Chapter 1

Résumé en français 1.1 Introduction

Le criblage joue un rôle essentiel dans le processus de découverte et de développement des médicaments. 1 Bien que les essais de criblage accélèrent considérablement ce processus, un grand nombre de résultats négatifs sont générés, ce qui entraîne une consommation inutilement élevée de ressources (humaines et matérielles). L'intégration de méthodes in silico dans le processus de criblage 1 permet de biaiser l'ensemble des substances à tester de manière à concentrer les moyens sur les hypothèses les plus fructueuses. Cette thèse vise à développer et mettre en place des outils chémoinformatiques qui accompagneront les campagnes de criblage dans les étapes de collecte et d'analyse des données, de contrôle qualité des données de criblage, de développement de modèles prédictifs spécifiquement adaptés, et d'annotation des bibliothèques de criblage (Figure 1). Les premiers paramètres présentés sont la solubilité dans le DMSO et la solubilité aqueuse. Ils sont d'une grande importance pour le criblage. Le DMSO est un solvant standard pour le stockage des composés organiques ; quand à l'évaluation de la solubilité aqueuse, elle est cruciale lors de la réalisation d'un criblage et, plus tard, pour le développement d'un composé en tête de série. Ensuite, ce travail se concentre sur les essais de criblage pertinents pour la sécurité des produits chimiques : la sensibilisation et la perméabilité cutanée. L'évaluation de la sensibilisation cutanée est aujourd'hui une obligation réglementaire pour l'UE dans le cadre de l'annexe VII de REACH. La perméabilité de la peau est un paramètre crucial, mais difficilement accessible, pour estimer le risque d'un produit chimique. Enfin, la liaison à l'enzyme de conversion de l'angiotensine (ACE2) a été ajoutée aux propriétés modélisées, dans le cadre de la conception de sondes biologiques capables de moduler temporairement l'activité de ACE2 dans différents tissus et organes biologiques.

Ces projets sont le fruit de collaborations avec diverses équipes de recherche et instituts, notamment la Plateforme Intégrée de Criblage de Toulouse (PICT), pour la solubilité dans le DMSO et la solubilité cinétique en milieu aqueux -également avec la Plateforme de Chimie Biologique Intégrative de Strasbourg (PCBIS -UAR 3286) ; l'Institut de Chimie Organique et la société Enamine à Kyiv, en Ukraine, pour l'inhibition sélective de l'ACE2 ; et l'Institut National de Recherche et de Sécurité (INRS) à Nancy, pour la perméabilité et la sensibilisation de la peau. Dans le cadre de cette thèse, des solutions chémoinformatiques ont été développées, notamment des modèles de relations quantitatives structure-activité/-propriété (QSAR/QSPR) accessibles au public, ainsi que des outils conviviaux pour le déploiement de ces modèles in silico. Ces outils sont disponibles sous forme de processus de traitement de données pour l'environnement logiciel KNIME 2 , qui sont faciles à utiliser et ne nécessitent aucune expertise en matière de codage.

Résultats et discussions 1.2.1 Solubilité des composés apparentés à des fragments dans le DMSO

Le DMSO est un solvant standard largement accepté, utilisé à la fois pour le stockage et le criblage expérimental. Les modèles prédictifs de solubilité dans le DMSO sont utiles pour gérer les collections de substances destinées au criblage, car la saturation des stocks ou des plaques peut passer inaperçue. Cela peut entraîner une estimation incorrecte de la concentration des substances testées et compromettre les résultats des essais biologiques ou des campagnes de criblage. Ce projet se concentre sur le criblage basé sur les fragments (FBS), où l'objectif est de proposer un modèle capable de prédire si un composé peut être concentré à 1 mM dans le DMSO et, donc, être conforme pour une campagne FBS.

La concentration de 1 mM est une concentration nominale typique des échantillons utilisés dans les campagnes FBS. 3 Cette valeur a été utilisée comme seuil pour développer un modèle utilisant la structure des fragments pour discriminer ceux qui sont solubles (concentration maximale ≥ 1 mM) ou insolubles (concentration maximale < 1 mM). Le modèle développé a été comparé à un autre modèle disponible publiquement qui utilise un seuil 10 mM pour définir la solubilité (une concentration nominale courante des solutions mères de composés organiques 4 ). Cette définition diffère des conditions FBS (Figure 2), mais une comparaison reste possible sous certaines conditions.

Les résultats de cette étude sont résumés dans le Tableau 2. En outre, 34 données erronées ont pu être identifiées au cours de la modélisation. Ces erreurs résultent de problèmes expérimentaux ou de la dégradation des substances en solution. Le modèle développé peut être utilisé pour filtrer et prioriser des composés étiquetés comme "solubles" par le modèle, pour des campagnes de criblage. (1 mM) et pour la formulation de solutions mères (10 mM). Les étiquettes "Soluble" et "Insoluble" coïncident pour les solubilités supérieures à 10 mM et inférieures à 1 mM. Toutefois, dans la plage de 1 à 10 mM, les composés sont considérés comme solubles selon la définition du FBS, mais insolubles selon la définition d'une solution mère.

Solubilité aqueuse

La mesure de la solubilité aqueuse est cruciale dans la découverte et le développement de médicaments, mais son objectif varie aux différents stades de ce processus. [START_REF] Kerns | Drug-like Properties: Concepts, Structure Design and Methods[END_REF] Au début de la découverte de médicaments, l'objectif est d'éliminer rapidement les composés qui ne sont pas suffisamment solubles pour être testés à la concentration maximale d'un essai. La solubilité cinétique est donc privilégiée, car elle peut être mise en oeuvre dans une configuration à haut débit, impliquant le criblage d'échantillons préparés à partir de solutions mères. [START_REF] Kerns | Drug-like Properties: Concepts, Structure Design and Methods[END_REF] Aux stades ultérieurs de la découverte et du développement de médicaments, la solubilité est mesurée de manière plus approfondie et tolère un rythme plus lent, pour servir de paramètre à la biodisponibilité et à la sécurité des candidats médicaments. Ces expériences de mesure de la solubilité utilisent une poudre pure comme point de départ et sont appelées essais de solubilité thermodynamique (Figure 3). [START_REF] Kerns | Drug-like Properties: Concepts, Structure Design and Methods[END_REF] Bien que les deux essais soient importants, la solubilité thermodynamique est plus souvent modélisée car elle est considérée comme une quantité thermodynamique, reproductible et ayant une relation directe avec la nature du soluté. Les essais de solubilité cinétique, en revanche, sont moins étudiés car ils sont considérés comme non reproductibles, ne correspondant pas à un équilibre thermodynamique. [START_REF] Alsenz | High Throughput Solubility Measurement in Drug Discovery and Development[END_REF] L'objectif de ce projet était de développer des modèles qui prédisent spécifiquement la solubilité aqueuse et d'étudier les différences entre solubilité cinétique et solubilité thermodynamique du point de vue de la modélisation. L'analyse de plusieurs ensembles de données de solubilité cinétique obtenues par différents protocoles expérimentaux a montré une bonne concordance entre les valeurs mesurées de composés courants, avec des différences inférieures à une unité log (en M). Toutefois, la comparaison des solubilités cinétique et thermodynamique mesurées pour le même ensemble de composés a confirmé l'observation bien établie selon laquelle la solubilité cinétique surestime la solubilité thermodynamique et n'est pas prédictive de celleci.

Pour cette étude, le cas du criblage basé sur les fragments a été spécifiquement étudié, et un seuil de classification de 1 mM a été utilisé -le même que pour la modélisation de la solubilité dans le DMSO. Le modèle entraîné sur toutes les données de solubilité cinétique, une fois agrégées et intégrées, est performant sur jeu de données de test (Tableau 2).

Dans le même temps, la solubilité thermodynamique dans l'eau a été réexaminée, en tirant parti de la publication de nouvelles données, abondantes et bien répertoriées. Les modèles publics et nouvellement entraînés de solubilité thermodynamique ont été comparés et leurs performances ont été rationalisées. L'erreur de ces modèles devrait se situer entre 0,8 et 1,0 unité log. Cependant, lorsqu'ils sont appliqués aux données de solubilité cinétique, ils atteignent des performances presque aléatoires (moyenne de la précision balancée (BA) sur l'ensemble de test = 0,56), ce qui montre que la solubilité thermodynamique n'est pas prédictive de la solubilité cinétique.

Les résultats de ce projet mettent en évidence plusieurs points intéressants. Premièrement, les données de solubilité cinétique obtenues à l'aide de différents protocoles de mesure sont en bon accord les unes avec les autres, ce qui indique une bonne reproductibilité interlaboratoire ; simultanément, un protocole complet pour nettoyer les données de solubilité thermodynamique a été défini. Deuxièmement, le mélange des données de solubilité cinétique donne de meilleures performances de modélisation, ce qui suggère que les données de solubilité cinétique sont homogènes et ne dépendent pas de l'essai comme initialement supposé ; d'autre part, les données de solubilité thermodynamique comprennent souvent des mesures problématiques, par exemple des mesures acquises en dehors de la plage d'utilisation recommandée de la méthode expérimentale employée. Enfin, le modèle formé sur les données de solubilité thermodynamique ne parvient pas à évaluer la solubilité cinétique et vice versa, soulignant qu'il s'agit de mesures conceptuellement liées mais différentes. Si l'évaluation expérimentale de la solubilité aqueuse est essentielle, des modèles de solubilité cinétique et thermodynamique sont nécessaires pour soutenir le criblage expérimental et le passage de touches à têtes de série dans développement de médicaments.

Sensibilisation cutanée

La sensibilisation cutanée est une réaction allergique qui se produit lorsque le système immunitaire réagit de manière excessive à une substance particulière qui est entrée en contact avec la peau et l'a pénétrée. Aujourd'hui, de nombreux essais biologiques contrôlent chaque étape de ce processus biologique complexe afin d'évaluer le potentiel de sensibilisation d'une substance chimique. [START_REF] Ezendam | State of the Art in Non-Animal Approaches for Skin Sensitization Testing: From Individual Test Methods towards Testing Strategies[END_REF] La voie toxicologique impliquée dans les effets indésirables (AOP) est un cadre conceptuel utilisé pour étudier les phénomènes biologiques, tels que la sensibilisation de la peau, en décomposant des bioprocessus complexes en une série d'étapes appelées événements clefs (KE). 8 L'AOP de la sensibilisation de la peau se compose de plusieurs KE : liaison des protéines (KE1, ou l'événement initiateur moléculaire (molecular initiating event, MIE)), activation des kératinocytes (KE2), activation des cellules dendritiques (KE3), prolifération des lymphocytes T (KE4) et dermatite de contact allergique (effet indésirable) (Figure 4). [START_REF] Oecd | The Adverse Outcome Pathway for Skin Sensitisation Initiated by Covalent Binding to Proteins[END_REF] Nos collaborateurs de l'INRS (Institut National de Recherche et de Sécurité) ont développé un nouveau test appelé test des cellules dendritiques de la moelle osseuse (BMDC), qui vise à étudier l'activation des cellules dendritiques (KE3). 9 L'objectif de ce projet est de contextualiser les données BMDC dans le cadre des bio-essais existants et de construire un modèle QSAR prédisant les résultats de la sensibilisation cutanée sur la base des données expérimentales du test BMDC. La collecte, le traitement des données et la modélisation ont été réalisés avec nos collaborateurs de l'INRS.

Nous avons comparé l'essai BMDC avec des essais in vitro et in chemico bien connus (DPRA, KeratinoSens™, LuSens, h-CLAT, U-SENS™, mMUSST) sur la base d'un ensemble de composés communs qui ont été testés expérimentalement à l'aide d'essais sélectionnés. La comparaison a été faite par rapport à un test in vivo bien établi : l'essai de stimulation locale des ganglions lymphatiques (LLNA). Les résultats ont montré que l'essai BMDC était légèrement plus performant (BA = 0,86) que les autres essais (BA ≤ 0,84). Le modèle QSAR construit sur les données BMDC a montré de bonnes performances (Tableau 2) démontrant la cohérence interne de l'ensemble de données.

En résumé, les résultats de l'essai BMDC ont montré une meilleure performance par rapport à d'autres essais de sensibilisation cutanée in vitro et in chemico en comparaison à l'essai in vivo LLNA choisit comme référence. Le modèle QSAR développé sur la base des données BMDC peut être utilisé pour accompagner l'évaluation expérimentale préliminaire de la sensibilisation cutanée des composés d'intérêt et pour guider les experts dans la hiérarchisation des essais de certains composés par rapport à d'autres. 

