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Abstract

This thesis concerns the development and implementation of chemoinformatics tools
to support compound screening campaigns. It covers the following topics: steps for
compound selection, assessment of stock solution integrity, quality control of experimental
data, development of predictive models, and annotation of screening libraries. The
properties of interest include solubility of fragment-like compounds in DMSO, aqueous
solubility, skin sensitization, skin permeability, and binding to angiotensin-converting
enzyme (ACE2) for the design of biological probes. The publicly available quantitative
structure-activity/-property relationship (QSAR/QSPR) models and user-friendly tools
developed in KNIME Analytics Platform provide valuable support to researchers without
the need for coding expertise. The integration of the developed chemoinformatics tools

offers an efficient approach to improving screening outcomes and maximizing efficiency.
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1.1 Introduction

Chapter 1

Résumé en francais

1.1 Introduction

Le criblage joue un réle essentiel dans le processus de découverte et de développement
des médicaments.' Bien que les essais de criblage accélérent considérablement ce processus,
un grand nombre de résultats négatifs sont générés, ce qui entraine une consommation
inutilement élevée de ressources (humaines et matérielles). L'intégration de méthodes i
silico dans le processus de criblage' permet de biaiser "ensemble des substances 2 tester de
maniere a concentrer les moyens sur les hypotheéses les plus fructueuses. Cette thése vise a
développer et mettre en place des outils chémoinformatiques qui accompagneront les
campagnes de criblage dans les étapes de collecte et d'analyse des données, de contrdle
qualité des données de criblage, de développement de modeéles prédictifs spécifiquement
adaptés, et d'annotation des bibliotheques de criblage (Figure 1).
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Figure 1. Vue d'ensemble du processus de criblage et de I'application de chémoinformatique a chaque étape du
processus.

Les premiers parametres présentés sont la solubilité dans le DMSO et la solubilité
aqueuse. 1ls sont d'une grande importance pour le criblage. Le DMSO est un solvant
standard pour le stockage des composés organiques ; quand a I'évaluation de la solubilité
aqueuse, eclle est cruciale lors de la réalisation d'un criblage et, plus tard, pour le
développement d'un composé en téte de série. Ensuite, ce travail se concentre sur les essais
de criblage pertinents pour la sécurité des produits chimiques : la sensibilisation et la
perméabilité cutanée. L'évaluation de la sensibilisation cutanée est aujourd’hui une
obligation réglementaire pour 1I'UE dans le cadre de lannexe VII de REACH. La
perméabilité de la peau est un parameétre crucial, mais difficilement accessible, pour estimer
le risque d'un produit chimique. Enfin, la liaison a I'enzyme de conversion de I'angiotensine
(ACE2) a été ajoutée aux propriétés modélisées, dans le cadre de la conception de sondes
biologiques capables de moduler temporairement l'activité de ACE2 dans différents tissus

et organes biologiques.

Ces projets sont le fruit de collaborations avec diverses équipes de recherche et
instituts, notamment la Plateforme Intégrée de Criblage de Toulouse (PICT), pour la
solubilité¢ dans le DMSO et la solubilité cinétique en milieu aqueux - également avec la
Plateforme de Chimie Biologique Intégrative de Strasbourg (PCBIS - UAR 3280) ; I'Institut
de Chimie Organique et la société Enamine a Kyiv, en Ukraine, pour I'inhibition sélective
de I'ACE2 ; et I'Institut National de Recherche et de Sécurité (INRS) a Nancy, pour la
perméabilité et la sensibilisation de la peau. Dans le cadre de cette these, des solutions
chémoinformatiques ont ¢été développées, notamment des modeles de relations
quantitatives structure-activité/-proprié¢té (QSAR/QSPR) accessibles au public, ainsi que
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des outils conviviaux pour le déploiement de ces modéles 7z silico. Ces outils sont
disponibles sous forme de processus de traitement de données pour l'environnement
logiciel KNIME?, qui sont faciles 2 utiliser et ne nécessitent aucune expertise en matiére de
codage.

1.2 Résultats et discussions

1.2.1 Solubilité des composés apparentés a des fragments dans le
DMSO

Le DMSO est un solvant standard largement accepté, utilisé a la fois pour le stockage
et le criblage expérimental. Les modéles prédictifs de solubilité dans le DMSO sont utiles
pour gérer les collections de substances destinées au criblage, car la saturation des stocks ou
des plaques peut passer inapercue. Cela peut entrainer une estimation incorrecte de la
concentration des substances testées et compromettre les résultats des essais biologiques ou
des campagnes de criblage. Ce projet se concentre sur le criblage basé sur les fragments
(FBS), ou l'objectif est de proposer un modele capable de prédire si un composé peut étre
concentré a 1 mM dans le DMSO et, donc, étre conforme pour une campagne FBS.

La concentration de 1 mM est une concentration nominale typique des échantillons
utilisés dans les campagnes FBS.” Cette valeur a été utilisée comme seuil pour développer
un mode¢le utilisant la structure des fragments pour discriminer ceux qui sont solubles
(concentration maximale = 1 mM) ou insolubles (concentration maximale < 1 mM). Le
mode¢le développé a été comparé a un autre modele disponible publiquement qui utilise un
seuil 10 mM pour définir la solubilité (une concentration nominale courante des solutions
meéres de composés organiques®). Cette définition différe des conditions FBS (Figure 2),
mais une comparaison reste possible sous certaines conditions.

Les résultats de cette étude sont résumés dans le Tableau 2. En outre, 34 données
erronées ont pu étre identifiées au cours de la modélisation. Ces erreurs résultent de
probléemes expérimentaux ou de la dégradation des substances en solution. Le modéle
développé peut ctre utilisé pour filtrer et prioriser des composés étiquetés comme
"solubles" par le modele, pour des campagnes de criblage.
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Figure 2. Division de la plage de solubilité en catégories fixées par les seuils pour le criblage basé sur les fragments
(1 mM) et pour la formulation de solutions meres (10 mM). Les étiquettes "Soluble” et "Insoluble" coincident pour
les solubilités supérieures a 10 mM et inférieures a 1 mM. Toutefois, dans la plage de 1 a 10 mM, les composés
sont considérés comme solubles selon la définition du FBS, mais insolubles selon la définition d'une solution
mére.

1.2.2 Solubilité aqueuse

La mesure de la solubilité aqueuse est cruciale dans la découverte et le développement
de médicaments, mais son objectif varie aux différents stades de ce processus.” Au début de
la découverte de médicaments, l'objectif est d'éliminer rapidement les composés qui ne sont
pas suffisamment solubles pour étre testés a la concentration maximale d'un essai. La
solubilité cinétique est donc privilégiée, car elle peut étre mise en ceuvre dans une
configuration a haut débit, impliquant le criblage d'échantillons préparés a partir de
solutions meres.” Aux stades ultérieurs de la découverte et du développement de
médicaments, la solubilité est mesurée de maniere plus approfondie et tolere un rythme
plus lent, pour servir de parametre a la biodisponibilité et a la sécurité des candidats
médicaments. Ces expériences de mesure de la solubilité utilisent une poudre pure comme
point de départ et sont appelées essais de solubilité thermodynamique (Figure 3).” Bien que
les deux essais soient importants, la solubilité thermodynamique est plus souvent modélisée
car elle est considérée comme une quantité thermodynamique, reproductible et ayant une
relation directe avec la nature du soluté. Les essais de solubilité cinétique, en revanche, sont
moins étudiés car ils sont considérés comme non reproductibles, ne correspondant pas a
un équilibre thermodynamique.® L'objectif de ce projet était de développer des modeéles qui
prédisent spécifiquement la solubilité aqueuse et d'étudier les différences entre solubilité
cinétique et solubilité thermodynamique du point de vue de la modélisation.
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Solubility measurement assay types

Thermodynamic

Kinetic (equilibrium)
= Starting point: stock solution = Starting point: solid-state form
= Employed as a HTS assay in the early stages of * Employed as a MTS/LTS assay in the later stages
drug discovery of drug discovery and development
= Main goal: a quick assessment of solubility for = Main goal: a detailed assessment of solubility at
the elimination of insoluble compounds various pH and in different formulations

Figure 3. Types d'essais de mesure de la solubilité. HTS, MTS et LTS désignent respectivement un criblage a haut,
moyen et bas débit.

L'analyse de plusieurs ensembles de données de solubilité cinétique obtenues pat
différents protocoles expérimentaux a montré une bonne concordance entre les valeurs
mesurées de composés courants, avec des différences inférieures a une unité log (en M).
Toutefois, la comparaison des solubilités cinétique et thermodynamique mesurées pour le
méme ensemble de composés a confirmé l'observation bien établie selon laquelle la
solubilité cinétique surestime la solubilité thermodynamique et n'est pas prédictive de celle-
cl.

Pour cette étude, le cas du criblage basé sur les fragments a été spécifiquement étudié,
et un seuil de classification de 1 mM a été utilisé - le méme que pour la modélisation de la
solubilité dans le DMSO. Le modele entrainé sur toutes les données de solubilité cinétique,
une fois agrégées et intégrées, est performant sur jeu de données de test (Tableau 2).

Dans le méme temps, la solubilité¢ thermodynamique dans I'eau a été réexaminée, en
tirant parti de la publication de nouvelles données, abondantes et bien répertoriées. Les
mode¢les publics et nouvellement entrainés de solubilité thermodynamique ont été
comparés et leurs performances ont été rationalisées. L'erreur de ces modeles devrait se
situer entre 0,8 et 1,0 unité log. Cependant, lorsqu'ils sont appliqués aux données de
solubilité cinétique, ils atteignent des performances presque aléatoires (moyenne de la
précision balancée (BA) sur I'ensemble de test = 0,56), ce qui montre que la solubilité
thermodynamique n'est pas prédictive de la solubilité cinétique.

Les résultats de ce projet mettent en évidence plusieurs points intéressants.
Premierement, les données de solubilité cinétique obtenues a l'aide de différents protocoles
de mesure sont en bon accord les unes avec les autres, ce qui indique une bonne
reproductibilité interlaboratoire ; simultanément, un protocole complet pour nettoyer les
données de solubilité thermodynamique a été défini. Deuxiémement, le mélange des
données de solubilité cinétique donne de meilleures performances de modélisation, ce qui
suggere que les données de solubilité cinétique sont homogenes et ne dépendent pas de
l'essai comme initialement supposé; d'autre part, les données de solubilité
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thermodynamique comprennent souvent des mesures problématiques, par exemple des
mesures acquises en dehors de la plage d'utilisation recommandée de la méthode
expérimentale employée. Enfin, le modéle formé sur les données de solubilité
thermodynamique ne parvient pas a évaluer la solubilité cinétique et zice versa, soulignant
qu'il s'agit de mesures conceptuellement liées mais différentes. Si I'évaluation expérimentale
de la solubilité aqueuse est essentielle, des modeles de solubilité cinétique et
thermodynamique sont nécessaires pour soutenir le criblage expérimental et le passage de
touches a tétes de série dans développement de médicaments.

1.2.3 Sensibilisation cutanée

La sensibilisation cutanée est une réaction allergique qui se produit lorsque le systeme
immunitaire réagit de manicére excessive a une substance particuliere qui est entrée en
contact avec la peau et I'a pénétrée. Aujourd'hui, de nombreux essais biologiques controlent
chaque étape de ce processus biologique complexe afin d'évaluer le potentiel de
sensibilisation d'une substance chimique.” La voie toxicologique impliquée dans les effets
indésirables (AOP) est un cadre conceptuel utilisé pour étudier les phénomenes
biologiques, tels que la sensibilisation de la peau, en décomposant des bioprocessus
complexes en une série d'étapes appelées événements clefs (KE).® I’AOP de la
sensibilisation de la peau se compose de plusieurs KE : liaison des protéines (KE1, ou
Iévénement initiateur moléculaire (molecular initiating event, MIE)), activation des
kératinocytes (KE2), activation des cellules dendritiques (KE3), prolifération des
lymphocytes T (KE4) et dermatite de contact allergique (effet indésirable) (Figure 4).° Nos
collaborateurs de I'INRS (Institut National de Recherche et de Sécurité) ont développé un
nouveau test appelé test des cellules dendritiques de la moelle osseuse (BMDC), qui vise a
étudier l'activation des cellules dendritiques (KE3).” IL'objectif de ce projet est de
contextualiser les données BMDC dans le cadre des bio-essais existants et de construire un
modele QSAR prédisant les résultats de la sensibilisation cutanée sur la base des données
expérimentales du test BMDC. La collecte, le traitement des données et la modélisation ont
été réalisés avec nos collaborateurs de 'INRS.

Nous avons comparé l'essai BMDC avec des essais iz vitro et in chemico bien connus
(DPRA, KeratinoSens™, LuSens, h-CLAT, U-SENS™, mMUSST) sur la base d'un
ensemble de composés communs qui ont été testés expérimentalement a l'aide d'essais

b

sélectionnés. La comparaison a été faite par rapport a un test zz vivo bien établi : Pessai de
stimulation locale des ganglions lymphatiques (LLNA). Les résultats ont montré que 'essai
BMDC était légerement plus performant (BA = 0,86) que les autres essais (BA = 0,84). Le
modéele QSAR construit sur les données BMDC a montré de bonnes performances
(Tableau 2) démontrant la cohérence interne de l'ensemble de données.

En résumé, les résultats de l'essai BMDC ont montré une meilleure performance par
rapport a d'autres essais de sensibilisation cutanée 7z vitro et in chemico en comparaison a
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l'essai 7z vivo LLNA choisit comme référence. Le modele QSAR développé sur la base des
données BMDC peut étre utilisé pour accompagner I'évaluation expérimentale préliminaire
de la sensibilisation cutanée des composés d'intérét et pour guider les experts dans la
hiérarchisation des essais de certains composés par rapport a d'autres.

Molecular Initiating Event Cellular Response Organ Response Organism Response
KE1 KE2 KE3 KE4 Adverse Outcome
—— Keratinocyte Dendritic cell T-cell . —
[ Protein binding ] = [ <erration ] = [ activation J =y [ pioliferation ] = [Sklnsensntlzatlon]
* DPRA = KeratinoSens™ = BMDC * LLNA
= LuSens = h-CLAT
= U-SENS™
=  mMUSST

Figure 4. Voie d’expression des effets indésirables (AOP) du processus de sensibilisation cutanée. Une liste non
exhaustive d'essais bien connus décrivant chaque événement clef (KE) est donnée sous leur KE respectif.

1.2.4 Perméabilité cutanée

L'évaluation du taux de perméation cutanée est importante non seulement pour les
produits chimiques pharmaceutiques et cosmétiques, mais aussi pour les substances
toxiques industrielles, car les travailleurs peuvent y étre exposés lors de manipulations.'’ Les
expériences de perméabilité cutanée prennent souvent beaucoup de temps et dépendent de
la disponibilité d'échantillons de peau fraiche. Bien que la validation expérimentale soit
nécessaire, les méthodes 7z silico développées pour I'évaluation virtuelle de I'absorption
cutanée peuvent étre utilisées pour une évaluation préliminaire."’ Le développement de tout
modéle QSPR implique l'utilisation de sources de données pour l'entrainement, qui doivent
de préférence contenir des chimiotypes variés et étre a jour. HuskinDB est la plus grande
base de données connue sur la perméabilité cutanée, mais elle est constituée de données
provenant de sources bibliographiques publiées jusqu'en 2011 et n'a pas été mise a jour
depuis.”” Pour résoudre ce probleme, l'une de nos tiches a été de compiler un nouvel
ensemble de données sur la perméabilité cutanée publiées entre 2012 et 2021, afin de
compléter HuskinDB. Ce nouveau jeu de données est prét et publié. 11 est utilisé pour
entrainer de nouveaux modeles QSPR couvrant un espace chimique plus large. La collecte,

le traitement des données et la modélisation ont été réalisés avec nos collaborateurs de
I'INRS.

Les nouvelles données ont été collectées a partir d'articles publiés entre 2012 et 2021 et
leur pertinence pour les mesures de perméabilité cutanée a été évaluée (Figure 5). Une fois
la sélection des articles pertinents terminée, le coefficient de perméabilité cutanée et
d'autres métadonnées ont été extraits des documents. Un filtrage supplémentaire des
données a consisté a supprimer les substances de composition inconnue ou variable
(UVCB) et a conserver les points de données obtenus a l'aide de dispositifs expérimentaux

définis. En conséquence, 202 nouveaux points de données (110 composés) ont été extraits
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de 621 articles, et le nouvel ensemble de données, SkinPiX, a été mis a la disposition du

public®.

Le modele QSPR formé sur la combinaison de la base de données HuskinDB et de la
base de données SkinPiX nouvellement compilée est plus performant (RMSEscy = 0,7)
(Tableau 2) que le modele développé uniquement sur la base de données HuskinDB
(RMSEs.cv = 0,76). L'ensemble d'entrainement plus important du nouveau modéle QSPR
(195 composés patr rapport aux 123 composés de l'ensemble d'entrainement du modele

HuskinDB) permet de couvrir une plus grande partie de I'espace chimique.
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Figure 5. Processus de collecte et de filtrage des données de la nouvelle base de données SkinPiX. "SC" signifie
stratum corneum. Le processus suit deux étapes principales. Tout d'abord, les publications scientifiques
pertinentes ont été recherchées dans PubMed. Ensuite, les données sur la perméabilité de la peau ont été
extraites avec leurs métadonnées. Seules les données répondant a des critéres spécifiques ont été conservées,
comme illustré.

1.2.5 Inhibition sélective de I'ACE2

L'enzyme de conversion de l'angiotensine 2 (ACE2) est une enzyme liée a la membrane
cellulaire de nombreux types de cellule : pulmonaires, cardiaques et rénales en particulier.
L'ACE2 fait partie du systeme rénine-angiotensine-aldostérone (RAAS), qui régule la
pression artérielle et I'équilibre des fluides dans l'organisme." Outre son rdle dans le RAAS,
I'ACEZ2 est utilisée par les coronavirus (y compris le SARS-CoV-2) comme porte d'entrée
pour infecter une cellule et accéder a sa machinerie.”” D'ou l'intérét de découvrir des sondes
biologiques pouvant étre utilisées pour moduler l'activité et comprendre le role biologique
de 'ACE2. Au cours de ce projet, le criblage virtuel de la collection de composés en stock
de la société Enamine (2,6 millions de composés) et d'un ensemble de 4080 composés
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précédemment congus 7 silico a été réalisé. Les résultats ont permis d'établir une liste de
molécules susceptibles de se lier sélectivement a ' ACE2. Les méthodes de criblage virtuel

appliquées dans le cadre de ce projet comprenaient des méthodes d’amarrage moléculaire
(docking), de pharmacophore et de modélisation QSAR (Figure 06).

Trois modeles de classification QSAR ont été développés pour prédire l'inhibition des
enzymes ACE2, ACE et NEP (Tableau 2). L'objectif était de trouver des molécules
susceptibles de mettre en évidence l'effet de ' ACE2 par rapport a 'ACE ; comme la NEP
régule la durée de vie des peptides natriurétiques, il peut étre génant pour observer
sélectivement les ACE / ACE2. Par conséquent, les modeles QSAR de I'ACE et de la NEP
ont ¢été utilisés pour identifier les liants sélectifs potentiels de I'ACE2. Finalement, 63
inhibiteurs sélectifs potentiels de 'ACE2 ont été identifiés dans la collection de composés
en stock d'Enamine et dans l'ensemble des composés congus #z silico. Des essais
expérimentaux sont en cours en Ukraine.

| ACE2 QSAR [
| model J
ACE and
Docking NEP QSAR

models
| Pharmacophore
Enamine and l model
virtually generated

compounds

([

(L0

63 potential ACE2
selective inhibitors

P

Figure 6. Apercu des étapes du criblage virtuel pour identifier les inhibiteurs sélectifs de I'ACE2.

1.2.6 Procédures automatisées avec KNIME

Certains des modeles développés dans cette thése ont été générés a l'aide de
procédures automatisées dans la plateforme KNIME?” Ces procédures KNIME incluent
I'ensemble des étapes de modélisation : la standardisation des structures des molécules, la
préparation des jeux de données pour la validation croisée en £ paquets, le calcul des
descripteurs moléculaires a l'aide du logiciel ISIDA Fragmentor, l'entralnement et la
validation de modeles SVM, la préparation du modele consensus et l'intégration dans le
logiciel ISIDA Predictor (qui permet d’utiliser le modéle consensus et intégre le domaine
d’applicabilité), l'application du modéle a de nouvelles structures chimiques (Tableau 1).
L'utilisation des procédures KNIME ne nécessite aucune connaissance en maticre de
codage et est donc conviviale et facile a comprendre. Ils ont été développés pour les
systemes d'exploitation Linux et Windows. Les procédures KNIME sont disponibles sur
demande a l'aide d’un formulaire sur le site web du Laboratoire de Chémoinformatique
(https://infochim.chimie.unistra.fr/?page id=11). Les procédures sont illustrées dans les

figures en annexe.
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Tableau 1. La liste des procédures automatisées KNIME développés.

Nom

Description

1_standardization

2_ExtCV_data_partitioning

3_ExtCV_descriptor_calculation

4_ExtCV_modeling_CLS (ou _REG)

5_ExtCV_consensus_preparation_CLS (ou
_REG)

6_ExtCV_application

7_ExtCV_evaluation

8_final_consensus_preparation_CLS (ou
_REG)

Standardisation des structures
moléculaires

Division de I'ensemble de données en un
nombre défini d'ensembles
d'entrainement et de test pour la
validation croisée externe

Calcul des descripteurs ISIDA
Entrainement des modéles de
classification (ou de régression) intégré a
une validation croisée externe
Prépare un modele consensus de
classification (ou de régression) pour
chaque paquet de validation croisée
externe.

Applique un modéle consens pour
I'ensemble de test correspondant a un
jeu d’entrainement au cours de la
validation croisée externe.

Evalue la performance prédictive de la
validation croisée externe

Effectue toutes les étapes de la
modélisation pour préparer le modele
consens final
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1.3 Conclusion générale

Tableau 2. La liste des modéles QSAR/QSPR développés, la taille de leurs ensembles d'apprentissage et les valeurs
de performance. VC 5-fois - la validation croisée 5-fois ; BA - la précision balancée ; RMSE - racine de I'erreur
quadratique moyenne. Remarque concernant la BA : BA = 0,5 - prédiction aléatoire ; BA = 1 - prédiction parfaite.
Remarque concernant le RMSE : plus le RMSE est petit, meilleur est le modele. Entre parenthéses, la taille de
I'ensemble de test est indiquée.

L L Taille de I'ensemble Méthode de
Propriété / Activité \ . L Performance (BA)
d'entrainement validation
Solubilité dans le DMSO 788 VC 5-fois 0.78
Solubilité cinati
Olubflite dnetique 56132 Ensemble de test (17666) 0.84
aqueuse
Sensibilisation cutanée 117 VC 5-fois 0.82
Inhibition de I'ACE2 668 VC 5-fois 0.97
Inhibition de I'ACE 591 VC 5-fois 0.83
Inhibition de la NEP 464 VC 5-fois 0.79
Taille de I'ensemble Méthode de
Propriété / Activité \ . L Performance (RMSE)
d'entrainement validation
Perméabilité cutanée 195 VC 5-fois 0.7
Solubilité
thermodynamique 42159 Ensemble de test (5728) 0.59
aqueuse*

* Le modele QSPR a été développé par mon collegue doctorant Pierre Liompart.

En plus des 8 modeles QSAR/QSPR développés (Tableau 2), les procédures
automatisées utilisées dans leur développement permettent a un utilisateur de générer
rapidement ses propres modeéles pour la propriété qui l'intéresse. Tous les modeles
QSAR/QSPR développés au cours de cette these sont accessibles au public sur le serveur

web du Laboratoire de Chémoinformatique (https://chematlas.chimie.unistra.fr/cgi-

bin/predictor2.cgi). Ces modeles et 'ensemble des données de haute qualité produites sont

utiles pour annoter les collections de composés pour les paramétres importants couverts
dans cette thése. D'autres travaux devraient porter sur d'autres parameétres importants pour
la plate-forme de criblage, tels que la cytotoxicité, la cancérogénicité et d'autres parametres
importants pour mesurer le risque des produits chimiques, par example la bronchosorption.

Les modeles QSAR/QSPR développés sont accessibles sur le service web
(https://chematlas.chimie.unistra.fr/cgi-bin/predictor2.cgi) en sélectionnant d'abord

"General kind of property" et ensuite "Property to model" (Tableau 3).
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Tableau 3. La liste des modeles développés et les moyens d'y accéder. Tous les modéles (sauf la solubilité aqueuse
thermodynamique) sont accessibles sur la page web https://chematlas.chimie.unistra.fr/cgi-bin/predictor2.cqi.

Propriété / Activité "General kind of property" "Property to model”
Solubilité dans le DMSO PhysProp Solubility_DMSO_2Cls
Solubilité cinétique aqueuse PhysProp Kinetic_solubility_2Cls
Perméabilité cutanée PhysProp Skin_permeability_Reg
Sensibilisation cutanée Activity Skin_sensitization_BMDC_2Cls
Inhibition de I'ACE2 Activity ACE2_2Cls
Inhibition de I'ACE Activity ACE_2Cls
Inhibition de la NEP Activity NEP_2Cls
Solubilité thermodynamique
aqueuse* i i

* Le modele QSPR a été développé par mon collégue doctorant Pierre Liompart. Le modele est disponible
sur une page web séparée : https://chematlas.chimie.unistra.fr/WebTools/predictor solubility.php
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Chapter 2

Introduction

2.1 Screening workflow

Drug discovery and development pathway involves exploration and exploitation of
chemical space to find the most effective drug candidates. While attempts to design analogs
of known bioactive compounds can yield positive results, this approach is limited to
investigation of a small number of similar compounds representing limited regions of
chemical space. In addition, the industrial development of a new drug must take into

account existing patents.'®

A systematic screening campaign can alleviate these issues, by
testing hundreds to millions of structurally diverse compounds which cover larger chemical
space. This is implemented as a high-throughput screening (HTS), which typically involves
testing tens of thousands of compounds per hour.'” Thus, HTS campaigns allow quick
profiling of compound collections for physicochemical properties and/or bioactivities. The
most promising molecules, the /its of the screening campaign, are then used as starting

points to be optimized into /ad compounds and later to drug candidates.

2.1.1 Types of screening campaigns

Screening campaigns can be categorized based on factors, such as the rate of
measurement, the involved assay type, screening approach (Table 4)." Generally, the
number of analyzed compounds per measurement campaign decreases through the drug
discovery and development pipeline, while focusing on fewer but more promising lead
molecules.” The screening rate also vaties depending on the chosen screening approach
and the applied assay.”” Here, “classical” screening approach refers to screening of a
compound library composed of common compounds of varying molecular weight and

chemotypes using automatized platforms.
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Table 4. Screening campaign types categorized by measurement rate, approach, and assay type.

Screening rate Screening approach Assay type
= High-throughput = “Classical” screening = Bioassays
= Medium-throughput = Fragment-based screening - Target-based screening
= Low-throughput = DNA-encoded library - Phenotypic screening
screening = ADMET profiling
= Virtual screening = Physicochemical profiling

The concept of “fragment-based” screening (FBS) is based on the identification of
small molecules, called fragments, that fit efficiently to a binding site of the target protein,
based on the same technological platforms as for “classical” screening.”* There are several
definitions of what is a fragment™, but they all cover the idea of a small molecular weight
compound with a limited number of chemical functions. The potency of a single fragment
is usually low: binding affinity in a pM-mM range. However, these fragments are
convenient platforms to optimize both their biological activities and other desirable
properties, such as their solubility in water. This approach allows screening much smaller
chemical libraries (500 - 10000 molecules®™) compared to HTS libraries (hundreds of

thousands to millions of molecules**

). Despite the smaller size of fragment libraries, their
structural diversity and the diversity of the chemistry that can be implemented on them,
allows for a better chemical space coverage for the same size of HTS library.”!

Schuffenhauer et al.?

also reported that hit rates of FBS campaigns were 10-1000 times
higher than for HTS campaigns. In summary, FBS approach is a good alternative to the

conventional HTS approach, although it has different planning and logistic constrains.

An emerging approach is to test a complex mixture of compounds in a one-pot
experiment and use a powerful DNA amplification technique to deconvolute the signal.
The "DNA-encoded library" (DEL) screening campaigns allow testing millions to billions
of compounds against a biological target at once.”” The procedure includes tagging each
molecule with an identifying DNA, incubating the library of DNA-tagged compounds in a
mixture with a target protein, washing away non-binding ligands, and identification of the
binder by DNA sequencing.”® The DEL screening approach is cost-, time- and material
resources-efficient. Nevertheless, DEL preparation is restricted to soft chemical synthesis
conditions in order to preserve the integrity of the DNA tags.”

Virtual screening (VS) is an 7 silico approach that is used as a filter to cherry pick
compounds possessing desired property profile. VS can be divided into two broad
categories: structure-based virtual screening (SBVS) and ligand-based virtual screening
(LBVS).” SBVS concept is based on a protein structure and it involves scoring of a
molecule’s fit to the binding sites of the target using molecular docking and/or structure-
based pharmacophore modelling methods. LBVS utilizes a dataset of known actives and
inactives to build quantitative structure-activity relationship (QSAR) and ligand-based
pharmacophore models that will then be applied to a new dataset to identify candidate
molecules. Both SBVS and LBVS methods can be used individually or in consensus to rank
molecules based on their activity against the target protein. Virtual screening is often used
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in combination with experimental screening methods to prioritize testing of certain

molecules, hence, saving time and resources.

