction in the carbon intensity of the building’s operations. With

regards to the sizing of the battery, we found that depending on

the self-consumption target set the battery size could be reduced

by up to 100% (typically only using the indirect flexibility). For a

self-consumption rate of 70%, the reduction achieved was 30.15%,

in this case, this meant a 30% reduction in the financial and carbon

cost related to the acquisition of the battery.

Whilst the proposed methods utilize the available indirect flexibil-

ity, they do not fully account for the “human-in-the-loop” since

they assume 100% compliance. In reality, this might not be the case

and the system may not be able to reach this theoretical optimum.

This can however be mitigated by implementing strategies to in-

fluence humans toward the desired optimal such as nudges and

feedback using indicators.

In this chapter, we have addressed two of our research questions:

Gitlab Repository

The code and associated note-

books for the solutions proposed

in this chapter can be found in

the following repositories:

1. Assessment of indirect

flexibility potential: Git-

Lab: Indirect Flexibility

Assessment

2. Sizing of direct flexibility

(stationary BESS) with

consideration for indirect

flexibility: GitLab: Opti-

mal Battery Sizing

Additionally, see Appendix B.1

for a list of all available note-

books

▶ How does one validate the available potential and quantify

the impact of the identified indirect flexibility on the energy

performance of a building?

▶ Given the availability of a quantifiable indirect flexibility in

a building, do current battery sizing approaches ensure an

optimal sizing of direct flexibilities in the said building?

To follow up on this, chapter 4 will deal with the topic of direct

flexibilities in buildings, particularly battery storage. The focus

will be on control strategies for harnessing direct flexibilities at the

building and community scale.

https://gricad-gitlab.univ-grenoble-alpes.fr/NanaKofi/thesis_energy_flexibility/-/blob/main/notebooks/Chapter_3_indirect_flexibility_assessment.ipynb
https://gricad-gitlab.univ-grenoble-alpes.fr/NanaKofi/thesis_energy_flexibility/-/blob/main/notebooks/Chapter_3_indirect_flexibility_assessment.ipynb
https://gricad-gitlab.univ-grenoble-alpes.fr/NanaKofi/thesis_energy_flexibility/-/blob/main/notebooks/Chapter_3_indirect_flexibility_assessment.ipynb
https://gricad-gitlab.univ-grenoble-alpes.fr/NanaKofi/thesis_energy_flexibility/-/blob/main/notebooks/Chapter_3_Battery_sizing.ipynb
https://gricad-gitlab.univ-grenoble-alpes.fr/NanaKofi/thesis_energy_flexibility/-/blob/main/notebooks/Chapter_3_Battery_sizing.ipynb
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This chapter delves into the control of direct flexibility particularly
centered on battery storage systems, which are direct flexibility often
used at the building scale (both residential and non-residential). We delve
into the topic of control complexity and further demonstrate using our
experimental setup that a complex control scheme is required for the
efficient and effective control of our battery storage system. We go a step
further to propose a Machine Learning based Model Predictive Controller
(ML-MPC) for the battery system.

4.1 Introduction: Battery Storage as a Building

Scale Direct Flexibility

Given the uptick in demand for clean and sustainable energy

sources and the consequent pivot towards a decentralized energy

system, buildings (i.e., end nodes within the electrical network)

play a crucial role in the transition towards RERs (see chapter 1).

A new paradigm shift has emerged which pivots buildings to the

forefront of the future energy network. The role of the building has

shifted from a strict consumption role to that of a prosumer (i.e.,

buildings can now be producers and consumers) with distributed

energy resources being one of the key factors influencing this

pivot.

While RERs offer a cleaner and more sustainable alternative to

fossil fuel-based energy sources, their availability and produc-

tivity are often susceptible to external and often uncontrollable

factors (particularly the weather). Thus, to have a resilient and

efficient electric grid, storage systems at all levels of the network

are needed.

At the Building scale, Battery storage is one of the most frequently

used energy storage options as it is compact and relatively simple

to operate. For the most part, battery storage is highly controllable

and capable of effectively dealing with the intermittency problems

often associated with RERs (solar PV and wind in particular).

Additionally, battery energy storage systems serve as an enabler for

active participation in demand-side energy flexibility, are capable

of providing other ancillary services for the grid and can be used

as a backup system for critical infrastructure.
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This chapter focuses on direct flexibilities at the building scale,

specifically emphasizing battery storage. Thus, in this chapter, we

seek to address our third research question:

SQ.3

“Given an energy system, what is the appropriate level of
complexity and computational cost that ensures optimal and
efficient use of a battery energy storage system?”

As was the case in chapter 3, we considered the self-consumption

indicator as our evaluation metric for the performance of the

building. Thus, we consider the battery as a means of increasing

the utilization of the on-site solar PV energy and delve into the

topic of effective control of direct energy flexibilities

Figure 4.1: Application scenarios for

battery energy storage systems at

different parts of the energy system

(source [126])

4.2 Battery Energy Storage Systems: a Conduit

for Direct Energy Flexibility

To address this emerging need for storage, several storage technolo-

gies have been developed (and still many are being developed),

see Figure 1.12. Chemical energy storage (i.e. battery storage), has

emerged as the most favored storage technology (especially with

the recent development of higher-energy dense Lithium-based

batteries and the increased proliferation of EVs), particularly at

the lower levels of the grid (buildings, districts, cities, etc) and in

micro and nano grids [127], see Figure 4.1 for application scenar-

ios. Two battery chemistries are usually utilized for most power

applications: lead-acid and lithium-ion batteries. Table 4.1 details a

comparison of the two technologies (valve-regulated lead acid and

lithium iron phosphate batteries) based on four criteria; efficiency
1

1: Efficiency here referring to the

ratio of energy discharged from the

battery to the energy charged into

the battery

,

cost, life cycle, and charging/discharging performance [128].

Whilst EVs are essential and effective for decarbonizing the trans-

portation sector and have effectively contributed towards the rapid
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Table 4.1: Comparison of valve-regulated lead acid battery and lithium iron phosphate battery chemistries (source: [128,

129])

Metric Valve Regulated Lead Acid Battery Lithium Iron Phosphate Battery

Efficiency

Low efficiency (55% - 75%) at low

C-rates (0.25 – 4).

High efficiency 88% - 98% for low C-rates

of between 0.25 and 4.

A self-discharge rate of approxi-

mately 0.1% per day at an operating

temperature of 25°C

Self-discharge rate of approximately

0.01% per day at a standard operating

temperature of 25°C.

Life Span

Expected lifetime of 2-5 years de-

pending on the depth of discharge

Longer life span

Expected lifetime of 12-16 years at 100%

SOC and standard working temperature

of 25°C which can be extended to 20-25

years considering a 50% SOC.

A comparably lower number of

charge/discharge cycles to reach its

end of life.

A higher number of charge/discharge

cycles (at least by a factor of 2 times that

of lead acid)

Charging/

Discharging

performance

Efficiency deteriorate when discharg-

ing at higher current rates

Efficiency is sustained when discharging

at high current rates

Slower charging as the charging is

usually around 0.25C

Can be charged at much faster speeds

(>1C)

Can safely be charged at lower tem-

peratures (as low as -20°C at a maxi-

mum current rate of 0.3C)

Not possible to charge at temperatures

lower than 0°C as irreversible damage

happens on the anode.

Financial Cost

Lower initial capital cost. However,

for long-term applications, the total

cost per kWh of storage is higher

owing to factors such as efficiency

and lifespan

Higher initial capital cost, considering

long-term applications, the total cost per

kWh of storage is relatively lower due to

factors such as efficiency and lifespan.

development of battery technology, there is still the question re-

garding their end of life. In most cases, these batteries can be

repurposed as storage for use in alternative and less demanding

operations (second-life battery usage) [73]. In any of such applica-

tions (second-life or new) there is the need to operate the battery in

a manner that encourages the longevity of the battery and does not

pose any danger to the immediate environment where the battery

is installed (this includes humans and property).

4.3 Control Strategies for Battery Energy

Storage Systems

Depending on the battery chemistry and application scenario, dif-

ferent control strategies can be applied. Some battery chemistries

(such as lithium-based chemistries) require a Battery Management

System (BMS) to ensure they perform optimally and safely. BMSs

are however essential in the face of multiple battery packs being
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combined to be used as one large pack. This is necessitated since

batteries are dynamic in nature and are constantly operating out-

side their equilibrium state during cycling [130]. The BMS (Figure

4.2) is often the first layer of control (and in many applications the

only one) and can be simple, smart, or predictive/adaptive (these

are essential for large battery packs utilized in applications such

as EVs and grid integration [131]) [130].

Figure 4.2: General schematic for

Battery Energy Storage System

(BESS) based on a battery pack man-

aged by a Battery Management Sys-

tem (BMS) (source: [130])

However, irrespective of the existence of a BMS, the charging and

discharging actions of the battery have to be controlled to reach a

set objective while ensuring the efficient and safe functioning of

the battery storage system. At the grid scale, the available battery

storage may not be available in a central location but might be

distributed (cited in different locations,). Thus, there is a need to

coordinate these battery storage resources in order to maximize

the potential benefit of having them. Alternating Direction Method

of Multipliers [132] is one of the most frequently used approaches

used for the coordinated and optimal control of these distributed

storage resources [126]. This optimization approach divides the

problem into a set of sub-problems and solves the local problems

with the global objective in view. Additionally, such distributed

battery storage resources can be controlled using the consensus-

based method which in itself is based on the consensus protocol

[133].

Distributed storage systems can in fact be found and managed at all

levels of the grid, for example in different houses of a community, or

in different apartments within the same building. However, in this

thesis, since our boundary is limited to the community scale, we

focus on the management of a single storage resource particularly at

the building and community scale. For this purpose, we identified

two control mechanisms that are applied to battery storage systems
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2: The underlining principle behind

the theory of dynamic programming

is that of viewing an optimal policy

as one determining the decision re-

quired at each time in terms of the

current state of the system.

at the building and community levels, the rule-based (heuristic)

control and Model Predictive Control (MPC).

4.3.1 Rule Based Control

As the name implies, this is a control approach that utilizes a set

of predefined rules to direct decisions in order to achieve a set

objective. This approach is particularly useful for problems that

are simple in nature and do not warrant the computational cost of

complex control algorithms. Given that this approach is based on

predefined rules, there is a possibility that these predefined rules

are not adequate (for example, in the face of seasonal variations)

and as such do not guarantee an optimal solution. Additionally, in

the face of the increasing complexity of the control problem, such

a rule-based approach will also increase in complexity and there

is an elevated risk of further deviating from the set of optimal

solutions.

Rule-based control schemes typically require that some rules be

put in place to respect the technical constraints of the system

being controlled. For batteries, these parameters are, the State of

Charge (SOC), the charging and discharging power limits, and the

depth of discharge of the battery [134]. In addition, rules that are

focused on delivering the desired objective also need to be put in

place. Salpakari and Lund [135] applied such a rule-based control

algorithm to maximize the self-consumption of a low-energy house

in southern Finland over a one-year horizon. Their application

considered flexible (shiftable) loads and used battery and thermal

energy storage systems for storing excess energy.

A comparison of the rule-based with a dynamic programming-

based
2

optimization approach showed that the optimization-based

approach performed significantly better than the rule-based ap-

proach [135]. Figure 4.3 (a) shows that the optimization-based

approach resulted in a 13 – 15% reduction in electricity cost relative

to the reference whilst the rule-based only achieved a 0 – 2% re-

duction relative to the reference. Further, Figure 4.3 (b) also shows

a reduction in export of between 36% and 88% in the case of the

optimization-based approach and 18% and 88% in the rule-based

control approach.

The results here indicate that either the rule-based approach as

was used was not sufficiently defined to deal with the dynamics of

the system or the problem warranted more complex algorithms

that could handle both long-term and short-term constraints opti-

mally.
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Figure 4.3: comparison of a rule-

based control with dynamic pro-

gramming based approach for the

control of a buildings energy system

(3kWp solar PV, with varying ther-

mal (in 𝑚3
) and battery (in kWh)

storage of varying capacities – see

x-axis) based on (a) the percentage

difference in annual electricity cost

relative to the reference case and (b)

the percentage difference in annual

grid feed-in (export from the build-

ing) relative to the reference case

(Source: [135]).

4.3.2 Model Predictive Control: A State of the Art

Model Predictive Controllers (MPCs) are advanced control mech-

anisms that are based on a predictive model of the system to be

controlled and are applied to dynamic systems to minimize a cost

function over a finite, receding, horizon [136]. Holkar et al [137]

in their description of an MPC state that, “MPC uses the range of

control methods, making use of an explicit dynamic plant model to

predict the effect of future reactions of the manipulated variables

on the output”. The basic concept of an MPC (see Figure 4.4) can

be outlined in four steps, these are [137]:

1. Predict the future state of the system using a representative

model of the system to be controlled.

2. Based on the predicted state, estimate a control input that

minimizes the cost function.

3. Send the control signal and measure the output of the system

as feedback
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3: The state-space representation is

a mathematical model of a physical

system with the input, output, and

state variables composed by first-

order differential equations. The

state-space representation gives a

suitable and compact way to model

and analyze systems with multiple

inputs and outputs.

4. At each timestep, the horizon is moved towards the future by

one timestep (a receding horizon strategy) and consequently

a control signal is calculated (steps 1 – 3).

Figure 4.4: Basic control loop of a

Model Predictive controller (MPC)

– the plant is the system to be con-

trolled (source: [136])

MPCs allow for the optimal control of more complex and dynamic

systems. These dynamic systems are often represented using state

space
3

representation. State space is often considered for represent-

ing the physical system as it can comprehensively and concisely

represent the dynamics of the system, allowing for the mathemati-

cal representation (using first-order differential equations) of both

the internal states and the input–output relationship of the system

(this allows for estimating of the system’s future state) [138].

Following this strategy, Gonzalez et al [139] in their works proposed

a state space model-based MPC to control a hybrid power plant for

a building which was composed of a 20.88 kWp solar PV, a 14.4kWh

battery, and a hydrogen fuel cell with a nominal power output of

3.2kW (with associated electrolyzer and hydrogen tank), see Figure

4.5(a). The controller’s objective was to maximize the building’s

self-consumption whilst considering the lifespan of the individual

components. Their proposed MPC used the battery to deal with

fast-changing variability from the demand and production whilst

the hydrogen fuel cell was used for slower variations, see Figure

4.5(b).

In recent times, robust and effective Machine Learning (ML) al-

gorithms that are capable of dealing with non-linear problems

have been developed and have consequently led to the develop-

ment of machine learning-based MPCs [140]. For example, Martin

et al [141]] applied ML algorithms for daily energy solar energy

prediction using weather models, similarly, Robinson et al [142]

also used ML algorithms to forecast the demand of a commercial

building whilst Amayri et al proposed an ML-based approach to

characterize available flexibility from residential buildings using

aggregated consumption data collected using smart-meters with

low-sampling rates. Building on these applications of ML to non-

linear problems, Cai et al [140] applied an ML-based MPC for the

control of a pumped storage system (made up of a pump-turbine,

a generator, a penstock, and a servo mechanism. The ML-MPC



60 4 Direct Flexibility for Individual and Collective Self-Consumption

Figure 4.5: (a) block diagram repre-

sentation of hybrid power plant con-

trolled using MPC by Gonzalez et al

(b) typical sunny day results apply-

ing the MPC to the energy system,

where 𝑃𝑏𝑎𝑡𝑡 , 𝑃𝐹𝐶 , 𝑃𝐸𝐿𝑍 , 𝑃𝐺𝑟𝑖𝑑 , and

𝑃𝑁𝐸𝑇 are the power of the battery,

fuel cell, electrolyzer, grid, and a

disturbance term respectively. LOH

and SOC are the level of hydro-

gen and state of charge respectively)

(source: [139]).

structure was decomposed into three parts, the controlled system,

the data collection component, and the control component.

Figure 4.6: comparison of the system

response for the machine learning

based model predictive controller

(ML-MPC) and a proportional in-

tegral derivative (PID) controller

applied to a pumped storage sys-

tem with different water heads (h).

(source: [140])

Four ML models based on Koopman theory were developed and

used for each of the individual components of the system and

the results show that the proposed ML-MPC performed better in

comparison with a PID controller applied to the same setup given

a speed and frequency disturbance as illustrated in Figure 4.6 (a)

and (b) respectively.

