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Titre: La mesure elliptique dans les domaines avec des bords de codimension différente de 1 Mots clés: théorie géométrique de la mesure ; équations aux dérivées partielles ; opérateurs elliptiques dégénérés ; mesure elliptique ; ensembles rectifiables et purement non rectifiables ; fractales. Résumé: Cette thèse étudie différentes variantes de la mesure harmonique et leurs relations avec la géométrie de la frontière d'un domaine. Dans la première partie de la thèse, on se concentre sur l'analogue de la mesure harmonique pour les domaines ayant des frontières de dimensions plus petites, définies via la théorie des opérateurs elliptiques dégénérés récemment développée par David et al. Plus précisément, on démontre qu'il n'existe pas de famille à un paramètre non dégénérée de solutions de l'équation 𝐿 𝜇 𝐷 𝜇 = 0, ce qui constitue la première étape pour retrouver une forme de l'assertion "si la fonction de distance à la frontière d'un domaine est harmonique, alors la frontière est plate", qui manque à la théorie des opérateurs elliptiques dégénérés. On découvre et explique également pourquoi la stratégie la plus naturelle pour étendre notre résultat à l'absence de solutions individuelles de l'équation 𝐿 𝜇 𝐷 𝜇 = 0 ne fonctionne pas. Dans la deuxième partie de la thèse, on s'intéresse aux mesures elliptiques dans le cadre classique. On construit une nouvelle famille d'opérateurs avec des coefficients continus scalaires dont les mesures elliptiques sont absolument continues par rapport aux mesures de Hausdorff sur des flocons de neige symétriques de type Koch. Cette famille enrichit la collection des exemples connus de mesures elliptiques qui se comportent très différemment de la mesure harmonique et des mesures elliptiques d'opérateurs proches, d'une certaine manière, du Laplacien. De plus, nos nouveaux exemples ne sont pas compacts. La construction fournit également une méthode possible pour construire des opérateurs ayant ce type de comportement pour d'autres fractales qui possèdent suffisamment de symétries.
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1 Introduction

This thesis studies harmonic measure, along with a particular generalisation, from the perspective of Geometric Measure Theory (GMT for short). Let Ω be a (bounded and regular enough) domain in Euclidean space R 𝑛 . From the point of view of analysis, the harmonic measure 𝑤 𝑥 Ω with the pole 𝑥 ∈ Ω is the measure on the boundary of the domain 𝜕Ω, which provides an integral representation of the solution of Dirichlet problem {︂ ∆𝑢 = 0 in Ω, 𝑢 = 𝑓 on 𝜕Ω.

Namely, if 𝑓 is a continuous function with compact support on the boundary 𝜕Ω, then for every point 𝑥 inside the domain we have

𝑢(𝑥) = ∂Ω 𝑓 (𝑦)𝑑𝑤 𝑥 Ω (𝑦). (2) 
There is also a very nice and intuitive probabilistic interpretation of the object, which relies on the Brownian motion and which is useful in general, but we will not discuss it much. Harmonic measure plays a fundamental role in the analysis of PDEs and the study of problems in Harmonic Analysis connected to PDEs. All the intricate relations between the harmonic measure and those different problems, and harmonic measure techniques as well, are explained nicely, for example, in the book [START_REF] Garnett | Harmonic measure[END_REF] for dimension 2. The properties of the different analytical objects, and, naturally, the properties of solutions of the PDE problems, depend on the underlying setting of (1), e.g., the geometry of the domain Ω and its boundary 𝜕Ω. GMT, as a sub-discipline of Analysis, studies connections between various good properties of analytical objects and the geometry of the sets related or prescribed to those objects.

We start with a short account of what is known about such a connection for the case when our analytical object is the harmonic measure.

Harmonic measure and rectifiability

The study of the relation between the geometry of the domain Ω in (1) and certain good properties of the harmonic measure continued all throughout the 20th century. The philosophy emerging from this study is that the absolute continuity of the harmonic measure with respect to the boundary measure on 𝜕Ω is equivalent to 𝑛 -1-rectifiability of the boundary 𝜕Ω. Definition 1. 𝐸 ⊂ R 𝑛 is called 𝑑-rectifiable if there exists at most countable family {𝑓 𝑖 } of Lipschitz functions 𝑓 𝑖 : R 𝑑 → R 𝑛 such that

ℋ 𝑑 (︀ 𝐸 ∖ ∪ 𝑖 𝑓 𝑖 (R 𝑑 ) )︀ = 0.
Let us give a brief history of the research on the subject, and formulate some precise statements. It all started with dimension 2, with the result of the Riesz brothers dated back to 1916, which asserts that the harmonic measure on a simply connected planar domain is absolutely continuous with respect to ℋ 1 , given that the boundary of the domain is rectifiable [START_REF] Riesz | Über die randwerte einer analtischen funktion[END_REF]. Later, in 1936, Lavrent'ev quantified this result, see [START_REF] Lavrent'ev | Boundary problems in the theory of univalent functions[END_REF]: if our domain is a chord-arc curve, the density of the harmonic measure with respect to ℋ 1 is a function of the Muckenhoupt class 𝐴 ∞ . Much later, in 1990, Bishop and Jones, (5), provided a local version of the latter result, and also showed that, for the harmonic measure to be absolutely continuous with respect to the Hausdorff measure on the boundary of a domain, some connectedness is needed, and that rectifiability of the boundary alone is not enough. In higher dimensions, the first significant result belongs to Dahlberg, who established the absolute continuity of 𝑤 with respect to ℋ 𝑛-1 for 𝑛 -1-dimensional Lipschitz boundaries in R 𝑛 , see (6). It was then extended to non-tangentially accessible domains with (𝑛 -1)-Ahlfors regular boundaries by David and Jerison (11), and Semmes [START_REF] Semmes | Analysis vs. geometry on a class of rectifiable hypersurfaces[END_REF], and then the assumption of Ahlfors regularity was weakened by Badger (4). The latter result does not complete the list of improvements of the topological assumptions needed to have the sufficiency of rectifiability for the absolute continuity 𝑤 << ℋ 𝑛-1 , but we do not want to try to recreate it here. Definition 2. A set 𝐸 ⊂ R 𝑛 is called 𝑑-Ahlfors regular if for every 𝑟 : 0 < 𝑟 < diam(𝐸) the 𝑑-dimensional Hausdorff measure of the intersection of 𝐸 and a ball 𝐵(𝑥, 𝑟) centred at 𝐸 is comparable to 𝑟 𝑑 : ∃ 𝐶 > 1 independent of r : 𝐶 -1 𝑟 𝑑 ≤ ℋ 𝑑 | 𝐸 (𝐵(𝑥, 𝑟)) ≤ 𝐶𝑟 𝑑 ∀ 𝑥 ∈ 𝐸. Definition 3. A domain Ω in R 𝑛 is called non-tangentially accessible (NTA) if the following three conditions hold:

1. Ω is a corkscrew domain: there exists a constant 𝑐 ≥ 1 such that for every 𝑥 ∈ 𝜕Ω and 0 < 𝑟 < diam(Ω) one can find a point 𝑦(𝑥, 𝑟) ∈ 𝐵(𝑥, 𝑟) with the property 𝐵(𝑦, 𝑐 -1 𝑟) ⊂ 𝐵(𝑥, 𝑟) ∩ Ω;

2. R 𝑛 ∖ Ω is a corkscrew domain;

3. Ω has Harnack chains: for all 𝐴 > 0 and for every 𝑥, 𝑦 ∈ Ω such that |𝑥 -𝑦| ≤ 𝐴 min(dist(𝜕Ω, 𝑥), dist(𝜕Ω, 𝑦)) there exists a number 𝑁 (𝐴, Ω) such that one can construct a chain of balls 𝐵 1 (𝑥 1 ), . . . 𝐵 𝑁 (𝑥 𝑁 ) which joins 𝑥 and 𝑦 and lies inside Ω: 𝑥 1 = 𝑥, 𝑥 𝑁 = 𝑦, 𝐵 𝑖 (𝑥 𝑖 ) ∩ 𝐵 𝑖+1 (𝑥 𝑖+1 ), 𝑖 = 1, . . . , 𝑁 -1, and 2𝐵 𝑖 (𝑥 𝑖 ) ⊂ Ω. A little earlier, Wu and Ziemmer, [START_REF] Wu | On singularity of harmonic measure in space[END_REF] and [START_REF] Ziemer | Some remarks on harmonic measure in space[END_REF], provided some counterexamples that show the necessity of some connectedness assumption on the domain if one wants 𝑤 to be absolutely continuous with respect to ℋ 𝑛-1 on the boundary. In [START_REF] Hofmann | Uniform rectifiability and harmonic measure I: uniform rectifiability implies Poisson kernels in Lp[END_REF], [START_REF] Hofmann | Uniform rectifiability and harmonic measure, II: Poisson kernels in Lp imply uniform rectifiability[END_REF] and (2), authors established that, for domains with 𝑛-1-Ahlfors regular boundaries and one-sided NTA condition (the complement R 𝑛 ∖ Ω does not have to be a corkscrew domain), uniform rectifiability of the boundary is equivalent to the full set of NTA conditions, and also equivalent to 𝑤 being quantitatively absolutely continuous with respect to the Hausdorff measure on the boundary. Definition 4. 𝐸 ⊂ R 𝑛 is 𝑑-uniformly rectifiable if there exists a constant 𝐶 ≥ 1 such that for every 𝑥 ∈ 𝐸 and a radius 𝑟 one can find a 𝐶-Lipschitz graph 𝐵 𝑑 (0, 𝑟) → R 𝑛 with the property ℋ 𝑑 (𝐸 ∩ 𝐵(𝑥, 𝑟) ∩ 𝑓 (𝐵 𝑑 (0, 𝑟))) ≥ 𝐶 -1 𝑟 𝑑 .

Finally, probably one of the nicest necessity results was obtained in 2015 by the combined efforts of Azzam, S. Hofmann, Mourgoglou, Martell, Mayboroda, Tolsa, and Volberg, (3). It asserts that if Ω is an open connected domain and 𝑤 is absolutely continuous with respect to ℋ 𝑛-1 , then the boundary of the domain has to be rectifiable. Simultaneously, the quantitative counterpart was established by S. Hofmann, Le, Martell, and Nyström, [START_REF] Hofmann | The weak-𝐴 ∞ property of harmonic and p-harmonic measures implies uniform rectifiability[END_REF]: the weak-𝐴 ∞ property of the harmonic measure implies uniform rectifiability of the boundary.

So indeed, if one does not take into account the different topological assumptions needed to assert that a domain with a rectifiable boundary is good enough for the harmonic measure to be well-defined, the philosophy we started this subsection with is correct. It gives a criterion of 𝑛 -1-rectifiability in terms of harmonic measure in R 𝑛 . This does not conclude, however, the studies of connections between the geometry of sets and various properties of harmonic measure, as opposed to the impression the reader might get. There are other interesting directions intimately connected to what we just discussed, some of which are pursued in this manuscript.

1.2 Harmonic measure in higher codimensions and d-rectifiability

One appealing direction of research is to try to extend the criterion of rectifiability in terms of harmonic measure in R 𝑛 for domains with higher codimensional boundaries. Getting ahead of ourselves, we'll say that up to date the criterion is still not complete, but there is significant progress in this direction.

The first problem with a criterion of 𝑑-rectifiability via the harmonic measure in R 𝑛 is the following. We explain the issue in the language of probability first because it gives more intuition here. From the probabilistic point of view, the harmonic measure 𝑤 𝑥 (𝐴) of a subset 𝐴 of the boundary 𝜕Ω of a domain Ω is the probability that a Brownian traveller, starting from the point 𝑥 ∈ Ω, will hit the boundary for the first time inside the set 𝐴. If a set 𝐸 has dimension 𝑑 ≤ 𝑛 -2, then the standard Brownian traveller does not see it, so the probability of landing there is always zero. Concerning the theory of standard elliptic problems, we cannot even say that the harmonic measure is defined for higher codimensional boundaries because already the Dirichlet problem is not well-posed. So evidently the behaviour of the standard harmonic measure cannot characterise the geometry of the lower-dimensional sets. To do so one would have to invent an analogue of harmonic measure which would "see" lower-dimensional objects. The simplest thing to do is to replace the Laplacian operator with something else and try to work with the respective PDE problem.

Chronologically, the first idea on how to work with elliptic problems with higher codimension boundaries was probably the concept of 𝑝-Laplacian and its generalisations. This approach was developed in [START_REF] Heinonen | Nonlinear potential theory of degenerate elliptic equations[END_REF] and [START_REF] Lewis | Quasi-linear PDEs and low-dimensional sets[END_REF]. In the latter work, the 𝑝-harmonic measure was defined, and some of its good properties were established if the boundary is Riefenberg flat. However, up to our knowledge, these explorations did not lead to any criterion of the boundary geometry (yet).

Then, David, Feneuil, Mayboroda, and others started to consider divergence from operators

𝐿 = -div𝐴∇, (3) 
on the domains Ω = R 𝑛 ∖ 𝐸, where 𝐸 is a 𝑑 < 𝑛 -1-Ahlfors regular set, with the matrix-valued function 𝐴 : Ω → 𝑀 𝑛 (R) satisfies the modified ellipticity conditions 𝛿(𝑥) 𝑛-𝑑-1 𝐴(𝑥)𝜁 • 𝜉 ≤ 𝐶 1 |𝜁||𝜉|, 𝑥 ∈ Ω, 𝜁, 𝜉 ∈ R 𝑛 , and

𝛿(𝑥) 𝑛-𝑑-1 𝐴(𝑥)𝜁 • 𝜁 ≥ 𝐶 -1 1 |𝜁| 2 , 𝑥 ∈ Ω, 𝜁 ∈ R 𝑛 . (4) 
Here 𝐶 1 ≥ 1 is a constant, and 𝛿(𝑥) = dist(𝑥, 𝐸) is the distance function from 𝑥 ∈ Ω to 𝐸. We will call such operators 𝐿 degenerate elliptic. The motivation behind this is the following. The normalisation (4) should make the analogue of a Brownian traveller for this operator to get closer to the boundary with the correct probability. In the case of 𝐸 = R 𝑑 and 𝐴(𝑥) = dist(𝑥, 𝐸) -𝑛+𝑑+1 Id, the operator 𝐿 acts on a function 𝑓 (𝑦, 𝑡), 𝑦 ∈ R 𝑑 , 𝑡 ∈ R 𝑛-𝑑 , which is radial in 𝑡, just as the Laplacian would on the same function on R 𝑑+1 + (this is a computation). One can interpret it as if the operators in question create Brownian travellers which treat the set 𝐸 like a black hole.

Concerning the connectivity of a domain, in the case when Ω = R 𝑛 ∖ 𝐸 with 𝐸 being 𝑑dimensional Ahlfors-regular, 𝑑 < 𝑛 -1, there is no complementary component, and in (10) it is verified that such a domain Ω has non-tangential access. So no additional requirements that are usually posed when working with harmonic measure are needed.

For the degenerate elliptic operators 𝐿 the work (10) develops an analogue of the usual theory of elliptic operators. Then, the authors aim to establish analogues of the direct absolute continuity results, like Dahlberg's theorem cited above. In (9) they choose the nicest operator they could find, which serves as an analogue of the Laplacian, namely,

𝐿 = 𝐿 𝛼,𝜇 = -div𝐷 -𝑛+𝑑+1 𝛼,𝜇 ∇, ( 5 
)
where 𝜇 is some 𝑑-dimensional Ahlfors regular measure on 𝐸 (𝜇(𝐵(𝑥, 𝑟)) ∼ 𝑟 𝑑 for 𝑥 ∈ 𝐸 and 0 < 𝑟 < diam(𝐸)), 𝛼 > 0 is a parameter, and the corresponding smooth distance function 𝐷 𝛼,𝜇 is defined by

𝐷 𝛼,𝜇 (𝑥) = ⎛ ⎝ Ê |𝑥 -𝑦| -𝑑-𝛼 𝑑𝜇(𝑦) ⎞ ⎠ -1/𝛼 . (6) 
It is easy to check that 𝐷 𝛼,𝜇 (𝑥) is equivalent to dist(𝑥, 𝐸), hence 𝐿 𝛼,𝜇 is indeed in the class of operators defined by ( 3) and (4).

Next, the authors show that if 𝐸 is the graph of a Lipschitz function with a small enough constant, then the (degenerate) harmonic measure created by 𝐿 𝛼,𝜇 is mutually absolutely continuous with respect to 𝜇, with the quantitative 𝐴 ∞ counterpart. The articles (14) and (17) extend this result to the case where 𝐸 is uniformly rectifiable of dimension 𝑑 < 𝑛 -1.

After these successes, it is worth trying to get the converse result: that the uniform rectifiability of 𝐸 follows from the quantitative absolute continuity of the harmonic measure of 𝐿 𝜇,𝛼 with respect to 𝜇. However, in (8) it was discovered that it is not so easy for the following reason. The function (6) solves 𝐿 𝛼,𝜇 • = 0 on Ω if the parameter 𝛼 is equal to 𝑛 -𝑑 -2, which we will refer to as "magic" number. Consequently, the harmonic measure for this operator is absolutely continuous with respect to Hausdorff measure ℋ 𝑑 on 𝐸, regardless of how bad in terms of geometry the set 𝐸 is. So in this case the analogue of the reverse to Dahlberg's theorem cannot hold. But likely this effect is specific to "magic" 𝛼, and it seems reasonable to expect that for all other 𝛼, when 𝑑 < 𝑛 -1, the aforementioned converse result still stands.

In the paper (12), apart from establishing a first criterion of good geometry of 𝐸 via good approximation of the Green function for 𝐿 𝜇,𝛼 (with a pole at ∞) by distance functions to 𝐸, the authors also show that a similar criterion via good approximation by a smooth distance function like (6) will work if one proves the following conjecture.

Let 𝐸 be a 𝑑-Ahlfors regular set, 𝐷 𝛼,𝜇 -the regularized distance function as above in (6), and 𝐿 𝛼,𝜇 -the degenerate elliptic operator mentioned before. Then 𝐿 𝛼,𝜇 𝐷 𝛼,𝜇 = 0 in Ω = R 𝑛 ∖ 𝐸 (7) is true only in the two cases:

1. when 𝑑 < 𝑛 -2 and 𝛼 = 𝑛 -𝑑 -2, 2. when 𝐸 = R 𝑑 for some integer 𝑑 and 𝜇 = 𝑐ℋ 𝑑 | 𝐸 for some positive constant 𝑐.

The latter solution we will call flat.

1.3 Paper I, "On an obstacle to the converse of Dahlberg's theorem in high codimensions"

In this paper, we obtain more information about the resolution of the conjecture above, which we will call Υ 𝑓 𝑙𝑎𝑡 . Once again, our global goal is to prove that, for the case when 𝛼 is not the "magic" number, the only possible solution to (7) is the flat solution. We planned to start with a more modest objective: to prove that there are no solutions in the neighbourhood of the flat one. This is supposed to be easier than the study of global solutions, which would require some insight about (7) we do not yet possess. Plus, when we restrict to the neighbourhood of the flat solution, we can view the non-flat solutions as small perturbations of the flat, which gives us additional structure to work with.

We prove some results about the absence of parametric families of solutions in a neighbourhood of the flat one, which we will state in a moment. A motivation for them is that any story about perturbations usually involves a parameter and a family of solutions corresponding to it, so a common plan to prove the absence of solutions in a neighbourhood is to prove first the absence of parametric families of solutions.

Then the transition to the absence of individual solutions is usually not too hard. In our situation unfortunately the most logical scheme does not work, vaguely, for the following reason. Supposing the contrary, we get the existence of a solution in every neighbourhood of the flat one, and say that this solution corresponds to a parameter 𝑡 > 0 (vaguely, the size of this neighbourhood). Such a solution is characterised, in gross, by a function 𝜑 𝑡 (in the case 𝐸 = R 𝑑 it corresponds to the density of 𝜇 = 𝜇 𝑡 in (6) with respect to the Hausdorff measure on 𝐸). Then we would use the Banach-Alaoglu theorem in a suitable functional space as a compactness argument to say that the family of functions {𝜑 𝑡 } normalised correctly has a non-constant weak limit. This weak limit would satisfy a convolutional equation obtained again from (7) which has only constant solutions -a contradiction. However, this scheme requires a choice of an ample enough space for the compactness argument, and it also requires some restriction on the space where the functions {𝜑 𝑡 } belong to get the required equation from (7) we mentioned above. These two requirements do not meet so far: the space one needs for the compactness argument is larger than the one where we can obtain our convolutional equation. For a more detailed discussion, see Section 5 of Paper I; plus, we will give some more information about the issue at the end of this subsection and in Subsection 1. 6.

Therefore for now we restrict the discussion to one parameter families of solutions and finally present the positive results we have concerning Υ 𝑓 𝑙𝑎𝑡 .

We consider quite general parametric families of solutions, but the reader can keep in mind the following models. First, let us restrict ourselves to the case when the measures 𝜇 𝑡 of all of the functions 𝐷 𝛼,𝜇𝑡 of our family of solutions in the neighbourhood of the flat one are supported on the hyperplane 𝐸 = R 𝑑 . Note that even in this simplest case we have work to do: the goal is to show the impossibility of having non-constant densities of the measures 𝜇 𝑡 with respect to 𝑑-dimensional Lebesgue measure. Here the easiest one-parameter family to consider is {𝐷 𝛼,𝜇𝑡 } 𝑡∈[0,𝑡 0 ) with 𝐸 = R 𝑑 , as discussed, and 𝜇 𝑡 = (1 + 𝑡𝜌)𝑑ℋ 𝑑 for a fixed non-constant function 𝜌 ∈ 𝐿 ∞ (R 𝑑 ). The measures 𝜇 𝑡 are considered as small perturbations of the measure ℋ 𝑑 with densities linear in 𝑡.

Then, we can pass to a more complicated case when the solutions 𝐷 𝛼,𝜇𝑡 have 𝜇 𝑡 supported on graphs close to the hyperplane R 𝑑 . Now, in addition to the non-constant densities of the measures 𝜇 𝑡 , we need to take into account that our measures are supported on different sets.

Here the easiest family to study is the one where all the supports of 𝜇 𝑡 's have the same shape of the graph of a Lipschitz function and are parallel to each other. Plus, we suppose, as before, that the densities of the pullbacks of 𝜇 𝑡 's are small perturbations of the measure ℋ 𝑑 with linear dependence on 𝑡. More precisely, such a family can be represented as {𝐷 𝛼,𝜇𝑡 } 𝑡∈[0,𝑡 0 ) with 𝐸 𝑡 = 𝐼𝑚(𝐼𝑑 + 𝑡𝜔), and (𝐼𝑑 + 𝑡𝜔) -1 (𝜇 𝑡 ) = (1 + 𝑡𝜌)𝑑ℋ 𝑑 for fixed non-constant functions 𝜌 ∈ 𝐿 ∞ (R 𝑑 ), 𝜔 ∈ 𝐿𝑖𝑝(R 𝑑 ). Due to our method, we also have to add a condition that either 𝜌 or 𝜔 is integrable.

The families {𝐷 𝛼,𝜇𝑡 } we work with are natural generalisations of the ones we described in the previous paragraphs. At the same time, the restrictions we impose on them do not seem to be too confining. For example, we no longer assume the linear dependence on 𝑡 of our densities and graph functions. For the case when we assume in advance 𝐸 𝑡 = R 𝑑 , we ask that the family of densities of measures 𝜇 𝑡 has a non-trivial Frechet derivative with bounded mean oscillation at 𝑡 = 0, and we pose some local summability conditions, which partially reflect that the densities are small perturbations of a constant. This is why we call them non-trivial one-parameter differentiable families of perturbations of the flat solution. For the more general case when 𝐸 𝑡 s can be graphs of Lipschitz functions, we ask in addition the existence of a non-trivial Frechet derivative with bounded mean oscillation at 𝑡 = 0 from the family of functions 𝜓 𝑡 such that 𝐸 𝑡 = 𝐼𝑚(𝐼𝑑 + 𝜓 𝑡 ) (plus the same local summability conditions we mentioned above). For a more accurate definition see the introduction of Paper I.

Theorem 1. For an integer 𝑑 < 𝑛 -2 and 𝐸 = R 𝑑 there are no non-trivial one-parameter differentiable families of flat perturbations of the flat solution of the equation 𝐿 𝛼,𝜇 𝐷 𝛼,𝜇 = 0. Theorem 2. For any integer 𝑑 < 𝑛 -2 there are no non-trivial one-parameter differentiable families of graph perturbations of the flat solution of the equation 𝐿 𝛼,𝜇 𝐷 𝛼,𝜇 = 0.

Note that the conditions 𝑛 -𝑑 > 2 and 𝛼 > 0 not "magic" (𝛼 ̸ = 𝑛 -𝑑 -2) do not pose any additional restrictions for the parameters 𝑛, 𝑑 and 𝛼 compared to the statement of the conjecture Υ 𝑓 𝑙𝑎𝑡 .

If we know in advance that 𝐸 is a hyperplane, we also prove a result that one can call a non-existence of global solutions in the most simple case. Namely, given that the density of the measure 𝜇 in 𝐷 𝛼,𝜇 with respect to the Hausdorff measure is smooth enough and not a constant, then 𝐷 𝛼,𝜇 cannot solve (7). For this result we have some additional restrictions on the parameters 𝛼 and 𝑑 because we are obliged to assume the summability of certain functions like 𝑓 𝑥 (𝑦) = |𝑥 -𝑦| -𝛾(𝑑,𝛼) , 𝛾(𝑑, 𝛼) > 0.

Theorem 3. If 𝐸 is a hyperplane of dimension 𝑑 (𝐸 = R 𝑑 ) such that 𝑛 -𝑑 > 4, 𝛼 > 2 + 𝜀 0 for some 0 < 𝜀 0 < 1, and the density of the measure 𝜇 with respect to the Hausdorff measure ℋ 𝑑 on 𝐸 is not a constant, but of class 𝐶 2,𝜀 for some 0 < 𝜀 < 𝜀 0 , then the function 𝐷 𝛼,𝜇 as in (6) cannot be a solution for the equation (7).

The proof of Theorems 1 and 2 can be divided into three main steps. The first one is to obtain some information about the distance function 𝐷 𝛼,𝜇 , on the condition that it is a solution to (7). Here one starts with an easy but crucial observation that 𝐿 𝛼,𝜇 𝐷 𝛼,𝜇 = 0 ⇐⇒ ∆𝐷 𝛾 𝛼,𝜇 = 0 with 𝛾 = -𝑛 + 𝑑 + 2.

Next, we use the fact that harmonic functions, even if they are harmonic outside a set of dimension 𝑑 < 𝑛 -1 in R 𝑛 , can be represented as a convolution with the kernel 1 |𝑥| 𝑛-2 . Theorem 4. Let 𝑢 be a function harmonic outside a 𝑑-Ahlfors regular set 𝐸 ⊂ R 𝑛 such that |𝑢(𝑥)| ≤ 𝐶𝛿(𝑥) -𝑛+𝑑+2 with 𝛿(𝑥) = dist(𝑥, 𝐸). Then there exists a function 𝑓 ∈ 𝐿 ∞ (𝐸) such that

𝑢(𝑥) = R𝑛 𝑓 (𝑦)𝑑𝜎(𝑦) |𝑥 -𝑦| 𝑛-2 , where 𝜎 = ℋ 𝑑 | 𝐸 . (9) 
The last ingredient for this step is the existence of the non-tangential limits for functions like the distance functions (6) or the right-hand side of (9). Combining the definition (6) with the representation in Theorem 4, we go to the non-tangential limit and obtain an expression for the density of the measure 𝜇 in terms of the function 𝑓 in (9). Once this is done, the equality (9), with the left hand side replaced by 𝐷 𝛾 𝛼,𝜇 , transforms into an equation on the function 𝑓 :

Ê 𝑓 (𝑦)𝑑𝑦 |𝑥 -𝑦| 𝑛-2 = 𝑐 ⎛ ⎝ Ê 𝑓 (𝑦) 𝛼 𝑛-𝑑-2 𝑑𝑦 |𝑥 -𝑦| 𝑑+𝛼 ⎞ ⎠ 𝑛-𝑑-2 𝛼 , ∀ 𝑥 ∈ R 𝑛 ∖ 𝐸. ( 10 
)
Step two is to simplify the equation on the function 𝑓 we obtained in step one. The main reason why this needs to be done is that the equation ( 10) is nonlinear. Recall the assumption that the density and the support in (10) depend on a parameter 𝑡 once we write it down for our one-parameter family. So the way we choose to deal with it is to differentiate the equation with respect to this parameter 𝑡. This gives us a linear equation on the functions 𝜌 and 𝜔. This simplification is quite demanding in terms of restrictions to the density function 𝜌 and the shape function 𝑤 we have above in our examples: indeed, in general, to differentiate, we need to ask some regularity first. It is also the reason why we cannot match the functional spaces for the Banach-Alaoglu argument and our non-existence of one-parameter families result.

Step three is to treat the simplified equation we got in step two. Here we can use either a duality argument or a Fourier transform argument to show that the density function 𝜌 and the shape function 𝑤 have to be zero. This gives us a proof by contradiction. The exact statement one needs to prove in the case of Theorem 1 is the following; we leave it here to be able to return to it afterward for a discussion. Lemma 1. Let 𝜌 be a function in 𝐵𝑀 𝑂(R 𝑑 ). Then the equation

R𝑑 [︂ 𝑐 𝛿(𝑥) 𝑑+2+𝛼-𝑛 |𝑥 -𝑦| 𝑑+𝛼 - 1 |𝑥 -𝑦| 𝑛-2 ]︂ 𝜌(𝑦)𝑑𝑦 = 0 ∀𝑥 ∈ R 𝑛 ∖ R 𝑑 , (11) 
where the constant 𝑐 is chosen so that the function in the brackets [•] has integral zero, and

𝛿(𝑥) = dist(𝑥, R 𝑑 ), implies that 𝜌 is a constant function.
For the proof of Theorem 3 the first two steps remain the same, except for the fact that we have to do the Taylor decomposition of the equality (9) up to the second term (and for this we have to have the matching regularity assumption on the density). This gives us, on the third step of the proof, a second-order differential equation on the density of our measure 𝜇 wrt ℋ 𝑑 | R 𝑑 , which in its turn gives that a power of the density is harmonic. Together with the growth condition in Theorem 4, Liouville's theorem implies that the density can only be a constant.

Counterexamples to typical behaviour of elliptic measures

We now change the topic and return to the classical elliptic PDEs.

As counterparts to the harmonic measure associated with the Dirichlet problem (1), elliptic measures 𝑤 𝑥 Ω,𝐿 , associated with the Dirichlet problem like (1) but with an elliptic operator in the divergence form 𝐿 = -div 𝐴∇ in place of the Laplacian, are also actively studied. Concerning the program of characterisation of rectifiability in terms of good behaviour of harmonic measure, its natural continuation is to investigate for which coefficients 𝐴 the analogous result holds. Up to this date, we know that similar characterisation of the geometry of the boundary 𝜕Ω works for a considerably larger class of operators than just the Laplacian, as always, under certain conditions on the domain Ω. The direct implication, that rectifiability of the boundary implies good behaviour of elliptic measures, is initially due to Kenig and Pipher, [START_REF] Kenig | The Dirichlet problem for elliptic equations with drift terms[END_REF], preceded by the result of Dahlberg about Lipschitz graphs (7). For the converse, see, for example, (1), [START_REF] Hofmann | Transference of scale-invariant estimates from Lipschitz to Non-tangentially accessible to Uniformly rectifiable domains[END_REF], and [START_REF] Hofmann | 𝐴 ∞ implies NTA for a class of variable coefficient elliptic operators[END_REF]. The notations and the background settings (connectivity properties of Ω) differ a bit, but essentially the elliptic operators for which the desired characterisation holds satisfy the so-called Dahlberg-Kenig-Pipher condition (DKP for short), see e.g. ( 16), the remarks after Definition 1.10. It is a Carleson measure condition that bounds the oscillation of a (matrixvalued) function. For example, this condition holds for locally Hölder continuous functions. On the informal level, people often say that the operators satisfying this condition are close to the Laplacian.

For the operators described above the following complement to the aforementioned geometric characterisation is true. In R 𝑛 , the boundary 𝜕Ω of a domain Ω is purely 𝑛 -1-unrectifiable (a set whose intersection with any Lipschitz graph R 𝑛-1 → R 𝑛 has ℋ 𝑛-1 measure zero) if and only if the (classical) harmonic measure is singular with respect to the Hausdorff measure on 𝜕Ω (again, if we ignore the topological assumptions on Ω needed to state the implications precisely). The same is true also for the elliptic operators described above, the ones that satisfy the DKP condition, and the corresponding elliptic measures. Being singular with respect to the Hausdorff measure on the boundary when the latter is purely unrectifiable is what we call typical behaviour of elliptic measure. (Note that we do not consider here the question of what a typical behaviour of an elliptic operator is from the point of view of randomness. We use the term only because the Laplacian is the operator we like the most.)

After the equivalence between pure unrectifiability and singularity of elliptic measures of DKP operators with respect to the boundary measure became clear, the community's general opinion seemed to be that, for the Cantor set 𝐾 on the plane, the singularity of an elliptic measure wrt ℋ 1 on 𝐾 is always the case, regardless of the coefficient of the elliptic operator in question. Also, it seemed natural to believe that, if a matrix coefficient possesses some minimal regularity (like continuity), then the absolute continuity of the elliptic measure with respect to the boundary measure also implies rectifiability of the boundary. Both claims turned out not to be true: for certain even purely unrectifiable sets, including the aforementioned Cantor set, one can find an elliptic operator in the divergence form with a continuous bounded and bounded away from zero coefficient whose elliptic measure is absolutely continuous with respect to the Hausdorff measure on the boundary. We will sometimes call such operators good (for the prescribed domain with a "bad" boundary).

The first examples of such a pair set-operator were constructed lately by David and Mayboroda in (13). The main set of their interest is the four-corner Canter set 𝐾 in R 2 (Garnett-Ivanov set). It is a one-dimensional Ahlfors-regular set (for which the standard harmonic measure is singular with respect to ℋ 1 on 𝐾, as mentioned before). The operator they construct is elliptic in the divergence form

𝐿 = -div𝑎∇, (12) 
with a continuous scalar coefficient 𝑎 on R 2 ∖ 𝐾 (as opposed to a matrix-valued coefficient) such that

𝐶 -1 ≤ 𝑎(𝑥) ≤ 𝐶 for 𝑥 ∈ Ω = R 2 ∖ 𝐾, (13) 
and such that the elliptic measure of 𝐿 with the pole at infinity is even proportional to the Hausdorff measure ℋ 1 | 𝐾 . As a corollary we have that, for all poles 𝑥 which are sufficiently far away from 𝐾, 𝐶

-1 ℋ 1 | 𝐾 ≤ 𝑤 𝑥 𝐿 ≤ 𝐶ℋ 1 | 𝐾 .
The authors of ( 13) also show that their construction has some flexibility, and the same result also holds for rotated Cantor sets (see Section 5 in (13)).

Notice that, even though the result of the paper (13), in the context of the general belief that absolute continuity implies rectifiability, would be interesting even with a matrix-valued coefficient in (12), the authors restrict themselves to a scalar-valued one. This restriction, apart from making the problem harder, seems to be more geometrically relevant and opens a couple of other interesting questions.

By saying that a scalar coefficient seems to be more geometrically relevant we mean the following. Consider the question about the existence of an operator whose elliptic measure is absolutely continuous with respect to the Hausdorff measure on the boundary for a standard Koch snowflake 𝐾 instead of the Cantor set. In this setting, the construction of such an operator 𝐿 = -div𝐴∇ with a matrix-valued coefficient is too easy. Indeed, consider a quasiconformal mapping 𝑞 : R 2 → R 2 that maps the line 𝑙 to 𝐾. An operator 𝐿 we look for is provided by the image of the Laplacian on a component of R 2 ∖ 𝑙 under the mapping 𝑞 because the general theory states that the resulting operator 𝐿 is indeed an elliptic one in the divergence form, and the corresponding 𝑤 𝐿 is absolutely continuous with respect to ℋ 𝑑 | 𝐾 since the same was true for the Laplacian and the Lebesgue measure on the line. Of course, no quasiconformal mapping would help us to construct such an operator for the four-corner Cantor set. But the story with the snowflake indicates still that the class of operators with scalar coefficients, as opposed to matrix-valued ones, is more appropriate to study.

All this leads up to a couple of open questions of different levels of complexity and generality. The first of those would be, naturally, the following. For the standard Koch-type snowflake, does a good operator with a scalar coefficient exist? For all Koch-type snowflakes?