Perméabilité cutanée

L'évaluation du taux de perméation cutanée est importante non seulement pour les produits chimiques pharmaceutiques et cosmétiques, mais aussi pour les substances toxiques industrielles, car les travailleurs peuvent y être exposés lors de manipulations. [START_REF] Ng | Skin Deep: The Basics of Human Skin Structure and Drug Penetration[END_REF] Les expériences de perméabilité cutanée prennent souvent beaucoup de temps et dépendent de la disponibilité d'échantillons de peau fraîche. Bien que la validation expérimentale soit nécessaire, les méthodes in silico développées pour l'évaluation virtuelle de l'absorption cutanée peuvent être utilisées pour une évaluation préliminaire. [START_REF] Tsakovska | Quantitative Structure-Skin Permeability Relationships[END_REF] Le développement de tout modèle QSPR implique l'utilisation de sources de données pour l'entraînement, qui doivent de préférence contenir des chimiotypes variés et être à jour. HuskinDB est la plus grande base de données connue sur la perméabilité cutanée, mais elle est constituée de données provenant de sources bibliographiques publiées jusqu'en 2011 et n'a pas été mise à jour depuis. [START_REF] Stepanov | a Database for Skin Permeation of Xenobiotics[END_REF] Pour résoudre ce problème, l'une de nos tâches a été de compiler un nouvel ensemble de données sur la perméabilité cutanée publiées entre 2012 et 2021, afin de compléter HuskinDB. Ce nouveau jeu de données est prêt et publié. Il est utilisé pour entraîner de nouveaux modèles QSPR couvrant un espace chimique plus large. La collecte, le traitement des données et la modélisation ont été réalisés avec nos collaborateurs de l'INRS.

Les nouvelles données ont été collectées à partir d'articles publiés entre 2012 et 2021 et leur pertinence pour les mesures de perméabilité cutanée a été évaluée (Figure 5). Une fois la sélection des articles pertinents terminée, le coefficient de perméabilité cutanée et d'autres métadonnées ont été extraits des documents. Un filtrage supplémentaire des données a consisté à supprimer les substances de composition inconnue ou variable (UVCB) et à conserver les points de données obtenus à l'aide de dispositifs expérimentaux définis. En conséquence, 202 nouveaux points de données (110 composés) ont été extraits de 621 articles, et le nouvel ensemble de données, SkinPiX, a été mis à la disposition du public [START_REF] Chedik | Données de Réplication Pour : SkinPiX (Skin Permeation of Identified Xenobiotics): An Update of Skin Permeability Data Based on A Systematic Review of Recent Research[END_REF] . Le modèle QSPR formé sur la combinaison de la base de données HuskinDB et de la base de données SkinPiX nouvellement compilée est plus performant (RMSE5-CV = 0,7) (Tableau 2) que le modèle développé uniquement sur la base de données HuskinDB (RMSE5-CV = 0,76). L'ensemble d'entraînement plus important du nouveau modèle QSPR (195 composés par rapport aux 123 composés de l'ensemble d'entraînement du modèle HuskinDB) permet de couvrir une plus grande partie de l'espace chimique. 

Inhibition sélective de l'ACE2

L'enzyme de conversion de l'angiotensine 2 (ACE2) est une enzyme liée à la membrane cellulaire de nombreux types de cellule : pulmonaires, cardiaques et rénales en particulier. L'ACE2 fait partie du système rénine-angiotensine-aldostérone (RAAS), qui régule la pression artérielle et l'équilibre des fluides dans l'organisme. [START_REF] Zisman | ACE and ACE2: A Tale of Two Enzymes[END_REF] Outre son rôle dans le RAAS, l'ACE2 est utilisée par les coronavirus (y compris le SARS-CoV-2) comme porte d'entrée pour infecter une cellule et accéder à sa machinerie. 15 D'où l'intérêt de découvrir des sondes biologiques pouvant être utilisées pour moduler l'activité et comprendre le rôle biologique de l'ACE2. Au cours de ce projet, le criblage virtuel de la collection de composés en stock de la société Enamine (2,6 millions de composés) et d'un ensemble de 4080 composés précédemment conçus in silico a été réalisé. Les résultats ont permis d'établir une liste de molécules susceptibles de se lier sélectivement à l'ACE2. Les méthodes de criblage virtuel appliquées dans le cadre de ce projet comprenaient des méthodes d'amarrage moléculaire (docking), de pharmacophore et de modélisation QSAR (Figure 6).

Trois modèles de classification QSAR ont été développés pour prédire l'inhibition des enzymes ACE2, ACE et NEP (Tableau 2). L'objectif était de trouver des molécules susceptibles de mettre en évidence l'effet de l'ACE2 par rapport à l'ACE ; comme la NEP régule la durée de vie des peptides natriurétiques, il peut être gênant pour observer sélectivement les ACE / ACE2. Par conséquent, les modèles QSAR de l'ACE et de la NEP ont été utilisés pour identifier les liants sélectifs potentiels de l'ACE2. Finalement, 63 inhibiteurs sélectifs potentiels de l'ACE2 ont été identifiés dans la collection de composés en stock d'Enamine et dans l'ensemble des composés conçus in silico. Des essais expérimentaux sont en cours en Ukraine. 

Procédures automatisées avec KNIME

Certains des modèles développés dans cette thèse ont été générés à l'aide de procédures automatisées dans la plateforme KNIME 2 . Ces procédures KNIME incluent l'ensemble des étapes de modélisation : la standardisation des structures des molécules, la préparation des jeux de données pour la validation croisée en k paquets, le calcul des descripteurs moléculaires à l'aide du logiciel ISIDA Fragmentor, l'entraînement et la validation de modèles SVM, la préparation du modèle consensus et l'intégration dans le logiciel ISIDA Predictor (qui permet d'utiliser le modèle consensus et intègre le domaine d'applicabilité), l'application du modèle à de nouvelles structures chimiques (Tableau 1). L'utilisation des procédures KNIME ne nécessite aucune connaissance en matière de codage et est donc conviviale et facile à comprendre. Ils ont été développés pour les systèmes d'exploitation Linux et Windows. Les procédures KNIME sont disponibles sur demande à l'aide d'un formulaire sur le site web du Laboratoire de Chémoinformatique (https://infochim.chimie.unistra.fr/?page_id=11). Les procédures sont illustrées dans les figures en annexe. En plus des 8 modèles QSAR/QSPR développés (Tableau 2), les procédures automatisées utilisées dans leur développement permettent à un utilisateur de générer rapidement ses propres modèles pour la propriété qui l'intéresse. Tous les modèles QSAR/QSPR développés au cours de cette thèse sont accessibles au public sur le serveur web du Laboratoire de Chémoinformatique (https://chematlas.chimie.unistra.fr/cgibin/predictor2.cgi). Ces modèles et l'ensemble des données de haute qualité produites sont utiles pour annoter les collections de composés pour les paramètres importants couverts dans cette thèse. D'autres travaux devraient porter sur d'autres paramètres importants pour la plate-forme de criblage, tels que la cytotoxicité, la cancérogénicité et d'autres paramètres importants pour mesurer le risque des produits chimiques, par example la bronchosorption.

Les modèles QSAR/QSPR développés sont accessibles sur le service web (https://chematlas.chimie.unistra.fr/cgi-bin/predictor2.cgi) en sélectionnant d'abord "General kind of property" et ensuite "Property to model" (Tableau 3). 

Introduction

Screening workflow

Drug discovery and development pathway involves exploration and exploitation of chemical space to find the most effective drug candidates. While attempts to design analogs of known bioactive compounds can yield positive results, this approach is limited to investigation of a small number of similar compounds representing limited regions of chemical space. In addition, the industrial development of a new drug must take into account existing patents. [START_REF] Wermuth | Chapter 6 -Strategies in the Search for New Lead Compounds or Original Working Hypotheses[END_REF] A systematic screening campaign can alleviate these issues, by testing hundreds to millions of structurally diverse compounds which cover larger chemical space. This is implemented as a high-throughput screening (HTS), which typically involves testing tens of thousands of compounds per hour. 17 Thus, HTS campaigns allow quick profiling of compound collections for physicochemical properties and/or bioactivities. The most promising molecules, the hits of the screening campaign, are then used as starting points to be optimized into lead compounds and later to drug candidates.

Types of screening campaigns

Screening campaigns can be categorized based on factors, such as the rate of measurement, the involved assay type, screening approach (Table 4). [START_REF] Wildey | Chapter Five -High-Throughput Screening[END_REF] Generally, the number of analyzed compounds per measurement campaign decreases through the drug discovery and development pipeline, while focusing on fewer but more promising lead molecules. [START_REF] Kerns | Physicochemical Profiling: Overview of the Screens[END_REF] The screening rate also varies depending on the chosen screening approach and the applied assay. [START_REF] Kerns | Physicochemical Profiling: Overview of the Screens[END_REF][START_REF] Di | Chapter 25 -Solubility Methods[END_REF] Here, "classical" screening approach refers to screening of a compound library composed of common compounds of varying molecular weight and chemotypes using automatized platforms. The concept of "fragment-based" screening (FBS) is based on the identification of small molecules, called fragments, that fit efficiently to a binding site of the target protein, based on the same technological platforms as for "classical" screening. [START_REF] Murray | The Rise of Fragment-Based Drug Discovery[END_REF][START_REF] Kirsch | Concepts and Core Principles of Fragment-Based Drug Design[END_REF] There are several definitions of what is a fragment [START_REF] Kirsch | Concepts and Core Principles of Fragment-Based Drug Design[END_REF][START_REF] Jhoti | The "rule of Three" for Fragment-Based Drug Discovery: Where Are We Now?[END_REF][START_REF] Lau | Design of a Multi-Purpose Fragment Screening Library Using Molecular Complexity and Orthogonal Diversity Metrics[END_REF] , but they all cover the idea of a small molecular weight compound with a limited number of chemical functions. The potency of a single fragment is usually low: binding affinity in a μM-mM range. However, these fragments are convenient platforms to optimize both their biological activities and other desirable properties, such as their solubility in water. This approach allows screening much smaller chemical libraries (500 -10000 molecules [START_REF] Farmer | Chapter 11 -Fragment-Based Drug Discovery[END_REF] ) compared to HTS libraries (hundreds of thousands to millions of molecules [START_REF] Murray | The Rise of Fragment-Based Drug Discovery[END_REF][START_REF] Farmer | Chapter 11 -Fragment-Based Drug Discovery[END_REF] ). Despite the smaller size of fragment libraries, their structural diversity and the diversity of the chemistry that can be implemented on them, allows for a better chemical space coverage for the same size of HTS library. [START_REF] Murray | The Rise of Fragment-Based Drug Discovery[END_REF] Schuffenhauer et al. [START_REF] Schuffenhauer | Library Design for Fragment Based Screening[END_REF] also reported that hit rates of FBS campaigns were 10-1000 times higher than for HTS campaigns. In summary, FBS approach is a good alternative to the conventional HTS approach, although it has different planning and logistic constrains.

An emerging approach is to test a complex mixture of compounds in a one-pot experiment and use a powerful DNA amplification technique to deconvolute the signal. The "DNA-encoded library" (DEL) screening campaigns allow testing millions to billions of compounds against a biological target at once. [START_REF] Reiher | Trends in Hit-to-Lead Optimization Following DNA-Encoded Library Screens[END_REF] The procedure includes tagging each molecule with an identifying DNA, incubating the library of DNA-tagged compounds in a mixture with a target protein, washing away non-binding ligands, and identification of the binder by DNA sequencing. [START_REF] Gironda-Martínez | DNA-Encoded Chemical Libraries: A Comprehensive Review with Succesful Stories and Future Challenges[END_REF] The DEL screening approach is cost-, time-and material resources-efficient. Nevertheless, DEL preparation is restricted to soft chemical synthesis conditions in order to preserve the integrity of the DNA tags. [START_REF] Song | DNA-Encoded Library Screening as Core Platform Technology in Drug Discovery: Its Synthetic Method Development and Applications in DEL Synthesis[END_REF] Virtual screening (VS) is an in silico approach that is used as a filter to cherry pick compounds possessing desired property profile. VS can be divided into two broad categories: structure-based virtual screening (SBVS) and ligand-based virtual screening (LBVS). [START_REF] Lavecchia | Virtual Screening Strategies in Drug Discovery: A Critical Review[END_REF] SBVS concept is based on a protein structure and it involves scoring of a molecule's fit to the binding sites of the target using molecular docking and/or structurebased pharmacophore modelling methods. LBVS utilizes a dataset of known actives and inactives to build quantitative structure-activity relationship (QSAR) and ligand-based pharmacophore models that will then be applied to a new dataset to identify candidate molecules. Both SBVS and LBVS methods can be used individually or in consensus to rank molecules based on their activity against the target protein. Virtual screening is often used in combination with experimental screening methods to prioritize testing of certain molecules, hence, saving time and resources.

Although each of the screening approaches has its own advantages and limitations, a recent study [START_REF] Brown | An Analysis of Successful Hit-to-Clinical Candidate Pairs[END_REF] showed the preference of certain approaches over the others (Figure 7). The author scrutinized 156 clinical candidates published in the Journal of Medicinal Chemistry between 2018 and 2021 to identify most commonly used lead generation strategies that yielded drug candidates. The results show that the main strategy employed to generate a lead molecule is based from the hits identified from the previous studies (59%). The next approaches are related to HTS involving random (21%) and directed (11%) screenings. Origins of the remaining clinical candidates are distributed among FBS (7%), VS (1%) and DEL screening (<1%). This study shows that despite the emergence of new approaches such as fragment-based screening and DNA-encoded library screening, HTS and derivation from hits identified from previous campaigns still remain as favorites for generation of lead molecules. Screening of molecules is also performed to assess their bioactivity, ADMET and physicochemical properties. The solubility and lipophilicity are often assessed upstream to bioassays in order to check the compliance of compounds with the constrains of the assays. [START_REF] Kerns | Physicochemical Profiling: Overview of the Screens[END_REF] Screening and optimization of absorption, distribution, metabolism, excretion and toxicity (ADMET) properties are investigated during both drug discovery and development stages to ensure drug's bioavailability and safety. [START_REF] Hop | Role of ADME Studies in Selecting Drug Candidates: Dependence of ADME Parameters on Physicochemical Properties[END_REF][START_REF] Selick | The Emerging Importance of Predictive ADME Simulation in Drug Discovery[END_REF][START_REF] Li | Screening for Human ADME/Tox Drug Properties in Drug Discovery[END_REF] Based on the scope of the screening process, bioassays can be generally differentiated into two categories, namely target-based and phenotypic screening types. [START_REF] Swinney | Phenotypic vs. Target-Based Drug Discovery for First-in-Class Medicines[END_REF] The former is a molecular approach which focuses on the interaction of test molecules with a defined biological target, such as a protein.