We have thus shown that model predictive controllers are effective

for managing energy systems and that both state space-based

(white box approach) and machine learning-based (black box

approach) are effective tools to be utilized for such a control

strategy. In the following sub-chapters, we will demonstrate the

need for an optimal control strategy and advance to a real-life

implementation of an ML-MPC for the experimental setup.
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4.3.3 Maximizing self-consumption for the predis-MHI

platform: a comparison of rule-based with an

optimization-based energy management control

strategy

As highlighted in the previous sub-chapters (4.3.1), rule-based

energy management strategies are typically effective for simple

problems. To demonstrate this, and highlight the need for an

optimization-based energy management approach for the experi-

mental setup (i.e., Predis-MHI), we compared a rule-based strategy

to an optimization-based approach (this could be considered as an

MPC with perfect prediction) for the 2021 period. In this use case,

the indirect flexibility was not considered (i.e., no shiftable loads),

thus only the direct flexibility (50 kWh battery) was considered for

improving the platform’s self-consumption, see Figure 4.7.

Figure 4.7: Graphical representation

of the Predis-MHI platform as con-

sidered for the control strategy com-

parison study

The rule-based method prioritized local consumption of the onsite

production and is outlined below (a flow diagram of the method

is depicted in Figure 4.8):

1. If there is energy from the solar PV panels, it is first fed to

the load.

2. If any excess exists (i.e., PV energy exceeds the demand), the

excess is stored in the battery.

3. If all or part of this excess energy directed towards the battery

cannot be stored in the battery due to physical constraints of

the battery (battery at capacity or charging power exceeded)

then any further excess is exported onto the grid

4. If the solar PV is not sufficient to supply the load, energy is

taken from the battery to make up for the difference. Energy
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is subsequently imported from the grid if the solar PV and

storage system cannot supply the demand.

5. If there is no solar PV production, energy is taken from the

battery to supply the load. If the battery cannot meet the

demand, the proportion of the demand not satisfied by the

battery is imported from the grid.

Figure 4.8: Flow diagram of rule-based energy management approach for maximizing the self—consumption rate of the

Predis-MHI platform.

For the optimization-based approach, we considered an MPC

with perfect prediction with a Mixed Integer Linear Programming

optimization as proposed in chapter 3.2.2.

The MILP was represented mathematically using eqns 3.1 - 3.7 and

eqn 3.10.

Computing the self-consumption on a monthly basis as depicted in

Figure 4.9, the results show that the optimization-based approach

does not have a significant advantage over the rule-based approach.

The improvements (see the Jupyter Notebook available at: GitLab:

Comparison of control strategies ) were negligible and did not

warrant the complexity or added cost of adopting an optimization-

based approach. Thus, it can be inferred that for a problem of similar

complexity (as the system in Figure 4.9), a rule-based solution is

https://gricad-gitlab.univ-grenoble-alpes.fr/NanaKofi/thesis_energy_flexibility/-/blob/main/notebooks/chapter_4_Comparison_of_control.ipynb
https://gricad-gitlab.univ-grenoble-alpes.fr/NanaKofi/thesis_energy_flexibility/-/blob/main/notebooks/chapter_4_Comparison_of_control.ipynb
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effective, and complex algorithms would not be merited.

However, since our use case involves the use of shiftable loads

(indirect flexibilities) as was the case in [135], an MPC is warranted

and consequently described in the subsequent sub-chapter.

Figure 4.9: Comparison of a rule-

based energy management strat-

egy with an MPC (considering

perfect prediction) for the Predis-

MHI platform using monthly self-

consumption as a metric (available

online at GitLab: Comparison of con-

trol strategies)

� Highlights:

▶ Rule-Based control may be effective for simple systems

such as the one described in Figure 4.7. However, it is

important to note that for this approach, the defined

rules must capture all possible scenarios; long, medium,

and short-term. This can become increasingly difficult

as the system increase in complexity.

4.4 Optimal Mobilization of Direct Flexibility

using a Machine Learning Based Model

Predictive Controller

Building on the discussions on Model Predictive controllers in

sub-chapter 4.3.2, MPCs are capable of effective control by utiliz-

ing optimization and prediction models. In this sub-chapter, we

consider our experimental setup (i.e., the Predis-MHI platform),

with emphasis on the direct flexibility (i.e., the 50-kWh battery)

which due to legislative constraints pertaining to occupant safety

necessitated an off-site installation. The installation of the battery

in another geographical location (i.e., another building of the uni-

versity in a different district of the city) implies that the battery

would have to be operated using an energy community model (the

grid would have to be used to allow for the sharing of the delivery

of energy between the two buildings).

https://gricad-gitlab.univ-grenoble-alpes.fr/NanaKofi/thesis_energy_flexibility/-/blob/main/notebooks/chapter_4_Comparison_of_control.ipynb
https://gricad-gitlab.univ-grenoble-alpes.fr/NanaKofi/thesis_energy_flexibility/-/blob/main/notebooks/chapter_4_Comparison_of_control.ipynb
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We propose a predictive control approach to optimize the schedul-

ing of the battery as well as the charging of EVs (i.e., the indirect

flexibility), utilizing Machine Learning (ML) models for forecasting

and MILP as an optimizer. Figure 4.10 provides a visual represen-

tation of the framework of the proposed MPC.

Figure 4.10: Framework of proposed

Machine learning based Model Pre-

dictive Controller

The (ML-MPC) described in Figure 4.10 requires the prediction of

the demand profile of the Predis-MHI platform and the production

profile of the solar PV system. The ML methods for forecasting

these profiles are discussed in the next sub-chapter.

4.4.1 Forecasting Demand and Production profiles for

Predis-MHI

Machine learning techniques have in recent times been effectively

used for electricity consumption and solar PV profile forecasting as

demonstrated in [141–144]. As previously highlighted, the proposed

ML-MPC would require forecasts of both the production and

demand (the building and EV Charging station profiles). For this

application, we employed supervised learning techniques which

have been defined by Cunningham et al [145] as “learning a mapping
between a set of input variables X and an output variable Y and applying
this mapping to predict the outputs for unseen data”.

Load and solar PV forecasting approaches can be classified into

3 main groups, based on the prediction horizon, which is conse-

quently determined by their functionality and purpose, these three

groups are [146]:

1. Short-Term Load Forecasting: these are predictions that are

made for a time horizon of one week ahead or less and are
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typically applied to real-time control and security assessment

in electric utilities.

2. Medium-Term Load Forecasting: this approach considers a

horizon greater than one week but less than one year and is

applicable for maintenance scheduling, coordination of load

dispatch, and price settlement in electrical networks.

3. Long-Term Load Forecasting: This approach focuses on a

horizon greater than a year and typically has applications in

the planning of electric grid infrastructure.

Since our application considers a horizon of 24 hours, we will focus

on Short-Term Load Forecasting approaches. For this purpose, we

considered supervised machine learning approaches for forecast-

ing the solar PV production, building demand, and EV charger

demand as discussed below

▶ EXtreme Gradient Boosting (XGBoost): XGBoost, a super-

vised learning ML approach, is a scalable and efficient im-

plementation of the gradient boosting approach proposed

by Friedman [147]. XGBoost has been demonstrated to be a

highly capable and effective algorithm for forecasting across

several domains [148]. The method is an ensemble algorithm

that utilizes several models (typically decision trees) to pro-

duce a strong predictive model. The global model is based on

sequentially arranged weaker models, with each subsequent

model attempting to improve the error of the previous model

(i.e., boosting), illustrated in Figure 4.11.

The method works by minimizing a given loss function,

typically using a gradient descent approach. XGBoost is

especially suitable for demand forecasting because it can

efficiently handle both structured and unstructured data

and can incorporate diverse features. For both demand and

solar PV forecasting this is essential since both of these are

dependent on many factors which include but are not limited

to, weather, time of day, and the day of the week Furthermore,

XGBoost is capable of dealing with both missing data and

outliers (both of which are typically present in many datasets)

in the data in an effective manner and has been designed

to identify and handle sparse data [148]. The performance

and generalization capabilities of XGBoost are enhanced by

incorporating regularization techniques (typically L1 and

L2) which penalize the complexity of the model and prevent

overfitting [148]. By controlling the complexity of the model,

XGBoost achieves a good balance between bias and variance,

leading to robust and accurate predictions.

▶ Generalized Additive Models (GAMs): According to Hastie

et al [150], “Generalized additive models have the form 𝜂(𝑥) =
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Figure 4.11: Fundamental working

principle of the XGBoost framework

(source: [149])

4: Splines are piecewise polynomi-

als that join smoothly at specific

points

𝛼+𝜎 𝑓 𝑗(𝑥 𝑗), where 𝜂 might be the regression function in a multiple
regression or the logistic transformation of the posterior probability
𝑝𝑟(𝑦 = 1|𝑥) in a logistic regression. In fact, these models generalize
the whole family of generalized linear models 𝜂(𝑥) = 𝛽′𝑥𝜂(𝑥) =
𝛽′𝑥, where𝜂(𝑥) = 𝑔(𝜇(𝑥)) is some transformation of the regression
function”. In simplified terms, A generalized additive model

(GAM); [151]) is a generalized linear model with a linear

predictor involving a sum of smooth functions of continuous

independent variables [152].

Thus, GAMs are a statistical modeling-based approach that

enables the fitting of a familiar family of non-linear functions

[153].

Typically, in a GAM, the response variable is a sum of smooth

functions (these can take many forms, such as splines
4
) of

the predictor.

GAMs improve the general linear regression by facilitating a

framework that captures both the linear and non-linear effects

of the problem in a unified manner. Furthermore, GAMs are

capable of relatively higher accuracy predictions due to the

use of their non-linear fits [154] and can further provide the

merit of automatic smoothness function selection [155]. On

the other hand, GAMs typically have high computational

complexity and as such are prone to overfitting [156]. Further,

because GAMs are additive some important interactions

can be missed, this can however be remedied by manually

adding interaction terms [154].
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5: PVLib is a python package pro-

posed by NREL for modeling PV

systems based on a physical model

of such systems

▶ Light Gradient Boosting Machines (LGBMs): Like XGBoost,

LGBM is an ML approach that utilizes a gradient boosting

framework that is built on tree-based machine learning

algorithms [157]. The main distinguishing factor is that whilst

other tree-based algorithms grow trees horizontally, LGBM

grows trees vertically (i.e., leaf-wise as against level-wise

growth, see Figure 4.12) [158]. Additionally, the method uses

a histogram-based algorithm as described in [159], which

results in faster training, and lower memory usage and also

facilitates the use of advanced network communication to

optimize parallel learning (Parallel voting DT algorithm

[158]) [160].

Figure 4.12: Graphical depiction of

(a) level-wise growth as applied in

other gradient-boosted tree applica-

tions) and (b) leaf-wise (best-first)

tree growth as applied in Light Gra-

dient Boosting Machines (source:

[157])

▶ Physical Model: This method is only applied to the predic-

tion of solar PV generation and uses a deterministic method

to evaluate solar PV production based on physical phenom-

ena (geographical position, zenith, azimuth, day of the year,

time of day, etc). In this work, we consider the Python pack-

age PVLib
5

[161]. The model also takes into account weather

factors such as solar irradiance, wind speed temperature,

and nebulosity as well as the physical characteristics of a

solar PV module to estimate solar PV production.

▶ Rule-Based (Naive) Predictors: These are predictors that are

based on a simple rule (such as tomorrow’s consumption is

the same as today’s consumption). The goal of these naive

predictors is to use them as a baseline for assessing the

performance of the more complex forecasts made with the

algorithms discussed above.

Since the building demand and solar PV production are dependent

on external factors, particularly the weather, it was imperative to
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have forecasts of the weather parameters, several approaches have

been proposed for short-term forecasts of the weather [162, 163],

however for this thesis we considered the tomorrow.io weather

API. In order to quantitatively assess the models proposed, we

considered three performance metrics:

1. Mean Squared Error (MSE) is a measure of the squared

difference between the predicted and measured values. The

lowest value for this metric is zero (perfect prediction), there

is however no upper bound. Typically, lower values are

desired as this is an error term and lower values imply the

predicted value is closer to the ground truth. It is defined

mathematically as [164]:

MSE =
1

𝑁

𝑁∑
𝑡=1

(𝑦𝑡 − �̂�𝑡)2 (4.1)

2. Mean Absolute Error (MAE) is an estimate of the average

of the absolute error between the predicted and measured

values (i.e., the ground truth) [165]. For this indicator, the

lower bound is 0 and indicates perfect prediction (i.e., no

errors), however, there is no upper bound, and typically the

higher this value the more the predicted value has deviated

from the ground truth. It is expressed mathematically as:

MAE =
1

𝑁

𝑁∑
𝑡=1

|𝑦𝑡 − �̂�𝑡 | (4.2)

3. Coefficient of Determination (R2) which represents the pro-

portion of variance in the outcome variable that is explained

by the predictor variables in the sample. This metric has an

upper bound of 1 which indicates an ideal predictor and has

no lower bound. It is expressed as:

𝑅2 = 1 −
∑𝑁

𝑡=1
(𝑦𝑡 − �̂�𝑡)2∑𝑁

𝑡=1
(𝑦𝑡 − �̄�𝑡)2

(4.3)

Where 𝑦𝑡 and �̂� are the measured and predicted values respectively,

�̄�𝑡 is the mean of the measured values (ground truths), and 𝑁 is

the total number of observations. It should be noted that LGBM

and GAM do not support sequence-to-sequence regression and are

only capable of sequence-to-point. To get around this constraint, 24

models were trained, such that each model predicted the demand

corresponding to a specific hour of the day. For the MSE and MAE

metrics, lower values indicate a good fit whilst the opposite is true

for the 𝑅2
metric.

In the subsequent sub-chapters, we will apply these algorithms to

forecast the required profiles for the proposed ML-MPC.

https://www.tomorrow.io/
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4.4.1.1 Demand Profile Forecasting

In this sub-chapter, we will present a comparison of the discussed

ML (black box) approaches for forecasting the demand profile.

For this purpose, we employed a naïve predictor as a baseline

against which the more complex ML algorithms were compared.

For the demand profiles, the naive predictor considered was the

consumption of the previous week, this allowed for the recurring

patterns in the dataset (i.e., reduced consumption on weekends) to

be accounted for by this predictor.

In the ML approaches considered, various features were used to

effectively learn the complex relationships and dependencies that

exist between the proposed features and the building’s energy

consumption. These input features can be classified into three main

classes:

1. Calendar features: These are features that can be extracted

from a calendar and were constituted by:

▶ Day _of _year: this is a value between 1 and 365 that

indicates which day of the year it is

▶ Day_of_the_week: this is a numerical value that rep-

resents which day of the week it is (1 for Sunday and 7

for Saturday).

▶ Is_holiday: This is a Boolean value that indicates if the

day for which the forecasted profile is to be generated

is a holiday or not with 1 indicating a holiday and 0

indicating it is not a holiday

▶ Is_weekend: This is a Boolean value that indicates if the

day for which the forecasted profile is to be generated is

a weekend, with 1 indicating a weekend and 0 indicating

a weekday.

2. Temporal features: these account for exogenous factors that

have an impact on the energy demand within the building.

For the purpose of this application, only the external ambient

temperature was considered.

3. Engineered features: These were lagged variables, specifi-

cally:

▶ consumption_lag _1 _day: This is the previous day’s

consumption profile and allows for the model to capture

immediate historical context for the forecast.

▶ consumption _lag _7 _days: This is the previous week’s

consumption profile and allows for the model to have a

medium-term insight into the demand patterns
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Figure 4.13: Comparison of Predis-

MHI building’s energy demand ML

forecasts with the ground truths for

(a) summer (5th July – 12th July 2022)

and (b) winter (5th January – 12th Jan-

uary 2022) week (Jupyter Notebook

available online at GitLab: Compari-

son of forecasting models)

Figure 4.13 shows a visual comparison of the results from the

considered ML algorithms with the ground truths for summer (5th

– 12th July 2022) and winter (5th– 12th January 2022). The results

show comparable performance in the summer, however in the

winter (Figure 4.13 (b)) the GAMs algorithm showed a tendency

to under-predict. The evaluation of these algorithms using the

performance metrics discussed in sub-chapter 4.4.1(considering a

one-day (24-hour) evaluation period) indicates that for all three

metrics, LGBM produced the best daily predictions with lower

error values and the highest R2 value achieved. Also, to be noted is

that the naïve approach, despite being simple yielded results that

were not very far from those of the ML algorithms considered.

Furthermore, when the entire horizon of 11 months (18th January –

18th November 2022) was considered, LGBM remained the best-

performing algorithm for all the metrics considered (see Table 4.2).