Although each of the screening approaches has its own advantages and limitations, a
recent study’' showed the preference of certain approaches over the others (Figure 7). The
author scrutinized 156 clinical candidates published in the Journal of Medicinal Chemistry
between 2018 and 2021 to identify most commonly used lead generation strategies that
yielded drug candidates. The results show that the main strategy employed to generate a
lead molecule is based from the hits identified from the previous studies (59%). The next
approaches are related to HTS involving random (21%) and directed (11%) screenings.
Origins of the remaining clinical candidates are distributed among FBS (7%), VS (1%) and
DEL screening (<1%). This study shows that despite the emergence of new approaches
such as fragment-based screening and DN A-encoded library screening, HTS and derivation
from hits identified from previous campaigns still remain as favorites for generation of lead
molecules.

Lead generation strategy (%)

= Known hits - 59%
Random screening - 21%
m Directed screening - 11%
m Fragment-based screening - 7%
m Virtual screening - 1%

m DEL screening - <1%

Figure 7. Distribution of lead generation strategies used in 156 successful hit-to-clinical campaigns. The figure is
adapted from Brown3.,

Screening of molecules is also performed to assess their bioactivity, ADMET and
physicochemical properties. The solubility and lipophilicity are often assessed upstream to
bioassays in order to check the compliance of compounds with the constrains of the
assays."” Screening and optimization of absorption, distribution, metabolism, excretion and
toxicity (ADMET) properties are investigated during both drug discovery and development
stages to ensure drug’s bioavailability and safety.””* Based on the scope of the screening
process, bioassays can be generally differentiated into two categories, namely target-based
and phenotypic screening types.”” The former is a molecular approach which focuses on
the interaction of test molecules with a defined biological target, such as a protein.
Examples of target-based assays include screens measuring enzyme inhibition, receptor
binding, protein-protein interaction. Unlike target-based screening, phenotypic screening is
an empirical approach focusing on phenotypic change. For this reason, they require a
complete biological entity to work, such as a cell line. On the other hand, they require no
prior knowledge about the identity of the target and can actually help to identify such
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target. Examples of phenotypic assays include cell viability tests, changes in the expression
of proteins. While both assay categories are complementary approaches, typically,
phenotypic screening yields “first-in-class” drugs, whereas target-based screening results in
“best-in-class” drug molecules due to availability of the target’s structural information.”

2.1.2 Steps of screening workflow

Despite the variety of existing screening types and approaches, the workflow of an
experimental screening campaign can be generalized into several steps in the process
(Figure 8): (1) chemical library design, (2) stock preparation, (3) sample preparation, (4)
performing the test, (5) data acquisition, (6) data analysis.

: w
Chemical library Stock solution Sample preparation
design preparation

Data analysis Data acquisition Performing the test

Figure 8. Simplified overview of a screening campaign: (1) chemical library design, (2) stock preparation, (3)
sample preparation, (4) performing the test, (5) data acquisition, (6) data analysis.

Screening libraries are provided commercially by specialized synthetic companies®”’

or
by suppliers who assembled their libraries using compounds synthesized in academic
laboratories™.”” A variety of general and focused screening libraties have been compiled to

* The selected compounds are

suit every screening campaign depending on its nature.
commonly distributed in either pure form or stock solution.”” Dimethyl sulfoxide (DMSO)
is typically chosen as a solvent for stock solution due to its high solubilizing ability."®
Concentration of the stock solution can vary depending on the nature of screening library:
for instance, for general library a commonly used concentration is 10 mM”, whereas for
fragment libraries 50-100 mM stock solutions are preferred™. Stock solutions are usually
stored frozen either at 4°C or -20°C.” Sample preparation and screening steps are assay-
dependent and can vary significantly. Automated screening campaigns utilize detection
modalities like absorbance, fluorescence, luminescence, radiometry." The data acquired
during the measurement are collected by specific software and can be used for further
analysis. Depending on the goal, screening campaigns can be performed iteratively to
eliminate undesirable compounds, while adding analogues of active molecules.
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2.1.3 Expenditures of screening campaigns

Preparation and conduct of screening require a lot of time, material, and human
resources. This section provides information about cost of screening library preparation
and performing HTS campaign, followed by specific examples. It is worth to mention that,
due to variety of available screening set-ups it is impossible to derive one estimate for cost
and time of screening campaigns. Therefore, all values provided in this section are
approximate and subject to specific cases and screening set-ups.

Goodnow™!

reported that on average the cost estimate for preparation of a one-
million-compound collection for use in HTS campaigns can vary from 50 million to 5
billion US$, depending on the commercial availability and the amount of required
compounds (Table 5). He also reported the approximate cost of performing a HTS
campaign for a one-million-compound library would be in the range from 100’000 to

200’000 US$ based on the estimate of 0.07-0.2 US§$ per well.

Table 5. Cost estimates per sample (US$) for preparation of compounds for HTS campaigns. The table is adapted
from Goodnow*'.

Purified compound from

. Commercially available Custom synthesis R R
Cost estimates compound (10 mg) (mgtog) parallel or combinatorial
methods (10 mg)
Lower 50 1000 100
Higher 250 5000 500

Another study by Burbaum®, where he analyzed the effect of miniatutization of HTS
campaigns, showed that the cost of testing a set of 106 compounds against 40 targets
would cost 35 million US$ if performed in 96-well plates and 1.1 million US$ in 1536-well
plates. These numbers include the cost of compounds, bioreagents, plates and other
expenses. From these estimates one could derive costs of one compound screened against
one target to be 8000 US$ (performed in 96-well plates) and 260 US$ (performed in 15306-
well plates).

It is also reported'® that in 2014 for 10 large pharma companies the mean annual
capital budget dedicated for screening was set to 3.5 million US$ and 3.9 million US$ for
reagents and consumables. These values represent a fraction of the 13 pharmaceutical
companies' overall research and development (R&D) spending, which over the eight-year
period from 2006 to 2014 ranged from 22 billion to 72 billion US$. Based on the number
of new molecular entities (NMEs) registered during the same time period, these companies
had an R&D efficiency of 3 to 32 billion US$ per NME. This emphasizes the need to take
costs into account during all phases of drug discovery innovation, especially while
conducting screening.

However, these activities are not the exclusivity of private interests and screening
campaigns are efficiently implemented by public facilities. For instance, the Chimiotheque
Nationale Frangaise has been initiated in 2000* and since then provides chemical libraries

from French academic libraries to screening platforms at cost price. The know-how for
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resynthesis of hits and the hit-to-lead development is matter of fair sharing of intellectual
property between synthetic chemistry and drug discovery teams. This facility is completed
by a network of experimental and computational laboratories able to implement cutting
edge bioassays technologies and in silico methods. This platform is called
ChemBioFrance* and is answering free of charge to technological screening questions. The
aim of such facility is to provide research groups with an affordable access to these
technologies. Thus, a user has access to it at reduced cost, after examination of his/her
scientific question.

Other initiatives have focused on providing users with experimentally annotated
chemical libraries: the MLSMR (Molecular Libraries Small Molecule Repository), now
available in the NEXT screening library®, or the EU-OPENSCREEN (European

Infrastructure of Open Screening Platforms for Chemical Biology)*.

Bioassays

One of our industrial collaborators reported the average cost of a screening data point
to be approximately 1 euro, taking into account the expense associated with full-time
equivalent employees (FTEs). Although the cost of reagents for HTS cell-based assay can
vary from 0.05 euros to 5 euros per sample, the recommended cost is 0.3 euros. For
instance, a cost of an acetylcholinesterase assay is estimated to be less than 0.1 euros per
data point. The measurement cost of other endpoints, such as apparent permeability is 90
euros per sample and 50 euros per sample for inhibition of CYP3A. It is important to note
that the prices of the latter two cases is for testing outside HTS, and the final cost of the
measurement when integrated in HTS is much higher, considering the analysis of several
concentrations and usage of expensive analytical systems, such as mass spectrometry.

Skin permeability

The details about skin permeability measurement were provided by INRS (Institut
National de Recherche et de Sécurité). The experimental protocol employed at INRS
involves usage of radiolabeled compounds, which can cost 10°000 — 35’000 euros per 250
nCi of one compound (curie (Ci) is a unit of quantity of radioactive atoms). Costs of other
consumables such as pipette tips, solvents, etc., were not reported. The other expenses
involve equipment and analytical instrument purchases, such as an automatic sampler
(35’000 euros), a radioactivity counter (50’000 euros) and Franz cells (200 euros per 5.5 mL
Franz cell), a specific glassware used in skin permeability experiments. The duration of a
measurement campaign for 1-2 new substances is distributed over tasks as follows: 1 week
for development of method for chemical sample preparation; 8 weeks for preliminary
experiments and tuning experimental set-up; a half day for preparation of chemical sample
for experiment; 2 hours for setting up the experiment; 20-40 hours for experiment; 1 week
for quantification, analysis of results and cleaning. Since, the experiment is performed 5
times, and considering the fact that some of the operations are performed in parallel, in
total 18 weeks (8 weeks of preliminary experiments and 10 weeks for 5 experiments) are
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required to obtain skin permeability values of 1-2 new substances. Three to four
researchers are necessary for execution of all steps.

Skin sensitization

Collaborators from INRS have also shared details of skin sensitization assay, namely,
bone marrow-derived dendritic cell BMDC) assay. The provided costs are related to the
recent measurement campaign of one family of compounds composed of 22 representative
compounds: 13 mice (500 euros) to obtain 38 bone marrows; 22 compounds (2000 euros);
cell culture consumables, such petri dishes, media and antibodies for flow cytometry (8200
euros). In total, the cost of this campaign was about 10’700 euros (= 500 euros per
substance). The total time spent on one experiment is about 2 months and can be
described as follows: 1 month for checking of substances’ feasibility (not toxic against
dendritic cells); 10 days for one run, which is repeated 3 times (= 1 month). Since
maximum 4 substances can be checked during one experiment, the analysis of 22 chemicals
would require approximately 5 runs, that would take about a year to complete. In general, 2
researchers are required to carry out the whole measurement campaign.

2.2 Chemoinformatics in screening workflow

As mentioned in “Types of screening campaigns” section, virtual screening (VS) is
commonly applied prior to or in parallel with experimental screens to aid in selection and
prioritization of virtually determined actives. Although, virtual annotation of screening
libraries is important, chemoinformatics offers more application cases in screening domain
(Figure 9). For instance, an approach to design a diversity oriented screening library is to
start with a clustering of molecules in the catalog of suppliers followed by cherry-picking
chemical structures homogeneously across the clusters.”” This approach is also applied
during the selection of candidate compounds for a secondary screening if too many actives
have been identified during a primary screening.! Another possible application of
chemoinformatics is evaluation of the stock solutions’ integrity. Degradation signs can be
determined by comparing experimentally determined solubility of compounds in DMSO
stock solutions with predicted solubility values.” This is achieved by building a quantitative
structure-property relationship (QSPR) model trained to predict solubility of compounds in
DMSO. The same approach is used to assess the experimental data quality, by fitting a
QSPR/QSAR model to screening data and applying the model on the same data.” The
outlying data points are then identified and examined. Later the high-quality experimental
data obtained from screening campaigns can be used alone or in combination with public
data sources to train in-house predictive models, which can be used in future to predict
properties or activities of new molecules.
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Figure 9. Overview of screening workflow and application of chemoinformatics methods at each step of the
workflow.

2.3 Goal of the thesis

The high expenses associated with screening campaigns, including the use of
significant time, material, and human resources, emphasize the need for cost-effective
approaches. In this context, the application of chemoinformatics tools emerges as a
promising solution to reduce costs and improve screening outcomes. Studies have
demonstrated that incorporating chemoinformatics methods into the screening process can
yield substantial benefits, with reported enhancements in hit rates ranging from 4- to 15-
fold compared to random screening.””"' These findings highlight the significant potential
of chemoinformatics in maximizing the efficiency and success of screening endeavors.
Consequently, my thesis is motivated by the compelling objective of developing and
implementing chemoinformatics tools to support screening campaigns in the stages of data
collection and analysis, quality control of screening data, development of specifically
adapted predictive models, and annotation of screening libraries. The integration of these
tools aims to streamline and refine the screening pipeline, addressing the challenges
associated with resource consumption and maximizing the identification of potential hits.
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The results presented in this thesis are organized into 3 chapters:

= Solubility
— The solubility properties are DMSO solubility and aqueous solubility.
DMSO is a standard solvent for the storage of organic compounds, and
bioassays are usually performed in buffer solutions.
= Skin-related safety properties
- The focus has been made on skin permeability and skin sensitization.
Assessing skin sensitization is now a regulatory requirement for the EU
under REACH Annex VII. Skin permeability is a crucial, but not easily
accessible, parameter for estimating the risk of a chemical.
* ACE2 selective inhibition
— The endpoint included in the thesis is the selective binding to angiotensin-
converting enzyme (ACE2) as part of the design of biological probes
capable of temporarily modulating ACE2 activity in different biological
tissues and organs.

The projects presented in this thesis are the result of collaborations with various
research teams and institutes, including the Plateforme Intégrée de Criblage de Toulouse
(PICT) and the Plateforme de Chimie Biologique Intégrative de Strasbourg (PCBIS - UAR
32806) for solubility in DMSO and kinetic solubility in aqueous media, the Institute of
Organic Chemistry and Enamine Ltd. in Kyiv (Ukraine) for selective ACE2 inhibition, and
the Institut National de Recherche et de Sécurité (INRS) in Nancy for skin permeability
and sensitization.

As part of this thesis, chemoinformatics solutions have been developed, including
publicly available quantitative structure-activity-property relationship (QSAR/QSPR)
models and  user-friendly tools for deploying these models i st
https://chematlas.chimie.unistra.fr/cgi-bin/predictor2.cgi. Models have been developed
using the LIBSVM™ software and the KNIME? software environment. All data processing
workflows have been designed to be intuitive to use and not requiring software

programming expertise.
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Chapter 3

QSAR/QSPR modeling methodology

This chapter provides details of different aspects of QSAR/QSPR modeling
methodology applied in the thesis. QSAR/QSPR modeling involves establishment of
relationship between molecules and the property or activity of interest, using machine
learning (ML) algorithms. The developed QSAR/QSPR models can then be used to

predict activity or property of new molecules.

3.1 Molecular standardization

Structural representation of the same molecule can often differ due to preferences of a
user who uploads the data or due to possible mistakes made during registration of the data
point. Different representations of the same molecule may cause an issue during reading of
the molecule by a machine, as it may consider them as different chemical entities.”
Therefore, it affects the quality of established structure-activity(-property) relationship
during modelling, and hence its predictive performance. To avoid this, all molecular
structures must be standardized according to defined rules.

ChemAxon Standardizer™ and a KNIME® workflow, developed in our lab, were
used for standardization. The standardization rules include removal of all stereochemical
information, removal of solvents, removal of counterions of the main molecules, removal
of explicit hydrogens neutralization of charges, dearomatization and aromatization of
structures. The exact procedure depends on the project and details are provided later.
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3.2 Molecular descriptors

Classical ML methods require molecular graphs to be converted into a vector of
molecular descriptors. Molecular descriptors used in this work are ISIDA substructural
molecular fragments (SMFs).” SMFs are fragmental descriptors obtained from fragmenting
the molecular 2D graph and counting the fragment occurrences. Fragments are enumerated
systematically from the graph using basic fragmentation schemes: sequences, atom-
centered fragments and triplets (Figure 10). Sequences are strings of connected atoms
and/or bonds and they correspond to the shortest possible path between each pair of
atoms. Atom-centered fragments start from an atom and neighboring atoms that fall into
the pre-defined topological distance (sphere) are encoded into descriptor. Triplets are all
the possible combinations of 3 atoms in a graph with a defined topological distance
between each pair. As part of the fragmentation process, "Atom Pairs" and "Do All Ways"
were used as additional fragmentation options. "Atom Pairs" focuses on counting
constitutive atoms and disregards constitutional details, while "Do All Ways" explores all
pathways that connect two atoms while defining the fragments.

CH3 e] CHg
H3C OH
NH
0
Atom-centered fragments Sequence fragments
CH
s o HaC Hac\ /\ HaC\/\
OH i : HaC o CH3
H2N H3C

i NH CH3

o}
Triplets

0 H3C
H3C S OH \ % :
CNH)OY s e N 8 ----- N C----- N
F 0

Figure 10. Example of fragmentation to ISIDA substructural molecular fragments. Stars annotated different
carbon atoms. Circles highlight atom centers. The number of occurrences is given below each fragment. In
triplets, the number between each atom pair indicates topological distance, or number of bonds between two
atoms.

3.3 Machine learning methods

Two machine learning methods were mostly used in this work: support vector machine
(SVM) for building predictive models and generative topographic mapping (GTM) for
visualizing and analyzing chemical space.
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3.3 Machine learning methods

3.3.1 Support Vector Machine

SVM is a supervised machine learning algorithm used for classification and regression
tasks.™

hyperplane that separates different classes of data points. The optimal position of the

For classification tasks, the working principle is based on finding the optimal

hyperplane is reached when the margin between the data points of different classes is
maximum. Actually, the algorithm introduces soft margins that are characterized by a cost.
The cost hyperparameter tunes the level of tolerance of misclassified data points. This
parameter controls the balance between overfitting and underfitting. Additionally, the SVM
can use the kernel formalism which is an elegant way to change the representation of the
data. In this work, linear and radial basis function (RBF) kernels were used. The RBF

kernel introduces a non-linearity in the modeling and the width, y, of the RBF is an

additional hyperparameter to tune. A large y value gives more weight to each training
sample. This hyper-parameter may also result into over- and under-fitting issues.

In the context of regression tasks, the SVM uses an &-insensitive loss-function. The

errors of the models are ignored if they are small than a user-defined € threshold value.
Outside of this range, they are accounted linearly, which contrasts with the vast majority of
machine learning models that accounts for modeling errors in a quadratic functional.

Both classification and regression SVM models are expressing their models based on a
subset of the training instances, that are termed the support vectors. These different
features make the SVM attractive in the frame of this project: they are robust to small

changes in the training set and to the possible presence of outliers.

In this work, SVM models were used both for prediction and outlier detection.

3.3.2 Generative Topographic Mapping

GTM” is an unsupervised probabilistic machine learning method used for modeling
and visualization of high-dimensional data in a 2-dimensional space. This is achieved by
inserting a 2D manifold into the high-dimensional descriptor space and adjusting it to align
with the densest areas of the data cloud formed by molecules in the input dataset. The
optimized manifold is then used to project molecules onto the 2D grid based on their
closest grid nodes. The manifold is then flattened to create a 2D map. The 2D maps can be
colored based on the quantitative distribution (density landscapes), the class distribution
(class landscapes), and the property value distribution (property landscapes). GTM serves
as a powerful tool for chemical space visualization, chemical libraries comparison, and

58-6

profiling of compounds.”* In this work, GTM was used for visualization and analysis of

the chemical space, as well as for comparison of different datasets.
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3.4 Optimization algorithms

Different optimization algorithms have been employed throughout this work to find
the optimal set of hyperparameters in order to maximize the objective function which is
the predictive performance of machine learning models.

3.4.1 Hill climbing algorithm

Hill climbing® is a local search optimization algorithm that aims to find the best set of
hyperparameters. It starts with an initial set of hyperparameters and iteratively improves the
performance by making incremental changes to maximize the predictive score of the
model. At each step, it evaluates the neighboring hyperparameter values and selects the one
that improves the objective function the most. The optimization loop continues until the
predictive score stops improving. Hill climbing algorithm was integrated in KINIME
workflows, where SVM model training for skin sensitization and skin permeability projects

was performed.
3.4.2 Golden section search algorithm

Golden section search (GSS)* is a local search optimization algorithm that utilizes the
golden ratio to find the best set of hyperparameters within a specified interval. It works by
iteratively narrowing down the search space using the golden ratio to determine the two
points to evaluate the objective function. These points divide the interval into two
subintervals such that the ratio of the smaller subinterval to the larger one is equal to the
golden number, (1 +V5)/2. By comparing the objective function values at these points, the
algorithm updates the interval and continues the search until the desired precision is
achieved, leading to the optimal set of variables. The GSS was used in training of SVM
models for prediction of solubility of fragment-like compounds in DMSO. The GSS is
actually a special case of the hill climbing algorithm.

3.4.3 Genetic algorithm

Genetic algorithm (GA)® is an evolutionary search optimization technique that aims to
find the best set of hyperparameters by mimicking the process of natural selection. The
algorithm starts with a population of hyperparameter sets and performs genetic operations
like mutation and crossover to create new offspring. The offspring's performance,
measured by the objective function (predictive performance of the model), determines
their fitness. The algorithm iteratively selects the fittest individuals and by performing
mutation and crossover operations, a new generation of chromosomes is generated and
tested. This process continues until an optimal solution, i.e., the best hyperparameters, is
found. GA was used to find optimal hyperparameters for SVM models® predicting ACE2
selective inhibition. The technique is best suited when more than 3 hyperparameters need
to be optimized.
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3.5 Evaluation metrics

3.5.1 Regression models

In this work, predictive performance of regression models is represented through
determination coefficient (R?) and root mean-squared error (RMSE) statistical metrics. R® is
a measure of the goodness of fit of the model to the data. A typical value of R* ranges from
0 to 1, with a higher value indicating a better fit. However, the R* can take on negative
values when the predicted values of a model are a worse predictor than the mean value of
the target property. This situation is typically observed when considering predictions of a
QSAR model out of its applicability domain (the concept of applicability domain is
explained in section 3.7). Since this number has no dimension, it is often used to illustrate
the models of performances of very diverse models, although this maybe sometime
inappropriate. RMSE is a measure of the average prediction error of a regression model. It
quantifies the difference between the predicted values and the actual values in the original
units of the endpoint that is being predicted. The RMSE has the same units as the property
targeted by the model. Besides, it is often proportional to the loss-function of many
regression techniques, as for instances partial least squares or ridge regressions. However,
SVM regressors optimize another functional.

pred

The equations of R* and RMSE are provided below, where 37, 3/, y/?, n are
experimental value of /th molecule, predicted value of /~th molecule, mean experimental

value of /~th molecule, and the number of data points, respectively.

R2=1-

n

(4, 8XP _ predyo ne, €xp_, predy;
z;.(giexp_};exp))z RMSE = \/ Z—L i Y )
i i

In the above formula, results depend on the dataset on which they are computed.
Therefore, the population of the instances used to compute these performances must be
provided along with the computed value.

3.5.2 Classification models

Statistical metrics used in this work to assess the predictive performance of
classification models are accuracy, balanced accuracy (BA), sensitivity and specificity. True
positive rate (TPR, sensitivity) measures the proportion of actual positive cases correctly
identified by a model, while true negative rate (TNR, specificity) measures the same for
negative class. The value of TPR and TNR ranges from 0 to 1, where 1 indicates perfect
retrieval of all positive and negative class objects, respectively. Accuracy is a statistical
metric that measures the overall correctness of a model by calculating the fraction of
correctly predicted instances out of the total number of data points. Balanced accuracy
(BA) has the same aim as accuracy, which is to provide an overall measure of the
correctness of the model, while considering the proportion of positive and negative
instances. It is calculated as the arithmetic average of TPR and TNR. For these two
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metrics, the value of 1 indicates perfect classification; the value of 0.5 is equivalent to
random guess; the value of 0 implies the opposite labelling of class objects. The equations
of TPR, TNR, accuracy and BA are given below, where TP, TN, P, N are true positives
(the number of correctly predicted positive data), true negatives (the number of correctly
predicted negative data), total number of positives, and total number of negatives,

respectively.
TP TN
Accuracy = TP+ TN BA = Sensitivity + Specificity
P+N >

3.6 Validation method

Validation of predictive performance of models was achieved either by applying the
model to an external test set or by using 4-fold cross-validation technique. K-fold cross-
validation method involves dividing the dataset into £ subsets (random sampling of data
points), training the model on 4£-1 subsets, and then testing the model on the remaining
subset. This process is repeated £ times, with each subset serving as the test set exactly
once. The predicted values made on the test of each fold are then aggregated and the
performance is evaluated with respect to the original values. This technique provides an
estimate of how well the model is likely to perform on unseen data from the same data
distribution.

3.7 Applicability domain

The Applicability Domain (AD) is a critical concept in the development of QSAR
models. It defines the domain within which a model is expected to provide reliable
predictions. Models are developed using a training set of molecules, and their predictions
are expected to be reliable only for molecules that are similar to those in the training set.
Defining the AD of a model involves the calibration of a meta-model based on its own
specific attributes and equations, and returning a "predictability score" of the molecule by
the model, which is a measure of trust associated with the QSAR model output for that
compound.®

In this work, fragment control® is used as the AD assessment method. According to
this rule, the model is not applied if a test molecule contains any new fragments that are
not present in the training set. This ensures that the model is not used to make predictions
for molecules that are too dissimilar to those in the training set and, as a result, improves
the reliability of its predictions.
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3.8 Consensus modeling

Consensus modeling is a technique that combines the predictions generated by
% This approach is
particularly useful when dealing with complex relationships between chemical structures

multiple models to achieve a more accurate and robust result.

and their properties that a single QSAR model may fail to accurately reflect. By aggregating
the outputs of diverse models, the limitations and biases of any individual model can be
mitigated, leading to improved overall performance and generalization.

In classification tasks, the consensus outcome is determined by taking the majority of
votes made by each individual model, whereas for regression tasks, the consensus outcome
is determined by calculating the average of predictions generated by each individual model.
The individual models are trained using different pools of fragment descriptors and their
predictive performance is assessed using cross-validation technique. Only models that have
a k-fold cross-validation performance (BA for classification and R® for regression tasks)
larger than a user-defined threshold are selected. The consensus models developed in this
work are integrated into ISIDA Predictor software / web setvice.

3.9 Outlier detection

In the field of QSAR modeling, outlier detection is a crucial step in ensuring the
reliability and accuracy of the models. Here, an outlier is defined as a data point that falls

% Outliers can arise due to a vatiety

outside the expected range of the sample distribution.
of reasons, such as measurement errors, experimental variability, or the presence of

compounds that exhibit unique properties not captured by the model.

The outlier identification method used in this work is based on the ensemble modeling
approach.” The ensemble modeling approach involves applying multiple models to the
fitted data and analyzing the molecules that are mis-predicted by all the models. This helps
identify compounds that are anomalous and require further investigation in a unique or

reduced number of modeling steps.

3.10 ISIDA Predictor software

ISIDA Predictor software is used to apply a developed QSAR/QSPR consensus model
and assess the confidence of the predicted value. Prediction confidence label ("Low,"
"Average," "Good," or "Optimal") is based on the number of applied individual models
and the consistency of their predicted values. An individual model is applied if a test
molecule falls into the AD of the model (see “Applicability domain” section). Once
predictions from the applied individual models are collected, a consensus prediction is
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generated: the major predicted class for classification task and the average value for
regression task. The output includes the predictions, prediction confidence labels, and the
number of models applied. All of the best models developed in this work are included in
the ISIDA Predictor®.

3.11 Modelling workflow

The general modelling workflow applied in this thesis is given in Figure 11. The
modelling details, such as the number of cross-validation folds, applied optimization

algorithm, etc. are provided withing the chapter of each project.

Molecular Molecular descriptors Model training and Final consensus model
Raw dataset s 5 e ;
standardization calculation validation preparation
= ISIDA substructural = ML method: SVM = Top performing models
molecular fragments = Validation method: selected for a consensus
k-fold cross-validation model

Figure 11. General modeling workflow. ML stands for machine learning.

The workflow begins with a standard data curation procedure that involves processing
duplicate data points and standardizing molecular structures. Next, numerous molecular
descriptor sets (ISIDA fragments) of varying topologies and lengths are generated. SVM
models are trained for each descriptor set, and validation is done using the 4-fold cross-
validation method. Descriptor sets that show high cross-validation performance are
selected, and models are fitted to the entire dataset before being included in a consensus
model. All consensus models developed in this thesis are integrated into the ISIDA

Predictor web service® and are publicly available.

3.12 KNIME workflows

Some of the models developed in this work, were generated using the workflows
created using the KNIME Analytics Platform®. The KNIME workflows cover the whole
modelling pipeline, namely, molecular standardization, preparation of datasets for 4-fold
cross-validation, molecular descriptor calculation using ISIDA Fragmentor, SVM model
training and validation, consensus model preparation and integration into ISIDA Predictor,
model application (Table 6). The usage of the KNIME workflows require no coding
knowledge and therefore are user-friendly and easy to comprehend. They were developed
both for Linux and Windows operating systems. The KNIME workflows are available
upon request to the Laboratory of Chemoinformatics
(https://infochim.chimie.unistra.fr/?page id=11). The figures of the workflows are

provided in Appendix.
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Table 6. A list of developed KNIME workflows.

Name

Description

1_standardization

2_ExtCV_data_partitioning

3_ExtCV_descriptor_calculation

4_ExtCV_modeling_CLS (or _REG)

5_ExtCV_consensus_preparation_CLS (or _REG)

6_ExtCV_application

7_ExtCV_evaluation

8_final_consensus_preparation_CLS (or _REG)

Standardizes molecular structures

Partitions the dataset into a defined number of
sets of training and test sets for external cross-
validation

Calculates ISIDA fragment descriptors

Trains classification (or regression) models for
external cross-validation

Prepares a classification (or a regression)
consensus model for each fold of cross-validation

Applies a consensus model for the respective
fold’s test set

Evaluates the predictive performance of the
external cross-validation

Performs all the modeling steps to prepare final
consensus model
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Chapter 4

Solubility

4.1 Introduction

In this chapter, we discuss the significance of solubility, focusing on two critical
aspects: the solubility of fragment-like compounds in DMSO and aqueous solubility. Both
DMSO stock and aqueous solubilities address the same challenge - ensuring that
concentrations are accurately evaluated for biological assays. Any errors related to stock or
water concentration can result in assay measurement errors and ultimately lead to assay
failure. Therefore, precise measurement and understanding of solubility in different
conditions are essential for evaluating a drug's effectiveness and safety in drug discovery
and development.