Examples of target-based assays include screens measuring enzyme inhibition, receptor binding, protein-protein interaction. Unlike target-based screening, phenotypic screening is an empirical approach focusing on phenotypic change. For this reason, they require a complete biological entity to work, such as a cell line. On the other hand, they require no prior knowledge about the identity of the target and can actually help to identify such target. Examples of phenotypic assays include cell viability tests, changes in the expression of proteins. While both assay categories are complementary approaches, typically, phenotypic screening yields "first-in-class" drugs, whereas target-based screening results in "best-in-class" drug molecules due to availability of the target's structural information. 35

Steps of screening workflow

Despite the variety of existing screening types and approaches, the workflow of an experimental screening campaign can be generalized into several steps in the process (Figure 8): (1) chemical library design, (2) stock preparation, (3) sample preparation, (4) performing the test, (5) data acquisition, (6) data analysis. Screening libraries are provided commercially by specialized synthetic companies [START_REF]Leading supplier of HTS compounds, building blocks | Life Chemicals[END_REF][START_REF]Home -Enamine[END_REF] or by suppliers who assembled their libraries using compounds synthesized in academic laboratories 38 . [START_REF] Rudnicki | Essentials for High-Throughput Screening Operations[END_REF] A variety of general and focused screening libraries have been compiled to suit every screening campaign depending on its nature. 40 The selected compounds are commonly distributed in either pure form or stock solution. [START_REF] Rudnicki | Essentials for High-Throughput Screening Operations[END_REF] Dimethyl sulfoxide (DMSO) is typically chosen as a solvent for stock solution due to its high solubilizing ability. [START_REF] Wildey | Chapter Five -High-Throughput Screening[END_REF] Concentration of the stock solution can vary depending on the nature of screening library: for instance, for general library a commonly used concentration is 10 mM 39 , whereas for fragment libraries 50-100 mM stock solutions are preferred [START_REF] Lau | Design of a Multi-Purpose Fragment Screening Library Using Molecular Complexity and Orthogonal Diversity Metrics[END_REF] . Stock solutions are usually stored frozen either at 4°C or -20°C. [START_REF] Rudnicki | Essentials for High-Throughput Screening Operations[END_REF] Sample preparation and screening steps are assaydependent and can vary significantly. Automated screening campaigns utilize detection modalities like absorbance, fluorescence, luminescence, radiometry. [START_REF] Wildey | Chapter Five -High-Throughput Screening[END_REF] The data acquired during the measurement are collected by specific software and can be used for further analysis. Depending on the goal, screening campaigns can be performed iteratively to eliminate undesirable compounds, while adding analogues of active molecules.

Expenditures of screening campaigns

Preparation and conduct of screening require a lot of time, material, and human resources. This section provides information about cost of screening library preparation and performing HTS campaign, followed by specific examples. It is worth to mention that, due to variety of available screening set-ups it is impossible to derive one estimate for cost and time of screening campaigns. Therefore, all values provided in this section are approximate and subject to specific cases and screening set-ups.

Goodnow [START_REF] Goodnow | The Changing Feasibility and Economics of Chemical Diversity Exploration with DNA-Encoded Combinatorial Approaches[END_REF] reported that on average the cost estimate for preparation of a onemillion-compound collection for use in HTS campaigns can vary from 50 million to 5 billion US$, depending on the commercial availability and the amount of required compounds (Table 5). He also reported the approximate cost of performing a HTS campaign for a one-million-compound library would be in the range from 100'000 to 200'000 US$ based on the estimate of 0.07-0.2 US$ per well. Another study by Burbaum 42 , where he analyzed the effect of miniaturization of HTS campaigns, showed that the cost of testing a set of 106 compounds against 40 targets would cost 35 million US$ if performed in 96-well plates and 1.1 million US$ in 1536-well plates. These numbers include the cost of compounds, bioreagents, plates and other expenses. From these estimates one could derive costs of one compound screened against one target to be 8000 US$ (performed in 96-well plates) and 260 US$ (performed in 1536well plates).

It is also reported [START_REF] Wildey | Chapter Five -High-Throughput Screening[END_REF] that in 2014 for 10 large pharma companies the mean annual capital budget dedicated for screening was set to 3.5 million US$ and 3.9 million US$ for reagents and consumables. These values represent a fraction of the 13 pharmaceutical companies' overall research and development (R&D) spending, which over the eight-year period from 2006 to 2014 ranged from 22 billion to 72 billion US$. Based on the number of new molecular entities (NMEs) registered during the same time period, these companies had an R&D efficiency of 3 to 32 billion US$ per NME. This emphasizes the need to take costs into account during all phases of drug discovery innovation, especially while conducting screening.

However, these activities are not the exclusivity of private interests and screening campaigns are efficiently implemented by public facilities. For instance, the Chimiothèque Nationale Française has been initiated in 2000 [START_REF] Hibert | Des gènes aux médicaments : nouveaux défis, nouvelles stratégies[END_REF] and since then provides chemical libraries from French academic libraries to screening platforms at cost price. The know-how for resynthesis of hits and the hit-to-lead development is matter of fair sharing of intellectual property between synthetic chemistry and drug discovery teams. This facility is completed by a network of experimental and computational laboratories able to implement cutting edge bioassays technologies and in silico methods. This platform is called ChemBioFrance [START_REF]ChemBioFrance -Infrastructure de recherche[END_REF] and is answering free of charge to technological screening questions. The aim of such facility is to provide research groups with an affordable access to these technologies. Thus, a user has access to it at reduced cost, after examination of his/her scientific question.

Other initiatives have focused on providing users with experimentally annotated chemical libraries: the MLSMR (Molecular Libraries Small Molecule Repository), now available in the NExT screening library [START_REF]The NExT Screening Libraries (Pre-plated Copies Available) | Discovery | NExT Resources | NExT[END_REF] , or the EU-OPENSCREEN (European Infrastructure of Open Screening Platforms for Chemical Biology) [START_REF] Brennecke | EU-OPENSCREEN: A Novel Collaborative Approach to Facilitate Chemical Biology[END_REF] .

Bioassays

One of our industrial collaborators reported the average cost of a screening data point to be approximately 1 euro, taking into account the expense associated with full-time equivalent employees (FTEs). Although the cost of reagents for HTS cell-based assay can vary from 0.05 euros to 5 euros per sample, the recommended cost is 0.3 euros. For instance, a cost of an acetylcholinesterase assay is estimated to be less than 0.1 euros per data point. The measurement cost of other endpoints, such as apparent permeability is 90 euros per sample and 50 euros per sample for inhibition of CYP3A. It is important to note that the prices of the latter two cases is for testing outside HTS, and the final cost of the measurement when integrated in HTS is much higher, considering the analysis of several concentrations and usage of expensive analytical systems, such as mass spectrometry.

Skin permeability

The details about skin permeability measurement were provided by INRS (Institut National de Recherche et de Sécurité). The experimental protocol employed at INRS involves usage of radiolabeled compounds, which can cost 10'000 -35'000 euros per 250 μCi of one compound (curie (Ci) is a unit of quantity of radioactive atoms). Costs of other consumables such as pipette tips, solvents, etc., were not reported. The other expenses involve equipment and analytical instrument purchases, such as an automatic sampler (35'000 euros), a radioactivity counter (50'000 euros) and Franz cells (200 euros per 5.5 mL Franz cell), a specific glassware used in skin permeability experiments. The duration of a measurement campaign for 1-2 new substances is distributed over tasks as follows: 1 week for development of method for chemical sample preparation; 8 weeks for preliminary experiments and tuning experimental set-up; a half day for preparation of chemical sample for experiment; 2 hours for setting up the experiment; 20-40 hours for experiment; 1 week for quantification, analysis of results and cleaning. Since, the experiment is performed 5 times, and considering the fact that some of the operations are performed in parallel, in total 18 weeks (8 weeks of preliminary experiments and 10 weeks for 5 experiments) are required to obtain skin permeability values of 1-2 new substances. Three to four researchers are necessary for execution of all steps.

Skin sensitization

Collaborators from INRS have also shared details of skin sensitization assay, namely, bone marrow-derived dendritic cell (BMDC) assay. The provided costs are related to the recent measurement campaign of one family of compounds composed of 22 representative compounds: 13 mice (500 euros) to obtain 38 bone marrows; 22 compounds (2000 euros); cell culture consumables, such petri dishes, media and antibodies for flow cytometry (8200 euros). In total, the cost of this campaign was about 10'700 euros (≈ 500 euros per substance). The total time spent on one experiment is about 2 months and can be described as follows: 1 month for checking of substances' feasibility (not toxic against dendritic cells); 10 days for one run, which is repeated 3 times (≈ 1 month). Since maximum 4 substances can be checked during one experiment, the analysis of 22 chemicals would require approximately 5 runs, that would take about a year to complete. In general, 2 researchers are required to carry out the whole measurement campaign.

Chemoinformatics in screening workflow

As mentioned in "Types of screening campaigns" section, virtual screening (VS) is commonly applied prior to or in parallel with experimental screens to aid in selection and prioritization of virtually determined actives. Although, virtual annotation of screening libraries is important, chemoinformatics offers more application cases in screening domain (Figure 9). For instance, an approach to design a diversity oriented screening library is to start with a clustering of molecules in the catalog of suppliers followed by cherry-picking chemical structures homogeneously across the clusters. [START_REF] Parker | Application of Chemoinformatics to High-Throughput Screening[END_REF] This approach is also applied during the selection of candidate compounds for a secondary screening if too many actives have been identified during a primary screening. 1 Another possible application of chemoinformatics is evaluation of the stock solutions' integrity. Degradation signs can be determined by comparing experimentally determined solubility of compounds in DMSO stock solutions with predicted solubility values. [START_REF] Baybekov | DMSO Solubility Assessment for Fragment-Based Screening[END_REF] This is achieved by building a quantitative structure-property relationship (QSPR) model trained to predict solubility of compounds in DMSO. The same approach is used to assess the experimental data quality, by fitting a QSPR/QSAR model to screening data and applying the model on the same data. [START_REF] Ruggiu | Quantitative Structure-Property Relationship Modeling: A Valuable Support in High-Throughput Screening Quality Control[END_REF] The outlying data points are then identified and examined. Later the high-quality experimental data obtained from screening campaigns can be used alone or in combination with public data sources to train in-house predictive models, which can be used in future to predict properties or activities of new molecules. 

Goal of the thesis

The high expenses associated with screening campaigns, including the use of significant time, material, and human resources, emphasize the need for cost-effective approaches. In this context, the application of chemoinformatics tools emerges as a promising solution to reduce costs and improve screening outcomes. Studies have demonstrated that incorporating chemoinformatics methods into the screening process can yield substantial benefits, with reported enhancements in hit rates ranging from 4-to 15fold compared to random screening. 1,[START_REF] Rusinko | Analysis of a Large Structure/Biological Activity Data Set Using Recursive Partitioning[END_REF][START_REF] Van Rhee | Retrospective Analysis of an Experimental High-Throughput Screening Data Set by Recursive Partitioning[END_REF] These findings highlight the significant potential of chemoinformatics in maximizing the efficiency and success of screening endeavors. Consequently, my thesis is motivated by the compelling objective of developing and implementing chemoinformatics tools to support screening campaigns in the stages of data collection and analysis, quality control of screening data, development of specifically adapted predictive models, and annotation of screening libraries. The integration of these tools aims to streamline and refine the screening pipeline, addressing the challenges associated with resource consumption and maximizing the identification of potential hits.

The results presented in this thesis are organized into 3 chapters: § Solubility -The solubility properties are DMSO solubility and aqueous solubility. DMSO is a standard solvent for the storage of organic compounds, and bioassays are usually performed in buffer solutions. § Skin-related safety properties -The focus has been made on skin permeability and skin sensitization. Assessing skin sensitization is now a regulatory requirement for the EU under REACH Annex VII. Skin permeability is a crucial, but not easily accessible, parameter for estimating the risk of a chemical. § ACE2 selective inhibition -The endpoint included in the thesis is the selective binding to angiotensinconverting enzyme (ACE2) as part of the design of biological probes capable of temporarily modulating ACE2 activity in different biological tissues and organs.

The projects presented in this thesis are the result of collaborations with various research teams and institutes, including the Plateforme Intégrée de Criblage de Toulouse (PICT) and the Plateforme de Chimie Biologique Intégrative de Strasbourg (PCBIS -UAR 3286) for solubility in DMSO and kinetic solubility in aqueous media, the Institute of Organic Chemistry and Enamine Ltd. in Kyiv (Ukraine) for selective ACE2 inhibition, and the Institut National de Recherche et de Sécurité (INRS) in Nancy for skin permeability and sensitization.