However, since the difference in MAE between XGBoost and LGBM

was 0.05kW and given the added complexity of using 24 models

(since LGBM only supports sequence-to-point regression), we

considered XGBoost as the forecasting algorithm for the demand

curve.

https://gricad-gitlab.univ-grenoble-alpes.fr/NanaKofi/thesis_energy_flexibility/-/blob/main/notebooks/Chapter_4_Comparison_of_Forecasting_Models.ipynb
https://gricad-gitlab.univ-grenoble-alpes.fr/NanaKofi/thesis_energy_flexibility/-/blob/main/notebooks/Chapter_4_Comparison_of_Forecasting_Models.ipynb
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DAILY MIN

DAILY

MAX

FULL PERIOD

MEAN ABSOLUTE ERROR (MAE)

GAMS 0.36 1.76 0.74

LGBM 0.24 1.42 0.68

XGBoost 0.28 1.78 0.73

Naive 0.33 2.58 0.86

MEAN SQUARED ERROR (MSE)

GAMS 0.20 4.97 0.96

LGBM 0.14 3.37 0.81

XGBoost 0.12 5.53 0.97

Naive 0.38 9.58 1.59

COEFFICIENT OF DETERMINATION (R2)

GAMS -9.47 0.85 0.63

LGBM -8.42 0.89 0.69

XGBoost -8.24 0.86 0.63

Naive -20.82 0.87 0.39

Table 4.2: Comparison of demand

forecasts for the considered machine

learning algorithms for a 1-day sub

horizon over an 11-month horizon

and the full horizon (18th January –

18th November 2022).

4.4.1.2 Solar PV Production Profile Forecasting

In this sub-chapter, we apply both the Physical model and the

ML algorithms discussed in chapter 4.4.1. For this prediction, we

consider a naïve predictor with a lag of 24 hours (1 day) as there

are no weekly patterns that will be captured by considering a 7-day

lag. As was the case in sub-chapter 4.4.1.1, this naïve predictor

would serve as a baseline for evaluating the other predictors.

The considered algorithms used the following as input features to

establish relationships and patterns between the proposed features

and the solar PV production (i.e., the desired output):

1. Day_of _year: this is a value between 1 and 365 that indicates

which day of the year it is

2. Temperature_lag_1_day: This is the temperature profile for

the previous day

3. Temperature_lead_1_day: This is the temperature profile for

the next day

4. Production_lag_1_day: This is the solar PV production pro-

file of the previous day.

Additionally, for the physical model some additional environmen-

tal inputs are also required, these are:

1. Wind_speed_lead _1_day: this is the wind speed profile for

the next day
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2. Nebulosity_lead_1 _day: this is the cloud cover (in percent-

age) of the next day (however, this data was available only

until the end of 2021)

A comparison of the results from the three ML models and the

physical model is shown in Figure 4.14. These results show that the

GAM model suffers from a tendency to predict negative values (as

can be seen in Figure 4.14 (b)), whilst XGBoost and LGBM were able

to effectively capture the relationship between the input features

and the solar PV production. The physical model, however, did

not yield good results, particularly in the winter months, possibly

due to a lack of nebulosity (cloud cover) and potential shading

from the building.

Based on the results of the performance metrics however detailed

in Table 4.3, the GAM approach yielded the least MAE and MSE

and had the highest R2 value both for the one-day horizon and full

horizon assessments. Also of interest is that, for all the models,

with the exception of the physical model, the daily minimum MAE

was less than 0.02 whilst the minimum MSE was less than 0.05.

For the maximum error, however, LGBM and the GAM approach

proved to be relatively better than the other models (the maximum

MAE was 2.21).

Table 4.3: Comparison of solar PV

forecasts for the considered machine

learning algorithms for a 1-day sub

horizon over an 11-month horizon

and the full horizon (18th January –

18th November 2022)

DAILY MIN

DAILY

MAX

FULL

HORIZON

Mean Absolute Error (MAE)

GAMS 0.10 2.21 0.76

LGBM 0.13 2.21 0.78

XGBoost 0.12 2.27 0.84

Physical Model 0.55 5.42 2.04

Naive 0.04 3.46 0.98

MEAN SQUARED ERROR (MSE)

GAMS 0.03 13.09 2.25

LGBM 0.05 15.14 2.48

XGBoost 0.05 16.01 2.83

Physical Model 1.29 72.86 13.76

Naive 0.04 36.13 5.32

Coefficient of Determination (R2)

GAMS -34.11 1.00 0.90

LGBM -59.28 1.00 0.89

XGBoost -78.78 1.00 0.88

Physical Model -627.90 0.92 0.39

Naive -230.65 1.00 0.77

Despite the better performance shown by the performance metrics,
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Figure 4.14: Comparison of ML and

Physical model solar PV production

forecasts with the ground truths for

(a) summer (5th July – 12th July 2022)

and (b) winter (5th January – 12th Jan-

uary 2022) week (Jupyter Notebook

available online at GitLab: Compari-

son of forecasting models)

GAM still showed the tendency to forecast negative values and

was also computationally the costliest. Further, because the LGBM

approach forecasting errors were comparable to that of the GAM

approach (see Table 4.3), we considered the LGBM model for the

forecasting of solar PV production for the ML-MPC.

4.4.1.3 Electric Vehicle Charger Demand Forecasting

Unlike the demand and solar PV data, the data for the EV chargers

are sparse (see Table 4.4) and very random (due to the demand

being highly dependent on user behavior). Additionally, from Fig-

ure 4.15, it can be seen that the monthly load factor (i.e., the ratio

of hourly average load to peak load, during the operating hours

of the building) was never over 5%, indicating that the chargers

were not used for a great proportion of the time. Aggregating the

demand profiles only improved the sparseness by approximately

2-4%. However, for the ML-MPC application, only the daily charg-

https://gricad-gitlab.univ-grenoble-alpes.fr/NanaKofi/thesis_energy_flexibility/-/blob/main/notebooks/Chapter_4_Comparison_of_Forecasting_Models.ipynb
https://gricad-gitlab.univ-grenoble-alpes.fr/NanaKofi/thesis_energy_flexibility/-/blob/main/notebooks/Chapter_4_Comparison_of_Forecasting_Models.ipynb
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Figure 4.15: Monthly load factor for

the four charging stations present

at the Predis-MHI building (Jupyter

Notebook available online at GitLab:

Indirect Flexibility Assessment).

ing energy demand is required, thus the demand profiles were

resampled from an hourly time step to a daily time step. This

further reduced the sparseness to approximately 64% in the case

of the aggregated consumption (see Table 4.4.).

Table 4.4: Summary of the sparse-

ness of EV charger data for hourly

and daily timestep

Hourly

Sparseness

Daily

Sparseness

Charger 1 99.13% 87.03%

Charger 2 98.44% 83.01%

Charger 3 99.36% 95.54%

Charger 4 99.59% 97.31%

Aggregated

Chargers

96.83% 76.08%

Due to the sparse nature of the data, a Support Vector Machine

(SVM) approach was also considered in addition to the already

discussed ML algorithms. For this application, the naïve predictor

was considered to be the daily energy demand of the previous

week. The input features for this application were:

Temporal features: the feature considered in this regard was the

daily demand lagged from 1 day to 14 days.

Calendar features: two features related to the calendar were con-

sidered, these were:

1. day_of_the_week: this was represented as an integer value

between 1 (i.e., Sunday) and 7 (Saturday).

2. Is_holiday: this was a Boolean value, with 1 (True) indicating

the day for which the demand is to be forecasted is a holiday

and 0 (False) indicating it is not a holiday.

No weather or external features were considered since the use

of the chargers was not dependent on external factors such as

weather.

https://gricad-gitlab.univ-grenoble-alpes.fr/NanaKofi/thesis_energy_flexibility/-/blob/main/notebooks/Chapter_3_indirect_flexibility_assessment.ipynb
https://gricad-gitlab.univ-grenoble-alpes.fr/NanaKofi/thesis_energy_flexibility/-/blob/main/notebooks/Chapter_3_indirect_flexibility_assessment.ipynb
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DAILY MIN

DAILY

MAX

FULL

HORIZON

Mean Absolute Error (MAE)

GAMS 0.21 73.25 13.59

LGBM 0.00 73.42 12.92

SVM 0.00 81.03 12.56

XGBoost 0.02 76.21 11.88

Naive 0.00 94.99 15.14

Mean Squared Error (MSE)

GAMS 0.04 5366.16 365.74

LGBM 0.00 5390.71 328.69

SVM 0.00 6565.83 395.03

XGBoost 0.00 5807.23 328.21

Naive 0.00 9023.53 601.34

Coefficient of Determination (R2)

GAMS - - 0.15

LGBM - - 0.23

SVM - - 0.08

XGBoost - - 0.24

Naive - - -0.40

Table 4.5: Comparison of EV charger

demand forecasts for the considered

machine learning algorithms for a

1-day sub horizon over an 11-month

horizon and the full horizon (18th

January – 18th November 2022)

From Figure 4.16, none of the forecasting approaches performed

particularly well, however, given the sparse nature of the data

(Table 4.4 and the high degree of randomness in the data, we

considered the best predictor for our ML-MPC application. Thus,

given the results in Table 4.5 for both daily and full horizon, the

performance of LGBM was found to be the best and as such was

considered for the forecasting of EV charger demand.

� Highlights:

▶ EV Demand Forecasts did not have high accuracy, how-

ever, did is not a result of the models but rather the data

set itself. As shown in our work, the data was very sparse

and in addition charging events were very random (even

after aggregation). These issues with the data are largely

because these chargers are only available to occupants

of the building and as such the ratio of EV users to the

number of chargers is low. Potentially, as EV penetration

increases, the predictability of charging is also expected

to increase.



76 4 Direct Flexibility for Individual and Collective Self-Consumption

Figure 4.16: Comparison of ML and

Physical model EV charger demand

forecasts with the ground truths for

(a) summer (5th July – 12th July 2022)

and (b) winter (5th January – 12th Jan-

uary 2022) week (Jupyter Notebook

available online at GitLab: Compari-

son of forecasting models).

6: Minimizing the NEEG implies

maximizing the self-consumed en-

ergy as explained in chapter 3.1. We

only consider the NEEG as an objec-

tive function for the optimization.

4.4.2 Optimal Dispatch of Direct and Indirect Flexibilities

Having developed the forecasting component of the ML-MPC, we

now focus on the optimization component which we developed

using a Mixed Integer Linear Programming (MILP) approach as

was discussed in chapter 3.

In this instance, the objective function was to maximize self-

consumption which was achieved by minimizing the Net Energy

Exchange with the Grid (NEEG)
6
.

Thus the MILP optimization approach considered utilized the same

formulation described in chapter3.2.2. (eqn 3.1 - 3.11). However,

because the forecasts considered an aggregated EV charger demand

equations 3.8 - 3.11 were modified such that:

𝐸𝑎𝑔𝑔𝑟𝑒 𝑔𝑎𝑡𝑒𝑑𝑐 ℎ𝑎𝑟𝑔𝑒𝑟𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
= 𝑃𝑐ℎ𝑎𝑟𝑔𝑒𝑟𝑠(𝑡) × 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 (4.4)

Where 𝐸𝑎𝑔𝑔𝑟𝑒 𝑔𝑎𝑡𝑒𝑑𝑐 ℎ𝑎𝑟𝑔𝑒𝑟𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
is the predicted aggregated daily

energy consumed by the EV chargers and 𝑃𝑐ℎ𝑎𝑟𝑔𝑒𝑟𝑠 (t) is the

https://gricad-gitlab.univ-grenoble-alpes.fr/NanaKofi/thesis_energy_flexibility/-/blob/main/notebooks/Chapter_4_Comparison_of_Forecasting_Models.ipynb
https://gricad-gitlab.univ-grenoble-alpes.fr/NanaKofi/thesis_energy_flexibility/-/blob/main/notebooks/Chapter_4_Comparison_of_Forecasting_Models.ipynb
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decision variable for the aggregated charging stations (i.e., the

shiftable load) and is defined as:

𝑋∑
𝑥

𝑇∑
𝑡

𝑃𝑐ℎ𝑎𝑟𝑔𝑒𝑟𝑥
(𝑡) (4.5)

And consequently, the operating hours of the building were inte-

grated such that:

𝑃𝑐ℎ𝑎𝑟𝑔𝑒𝑟𝑠(𝑡) × 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 = 0, 𝑡 < 𝑇𝑜𝑝𝑒𝑛𝑜𝑟𝑡 > 𝑇𝑐𝑙𝑜𝑠𝑒 (4.6)

Given that 𝑇𝑜𝑝𝑒𝑛 and 𝑇𝑐𝑙𝑜𝑠𝑒 are the opening and closing times of

the building. The energy balance (eqn 3.10) was modified to:

𝑃bat in
(𝑡) + 𝑃batout

(𝑡) − [𝑃load(𝑡) + 𝑃chargers(𝑡)] + 𝑃𝑃𝑉 (𝑡) + 𝑃import(𝑡) + 𝑃export(𝑡) = 0 (4.7)

Such that 𝑃bat in
(𝑡) (t) and 𝑃batout

(𝑡) are the battery charging and

discharging power, 𝑃load(𝑡)+𝑃chargers(𝑡) is the total consumption of

the building (i.e. the sum of building demand and charger demand

respectively). 𝑃𝑃𝑉 , 𝑃import(𝑡) and 𝑃export(𝑡) are the power output

of the solar PV system, the import power from the grid, and the

export power from the grid respectively. Lastly, the main indicator

self-consumption (eqn 3.11) was redefined as:

Self − consumption =

∫ 𝑇

𝑡
min

[
𝑃𝑃𝑉 (𝑡) − 𝑃𝑏at

(𝑡) − 𝑃batout
(𝑡) − 𝜉(𝑡),

[
𝑃load(𝑡) + 𝑃chargers(𝑡)

] ]∫ 𝑇

𝑡
𝑃𝑃𝑉 (𝑡)

(4.8)

Where 𝜉(𝑡) refers to the system losses of the solar PV system.

Having defined both the forecasting and optimization components

required for the ML-MPC, in the subsequent sub-chapter we apply

the ML-MPC to the battery in our experimental setup.

4.4.3 Case Study: Model Predictive Controller for the

Direct Flexibility in the Predis-MHI Building

Having developed both the forecasting and optimization compo-

nents of the ML-MPC, the approach was implemented using the

battery of the Predis-MHI building. However, because the battery

was installed off-site, and there is no existing contract that permits

the export of energy from the off-site building onto the grid, the

tests carried out only permitted a maximum discharge of 1kW as

can be seen in Figure 4.17. The Measurements show that the BMS

of the battery generally respected the control signals and allowed
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Figure 4.17: Comparison of the con-

trol signal (requested power) and

measured power from the Predis-

MHI battery (available online at Git-

Lab: MPC implementation)

for the design of a Digital Twin of the battery to be implemented

(Figure 4.17).

From Figure 4.17, we can deduce that the control signals are

treated as maximum and minimum energy thresholds, as such, we

implemented the digital twin such that:

𝑃battery𝐷𝑇
(𝑡) =

{
min[𝑃battery𝑀𝐼𝐿𝑃

(𝑡), 𝑃𝑃𝑉
measured

(𝑡)], if 𝑃battery𝑀𝐼𝐿𝑃
(𝑡) > 0

max[𝑃battery𝑀𝐼𝐿𝑃
(𝑡),−𝑃load

measured
(𝑡)], if 𝑃battery𝑀𝐼𝐿𝑃

(𝑡) ≤ 0

(4.9)

Where 𝑃battery𝐷𝑇
(𝑡), 𝑃battery𝑀𝐼𝐿𝑃

(𝑡), 𝑃𝑃𝑉
measured

(𝑡) and 𝑃load
measured

(𝑡)
are the battery power from the digital twin, the battery power

computed by the MILP, the measured solar PV power, and the

measured demand of the building for timestep 𝑡 respectively.

Additionally, to ensure the lower and upper state of charge limits

were respected:

𝑃battery𝐷𝑇
(𝑡) =

{
𝐸battery

max

− 𝐸battery 𝐷𝑇
(𝑡 − 1), 𝐸battery𝐷𝑇

(𝑡) > 𝐸battery
max

𝐸battery
min

− 𝐸battery𝐷𝑇
(𝑡 − 1), 𝐸battery𝐷𝑇

(𝑡) ≤ 𝐸battery
min

(4.10)

Where 𝐸battery
min

and 𝐸battery
max

are the minimum and maximum

allowed energy in the battery (i.e. the minimum and maximum

SOCs) respectively and 𝐸battery 𝐷𝑇
(𝑡) is the energy in the battery at

step 𝑡.