4.2 Solubility of fragment-like compounds in DMSO

4.2.1 Introduction

Ensuring the integrity and stability of DMSO stock solutions is crucial prior to
proceeding to bioactivity screening. Research has demonstrated that approximately 10-20%
of compounds in chemical libraries exhibit DMSO solubility below the nominal
concentration.”””" This can lead to a problematic "masking" effect, impairing accurate
assessment of a compound’s activity. The reduced concentration may arise from chemical
degradation, triggered by the compound's interaction with moisture absorbed from the
air.”” Notably, water absorption occurs during the cooling process, elevating the water
content by up to 10% w/w."~™ Additionally, the solubility of compounds can be impacted
by repeated "freeze/thaw" cycles when returning them to the refrigerator.”
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This study presents the development of a QSPR model specifically designed to predict
solubility of fragment-like compounds in DMSO. The model can be used to effectively
identify potentially insoluble molecules and minimize their occurrence within the screening
library. The focus of this research centers on fragment-based screening campaigns. The
findings are detailed in a published article®, and the classification model developed during
this study has been made publicly accessible through the Laboratory of Chemoinformatics'
Predictor web service” (“Solubility in DMSO (FBS) - Classification” model in the
“PhysProp” section).
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Abstract: In this paper, we report comprehensive experimental and chemoinformatics analyses of
the solubility of small organic molecules (“fragments”) in dimethyl sulfoxide (DMSQ) in the context
of their ability to be tested in screening experiments. Here, DMSO solubility of 939 fragments has
been measured experimentally using an NMR technique. A Support Vector Classification model was
built on the obtained data using the ISIDA fragment descriptors. The analysis revealed 34 outliers:
experimental issues were retrospectively identified for 28 of them. The updated model performs
well in 5-fold cross-validation (balanced accuracy = 0.78). The datasets are available on the Zenodo
platform (DOI:10.5281/zenod0.4767511) and the model is available on the website of the Laboratory
of Chemoinformatics.

Keywords: DMSO solubility; QSPR; fragment-based screening; outlier detection; NMR

1. Introduction

Screening methods have become indisputably an integral part of the drug discovery
process [1,2], from hit identification to the evaluation of pharmacological properties. Over
the past decades fragment-based screening (FBS) has gained a broad acceptance as an effi-
cient alternative to the conventional high-throughput screening (HTS) [2,3]. This is related
to the core idea of FBS, which involves analysis of relatively small libraries containing
simple yet diverse organic scaffolds, or fragments, and the identification of hit fragments,
that will be developed into more potent lead compounds. Among the basic requirements
for fragment-like compounds, well covered by the “rule of three” guidelines [4,5], solubility
issues require serious attention [6,7].

Low solubility directly affects the availability of a compound in solution, which may
potentially lead to masking of its actual activity. This is notably important for compounds
in FBS libraries since the typical concentration of samples is around 1 mM [8-10]. Such a
relatively high concentration is related to the low binding affinity of fragments, usually
found in the range of uM-mM [11]. The assessment of weak ligand—target interactions,
requires highly sensitive techniques such as NMR spectroscopy, etc. One of the solvents
commonly used in screening methods is dimethyl sulfoxide (DMSQO), a well-established
standard [12].

Due to the significance of this physicochemical property, the topic of solubility pre-
diction has been and still remains relevant. The challenge of this subject is related to the
complexity of the dissolution phenomenon, which is dictated by structural features, solid
state, and other physicochemical properties [13]. Very few statistical models designed
to predict DMSO solubility have been reported in the literature [12,14], with only one
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being publicly available [15]. Thus, Tetko et al. [15] reported a consensus model combining
random forest, decision tree and Associative Neural Network individual models, trained
on a large and structurally diverse dataset. However, the threshold used for categorizing
compounds into “soluble” or “insoluble” classes was set to 10 mM, which is a common
concentration of stock solutions.

As illustrated in Figure 1, compounds having a solubility in the range 1-10 mM, are
considered soluble according to the FBS definition, but insoluble according to the stock
solution definition. This means that the application of the “stock solutions” model by
Tetko et al. [15] may lead to discarding compounds predicted as insoluble, but potentially
suitable for FBS.

DMSO solubility

] “soluble”

labels
coincide

10 MM =———cssesssanes

1 MM —————eeseerances
“insoluble™
labels
coincide
0 mM

Figure 1. Solubility domains defined by the thresholds defined for stock solutions (10 mM) and FBS
(1 mM). For these two threshold definitions, the “soluble” /“insoluble” labels coincide for solubility
values larger than 10 mM and smaller than 1 mM, respectively. However, in the range 1-10 mM,
molecules are considered soluble according to the FBS definition, but insoluble according to the stock
solution definition.

This motivated us to develop a classification model predicting fragment solubility in
DMSO with a categorical threshold of 1 mM. The model was built on the experimental
data provided by the “Plateforme Intégrée de Criblage de Toulouse” (PICT) screening
platform. During the training stage, a set of erroneous measurements were identified
and removed from the PICT set. The clean dataset was then used for building SVM
models. With the help of a Generative Topographic Mapping (GTM) method, the PICT
dataset was compared with fragment-like compounds from the Enamine database used
for the preparation of the Tetko et al. [15] “stock solutions” model. This analysis revealed
some structural motifs present uniquely in PICT. The datasets collected in this work are
publicly available on the Zenodo platform (DOI:10.5281/zenodo.4767511). The consensus
model is freely accessible on the website of the Laboratory of Chemoinformatics (http:
/ /infochim.u-strasbg.fr/cgi-bin/predictor2.cgi (accessed on 16 May 2021)).

2. Data
2.1. Experimental Protocol

In order to design a fragment library for NMR-based FBS, the stock solutions of
939 fragments were prepared at a final concentration of 100 mM in DMSO-d6, as described
hereafter. The compounds, provided as powder, were dissolved at room temperature in
DMSO-d6 under vigorous shaking until solubilization. Solutions were kept overnight at
room temperature, then stored at —20 °C for months. The former solutions were then used
for the preparation of a set of diluted solutions with a targeted concentration of 1 mM in
DMSO-d6, to check by 1H NMR for each fragment the chemical structure conformity and
the solubility. Stock solutions at 100 mM were thawed and kept overnight at room temper-
ature before dilution and running the NMR analysis. NMR experiments were performed
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on a Bruker Avance I HD 600 MHz spectrometer (*H Larmor frequency) equipped with a
cryoprobe. NMR experiments were performed with a 30° flip angle 'H pulse and 1.36 s of
acquisition time (with a 20 ppm spectral width and a time domain 32 K complex of data
points), and for each sample 32 scans were recorded with a repetition time delay of 5 s.
NMR experiments were performed at 298 K and at atmospheric pressure. Quantification
was performed with TopSpin, v. 3.5; Bruker Biospin software, by integration of the NMR
peaks using the ERETIC2 [16] (Electronic Reference to access in vivo Concentrations) soft-
ware based on the PULCON method [17]; an internal standard method which correlates
the absolute intensities of spectra of compounds to be quantified with a reference spectrum.
The reference spectrum was acquired as described above from a 1 mM isoleucine solution
in DMSO-d6. The experimental error of solubility determination was estimated as 50 pM.

2.2. Data Description

The PICT dataset contained structures of 939 compounds with their corresponding
DMSO concentration values ranging from 0 to 1000 uM. Since the expected concentration
for DMSO samples was 1 mM, a threshold for making a division between soluble and
insoluble categories was set to 1000 uM. Therefore, if concentration values were equal to
1000 uM it would be classified as soluble, and insoluble if the value was below the given
threshold. Experimental error on the concentration was estimated at 50 uM; therefore, it
was decided to remove a segment of the dataset in the range 900-999 uM, as in this range
the soluble/insoluble label is ambiguous. After the removal of data points with missing
solubility values and the aforementioned “gray area” zone, the number of compounds in
the training set was reduced to 822, where 686 and 136 compounds belonged to “soluble”
and “insoluble” classes, respectively. The key physicochemical parameters varied across
the PICT set in the following ranges: calculated logP —3.8 — +3.94, molecular weight
150-302 Da, the number of hydrogen bond acceptors 0-6, and the number hydrogen bond
donors 0-3.

2.3. Data Curation

The chemical structures were standardized using a ChemAxon Standardizer [18].
Applied rules included the removal of solvents, ions, explicitly indicated hydrogen atoms,
neutralization, and aromatization. All stereo labels were skipped. A detailed description
of the standardization protocol is provided in Supporting Information (“Standardization
protocol” section). Erroneous measurements were then detected with the help of the outlier
identification procedure (see below).

2.4. Filtered Enamtine Data

A subset of the fragment-like compounds was extracted from the Enamine dataset
used for training of the Tetko et al. model [15] with the help of a filter, matching the same
ranges of variation as the PICT dataset for ClogP, molecular weight, number of H-donors
and H-acceptors. The filtering resulted in the selection of 8314 fragment-like compounds
out of the initial set of 50,620 compounds.

3. Method
3.1. Molecular Descriptors

ISIDA substructural molecular fragments (SMF) [19] were used in this study. SMF
descriptors are derived solely from hydrogen suppressed 2D chemical graphs. They
represent fragments of different topologies (sequences of atoms and bonds, sequences
of atoms only, atom-centered fragments, triplets) and size (see Table S1 in Supporting
Information). The minimal length of fragments varied between 2 and 3, whereas the
maximal length varied between 2 and 8. Encoding of a given sequence by its terminal
atoms (“atom pairs”) was also considered. A fragment occurrence is a descriptor value.
Variation of the descriptors topology; type of sequence (explicit atoms or atom pairs and
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size) led to the generation of the pool of 182 subsets of descriptors. ISIDA descriptors were
used in numerous QSAR studies [20-22].

3.2. Machine Learning Method

Classification models were built using the Support Vector Machine (SVM) machine
learning (ML) algorithm. It was used for the selection of optimal descriptor sets, outlier
identification and the generation of predictive models. The Libsvm 3.24 package [23] was
used for the generation of linear SVM models. The Golden section search method was
used in order to find the optimal cost parameter ranging from 0.01 to 1000 with a stopping
criterion of 0.1. Optimization was performed to maximize 5-fold cross-validation (5-CV)
balanced accuracy (BA).

3.3. Modeling Workflow

The modeling workflow consisted of three main stages: (1) detection of erroneous
measurements, (2) selection of relevant descriptor spaces and (3) model building and
implementation (Figure 2). Detection of erroneous measurements was performed following
a protocol from Ruggiu et al. [24] adapted in this study to classification tasks. This approach
suggests the preparation of several individual models and the identification of the common
badly predicted instances. For the curated PICT dataset, 26 various fragment descriptor
spaces were generated. Each subset of descriptors was used for the modeling. Five models
providing the best performance in 5-fold cross-validation were selected. At the next step,
common false positives and false negatives (“outliers”) detected by all selected models at
the training stage were identified and inspected by the experimental team. A vast majority
of them were associated with technical problems and discarded from the dataset (see
“Results and discussion” section). The resulting “clean” dataset was used in a new round
of model building and validation.

Initial PICT
1 dataset
!
2 Clean PICT Descriptor spaces
dataset generation
Qe

Rebuilding models
based on selected
descriptors

Detection of
erroneous
measurements

Data curation

Models building and
validation (5-CV)

!

Selection of the best
descriptors types

3 Implementation in
ISIDA/Predictor

Figure 2. The modeling workflow.

At the next stage, 182 descriptor spaces were generated and used for the building
and validation of SVM models. Models performing with BA > 0.75 in 5-CV were selected;
the highest BA = 0.80 was achieved for the model based on the atom centered fragments
connecting atoms pairs derived for the sequences of atoms and bonds of 34 atoms length
(type “IIAB(3-4)_R-P”, see Table S1 in Supporting Information). Descriptors involved in
the selected models were then used to develop classification models on the entire “clean”
PICT dataset. Obtained in such a way, 45 individual models formed a consensus model
integrated into the ISIDA Predictor tool [25]. For any new molecule, the tool assigns a
solubility label according to the majority of votes for the individual models. The predictive
performance of the consensus model is reasonable (BA = 0.78 in 5-CV). Notice that the
ISIDA Predictor accounts for the fragment control [26] applicability domain (AD) of each
individual model. If a new molecule is outside of the AD, the model is not applied. Along
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with the predicted label, the tool provides a confidence estimation based on the ratio of the
percentage models and prediction consistency.

The consensus model is freely available on the website of the Laboratory of Chemoin-
formatics (http:/ /infochim.u-strasbg.fr/cgi-bin/predictor2.cgi (accessed on 16 May 2021)).
In order to access the model, select the “PhysProp” option in the “general kind of property”
section and then choose “Solubility DMSO” option from the “property to model” drop-
down list. A user is invited to draw a molecule of interest or upload an SD file containing
several compounds. Some screenshots illustrating the functioning of the ISIDA Predictor
are given in the Supporting Information (Figure S5).

3.4. Generative Topographic Mapping

Generative Topographic Mapping (GTM) [27-30] is a dimensionality reduction method,
which transforms a high-dimensional molecular descriptor space into a 2D latent space
(“map”). This is achieved by introducing a 2D manifold into the high-dimensional space
and adjusting a normal probability density, centered on the nodes of a rectangular grid
superposed with the manifold, to the observed data distribution. Once the manifold is fit-
ted, the compounds are projected on this 2D surface. GTM is widely used for the chemical
space visualization, analysis, and compounds’ profiling [31].

Two maps were constructed: (i) for the PICT dataset and (ii) for the merged PICT
and Enamine datasets. The method hyperparameters and type of fragment descriptors
were optimized by maximizing the classes separation (“soluble/insoluble” for the PICT
dataset and “PICT/Enamine” for the merged dataset). The compounds were encoded by
atom centered fragments, including a given atom and atoms and bonds of its either 3 or
5 coordination spheres for the merged dataset and the PICT dataset, respectively. The data
distribution was visualized using “class landscapes” [30], highlighting areas populated by
soluble and insoluble compounds.

4. Results and Discussion
4.1. Data Visualization and Analysis

A generative topographic map built for the PICT dataset shows several clusters popu-
lated by compounds of a particular chemotype (see Figure 3). Insoluble compounds bear
piperazine and morpholine fragments, soluble compounds are mostly aromatic amines,
amides, piperidines and ethers, whereas compounds bearing nitro-benzene, thiophene and
dihydro-thiazole fragments can be either soluble or insoluble.

A comparative analysis of the PICT and filtered Enamine datasets was performed
using a generative topographic map combining both datasets. Figure 4 shows a class land-
scape in which the color code characterizes the presence of Enamine or PICT compounds
in a particular zone of the chemical space. The map well separates blue and red zones
populated by Enamine and PICT compounds, respectively, which confirms the structural
diversity of the two datasets. Detailed analysis of the red zones, reveal some particular
structural motifs present in the PICT and absent in the Enamine dataset (Figure 4).

4.2. Erroneous Measurements Detection

As explained above, the outliers are compounds in which the predicted labels sys-
tematically do not match the experimental ones for none of the initially developed models.
There are 34 outliers which belong to three categories: experimental errors, chemical insta-
bility, and unexplained discrepancies. The list includes 31 insoluble compounds predicted
as soluble and three soluble molecules predicted as insoluble (see Table S3 in Supporting
Information). These modeling results were reported to the PICT team for the reassessment
of experimental values. The analysis showed that 15 out of 34 potential outliers resulted
from a human error during the sample preparation. Overall, during the revision of the
NMR spectra, nine compounds were found to have degradation signs, whereas the values
of 19 samples were likely affected by experimental errors. These 28 confirmed outliers were
discarded. The remaining six compounds were claimed to have no experimental issues.
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Some incorrectly predicted compounds and their correctly predicted close analogues form
some sort of “solubility cliffs” (Table 1). Thus, compounds 1a and 1b differ by a methylene
bridge between two cyclic fragments; the difference between compounds 2a and 2b results
from the type of substituent (OH or CH,-OH) and its position in the piperidine ring,
whereas compound 3b has two methyl groups more than the compound 3a. These cliffs
are intriguing and require further structure-activity relationship (SAR) exploration, which
is beyond the scope of this work.
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Figure 3. The class landscape for the PICT dataset. Blue and red zones are populated by insoluble
and soluble molecules, respectively. Green and yellow zones contain a mixture of soluble and
insoluble compounds.

Table 1. Example of incorrectly predicted compounds and their correctly predicted close analogues.

Incorrectly Predicted Compounds

Correctly Predicted Similar Compounds

# Compound structure Exp Pred # Compound structure Exp Pred
HN.
50 ¢
1a L Soluble Insoluble 1b Q—<0:© Insoluble Insoluble
2a ©\Ag\m Soluble Insoluble 2b ©\/\Q Insoluble Insoluble
OH
HN. HN.
@) —Q)
3a o Insoluble Soluble 3b o o Soluble Soluble
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Figure 4. The class landscape depicting the coverage of a fragment-like chemical space by PICT and
Enamine datasets. Blue and red zones are populated, respectively, by Enamine and PICT molecules.
Green and yellow zones contain a mixture of compounds from the two datasets.

4.3. “Stock Solutions” vs. FBS Models

For the sake of comparison, the “stock solutions” model by Tetko et al. [15] was
applied to the PICT dataset and, vice versa, the FBS model was applied to the Enamine
dataset. Only 87.4% of the Enamine data were found inside the applicability domain of at
least one FBS individual model. On the other hand, 98.6% of the PICT dataset was covered
by the AD of the “stock solution” model.

Results given in Table 2 show that both models predicted soluble compounds with a
high accuracy, but failed to predict insoluble ones. The latter is not surprising when the
FBS model is applied to the Enamine dataset: since solubility assignment thresholds of FBS
and stock solution models differ, the compounds with a solubility in the range 1-10 mM
are considered soluble according to FBS and insoluble according to stock solution models.
On the other hand, the compounds in which the solubility value is smaller than 1 mM
are considered insoluble according to both models. This could be explained by the fact
that the PICT dataset contains some unique structural motifs, e.g., thiazole, benzimidazole
or tetrahydroisoquinoline (see Figure 4). It also looks like these models (at least, the
“stock solution” one) are biased toward the training set composition containing mostly
soluble compounds.
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Table 2. Predictive performance of the FBS model on the filtered Enamine data, and of the “stock solution” model on the

PICT data. The number of correctly predicted compounds with respect to the total number of compounds is given between

the parentheses.

FBS Model on Enamine Dataset «Stock Solution» Model on PICT Dataset
Recall (soluble) 0.954 (6828 /7156) 1(676/676)
Recall (insoluble) 0.052 (6/115) 0.01(1/101)

5. Conclusions

This work combines experimental and chemoinformatics studies of the solubility of
small molecules (“fragments”) in DMSO in the context of their application in fragment-
based screening. Experimentally measured data (PICT dataset) were used for the develop-
ment of the first classification model for DMSO solubility fragments (FBS model). Unlike the
earlier reported “stock solution” model with the categorical threshold “soluble/insoluble”
of 10 mM, our model uses a more suitable threshold for fragments of 1 mM. The model
displays a reasonable predictive performance in 5-fold cross-validation (BA = 0.78). Both
the experimentally measured data and developed model are freely available for users.

We have demonstrated that the developed model can efficiently be used to detect
erroneously measured data. Among the 28 picked compounds pointed to by the model,
nine compounds were found to have degradation signs, whereas the values of 19 samples
were likely affected by experimental errors.

The comparison of the PICT and Enamine datasets performed with the help of a
Generative Topographic Mapping approach showed that the PICT dataset contains some
unique structural motifs absent in the Enamine collection.

The results reported here demonstrate a synergism between experimental and chemoin-
formatics teams for obtaining, analyzing and modeling of the DMSO solubility of small
molecules (“fragments”) in the context of their application in fragment-based screening.

Supplementary Materials: The following are available online: description of standardization rules,
description of ISIDA fragment descriptors, description of statistical metrics, a list of models consti-
tuting the FBS consensus model, description of GTM parameters of class landscapes, a summary
of predictions made on the “gray area” compounds, the outlier detection and removal workflow, a
list of outliers, a list of reported classification models for the prediction of DMSO solubility and the
screenshots showing the usage of the “Predictor” web-application containing our model, the PICT
dataset containing experimental solubility values and class labels and the filtered Enamine dataset.
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4.2.2 Summary

To summarize, this chapter presents a comprehensive investigation of the solubility of
small organic molecules ("fragments") in DMSO. The novel classification model developed
herein, named the FBS model, differs from previous "stock solution" models by utilizing a
more appropriate threshold of 1 mM for fragment solubility instead of the categorical
threshold of 10 mM. Notably, the FBS model demonstrates promising predictive
performance, with a BA of 0.78 on 5-fold cross-validation. This model can be used to
identify compounds that are not feasible for FBS set-up, avoiding unnecessary
expenditures. Both the new experimentally measured data from the PICT dataset”® and the
developed model® are freely accessible for users. The new dataset and model contribute to
the broader scientific community by facilitating further research and enhancing the

efficiency of compound selection for screening experiments.
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4.3 Aqueous solubility

4.3.1 Introduction

Aqueous solubility is among the first properties that is screened and optimized
throughout the whole drug discovery and development pipeline.””” Despite the availability
of a plethora of aqueous solubility data, one of the main issues often encountered during
their inspection is the lack of precise description of the experimental set-ups used to gather
the data. The descriptive terms that are often used to define the nature of the solubility can
be roughly resumed in two levels ontologies: solubility data types and measurement assay
types (Figure 12).

Aqueous solubility types

L. Buffered Unbuffered
Intrinsic .
(apparent) (in pure water)
= Solubility of a compound in its = Solubility of a compoundina = Solubility of a compound in
neutral form solvent with defined pH pure water
Solubility measurement assay types
N Therm i
Kinetic N .qdy.namlc
(equilibrium)
= Starting point: stock solution = Starting point: solid-state form
= Employed as a HTS assay in the early stages of = Employed as a MTS/LTS assay in the later stages
drug discovery of drug discovery and development
= Main goal: a quick assessment of solubility for = Main goal: a detailed assessment of solubility at
the elimination of insoluble compounds various pH and in different formulations

Figure 12. Types of aqueous solubility and applied solubility measurement assay. HTS, MTS and LTS stand
for high-, medium- and low-throughput screening, respectively.

The first differentiation can be made based on the media where a compound is
dissolved. Intrinsic solubility refers to solubility of a compound at pH when it is in its
neutral form. For ionizable compounds, intrinsic solubility is measured indirectly using the
ChegSol method.” During the measurement of buffered (or apparent) solubility the pH of
a solution is defined using a buffer, whereas the pH of unbuffered solubility (or solubility
in pure water) is not controlled during the experiment. For non-ionizable compounds,
values of these three solubility types coincide. The buffered solubility is commonly used in
screening to simulate the solubility of molecules in bio-media. The buffered solubility can
be estimated from intrinsic solubility using a Henderson-Hasselbalch equation; however,
this equation should be used with caution due to some limitations.”*" For instance, the
equation is unstable if there is no dominant micro-species at the aimed pH and depends on
the number of titration sites.
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The further categorization is made based on the employed measurement assays that are
guided by the purpose of testing. In the early stages of drug discovery, the aim is to rapidly
eliminate compounds that are not sufficiently soluble to be tested at the maximum assay
concentration. Kinetic solubility is therefore favored, as it can be implemented in a high-
throughput setup, involving the screening of samples prepared from stock solutions.* At
later stages of drug discovery and development, solubility is measured more thoroughly and
tolerates a slower pace, to serve as a parameter for the bioavailability and safety of drug
candidates. These solubility measurement experiments use a pure powder as a starting
point and are referred to as thermodynamic solubility assays.”” Although both assays are
important, thermodynamic solubility is more often modeled as it is considered a
thermodynamic quantity, reproducible and having a direct relationship with the nature of
the solute. Kinetic solubility tests, on the other hand, are less studied as they are considered
to be non-reproducible, not corresponding to a thermodynamic equilibrium.

A focus has been made on differentiation of kinetic and thermodynamic solubility
from a modelling point of view. The results are presented in two published articles. The
kinetic solubility work is presented hereafter. The work on the challenges of accurately
predicting thermodynamic solubility is published independently and was led by a colleague,
Pierre Llompart, including my contributions. It is a review of the published datasets and
QSAR models in the past 20 years. It emphasizes the importance of data quality and
applicability domain. It also proposes a workflow of data curation of thermodynamic
solubility. It has been submitted to Seientific Data, but still in reviewing.

The kinetic solubility paper, hereafter detailed, focuses on the repeatability and
modelability of kinetic solubility assays. It explores the relationship between kinetic and
thermodynamic solubility data, and examines the alignment of data from different kinetic
assays. The kinetic solubility zz si/ico model developed during this study was made publicly
available and was uploaded to the Laboratory of Chemoinformatics' Predictor web service®
(“Kinetic solubility - Classification” model in the “PhysProp” section). This work has been

proposed to Molecular Informatics.
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Abstract: Kinetic aqueous or buffer solubility is important
parameter measuring suitability of compounds for high
throughput assays in early drug discovery while
thermodynamic solubility is reserved for later stages of drug
discovery and development. Kinetic solubility is also
considered to have low inter-laboratory reproducibility
because of its sensitivity to protocol parameters!'l
Presumably, this is why little efforts have been put to build
QSPR models for kinetic in comparison to thermodynamic
aqueous solubility.

Here, we investigate the reproducibility and modelability of
kinetic solubility assays. We first analyzed the relationship
between kinetic and thermodynamic solubility data, and then
examined the consistency of data from different kinetic
assays. In this contribution, we report differences between

kinetic and thermodynamic solubility data that are consistent
with those reported by others!™? and good agreement
between data from different kinetic solubility campaigns in
contrast to general expectations. The latter is confirmed by
achieving high performing QSPR models trained on merged
kinetic solubility datasets. The poor performance of QSPR
model trained on thermodynamic solubility when applied to
kinetic solubility dataset reinforces the conclusion that kinetic
and thermodynamic solubilities do not correlate: one cannot
be used as an ersatz for the other. This encourages for
building predictive models for kinetic solubility. The kinetic
solubility QSPR model developed in this study is freely
accessible through the Predictor web service of the
Laboratory of Chemoinformatics
(https://chematlas.chimie.unistra.fr/cgi-bin/predictor2.cgi).

Keywords: kinetic solubility, thermodynamic solubility, comparison, QSPR

1 Introduction

Aqueous solubility is an essential property of a compound to
be measured in drug discovery and development.B4 It is a
parameter to assess the bioavailability of a compound and it
is important to avoid bias on the measurement of a bioactivity,
such as a masking effect — i.e. when the saturation of an assay
is due to the solubility limit of a compound and not to the
biological material tested.!®9] Different steps of drug discovery
and development focus on different aspects of solubility,
which in turn dictates the choice of experimental approach
used to measure solubility.?

Solubility can be classified depending on the
measurement protocol. If a setup involves the dissolution of a
solid compound in a solvent, it is considered to be
thermodynamic (assay) solubility. In case the source of a
compound is a sample from the stock solution, the
measurement is regarded as kinetic (assay) solubility. Another
difference resides in the fact that thermodynamic solubility
determines highest solubility limit, while kinetic determinations
are carried out at a single concentration. Although kinetic
solubility is operated in high throughput screening (HTS)
conditions in order to anticipate solubility issues during a
screening campaign, new methods have been developed
during the last two decades, to also adapt thermodynamic
solubility assays to HTS conditions!'?l. Yet, differences in
experimental setups lead to several advantages of kinetic over
thermodynamic measurement assays types: (i) higher
dissolution rate and (i) control of the pH. Since the starting
point for kinetic solubility assays is a stock solution,

solubilization process does not involve a disruption of the
crystal lattice. Nevertheless, residues of an organic solvent,
which might affect the real water solubility, remain present in
the final medium. The preservation of pH is ensured by the
maximal concentration of the solute that is never able to
compete with the buffer.

Integration of aqueous solubility data in a single dataset
requires inspection of the precise definition of solubility type
and measurement setup. The diversity of solubility data may
be an issue if data of incompatible origins are accidentally
added to a dataset for training of in silico models.l"l This issue
accumulates with other parameters the solubility naturally
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depends on, such as solid properties (crystalline, polymorph,
amorphous), particle aggregation or measurement
temperature!®, degrading the predictive performances of the
models. Most of these in silico models are designed to predict
thermodynamic solubility, whereas models predicting kinetic
solubility are scarce.[>-'"l A non-exhaustive list of few reported
quantitative structure-property relationship (QSPR) models
targeting kinetic solubility is given in Table 1. We assume that
such a small number of models is explained by a belief that
kinetic solubility data are not as valuable for modelling as
thermodynamic solubility data, as they are considered not
reproducible due to sensitivity to experimental conditions of an
assay.!'? Nevertheless, it is kinetic solubility which is generally
measured during the first stages of drug discovery and is of
primary interest for screening platforms. Therefore, in silico
models are useful upstream or in parallel to HTS and
experimental kinetic solubility assessment: either for filtering
compounds or to facilitate the identification and localization of
problems during the assay.

Table 1. Published QSPR models predicting kinetic solubility.
Performance values correspond to the highest score reported in
respective articles.

Model Availability Performance

MetaClassifier (RF)® No Accuracy (test) = 0.65

Pruned MLSMR® No ROC AUC (test) = 0.86
MAE (test) = 0.44
GAT MTB!! No

R? (test) = 0.3

Accuracy (test) = 0.86
Model101"! No
ROC AUC (test) = 0.93

In this work, we investigate the reproducibility and
modelability of kinetic solubility. First, we compare different
kinetic methods by comparing solubility values of compounds
duplicated in different datasets. Then, we analyze scatter plots
comparing kinetic and thermodynamic solubility values of
compounds. Finally, we report the predictive performances of
models trained on kinetic solubility datasets and investigate
predictions made on other kinetic solubility datasets. The best
model is freely available on the web-server of the Laboratory
of Chemoinformatics.['3

2 Data

The solubility datasets presented in this paper were used (i)
to study the difference between kinetic and thermodynamic
solubility assay types; (ii) to analyze the consistency between
solubility data obtained using different kinetic solubility
assays; (i) to build and validate QSPR models (Table 2).
Molecular structures of all the datasets were standardized
using ChemAxon Standardizer!™ (see Supplementary
Information). We interpreted kinetic solubility data in terms of
two classes: “Soluble” (kinetic solubilty = 1 mM) and
“Insoluble” (kinetic solubility < 1 mM), in analogy to fragment-
based screening practices!'>"".. The precise definition of
these labels needs to be adjusted depending on the specific
datasets mentioned below. Table 2 resumes the

molecular
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characteristics of all kinetic solubility datasets used in this
work and discussed below.