1.5 Paper II, "Good elliptic operators on snowflakes"

In this paper, we extend the class of examples of sets for which a good operator with a scalar coefficient exists. Namely, we construct such operators for all symmetric Koch-type snowflakes of dimensions 𝑑 that lie strictly between 1 and ln (4) ln (3) . We describe in a bit more detail what exactly these curves are. At the base of our constructions is a transformation of an interval. Recall that the classical Koch snowflake on a unit interval is built as follows. Cut out the middle third of the interval. Replace it with the two sides of the equilateral triangle built on the middle third as a base. Repeat the procedure for each interval we got in the previous step of the construction. What we do is similar. Take a unit interval 𝐼 and fix any angle 𝛼, 0 < 𝛼 < 𝜋/3. As a first step of the construction, replace the segment 𝐼 with 𝐹 𝛼 (𝐼) which is constructed as follows (see figure 1). Substitute the middle of the interval by two sides of the isosceles triangle with the angle 𝛼 built above 𝐼, so that four intervals of 𝐹 𝛼 (𝐼) have equal length, and that 𝐹 𝛼 (𝐼) is symmetric with respect to the bisection of 𝐼. The symmetric Koch-type snowflake 𝑆 𝛼 | 𝐼 defined from the unit interval 𝐼 is the set constructed inductively by 𝐹 𝛼 (𝐼) applied iteratively to all intervals that compose the previous iteration: lim

𝑘→∞ 𝑆 𝑘 𝛼 , 𝑆 𝑘 𝛼 = ∪ 𝐽∈𝑆 𝑘-1 𝛼 𝐹 (𝐽), 𝑆 0 𝛼 = 𝐼. ( 14 
)
As a simple calculation shows, the Hausdorff dimension of 𝑆 𝛼 | 𝐼 is equal to

ln (4)
ln (2(1+cos 𝛼)) , which grows monotonously from 1 to ln (4) ln (3) , the dimension of the standard snowflake, as 𝛼 varies between 0 and 𝜋/3 (both ends not included).

Actually, we will have three types of snowflakes, distinguished as follows. The snowflakes of the first type 𝑆 1 𝛼 , observed from a distance, will resemble a circle. Take a regular polygon and build on every segment 𝐼 ∈ 𝑃 a snowflake 𝑆 𝛼 | 𝐼 as described. Then 𝑆 1 𝛼 := ∪ 𝐼∈𝑃 𝑆 𝛼 | 𝐼 , see figure 2. The most beautiful compact snowflakes we get are those that are built from a regular polygon with 𝑁 ≥ 4 vertices and with the parameter 𝛼 equal to 𝜋 𝑁 , see figure 2. The snowflakes of the second type, observed from a distance, will resemble a line. We take a line R in R 2 and chop it into unit intervals 𝐼 𝑛 , 𝑛 ∈ Z. On each 𝐼 𝑛 we build a snowflake 𝑆 𝛼 | 𝐼𝑛 , and define 𝑆 2 𝛼 = ∪ 𝑛∈Z 𝑆 𝛼 | 𝐼𝑛 , see figure 4. 

𝛼

The snowflakes of the third type are going to be purely fractal: these will be non-compact sets that do not resemble a line but will look the same (modulo a rotation) at all scales and locations, see figure 5. Take a unit interval 𝐼 = [0, 1] and build 𝑆 𝛼 | 𝐼 . Take 𝜅 = 2(1 + cos 𝛼), and let 𝐻 𝜅 be a homothety with the coefficient 𝜅 and the center zero. Define

𝑆 3 𝛼 = [∪ 𝑛≥0 𝐻 𝑛 𝜅 (𝑆 𝛼 | 𝐼 )] ∪ [︁ ∪ 𝑛≥0 𝐻 𝑛 𝜅 (𝑆 𝛼 | 𝐼 ) ]︁ . ( 15 
)
Figure 5: Non-compact snowflake 𝑆 3

𝛼

We now state precisely the main result of the paper. By 𝑆 𝛼 we denote any of the snowflakes of three types described above, 𝑆 1 𝛼 , 𝑆 2 𝛼 , or 𝑆 3 𝛼 . The standard Koch snowflake is not covered by our construction.

Theorem 5. For each symmetric Koch-type snowflake 𝑆 𝛼 with 0 < 𝛼 < 𝜋/3 there exists an elliptic operator 𝐿 = -div 𝑎∇ with a continuous scalar coefficient 𝑎 such that 1. 𝑎 is defined on the domain Ω = (R 2 ∖ 𝑆 𝛼 )

+ , one of the two connected components of R 2 ∖ 𝑆 𝛼 , and is continuous, 2. as in (13), 𝑎 is bounded and bounded away from zero, 3. and the elliptic measure 𝑤 ∞ 𝐿 is equal to the Hausdorff measure ℋ 𝑑 | 𝑆𝛼 , and, in addition,

𝐶 -1 ℋ 𝑑 | 𝑆𝛼 ≤ 𝑤 𝑥 𝐿 ≤ 𝐶ℋ 𝑑 | 𝑆𝛼 for all 𝑥 such that 𝛿(𝑥) = dist(𝑥, 𝑆 𝛼 ) ≥ 1, where 1 < 𝑑 = ln (4)
ln (2(1+cos 𝛼)) < ln(4) ln (3) . Our result relies on the procedure of reconstruction of the scalar coefficient 𝑎 of a divergence form elliptic operator -div 𝑎∇ from the level lines of conjugated functions (𝑢, 𝑣) which solve the equations -div 𝑎∇ and -div 𝑎 -1 ∇ respectively. This procedure is described in detail in Section 2 of both (13) and Paper II. Directing a more curious reader to the latter paper for more details, we specify here that the coefficient 𝑎 is defined from a net of two families of mutually orthogonal curves with a good property, which vaguely can be described as "each cell of the net does not differ too much from a square", where "does not differ too much" has to hold uniformly on the domain Ω. The latter property guarantees us (13).

Our net construction, in turn, is realised by a tiling of the domain Ω. First, we build a family of good approximating curves 𝑆 𝑘 for the snowflake 𝑆 𝛼 . Then we divide the stripes between the consecutive approximating curves into symmetric tiles of two types. "Vertical" sides of tiles along with the curves 𝑆 𝑘 form a large-scale net. Once this is done, we explain how to fill every cell of our net with families of mutually orthogonal curves, and why families of neighbouring cells glue properly to each other. Throughout the construction, we pay attention to guaranteeing the good property we mentioned above, along with (13).

Some more motivation, open problems and perspectives

Let us first return to the story about degenerate elliptic operators and the incomplete criterion of 𝑑-rectifiability in R 𝑛 ( for 𝑑 < 𝑛 -1) via the degenerate harmonic measure ruled by the operator (5).

The fact that the conjecture Υ 𝑓 𝑙𝑎𝑡 blocks our progress with the characterisation of rectifiability in terms of behaviour of the degenerate harmonic measure, after all, does not seem to be too surprising for the following reason. The retrospective of the development of qualitative and quantitative characterisations of rectifiability, in particular the one in terms of the classical harmonic measure, and the recent progress in the theory of degenerate elliptic operators allow us to say that the techniques that establish descriptions of rectifiability by the good behaviour of analytical objects are well developed, but they always reside on some sort of a "zero-level" flatness statement. Indeed, the knowledge that if the distance function to the boundary solves ∆• = 0, then the boundary of the domain is necessarily flat is the foundation of the standard theory in codimension one. The fact that (7) has only flat solutions happens to be such a "zero-level" flatness statement for the theory of degenerate operators developed by David et al.

So one could say that solving the conjecture Υ 𝑓 𝑙𝑎𝑡 is the most important issue we have up-to-date in the theory of the characterisation of higher codimensional rectifiable sets via harmonic measure. Once it is verified, we will be able to get a much better insight into the higher codimension case.

Needless to say, the conjecture Υ 𝑓 𝑙𝑎𝑡 stays very much open. Even if we manage to twitch somehow the Banach-Alaoglu theorem technique we described in Subsection 1.4, it is not at all clear to us how to prove the absence of global solutions for (7) far from the flat one.

Concerning the perspectives to improve the Banach-Alaoglu argument presented briefly at the end of Subsection 1.3 to complete the proof of the non-existence of solutions near the flat one, as we hinted already there, the second step seems to be the most brutal and demanding in terms of the additional restrictions one needs to pose for the one-parameter families we consider. These restrictions are the reason why our results are not general enough to apply to sporadic families of solutions in the neighbourhood of the flat one. More precisely, if we would have been able to pass from the equation (10) to the condition (11) on the function 𝑓 using an operation less demanding than derivation, we could probably repair the argument. We are not very optimistic about this perspective though, because the condition ( 11) is a linear condition on 𝑓 , which intuitively implies that we would have to linearise (10) anyway.

As an additional motivation to study (7), we indicate that the problem above somewhat resembles the one B. Jaye and F.Nazarov considered while developing their theory of reflectionless measures (see [START_REF] Jaye | Reflectionless measures for Calderón-Zygmund operators I: general theory[END_REF] and ( 28)). The similarity is that we would like to restore the information that some measure coincides with the Hausdorff measure restricted to a hyperplane from an apparently overdetermined equation for this measure (see for example Question 2.1 in ( 28)).

Regarding the counterexamples to the typical behaviour of elliptic measure we have, since the phenomenon of good operators with scalar coefficients was discovered very recently, it is not at all well understood. The examples are relatively few, as well as the techniques that provide us with these examples. This opens up a (subjectively) nice direction of research, where one can enjoy questions of different levels, delicacy, and calibre.

We can start by discussing the snowflake counterexamples we already have. Even leaving for now the question of why the usual Koch snowflake is not covered by our construction, we can deliberate about the meaning of the term Koch-type snowflake. What we did, the replacement of the equilateral triangle above the base segment by an isosceles one above the base segment with an angle 𝛼 smaller than 𝜋/3, is the simplest interpretation. We would like to know if our construction works if, instead of building an isosceles triangle always above (or always below) the base segment, we build it above or below depending on where we are in the construction.

One can go even further and vary the angle 𝛼 depending on the iteration and the location of the base segment.

We think that our construction does not cover something completely random. For example, already the random change of the sign of the angle (random choice of up or down when building the triangle on the base) should be dangerous. Our opinion is based on the fact that Theorem 5 relies on covering the domain Ω with a finite set of tiles, which relies in its turn on a certain level of regularity of the iterations 𝑆 𝑘 𝛼 in (14). But it does not mean of course that a good operator with a scalar coefficient does not exist in those cases (about the case when |𝛼| is small enough we suspect that it should exist, see later).

Another rather simple thing one could do is to check whether our method applies to other regular fractals in R 2 . The are a lot of sets that are generated by the action of some mapping like the mapping 𝐹 we used in the previous subsection (e.g., the boundary of the Gosper island, Fibonacci word fractal, Minkowski sausage, etc.). Our impression is that the higher the dimension of the set is, the harder it should be since a set of large dimension should be quite densely packed in the space, so the approximating curves our construction relies on are harder to "draw" (but this is very vague).

Leaving aside the toy problems and being tired of trying to collect the examples one by one, we can ask, what about some bigger class of fractals in R 2 ? We are not sure yet, but we conjecture that for all Reifenberg flat 1-Ahlfors regular sets with a small enough (flatness) constant on the plane, one should be able to construct a good operator with a scalar coefficient. These sets can be very irregular, so we doubt that the tiling technique presented in this thesis can work. However something remotely similar might. Recall that one of the crucial parts of the construction presented here is the large-scale net, composed of approximating green curves and some red ones (the second ones are easier to get than the green ones in our opinion). For Reifenberg flat sets there is a way to get the approximating curves, which comes from a construction of bi-Hölder parameterisation of the set (see (15) or [START_REF] Hong | A new proof of Riefenberg's topological disc theorem[END_REF] as a possible alternative). But the cells of the resulting net (the analogues of our tiles) will not at all resemble each other, so no finite set of tiles that covers the domain can be obtained (the reason is the irregularity of the initial set itself, not a defect of the approximating curves, so we can expect nothing better here). This could be fixed however if we learn how to fill in the cells with green and red curves in a controlled way. Namely, we need to control precisely how the locations of endpoints of the curves differ between right and left, lower and upper lids. In our case, the symmetry helps us a lot. In the general case, it seems not very easy to do. Another significant step forward would be to construct some examples of good operators for purely unrectifiable sets in higher dimensions. Although we can do some already, as mentioned in Section 5 of (13), they do not look like proper higher dimensional fractals, as they are of the type 𝑆 × R with the operator coefficient 𝐴(𝑥, 𝑦, 𝑧) = 𝑎(𝑥, 𝑦) in R 3 , where 𝑆 -any fractal (a snowflake 𝑆 𝛼 or the Cantor set 𝐾) for which we know how to construct a good operator. The main difficulty here is to think of the procedure that reconstructs an operator coefficient from the level surfaces of the solution of the operator. As far as we know, the procedure we use, see Sections 2 in both (13) and Paper II, is only known for dimension 2. It also might be tricky to identify the analogue of the "geometrically relevant" condition for the matrix coefficient 𝐴 in higher dimensions. Recall that having a scalar-valued coefficient as opposed to a matrix-valued one is one of the key features of what we are doing.

Changing the focus from sets to operators, if one fixes a fractal for which a good operator exists, it also might be interesting to know, where lies the boundary between the operators whose elliptic measure is singular with respect to the boundary measure and the operators whose elliptic measure is absolutely continuous? It is known that, if an operator 𝐿 0 in the domain Ω is such that 𝑤 𝐿 0 << ℋ 𝑑 | 𝜕Ω , or, on the contrary, 𝑤 𝐿 0 ⊥ ℋ 𝑑 | 𝜕Ω , then the operators 𝐿 close to 𝐿 0 in some sense have elliptic measures with the same behaviour. The case of 𝐿 0 = -∆ was discussed at the beginning of Subsection 1.4, and the case of good operators for the complement of the Cantor set or the complements of the symmetric snowflakes, as constructed by David and Mayboroda, or in this thesis, follows from (18). But what happens in the gap between the operators covered by these perturbation results is unclear. This question seems to be however too general already, and we do not expect the techniques we presented in the thesis to be of much help for its resolution.

Introduction (version Française)

Cette thèse étudie la mesure harmonique, ainsi qu'une généralisation particulière, de la perspective de la Théorie Géométrique de la Mesure (TGM pour faire court). Soit Ω un domaine (borné et suffisamment régulier) dans l'espace euclidien R 𝑛 . Du point de vue de l'analyse, la mesure harmonique 𝑤 𝑥 Ω avec le pôle 𝑥 ∈ Ω est la mesure sur la frontière du domaine 𝜕Ω, qui fournit une représentation intégrale de la solution du problème de Dirichlet {︂ ∆𝑢 = 0 in Ω, 𝑢 = 𝑓 on 𝜕Ω.

En autres termes, si 𝑓 est une fonction continue à support compact sur la frontière 𝜕Ω, alors pour chaque point 𝑥 à l'intérieur du domaine, on a

𝑢(𝑥) = ∂Ω 𝑓 (𝑦)𝑑𝑤 𝑥 Ω (𝑦). (17) 
Il existe également une interprétation probabiliste sympathique et intuitive de cet objet, qui repose sur le mouvement brownien et qui est utile en général, mais on n'en discutera pas trop ici. La mesure harmonique joue un rôle fondamental dans l'analyse des équations aux dérivées partielles (EDP) et l'étude des problèmes en Analyse Harmonique liés aux EDP. Toutes les relations complexes entre la mesure harmonique et ces différents problèmes, ainsi que les techniques qui utilisent la mesure harmonique, sont expliquées de manière détaillée, par exemple, dans le livre [START_REF] Garnett | Harmonic measure[END_REF] pour la dimension 2. Les propriétés des différents objets analytiques, et, naturellement, les propriétés des solutions des problèmes d'EDP, dépendent du cadre de (16), par exemple, la géométrie du domaine Ω et de sa frontière 𝜕Ω. La TGM, en tant que sousdiscipline de l'Analyse, étudie les liens entre diverses bonnes propriétés des objets analytiques et la géométrie des ensembles liés ou prescrits à ces objets.

On commence par un bref exposé de ce qui est connu sur une telle connexion dans le cas où notre objet analytique est la mesure harmonique.

La mesure harmonique et la rectifiabilité

L'étude de la relation entre la géométrie du domaine Ω dans (16) et certaines bonnes propriétés de la mesure harmonique s'est poursuivie tout au long du XXe siècle. La philosophie qui émerge de cette étude est que la continuité absolue de la mesure harmonique par rapport à la mesure de la frontière sur 𝜕Ω est équivalente à la 𝑛 -1-rectifiabilité de la frontière 𝜕Ω. Definition 5. 𝐸 ⊂ R 𝑛 est appelé 𝑑-rectifiable s'il existe une famille au plus dénombrable 𝑓 𝑖 de fonctions Lipschitz 𝑓 𝑖 : R 𝑑 → R 𝑛 telles que

ℋ 𝑑 (︀ 𝐸 ∖ ∪ 𝑖 𝑓 𝑖 (R 𝑑 ) )︀ = 0.
On donne un résumé court de l'histoire de la recherche sur le sujet et on formule quelques résultats précis. Tout a commencé avec la dimension 2, avec le résultat des frères Riesz datant de 1916, qui affirme que la mesure harmonique sur un domaine plan simplement connexe est absolument continue par rapport à ℋ 1 , à condition que la frontière du domaine soit rectifiable [START_REF] Riesz | Über die randwerte einer analtischen funktion[END_REF]. Plus tard, en 1936, Lavrent'ev quantifia ce résultat, voir [START_REF] Lavrent'ev | Boundary problems in the theory of univalent functions[END_REF] : si notre domaine est une courbe corde-arc, la densité de la mesure harmonique par rapport à ℋ 1 est une fonction de la classe de Muckenhoupt 𝐴 ∞ . Beaucoup plus tard, en 1990, Bishop et Jones, (5), ont fourni une version locale de ce dernier résultat, et ont également montré que, pour que la mesure harmonique soit absolument continue par rapport à la mesure de Hausdorff sur la frontière d'un domaine, une certaine connexité est nécessaire, et que la rectifiabilité de la frontière seule n'est pas suffisante. Dans des dimensions supérieures, le premier résultat significatif appartient à Dahlberg, qui a établi la continuité absolue de 𝑤 par rapport à ℋ 𝑛-1 pour les frontières lipschitziennes 𝑛 -1-dimensionnelles dans R 𝑛 , voir (6). Il a ensuite été étendu aux domaines non-tangentiellement accessibles avec des frontières (𝑛 -1)-Ahlfors régulières par David et Jerison (11), et Semmes [START_REF] Semmes | Analysis vs. geometry on a class of rectifiable hypersurfaces[END_REF], puis l'hypothèse d'Ahlfors-régularité a été affaiblie par Badger (4). Ce dernier résultat ne complète pas la liste des améliorations des hypothèses topologiques nécessaires pour garantir que la rectifiabilité est suffisante pour la continuité absolue 𝑤 << ℋ 𝑛-1 , mais on ne cherche pas à le décrire ici. Definition 6. Un ensemble 𝐸 ⊂ R 𝑛 est appelé 𝑑-Ahlfors régulier si pour chaque 𝑟 : 0 < 𝑟 < diam(𝐸), la mesure de Hausdorff 𝑑-dimensionnelle de l'intersection de 𝐸 et d'une boule 𝐵(𝑥, 𝑟) centrée à 𝐸 est comparable à 𝑟 𝑑 : Un peu plus tôt, Wu et Ziemer, (34) et [START_REF] Ziemer | Some remarks on harmonic measure in space[END_REF], ont fourni quelques contre-exemples qui montrent la nécessité d'une hypothèse de connexité sur le domaine si l'on veut que 𝑤 soit absolument continue par rapport à ℋ 𝑛-1 sur la frontière. Dans [START_REF] Hofmann | Uniform rectifiability and harmonic measure I: uniform rectifiability implies Poisson kernels in Lp[END_REF], ( 25) et (2), les auteurs ont établi que, pour les domaines avec des frontières 𝑛 -1-Ahlfors régulières et une condition NTA unilatérale (le complément R 𝑛 ∖ Ω n'a pas besoin d'être un domaine "à tire-bouchon"), la rectifiabilité uniforme de la frontière est équivalente à l'ensemble complet des conditions NTA, et également équivalente à ce que 𝑤 soit quantitativement absolument continue par rapport à la mesure de Hausdorff sur la frontière. Definition 8. 𝐸 ⊂ R 𝑛 est 𝑑-uniformément rectifiable s'il existe une constante 𝐶 ≥ 1 telle que pour chaque 𝑥 ∈ 𝐸 et un rayon 𝑟, on peut trouver un graphe Lipschitzien 𝐶-Lipschitz 𝐵 𝑑 (0, 𝑟) → R 𝑛 avec la propriété

∃ 𝐶 > 1 indépendent de r : 𝐶 -1 𝑟 𝑑 ≤ ℋ 𝑑 | 𝐸 (𝐵(𝑥, 𝑟)) ≤ 𝐶𝑟 𝑑 ∀ 𝑥 ∈ 𝐸.
ℋ 𝑑 (𝐸 ∩ 𝐵(𝑥, 𝑟) ∩ 𝑓 (𝐵 𝑑 (0, 𝑟))) ≥ 𝐶 -1 𝑟 𝑑 .
Enfin, probablement l'un des plus forts résultats de nécessité a été obtenu en 2015 grâce aux efforts combinés d'Azzam, S. Hofmann, Mourgoglou, Martell, Mayboroda, Tolsa et Volberg, (3). Il affirme que si Ω est un domaine ouvert et connecté et que 𝑤 est absolument continue par rapport à ℋ 𝑛-1 , alors la frontière du domaine doit être rectifiable. Simultanément, le contrepartie quantitative a été établie par S. Hofmann, Le, Martell et Nyström, [START_REF] Hofmann | The weak-𝐴 ∞ property of harmonic and p-harmonic measures implies uniform rectifiability[END_REF] : la propriété faible-𝐴 ∞ de la mesure harmonique implique la rectifiabilité uniforme de la frontière.

Ainsi, en effet, si l'on ne prend pas en compte les différentes hypothèses topologiques nécessaires pour affirmer qu'un domaine avec une frontière rectifiable est suffisamment bon pour que la mesure harmonique soit bien définie, la philosophie avec laquelle on a commencé cette sous-section est correcte. Elle donne un critère de 𝑛 -1-rectifiabilité en termes de mesure harmonique dans R 𝑛 .

Cependant, cela ne conclut pas les études sur les liens entre la géométrie des ensembles et diverses propriétés de la mesure harmonique, contrairement à ce que le lecteur pourrait penser. Il existe d'autres directions intéressantes intimement liées à ce qu'on vient de voir, certaines d'entre elles étant explorées dans ce manuscrit.

La mesure harmonique en grandes codimensions et la d-rectifiabilité

Une direction de recherche intéressante consiste à essayer d'étendre le critère de rectifiabilité en termes de mesure harmonique dans R 𝑛 aux domaines avec des frontières de codimensions supérieures. Pour dévoiler un peu ce qui vient, on dit qu'à ce jour, un tel critère n'est pas encore complet, mais il y a de progrès signifiant dans cette direction.

Le premier problème avec un critère de 𝑑-rectifiabilité via la mesure harmonique dans R 𝑛 est le suivant. On explique d'abord le problème dans le langage des probabilités car cela donne une meilleure intuition. Du point de vue probabiliste, la mesure harmonique 𝑤 𝑥 (𝐴) d'un sousensemble 𝐴 de la frontière 𝜕Ω d'un domaine Ω est la probabilité qu'un voyageur brownien, partant du point 𝑥 ∈ Ω, touche la frontière pour la première fois à l'intérieur de l'ensemble 𝐴. Si un ensemble 𝐸 a une dimension 𝑑 ≤ 𝑛 -2, alors le voyageur brownien standard ne le voit pas, donc la probabilité d'atterrir là-bas est toujours nulle. En ce qui concerne la théorie des problèmes elliptiques standards, on ne peut même pas dire que la mesure harmonique est définie pour des frontières de codimension supérieure car déjà le problème de Dirichlet n'est pas bien posé. Évidemment, le comportement de la mesure harmonique standard ne peut pas caractériser la géométrie des ensembles de plus basse dimension. Pour le faire, il faudrait inventer un analogue de la mesure harmonique qui "voit" tels objets. La chose la plus simple à faire est de remplacer le laplacien par quelque chose d'autre et d'essayer de travailler avec le problème d'EDP correspondant.

Chronologiquement, la première idée sur comment travailler avec les problèmes elliptiques dans les domaines ayant des frontières de codimension supérieure à un était probablement le concept du 𝑝-laplacien et de ses généralisations. Cette approche a été développée dans [START_REF] Heinonen | Nonlinear potential theory of degenerate elliptic equations[END_REF] et [START_REF] Lewis | Quasi-linear PDEs and low-dimensional sets[END_REF]. Dans ce dernier travail, la mesure 𝑝-harmonique a été définie, et certaines de ses bonnes propriétés ont été établies si la frontière est Riefenberg-plate. Cependant, à notre connaissance, ces explorations n'ont pas conduit à un critère de géométrie de la frontière (pour l'instant).

Ensuite, David, Feneuil, Mayboroda, et d'autres ont commencé à considérer des opérateurs de forme

𝐿 = -div𝐴∇, (18) 
sur les domaines Ω = R 𝑛 ∖ 𝐸, où 𝐸 est un ensemble 𝑑 < 𝑛 -1-Ahlfors régulier, avec la fonction 𝐴 : Ω → 𝑀 𝑛 (R) qui satisfait les conditions d'ellipticité modifiées suivantes

𝛿(𝑥) 𝑛-𝑑-1 𝐴(𝑥)𝜁 • 𝜉 ≤ 𝐶 1 |𝜁||𝜉|, 𝑥 ∈ Ω, 𝜁, 𝜉 ∈ R 𝑛 , et 𝛿(𝑥) 𝑛-𝑑-1 𝐴(𝑥)𝜁 • 𝜁 ≥ 𝐶 -1 1 |𝜁| 2 , 𝑥 ∈ Ω, 𝜁 ∈ R 𝑛 . (19) 
Ici, 𝐶 1 ≥ 1 est une constante, et 𝛿(𝑥) = dist(𝑥, 𝐸) est la fonction de distance de 𝑥 ∈ Ω à 𝐸.

On appellera de tels opérateurs 𝐿 elliptiques dégénérés. La motivation derrière cela est la suivante. La normalisation [START_REF] Garnett | Harmonic measure[END_REF] devrait attirer l'analogue d'un voyageur brownien de cet opérateur à la frontière avec la probabilité correcte. Dans le cas où 𝐸 = R 𝑑 et 𝐴(𝑥) = dist(𝑥, 𝐸) -𝑛+𝑑+1 Id, l'opérateur 𝐿 agit sur une fonction 𝑓 (𝑦, 𝑡), 𝑦 ∈ R 𝑑 , 𝑡 ∈ R 𝑛-𝑑 , qui est radiale en 𝑡, de la même manière que le laplacien le ferait sur la même fonction sur R 𝑑+1 + (c'est un calcul). On peut l'interpréter comme si les opérateurs en question créaient des voyageurs browniens qui traitent l'ensemble 𝐸 comme un trou noir.

En ce qui concerne la connectivité, dans le cas où Ω = R 𝑛 ∖ 𝐸 avec 𝐸 étant 𝑑-Ahlfors régulier, 𝑑 < 𝑛 -1, il n'y a pas de composant complémentaire, et dans (10) il est vérifié qu'un tel domaine Ω a un accès non tangentiel. Ainsi, aucune restriction supplémentaire, généralement posée quand on travaille avec la mesure harmonique, n'est nécessaire.

Pour les opérateurs elliptiques dégénérés 𝐿, l'article (10) développe un analogue de la théorie habituelle des opérateurs elliptiques. Ensuite, les auteurs cherchent à établir des analogues des résultats directes de continuité absolue, comme le théorème de Dahlberg cité ci-dessus. Dans (9), ils choisissent le meilleur opérateur qu'ils puissent trouver, qui sert d'analogue du laplacien, plus précisément, 

𝐿 = 𝐿 𝛼,𝜇 = -div𝐷 -𝑛+𝑑+1 𝛼,𝜇 ∇, (20) 
𝐷 𝛼,𝜇 (𝑥) = ⎛ ⎝ Ê |𝑥 -𝑦| -𝑑-𝛼 𝑑𝜇(𝑦) ⎞ ⎠ -1/𝛼 . ( 21 
)
Il est facile de vérifier que 𝐷 𝛼,𝜇 (𝑥) est équivalent à dist(𝑥, 𝐸), donc 𝐿 𝛼,𝜇 est effectivement dans la classe des opérateurs définis par (18) et [START_REF] Garnett | Harmonic measure[END_REF]. Ensuite, les auteurs montrent que si 𝐸 est le graphe d'une fonction lipschitzienne avec une constante suffisamment petite, alors la mesure harmonique (dégénérée) créée par 𝐿 𝛼,𝜇 est mutuellement absolument continue par rapport à 𝜇, plus le résultat quantitatif correspondant (la condition 𝐴 ∞ ). Les articles ( 14) et (17) étendent ce résultat au cas où 𝐸 est uniformément rectifiable de dimension 𝑑 < 𝑛 -1.

Après ces succès, il vaut la peine d'essayer d'obtenir le résultat inverse : que la rectifiabilité uniforme de 𝐸 suit de la continuité absolue quantitative de la mesure harmonique de 𝐿 𝜇,𝛼 par rapport à 𝜇. Cependant, dans (8), il a été découvert que ce n'est pas si facile pour la raison suivante. La fonction [START_REF] Hofmann | The weak-𝐴 ∞ property of harmonic and p-harmonic measures implies uniform rectifiability[END_REF] résout 𝐿 𝛼,𝜇 • = 0 sur Ω si le paramètre 𝛼 est égal à 𝑛 -𝑑 -2, qu'on appellera le "nombre magique". Par conséquent, la mesure harmonique pour cet opérateur est absolument continue par rapport à la mesure de Hausdorff ℋ 𝑑 sur 𝐸, quelle que soit la géométrie de l'ensemble 𝐸 (qui pourrait être mauvaise). Dans ce cas, l'analogue de l'inverse du théorème de Dahlberg ne peut pas être vrai. Mais cet effet est probablement spécifique au 𝛼 "magique", et il semble raisonnable d'espérer que pour tous les autres 𝛼, lorsque 𝑑 < 𝑛 -1, le résultat inverse au théorème de Dahlberg soit toujours valable.

Dans l'article (12), en plus d'établir un premier critère de bonne géométrie de 𝐸 via une bonne approximation de la fonction de Green pour 𝐿 𝜇,𝛼 (avec un pôle à l'infini) par des fonctions de distance à 𝐸, les auteurs montrent également qu'un critère similaire via une bonne approximation par une fonction de distance lisse comme [START_REF] Hofmann | The weak-𝐴 ∞ property of harmonic and p-harmonic measures implies uniform rectifiability[END_REF] fonctionnera si l'on prouve la conjecture suivante.

Soit 𝐸 un ensemble 𝑑-Ahlfors régulier, 𝐷 𝛼,𝜇 -la fonction de distance régularisée comme ci-dessus dans [START_REF] Hofmann | The weak-𝐴 ∞ property of harmonic and p-harmonic measures implies uniform rectifiability[END_REF], et 𝐿 𝛼,𝜇 -l'opérateur elliptique dégénéré mentionné précédemment. Alors

𝐿 𝛼,𝜇 𝐷 𝛼,𝜇 = 0 dans Ω = R 𝑛 ∖ 𝐸 (22) 
est vrai uniquement dans les deux cas suivants :

1. lorsque 𝑑 < 𝑛 -2 et 𝛼 = 𝑛 -𝑑 -2,
2. lorsque 𝐸 = R 𝑑 pour un entier 𝑑 et 𝜇 = 𝑐ℋ 𝑑 | 𝐸 pour une constante positive 𝑐.

On appellera cette dernière la solution plate.

2.3 L'article I, "On an obstacle to the converse of Dahlberg's theorem in high codimensions"

Dans cet article, on obtient plus d'informations sur la résolution de la conjecture ci-dessus, qu'on appellera Υ 𝑓 𝑙𝑎𝑡 . Une rappelle: notre objectif global est de montrer que, dans le cas où 𝛼 n'est pas le nombre "magique", la seule solution possible à [START_REF] Hofmann | Uniform rectifiability and harmonic measure I: uniform rectifiability implies Poisson kernels in Lp[END_REF] est la solution plate. Le plan initial était de commencer par un objectif plus modeste : montrer qu'il n'y a pas de solutions dans le voisinage de la solution plate. Cela devrait être plus facile que l'étude des solutions globales, qui nécessiterait une certaine compréhension de [START_REF] Hofmann | Uniform rectifiability and harmonic measure I: uniform rectifiability implies Poisson kernels in Lp[END_REF] qu'on ne possède pas encore. De plus, lorsque on se limite au voisinage de la solution plate, on peut voir les solutions non plates comme de petites perturbations de la solution plate, ce qui donne une structure supplémentaire pour travailler avec.

On obtient certains résultats sur l'absence de familles paramétriques de solutions dans un voisinage de la solution plate, qu'on va formuler dans un instant. Une motivation pour ces résultats est que toute histoire sur les perturbations implique généralement un paramètre et une famille de solutions correspondantes, donc un plan commun pour établir l'absence de solutions dans un voisinage est de montrer d'abord l'absence de familles paramétriques de solutions.

Ensuite, la transition vers l'absence de solutions individuelles n'est généralement pas trop difficile. Dans notre situation, malheureusement, le schéma le plus logique ne fonctionne pas, vaguement, pour la raison suivante. En supposant le contraire, on obtient l'existence d'une solution dans chaque voisinage de la solution plate, et on dit que cette solution correspond à un paramètre 𝑡 > 0 (vaguement, la taille de ce voisinage). Une telle solution est caractérisée, en gros, par une fonction 𝜑 𝑡 (dans le cas où 𝐸 = R 𝑑 , elle correspond à la densité de 𝜇 = 𝜇 𝑡 dans (21) par rapport à la mesure de Hausdorff sur 𝐸). Ensuite, on utiliserait le théorème de Banach-Alaoglu dans un espace fonctionnel approprié comme argument de compacité pour dire que la famille de fonctions 𝜑 𝑡 normalisées correctement a une limite faible non constante. Cette limite faible satisferait une équation de convolution obtenue à partir de [START_REF] Hofmann | Uniform rectifiability and harmonic measure I: uniform rectifiability implies Poisson kernels in Lp[END_REF], qui a seulement des solutions constantes. Ce qui nous donne une contradiction. Cependant, ce schéma nécessite le choix d'un espace suffisamment ample pour l'argument de compacité, et il nécessite également certaines restrictions sur l'espace où les fonctions 𝜑 𝑡 appartiennent pour obtenir l'équation requise à partir de [START_REF] Hofmann | Uniform rectifiability and harmonic measure I: uniform rectifiability implies Poisson kernels in Lp[END_REF] que nous avons mentionnée ci-dessus. Ces deux exigences ne vont pas bien ensemble: l'espace dont on a besoin pour l'argument de compacité est plus grand que celui où l'on peut obtenir notre équation de convolution. Pour une discussion plus détaillée, voir le paragraphe 5 de l'Article I ; de plus, on donne plus d'informations sur le problème à la fin de ce sous-section et dans la sous-section 1.6.

Par conséquent, pour l'instant, on limite la discussion aux familles de solutions à un paramètre et on présente enfin les résultats positifs qu'on a concernant Υ 𝑓 𝑙𝑎𝑡 .

On considère des familles paramétriques de solutions assez générales, mais le lecteur peut garder en tête les modèles suivants. D'abord, on se limite au cas où les mesures 𝜇 𝑡 de toutes les fonctions 𝐷 𝛼,𝜇𝑡 de notre famille de solutions dans le voisinage de la solution plate sont supportées sur le hyperplan 𝐸 = R 𝑑 . Observez que même dans ce cas le plus simple, on a du travail à faire : l'objectif est de montrer l'impossibilité d'avoir des densités non constantes des mesures 𝜇 𝑡 par rapport à la mesure de Lebesgue 𝑑-dimensionnelle. Ici, la famille uniparamétrique la plus facile à considérer est 𝐷 𝛼,𝜇𝑡 𝑡∈[0,𝑡 0 ) avec 𝐸 = R 𝑑 , comme déjà dit, et 𝜇 𝑡 = (1 + 𝑡𝜌)𝑑ℋ 𝑑 pour une fonction non constante fixe 𝜌 ∈ 𝐿 ∞ (R 𝑑 ). Les mesures 𝜇 𝑡 sont considérées comme de petites perturbations de la mesure ℋ 𝑑 avec des densités linéaires en 𝑡.

Ensuite, passons à un cas plus compliqué où les solutions 𝐷 𝛼,𝜇𝑡 ont 𝜇 𝑡 supporté sur des graphes proches du hyperplan R 𝑑 . Maintenant, en plus des densités non constantes des mesures 𝜇 𝑡 , il nous faut prendre en compte que nos mesures sont supportées sur différents ensembles.