Using this formulation, we devised three scenarios for evaluating

the performance of the ML-MPC, these are:

1. Perfect Predictor Scenario: For this scenario, we assumed

that the solar PV, demand, and EV Charger demand profiles

for the next day were perfectly predicted. Hence the results

from this scenario could be considered the global optimal

https://gricad-gitlab.univ-grenoble-alpes.fr/NanaKofi/thesis_energy_flexibility/-/blob/main/notebooks/Chapter_4_MPC_implementation.ipynb
https://gricad-gitlab.univ-grenoble-alpes.fr/NanaKofi/thesis_energy_flexibility/-/blob/main/notebooks/Chapter_4_MPC_implementation.ipynb
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2. ML-MPC Scenario: this scenario considered the ML predic-

tors discussed in this chapter for the prediction of the solar

PV, demand, and EV Charger demand profiles for the next

day. Thus, the optimal solution here integrates the prediction

errors.

3. ML-MPC and Digital Twin Scenario: in this scenario, the

battery charge/discharge schedule computed by the MILP

in the ML-MPC scenario is used as control signals for the

digital twin of the battery. Thus, this scenario allows us to

assess the performance of the ML-MPC.

Given the above scenarios, the results shown in Figure 4.18 were

obtained. The battery power from the digital twin (blue curve) is

seen to charge and discharge lower amounts of energy relative to

the perfect predictor and ML-MPC scenarios. This behavior is due

to the reactive nature of the BMS of the battery which, to an extent

reduces the errors associated with the forecasts of the ML-MPC.

Figure 4.18: Comparison of the bat-

tery output for the Machine Learn-

ing based Model Predictive Con-

troller (ML-MPC) (red) and ML-

MPC and digital twin scenarios

(blue) for (a) a typical summer day

and (b) a typical winter day (avail-

able online at GitLab: MPC imple-

mentation)

.

Comparing the monthly self-consumption of results from the three

scenarios (see Table 4.6 and Figure 4.19) and in addition, an MPC

which only used Naïve predictors, the perfect predictor was seen

to have achieved higher self-consumption rates relative to the other

three scenarios. Figure 4.19 also shows that the use of the ML-based

forecast improved the performance of the ML-MPC in most of the

studied months (January being the exception). Furthermore, the

https://gricad-gitlab.univ-grenoble-alpes.fr/NanaKofi/thesis_energy_flexibility/-/blob/main/notebooks/Chapter_4_MPC_implementation.ipynb
https://gricad-gitlab.univ-grenoble-alpes.fr/NanaKofi/thesis_energy_flexibility/-/blob/main/notebooks/Chapter_4_MPC_implementation.ipynb
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Table 4.6: Summary of Monthly self-consumption results for the studied scenarios

Month

Natural Self-

Consumption

Perfect

Predictor

ML-MPC

ML-MPC and

Digital Twin

Naive

January 59.27% 84.75% 70.36% 72.54% 70.78%

February 51.46% 70.85% 56.69% 59.65% 59.59%

March 50.98% 72.24% 61.54% 64.45% 60.73%

April 39.56% 65.28% 53.22% 56.24% 48.05%

May 37.39% 57.92% 47.57% 51.09% 45.55%

June 35.41% 51.91% 38.33% 45.15% 35.90%

July 28.90% 47.53% 39.06% 41.41% 37.13%

August 26.18% 47.23% 36.36% 39.08% 35.59%

September 38.99% 60.65% 54.30% 56.92% 48.15%

October 53.23% 74.40% 60.08% 66.81% 58.32%

November 65.19% 89.40% 70.75% 77.97% 68.95%

Full Period 39.01% 59.75% 48.64% 52.27% 46.51%

ML-MPC and digital twin scenario was observed to have surpassed

the ML-MPC scenarios (ML and Naïve predictors) as well. This

phenomenon could be attributed to prediction errors (see Table 4.7).

Given the mathematical expression of self-consumed energy:

𝐸self-consumed = min

[
𝑃𝑝𝑣(𝑡) − 𝑃battery(𝑡), 𝑃load(𝑡)

]
× timestep

(4.11)

Where𝑃𝑝𝑣(𝑡),𝑃battery(𝑡), and𝑃load(𝑡) are the solar PV power, battery

power and the load power at timestep 𝑡. Thus, an overprediction of

the solar PV output would have the tendency to result in a battery

charging power that is higher than the actual solar PV output,

consequently resulting in a negative self-consumed energy value

which would reduce the self-consumption rate.
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Table 4.7: Comparison of monthly energy predicted to monthly measured energy for PV production, building demand,

and EV charger demand

Consumption [kW] Solar Production [kW] EV Chargers [kW]

Predicted Measured Predicted Measured Predicted Measured

January 1730.82 1929.00 732.11 928.00 544.42 766.97

February 1686.39 1796.00 1033.09 1267.00 591.78 694.96

March 1897.91 2194.00 1976.67 2083.00 661.74 632.92

April 1699.84 1952.00 2231.72 2477.00 441.44 350.96

May 1661.03 1875.00 2903.25 2969.00 447.55 378.96

June 1405.30 1650.00 3069.72 2988.00 448.51 479.98

July 1440.47 1692.00 3295.63 3467.00 420.22 305.97

August 1211.62 1427.00 2853.19 2872.00 167.43 150.00

September 1479.35 1664.00 2124.15 2144.00 558.61 633.98

October 1591.45 1776.00 1640.75 1379.00 609.59 554.95

November 980.62 978.00 384.48 270.00 356.80 408.98

Figure 4.19: Comparison of monthly self-consumption for the perfect predictor, Model Predictive Controller, and ML-MPC

and digital twin scenarios (available online at GitLab: MPC implementation)

https://gricad-gitlab.univ-grenoble-alpes.fr/NanaKofi/thesis_energy_flexibility/-/blob/main/notebooks/Chapter_4_MPC_implementation.ipynb
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4.5 Conclusion

In this chapter, we have examined the mobilization of direct

flexibility within the energy system of buildings, with an emphasis

on battery storage as direct flexibility. We addressed concepts

related to the control of batteries, in particular the increasing

complexity and computational cost related to the control of battery

energy storage systems.

Gitlab Repository

The code and associated note-

books for the solutions proposed

in this chapter can be found in

the following repositories:

1. comparison of rule-

based and optimization-

based control strategies:

GitLab: Comparison of

control strategies

2. Implementation and

comparison of machine

learning forecasting

models for consump-

tion and production

profiles of Predis-MHI:

GitLab: Comparison of

forecasting models)

3. Implementation of

Machine Learning

based Model Pre-

dictive Controller

(ML-MPC) for Predis-

MHI: GitLab:MPC

implementation)

Additionally, see Appendix B.1

for a list of all available note-

books

Furthermore, we propose a machine learning-based Model Pre-

dictive Controller for the control of the 50 kWh Battery in our ex-

perimental setup (the Predis-MHI building). Despite being flawed

(forecasting errors), the ML-MPC yielded promising results by

achieving an overall self-consumption rate of 48.64%, thus a short-

fall of 11.11% from the global optimal (i.e., using the perfect predic-

tors only).

Due to constraints regarding the installation of the battery in the

Predis-MHI building, the battery was located off-site restricting

the practical implementation of the ML-MPC. A digital twin of the

battery was however implemented and when the control signals

from the ML-MPC were applied to this digital twin, an increase in

the building’s estimated self-consumption from 48.64% to 52.27%

( a decrease in the deviation from 11.11% to 7.48% from the global

optimal). Further, the results showed an improvement in self-

consumption of 2.13% resulting from the use of ML predictors in

place of the Naïve predictors.

Furthermore, the ML predictors for solar PV and the demand

yielded high accuracy predictions, however, when applied to the

EV charging demand the predictions had high levels of error

and consequently low accuracy. This problem was not a result of

the ML methods, but rather the data itself. As already indicated,

the data was sparse and very random in nature. Both issues are

the result of a low number of EV users relative to the number of

available charging stations, and the data’s predictability is expected

to improve as the number of EV users increases. Additionally, data

augmentation methods can be applied to the data as a means to

improve the predictability of the data, this is however not covered

in the scope of this thesis.

The use of the ML-MPC allows us to gain an initial insight into

the intricate interplay between indirect and direct flexibilities (in

this context by considering the demand of EV chargers as shiftable

and flexible loads). To delve deeper into this interaction between

direct and indirect flexibilities, the subsequent chapter considers

an Agent-Based simulation approach to simulate the behavior

of EV drivers and assess the consequence of human actions (the

indirect flexibility) on the building’s energy performance.

https://gricad-gitlab.univ-grenoble-alpes.fr/NanaKofi/thesis_energy_flexibility/-/blob/main/notebooks/chapter_4_Comparison_of_control.ipynb
https://gricad-gitlab.univ-grenoble-alpes.fr/NanaKofi/thesis_energy_flexibility/-/blob/main/notebooks/chapter_4_Comparison_of_control.ipynb
https://gricad-gitlab.univ-grenoble-alpes.fr/NanaKofi/thesis_energy_flexibility/-/blob/main/notebooks/Chapter_4_Comparison_of_Forecasting_Models.ipynb
https://gricad-gitlab.univ-grenoble-alpes.fr/NanaKofi/thesis_energy_flexibility/-/blob/main/notebooks/Chapter_4_Comparison_of_Forecasting_Models.ipynb
https://gricad-gitlab.univ-grenoble-alpes.fr/NanaKofi/thesis_energy_flexibility/-/blob/main/notebooks/Chapter_4_MPC_implementation.ipynb
https://gricad-gitlab.univ-grenoble-alpes.fr/NanaKofi/thesis_energy_flexibility/-/blob/main/notebooks/Chapter_4_MPC_implementation.ipynb
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In this chapter, we simulate the behaviour of EV users with respect to the
charging of the vehicles (indirect flexibility). This simulation approach
allowed us to examine the effect of the interplay between direct and indirect
flexibilities in a building and how this interplay impacts the energy sub-
system of a building. Our proposed approach was a co-simulation tool
consisting of a Mixed Integer Linear Programming optimization and
Multi-Agent System based simulation components that allow us to have
a first insight into the interplay between these two types of energy
flexibilities.

5.1 Influencing Human Behavior: Collective

Self-Consumption and Local Energy

Communities as a Vector for Change

Collective self-consumption allows for the pooling and sharing

of local (usually renewable) energy resources. This is, however,

one of the many services that a local energy community can

provide. Detailed below are some key services that local energy

communities can provide:

1. Generation: In this scheme, members typically do not con-

sume any of their locally produced energy and as such act as

energy generators. Thus, this type of community sells all the

generated energy (usually from solar, biomass, and wind) to

an energy supplier [166].

2. Energy Sharing: In this scheme, the goal is to pool and share

the available local energy resources. Thus, self-consumption

is a central theme for such a local energy community [166].

This approach embodies collective self-consumption and

enables concepts such as peer-to-peer energy trading [167].

3. Demand Side Energy Flexibility: In this scheme, the ob-

jective is to provide energy flexibility services to the utility

operator (or even a building). The services (typically achieved

by aggregating resources) provided by such communities

include but are not limited to; peak-shaving, valley filling,

and both upwards and downward modulation of demand

[166], [168].

4. Electric Mobility: In such an energy community, the goal is to

provide sustainable transportation and energy management

(i.e., flexibility) services. Services provided in this scheme
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1: Factors here include but are not

limited to their emotional state, the

people and environment around

them and their immediate past in-

teractions.

include but are not limited to car-pooling, ride sharing, and

charging station operations.

In this Chapter, we explore the interaction between direct flexibility

(i.e., Battery Energy Storage System) and indirect flexibility (i.e.,

plugging in and unplugging of EVs). Our primary focus centers

on addressing the fourth sub-question posed in Chapter 2 which

involves studying the impact of the interaction between the direct

and indirect flexibilities on the global energy performance of the

Predis-MHI building.

In an ideal situation, such a study would require a comprehensive

study with human participants (as it involves and is directly

impacted by human behavior) which would ultimately provide

valuable insights into actual human behavior and real-life results.

The scope and the limitations of our work do not however allow

for such a study, and thus, we defaulted to a simulation-based

study using Multi-Agent Systems (MAS) to model both the human

behavior and the socio-technical interactions between the social

and technical components of the system.

In the subsequent sections, we delve into existing literature con-

cerning the intricate topic of modeling and simulating energy

communities and proceed to discuss the MAS-based simulation

considered.

5.2 Modeling Local Energy Communities: A

State of the Art

Local energy communities undoubtedly are a socio-technical sys-

tem, and their effectiveness is directly influenced by both the

individual and collective behavior of participants in the commu-

nity. Thus, in order to model the community, it is imperative to first

model the individual participants (these are the building blocks of

the community).

Huruax [169] in his work describes human activity as a complex

system composed of a combination of several entities whose in-

teractions result in a global behavior that is difficult to accurately

predict. Albouys-Perrois [170] further emphasizes that several el-

ements characterize this complex system that is human activity,

however, key amongst them is variability (different people will

make different choices given the same scenario). This variability

can be expanded to include intra variability, that is given the same

scenario, the same individual may make a different decision when

one or more factors
1

change.



5.2 Modeling Local Energy Communities: A State of the Art 85

2: These classifications are:

▶ Trading platforms

▶ Blockchain

▶ Game theory

▶ Simulation

▶ Optimization

▶ Algorithms

3: Direct energy trade between con-

sumers and prosumers

4: self-sufficiency (self-production)

of a building (or community) evalu-

ated using a local on-site production

capacity that results in a net zero

energy balance (consumed energy

equals produced energy). In simple

terms, this natural self-sufficiency is

a measure of how well a load profile

is adapted for an energy generation

source

Soto et al [171] in their review of peer-to-peer energy trading iden-

tified six
2

main classifications for approaches used in the literature

on peer-to-peer
3

energy trading. However, of particular interest

to us in this thesis are game theory, simulation, and optimization

since these focus on modeling the system. Interestingly, Soto et al

[171] point out that some works have used simulation approaches

to validate game theory models [172], indicating that it is possi-

ble to use a combination of the 6 categories they outlined. Thus,

considering our use case, two main possibilities exist to simulate

our system as indicated by Simoiu et al [55]; optimization and

Game theory. These approaches are detailed in the subsequent

subsections.

5.2.1 Optimization as an Approach for Modeling Local

Energy Communities

Optimization approaches are mathematical representations of sys-

tems that are usually relevant for either maximizing or minimizing

a parameter of that system. The use of optimization-based ap-

proaches for modeling local energy communities has largely been

focused on maximizing financial benefits (minimizing costs for

example) and balancing supply and demand in an energy system

[173]. Whilst these approaches will result in a theoretical optimal,

they either ignore the human behavior component or assume

optimal behavior from humans. Hodencq et al [26] used a mixed

integer linear programming optimization approach to dimension

a solar system for a local energy community composed of 20

residential buildings, their model considered positive behavioral

feedback, which was modeled as a linear annual decrease in de-

mand. Coignard et al [174] using the same local energy community

from [26] modeled and included demand-side energy flexibility

services by using a MILP optimization to modify the demand

curve such that a target natural self-sufficiency
4

was achieved.

Simoiu et al [55] indicate that a major drawback of the optimization

approach is that it requires all the data related to the problem to be

included in the definition of the problem, however, human actors

have implicit knowledge and information that remains unknown

to the model and in most cases is difficult to model. However, in

a lot of use cases, not all aspects of the human actor’s cognitive

process need to be replicated in a model [170]. Thus, MAS-based

simulations can be combined with optimization approaches to

provide a solution that is representative of the real complex system

as was presented by Denysiuk et al [175] and Karfopoulos et al

[176].
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5.2.2 Game Theory Applications for Modeling Local

Energy Communities

Baaci et al describe a game as “a situation in which the benefit or cost
reaped by each decision maker (called player) from an interactive situation
does not only depend on its own decisions but also those taken by other
players”. Building on this definition, Bacci further defines game

theory as a “branch of mathematics that enables the modeling

and analysis of the interactions between several players who can

have conflicting or common objectives”. Game theory has been

demonstrated to be effective at modeling the decision processes

involved in peer-to-peer energy trading [177–179] (and by extension

collective self-consumption). Two key categories of game theory

algorithms exist, these are

1. Non-cooperative game: In such a game, each player is only

concerned with their own personal benefit, and will conse-

quently make a decision that maximizes their gain and is

based on an assessment of the historical decisions of other

players in the game [170], [55]

2. Cooperative games: In this type of game, each player takes

the costs and benefits of other players into consideration

when deciding. As such a player’s decision is made such that

it maximizes the collective gain of all players and not just

their gain [170].

Cooperative games capture and reflect the true spirit behind the

concept of local energy communities, however, as pointed out in

[171], approaches in literature that consider cooperative games

tend to model the players as rational and always seeking the

greater good, in reality however, this is usually far from the truth.

This brings to bear the complexity involved in modeling the true

behavior of a player, especially in the context of a cooperative game

where the player is expected to be rational and put the greater

good above their personal interests.