2.1 Description of datasets

Among the following datasets, PICT, CNE2, Prestwick
Chemicals has never been published before.

PICT

The dataset was provided by Plateforme Intégrée de Criblage
de Toulouse (PICT) screening platform. It consists of kinetic
solubility measurements for 939 fragments (small organic
molecules). The measurements were performed in PBS buffer
solution (pH 7.2) (with 1% DMSO from stock solution) using
NMR technique for detection (see Supplementary Information
for experimental details). Adding uncertainties in sample
preparation and detection, experts recommend to interpret a
fragment of this dataset as “Insoluble” if the reported
concentration is < 780 uM and “Soluble” if the concentration
is > 880 uM. In-between the solubility label is undecided.
Other curation steps included removal of data points reporting
a concentration greater than the nominal sample
concentration (1 mM) or greater than the concentration in the
stock solution, indicative of an error. After the curation and
removal of 46 confirmed outliers and suspicious data points
(see Supplementary Information Table S5), the total number
of compounds in the dataset was 606 (513 “Soluble” and 93
“Insoluble”).

Prestwick Chemicals

This dataset originates from the Prestwick Chemicals
company. Kinetic solubility was measured for 1049 fragments
in a buffer solution (pH 7.4) using static light scattering (SLS).
Compounds are categorized as “Soluble” or “Insoluble” at 1
mM PBS (with 1% DMSO from stock solution). Data curation
involved removal of identical duplicate measurements, as well
as the molecules found soluble at higher concentrations, 5
mM and/or 10 mM, but not at 1 mM concentration, implying an
error. The curated dataset consists of 989 compounds (900
“Soluble” and 89 “Insoluble”).

Life Chemicals

Life Chemicals company provided kinetic solubility data for
one of its fragment libraries!'®l. Solubility of 11457 fragments
was visually determined based on scattering observed in
solutions at 1 mM concentration in PBS (pH 7.4) with 0.5%
DMSO. After removal of data points with no kinetic solubility,
the curated dataset consists of 9276 “Soluble” molecules.

MLSMR

The Molecular Libraries Small Molecule Repository
(MLSMR)!'¥ is a collection of small molecules compiled under
the initiative of National Institutes of Health (NIH) and
screened by Sanford-Burnham Center for Chemical
Genomics (SBCCG). To our knowledge, MLSMR is the largest
kinetic solubility dataset available in PubChem and it is
composed of 57824 data points measured in PBS (pH 7.4)
using quantitative chemiluminescent nitrogen detection
(CLND). Although, 0.2 mM was reported as the nominal
concentration of a sample, a large fraction of the reported

2
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concentration (about 31% of the dataset) is in the range of
(0.15; 0.151]. Based on this observation, we assumed 0.15
mM as the actual sample nominal concentration and removed
data points which reported concentration greater than or equal
to 0.15 mM (13262 data points). Additionally, data curation
included removal of duplicate molecules while taking median
of their solubility values (mean of standard deviations over the
duplicates = 9.85 pM). The resulting curated dataset
contained 44510 nitrogen containing compounds which are
insoluble at 0.15 mM, and therefore labeled “Insoluble” at 1
mM.

Boehringer

Boehringer Ingelheim Pharma GmbH & Co. shared a dataset
of 789 kinetic solubility measurements?® performed in PBS
(pH 7.4) using nephelometry method. Data points with
reported precipitate formation in DMSO stock solution and
those for which solubility value was only bounded (relation
denoted as “>") were removed. The curated dataset contained
605 compounds that are all “Insoluble” at 1 mM. This dataset
was used for QSPR modelling. The full dataset (789 data
points) was used to discuss the alignment of solubility values
between different kinetic solubility assays.

CNE1 and CNE2

Chimiothéque Nationale Essentielle (CNE) is a representative
collection of physical samples of pure compounds from a
larger chemical library of biologically relevant substances and
natural extracts called Chimiothéque Nationale". CNE1 is
referring to the first generation of this representative collection
of 640 compounds, most of which has been depleted. CNE2
is a currently available new representative collection of 1040
compounds. Aqueous solubility of both of these collections
have been measured by the “Plateforme de Chimie Biologique
Intégrative de Strasbourg” (PCBIS) screening platform.
PCBIS has measured thermodynamic solubility for CNE1
collection, whereas CNE2 collection was screened for kinetic
solubility. Thermodynamic solubility was measured using
shake-flask method, whereas kinetic solubility was measured
using HPLC-UV method, at 200 yM nominal concentration
(see Supplementary Information for details). Data curation
process was identical to Oprisiu®. Insoluble compounds
which solubility was lower than the limit of detection have been
ignored for the discussion. In addition, for CNEZ2, the following
data points were removed:

entries with reported concentration > 210 uM,

implying an experimental error;

measurements with signs of impurity (multiple peaks

in chromatogram);

compounds with observed precipitation in stock

solutions.

The CNE1 contains 282 compounds and the curation step
yielded 525 compounds in CNE2, all of which are insoluble
based on 1 mM threshold. CNE1 and CNE2 datasets were
used to analyze differences between thermodynamic and
kinetic solubility assay types, whereas the latter was also used
for QSPR model training.

Industrial data

molecular

informatics
The kinetic solubility dataset provided by Sanofi contained
solubility values of 18407 compounds measured from a 10
mM stock in PBS (pH 7.4) using nephelometry technique. The
curation procedure involved duplicate molecule processing by
taking median solubility value, and removal of data points in
[0.8; 1.2] mM range according to expert opinion. The latter
step is related to possible experimental error that could
potentially change solubility label based on 1 mM threshold.
The curated dataset was composed of 17320 compounds,
including 71 “Soluble” and 17249 “Insoluble” compounds. A
subset of the curated dataset composed of 1017 fragment-like
compounds only consisted of 37 “Soluble” and 980 “Insoluble”
compounds. Fragments were defined according to the rule of
3 (Ro3)!: calculated logP < 3, molecular weight < 300 g/mol,
number of hydrogen bond donors < 3, number of hydrogen
bond acceptors < 3.

A subset of compounds for which both thermodynamic and
kinetic solubility were measured contained 334 molecules. It
was used to investigate the relationship between
thermodynamic and kinetic solubility assay types. The whole
dataset, “industrial (all)’, and the fragment-like subset,
“industrial (frag)”, were used as test sets for external validation
of the trained QSPR models.

2.2 Preparation of the merged kinetic solubility training
set

In this section, we describe the preparation of the merged
dataset comprising data of PICT, Prestwick Chemicals, Life
Chemicals, Boehringer, CNE2, and MLSMR. The dataset
“industrial (all)” and its subset “industrial (frag)” containing
fragment-like compounds are used as external validation for
QSPR models: they have been considered a posteriori, after
all model building and validation has been concluded.

We identified duplicated compounds between the different
datasets and tried to resolve the conflicting labels. PICT and
Prestwick Chemicals have 5 compounds in common but the
labels are in agreement. The labels of 2 compounds out of 27
in common between PICT and Life Chemicals datasets do not
match. These 2 data were ignored because we could not
resolve this conflict. There are 4 duplicates between the PICT
and MLSMR datasets; labels differed for 3 of them and the
discrepancy could not be solved for 1 of them - this data was
ignored. For the remaining 2, the “Soluble” label was accepted
because the reported concentration in MLSMR was close
enough to the nominal concentration to assume that in fact,
these compounds were fully dissolved.

We found 3 CNE2 molecules that had contradicting
solubility class labels relative to other datasets (2 molecules
between CNE2 and Prestwick Chemicals; 1 molecule
between CNE2 and Life Chemicals). The 2 CNE2 molecules
had solubility values (179 pM, 180 pM) close enough to the
nominal sample concentration (200 uM) to assume that the
compounds were in fact fully dissolved, considering
measurement uncertainty. For this reason, the labels “Soluble”
from both Prestwick Chemicals and Life Chemicals have been
accepted. The remaining CNE2 compound had “Insoluble”
class label (39 uM solubility value) which contradicted Life
Chemicals’ “Soluble” label. As we could not resolve this
contradiction, the datapoint has not been included in the
merged dataset.
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The MLSMR had 208 molecules in duplicate with the other
datasets. After a thorough analysis, a large population (116
molecules) of data points was in the [140; 150) uM range,
which is close enough to the nominal value of 150 pM, to
assume that the compounds were in fact fully dissolved. For
these 116 MLSMR data points we accepted the labels
“Soluble” from the other datasets. We could not resolve the
contradicting labels for the remaining 92 MLSMR duplicate
measurements and these datapoints were ignored.

3 Method
3.1 Molecular descriptors

We used ISIDA substructural molecular fragments (SMF)24
representing 2D substructures (fragments) of various
topologies (sequence of atoms only, sequence of atoms and
bonds, atom-centered fragments, triplets) and sizes (see
Table S1 in Supplementary Information). The descriptor value

is the occurrence of a given fragment in the chemical structure.

The minimal length of fragment descriptors was 2 atoms, while
the maximal length varied from 2 to 5 atoms. Combination of
different topologies and sizes resulted in generation of 112
descriptor sets.

3.2 Machine learning method

Support Vector Machine (SYM) method was implemented in
this study for the generation of kinetic solubility QSPR models
and potential outliers’ detection. The SVM method offers the
advantage of robustness against outliers, thanks to its epsilon-
insensitive loss function. The libsvm 3.24 software package!®
was used for training and validation of SVM models. Selection
of optimal SVM hyperparameters, SVM kernels and descriptor
sets was performed using genetic algorithm (GA)
implemented in the libsvm-GA packagel?,

Four statistical metrics are used in our work: sensitivity,
specificity, balanced accuracy (BA), Matthew’s correlation
coefficient (MCC). They are calculated using the equations
given below (TP —true positive; TN — true negative; FP — false
positive; FN — false negative). In this context, soluble class is
regarded as “Positive” class, and insoluble class is regarded
as “Negative” class.

Sensitivity = TP/(TP + FN) (1)

Specificity = TN/(TN + FP) (2)

BA = (Sensitivity + Specificity)/2 (3)

MCC = (TN X TP — FN % FP)/((TP + FP)(TP + FN)(TN + FP)(TN + FN))°3 (4y

3.3 Modeling workflow

The modeling workflow of kinetic solubility QSPR models
applied in this study can be divided into 3 steps: (1) molecular
descriptor calculation; (2) model building and validation using
cross-validation; (3) consensus model preparation (Figure 2).
ISIDA fragment descriptors were computed for each training
set during cross-validation. The hyperparameters of the
models were optimized using a GA, with the cross-validation
performances as scoring function. The top performing models
were included in a consensus model. The selected models
were then retrained on the whole dataset and included in the
consensus model integrated into the ISIDA Predictor
softwarel?”] (available both as desktop software and web
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servicel'l). The ISIDA Predictor software was used to predict
kinetic solubility on the industrial data. The reported external
performances concern this application of the model.

In addition to the application of QSPR models, the ISIDA
Predictor software incorporates an assessment of predicted
value confidences. Scoring of prediction confidence is based
on the number of applied models and concordance between
the predicted labels given by each applied individual model of
the consensus model. Each individual model prediction is
considered according to the model's applicability domain,
defined by fragment control rulel?®l. Fragment control states
that if a test molecule contains at least one new fragment
compared to those observed in the training set, the model is
not applied.

The ISIDA Predictor provides 4 labels of prediction
confidence: “Low”, “Average”, “Good”, “Optimal”. In this paper,
for kinetic solubility QSPR models we considered only the test
compounds with “Optimal” prediction confidence.

While an ideal classification model would excel at
predicting compounds from both classes, in the context of
kinetic solubility, the primary goal is to identify and eliminate
insoluble molecules. From a statistical perspective, the model
should exhibit high Specificity (the ability to predict insoluble

molecules accurately) while still maintaining high BA and MCC.

Performance metrics for the developed kinetic models are
summarized in Table 5.

We also challenged an independent thermodynamic
solubility QSPR model to predict the kinetic solubility label
using a 1 mM threshold. This QSPR model has been trained
on a dataset comprised of 42159 industrial and public
solubility data (OCHEM, ChEMBL). The model was trained
using Chemprop software packagel? that implements a
message passing neural network method. The validation
performance on a test set of 5728 compounds was RMSE
(root mean squared error) = 0.59.

Molecular descriptor
‘ calculation

ISIDA fragment descriptors

4

Model training and
validation
SVM classifier
GA optimization algorithm
10-fold cross-validation

Data processing

Standardization
Duplicate processing

Consensus model
preparation «
Top models selected based on
10-CV performance
Selected models re-trained on
the whole dataset

Consensus model integrated in
ISIDA Predictor

External validation

I«

Application to

- “industrial (all)” test set

- “industrial (frag)” test set
Figure 2. The modelling workflow of kinetic solubility QSPR
models. The main steps are preprocessing data, computing
molecular descriptor, training and validating individual models
and implementation of the consensus model. External validation
results from application of the final consensus model to the test
sets (industrial (all) and industrial (frag) datasets). SVM —
Support Vector Machine; GA — Genetic Algorithm; 10-CV — 10-
fold cross-validation.
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4 Results and discussion
4.1 Kinetic and thermodynamic solubility

Saal and Petereit?l described three different types of
relationship between kinetic and thermodynamic solubility
visualized on Figure 3. The first one (Zone A) corresponds to
compounds fully dissolved in a kinetic solubility measurement
because their thermodynamic solubility is equal to or larger
than the nominal of the measure. The second type (Zone B)
is typical for the compounds whose kinetic solubility is larger
than thermodynamic one. This behavior can be explained by
the solid-state form of the precipitate that may differ from a
kinetic to a thermodynamic measurement.B% In kinetic
solubility measurements, the solid that forms can be
amorphous or a metastable crystal polymorph;
thermodynamic measurements start from a crystal that must
be solubilized and are expected to let only the lowest soluble
solid to form. The measurement can be complicated if the
compound leads to polymorphic crystal structures.*" The third
type (Zone C) represents compounds for whom kinetic and
thermodynamic solubilities correlate.

Log$ Thermadynamic 0

80000 00000000000 000 000
Max kinetic
solubllity

Log$ Kinetic

Figure 3. Different types of relationship between thermodynamic
and kinetic solubility. Zone A: kinetic solubility of compounds is
at the nominal concentration; zone B: kinetic solubility greater
than thermodynamic solubility; zone C: kinetic solubility equals
to thermodynamic solubility.

In this context two new datasets — Industrial and
Chimiotheque Nationale Essentielle version 1 and 2 (CNE1
and CNE2) — have been analyzed. The former dataset shows
a rather different pattern (Figure 4) from what is expected
(Figure 3). The scattered data points are organized along
several horizontal lines, at certain kinetic solubility values.
This dataset corresponds to several kinetic solubility
determination campaigns carried out at different
concentrations. These horizontal lines correspond to the
different nominal concentrations of the many nephelometry
kinetic measurements aggregated in this dataset. The
contributors to this dataset were looking for the nominal
concentration at which each compound begins to appear
insoluble. To this end, they scanned several of them and
reported a concentration that appear to behave as in the zone
A exemplified in the Figure 3.

In Figure 5, the solubility values distribution aligns with
expectations (Figure 3). While the majority of data points are
accumulated at about -3.7 log kinetic solubility, the others are
instances of the case when kinetic solubility is greater than or
equal to the thermodynamic solubility. Apart from 6 outlying
data points, the overall picture resembles the pattern
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described by Saal and Petereit?. The 8 compounds on the
lower right hand of the plot, not matching the expectations are
disclosed in the Supplementary Information (Table S4). The
limit of detection at -3.7 log has been explained by Saal and
Petereit? as resulting from the nominal concentration and the
maximum DMSO concentration allowed in the incubation
medium.

The difference between kinetic and thermodynamic
solubility measurements can originate from solvent-mediated
transformations occurring between different polymorphic
forms of the compound.?'#? Recrystallization leads to the
most stable polymorphic form which is characterized by its
lower solubility. Measurement of a compound at any other
metastable form results in different concentration (kinetic
solubility) as it did not reach equilibrium state with the solution.
Equally important factor is the quality of the measured
compounds. Compounds with a low purity will lead to stock
solutions with concentration errors, followed by calibration
errors and finally, measurement errors. Additionally, it is now
better understood that “kinetic solubility” does not refer to a
kinetic phenomenon, and therefore, this terminology is
contested.?

LogS Thermadynamic (M)

7 5 5 4 3 2 1

Logs Kinetic (M)

7

® diff <1 log

® diff >= 1 log
Figure 4. Comparison of kinetic and thermodynamic solubility
values of the industrial dataset (334 compounds). Green dots
represent differences <1 log unit between kinetic and
thermodynamic values, red dots >=1 log unit. Orange dashed
lines show a 1 log margin.
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Figure 5. Comparison of kinetic and thermodynamic solubility
values of Chimiothéque Nationale Essentielle dataset (186
compounds). Green dots represent differences <1 log unit
between kinetic and thermodynamic values, red dots >=1 log unit.
Orange dashed lines show a 1 log margin.
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Table 3. The number of common compounds between each pair of kinetic solubility datasets. The LC and Prestwick datasets are
composed of categorical values only, whereas the other datasets contained numerical values.

Boehringer LC MLSMR PICT Prestwick CNE2
Lc 0
MLSMR 12 189
PICT 0 28 14
Prestwick 0 39 169 5
CNE2 0 1 8 1 5
Industrial (all) 1 19 92 0 11 3
MLSMR 14 cmpds MLSMR 9216'“Pdf- MLSMR 12 cmpds
-1 = -1
6 b -4 3 -2 -1 7 € 5 4 3 2 -1 7 6 5 4 -3 -2 -
-2 -2 -2
- 3|3 5
L ] 3 6 3 fg; * 3 k]
o ] ]
] 4-{& <2 4 4
: i 3
-5 5 5
5 %
ediff<tlog  ediff>=1log diffi<Tlog  #diff >=1log ediff<liog  ediff>=1log
MLSMR 8 cmpds Industrial 3 cmpds
-1 =]
-7 -6 -4 <P 1 T 6 5 4 -3 2 £
-2 -2
-3 % 3 o
ot . 8 . . B
5 5
% ]
» diff < 1log o diff >= 1 log = diff < 1log s diff >= 1 log

Figure 6. Scatter plots comparing kinetic solubility values of dataset pairs. The unit is logS (in molar). The number of common
compounds is given at the top right corner of the plot. Green dots represent cases when the absolute difference between kinetic

solubility values is less than 1 log unit and red dots indicate when the difference is greater than or equal to 1 log unit. Orange dashed
lines shows 1 log margin.

Prestwick Chemicals Life Chemicals Life Chemicals
Soluble Insoluble Soluble Insoluble 5o Soluble Insoluble
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Insoluble 0 0 Insoluble 2 0 Insoluble 0 0

Figure 7. Pairwise comparison of kinetic solubility classes for the datasets composed of fragment-like compounds.
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Table 4. Comparison of kinetic solubility of compounds common to pairs of datasets. The table is composed of cases when only one compound
was in common between a given pair of datasets. The case of “Industrial (all)” vs CNE2 compound is an exception: it is reported separately from
the scatter plot presented in Figure 6, because it could not be quantified in CNE2 measurements.

Compound

Dataset A and solubility Dataset B and solubility Comment

/ \ Life Chemicals CNE2 Difference between log values = 0.74
N ; Soluble at 1 mM 0.18 mM Good alignment (difference within 1 log
>—/ (-3 log) (-3.74 log) unit)
o
i PICT CNE2 Difference between log values = 0.56
v New,  0.9mM 0.25 mM Good alignment (difference within 1 log
" (-3.05 log) (-3.61 log) unit)
OH
[ Industrial (all One can assume good alignment
0.001 mM CNE2 considering the limitations of the reported
w . : o (_'6 log) <100M data in both the industrial dataset and the
@ 9 CNE2.
e
% O Industrial (all Boehringer Difference between log values = 0.08
Pad 0.006 mM 0.005 mM Good alignment (difference within 1 log
[] (-5.22 log) (-5.3 log) unit)
4.2 Analysis of ilable kinetic d during this comparison, since the solubility label between

This section reports the comparison of different kinetic
solubility datasets based on common compounds between
each pair of datasets. The findings of this study have been
used to build the merged datasets (see section “Preparation
of the merged kinetic solubility training set”).

In Table 3, a number of common compounds for each pair
of kinetic solubility datasets is given. The analysis of common
compounds was conducted in two ways: by scatter plots, for
datasets containing numerical values; by pairwise comparison
of datasets containing categorical values. The cases where
there was only one common compound were studied
individually.

Scatter plots presented in Figure 6 generally show the
good agreement between datasets (within 1 log margin).
Vertical alignment of data points observed in scatter plots
involving MLSMR data correspond to the upper limit of
value set by the nominal sample concentration. For one
compound the reported solubility is < 10 yuM in CNE2 and
1 UM in the industrial dataset.

The pairwise comparison of the LC / PICT, LC /
Prestwick Chemicals and PICT / Prestwick Chemicals
dataset pairs shows (Figure 7) consistency of kinetic
solubility data: only 2 molecules out of 16 are differently
labeled in LC and PICT, in the other dataset all labels are
fully consistent. The datasets whose max solubility value
is less than 1 mM (MLSMR, CNE2) were not considered

1 mM and their nominal concentration cannot be decided.

Table 4 consists of cases where only one molecule
was common to pairs of datasets, except for a compound
common to ‘“Industrial (all)” and CNE2, which was
detected below the limit of quantification of the CNE2
measures. Overall, these data confirm the good
agreement between kinetic solubility measures from
independent sources.

4.3 Modelling of kinetic solubility

Considering the observed reproducibility of the kinetic
solubility measures, we proposed to merge these datasets in
order to build predictive QSPR models. For this purpose, all
kinetic solubility datasets (except the industrial dataset used
as an external test set) were merged in the “merged-all_model’
data set. The data processing of the mixed “merged (all)”
dataset resulted in 56129 molecules: 10536 “Soluble” and
45593 “Insoluble”. A “merged (frag)” subset containing
fragment-like compounds was prepared from the whole
“merged (all)” dataset. It is composed of 5449 “Soluble” and
4363 “Insoluble” molecules, 9812 molecules in total.
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Table 5. 10-fold cross-validation (10-CV) performance of consensus QSPR models developed in this work. ?

# individual Standard Standard Sensitivit Specificit:
Model Training set models in the BAicv? deviation MCCio.cv ?  deviation (10-cv) Y (1%_0\',) Y

consensus model (BA1o.cv) (MCCh1o.cv)

Prestwick

prest_model Chemicals 5 0.68 0.09 0.39 0.16 0.96 0.4
pict_model PICT 3 0.71 0.06 0.46 0.17 0.94 0.48
merged-frag_model Merged (frag) 7 0.87 0.01 0.75 0.02 0.91 0.84
merged-all_model Merged (all) 12 0.93 0.004 0.86 0.005 0.88 0.98

2 Each representing ensemble of individual SVM models built on ISIDA fragment descriptors. ® BA — balanced accuracy; MCC - Matthew's correlation

coefficient.

Table 6. Performance of models on industrial kinetic solubility datasets. “industrial (frag)” is a subset of the whole “industrial (all)”
dataset which is composed of only fragment-like compounds (complying Ro3).

Performance on “industrial (all)” test set

Test set size in AD after removal of

Modsl common molecules (soluble/insoluble) Sansitivity Spegificity BA Mee
prest_model 1004 (11/993) 1 0.73 0.87 0.17
pict_model 150 (9/141) 1 0.38 0.69 0.19
merged-frag_model 855 (19/836) 0.58 0.9 0.74 0.23
merged-all_model 345 (7/338) 0.71 0.97 0.84 0.49
therm_model No AD filter (71/17249) 0.145 0.98 0.56 0.05
Performance on “industrial (frag)” test set
Model Tent astelzelnaD a(“e.’ remaval .‘Lfble) Sensitivity Specificity BA mec
prest_model 131 (11/120) 1 0.18 0.59 0.14
pict_model 88 (8/80) 1 0.06 0.53 0.08
merged-frag_model 195 (18/177) 0.61 0.62 0.61 0.13
merged-all_model 48 (7/41) 0.71 0.85 0.78 0.48
therm_model No AD filter (37/980) 0.24 0.79 0.52 0.02

QSPR models built using the above datasets was
compared to the models trained on individual kinetic solubility
datasets. A thermodynamic solubility model has been
challenged to predict the kinetic solubility classes, for
comparison. Evaluation of models’ performance was
performed both on the whole “industrial (all)” dataset as well
as its subset composed of fragment-like compounds only,
“industrial (frag)”. Any molecule found in both the training set
and the industrial set was discarded for computing the
performances: for “industrial (all)", “prest_model” training set
had 8 molecules in common, “pict_model’ had 0, “merged-
frag_model" had 36, “merged-all_model" had 98; for “industrial
(frag)’, “prest_model’ training set had 3 molecules in common,
“pict_model’ had 0, “merged-frag_model’ had 36, “merged-
all_model’ had 37.

Since molecules in the industrial dataset are very different
from the ones in the training dataset, the data coverage of all
models is less than 20%: for “industrial (all)", “prest_model’
was applied to 1004 molecules with “Optimal” confidence
prediction label (5.8% of the “industrial (all)” with no common
molecules with the training set of “prest_moder"), “pict_model’

to 150 molecules (0.9%), “merged-frag_model’ to 855
molecules (4.9%), “merged-all_model’ to 345 molecules (2%);
for “industrial (frag)’, “prest model’ was applied to 88
molecules with “Optimal” confidence prediction label (12.9%
of the “industrial (all)” with no common molecules with the
training set of “prest_model"), “pict_model’ to 131 molecules
(8.7%), “merged-frag_model’ to 195 molecules (19.9%),
“merged-all_model’ to 48 molecules (4.9%).

The results show that models trained on a combination of
kinetic solubility datasets (“merged-all_model’, “merged-
frag_model’) show higher MCC and Specificity values,
compared to those trained on individual datasets, both in
“industrial (all)” and “industrial (frag)” test sets (Table 6). When
applied to the "industrial (frag)* test set, the "merged-frag-
_model* demonstrates inferior results compared to the
"merged-all_model‘. The latter benefits from a more extensive
training set, despite the former's specialization, which includes
only fragment-like compounds. Moreover, one can see that
the ratio of soluble to insoluble molecules in the “merged-
all_model" (= 0.2) is closer to the ratio in the “industrial (frag)”
test set (= 0.07), rather than the more equally distributed
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training set of the “merged-frag_model" (= 1.25). Actually, the
mismatch of the prior expectation of the other kinetic solubility
models (“prest_model”, "pict_model’) compared to the actual
“Soluble” / “Insoluble™ distributions observed in the various
dataset can have a negative impact on their performances.
This adds to the weaknesses of these models resulting from
the relatively small size of their training sets.

For early drug discovery solubility screening campaigns, it
is better to identify and remove insoluble compounds. For this
reason, it is preferable for a QSPR model to have high
predictive rate of insoluble molecules (Specificity), while
preserving a high BA and MCC. Given that, the “merged-
all_model" is a better candidate to be used for virtual
screening (see Supplementary Information Table S2 for
details). The use of a thermodynamic solubility model for such
task seems a wrong idea, as illustrated by the performance of
a recent predicive QSPR model used for this task
(therm_model, Table 6).

The benchmarking of existing models that were described
in Table 1 and Table S3, is not possible due to unavailability
of those models.

5 Conclusions

The analysis of kinetic and thermodynamic solubility
data confirmed the previously known patternsi? of
relationship between these two solubility types, namely,
the three scenarios: (i) upper limit of kinetic solubility
constrained by the assay setup, (ii) overestimation of
kinetic solubility relative to thermodynamic solubility, (iii)
equal kinetic and thermodynamic solubility.

Our analysis also demonstrated that the kinetic
solubility data obtained using different measurement
protocols are in good agreement with each other,
indicating good inter-laboratory reproducibility.

This allowed us to merge the kinetic solubility data into
a single dataset on which predictive models were trained.
This dataset (doi:10.57745/ZWS0WC) contains exclusive
data from Prestwick Chemicals, PICT and CNE2 never
reported so far. The modelability of the merged dataset
using different detection methods strengthen the
conclusion that kinetic solubility data are not as assay-
dependent as initially assumed. It should be noted that
the model trained on thermodynamic solubility data fails
to evaluate kinetic solubility, emphasizing that these are
conceptually related but different measurements.

This contribution led to the publicly available QSPR
model predicting kinetic solubility freely accessible
through the Predictor web service of the Laboratory of
Chemoinformatics

(https://chematlas.chimie.unistra.fr/cgi-bin/predictor2.cgi).

The model can be used for prioritization of screening
compounds by preliminary assessing kinetic solubility at
pH 7.4 and at 1 mM nominal concentration and a DMSO
maximal concentration of 2% in the incubation medium. It
is recommended to consider only “Optimal” predicted
values when applying this model.
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4.4 Conclusion

4.3.2 Summary

The results obtained from the two papers shed light on the relationship between
kinetic and thermodynamic solubility data and their modelability. The thermodynamic
solublity paper provided insights into the failures of published models in prediction of
thermodynamic solubility by emphasizing the importance of data quality, applicability
domain, and careful curation of solubility datasets. The kinetic solubility paper highlights
several key points. First, the kinetic solubility data obtained from different measurement
protocols® demonstrate good interlaboratory reproducibility, indicating reliable agreement
among the results. Second, by merging several kinetic solubility datasets, a large dataset was
created™, which was used to train a good-performing model. Finally, the fact that the
QSPR model trained on thermodynamic solubility data performs poorly when applied to
kinetic solubility data further confirms that although kinetic and thermodynamic solubility
are conceptually linked, they represent distinct measurements.