La famille la plus facile à étudier ici est celle où tous les supports des 𝜇 𝑡 ont la même forme du graphe d'une fonction lipschitzienne et sont parallèles les uns aux autres. De plus, on suppose, comme auparavant, que les densités des pullbacks des 𝜇 𝑡 sont de petites perturbations de la mesure ℋ 𝑑 avec une dépendance linéaire en 𝑡. Plus précisément, une telle famille peut être représentée comme 𝐷 𝛼,𝜇𝑡 𝑡∈[0,𝑡 0 ) avec 𝐸 𝑡 = 𝐼𝑚(𝐼𝑑 + 𝑡𝜔), et (𝐼𝑑 + 𝑡𝜔) -1 (𝜇 𝑡 ) = (1 + 𝑡𝜌)𝑑ℋ 𝑑 pour des fonctions non constantes fixes 𝜌 ∈ 𝐿 ∞ (R 𝑑 ), 𝜔 ∈ 𝐿𝑖𝑝(R 𝑑 ). Notre méthode implique qu'il nous faut également ajouter une condition que soit 𝜌 soit 𝜔 est intégrable.

Les familles 𝐷 𝛼,𝜇𝑡 avec lesquelles on travaille sont des généralisations naturelles de celles qu'on a décrites dans les paragraphes précédents. Cependant, les restrictions qu'on pose ne sont pas trop contraignantes. Par exemple, on ne suppose plus la dépendance linéaire en 𝑡 de nos densités et fonctions de graphe. Dans le cas où on se limite à l'avance au cas 𝐸 𝑡 = R 𝑑 , on demande que la famille de densités des mesures 𝜇 𝑡 ait une dérivée de Fréchet non triviale avec oscillation moyenne bornée à 𝑡 = 0, et on pose certaines conditions de sommabilité locale, qui reflètent partiellement que les densités sont de petites perturbations d'une constante. C'est pourquoi on les appelle des familles non triviales uniparamétriques différentiables de perturbations de la solution plate. Pour une définition plus précise, voir l'introduction de l'Article I. Theorem 6. Pour un entier 𝑑 < 𝑛 -2 et 𝐸 = R 𝑑 , il n'existe aucune famille non triviale uniparamétriques différentiables de perturbations plates de la solution plate de l'équation 𝐿 𝛼,𝜇 𝐷 𝛼,𝜇 = 0. Theorem 7. Pour tout entier 𝑑 < 𝑛-2, il n'existe aucune famille non triviale uniparamétriques différentiables de perturbations de graphes de la solution plate de l'équation 𝐿 𝛼,𝜇 𝐷 𝛼,𝜇 = 0.

Notez que les conditions 𝑛 -𝑑 > 2 et 𝛼 > 0 qui ne sont pas "magiques" (𝛼 ̸ = 𝑛 -𝑑 -2) n'imposent aucune restriction supplémentaire pour les paramètres 𝑛, 𝑑 et 𝛼 par rapport à l'assertion de la conjecture Υ 𝑓 𝑙𝑎𝑡 .

Si on sait à l'avance que 𝐸 est un hyperplan, on peut également déduire un résultat qu'on peut appeler la non-existence de solutions globales dans le cas le plus simple. En d'autres termes, étant donné que la densité de la mesure 𝜇 dans 𝐷 𝛼,𝜇 par rapport à la mesure de Hausdorff est suffisamment régulière et non constante, la fonction 𝐷 𝛼,𝜇 ne peut pas résoudre [START_REF] Hofmann | Uniform rectifiability and harmonic measure I: uniform rectifiability implies Poisson kernels in Lp[END_REF]. Afin d'avoir ce résultat, il faut poser certaines restrictions supplémentaires sur les paramètres 𝛼 et 𝑑 car il faut supposer la sommabilité de certaines fonctions telles que 𝑓 𝑥 (𝑦) = |𝑥 -𝑦| -𝛾(𝑑,𝛼) , 𝛾(𝑑, 𝛼) > 0.

Theorem 8. Si 𝐸 est un hyperplan de dimension 𝑑 (𝐸 = R 𝑑 ) tel que 𝑛-𝑑 > 4, 𝛼 > 2+𝜀 0 pour un certain 0 < 𝜀 0 < 1, et que la densité de la mesure 𝜇 par rapport à la mesure de Hausdorff ℋ 𝑑 sur 𝐸 n'est pas constante, mais de classe 𝐶 2,𝜀 pour un certain 0 < 𝜀 < 𝜀 0 , alors la fonction 𝐷 𝛼,𝜇 telle que dans (21) ne peut pas être une solution de l'équation [START_REF] Hofmann | Uniform rectifiability and harmonic measure I: uniform rectifiability implies Poisson kernels in Lp[END_REF]. La preuve des Théorèmes 6 et 7 peut être divisée en trois étapes principales. La première consiste à obtenir des informations sur la fonction de distance 𝐷 𝛼,𝜇 , à condition qu'elle soit une solution de [START_REF] Hofmann | Uniform rectifiability and harmonic measure I: uniform rectifiability implies Poisson kernels in Lp[END_REF]. On commence par une observation facile mais cruciale :

𝐿 𝛼,𝜇 𝐷 𝛼,𝜇 = 0 ⇐⇒ ∆𝐷 𝛾 𝛼,𝜇 = 0 avec 𝛾 = -𝑛 + 𝑑 + 2. (23) 
Ensuite, on utilise le fait que les fonctions harmoniques, même si elles sont harmoniques en dehors d'un ensemble de dimension 𝑑 < 𝑛 -1 dans R 𝑛 , peuvent être représentées comme une convolution avec le noyau 

𝑢(𝑥) = R𝑛 𝑓 (𝑦)𝑑𝜎(𝑦) |𝑥 -𝑦| 𝑛-2 , où 𝜎 = ℋ 𝑑 | 𝐸 . (24) 
Le dernier ingrédient de cette étape est l'existence des limites non tangentielles pour des fonctions telles que les fonctions de distance ( 21) ou le côté droit de [START_REF] Hofmann | 𝐴 ∞ implies NTA for a class of variable coefficient elliptic operators[END_REF]. En combinant la définition [START_REF] Hofmann | The weak-𝐴 ∞ property of harmonic and p-harmonic measures implies uniform rectifiability[END_REF] avec la représentation dans le Théorème 9, on passe à la limite non tangente et on obtient une expression pour la densité de la mesure 𝜇 en termes de la fonction 𝑓 dans [START_REF] Hofmann | 𝐴 ∞ implies NTA for a class of variable coefficient elliptic operators[END_REF]. Une fois cela fait, l'égalité [START_REF] Hofmann | 𝐴 ∞ implies NTA for a class of variable coefficient elliptic operators[END_REF], avec le côté gauche remplacé par 𝐷 𝛾 𝛼,𝜇 , se transforme en une équation sur la fonction 𝑓 :

Ê 𝑓 (𝑦)𝑑𝑦 |𝑥 -𝑦| 𝑛-2 = 𝑐 ⎛ ⎝ Ê 𝑓 (𝑦) 𝛼 𝑛-𝑑-2 𝑑𝑦 |𝑥 -𝑦| 𝑑+𝛼 ⎞ ⎠ 𝑛-𝑑-2 𝛼 , ∀; 𝑥 ∈ R 𝑛 ∖ 𝐸. (25) 
La deuxième étape consiste à simplifier l'équation sur la fonction 𝑓 qu'on a eu après la première étape. La principale raison pour laquelle cela doit être fait est que l'équation [START_REF] Hofmann | Uniform rectifiability and harmonic measure, II: Poisson kernels in Lp imply uniform rectifiability[END_REF] est non linéaire. On se rappelle l'hypothèse selon laquelle la densité et le support dans [START_REF] Hofmann | Uniform rectifiability and harmonic measure, II: Poisson kernels in Lp imply uniform rectifiability[END_REF] dépendent d'un paramètre 𝑡, et on récrit [START_REF] Hofmann | Uniform rectifiability and harmonic measure, II: Poisson kernels in Lp imply uniform rectifiability[END_REF] pour notre famille paramétrique. La façon dont on s'y prend est de différentier l'équation par rapport à ce paramètre 𝑡. Cela nous donne une équation linéaire sur les fonctions 𝜌 et 𝜔. Cette simplification exige des restrictions assez contraignantes en termes de régularité sur la fonction de densité 𝜌 et la fonction de forme 𝑤 qu'on a dans nos exemples ci-dessus : en effet, en général, pour différencier, il faut d'abord demander une certaine régularité. C'est aussi la raison pour laquelle on ne peut pas combiner l'argument de Banach-Alaoglu et notre résultat de non-existence de familles à un paramètre.

La troisième étape consiste à traiter l'équation simplifiée qu'on a obtenu dans la deuxième étape. Ici, il est possible d'utiliser soit un argument de dualité, soit un argument de transformation de Fourier pour montrer que la fonction de densité 𝜌 et la fonction de forme 𝑤 doivent être nulles. Cela nous donne une preuve par contradiction. En fait, la proposition exact à démontrer dans le cas du Théorème 1 est la suivante. Nous l'écrivons ici pour pouvoir y revenir plus tard afin d'en discuter. Lemma 2. Soit 𝜌 une fonction dans 𝐵𝑀 𝑂(R 𝑑 ). Alors l'équation

R𝑑 [︂ 𝑐 𝛿(𝑥) 𝑑+2+𝛼-𝑛 |𝑥 -𝑦| 𝑑+𝛼 - 1 |𝑥 -𝑦| 𝑛-2 ]︂ 𝜌(𝑦)𝑑𝑦 = 0 ∀𝑥 ∈ R 𝑛 ∖ R 𝑑 , (26) 
où la constante 𝑐 est choisie de telle manière que la fonction entre crochets [•] ait une intégrale nulle, et 𝛿(𝑥) = dist(𝑥, R 𝑑 ), implique que 𝜌 est une fonction constante.

Pour la démonstration du Théorème 8, les deux premières étapes restent les mêmes, à l'exception du fait qu'il faut écrire le polynôme de Taylor de (24) jusqu'au deuxième terme (et pour cela, il faut avoir l'hypothèse de régularité correspondante sur la densité). Cela donne, à la troisième étape de la preuve, une équation différentielle du second ordre sur la densité de notre mesure 𝜇 par rapport à ℋ 𝑑 | R 𝑑 , ce qui conduit à ce qu'une puissance de la densité soit harmonique. Combinée avec la condition de croissance dans le Théorème 9, le théorème de Liouville implique que la densité ne peut être que constante.

Contre-exemples au comportement typique des mesures elliptiques

On change maintenant le sujet et revient aux équations aux dérivées partielles elliptiques classiques.

En tant que contreparties de la mesure harmonique associée au problème de Dirichlet ( 16), les mesures elliptiques 𝑤 𝑥 Ω,𝐿 , associées au problème de Dirichlet similaire à ( 16) mais avec un opérateur elliptique en forme de divergence 𝐿 = -div; 𝐴∇ à la place du laplacien, sont également activement étudiées. En ce qui concerne le programme de caractérisation de la rectifiabilité en termes de bon comportement de la mesure harmonique, sa continuation naturelle est d'étudier pour quels coefficients 𝐴 le résultat analogue est valable. À ce jour, on sait que la caractérisation similaire de la géométrie de la frontière 𝜕Ω fonctionne pour une classe d'opérateurs considérablement plus large que le seul laplacien, comme toujours, sous certaines conditions sur le domaine Ω. L'implication directe, que la rectifiabilité de la frontière implique un bon comportement des mesures elliptiques, est due initialement à Kenig et Pipher, [START_REF] Kenig | The Dirichlet problem for elliptic equations with drift terms[END_REF], précédée par le résultat de Dahlberg sur les graphes lipschitziens (7). Pour la réciproque, voir, par exemple, ( 1), [START_REF] Hofmann | Transference of scale-invariant estimates from Lipschitz to Non-tangentially accessible to Uniformly rectifiable domains[END_REF], et [START_REF] Hofmann | 𝐴 ∞ implies NTA for a class of variable coefficient elliptic operators[END_REF]. Les notations et le cadre de fond (propriétés de connectivité de Ω) diffèrent quelque peu, mais essentiellement, les opérateurs elliptiques pour lesquels la caractérisation souhaitée est vraie satisfont la condition dite Dahlberg-Kenig-Pipher (DKP pour faire court), voir par exemple ( 16), les remarques après la Définition 1.10. Il s'agit d'une condition de mesure de Carleson qui borne l'oscillation d'une fonction. Par exemple, cette condition est vérifiée pour les fonctions localement Hölder continues. Au niveau informel, on dit souvent que les opérateurs satisfaisant cette condition sont proches du laplacien.

Pour les opérateurs décrits ci-dessus, le complément suivant à la caractérisation géométrique dont on vient de discuter est vrai. Dans R 𝑛 , la frontière 𝜕Ω d'un domaine Ω est purement 𝑛 -1 non rectifiable (un ensemble dont l'intersection avec n'importe quel graphe lipschitzien R 𝑛-1 → R 𝑛 a une mesure ℋ 𝑛-1 nulle) si et seulement si la mesure harmonique (classique) est singulière par rapport à la mesure de Hausdorff sur 𝜕Ω (encore une fois, si l'on ignore les hypothèses topologiques sur Ω nécessaires pour formuler les implications de manière précise). La même chose est vraie également pour les opérateurs elliptiques décrits ci-dessus, ceux qui satisfont la condition DKP, et les mesures elliptiques correspondantes. Être singulier par rapport à la mesure de Hausdorff sur la frontière lorsque cette dernière est purement non rectifiable est ce qu'on appellera un comportement typique de la mesure elliptique. (Notez qu'on ne traite pas ici de la question de ce qu'est un comportement typique d'un opérateur elliptique du point de vue de la randomisation. On utilise ce terme uniquement parce que le laplacien est notre opérateur préféré.)

Après que l'équivalence entre la non-rectifiabilité pure et la singularité des mesures elliptiques des opérateurs DKP par rapport à la mesure de la frontière soit devenue claire, l'opinion générale de la communauté semblait être que, pour l'ensemble de Cantor 𝐾 sur le plan, la singularité d'une mesure elliptique par rapport à ℋ 1 sur 𝐾 est toujours le cas, quel que soit le coefficient de l'opérateur elliptique en question. De plus, il semblait naturel de croire que si un coefficient 𝐴 possède une régularité minimale (comme la continuité), alors la continuité absolue de la mesure elliptique par rapport à la mesure de la frontière implique également la rectifiabilité de la frontière. Ces deux affirmations se sont avérées fausses : pour certains ensembles même purement non rectifiables, y compris l'ensemble de Cantor mentionné ci-dessus, on peut trouver un opérateur elliptique en forme de divergence avec un coefficient continu borné et borné de zéro dont la mesure elliptique est absolument continue par rapport à la mesure de Hausdorff sur la frontière. On appellera parfois de tels opérateurs bons (pour le domaine prescrit avec une frontière "mauvaise").

Les premiers exemples d'une telle paire ensemble-opérateur ont été construits récemment par David et Mayboroda dans (13). L'ensemble principal de leur intérêt est l'ensemble de Cantor à quatre coins 𝐾 dans R 2 (ensemble de Garnett-Ivanov). Il s'agit d'un ensemble Ahlfors-régulier unidimensionnel (pour lequel la mesure harmonique standard est singulière par rapport à ℋ 1 sur 𝐾, comme mentionné précédemment). L'opérateur qu'ils construisent est elliptique en forme de divergence

𝐿 = -div𝑎∇, (27) 
avec un coefficient scalaire continu 𝑎 sur R 2 ∖ 𝐾 (et pas à un coefficient-matrice) tel que

𝐶 -1 ≤ 𝑎(𝑥) ≤ 𝐶 pour; 𝑥 ∈ Ω = R 2 ∖ 𝐾, (28) 
et que la mesure elliptique de 𝐿 avec le pôle à l'infini est même proportionnelle à la mesure de Hausdorff ℋ 1 | 𝐾 . Par conséquence, nous avons que, pour tous les pôles 𝑥 qui sont suffisamment éloignés de 𝐾, 𝐶

-1 ℋ 1 | 𝐾 ≤ 𝑤 𝑥 𝐿 ≤ 𝐶ℋ 1 | 𝐾 .
Les auteurs de (13) montrent également que leur construction est flexible, et le même résultat est également valable pour les ensembles de Cantor tournés (voir le paragraphe 5 de ( 13)).

Remarquez que, bien que le résultat de l'article (13), dans le contexte de la croyance générale selon laquelle la continuité absolue implique la rectifiabilité, serait intéressant même avec une matrice 𝐴 dans [START_REF] Jaye | Reflectionless measures for Calderón-Zygmund operators I: general theory[END_REF], les auteurs se restreignent à un coefficient scalaire. Cette restriction, en plus de rendre le problème plus difficile, semble être plus géométriquement pertinente et ouvre quelques autres questions intéressantes.

En disant qu'un coefficient scalaire semble être plus géométriquement pertinent, on entend ce qui suit. Considérons la question de l'existence d'un opérateur dont la mesure elliptique est absolument continue par rapport à la mesure de Hausdorff sur la frontière pour un flocon de Koch standard 𝐾 au lieu de l'ensemble de Cantor. Dans ce contexte, la construction d'un tel opérateur 𝐿 = -div𝐴∇ avec une matrice 𝐴 est trop facile. En effet, on sait qu'il existe une application quasiconforme 𝑞 : R 2 → R 2 qui envoie la droite 𝑙 sur 𝐾. Un opérateur 𝐿 qu'on cherche est donc fourni par l'image du laplacien sur un composant de R 2 ∖ 𝑙 sous l'application 𝑞, car la théorie générale postule que l'opérateur résultant 𝐿 est effectivement un opérateur elliptique en forme de divergence, et le 𝑤 𝐿 correspondant est absolument continu par rapport à ℋ 𝑑 | 𝐾 car c'était le cas pour le laplacien et la mesure de Lebesgue sur la droite. Bien sûr, aucune application quasiconforme ne nous aiderait à construire un tel opérateur pour l'ensemble de Cantor à quatre coins. Mais l'histoire avec le flocon de neige indique toujours que la classe d'opérateurs avec des coefficients scalaires, par opposition aux matrices, est plus appropriée à étudier.

Tout cela conduit à quelques questions ouvertes de différents niveaux de complexité et de généralité. La première d'entre elles serait naturellement la suivante. Pour le flocon de Koch standard, existe-t-il un bon opérateur avec un coefficient scalaire ? Pour tous les flocons de Koch ?

L'article II, "Good elliptic operators on snowflakes"

Dans cet article, on élargit la classe d'exemples d'ensembles pour lesquels un bon opérateur avec un coefficient scalaire existe. Plus précisément, on construit tels opérateurs pour tous les flocons de neige symétriques de type Koch de dimensions 𝑑 qui se trouvent strictement entre 1 and ln (4) ln (3) . On donne un peu plus des détails sur ce que sont exactement ces courbes. À la base de nos constructions se trouve une transformation d'un intervalle. On rappelle que le flocon de neige de Koch classique sur un intervalle unitaire est construit comme suit. Découpez le tiers médian de l'intervalle. Remplacez-le par les deux côtés du triangle équilatéral construit sur le tiers médian comme base. Répétez la procédure pour chaque intervalle obtenu à l'étape précédente de la construction. Ce que nous faisons est similaire. Prenez un intervalle unitaire 𝐼 et fixez n'importe quel angle 𝛼, 0 < 𝛼 < 𝜋/3. Comme première étape de la construction, remplacez le segment 𝐼 par l'ensemble 𝐹 𝛼 (𝐼) qui est construit comme suit (voir la figure 6). Remplacez le milieu de l'intervalle par les deux côtés du triangle isocèle avec l'angle 𝛼 construit au-dessus de 𝐼, de sorte que quatre intervalles de 𝐹 𝛼 (𝐼) aient une longueur égale, et que 𝐹 𝛼 (𝐼) soit symétrique par rapport à la bissectrice de 𝐼. 

lim 𝑘→∞ 𝑆 𝑘 𝛼 , 𝑆 𝑘 𝛼 = ∪ 𝐽∈𝑆 𝑘-1 𝛼 𝐹 (𝐽), 𝑆 0 𝛼 = 𝐼. (29) 
Comme un calcul simple le montre, la dimension de Hausdorff de 𝑆 𝛼 | 𝐼 est égale à ln ( 4) ln (2(1+cos 𝛼)) , qui augmente de manière monotone de 1 à ln (4) ln ( 3) , la dimension du flocon de neige standard, à mesure que 𝛼 varie entre 0 et 𝜋/3 (les deux extrémités non incluses).

En fait, on aura trois types de flocons de neige, distingués comme suit. Les flocons de neige du premier type 𝑆 

𝑆 3 𝛼 = [∪ 𝑛≥0 𝐻 𝑛 𝜅 (𝑆 𝛼 | 𝐼 )] ∪ [︁ ∪ 𝑛≥0 𝐻 𝑛 𝜅 (𝑆 𝛼 | 𝐼 ) ]︁ . ( 30 
)
On formule maintenant précisément le principal résultat de l'article. Par 𝑆 𝛼 on dénote l'un des flocons de neige de l'un des trois types décrits ci-dessus, 𝑆 1 𝛼 , 𝑆 2 𝛼 , ou 𝑆 3 𝛼 . Le flocon de neige de Koch standard n'est pas couvert par notre construction.

Theorem 10. Pour chaque flocon de neige symétrique de type Koch 𝑆 𝛼 avec 0 < 𝛼 < 𝜋/3, il existe un opérateur elliptique 𝐿 = -div 𝑎∇ avec un coefficient scalaire continu 𝑎 tel que 1. 𝑎 est défini sur le domaine Ω = (R 2 ∖ 𝑆 𝛼 )

+ , l'une des deux composantes connexes de R 2 ∖ 𝑆 𝛼 , et continu, 2. comme dans (28), 𝑎 est borné et éloigné de zéro, 

𝐶 -1 ℋ 𝑑 | 𝑆𝛼 ≤ 𝑤 𝑥 𝐿 ≤ 𝐶ℋ 𝑑 | 𝑆𝛼 pour tous les 𝑥 tels que 𝛿(𝑥) = dist(𝑥, 𝑆 𝛼 ) ≥ 1, où 1 < 𝑑 = ln (4)
ln (2(1+cos 𝛼)) < ln (4) ln (3) .

Notre résultat repose sur la procédure de reconstruction du coefficient scalaire 𝑎 d'un opérateur elliptique en forme de divergence -div 𝑎∇ à partir des lignes de niveau de fonctions conjuguées (𝑢, 𝑣) qui résolvent les équations -div 𝑎∇• = 0 et -div 𝑎 -1 ∇• = 0 respectivement. Cette procédure est décrite en détail dans le paragraphe 2 de (13) et dans la deuxième partie de l'article. En dirigeant un lecteur plus curieux vers ce dernier article pour plus de détails, on indique ici que le coefficient 𝑎 est défini à partir d'un réseau de deux familles de courbes mutuellement orthogonales avec une bonne propriété, qui peut vaguement être décrite comme « chaque cellule du réseau ne diffère pas trop d'un carré », où « ne diffère pas trop » doit être vrai uniformément sur le domaine Ω. Cette dernière propriété nous garantit [START_REF] Jaye | Reflectionless measures for Calderón-Zygmund operators II: Wolff potentials and rectifiability[END_REF].

Notre construction de réseau, à son tour, est réalisée par un carrelage du domaine Ω. D'abord, on construit une famille de bonnes courbes approximatives 𝑆 𝑘 pour le flocon de neige 𝑆 𝛼 . Ensuite, on divise les bandes entre les courbes approximatives consécutives en carreaux symétriques de deux types. Les côtés « verticaux » des carreaux ainsi que les courbes 𝑆 𝑘 forment un réseau à grande échelle. Une fois cela fait, on explique comment remplir chaque cellule de notre réseau avec des familles de courbes mutuellement orthogonales, et pourquoi les familles de cellules voisines se collent correctement les unes aux autres. Tout au long de la construction, on fait attention à garantir la bonne propriété que nous avons mentionnée ci-dessus, ainsi que (28).

Plus de motivation, de problèmes ouverts et de perspectives

On revient d'abord à l'histoire des opérateurs elliptiques dégénérés et au critère incomplet de 𝑑rectifiabilité dans R 𝑛 (pour 𝑑 < 𝑛-1) via la mesure harmonique dégénérée régie par l'opérateur [START_REF] Heinonen | Nonlinear potential theory of degenerate elliptic equations[END_REF].

Le fait que la conjecture Υ 𝑓 𝑙𝑎𝑡 bloque notre avancée dans la caractérisation de la rectifiabilité en termes de comportement de la mesure harmonique dégénérée ne semble pas trop surprenant pour la raison suivante. La rétrospective du développement des caractérisations qualitatives et quantitatives de la rectifiabilité, en particulier celle en termes de la mesure harmonique classique, et les progrès récents dans la théorie des opérateurs elliptiques dégénérés permettent de dire que les techniques qui établissent les descriptions de la rectifiabilité par le bon comportement des objets analytiques sont bien développées. Mais qu'elles reposent toujours sur une sorte de proposition de "niveau zéro" que quelque chose est plat dans un certain cas. En effet, le fait que si la fonction de distance à la frontière résout ∆• = 0, alors la frontière du domaine est nécessairement plate est la base de la théorie standard en codimension un. Le fait que [START_REF] Hofmann | Uniform rectifiability and harmonic measure I: uniform rectifiability implies Poisson kernels in Lp[END_REF] ait uniquement des solutions plates est apparemment ce proposition de "niveau zéro" dont on vient de parler pour la théorie des opérateurs dégénérés développée par David et al.

On pourrait donc dire que résoudre la conjecture Υ 𝑓 𝑙𝑎𝑡 est la question la plus importante que nous ayons jusqu'à présent dans la théorie de la caractérisation des ensembles rectifiables de codimension supérieure via la mesure harmonique. Une fois qu'elle sera résolue, on peut avoir une bien meilleure compréhension de ce que se passe dans le cas de codimension supérieure.

Bien entendu, la conjecture Υ 𝑓 𝑙𝑎𝑡 reste ouverte. Même si on parvient à ajuster d'une manière ou d'une autre la technique à-la théorème de Banach-Alaoglu que nous avons décrite dans la sous-section 1.3, il n'est pas du tout clair pour nous comment on peut montrer l'absence de solutions globales pour ( 22) loin de la solution plate.

En ce qui concerne les perspectives d'amélioration de l'argument de Banach-Alaoglu présenté brièvement à la fin de la sous-section 1.3 pour compléter la preuve de la non-existence de solutions près de la solution plate, comme nous l'avons déjà suggéré, la deuxième étape semble être la plus brutale et exigeante en termes de restrictions supplémentaires qu'il faut imposer aux familles uni-paramétriques qu'on considère. Ces restrictions sont la raison pour laquelle nos résultats ne sont pas suffisamment généraux pour s'appliquer aux familles sporadiques de solutions dans le voisinage de la solution plate. Plus précisément, si on avait pu passer de l'équation (25) à la condition [START_REF] Hong | A new proof of Riefenberg's topological disc theorem[END_REF] sur la fonction 𝑓 en utilisant une opération moins exigeante que la dérivation, on aurait probablement pu réparer l'argument. Cependant, on n'est pas très optimiste à ce sujet, car la condition [START_REF] Hong | A new proof of Riefenberg's topological disc theorem[END_REF] est une condition linéaire sur 𝑓 , ce qui implique intuitivement qu'il faut de toute façon linéariser [START_REF] Hofmann | Uniform rectifiability and harmonic measure, II: Poisson kernels in Lp imply uniform rectifiability[END_REF].

Comme motivation supplémentaire pour étudier [START_REF] Hofmann | Uniform rectifiability and harmonic measure I: uniform rectifiability implies Poisson kernels in Lp[END_REF], on indique que le problème ci-dessus ressemble quelque peu à celui que B. Jaye et F. Nazarov ont étudié lorsqu'ils ont développé leur théorie des mesures non-réflexives (voir ( 27) et [START_REF] Jaye | Reflectionless measures for Calderón-Zygmund operators II: Wolff potentials and rectifiability[END_REF]). La similarité est qu'on aime restaurer l'information selon laquelle certaine mesure coïncide avec la mesure de Hausdorff restreinte à un hyperplan à partir d'une équation apparemment surdéterminée pour cette mesure (voir par exemple la Question 2.1 dans (28)).

Concernant les contre-exemples au comportement typique de la mesure elliptique, étant donné que le phénomène des bons opérateurs aux coefficients scalaires a été découvert très récemment, il n'est pas du tout bien compris. Les exemples sont rares, tout comme les techniques qui nous fournissent ces exemples. Cela ouvre une direction de recherche (subjectivement) intéressante, où l'on peut se poser des questions de différents niveaux, de délicatesse et de calibre.

On peut commencer par discuter des contre-exemples de type flocon de neige qu'on a déjà. Même en laissant de côté la question pourquoi le flocon de neige de Koch habituel n'est pas couvert par notre construction, on peut réfléchir sur la signification du terme "flocon de neige de type Koch". Ce qu'on a fait, le remplacement du triangle équilatéral au-dessus du segment de base par un triangle isocèle avec un angle 𝛼 plus petit que 𝜋/3, est l'interprétation la plus simple. On aimera savoir si notre construction fonctionne si, au lieu de construire un triangle isocèle toujours au-dessus (ou toujours en dessous) du segment de base, on le construit audessus ou en dessous en fonction de notre position dans la construction. On peut même aller plus loin et faire varier l'angle 𝛼 en fonction de l'itération et de l'emplacement du segment de base.

Notre opinion est que notre construction ne couvre pas quelque chose complètement aléatoire. Par exemple, déjà le changement aléatoire du signe de l'angle devrait être problématique. Cette croyance est basée sur le fait que le Théorème 5 repose sur le recouvrement du domaine Ω avec un ensemble fini de tuiles, qui repose à son tour sur un certain niveau de régularité des itérations 𝑆 𝑘 𝛼 dans [START_REF] Kenig | The Dirichlet problem for elliptic equations with drift terms[END_REF]. Cela ne signifie pas bien sûr qu'un bon opérateur avec un coefficient scalaire n'existe pas dans ces cas (on soupçonne qu'il devrait exister dans le cas où |𝛼| est suffisamment petit, voir plus tard).

Une autre chose assez simple que l'on pourrait faire est de vérifier si notre méthode s'applique à d'autres fractales régulières dans R 2 . Il existe de nombreux ensembles qui sont générés par l'action d'une certaine transformation, comme la transformation 𝐹 qu'on a utilisée dans la soussection précédente (par exemple, la frontière de l'île de Gosper, le fractal de mot de Fibonacci, le saucisson de Minkowski, etc.). Notre impression est que plus la dimension de l'ensemble est élevée, plus cela devrait être difficile, car un ensemble de grande dimension devrait être assez serrement tassé dans l'espace, donc les courbes d'approximation sur lesquelles repose notre construction sont plus difficiles à "dessiner" (mais cela est très vague).

Fatigué d'essayer de rassembler les exemples un par un, on peut se demander si c'est possible de les construire à la fois pour une classe plus large de fractales dans R 2 ? Nous n'en sommes pas encore sûrs, mais notre conjecture est que pour tous les ensembles Reifenberg plats 1-Ahlfors réguliers avec une constante (celui dans la définition de Reifenberg-plat) suffisamment petite sur le plan, on devrait pouvoir construire un bon opérateur avec un coefficient scalaire. Ces ensembles peuvent être très irréguliers, donc on doute que la technique de pavage présentée dans cette thèse puisse fonctionner. Cependant, quelque chose de vaguement similaire pourrait peutêtre marcher. Notamment, on rappelle qu'une des parties cruciales de la construction présentée ici est le réseau à grande échelle, composé de courbes vertes d'approximation et de certaines courbes rouges (les deuxièmes sont plus faciles à construire que les premières à notre avis). Pour les ensembles Reifenberg plats, il existe une manière d'obtenir les courbes d'approximation, qui vient d'une construction de paramétrisation bi-Hölder de l'ensemble (voir ( 15) ou ( 26) comme alternative possible). Mais les cellules du réseau résultant (les analogues de nos tuiles) ne se ressembleront pas du tout, donc aucun ensemble fini de tuiles ne peut être obtenu pour recouvrir le domaine (la raison est l'irrégularité de l'ensemble initial lui-même, pas un défaut des courbes d'approximation, donc nous ne pouvons rien attendre de mieux ici). Cela pourrait être corrigé cependant si nous apprenions à remplir les cellules avec des courbes vertes et rouges de manière contrôlée. Plus précisément, nous devons contrôler comment les emplacements des extrémités des courbes diffèrent entre le côté droit et le côté gauche, le couvercle inférieur et supérieur dans une cellule. Dans notre cas, la symétrie nous aide beaucoup. Dans le cas général, il semble que ce ne soit pas très facile à faire.

Un autre pas en avant important serait de construire des exemples de bons opérateurs pour des ensembles purement non rectifiables dans les dimensions supérieures. Bien qu'on puisse en faire déjà quelques-uns, comme mentionné dans le paragraphe 5 de (13), ils ne ressemblent pas à des vraies fractales de dimension supérieure, car ils sont du type 𝑆 × R avec le coefficient d'opérateur 𝐴(𝑥, 𝑦, 𝑧) = 𝑎(𝑥, 𝑦) dans R 3 , où 𝑆 est n'importe quelle fractale (un flocon de neige 𝑆 𝛼 ou l'ensemble de Cantor 𝐾) pour laquelle on sait comment construire un bon opérateur. La principale difficulté ici est d'inventer la procédure qui reconstruit un coefficient d'opérateur à partir des surfaces de niveau de la solution de l'équation définie par cet opérateur. À notre connaissance, la procédure qu'on utilise, voir les paragraphes 2 dans (13) et l'Article II, n'est connue que dans la dimension 2. Il pourrait aussi être délicat d'identifier l'analogue de la condition "géométriquement pertinente" pour le coefficient matriciel 𝐴 dans les dimensions supérieures. On rappelle que le fait d'avoir un coefficient scalaire au lieu d'un coefficient matriciel est l'une des caractéristiques clés de ce qu'on fait ici.

Si l'on se concentre sur les opérateurs au lieu des ensembles et on fixe une fractale pour laquelle un bon opérateur existe, il pourrait aussi être intéressant de savoir où se trouve la frontière entre les opérateurs dont la mesure elliptique est singulière par rapport à la mesure du bord et les opérateurs dont la mesure elliptique est absolument continue ? Il est connu que, si un opérateur 𝐿 0 dans le domaine Ω est tel que 𝑤 𝐿 0 << ℋ 𝑑 |𝜕Ω, ou, au contraire, 𝑤𝐿 0 ⊥ ℋ 𝑑 | 𝜕Ω , alors les opérateurs 𝐿 proches de 𝐿 0 d'une certaine manière ont des mesures elliptiques avec le même comportement. On a déjà vu le cas de 𝐿 0 = -∆ au début de la sous-section 1.4, et le cas des bons opérateurs pour le complément de l'ensemble de Cantor ou des compléments des flocons de neige symétriques, comme construits par David et Mayboroda, ou dans cette thèse, suivent de (18). Mais ce qui se passe dans l'intervalle entre les opérateurs couverts par ces résultats de perturbation est incertain. Cette question semble cependant être déjà trop générale, et on ne s'attend pas à ce que les techniques présentées dans cette thèse soient très utiles pour sa résolution.
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Abstract It has been recently understood that the harmonic measure on the boundary 𝐸 = 𝜕Ω of a domain Ω in R 𝑛 is absolutely continuous with respect to the Hausdorff measure ℋ 𝑛-1 on 𝐸 if and only if the boundary 𝐸 is rectifiable. Then, by G. David, M. Engelstein, J. Feneuil, S. Mayboroda and other coauthors, a notion of harmonic measure for Ahlfors-regular sets 𝐸 of higher codimension 𝑛-𝑑 was developed with the aid of the operator 𝐿 𝛼 = -div𝐷 -𝑛+𝑑+𝛼 𝛼 ∇, where 𝛼 > 0 and 𝐷 𝛼 is a certain regularized distance function to the set 𝐸. A program was launched to establish analogous to the classical case equivalence between rectifiability of the higher-codimensional set 𝐸 and good relations of the (new) harmonic and Hausdorff measures. The sufficiency of rectifiability for quantitative absolute continuity was only just obtained. For the other direction the main obstacle is to prove that, roughly, the equation 𝐿 𝛼 𝐷 𝛼 = 0 is true only when the set 𝐸 is a hyperplane. In this paper we prove some first results which indicate that the latter conjecture may be true. We also explain that a certain natural strategy to tackle the problem does not work till the end. This note belongs to a long tradition of studying the relations between the geometry of a domain Ω ⊂ R 𝑛 and the analysis on Ω or 𝐸 = 𝜕Ω, in particular relative to second order elliptic operators on Ω. Important examples of this are the study of the absolute continuity of the harmonic measure on 𝐸 with respect to the surface measure. This subject has a long history (and we refer the reader to the introduction of [9] for a thorough survey); let us just mention here two important results in the spirit of our interests here. In [5], B. Dahlberg showed that when Ω is a Lipschitz domain, the harmonic measure on 𝐸 is mutually absolutely continuous with respect to the surface measure, and even given by an 𝐴 ∞ weight; there were lots of important results before, but mostly when 𝑛 = 2 and related to conformal mappings. After this, it was slowly understood that the main issue in this problem was the rectifiability of the boundary 𝐸. Recall that 𝑑-rectifiability of a set means that it can be represented as at most countable union of Lipschitz graphs (of dimension 𝑑) and a set of zero Hausdorff measure ℋ 𝑑 . Later, the technology improved to the point that one could also worry about the converse results, i.e., what can be said about 𝐸 when the harmonic measure is absolutely continuous. In 2015, after a long series of works, the question was finally settled in [3] by J. Azzam, S. Hoffman, M. Mourgoglou, J. M. Martell, S. Mayboroda, X. Tolsa and A. Volberg. They proved in particular that for 𝑛 ≥ 2 and a set 𝐸 with ℋ 𝑛-1 (𝐸) < ∞, the absolute continuity of the harmonic measure on 𝐸 with respect to ℋ 𝑛-1 on 𝐸 is equivalent to its rectifiability. Many of the results above, which initially concerned the Laplacian ∆, were also extended to a class of elliptic operators 𝐿 that are sufficiently close to constant coefficient elliptic operators. See for instance [2], [13].