On the other hand, Simoiu et al [55] indicate that Multi-Agent

System based simulations present an equally interesting alternative

solution for modeling the interactions in an energy community.

This solution models the trading (or energy-sharing) mechanisms

within the community using several agent types and scenarios.

Thus, a combination of game theory (both cooperative and non-

cooperative) and MAS-based simulation present a useful solution

for simulating human behavior in the context of a local energy

community.
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5.3 Multi-Agent System Based Approach for

Simulating EV User Behavior

As already indicated in sub-chapter 5.2.1, MAS approaches can

be combined with either an optimization or game theory-based

approach. However, for our use case (assessing the impact of EV

user behavior on the global energy system of a non-residential

building) we consider a MAS approach in tandem with a MILP

optimization. Game theory was not considered as the human

actors are expected to make decisions without consideration of the

decision of other participants. Additionally, we modeled the MAS

using the MESA [180] library in Python.

Given that human behavior is a complex system and is difficult to

accurately represent with a model [170], we focus on the aspects of

an EV user’s behavior that have direct consequences on a building’s

energy system, these are:

1. The decision to drive their EV to the building (in our case

this is a drive to work).

2. The time an EV user decides to arrive at the building

premises.

3. The decision to plug or unplug their EV from the charging

infrastructure.

4. The decision to stay on-site or leave the premises.

Figure 5.1: Flow chart representa-

tion of EV users’ decisions for Multi-

Agent System based simulation of

members (EV users) in an energy

community that offers demand-side

energy flexibility (load shifting) at

the building scale.

Thus, using these four decision variables (see Figure 5.1, we can

simulate the behavior of EV users that would consequently impact
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5: Positively here implying the

agent acts in an ideal manner and

strictly respects the signals received

the energy performance of the building. Furthermore, since we

consider the EV users as a community, we adopt the method

proposed by Simoiu et al [54] and model the willingness of a

community’s members to participate. Thus, we categorize the

members into three groups:

1. Enthusiastic: This group of participants is highly motivated

to effect a change and is thus very willing to partake in

community-related activities. If we consider the game theory

perspective, these participants would be seen as being coop-

erative, thus, this group is considered to be the ideal human

in the control system. For the purpose of simulation, the

willingness to participate (𝑊𝑖𝑙𝑙ℎ𝑎) of this category of human

agents is denoted by a value of 1. This value represents the

probability that the agent would respond positively
5

to

any signals they receive during the simulation. The (𝑊𝑖𝑙𝑙ℎ𝑎)

parameter is used as a part of the decision probability for

the human agent expressed in eqn 5.1.

2. Neutral: This classification refers to participants who have

some level of motivation and are willing to participate in

the community, however, their level of interest is less than

ideal. In the simulation, the willingness to participate in this

category of agents is represented by a value of 0.5 (likelihood

to participate value used in eqn 5.1).

3. Apathetic: This group has almost no motivation to partici-

pate, their participation in community-related activities is

very limited and is usually to serve their own interest (non-

cooperative). This group can be considered to be non-ideal.

The willingness to participate in this group is denoted by a

value of 0 (likelihood to participate value used in eqn 5.1).

Using the defined criteria above, we conceptualized two ap-

proaches for simulating the impact of EV user behavior on the

building’s energy performance. These approaches are categorized

based on the computation and dissemination of the optimal charg-

ing strategy to the human agents. To enhance comprehension and

reduce the cognitive strain associated with processing complex

information, we adopted a color-coded signaling strategy. Further-

more, we envision that the use of this color-coded signaling would

also serve the purpose of simplifying the visualization of these

social signals. The color-coded signals considered are detailed as

follows:

1. Red: Charger is available however charging is discouraged

at this time. If an EV is plugged in, red also indicates that

the vehicle must be displaced.

2. Green: Charger is available and charging at this time is

encouraged. i.e., it is a suitable time to charge
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6: For the simulation, we consid-

ered the signal to be green when

𝑠𝑖𝑔𝑛𝑎𝑙 was greater than zero, and

red when 𝑠𝑖𝑔𝑛𝑎𝑙 was less or equal

to zero.

3. Blue: The charger is not available because another EV user

is using the charging facility

4. Black: The charger is not available because the building is not

accessible, or the charging facility has broken down. Thus,

charging is not possible

Furthermore, for the simulation approaches devised, we defined

four principal types of agents, these are:

1. Human Agents: This refers to the Human-in-the-control sys-

tem which in this case refers primarily to the drivers/owners

of EVs in the Predis-MHI building. The separation of the

Human actors is necessary because it allows for the testing

of concepts such as fleet sharing in such an energy commu-

nity. Furthermore, this agent implies it is possible to test

scenarios where cooperation between human agents allows

for a human agent that is not available to designate another

human agent (who is available) to plug or unplug the vehicle

on behalf of the EV owner. This agent provides information

related to their availability.

These agents decide when to plug in or unplug their vehi-

cle, and this decision is modeled as a probability which is

determined by the human agent’s vehicle SOC and their

willingness to participate. A key assumption we made con-

cerning an EV users to charge was that the decision to charge

is based on the state of charge of the EV, this is represented

as 1 − 𝑆𝑂𝐶𝐸𝑉 in eqn 5.1. Additionally, we assumed that the

influence of the EV’s SOC had the same influence on the

decision to charge as the 𝑊𝑖𝑙𝑙ℎ𝑎 parameter. Hence the final

likelihood to charge was an average of these two probabilities.

This probability of participation is expressed mathematically

as:

Prob participate =


(1−𝑆𝑂𝐶𝐸𝑉 )+𝑊𝑖𝑙𝑙ℎ𝑎

2
, if 𝑠𝑖𝑔𝑛𝑎𝑙 > 0

1 − (1−𝑆𝑂𝐶𝐸𝑉 )+𝑊𝑖𝑙𝑙ℎ𝑎
2

, if 𝑠𝑖𝑔𝑛𝑎𝑙 ≤ 0

(5.1)

Where𝑃𝑟𝑜𝑏𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑒 is the probability to participate,𝑆𝑂𝐶𝐸𝑉

is the State of Charge of the EV, 𝑠𝑖𝑔𝑛𝑎𝑙 is the social signals
6

sent by the coordinator agent to the human agents (ℎ𝑎) and

𝑊𝑖𝑙𝑙ℎ𝑎 is the willingness to participate. The formulation in

eqn 5.1 effectively captured the basic assumption of charging

decisions being tied to Electric Vehicle’s SOC, whilst allowing

for the 𝑤𝑖𝑙𝑙ℎ𝑎 parameter to be taken into account.

Additionally, the human agent must decide when to arrive at

work, if they will stay the entire period on-site, and when to

leave for their homes. These decisions are based on a proba-

bility which is derived from a sigmoid function expressed
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mathematically as:

𝑃𝑟𝑜𝑏move(𝑡) =
1

1 + 𝑒(−𝑘×(𝑡−𝑥0)) (5.2)

Where 𝑡 is the hour of the day, 𝑘 represents the steepness of

the curve and 𝑥0 is the midpoint of the curve (i.e., the value

of 𝑡 for which 𝑝𝑟𝑜𝑏𝑚𝑜𝑣𝑒 is equal to 0.5). This function was

used such that:

a) If the human agent’s location is at home or another

location (denoted “other”) between the hours of 7:00

and 13:00 there is a high probability that the move to

the office (0.65 to 0.85)

b) If the agent’s location is not at work after 12:00, then

there is a low likelihood that they decide to move to the

office.

c) If the agent is at the office after 16:00, then there is a

high likelihood that they will move out of the office.

2. EV Agents: his agent represents the EV. They are assigned

an owner when initialized and are expected to provide

information related to the specific vehicle such as the current

battery State of Charge (SOC) and energy required (to charge

to 100% SOC).

3. Charger Agents: These are stationary agents that represent

the charging stations, they provide data on their availability

and if a human agent decides to charge, they provide the

charging energy requested. The charging power per timestep

is defined as:

𝑃𝑐ℎ𝑎𝑟𝑔𝑒(𝑡) = min

(
𝐸𝑏𝑎𝑡(𝑡) − 𝐸𝑏𝑎𝑡(𝑡)

𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝
, 𝑃𝑐ℎ𝑎𝑟𝑔𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑙

)
(5.3)

Where𝑃𝑐ℎ𝑎𝑟𝑔𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑙
,𝐸𝑏𝑎𝑡𝑐𝑎𝑝 and𝐸𝑏𝑎𝑡(𝑡) are the nominal power

of the charger, the battery capacity and the energy remain-

ing in the battery respectively, thus,

𝐸𝑏𝑎𝑡_𝑐𝑎𝑝−𝐸𝑏𝑎𝑡_𝑐𝑎𝑝

𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 is the

maximum power that can be charged into the battery.

4. Coordinator Agent: This refers to the central computer,

which is responsible for collecting all the data, devising an

optimal strategy, and transmitting the strategy to the rele-

vant agents (in this case the human agents). The coordinator

proposes an optimal strategy to the human agents as calcu-

lated using a Mixed Integer Linear Programming approach

(detailed in the subsequent sub-chapters).

Additionally, for each timestep, the agents (humans) are activated

randomly and not sequentially or following a specified rule, this

prevents some agents from having an advantage. To illustrate, if the
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agents were activated sequentially, Human_Agent_1 would always

be activated first and would always have access to the chargers

before any other human agent.

Concisely, considering the three types of agents, the signaling, and

the defined willingness to participate, we detail the two proposed

approaches for simulating energy communities in the subsequent

sub-chapters.

5.3.1 Generalized Approach for Electric Vehicle Energy

Community Co-Simulation

For this approach, there are two components; the optimization

component and the simulation component. The optimization com-

ponent is realized using a MILP optimizer whilst the simulation

component is achieved using MAS.

The optimization entails using the predicted PV production, de-

mand, and the EV charger demand (this comes from the EV agents)

to optimize the use of the 50-kwh stationary battery and the

plugging and unplugging of EVs. Thus, for this approach, the

availability of human agents is not required for determining the

optimal scheduling of the battery (i.e., the direct flexibility) and the

scheduling of EV charging. The optimal strategy is calculated at the

start of each simulation day and the signaling is then subsequently

sent to the human agents on an hourly basis.

Figure 5.2: Generalized approach for simulating EV user behavior showing step 1: (left) the charging schedule: (left) the

charging schedule estimation and step 2(right): the signaling of the EV users.

Based on the optimal schedule obtained from the MILP, the corre-

sponding signals (one signal per timestep) are then sent to each

human agent. Each human agent receives the same signal and

decides to charge or not charge based on the received signal, the
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SOC of their EV, and their willingness to participate (see Figure

5.2). If the decision is to charge, then the human agent checks for

an available charging point and proceeds to use one if there are

any such charging points unoccupied.

The optimization considered for this approach considered the

problem definition in Chapter 3.2.2 (eqns 3.1 - 3.10). Subsequently,

the signals were extracted from the optimal charging schedule and

transmitted to the human agents in the MAS-based simulation.

5.3.2 Individualized approach for Electric Vehicle Energy

Community Co-Simulation

Similar to the Generalized approach, this approach also considers

two components, the optimization and simulation components. In

this approach, however, the schedule of the human actor is a key

component for the optimal scheduling of the battery and chargers.

Thus, the day ahead schedule (i.e., the availability) of the human

agent must be known and transmitted to the coordinator agent at

the beginning of the day simulation.

Based on this schedule, the MILP optimizer proposes an optimal

EV charging schedule that is adapted to the additional constraint

induced by the availability of human agents. Thus, for this ap-

proach, each timestep has n number of signals, where n is the

number of human agents (specifically EV owners).

The problem formulation for the individualized approach builds

on the MILP formulation considered in the generalized approach.

Thus, for this optimization, we still consider the problem formu-

lation from chapter 3.2.2, specifically eqns 3.1 - 3.10. However, to

consider the schedules of the human agents, the objective function

as defined in eqn 3.1 was modified such that:

objective = min

∑
𝑡

𝐸unmet +
[
𝑃import (𝑡) − 𝑃export (𝑡)

]
× timestep (5.4)

Where

[
𝑃import (𝑡) − 𝑃export (𝑡)

]
× 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 refers to the NEEG

7

7: Net Energy Exchanged with the

Grid and is the sum of import power

and export power (Note: export

power 𝑝𝑒𝑥𝑝𝑜𝑟𝑡 is negative.

[54] and 𝐸𝑢𝑛𝑚𝑒𝑡 is the total unsatisfied energy demand of the EV

charging stations and is expressed mathematically as:

𝐸unmet =

𝑋∑
𝑥=1

𝐸demand EVs (𝑥) −
𝑇∑
𝑡=0

𝐶𝐻∑
ch=1

𝑃charger( ch, 𝑡) × timestep (5.5)

Where

∑𝑋
𝑥=1

𝐸demand EVs (𝑥) is the total demand of the EVs and

𝑥 is a member of the set of EVs defined as {1, 2, . . . , 𝑋} and

𝑃charger(𝑐ℎ, 𝑡) × 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 is the energy consumed by the charger
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denoted by 𝑐ℎ (𝑐ℎ is a member of the set{1, 2, .., 𝐶𝐻}) at timestep

𝑡.

To determine the time for each EV user to plug in and unplug

their vehicle (i.e., the personalized optimal charging schedule), the

constraints below were employed:

𝑇unplug (𝑥, 𝑐ℎ, 𝑡) = 𝑇plug in (𝑥, 𝑐ℎ, 𝑡) =
{

0, if 𝐸𝑉avail (𝑥, 𝑡) = 0

0, if hour < 𝑇open or hour > 𝑇close

(5.6)

Else,

𝐶𝐻∑
𝑐ℎ=1

𝑇plug in(𝑥, 𝑐ℎ, 𝑡) ≤ 1 (5.7)

𝐶𝐻∑
𝑐ℎ=1

𝑇unplug (𝑥, 𝑐ℎ, 𝑡) ≤ 1 (5.8)

Where 𝑇plug in(𝑥, 𝑐ℎ, 𝑡) and 𝑇unplug (𝑥, 𝑐ℎ, 𝑡) are binary values for

determining the time to signal a plug in or unplug event for EV

designated as 𝑥 at the charger 𝑐ℎ, and 𝐸𝑉avail (𝑥, 𝑡) refers to the

schedule of EV 𝑥. Having defined a constraint that ensures that the

EV owner plugs in and unplugs their EV, it is essential to ensure

that a plug-in event is a precursor to an unplug event, thus, the

following constraint was introduced into the problem definition:

𝐶𝐻∑
𝑐ℎ

𝑇∑
𝑡

𝑇unplug (𝑥, 𝑐ℎ, 𝑡) × 𝑡 −
𝐶𝐻∑
𝑐ℎ

𝑇∑
𝑡

𝑇plug in (𝑥, 𝑐ℎ, 𝑡) × 𝑡

{
= 0, if

∑
𝑡 𝐸𝑉avail (𝑥, 𝑡) ≤ 1

≥ 1, if

∑
𝑡 𝐸𝑉avail (𝑥, 𝑡) > 1

(5.9)

This ensures that for an EV to be considered for charging there is

more than 1 hour of availability and that 𝑇𝑢𝑛𝑝𝑙𝑢𝑔 is always greater

than 𝑇𝑝𝑙𝑢𝑔𝑖𝑛 . Furthermore, to prevent an EV owner from being

assigned a charge event multiple times during the optimization

horizon (1 day) and also to ensure multiple EVs are not assigned

to the same charger:

𝐶𝐻∑
𝑐ℎ

𝑇∑
𝑡

𝑇plug in (𝑥, 𝑐ℎ, 𝑡) ≤ 1 (5.10)

And to ensure that an EV owner receives the same number of

plug-in requests as unplug requests:

𝑇∑
𝑡

𝑇plug in (𝑥, 𝑐ℎ, 𝑡) =
𝑇∑
𝑡

𝑇unplug (𝑥, 𝑐ℎ, 𝑡) (5.11)
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Given that the availability of EV reduces the feasible region of

our optimization, the hard constraint defined in eqn 3.8 had to be

relaxed such that:

𝑇∑
𝑡=0

𝐶𝐻∑
ch=1

𝑃charger (ch,t) × timestep ≤
𝑋∑
𝑥=1

𝐸demand 𝐸𝑉𝑠(𝑥). (5.12)

Lastly, to prevent an EV user from being assigned to multiple

chargers, we added the constraint:

∑
𝑜

𝑇𝑝𝑙𝑢𝑔 in (𝑥, 𝑐ℎ, 𝑡) ≤ 1 (5.13)

Using the problem formulation defined above, we can now compute

an optimal strategy. Thus, following the optimization, each human

agent receives their personalized signal and acts accordingly on

the received signal, see Figure 5.3.