4.4 Conclusion

This chapter provides valuable insights into the solubility properties of small organic
molecules in DMSO and aqueous solutions. The newly developed FBS model for solubility
in DMSO stands out by utilizing a more appropriate threshold, enhancing predictive
performance, and enabling the identification of compounds unsuitable for FBS setups.
Regarding aqueous solubility, the results illuminate the relationship between kinetic and
thermodynamic solubility data and their modelability. The studies emphasized the
significance of data quality, applicability domain, and data curation in predicting
thermodynamic solubility, offering valuable guidelines for data curation and a curated
AqSolDBc dataset. Furthermore, they highlighted the good interlaboratory reproducibility
of kinetic solubility data and that blending of several kinetic solubility datasets into one
leads to a well-performing model. The distinction between kinetic and thermodynamic
solubility data underscores their unique characteristics and importance in drug discovery
and development.

Both the models and the datasets used for training, for both solubility in DMSO and
kinetic solubility, are freely available. These projects were achieved through a successful
collaboration with Plateforme Intégrée de Criblage de Toulouse (PICT) and Plateforme de
Chimie Biologique Intégrative de Strasbourg (PCBIS - UAR 3286).
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5.1 Introduction

Chapter 5

Skin-related safety properties

5.1 Introduction

Skin sensitization and permeability are two of the most important parameters to study
in industries such as pharmaceuticals, cosmetics, and occupational safety. Understanding
these parameters can help ensure better protection and handling of potentially harmful

substances.

A newly developed in vitro skin sensitization assay, the bone marrow-derived dendritic
cell (BMDC) assay, is compared with other existing iz vitro, in chemico, and in silico tests.
Additionally, a consensus classification QSAR model based on BMDC assay data is

developed for preliminary assessments.

Regarding skin permeability, a new database called SkinPiX has been compiled. This
database contains skin permeability coefficients and related metadata for 110 chemicals. A
QSPR model has been built using the new database merged with the existing skin
permeability database, HuskinDB. The newly compiled SkinPiX database, along with the
developed skin permeability and skin sensitization models, can be utilized in various
industries to predict and evaluate the potential skin absorption and allergenic properties of
chemicals. This can lead to more informed decision-making and safer product

development.
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5.2 Skin sensitization

5.2.1 Introduction

Skin sensitization is a common reaction caused by repeated exposure to small
molecules known as haptens. These haptens bind to skin proteins, triggering an immune
response that can result in symptoms like allergic contact dermatitis. The process involves
several key events, including the binding of haptens to skin proteins, the activation of skin
and immune cells, that finally leads to skin sensitization.® The imperative to comply with
EU regulatory requirements, specifically Annex VII of REACH mandating the assessment
of skin sensitization, coupled with the overarching goal of reducing animal testing
advocated by REACH, propels the development of innovative zz vitro skin sensitization
methods. One such test is the bone marrow-derived dendritic cell (BMDC) assay’, which
demonstrates potential in identifying skin sensitizing substances.

The aim of this study is to compare the predictive performance of the BMDC assay
with other established 7z vitro and in chemico tests using common compound datasets.
Furthermore, a consensus classification QSAR model based on BMDC assay data is
developed for the preliminary assessment of skin sensitization. The results are published in
the article provided below, whereas the model is available on the Predictor web service” of
the Laboratory of Chemoinformatics (“Skin sensitization (BMDC) - Classification” model
in the “Activity” section). The presented manuscript will be submitted to
Regulatory Toxicology and Pharmacology. The published version may differ from this one.
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Benchmarking and QSAR Modeling of BMDC Assay for
|dentifying Sensitizing Chemicals
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Abstract

The Bone-Marrow Dendritic Cell (BMDC) test is a promising assay for identifying skin and
respiratory sensitizing chemicals based on the 3Rs principle.

This study expanded the BMDC benchmarking to various in vitro, in chemico, and in silico assays
targeting different key events (KE) in the skin sensitization pathway, using common substances
datasets. Additionally, a Quantitative Structure-Activity Relationship (QSAR) model was developed to
predict the BMDC test outcomes for sensitizing or non-sensitizing chemicals. The modelling workflow
involved ISIDA (In Silico Design and Data Analysis) molecular fragment descriptors and SVM (Support
Vector Machine) classification models.

The BMDC model’s performance was at least comparable to that of all ECVAM-validated
models regardless of the KE considered. Compared with other tests targeting KE3 related to dendritic
cell activation, BMDC was shown to have higher balanced accuracy and sensitivity with respect to both
Local Lymph Node Assay and Human labels, providing additional evidence for its reliability. The
consensus QSAR model exhibits promising results, correlating well with observed sensitization
potential. Integrated into a publicly available web service, the BMDC-based QSAR model may serve as
a cost-effective and rapid alternative to lab experiments, providing preliminary screening for
sensitization potential, compound prioritization, optimization and risk assessment.

Keywords: BMDC, benchmark, LLNA, QSAR model, 3Rs principle, sensitizing chemicals
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1. Introduction

Allergy to chemical substances is prevalent among both the general population and workers
exposed to chemicals. Allergy can manifest through skin or respiratory symptoms, such as contact
dermatitis or asthma. Allergic diseases are caused by repeated exposures to small molecules, called
haptens that bind to skin or pulmonary proteins and form molecule-protein complexes, which in turn
trigger an immune response. The pathophysiology of chemical allergy can be divided into two stages:
a sensitization step and an elicitation step. The first phase has been extensively studied and involves
different mechanisms at the molecular and cellular levels that have been described in the skin
sensitization adverse outcome pathway (AOP)* and in a respiratory sensitization AOP which is not yet
complete?.

Briefly, for skin sensitization, the first step consists of the covalent binding of an hapten to skin

proteins key event (KE1), followed by the induction of inflammatory response in epidermal
keratinocytes (KE2), the maturation of dendritic cells (KE3) and lastly the activation, proliferation and
differentiation of T-cells (KE4) which will induce the adverse effect: allergic contact dermatitis.
To date, there are no validated tests for respiratory sensitization. However the development of assays
(in chemico, in vitro and in silico) predicting skin sensitization has progressed steadily, particularly
under the impetus of the ban on animal testing to identify human skin sensitizing chemicals in cosmetic
products in 20093. These different assays mostly target a specific key event in the skin sensitization
AOP to allow discrimination between sensitizers and non-sensitizers. These tests have been the subject
of OECD guidelines, and include but are not limited to: h-CLAT and U-SENS™ (TGD 442E),
KeratinoSens™ and LuSens (TGD 442D), DPRA (TG 442C)*®.

The development of robust and reliable models is a challenge given that the reference test —
murine local lymph node assay (LLNA)” — was an integrated test that took into account most of the
steps of the AOP (KE1-KE4) from the deposition of the substance on the rodent’s skin to the
lymphocyte proliferation. According to the guidelines, an in vivo skin sensitization study, such as LLNA,
should only be conducted if either the in chemico or in vitro methods cannot be utilized for the
substance, or if the findings from those methods are inadequate for appropriate classification and risk
assessment.

Recently, the OECD advocated a novel, defined approach (DA) for the assessment of skin
sensitization that is equivalent to or more informative than the LLNA output for hazard identification.
The DA involves a combination of data (in chemico, in vitro and in silico) that are interpreted using a
mathematical model to overcome the limitations of individual tests (TGD 497)%. Assays proposed in
this DA includes DPRA, h-CLAT, KeratinoSens™, DEREK and QSAR Toolbox.

The BMDC (Bone Marrow-Derived Dendritic Cell) assay is one of the new in vitro emerging
tests and appears to be promising for the identification of sensitizing substances. The BMDC model
utilizes flow cytometry to measure the expression levels of phenotypic markers of mouse dendritic
cells, such as MHC I, MHC II, CD40, CD54, CD80, and CD86 and therefore focuses on the KE3 of the
AOP. In testing with 123 chemical compounds, the BMDC model demonstrated a high sensitivity of
94%, specificity of 78%, and accuracy of 89% compared to LLNA labelling®, while complying with the
3Rs principle.

Evaluating the performance of sensitization tests, such as in vitro, in vivo, in chemico, and in
silico, has been challenging due to their evaluation on different datasets, making it difficult to
determine the most sensitive and accurate assay and their potential value in the DA. Fortunately, the
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datasets of chemicals tested in these sensitization assays often overlap and for this reason we set out
to evaluate the alignment of these different assays on the same set of compounds.

In this context, our aim was firstly to assess and contrast the performance of the BMDC test
with other commonly employed in vitro, in chemico, and in silico assays in order to investigate its
advantages and limitations and to gain a comprehensive understanding of its capabilities. The tests
considered in the comparison included KeratinoSens™, LuSens, h-CLAT, mMUSST, U-SENS™, DPRA, and
Pred-Skin. To ensure fairness, we used datasets that contained the same compounds for all the tests.
The assessment encompassed the ability to predict both human skin sensitization and LLNA labels.

To capitalize on the substantial amount of robust data generated from the BMDC test and
maximize its impact for chemical safety assessment purpose, a companion QSAR (Quantitative
Structure-Activity Relationship) model was developed in the second part. This model aims to predict
the sensitization potential of chemical compounds based on the BMDC test results. Its design,
performance, benefits and availability to the scientific community via a free web service are discussed
in this article.

2. Methods

2.1 Data sources

BMDC assay data were obtained at the French National Research and Safety Institute for the
Prevention of Occupational Accidents and Diseases (INRS) and were recently published®. These are the
expression data of 6 specific markers of dendritic cells activation and the results of the sensitizing
potential assessment analysis for 123 substances. The chemicals tested with the BMDC model were all
purchased with a very high chemical purity (over 95%) to avoid any impurities being responsible for
the observed effects. The sensitization labels for LLNA were extracted from Battais et al.'s publication®.

The Integrated Chemical Environment (ICE) was designed to facilitate the development,
evaluation, and application of new approach methodologies. It provides a number of datasets focusing
on toxicity endpoints?, all of which were compiled and curated by National Toxicology Program
Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM)?. In this study,
we used the skin sensitization dataset, originally consisting of over 24,000 data entries for nearly 2,000
unique compounds. This dataset includes data from both animal and non-animal tests and served as a
valuable source of data for DPRA, KeratinoSens™, LuSens, h-CLAT, U-SENS™ and mMUSST assays.

Additionally, human data were extracted from the Pred-Skin dataset. The training sets used to
build models which constitute Pred-Skin software'® are available on the GitHub page of the project’.
The KNIME workflow used to process the data to compare assay’s performances are accessible in the
online repository (https://doi.org/10.57745/PPAMKY) for transparency.

2.2 Benchmarking

While each skin sensitization assay had its own specific dataset, they were all applied to
commonly studied chemical compounds related to sensitization, leading to overlap among the
datasets used in different assays. Therefore, overlapping data sets were systematically identified and

1 |CE: Integrated Chemical Environment: https://ntp.niehs.nih.gov/whatwestudy/niceatm/comptox/ct-
ice/ice.html (accessed 2 November 2022)

2 |CE Data Sets: https://ice.ntp.niehs.nih.gov/DATASETDESCRIPTION (accessed 13 October 2022)

3 Training sets of Pred-Skin models https://github.com/joyvb/Pred-Skin/tree/master/Datasets (accessed 3
November 2022)
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statistics on these overlapping cases only were calculated. The list of compounds considered in this
study and their label as sensitizers or non-sensitizers in humans or according to different tests is
presented in Supplemental 1.

The following performance measures were reported:

Accuracy: (TP+TN)/(P+N) (1)
Balanced Accuracy (BA): TP /(TP+FN)+TN /(TN + FP) (2)
Sensitivity: TP /(TP + FN) (3)
Specificity: TN /(TN + FP) (4)

2.3 QSAR modeling

An overview of the modelling workflow used to generate our QSAR model is shown in Figure 1.
It starts with data curation of molecular structures, followed by training and validation of models built
on various molecular descriptor sets. The final step is the preparation of a consensus model that is
integrated in the ISIDA (In Silico Design and Data Analysis) Predictor web-service* and is publicly
available for users.

( \ ( ) ( \
Structure Training and validation Final consensus model
Raw dataset ) 5
standardization | | of anumber of models preparation
) ( )

Figure 1. The overview of a Quantitative structure-activity relationship (QSAR) modelling workflow.

All the QSAR modelling steps were executed with KNIME Analytics Platform®!. Support Vector
Machine (SVM) models were trained and applied using the LIBSVM package!?. Data points were
sampled randomly (with a fixed seed) at all steps involving data partitioning. Details on model building
and validation are reported in Supplemental 2.

ISIDA Predictor software was used to apply a developed consensus QSAR model to a set of
molecules. Prediction confidence label (“Low”, “Average”, “Good”, “Optimal”) was assigned based on
the number of applied models and the consistency among the predicted values of applied individual
models. The individual models that constitute the consensus model were applied if a test molecule
passed the fragment control applicability domain (AD) filter3. A test molecule was considered out of
AD if it contains a substructural fragment that had not been encountered in the training set of the
individual model and therefore ISIDA Predictor software did not apply this individual model. Once
predictions made by the applied individual models were collected, a consensus prediction was derived
by taking the value that was predicted by most of the individual models. The output consists of
predictions, prediction confidence labels and number of applied models.

3. Results and Discussion

3.1 BMDC benchmarking with other sensitization assays

Evaluating diverse skin sensitization tests (in vitro, in vivo, in chemico, and in silico) is
challenging due to varying datasets, hindering the identification of the most sensitive and accurate
assay. A benchmark offers an opportunity for comprehensive evaluation and comparison of these

“The web-service of the Laboratory of Chemoinformatics: https://chematlas.chimie.unistra.fr/cgi-
bin/predictor2.cgi (accessed 31 August 2023), “Skin sensitization (BMDC) - Classification” model in the
“Activity” section.
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assays, assessing their strengths and limitations in terms of sensitivity, specificity, accuracy, and
reproducibility. This informs the selection of reliable tests and guides the development of integrated
strategies for improved predictive accuracy and reliability.

Any sensitization test aim to predict the effects observed in human. However, LLNA is
considered as the gold standard tool for predicting human sensitization as it provides a large source of
quantitative data on in vivo sensitization. As such, it is considered as the reference method during the
development and comparison of new alternative methods.

In their study, Battais et al. (2023) highlighted the strong performance of the BMDC test in
comparison to LLNA labels (accuracy: 0.89, sensitivity: 0.93, specificity: 0.78), demonstrating a good
alignment between BMDC and LLNA results®.

Through the concatenation of the BMDC, ICE, and Pred-Skin datasets (Supplemental 1), we
successfully identified the compounds that received accurate predictions and those poorly predicted
by various tests targeting differents KEs in the skin sensitization AOP. This comprehensive analysis
allowed for a thorough evaluation of the assay performance. Pairwise comparisons of performances
of the BMDC test with other models with respect to LLNA label (DPRA n=99, h-CLAT n=91,
KeratinoSens™ n=105, LuSens n=45, mMUSST n=35, Pred-Skin n=118, U-SENS™ n=97) have revealed
that BMDC has a systematically better balanced accuracy (Figure 2).

Balanced Accuracy of different assays with respect to LLNA
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Figure 2. A pairwise comparison of Bone-Marrow Dendritic Cell (BMDC) assay with other assays with
respect to Local Lymph Node Assay (LLNA) labels. Performance metric is balanced accuracy. At the
bottom left part of each bar plot a number of common compounds with labels of both assays that
were compared is given. Dark green bars represent BMDC performance; light green bars represent

other in vitro and in chemico methods; an orange bar represents in silico method.

The results of DPRA, KeratinoSens™, h-CLAT, Pred-Skin, and BMDC with respect to LLNA class
were analyzed together (Table 1). Among the commonly tested compounds (n=74), the BMDC assay
exhibited better performance than other tests for all metrics (balanced accuracy, accuracy, sensitivity
and specificity). The h-CLAT test, on the other hand, performed the worst in terms of BA (0.76),
accuracy (0.82) and specificity (0.63), while Pred-Skin had the lowest sensitivity (0.86) among the five
tests.

Table 1. Performances of skin sensitization assays with respect to Local Lymph Node Assay (LLNA)
labels. The evaluation was performed on a set of common compounds (n = 74). Balanced accuracy
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(BA) of Bone-Marrow Dendritic Cell (BMDC) test is high and close or similar to the other in vitro and in
silico assays.

Assay DPRA KeratinoSens™ h-CLAT Pred-Skin BMDC
Data source ICE ICE ICE Pred-Skin server Battais 2023
BA 0.84 0.81 0.76 0.80 0.89
Accuracy 0.87 0.85 0.82 0.82 0.91
Sensitivity 0.89 0.89 0.89 0.86 0.93
Specificity 0.79 0.74 0.63 0.74 0.84

In comparison to other assays targeting skin sensitization KE3 (mMUSST, h-CLAT, U-SENS™,
and BMDC) on the same 30 substances, BMDC consistently showed higher BA (0.96), accuracy (0.97)
and sensitivity (1) than other tests (Supplemental 3). The mMMUSST assay had the best specificity (1)
but at the cost of the worst performance in sensitivity (0.74) and accuracy (0.83). The h-CLAT and the
U-SENS™ tests also displayed the worst performances in terms of balance accuracy and specificity,
respectively (0.86) and (0.82), which is consistent with previously reported data in TGD442E, where a
specificity of 0.66 and 0.65 was mentioned, respectively®. These findings suggest that BMDC is a
reliable in vitro model for predicting the outcome of the KE3 of the AOP of skin sensitization and is a
strong for inclusion among the list of validated tests for this key event, along with GARD,
KeratinoSens™ and h-CLAT.

There were 12 out of 118 compounds mispredicted by BMDC assay compared to the LLNA
labels (Supplemental 1). Among these, three compounds (with CAS number given in square brackets)
(2-hydroxypropyl methacrylate [27813-02-1], propylparaben [94-13-3] and benzyl benzoate [120-51-
4]) were incorrectly predicted by the majority of assays. Additionally, BMDC specificially mispredicted
8 compounds in relation to LLNA: ethylvanillin [121-32-4], coumarin [91-64-5], 6-methylcoumarin [92-
48-8], 3-chloro-4 methoxybenzaldehyde [4903-09-7], diethylacetaldehyde [97-96-1], abietic acid [514-
10-3], dihydro coumarin [119-84-6], squaric acid [2892-51-5].

Furthermore, among the 118 compounds tested with the BMDC assay, 54 compounds were
incorrectly predicted by one or more other assays, except BMDC, with respect to LLNA label
(Supplemental 1). Ten instances were correctly predicted by BMDC but mispredicted by at least three
different assays with respect to LLNA labels: 2-acetylcyclohexanone [874-23-7], 1-bromohexane [111-
25-1], 1-iodohexane [638-45-9], benzocaine [94-09-7], methyl paraben [99-76-3],
methoxyacetophenone [100-06-1], benzoyl peroxide [94-36-0], hexyl cinnamic aldehyde [101-86-0],
2,2,6,6-tetramethyl-3,5-heptanedione [1118-71-4] and squaric acid diethyl ester [5231-87-8].

It is worth noting that Pred-Skin's performance with respect to LLNA classification was
surprisingly low (BA 0.77), likely due to its training on human sensitization labels, which may not fully
align with actual LLNA labels. Indeed, based on the ICE dataset of 82 compounds that had both LLNA
and human sensitization labels (Supplemental 1), 9 mispredicted compounds by LLNA with respect to
human labels, either false positives and false negatives, can be identified: sulfanilamide [63-74-1],
benzocaine [94-09-7], coumarin [91-64-5], hexyl cinnamic aldehyde [101-86-0], pentachlorophenol
[87-86-5], 2-methoxy-4-methylphenol [93-51-6], alpha-methyl cinnamaldehyde [101-39-3] and benzyl
benzoate [120-51-4], cyclamen aldehyde [103-95-7]. A detailed scrutiny of 10 incorrectly predicted
compounds by LLNA with respect to human data was already discussed in previously published
papers31517-24 Despite that, the performances of LLNA assay with respect to human sensitization
classification were good (BA: 0.86, accuracy: 0.89, sensitivity: 0.95, specificity: 0.77) which confirmed

previous reports that LLNA and human sensitization data align relatively wel['¢92+22,
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In order to overcome potential biases linked to the LLNA classification and compare the
performances of the various tests with respect to true human sensitization labels, pairwise
comparisons of BMDC with other models' performances were conducted (DPRA n=71, h-CLAT n=73,
KeratinoSens™ n=73, LUSENS n=39, mMUSST n=31, Pred-Skin n=82, U-SENS™ n=67). The results
showed that BMDC consistently achieved higher or equal balanced accuracy, except for the Pred-Skin
in silico approach, which had better performances (0.98) (Figure 3). However, it is essential to note
that all compounds included in the Pred-Skin dataset (n=82) are also present in the training set of the
in silico model, leading to an overestimation of performances in real situations. To provide a fair
assessment of Pred-Skin's performances, an analysis of these predictions on an independent dataset
would be necessary.

When comparing the results of several models (DPRA, KeratinoSens™, h-CLAT, Pred-Skin,
BMDC) with respect to human class on a dataset of common tested substances (n=62), the BMDC assay
demonstrated equal or superior performance in terms of balanced accuracy compared to other
experimental tests, except for the in silico Pred-Skin approach (BA = 0.99, accuracy = 0.98, sensitivity
=0.98 and specificity = 1) for the reason given above (Table 2). On the other hand, the h-CLAT assay
showed the poorest performance in terms of balanced accuracy (0.74), accuracy (0.81), and specificity
(0.6). The lowest sensitivity values was reported for DPRA (0.85).

Balanced Accuracy of different assays with respect to human labels
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Figure 3. A pairwise comparison of Bone-Marrow Dendritic Cell (BMDC) assay with other assays with
respect to human labels. Performance metric is balanced accuracy. At the bottom left part of each bar
plot a number of common compounds with labels of both assays that are being compared is given.
Dark green bars represent BMDC performance; light green bars represent other in vitro and in
chemico methods; an orange bar represents in silico method.

Table 2. Performances of skin sensitization assays with respect to human labels. The evaluation was
performed on a set of common compounds (n = 62).

Assay DPRA KeratinoSens™ h-CLAT Pred-Skin BMDC
Data source ICE ICE ICE Pred-Skin server Battais 2023
BA 0.83 0.84 0.74 0.99 0.87

Accuracy 0.84 0.86 0.81 0.98 0.90
Sensitivity 0.85 0.87 0.87 0.98 0.94
Specificity 0.8 0.8 0.6 1 0.8
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Similarly, BMDC showed equal or better performances compared to other KE3 targeting assays
(mMUSST, h-CLAT, U-SENS™) in predicting human class on a dataset of common tested substances
(n=27) (Supplemental 4). Although mMUSST showed high specificity (1), it exhibited the lowest
sensitivity (0.75) among the four assays, whereas the BMDC assay achieved the highest sensitivity
(0.94). The U-SENS™ assay shared the same sensitivity (0.94) but at the cost of the lowest specificity
(0.73). The BMDC assay emerged as one of the top-performing models for forecasting the KE3
outcome.

Among the 12 compounds mispredicted by the BMDC test compared to human labels
(Supplemental 1), seven compounds were also misclassified by the LLNA test (hexyl cinnamic aldehyde
[101-86-0], pentachlorophenol [87-86-5], 2-methoxy-4-methylphenol [93-51-6], alpha-methyl
cinnamaldehyde [101-39-3], benzocaine [94-09-7] and sulfanilamide [63-74-1] and cyclamen aldehyde
[103-95-7]). This is probably related to the fact that both methods are based on a mouse model which
has its own specificities in terms of toxicokinetics (percutaneous absorption and metabolism) and
immune response. From the remaining five compounds, three (propylparaben [94-13-3],
dihydrocoumarin [119-84-6] and abietic acid [514-10-3]) were also poorly predicted by the other in
vitro assays. Propylparaben [94-13-3] was identified as a non-sensitizer by LLNA and various human
sensitization tests, as well as several other in vitro (mMUSST) and in chemico (DPRA) assays®24.
However, some in vitro assays (BMDC, h-CLAT, SENS-IS, U-SENS™, GARD, and KeratinoSens™) predicted
it to be a weak sensitizer, and some human patch tests classified it as a very rare sensitizer?®. The
discrepancies could be due to differences in metabolic capacity among the various in vitro assays.
Abietic acid is considered a sensitizer by the LLNA assay and some human data, but it is generally not
classified as such and is labeled as a pre-hapten, suggesting a potential sensitization route through
hydroperoxides produced during autoxidation?.

Ethylvanillin [121-32-4] and 6-methylcoumarin [92-48-8] were only mispredicted by the BMDC
test, For ethylvanillin, an explanation could be the generation of a Schiff base/quinone precursor alert
and is classified as a pre/pro hapten?.

Among the compounds correctly predicted by the BMDC test in relation to human sensitization
labels, we found 28 instances that were incorrectly predicted by other assays, with
methoxyacetophenone [100-06-1] and benzoyl peroxide [94-36-0] being mispredicted by the highest
number of assays (Supplemental 1).

In absence of human labels, it is complicated to conclude on some chemicals. They are either
mispredicted by the BMDC assay with respect to LLNA label (3-chloro-4-methoxybenzaldehyde [4903-
09-7], diethyl acetaldehyde [97-96-1], squaric acid [2892-51-5] and 2-hydroxypropyl methacrylate
[27813-02-1]) or accurately predicted by the BMDC assay in comparison to the LLNA assay, but
mispredicted by at least three other sensitization tests (1l-iodohexane [638-45-9], 2-
acetylcyclohexanone [874-23-7], methyl paraben [99-76-3], 2,2,6,6-tetramethyl-3,5-heptanedione
[1118-71-4], and squaric acid diethyl ester [5231-87-8]).

3.2 QSAR consensus model to predict the sensitization potential of chemical according to the BMDC
assay.

The pre-processing procedure (as described in Supplemental 2) was conducted to standardize
the molecular structures of the BMDC dataset, resulting in 118 chemicals. The BMDC skin sensitization
label of 2-methyl-4-isothiazolin-3-one [2682-20-4] was found different for two chemical providers of
the same compound. For this reason, it was excluded from the training set, resulting in 117 compounds
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with 83 identified as sensitizers and 34 as non-sensitizers according to the BMDC assay. To develop a
robust predictive model, 2300 individual models were trained using Support Vector Machine (SVM)
algorithm and ISIDA molecular descriptors. The best performing models were combined into a
consensus model, which outperformed the individual models and included applicability domain for
prediction confidence.

The QSAR consensus model, comprised of 45 individual models, demonstrated high internal
cross-validation BA values ranging from 0.94 to 1 (Table 3). During validation, the consensus model
showed high predictive performance, achieving a BA of 0.82 for the highest confidence prediction
(“Optimal”). Considering lower performance predictions (“Optimal” and “Good”) increases the
coverage of predicted compounds from 32% to 70%, but at the cost of a lower correct prediction rate
(BA from 0.82 to 0.81).

Table 3. A 5-fold external cross-validation performance of the consensus model built on Bone-Marrow
Dendritic Cell (BMDC) class data. “Optimal” and “Good” are prediction confidence labels. BA stands

for balanced accuracy.
Predictions Total  Sensitizers Non-sensitizers BA Accuracy Sensitivity Specificity
All 118 83 34 0.77 0.77 0.77 0.765
“Optimal” or “Good” 83 61 22 0.81 0.83 0.85 0.77
“Optimal” 38 26 12 0.82 0.84 0.885 0.75

6 compounds were mispredicted while the prediction confidence was “Optimal”: 3 BMDC non-
sensitizers predicted as sensitizers (vanilin [121-33-5], nonanoic acid [112-05-0], chlorobenzene [108-
90-7]) and 3 sensitizers predicted as non-sensitizers (butyl glycidyl ether [2426-08-6], aniline [62-53-
3], formaldehyde [50-00-0]). For vanillin [121-33-5], 15 similar compounds were found in the dataset
with varying sensitization, possibly explaining the misprediction. Chlorobenzene [108-90-7] and butyl
glycidyl ether [2426-08-6] had no similar analogues in the training set. Notably, the latter compound
contained sub-structural fragments found as whole molecules within the dataset: 1-butanol [71-36-3],
isopropanol [67-63-0] and propylene glycol [57-55-6], all labeled BMDC non-sensitizers, contrary to
the sensitizer butyl glycidyl ether [2426-08-6]. The remaining 3 compounds (nonanoic acid [112-05-0],
aniline [62-53-3], formaldehyde [50-00-0]) had similar analogues in the dataset, however, with varying
sensitization labels. To improve the dataset's performance, the importance of chemical diversity and
the presence of specific chemical series were acknowledged. Therefore, to enhance the model's
accuracy, the plan is to expand the dataset by adding new chemical structures and conducting further
SAR analysis.

The model was implemented in ISIDA-Predictor web-service® , which is freely accessible. By
selecting the “Activity” option and then “Skin sensitization (BMDC) - Classification” from the “General
kind of property” section, users can predict the sensitization potential of molecules by drawing them
or uploading molecular structures in MDL SDF (Structured Data File) format. Screenshots of the ISIDA
Predictor showing the input and output are provided in Figure 4.