After these successes, G. David, J. Feneuil, and S. Mayboroda [9] started to inquire if the same philosophy is still true for domains Ω with a lower-dimensional boundary, and more precisely domains Ω ⊂ R 𝑛 such that 𝐸 = 𝜕Ω is Ahlfors regular with a dimension 𝑑 < 𝑛-1. Recall that 𝐸 is called 𝑑-Ahlfors regular if for some 𝐶 0 ≥ 1 the double inequality 𝐶 -1 0 𝑟 𝑑 ≤ ℋ 𝑑 (𝐸 ∩ 𝐵(𝑥, 𝑟)) ≤ 𝐶 0 𝑟 𝑑 is true whenever 𝑥 ∈ 𝐸 and 0 < 𝑟 < diam(𝐸). Notice that in such a case there is no complementary component, i.e., Ω = R 𝑛 ∖ 𝐸, and it is checked in [9] that Ω has nontangential access. But the harmonic measure (associated to ∆) is not well defined on 𝐸, for instance because Brownian paths do not see 𝐸, so the authors had to use a different class of (degenerate) elliptic operators, adapted to the geometry of 𝐸. They consider divergence form operators

𝐿 = -div𝐴∇, (1) 
where the matrix valued function 𝐴 : Ω → 𝑀 𝑛 (R) satisfies the modified ellipticity conditions

𝛿(𝑥) 𝑛-𝑑-1 𝐴(𝑥)𝜁 • 𝜉 ≤ 𝐶 1 |𝜁||𝜉|, 𝑥 ∈ Ω, 𝜁, 𝜉 ∈ R 𝑛 , and 
𝛿(𝑥) 𝑛-𝑑-1 𝐴(𝑥)𝜁 • 𝜁 ≥ 𝐶 -1 1 |𝜁| 2 , 𝑥 ∈ Ω, 𝜁 ∈ R 𝑛 , (2) 
where 𝐶 1 ≥ 1 is a constant, and 𝛿(𝑥) = dist(𝑥, 𝐸) is the distance function from 𝑥 ∈ Ω to 𝐸. With these operators 𝐿, [9] establishes an analogue of the usual theory of elliptic operators: the existence and uniqueness of solutions, and some regularity of the latter. This allows one to define a (degenerate) elliptic measure on the boundary set 𝐸 in a "usual" way, along with a notion of a Green function.

Then they worry about analogues in this higher co-dimension context of the direct absolute continuity results, like Dahlberg's theorem above. The concerned operators have to lie in a much smaller class; recall that in the classical case, typical absolute continuity results concern only perturbations of the Laplacian. They settle on the nicest operator they found, namely

𝐿 = 𝐿 𝛼,𝜇 = -div𝐷 -𝑛+𝑑+1 𝛼,𝜇 ∇, (3) 
where 𝜇 is some 𝑑-dimensional Ahlfors regular measure on 𝐸, 𝛼 > 0 is a parameter, and the corresponding smooth distance function 𝐷 𝛼,𝜇 is defined by

𝐷 𝛼,𝜇 (𝑥) = ⎛ ⎝ Ê |𝑥 -𝑦| -𝑑-𝛼 𝑑𝜇(𝑦) ⎞ ⎠ -1/𝛼 . ( 4 
)
We say that the measure 𝜇 is a 𝑑-dimensional Ahlfors regular measure on 𝐸 when the (closed) support of 𝜇 is 𝐸, and when there is a constant 𝐶 0 such that

𝐶 -1 0 𝑟 𝑑 ≤ 𝜇(𝐵(𝑥, 𝑟)) ≤ 𝐶 0 𝑟 𝑑 (5) 
for 𝑥 ∈ 𝐸 and 0 < 𝑟 < diam(𝐸). It is easy to check that since 𝜇 is Ahlfors regular, 𝐷 𝛼,𝜇 (𝑥) is equivalent to dist(𝑥, 𝐸), hence 𝐿 𝛼,𝜇 satisfies the constraints (1) and ( 2). It is well known that when there is a 𝑑-Ahlfors regular measure on 𝐸, then the restriction ℋ 𝑑 |𝐸 of the Hausdorff measure is 𝑑-Ahlfors regular too. In fact, in [8], the authors restrict to 𝜇 = ℋ 𝑑 |𝐸 , and prove that when 𝐸 is the graph of a Lipschitz function with a small enough Lipschitz norm, the harmonic measure associated to 𝐿 𝛼,𝜇 is mutually absolutely continuous with respect to 𝜇, and given by an 𝐴 ∞ weight. The result extends to any 𝑑-Ahlfors regular measure 𝜇 on 𝐸, and later on it was proved in [11] and [12] that this result extends to the case where 𝐸 is uniformly rectifiable of dimension 𝑑 < 𝑛 -1, 𝜇 is any 𝑑-Ahlfors regular measure on 𝐸, and 𝛼 > 0.

At this point it makes sense to look for a converse, but it was found in [7] that the following anomaly occurs. For the "magic" number 𝛼 = 𝑛 -𝑑 -2, the function ( 4) is a solution to 𝐿 𝛼,𝜇 • = 0 on Ω for the operator (3). This implies that the harmonic measure for this operator is absolutely continuous with respect to Hausdorff measure ℋ 𝑑 on 𝐸, no matter how irregular geometrically this set really is. This means that the full analogue of the reverse to Dahlberg's theorem in higher codimension cannot be true. Yet it sounds reasonable to expect that, except in the magic case when 𝑑 < 𝑛 -2 and 𝛼 = 𝑛 -𝑑 + 2, the uniform rectifiability of 𝐸 follows from the 𝐴 ∞ -absolute continuity of the harmonic measure associated to 𝐿 𝜇,𝛼 with respect to 𝜇.

In [10], the authors propose to address the different issue of good approximation of the Green function for 𝐿 𝜇,𝛼 (with a pole at ∞) by distance functions to 𝐸. They prove some direct results, and also show that some interesting converse results will follow if one proves the following conjecture. Let 𝐸 be a 𝑑-Ahlfors regular set, 𝐷 𝛼,𝜇 -the regularized distance function as above in (4), and 𝐿 𝛼,𝜇 -the degenerate elliptic operator mentioned before. Then

𝐿 𝛼,𝜇 𝐷 𝛼,𝜇 = 0 in Ω = R 𝑛 ∖ 𝐸 (6) 
is never true except for the following two cases:

1. when 𝑑 < 𝑛 -2 and 𝛼 = 𝑛 -𝑑 -2, 2. when 𝐸 = R 𝑑 for some integer 𝑑 and 𝜇 = 𝑐ℋ 𝑑 | 𝐸 for some positive constant 𝑐.

In this work we will make the first step in the study of this conjecture. Before we state our results, let us explain our motivation and give some definitions.

Our global goal is to prove that, for the case when 𝛼 is not the "magic" number, the only possible solution to ( 6) is what we call the flat solution. We wanted to start with explaining why there are no solutions in a neighbourhood of the flat one. This could be easier than the study of global solutions, since we can view the non-flat ones as small perturbations of the flat. Essentially, any story about perturbations involves a parameter and a family of solutions corresponding to it. This is why an often-used plan to prove the absence of solutions in a neighbourhood is to prove first the absence of parametric families of solutions. Which is exactly what we will do. Then the transition to the absence of individual solutions is usually not too hard, though in our situation the most logical scheme does not work: we will discuss this in section 5. So the results we state and prove below are actually the best one could do trying to follow the described plan to solve the hypothesis.

Let us discuss in more details what we mean by parametric families in a neighbourhood of the flat solution. To start with, consider the case when the measures 𝜇 of all of the functions 𝐷 𝛼,𝜇 of our family live on the hyperplane 𝐸 = R 𝑑 , but their densities with respect to the Hausdorff measure are not constants. Then the easiest one-parameter family of solutions of (6) to study is {𝐷 𝛼,𝜇𝑡 } 𝑡∈[0,𝑡 0 ) with 𝐸 = R 𝑑 and 𝜇 𝑡 = (1 + 𝑡𝜑)𝑑ℋ 𝑑 for a fixed function 𝜑 ∈ 𝐿 ∞ (R 𝑑 ). The next step is to switch to the solutions 𝐷 𝛼,𝜇 such that 𝜇 is supported on graphs close to the hyperplane R 𝑑 . Here the easiest one-parameter family to study is {𝐷 𝛼,𝜇𝑡 } 𝑡∈[0,𝑡 0 ) with 𝐸 𝑡 = 𝐼𝑚(𝐼𝑑 + 𝑡𝜓), and

(𝐼𝑑 + 𝑡𝜓) -1 (𝜇 𝑡 ) = (1 + 𝑡𝜑)𝑑ℋ 𝑑 for fixed functions 𝜑 ∈ 𝐿 ∞ (R 𝑑 ) ∩ 𝐿 1 (R 𝑑 ), 𝜓 ∈ 𝐿𝑖𝑝(R 𝑑 ) ∩ 𝐿 1 (R 𝑑 ).
These are the examples one can keep in mind.

Our results concern more general families of solutions. We start with measures supported on 𝐸 = R 𝑑 . Definition 1. We call a non-trivial one-parameter differentiable family of flat perturbations of the flat solution a family of solutions {𝐷 𝛼,𝜇𝑡 } 𝑡∈[0,𝑡 0 ) , 𝑡 0 > 0, of ( 6) such that for any 𝑡 the measure 𝜇 𝑡 is supported on 𝐸 has density 1 + 𝜑 𝑡 , 𝜑 𝑡 ∈ 𝐿 ∞ (R 𝑑 ) with respect to ℋ 𝑑 with the following properties:

1. 𝜑 0 = 0, 2. the family of densities is Frechet differentiable at zero in 𝐵𝑀 𝑂(R 𝑑 ); that is, there exists a function 𝜕𝜑𝑡(𝑦) 𝜕𝑡 | 𝑡=0 = 𝜕𝜑𝑡 𝜕𝑡 (0, 𝑦) such that

‖𝜑 𝑡 -𝑡 𝜕𝜑 𝑡 𝜕𝑡 (0, •)‖ 𝐵𝑀 𝑂 = 𝑜(𝑡), as 𝑡 → 0, 3. the derivative 𝜕𝜑𝑡 𝜕𝑡 (0, •) is a non-constant function, 4. ‖𝜑 𝑡 ‖ 𝐵𝑀 𝑂 , ⃒ ⃒ ⃒ B(0,1) 𝜑 𝑡 (𝑦)𝑑𝑦 ⃒ ⃒ ⃒ ≤ 𝐶𝑡 and ⃒ ⃒ ⃒ B(0,1) (︂ 𝜑 𝑡 (𝑦) -𝑡 𝜕𝜑 𝑡 𝜕𝑡 (0, 𝑦) )︂ 𝑑𝑦 ⃒ ⃒ ⃒ = 𝑜(𝑡), 𝑡 → 0.
The integral conditions above on the ball 𝐵(0, 1) help, because the 𝐵𝑀 𝑂 norm itself does not control averages on large balls. In the next definition, when we write that the modulus of a vector-valued function or its norm (in 𝐵𝑀 𝑂) admits an estimate, we mean that the moduli or norms of every component of this vector admit it. Definition 2. We call a non-trivial one-parameter differentiable family of graph perturbations of the flat solution a family of solutions {𝐷 𝛼,𝜇𝑡 } 𝑡∈[0,𝑡 0 ) , 𝑡 0 > 0, of (6) such that for any 𝑡 the support 𝐸 𝑡 of 𝜇 𝑡 is the image of a Lipschitz function 𝐼𝑑 + 𝜓 𝑡 : R 𝑑 → R 𝑛 , where 𝜓 𝑡 : R 𝑑 → R 𝑛-𝑑 has the Lipschitz constant 𝐶𝑡, the measure 𝜇 𝑡 is the image by 𝐼𝑑 + 𝜓 𝑡 of (1 + 𝜑 𝑡 )𝑑ℋ 𝑑 , 𝜑 𝑡 ∈ 𝐿 ∞ (R 𝑑 ), and the following conditions hold: 

1. 𝜑 0 = 𝜓 0 = 0,
| 𝑡=0 = 𝜕𝜓 𝜕𝑡 (0, 𝑦) in 𝐵𝑀 𝑂(R 𝑑 ) ∩ 𝐿 1 (R 𝑑 ) such that ‖𝜑 𝑡 -𝑡 𝜕𝜑 𝑡 𝜕𝑡 (0, •)‖ 𝐵𝑀 𝑂 = 𝑜(𝑡), as 𝑡 → 0, ‖𝜓 𝑡 -𝑡 𝜕𝜓 𝑡 𝜕𝑡 (0, •)‖ 𝐵𝑀 𝑂 = 𝑜(𝑡), as 𝑡 → 0, 3. the derivative 𝜕𝜓 𝜕𝑡 (0, 𝑦) is not constant, 4. for 𝐹 𝑡 = 𝜑 𝑡 and 𝜓 𝑡 ‖𝐹 𝑡 ‖ 𝐵𝑀 𝑂 , ⃒ ⃒ ⃒ B(0,1) 𝐹 𝑡 (𝑦)𝑑𝑦 ⃒ ⃒ ⃒ ≤ 𝐶𝑡 and ⃒ ⃒ ⃒ B(0,1) (︂ 𝐹 𝑡 (𝑦) -𝑡 𝜕𝐹 𝑡 𝜕𝑡 (0, 𝑦) )︂ 𝑑𝑦 ⃒ ⃒ ⃒ = 𝑜(𝑡), 𝑡 → 0.
We think that the result we state below for the non-trivial one-parameter differentiable families of graph perturbations is true without the assumption that the derivatives 𝜕𝜑𝑡 𝜕𝑡 (0, 𝑦) and 𝜕𝜓𝑡 𝜕𝑡 (0, 𝑦) are in 𝐿 1 (R 𝑑 ) (or without any other similar summability assumption), but we did not manage yet to think of a better argument than the one in Subsection 5.2, which uses the Fourier transform.

We are now ready to state our first two main theorems. Recall that we are interested in the case when for our parameters 𝑛, 𝑑 and 𝛼 we have 𝑛 -𝑑 > 2 and 𝛼 > 0 is not "magic" (𝛼 ̸ = 𝑛 -𝑑 -2), and we do not pose any additional restrictions on them in Theorems 1 and 2. For the case when 𝐸 is a hyperplane we are able to provide another result in the spirit of non-existence of global solutions. We show that, if the density of the measure 𝜇 in 𝐷 𝛼,𝜇 with respect to the Hausdorff measure is regular enough and it is not a constant, then (6) cannot be true. To make precise the notion of "regular enough" we remind the reader yet another definition. Definition 3. We say that a function 𝑓 on R 𝑑 is in Hölder class 𝐶 𝑘,𝛾 (R 𝑑 ) if it has continuous derivatives up to the order 𝑘 and the 𝑘th partial derivatives are Hölder continuous with the exponent 𝛾, 0 < 𝛾 < 1. A function 𝑔 is Hölder continuous with the exponent 𝛾 if

sup 𝑥̸ =𝑦 |𝑔(𝑥) -𝑔(𝑦)| |𝑥 -𝑦| 𝛾 < ∞.
Additional restrictions on 𝛼 and 𝑑 are posed due to our method. They come from the assumption of integrability of certain functions. Theorem 3. If 𝐸 is a hyperplane of dimension 𝑑 (𝐸 = R 𝑑 ) such that 𝑛 -𝑑 > 4, 𝛼 > 2 + 𝜀 0 for some 0 < 𝜀 0 < 1, and the density of the measure 𝜇 with respect to the Hausdorff measure ℋ 𝑑 on 𝐸 is not a constant, but of class 𝐶 2,𝜀 for some 0 < 𝜀 < 𝜀 0 , then the function 𝐷 𝛼,𝜇 as in (4) cannot be a solution for the equation (6).

The paper is organized as follows. In Section 2 we discuss a suitable reformulation of the equation ( 6) in terms of the Laplacian, and then give a representation of any harmonic function on Ω with certain asymptotics. In Section 3 we discuss non-tangential limits of the smooth distance function 𝐷 𝛼,𝜇 . In Section 4 we prove some facts we need about the space of functions with bounded mean oscillations. In Section 5 we prove Theorems 1 and 2, and discuss why our method does not seem to allow one to finish the proof of the conjecture about the uniqueness of flat solutions of (6). In Section 6 we prove Theorem 3.

2 Harmonic functions outside a 𝑑-Ahlfors regular set 𝐸

An observation

Our method is based on a simple observation, which we now present. Throughout the text we suppose that 𝐸 is a 𝑑-Ahlfors regular set and 𝜇 is a 𝑑-Ahlfors regular measure on 𝐸. Suppose that the function 𝐷 𝛼,𝜇 in (4), which is easily seen to be smooth in

Ω = R 𝑛 ∖ 𝐸, is a solution to the equation 𝐿 𝛼,𝜇 • = -div𝐷 𝑛-𝑑-1 𝛼,𝜇 ∇• = 0 on Ω. Then 0 = -𝐿 𝛼,𝜇 𝐷 𝛼,𝜇 = div (︀ 𝐷 -𝑛+𝑑+1 𝛼,𝜇 ∇𝐷 𝛼,𝜇 )︀ = 𝐷 -𝑛+𝑑+1 𝛼,𝜇 ∆𝐷 𝛼,𝜇 +(-𝑛+𝑑+1)𝐷 -𝑛+𝑑 𝛼,𝜇 𝑛 ∑︁ 𝑖=1 (︂ 𝜕 𝜕𝑥 𝑖 𝐷 𝛼,𝜇
)︂ 2 .

(7) For 𝛾 ∈ R, we can compute

∆𝐷 𝛾 𝛼,𝜇 = 𝑛 ∑︁ 𝑖=1 (︃ 𝛾𝐷 𝛾-1 𝛼,𝜇 𝜕 2 𝜕𝑥 2 𝑖 𝐷 𝛼,𝜇 + 𝛾(𝛾 -1)𝐷 𝛾-2 𝛼,𝜇 (︂ 𝜕 𝜕𝑥 𝑖 𝐷 𝛼,𝜇 )︂ 2 )︃ on Ω. (8) 
Evidently, if we pick 𝛾 equal to -𝑛 + 𝑑 + 2 the right-hand sides of ( 7) and (8) will coincide. Therefore 𝐷 𝛼,𝜇 is a solution of ( 6) if and only if 𝐷 𝛾 𝛼,𝜇 is harmonic outside 𝐸 for 𝛾 = -𝑛 + 𝑑 + 2:

𝐿 𝛼,𝜇 𝐷 𝛼,𝜇 = 0 ⇐⇒ ∆𝐷 𝛾 𝛼,𝜇 = 0.

This fact will provide us with an alternative representation for the integral (4). We will explain this after providing the necessary preliminaries. Note that for the "magic" number 𝛼 = 𝑛 -𝑑 -2 it is always true that ∆𝐷 𝛾 𝛼,𝜇 = 0 for the chosen exponent 𝛾.

The Newton potential

Before we proceed, recall that our dimension 𝑑 is such that 𝑛 -𝑑 -2 > 0, and that we denote by 𝛿(𝑥) the distance function dist(𝑥, 𝐸). Let 𝜎 be the measure ℋ 𝑑 restricted to 𝐸. The purpose of this subsection is to prove the following theorem. 

𝑢(𝑥) = R𝑛 𝑓 (𝑦)𝑑𝜎(𝑦) |𝑥 -𝑦| 𝑛-2 .
This, of course, looks like the well-know representation of a solution of the equation ∆• = 0 as a convolution with the fundamental solution. But the latter is almost always used in the situation when the set 𝐸 is compact and has codimension one, while here the issue really is to prove that the Laplacian of 𝑢, in the sense of distributions, is an upper 𝑑-Ahlfors regular measure.

The next lemma uses standard arguments, but we give the proof for the sake of completeness. Following the traditions of PDE texts, from now on we usually denote all the various constants by the letter 𝐶. with the assumptions above, the following holds:

1. 𝑢 𝑓 is locally integrable (𝑢 𝑓 ∈ 𝐿 1,𝑙𝑜𝑐 (R 𝑛 )), 2. 𝑢 𝑓 is harmonic in R 𝑛 ∖ 𝐸, 3. if 𝐸 is compact, then for 𝑥 such that 𝑑𝑖𝑠𝑡(𝑥, 𝐸) = 𝛿(𝑥) < diam(𝐸), and if 𝐸 is non-compact, everywhere on R 𝑛 ∖ 𝐸 |𝑢 𝑓 (𝑥)| ≤ 𝑐 1 𝛿(𝑥) -𝑛+𝑑+2 , 4 
. in the sense of distributions,

∆𝑢 𝑓 = -|𝑆 1 |(𝑛 -2)𝑓 𝑑𝜎,
where |𝑆 1 | is the area of the sphere of radius 1 in R 𝑛 .

Note. The potential Ŕ𝑛 𝑓 (𝑦)

|𝑥-𝑦| 𝑛-2 𝑑𝜎(𝑦) is often called the Newton potential.

Proof.

1. For all 𝑟 > 0

|𝑥|<𝑟 R𝑛 |𝑓 (𝑦)|𝑑𝜎(𝑦) |𝑥 -𝑦| 𝑛-2 𝑑𝑥 ≤ ‖𝑓 ‖ ∞ |𝑥|<𝑟 ⎛ ⎜ ⎝ |𝑦|<2𝑟 𝑑𝜎(𝑦) |𝑥 -𝑦| 𝑛-2 + |𝑦|≥2𝑟 𝑑𝜎(𝑦) |𝑥 -𝑦| 𝑛-2 ⎞ ⎟ ⎠ 𝑑𝑥.
The first term we estimate the following way:

|𝑥|<𝑟 |𝑦|<2𝑟 𝑑𝜎(𝑦) |𝑥 -𝑦| 𝑛-2 𝑑𝑥 ≤ |𝑦|<2𝑟 |𝑥|<𝑟 𝑑𝑥 |𝑥 -𝑦| 𝑛-2 𝑑|𝜎|(𝑦) ≤ |𝑦|<2𝑟 |𝑧|<𝑟+2𝑟 𝑑𝑧 |𝑧| 𝑛-2 𝑑𝜎(𝑦) = 𝜎(𝐸 ∩ 𝐵(0, 𝑟)) |𝑧|<3𝑟 𝑑𝑧 |𝑧| 𝑛-2 = 𝜎(𝐸 ∩ 𝐵(0, 𝑟))|𝑆 1 | 3𝑟 0 𝜌𝑑𝜌 = 𝐶𝑟 𝑑 |𝑆 1 | (3𝑟) 2 2 .
To estimate the second term we exploit the fact that 𝑥 and 𝑦 are now far away from each other, and we also split the space into layers like always:

|𝑥|<𝑟 |𝑦|≥2𝑟 𝑑𝜎(𝑦) |𝑥 -𝑦| 𝑛-2 𝑑𝑥 ≤ |𝑥|<𝑟 ∞ ∑︁ 𝑘=1 2𝑘 𝑟≤|𝑦|<2 𝑘+1 𝑟 𝑑𝜎(𝑦) |𝑥 -𝑦| 𝑛-2 𝑑𝑥 ≤ |𝑥|<𝑟 ∞ ∑︁ 𝑘=1 (2 𝑘 𝑟) -𝑛+2 𝐶(2 𝑘+1 𝑟) 𝑑 𝑑𝑥 ≤ 𝐶𝑟 𝑑+2 , since -𝑛 + 𝑑 + 2 < 0.

It suffices to say that the function 1

|𝑥| 𝑛-2 is a fundamental solution of the equation ∆𝑢 = 0 in R 𝑛 ∖ {0}, and that

∆𝑢 𝑓 (𝑥) = R𝑛 ∆ 1 |𝑥 -𝑦| 𝑛-2 𝑓 (𝑦)𝑑𝜎(𝑦).
3. Our strategy will be quite similar to the one we used for the proof of the local integrability:

|𝑢 𝑓 (𝑥)| ≤ ‖𝑓 ‖ ∞ ⎛ ⎜ ⎝ B(𝑥,2𝛿(𝑥)) 𝑑𝜎(𝑦) |𝑥 -𝑦| 𝑛-2 + ∑︁ 𝑘≥1 B(𝑥,2 𝑘+1 𝛿(𝑥))∖𝐵(𝑥,2 𝑘 𝛿(𝑥)) 𝑑𝜎(𝑦) |𝑥 -𝑦| 𝑛-2 ⎞ ⎟ ⎠ .
The first integral inside the brackets can be estimated as

B(𝑥,2𝛿(𝑥)) 𝑑𝜎(𝑦) |𝑥 -𝑦| 𝑛-2 ≤ (2𝛿(𝑥)) -𝑛+2 B(𝑥,2𝛿(𝑥)) 𝑑𝜎(𝑦) ≤ (2𝛿(𝑥)) -𝑛+2 𝑐 𝑑 𝛿(𝑥) 𝑑 ≤ 𝐶𝛿 -𝑛+2+𝑑 .
For the terms in the second part,

B(𝑥,2 𝑘+1 𝛿(𝑥))∖𝐵(𝑥,2 𝑘 𝛿(𝑥)) 𝑑𝜎(𝑦) |𝑥 -𝑦| 𝑛-2 ≤ (︀ 2 𝑘 𝛿(𝑥) )︀ -𝑛+2 (𝑐2 𝑘+1 𝛿(𝑥)) 𝑑 = 𝐶(2 -𝑛+2+𝑑 ) 𝑘 𝛿 -𝑛+2+𝑑 .
Thus, as we sum over 𝑘 > 0, we get that the second term is equal to 𝐶𝛿 -𝑛+2+𝑑 , since 2 -𝑛+2+𝑑 < 1. 

For any

R𝑛 R𝑛 𝑓 (𝑦)𝑑𝜎(𝑦) |𝑥 -𝑦| 𝑛-2 ∆𝜑(𝑥)𝑑𝑥 = R𝑛 R𝑛 ∆𝜑(𝑥) |𝑥 -𝑦| 𝑛-2 𝑑𝑥𝑓 (𝑦)𝑑𝜎(𝑦).

Now we use the fact that the solution of the distributional equation

∆𝑢 = 𝛿 0 is -1 (𝑛-2)|𝑆 1 | 1 |𝑥| 𝑛-2
. This is well-known, but one could also check out [1], p.103, Lemma 4.3.6, for example. Therefore

𝜑(𝑦) = 𝛿 0 * 𝜑(𝑦) = ∆ (︂ - 1 (𝑛 -2)|𝑆 1 | 1 |𝑥 𝑛-2 | )︂ * 𝜑(𝑦) = - 1 |𝑆 1 |(𝑛 -2) R𝑛 ∆𝜑(𝑥)𝑑𝑥 |𝑦 -𝑥| 𝑛-2 .
We can integrate the expression above and conclude that

R𝑛 R𝑛 ∆𝜑(𝑥) |𝑥 -𝑦| 𝑛-2 𝑑𝑥𝑓 (𝑦)𝑑𝜎(𝑦) = -(𝑛 -2)|𝑆 1 | R𝑛 𝜑(𝑦)𝑓 (𝑦)𝑑𝜎(𝑦).
Thus,

⟨∆𝑢 𝑓 , 𝜑⟩ = -|𝑆 1 |(𝑛 -2)⟨𝑓 𝑑𝜎, 𝜑⟩.
Now we study an arbitrary function 𝑢 harmonic in R 𝑛 ∖ 𝐸 and such that |𝑢(𝑥)| ≤ 𝐶𝛿(𝑥) -𝑛+2+𝑑 . For this we need to recall that 𝜇 is an upper 𝑑-Ahlfors regular measure on 𝐸 if there is a constant 𝐶 0 such that for 𝑥 ∈ 𝐸 and 0 < 𝑟 < diam(𝐸) one has 𝜇(𝐵(𝑥, 𝑟)) ≤ 𝐶 0 𝑟 𝑑 . Lemma 2. For a function 𝑢 as above, 𝑢 ∈ 𝐿 1,𝑙𝑜𝑐 (R 𝑛 ) and the distribution ∆𝑢 is an upper 𝑑-Ahlfors regular measure on 𝐸.

Proof. The first part, that 𝑢 lies in 𝐿 1,𝑙𝑜𝑐 (R 𝑛 ), can be viewed as a corollary of the following fact. For 𝜎 = ℋ 𝑑 | 𝐸 , one has 𝛿(𝑥) -𝑛+𝑑+2 ≤ 𝑐𝑢 1 (𝑥) for the function 𝑢 1 (𝑥) as in lemma 1. Indeed, let us pick a point 𝑦 0 such that 𝑑(𝑥, 𝑦 0 ) ≤ 2𝛿(𝑥) and 𝑟 = 𝛿(𝑥). Then

𝑢 1 (𝑥) = R𝑛 𝑑𝜎(𝑦) |𝑥 -𝑦| 𝑛-2 ≥ Ê∩𝐵(𝑦 0 ,𝑟) 𝑑𝜎(𝑦) |𝑥 -𝑦| 𝑛-2 ≥ Ê∩𝐵(𝑦 0 ,𝑟) 𝑑𝜎(𝑦) (|𝑥 -𝑦 0 | + |𝑦 0 -𝑦|) 𝑛-2 ≥ Ê∩𝐵(𝑦 0 ,𝑟) 𝑑𝜎(𝑦) (3𝛿(𝑥)) 𝑛-2 = 𝐶𝛿(𝑥) -𝑛+2 𝜎(𝐸 ∩ 𝐵(𝑦 0 , 𝑟)) ≥ 𝐶𝛿 -𝑛+2 𝑟 𝑑 = 𝐶𝛿(𝑥) -𝑛+𝑑+2 .
Therefore for an arbitrary radius 𝑟,

|𝑥|<𝑟 |𝑢(𝑥)|𝑑𝑥 ≤ 𝐶 |𝑥|<𝑟 𝛿(𝑥) -𝑛+2+𝑑 𝑑𝑥 ≤ 𝐶 |𝑥|<𝑟 R𝑛 𝑑𝜎(𝑦) |𝑥 -𝑦| 𝑛-2 𝑑𝑥,
and now we can argue that in Lemma 1 above we have already demonstrated that the function 𝑢 1 is locally integrable. One could also repeat the argument we used before, but for 𝛿(𝑥) -𝑛+𝑑+2 .

We now prove the second part of the statement. Observing that -∆𝑢 is supported on 𝐸 is easy, since, if 𝜑 ∈ 𝐶 ∞ 0 (R 𝑛 ) has support outside 𝐸, then ⟨∆𝑢, 𝜑⟩ is zero. For the upper-regularity we use an argument of approximate identity. Recall that, besides the local integrability of the function 𝑢, we know that its total mass inside a ball of small radius 𝑟 centered at 𝐸 is majorized up to a constant by 𝑟 𝑑+2 , as we saw in Lemma 1. Let {𝜑 𝑟 } be a standard approximate identity. We introduce the family of functions {𝑢 * 𝜑 𝑟 }. We will see that for each ball 𝐵(𝑥, 𝜌) centered at 𝐸 the total mass of the Laplacian of 𝑢 * 𝜑 𝑟 inside this ball is less than 𝐶𝜌 𝑑 if 𝑟 << 𝜌, where 𝐶 does not depend on 𝑟. Therefore the same will be true for ∆𝑢 as a limit of ∆(𝑢 * 𝜑 𝑟 ), which will conclude our proof. So due to the upper-regularity of 𝜇. So, 𝜇(𝐴) ≤ 𝐶𝜀 for every 𝜀 > 0, which implies that 𝜇(𝐴) = 0. Now, it is well-known, see for instance [15] Theorem 2.17, that the density function 𝑓 of the absolutely continuous part of a Radon measure 𝜇 with respect to a Radon measure 𝜎 is (almost everywhere) equal to the function 𝐷 𝜎 𝜇(𝑥), the limit of 𝐷 𝜎 𝜇(𝑥, 𝑟) = 𝜇(𝐵(𝑥,𝑟))

𝜎(𝐵(𝑥,𝑟))

with respect to 𝑟 → 0. In our case, since 𝜇 is absolutely continuous with respect to 𝜎, the density function we are looking for is exactly 𝐷 𝜎 𝜇. It is bounded, since 𝜇(𝐵(𝑥, 𝑟)) ≤ 𝐶𝑟 𝑑 by the 𝑑-upper-regularity property. In the case then 𝜇 is 𝑑-Ahlfors regular the density function is also bounded away from zero, since 𝜇(𝐵(𝑥, 𝑟)) ≥ 𝑐𝑟 𝑑 .

Proof of theorem 4. From lemma 2 we know that if 𝑢 is harmonic outside 𝐸 and |𝑢(𝑥)| ≤ 𝐶𝛿(𝑥) -𝑛+𝑑+2 , then ∆𝑢 is upper 𝑑-Ahlfors regular and therefore has a bounded density f with respect to 𝜎. Observe that for 𝑓 = f

1 |𝑆 1 |(𝑛-2) R𝑛 (𝑢 -𝑢 𝑓 )∆𝜑 = R𝑛 ∆(𝑢 -𝑢 𝑓 )𝜑 = - R𝑛 𝜑 f 𝑑𝜎 + R𝑛 𝜑 f 𝑑𝜎 = 0,
for every 𝜑 ∈ 𝐶 ∞ 0 . Now the fundamental lemma of variational calculus tells us that 𝑢 and 𝑢 𝑓 can differ only by a linear function. But if that linear function is not zero, this is impossible, since |𝑢(𝑥)| ≤ 𝐶𝛿(𝑥) -𝑛+𝑑+2 , and this is arbitrarily small far away from 𝐸, which is not the case with 𝑢 = 𝑢 𝑓 + 𝐿, 𝐿 linear and non-zero.

Non-tangential limits

The main goal of this section is to prove that, if 𝐸 is a 𝑑-Ahlfors regular and rectifiable set, and 𝑢 is a function harmonic outside 𝐸 and such that |𝑢(𝑥)| is comparable to 𝛿(𝑥) -𝑛+𝑑+2 , then the function 𝑢(𝑥)𝛿(𝑥) 𝑛-𝑑-2 has a non-tangential limit at almost every point 𝑦 0 ∈ 𝐸 equal to 𝑐𝑓 (𝑦 0 ), where 𝑓 is the density of the measure ∆𝑢 with respect to ℋ 𝑑 | 𝐸 , and the constant 𝑐 does not depend on 𝑢 or the point 𝑦 0 . A statement very similar to this is also proved in [7] (see section 5), and we use its techniques and follow mostly its exposition.

Let us recall first the necessary terminology and definitions. With the assumption of rectifiability of the set 𝐸, at almost every with respect to the measure 𝜎 = ℋ 𝑑 | 𝐸 point 𝑦 0 of 𝐸 we can find the unique tangent hyperplane 𝑇 𝑦 0 𝐸 of dimension 𝑑: see, for example, [15] p. 219 Ex. 7 or [6] Ex. 41.21. Let 𝑅 > 0 be small enough, and for the sets of points 𝑦 0 where 𝑇 𝑦 0 𝐸 exists let us define for 𝜂 ∈ (0, 1) the set

Γ 𝑅,𝜂 = {𝑥 ∈ (R 𝑛 ∖ 𝐸) ∩ 𝐵(𝑦 0 , 𝑅) : dist(𝑥, 𝐸) ≥ 𝜂|𝑥 -𝑦 0 |}.
We will call Γ 𝑅,𝜂 a non-tangential access region of the point 𝑦 0 (with an aperture 𝜂). Let 𝑣 be a function defined at least on R 𝑛 ∖ 𝐸. The non-tangential limit of 𝑣 at a point 𝑦 0 ∈ 𝐸, denoted by n.t.lim 𝑥→𝑦 0 𝑣(𝑥), if it exists, is the common limit of {𝑣(𝑥 𝑖 )}, where {𝑥 𝑖 } is any sequence in Γ 𝑅,𝜂 such that 𝑥 𝑖 tends to 𝑦 0 as 𝑖 tends to infinity.
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Let 𝜇 be a 𝑑-Ahlfors regular measure on 𝐸 with density 𝑓 with respect to 𝜎, and the functions 𝑢 𝑓 and 𝛿 be as in Section 2. Then, regardless of 𝜂 in the definition of Γ 𝑅,𝜂 above, for 𝜎-almost every 𝑦 0 ∈ 𝐸

n.t.lim 𝑥→𝑦 0 𝑢 𝑓 (𝑥)𝛿(𝑥) 𝑛-𝑑-2 = 𝐶(𝑛, 𝑑)𝑓 (𝑦 0 ), (10) 
where 𝐶(𝑛, 𝑑) is a constant which depends only on 𝑛 and 𝑑.