As part of this thesis, chemoinformatics solutions have been developed, including publicly available quantitative structure-activity-property relationship (QSAR/QSPR) models and user-friendly tools for deploying these models in silico: https://chematlas.chimie.unistra.fr/cgi-bin/predictor2.cgi. Models have been developed using the LIBSVM 52 software and the KNIME 2 software environment. All data processing workflows have been designed to be intuitive to use and not requiring software programming expertise.

Chapter 3

QSAR/QSPR modeling methodology

This chapter provides details of different aspects of QSAR/QSPR modeling methodology applied in the thesis. QSAR/QSPR modeling involves establishment of relationship between molecules and the property or activity of interest, using machine learning (ML) algorithms. The developed QSAR/QSPR models can then be used to predict activity or property of new molecules.

Molecular standardization

Structural representation of the same molecule can often differ due to preferences of a user who uploads the data or due to possible mistakes made during registration of the data point. Different representations of the same molecule may cause an issue during reading of the molecule by a machine, as it may consider them as different chemical entities. 53 Therefore, it affects the quality of established structure-activity(-property) relationship during modelling, and hence its predictive performance. To avoid this, all molecular structures must be standardized according to defined rules.

ChemAxon Standardizer 54 and a KNIME 2 workflow, developed in our lab, were used for standardization. The standardization rules include removal of all stereochemical information, removal of solvents, removal of counterions of the main molecules, removal of explicit hydrogens neutralization of charges, dearomatization and aromatization of structures. The exact procedure depends on the project and details are provided later.

Molecular descriptors

Classical ML methods require molecular graphs to be converted into a vector of molecular descriptors. Molecular descriptors used in this work are ISIDA substructural molecular fragments (SMFs). [START_REF] Ruggiu | ISIDA Property-Labelled Fragment Descriptors[END_REF] SMFs are fragmental descriptors obtained from fragmenting the molecular 2D graph and counting the fragment occurrences. Fragments are enumerated systematically from the graph using basic fragmentation schemes: sequences, atomcentered fragments and triplets (Figure 10). Sequences are strings of connected atoms and/or bonds and they correspond to the shortest possible path between each pair of atoms. Atom-centered fragments start from an atom and neighboring atoms that fall into the pre-defined topological distance (sphere) are encoded into descriptor. Triplets are all the possible combinations of 3 atoms in a graph with a defined topological distance between each pair. As part of the fragmentation process, "Atom Pairs" and "Do All Ways" were used as additional fragmentation options. "Atom Pairs" focuses on counting constitutive atoms and disregards constitutional details, while "Do All Ways" explores all pathways that connect two atoms while defining the fragments. 

Machine learning methods

Two machine learning methods were mostly used in this work: support vector machine (SVM) for building predictive models and generative topographic mapping (GTM) for visualizing and analyzing chemical space.

Support Vector Machine

SVM is a supervised machine learning algorithm used for classification and regression tasks. [START_REF] Cortes | Support-Vector Networks[END_REF] For classification tasks, the working principle is based on finding the optimal hyperplane that separates different classes of data points. The optimal position of the hyperplane is reached when the margin between the data points of different classes is maximum. Actually, the algorithm introduces soft margins that are characterized by a cost. The cost hyperparameter tunes the level of tolerance of misclassified data points. This parameter controls the balance between overfitting and underfitting. Additionally, the SVM can use the kernel formalism which is an elegant way to change the representation of the data. In this work, linear and radial basis function (RBF) kernels were used. The RBF kernel introduces a non-linearity in the modeling and the width, g, of the RBF is an additional hyperparameter to tune. A large g value gives more weight to each training sample. This hyper-parameter may also result into over-and under-fitting issues.

In the context of regression tasks, the SVM uses an e-insensitive loss-function. The errors of the models are ignored if they are small than a user-defined e threshold value. Outside of this range, they are accounted linearly, which contrasts with the vast majority of machine learning models that accounts for modeling errors in a quadratic functional.

Both classification and regression SVM models are expressing their models based on a subset of the training instances, that are termed the support vectors. These different features make the SVM attractive in the frame of this project: they are robust to small changes in the training set and to the possible presence of outliers.

In this work, SVM models were used both for prediction and outlier detection.

Generative Topographic Mapping

GTM [START_REF] Bishop | The Generative Topographic Mapping[END_REF] is an unsupervised probabilistic machine learning method used for modeling and visualization of high-dimensional data in a 2-dimensional space. This is achieved by inserting a 2D manifold into the high-dimensional descriptor space and adjusting it to align with the densest areas of the data cloud formed by molecules in the input dataset. The optimized manifold is then used to project molecules onto the 2D grid based on their closest grid nodes. The manifold is then flattened to create a 2D map. The 2D maps can be colored based on the quantitative distribution (density landscapes), the class distribution (class landscapes), and the property value distribution (property landscapes). GTM serves as a powerful tool for chemical space visualization, chemical libraries comparison, and profiling of compounds. [START_REF] Kireeva | Generative Topographic Mapping (GTM): Universal Tool for Data Visualization, Structure-Activity Modeling and Dataset Comparison[END_REF][START_REF] Horvath | Generative Topographic Mapping in Drug Design[END_REF][START_REF] Sidorov | Mappability of Drug-like Space: Towards a Polypharmacologically Competent Map of Drug-Relevant Compounds[END_REF] In this work, GTM was used for visualization and analysis of the chemical space, as well as for comparison of different datasets.

Optimization algorithms

Different optimization algorithms have been employed throughout this work to find the optimal set of hyperparameters in order to maximize the objective function which is the predictive performance of machine learning models.

Hill climbing algorithm

Hill climbing 61 is a local search optimization algorithm that aims to find the best set of hyperparameters. It starts with an initial set of hyperparameters and iteratively improves the performance by making incremental changes to maximize the predictive score of the model. At each step, it evaluates the neighboring hyperparameter values and selects the one that improves the objective function the most. The optimization loop continues until the predictive score stops improving. Hill climbing algorithm was integrated in KNIME workflows, where SVM model training for skin sensitization and skin permeability projects was performed.

Golden section search algorithm

Golden section search (GSS) [START_REF]Numerical Recipes: The Art of Scientific Computing[END_REF] is a local search optimization algorithm that utilizes the golden ratio to find the best set of hyperparameters within a specified interval. It works by iteratively narrowing down the search space using the golden ratio to determine the two points to evaluate the objective function. These points divide the interval into two subintervals such that the ratio of the smaller subinterval to the larger one is equal to the golden number, (1 + √5) 2 ⁄ . By comparing the objective function values at these points, the algorithm updates the interval and continues the search until the desired precision is achieved, leading to the optimal set of variables. The GSS was used in training of SVM models for prediction of solubility of fragment-like compounds in DMSO. The GSS is actually a special case of the hill climbing algorithm.

Genetic algorithm

Genetic algorithm (GA) [START_REF] Mitchell | An Introduction to Genetic Algorithms[END_REF] is an evolutionary search optimization technique that aims to find the best set of hyperparameters by mimicking the process of natural selection. The algorithm starts with a population of hyperparameter sets and performs genetic operations like mutation and crossover to create new offspring. The offspring's performance, measured by the objective function (predictive performance of the model), determines their fitness. The algorithm iteratively selects the fittest individuals and by performing mutation and crossover operations, a new generation of chromosomes is generated and tested. This process continues until an optimal solution, i.e., the best hyperparameters, is found. GA was used to find optimal hyperparameters for SVM models [START_REF] Horvath | An Evolutionary Optimizer of Libsvm Models[END_REF] predicting ACE2 selective inhibition. The technique is best suited when more than 3 hyperparameters need to be optimized.

Evaluation metrics

Regression models

In this work, predictive performance of regression models is represented through determination coefficient (R 2 ) and root mean-squared error (RMSE) statistical metrics. R 2 is a measure of the goodness of fit of the model to the data. A typical value of R 2 ranges from 0 to 1, with a higher value indicating a better fit. However, the R 2 can take on negative values when the predicted values of a model are a worse predictor than the mean value of the target property. This situation is typically observed when considering predictions of a QSAR model out of its applicability domain (the concept of applicability domain is explained in section 3.7). Since this number has no dimension, it is often used to illustrate the models of performances of very diverse models, although this maybe sometime inappropriate. RMSE is a measure of the average prediction error of a regression model. It quantifies the difference between the predicted values and the actual values in the original units of the endpoint that is being predicted. The RMSE has the same units as the property targeted by the model. Besides, it is often proportional to the loss-function of many regression techniques, as for instances partial least squares or ridge regressions. However, SVM regressors optimize another functional.

The equations of R 2 and RMSE are provided below, where yi exp , yi pred , y - i exp , n are experimental value of i-th molecule, predicted value of i-th molecule, mean experimental value of i-th molecule, and the number of data points, respectively.

𝑅 = 1 - ∑ ( ) ∑ ( ) 𝑅𝑀𝑆𝐸 = ∑ ( )
In the above formula, results depend on the dataset on which they are computed. Therefore, the population of the instances used to compute these performances must be provided along with the computed value.

Classification models

Statistical metrics used in this work to assess the predictive performance of classification models are accuracy, balanced accuracy (BA), sensitivity and specificity. True positive rate (TPR, sensitivity) measures the proportion of actual positive cases correctly identified by a model, while true negative rate (TNR, specificity) measures the same for negative class. The value of TPR and TNR ranges from 0 to 1, where 1 indicates perfect retrieval of all positive and negative class objects, respectively. Accuracy is a statistical metric that measures the overall correctness of a model by calculating the fraction of correctly predicted instances out of the total number of data points. Balanced accuracy (BA) has the same aim as accuracy, which is to provide an overall measure of the correctness of the model, while considering the proportion of positive and negative instances. It is calculated as the arithmetic average of TPR and TNR. For these two metrics, the value of 1 indicates perfect classification; the value of 0.5 is equivalent to random guess; the value of 0 implies the opposite labelling of class objects. The equations of TPR, TNR, accuracy and BA are given below, where TP, TN, P, N are true positives (the number of correctly predicted positive data), true negatives (the number of correctly predicted negative data), total number of positives, and total number of negatives, respectively. 𝑇𝑃𝑅 = 𝑇𝑃 𝑃 𝑇𝑁𝑅 = 𝑇𝑁 𝑁 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁 𝑃 + 𝑁 𝐵𝐴 = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 2

Validation method

Validation of predictive performance of models was achieved either by applying the model to an external test set or by using k-fold cross-validation technique. K-fold crossvalidation method involves dividing the dataset into k subsets (random sampling of data points), training the model on k-1 subsets, and then testing the model on the remaining subset. This process is repeated k times, with each subset serving as the test set exactly once. The predicted values made on the test of each fold are then aggregated and the performance is evaluated with respect to the original values. This technique provides an estimate of how well the model is likely to perform on unseen data from the same data distribution.

Applicability domain

The Applicability Domain (AD) is a critical concept in the development of QSAR models. It defines the domain within which a model is expected to provide reliable predictions. Models are developed using a training set of molecules, and their predictions are expected to be reliable only for molecules that are similar to those in the training set. Defining the AD of a model involves the calibration of a meta-model based on its own specific attributes and equations, and returning a "predictability score" of the molecule by the model, which is a measure of trust associated with the QSAR model output for that compound. [START_REF] Dragos | Predicting the Predictability: A Unified Approach to the Applicability Domain Problem of QSAR Models[END_REF] In this work, fragment control 66 is used as the AD assessment method. According to this rule, the model is not applied if a test molecule contains any new fragments that are not present in the training set. This ensures that the model is not used to make predictions for molecules that are too dissimilar to those in the training set and, as a result, improves the reliability of its predictions.

Consensus modeling

Consensus modeling is a technique that combines the predictions generated by multiple models to achieve a more accurate and robust result. [START_REF] Varnek | ISIDA -Platform for Virtual Screening Based on Fragment and Pharmacophoric Descriptors[END_REF] This approach is particularly useful when dealing with complex relationships between chemical structures and their properties that a single QSAR model may fail to accurately reflect. By aggregating the outputs of diverse models, the limitations and biases of any individual model can be mitigated, leading to improved overall performance and generalization.

In classification tasks, the consensus outcome is determined by taking the majority of votes made by each individual model, whereas for regression tasks, the consensus outcome is determined by calculating the average of predictions generated by each individual model. The individual models are trained using different pools of fragment descriptors and their predictive performance is assessed using cross-validation technique. Only models that have a k-fold cross-validation performance (BA for classification and R 2 for regression tasks) larger than a user-defined threshold are selected. The consensus models developed in this work are integrated into ISIDA Predictor software / web service.

Outlier detection

In the field of QSAR modeling, outlier detection is a crucial step in ensuring the reliability and accuracy of the models. Here, an outlier is defined as a data point that falls outside the expected range of the sample distribution. [START_REF] Barnett | Outliers in Statistical Data[END_REF] Outliers can arise due to a variety of reasons, such as measurement errors, experimental variability, or the presence of compounds that exhibit unique properties not captured by the model.