The developed QSAR consensus model holds great promise in predicting the sensitization
potential of chemicals using the BMDC assay. Its use of a large and consistent dataset aligns with the
principles of the 3Rs (Replace, Reduce, Refine) and reduces the need of animal testing. This model

5The web-service of the Laboratory of Chemoinformatics: https://chematlas.chimie.unistra.fr/cgi-
bin/predictor2.cgi (accessed 31 August 2023), “Skin sensitization (BMDC) - Classification” model in the
“Activity” section.
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enables rapid screening of chemical libraries, assessing toxicity for numerous compounds, including
those not yet synthesized. Moreover, it can be a valuable tool when the in vitro BMDC test is not
feasible due to certain physicochemical properties of the compound or regulatory restrictions.
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Figure 4. Screenshots showing example of request for ISIDA (In Silico Design and Data Analysis)
Predictor web service. Image A shows the ISIDA Predictor configuration page, where a user can select
“Activity” general kind of property and then choose “Skin sensitization (BMDC) - Classification” from
the list of models. Image B illustrates an output of ISIDA Predictor. Color code of prediction confidence
is as follows: green — optimal; blue — good; orange — average; red — unreliable.

The predictive capabilities of this QSAR model hold significant value in compound
prioritization, optimization, and risk assessment. Its recognition and acceptance by regulatory agencies
such as the U.S. Environmental Protection Agency (EPA) and the European Chemicals Agency (ECHA)
could reinforce its potential as a useful tool in chemical safety assessment. By meeting regulatory
requirements for predicting sensitization endpoints, the model reduces the reliance on experimental
assays for regulatory purposes, aiding industries in compiling a REACH dossier. Overall, this in silico
QSAR model for predicting the sensitization potential of chemical compounds based on BMDC test
data has achieved its objective, offering a valuable tool in toxicological and regulatory assessments.
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4. Conclusion

In conclusion, the BMDC assay demonstrated strong predictive performance compared to
other in vitro and in chemico assays with respect to LLNA and human labels, making it one of the best
models for predicting KE3 output. The effectiveness of the assay is further highlighted by its exclusive
correct predictions for certain compound. The first QSAR model trained on BMDC data to predict
sensitization output achieved good performance during external cross-validation (BAs.cy = 0.82).
However, the size of the dataset, already substantial with 117 compounds (and destined to grow over
time), limits its applicability domain. Nonetheless, this publicly accessible® QSAR model can assist
experts in making preliminarily assessments of the sensitization potential of compounds of interest.
With both in vitro and in silico tools based on BMDC model, the scientific community can
comprehensively evaluate the sensitizing potential of chemical substances. The model’s ability to
prioritize substances for experimental testing and detect mismatches between prediction and
experiment is valuable for early detection of sensitization potential.
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Supplemental 1. Sensitization labels in human and according to different tests (S: sensitizer; NS: non sensitizer)

2

CAS Compound 1%} 'g % ] g

: z ¢ g 5 §8 3 %

o [ A A P =
2426-08-6  Butyl glycidyl ether S S S S S S S NS
4903-09-7  3-Chloro-4-methoxybenzaldehyde NS S S NS S
100-06-1 Methoxyacetophenone NS NS NS NS S S S NS
100-11-8 4-Nitrobenzyl bromide S S s S S NS S
100-43-6 4-Vinyl pyridine S S S S S
100-52-7 Benzaldehyde NS NS NS NS S S
101-39-3 a-methyl-trans-cinnamaldehyde NS S S) S} S) S} S
101-86-0 Hexyl cinnamic aldehyde NS S S NS S S NS NS
103-11-7 2-Ethylhexyl acrylate S S] S] 5] S NS S S]
103-95-7 Cyclamen aldehyde NS s S
104-27-8 1-4-Methoxyphenyl-1-penten-3-one S S S S S
104-54-1 Cinnamyl Alcohol S S S S S S S S NS
104-55-2 Cinnamic aldehyde S S S S S S S S
106-24-1 Geraniol S S S NS S S S
106-50-3 1,4-Phenylenediamine S S S| S| S S S| S S|
106-51-4 p-benzoquinone S S S S S S S S S
107-15-3 Ethylenediamine free base S S S] NS S NS S S S]
107-22-2 Glyoxal s S S S s s s S
107-75-5 Hydroxycitronellal S S S S S S S S S
108-31-6 Maleic anhydride s S S s s s s
108-46-3 Resorcinol S S S NS NS S S
108-90-7 Chlorobenzene NS NS NS NS NS NS
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PredSkin

NS
NS
NS

PredSkin

CAS Compound % 2 o g
RN RN
o m =) a » =
109-55-7 3-Dimethylamino-1-propylamine S S S NS S S
109-65-9 1-bromobutane NS NS NS NS S
110-54-3 Hexane NS NS NS NS NS NS NS
111-25-1 1-bromohexane S N S NS NS
111-30-8 Glutaraldehyde S S S SIS S SIS
111-80-8 Methyl 2 nonynoate S S S S S S
1118-71-4  2,2,6,6-tetramethyl-3,5-heptanedione S S NS NS NS
112-05-0 Nonanoic acid NS NS NS NS S S
1154-59-2  Tetrachloro-salicylanilide S s S s S S
116-26-7 Safranal S S s s S
1166-52-5  Lauryl gallate S S S S S} S
119-36-8 Methyl salicylate NS NS NS NS NS S NS NS NS
119-84-6 Dihydro Coumarin S S NS S NS NS S
120-51-4 Benzyl benzoate NS S NS NS S NS NS
121-32-4 Ethyl vanillin NS NS S S| NS NS
121-33-5 Vanilline NS NS NS NS S NS NS
121-57-3 Sulfanilic acid NS NS NS NS NS NS NS
121-79-9 Propyl gallate s s S s s NS S S S
122-40-7 a-amylcinnamaldehyde S S S| NS S| S
122-57-6 Benzylideneacetone S S S S S S S S S
122-78-1 Phenylacetaldehyde S S S S S S
123-31-9 Hydroquinone S S S s S s S
124-07-2 Octanoic acid NS NS NS NS NS S S
124-12-9 heptyl cyanide NS NS NS NS NS
CAS Compound 1%} % 2 7
EEEREEER
o m A a p =
13706-86-0  5-Methyl-2,3-hexanedione S s S S S S S
137-26-8 Tetramethylthiuram disulfide s S S s S S s S
138-89-6 N, N-dimethyl-4-nitrosaniline S S S S} S
140-67-0 4-allylanisole S S S NS NS S S
141-05-9 Diethyl maleate S! S S
149-30-4 2 Mercaptobenzothiasole S S S S S S S S S
151-21-3 Sodium dodecyl sulfate S NS NS NS NS NS
15646-46-5 Oxazolone S S S
1675-54-3  Bisphenol A-diglycidyl ether S S S S S S S
20048-27-5  bandrowski's base S S S
2111-75-3  Perillaldehyde S S S S S S s
2277-19-2 cis-6-nonenal S S
2345-34-8 4 Acetoxybenzoic acid S NS S NS NS
25646-71-3  4-N-Ethyl-N-2-methan-sulphonamidoethyl-2-methyl-1,4-phenylenediamine S S
2634-33-5 1,2-benzisothiazol-3-2H-one S S S) S 5] S} S)
2682-20-4  2-Methyl-4-isothiazolin-3-one S S NS S S S S
27813-02-1  2-hydroxypropyl methacrylate S NS S S S S NS
2785-87-7  Dihydroeugenol S S NS S
2835-95-2  5-amino-2-methylphenol S S S S S
2835-99-6  4-Amino-m-cresol S S S S S
2892-51-5  Squaric acid S NS S NS NS
31906-04-4 Lyral s s S s S s S
35691-65-7  1,2-Dibromo-2,4-dicyanobutane S S S S} S} S 5] NS
39236-46-9  Imidazolidinyl urea S S S S S S S S S
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488-17-5
50-00-0
50-21-5
514-10-3
5231-87-8
5307-14-2
5392-40-5
56-81-5
57-55-6
579-07-7
591-27-5
615-50-9
624-49-7
62-53-3
63-74-1
638-45-9
65-85-0
66-27-3
6728-26-3
67-63-0
68-12-2
69-72-7
70-34-8
71-36-3

78-70-6
80-54-6
81-07-2
818-61-1
84-66-2
874-23-7
87-86-5
885-62-1
886-38-4
90-15-3
91-64-5
92-48-8
93-51-6
93-53-8
94-09-7
94-13-3
94-36-0
95-55-6
97-53-0
97-54-1
97-90-5
97-96-1
99-76-3
99-96-7

Compound

3-Methylcatechol
Formaldehyde

Lactic acid

Abietic acid

Squaric acid diethyl ester
2-Nitro-1,4-phenylendiamine
Citral

Glycerol

Propylene glycol
1-Phenyl-1,2-propanedione
3 Aminophenol
2,5-Diaminotoluene sulphate
Dimethylfumarate

Aniline

Sulfanilamide
1-Iodohexane

Acide benzoique

Methyl methanesulfonate
trans-2-Hexenal
Isopropanol
dimethylformamide

Acide salicylique
dinitrofluorobenzene
1-Butanol

Compound

Linalool

Lilial

Saccharine

2-hydroxyethyl acrylate
Diethyl phtalate
2-Acetyl-cyclohexanone
Pentachlorophenol
2,4-Dinitrobenzenesulfonic acid,sodium salt
Diphenylcyclopropenone
1-Naphtol

Coumarin
6-Methylcoumarin
2-methoxy-4-methylphenol
2-Phenylpropionaldehyde
Benzocaine

Propylparaben

Benzoyl peroxide

2 Aminophenol

Eugenol

Isoeugenol

Ethylene glycol dimethacrylate
Diethyl acetaldehyde
methyl paraben

4 hydroxy benzoic acid

Human

NS
NS

NS

NS

NS

NS

Human

» ©»

NS

NS

Ns
NS

NS

LLNA

NS

NS
NS

DPRA

NS
NS

NS
NS
NS

NS

DPRA

NS

NS
NS

KeratinoSens

» »

NS

NS

2 & 9 5
g3 % 2
3 5 2 &

S NS
S s S s 8
NS NS NS NS NS

s NS s

NS s

s s s

NS NS NS NS NS
NS NS NS NS NS
N S NS

S S S

S S S

S| S NS

NS S S S S
NS NS NS NS S
NS S NS

NS NS NS

S NS NS

S S

NS NS NS NS NS NS
NS NS S
NS NS NS S NS NS

NS NS NS NS NS NS

5
4
[=} 17) =
ERERE
i3zg E
NS S S S
NS S S NS
NS NS NS S
S S S S
NS NS S NS
S S S S
NS S NS

S

S S S S
S S S S
S NS S
S S NS NS NS
NS S S NS
S S S S NS NS
S S S S
S S S S NS NS
NS NS S NS S
S S S S
NS S S S S S
S S S NS NS S
S S S S S S
S NS S NS
S S S S
NS NS NS NS NS
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Supplemental 2. QSAR modeling

Input data in the QSAR model was standardized for compatibility and comparability by removing
stereochemistry, dearomatization or by handling the tautomeric forms. Inorganic compounds
(salts) were also omitted due to limitations in applicable descriptors for organic-focused QSAR.
Furthermore, three complex mixtures were excluded from the dataset because their exact
compositions were undisclosed, hindering the attribution of biological activity.

The dataset was divided into 5 sets for training (blue) and external testing (red) (Figure S2.1). A
S-fold external cross-validation was performed, using the training sets for model building and
validation. The test sets were used solely to evaluate the external cross-validation performances of
the final models. No decisions were made based on the external cross-validation performance
measures.

Step 1- Data partitioning e Step 2 - Modelling (repeated for each fold)
test Training
I — L Trining se Training
old 2 =
Partitioning ™
Cliansccaiasey 1 o3 Descriptorsets Model waining and eiection ot top
[ Fod4 calculation validation performing models
I ] Folas * ISIDA substructural = SVMclassifier
molecular fragments - Linear kemnel
- RBFkernel
Step 3 - Evaluation -
Testing
Fold 1 predicted values ] | [j S
> -
Fold 2 predicted values e n (Tran ) ication
- | Applicability domain
Fold 3 predicted values p ' N t Predictions } | e — Consensus model
Fold 4 predicted values | Evaluation (5-CV) ‘ + Predicted class labels « Fragment control + Integration into ISIDA
_— - Predicti I .

Fold 5 predctedvaluss ) | " Baed eciescy (A0 Prediction confidence labels Predictor software

Figure S2.1. Workflow of the 5-fold external cross-validation (5-CV). The external test sets are
strictly isolated from the whole modelling, validation and publication procedure. Molecular
descriptors, machine learning optimization and model selection are performed via internal cross-
validation and training and tuning sets split procedures.

For each fold’s training set, 115 sets of ISIDA sub-structural molecular fragment descriptors (atom-
centered fragments, sequences of atoms and bonds, triplets)® were calculated. Both linear and radial
basis function (RBF) kernel Support Vector Machine (SVM) classification models were built for
each descriptor set. This study utilized a range of fragmentation types, which are listed in
Table S2.1. Fragment length was set to a minimum ranging between 2 and 3, and a maximum
ranging between 3 and 5. During the fragmentation process, additional options such as "Atom
Pairs" and "Do All Ways" were utilized. "Atom pairs" removes constitutional details and only
provides the number of constitutive atoms, while "Do All Ways" searches for all paths connecting
two atoms in sequence fragments.

Table S2.1. Description of fragmentation types used in this study and their notations.

Fragmentation type Notation
Sequences of atoms only IA
Sequences of bonds only IB
Sequences of atoms and bonds IAB
Atom centered fragments based on sequences of atoms 1A
Atom centered fragments based on sequences of bonds 1B
Atom centered fragments based on sequences of atoms and bonds IIAB
Atom centered fragments based on sequences of atoms of fixed length A R
Atom centered fragments based on sequences of atoms and bonds of fixed length IIAB R
Triplets 1A
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Model training

EhElRE R Step 1 - Data partitioning

Step 2 - Modelling (repeated for each set)

—————— | Parameters adjustment |+ — — — — — 4

SVM model training * Hill Climbing optimization

Tuning training set |
(80%)

] (oo :
’— ————{ VM model application }—{ Evaluation |— OP1Mal Parameters |

c e Smmm-—---- i

SVM model training

.

its performance

[ svMmodel application |—| Evaluation Szl

BA

Figure S2.2. Workflow of the model training and validation. It involves partitioning of the dataset
into smaller sets of internal training (green) and internal test (yellow) sets. Each internal training
set is divided into 2 subsets that will be used for finding optimal set of SVM hyperparameters. For
each internal training set a model is then trained using optimum parameters, followed by the
evaluation on the corresponding internal test set.

The model training process is illustrated in Figure S2.2. The initial training set (blue) is split into
3 sets for internal training (green) and internal testing (yellow). Models are built on internal training
sets and validated on internal test sets. SVM hyperparameters are optimized separately for each
internal training set using an 80% (tuning train) - 20% (tuning test) partition (in dark purple and
light purple, respectively). The Hill climbing method is used to maximize observed balanced
accuracy on the tuning test set. Optimal hyperparameters were used to train an SVM model on the

complete internal training set (in green on Figure S2.2), followed by the application of the model
on the internal test set. The procedure resulted in 3 optimized SVM classification models and their
internal cross-validation performances, for each descriptor set.

Best models (internal cross-validated BA larger than 0.9) entered a consensus model. A list of the
45 individual models that were selected for the consensus model is provided in Table S2.2. The
consensus model was then integrated into ISIDA Predictor software and applied to the external test
set (red) of the corresponding fold. The predicted values on all external validation sets were
concatenated and the external cross-validation performances reported (Table 3).
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Table S2.2. List of SVM models constituting the consensus model. Information about used
descriptor spaces and internal validation BA are given. “P” —*““Atom Pairs”, “AP” — “Do All Ways”.
Other notations are described in the previous section.

Descriptor space BA
IB(3-5)_AP 1
IB(3-5) 1
IAB(2-4)_AP 1
TAB(2-4)_AP 1
IAB(2-4)_P 1
TAB(2-4) 1
IAB(2-5)_AP 1
IAB(2-5) AP 1
TAB(2-5) 1
TAB(2-5) 1
IAB(3-5) P 1
11B(2-3) 1
11B(3-3) 1
1IAB(3-4) 1
A(2-5) R 1
TMA(3-3)_ R 1
IAB(3-4) R_P 1
IA(2-4) 1
IB(2-4)_AP 0.944
1B(2-4) 0.944
IB(2-5) AP 0.944
IB(3-5) 0.944
TAB(2-3)_P 0.944
IAB(2-4) AP 0.944
TAB(2-4) 0.944
IAB(2-5)_P 0.944
IAB(3-3)_AP 0.944
TAB(3-4)_AP 0.944
TAB(3-4)_AP 0.944
TAB(3-4) 0.944
TAB(3-5)_AP 0.944
11B(2-4) 0.944
IA(2-4) R 0.944
TA(3-5) R 0.944
1IB(2-4)_R 0.944
1B(3-4) 0.938
IB(3-5) AP 0.938
IAB(3-5)_AP 0.938
TTA(3-4) 0.938
TIA(2-3) R 0.938
TAB(2-3) R_P 0.938
ITAB(2-4) R_P 0.938
IIAB(3-4)_ R 0.938
ITAB(3-5)_R 0.938
MMAB(3-5)_R 0.938
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Supplemental 3. Performances of skin sensitization assays targeting KE3 (Key Event 3) with
respect to Local Lymph Node Assay (LLNA) labels. The evaluation was performed on a set of
common compounds (n = 30).

Assay mMUSST h-CLAT U-SENS™ BMDC
Data source ICE ICE ICE Battais 2023
BA 0.87 0.86 0.86 0.96
Accuracy 0.83 0.87 0.87 0.97

Sensitivity 0.74 0.9 0.9 1
Specificity 1 0.82 0.82 091

Supplemental 4. Performances of skin sensitization assays targeting KE3 (Key Event 3) with
respect to human labels. The evaluation was performed on a set of common compounds (n = 27).

Assay mMUSST h-CLAT U-SENS™ BMDC
Data source ICE ICE ICE Battais 2023
BA 0.88 0.85 0.83 0.88
Accuracy 0.85 0.85 0.85 0.89
Sensitivity 0.75 0.88 0.94 0.94
Specificity 1 0.82 0.73 0.82

5.2.2 Summary

The comparative study conducted in the article highlights the superior performance of
the BMDC in skin sensitization assessment when compared to various # vitro, in chemico,
and 7 silico assays. The LLNA and human sensitization potential of some compounds
could be anticipated based on the BMDC assay results only. The developed QSAR model
trained on BMDC data is additional proof of the consistency of the BMDC assay and
offers significant assistance to experts. Predicting the BMDC output upstream of the actual
experimental assay enables the prioritization of compound analysis thus reducing time,
resource, and material expenditure. Moreovert, integration of the BMDC assay and/or the
QSAR model with other existing assays has the potential to establish a novel approach that
effectively replaces zz vivo tests, significantly improving the efficiency and reliability of skin
sensitization evaluations for chemical substances.
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5.3 Skin permeability

5.3.1 Introduction

The skin serves as a protective barrier against external agents, primarily due to the
properties of its outermost layer, the stratum corneum (SC). However, the skin is not
impervious, and xenobiotics can penetrate the SC, diffuse into the viable epidermis, and

8 The assessment of skin

enter the general circulation through dermal -capillaries.
permeation is therefore crucial not only for the pharmaceutical and cosmetic industries but
also for ensuring occupational safety where workers may be exposed to harmful substances
during handling."” While experimental validation remains essential, 7 si/ico methods have
emerged as valuable tools for the preliminary evaluation of skin absorption."" The majority
of the predictive models are linear equations built using physicochemical properties, such

8788 and are trained on scarce amount of data.'™® The

as lipophilicity and molecular weight
effectiveness of these models relies heavily on the availability of comprehensive and up-to-

date training data.

To address this need, a collaborative effort with the researchers from the Institut
National de la Recherche et de Sécurité (INRS) was undertaken, resulting in the meticulous
compilation of a new dataset, called SkinPiX (Skin Permeation of identified Xenobiotics)",
comprising skin permeability data published between 2012 and 2021, thereby
complementing the existing HuskinDB'>. The results of SkinPiX data collection and
curation are available in the article provided in this chapter. The model trained on
HuskinDB was applied to SkinPiX and chemical space coverage of both datasets was
analyzed. The results of modelling the combination of HuskinDB and SkinPiX data
provide a number of ideas on how to manage and analyze this data in order to improve
QSAR models.

5.3.2 Data

There are two sources of data used in this work: HuskinDB and a new SkinPiX
database compiled from literature published between 2012 and 2021. The HuskinDB
database was used for training, whereas the SkinPiX database was used both for training
and testing purposes. The description and curation of the SkinPiX database is provided in
the article below.

SkinPiX
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SkinPiX : An Update of Skin Permeability Data based on A Systematic Review
of Recent Research

Abstract

The cutaneous absorption parameters of xenobiotics are crucial for the development of drugs
and cosmetics, as well as for assessing environmental and occupational chemical risks.
Despite the great variability in the design of experimental conditions due to uncertain
international guidelines, datasets like HuskinDB have been created to report skin absorption
endpoints. This review updates the available skin permeability data by rigorously compiling
research published between 2012 and 2021. Inclusion and exclusion criteria have been
selected to build the most harmonized and reusable dataset possible. The Generative
Topographic Mapping method is applied to the present dataset and compared to HuskinDB
to monitor the progress in skin permeability research and locate chemotypes of particular
concern. The open-source dataset (SkinPiX) (available at https://doi.org/10.57745/7FHQOY)
includes steady-state flux, maximum flux, lag time and permeability coefficient results for the
substances tested, as well as relevant information on experimental parameters that can
impact the data. It can be used to extract subsets of data for comparisons and to build
predictive models.

Background & Summary

The skin plays an important protective role against external aggression, thanks mainly to the
properties of its outermost layer: the stratum corneum (SC). However, the skin is not an
absolute barrier and xenobiotics can penetrate the stratum corneum, diffuse into the viable
epidermis and enter the general circulation through the capillaries of the dermis. The
different steps of the transport process have been described elsewhere’.

Accurate assessment of the rate and extent of the percutaneous absorption of xenobiotics
is of paramount importance for the development of new pharmaceutical and cosmetic
products applied to the skin to ensure or prevent their absorption into the deep layers of
the skin. These data are also necessary to assess the chemical risk of substances when
cutaneous environmental or occupational exposure exists.

These substances deposited on the skin can indeed be responsible for irritation, sensitizing
effects or general toxic effects and require ad hoc regulatory labeling. For instance, the
REACH Annex VII mentions skin sensitization, irritation and corrosion assessments for
substances produced and imported into Europe in volumes above one ton. In addition, the
dermal route of exposure must be addressed in Annex VI [Regulation (EC) No 1907/2006 of
the European Parliament and of the Council of 18 December 2006 concerning the
Registration, Evaluation, Authorization and Restriction of Chemicals (REACH), establishing a
European Chemicals Agency, amending Directive 1999/45/EC and repealing Council
Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as well as Council
Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and
2000/21/EC].
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In practice, the permeation of a chemical substance through the skin, assimilated with a
passive diffusion phenomenon, can be studied experimentally in vitro using a diffusion cell
device composed of donor and acceptor compartments between which the skin (stratum

corneum side up) is placed (Fig.1).

Chemical substance Sampling port
Donor
compartment
® s e e 20 e
.
Skin sample — © . © >
. . o’
.
.
o .
Acceptor . . 5 5
compartment .

S — Acceptor fluid

D ————  Magnetic stirrer

Figure 1. Schematic illustration of a static Franz diffusion cell.

These experiments measure the quantity of chemical (Q in pg) passing through the skin
barrier per unit of skin surface (S in cm?).

The experiments of percutaneous absorption can be conducted in finite dose conditions, i.e.
a "finite" quantity of the chemical is applied to the skin so that a maximum flux (noted Jpeak)
of the test substance is achieved during a certain time interval (tpeak) but is not maintained
(Fig.2). This contrasts with experiments with infinite doses where the concentration of the
chemical in the donor compartment remains relatively constant throughout the experiment,
ensuring the attainment and sustained maintenance of a steady-state flux Jss.

Flux

Jpeak

foea Time

Figure 2. Theoretical change of outgoing flux for infinite (solid line) and finite dosing (dashed line). Jpeak, tpeak Jss cOrrespond to the
maximum flux, the time of the maximum flux and the steady-state flux, respectively.

Using these infinite dose conditions and the steady-state flux data, it is possible to calculate
the permeability coefficient, K, with the following equation:
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5.3 Skin permeability

Jss = Kp X ACg

Jss is the steady-state chemical transfer rate per unit area (ug.cm=.h™). Note that, when the
substance is applied in pure form (neat liquid) or at its saturated concentration, the steady-
state flux is called Jmax.

AGC; is the difference in the concentration (ug.cm) of the chemical diffused between the
inlet and outlet of the skin. Given the definition of infinite dose, ACs is often approximated
by the concentration of the chemical in the donor compartment at the beginning of the
experiment (Co).

Kp, the permeability coefficient (cm.h™), reflects the ability of a membrane to let a substance
permeate through it.

Cumulative amount

tiag Time 2.7 % tiag

Figure 3. Cumulative amount of the tested chemical over time in the acceptor compartment during an infinite dose experiment. The
solid line represents the whole experiment, and the dashed line represents the extrapolation of the linear steady-state phase (SS).
The intersection of the dashed line with the time axis is the lag time (tiag).

The amount of compound in the acceptor compartment increases exponentially over time
until reaching the steady-state. Jss is typically obtained from the slope of the linear part of
the curve. The intersection of the linearized steady-state phase and time axis denotes the
lag time, tiag (Fig.3). The tiag reflects the time it takes for the substance to cross the skin barrier.

Despite the fact that the first publications on the in vitro percutaneous absorption of
xenobiotics date back to the 1960s, this research topic has not been studied extensively.
Over the past 30 years, efforts have been made and initiatives taken to aggregate the
available data on the skin permeation of xenobiotics. In 1990, Flynn collected human skin
permeability coefficient data for the first time in vitro for over 90 chemicals®. Then, the
EDETOX database® reported in vivo and in vitro literature data obtained for different species
in a free databank which is still available on the web at http://edetox.ncl.ac.uk (updated in
2016). Samaras et al, extracted the in vitro human dataset from EDETOX and completed it
with data obtained between 2001 and 2010* This dataset is freely available for consultation
only as a spreadsheet in the supplementary data. Finally, HuskinDB lists all the percutaneous
absorption data from in vitro studies on human skin until 2011°. The corresponding database
is freely accessible on https://huskindb.drug-design.de or
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https://doi.org/10.7303/syn21998881, (last access 12/04/2023). Although this database
represents a step forward compared to the two previous ones because it provides a better
description of experimental conditions, it reports data on only 253 substances and as for the
previous databases the inclusion/exclusion criteria conditions deserve to be more
extensively described. It should be noted that in the publications selected for these different
databases, not all the experimental conditions are systematically reported.

Cheruvu et al® recently proposed an update to these data stemmed from a review paper’.
The authors focused on maximal flux (Jmax), and permeability coefficient (Kp) values collected
from in vitro human skin permeation tests performed on human epidermal membranes or
isolated stratum corneum at infinite dosing but the use of this latter type of skin can be
debated (see usage notes, paragraph on skin layers). They also reported physicochemical
properties and experimental conditions under which the data was generated (temperature,
skin thickness, and skin integrity). Other parameters important for percutaneous absorption
should have been reported (e.g. skin donor source, skin preparation techniques, skin source,
storage duration and temperature, donor and acceptor pH, cell type).

The lack of data in the field of percutaneous absorption is particularly problematic for the
generation of efficient predictive models on skin permeation such as QSPR (Quantitative
Structure-Permeability Relationship) models. This implies that most existing in silico models
are trained on the Flynn dataset® or variations of it, and have very limited domains of
applicability.

In addition, the comparison of data between different publications can be tricky because,
although international guidelines (OECD Guidance Document 28 (GD28) for conducting skin
absorption studies?, Test Guideline 428 (TGD428) for measuring skin absorption of chemicals
in vitro®, and the OECD Guidance Notes 156 (GN156) on dermal absorption issued in 2019'°
and 2022'") give recommendations on experimental conditions and set-ups, they remain
relatively imprecise and leave room for many variations in experimental designs that are left
to the discretion of the experimenter. Many of these factors have a significant influence on
the results of percutaneous absorption experiments'?, such as the donor type, also called
vehicle’, the skin donor type, the skin source site, the layer used and the experimental cell
device (see usage notes).

Here we present SkinPiX (Skin Permeation of identified Xenobiotics), a new dataset obtained
after the systematic collection of the available literature on human percutaneous absorption
published after 2012. The dataset contains flux, tiag and Kp data of the substances studied
but also information specifying the experimental conditions. The scientific literature was
curated manually by scientists from INRS (Reference body for occupational risk prevention
in France), experts in percutaneous absorption. Exclusion or inclusion criteria were applied
as explained in the Methods section.

When the information is available in the publication, SkinPiX indicates, in addition to the
percutaneous absorption data, the experimental parameters in additional columns.
HuskinDB was taken as a template, in order to facilitate the integration of these new data
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into the database. Some columns have also been added compared to HuskinDB (Data ID,
Publication ID, CAS number, Category donor type, Category acceptor type). The publication
ID is the number assigned to each publication during the systematic literature search. An
error column has been added for the following parameters: Permeability coefficient K,
Steady-state Flux Js, Maximum Flux Jmax, tiag.

The influence of different experimental parameters is discussed further in this publication,
so that the user of the dataset can choose a set of data consistent with another one
regardless of the type of analysis it may need (for instance, QSPR modeling).

This set of reliable and harmonizable human percutaneous absorption data has been
designed to serve as a reference for aggregate exposure and risk assessment by federal and
state governments, universities, and for research and development on transdermal drug
delivery by the pharmaceutical and cosmetics industries. Our belief is that this dataset has
the potential to uncover commonly utilized experimental conditions, which could then be
recommended in future versions of international guidelines. By harmonizing practices and
reducing result variability, these guidelines would promote consistency and reliability across
experiments.

This dataset is well-suited for data extraction and its quality and richness are also assets for
the development of robust in silico models’.