Definition 4. We call a measure 𝜈 (𝑑-)flat if it is equal to a measure 𝑐𝑑𝑦, where 𝑐 is a constant, and 𝑑𝑦 is a Lebesgue measure supported on a hyperplane of dimension 𝑑.

Rem 1. More precisely, in order for the non-tangential limit (10) to exist at a point 𝑦 0 of 𝐸, it is enough that for this point 𝑦 0 the following holds simultaneously:

1. 𝑦 0 is a density point of the measure 𝜇, 2. 𝑇 𝑦 0 𝐸 exists, 3. every tangent measure of 𝜇 at 𝑦 0 is a flat measure.

All three conditions hold, as mentioned above in the statement of the theorem, for almost every point in our set 𝐸: see [15], the precise reference for the property 2 is given above, and for the property 3 -in the proof of the theorem.

Proof of theorem 5. Our main instruments are the so-called blow-up limits. We fix a point 𝑦 0 as in Remark 1 above and a decreasing to zero sequence of positive numbers {𝑟 𝑖 }. Then we introduce the sequence of sets {𝐸 𝑖 }, 𝐸 𝑖 = 𝐸-𝑦 0 𝑟 𝑖 and the measures 𝜇 𝑖 supported on 𝐸 𝑖 ,

𝜇 𝑖 (𝑆) = 𝜇(𝑟 𝑖 𝑆+𝑦 0 )
𝑟 𝑑 𝑖 . Theorems 14.3 and 16.5 in [15] combined give us that the (weak) limit of (a subsequence of) {𝜇 𝑖 } is a flat tangent measure 𝜇 ∞ = 𝑓 (𝑦 0 )𝑑ℋ 𝑑 = 𝑓 (𝑦 0 )𝑑𝑦, supported on the hyperplane 𝐸 ∞ , a limit of {𝐸 𝑖 } in the sense of Hausdorff distance, which coincides as an element of the Grassmannian with the tangent hyperplane 𝑇 𝑦 0 𝐸. Let us also fix an aperture 0 < 𝜂 < 1 and a point 𝑥 ∈ Γ 𝐸∞,𝜂 , where

Γ 𝐸∞,𝜂 = {𝑥 ∈ R 𝑛 ∖ 𝐸 ∞ : dist(𝑥, 𝐸 ∞ ) ≥ 𝜂|𝑥|}.
Note that for 𝑖 large enough 𝑥 lies well outside of 𝐸 𝑖 . We define now on R 𝑛 ∖ 𝐸 𝑖 the function

𝑅 𝑖 (𝑥) = Ê𝑖 𝑑𝜇 𝑖 (𝑦) |𝑥 -𝑦| 𝑛-2 .
Our strategy is the following. Denote 𝑥 𝑖 = 𝑟 𝑖 𝑥+𝑦 0 ∈ Γ 𝑅,𝜂 . First we will explain that the sequence {𝑅 𝑖 (𝑥)} 𝑖→∞ has a limit proportional to the limit of 𝑢 𝑓 (𝑥 𝑖 )𝛿(𝑥 𝑖 ) 𝑛-𝑑-2 , as 𝑥 𝑖 tends to 𝑦 0 , with the ratio dist(𝑥, 𝐸 ∞ ) (𝑛-𝑑-2) . Roughly, this means that the limit of the sequence {𝑅 𝑖 (𝑥)} 𝑖→∞ and the non-tangential limit of the function 𝑢 𝑓 (•)𝛿(•) 𝑛-𝑑-2 are proportional. Then we will prove that {𝑅 𝑖 (𝑥)} 𝑖→∞ converges to the product of the constant 𝐶(𝑛, 𝑑)𝑓 (𝑦 0 ) and the function dist(𝑥, 𝐸 ∞ ) -(𝑛-𝑑-2) uniformly in 𝑥 which are "far away" from 𝐸 ∞ . This gives us what we want.

For the first part of the proof, observe that, with the notation 𝑤 𝑖 = 𝑟 𝑖 𝑦 + 𝑦 0 ∈ 𝐸 and

𝑥 𝑖 = 𝑟 𝑖 𝑥 + 𝑦 0 ∈ Γ 𝑅,𝜂 , Ê𝑖 𝑑𝜇 𝑖 (𝑦) |𝑥 -𝑦| 𝑛-2 = Ê 𝑑𝜇(𝑤) 𝑖 /𝑟 𝑑 𝑖 ⃒ ⃒ ⃒ 𝑥 𝑖 -𝑦 0 𝑟 𝑖 -𝑤 𝑖 -𝑦 0 𝑟 𝑖 ⃒ ⃒ ⃒ 𝑛-2 = Ê 𝑑𝜇(𝑤 𝑖 ) |𝑥 𝑖 -𝑤 𝑖 | 𝑛-2 𝑟 𝑛-2-𝑑 𝑖 = 𝑢 𝑓 (𝑥 𝑖 )𝑟 𝑛-𝑑-2 𝑖 .
Since 𝑥 𝑖 lies in the non-tangential access region Γ 𝑅,𝜂 (of the point 𝑦 0 ), the difference between the distance 𝛿(𝑥 𝑖 ) of the point 𝑥 𝑖 to the set 𝐸 and the product |𝑥 𝑖 -𝑦 0 | sin (𝑥 ∧ 𝐸 ∞ ), where 𝑥 ∧ 𝐸 ∞ is the angle between the hyperplane 𝐸 ∞ and the vector 𝑥, tends to zero uniformly in 𝑥 in Γ 𝐸∞,𝜂 as 𝑖 tends to infinity. This implies that, given

|𝑥 𝑖 -𝑦 0 | = 𝑟 𝑖 |𝑥| = 𝑟 𝑖 dist(𝑥,𝐸∞) sin (𝑥∧𝐸∞) , 𝑅 𝑖 (𝑥) = 𝑢 𝑓 (𝑥 𝑖 )𝑟 𝑛-𝑑-2 𝑖 = 𝑢 𝑓 (𝑥 𝑖 ) (︂ |𝑥 𝑖 -𝑦 0 | |𝑥| )︂ 𝑛-𝑑-2 = 𝑢 𝑓 (𝑥 𝑖 ) (︂ |𝑥 𝑖 -𝑦 0 | sin (𝑥 ∧ 𝐸 ∞ ) dist(𝑥, 𝐸 ∞ ) )︂ 𝑛-𝑑-2 = 𝑢 𝑓 (𝑥 𝑖 ) (︂ 𝛿(𝑥 𝑖 ) dist(𝑥, 𝐸 ∞ ) )︂ 𝑛-𝑑-2 + 𝑓 (𝑥 𝑖 ),
where 𝑓 (𝑥 𝑖 ) tends to zero uniformly in 𝑥 as 𝑖 tends to infinity.

For the second part, as announced, we first prove that 𝑅 𝑖 (𝑥) → 𝑅 ∞ (𝑥) uniformly in 𝑥 which lie "far away" from 𝐸 ∞ , where

𝑅 ∞ (𝑥) = Ê∞ 𝑑𝜇 ∞ (𝑦) |𝑥 -𝑦| 𝑛-2 .
Lemma 4. Let 𝐾 be a compact set inside R 𝑛 ∖ 𝐸 ∞ . Then functions 𝑅 𝑖 converge to 𝑅 ∞ uniformly on 𝐾.

Proof. We begin with the observation that if 𝑥 ∈ 𝐾, then for 𝑖 large enough 𝑥 lies well outside of the set 𝐸 𝑖 . We consider from now on only such indices 𝑖. The functions 𝑅 𝑖 (𝑥) are bounded uniformly in 𝑥 ∈ 𝐾 and 𝑖. Indeed, the measures 𝜇 𝑖 are 𝑑-Ahlfors regular with uniform in 𝑖 constants. If we set 𝑦 0 ∈ 𝐸 𝑖 : dist(𝑥, 𝐸 𝑖 ) = dist(𝑦 0 , 𝑥) and 𝑟 = min 𝑖≥𝑖 0 dist(𝐾, 𝐸 𝑖 ) (which is separated from zero), then

Ê𝑖 𝑑𝜇 𝑖 (𝑦) |𝑥 -𝑦| 𝑛-2 = B(𝑦 0 ,𝑟) 𝑑𝜇 𝑖 (𝑦) |𝑥 -𝑦| 𝑛-2 + ∞ ∑︁ 𝑘=1 2𝑘 𝑟≤|𝑦-𝑦 0 |≤2 𝑘+1 𝑟 𝑑𝜇 𝑖 (𝑦) |𝑥 -𝑦| 𝑛-2 ≤ dist(𝐾, 𝐸 𝑖 ) -𝑛+2 𝑟 𝑑 + ∞ ∑︁ 𝑘=1 (2 𝑘 𝑟) -𝑛+2 𝐶(2 𝑘+1 𝑟) 𝑑 ≤ 𝐶𝑟 -𝑛+2+𝑑 .
The uniform estimate implies that for every 𝜀 > 0 there is 𝑅 > 0 such that

⃒ ⃒ ⃒ ⃒ ⃒ ⃒ ⃒ B(0,𝑅) 𝑑𝜇 𝑖 (𝑦) |𝑥 -𝑦| 𝑛-2 - Ê𝑖 𝑑𝜇 𝑖 (𝑦) |𝑥 -𝑦| 𝑛-2 ⃒ ⃒ ⃒ ⃒ ⃒ ⃒ ⃒ < 𝜀
for every 𝑖 = 𝑖 0 , . . . , ∞. There exists a smooth function 𝜑 which approximates 𝜒 𝐵(0,𝑅) and is supported inside 𝐵(0, 𝑅) such that

⃒ ⃒ ⃒ ⃒ ⃒ ⃒ ⃒ B(0,𝑅) 𝑑𝜇 𝑖 (𝑦) |𝑥 -𝑦| 𝑛-2 - Ê𝑖 𝜑(𝑦)𝑑𝜇 𝑖 (𝑦) |𝑥 -𝑦| 𝑛-2 ⃒ ⃒ ⃒ ⃒ ⃒ ⃒ ⃒ < 𝜀.
Therefore we have, for the same set of indices,

Ê𝑖 ⃒ ⃒ ⃒ ⃒ (1 -𝜑(𝑦))𝑑𝜇 𝑖 (𝑦) |𝑥 -𝑦| 𝑛-2 ⃒ ⃒ ⃒ ⃒ < 2𝜀.
We need this to work with functions of the type 𝜑(𝑦) |𝑥-𝑦| 𝑛-2 instead of

1 |𝑥-𝑦| 𝑛-2 .
Observe now that functions of the family { 𝜑(𝑦) |𝑥-𝑦| 𝑛-2 } 𝑥∈𝐾 are still uniformly bounded and moreover equicontinuous inside 𝐵(0, 𝑅).

Indeed, if |𝑥 1 -𝑥 2 | < 𝛿, then ⃒ ⃒ ⃒ ⃒ 𝜑(𝑦) |𝑥 1 -𝑦| (𝑛-2) - 𝜑(𝑦) |𝑥 2 -𝑦| 𝑛-2 ⃒ ⃒ ⃒ ⃒ ≤ ||𝑥 2 -𝑦| 𝑛-2 -|𝑥 1 -𝑦| 𝑛-2 | |𝑥 1 -𝑦| 𝑛-2 |𝑥 2 -𝑦| 𝑛-2 ≤ (|𝑥 2 -𝑦| -|𝑥 1 -𝑦|) 𝑛-3 ∑︁ 𝑖=0 |𝑥 2 -𝑦| 𝑛-3-𝑖 |𝑥 1 -𝑦| 𝑖 |𝑥 1 -𝑦| 𝑛-2 |𝑥 2 -𝑦| 𝑛-2 ≤ |𝑥 2 -𝑥 1 |𝐶(𝑛) < 𝛿𝐶(𝑛).
Therefore we can apply Arzela-Ascoli theorem to the family { 𝜑(𝑦) |𝑥-𝑦| 𝑛-2 } 𝑥∈𝐾 and find a finite collection of continuous function {𝑔 𝑘 } with support inside 𝐵(0, 2𝑅) such that for every point 𝑥 ∈ 𝐾 there is an index 𝑘 with |𝑔 𝑘 (𝑦)

-𝜑(𝑦) |𝑥-𝑦| 𝑛-2 | ≤ 𝜀𝑅 -𝑑 for 𝑦 ∈ 𝐵(0, 2𝑅) ∩ 𝐸 𝑖 . Then ˆ⃒ ⃒ ⃒ ⃒ 𝑔 𝑘 (𝑦) - 𝜑(𝑦) |𝑥 -𝑦| 𝑛-2 ⃒ ⃒ ⃒ ⃒ 𝑑𝜇 𝑖 (𝑦) + ˆ⃒ ⃒ ⃒ ⃒ 𝑔 𝑘 (𝑦) - 𝜑(𝑦) |𝑥 -𝑦| 𝑛-2 ⃒ ⃒ ⃒ ⃒ 𝑑𝜇 ∞ (𝑦) ≤ 𝐶𝜀.
By the definition of a tangent measure ´𝑔𝑘 (𝑦)𝑑𝜇 𝑖 (𝑦) converges to ´𝑔𝑘 (𝑦)𝑑𝜇 ∞ (𝑦), and we can finally estimate the modulus of the difference |𝑅 𝑖 (𝑥) -𝑅 ∞ (𝑥)| the following way:

⃒ ⃒ ⃒ ⃒ ⃒ ⃒ Ê𝑖 𝑑𝜇 𝑖 (𝑦) |𝑥 -𝑦| 𝑛-2 - Ê∞ 𝑑𝜇 ∞ (𝑦) |𝑥 -𝑦| 𝑛-2 ⃒ ⃒ ⃒ ⃒ ⃒ ⃒ ≤ 4𝜀 + ⃒ ⃒ ⃒ ⃒ ⃒ ⃒ Ê𝑖 𝜑(𝑦)𝑑𝜇 𝑖 (𝑦) |𝑥 -𝑦| 𝑛-2 - Ê∞ 𝜑(𝑦)𝑑𝜇 ∞ (𝑦) |𝑥 -𝑦| 𝑛-2 ⃒ ⃒ ⃒ ⃒ ⃒ ⃒ ≤ 4𝜀 + Ê𝑖 ⃒ ⃒ ⃒ ⃒ 𝑔 𝑘 (𝑦) - 𝜑(𝑦) |𝑥 -𝑦| 𝑛-2 ⃒ ⃒ ⃒ ⃒ 𝑑𝜇 𝑖 (𝑦) + Ê∞ ⃒ ⃒ ⃒ ⃒ 𝑔 𝑘 (𝑦) - 𝜑(𝑦) |𝑥 -𝑦| 𝑛-2 ⃒ ⃒ ⃒ ⃒ 𝑑𝜇 ∞ (𝑦) + ⃒ ⃒ ⃒ ⃒ ˆ𝑔𝑘 (𝑦)𝑑𝜇 𝑖 (𝑦) -ˆ𝑔𝑘 (𝑦)𝑑𝜇 ∞ (𝑦) ⃒ ⃒ ⃒ ⃒ ≤ 𝐶𝜀.
We now know that, on the one hand, the limit of the function 𝑅 𝑖 (𝑥), as 𝑖 tends to infinity, coincides with the limit of the function

𝑢 𝑓 (𝑥 𝑖 )𝛿(𝑥 𝑖 ) 𝑛-𝑑-2 dist(𝑥, 𝐸 ∞ ) -(𝑛-𝑑-2)
as 𝑥 𝑖 tends to 𝑦 0 , if 𝑥 𝑖 = 𝑟 𝑖 𝑥 + 𝑦 0 . On the other hand, 𝑅 𝑖 (𝑥) tends to 𝑅 ∞ (𝑥) uniformly for 𝑥 in Γ 𝐸∞,𝜂 which stay away from 𝐸 ∞ . This implies that for every 𝑥 such that |𝑥| = 1, say, and

𝑥 ∈ Γ 𝐸∞,𝜂 𝑢 𝑓 (𝑥 𝑖 )𝛿(𝑥 𝑖 ) 𝑛-𝑑-2 → 𝑅 ∞ (𝑥)dist(𝑥, 𝐸 ∞ ) 𝑛-𝑑-2 , 𝑖 → ∞, 𝑥 𝑖 = 𝑟 𝑖 𝑥 + 𝑦 0 .
The product 𝑅 ∞ (𝑥)dist(𝑥, 𝐸 ∞ ) 𝑛-𝑑-2 we will compute below, and it is a product of 𝐶(𝑛, 𝑑)𝑓 (𝑦 0 ), where the constant 𝐶(𝑛, 𝑑) can be calculated explicitly in terms of Γ-functions and depends only on 𝑑 and 𝑛. This is exactly the right-hand side of (10). It is left for us only to see why

𝑢 𝑓 (𝑥 𝑖 )𝛿(𝑥 𝑖 ) 𝑛-𝑑-2 → 𝑅 ∞ (𝑥)dist(𝑥, 𝐸 ∞ ) 𝑛-𝑑-2 , as 𝑥 𝑖 → 𝑦 0
for any sequence {𝑥 𝑖 } in Γ 𝑅,𝜂 , not just those of the type 𝑥 𝑖 = 𝑟 𝑖 𝑥 + 𝑦 0 for a fixed 𝑥. But this follows from the uniform convergence of

𝑅 𝑖 (𝑥) to 𝑢 𝑓 (𝑥 𝑖 ) (︂ 𝛿(𝑥 𝑖 ) dist(𝑥, 𝐸 ∞ ) )︂ 𝑛-𝑑-2
and in Lemma 4: we have |𝑢 𝑓 (𝑥 𝑖 )𝛿(𝑥 𝑖 ) 𝑛-𝑑-2 -𝐶(𝑛, 𝑑)𝑓 (𝑦 0 )| < 𝜖 as soon as |𝑥 𝑖 -𝑦 0 | is small enough.

To finish the proof we compute 𝑅 ∞ (𝑥)dist(𝑥, 𝐸 ∞ ) 𝑛-𝑑-2 . By definition,

𝑅 ∞ (𝑥)dist(𝑥, 𝐸 ∞ ) 𝑛-𝑑-2 = Ê∞ 𝑓 (𝑦 0 )𝑑𝑦 |𝑥 -𝑦| 𝑛-2 dist(𝑥, 𝐸 ∞ ) 𝑛-𝑑-2 . Let 𝑧 be the point of 𝐸 ∞ such that dist(𝑥, 𝐸 ∞ ) = dist(𝑥, 𝑧). Clearly |𝑥 -𝑦| = √︀ |𝑥 -𝑧| 2 + 𝑟 2
, where 𝑟 = dist(𝑧, 𝑦) for 𝑦 ∈ 𝐸 ∞ . Write 𝛿 1 (𝑥) for dist(𝑥, 𝑧). Then we have

Ê∞ 𝑑𝑦 |𝑥 -𝑦| 𝑛-2 = ∞ 0 𝑟 𝑑-1 𝑑𝑟 (𝛿 1 (𝑥) 2 + 𝑟 2 ) (𝑛-2)/2 = 𝛿 1 (𝑥) -𝑛+𝑑+2 ∞ 0 𝑟 𝑑-1 𝛿 1 (𝑥) 𝑑-1 𝑑 (︁ 𝑟 𝛿 1 (𝑥) )︁ (︂ 1 + (︁ 𝑟 𝛿 1 (𝑥) )︁ 2 )︂ (𝑛-2)/2 = 𝛿 1 (𝑥) -𝑛+𝑑+2 ∞ 0 𝑥 𝑑-1 𝑑𝑥 (1 + 𝑥 2 ) (𝑛-2)/2 .

Note that the integral

∞ 0 𝑥 𝑑-1 𝑑𝑥 (1+𝑥 2 ) (𝑛-2)/2 clearly converges and is equal to 𝑐 1 = 𝐶(𝑛, 𝑑) = V(S 𝑑-1 ) 1 2 Γ( 𝑑 2 )Γ( 𝑛-𝑑-2 2 ) Γ( 𝑛-2 2 )
. Therefore 𝑅 ∞ (𝑥)dist(𝑥, 𝐸 ∞ ) 𝑛-𝑑-2 is indeed equal to 𝐶(𝑛, 𝑑)𝑓 (𝑦 0 ).

Corollary 1. Apart from the fact that the function

𝑢 𝑓 (𝑥)𝛿(𝑥) 𝑛-𝑑-2 = 𝛿(𝑥) 𝑛-𝑑-2 Ê 𝑓 (𝑦)𝑑𝑦 |𝑥 -𝑦| 𝑛-2 ,
where 𝑓 ∈ 𝐿 ∞ (𝐸), has a non-tangential limit at 𝜎-almost every 𝑦 0 ∈ 𝐸, which is equal to 𝑐 1 𝑓 (𝑦 0 ), throughout the next sections we will also use similar statements, but for degrees in the denominator in the integral other than (𝑛 -2). More precisely, we claim that for 𝑓 ∈ 𝐿 ∞ (𝐸) and 𝛽 > 0 the function

𝛿(𝑥) 𝛽 Ê 𝑓 (𝑦)𝑑𝑦 |𝑥 -𝑦| 𝑑+𝛽 ,
also has a non-tangential limit at almost every 𝑦 0 ∈ 𝐸 equal to 𝐶(𝑑, 𝛽)𝑓 (𝑦 0 ), and the constant 𝐶(𝑑, 𝛽) depends only on 𝑑 and 𝛽. The proof is similar to the proof of (10).

Three BMO lemmas

In this section we prove some more technical preliminaries concerning the space of functions of bounded mean oscillations (BMO) to simplify the exposition of Sections 5 and 6. The reader can skip to them directly and return to this section when needed. By 𝑥 we usually (that is, except for in Lemma 5) denote a point in R 𝑛 which lies away from the hyperplane R 𝑑 containing zero. By 𝛿(𝑥) we denote the distance between 𝑥 and the hyperplane R 𝑑 .

Recall that the John-Nirenberg inequality asserts that for every

1 ≤ 𝑝 < ∞ sup 𝐵 1 |𝐵| ⎛ ⎝ B |𝑓 (𝑦) -𝑚 𝐵 𝑓 | 𝑝 𝑑𝑦 ⎞ ⎠ 1/𝑝 ≍ ‖𝑓 ‖ 𝐵𝑀 𝑂 ,
where by 𝑚 𝐵 𝑓 we denote the average 1 |𝐵| B 𝑓 (𝑦)𝑑𝑦, and the supremum is taken over all balls in R 𝑑 . Lemma 5. Let 𝑓 be a function in 𝐵𝑀 𝑂(R 𝑑 ). Denote by 𝐵(𝑥, 𝑟) the ball with center 𝑥 and radius 𝑟. Then for every 𝑟 > 𝑟 0 > 0 holds

|𝑚 𝐵(𝑥,𝑟) 𝑓 -𝑚 𝐵(𝑥 0 ,𝑟 0 ) 𝑓 | ≤ 𝐶‖𝑓 ‖ 𝐵𝑀 𝑂 (︂ ln 𝑟 𝑟 0 + ln |𝑥 -𝑥 0 | 𝑟 0 )︂ . ( 11 
)
Proof. We will need two simple facts. First, let 𝐵 and 𝐵 ′ be balls such that 𝐵 ′ ⊂ 𝐵. Then

|𝑚 𝐵 𝑓 -𝑚 𝐵 ′ 𝑓 | ≤ |𝐵| |𝐵 ′ | ‖𝑓 ‖ 𝐵𝑀 𝑂 . (12) 
Indeed,

|𝑚 𝐵 𝑓 -𝑚 𝐵 ′ 𝑓 | = ⃒ ⃒ ⃒ 1 |𝐵 ′ | B′ 𝑓 (𝑦)𝑑𝑦 -𝑚 𝐵 𝑓 ⃒ ⃒ ⃒ ≤ 1 |𝐵 ′ | B′ |𝑓 (𝑦) -𝑚 𝐵 𝑓 | ≤ |𝐵| |𝐵 ′ | 1 |𝐵| B |𝑓 (𝑦) -𝑚 𝐵 𝑓 | ≤ |𝐵| |𝐵 ′ | ‖𝑓 ‖ 𝐵𝑀 𝑂 .
Second, if the two centers 𝑥 and 𝑥 ′ are such that |𝑥 -𝑥 ′ | ≤ 2𝑟, then

|𝑚 𝐵(𝑥,𝑟) 𝑓 -𝑚 𝐵(𝑥 ′ ,𝑟) 𝑓 | ≤ 𝐶‖𝑓 ‖ 𝐵𝑀 𝑂 . (13) 
This follows from ( 12): we can find a ball 𝐵 of radius 3𝑟 such that 𝐵(𝑥, 𝑟) ⊂ 𝐵 and 𝐵(𝑥 ′ , 𝑟) ⊂ 𝐵. Then

|𝑚 𝐵(𝑥,𝑟) 𝑓 -𝑚 𝐵(𝑥 ′ ,𝑟) 𝑓 | ≤ |𝑚 𝐵(𝑥,𝑟) 𝑓 -𝑚 𝐵 𝑓 | + |𝑚 𝐵 𝑓 -𝑚 𝐵(𝑥 ′ ,𝑟) 𝑓 | ≤ 𝐶3 𝑑 ‖𝑓 ‖ 𝐵𝑀 𝑂 .
We are now ready to prove (11).

|𝑚 𝐵(𝑥,𝑟) 𝑓 -𝑚 𝐵(𝑥 0 ,𝑟 0 ) 𝑓 | ≤ |𝑚 𝐵(𝑥,𝑟) 𝑓 -𝑚 𝐵(𝑥,𝑟 0 ) 𝑓 | + |𝑚 𝐵(𝑥,𝑟 0 ) 𝑓 -𝑚 𝐵(𝑥 0 ,𝑟 0 ) 𝑓 |.
Inequality (12) will help us to estimate the first term. Build a chain of nested balls

𝐵 1 = 𝐵(𝑥, 𝑟 0 ) ⊂ 𝐵 2 ⊂ • • • ⊆ 𝐵 𝑁 = 𝐵(𝑥, 𝑟) with center 𝑥 and radii 𝑟 𝑖 such that 𝑟 𝑖 = 2𝑟 𝑖-1 for 𝑖 ≤ 𝑁 -1. Then it is clear that 𝑁 ≤ 𝐶 ln 𝑟 𝑟 0 . For each 1 < 𝑖 ≤ 𝑁 we have |𝑚 𝐵 𝑖-1 𝑓 -𝑚 𝐵 𝑖 𝑓 | ≤ 𝐶‖𝑓 ‖ 𝐵𝑀 𝑂 . Therefore |𝑚 𝐵(𝑥,𝑟) 𝑓 -𝑚 𝐵(𝑥,𝑟 0 ) 𝑓 | ≤ 𝑁 ∑︁ 𝑖=2 |𝑚 𝐵 𝑖 𝑓 -𝑚 𝐵 𝑖-1 𝑓 | ≤ 𝐶‖𝑓 ‖ 𝐵𝑀 𝑂 ln 𝑟 𝑟 0 .
Inequality (13) will help us to estimate the second term |𝑚 𝐵(𝑥,𝑟 0 ) 𝑓 -𝑚 𝐵(𝑥 0 ,𝑟 0 ) 𝑓 |. Build a chain of balls 𝐵 1 = 𝐵(𝑥, 𝑟 0 ), 𝐵 2 , . . . , 𝐵 𝑁 = 𝐵(𝑥 0 , 𝑟 0 ) of common radii 𝑟 0 and centers 𝑥 𝑖 such that for 𝑖 ≤ 𝑁 -1 we have |𝑥 𝑖-1 -𝑥 𝑖 | = 2𝑟 0 . Clearly 𝑁 ≤ 𝐶 ln |𝑥-𝑥 0 | 𝑟 0 . By (13),

|𝑚 𝐵(𝑥,𝑟 0 ) 𝑓 -𝑚 𝐵(𝑥 0 ,𝑟 0 ) 𝑓 | ≤ 𝑁 ∑︁ 𝑖=2 |𝑚 𝐵 𝑖 𝑓 -𝑚 𝐵 𝑖-1 𝑓 | ≤ 𝐶‖𝑓 ‖ 𝐵𝑀 𝑂 ln |𝑥 -𝑥 0 | 𝑟 0 .
This completes the proof of (11).

Lemma 6. Let 𝑓 be a function in 𝐵𝑀 𝑂(R 𝑑 ) and 𝑥 be a point in R 𝑛 ∖ R 𝑑 . Then for any integer 𝑚 ≥ 1

R𝑑 |𝑓 (𝑦)| 𝑚 𝑑𝑦 |𝑥 -𝑦| 𝑑+𝛽 ≤ 𝐶(1 + 𝛿(𝑥) -(𝑑+𝛽) ) (︀ ‖𝑓 ‖ 𝑚 𝐵𝑀 𝑂 + |𝑚 𝐵(𝑥 0 ,1) 𝑓 | 𝑚 )︀ , ( 14 
)
where by 𝑥 0 we denote the projection of 𝑥 to the hyperplane R 𝑑 (𝑥 0 = (𝑥 1 , . . . , 𝑥 𝑑 )), and the constant 𝐶 depends only on 𝑑, 𝑚 and 𝛽 > 0.

Proof. First, observe that

R𝑑 |𝑓 (𝑦)| 𝑚 𝑑𝑦 |𝑥 -𝑦| 𝑑+𝛽 ≤ 𝐶(𝑚) R𝑑 |𝑓 (𝑦) -𝑚 𝐵(𝑥 0 ,1) 𝑓 | 𝑚 𝑑𝑦 |𝑥 -𝑦| 𝑑+𝛽 + 𝐶(𝑚) R𝑑 |𝑚 𝐵(𝑥 0 ,1) 𝑓 | 𝑚 𝑑𝑦 |𝑥 -𝑦| 𝑑+𝛽 .
We use a computation very similar to the one we saw at the end of the previous section to calculate Ŕ𝑑 |𝑥 -𝑦| -(𝑑+𝛽) 𝑑𝑦 and get

R𝑑 |𝑚 𝐵(𝑥 0 ,1) 𝑓 | 𝑚 𝑑𝑦 |𝑥 -𝑦| 𝑑+𝛽 ≤ 𝐶𝛿(𝑥) -𝛽 |𝑚 𝐵(𝑥 0 ,1) 𝑓 | 𝑚 ≤ 𝐶(1 + 𝛿(𝑥) -(𝑑+𝛽) )|𝑚 𝐵(𝑥 0 ,1) 𝑓 | 𝑚 . ( 15 
)
The second inequality here is true because 𝛿(𝑥) -𝛽 ≤ 𝛿(𝑥) -(𝑑+𝛽) if 𝛿(𝑥) ≤ 1, and otherwise both quantites are dominated by a constant. This means that we can assume 𝑚 𝐵(𝑥 0 ,1)𝑓 = 0. Without loss of generality, we can also assume that the fist 𝑑 and the last 𝑛 -𝑑 -1 coordinates of 𝑥 are zero: 𝑥 = (0, . . . , 0, 𝛿(𝑥), 0, . . . ). We split the space R 𝑑 into 𝐵(1, 0) and the union of rings 𝐵(0, 2 𝑘 )∖𝐵(0, 2 𝑘-1 ) and estimate separately integrals of |𝑓 (𝑦)| 𝑚 /|𝑥-𝑦| 𝑑+𝛽 over those sets. For the first term we have

B(0,1) |𝑓 (𝑦)| 𝑚 𝑑𝑦 |𝑥 -𝑦| 𝑑+𝛽 = B(0,1) |𝑓 (𝑦) -𝑚 𝐵(0,1)𝑓 | 𝑚 𝑑𝑦 |𝑥 -𝑦| 𝑑+𝛽 ≤ 𝐶𝛿(𝑥) -(𝑑+𝛽) 1 |𝐵(0, 1)| B(0,1) |𝑓 (𝑦) -𝑚 𝐵(0,1)𝑓 | 𝑚 𝑑𝑦 ≤ 𝐶𝛿(𝑥) -(𝑑+𝛽) ‖𝑓 ‖ 𝑚 𝐵𝑀 𝑂 (16) 
by the John-Nirenberg inequality. Then we estimate the integrals over the rings; for 𝐵 = 𝐵(0, 2 𝑘-1 ) and 2𝐵 = 𝐵(0, 2 𝑘 ) we have 𝑑+𝛽) . For the first term this gives

2𝐵∖𝐵 |𝑓 (𝑦)| 𝑚 𝑑𝑦 |𝑥 -𝑦| 𝑑+𝛽 ≤ 𝐶(𝑚) 2𝐵∖𝐵 |𝑓 (𝑦) -𝑚 2𝐵 𝑓 | 𝑚 𝑑𝑦 |𝑥 -𝑦| 𝑑+𝛽 + 𝐶(𝑚) 2𝐵∖𝐵 |𝑚 2𝐵 𝑓 | 𝑚 𝑑𝑦 |𝑥 -𝑦| 𝑑+𝛽 . Since for 𝑦 in 2𝐵 ∖ 𝐵 the quantity |𝑥 -𝑦| 2 is comparable to 𝛿(𝑥) 2 + 2 2𝑘 , |𝑥 -𝑦| -(𝑑+𝛽) is dominated by 𝐶(𝛿(𝑥) + 2 𝑘 ) -(
2𝐵∖𝐵 |𝑓 (𝑦) -𝑚 2𝐵 𝑓 | 𝑚 𝑑𝑦 |𝑥 -𝑦| 𝑑+𝛽 ≤ 𝐶(𝛿(𝑥) + 2 𝑘 ) -(𝑑+𝛽) 2 𝑘𝑑 2𝐵 |𝑓 (𝑦) -𝑚 2𝐵 𝑓 | 𝑚 𝑑𝑦 ≤ 𝐶(𝛿(𝑥) + 2 𝑘 ) -(𝑑+𝛽)
2 𝑘𝑑 ‖𝑓 ‖ 𝑚 𝐵𝑀 𝑂 , again by John-Nirenberg. For the second term we have

2𝐵∖𝐵 |𝑚 2𝐵 𝑓 | 𝑚 𝑑𝑦 |𝑥 -𝑦| 𝑑+𝛽 = 2𝐵∖𝐵 |𝑚 2𝐵 𝑓 -𝑚 𝐵(0,1) 𝑓 | 𝑚 𝑑𝑦 |𝑥 -𝑦| 𝑑+𝛽 ≤ 𝐶2 𝑘𝑑 (𝛿(𝑥) + 2 𝑘 ) -(𝑑+𝛽) |𝑚 2𝐵 𝑓 -𝑚 𝐵(0,1) 𝑓 | 𝑚 ≤ 2 𝑘𝑑 (𝛿(𝑥) + 2 𝑘 ) -(𝑑+𝛽) (ln 2 𝑘 ) 𝑚 ‖𝑓 ‖ 𝑚 𝐵𝑀 𝑂 ≤ 𝐶2 𝑘𝑑 (𝛿(𝑥) + 2 𝑘 ) -(𝑑+𝛽) 𝑘 𝑚 ‖𝑓 ‖ 𝑚 𝐵𝑀 𝑂
by (11). Therefore

2𝐵∖𝐵 |𝑓 (𝑦)| 𝑚 𝑑𝑦 |𝑥 -𝑦| 𝑑+𝛽 ≤ 𝐶2 𝑘𝑑 (𝛿(𝑥) + 2 𝑘 ) -(𝑑+𝛽) (1 + 𝑘 𝑚 )‖𝑓 ‖ 𝑚 𝐵𝑀 𝑂 .
Obsesrve that the sum

∞ ∑︀ 𝑘=1 2 𝑘𝑑 (𝛿(𝑥) + 2 𝑘 ) -(𝑑+𝛽) (1 + 𝑘 𝑚
) is finite and dominated by a universal constant 𝐶, since (𝛿(𝑥) + 2 𝑘 ) -1 ≤ 2 -𝑘 . Then we sum over all the rings and get R𝑑 ∖𝐵(0,1)

|𝑓 (𝑦)| 𝑚 𝑑𝑦 |𝑥 -𝑦| 𝑑+𝛽 = ∞ ∑︁ 𝑘=1 B(0,2 𝑘 )∖𝐵(0,2 𝑘-1 ) |𝑓 (𝑦)| 𝑚 𝑑𝑦 |𝑥 -𝑦| 𝑑+𝛽 ≤ 𝐶‖𝑓 ‖ 𝑚 𝐵𝑀 𝑂 . (17) 
Collecting ( 15), ( 16) and ( 17), we obtain the final estimate ( 14).