The outlier identification method used in this work is based on the ensemble modeling approach. [START_REF] Ruggiu | Quantitative Structure-Property Relationship Modeling: A Valuable Support in High-Throughput Screening Quality Control[END_REF] The ensemble modeling approach involves applying multiple models to the fitted data and analyzing the molecules that are mis-predicted by all the models. This helps identify compounds that are anomalous and require further investigation in a unique or reduced number of modeling steps.

ISIDA Predictor software

ISIDA Predictor software is used to apply a developed QSAR/QSPR consensus model and assess the confidence of the predicted value. Prediction confidence label ("Low," "Average," "Good," or "Optimal") is based on the number of applied individual models and the consistency of their predicted values. An individual model is applied if a test molecule falls into the AD of the model (see "Applicability domain" section). Once predictions from the applied individual models are collected, a consensus prediction is generated: the major predicted class for classification task and the average value for regression task. The output includes the predictions, prediction confidence labels, and the number of models applied. All of the best models developed in this work are included in the ISIDA Predictor 69 .

Modelling workflow

The general modelling workflow applied in this thesis is given in Figure 11. The modelling details, such as the number of cross-validation folds, applied optimization algorithm, etc. are provided withing the chapter of each project. The workflow begins with a standard data curation procedure that involves processing duplicate data points and standardizing molecular structures. Next, numerous molecular descriptor sets (ISIDA fragments) of varying topologies and lengths are generated. SVM models are trained for each descriptor set, and validation is done using the k-fold crossvalidation method. Descriptor sets that show high cross-validation performance are selected, and models are fitted to the entire dataset before being included in a consensus model. All consensus models developed in this thesis are integrated into the ISIDA Predictor web service 69 and are publicly available.

KNIME workflows

Some of the models developed in this work, were generated using the workflows created using the KNIME Analytics Platform 2 . The KNIME workflows cover the whole modelling pipeline, namely, molecular standardization, preparation of datasets for k-fold cross-validation, molecular descriptor calculation using ISIDA Fragmentor, SVM model training and validation, consensus model preparation and integration into ISIDA Predictor, model application (Table 6). The usage of the KNIME workflows require no coding knowledge and therefore are user-friendly and easy to comprehend. They were developed both for Linux and Windows operating systems. The KNIME workflows are available upon request to the Laboratory of Chemoinformatics (https://infochim.chimie.unistra.fr/?page_id=11). The figures of the workflows are provided in Appendix. Chapter 4

Solubility

Introduction

In this chapter, we discuss the significance of solubility, focusing on two critical aspects: the solubility of fragment-like compounds in DMSO and aqueous solubility. Both DMSO stock and aqueous solubilities address the same challenge -ensuring that concentrations are accurately evaluated for biological assays. Any errors related to stock or water concentration can result in assay measurement errors and ultimately lead to assay failure. Therefore, precise measurement and understanding of solubility in different conditions are essential for evaluating a drug's effectiveness and safety in drug discovery and development.

Solubility of fragment-like compounds in DMSO

Introduction

Ensuring the integrity and stability of DMSO stock solutions is crucial prior to proceeding to bioactivity screening. Research has demonstrated that approximately 10-20% of compounds in chemical libraries exhibit DMSO solubility below the nominal concentration. [START_REF] Oldenburg | High Throughput Sonication: Evaluation for Compound Solubilization[END_REF][START_REF] Di | Chapter 40 -Effects of Properties on Biological Assays[END_REF] This can lead to a problematic "masking" effect, impairing accurate assessment of a compound's activity. The reduced concentration may arise from chemical degradation, triggered by the compound's interaction with moisture absorbed from the air. [START_REF] Cheng | Studies on Repository Compound Stability in DMSO under Various Conditions[END_REF] Notably, water absorption occurs during the cooling process, elevating the water content by up to 10% w/w. [START_REF] Di | Chapter 40 -Effects of Properties on Biological Assays[END_REF][START_REF] Cheng | Studies on Repository Compound Stability in DMSO under Various Conditions[END_REF][START_REF] Kozikowski | The Effect of Freeze/Thaw Cycles on the Stability of Compounds in DMSO[END_REF][START_REF] Lipinski | Solubility in the Design of Combinatorial Libraries[END_REF] Additionally, the solubility of compounds can be impacted by repeated "freeze/thaw" cycles when returning them to the refrigerator. [START_REF] Hoever | The Evolution of Microarrayed Compound Screening[END_REF] This study presents the development of a QSPR model specifically designed to predict solubility of fragment-like compounds in DMSO. The model can be used to effectively identify potentially insoluble molecules and minimize their occurrence within the screening library. The focus of this research centers on fragment-based screening campaigns. The findings are detailed in a published article [START_REF] Baybekov | DMSO Solubility Assessment for Fragment-Based Screening[END_REF] , and the classification model developed during this study has been made publicly accessible through the Laboratory of Chemoinformatics' Predictor web service 69 ("Solubility in DMSO (FBS) -Classification" model in the "PhysProp" section).

Summary

To summarize, this chapter presents a comprehensive investigation of the solubility of small organic molecules ("fragments") in DMSO. The novel classification model developed herein, named the FBS model, differs from previous "stock solution" models by utilizing a more appropriate threshold of 1 mM for fragment solubility instead of the categorical threshold of 10 mM. Notably, the FBS model demonstrates promising predictive performance, with a BA of 0.78 on 5-fold cross-validation. This model can be used to identify compounds that are not feasible for FBS set-up, avoiding unnecessary expenditures. Both the new experimentally measured data from the PICT dataset [START_REF] Baybekov | DMSO Solubility Assessment for Fragment-Based Screening[END_REF] and the developed model 69 are freely accessible for users. The new dataset and model contribute to the broader scientific community by facilitating further research and enhancing the efficiency of compound selection for screening experiments.

Aqueous solubility 4.3.1 Introduction

Aqueous solubility is among the first properties that is screened and optimized throughout the whole drug discovery and development pipeline. [START_REF] Alsenz | High Throughput Solubility Measurement in Drug Discovery and Development[END_REF][START_REF] Di | Bridging Solubility between Drug Discovery and Development[END_REF] Despite the availability of a plethora of aqueous solubility data, one of the main issues often encountered during their inspection is the lack of precise description of the experimental set-ups used to gather the data. The descriptive terms that are often used to define the nature of the solubility can be roughly resumed in two levels ontologies: solubility data types and measurement assay types (Figure 12). The first differentiation can be made based on the media where a compound is dissolved. Intrinsic solubility refers to solubility of a compound at pH when it is in its neutral form. For ionizable compounds, intrinsic solubility is measured indirectly using the CheqSol method. [START_REF] Stuart | Chasing Equilibrium: Measuring the Intrinsic Solubility of Weak Acids and Bases[END_REF] During the measurement of buffered (or apparent) solubility the pH of a solution is defined using a buffer, whereas the pH of unbuffered solubility (or solubility in pure water) is not controlled during the experiment. For non-ionizable compounds, values of these three solubility types coincide. The buffered solubility is commonly used in screening to simulate the solubility of molecules in bio-media. The buffered solubility can be estimated from intrinsic solubility using a Henderson-Hasselbalch equation; however, this equation should be used with caution due to some limitations. [START_REF] Hasselbalch | Calculation of Blood PH Based on the Free and Bound Carbonic Acid, and Oxygen Binding of Blood as Function of PH[END_REF][START_REF] Bergström | Accuracy of Calculated PH-Dependent Aqueous Drug Solubility[END_REF][START_REF] Po | The Henderson-Hasselbalch Equation: Its History and Limitations[END_REF] For instance, the equation is unstable if there is no dominant micro-species at the aimed pH and depends on the number of titration sites.

The further categorization is made based on the employed measurement assays that are guided by the purpose of testing. In the early stages of drug discovery, the aim is to rapidly eliminate compounds that are not sufficiently soluble to be tested at the maximum assay concentration. Kinetic solubility is therefore favored, as it can be implemented in a highthroughput setup, involving the screening of samples prepared from stock solutions. [START_REF] Di | Chapter 7 -Solubility[END_REF] At later stages of drug discovery and development, solubility is measured more thoroughly and tolerates a slower pace, to serve as a parameter for the bioavailability and safety of drug candidates. These solubility measurement experiments use a pure powder as a starting point and are referred to as thermodynamic solubility assays. [START_REF] Di | Chapter 7 -Solubility[END_REF] Although both assays are important, thermodynamic solubility is more often modeled as it is considered a thermodynamic quantity, reproducible and having a direct relationship with the nature of the solute. Kinetic solubility tests, on the other hand, are less studied as they are considered to be non-reproducible, not corresponding to a thermodynamic equilibrium.

A focus has been made on differentiation of kinetic and thermodynamic solubility from a modelling point of view. The results are presented in two published articles. The kinetic solubility work is presented hereafter. The work on the challenges of accurately predicting thermodynamic solubility is published independently and was led by a colleague, Pierre Llompart, including my contributions. It is a review of the published datasets and QSAR models in the past 20 years. It emphasizes the importance of data quality and applicability domain. It also proposes a workflow of data curation of thermodynamic solubility. It has been submitted to Scientific Data, but still in reviewing.

The kinetic solubility paper, hereafter detailed, focuses on the repeatability and modelability of kinetic solubility assays. It explores the relationship between kinetic and thermodynamic solubility data, and examines the alignment of data from different kinetic assays. The kinetic solubility in silico model developed during this study was made publicly available and was uploaded to the Laboratory of Chemoinformatics' Predictor web service 69 ("Kinetic solubility -Classification" model in the "PhysProp" section). This work has been proposed to Molecular Informatics.

Summary

The results obtained from the two papers shed light on the relationship between kinetic and thermodynamic solubility data and their modelability. The thermodynamic solublity paper provided insights into the failures of published models in prediction of thermodynamic solubility by emphasizing the importance of data quality, applicability domain, and careful curation of solubility datasets. The kinetic solubility paper highlights several key points. First, the kinetic solubility data obtained from different measurement protocols [START_REF] Baybekov | Données de Réplication Pour : Kinetic Solubility: Experimental and Machine-Learning Modeling Perspectives[END_REF] demonstrate good interlaboratory reproducibility, indicating reliable agreement among the results. Second, by merging several kinetic solubility datasets, a large dataset was created [START_REF] Llompart | Données de Réplication Pour : Towards the Improvement of Thermodynamic Solubility Prediction -a Review[END_REF] , which was used to train a good-performing model. Finally, the fact that the QSPR model trained on thermodynamic solubility data performs poorly when applied to kinetic solubility data further confirms that although kinetic and thermodynamic solubility are conceptually linked, they represent distinct measurements.

Conclusion

This chapter provides valuable insights into the solubility properties of small organic molecules in DMSO and aqueous solutions. The newly developed FBS model for solubility in DMSO stands out by utilizing a more appropriate threshold, enhancing predictive performance, and enabling the identification of compounds unsuitable for FBS setups. Regarding aqueous solubility, the results illuminate the relationship between kinetic and thermodynamic solubility data and their modelability. The studies emphasized the significance of data quality, applicability domain, and data curation in predicting thermodynamic solubility, offering valuable guidelines for data curation and a curated AqSolDBc dataset. Furthermore, they highlighted the good interlaboratory reproducibility of kinetic solubility data and that blending of several kinetic solubility datasets into one leads to a well-performing model. The distinction between kinetic and thermodynamic solubility data underscores their unique characteristics and importance in drug discovery and development.

Both the models and the datasets used for training, for both solubility in DMSO and kinetic solubility, are freely available. These projects were achieved through a successful collaboration with Plateforme Intégrée de Criblage de Toulouse (PICT) and Plateforme de Chimie Biologique Intégrative de Strasbourg (PCBIS -UAR 3286).

Chapter 5

Skin-related safety properties

Introduction

Skin sensitization and permeability are two of the most important parameters to study in industries such as pharmaceuticals, cosmetics, and occupational safety. Understanding these parameters can help ensure better protection and handling of potentially harmful substances.

A newly developed in vitro skin sensitization assay, the bone marrow-derived dendritic cell (BMDC) assay, is compared with other existing in vitro, in chemico, and in silico tests. Additionally, a consensus classification QSAR model based on BMDC assay data is developed for preliminary assessments.

Regarding skin permeability, a new database called SkinPiX has been compiled. This database contains skin permeability coefficients and related metadata for 110 chemicals. A QSPR model has been built using the new database merged with the existing skin permeability database, HuskinDB. The newly compiled SkinPiX database, along with the developed skin permeability and skin sensitization models, can be utilized in various industries to predict and evaluate the potential skin absorption and allergenic properties of chemicals. This can lead to more informed decision-making and safer product development.

Skin sensitization

Introduction

Skin sensitization is a common reaction caused by repeated exposure to small molecules known as haptens. These haptens bind to skin proteins, triggering an immune response that can result in symptoms like allergic contact dermatitis. The process involves several key events, including the binding of haptens to skin proteins, the activation of skin and immune cells, that finally leads to skin sensitization. [START_REF] Oecd | The Adverse Outcome Pathway for Skin Sensitisation Initiated by Covalent Binding to Proteins[END_REF] The imperative to comply with EU regulatory requirements, specifically Annex VII of REACH mandating the assessment of skin sensitization, coupled with the overarching goal of reducing animal testing advocated by REACH, propels the development of innovative in vitro skin sensitization methods. One such test is the bone marrow-derived dendritic cell (BMDC) assay [START_REF] Battais | In Vitro Detection of Chemical Allergens: An Optimized Assay Using Mouse Bone Marrow-Derived Dendritic Cells: IN VITRO DETECTION OF CHEMICAL ALLERGENS[END_REF] , which demonstrates potential in identifying skin sensitizing substances.