Methods

We conducted a systematic literature search and scrupulously analyzed the publications of
interest to obtain a comprehensive dataset. The general workflow for creating the dataset is
shown in Figure 4. The aim was to cover as much as possible the new skin permeability data
for well-defined organic compounds i.e. no UVCBs (unknown or variable composition,
complex reaction products and biological materials) for instance, in an unambiguous
experimental setup.
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Figure 4. Data collection and filtering workflow. The process follows two main steps. First, relevant scientific publications were
extracted using PubMed. Then skin permeability data were extracted along with relevant metadata. We kept only those data
considered which met several criteria, as explained in section 1. “SC” stand's for stratum corneum.

1. Not primary source of
the data ]
. Not human skin sample 1

c

Nanocarrier or : - pharmaceutical or chemical :
proprietary compounds formulation without defined

. Application using Donor type | composition |
patches or tapes [ no dono indicated }

e L e e

W

IS

5
or damaged skin

6. Not diffusion cell set-up

7. Skin wash after
deposition

I S ———

,
—_——

Certain .r— mixtures, plant extracts, |
e-cigarette liquids 1
substances |- uvcs |

1. Inclusion and exclusion criteria

We performed a systematic and comprehensive literature review of percutaneous absorption
existing in vitro experimental data obtained between 2012 and 2021, using an automated
approach. We searched publications in the major electronic database: PubMed, with a date
restriction from January 2012 to June 2021 and the keywords "skin permeability" OR "skin
absorption” AND "vitro" AND "Human", resulting in 621 references in the public domain and
the corresponding abstracts.

Considering the information in the abstracts, only publications in English and which were
readily accessible were selected. The first manual sorting was performed and, according to
the exclusion criteria for the analysis, we discarded publications:

(1) without a primary source of the data (e.g., reviews, book chapters, datasets of published
data or publications presenting predictive models, etc.) or already covered by the previous
database HuskinDB (for 2012 publications);

(2) with experiments conducted on animal, synthetic or artificial skin or Reconstructed
Human Epidermis (RHE) and Skin (RHS) and Human Skin Equivalent (HSE) and other in vitro
artificial skin models, cell lines and cultured skin, 3D organotypic constructs or experiments
conducted in vivo;

(3) with compounds formulated as nanocarriers, unidentified proprietary compounds;

(4) with transdermal therapeutic systems (TTSs) of application of the substance, such as
patches or tapes;
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(5) with percutaneous absorption experiments performed on pre-treated skin (laser,
microneedles, etc.) or damaged skin;

(6) without Franz cell or equivalent diffusion experimental set-up (microscopy, raman
spectroscopy, microdialysis, transwell plate, etc.);

(7) with percutaneous absorption results impacted by a skin wash after deposition.

In all cases where the abstract did not allow verifying these criteria, or in case of doubt, the
reference was kept.

At this stage, 385 references were retained. The full article was obtained in PDF form for each
of them. The articles were read and those that included experiments/data that did not meet
the previous seven exclusion criteria were excluded.

Experiments not reporting the flux monitoring of substances deposited on the skin (only
fraction absorbed or quantity measured in the different skin layers/distribution) were
discarded. If no K, was mentioned and if it was not possible to calculate it from pK, or
concentration and Js;, the reference was discarded.

Data obtained with isolated stratum corneum (SC) or isolated dermis alone were discarded
(see usage notes) so that only data from experiments carried out on the epidermis or
epidermis+dermis were selected. Given the lack of clarity in the guidelines on the use of full
thickness skin (see usage notes), we included full thickness skin experiment data in the
dataset. If skin layer was not mentioned, the publication was discarded. Due to the unclear
recommendations of the guidelines on the use of epidermal membranes separated by the
heat separation method (see usage notes), data obtained with epidermal membranes were
kept in the dataset.

Similarly, due to the inconsistent guidelines regarding the determination of mass-balance
recovery, which is defined as the percentage of the original substance recovered at the end
of an experiment (refer to usage notes), and the absence of systematic reporting of this
recovery in literature, we decided not to exclude data for which the reported recovery was
poor (<80% or >120%), but when available, the recovery mentioned in the publication was
reported in the column notes of the dataset.

As indicated in the usage notes section, the occlusion of the donor compartment may impact
the percutaneous absorption parameters. We chose not to exclude data obtained with
occlusion but to mention it in the column notes of SkinPiX dataset.

We chose not to exclude any data on the basis of the acceptor type mentioned. The data
obtained with the deposit of neat substances were reported and a specific work on donor
types was carried out. If we look at the number of counts per donor type from different
publications, no single donor type really stands out, with a maximum of only 11 publications
using water. Data for which the composition of the donor medium was not provided were
excluded. Formulations with UVCB, such as MIGLYOL® 812 N, TWEEN® and poloxamer 407,
were excluded. All pharmaceutical and chemical formulations of any kind were excluded
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because the donor type was poorly identified, or the precise composition was not known, or
their production over time was not guaranteed, and/or the composition could vary over
time. Some vehicles contain known enhancers but we chose not to remove them from the
dataset. However, when a publication studied specifically the effects of enhancers, only the
results of the substance deposited in a donor type without enhancers were kept.

We chose not to exclude any data based on skin storage temperature and storage duration
since these parameters were not reported in 20% to 30% of the endpoints analyzed.
However, when a compound was tested on both fresh and frozen skins, we chose to keep
only the fresh skin data.

We chose to keep data regardless of the experimental temperature reported because this
information was not mentioned in more than 50% of the data points (for acceptor medium
temperature). In the dataset, the reported temperatures range from 32°C to 37°C, but it was
not always clear whether they corresponded to the donor compartment, the skin or the
acceptor compartment. If a publication reported data for multiple experimental
temperatures (within the framework of the study of a temperature effect), only data collected
in the experiments closest to 32°C were kept.

Compounds meeting the definition of UVCB were excluded (compounds of vaping products
and plant extracts). The parameters collected are indicated in the paragraph Data Records.
Data processing was carried out using the KNIME Analytics Platform'. The KNIME workflows
used to process the data are accessible in the online repository
(https://doi.org/10.57745/7FHQQY) for transparency. The resulting SkinPiX dataset
contained 202 data points.

2. Chemical space analysis of skin permeability data

The Generative Topographic Mapping (GTM) method'® was used to analyze the coverage of
chemical space by HuskinDB and our new dataset. It is a dimensionality reduction method
that transforms a multi-dimensional molecular descriptor space into a 2D latent space or a
“map”1”. This is accomplished by introducing a 2D manifold into the high-dimensional space
and adjusting a normal probability density centered on it to fit the data distribution
observed. Once the manifold is fitted, the compounds can be projected onto this 2D surface.
The map can be colored based on population (density landscape) or property distribution
(property/class landscape). The GTM class landscape was generated using ISIDA/GTM
software.

Data records

For publications meeting all the inclusion criteria (see Methods, paragraph 1), the following
information when available was collected and filled in an Excel sheet:
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Data ID and publication ID (integer): corresponds to the identifier given to each data entry and each
unique publication. For a given publication ID, there can be several data ID with the same compound
if there are percutaneous absorption experiments performed in different experimental conditions.

SMILES (string): SMILES (Simplified Molecular Input Line Entry System) were extracted from the
PubChem database, using the PubChem Identifier Exchange Service
(https://pubchem.ncbi.nlm.nih.gov/idexchange/idexchange.cgi) by searching for molecules by their
CAS (Chemical Abstracts Service) number.

CAS number (string): unique and unambiguous CAS identifier that designates a specific substance.
When not provided in the publication it was searched via  PubChem
(https://pubchem.ncbi.nim.nih.gov/). CAS numbers of peptides are not defined.

Compound name (string): for each substance, only one name or an amino acid sequence for peptide
was entered in the dataset.

Kprelation (string): signifies the exact Kp value (“=") or if K, value is smaller ("<") or greater (“>") than
the value given in the K, column.

Kp and K error in em.h™ (float): the permeability coefficient (Ky) value was obtained directly from
the publication or calculated from the pKp, (pK, = - log Kp) or calculated from Jss and Co. The Kp
(processed) column was used to harmonize K entries in decimal form. The same applied to log Ky
(cm/s) (converted) column. When a range of K;, values has been reported in the publication, we have
indicated the average K, (processed) and log Kp.

Steady-state flux Jss relation (string): signifies the exact Jss value ("=") or if the Jss value is smaller ("<")
or greater (“>") than the value given in the steady-state flux Jss column.

Steady-state flux Jss and Js error (float) were first reported as written in the publication with their
original unit. Then steady-state flux Jss (converted) and Js error (converted) in ug.cm2h™" were also
reported. These values were reported only if they were reported in the paper or if they could be
calculated with the K, and Cogiven. If necessary, conversions were performed in ad hoc units.

Maximum flux Jmax and maximum flux Jmax error in pg.cm2h' (float): Jmax was reported when the
substance was dosed pure or in its saturation concentration. As for Js, Jmax and its error were first
reported as written in the publication with their original unit and were then reported in ug.cm2h™".

tiag and tiag error in h (float): tiag and tiag error were reported when the data were available. The column
tiag (h) (processed) harmonizes entries.

Skin donor type (string): the human skin used was either from a cadaver or corresponded to
discarded surgical skin.

Skin source site (string): the anatomical area was indicated (abdomen, breast, back, thigh).

Skin preparation (string): it corresponds to the treatment carried out on the full thickness skin to
obtain the skin used for the experiments. But very often, experiments implement split thickness skins
which have been dermatomed. The layers of skin can also be separated (heat separation) providing
epidermal membranes.
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Layer used (string): this section specifies which skin layer(s) was (were) used for the experiment:
epidermis alone, epidermis and dermis. Sometimes the layer used was not explicitly indicated but
when the skin was dermatomed with a possible indication of the thickness, we could deduce the
layer used.

Storage duration (days) (integer): when the skin was used fresh, this box was filled with “0". In other
cases, if the information was specified, then the storage duration was indicated in number of days
or as a maximum number of days.

Storage temperature (°C) (float): the skin was either used immediately or very quickly after collection
(in this case, "used fresh” was indicated) or frozen or refrigerated before use. In these cases, the
storage temperature was indicated.

Donor type (string): indicated neat or diluted in a vehicle whose composition was given. Donor
media were then classified into categories (column category donor type) (see Supporting materials).

Donor pH (float): when provided, the pH value. If the experiments were carried out at different pH
levels, only data relating to the pH levels most compatible with the skin were retained.

Acceptor temperature (°C) and donor/skin surface temperature (°C) (float): the temperature was
indicated if provided.

Acceptor type (string): the composition of the acceptor medium was indicated. Acceptor media were
then classified into categories (column category acceptor type) (see Supporting materials).

Acceptor pH (float): when provided, the box was filled with the pH value.

Cell type (string): type of permeation cell i.e. Franz diffusion cell (either static or flow through or
modified Franz cell) or other type of diffusion cell. For Franz diffusion cells, if not specified in the
publication, we have considered them to be static cells by default. If the publications did not
explicitly mention that the experiments were carried out with Franz cells, we reported "other type of
diffusion cell".

Author (string): first author's name.

Date of publication (integer): the year the article was published.

DOI (string): DOI is an unambiguous identifier of scientific publications.

Notes (string): The experts have provided information on whether the experiment was carried out in
occlusive or semi-occlusive conditions, whether the authors of the publication have stated the use
of infinite dose conditions or if the K;, value was derived from a finite dose scenario (see usage notes

section). Additionally, the section also covers any indicated recovery process. It also highlights the
calculation of parameters and provides any other relevant information for the reader's benefit.

If the parameter of interest was not mentioned in the source publication, it was annotated

"N/A".
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This new dataset aggregates 202 relevant endpoints (Kp) for 110 compounds of varying
structures (drugs, industrial toxics, flame retardants, pesticides, etc.) from available literature
data published since 2012.

This dataset allows filtering the data conveniently for each of the headings. One can for
example seek all the lines of data which concern “benzoic acid”. Several filters can be applied:
e.g., CAS "58-22-0" (testosterone) and the skin donor type “cadaver”.

The analysis of this dataset (Fig.5) provides several indications about the most frequent
practices that could generally be accepted to build more robust guidance for measuring the
Kp.. For instance, the skin source is preferably back/thigh and dermatomed; the skin layers
used are essentially composed of the epidermis and dermis; the acceptor and donor types
are preferably PBS based formulations. Nevertheless, it is noteworthy that the common trend
visible in Figure 5 is subject to the number of data points contributed by certain publications,
particularly Ellison et al'® have the largest contribution to the dataset (47.5%).

Skin source site Skin preparation Skin layer
= back, thigh - 96 W epidermis, dermis - 123

wm dermatomed - 91
= abdomen-71 = heat separation - 76 = epidermis - 77
== breast - 17 wmm full thickness skin without fat - 17
— NA-13 — NA-16
abdomen, breast - 2
thigh- 1

@

Category acceptor type Category donor type

w=s PBS based formulations - 167
= Call culture media - 21

== NaCl solution - 5

== Other buffer solutions -3

w== PBS based formulations - 113
ms Ethanol and ethanol based formulations - 25
m— Waler - 24
=== Glycols and associated mixtures - 17
Acetone - 6
Neat-4.
Others - 4
w— Other

bufer -3
S Avtiicial sebum - 2 ——
Other alcohols and assaciated mixiures - 2

Figure 5. Overview of data distribution of SkinPiX dataset based on experimental parameters. The numbers in the legend correspond
to the number of data points with respective labels.

NA-3
EthanolPBS 6:4 viv - 1

Octanol-water partition coefficient (logP) and molecular weight are substance-specific
parameters that can have an impact on the permeability of the substance. For this reason,
we have calculated logP and molecular weight using RDKit open-source chemoinformatics
software. LogP is calculated using a method developed by Wildman and Crippen’®, which
takes into account contribution of each atom and its neighboring atoms to logP. Figure 6
illustrates that the dataset contains diverse molecules in terms of calculated logP, molecular
weight and skin permeability coefficient. It contains chemicals exhibiting a diverse range of
skin permeability, with log Kp values ranging from -6.2 to 0.26 cm.h™". However, molecules
with the highest count are relatively small (molecular weight = [150; 200] g.mol™),
moderately lipophilic (calculated logP = [1; 2]) and have moderate skin permeability (logK,
= [-6; -5]). No specific relationship between skin permeability and calculated logP was
established; however, compounds with high molecular weight (> 500 g/mol) generally have
low skin permeability, as expected for large molecules.
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The compounds that were found most frequently in the dataset are caffeine (6 data points)
and dichlorvos (6 data points).
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Figure 6. Overview of data distribution of SkinPiX dataset based on certain properties.
Chemical space analysis of skin permeability data

In this work, we applied GTM to visualize the chemical space coverage of skin permeability
data by using HuskinDB and SkinPiX (Fig.7). The GTM class landscape shows that the main
population of both datasets is located in the south-east quarter of the map (yellow, green
and orange zones) while there are regions preferentially populated by HuskinDB (blue zones)
or by SkinPiX (red zones). Examples of compounds and common chemical substructural
features that are unique to SkinPiX (red zones) are indicated in Figure 7. However, the large
part of SkinPiX covers the same region as HuskinDB: they are represented in the map as
green to orange regions that are also the most densely populated. Most of these
substructural features and compounds differ from their similar counterparts found in
HuskinDB by additional or different structural decorations. The GTM analysis showed that
SkinPiX expands the chemical space of skin permeability by introducing new molecular
scaffolds.
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Figure 7. GTM landscape of skin permeability chemical space. Blue regions are mostly populated by compounds found in HuskinDB.
Red regions are populated by compound data from SkinPiX. White regions do not contain any compound. The chemical content of
various regions of the map is illustrated by example compounds (cmpds) and scaffolds.

Technical validation

The transcribed data were checked by a second reading by a researcher for accuracy and
absence of error.

Usage Notes
One should be aware that the percutaneous absorption results of a given substance (Kp, Jss)
are influenced by many factors such as donor composition, acceptor composition and other

experimental conditions'220-22,
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Hence, when seeking to find the K, or Jss values for a particular substance from SkinPiX, it is
beneficial to examine the experimental parameters that were utilized to obtain those results.
Consulting the Usage notes section may help the user in determining whether the results
for a given substance under different experimental conditions are comparable or not.

e Skin donor type

The guidelines proposed to carry out the studies either with human skin from autopsies (cadaver skin) or with
surgical discard skin, the two main sources of supply'. Surgical discard skin is generally preferred but cadaver
skin, which can be more convenient, is also accepted for percutaneous absorption studies as long as the
integrity of the barrier is verified®!, as the decrease of barrier integrity could lead to increased permeability.
Nevertheless, as the skin is not considered viable, the metabolism of the substance cannot be studied. It is
good practice to ensure before using cadaver skin that the skin does not metabolize the substance studied or
that its metabolism does not have an impact on the flux. It is important to know how long and how the skin
was kept before the experiment?!. However, as the conditions in which cadaver skin is kept are variable, and
the decomposition of the different components of post-mortem skin is a complex process, surgical samples
are often preferred and recommended?. Although the gender, age and phenotype of the skin donor may also
have an impact on the percutaneous absorption of a substance®, they were not taken into account in SkinPiX.

e Skin source site

Bormann et al, reviewed the impact of anatomical location on percutaneous penetration in humans in vivo with
greater penetration on the face, neck and genital area®®. The differences observed in vivo can be explained by,
among other things, the thickness of the SC, the density and size of hair follicles, hydration and the extent of
blood irrigation'?#%¢, With in vitro percutaneous absorption experiments, a similar variability and the same
trends have also been observed according to body zones?"?%.

The forearms and the hands are generally the most exposed cutaneous regions during occupational exposure
to chemicals, but in practice most dermal absorption experiments use skin from abdomen or breast/chest skin
samples obtained from aesthetic surgery, as mentioned in GN156 and GD28%"". Note that results sometimes
include experiments performed on skins from several anatomical areas.

e The layer used

It is important to consider which layer of the skin was used to obtain experimental data when analyzing skin
permeation values, as the different layers do not have the same permeability properties. Thinner skin thickness
generally leads to a higher flow rate. But since the dermis is a predominantly hydrophilic tissue, its presence
(in the case of dermatomed skin) or its absence (epidermis alone) has a greater impact on the percutaneous
absorption of lipophilic substances®®. The latest version of GN156'" recommends the use of split thickness skin
of 200 to 400 ym which includes the SC, the viable epidermis and part of the dermis. The use of the viable
epidermis and dermis in addition to the SC ensures better representation of the in vivo skin structure of the
skin layers insofar as the viable epidermis and dermis can also have an impact on the diffusion of a chemical
through the skin®. Although they were proposed in GD28® and TGD428° dating from 2004, and in the 2019
version of GN156'°, epidermal membranes (SC+ viable epidermis) obtained from heat separation no longer
appear to be recommended in the latest GN156 version of 2022"" insofar as they could, due to their insufficient
barrier function, lead to overestimating the absorption results compared to dermatomed skin. The use of
isolated SC presents a big disadvantage: this layer lower than 0.1mm is very fragile and it can be tricky to work
on unaltered membranes with an intact barrier®'. Note that there is no mention of the possible use of isolated
SC in the current OECD guidelines.
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It is clearly stated in the 2019 version of GN156 that full thickness skin cannot be used to determine flux'®,
certainly because the penetration of lipophilic substances is greatly reduced with full thickness skin compared
to split thickness skin®2. Surprisingly this information is not reported in the latest version of the guidance note'".

e Skin preparation

In addition to skin used without preparation (full thickness skin without fat), either the skin is dermatomed to
obtain split thickness skin of controlled thickness (see previous paragraph), or the epidermis is separated from
the dermis. There are several epidermis-dermis separation methods®, the most commonly used being heat
separation. Epidermal membranes and dermatomed skin are both accepted even if, according to the 2019
version of GN156'°, dermatomed skin is the most appropriate model. However, care must be taken to ensure
that the heat separation technique does not alter the permeation properties of the skin. The method of skin
preparation might have an impact on skin enzymes present in skin and can impact the results. In the case of
esters, for example, the relevance of the data obtained with the epidermis is a subject of discussion as Lau et
al, have shown that the heat separation technique could significantly decrease the activity of esterases®.

e Skin storage temperature

For percutaneous absorption experiments, skin is generally used immediately after excision or at least within
24h (fresh skin) or stored frozen for up to several months according to GD288. However, Dennerlein et al,
questioning the validity of the experiments on which the guidance document is based, carried out experiments
showing that up to 30 days of freezing at -20°C did not significantly alter the permeability of skin with respect
to the 3 substances tested compared to freshly excised human skin®. Jacques-Jamin et al, came to the same
conclusion with 3 other substances and slightly longer freezing times of 8 and 12 weeks®*. On the other hand,
storage at -80°C may increase permeability and is not recommended®*. For practical reasons, it is best to
remove the subcutaneous tissue before freezing the skin. Repeated freezing and thawing are not
recommended as this can damage the barrier. Frozen skin should not be used for substances metabolized by
the skin, as the activity of enzymes may be altered and inactivated by freezing. Because the effect of freezing
on the percutaneous absorption parameters of skin may depend on several factors, such as how the skin is
frozen (full thickness, dermatomed, epidermal membranes), it is necessary to check the integrity of the barrier
after storage in the freezer according to GD28®.

e Storage duration

The TGD428 recommends using fresh skin within 24 hours after excision®. Based on recent publications, if skin
is stored frozen at -20°C, it must be kept for short periods of 1 to 3 months to obtain accurate and reliable
permeation parameters>3,

« Cell type

Static, with appropriate continuous stirring of the acceptor fluid®, and flow-through diffusion cells are both
acceptable for skin in vitro absorption experiments according to all the OECD guidelines, insofar as they are
composed of inert material®*''. Some authors have summarized the advantages and drawbacks of each
system?33°,

Studies have shown similar results for these two types of cells***". In the framework of their comparison study,
Van de Sandt et al, concluded that the type of cell and its design have little impact on the results?®. The terms
used to describe the cells used experimentally vary according to the authors, which does not always make it
possible for them to be classified precisely.

e Experiment temperature
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Numerous studies and GN156 indicate that experiment temperature is a crucial parameter to control as it
affects the passive diffusion of substances and therefore their flux and lag time'"*>*4 That is why TGD428 and
GD28 recommend keeping skin and the diffusion cell, in particular the acceptor chamber, at the physiological
temperature of human skin, i.e. 32+1°C5,

e Acceptor type

The type of acceptor is very important in in vitro percutaneous absorption experiments?'. All the guidelines for
in vitro dermal absorption testing agree that the type of acceptor used must not be a limiting factor in the
permeation process®. The solubility of the substance in the medium must be at least 10 times the maximum
expected concentration (GN156)'". The acceptor fluid should not affect skin integrity*. GN156 proposes using
a normal saline for hydrophilic substances and non-viable skin'". For lipophilic compounds, GN156 indicates
"the acceptor fluid may contain solvent mixtures such as ethanol and water (50% aqueous ethanol), <6%
polyoxyethylene oleyl ether in water, or 5% bovine serum albumin”'". However, in order to maintain viable skin,
the acceptor should preferably be physiologically compatible with the skin (GD428 and GD28), such as a tissue
culture medium, in particular to consider metabolism®®. An acceptor fluid with a high buffering capacity is
required to guarantee the viability of the skin throughout the experiment. It is advisable to add glucose and
antibiotics to the acceptor fluid to prevent the skin from deteriorating, especially for experiments lasting more
than 24 hours™, Its precise composition must be indicated.

Since the acceptor fluid has a major effect on skin absorption parameters, the guidelines should be more
precise on this subject, as requested by a group of experts in the field?’, and should propose for each situation
precise compositions of the acceptor fluids, which would ensure that the future Kp, Jss and Jnax data found in
the literature are not impacted by this parameter.

Figure 5 shows the acceptor category types included in the dataset.
e Acceptor pH

Only GD28 gives information on the pH of the acceptor medium: “for non-viable skin preparations, the acceptor
fluids for evaluating water soluble compounds are usually saline solutions, pH 7.4", which correspond to quite
specific conditions®. The pH must take into account the more general recommendations on the acceptor type:
it must not affect the integrity of the barrier, and adequate solubility of the test substance in the acceptor fluid
should be demonstrated (TGD 428)°. As a general rule, the acceptor fluid is aqueous. Wagner et al, investigated
the impact of the pH of the acceptor fluid (pH buffer 5.5, 7.4, 8.5 and 9) on the pH of the different skin layers*.
After reaching an equilibrium of 3h with the medium, the pH of the dermis and the viable epidermis is modified,
becoming close to that of the medium. A change in the pH of the skin can affect the permeation of the test
substance in several ways. To maintain the viability of skin explants, some authors advise using a survival
medium with a high buffering capacity to maintain a physiological pH above 5.5 for the duration of the
experiment to compensate for the production of lactate by the skin (otherwise the medium must be renewed
regularly)*®. Hopf et al, even recommended a pH close to 7.35%.

e Donor type

The influence of the formulation or vehicle on skin penetration is evident and well documented, as certain
vehicles or vehicle components help test substances to cross the SC barrier “4°, modify the flux and the
tiag'>*%%". This is why GN'156 recommends that the test preparations are similar to what humans are exposed
to'". But as exposure situations vary, the dataset includes innumerable donor types whose effects on the
percutaneous absorption of the substance tested are different.

Measurements extracted from permeation experiments should be compared with experiments conducted on
identical vehicles since K, is a parameter that incorporates the partitioning step of the compound between the
vehicle and the SC layer of the skin. A vehicle of interest in this perspective could be water but we must keep
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in mind that water modifies some skin properties (hydration, swelling, etc.)'>. Moreover, this raises the question
of substances that are not very soluble in water, such as lipophilic substances. Below a certain solubility in
water, a consensus-based vehicle other than water should be proposed.

Figure 5 illustrates donor category types included in the dataset.

e Donor pH

GN156 warns about the potential pH effects of the formulation: it can modify the ionization state of the
substance tested and have deleterious effects on the skin: irritation resulting in modifying the skin’s absorption
parameters'’. However, no pH value is recommended.

The question of a donor pH is only relevant for aqueous formulations. The physiological surface pH of skin is
acidic, around 5, and there is a pH gradient across the thickness of the SC*?, with some publications indicating
a gender dependence of skin pH*"**>*_ The pH of in vitro SC (frozen or fresh) is higher and can become
neutral*’>>. The deposition solution is generally at a pH between 4 and 7, taking into account the buffering
capacity of the skin®®. Caution is required as even in this range very different fluxes can be observed®"t,

The buffering capacity of the skin is limited and can be overcome in case of exposure to solutions with extreme
pH, as they can modify the skin barrier®.

Knowing that the ionized forms of a substance are much less permeable than the non-ionized forms, the pH
of the donor medium will necessarily have an effect on the parameters in the case of ionizable substances at
non-extreme pH, as observed for example for lignocaine flux*®.

e Occlusion

According to GN156 the choice of occlusion/non-occlusion should depend primarily on the properties of the
test substance (occlusion to prevent the evaporation of volatile substances) and the exposure scenario''.
Generally, but not always, occlusion favors the percutaneous absorption of the test substance by increasing
skin (SC) hydration and temperature, leading to a modification of the percutaneous absorption parameters®,
Bjorklund et al, showed that by decreasing the water gradient over the skin and thus increasing its hydration,
the flux of 2 substances, one hydrophilic, the other lipophilic, increases drastically®’. These results help to
explain the effects of occlusion. Van der Merwe et al, observed the impact of occlusion on the apparent lag
time*.

e Finite-infinite dosing scenario

The K is calculated from the flux of the solute over the skin under steady-state conditions, i.e. in infinite dosing
conditions. Indeed, steady-state is rarely reached in finite dose conditions. TGD428 advise to apply up to 10
ul/cm? in finite dose experiments on liquids and 100 pl/cm? or more in infinite dose experiments®. However, it
is necessary to consider that these recommendations have certain limits, for example, a small volume of highly
concentrated solution of a low permeated solute can behave like an infinite dose scenario®. Therefore, a better
mathematical definition is that finite dose conditions apply when depletion of the donor occurs®® with the
characteristic curve shapes presented in Fig 2. Unfortunately, in practice, some researchers claim they are in
infinite dose conditions but only give the deposited volume used. Several authors report a Js, Kp, and tig
without mentioning whether they had previously verified that they obtained a steady-state and how they
verified it.

TGD428, GD28 and GN156 do not comprehensively address methodological issues to determine the
boundaries of the steady-state and the Ky in infinite dose, nor do they indicate if it possible to predict a Kp
without steady-state, nor do they propose any criterion to evaluate the quality of the K, obtained®®'".
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It is possible to extrapolate K, from finite dose experiments but the estimated K, are generally lower than the
true values®.

e Reaching steady-state

The methodology used to determine steady-state boundaries has a significant impact on the percutaneous
absorption parameters as the inclusion of data collected at times before steady-state leads to underestimating
both Kp and tig®. The time recommended for the permeation rate across a membrane to reach the steady-
state value must be at least 2.7 or 3 times the lag time in order to obtain a good estimate of the permeability
coefficient®®*®>%_ Niedorf et al, proposed an automated approach based on an algorithm to define the
boundaries of the steady-state®’.

e Mass-balance Recovery

At the end of the experiment, mass-balance recovery must be determined and provided (TGD 428)°. The GD28
and GN156 set an adequate recovery target for the test substance of 90 to 110% with a recovery of 80 to 120%
tolerated for volatile and non-radiolabeled substances®'". In the case of recoveries outside this range or for
non-indicated recoveries, the results obtained are questionable. Indeed, an excessively weak recovery can be
due, for example, to the evaporation or adsorption of substances, particularly for lipophilic ones, on the walls
of the vials or donor/acceptor compartments, or a problem of the extraction of the test substance from the
skin?%2. However, GD28 indicates "For infinite dose applications, a steady-state flux and a permeability
coefficient (Kp) are determined. Recovery determination is not relevant because the only important end-point
is the appearance of the test substance in the acceptor fluid.".

This work highlights the serious need for standardization and exhaustive and comprehensive reporting of
experimental conditions in skin absorption studies.