Corollary 2. For the same notation as in ( 14), the estimate

R𝑑 |𝑓 (𝑦)| 𝑚 𝑑𝑦 |𝑥 -𝑦| 𝑑+𝛽 ≤ 𝐶(1 + 𝛿(𝑥) -(𝑑+𝛽) )(1 + ln |𝑥 0 |) 𝑚 (︀ ‖𝑓 ‖ 𝑚 𝐵𝑀 𝑂 + |𝑚 𝐵(0,1) 𝑓 | 𝑚 )︀ (18) holds. 
Proof. This follows from ( 14) and Lemma 5. 

Proof. This is, essentially, the Hölder inequality applied consequentially 𝑚 times. We give a proof by induction for the sake of completeness. First, we want to prove that

R𝑑 |𝑓 1 (𝑦) . . . 𝑓 𝑚 (𝑦)|𝑑𝑦 |𝑥 -𝑦| 𝑑+𝛽 ≤ 𝑚 ∏︁ 𝑖=1 ⎛ ⎝ R𝑑 |𝑓 𝑖 (𝑦)| 𝑚 𝑑𝑦 |𝑥 -𝑦| 𝑑+𝛽 ⎞ ⎠ 1/𝑚 . ( 20 
)
For the base we apply Hölder with exponents 𝑝 1 = 𝑚 and 𝑞 1 = 𝑚-1 𝑚 and functions |𝑓 1 (𝑦)||𝑥-𝑦| -(𝑑+𝛽) 

|𝑓 𝑗+1 (𝑦)| 𝑚 𝑚-𝑗 |𝑥 -𝑦| -(𝑑+𝛽) 1 𝑝 𝑗+1 , |𝑓 𝑗+2 (𝑦) . . . 𝑓 𝑚 (𝑦)| 𝑚 𝑚-𝑗 |𝑥 -𝑦| -(𝑑+𝛽) 1 𝑞 𝑗+1 .
We will get

R𝑑 |𝑓 1 (𝑦) . . . 𝑓 𝑚 (𝑦)|𝑑𝑦 |𝑥 -𝑦| 𝑑+𝛽 ≤ 𝑗+1 ∏︁ 𝑖=1 ⎛ ⎝ R𝑑 |𝑓 𝑖 (𝑦)| 𝑚 𝑑𝑦 |𝑥 -𝑦| 𝑑+𝛽 ⎞ ⎠ 1/𝑚 ⎛ ⎝ R𝑑 |𝑓 𝑗+2 (𝑦) . . . 𝑓 𝑚 (𝑦)| 𝑚 𝑚-(𝑗+1) 𝑑𝑦 |𝑥 -𝑦| 𝑑+𝛽 ⎞ ⎠ (𝑚-(𝑗+1))/𝑚
, which completes the induction step.

The inequality [START_REF] Garnett | Harmonic measure[END_REF] follows from ( 18) and ( 20).

No one-parameter families of solutions

We can now turn to the study of solutions of the equation ( 6) for rectifiable sets 𝐸 with integer dimension 𝑑, using our preliminaries from sections 2 and 3. Assume the function 𝐷 𝛼,𝜇 as in ( 4) is a solution of (6). Then we know that, see the beginning of section 2, for 𝛾 = -𝑛 + 𝑑 + 2, 𝐷 𝛾 𝛼,𝜇 is equivalent to 𝛿(𝑥) -𝑛+𝑑+2 and is harmonic outside 𝐸. Therefore, according to subsection 2.2, there exists a density function ℎ in 𝐿 ∞ (𝐸) such that

Ê ℎ(𝑦)𝑑𝜎(𝑦) |𝑥 -𝑦| 𝑛-2 = ⎛ ⎝ Ê 𝑓 (𝑦)𝑑𝜎(𝑦) |𝑥 -𝑦| 𝑑+𝛼 ⎞ ⎠ (𝑛-𝑑-2)/𝛼 ∀ 𝑥 ∈ R 𝑛 ∖ 𝐸, (21) 
where 𝑓 ∈ 𝐿 ∞ (𝐸) is just the density of 𝜇 with respect to 𝜎 = ℋ 𝑑 | 𝐸 . Multiplying both sides of ( 21) by 𝛿(𝑥) 𝑛-𝑑-2 and using (10) in Theorem 5 and Corollary 1 to pass to non-tangential limits, we get that for almost every 𝑦 ∈ 𝐸

𝑐 1 ℎ(𝑦) = (𝑐 2 𝑓 (𝑦)) (𝑛-𝑑-2)/𝛼 , (22) 
where the constants 𝑐 𝑖 depend only on 𝑛, 𝑑 and 𝛼. The constant 𝑐 1 is the constant 𝐶(𝑛, 𝑑) in (10), which we computed at the end of the proof of theorem 5, and the constant 𝑐 2 is

equal to 𝛿(𝑥) -𝛼 Ŕ𝑑 𝑑𝑦 |𝑥-𝑦| 𝑑+𝛼 = V(S 𝑑-1 ) 1 2 Γ( 𝑑 2 )Γ( 𝛼 2 ) Γ( 𝑑+𝛼 2 )
. Thus, we get an equation for the density 𝑓 of the measure 𝜇, when 𝐷 𝛼,𝜇 satisfies ( 6), but we prefer to write everything in terms of the density function ℎ alone. So, combining ( 21) and ( 22), we get that 𝐷 𝛼,𝜇 being a solution of ( 6) is equivalent to the equation

Ê ℎ(𝑦)𝑑𝑦 |𝑥 -𝑦| 𝑛-2 = 𝑐 3 ⎛ ⎝ Ê ℎ(𝑦) 𝛼 𝑛-𝑑-2 𝑑𝑦 |𝑥 -𝑦| 𝑑+𝛼 ⎞ ⎠ 𝑛-𝑑-2 𝛼 , ∀ 𝑥 ∈ R 𝑛 ∖ 𝐸, (23) 
where we denote by 𝑐 3 the constant 𝑐

-𝑛-𝑑-2 𝛼 2
𝑐 1 . Note that the density function ℎ is also bounded away from zero, since according to Lemma 3 the density function 𝑓 has this property, and the two functions are connected by [START_REF] Hofmann | Uniform rectifiability and harmonic measure I: uniform rectifiability implies Poisson kernels in Lp[END_REF].

It is easy to check that for 𝐸 = R 𝑑 or any other hyperplane a constant function ℎ gives a solution for [START_REF] Hofmann | Transference of scale-invariant estimates from Lipschitz to Non-tangentially accessible to Uniformly rectifiable domains[END_REF]. This is what we call the flat solution (because the measure 𝑐ℋ 𝑑 on R 𝑑 is flat). As we have said in the introduction, we would be happy to show that no other solutions exist in a small neighbourhood of the flat solution. This is the same as saying that there is no family of solutions with elements arbitrarily close to the flat solution. Our strategy is to linearise [START_REF] Hofmann | Transference of scale-invariant estimates from Lipschitz to Non-tangentially accessible to Uniformly rectifiable domains[END_REF], or to take a derivative in some sense at constant function ℎ and 𝐸 = R 𝑑 : for an arbitrary family of solutions it would be the Frechet derivative. It turns out though, it does not work for arbitrary family of solutions with no regularity. Even when we restrict ourselves to the flat case 𝐸 = R 𝑑 and are trying to figure out if there is a neighbourhood of the flat solution for which no densities ℎ solve [START_REF] Hofmann | Transference of scale-invariant estimates from Lipschitz to Non-tangentially accessible to Uniformly rectifiable domains[END_REF]. The reason for it is, morally, the following. If we suppose the contrary, we can find arbitrarily close to ℎ = 1 (or to any other constant) a density 1 + 𝜑 𝑡 for which

R𝑑 (1 + 𝜑 𝑡 )𝑑𝑦 |𝑥 -𝑦| 𝑛-2 = 𝑐 3 ⎛ ⎝ R𝑑 (1 + 𝜑 𝑡 ) 𝛼 𝑛-𝑑-2 𝑑𝑦 |𝑥 -𝑦| 𝑑+𝛼 ⎞ ⎠ 𝑛-𝑑-2 𝛼 , ∀ 𝑥 ∈ R 𝑛 ∖ R 𝑑 ,
where the parameter 𝑡 denotes, vaguely, the size of the neighbourhood to which 𝜑 𝑡 belongs. Then we could use the Banach-Alaoglu theorem in a suitable functional space as a compactness argument to say that the family of functions {𝜑 𝑡 } normalized correctly has a non-constant weak limit. This weak limit would satisfy a linear convolution equation, corresponding to the fact that the Fréchet derivative of ( 23) is equal to zero "at the constant solution". This equation, as we will see later, has no solutions except for constants. Which would finish the proof by contradiction. However, the right space for the functions 𝜑 𝑡 for the compactness argument to work turns out to be the homogeneous Besov space Ḃ0 ∞,∞ . For this space it seems that the Fréchet derivative does not exist. That is, we have a natural space for the compactness argument ( Ḃ0 ∞,∞ ), and a smaller one (for instance, BMO) for the existence of a derivative. See subsection 5.3 for the further comments about this.

Fortunately, our strategy still works if we introduce a parameter 𝑡 and add the assumption of differentiability at zero of the family {𝜑 𝑡 } in 𝐵𝑀 𝑂 with respect to it and a reasonable boundedness assumption. This is exactly what the assumptions 2 and 4 in Definitions 1 and 2 are about. We are going to implement our strategy with the indicated assumptions in the next subsections.

No one-parameter families of flat solutions

In this subsection we prove Theorem 1. Suppose that there is a non-trivial one-parameter family of perturbations in the plane R 𝑑 of the flat solution of ( 23) with the density ℎ = 1. See Definition 1 to recall what it is. Note that, even though the densities 1 + 𝜑 𝑡 are in 𝐿 ∞ (R 𝑑 ) and therefore 𝜑 𝑡 is in the space 𝐿 ∞ ∩ 𝐵𝑀 𝑂(R 𝑑 ) = 𝐿 ∞ (R 𝑑 ), it is still more natural to consider 𝜑 𝑡 as an element of 𝐵𝑀 𝑂(R 𝑑 ) (or as an equivalence class in 𝐿 ∞ (R 𝑑 )/ ∼, where 𝑓 ∼ 𝑔 if 𝑓 -𝑔 is a constant function), because 1 + 𝜑 𝑡 (𝑦) + 𝑐 is a density function of a perturbation of the flat solution with the density ℎ 𝑐 = 1 + 𝑐. We can assume that

‖𝜑 𝑡 ‖ ∞ < 1/2.
For every 𝑡 the equation ( 23) for the solution from our family 𝐷 𝛼,𝜇𝑡 with the density 1 + 𝜑 𝑡 (𝑦) turns into

𝐼(𝑡, 𝑥) := R𝑑 (1 + 𝜑 𝑡 )𝑑𝑦 |𝑥 -𝑦| 𝑛-2 -𝑐 3 ⎛ ⎝ R𝑑 (1 + 𝜑 𝑡 ) 𝛼 𝑛-𝑑-2 𝑑𝑦 |𝑥 -𝑦| 𝑑+𝛼 ⎞ ⎠ 𝑛-𝑑-2 𝛼 = 0, ∀ 𝑥 ∈ R 𝑛 ∖ R 𝑑 . (24) 
We want to differentiate the left-hand side of ( 24) at 𝑡 = 0. The natural candidate for the derivative at zero would be, of course,

𝜕𝐼(𝑡, 𝑥) 𝜕𝑡 (0) = R𝑑 𝜑𝑡 𝜕𝑡 (0, 𝑦)𝑑𝑦 |𝑥 -𝑦| 𝑛-2 -𝑐 3 ⎛ ⎝ R𝑑 (1 + 𝜑 0 ) 𝛼 𝑛-𝑑-2 𝑑𝑦 |𝑥 -𝑦| 𝑑+𝛼 ⎞ ⎠ 𝑛-𝑑-2 𝛼 -1 R𝑑 (1 + 𝜑 0 ) 𝛼 𝑛-𝑑-2 -1 𝜕𝜑𝑡 𝜕𝑡 (0, 𝑦)𝑑𝑦 |𝑥 -𝑦| 𝑑+𝛼 ,
so, by the definition of 𝑐 2 , and since 𝜑 0 = 0,

𝜕𝐼(𝑡, 𝑥) 𝜕𝑡 (0) = R𝑑 𝜑𝑡 𝜕𝑡 (𝑦, 0)𝑑𝑦 |𝑥 -𝑦| 𝑛-2 -𝑐 1 𝑐 -1 2 𝛿(𝑥) 𝑑+2+𝛼-𝑛 R𝑑 𝜕𝜑𝑡 𝜕𝑡 (𝑦, 0)𝑑𝑦 |𝑥 -𝑦| 𝑑+𝛼 . (25) 
Note that here we use 𝜕𝐼(𝑡,𝑥) 𝜕𝑡 (0) just as a notation. To show that ( 25) is indeed the Frechet derivative of 𝐼(𝑡, 𝑥) we prove the following lemma. This is when our assumptions 2 and 4 from Definition 1 of the one-parameter family of perturbations come into play.

Lemma 8. For every 𝑥 in R 𝑛 ∖ R 𝑑 ⃒ ⃒ ⃒ ⃒ 𝐼(𝑡, 𝑥) -𝐼(0, 𝑥) -𝑡 𝜕𝐼(𝑡, 𝑥) 𝜕𝑡 (0) ⃒ ⃒ ⃒ ⃒ = ⃒ ⃒ ⃒ ⃒ 𝐼(𝑡, 𝑥) -𝑡 𝜕𝐼(𝑡, 𝑥) 𝜕𝑡 (0) ⃒ ⃒ ⃒ ⃒ = 𝑜(𝑡), 𝑡 → 0.
Proof. We need to prove that

⃒ ⃒ ⃒ ⃒ 𝐼(𝑡, 𝑥) -𝑡 𝜕𝐼(𝑡, 𝑥) 𝜕𝑡 (0) ⃒ ⃒ ⃒ ⃒ = ⃒ ⃒ ⃒ ⃒ R𝑑 (1 + 𝜑 𝑡 )𝑑𝑦 |𝑥 -𝑦| 𝑛-2 -𝑡 R𝑑 𝜑𝑡 𝜕𝑡 (𝑦, 0)𝑑𝑦 |𝑥 -𝑦| 𝑛-2 + +𝑐 1 𝑐 -1 2 𝛿(𝑥) 𝑑+2+𝛼-𝑛 𝑡 R𝑑 𝜕𝜑𝑡 𝜕𝑡 (𝑦, 0)𝑑𝑦 |𝑥 -𝑦| 𝑑+𝛼 -𝑐 3 ⎛ ⎝ R𝑑 (1 + 𝜑 𝑡 ) 𝛼 𝑛-𝑑-2 𝑑𝑦 |𝑥 -𝑦| 𝑑+𝛼 ⎞ ⎠ 𝑛-𝑑-2 𝛼 ⃒ ⃒ ⃒ ⃒ = 𝑜(𝑡), 𝑡 → 0. ( 26 
)
Denote

𝐼 1 (𝑡, 𝑥) = R𝑑 (1 + 𝜑 𝑡 )𝑑𝑦 |𝑥 -𝑦| 𝑛-2 -𝑡 R𝑑 𝜕𝜑𝑡 𝜕𝑡 (𝑦, 0)𝑑𝑦 |𝑥 -𝑦| 𝑛-2 , 𝐼 2 (𝑡, 𝑥) = ⎛ ⎝ R𝑑 (1 + 𝜑 𝑡 ) 𝛼 𝑛-𝑑-2 𝑑𝑦 |𝑥 -𝑦| 𝑑+𝛼 ⎞ ⎠ 𝑛-𝑑-2 𝛼
, and

𝐼 3 (𝑡, 𝑥) = 𝑐 1 𝑐 -1 2 𝛿(𝑥) 𝑑+2+𝛼-𝑛 𝑡 R𝑑 𝜕𝜑𝑡 𝜕𝑡 (𝑦, 0)𝑑𝑦 |𝑥 -𝑦| 𝑑+𝛼 -𝑐 3 ⎛ ⎝ R𝑑 (1 + 𝜑 𝑡 ) 𝛼 𝑛-𝑑-2 𝑑𝑦 |𝑥 -𝑦| 𝑑+𝛼 ⎞ ⎠ 𝑛-𝑑-2 𝛼 . Claim. 𝐼 2 (𝑡, 𝑥) = 𝑐 𝑛-𝑑-2 𝛼 2 𝛿(𝑥) 𝑑+2-𝑛 + 𝑐 𝑛-𝑑-2 𝛼 -1 2 𝛿(𝑥) 𝑑+2+𝛼-𝑛 R𝑑 𝜑 𝑡 (𝑦)𝑑𝑦 |𝑥 -𝑦| 𝑑+𝛼 + 𝑜(𝑡), 𝑡 → 0. (27) 
Proof. This is, essentially, a simple computation which uses Taylor's theorem. Recall that ‖𝜑 𝑡 ‖ ∞ ≤ 1/2 ∀𝑡. First, we rewrite the nominator inside the integral in 𝐼 3 as

(1 + 𝜑 𝑡 (𝑦)) 𝛼 𝑛-𝑑-2 = 1 + 𝛼 𝑛 -𝑑 -2 𝜑 𝑡 (𝑦) + 𝜑 2 𝑡 (𝑦)𝑔 𝑡 (𝑦),
where 𝑔 𝑡 (𝑦) is a bounded uniformly in 𝑡 function. Here we just used an observation that for a real number 𝑥 such that |𝑥| ≤ 1/2 we have (1 + 𝑥) 𝛾 = 1 + 𝛾𝑥 + 𝑐𝑥 2 , where 𝑐 is a constant uniformly bounded in 𝑥. Second, we rewrite 𝐼 3 itself as

⎛ ⎝ R𝑑 𝑑𝑦 |𝑥 -𝑦| 𝑑+𝛼 + R𝑑 𝛼 𝑛-𝑑-2 𝜑 𝑡 (𝑦) + 𝜑 𝑡 (𝑦) 2 𝑔 𝑡 (𝑦) |𝑥 -𝑦| 𝑑+𝛼 ⎞ ⎠ 𝑛-𝑑-2 𝛼 = 𝑐 𝑛-𝑑-2 𝛼 2 𝛿(𝑥) 𝑑+2-𝑛 + 𝑐 𝑛-𝑑-2 𝛼 -1 2 𝛿(𝑥) 𝑑+2+𝛼-𝑛 R𝑑 𝜑 𝑡 (𝑦)𝑑𝑦 |𝑥 -𝑦| 𝑑+𝛼 + R𝑑 𝜑 𝑡 (𝑦) 2 𝐺 𝑡 (𝑦)𝑑𝑦 |𝑥 -𝑦| 𝑑+𝛼 ,
where 𝐺 𝑡 (𝑦) is also a bounded uniformly in 𝑡 function. It is left to show that the last term is 𝑜(𝑡). But (18) applied with 𝑚 = 2, combined with boundedness of 𝐺 𝑡 (𝑦), gives that

R𝑑 𝜑 𝑡 (𝑦) 2 𝐺 𝑡 (𝑦)𝑑𝑦 |𝑥 -𝑦| 𝑑+𝛼 ≤ 𝐶(1 + 𝛿(𝑥) -(𝑑+𝛼) )(‖𝜑 𝑡 ‖ 2 𝐵𝑀 𝑂 + |𝑚 𝐵(0,1) 𝜑 𝑡 | 2 ).
Condition 4 in Definition 1 guarantees that ‖𝜑 𝑡 ‖ 2 𝐵𝑀 𝑂 + |𝑚 𝐵(0,1) 𝜑 𝑡 | 2 = 𝑜(𝑡).

Claim [START_REF] Jaye | Reflectionless measures for Calderón-Zygmund operators I: general theory[END_REF] gives that

𝐼 3 (𝑡, 𝑥) = -𝑐 1 𝛿(𝑥) 𝑑+2-𝑛 + 𝑐 1 𝑐 -1 2 𝛿(𝑥) 𝑑+2+𝛼-𝑛 R𝑑 (︀ 𝑡 𝜕𝜑𝑡 𝜕𝑡 (0, 𝑦) -𝜑 𝑡 (𝑦) )︀ 𝑑𝑦 |𝑥 -𝑦| 𝑑+𝛼 + 𝑜(𝑡).
We also have that

𝐼 1 (𝑡, 𝑥) = 𝑐 1 𝛿(𝑥) 𝑑+2-𝑛 + R𝑑 (︀ 𝜑 𝑡 (𝑦) -𝑡 𝜕𝜑𝑡 𝜕𝑡 (0, 𝑦) )︀ 𝑑𝑦 |𝑥 -𝑦| 𝑛-2 .
Conditions 2 (the definition of a Frechet differential) and 4 in Definition 1, combined with (18) for 𝑚 = 1, give that

𝑐 1 𝑐 -1 2 R𝑑 (︀ 𝑡 𝜕𝜑𝑡 𝜕𝑡 (0, 𝑦) -𝜑 𝑡 (𝑦) )︀ 𝑑𝑦 |𝑥 -𝑦| 𝑑+𝛼 and R𝑑 (︀ 𝜑 𝑡 (𝑦) -𝑡 𝜕𝜑𝑡 𝜕𝑡 (0, 𝑦) )︀ 𝑑𝑦 |𝑥 -𝑦| 𝑛-2 = 𝑜(𝑡),
and therefore

⃒ ⃒ ⃒ ⃒ 𝐼(𝑡, 𝑥) -𝑡 𝜕𝐼(𝑡, 𝑥) 𝜕𝑡 (0) ⃒ ⃒ ⃒ ⃒ = |𝐼 1 (𝑡, 𝑥) + 𝐼 3 (𝑡, 𝑥)| = 𝑜(𝑡).
So we finally proved that ( 24) is differentiable at zero, and by [START_REF] Hofmann | Uniform rectifiability and harmonic measure, II: Poisson kernels in Lp imply uniform rectifiability[END_REF] the derivative is

𝜕𝐼(𝑡, 𝑥) 𝜕𝑡 (0) = R𝑑 𝜕𝜑𝑡 𝜕𝑡 (0, 𝑦)𝑑𝑦 |𝑥 -𝑦| 𝑛-2 -𝑐 1 𝑐 -1 2 𝛿(𝑥) 𝑑=2+𝛼-𝑛 R𝑑 𝜕𝜑𝑡 𝜕𝑡 (0, 𝑦)𝑑𝑦 |𝑥 -𝑦| 𝑑+𝛼 .
Since 𝐼(𝑡, 𝑥) is identically zero, the derivative also has to be zero, and therefore, by definition of the constant 𝑐 2 , we have the equation

R𝑑 [︂ 𝑐 -1 2 𝑐 1 𝛿(𝑥) 𝑑+2+𝛼-𝑛 |𝑥 -𝑦| 𝑑+𝛼 - 1 |𝑥 -𝑦| 𝑛-2 ]︂ 𝜕𝜑 𝑡 𝜕𝑡 (0, 𝑦)𝑑𝑦 = 0 ∀ 𝑥 ∈ R 𝑛 ∖ R 𝑑 . ( 28 
)
We claim that (28) implies the derivative 𝜕𝜑𝑡 𝜕𝑡 (•, 0) has to be a constant function, which is a contradiction with the assumption 3 in Definition 1 of non-trivial one-parameter family. Denote 𝜑(𝑦) = 𝜕𝜑𝑡 𝜕𝑡 (𝑦, 0) for simplicity. Lemma 9. Suppose that 𝜑(𝑦) is a function in 𝐵𝑀 𝑂(R 𝑑 ). Then the equation

R𝑑 [︂ 𝑐 -1 2 𝑐 1 𝛿(𝑥) 𝑑+2+𝛼-𝑛 |𝑥 -𝑦| 𝑑+𝛼 - 1 |𝑥 -𝑦| 𝑛-2 ]︂ 𝜑(𝑦)𝑑𝑦 = 0 ∀ 𝑥 ∈ R 𝑛 ∖ R 𝑑 . ( 29 
)
implies that 𝜑 is a constant function.

Proof. The idea of the proof is that we can interpret the equation ( 29) as vanishing of the functional 𝜑 on a certain space of functions. Denote 29) would mean that it acts like a zero functional on the space 𝒮. Indeed, let 𝑥 = (𝑥 0 , 𝑟, 0 . . . 0) be a point in R 𝑛 ∖ R 𝑑 , where 𝑥 0 is the projection of 𝑥 to the hyperplane R 𝑑 and 𝑟 = 𝛿(𝑥). Observe that

𝐾𝑒𝑟(𝑦) = 𝑐 -1 2 𝑐 1 (1 + |𝑦| 2 ) (𝑑+𝛼)/2 - 1 (1 + |𝑦| 2 ) (𝑛-2)/2 , 𝑦 ∈ R 𝑑 .
𝑐 -1 2 𝑐 1 𝛿(𝑥) 𝑑+2+𝛼-𝑛 |𝑥 -𝑦| 𝑑+𝛼 - 1 |𝑥 -𝑦| 𝑛-2 = 𝑟 2-𝑛 (︂ 𝑐 -1 2 𝑐 1 (1 + |𝑦 -𝑥 0 | 2 /𝑟 2 ) (𝑑+𝛼)/2 - 1 (1 + |𝑦 -𝑥 0 | 2 /𝑟 2 ) (𝑛-2)/2 )︂ = 𝑟 2-𝑛 𝐾𝑒𝑟 (︂ 𝑦 -𝑥 0 𝑟 )︂ .
So, [START_REF] Kenig | The Dirichlet problem for elliptic equations with drift terms[END_REF] implies that 𝜑 vanishes on all the translations and dilatations of the function 𝐾𝑒𝑟, and therefore on the whole 𝒮. Therefore we only need to check that 𝐵𝑀 𝑂 is contained in the space dual to the space 𝒮. It is known that the latter space is the homogeneous Besov space Ḃ0

1,1 , see [16]. Its dual space is the homogeneous Besov space Ḃ0 ∞,∞ , which is larger than 𝐵𝑀 𝑂. Rem 2. Note that, if we knew in addition that the Fourier transform of 𝜑 is a well-defined function, then we could apply another, a rather elegant, argument to get the conclusion of Lemma 9.

Indeed, denote 𝑥 = (𝑧, ℎ), 𝑧 = (𝑧 1 , . . . , 𝑧 𝑑 ), ℎ = (ℎ 𝑑+1 , . . . , ℎ 𝑛 ) and

𝑓 ℎ (𝑧-𝑦) = 𝑐 -1 2 𝑐 1 𝛿(𝑥) 𝑑+2+𝛼-𝑛 |𝑥 -𝑦| 𝑑+𝛼 - 1 |𝑥 -𝑦| 𝑛-2 = 𝑐 -1 2 𝑐 1 |ℎ| 𝑑+𝛼+2-𝑛 (|ℎ| 2 + |𝑧 -𝑦| 2 ) (𝑑+𝛼)/2 - 1 (|ℎ| 2 + |𝑧 -𝑦| 2 ) (𝑛-2)/2 .

With this notation (29) transforms into a convolutional equation

𝑓 ℎ * 𝜑(𝑧) = 0 ∀𝑧 ∈ R 𝑑 .
If the Fourier transform is defined for 𝜑, then the convolutional equation above transforms into 𝑓 ℎ * 𝜑 = fℎ φ = 0.

This implies that φ can be nonzero only on the set of the common zeros of functions fℎ for every ℎ (or, rather, every value of |ℎ|). What can this set be? First, observe that 𝜁 = 0 is a zero of fℎ for every ℎ. Second, since fℎ is radially-symmetric, the set of zeros of f ℎ 1 and of f ℎ 2 for ℎ 1 and ℎ 2 such that |ℎ 1 | = |ℎ 2 | is the same. Third, suppose that 𝜁 is a zero for f1 , then, since 𝑓 ℎ (𝑦) = 𝑓 1 (𝑦/|ℎ|) and fℎ (𝜁) = |ℎ| f1 (|ℎ|𝜁), by the definition of 𝑓 ℎ , |ℎ|𝜁 is a zero for fℎ . The latter observation means that if 𝜁 ̸ = 0 was a common zero for fℎ for all ℎ, then the set R𝜁 would be also contained in the set of common zeros for fℎ . Thus fℎ would have to be zero everywhere on R 𝑑 for every ℎ, which is clearly false. We conclude then that φ = 0 everywhere on R 𝑑 except for zero. This implies φ = 𝑐𝛿 0 and 𝜑 equal to a constant.

No one-parameter families of Lipschitz graph solutions

In this subsection we prove Theorem 2. Recall what a non-trivial one-parameter differentiable family of smooth graph perturbations of the flat solution is: see Definition 2. Our scheme of proof will be essentially the same as in Subsection 4.1, but the expressions we are forced to work with are more bulky.

Our initial assumptions are that the functions 𝜓 𝑡 are 𝐶𝑡-Lipschitz on R 𝑑 . However, it is well-known that if a function 𝑓 is Λ-Lipschitz, then it is in 𝑊 1,∞ (R 𝑑 ) and one has ‖∇𝑓 ‖ ∞ ≤ Λ. The Rademacher-Calderón theorem gives then that the function 𝑓 is truly differentiable almost everywhere. So without loss of generality we can assume that every 𝜓 𝑡 is differentiable and moreover that ‖𝐷𝜓 𝑡 ‖ ∞ ≤ 𝐶𝑡. The latter implies the conditions

‖ 𝜕𝜓 𝑡 (𝑦) 𝜕𝑦 𝑖 ‖ 𝐵𝑀 𝑂 ≤ 𝐶𝑡 and ⃒ ⃒ ⃒ B(0,1) 𝜕𝜓 𝑡 (𝑦) 𝜕𝑦 𝑖 𝑑𝑦 ⃒ ⃒ ⃒ ≤ 𝐶𝑡 (30) 
for all 𝑖, which we will use later on. Recall that [START_REF] Lavrent'ev | Boundary problems in the theory of univalent functions[END_REF] means that norms of every component of vectors 𝜕𝜓𝑡(𝑦) 𝜕𝑦 𝑖 or moduli of every component of vectors B(0,1)

𝜕𝜓𝑡(𝑦)

𝜕𝑦 𝑖 𝑑𝑦 admit the estimate [START_REF] Lavrent'ev | Boundary problems in the theory of univalent functions[END_REF].

Denote by 𝜂 𝑡 the map Id + 𝜓 𝑡 . According to the formula for the Lebesgue measure on a smooth surface, one can rewrite [START_REF] Hofmann | Transference of scale-invariant estimates from Lipschitz to Non-tangentially accessible to Uniformly rectifiable domains[END_REF] as

𝐽(𝑡, 𝑥) = 𝑐 3 𝐽 1 (𝑡, 𝑥) -𝐽 2 (𝑡, 𝑥) = 0 ∀ 𝑥 ∈ R 𝑛 ∖ 𝐼𝑚(𝜂 𝑡 (R 𝑑 )), where (31) 
𝐽 1 (𝑡, 𝑥) = ⎛ ⎝ R𝑑 (1 + 𝜑 𝑡 (𝑦)) 𝛼 𝑛-𝑑-2 √︀ |det((𝐷𝜂 𝑡 ) 𝑇 𝐷𝜂 𝑡 )|𝑑𝑦 |𝑥 -𝜂 𝑡 (𝑦) 𝑑+𝛼 | ⎞ ⎠ 𝑛-𝑑-2 𝛼 and 𝐽 2 (𝑡, 𝑥) = R𝑑 (1 + 𝜑 𝑡 (𝑦)) √︀ |det((𝐷𝜂 𝑡 ) 𝑇 𝐷𝜂 𝑡 )|𝑑𝑦 |𝑥 -𝜂 𝑡 (𝑦)| 𝑛-2 .
We keep to the assumption ‖𝜑 𝑡 ‖ ∞ ≤ 1/2. Again, we want to take the Frechet derivative of the left-hand side of (31) at zero, and the natural candidate for it is

𝜕𝐽(𝑡, 𝑥) 𝜕𝑡 (0) = 𝑐 1 𝑐 -1 2 𝑛 -𝑑 -2 𝛼 𝛿(𝑥) 𝛼+𝑑+2-𝑛 ⎡ ⎣ R𝑑 𝛼 𝑛-𝑑-2 𝜕𝜑𝑡 𝜕𝑡 (0, 𝑦) |𝑥 -𝑦| 𝑑+𝛼 𝑑𝑦 - R𝑑 (𝑑 + 𝛼)⟨𝑥, 𝜕𝜓𝑡 𝜕𝑡 (0, 𝑦)⟩ |𝑥 -𝑦| 𝑑+𝛼+2 𝑑𝑦 ⎤ ⎦ - R𝑑 𝜕𝜑𝑡 𝜕𝑡 (0, 𝑦) |𝑥 -𝑦| 𝑛-2 𝑑𝑦 + R𝑑 (𝑛 -2) ⟨𝑥, 𝜕𝜓𝑡 𝜕𝑡 (0, 𝑦)⟩ |𝑥 -𝑦| 𝑛 𝑑𝑦. ( 32 
)
Here we just differentiated formally 𝐽(𝑡, 𝑥) and used the condition 1 in Definition 2: as we shall see, we are lucky that the square roots in [START_REF] Lewis | Quasi-linear PDEs and low-dimensional sets[END_REF] only give terms of order two. Once again, until the end of the proof of the following lemma, 𝜕𝐽(𝑡,𝑥) 𝜕𝑡 (0) is just a notation. Lemma 10.

⃒ ⃒ ⃒ ⃒ 𝐽(𝑡, 𝑥) -𝑡 𝜕𝐽(𝑡, 𝑥) 𝜕𝑡 (0) ⃒ ⃒ ⃒ ⃒ = 𝑜(𝑡), 𝑡 → 0. ( 33 
)
Proof. We start with proving a technical fact analogous to [START_REF] Jaye | Reflectionless measures for Calderón-Zygmund operators I: general theory[END_REF]. The proof is ideologically the same, but looks bulkier, because typically we need to multiply three expansions from Taylor's theorem. Plus, we need to deal with the determinant of metric tensor induced by the map 𝜂 𝑡 .

Claim.

𝐽 2 (𝑡, 𝑥) = 𝑐 1 𝛿(𝑥) 𝑑+2-𝑛 + R𝑑 𝜑 𝑡 (𝑦)𝑑𝑦 |𝑥 -𝑦| 𝑛-2 -(𝑛 -2)

R𝑑

⟨𝑥, 𝜓 𝑡 (𝑦)⟩𝑑𝑦 |𝑥 -𝑦| 𝑛 + 𝑜(𝑡), 𝑡 → 0, and

𝐽 1 (𝑡, 𝑥) = 𝑐 𝑛-𝑑-2 𝛼 2 𝛿(𝑥) 𝑑+2-𝑛 + 𝑐 𝑛-𝑑-2 𝛼 -1 2 𝛿(𝑥) 𝑑+2+𝛼-𝑛 𝑛 -𝑑 -2 𝛼 ⎡ ⎣ R𝑑 𝛼 𝑛-𝑑-2 𝜑 𝑡 (𝑦) |𝑥 -𝑦| 𝑑+𝛼 - R𝑑 (𝑑 + 𝛼)⟨𝑥, 𝜓 𝑡 (𝑦)⟩ |𝑥 -𝑦| 𝑑+𝛼+2 ⎤ ⎦ + 𝑜(𝑡), 𝑡 → 0.
Proof. Let us deal first with the square root of the modulus of the determinant of metric tensor induced by 𝜂 𝑡 in [START_REF] Lewis | Quasi-linear PDEs and low-dimensional sets[END_REF]. Denote by (𝜓 𝑡 ) 𝑗 , 𝑗 = 𝑑 + 1, . . . , 𝑛, the projection of 𝜓 𝑡 on the coordinate axis 𝑗. Then the differential 𝐷𝜂 𝑡 is the linear map R 𝑑 → R 𝑛 represented by the matrix 𝑛 × 𝑑, where in the first 𝑑 rows the only non-zero elements are ones on the diagonal: )︁ 2 and 𝑅 𝑡 (𝑦) is the rest of the determinant: the sum of products which consist of more than 2(𝑛-𝑑) partial derivatives. The point in decomposing the determinant in such a way is that the term 𝑀 𝑡 (𝑦) has the 𝐵𝑀 𝑂 norm and the average over a unit ball of order 𝑡 2(𝑛-𝑑) , while the 𝐵𝑀 𝑂 norm and the average over the unit ball of the other term 𝑅 𝑡 decay even faster.