Figure 5.3: Individualized approach for simulating EV user behavior showing step 1: (left) the charging schedule

estimation and step 2(right): the signaling of the EV users.

For this application, just as was the case in the generalized approach,

the decision to charge is based on the human agent’s EV SOC,

their willingness to participate and the signal received. Given the

optimization aspects of the co-simulation have been defined, the

next sub-chapter will detail the models for the various agents and

the assumptions made in defining these agents.
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� Highlights:

▶ The proposed approaches are mainly distinguishable

by the approach to optimization. The individualized

approach is a more constrained optimization and might

not yield a global optimal result.

▶ Typically in the individualized approach, not all the

demand will be met as the availability schedule reduces

the feasible region of the solution. However, the problem

formulation takes this into account and minimizes the

unmet demand.

5.3.3 Use Case: Simulating EV User Behavior in the

Predis-MHI Building

Given the two approaches described in the preceding sub-chapters,

we considered the Predis-MHI as a use case with the parameters

detailed in Table 5.1. The simulation was carried out considering

the data from the Predis-MHI building for the year 2022 (1st January

31st December 2022) and was such that at the start of each day,

each EV would have a randomly chosen SOC between 50% and

100%. Additionally, each human agent had a nominal distance

(daily distance traveled from home to office) which was used to

estimate the energy required to drive to and from the Predis-MHI

building.

The devised co-simulation can be summarized in 3 steps as depicted

in Figure 5.4:

1. Initialization step: in this step, the MAS is initialized and

provides as an output the starting state of charge 𝑆𝑂𝐶(0) for

each EV in the simulation. Considering the starting SOC and

the daily distance to be traveled, the projected demand for

each EV (and by extension the accompanying human agent)

is estimated. Furthermore, at this stage, each human agent

generates their availability (1 for available and 0 for busy) for

the simulation horizon (24 hours in our use case).

2. Optimization Step: In this step, the projected demand and

the availability of the human agents (only for the individual-

ized approach), the current state of the battery
8

8: The battery state of charge at ini-

tialization is considered to be the last

state of charge for the previous day

(𝑆𝑂𝐶(23)) and is an output from the

battery’s digital twin (described in

chapter 4.4.3, except in the first run

of the simulation where it is a user

input

are provided

as inputs to the MILP optimizer. At the output, the optimizer

provides the optimal charging schedule for the EVs (per-

sonalized in the individualized approach) and the optimal

battery schedule.

3. Simulation Step: This step is in two phases: the first step

involves the simulation of the MAS to provide the charging
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Figure 5.4: Graphical representation

of the co-simulation tool for Local

Energy Communities

9: In summer, self-consumption is

typically low due to the high solar

PV production and relatively low

demand

profiles (from the Charger Agents) as depicted in Figure 5.5.

In this phase, behavior associated with the use of charging

infrastructure is simulated.

The second phase involves the simulation of the battery

(using the digital twin as described in chapter 4.4.3, thus, the

digital twin takes as input the EV demand (from MAS) the

building demand, and the solar PV production. The outputs

of the digital twin in this phase are the end-of-day SOC

(𝑆𝑂𝐶(23)) and the simulated battery schedule.

Self-consumption was used as the evaluation metric for assessing

the impact of the interplay between direct and indirect flexibilities.

For the period considered (July 2022), the self-consumption without

EV charging demand was evaluated to be approximately 28%
9
.

Considering the EV charging demand, the self-consumption was

evaluated to be 32%, indicating a low utilization rate for the

charging infrastructure.

Given the parameters above and the three (3) types of agents, we
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Figure 5.5: Unified Modeling Language (UML) Sequence diagram of the Multi-Agent System (MAS) component of the

proposed co-simulation

10: Monte Carlo experiments are

a broad class of computational al-

gorithms that rely on repeated ran-

dom sampling to obtain numerical

results. The underlying concept is to

use randomness to solve problems

that might be deterministic in prin-

ciple (source: Wikipedia

simulated four (4) scenarios which are detailed below:

1. Motivated Human Agents Scenario: This scenario is highly

optimistic and represents an ideal case in many regards. For

this scenario, all six human agents were considered motivated

(thus, their willingness parameter was set to 1). In order to

study the impact of these human agents on the energy sub-

system, we considered a Monte Carlo
10

simulation approach

(as was the case for all the considered scenarios). Thus, for

both the generalized and individualized approaches, the

simulation was run multiple times, and the distribution of

the self-consumption obtained is illustrated in Figure 5.6.

The results show that optimization strategies were able to

achieve high self-consumption rates (greater than 100% be-

cause of the energy in the battery at initialization). However,

in this scenario, the Generalized approach proved more ef-

fective, with the results showing a self-consumption rate of

https://en.wikipedia.org/wiki/Monte_Carlo_method
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Table 5.1: Summary of Predis-MHI

local energy community (EV) co-

simulation parameters

PARAMETER UNIT VALUE

CHARGER AGENTS

Number of Chargers - 4

Nominal Charger Power kW 7

EV AGENTS

Number of EVS - 6

Nominal Battery Capacity kWh 52

Daily Distance Considered km 12 - 30

Average Energy Consumption km/kWh 5.2

HUMAN AGENT

Availability - 1 / 0

Willingness to Participate - 0 - 1 0, 0.5, 1

Battery

Nominal Capacity kWh 50

Charging Efficiency % 98

Discharging Efficiency % 98

Minimum SOC % 20

Maximum SOC % 100

Maximum Charge/Discharge

Power

kW 40

Figure 5.6: Box and whisker dia-

gram representation for the results

of the Motivated Human Agent only

scenario (Jupyter Notebook online

at GitLab: Co-simulation)

11: This parameter is denoted by

General_MAS (no storage) for the

generalized approach and Individ-

ual_MAS (no storage)

70% for the lower bound and 67% (a 3% variation in results).

The individualized approach on the other hand yielded a

self-consumption rate of 62% (lower bound) and 64% (upper

bound). Also of interest is the self-consumption rate only

using the indirect flexibility
11

.

Given that this is an ideal (best) case, and the optimal cases

did not vary significantly between the individualized and

generalized approaches, one would expect the individualized

https://gricad-gitlab.univ-grenoble-alpes.fr/NanaKofi/thesis_energy_flexibility/-/blob/main/notebooks/Chapter_5_Co-simulation.ipynb
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approach to have performed better.

However, since in this approach, each agent receives a max-

imum of one charge (green) signal per day, an agent that

decides not to charge when they receive this signal is highly

unlikely to charge since they are most likely to respect the

do not charge/no action signals which they will receive for

the rest of the simulation period. The Generalized approach

remedies this situation as all agents will continue to receive

signals to charge provided the conditions are favorable.

2. Apathetic Human Agents Scenario: In this scenario, all Hu-

man Agents were considered to be apathetic (not motivated

to participate, and more likely to act on their own intuition).

This scenario should represent the worst case; however, we

still need to bear in mind that a Human Agent not being mo-

tivated to follow signals does not necessarily imply that their

actions would impact the system’s performance negatively.

Figure 5.7: Box and whisker diagram

representation for the results of the

Apathetic only Human Agent sce-

nario (Jupyter Notebook online at

GitLab: Co-simulation)

Figure 5.7 shows a similar trend to the result depicted in

Figure 5.6, The MILP results are significantly higher. How-

ever, in this scenario, contrary to the results obtained for the

Motivated Human Agents only scenario, the Generalized

approach resulted in relatively lower self-consumption rates

(48 - 51%) compared to the individualized approach (68 -

71%).

Since the human agents considered here are not the motivated

kind, but rather the apathetic kind, their decision to charge

depends less on the signal received (they still take it into

account) and are less impacted by the continuous signal to

not act. Thus, this type of agent is not inclined to respect the

signalling (if anything they might be more inclined to do

contrary) and as such in the individualized approach where

they are receiving multiple do not charge signals, they have

a tendency to decide to charge.

https://gricad-gitlab.univ-grenoble-alpes.fr/NanaKofi/thesis_energy_flexibility/-/blob/main/notebooks/Chapter_5_Co-simulation.ipynb
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3. Neutral Human Agents: For this scenario, we considered all

human agents to have a neutral willingness to participate

(i.e., the willingness parameter was set to 0.5). The results

obtained for this scenario are depicted in Figure 5.8. For this

scenario also, the individualized approach performed better

relative to the generalized approach with self-consumption

rates between 60 to 63% compared to 65 to 68% in the case

of the generalized approach.

Figure 5.8: Box and whisker dia-

gram representation for the results

of the Neutral only Human Agent

scenario (Jupyter Notebook online

at GitLab: Co-simulation)

4. Hybrid Human Agents: For this scenario, we considered a

mix between the 3 defined willingness to participate, thus,

two agents each were defined with a willingness to partic-

ipate of 1 (motivated), 0.5 (neutral), and 0 (apathetic). This

scenario will in many cases represent true-to-life systems,

however, there are still many factors that could influence

how this scenario impacts the energy sub-system. The results

from this scenario are depicted in Figure 5.9 and reaffirm the

overall better performance of the individualized approach.

For this scenario, the generalized approach yielded a self-

consumption rate between 60 to 62% whilst the individual-

ized approach yielded a self-consumption rate between 65

to 68%. The explanation remains the same as was the case of

the Apathetic Human Agents scenario.

https://gricad-gitlab.univ-grenoble-alpes.fr/NanaKofi/thesis_energy_flexibility/-/blob/main/notebooks/Chapter_5_Co-simulation.ipynb
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Figure 5.9: Box and whisker dia-

gram representation for the results

of the Hybrid Human Agents sce-

nario (Jupyter Notebook online at

GitLab: Co-simulation)

12: Intel 10310U with 4 cores and a

base clock frequency of 17GHz

Table 5.2 provides a summary of the results depicted above.

From Table 5.2 it can be deduced that the indirect flexibility is

capable of increasing the self-consumption rate by up to approx-

imately 20 - 35% (given the reference case was originally 32%),

with the direct flexibility (i.e. the battery) accounting for a 2- 4%

increase in the self-consumption rate. This lower participation can

be attributed in part to the control of the battery using the output

from the MILP optimizer. In all scenarios considered, the MILP

results were significantly higher compared to the results obtained

from the MAS simulation, accruing from the less-than-optimal

behavior of the human agents and the control strategy imposed on

the battery by the optimizer.

Also, considering the results from the individualized (see Table

5.2 the motivated agents only scenario yielded the lowest self-

consumption rates. As these human agents were ideal, one would

have anticipated the best results from the motivated human agents

only scenario. The ideal nature of these agent however meant that

they were more likely to follow the signals and if they missed a

charge signal, were more likely to not charge during that day.

Table 5.3 shows the simulation time for different simulation periods

(with 50 repetitions) on an Intel core I5
12

laptop with 16GB of

RAM.

https://gricad-gitlab.univ-grenoble-alpes.fr/NanaKofi/thesis_energy_flexibility/-/blob/main/notebooks/Chapter_5_Co-simulation.ipynb
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Table 5.2: Summary of Self-Consumption rates obtained from EV energy community co-simulation

Upper

Bound

Lower

Bound

Median

Value

Difference

Between Upper

and Lower

Bound

Motivated Human Agents Only

Generalized Approach (MILP) 100.47 99.91 100.31 0.56

Generalized_MAS (No Storage) 68.30 64.52 66.75 3.78

Generalized Approach (Digital Twin) 69.68 66.63 68.18 3.05

Individualized Approach (MILP) 101.07 100.64 100.87 0.43

Individualized_MAS (No Storage) 66.22 59.96 60.98 6.26

Individualized Approach (Digital Twin) 64.34 61.97 62.81 2.37

Apathetic Human Agents Only

Generalized Approach (MILP) 100.46 99.88 100.26 0.58

Generalized_MAS (No Storage) 51.31 48.25 49.78 3.06

Generalized Approach (Digital Twin) 52.61 49.27 50.81 3.34

Individualized Approach (MILP) 101.18 100.52 100.82 0.66

Individualized_MAS (No Storage) 69.55 66.87 68.29 2.68

Individualized Approach (Digital Twin) 71.11 68.37 69.95 2.74

Neutral Agents Only

Generalized Approach (MILP) 100.58 100.05 100.24 0.53

Generalized_MAS (No Storage) 61.53 59.29 60.28 2.24

Generalized Approach (Digital Twin) 62.81 60.38 61.58 2.43

Individualized Approach (MILP) 101.17 100.63 100.88 0.54

Individualized_MAS (No Storage) 66.47 63.58 64.96 2.89

Individualized Approach (Digital Twin) 68.22 65.37 66.72 2.85

Hybrid Human Agents

Generalized Approach (MILP) 100.49 99.99 100.25 0.50

Generalized_MAS (No Storage) 61.02 58.63 59.52 2.39

Generalized Approach (Digital Twin) 62.31 59.83 60.77 2.48

Individualized Approach (MILP) 101.10 99.46 100.88 1.64

Individualized_MAS (No Storage) 66.15 63.55 64.95 2.60

Individualized Approach (Digital Twin) 68.34 65.12 66.64 3.22

Table 5.3: Summary of co-

simulation computation time for

different time horizons

Time Horizon

Total Number of

Simulations

Total Simulation

Time [seconds]

1 Day 100 489

1 Month 3000 7092

1 Year 36500 83269
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5.4 Conclusion

In this chapter, we presented a co-simulation approach for simu-

lating human behavior in an energy community. Our approach

focused on an electric vehicle energy community providing load-

shifting services to a building (in this case Predis-MHI). We devised

two main approaches centered on how the optimal scheduling of

the EV charging was computed and disseminated to the human

agents; an Individualized approach that personalizes the signals

sent to the human agents based on a schedule provided by them

and a generalized approach that considered everyone to be avail-

able all day and sent the same signal to all human agents in the

simulation.

Given the complex nature of human behavior and the added

difficulty of taking into account all the factors that influence an

individual’s behavior. Our proposed framework focuses on the

decision to charge or not which incorporates the choice to respond

to a signal (we defined four). This decision to respond to signals was

incorporated by associating a willingness to participate parameter

to each human agent.

Our results show that for all the scenarios considered except the

one in which all agents were considered to be highly motivated

the individualized approach yielded better results as compared to

the generalized approach. This better performance of the general-

ized approach compared to the individualized approach can be

attributed to the ideal nature of the human agents which plays as

a disadvantage particularly when an agent decides to not charge

when they receive a charge (green) signal. Once a motivated human

agent passes on the chance to charge all subsequent signals are

do not charge (red) signals which this ideal human agent is more

inclined to respect. However, in the generalized approach, because

the human agents will receive multiple charge signals during the

simulated day, this issue is mitigated.

With regards to the realism of the simulation, the simulation

assumes most (if not all) EVs (we considered six) are present on-

site, whilst this is not the case for Predis-MHI where there are eight

(8) chargers with ten (10) EV users (the EVs are not always on-site).

This accounts for the significant increase of the simulated indirect

flexibility potential (approximately 30%) relative to the potential

calculated in chapter 3 (approximately 2 - 8%). Consequently, the

simulation and the results represent a future (at least in the case

of Predis-MHI) where there is a higher penetration of EV users

in the Predis-MHI building and consequently a higher charger

utilization.
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Additionally, the base assumptions on which the likelihood to

charge is based may not be close to the ground truth, and as such a

multi-disciplinary investigation into the charging behaviors (possi-

bly using a real-life experiment of the simulated setup) is required

to improve and validate the results from the co-simulation.

Further, the proposed co-simulation was conceptualized and im-

plemented around the specificities of the Predis-MHI building.

However, the Predis-MHI setup is not unique, in that it is reflective

of many non-residential (office) buildings. Thus, the model can be

applied to other similar setups albeit with some modifications.

Gitlab Repository

The code and associated note-

books for the solutions pro-

posed in this chapter can

be found in the following

repository: Comparison of rule-

based and optimization-based

control strategies: GitLab: Co-

simulation Additionally, see Ap-

pendix B.1 for a list of all avail-

able notebooks

Focusing on the interplay between the direct and indirect flexibili-

ties, it can be seen from the results that the indirect flexibility if

properly harnessed can be used as the primary source of energy

flexibility with the battery (i.e., the direct flexibility) playing a

secondary role. This potentially would also translate into less stress

on the battery and ultimately a longer lifespan.