The aim of this study is to compare the predictive performance of the BMDC assay with other established in vitro and in chemico tests using common compound datasets. Furthermore, a consensus classification QSAR model based on BMDC assay data is developed for the preliminary assessment of skin sensitization. The results are published in the article provided below, whereas the model is available on the Predictor web service 69 of the Laboratory of Chemoinformatics ("Skin sensitization (BMDC) -Classification" model in the "Activity" section). The presented manuscript will be submitted to Regulatory Toxicology and Pharmacology. The published version may differ from this one.

Summary

The comparative study conducted in the article highlights the superior performance of the BMDC in skin sensitization assessment when compared to various in vitro, in chemico, and in silico assays. The LLNA and human sensitization potential of some compounds could be anticipated based on the BMDC assay results only. The developed QSAR model trained on BMDC data is additional proof of the consistency of the BMDC assay and offers significant assistance to experts. Predicting the BMDC output upstream of the actual experimental assay enables the prioritization of compound analysis thus reducing time, resource, and material expenditure. Moreover, integration of the BMDC assay and/or the QSAR model with other existing assays has the potential to establish a novel approach that effectively replaces in vivo tests, significantly improving the efficiency and reliability of skin sensitization evaluations for chemical substances.

Skin permeability

Introduction

The skin serves as a protective barrier against external agents, primarily due to the properties of its outermost layer, the stratum corneum (SC). However, the skin is not impervious, and xenobiotics can penetrate the SC, diffuse into the viable epidermis, and enter the general circulation through dermal capillaries. [START_REF] Brown | Dermal Permeation Data and Models for the Prioritization and Screening-Level Exposure Assessment of Organic Chemicals[END_REF] The assessment of skin permeation is therefore crucial not only for the pharmaceutical and cosmetic industries but also for ensuring occupational safety where workers may be exposed to harmful substances during handling. [START_REF] Ng | Skin Deep: The Basics of Human Skin Structure and Drug Penetration[END_REF] While experimental validation remains essential, in silico methods have emerged as valuable tools for the preliminary evaluation of skin absorption. [START_REF] Tsakovska | Quantitative Structure-Skin Permeability Relationships[END_REF] The majority of the predictive models are linear equations built using physicochemical properties, such as lipophilicity and molecular weight [START_REF] Potts | Predicting Skin Permeability[END_REF][START_REF] Moss | Quantitative Structure-Permeability Relationships for Percutaneous Absorption: Re-Analysis of Steroid Data[END_REF] , and are trained on scarce amount of data. [START_REF] Tsakovska | Quantitative Structure-Skin Permeability Relationships[END_REF][START_REF] Waters | Predicting Skin Permeability Using HuskinDB[END_REF] The effectiveness of these models relies heavily on the availability of comprehensive and up-todate training data.

To address this need, a collaborative effort with the researchers from the Institut National de la Recherche et de Sécurité (INRS) was undertaken, resulting in the meticulous compilation of a new dataset, called SkinPiX (Skin Permeation of identified Xenobiotics) [START_REF] Chedik | Données de Réplication Pour : SkinPiX (Skin Permeation of Identified Xenobiotics): An Update of Skin Permeability Data Based on A Systematic Review of Recent Research[END_REF] , comprising skin permeability data published between 2012 and 2021, thereby complementing the existing HuskinDB [START_REF] Stepanov | a Database for Skin Permeation of Xenobiotics[END_REF] . The results of SkinPiX data collection and curation are available in the article provided in this chapter. The model trained on HuskinDB was applied to SkinPiX and chemical space coverage of both datasets was analyzed. The results of modelling the combination of HuskinDB and SkinPiX data provide a number of ideas on how to manage and analyze this data in order to improve QSAR models.

Data

There are two sources of data used in this work: HuskinDB and a new SkinPiX database compiled from literature published between 2012 and 2021. The HuskinDB database was used for training, whereas the SkinPiX database was used both for training and testing purposes. The description and curation of the SkinPiX database is provided in the article below.

SkinPiX

For modelling purposes, the published SkinPiX database was processed further by removal of unprecise values (if relation was "<") and removal of duplicate molecules by considering median of skin permeability values.

HuskinDB

The HuskinDB (v1.01 version, August 2021) consisted of 550 data points for 253 compounds, extracted from 95 publications (1964-2012). The data processing included the removal of unreliable data, molecular standardization, manual duplicate processing, and application of the exclusion criteria defined during the curation of the SkinPiX database. The decision of removal of unreliable data and the exclusion criteria were defined by skin permeability experts from the INRS. The exclusion is based on parameters, namely skin source site, used skin layer, skin preparation method, donor type, acceptor type, and cell type. After molecular standardization (described in the section "Molecular standardization" of the "QSAR/QSPR modelling methodology"), duplicate molecules were manually examined and irrelevant duplicates were removed by the suggestion of our collaborators from INRS. For the remaining duplicates, the median value was taken. The final step was application of the exclusion criteria formed during the processing of the SkinPiX database, which were also related to such parameters like, skin preparation, used skin layer, etc. The resulting curated HuskinDB contained 128 compounds.

During the course of modelling, 5 potential outliers were identified and discarded. The final training set was composed of 123 compounds (Figure 13). 

Merged training set preparation

The merged training set is a combination of the HuskinDB and SkinPiX, which was created with an intention of building a QSPR model with a larger applicability domain. The data processing involved duplicate processing. Duplicates were merged using the median value for their label. This yielded 203 compounds in the merged dataset. During modelling stage, 8 outliers were identified and removed, leaving 195 compounds in the dataset.

Methods

Modelling workflow

The model training and validation was performed using 5-fold external crossvalidation. SVM models were trained on ISIDA fragment descriptors of various topologies (sequences, atom-centered fragments, triplets) and lengths (from 2 to 3 atoms). The hyperparameters were optimized using hill-climbing method. All modelling steps were performed using KNIME workflows.

Outlier identification and removal

The outlier detection and removal were performed due to low performance of models during 5-fold cross-validation. It involved selection of the best performing descriptor set (decided based on 5-fold cross-validation) and fitting of the model to the whole training set. The compounds with the difference between predicted and experimental value greater than or equal to 1 log were considered as outliers. Once they are removed, the 5-fold crossvalidation is performed again and the presence of outliers was verified. This procedure was performed until no outlier was detected.

Generative topographic mapping

GTM was used to visualize the chemical space coverage by the training and test sets. This was achieved by training GTM model on a ISIDA fragment descriptor set, namely, atom-centered fragments of fixed length ranging from 2 to 3 atoms radius. 

Summary

Overall, this study resulted in the compilation of a new skin permeability database, called SkinPiX 13 . This database is a collection of skin permeability and assisting metadata (experimental set-ups, etc.) extracted from articles published between 2012 and 2021. Public availability of the new database will facilitate the research conducted in the skin permeability domain as well as enhance the development of novel QSPR models that cover a broader chemical space, consequently improving the accuracy of predictions. The developed model is freely available on the web service of the Laboratory of Chemoinformatics 69 ("Skin permeability -Classification" model in the "PhysProp" section).

The modelling results of this work can be extended by a more careful study of SkinPiX and HuskinDB databases, in order to define a better ground for merging the relevant data. Identification of the criteria for merging the datasets, will improve the homogeneity of the merged training set, hence, it will enhance the predictive performance of the model. The predictions of SkinPiX data using HuskinDB based models were poor. The prediction of HuskinDB data using the SkinPiX data remains to be done. Additionally, a comprehensive analysis of the outliers is still missing. Yet, the trend is that the current datasets are so small that the models are quite unstable and require a very stringent applicability domain to be used. Additionally, detecting outliers and inconsistencies in the data is likely to be strategic in improving the quality of skin permeability QSPR models.

Conclusion

The findings of this chapter underscore the significant advancements in skin-related safety properties assessment. The comparative study has convincingly demonstrated the superior performance of the bone marrow-derived dendritic cell (BMDC) assay in evaluating skin sensitization compared to other existing tests. The BMDC assay and the developed QSAR model provide experts with an efficient approach to prioritize compound analysis, reducing time, resources, and material.

Moreover, the meticulous compilation of the new skin permeability database, SkinPiX, adds valuable insights to the field. By encompassing a comprehensive collection of skin permeability data and essential metadata from published articles between 2012 and 2021, SkinPiX offers a crucial resource for the development of novel QSPR models, ensuring a broader coverage of chemical space and improved accuracy in predicting skin permeability.

All skin permeability and sensitization data and models are publicly available [START_REF] Chedik | Données de Réplication Pour : SkinPiX (Skin Permeation of Identified Xenobiotics): An Update of Skin Permeability Data Based on A Systematic Review of Recent Research[END_REF]69 . The results of both skin permeability and sensitization projects are the product of a successful collaboration with the Institut National de Recherche et de Sécurité (INRS) in Nancy.

Chapter 6

ACE2 selective inhibition 6.1 Introduction

Angiotensin-converting enzyme 2 (ACE2) is an enzyme found in various cell types, including pulmonary, cardiac, and renal cells. It plays a vital role in the renin-angiotensinaldosterone system (RAAS), which regulates blood pressure and fluid balance in the body. [START_REF] Zisman | ACE and ACE2: A Tale of Two Enzymes[END_REF] In addition, ACE2 acts as the primary receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), enabling the virus to enter and infect human cells. [START_REF] Clausen | SARS-CoV-2 Infection Depends on Cellular Heparan Sulfate and ACE2[END_REF] Understanding the molecular mechanisms of ACE2, including its role in SARS-CoV-2 infection, is therefore essential for monitoring its influence on different biological tissues and organs. Chemical probes, as small molecules with selective binding capabilities, provide a valuable tool for investigating mechanistic and phenotypic questions about ACE2 in various biological studies, allowing researchers to gain insights into the target's function and potential therapeutic implications. [START_REF] Schreiber | Advancing Biological Understanding and Therapeutics Discovery with Small-Molecule Probes[END_REF][START_REF] Workman | Probing the Probes: Fitness Factors For Small Molecule Tools[END_REF][START_REF] Arrowsmith | The Promise and Peril of Chemical Probes[END_REF] Development of ACE2-targeting probes with selectivity towards ACE2 over closely related targets such as ACE and neprilysin (NEP), is critical to differentiate the effects caused by ACE2 downregulation from the effects of interacting with these other targets, particularly in the context of blood pressure regulation.

The aim of this project is to identify new potential ACE2 selective inhibitors to be suggested for the secondary screening campaign. The advancement builds upon previous efforts to investigate ACE2 inhibition and develop selective chemical probes. [START_REF] Rayevsky | In Vitro Evaluation of In Silico Screening Approaches in Search for Selective ACE2 Binding Chemical Probes[END_REF] Virtual screening techniques were employed to explore Enamine's vast compound collection of 2.6 million compounds and a set of 4080 in silico designed compounds [START_REF] Zabolotna | A New Open-Source Tool for Synthon-Based Library Design[END_REF] to generate a list of promising ACE2 binders. Virtual screening methods included docking, structure-based pharmacophore and QSAR modelling. New QSAR classification models predicting the inhibition of ACE2, ACE, and NEP enzymes were developed and uploaded to the Predictor web service 69 of the Laboratory of Chemoinformatics ("ACE2 inhibition -Classification", "ACE inhibition -Classification", "NEP inhibition -Classification" models in the "Activity" section). The overall workflow of the project and the role of QSAR models in it is presented in Figure 17. 

State-of-the-art

Literature review revealed several in silico studies in the domain of ACE2 inhibition, including approaches like molecular docking [START_REF] Basu | Molecular Docking Study of Potential Phytochemicals and Their Effects on the Complex of SARS-CoV2 Spike Protein and Human ACE2[END_REF] , QSAR model training on docking scores 96 , 3D QSAR pharmacophore modelling [START_REF] Zarezade | The Identification of Novel Inhibitors of Human Angiotensin-Converting Enzyme 2 and Main Protease of Sars-Cov-2: A Combination of in Silico Methods for Treatment of COVID-19[END_REF] . The most similar work, however, was conducted by Hochuli et al. [START_REF] Hochuli | Allosteric Binders of ACE2 Are Promising Anti-SARS-CoV-2 Agents[END_REF] , where both computational and experimental approaches were combined. Their goal was to identify allosteric ACE2 binders that would have the potential to serve as a novel class of antiviral agents for the treatment of COVID-19. First, they performed experimental screening to test compounds for ACE2 binding and enzymatic inhibition. QSAR models were then used to predict and prioritize compounds, followed by ligand-based pharmacophore modeling to select additional candidates. Subsequent experimental validation confirmed that 5 compounds exhibited strong ACE2 binding to an allosteric site, minimal enzymatic inhibition, and significant inhibition of SARS-CoV-2 replication in human cells. This project is a direct continuation of the previous study [START_REF] Rayevsky | In Vitro Evaluation of In Silico Screening Approaches in Search for Selective ACE2 Binding Chemical Probes[END_REF] conducted in collaboration with the Institute of Organic Chemistry and Enamine (Kyiv, Ukraine). The workflow of the project involved primary screening of molecules identified by virtual screening methods. Firstly, molecular docking, structure-, and ligand-based pharmacophore modeling were employed on the Enamine in-stock compound collection to identify potential selective ACE2 inhibitors. Subsequently, QSAR models predicting ACE and NEP inhibition were constructed and applied to the virtual hits obtained from the previous approaches. The list of 577 virtual hits obtained from the Laboratory of Chemoinformatics (Strasbourg, France), the computational chemistry team of Enamine (Kyiv, Ukraine) and Chemspace LLC (Kyiv, Ukraine) was submitted for experimental validation. Although none of the compounds showed activity in the nanomolar region, two of them possessed optimal parameters for penetrating blood-brain barrier. Those ligands also displayed novel ACE2-binding chemotypes and have the potential to become more efficient with further structural optimization. ACE and NEP activities were not experimentally assessed.