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 1 . . . 0 
With this at hand, observe that

(1 + 𝜑 𝑡 (𝑦)) 𝛼 𝑛-𝑑-2 = 1 + 𝛼 𝑛 -𝑑 -2 𝜑 𝑡 (𝑦) + 𝜑 𝑡 (𝑦) 2 𝑔 1 (𝑡, 𝑦), |det((𝐷𝜂 𝑡 ) 𝑇 𝐷𝜂 𝑡 )| 1/2 = 1 + (𝑀 𝑡 (𝑦) + 𝑅 𝑡 (𝑦))𝑔 2 (𝑡, 𝑦), |𝑥-𝜂 𝑡 (𝑦)| -(𝑛-2) = |𝑥-𝑦| -(𝑛-2) -(𝑛-2)|𝑥-𝑦| -𝑛 ⟨𝑥, 𝜓 𝑡 (𝑦)⟩+(⟨𝑥, 𝜓 𝑡 (𝑦)⟩ 2 +|𝜓 𝑡 (𝑦)| 2 )|𝑥-𝑦| -𝑛 𝑔 3 (𝑡, 𝑦), and 
|𝑥 -𝜂 𝑡 (𝑦)| -(𝑑+𝛼) = |𝑥 -𝑦| -(𝑑+𝛼) -(𝑑 + 𝛼)|𝑥 -𝑦| -(𝑑+𝛼+2) ⟨𝑥, 𝜓 𝑡 (𝑦)⟩ +(⟨𝑥, 𝜓 𝑡 (𝑦)⟩ 2 + |𝜓 𝑡 (𝑦)| 2 )|𝑥 -𝑦| -(𝑑+𝛼+2) 𝑔 4 (𝑡, 𝑦),
where 𝑔 𝑖 (𝑡, 𝑦) are uniformly bounded in 𝑡 functions.

We deal with 𝐽 2 (𝑡, 𝑥) first. The product under the first integral in 𝐽 2 (𝑡, 𝑥)

(1 + 𝜑 𝑡 (𝑦))(1 + (𝑀 𝑡 (𝑦) + 𝑅 𝑡 (𝑦))𝑔 2 (𝑡, 𝑦))(|𝑥 -𝑦| -(𝑛-2) -(𝑛 -2)|𝑥 -𝑦| -𝑛 ⟨𝑥, 𝜓 𝑡 (𝑦)⟩ + (|𝜓 𝑡 | 2 + ⟨𝑥, 𝜓 𝑡 (𝑦)⟩ 2 )|𝑥 -𝑦| -𝑛) 𝑔 3 (𝑡, 𝑦))
is equal to

|𝑥 -𝑦| -(𝑛-2) + 𝜑 𝑡 (𝑦)|𝑥 -𝑦| -(𝑛-2) -(𝑛 -2)|𝑥 -𝑦| -𝑛 ⟨𝑥, 𝜓 𝑡 (𝑦)⟩ -𝜑 𝑡 (𝑦)(𝑛 -2)|𝑥 -𝑦| -𝑛 ⟨𝑥, 𝜓 𝑡 (𝑦)⟩ +(𝜓 𝑡 (𝑦) 2 + ⟨𝑥, 𝜓 𝑡 (𝑦)⟩ 2 + (𝑀 𝑡 (𝑦) + 𝑅 𝑡 (𝑦)))|𝑥 -𝑦| -(𝑛-2) 𝐺 𝑡 (𝑦),
where 𝐺 𝑡 (𝑦) is a uniformly bounded in 𝑡 function. Integrating, we have

𝐽 2 (𝑡, 𝑥) = 𝑐 1 𝛿(𝑥) 𝑑+2-𝑛 + R𝑑 𝜑 𝑡 (𝑦)𝑑𝑦 |𝑥 -𝑦| 𝑛-2 -(𝑛 -2) R𝑑 ⟨𝑥, 𝜓 𝑡 (𝑦)⟩𝑑𝑦 |𝑥 -𝑦| 𝑛 -(𝑛 -2) R𝑑 𝜑 𝑡 (𝑦)⟨𝑥, 𝜓 𝑡 (𝑦)⟩𝑑𝑦 |𝑥 -𝑦| 𝑛 + R𝑑 (𝜓 𝑡 (𝑦) 2 + ⟨𝑥, 𝜓 𝑡 (𝑦)⟩ 2 + (𝑀 𝑡 (𝑦) + 𝑅 𝑡 (𝑦)))𝐺 𝑡 (𝑦)𝑑𝑦 |𝑥 -𝑦| 𝑛-2 .
By ( 18) and ( 19), combined with condition 4 in Definition 2 and (30), the last two terms are 𝑜(𝑡).

Now we deal with 𝐽 1 (𝑡, 𝑥). The product under the integral in 𝐽 1 (𝑡, 𝑥)

(︂ 1 + 𝛼 𝑛 -𝑑 -2 𝜑 𝑡 (𝑦) + 𝜑 𝑡 (𝑦) 2 𝑔 1 (𝑡, 𝑦) )︂ (︀ 1 + (𝑀 𝑡 (𝑦) + 𝑅 𝑡 (𝑦))𝑔 2 (𝑡, 𝑦))(|𝑥 -𝑦| -(𝑑+𝛼) -(𝑑 + 𝛼)|𝑥 -𝑦| -(𝑑+𝛼+2) ⟨𝑥, 𝜓 𝑡 (𝑦)⟩ + (⟨𝑥, 𝜓 𝑡 (𝑦)⟩ 2 + |𝜓 𝑡 (𝑦)| 2 )|𝑥 -𝑦| -(𝑑+𝛼+2) 𝑔 4 (𝑡, 𝑦) )︀ is equal to |𝑥 -𝑦| -(𝑑+𝛼) + 𝛼 𝑛 -𝑑 -2 𝜑 𝑡 (𝑦)|𝑥 -𝑦| -(𝑑+𝛼) -(𝑑 + 𝛼)|𝑥 -𝑦| -(𝑑+𝛼+2) ⟨𝑥, 𝜓 𝑡 (𝑦)⟩ - 𝛼 𝑛 -𝑑 -2 𝜑 𝑡 (𝑦)(𝑑 + 𝛼)|𝑥 -𝑦| -(𝑑+𝛼+2) ⟨𝑥, 𝜓 𝑡 (𝑦)⟩ +(𝜓 𝑡 (𝑦) 2 + ⟨𝑥, 𝜓 𝑡 (𝑦)⟩ 2 + (𝑀 𝑡 (𝑦) + 𝑅 𝑡 (𝑦)))|𝑥 -𝑦| -(𝑑+𝛼) 𝐻 𝑡 (𝑦)
, where 𝐻 𝑡 (𝑦) is a uniformly bounded in 𝑡 function. Therefore we have

𝐽 1 (𝑡, 𝑥) = 𝑐 𝑛-𝑑-2 𝛼 2 𝛿(𝑥) 𝑑+2-𝑛 + 𝑐 𝑛-𝑑-2 𝛼 -1 2 𝛿(𝑥) 𝑑+2+𝛼-𝑛 R𝑑 𝜑 𝑡 (𝑦)𝑑𝑦 |𝑥 -𝑦| 𝑑+𝛼 -𝑐 𝑛-𝑑-2 𝛼 -1 2 𝛿(𝑥) 𝑑+2+𝛼-𝑛 𝑛 -𝑑 -2 𝛼 R𝑑 (𝑑 + 𝛼)⟨𝑥, 𝜓 𝑡 (𝑦)⟩𝑑𝑦 |𝑥 -𝑦| 𝑑+𝛼+2 + R𝑑 (𝜑 𝑡 (𝑦)⟨𝑥, 𝜓 𝑡 (𝑦)⟩ + ⟨𝑥, 𝜓 𝑡 (𝑦)⟩ 2 + 𝜓 𝑡 (𝑦) 2 + (𝑀 𝑡 (𝑦) + 𝑅 𝑡 (𝑦)))𝐻 ′ 𝑡 (𝑦)𝑑𝑦 |𝑥 -𝑦| 𝑑+𝛼 ,
where 𝐻 ′ 𝑡 (𝑦) is another uniformly bounded in 𝑡 function. By ( 18) and ( 19), combined with condition 4 in Definition 2 and (30), the last term is 𝑜(𝑡).

Denote 𝐽 3 (𝑡, 𝑥) = 𝑐 3 𝐽 1 (𝑡, 𝑥) -𝑐 1 𝛿(𝑥) 𝑑+2-𝑛 -𝑐 1 𝑐 -1 2 𝑛 -𝑑 -2 𝛼 𝛿(𝑥) 𝛼+𝑑+2-𝑛 𝑡• • ⎡ ⎣ R𝑑 𝛼 𝑛-𝑑-2 𝜕𝜑𝑡 𝜕𝑡 (0, 𝑦) |𝑥 -𝑦| 𝑑+𝛼 𝑑𝑦 - R𝑑 (𝑑 + 𝛼)⟨𝑥, 𝜕𝜓𝑡 𝜕𝑡 (0, 𝑦)⟩ |𝑥 -𝑦| 𝑑+𝛼+2 𝑑𝑦 ⎤ ⎦ and 𝐽 4 (𝑡, 𝑥) = 𝐽 2 (𝑡, 𝑥) -𝑐 1 𝛿(𝑥) 𝑑+2-𝑛 -𝑡 R𝑑 𝜕𝜑𝑡 𝜕𝑡 (0, 𝑦) |𝑥 -𝑦| 𝑛-2 𝑑𝑦 + 𝑡 R𝑑 (𝑛 -2) ⟨𝑥, 𝜕𝜓𝑡 𝜕𝑡 (0, 𝑦)⟩ |𝑥 -𝑦| 𝑛 𝑑𝑦.
In this notation we have

⃒ ⃒ ⃒ ⃒ 𝐽(𝑡, 𝑥) -𝑡 𝜕𝐽(𝑡, 𝑥) 𝜕𝑡 (0) ⃒ ⃒ ⃒ ⃒ = |𝐽 3 (𝑡, 𝑥) -𝐽 4 (𝑡, 𝑥)|,
because the constant terms cancel out. It is only left to show that the claim above gives |𝐽 𝑘 (𝑡, 𝑥)| = 𝑜(𝑡) for 𝑘 = 3, 4, which finishes the proof. Indeed, the claim asserts that

𝐽 4 (𝑡, 𝑥) = R𝑑 𝜑 𝑡 (𝑦)𝑑𝑦 |𝑥 -𝑦| 𝑛-2 -(𝑛 -2) R𝑑 ⟨𝑥, 𝜓 𝑡 (𝑦)⟩𝑑𝑦 |𝑥 -𝑦| 𝑛 + 𝑜(𝑡)- -𝑡 R𝑑 𝜕𝜑𝑡 𝜕𝑡 (0, 𝑦) |𝑥 -𝑦| 𝑛-2 𝑑𝑦 + 𝑡 R𝑑 (𝑛 -2) ⟨𝑥, 𝜕𝜓𝑡 𝜕𝑡 (0, 𝑦)⟩ |𝑥 -𝑦| 𝑛 𝑑𝑦.
But the condition 2 in Definition 2, combined with (18) applied with 𝑚 = 1, gives that

R𝑑 𝜑 𝑡 (𝑦)𝑑𝑦 |𝑥 -𝑦| 𝑛-2 -𝑡 R𝑑 𝜕𝜑𝑡 𝜕𝑡 (0, 𝑦) |𝑥 -𝑦| 𝑛-2 𝑑𝑦 = 𝑜(𝑡) and R𝑑 ⟨𝑥, 𝜓 𝑡 (𝑦)⟩𝑑𝑦 |𝑥 -𝑦| 𝑛 -𝑡 R𝑑 ⟨𝑥, 𝜕𝜓𝑡 𝜕𝑡 (0, 𝑦)⟩ |𝑥 -𝑦| 𝑛 𝑑𝑦 = 𝑜(𝑡).
The integral 𝐽 3 (𝑡, 𝑥) can be treated the same way.

We continue studying [START_REF] Lewis | Quasi-linear PDEs and low-dimensional sets[END_REF]. Since 𝐽(𝑡, 𝑥) is identically zero, the derivative 𝜕𝐽(𝑡,𝑥) 𝜕𝑡 , given by ( 32) at zero vanishes as well, which gives

R𝑑 𝜕𝜑 𝜕𝑡 (0, 𝑦) [︂ 1 |𝑥 -𝑦| 𝑛-2 - 𝑐 1 𝑐 -1 2 𝛿(𝑥) 𝛼+𝑑+2-𝑛 |𝑥 -𝑦| 𝑑+𝛼 ]︂ 𝑑𝑦 = R𝑑 ⟨ 𝜕𝜓 𝑡 𝜕𝑡 (0, 𝑦), 𝑥⟩ [︃ 𝑛 -2 |𝑥 -𝑦| 𝑛 - 𝑐 1 𝑐 -1 2 (𝑑 + 𝛼) 𝑛-𝑑-2 𝛼 𝛿(𝑥) 𝛼+𝑑+2-𝑛 |𝑥 -𝑦| 𝑑+𝛼+2 ]︃ 𝑑𝑦.
Without loss of generality we can assume that the projection 𝜕𝜓𝑡 𝜕𝑡 𝑑+1 (0, 𝑦) of 𝜕𝜓𝑡 𝜕𝑡 (0, 𝑦) to the axis 𝑑 + 1 is not a constant function. Assume that 𝑥 is of the form (𝑥 1 , . . . , 𝑥 𝑑 , 𝑥 𝑑+1 , 0, . . . ). Then, with the notation 𝜓(𝑦) = 𝜕𝜓𝑡 𝜕𝑡 𝑑+1 (0, 𝑦) and 𝜑(𝑦) = 𝜕𝜑 𝜕𝑡 (0, 𝑦), the equation above transforms into R𝑑 𝜑(𝑦)

[︂ 1 |𝑥 -𝑦| 𝑛-2 - 𝑐 1 𝑐 -1 2 𝛿(𝑥) 𝛼+𝑑+2-𝑛 |𝑥 -𝑦| 𝑑+𝛼 ]︂ 𝑑𝑦 = R𝑑 𝜓(𝑦)𝑥 𝑑+1 [︃ 𝑛 -2 |𝑥 -𝑦| 𝑛 - 𝑐 1 𝑐 -1 2 (𝑑 + 𝛼) 𝑛-𝑑-2 𝛼 𝛿(𝑥) 𝛼+𝑑+2-𝑛 |𝑥 -𝑦| 𝑑+𝛼+2 ]︃ 𝑑𝑦 ∀𝑥 ∈ R 𝑑+1 . ( 34 
)
Lemma 11. The equation [START_REF] Wu | On singularity of harmonic measure in space[END_REF] implies that the function 𝜓 is zero.

Proof. With the notation ℎ = |𝑥 𝑑+1 | and 𝑥 0 = (𝑥 1 , . . . , 𝑥 𝑑 ) we can rewrite the equation [START_REF] Wu | On singularity of harmonic measure in space[END_REF] as

R𝑑 ℎ 2-𝑛 𝜑(𝑦) [︂ 1 (1 + |𝑥 0 -𝑦| 2 /ℎ 2 ) (𝑛-2)/2 - 𝑐 1 𝑐 -1 2 (1 + |𝑥 0 -𝑦| 2 /ℎ 2 ) (𝑑+𝛼)/2 ]︂ 𝑑𝑦 = R𝑑 ℎ 1-𝑛 𝜓(𝑦) [︃ 𝑛 -2 (1 + |𝑥 0 -𝑦| 2 /ℎ 2 ) 𝑛/2 - 𝑐 1 𝑐 -1 2 (𝑑 + 𝛼) 𝑛-𝑑-2 𝛼 (1 + |𝑥 0 -𝑦| 2 /ℎ 2 ) (𝑑+𝛼+2)/2 ]︃ 𝑑𝑦 ∀ℎ > 0, 𝑥 0 ∈ R 𝑑 . (35) Denote 𝑔 ℎ (𝑦) = 1 (1 + |𝑦| 2 /ℎ 2 ) (𝑛-2)/2 - 𝑐 1 𝑐 -1 2 (1 + |𝑦| 2 /ℎ 2 ) (𝑑+𝛼)/2 and 𝑓 ℎ (𝑦) = 𝑛 -2 (1 + |𝑦| 2 /ℎ 2 ) 𝑛/2 - 𝑐 1 𝑐 -1 2 (𝑑 + 𝛼) 𝑛-𝑑-2 𝛼 (1 + |𝑦| 2 /ℎ 2 ) (𝑑+𝛼+2)/2 .
Since the Fourier transform is defined for all of the terms in [START_REF] Ziemer | Some remarks on harmonic measure in space[END_REF], we can rewrite the equation on the Fourier-transform side and get that ℎ φ(𝜁) ĝℎ (𝜁) = ψ(𝜁) fℎ (𝜁) ∀𝜁 ∈ R 𝑑 ∀ℎ > 0.

(36)

Rem 3. It is important for our argument that every term in the products in ( 36) is a welldefined function. This is the reason why in Definition 2 we asked the derivatives 𝜑 and 𝜓 to be in 𝐿 1 . But the operators of convolution with the kernels 𝑔 ℎ and 𝑓 ℎ are very good: for sure they are classical Calderòn-Zygmund operators (one can check easily that the kernels satisfy the Hörmander condition). So one could ask some other reasonable regularity from 𝜑 and 𝜓, as long as their Fourier transforms are well-defined functions. So, instead of writing 𝜑, 𝜓 ∈ 𝐿 1 ∩ 𝐵𝑀 𝑂(R 𝑑 ) in Definition 2 we could write 𝜑, 𝜓 ∈ 𝐿 𝑝 ∩ 𝐵𝑀 𝑂(R 𝑑 ) for any 𝑝 ∈ [1,2]: see [14], Sections 5.6 and 5.7.

The rest of the argument relies on asymptotics of the functions ĝℎ and fℎ at ℎ ≈ 0. First, observe that ĝℎ (𝜁) = ĝ1 (ℎ𝜁) and fℎ (𝜁) = f1 (ℎ𝜁). Next, the Fourier transforms ĝℎ (𝜁) and fℎ (𝜁) are rather easy to compute. Indeed, one has, by the integral definition of the modified Bessel function of the second kind 𝐾 𝑏 (𝑧),

(︂ 1 (1 + |𝑦| 2 ) 𝑎/2 )︂ ̂︀ (ℎ𝜁) = 2 1-𝑎/2 ℎ (𝑎-1)/2 |𝜁| (𝑎-1)/2 𝐾 𝑎-1 2 (ℎ|𝜁|) Γ (︀ 𝑎 2 )︀ , (37) 
where

𝐾 𝑏 (𝑧) = Γ(𝑏 + 1 2 )(2𝑧) 𝑏 √ 𝜋 ∞ 0 cos(𝑡)𝑑𝑡 (𝑡 2 + 𝑧 2 ) (𝑏+1)/2 .
From the series representation of 𝐾 𝑏 (see, for example, [4]) it follows that, if 𝑏 > 0, for small arguments 𝑧 one has 𝐾 𝑏 (𝑧) ∼ Γ(𝑏) 2 (︀ 2

𝑧

)︀ 𝑏 , where by ∼ we denote the asymptotic equivalence of functions. Wherefore

(︂ 1 (1 + |𝑦| 2 ) 𝑎/2 )︂ ̂︀ (ℎ𝜁) ∼ 2 -1/2 Γ (︀ 𝑎-1 2 )︀ Γ (︀ 𝑎 2 )︀
for 𝜁 ̸ = 0 fixed and ℎ small. Then for fixed 𝜁 ̸ = 0 and small ℎ we have

ĝℎ (𝜁) ∼ Γ (︀ 𝑛-3 2 )︀ Γ (︀ 𝑛-2 2 )︀ - 𝑐 1 𝑐 -1 2 Γ (︀ 𝑑+𝛼-1 2 )︀ Γ (︀ 𝑑+𝛼 2 )︀ , and 
fℎ (𝜁) ∼ (𝑛 -2)Γ (︀ 𝑛-1 2 )︀ Γ (︀ 𝑛 2 )︀ - 𝑐 1 𝑐 -1 2 𝑛-𝑑-2 𝛼 (𝑑 + 𝛼)Γ (︀ 𝑑+𝛼+1 2 )︀ Γ (︀ 𝑑+𝛼+2 2 
)︀ .

Since

𝑐 1 𝑐 -1 2 = Γ (︀ 𝑛-𝑑-2 2 )︀ Γ (︀ 𝑑+𝛼 2 )︀ Γ (︀ 𝑛-2 2 )︀ Γ (︀ 𝛼 2 )︀ , ĝℎ (𝜁) ∼ 𝐶 𝑔 := Γ (︂ 𝑛 - 3 
2

)︂ Γ (︁ 𝛼 2 )︁ -Γ (︂ 𝑛 -𝑑 - 2 
2

)︂ Γ (︂ 𝑑 + 𝛼 -1 2 )︂ and fℎ (𝜁) ∼ 𝐶 𝑓 := Γ (︂ 𝑛 -1 2 )︂ Γ (︂ 𝛼 + 2 2 )︂ -Γ (︂ 𝑛 -𝑑 2 
)︂ Γ (︂ 𝑑 + 𝛼 + 1 2 )︂ .
Observe that, for fixed 𝛼 > 0 which is not "magic", 𝐶 𝑓 and 𝐶 𝑔 are never simultaneously zero except for the case 𝑑 = 1. Indeed, using the relation Γ(𝑧 + 1) = 𝑧Γ(𝑧), it is easy to see that

𝐶 𝑔 = Γ (︀ 𝑛-1 2 )︀ Γ (︀ 𝛼+2 2 )︀ 𝑛-3 2 𝛼 2 - Γ (︀ 𝑛-𝑑 2 )︀ Γ (︀ 𝑑+𝛼+1 2 )︀ 𝑛-𝑑-2 2 𝑑+𝛼-1 2 . Since Γ (︀ 𝑛-1 2 )︀ Γ (︀ 𝛼+2 2 )︀ = Γ (︀ 𝑛-𝑑 2 )︀ Γ (︀ 𝑑+𝛼+1 2 
)︀ when 𝐶 𝑓 = 0, if 𝐶 𝑔 is also zero, one has (𝑛 -𝑑 -2)(𝑑 + 𝛼 -1) = (𝑛 -3)𝛼, which is true either for the "magic" 𝛼 or for 𝑑 = 1.

For the case when 𝐶 𝑔 = 𝐶 𝑓 = 0 we have to use the next term of the expansion of 𝐾 𝑏 at

ℎ ≈ 0: 𝐾 𝑏 (𝑧) ∼ Γ(𝑏) 2 (︀ 2 𝑧 )︀ 𝑏 + Γ(𝑏) 2(1-𝑏) (︀ 2 𝑧 )︀ 𝑏-2 .
Note that for all the cases when we will use the formula the parameter 𝑏 in it will be not equal to one. The second term of the expansion gives that, if

𝐶 𝑓 = 𝐶 𝑔 = 0, ĝℎ (𝜁) ∼ ℎ 2 𝐶 ′ 𝑔 with 𝐶 ′ 𝑔 = Γ (︀ 𝑛-3 2 )︀ 4 -𝑛 - Γ (︀ 𝑑+𝛼-1 2 )︀ Γ (︀ 𝑛-𝑑-2 2 )︀ (2 -𝑑 -𝛼)Γ (︀ 𝛼 2 )︀ and fℎ (𝜁) ∼ ℎ 2 𝐶 ′ 𝑓 with 𝐶 ′ 𝑓 = Γ (︀ 𝑛-1 2 )︀ 2 -𝑛 + Γ (︀ 𝑛-𝑑 2 )︀ Γ (︀ 𝑑+𝛼+1 2 )︀ (𝑑 + 𝛼)Γ (︀ 𝛼+2 2 )︀ ,
where 𝐶 ′ 𝑓 and 𝐶 ′ 𝑔 are not equal to zero if 𝛼 ̸ = 𝑛-𝑑-2: this is easy to see since

𝐶 𝑓 = 𝐶 𝑔 = 0 gives Γ (︀ 𝑛-1 2 )︀ Γ (︀ 𝛼+2 2 )︀ = Γ (︀ 𝑛-𝑑 2 )︀ Γ (︀ 𝑑+𝛼+1 2 )︀ and Γ (︀ 𝑛-3 2 )︀ Γ (︀ 𝛼 2 )︀ = Γ (︀ 𝑛-𝑑-2 2 )︀ Γ (︀ 𝑑+𝛼-1 2 
)︀ . Let us return now to (36) and restrict ourselves to small ℎ. Fix 𝜁 ̸ = 0. Observe that asymptotically the equation (36) looks like

ℎ φ(𝜁)(𝐶 𝑔 + ℎ 2 𝐶 ′ 𝑔 ) = ψ(𝜁)(𝐶 𝑓 + ℎ 2 𝐶 ′ 𝑓 ) ∀ ℎ > 0 small. ( 38 
)
It is now clear that (36) can never be true unless ψ(𝜁) = 0. Suppose the contrary. Then we have to have 𝐶 𝑓 = 0 in (38). If φ(𝜁) is also not zero, then 𝐶 𝑔 , 𝐶 ′ 𝑔 and 𝐶 ′ 𝑓 are zero in (38), but we saw above that this cannot be true. This implies φ(𝜁) = 0, but then 𝐶 ′ 𝑓 has to be zero as well. At the same time, from the computations above, we saw that 𝐶 𝑓 and 𝐶 ′ 𝑓 can be simultaneously zero only if 𝛼 is "magic". A contradiction. So we have that ψ(𝜁) = 0 everywhere except probably for 𝜁 = 0. Therefore the function 𝜓 can only be a constant, which also contradicts the definition of one-parameter differentiable family of graph perturbations.

A comment on a sporadic family versus one-parameter family, and BMO versus the Besov space

We would like to give some more comments on why the plan we described in the beginning of this section for solving the hypothesis related to (6) stated in the introduction does not work. Essentially, two more technical steps separate the results of Theorems 1 and 2 from a proof of the hypothesis that there are no solutions of the equation ( 6) in a small neighbourhood of the flat solution. To be more specific, let us discuss just the flat case: the case of perturbations of density of a measure on R 𝑑 . Recall that if we suppose the hypothesis to be false, we get a discrete family {1 + 𝜑 𝑡 } of non-flat solutions of ( 23), because a solutions should exist arbitrarily close to the flat one. The first step is breaching the gap between such a family of solutions, which we will call sporadic, and a family of perturbations with a continuous parameter 𝑡 (recall that the family in Definition 1 is parametrized by a segment [0, 𝑡 0 )). We claim that this step would not be a big deal. An attentive look at Definition 1 and the proof of Theorem 1 shows that continuity of the parameter 𝑡 is not really needed anywhere. What we really need is the existence of a non-trivial limit 𝐹 of the sequence { 1 𝑡 𝜑 𝑡 }, indexed by an arbitrary family of points 𝑡, not necessarily a segment, -a surrogate for the Fréchet derivative. The Banach-Alaoglu theorem, which we mentioned above already, would guarantee the existence as long as the estimate of the sort 1 𝑡 ‖𝜑 𝑡 ‖ ∼ 1 is provided. The latter would not be a problem: we would just need to say that the value of the parameter 𝑡 is morally the same as ‖𝜑 𝑡 ‖, where the norm could be a norm in any space we need.

But we would also need to make the second step and to prove that the limit 𝐹 is a constant. This, as far as the author can see, seems to be (too) hard to do. In Subsection 5.1 we are able to do this because we fixed in advance the functional space we work in -the 𝐵𝑀 𝑂 space. If { 1 𝑡 𝜑 𝑡 } is "differentiable" in 𝐵𝑀 𝑂, we can prove that ( 23) is also differentiable and conclude that, since ( 28) is true for 𝐹 instead of 𝜕𝜑𝑡 𝜕𝑡 (0, 𝑦), 𝐹 is zero in 𝐵𝑀 𝑂. However for an arbitrary sporadic family of perturbations we have no a priori indications that the "derivative" 𝐹 is a 𝐵𝑀 𝑂 function. Moreover, the "smallest" space possible for it to fit in is indicated by the equation [START_REF] Jaye | Reflectionless measures for Calderón-Zygmund operators II: Wolff potentials and rectifiability[END_REF]. Recall that this equation says that 𝐹 acts like a zero functional on the space 𝒮 generated by linear combinations of the family of functions

{𝑐 -1 2 𝑐 1 𝛿(𝑥) 𝑑+2+𝛼-𝑛 |𝑥-𝑦| 𝑑+𝛼 - 1 |𝑥-𝑦| 𝑛-2 } 𝑥∈R 𝑛 ∖R 𝑑 .
This would imply that 𝐹 is a constant if 𝐹 was an element of the space dual to the space 𝒮. So, we would do just fine with the assumption that 𝐹 is an element of 𝐵𝑀 𝑂 if 𝑆 was the predual to 𝐵𝑀 𝑂 (or would be smaller). But we saw already that the latter is not true: the space 𝑆 is the homogeneous Besov space Ḃ0

1,1 , and its dual is the homogeneous Besov space Ḃ0 ∞,∞ , which is larger than 𝐵𝑀 𝑂. Therefore the strongest assumption we could have made without loss of generality in our argument is that 𝐹 lives in Ḃ0 ∞,∞ . But for this space we have certain indications that one cannot prove that the existence of the "derivative" 𝐹 implies differentiability of [START_REF] Hofmann | Transference of scale-invariant estimates from Lipschitz to Non-tangentially accessible to Uniformly rectifiable domains[END_REF]. Namely, the estimates of the type (18) for the appropriate norm (‖ • ‖ Ḃ0 ∞,∞ instead of ‖ • ‖ 𝐵𝑀 𝑂 ) are false, morally, because functions from the Besov space are not locally integrable.

No smooth solutions for the hyperplane

In this section we describe an attempt to solve directly the equation ( 23) on the hyperplane R 𝑑 and we prove Theorem 3 from Introduction, which asserts that there are no solutions 𝐷 𝛼,𝜇 of ( 6) for 𝐸 = R 𝑑 among the measures 𝜇 with densities of class 𝐶 2,𝜀 (R 𝑑 ) for any 0 < 𝜀 < 𝜀 0 which are not constants.

Let 𝐷 𝛼,𝜇 be a flat solution of the equation 𝐿 𝛼 𝐷 𝛼 = 0 where 𝐸 is R 𝑑 , and 𝑓 ∈ 𝐿 ∞ (R 𝑑 ) be the density of the measure 𝜇. Then the function ℎ = 𝑓 𝑛-𝑑-2 𝛼

, as discussed in the beginning of Section 5, satisfies the equation

𝛿(𝑥) 𝑛-𝑑-2 R𝑑 ℎ(𝑦)𝑑𝑦 |𝑥 -𝑦| 𝑛-2 = 𝑐 3 ⎛ ⎝ 𝛿(𝑥) 𝛼 R𝑑 ℎ(𝑦) 𝛼 𝑛-𝑑-2 𝑑𝑦 |𝑥 -𝑦| 𝑑+𝛼 ⎞ ⎠ 𝑛-𝑑-2 𝛼 , ∀ 𝑥 ∈ R 𝑛 ∖ R 𝑑 . ( 39 
)
This is just ( 23) multiplied by the correct power of 𝛿(𝑥).

We assume from now on that ℎ ∈ 𝐶 2,𝜀 (R 𝑑 ) for a fixed 𝜀. Then we can write a Taylor expansion at an arbitrary point 𝑦 0 ∈ R 𝑑 :

ℎ(𝑦) = ℎ(𝑦 0 ) + ⟨∇ℎ(𝑦 0 ), 𝑦 -𝑦 0 ⟩ + (𝑦 -𝑦 0 ) 𝑇 Hessℎ(𝑦 0 )(𝑦 -𝑦 0 ) + 𝑜(|𝑦 -𝑦 0 | 2 ), and 
ℎ(𝑦) 𝛼 𝑛-𝑑-2 = ℎ(𝑦 0 ) 𝛼 𝑛-𝑑-2 + ℎ(𝑦 0 ) 𝛼 𝑛-𝑑-2 -1 𝛼 𝑛 -𝑑 -2 (⟨∇ℎ(𝑦 0 ), 𝑦 -𝑦 0 ⟩ +(𝑦 -𝑦 0 ) 𝑇 Hessℎ(𝑦 0 )(𝑦 -𝑦 0 ) )︀ +ℎ(𝑦 0 ) 𝛼 𝑛-𝑑-2 -2 𝛼 𝑛-𝑑-2 (︀ 𝛼 𝑛-𝑑-2 -1 )︀ 2 ⟨∇ℎ(𝑦 0 ), 𝑦-𝑦 0 ⟩ 2 +𝑜(|𝑦-𝑦 0 | 2 ).
Choose 𝑥 = (𝑦 0 , 𝑟, 0 . . . ), 𝑦 0 ∈ R 𝑑 , 0 < 𝑟 < 1, and rewrite the equation (39), using the expansions from above. On the left-hand side we get

𝑐 1 ℎ(𝑦 0 ) + 𝑟 𝑛-𝑑-2 ⟨ ∇ℎ(𝑦 0 ), R𝑑 (𝑦 -𝑦 0 )𝑑𝑦 |(𝑦 0 , 𝑟) -𝑦| 𝑛-2 ⟩ + 𝑟 𝑛-𝑑-2 R𝑑 (𝑦 -𝑦 0 ) 𝑇 Hessℎ(𝑦 0 )(𝑦 -𝑦 0 )𝑑𝑦 |(𝑦 0 , 𝑟) -𝑦| 𝑛-2 + 𝑟 𝑛-𝑑-2 R𝑑 𝑜(|𝑦 -𝑦 0 | 2 )𝑑𝑦 |(𝑦 0 , 𝑟) -𝑦| 𝑛-2 , (40) 
and on the right-hand side inside the brackets with the power 𝑛-𝑑-2 𝛼 we get

𝑐 2 ℎ(𝑦 0 ) 𝛼 𝑛-𝑑-2 +ℎ(𝑦 0 ) 𝛼 𝑛-𝑑-2 -1 𝛼 𝑛 -𝑑 -2 𝑟 𝛼 ⟨ ∇ℎ(𝑦 0 ), R𝑑 (𝑦 -𝑦 0 )𝑑𝑦 |(𝑦 0 , 𝑟) -𝑦| 𝑑+𝛼 ⟩ +ℎ(𝑦 0 ) 𝛼 𝑛-𝑑-2 -1 𝛼 𝑛 -𝑑 -2 𝑟 𝛼 • R𝑑 (𝑦 -𝑦 0 ) 𝑇 Hessℎ(𝑦 0 )(𝑦 -𝑦 0 ) + ℎ(𝑦 0 ) -1 1 2 (︀ 𝛼 𝑛-𝑑-2 -1 )︀ ⟨∇ℎ(𝑦 0 ), 𝑦 -𝑦 0 ⟩ 2 |(𝑦 0 , 𝑟) -𝑦| 𝑑+𝛼 𝑑𝑦 (41) +𝑟 𝛼 R𝑑 𝑜(|𝑦 -𝑦 0 | 2 )𝑑𝑦 |(𝑦 0 , 𝑟) -𝑦| 𝑑+𝛼 .
Then we expand the right-hand side of (39) using (𝑐+𝑢)

𝑛-𝑑-2 𝛼 = 𝑐 𝑛-𝑑-2 𝛼 +𝑐 𝑛-𝑑-2 𝛼
-1 𝑢+𝑜(𝑢) for small 𝑢 with 𝑐 = 𝑐 2 ℎ(𝑦 0 ) 𝛼 𝑛-𝑑-2 and 𝑢 = (41) -𝑐 2 ℎ(𝑦 0 ) 𝛼 𝑛-𝑑-2 . We know already from Subsection 5.1 that, because of the symmetries of the denominator,

R𝑑 (𝑦 -𝑦 0 )𝑑𝑦 |(𝑦 0 , 𝑟) -𝑦| 𝑛-2 =

R𝑑

(𝑦 -𝑦 0 )𝑑𝑦 |(𝑦 0 , 𝑟) -𝑦| 𝑑+𝛼 = 0, so the second term with ∇ℎ(𝑦 0 ) both in (40) and (41) vanishes. Therefore the Taylor expansion of the right-hand side of (39) simplifies to

𝑐 1 ℎ(𝑦 0 )+𝑐 1 𝑐 -1 2 𝑟 𝛼 • R𝑑 (𝑦 -𝑦 0 ) 𝑇 Hessℎ(𝑦 0 )(𝑦 -𝑦 0 ) + ℎ(𝑦 0 ) -1 1 2 (︀ 𝛼 𝑛-𝑑-2 -1 )︀ ⟨∇ℎ(𝑦 0 ), 𝑦 -𝑦 0 ⟩ 2 |(𝑦 0 , 𝑟) -𝑦| 𝑑+𝛼 𝑑𝑦 + 𝑟 𝛼 R𝑑 𝑜(|𝑦 -𝑦 0 | 2 )𝑑𝑦 |(𝑦 0 , 𝑟) -𝑦| 𝑑+𝛼 . (42) 
Now we would like to treat (40) and (42) as functions of the parameter 𝑟 to "get rid of" the terms with 𝑜(|𝑦 -𝑦 0 | 2 ). Observe that the term with integral of a fraction with 𝑂(|𝑦 -𝑦 0 | 2 ) in the numerator in (40) is of the order 𝑟 2 , and the same is true for the term with integral of a fraction with 𝑂(|𝑦 -𝑦 0 | 2 ) in the numerator in (42).