Lastly, the implementation of the signaling and human agents

in the MAS showed that having only ideal community members

(highly motivated actors) does not guarantee the best results. Our

results show that for the motivated (ideal) agents, the generalized

approach was a better form of signaling (in fact this yielded the best

results for the generalized approach), whilst the individualized

approach yielded the worst self-consumption rates for the same

motivated human agents-only scenario.

https://gricad-gitlab.univ-grenoble-alpes.fr/NanaKofi/thesis_energy_flexibility/-/blob/main/notebooks/Chapter_5_Co-simulation.ipynb
https://gricad-gitlab.univ-grenoble-alpes.fr/NanaKofi/thesis_energy_flexibility/-/blob/main/notebooks/Chapter_5_Co-simulation.ipynb
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6.1 Connecting the Dots: A Summary of Key

Points and Findings

Buildings (the end node in most energy networks) undoubtedly

have a crucial role to play in the transition toward a sustainable and

distributed energy landscape. The change in the role of buildings

from consumer to prosumer and the introduction of the smart

building (building with decision aided energy system) has opened

a new paradigm of energy-related services that buildings can offer

(from building scale to grid scale).

Like many systems, the building system (especially the energy

sub-system) interfaces with humans (i.e., the occupants). Thus,

in designing, modeling, and implementing building energy sub-

systems, the human-in-the-control system (i.e., the building) cannot

and should not be ignored (after all, buildings do not consume

energy, humans do). Whilst human behavior cannot be directly

controlled, it is possible to encourage and achieve a behavioral

change in a desired direction (i.e., a positive behavioral change).

Building on this theme, the research work presented in this thesis

has focused on mobilizing human behavior as an energy flexibility

resource to offer load-shifting services to the building’s energy

subsystem. Our research focuses on the intricate interplay between

direct and indirect flexibilities in smart
1

non-residential buildings

but has similar implications for residential buildings.

In the subsequent sub-chapters, we present a summary and con-

clusion of each chapter of the thesis.

6.1.1 Chapter 1

In this chapter, we introduced the central theme of the thesis

and presented an initial insight into our research question. The

chapter sheds light on the role of energy flexibility in enabling

and facilitating the transition toward a low-carbon, renewable, and

sustainable energy landscape. We also presented fundamental but

key concepts and definitions essential to this work’s central theme,

notably self-consumption (the evaluation metric for assessing the

energy performance of our experimental setup), and direct and

indirect flexibility.
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In a nutshell, this chapter shows that the building is a socio-

technical system, and the direct and indirect flexibilities represent

the technical and social components, respectively. As such, it

is important to consider the human-in-the-control system in all

aspects of the operational phase of the building system to main-

tain a healthy balance between the needs of the human and the

performance of the building system.

6.1.2 Chapter 2

In this chapter, we present the central theme of this thesis, our

main research sub-question, to recap:

Main Research Question

“To what extent can human (occupant) behavior, which is
the social component of the building system, be effectively
mobilized and integrated with technical and highly controllable
solutions to facilitate the delivery of energy flexibility services
at the building and local energy community scale”.

.

Based on this main question, we derive four sub-questions that

form the main basis of this research. Subsequently, we presented

the Predis-MHI platform, a (smart) living lab that was used in this

research as an experimental setup for testing and evaluating our

proposed solutions.

6.1.3 Chapter 3

This chapter focuses on indirect flexibility and addresses 2 of our

research questions, the first being:

SQ.1

“What methodologies can be employed to validate the potential
and accurately quantify the impact of an identified indirect
flexibility on the energy performance of a building?”

To this end, we proposed a framework for quantifying the available

indirect flexibility potential. The proposed framework was applied

to our experimental setup using self-consumption as an evalua-

tion metric and showed that the indirect flexibility potential was

approximately 2.81% (i.e. 563.94 kWh) in 2020 and approximately

8.65% in 2021 (i.e. 1,810.81 kWh) and 7.34% in 2022 (i.e. 1,687.56
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kWh), with 2020 being significantly different as a result of the

Covid-19 restrictions in France.

Following the results from the first art of this chapter, we addressed

the second sub-question:

SQ.2

“How does one effectively account for indirect flexibility in the
optimal dimensioning of direct flexibilities (battery storage)?”

To address this question, we proposed a MILP-based optimal

battery-sizing methodology that mobilizes indirect flexibility to

achieve a significantly reduced battery size compared to conven-

tional sizing approaches. Testing on data from the experimental

setup showed that to reach a target self-consumption rate of 70%,

the proposed methodology resulted in a battery size 29.91% smaller

relative to conventional sizing approaches.

In summary, in this chapter, we demonstrated that indirect flexibili-

ties are significant, can be quantified, and have direct consequences

on the energy performance of a building. Additionally, our pro-

posed methodology for sizing batteries demonstrates how these

indirect flexibilities can be considered in energy system models.

A key limitation to the proposed approach is that it assumes an

ideal human, one that is rational and would always consider the

greater good (i.e., the performance of the energy sub-system).

6.1.4 Chapter 4

This chapter focuses on direct flexibility, particularly battery energy

storage systems, and is constituted of two key parts which address

the sub-question:

SQ.3

“Given an energy system, what is the appropriate level of
complexity and computational cost that ensures optimal and
efficient use of a battery energy storage system?”

The first part focuses on control algorithm complexity and com-

pares a rule-based approach to an optimization-based approach.

The results show that for a simple application such as a system

made up fixed demand profile, a fixed PV profile, and a bat-

tery, the rule-based approach has performance comparable to the

optimization-based approach, however, increasing the complexity

(for example adding a shiftable load as was the case in our setup)
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would require more complex rule definitions and the performance

of the rule-based approach would most likely deteriorate (it is

more difficult to define rules that would be sufficient to capture all

the system dynamics as complexity increases).

The second part of this chapter focused on a Machine Learning

based Model Predictive Controller (ML-MPC) for the 50kWh

battery installed in our experimental setup. This ML-MPC was

constituted by a machine learning-based forecasting component

and a MILP-based optimization component.

The machine learning models for the production and demand

profiles resulted in 24-hour forecasts with low errors except for the

Electric Vehicle demand forecast which owing to the data (highly

sparse and random) had significantly high prediction error. This

forecasting error consequently affected the performance of the

ML-MPC.

The optimization component was defined such that the objective

function was to reduce Net Energy Exchanged with the Grid, with

the decision variables being the battery power and the power of the

EV charges (i.e., the direct and indirect flexibilities respectively).

Due to the high prediction errors from the EV demand forecasts,

there was a self-consumption shortfall of approximately 11.1%

relative to the global optimal (optimal solution estimated with

perfect prediction), however combining the ML-MPC with the

reactive control (found in the BMS) of the battery, the shortfall was

reduced from 11.11% to approximately 7.50%.

6.1.5 Chapter 5

In this chapter, we focused on the Sub-question:

SQ.4

“How do we evaluate and quantify the impact of the synergy
between direct and indirect flexibilities on a building’s energy
performance?”

In lieu of this question, we proposed a co-simulation framework

for studying the interplay between direct and indirect flexibilities.

The approach is based on a MILP optimization and a Multi-Agent

System (MAS based simulation. Due to the complex nature of

human behavior, only the decision to charge or not was modeled

in the MAS. Furthermore, the human agents were categorized

according to their willingness to participate (1: motivated, 0.5

neutral, and 0: apathetic). The MILP optimization component

yielded a charging schedule (signals for human agents) and the
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schedule of the battery, whilst the MAS simulated the response of

EV owners to these signals.

Two approaches were conceived based on how the optimal charging

schedule was calculated and disseminated to the human agents.

The first, a generalized approach did not require the schedule of

human agents and transmitted one signal to all agents per timestep.

The second approach differed in that the optimization considered

the availability of each human agent and then sent personalized

signals to each agent.

We considered four scenarios; motivated human agents only, neu-

tral human agents only, apathetic human agents only, and a mixed

(hybrid) scenario. The generalized approach showed relatively

better performance only in the motivated human agents scenario

whilst the individualized approach was comparably better for the

remaining scenarios.

The results also showed that the indirect flexibility (i.e., the charg-

ing of the EVs) was a valuable resource for improving the self-

consumption and could potentially be used as the primary energy

flexibility resource for building systems, with the battery energy

storage system only providing supplementary energy flexibility in

all the scenarios considered.

Lastly, the results from chapter 3, showed an indirect flexibility

potential of 2 - 8% for the Predis-MHI, however, our simulation

results indicate a potential of approximately 30%. This is largely

due to the fact that in the simulation, it was assumed there EVs

are present on-site daily, translating into a high charger utilization.

Thus, this simulation represents a possible future where there is a

high EV user penetration in the building and consequently a high

charger utilization.

6.2 General Conclusion

Indirect flexibilities remain a generally untapped resource, how-

ever, in order to transition to a low-carbon energy system effectively

and sustainably with high Renewable Energy Resources penetra-

tion, there must be a conscious and consistent effort from us the

humans in the control system. This effort is typically reflected in

human behavior, fortunately, human behavior is both adaptive and

dynamic.

In this thesis, we have proposed a framework for quantifying

the available potential of indirect flexibility. Our use case con-

sidered self-consumption as a metric for assessing the indirect

flexibility potential, however, the framework is not restricted to

self-consumption and can be applied to other metrics such as
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financial cost and carbon emissions. This framework assumes ideal

human behavior which is not the case, and the solution does not

warrant the elimination of direct flexibility but establishes a need

for both these flexibilities to complement each other.

We also examined the impact of indirect flexibilities on the dimen-

sioning of direct flexibilities (specifically battery storage systems)

and found that, by considering the indirect flexibility, it is possible

to significantly reduce the required battery capacity compared to

conventional battery sizing approaches (these only size the battery

using demand and production data).

Additionally, we conceived and implemented a Machine Learning

based Model Predictive Controller on a 50-kWh battery installed

in our experimental setup. However, due to constraints related to

the installation of the battery on-site, and subsequently restrictions

regarding the export of energy from the off-site location onto the

local distribution network, the ML-MPC had to be tested using a

digital twin of the physical battery.

The results showed an 11% decrease in self-consumption which was

reduced to 7% by the reactive control component of the physical

battery. The significantly lower performance of the ML-MPC was

a consequence of the low accuracy of EV demand predictions (that

was largely due to the EV charger demand data being sparse and

susceptible to the stochastic nature of human behavior).

Furthermore, by simulating the behavior of EV users in the energy

sub-system, we found that indirect flexibility can be harnessed

and utilized as the primary energy flexibility for improving a

building’s self-consumption. Additionally, our results show that

there is a need to rethink our approach to energy flexibility as

indirect flexibilities can and should be used as the primary energy

flexibility with direct flexibilities being used to supplement the

shortcomings related to human behavior and not the other way

around.

6.3 Limitations

In this research work, we considered humans to be rational and

have ideal behavior in the optimization aspects, this is however

one of the key limitations of our work as human behavior might

be far from this ideal. One might argue for automated systems to

reduce the impact of human behavior. However, [42] point out that

such a system is highly prone to be rejected or being short-circuited
by the humans-in-the-control system.

We addressed this limitation in our optimization approaches par-

tially by using Multi-Agent Systems which allowed us to simulate



6.4 Future Prospects 111

an EV Local Energy Community in our experimental setup. How-

ever, as already indicated, human behavior is complex and difficult

to model. As such, the behavior of EV users in one geographical

location might not necessarily be indicative of the behavior of EV

users in a different location.

Additionally, despite having an experimental test bed to implement

a real-life Machine Learning based Model Predictive Controller,

regulatory and technical constraints warranted that a digital twin

of the battery is used instead.

6.4 Future Prospects

Based on the work presented in this thesis, there exist several

prospects for future work. However, real-life implementation of

the EV energy community with both the individualized and gen-

eralized approach is of particular interest. This experiment would

essentially provide a much-needed insight into:

1. how effective the signaling is for users (interpretability).

2. how EV users respond to the proposed signaling (effective-

ness).

3. how cooperative users are willing to be (game theory impli-

cations).

Thus, the experiments would provide feedback on the social

acceptance of the proposed method as well, and possibly serve

as a launch pad for trans-disciplinary solutions for achieving low-

carbon and sustainable energy flexibility solutions for the future

grid.

Additionally, given that the Machine Learning algorithms did not

perform exceptionally well in the case of the EV demand profile,

some more work has to be carried out to improve the predictability

of the data.

A few methods exist such as data augmentation. Generally, work

also needs to be done to improve the prediction accuracy for the

demand and solar PV production profiles as well.

Furthermore, an assessment of the impact of prediction errors

is also required to determine the level of tolerance the Machine

Learning based Model Predictive Controller has for prediction

errors.
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xStorage Compact
Single rack energy storage system

All in one

Key features

Benefits

The Eaton xStorage Compact energy storage system enables buildings 
owners and facility managers to solve power management challenges for 
their small and medium commercial and industrial sites. Eaton xStorage 
Compact helps them increase local renewable energy consumption and 
integrate electric vehicles charging infrastructure on site.   
Eaton xStorage Compact is available in a single rack version which is 
easy to install, ready-to-use with symmetric charge and discharge and 
is backup ready. The system also includes a control platform with user 
interface and simple expansion options. This compact system is modular, 
scalable and well suited for a wide range of energy storage applications.

Multi-usage system enabling PV self consumption, peak  
shaving, load shifting, back-up power, electric vehicle  
charging station integration

One single supplier providing you with one point of contact 
for certifications, warranty and services

Scalable, modular and quick to deploy

Highly efficient with minimum system losses

Safe and reliable with tested systems, controls and a 
proprietary Battery Management System (BMS)

Small system footprint – All included in less than 1 sqm/rack

• Up to 50 kWh per string of 5 battery packs

• Bidirectional 3-phase converter up to 40 kW 

• Symmetrical charge and discharge

• Battery pack with proprietary Battery Management System (BMS)

• Expandable with parallel connections from 42 kWh/rack to 100 kWh/rack

• Integrated user interface and application controller

• Battery backup

Eaton.com/xstorage

This is a visual representation.  
The final product may differ.

In line with our goal to continuously improve the products and the customer service we provide, all specifications
contained in this document are subject to change without notice. All drawings, descriptions or illustrations contained 
in this document serve to provide a clear overview and/or technical explanation of the present product and its 
various components and accessories.

Technical disclaimer

A
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A.1 50kWh Li-Ion Battery Technical Specifications



Single rack energy storage system

A multifunctional system

Technical specifications

xStorage Compact enables light commercial building facility managers and operators to store energy from  
renewable sources or the grid to improve the building resiliency and reduce its carbon footprint. The system can  
also provide use cases such as peak shaving, load shifting or maximize PV self consumption.

©2020 Eaton
All rights reserved

Battery Second-life New

Nominal system capacity 21 kWh per string, up to 3 strings 50 kWh per string, up to 3 strings

Modularity additional 42 kWh/rack additional 100 kWh/rack
Cell Chemistry LMO

(Lithium Manganese Oxide)
NMC

(Lithium Nickel Manganese Cobalt)
BMS 1 BMS per battery pack  (5 BMS per battery string to ensure safety and monitoring performance)
Battery warranty Up to 5 years Up to 10 years
Max. charge/discharge current DC 132 A
Compliance and standards IEC 62619, IEC 62040-1, IEC 62477-1, UN 38.3

System

Conversion power range 20 kW to 40 kW, parallel up to 5 units

Nominal AC Grid Voltage 220 V/380 V; 230 V/400 V; 240 V/415 V; 3-phase (TN, TT, 4-wire)
Rated output frequency 50 Hz/60 Hz; configurable
Topology Bidirectional rectifier/inverter - Backup
Full system dimensions H x W x D 1987 mm x 600 mm x 1000 mm
Full system weight From 690 kg to 725 kg
Degree of protection IP20
Topology / Grid integration Transformerless / AC coupled grid tie / Grid forming
Operating environment From 0 °C to 35°C /From 5 % to 95% relative humidity (non-condensing) / Pollution degree 2
Application controller capability Back up, peak shaving, load shifting, PV self consumption and EV integration
Minimum clearances Front: 900 mm, Back: 200 mm, Top: 300 mm, side to side: 0 mm
Round trip efficiency > 85% 
THD <1.5% at 100% linear load
Communication protocol  Modbus TCP (Eaton XV303 interface capability)
Compliance and standards Safety: IEC 62040-1, IEC 62477-1 Grid connection: EN 50549-1, VDE-AR-N 4105:2018, CEI 0-21:2019, G99

3-Phase AC

Communication Remote monitoring
Battery Energy Storage System

Application Controller

Back-up

Electric vehicle

Loads

Electric vehicle

Smart meter

*AC and DC protection 
not indicated

Grid

PV installation

PV inverter

Eaton.com/xstorage
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B
Open and Reproducible Science

B.1 Jupyter Notebooks for Open and

Reproducible Research

Jupyter Notebooks are open-source and interactive computing

applications that allow users to create and share documents that

may contain live (executable) code, visualizations (these may be

interactive), and explanatory text. Jupyter Notebooks offer a clear

advantage over standard document formats as the application is

still interactive. It utilizes a web-based interface that combines

code, text, and media elements, thus making it a powerful tool

for data analysis, open and reproducible scientific research, and

collaborative work. Below are some reasons why Jupyter Notebooks

are more interesting for our research compared to traditional

document formats:

1. Interactivity: Live code elements (cells) can be added to the

Notebook, thus, enabling interactive computing and open

and reproducible research by allowing others to execute and

modify the code used in achieving results. Additionally, plots

and visualizations can be made interactive, thus allowing

for analysis of results within the Notebook itself.