Code availability

The dataset generated (SkinPiX) is available in open source
(https://doi.org/10.57745/7FHQQY) and the KNIME workflows used to process the data are
provided there.
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For modelling purposes, the published SkinPiX database was processed further by
removal of unprecise values (if relation was “<”) and removal of duplicate molecules by
considering median of skin permeability values.

HuskinDB

The HuskinDB (v1.01 version, August 2021) consisted of 550 data points for 253
compounds, extracted from 95 publications (1964-2012). The data processing included the
removal of unreliable data, molecular standardization, manual duplicate processing, and
application of the exclusion criteria defined during the curation of the SkinPiX database.
The decision of removal of unreliable data and the exclusion criteria were defined by skin
permeability experts from the INRS. The exclusion is based on parameters, namely skin
source site, used skin layer, skin preparation method, donor type, acceptor type, and cell
type. After molecular standardization (described in the section “Molecular standardization”
of the “QSAR/QSPR modelling methodology”), duplicate molecules were manually
examined and irrelevant duplicates were removed by the suggestion of our collaborators
from INRS. For the remaining duplicates, the median value was taken. The final step was
application of the exclusion criteria formed during the processing of the SkinPiX database,
which were also related to such parameters like, skin preparation, used skin layer, etc. The
resulting curated HuskinDB contained 128 compounds.
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During the course of modelling, 5 potential outliers were identified and discarded. The
final training set was composed of 123 compounds (Figure 13).

Huskin DB Removal of unreliable Manual duplicate Removal of data using
550 data points data processing SkinPiX exlusion criteria

- based on skin and
experimental
parameters

Training set Qutlier identification Duplicate removal Clean data
123 compounds and removal Median value l 382 data points

- 5 potential outliers
identified during
model fitting

Figure 13. Data processing of the HuskinDB.

Merged training set preparation

The merged training set is a combination of the HuskinDB and SkinPiX, which was
created with an intention of building a QSPR model with a larger applicability domain. The
data processing involved duplicate processing. Duplicates were merged using the median
value for their label. This yielded 203 compounds in the merged dataset. During modelling

stage, 8 outliers were identified and removed, leaving 195 compounds in the dataset.
5.3.3 Methods

Modelling workflow

The model training and wvalidation was performed using 5-fold external cross-
validation. SVM models were trained on ISIDA fragment descriptors of various topologies
(sequences, atom-centered fragments, triplets) and lengths (from 2 to 3 atoms). The
hyperparameters were optimized using hill-climbing method. All modelling steps were
performed using KNIME workflows.

Outlier identification and removal

The outlier detection and removal were performed due to low performance of models
during 5-fold cross-validation. It involved selection of the best performing descriptor set
(decided based on 5-fold cross-validation) and fitting of the model to the whole training
set. The compounds with the difference between predicted and experimental value greater
than or equal to 1 log were considered as outliers. Once they are removed, the 5-fold cross-
validation is performed again and the presence of outliers was verified. This procedure was
performed until no outlier was detected.

Generative topographic mapping

GTM was used to visualize the chemical space coverage by the training and test sets.
This was achieved by training GTM model on a ISIDA fragment descriptor set, namely,
atom-centered fragments of fixed length ranging from 2 to 3 atoms radius.
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5.3.4 Results and discussion

The 5-fold cross-validation performance of the model built on HuskinDB is provided
in Figure 14. The removal of 5 identified outliers resulted in improvement of performance.
The observed R’*.cy = 0.53 is similar to the performance of the model trained on
HuskinDB (R*«: = 0.5) published by Waters and Quah®. The consensus model built on
HuskinDB consisted of 7 individual models with internal validation R* ranging from 0.64
to 0.78.

The consensus model showed poor performance when applied to the external test set,
SkinPiX data (R% = -0.21, RMSE. = 1.32) (Figure 15). In order to understand the reason
of poor prediction, the chemical space coverage of the HuskinDB model training set and
the SkinPiX test set was analyzed using GTM class landscape (Figure 16). The class
landscape clearly indicates the zones populated by one of the datasets (blue color for the
training set; red color for the test set), showing the limited applicability domain of the
HuskinDB model.
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Figure 14. 5-fold cross-validation performance of “HuskinDB model” and “merged model”.
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to SkinPiX test set
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Figure 15. Performance of “HuskinDB model” on SkinPiX test set.

In order to expand the applicability domain, a new model was trained on the merged
dataset composed of both the SkinPiX and the HuskinDB datasets. The 5-fold cross-
validation performance increased after the removal of 8 outliers. The RMSE of the merged
model (0.7) aligns well with the mean standard deviation of duplicate molecules (0.68). A
better understanding of this case requires a more thorough investigation of the merged
dataset, specifically, during the data blending stage.
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5.3 Skin permeability
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Figure 16. GTM class landscape showing the distribution of the HuskinDB training dataset (blue) and the SkinPiX
test set (red). Yellow and green areas are populated with compounds of both datasets. The structural motifs
found in certain zones are displayed.

5.3.5 Summary

Overall, this study resulted in the compilation of a new skin permeability database,
called SkinPiX". This database is a collection of skin permeability and assisting metadata
(experimental set-ups, etc.) extracted from articles published between 2012 and 2021.
Public availability of the new database will facilitate the research conducted in the skin
permeability domain as well as enhance the development of novel QSPR models that cover
a broader chemical space, consequently improving the accuracy of predictions. The
developed model is freely available on the web service of the Laboratory of
Chemoinformatics” (“Skin permeability - Classification” model in the “PhysProp” section).

The modelling results of this work can be extended by a more careful study of SkinPiX
and HuskinDB databases, in order to define a better ground for merging the relevant data.
Identification of the criteria for merging the datasets, will improve the homogeneity of the
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Skin-related safety properties

merged training set, hence, it will enhance the predictive performance of the model. The
predictions of SkinPiX data using HuskinDB based models were poor. The prediction of
HuskinDB data using the SkinPiX data remains to be done. Additionally, a comprehensive
analysis of the outliers is still missing. Yet, the trend is that the current datasets are so small
that the models are quite unstable and require a very stringent applicability domain to be
used. Additionally, detecting outliers and inconsistencies in the data is likely to be strategic
in improving the quality of skin permeability QSPR models.

5.4 Conclusion

The findings of this chapter underscore the significant advancements in skin-related
safety properties assessment. The comparative study has convincingly demonstrated the
superior performance of the bone marrow-derived dendritic cell (BMDC) assay in
evaluating skin sensitization compared to other existing tests. The BMDC assay and the
developed QSAR model provide experts with an efficient approach to prioritize compound
analysis, reducing time, resources, and material.

Moreover, the meticulous compilation of the new skin permeability database, SkinPiX,
adds valuable insights to the field. By encompassing a comprehensive collection of skin
permeability data and essential metadata from published articles between 2012 and 2021,
SkinPiX offers a crucial resource for the development of novel QSPR models, ensuring a
broader coverage of chemical space and improved accuracy in predicting skin permeability.

All skin permeability and sensitization data and models are publicly available'>®”. The
results of both skin permeability and sensitization projects are the product of a successful
collaboration with the Institut National de Recherche et de Sécurité (INRS) in Nancy.
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6.1 Introduction

Chapter 6

ACE2 selective inhibition

6.1 Introduction

Angiotensin-converting enzyme 2 (ACE2) is an enzyme found in various cell types,
including pulmonary, cardiac, and renal cells. It plays a vital role in the renin-angiotensin-
aldosterone system (RAAS), which regulates blood pressure and fluid balance in the body."
In addition, ACE2 acts as the primary receptor for severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), enabling the virus to enter and infect human cells.”
Understanding the molecular mechanisms of ACE2, including its role in SARS-CoV-2
infection, is therefore essential for monitoring its influence on different biological tissues
and organs. Chemical probes, as small molecules with selective binding capabilities, provide
a valuable tool for investigating mechanistic and phenotypic questions about ACE2 in
various biological studies, allowing researchers to gain insights into the target's function
and potential therapeutic implications.””” Development of ACE2-targeting probes with
selectivity towards ACE2 over closely related targets such as ACE and neprilysin (NEP), is
critical to differentiate the effects caused by ACE2 downregulation from the effects of
interacting with these other targets, particularly in the context of blood pressure regulation.

The aim of this project is to identify new potential ACE2 selective inhibitors to be
suggested for the secondary screening campaign. The advancement builds upon previous
efforts to investigate ACE2 inhibition and develop selective chemical probes.” Virtual
screening techniques were employed to explore Enamine's vast compound collection of 2.6
million compounds and a set of 4080 7 silico designed compounds™ to generate a list of
promising ACE2 binders. Virtual screening methods included docking, structure-based
pharmacophore and QSAR modelling. New QSAR classification models predicting the
inhibition of ACE2, ACE, and NEP enzymes were developed and uploaded to the
Predictor web service” of the Laboratory of Chemoinformatics (“ACE2 inhibition -
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Classification”, “ACE inhibition - Classification”, “NEP inhibition - Classification” models
in the “Activity” section). The overall workflow of the project and the role of QSAR
models in it is presented in Figure 17.

Step 1 Step 2 Step 3

i 196 hits 26 hits 16 hits
ACE2 QSAR model J

ACE and
Docking NEP QSAR
models

Enamine - 2.6M Pharmacophore 113K hits 58K hits 47 hits
+ model 63 potential ACE2
Virtually designed - 4080 L J selective inhibitors

Figure 17. Overview of virtual screening steps to identify selective ACE2 inhibitors.
6.1.1 State-of-the-art

Literature review revealed several i silico studies in the domain of ACE2 inhibition,
including approaches like molecular docking”, QSAR model training on docking scores™,
3D QSAR pharmacophore modelling”. The most similar work, however, was conducted
by Hochuli et al.”®
combined. Their goal was to identify allosteric ACE2 binders that would have the potential

, where both computational and experimental approaches were
to serve as a novel class of antiviral agents for the treatment of COVID-19. First, they
performed experimental screening to test compounds for ACE2 binding and enzymatic
inhibition. QSAR models were then used to predict and prioritize compounds, followed by
ligand-based pharmacophore modeling to select additional candidates. Subsequent
experimental validation confirmed that 5 compounds exhibited strong ACE2 binding to an
allosteric site, minimal enzymatic inhibition, and significant inhibition of SARS-CoV-2
replication in human cells.

This project is a direct continuation of the previous study” conducted in collaboration
with the Institute of Organic Chemistry and Enamine (Kyiv, Ukraine). The workflow of
the project involved primary screening of molecules identified by virtual screening
methods. Firstly, molecular docking, structure-, and ligand-based pharmacophore modeling
were employed on the Enamine in-stock compound collection to identify potential
selective ACE2 inhibitors. Subsequently, QSAR models predicting ACE and NEP
inhibition were constructed and applied to the virtual hits obtained from the previous
approaches. The list of 577 virtual hits obtained from the Laboratory of Chemoinformatics
(Strasbourg, France), the computational chemistry team of Enamine (Kyiv, Ukraine) and
Chemspace LLC (Kyiv, Ukraine) was submitted for experimental validation. Although
none of the compounds showed activity in the nanomolar region, two of them possessed
optimal parameters for penetrating blood-brain barrier. Those ligands also displayed novel
ACE2-binding chemotypes and have the potential to become more efficient with further
structural optimization. ACE and NEP activities were not experimentally assessed.
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6.2 Data

The results of the primary screening were used in this project, to update and improve
the performance of models, consequently leading for more potent virtual hits. The newly
identified virtual hits are submitted for the second experimental validation. The project was
conducted together with my colleague Ms. Farah Asgarkhanova, Ph.D. student.

6.2 Data

The dataset for ACE2 was compiled from experimentally validated molecules provided
by Enamine (552 data points), CAEMBL (release 30; Target ID = 3736) (100 data points),
and PubChem (71 data points). The source of data for ACE (Target ID = CHEMBL1808;
1108 data points) and NEP (Target ID = CHEMBL1944; 694 data points) was ChEMBL
(release 30). The origins of enzymes in all cases were mammals. The molecules reported
either IC50, K or percentage inhibition.

The molecular standardization was performed using the ChemAxon Standardizer™.
The standardization protocol included dearomatization, dealkalization, removal of salts and
mixtures, neutralization, generation of the major tautomer, aromatization. After the
standardization duplicate molecules were removed. The values and units were converted
from Kj and IC50 to pK; and pIC50, respectively.

A compound was classified as ACE2 inactive if its percentage inhibition was less than
25% or if pKi or pIC50 was less than 8, and classified as ACE2 active otherwise. For ACE
and NEP, classification threshold was less strict, with 60% inhibition and pK; or pIC50 =
6. The final training set sizes are given in Table 7.

Table 7. Training set sizes of ACE2, ACE and NEP models.

Enzyme Training set size Number of actives Number of inactives
ACE2 668 37 631
ACE 591 304 287
NEP 464 301 163

The datasets which were screened were composed of 2.6 million Enamine compounds
and 4080 compounds generated by the Synt-On tool™. The virtually designed dataset was
generated based on 37 experimentally confirmed active compounds identified during the
first screening campaign.

6.3 Methods

Methods used for identification of ACE2 selective binders were applied in 3 steps
(Figure 17):
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1. Independent application of ACE2 QSAR and pharmacophore modeling
approaches.

2. Molecular docking of virtual hits predicted by QSAR and pharmacophore
models from Step 1.

3. Tiltering virtual hits obtained from Step 2, by applying ACE and NEP QSAR
models to find ACE2-selective virtual hits.

6.3.1 QSAR modeling

QSAR models were trained on ISIDA fragment descriptors using SVM machine
learning method and hyperparameters optimized by genetic algorithm. Validation of
models was performed using 5-fold cross-validation technique. Based on the cross-
validation performance, top 7 best performing models were selected for consensus model
(Table 8). ACE2, ACE and NEP models were used as filters to sieve irrelevant hits
throughout virtual screening process.

Table 8. Performance of ACE2, ACE and NEP consensus QSAR models, and their constituting models.
Fragmentation types: | - sequence; Il - atom-centered; lll - triplet; A — atom; B - bond; R - fragment of fixed
length; P — “Atom Pairs” option; AP - “Do All Ways"” option. BAs.cv - balanced accuracy on 5-fold cross-validation.

Performance of individual models

ACE2 ACE NEP

Descriptor set BAs-cv Descriptor set BAs-cv Descriptor set BAs-cv
IIA(2-6)_R 0.97 [1A(2-4) 0.845 IIA(2-7)_R 0.81
IIAB(2-4)_R 0.97 IIA(3-5)_R 0.84 IIAB(3-6)_R 0.81
[IAB(2-7)_R_P 0.97 IIAB(3-5)_R 0.835 IAB(2-6) 0.79
[1A(3-4) 0.97 IIAB(3-5) 0.835 1(3-6) 0.79
IIAB(3-7)_R 0.965 [1A(2-5) 0.83 IIA(3-4)_P 0.78
IIAB(3-4)_P 0.96 [IAB(2-6)_R_P 0.83 IA(2-5)_AP 0.78

Performance of consensus models (BAs.cv)
ACE2 ACE NEP
0.97 0.83 0.79

6.3.2 Rule-based algorithm

A rule-based algorithm derives patterns from data using a set of ifzhen logical
statements. In the context of this study, we employed JRip rule-based classification
method, which is an extension of RIPPER (Repeated Incremental Pruning to Produce
Error Reduction) algorithm®. It constructs a set of ##hen rules to predict class labels for
data instances. Beginning with a single rule that predicts the majority class, JRip iteratively
adds and prunes rules, using a heuristic to select the most informative attribute to augment
a rule and the least impacting attribute to prune a rule. This process continues until a
sufficiently accurate and interpretable rule set is established, providing a transparent
framework for classification tasks. In our case, we used JRip method to find substructural
motifs that are responsible for ACE2 inhibition. The method was implemented in Weka

software'".

110



6.4 Results and discussion

6.3.3 Pharmacophore modeling

Pharmacophore modeling involves the identification and characterization of essential
chemical features (hydrogen bond donors/acceptors, aromatic rings, etc.) and spatial
arrangements within a molecule that are critical for binding to a target receptor or enzyme.
Structure-based pharmacophore model integrates structural information of the target
receptor to find pharmacophoric features for a specific binding site. Once a set of
pharmacophoric features is identified, it can be used as a query to screen libraries of
compounds. Compounds that optimally fit these features are considered virtual hits. In this
study, the ACE2 protein (PDB ID: “1R4L”"") was obtained from the Protein Data Bank
(PDB). LigandScout'” (v. 4.4.8) was used to generate and apply pharmacophore models.
The pharmacophore model was used as a virtual screening step.

6.3.4 Molecular docking

Molecular docking approach is used to assess the binding poses and energies between
ligands and target proteins. A docking score is used to model the strength of
supramolecular interactions. The PLANTS (Protein-Ligand ANT System)'”
this study, utilizes ant colony optimization algorithm to explore the vast conformational

employed in

space of ligand-receptor complexes. This method effectively balances exploration and
exploitation to identify energetically favorable binding conformations. A key component of
PLANTS is the integration of the CHEMPLP scoring function'*
molecular interactions, electrostatics, van der Waals forces, and solvation effects to provide

which evaluates

b

accurate estimates of binding affinities. The docking was based on the 3A resolution X-ray
structure of the ACE2 binding site (1R4L) and the co-crystallized ligand (MLLN-4760). The
virtual hits obtained from ACE2 QSAR and pharmacophore models application step were
docked onto the ACE2 binding site.

6.4 Results and discussion

As mentioned in 6.3 Methods section, the workflow of the project can be summarized
in 3 steps (Figure 17). The results are organized in the same manner: (1) ACE2 QSAR and
pharmacophore modeling; (2) molecular docking; (3) ACE and NEP QSAR modeling.

6.4.1 ACE2 QSAR and pharmacophore modeling

Prior to application of ACE2 QSAR model, the high performance of the model (BAs.
cv = 0.97) was investigated by using JRip rule-based algorithm on the ACE2 dataset. The
results revealed 2 rules presented in Figure 18. The derivation of such simple rules was
possible due to representation of inhibitors class by a homogeneous series of compounds.
The 2 rules in Figure 18 cover 35 out of the 37 actives and 630 out of 631 inactives in the
training set. These rules identified scaffolds specific to the active set of compounds. They
explain the high performances ACE2 QSAR models, and anticipate potential applicability
domain problems.
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Rule 1 — Fragment A = 1 and # of carbon atoms < 22 = Inhibitor Rule 2 — Fragment B = 1 = Inhibitor
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Figure 18. Classification rules derived by the JRip rule-based algorithm for ACE2 inhibition.

The application of ACE2 QSAR model to Enamine compound collection and 7 silico
designed molecules resulted in 196 molecules classified as active (188 from Enamine; 8
from the generated dataset). The low number of hits is due to the bias of the model
towards inactive compounds, which is dictated by the class distribution in its training set.

The LigandScout software generated structure-based pharmacophore including 10
features: 2 hydrophobic regions (H), 5 hydrogen bond donors (HD), 2 hydrogen bond
acceptors (HA), 1 halogen donor (XD). The pharmacophore was optimized regarding to
the “actives/hits” ratio. The final pharmacophore model included 6 features: 3 HD, 1 HA,
2H (Figure 19).

The application of the pharmacophore model to Enamine compound collection and 7
silico designed molecules resulted in 113413 molecules predicted as active (113258 from
Enamine; 155 from the generated dataset).

Figure 19. Structure-based pharmacophore model. Red spheres - H-bond acceptor; green spheres - H-bond
donor; yellow spheres — hydrophobic regions.
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6.5 Conclusion

6.4.2 Molecular docking

Firstly, the co-crystallized ligand and the ACE2 training set were docked. The docking
score of the co-crystallized ligand was -103.48. The docking score threshold was optimized
to find the optimal ratio of true actives among those having a docking score lower than the
threshold. The value -85 was selected corresponding to an enrichment factor equal to 1.45.
The ROC AUC score of ACE2 training compounds sorted by docking score was of 0.75.

The application of the molecular docking method to the results from the previous step
(196 hits from the ACE2 QSAR model; 113413 hits from the pharmacophore model)
resulted in 58185 hits.

6.4.3 ACE and NEP QSAR modeling

The final step involved application of ACE and NEP QSAR models in order to
identify compounds that do not bind neither to ACE nor to NEP. In total, 63 hits were
selected out of 58185 compounds that were identified at the previous virtual screening

step.

6.5 Conclusion

This study resulted in successful identification of 63 potential ACE2 inhibitors from
Enamine's compound collection and 7 silico designed compounds. Experimental validation
of these potential ACE2 inhibitors is currently underway. The confirmed ACE2 inhibitors
will set a base for the development of chemical probes that will offer valuable insights into
the effects related to inhibition of ACE2.

The training set of new ACE2 model has been expanded by incorporating
experimentally confirmed results from the first screening campaign of the Enamine as well
as new data from ChEMBL and PubChem. This enlarged training set enables a wider
applicability domain and improves the performance of the models. The freely available
ACE2, ACE and NEP QSAR models can facilitate other related screening projects by
virtually filtering irrelevant and prioritizing promising hits.

Overall, this work demonstrated an example of a good synergy between virtual
screening and experimental validation, which led to identification of potential selective
chemical probes that will shed light on potential side effects associated with ACEZ2
perturbation.
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Chapter 7

Conclusion and perspectives

The achievements of this thesis can be summarized in two main points: development
of 8 publicly available predictive models (Table 10) and user-friendly automatized KNIME
wotkflows for building QSAR/QSPR models. Both the developed predictive models and
the modelling workflows provide vast number of possibilities on their applications.

The models have demonstrated their applicability in various steps of screening by
using predictive models to prioritize testing of certain compounds; to evaluate stock
solution integrity; to assess the quality of experimental data; to annotate chemical libraries,
prioritize compounds and identify suspicious hits and non-hits for screening campaign.
Predictions made by these models are labelled based on the confidence of prediction,
providing users with additional information for decision-making. The summary of the
models is given in Table 6. All of the models developed in the course of this thesis are
publicly available at the web service of the Laboratory of Chemoinformatics”. The means

of accessing the models are presented in Table 11 and in Figure 20.

The KNIME workflows provide necessaty tools to develop QSAR/QSPR models and
covers all aspects of the modelling pipeline: molecular standardization, molecular
descriptor calculation, model training and validation, preparation and deployment of
consensus model. The workflow manual documents and the visual programming aspects
of the KNIME Analytics Platform allow users with limited coding knowledge to easily
utilize these workflows and build in-house models based on their proprietary or public
datasets. The KNIME workflows are available upon request to the Laboratory of
Chemoinformatics: https://infochim.chimie.unistra.fr/?page id=11.

All data are published following the FAIR principles in the repository France Data
Gouv (https://entrepot.recherche.data.gouv.fr/dataverse/CI) or in the supplementary
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materials of publications (Table 9). ACE2, ACE and NEP datasets will be published after

the completion of experimental validation.

Table 9. The list of published data and links to access them.

Property / Activity Link
Solubility in DMSO https://doi.org/10.3390/molecules26133950
Aqueous kinetic solubility https://doi.org/10.57745/ZWSOWC
Aqueous thermodynamic solubility https://doi.org/10.57745/CZVZIA

Skin permeability https://doi.org/10.57745/7FHQOY
Skin sensitization https://doi.org/10.57745/PPAMKY

ACE2 inhibition (to be published after experimental validation)

ACE inhibition (to be published after experimental validation)

NEP inhibition (to be published after experimental validation)

Table 10. The list of developed QSAR/QSPR models, their training set sizes and predictive performance
values. The size of the test set is indicated in brackets. BA — balanced accuracy; CV - cross-validation; RMSE - root
mean-squared error.

Property / Activity Training set size Validation method Performance (BA)

Solubility in DMSO 788 5-fold CV 0.78
Aqueous kinetic solubility 56132 Test set (17666) 0.84
Skin sensitization 117 5-fold CV 0.82
ACE2 inhibition 668 5-fold CV 0.97
ACE inhibition 591 5-fold CV 0.83
NEP inhibition 464 5-fold CV 0.79

Property / Activity Training set size Validation method Performance (RMSE)
Skin permeability 195 5-fold CV 0.7

Aqueous thermodynamic

solubility * 42159 Test set (5728) 0.59

* The QSPR model was developed by my colleague Mr. Pierre Liompart, Ph.D. student.

Table 11. The list of developed models and how to access them. All models (except thermodynamic aqueous
solubility) are available on the https://chematlas.chimie.unistra.fr/cgi-bin/predictor2.cgi web page. The models
can be accessed by first selecting "General kind of property" and then "Property to model".

Property / Activity "General kind of property" "Property to model”
Solubility in DMSO PhysProp Solubility_DMSO_2Cls
Aqueous kinetic solubility PhysProp Kinetic_solubility_2Cls
Skin permeability PhysProp Skin_permeability_Reg
Skin sensitization Activity Skin_sensitization_BMDC_2Cls
ACE2 inhibition Activity ACE2_2Cls
ACE inhibition Activity ACE_2Cls
NEP inhibition Activity NEP_2Cls
Aqueous thermodynamic
solubility * ) )

* The QSPR model was developed by my colleague Mr. Pierre Lliompart, Ph.D. student. The model is available
on a separate web page: https://chematlas.chimie.unistra.fr/WebTools/predictor solubility.php
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Figure 20. Screenshots showing example of request for ISIDA Predictor web service. Image A shows the
ISIDA Predictor configuration page, where a user can select “Activity”/"PhysProp” general kind of property and
then choose the model of interest. Image B illustrates an output of ISIDA Predictor. Color code of prediction
confidence is as follows: green — optimal; blue - good; orange - average; red — unreliable.

7.1 Perspectives

This work can be further extended with the generation of new models covering other

10 1% Assessing of

screening relevant properties, such as cytotoxicity ~ and permeability
cytotoxicity is important as it is often conducted prior to many bioassays to check cell
viability. Once cell viability is confirmed, the compound can be evaluated for its

permeability properties.
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Conclusion and perspectives

The list of skin-related QSAR models can be also augmented by modeling other
parameters, such as maximum skin flux, skin penetration enhancement, diffusion
coefficients in different layers of skin."" The cooperation with INRS provides many other
relevant targets in order to investigate danger and estimate the risks, for instance
neurotoxicity and blood-brain barrier permeability. In a simplistic view, the neurotoxicity
estimates a danger, but the risk evaluation requires to estimate the permeability.

The developed models can be used for profiling of screening libraries, such as
Chimiothéque Nationale®. In a first step, the current chemical library shall be annotated
using these models, then these models shall be given to ChemBioFrance to maintain the
annotations. The initial annotations being provided for efficiency and as reference to
compare to when the models will be installed on the servers of the Chimiotheque
Nationale in Montpellier. Property profiles will add value to the Chimiothéque Nationale.

In terms of technological advancement, active learning approach could be applied to

the screening context.'”’

The idea is to iteratively select the most informative compounds
for labeling and then adding the new experimental data to the training set of the model to
increase its predictive performance. This approach maximizes the use of resources and
accelerates the screening process, making it particularly valuable when dealing with large
chemical libraries or limited experimental capacity. However, the implementation of active
learning strategies requires a close collaboration with screening platforms, as the direct

access to the analytical instruments would be necessary.

Another possible technical improvement could be made by developing KNIME
workflows to perform clustering for the analysis and selection of candidates for the next
screening campaigns. This would be useful in the case of a cascade of sequential screening
campaigns. However, the realization of this idea would again require direct access to
screening platform capabilities. Some instances of such integration have already been
reported.'”* "

Finally, the developed models in combination with other 7z silico, in vitro, ot in chemico
assays could be suggested as a replacement to animal testing. Such approach is already
practiced in skin sensitization domain."'"'"* In Europe, the approval of replacing an animal
test with the alternative method is regulated by European Union Joint Research Centre for
Alternatives to Animal Testing (EURL ECVAM).* '*'"* However, it is debatable whether
the results of alternative 7n silico, in vitro, or in chemico methods, either alone or in
combination, can ever truly represent human data. For such replacements to occur, there
would need to be full transitivity between predicted / experimental data and animal /
human data, which seems presently out of reach due to the complex nature of biological
systems. Yet, the frontier is definitely moving in this direction.
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Résumé

Cette these concerne le développement et la mise en ceuvre d'outils de
chémoinformatique en support de campagnes de criblage de composés. Les sujets
couverts sont : les étapes de sélection de composés, d'évaluation de l'intégrité des
solutions de stock, de contréle de la qualité des données expérimentales, de
développement de modeles prédictifs et d'annotation des bibliothéques de criblage.
Les propriétés d'intérét incluent la solubilité de composés de type fragment dans le
DMSO, la solubilité aqueuse, la sensibilisation cutanée, la perméabilité cutanée et la
liaison a l'enzyme de conversion de l'angiotensine (ACE2) pour la conception de
sondes biologiques. Les modéles de relation structure-activité/propriété quantitative
(QSAR/QSPR) sont disponibles publiquement et des outils conviviaux développés
dans la KNIME Analytics Platform fournissent un soutien précieux aux chercheurs
sans necessité de compétences en programmation. L'intégration des outils de
chémoinformatique développés offre une approche efficace pour améliorer les
résultats du criblage et maximiser I'efficacitée.
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Résumé en anglais

This thesis concerns the development and implementation of chemoinformatics tools
to support compound screening campaigns. It covers the following topics: steps for
compound selection, assessment of stock solution integrity, quality control of
experimental data, development of predictive models, and annotation of screening
libraries. The properties of interest include solubility of fragment-like compounds in
DMSO, aqueous solubility, skin sensitization, skin permeability, and binding to
angiotensin-converting enzyme (ACEZ2) for the design of biological probes. The
publicly available quantitative structure-activity/property relationship (QSAR/QSPR)
models and user-friendly tools developed in KNIME Analytics Platform provide
valuable support to researchers without the need for coding expertise. The
integration of the developed chemoinformatics tools offers an efficient approach to
improving screening outcomes and maximizing efficiency.
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