The results of the primary screening were used in this project, to update and improve the performance of models, consequently leading for more potent virtual hits. The newly identified virtual hits are submitted for the second experimental validation. The project was conducted together with my colleague Ms. Farah Asgarkhanova, Ph.D. student.

Data

The dataset for ACE2 was compiled from experimentally validated molecules provided by Enamine (552 data points), ChEMBL (release 30; Target ID = 3736) (100 data points), and PubChem (71 data points). The source of data for ACE (Target ID = CHEMBL1808; 1108 data points) and NEP (Target ID = CHEMBL1944; 694 data points) was ChEMBL (release 30). The origins of enzymes in all cases were mammals. The molecules reported either IC50, Ki or percentage inhibition.

The molecular standardization was performed using the ChemAxon Standardizer 54 . The standardization protocol included dearomatization, dealkalization, removal of salts and mixtures, neutralization, generation of the major tautomer, aromatization. After the standardization duplicate molecules were removed. The values and units were converted from Ki and IC50 to pKi and pIC50, respectively.

A compound was classified as ACE2 inactive if its percentage inhibition was less than 25% or if pKi or pIC50 was less than 8, and classified as ACE2 active otherwise. For ACE and NEP, classification threshold was less strict, with 60% inhibition and pKi or pIC50 = 6. The final training set sizes are given in Table 7. The datasets which were screened were composed of 2.6 million Enamine compounds and 4080 compounds generated by the Synt-On tool [START_REF] Zabolotna | A New Open-Source Tool for Synthon-Based Library Design[END_REF] . The virtually designed dataset was generated based on 37 experimentally confirmed active compounds identified during the first screening campaign.

Methods

Methods used for identification of ACE2 selective binders were applied in 3 steps (Figure 17):

1. Independent application of ACE2 QSAR and pharmacophore modeling approaches. 2. Molecular docking of virtual hits predicted by QSAR and pharmacophore models from Step 1. 3. Filtering virtual hits obtained from Step 2, by applying ACE and NEP QSAR models to find ACE2-selective virtual hits.

QSAR modeling

QSAR models were trained on ISIDA fragment descriptors using SVM machine learning method and hyperparameters optimized by genetic algorithm. Validation of models was performed using 5-fold cross-validation technique. Based on the crossvalidation performance, top 7 best performing models were selected for consensus model (Table 8). ACE2, ACE and NEP models were used as filters to sieve irrelevant hits throughout virtual screening process.

Table 8. Performance of ACE2, ACE and NEP consensus QSAR models, and their constituting models. Fragmentation types: I -sequence; II -atom-centered; III -triplet; A -atom; B -bond; R -fragment of fixed length; P -"Atom Pairs" option; AP -"Do All Ways" option. BA5-CV -balanced accuracy on 5-fold cross-validation. 

Performance of individual models

Rule-based algorithm

A rule-based algorithm derives patterns from data using a set of if-then logical statements. In the context of this study, we employed JRip rule-based classification method, which is an extension of RIPPER (Repeated Incremental Pruning to Produce Error Reduction) algorithm [START_REF] Cohen | Fast Effective Rule Induction[END_REF] . It constructs a set of if-then rules to predict class labels for data instances. Beginning with a single rule that predicts the majority class, JRip iteratively adds and prunes rules, using a heuristic to select the most informative attribute to augment a rule and the least impacting attribute to prune a rule. This process continues until a sufficiently accurate and interpretable rule set is established, providing a transparent framework for classification tasks. In our case, we used JRip method to find substructural motifs that are responsible for ACE2 inhibition. The method was implemented in Weka software 100 .

Pharmacophore modeling

Pharmacophore modeling involves the identification and characterization of essential chemical features (hydrogen bond donors/acceptors, aromatic rings, etc.) and spatial arrangements within a molecule that are critical for binding to a target receptor or enzyme. Structure-based pharmacophore model integrates structural information of the target receptor to find pharmacophoric features for a specific binding site. Once a set of pharmacophoric features is identified, it can be used as a query to screen libraries of compounds. Compounds that optimally fit these features are considered virtual hits. In this study, the ACE2 protein (PDB ID: "1R4L" 101 ) was obtained from the Protein Data Bank (PDB). LigandScout 102 (v. 4.4.8) was used to generate and apply pharmacophore models. The pharmacophore model was used as a virtual screening step.

Molecular docking

Molecular docking approach is used to assess the binding poses and energies between ligands and target proteins. A docking score is used to model the strength of supramolecular interactions. The PLANTS (Protein-Ligand ANT System) 103 employed in this study, utilizes ant colony optimization algorithm to explore the vast conformational space of ligand-receptor complexes. This method effectively balances exploration and exploitation to identify energetically favorable binding conformations. A key component of PLANTS is the integration of the CHEMPLP scoring function 104 , which evaluates molecular interactions, electrostatics, van der Waals forces, and solvation effects to provide accurate estimates of binding affinities. The docking was based on the 3Å resolution X-ray structure of the ACE2 binding site (1R4L) and the co-crystallized ligand (MLN-4760). The virtual hits obtained from ACE2 QSAR and pharmacophore models application step were docked onto the ACE2 binding site.

Results and discussion

As mentioned in 6.3 Methods section, the workflow of the project can be summarized in 3 steps (Figure 17). The results are organized in the same manner: (1) ACE2 QSAR and pharmacophore modeling; (2) molecular docking; (3) ACE and NEP QSAR modeling.

ACE2 QSAR and pharmacophore modeling

Prior to application of ACE2 QSAR model, the high performance of the model (BA5-CV = 0.97) was investigated by using JRip rule-based algorithm on the ACE2 dataset. The results revealed 2 rules presented in Figure 18. The derivation of such simple rules was possible due to representation of inhibitors class by a homogeneous series of compounds. The 2 rules in Figure 18 cover 35 out of the 37 actives and 630 out of 631 inactives in the training set. These rules identified scaffolds specific to the active set of compounds. They explain the high performances ACE2 QSAR models, and anticipate potential applicability domain problems. The LigandScout software generated structure-based pharmacophore including 10 features: 2 hydrophobic regions (H), 5 hydrogen bond donors (HD), 2 hydrogen bond acceptors (HA), 1 halogen donor (XD). The pharmacophore was optimized regarding to the "actives/hits" ratio. The final pharmacophore model included 6 features: 3 HD, 1 HA, 2H (Figure 19).

The application of the pharmacophore model to Enamine compound collection and in silico designed molecules resulted in 113413 molecules predicted as active (113258 from Enamine; 155 from the generated dataset). 

Molecular docking

Firstly, the co-crystallized ligand and the ACE2 training set were docked. The docking score of the co-crystallized ligand was -103.48. The docking score threshold was optimized to find the optimal ratio of true actives among those having a docking score lower than the threshold. The value -85 was selected corresponding to an enrichment factor equal to 1.45. The ROC AUC score of ACE2 training compounds sorted by docking score was of 0.75.

The application of the molecular docking method to the results from the previous step (196 hits from the ACE2 QSAR model; 113413 hits from the pharmacophore model) resulted in 58185 hits.

ACE and NEP QSAR modeling

The final step involved application of ACE and NEP QSAR models in order to identify compounds that do not bind neither to ACE nor to NEP. In total, 63 hits were selected out of 58185 compounds that were identified at the previous virtual screening step.

Conclusion

This study resulted in successful identification of 63 potential ACE2 inhibitors from Enamine's compound collection and in silico designed compounds. Experimental validation of these potential ACE2 inhibitors is currently underway. The confirmed ACE2 inhibitors will set a base for the development of chemical probes that will offer valuable insights into the effects related to inhibition of ACE2.

The training set of new ACE2 model has been expanded by incorporating experimentally confirmed results from the first screening campaign of the Enamine as well as new data from ChEMBL and PubChem. This enlarged training set enables a wider applicability domain and improves the performance of the models. The freely available ACE2, ACE and NEP QSAR models can facilitate other related screening projects by virtually filtering irrelevant and prioritizing promising hits.

Overall, this work demonstrated an example of a good synergy between virtual screening and experimental validation, which led to identification of potential selective chemical probes that will shed light on potential side effects associated with ACE2 perturbation.

Chapter 7

Conclusion and perspectives

The achievements of this thesis can be summarized in two main points: development of 8 publicly available predictive models (Table 10) and user-friendly automatized KNIME workflows for building QSAR/QSPR models. Both the developed predictive models and the modelling workflows provide vast number of possibilities on their applications.

The models have demonstrated their applicability in various steps of screening by using predictive models to prioritize testing of certain compounds; to evaluate stock solution integrity; to assess the quality of experimental data; to annotate chemical libraries, prioritize compounds and identify suspicious hits and non-hits for screening campaign. Predictions made by these models are labelled based on the confidence of prediction, providing users with additional information for decision-making. The summary of the models is given in Table 6. All of the models developed in the course of this thesis are publicly available at the web service of the Laboratory of Chemoinformatics 69 . The means of accessing the models are presented in Table 11 and in Figure 20.

The KNIME workflows provide necessary tools to develop QSAR/QSPR models and covers all aspects of the modelling pipeline: molecular standardization, molecular descriptor calculation, model training and validation, preparation and deployment of consensus model. The workflow manual documents and the visual programming aspects of the KNIME Analytics Platform allow users with limited coding knowledge to easily utilize these workflows and build in-house models based on their proprietary or public datasets. The KNIME workflows are available upon request to the Laboratory of Chemoinformatics: https://infochim.chimie.unistra.fr/?page_id=11.

All data are published following the FAIR principles in the repository France Data Gouv (https://entrepot.recherche.data.gouv.fr/dataverse/CI) or in the supplementary materials of publications (Table 9). ACE2, ACE and NEP datasets will be published after the completion of experimental validation. Color code of prediction confidence is as follows: green -optimal; blue -good; orange -average; red -unreliable.

Perspectives

This work can be further extended with the generation of new models covering other screening relevant properties, such as cytotoxicity 105 and permeability 106 . Assessing of cytotoxicity is important as it is often conducted prior to many bioassays to check cell viability. Once cell viability is confirmed, the compound can be evaluated for its permeability properties.

A B

The list of skin-related QSAR models can be also augmented by modeling other parameters, such as maximum skin flux, skin penetration enhancement, diffusion coefficients in different layers of skin. [START_REF] Tsakovska | Quantitative Structure-Skin Permeability Relationships[END_REF] The cooperation with INRS provides many other relevant targets in order to investigate danger and estimate the risks, for instance neurotoxicity and blood-brain barrier permeability. In a simplistic view, the neurotoxicity estimates a danger, but the risk evaluation requires to estimate the permeability.

The developed models can be used for profiling of screening libraries, such as Chimiothèque Nationale 38 . In a first step, the current chemical library shall be annotated using these models, then these models shall be given to ChemBioFrance to maintain the annotations. The initial annotations being provided for efficiency and as reference to compare to when the models will be installed on the servers of the Chimiothèque Nationale in Montpellier. Property profiles will add value to the Chimiothèque Nationale.

In terms of technological advancement, active learning approach could be applied to the screening context. 107 The idea is to iteratively select the most informative compounds for labeling and then adding the new experimental data to the training set of the model to increase its predictive performance. This approach maximizes the use of resources and accelerates the screening process, making it particularly valuable when dealing with large chemical libraries or limited experimental capacity. However, the implementation of active learning strategies requires a close collaboration with screening platforms, as the direct access to the analytical instruments would be necessary.

Another possible technical improvement could be made by developing KNIME workflows to perform clustering for the analysis and selection of candidates for the next screening campaigns. This would be useful in the case of a cascade of sequential screening campaigns. However, the realization of this idea would again require direct access to screening platform capabilities. Some instances of such integration have already been reported. [108][109][110] Finally, the developed models in combination with other in silico, in vitro, or in chemico assays could be suggested as a replacement to animal testing. Such approach is already practiced in skin sensitization domain. 111,112 In Europe, the approval of replacing an animal test with the alternative method is regulated by European Union Joint Research Centre for Alternatives to Animal Testing (EURL ECVAM). 85 113,114 However, it is debatable whether the results of alternative in silico, in vitro, or in chemico methods, either alone or in combination, can ever truly represent human data. For such replacements to occur, there would need to be full transitivity between predicted / experimental data and animal / human data, which seems presently out of reach due to the complex nature of biological systems. Yet, the frontier is definitely moving in this direction. 
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 1 Figure 1. Vue d'ensemble du processus de criblage et de l'application de chémoinformatique à chaque étape du processus.
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 2 Figure 2. Division de la plage de solubilité en catégories fixées par les seuils pour le criblage basé sur les fragments (1 mM) et pour la formulation de solutions mères (10 mM). Les étiquettes "Soluble" et "Insoluble" coïncident pour les solubilités supérieures à 10 mM et inférieures à 1 mM. Toutefois, dans la plage de 1 à 10 mM, les composés sont considérés comme solubles selon la définition du FBS, mais insolubles selon la définition d'une solution mère.
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 3 Figure 3. Types d'essais de mesure de la solubilité. HTS, MTS et LTS désignent respectivement un criblage à haut, moyen et bas débit.