2. Documentation: notebooks offer what can be described as a

seamless integration of code, images, visualizations, and text.

The notebook can be segregated into sections and subsections,

equations, and explanatory text can be added to any part

of the Notebook. Thus making notebooks a more effective

means of documentation.

3. Reproducibility and transparency: As already pointed out,

Notebooks promote open and reproducible science, since the

Notebooks come with live code. This feature in Notebooks

also facilitates and encourages transparency in research. For

this thesis, we subscribe to the principles of open science and

as such, have chosen to provide the appendices related to

the work carried out in this research as interactive notebooks

which have been deposited online as summarized below:

https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html
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Table B.1: Summary of Jupyter Notebooks related to this research

Chapter Notebook Description URL

Two

Analysis of the Predis-MHI dataset: Here you will

find all the data used for this thesis 2020-2022

https://gricad-gitlab.
univ-grenoble-alpes.fr/
NanaKofi/thesis_energy_

flexibility/-/blob/main/
notebooks/Chapter_2_Predis_

MHI_Data_Analysis.ipynb

Three

Assessment of energy flexibility potential of

Predis-MHI: This Notebook presents the method-

ology proposed for assessing the flexibility po-

tential, additionally, we used carbon emissions

as a second metric to show that the method is

not restricted to the self-Consumption metric.

You can find an article published on the subject

matter here: https://www.frontiersin.org/

articles/10.3389/fenrg.2022.874041/full

https://gricad-gitlab.
univ-grenoble-alpes.fr/
NanaKofi/thesis_energy_

flexibility/-/blob/main/
notebooks/Chapter_3_indirect_

flexibility_assessment.ipynb

Three

In this Notebook, we detail the approach for

battery sizing which takes into account the

available indirect flexibility. You can find the

published article here: https://hal.science/

hal-03696240v1

https://gricad-gitlab.
univ-grenoble-alpes.fr/
NanaKofi/thesis_energy_

flexibility/-/blob/main/
notebooks/Chapter_3_Battery_

sizing.ipynb

Four

In this Notebook we detail the comparison of rule-

based and optimization-based control of direct

flexibilities (batteries)

https://gricad-gitlab.
univ-grenoble-alpes.fr/
NanaKofi/thesis_energy_

flexibility/-/blob/main/
notebooks/Chapter_4_

Comparison_of_control.ipynb

Four

In this Notebook, we show the implementation of

all the forecasting Models as used in this thesis.

https://gricad-gitlab.
univ-grenoble-alpes.fr/
NanaKofi/thesis_energy_

flexibility/-/blob/main/
notebooks/Chapter_4_

Comparison_of_Forecasting_

Models.ipynb

Four

In this Notebook, we have the implementation of

the proposed Model Predictive Controller (MPC)

for the control of the 50 kWh battery installed in

the experimental setup

https://gricad-gitlab.
univ-grenoble-alpes.fr/
NanaKofi/thesis_energy_

flexibility/-/blob/main/
notebooks/Chapter_4_MPC_

implementation.ipynb

Five

In this notebook, we have the implementation of

the proposed co-simulation approach (optimiza-

tion and Multi-Agent Systems) for an EV Local

Energy Community.

https://gricad-gitlab.
univ-grenoble-alpes.fr/
NanaKofi/thesis_energy_

flexibility/-/blob/main/
notebooks/Chapter_5_

Co-simulation.ipynb
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B.2 Using the Jupyter Notebooks

To use the notebooks, there are a number of options, however, we

will detail two of these options.

1. mybinder: Each of the notebooks provided in Table B.1

will have in its preamble (the very first cell at the top of

the Notebook) a link to mybinder, usually indicated us-

ing . If this is the preferred method, then

one must simply click the icon (you will be redirected to

mybinder), all required libraries (you can check the require-

ments.txt file) will already be loaded in the environment and

all you have to do is click on either the Run button

(executes only the currently selected cell) or the Run all(fast

forward) button (executes the entire notebook).

2. Download: It is possible to download the notebook from the

GitLab repository. However, it is important to note that all the

required dependencies (data sets, python files, etc.) required

to make the notebook work will also have to be downloaded

(we recommend downloading the entire project).

Once downloaded, the file can be opened using a local

Jupyter server (For this we recommend installing Anaconda.

we recommend setting up a virtual environment (see python

virtual environments) and installing the requirements (you

can do this using "pip install -r requirements.txt" - Note

you should use this from a command line interface opened in

the project directory and running your virtual environment

if you opted for this approach).

Once everything is fully installed, you just need to open the

notebook (from the jupyter web application) and click on

either the Run button (executes only the currently

selected cell) or the Run all(fast forward) button (executes

the entire notebook).

https://mybinder.org/
https://mybinder.org/
https://www.anaconda.com/download
https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html


Predis-MHI Data Analysis

July 14, 2023

1 Analysis of Predis-MHI Data:
1.1 *Notebook related to Chapter Two of the Thesis with title:
1.2 Direct and indirect energy flexibility interactions at the Building and com-

munity scale: From system to the Human-interfaced systems
First time using a Jupyter Notebook ? In order to use this notebook online through the

Mybinder public service, click the following icon

You can then easily use this Jupyter notebook by runnning each cell with the Run (“Exécuter” in
French) icon in the toolbar on top of the page. When the orange notebook icon in the tab turns
into an hourglass, this means the code is still running. Do not hesitate to modify and adapt the
code, working with Mybinder creates an online copy of the repository ipynb original file.

1.3 Data sources
• GReEN-ER (Predis-MHI) energy data (EV charging data, building en-

ergy usage, PV production) available at https://mhi-srv.g2elab.grenoble-
inp.fr/grafana/d/Xl5OAbQGk/ve-borne-de-rechargement?orgId=3&from=now-
1y&to=now

1.4 Objectives
In this notebook, we read and analyze the data related to Predis-MHI

1.5 Relevant imports
to run this notebook, the following libraries are required: * pandas Version => 1.2.4 * numpy
Version => 1.19.5 * plotly Version => 4.14.1

1
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1.6 The GreEn-ER Building in a nutshell

The Predis – MHI (Monitoring and Habitat Intelligence) platform is a liv-
ing lab that is housed in the GreEn-ER building. This is a smart building,
commissioned in 2015, that is owned and operated by Grenoble Institute
of Technology’s school of Energy, water and environment (École Nationale
Supérieure de l’Énergie, l’Eau et l’Environnement - ENSE3). It houses the
Grenoble Electrical Engineering lab with a total floor area of approximately
27000m² (6 floors, each with 4500m²).

The platform which is the demonstration zone of the GreEn-ER building
was conceived to achieve net-zero energy status. The platform is constituted
of 600m² of floor space composed of offices, lecture rooms, and experimen-
tal rooms which make up the demand, a Heating Ventilation and Cooling
(HVAC) system, 22kWp of solar PV, four EV charging stations (each with
two charging leads) and a 50 kWh lithium-ion battery. Typically, the demand
for the platform is comprised of lighting, HVAC, electrical outlets (typically
computers), and EV charging stations. The platform not only allows for in-
novation and experimentation of technological solutions but also allows for
the evaluation of the human element (i.e. the occupant). Thus allowing for
the development and testing of solutions in real-life settings.

2
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1.7 Zooming in on the predis-MHI platform

[1]: import pandas as pd
import plotly.express as px
import numpy as np
import plotly.subplots as sp

1.8 Load the data from CSV files
[2]: df = pd.read_csv("../Datasets\predis_mhi_2015.csv", index_col = "Datetime",␣

↪→parse_dates = True, sep = ",",
decimal = ".")

df = df [df.index >= "2016-01-01"]
df["Total_consumption"] = df[["charger 1","charger 2","charger 3","charger␣
↪→4"]].sum(axis=1) + df["Consumption"]

df = df[["production","Consumption", "Total_consumption" ,"charger 1","charger␣
↪→2","charger 3","charger 4" ]]

df["Self_cons"] = np.minimum(df["production"] , df[f"Total_consumption"])

[3]: df.describe()

3
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[3]: production Consumption Total_consumption charger 1 \
count 61170.000000 61365.000000 61365.000000 35061.000000
mean 2.477816 1.890524 2.169886 0.128378
std 4.372846 1.500258 2.564261 1.204577
min 0.000000 0.000000 0.000000 0.000000
25% 0.000000 1.000000 1.000000 0.000000
50% 0.000000 2.000000 2.000000 0.000000
75% 3.000000 3.000000 3.000000 0.000000
max 22.000000 35.000000 59.000000 32.995594

charger 2 charger 3 charger 4 Self_cons
count 35063.000000 61367.000000 61367.000000 61168.000000
mean 0.225081 0.045953 0.031450 0.864396
std 1.568359 0.650877 0.500419 1.541980
min 0.000000 0.000000 0.000000 0.000000
25% 0.000000 0.000000 0.000000 0.000000
50% 0.000000 0.000000 0.000000 0.000000
75% 0.000000 0.000000 0.000000 1.000000
max 36.000000 22.000200 27.999885 17.000000

2 Consumption
2.1 Annual Consumption

[4]: layout = {"template" : "plotly_white" ,
"font":{"size" : 20},
'xaxis': { "title_text" : "Year","tickangle" : -45},
"yaxis": {"title_text" : 'Energy [kWh]'}}

fig = px.bar(df[["Consumption","Total_consumption"]].resample("1Y",␣
↪→label="left").sum(),

title = "Year on year energy consumption for Predis-MHI" , barmode␣
↪→= "group")

fig.update_layout(layout)

fig.show()

4
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[5]: ### Monthly Consumption

[6]: layout = {"template" : "plotly_white" ,
"font":{"size" : 20},
'xaxis': { "title_text" : "Year","tickangle" : -45},
"yaxis": {"title_text" : 'Energy [kWh]'}}

temp = df[["Consumption","Total_consumption"]].resample("1M", label="left").
↪→sum()

fig = px.bar(temp,title = "Year on year energy energy consumptio for␣
↪→Predis-MHI" , barmode = "group")

fig.update_layout(layout)

5
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fig.show()

2.1.1 comments

The demand curve is typical for Europe, lowest in summer and highest in winter (when heating is
required) There was annual growth in the demand except in 2020 which can be attributed to the
covid-19 restrictions in France

6
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2.1.2 Annual Charger demand

[7]: temp = df[["charger 1","charger 2","charger 3","charger 4"]].resample("1Y",␣
↪→label="left").sum()

fig = px.bar(temp,title = "Year on year energy EV charger consumption for␣
↪→Predis-MHI" , barmode = "group")

fig.update_layout(layout)
fig.show()

2.1.3 comments

• EV demand is only present starting in 2019

• for 2020, the covid 19 restriction impacted the demand

7
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• in 2021 there was an addition of 2 new chargers

[8]: temp = pd.DataFrame()

df_monthly = df[['Consumption']].resample('1M', label = "right").sum()
for ind, frame in df_monthly.groupby(df_monthly.index.year):
# print (frame)

if ind >= 2020:
temp[ind] = frame["Consumption"].tolist()

temp.index = ["January", "February", "March", "April", "May" , "June" , "July",␣
↪→"August", "September", "October",

"November", "December"]

fig = px.bar(temp, barmode = "group",title = "Comparison of Monthly Energy␣
↪→consumption for Predis-MHI")

fig.update_layout(layout)
fig.show()

8
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2.1.4 Comment

In 2O2O for the confinement months, the consumption was siignificantly lower as the building was
predominantly uncoccupied

2.2 Annual PV Production
[9]: temp = df[["production"]].resample("1Y", label="left").sum()

fig = px.bar(temp,title = "Year on year energy Solar PV production for␣
↪→Predis-MHI" , barmode = "group")

fig.update_layout(layout)
fig.show()
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[10]: temp = df[["production"]].resample("1M", label="left").sum()

fig = px.bar(temp,title = "Monthly energy Solar PV production for Predis-MHI" ,␣
↪→barmode = "group")

fig.update_layout(layout)
fig.show()

10
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2.2.1 Comments

looking at the annual PV production of from the 22kWh installation shows that there was little
variation in the annual PV production, with 2020 being the lowest production year.

From the monthly plot, we ca see that the production follows the typical trend for Europe ,highest
in the summer months (April, May, June, July) and is lowest during the winter months (November,
December and January)

2.3 Load Match Indicators

Self-Consumption This is the ratio of self-consumed energy to the production and
provides an indication of how much of the local on-site production is being consumed
locally.

11
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Self-Production This is the ratio of self-consumed energy to the consumption. This
indicator provides insight into how much of a building’s demand is served by the local
energy production resource.

[11]: temp = df.resample("1M", label="left").sum()

fig = px.bar(temp, y = ["Self_cons","production"],title = "Monthly␣
↪→self-consumed energy vs Production for Predis-MHI" , barmode = "group")

fig.data[0].name = "self-consumed energy"
fig.update_layout(layout)
fig.show()
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[12]: layout["yaxis"] = {"title_text" : "%"}

temp = df.resample("1Y", label="left").sum()

temp["Self-consumption"] =( temp["Self_cons"] / temp["production"]) * 100
temp["Self-Production"] =( temp["Self_cons"] / temp["Total_consumption"]) * 100

fig = px.bar(temp, y = ["Self-consumption","Self-Production"],title = "Year on␣
↪→year load match indcators for Predis-MHI" , barmode = "group")

fig.update_layout(layout)
fig.show()

[13]: layout["yaxis"] = {"title_text" : "%"}
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temp = df.resample("1M", label="left").sum()

temp["Self-consumption"] =( temp["Self_cons"] / temp["production"]) * 100
temp["Self-Production"] =( temp["Self_cons"] / temp["Total_consumption"]) * 100

fig = px.bar(temp, y = ["Self-consumption","Self-Production"],title = "Monthly␣
↪→load match indcators for Predis-MHI" , barmode = "group")

fig.update_layout(layout)
fig.show()

2.3.1 Comment

• Self-consumption and self-production rates here are calculated without battery storage as the
storage had not been implemented in the system

14
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2.4 Entire Data set
[14]: df_ = df.copy()

layout = {
"font":{"size" : 15}, "template": "plotly_white", "height" : 600,
'xaxis': {'zerolinecolor':'black',"title_text" : "Year" ,"tickangle" : -45},
'xaxis2': { "title_text" : "Year","tickangle" : -45},
"yaxis": {"showline": True,"linecolor": "black", "linewidth": 2,␣

↪→'zerolinecolor':'black',
"side": 'left', "title_text" : "Energy [kWh]" },

"yaxis2": {"showline": True,"linecolor": "black", "linewidth": 2, ␣
↪→'zerolinecolor':'black',

"side": 'left', "title_text" : "", "overlaying": 'y' },
"legend" : {"tracegroupgap":5 ,"font_size": 16, "orientation":"h",␣

↪→"yanchor":"bottom",
"y":-0.42,"x":0.05, "title" : ""}

}

df_["Consumption(no chargers)"] = df_["Consumption"]
df_y = df_.copy().resample("1Y", label = "left").sum()
df_y['total'] = df_y[["charger 1","charger 2","charger 3","charger 4"]].
↪→sum(axis=1)

df_y["Consumption(with chargers)"] =df_y["Consumption"] + df_y['total']

fig = px.bar(df_y, y = ["production","Consumption(with␣
↪→chargers)","Consumption(no chargers)"],

barmode =␣
↪→"group",color_discrete_sequence=["#009ce9","#ff3442","#00e277"])

fig.data[0]["name"] = "Solar PV Production"

y = [f"charger {i}" for i in range (1,5,1)]

fig1 = px.bar(df_y,y = y, barmode = "group", color_discrete_sequence=
["#6ba3b9","#678052","#7b4039","#b18d1c"])

figure = sp.make_subplots(rows=1, cols=2,subplot_titles=("Solar PV and Demand",␣
↪→"Charger Demand"))

for trace in range(len(fig["data"])):
figure.append_trace(fig["data"][trace], row=1, col=1)

for trace in range(len(fig1["data"])):
# figure.data[-1].showlegend = False
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figure.append_trace(fig1["data"][trace], row=1, col=2)

figure.update_layout(layout, title = "Predis-MHI Annual Energy Consumption and␣
↪→Production")

figure.show()
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