Figure 4 .

 4 Figure 4. Voie d'expression des effets indésirables (AOP) du processus de sensibilisation cutanée. Une liste non exhaustive d'essais bien connus décrivant chaque événement clef (KE) est donnée sous leur KE respectif.

Figure 5 .

 5 Figure 5. Processus de collecte et de filtrage des données de la nouvelle base de données SkinPiX. "SC" signifie stratum corneum. Le processus suit deux étapes principales. Tout d'abord, les publications scientifiques pertinentes ont été recherchées dans PubMed. Ensuite, les données sur la perméabilité de la peau ont été extraites avec leurs métadonnées. Seules les données répondant à des critères spécifiques ont été conservées, comme illustré.
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 6 Figure 6. Aperçu des étapes du criblage virtuel pour identifier les inhibiteurs sélectifs de l'ACE2.
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 7 Figure 7. Distribution of lead generation strategies used in 156 successful hit-to-clinical campaigns. The figure is adapted from Brown 31 .
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 8 Figure 8. Simplified overview of a screening campaign: (1) chemical library design, (2) stock preparation, (3) sample preparation, (4) performing the test, (5) data acquisition, (6) data analysis.
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 9 Figure 9. Overview of screening workflow and application of chemoinformatics methods at each step of the workflow.
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 10 Figure 10. Example of fragmentation to ISIDA substructural molecular fragments. Stars annotated different carbon atoms. Circles highlight atom centers. The number of occurrences is given below each fragment. In triplets, the number between each atom pair indicates topological distance, or number of bonds between two atoms.
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 11 Figure 11. General modeling workflow. ML stands for machine learning.
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 12 Figure 12. Types of aqueous solubility and applied solubility measurement assay. HTS, MTS and LTS stand for high-, medium-and low-throughput screening, respectively.
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 13 Figure 13. Data processing of the HuskinDB.
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 16 Figure 16. GTM class landscape showing the distribution of the HuskinDB training dataset (blue) and the SkinPiX test set (red). Yellow and green areas are populated with compounds of both datasets. The structural motifs found in certain zones are displayed.
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 17 Figure 17. Overview of virtual screening steps to identify selective ACE2 inhibitors.
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 18 Figure 18. Classification rules derived by the JRip rule-based algorithm for ACE2 inhibition.The application of ACE2 QSAR model to Enamine compound collection and in silico designed molecules resulted in 196 molecules classified as active (188 from Enamine; 8 from the generated dataset). The low number of hits is due to the bias of the model towards inactive compounds, which is dictated by the class distribution in its training set.
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 19 Figure 19. Structure-based pharmacophore model. Red spheres -H-bond acceptor; green spheres -H-bond donor; yellow spheres -hydrophobic regions.
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 20 Figure 20. Screenshots showing example of request for ISIDA Predictor web service. Image A shows the ISIDA Predictor configuration page, where a user can select "Activity"/"PhysProp" general kind of property and then choose the model of interest. Image B illustrates an output of ISIDA Predictor. Color code of prediction confidence is as follows: green -optimal; blue -good; orange -average; red -unreliable.
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Propriété / Activité Taille de l'ensemble d'entraînement Méthode de validation Performance (BA)

  Tableau 1. La liste des procédures automatisées KNIME développés.

	1.3 Conclusion générale		
	Nom		Description	
	Tableau 2. La liste des modèles QSAR/QSPR développés, la taille de leurs ensembles d'apprentissage et les valeurs Standardisation des structures de performance. VC 5-fois -la validation croisée 5-fois ; BA -la précision balancée ; RMSE -racine de l'erreur 1_standardization moléculaires quadratique moyenne. Remarque concernant la BA : BA = 0,5 -prédiction aléatoire ; BA = 1 -prédiction parfaite.
	d'entraînement et de test pour la Remarque concernant le RMSE : plus le RMSE est petit, meilleur est le modèle. Entre parenthèses, la taille de 2_ExtCV_data_partitioning Division de l'ensemble de données en un nombre défini d'ensembles l'ensemble de test est indiquée.
			validation croisée externe	
	3_ExtCV_descriptor_calculation Solubilité dans le DMSO Solubilité cinétique aqueuse	788 56132	VC 5-fois Calcul des descripteurs ISIDA Entraînement des modèles de Ensemble de test (17666)	0.78 0.84
	4_ExtCV_modeling_CLS (ou _REG) Sensibilisation cutanée	117	classification (ou de régression) intégré à VC 5-fois 0.82
	Inhibition de l'ACE2	668	une validation croisée externe VC 5-fois	0.97
	Inhibition de l'ACE	591	Prépare un modèle consensus de VC 5-fois	0.83
	5_ExtCV_consensus_preparation_CLS (ou Inhibition de la NEP 464	classification (ou de régression) pour VC 5-fois	0.79
	_REG)		chaque paquet de validation croisée	
			externe.	
			Applique un modèle consens pour	
	6_ExtCV_application		l'ensemble de test correspondant à un jeu d'entraînement au cours de la
			validation croisée externe.	
	7_ExtCV_evaluation		Évalue la performance prédictive de la validation croisée externe
	8_final_consensus_preparation_CLS (ou _REG)	Effectue toutes les étapes de la modélisation pour préparer le modèle consens final

Propriété / Activité Taille de l'ensemble d'entraînement Méthode de validation Performance (RMSE)

  

	Perméabilité cutanée	195	VC 5-fois	0.7
	Solubilité			
	thermodynamique	42159	Ensemble de test (5728)	0.59
	aqueuse*			
	* Le modèle QSPR a été développé par mon collègue doctorant Pierre Llompart.	

Propriété / Activité "General kind of property" "Property to model"

  Tableau 3. La liste des modèles développés et les moyens d'y accéder. Tous les modèles (sauf la solubilité aqueuse thermodynamique) sont accessibles sur la page web https://chematlas.chimie.unistra.fr/cgi-bin/predictor2.cgi.

	Solubilité dans le DMSO	PhysProp	Solubility_DMSO_2Cls
	Solubilité cinétique aqueuse	PhysProp	Kinetic_solubility_2Cls
	Perméabilité cutanée	PhysProp	Skin_permeability_Reg
	Sensibilisation cutanée	Activity	Skin_sensitization_BMDC_2Cls
	Inhibition de l'ACE2	Activity	ACE2_2Cls
	Inhibition de l'ACE	Activity	ACE_2Cls
	Inhibition de la NEP Solubilité thermodynamique aqueuse* Chapter 2	Activity -	NEP_2Cls -
	* Le modèle QSPR a été développé par mon collègue doctorant Pierre Llompart. Le modèle est disponible
	sur une page web séparée : https://chematlas.chimie.unistra.fr/WebTools/predictor_solubility.php

Table 4 .

 4 Screening campaign types categorized by measurement rate, approach, and assay type.

	Screening rate	Screening approach	Assay type
	§ High-throughput	§ "Classical" screening	§ Bioassays
	§ Medium-throughput	§ Fragment-based screening	-Target-based screening
	§ Low-throughput	§ DNA-encoded library	-Phenotypic screening
		screening	§ ADMET profiling
		§ Virtual screening	§ Physicochemical profiling

Table 5 .

 5 Cost estimates per sample (US$) for preparation of compounds for HTS campaigns. The table is adapted from Goodnow 41 .

	Cost estimates	Commercially available compound (10 mg)	Custom synthesis (mg to g)	Purified compound from parallel or combinatorial methods (10 mg)
	Lower	50	1000	100
	Higher	250	5000	500

Table 6 .

 6 A list of developed KNIME workflows.

	Name	Description
	1_standardization	Standardizes molecular structures
		Partitions the dataset into a defined number of
	2_ExtCV_data_partitioning	sets of training and test sets for external cross-
		validation
	3_ExtCV_descriptor_calculation	Calculates ISIDA fragment descriptors
	4_ExtCV_modeling_CLS (or _REG)	Trains classification (or regression) models for external cross-validation
	5_ExtCV_consensus_preparation_CLS (or _REG)	Prepares a classification (or a regression) consensus model for each fold of cross-validation
	6_ExtCV_application	Applies a consensus model for the respective fold's test set
	7_ExtCV_evaluation	Evaluates the predictive performance of the external cross-validation
	8_final_consensus_preparation_CLS (or _REG)	Performs all the modeling steps to prepare final consensus model

Table 7 .

 7 Training set sizes of ACE2, ACE and NEP models.

	Enzyme	Training set size	Number of actives	Number of inactives
	ACE2	668	37	631
	ACE	591	304	287
	NEP	464	301	163

Table 9 .

 9 The list of published data and links to access them.

Table 10 .

 10 The list of developed QSAR/QSPR models, their training set sizes and predictive performance values. The size of the test set is indicated in brackets. BA -balanced accuracy; CV -cross-validation; RMSE -root mean-squared error.

	Property / Activity	Training set size	Validation method	Performance (BA)
	Solubility in DMSO	788	5-fold CV	0.78
	Aqueous kinetic solubility	56132	Test set (17666)	0.84
	Skin sensitization	117	5-fold CV	0.82
	ACE2 inhibition	668	5-fold CV	0.97
	ACE inhibition	591	5-fold CV	0.83
	NEP inhibition	464	5-fold CV	0.79
	Property / Activity	Training set size	Validation method	Performance (RMSE)
	Skin permeability	195	5-fold CV	0.7
	Aqueous thermodynamic solubility *	42159	Test set (5728)	0.59

* The QSPR model was developed by my colleague Mr. Pierre Llompart, Ph.D. student.

Table 11 .

 11 The list of developed models and how to access them. All models (except thermodynamic aqueous solubility) are available on the https://chematlas.chimie.unistra.fr/cgi-bin/predictor2.cgi web page. The models can be accessed by first selecting "General kind of property" and then "Property to model".

	Property / Activity	"General kind of property"	"Property to model"
	Solubility in DMSO	PhysProp	Solubility_DMSO_2Cls
	Aqueous kinetic solubility	PhysProp	Kinetic_solubility_2Cls
	Skin permeability	PhysProp	Skin_permeability_Reg
	Skin sensitization	Activity	Skin_sensitization_BMDC_2Cls
	ACE2 inhibition	Activity	ACE2_2Cls
	ACE inhibition	Activity	ACE_2Cls
	NEP inhibition	Activity	NEP_2Cls
	Aqueous thermodynamic solubility *	-	-
	* The QSPR model was developed by my colleague Mr. Pierre Llompart, Ph.D. student. The model is available
	on a separate web page: https://chematlas.chimie.unistra.fr/WebTools/predictor_solubility.php

4.2 Solubility of fragment-like compounds in DMSO

5.2 Skin sensitization

Skin-related safety properties

Property / Activity Link

in DMSO https://doi.org/10.3390/molecules26133950 Aqueous kinetic solubility https://doi.org/10.57745/ZWS0WC Aqueous thermodynamic solubility https://doi.org/10.57745/CZVZIA Skin permeability https://doi.org/10.57745/7FHQOY Skin sensitization https://doi.org/10.57745/PPAMKY ACE2 inhibition (to be published after experimental validation) ACE inhibition (to be published after experimental validation) NEP inhibition (to be published after experimental validation)

Results and discussion

The 5-fold cross-validation performance of the model built on HuskinDB is provided in Figure 14. The removal of 5 identified outliers resulted in improvement of performance. The observed R 2 5-CV = 0.53 is similar to the performance of the model trained on HuskinDB (R 2 test = 0.5) published by Waters and Quah [START_REF] Waters | Predicting Skin Permeability Using HuskinDB[END_REF] . The consensus model built on HuskinDB consisted of 7 individual models with internal validation R 2 ranging from 0.64 to 0.78.

The consensus model showed poor performance when applied to the external test set, SkinPiX data (R 2 test = -0.21, RMSEtest = 1.32) (Figure 15). In order to understand the reason of poor prediction, the chemical space coverage of the HuskinDB model training set and the SkinPiX test set was analyzed using GTM class landscape (Figure 16). The class landscape clearly indicates the zones populated by one of the datasets (blue color for the training set; red color for the test set), showing the limited applicability domain of the HuskinDB model. In order to expand the applicability domain, a new model was trained on the merged dataset composed of both the SkinPiX and the HuskinDB datasets. The 5-fold crossvalidation performance increased after the removal of 8 outliers. The RMSE of the merged model (0.7) aligns well with the mean standard deviation of duplicate molecules (0.68). A better understanding of this case requires a more thorough investigation of the merged dataset, specifically, during the data blending stage. Table 11. The list of developed models and how to access them. All models (except thermodynamic aqueous solubility) are available on the https://chematlas.chimie.unistra.fr/cgi-bin/predictor2.cgi web page. The models can be accessed by first selecting "General kind of property" and then "Property to model". ... 116
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