Next, with the assumption ℎ ∈ 𝐶 2,𝜀 we can estimate the residues in (40) and (42) and say that |𝑜(|𝑦 -𝑦 0 | 2 )| ≤ 𝐶|𝑦 -𝑦 0 | 2+𝜀 , where 𝐶 depends only on Hölder coefficients of second-order partial derivatives of ℎ. Therefore we can bound the modulus of the last term in (40) the following way:

⃒ ⃒ ⃒ ⃒ ⃒ ⃒ 𝑟 𝑛-𝑑-2 R𝑑 𝑜(|𝑦 -𝑦 0 | 2 )𝑑𝑦 |(𝑦 0 , 𝑟) -𝑦| 𝑛-2 ⃒ ⃒ ⃒ ⃒ ⃒ ⃒ ≤ 𝐶𝑟 2+𝜀 R𝑑 |𝑦 -𝑦 0 | 2+𝜀 /𝑟 2+𝜀 (1 + |𝑦 -𝑦 0 | 2 /𝑟 2 ) (𝑛-2)/2 𝑟 -𝑑 𝑑𝑦.
Assuming 𝑛 -𝑑 > 4, the integral above is bounded and does not depend on 𝑟. So the

𝑜(|𝑦 -𝑦 0 | 2 ) term in (40) is of the order 𝑟 2+𝜀 . The same is true about the 𝑜(|𝑦 -𝑦 0 | 2 ) term in (42), since ⃒ ⃒ ⃒ ⃒ ⃒ ⃒ 𝑟 𝛼 R𝑑 𝑜(|𝑦 -𝑦 0 | 2 )𝑑𝑦 |(𝑦 0 , 𝑟) -𝑦| 𝑑+𝛼 ⃒ ⃒ ⃒ ⃒ ⃒ ⃒ ≤ 𝐶𝑟 2+𝜀 R𝑑 |𝑦 -𝑦 0 | 2+𝜀 /𝑟 2+𝜀 (1 + |𝑦 -𝑦 0 | 2 /𝑟 2 ) (𝑑+𝛼)/2 𝑟 -𝑑 𝑑𝑦,
and the integral above is once again bounded and does not depend on 𝑟, if we assume that 𝛼 > 2 + 𝜀 0 . We divide (39) by 𝑟 2 , let 𝑟 tend to zero, and get that then the 𝑟 2 -order terms should match. Thus we get the equation

𝑟 𝑛-𝑑-2 R𝑑 (𝑦 -𝑦 0 ) 𝑇 Hessℎ(𝑦 0 )(𝑦 -𝑦 0 )𝑑𝑦 |(𝑦 0 , 𝑟) -𝑦| 𝑛-2 = 𝑐 1 𝑐 2 𝑟 𝛼 R𝑑 (𝑦 -𝑦 0 ) 𝑇 Hessℎ(𝑦 0 )(𝑦 -𝑦 0 ) + ℎ(𝑦 0 ) -1 1 2 (︀ 𝛼 𝑛-𝑑-2 -1 )︀ ⟨∇ℎ(𝑦 0 ), 𝑦 -𝑦 0 ⟩ 2 |(𝑦 0 , 𝑟) -𝑦| 𝑑+𝛼 𝑑𝑦.
We get rid of all second-order derivatives with different indices because of the symmetries, and also of all the products of first-order derivatives with different indices as well. Passing to non-tangential limits will give us the following PDE equation for the function ℎ:

c1 ∆ℎ = 𝑐 1 𝑐 2 c2 ∆ℎ + 1 2 𝑐 1 𝑐 2 c2 (︂ 𝛼 𝑛 -𝑑 -2 -1 )︂ ℎ -1 |∇ℎ| 2 on R 𝑑 , (43) 
where

c1 = V(S 𝑑-1 ) ∞ 0 𝑥 𝑑+1 𝑑𝑥 (1 + 𝑥 2 ) 𝑛-2 2 = V(S 𝑑-1 ) 1 2 Γ (︀ 𝑑+2 2 )︀ Γ (︀ 𝑛-𝑑-4 2 )︀ Γ (︀ 𝑛-2 2 
)︀ , and

c2 = V(S 𝑑-1 ) ∞ 0 𝑥 𝑑+1 𝑑𝑥 (1 + 𝑥 2 ) 𝑑+𝛼 2 = V(S 𝑑-1 ) 1 2 Γ (︀ 𝑑+2 2 )︀ Γ (︀ 𝛼-2 2 )︀ Γ (︀ 𝑑+𝛼 2 )︀ .
Recall that

𝑐 1 = V(S 𝑑-1 ) 1 2 Γ (︀ 𝑑 2 )︀ Γ (︀ 𝑛-𝑑-2 2 )︀ Γ (︀ 𝑛-2 2 )︀ and 𝑐 2 = V(S 𝑑-1 ) 1 2 Γ (︀ 𝑑 2 )︀ Γ (︀ 𝛼 2 )︀ Γ (︀ 𝑑+𝛼 2 )︀ , so c1 c2 𝑐 2 𝑐 1 = Γ (︀ 𝑛-𝑑-4 2 )︀ Γ (︀ 𝛼 2 )︀ Γ (︀ 𝑛-𝑑-2 2 )︀ Γ (︀ 𝛼-2 2 )︀ = 𝛼 -2 𝑛 -𝑑 -4 .
Therefore the equation ( 43) is trivial when the parameter 𝛼 is "magic" and equal to 𝑛-𝑑-2. Otherwise (43) gives an equation of the form

∆ℎ = -𝐶ℎ -1 |∇ℎ| 2 on R 𝑑 , (44) 
where the constant 𝐶, as one can see easily from (43), is

𝐶 = 1 2 (︂ 𝛼 𝑛 -𝑑 -2 -1 )︂ 𝑐 1 𝑐 2 c2 𝑐 1 𝑐 2 c2 -c1 = 1 2 (︂ 𝛼 𝑛 -𝑑 -2 -1 )︂ 1 1 -c1 c2 𝑐 2 𝑐 1 .
Given the computation above, we have

𝐶 = - (︂ 1 2 - 1 𝑛 -𝑑 -2 )︂ . ( 45 
)
We claim that we can find a change of variables that transforms the equation (44) into the equation ∆• = 0. Indeed, take 𝑔 = ℎ 𝛽 , 𝛽 ̸ = 0, 1, then

∇𝑔 = 𝛽ℎ 𝛽-1 ∇ℎ, ∆𝑔 = 𝛽ℎ 𝛽-1 ∆ℎ + 𝛽(𝛽 -1)ℎ 𝛽-2 |∇ℎ| 2 .
Substituting this in (44), we get that 𝑔 is a solution of

∆𝑔 = - |∇𝑔| 2 𝑔 (︂ 𝐶 + 1 𝛽 - 1 
)︂ .

So, if 𝐶 ̸ = -1, we choose 𝛽 = 𝐶 + 1 and we are done. Otherwise take 𝑔 = log ℎ, then

ℎ = 𝑒 𝑔 , ∇𝑔 = ℎ -1 ∇ℎ, ∆𝑔 = ℎ -1 ∆ℎ -ℎ -2 |∇ℎ| 2 .
Substituting this in (44), we get that 𝑔 is a solution of

∆𝑔 = -(𝐶 + 1)|∇𝑔| 2 ,
and since 𝐶 = -1, the function 𝑔 is harmonic as we wanted. So we have that some power of the function ℎ or log ℎ is a harmonic function 𝑔 on the whole R 𝑑 . Since ℎ is the density of an Ahlfors-regular measure on R 𝑑 , ℎ is bounded and bounded away from zero. Thus 𝑔 is in addition bounded and bounded below. So-called Liouville's theorem implies that 𝑔 has to be a constant, therefore ℎ is a constant as well.

Rem 4. In the end of this section we would like to comment on the regularity restrictions we posed on the density ℎ of a measure 𝜇 in Theorem 3. Asking ℎ to be in 𝐶 2,𝜀 (R 𝑑 ) seems clumsy. But we cannot significantly release the restrictions, because in the core of the method we use lies the differential equation (44). It looks like one cannot interpret this equation without some boundedness assumptions on its right-hand side.

One could still argue that, given the method with all the changes of variables we implemented to solve (44), if in (39) we considered ℎ 𝛽 with some 𝛽 instead of ℎ, probably we could get a simpler equation, which requires less regularity assumptions. Indeed, this is clearly true from the proof given above: there is (for almost all values of the constant 𝐶) a 𝛽 such that, at the end of the day, we would get that ℎ 𝛽 is a positive harmonic function, bounded and bounded away from zero. However, to get this equation we still need to use the Taylor expansion and to show that the terms in equations like (40) and (41) which correspond to small-o terms in the expansion can be neglected. This seems to be hard to do without the regularity assumption we asked for.

Introduction

The search for necessary and sufficient geometric conditions on a domain for which the harmonic measure is absolutely continuous with respect to the Hausdorff measure on the boundary started in the beginning of 20th century. They were finally articulated by 2016 in the celebrated work by J. Azzam, S. Hoffman, M. Mourgoglou, J.M. Martell, S. Mayboroda, X. Tolsa and A. Volberg [3]. In particular, it turned out that the purely unrectifiable sets are those for which harmonic measure is necessarily singular with respect to the Hausdorff measure of the boundary of the domain. Similar characterisation is true for the elliptic measure associated to more general elliptic operators which are in some sense close to Laplacian, see [15], [2], [11], and [12].

However, even for some purely unrectifiable sets, one can find an elliptic operator (in divergence form) with scalar coefficient whose elliptic measure is absolutely continuous and even proportional to the Hausdorff measure on that set. The first example of such an anomaly was recently given by G. David and S. Mayboroda in [8].

Let us briefly describe their result. They work in R 2 with the four corner Cantor set 𝐾 (so-called Garnett-Ivanov set), which is a one-dimensional Ahlfors regular set with harmonic measure (for the Laplacian) mutually singular to the Hausdorff measure ℋ 1 on 𝐾. They construct an elliptic operator in divergence form

𝐿 = -div𝑎∇, (1) 
where 𝑎 is a continuous scalar function on R 2 ∖ 𝐾 (as opposed to a general matrix-valued coefficient) such that

𝐶 -1 ≤ 𝑎(𝑥) ≤ 𝐶 for 𝑥 ∈ Ω = R 2 ∖ 𝐾, (2) 
and such that its elliptic measure 𝑤 ∞ 𝐿 with pole at infinity is equal to the Hausdorff measure ℋ 1 | 𝐾 (for now think of 𝑤 ∞ 𝐿 as sort of a universal object taken not to care about the pole). Consequently, for all poles 𝑥 far away from 𝐾, one has

𝐶 -1 ℋ 1 | 𝐾 ≤ 𝑤 𝑥 𝐿 ≤ 𝐶ℋ 1 | 𝐾 .
For a more precise statement see Section 4 of [8]. Recall that the elliptic measure 𝑤 𝑥 𝐿 of the operator 𝐿 = -div𝐴∇ is the measure on the boundary 𝜕Ω of the domain Ω which provides an integral representation of the solution of the Dirichlet problem

{︂ 𝐿𝑢 = 0 in Ω, 𝑢 = 𝑔 on 𝜕Ω, (3) 
namely, if 𝑔 is a continuous function with compact support on 𝜕Ω, then for 𝑥 ∈ Ω we have

𝑢(𝑥) = ∂Ω 𝑔(𝑦)𝑑𝑤 𝑥 𝐿 (𝑦). (4) 
For more information about the elliptic measure, see, for example, [7], or [14] and references therein.

An important point here is that, even though the question of existence of an elliptic operator for which the corresponding elliptic measure is absolutely continuous with respect to the Hausdorff measure on the Cantor set was open for general operators in divergence form 𝐿 = -div𝐴∇, the authors of [8] set a goal to construct an operator with a scalarvalued coefficient 𝑎 (in place of a matrix-valued 𝐴). Such a restriction seems to be more geometrically relevant, evidently makes the problem harder, and simultaneously opens the path to other interesting questions.

Indeed, consider the similar question where the set 𝐾 in ( 2) is a Koch-type snowflake of dimension 𝑑 > 1 in R 2 instead of the Cantor set (for example, the usual Koch snowflake with 𝑑 = ln (4) ln (3) , built by an iterative procedure from an equilateral triangle). Then an elliptic operator 𝐿 = -div𝐴∇ with a matrix-valued coefficient such that the measure 𝑤 𝑥 𝐿 is absolutely continuous with respect to the Hausdorff measure ℋ 𝑑 | 𝐾 (denoted later by 𝑤 𝑥 𝐿 << ℋ 𝑑 | 𝐾 ) is provided immediately by a quasiconformal mapping 𝑓 : R 2 → R 2 that maps the line 𝑙 or a circle to 𝐾. One just has to use 𝑓 to transfer the Laplacian on a component of R 2 ∖𝑙 to a corresponding component of R 2 ∖𝐾. The general theory states that the resulting operator 𝐿 is indeed an elliptic operator in divergence form, 𝐿 = -div𝐴∇, and 𝑤 𝐿 << ℋ 𝑑 | 𝐾 is true just because the same holds true for the Laplacian and the Lebesgue measure on the line. But, first, we neither have a guarantee that the coefficient 𝐴 is scalar, nor we know that it has any regularity at all. Second, clearly the same trick cannot be repeated with the four-corner Cantor set. This indicates that the class of operators with scalar coefficients, as opposed to matrix-valued ones, is more reasonable to study. This leads us to the following questions. For at least one set of some dimension 𝑑 > 1 on R 2 , for example, for a Koch-type snowflake, does a good operator (1) (in the same sense as above that 𝑤 𝑥 𝐿 << ℋ 𝑑 | 𝐾 ) with a scalar coefficient exist? Does such an operator exist in R 2 for every snowflake of dimension 𝑑 > 1? For some other reasonable bigger class of fractals? For all decent (for example, Ahlfors regular) unrectifiable sets?

In this paper we give a positive answer for the first of these three questions for all 𝑑 such that 1 < 𝑑 < ln (4) ln (3) . The last question is a very ambitious one, and we have no idea if a satisfactory solution to that problem can exist, but, concerning the second question, we believe that one can build the desired operators for a considerably larger class of fractals than described in this paper. For perspectives of generalisations and extensions see Section 8.

Our result is also connected to the questions about the dimension of harmonic (or elliptic) measure and about the dimension drop. For the harmonic measure in R 2 , by the result of Wolff [17] dated 1993, preceded by works of Makarov and Jones and Wolff, the dimension of the harmonic measure is necessarily one. For R 𝑛 with 𝑛 ≥ 3 the question appears to be much more complicated. On the one hand, Wolff constructed examples of domains Ω 𝑛 ⊂ R 𝑛 such that the dimension of harmonic measure dim 𝑤 Ω𝑛 is strictly larger than 𝑛 -1, [18]. On the other hand, the dimension of harmonic measure can never reach 𝑛, due to Bourgain, [6]: for every 𝑛 ≥ 3 there exists a universal constant 𝑏 𝑛 > 0 such that for any domain Ω we have dim 𝑤 Ω ≤ 𝑛 -𝑏 𝑛 . Bourgain's constant 𝑏 𝑛 is not optimal, and is very hard to compute explicitly, and one of the most celebrated and challenging open problems connected to harmonic measure up-to-date is to find the optimal value of 𝑏 𝑛 . The only significant progress made in the last 30 years there, up to the authour's knowledge, is a recent work by Badger and Genschaw, who provided an explicit lower bound on 𝑏 𝑛 by revising Bourgain's proof, [4]. Bishop's conjecture that the optimal value of 𝑏 𝑛 is 1 𝑛-1 , still stands, [5]. For the elliptic measure, without any regularity assumptions on the coefficient of the corresponding elliptic operator, things can differ even in dimension 2 already. Thus, for every 𝜀 > 0 one can construct a planar domain and an elliptic operator 𝐿 in divergence form such that the associated elliptic measure has dimension at least 2 -𝜀, see Sweezy [16].

One says that a dimension drop occurs when the dimension of the harmonic (elliptic) measure dim 𝑤 Ω , which satisfies naturally dim 𝑤 Ω ≤ dim 𝜕Ω, is strictly less than the dimension of the boundary of the domain Ω. For the harmonic measure, there are plenty of examples when this happens, including some Wolff snowflakes, some self-similar sets, and even sets with no nice geometric structure (in the classical sense): see a work by Azzam [1] and references wherein. The analogue of the Azzam's result is also likely to be true for operators close to the Laplacian.

Our result implies that for elliptic measures on Koch-type snowflakes associated to our operators a dimension drop does not occur. Also, though the absolute continuity of the elliptic measure with respect to the 𝑑-dimensional Hausdorff measure ℋ 𝑑 on the boundary is (much) stronger than the property that the elliptic measure has dimension 𝑑, our result can be interpreted as a stronger version of the result by Sweezy for operators with continuous scalar-valued coefficients, as opposed to general matrix-valued elliptic coefficients, in the range of dimensions (1, ln (4)/ ln (3)). It would be, once again, interesting to know whether it is possible to cover the whole range (1, 2).

Before we state our main theorem, we describe the sets 𝐾 (the family of snowflakes) we will work with. Because of personal preferences, our snowflakes are going to be noncompact (though we can do the compact versions as well, see Section 8). Also, we use a slightly different replacement algorithm than the one for the classical Koch snowflake. In order to not confuse the reader, we'll keep the precise definition with formulas for later, but we sketch the construction now. We start from the unit interval 𝐼 = [-1/2, 1/2]. Fix any 𝛼, 0 < 𝛼 < 𝜋/3. Replace the segment 𝐼 with 𝐹 (𝐼) = 𝐹 𝛼 (𝐼) constructed as follows.

(Actually, we will give later a more qualified definition of the transformation 𝐹 , which will play the crucial role in our construction.) Replace the middle of the interval by two sides of the isosceles triangle built above 𝐼, with the angle 𝛼 between the leg and the base, so that the four intervals we obtain after this procedure have equal length, and that the picture stays symmetric with respect to the bisection of 𝐼: To get the part of the set to the left of the axis, we reflect the part to the right with respect to it:

𝑆 1 𝛼 = ∪ 𝑘≥1 𝐻 𝑙 (𝑆 𝛼 | 𝐼 ) ∪ (︁ (∪ 𝑘≥1 𝐻 𝑙 (𝑆 𝛼 | 𝐼 ) + 1/2) -1/2
)︁ . Here is how 𝑆 1 𝛼 looks like to the right of -1/2. 

𝛼

In the theorem below we will call 𝑆 𝛼 both 𝑆 1 𝛼 and 𝑆 2 𝛼 for simplicity. A classical computation, essentially the same as for the standard Koch snowflake, shows that the Hausdorff dimension 𝑑 of 𝑆 𝛼 (both 𝑆 1 𝛼 and 𝑆 2 𝛼 ) is

ln (4)
ln (2(1+cos 𝛼)) . We also choose the domains

Ω 1 = (R 2 ∖ 𝑆 1 𝛼 ) + and Ω 2 = (R 2 ∖ 𝑆 2 𝛼 )
+ , and denote them both Ω in what follows.

We now state our main result.

Theorem 1. For each symmetric Koch-type snowflake 𝑆 𝛼 with 0 < 𝛼 < 𝜋/3 there exists an elliptic operator 𝐿 = -div 𝑎∇ with a continuous scalar coefficient 𝑎 such that 1. 𝑎 is defined on the domain Ω and is continuous, 2. as in (2), 𝑎 is bounded and bounded away from zero, 3. and the elliptic measure 𝑤 ∞ 𝐿 (to be defined below) is equal to the Hausdorff measure ℋ 𝑑 | 𝑆𝛼 , and, in addition,

𝐶 -1 ℋ 𝑑 | 𝑆𝛼 ≤ 𝑤 𝑥 𝐿 ≤ 𝐶ℋ 𝑑 | 𝑆𝛼 for all 𝑥 such that 𝛿(𝑥) = dist(𝑥, 𝑆 𝛼 ) ≥ 1, where 1 < 𝑑 = ln (4)
ln (2(1+cos 𝛼)) < ln (4) ln(3) . Rem 1. For each snowflake 𝑆 𝛼 we build a different elliptic operator, or, a different coefficient 𝑎, so the correct notation would be 𝐿 𝛼 = -div 𝑎 𝛼 ∇ and 𝑤 𝑥 𝐿𝛼 . However we always work with one snowflake, or a fixed 𝛼, so we usually omit this dependence in the notation. The constant 𝐶 in (2) and in 𝐶 -1 ℋ 𝑑 | 𝑆𝛼 ≤ 𝑤 𝑥 𝐿 ≤ 𝐶ℋ 𝑑 | 𝑆𝛼 in property 3 above also depends on 𝛼, and it will be clear from the construction that we get a constant 𝐶 = 𝐶(𝛼) that tends to infinity as 𝛼 tends to 𝜋/3. This is connected to why the case of the classical Koch snowflake (𝛼 = 𝜋/3) is not covered by Theorem 1. See a short discussion in Section 8 about this.

Rem 2. Regarding the regularity of our scalar coefficient 𝑎, we cannot get a Hölder continuous 𝑎, since, as we get closer to the boundary, 𝑎 oscillates more and more, which will be clear from the construction. This accords with the perturbation results about the behaviour of elliptic measures of operators "close to" Laplacian. Indeed, Hölder continuous coefficients satisfy, for example, the condition (1.3) in [2]. So, the behaviour of elliptic measure of an operator with Hölder continuous coefficient, in what concerns the relations between rectifiability of the boundary and absolute continuity with respect to the boundary measure, resembles the behaviour of the harmonic measure. In particular, the elliptic measure of an operator with Hölder continuous coefficient is singular with respect to ℋ 𝑑 | 𝑆𝛼 . Therefore we get again that our coefficient 𝑎 cannot be Hölder continuous.

Speaking of different regularity conditions on the coefficients, and what happens in between the "standard" case of operators "close" to Laplacian and the dramatically different case of operators like we construct, some results in this direction for the planar case were recently obtained by I. Guillén-Mola, M. Prats, and X. Tolsa, [10]. In particular, they proved the following: if the coefficient 𝐴 of an elliptic operator in the divergence form is Lipschitz, and the boundary of a planar domain 𝜕Ω is a Reifenberg flat set with a small constant (how small it should be depends on the ellipticity of 𝐴), then there is a subset of the boundary of 𝜎-finite length such that it has elliptic measure one. They also classify settings by the regularity of the coefficient 𝐴 and the domain, giving in each case a lower estimate on the dimension of the elliptic measure.

In the core of the construction of our operators lies a restoration procedure of the scalar coefficient 𝑎 from the level lines of a pair of (conjugated) functions (𝑢, 𝑣) which solve the equations -div 𝑎∇ and -div 𝑎 -1 ∇ respectively, see Section 2 both here and in [8]. Without entering into the details here, the coefficient 𝑎 is reconstructed from a net of two families of mutually orthogonal curves (any curve from one family is orthogonal to any curve from the second one) with a special property that "each cell of the net does not differ too much from a square uniformly on Ω". Thus, our main goal is to build such a net of curves. Our net construction resides on a tiling idea. First, we will build a family of partially self-similar curves 𝑠 𝑘 which approximate our snowflake 𝑆 𝛼 . Then we use these curves to divide the domain Ω above 𝑆 𝛼 into stripes between two consecutive 𝑠 𝑘 and chop each stripe into symmetric tiles of two types, getting a large scale net. We fill insides of our tiles with local nets with the property we need, using the symmetry of tiles. Finally we check that local nets glue nicely, and that the special net property for the whole Ω follows, because we use a compact set of tiles to cover the whole space, and build the large scale net as to, vaguely, satisfy the same special property.

In Section 3 we describe in details our net construction for 𝑆 𝛼 . In Section 4 we explain why the cells for this net tile the space. In Section 5 we smoothe out our net a bit, since the smoothness is required by the reconstruction procedure described in the previous paragraph. In Section 6 we finally draw the intermediate curves and check the special property mentioned in the previous paragraph. In Section 7 we state our main theorem more precisely and finally finish its proof. In Section 8 we make some remarks, state some hypotheses and explain why they might be (hopefully) interesting and why they are difficult to tackle for us up-to-date.

Let us work, to start with, in an open neighbourhood 𝑈 of a fixed point 𝑦, where a function 𝑢 such that 𝑢 ∈ 𝐶 4 and ∇𝑢 ̸ = 0 is defined. Consider the set of level lines of the function 𝑢, 𝛾 𝑠 = 𝑢 -1 (𝑠): by the implicit function theorem, each 𝛾 𝑠 is a piece of a smooth curve with no self-intersections (if that is not true we can always restrict ourselves to a smaller neighbourhood of the point 𝑦). The gradient vector field ∇𝑢 is, as it is well-know, orthogonal to the level lines of 𝑢: for every 𝑥 ∈ 𝑈 , if 𝑥 ∈ 𝛾 𝑠 , then ∇𝑢(𝑥) is orthogonal to the tangent vector to 𝛾 𝑠 at 𝑥. Using ∇𝑢, we build a family of curves orthogonal to 𝛾 𝑠 in the following way. Without loss of generality, the image 𝑢(𝑈 ) contains 0. We parameterise 𝛾 0 , 𝜃 → 𝛾 0 (𝜃) (locally, since we still work in 𝑈 ), and solve locally the equation 𝑧 ′ (𝑡) = ∇𝑢(𝑧(𝑡)) with the initial condition 𝑧(0) = 𝛾 0 (𝜃). The solution of this equation is a 𝐶 3 curve, which can be extended in both direction of 𝑡 as long as it stays in 𝑈 . We will call this maximal extension Γ 𝜃 . The standard theorem about the existence and uniqueness of solutions to differential equations of the first order asserts that Γ 𝜃 1 and Γ 𝜃 2 do not cross as long as

𝜃 1 ̸ = 𝜃 2 .
By definition the 𝛾 𝑠 cover 𝑈 . We claim that the curves Γ 𝜃 also cover 𝑈 if it is small enough: indeed, at any point of any 𝛾 𝑠 there exists an orthogonal curve Γ 𝜃 which passes through it. Again, without loss of generality, assume that 𝑦 ∈ 𝛾 0 and that 𝑦 ∈ Γ 𝜃 0 . Then, if 𝑧 = 𝑧(𝑡) ∈ Γ 𝜃 0 and close enough to 𝑦, every point 𝑧 ′ which is close enough to 𝑧 lies on some Γ 𝛾 . Indeed, let us solve the equation 𝑤(𝑟) = -∇𝑢(𝑤(𝑟)) with the initial data 𝑤(0) = 𝑧 ′ . Since 𝑧 ′ is close enough to 𝑧, theorem about good dependence on the initial data and parameters of the solution of a first-order differential equation guarantees that the curve 𝑤 crosses 𝛾 0 at a point 𝛾 0 (𝜃), close to 𝑦, at a moment 𝑟 ≈ 𝑡. This is true because the gradient field -∇𝑢 along 𝑤 stays close to the gradient field -∇𝑢 along the curve Γ 𝜃 0 ran backwards, and that the latter curve Γ 𝜃 0 is the solution for the same equation 𝑤(𝑟) = -∇𝑢(𝑤(𝑟)) with the initial data 𝑤(0) = 𝑧 (which crosses 𝛾 0 at 𝑦). So, we can define a mapping 𝑣 on 𝑈 (near 𝑦) which to 𝑧 ′ associates the unique 𝜃 such that 𝑧 ′ lies on Γ 𝜃 . This mapping 𝑣 is at least 𝐶 2 , and ∇𝑣 ̸ = 0 near 𝑦 thanks to the implicit function theorem. (Here we mean that there is a formula which connects 𝑧 ′ with 𝜃: we know that there exists 𝑟 such that 𝑧 ′ = 𝑧 ′ (𝑟) = 𝛾 0 (𝜃) + 𝑟 0 ∇𝑢(𝑧 ′ (𝑠))𝑑𝑠, and the formal derivative of the expression with respect to 𝜃 is nonzero. Therefore 𝜃 is a function of 𝑧 ′ , 𝜃 = 𝑣(𝑧 ′ ), with nonzero derivative ∇𝑣 ̸ = 0.)

Thus we just reconstructed from 𝑢 a pair of functions (𝑢, 𝑣) which can be used as coordinates near the point 𝑦 (in the open neighbourhood 𝑈 ). By definition, the pair (𝑢, 𝑣) satisfies the orthogonality relation ∇𝑢(𝑧) ⊥ ∇𝑣(𝑧).

(

) 5 
We remark here that the change of variables defined by (𝑢, 𝑣) is not necessarily conformal, because for this vectors ∇𝑢 and ∇𝑣 would have to have the same length, and this would be the case only if the initial function 𝑢 was harmonic. Now we show that in any open set where 𝑢 and 𝑣 are well-defined, of class 𝐶 2 , such that ∇𝑢, ∇𝑣 ̸ = 0 and (5) holds, we have

div 𝑎∇𝑢 = 0 with 𝑎(𝑧) = |∇𝑣(𝑧)| |∇𝑢(𝑧)| , (6) 
and div 1 𝑎 ∇𝑣 = 0 with the same 𝑎. Indeed, observe that the vector 𝑤 = (︁ 𝜕𝑣 𝜕𝑦 , -𝜕𝑣 𝜕𝑥 )︁ is orthogonal to ∇𝑣 and has the same length as ∇𝑣. At the same time, 𝑤 is proportional to ∇𝑢 because of ( 5) and the fact that we work in dimension 2. Thus, 𝑎∇𝑢 = ±𝑤 with the coefficient 𝑎 defined as above. Since in 𝑎∇𝑢 = ±𝑤 the sign on the right-hand side is locally constant, we have

div 𝑎∇𝑢 = div 𝑤 = 𝜕 2 𝑣 𝜕𝑥𝜕𝑦 - 𝜕 2 𝑣 𝜕𝑥𝜕𝑦 = 0,
as in (6).

Up to now we only worked locally. But of course, if our function 𝑢 of class 𝐶 4 is defined and satisfies ∇𝑢 ̸ = 0 everywhere on a domain Ω, or the described above coordinate lines are already given to us on the whole domain, the above provides us with the desired coefficient 𝑎 everywhere on Ω. This will be our case.

Moreover, in this article we will be able to reconstruct the values of the parameters 𝜃 and 𝑠 from a level curve of 𝑣 or 𝑢 respectively. We stress that later we will rely on that fact.

Rem 3. We have to point out on the side however that, in general, on the global picture level curves are not curves in the strict sense of the word: level sets can have several connected components (which are curves), which can be cyclic. See, e.g., the main example in [8], p. 15 or 17. Therefore, one cannot always reconstruct precisely a level curve from a value 𝑠 (of a function 𝑢) or 𝜃 (of a function 𝑣). This does not contradict that the coefficient 𝑎 is well-defined globally. It just means that, to enlist all the (important for the construction) level curves of 𝑣 by parametrizing one level curve 𝛾 0 of 𝑢, one should get very lucky with the choice of 𝛾 0 (which was the case in [8]). We will be lucky, and even better: for all values of 𝑠 and 𝜃 we will have the unique level curve of 𝑢 or 𝑣 respectively corresponding to it (and each curve will have infinite length). A choice of the level curve 𝜃 0 will be made in advance, but afterwards it will be clear that we could have chosen any level curve of 𝑢.

Thus we have built the scalar coefficient 𝑎 from a function 𝑢 so that the latter is a solution to div 𝑎∇• = 0 on Ω. Recall however that our interest is also to ensure the double inequality 𝐶 -1 ≤ 𝑎 ≤ 𝐶. The rest of the section will be devoted to reformulating and specifying what needs to be checked in order to do this, and we will use the results of this preparatory work starting from Section 6.

The double inequality 𝐶 -1 ≤ 𝑎 ≤ 𝐶 by ( 6) is the same as the double inequality

𝐶 -1 |∇𝑢| ≤ |∇𝑣| ≤ 𝐶|∇𝑢|. (7) 
Our aim throughout the upcoming proof of Theorem 1 is to control that ( 7) is fulfilled, while we construct the level lines of 𝑢 and 𝑣. In terms of those lines, assuming we fixed a nice parameterization 𝜃 ↦ → 𝛾 0 (𝜃), the gradient of 𝑢 is locally proportional to an increment 𝛿 𝑠 divided by the distance between the level sets. Similarly, the gradient of 𝑣 is proportional to the inverse of the distance between the Γ 𝜃 curves, divided by the increment 𝛿 𝜃 . To control 𝑎, we ensure that the ratio of these two quantities stays between constants. This means that, on the picture, if we look at a cell of our coordinate system obtained from roughly equal increments 𝛿 𝑠 and 𝛿 𝜃 , the cell should resemble a square, or a rectangle which is not too thin. Notice that nothing bad happens if the distance between the level lines of 𝑢 varies a lot, as long as in the same place the same happens with the level lines of 𝑣.

More precisely, assume that we want to estimate the coefficient 𝑎 at a point 𝑧 ∈ R 2 ∖ 𝐾. In what follows we will call level lines of 𝑢 green lines, and level lines of 𝑣 -red lines, so as to be able to distinguish between the two more easily. Consider a "cell" containing 𝑧 bounded by green lines, which correspond to values 𝑠 1 and 𝑠 2 of the function 𝑢, and two red lines, which correspond to values 𝜃 1 and 𝜃 2 . Here we just postulate the correspondences between the curves and the values, but, for later, see Remark 3 about this reconstruction (or, we can also think that the cell considered is small enough, and locally the reconstruction considered is always possible). The cells will be regular enough; the point will be to control the ratio of distances between the sides, as follows. Let dist 𝐺 be the distance between the green sides of the cell and dist 𝑅 be the distance between the red sides of the cell. By "green sides of the cell" we mean the two pieces of green curves 𝑠 1 and 𝑠 2 which are bounded by the red curves 𝜃 1 and 𝜃 2 , so dist 𝐺 is the distance between these pieces, not between the curves 𝑠 1 and 𝑠 2 . Similarily, dist 𝑅 is the distance between two pieces of 𝜃 1 and 𝜃 2 , bounded by the green curves 𝑠 1 and 𝑠 2 . If the size of the cell (dist 𝐺 and dist 𝑅 ) is small enough, then

𝑎(𝑧) = |∇𝑣| |∇𝑢| ≤ 𝑐 0 1/dist 𝑅 𝛿 𝑠 1/dist 𝐺 𝛿 𝜃 = 𝑐 0 |𝑠 1 -𝑠 2 |dist 𝐺 |𝜃 1 -𝜃 2 |dist 𝑅
, and similarily

𝑐 -1 0 |𝑠 1 -𝑠 2 |dist 𝐺 |𝜃 1 -𝜃 2 |dist 𝑅 ≤ 𝑎(𝑧), (8) 
where 𝑐 0 is a constant close to 1 depending on the size of the cell, which gets closer to 1 as the cell gets smaller. Thus, if we will ensure the double inequality

𝐶 -1 ≤ |𝑠 1 -𝑠 2 |dist 𝐺 |𝜃 1 -𝜃 2 |dist 𝑅 ≤ 𝐶 (9) 
for all 𝑧 ∈ R 2 ∖ 𝐾 for all small enough (depending on 𝑧) cells (small |𝑠 1 -𝑠 2 | and |𝜃 1 -𝜃 2 |), we will ensure the desired property (2) of the coefficient 𝑎.

Rem 4. We mentioned that we are going to build the net of level lines of 𝑢 and 𝑣. Of course, it is enough to know the level lines of 𝑢, because from them we can deduce the direction of the gradient and draw the level lines of 𝑣. But we will draw both families of lines more of less at the same time, because it will help us to guarantee (2) at each step of our construction.

The picture stays the same if we relabel the level lines of 𝑢, that is, replace the function 𝑢 with a function 𝑓 ∘ 𝑢 (for a reasonable 𝑓 ), or if we change the parameterisation of the "zero" curve 𝛾 0 , that is, replace 𝑣 by 𝑔 ∘ 𝑣.

This evidently changes the coefficient 𝑎 a bit, but, if we control the size of 𝑓 ′ and 𝑔 ′ , it does not spoil the property we want from it. When 𝑢 satisfies div 𝑎∇ = 0, a function 𝑤 = 𝑓 ∘ 𝑢 satisfies the equation div 𝑏∇𝑤 = 0 with 𝑏(𝑧) = 𝑎(𝑧)/𝑓 ′ (𝑢(𝑧)), since 𝑏(𝑧)∇(𝑓 ∘ 𝑢)(𝑧) = 𝑏(𝑧)𝑓 ′ (𝑢(𝑧))∇𝑢(𝑧) = 𝑎(𝑧)𝑢(𝑧). If 𝑓 ′ is bounded and bounded away from zero (which characterises a reasonable relabelling or a reasonable reparameterisation), then (2) is still satisfied with another constant 𝐶. The same happens if we change 𝑣, the conjugated function which satisfies div 1 𝑎 ∇, for 𝑔 ∘ 𝑣. One can say that a relabeling or a reparameterisation, which keeps the picture the same, leaves the coefficient 𝑎 in the same class of equivalence we are studying.

3 Building the large scale net for a compact subset of the snowflake

In this section we start building the net of curves to reconstruct the scalar coefficient 𝑎, as explained in the previous section. For now, we do this in a neighbourhood of the part of the fractal generated by the unit interval [-1/2, 1/2], as in figure 1. It will be the main step of our construction: covering the rest of the domain Ω later will be a question of iterating the transformation 𝐹 we'll define in a minute. First, we give the accurate inductive definition of the part of the snowflake 𝑆 𝛼 | [-1/2,1/2] , which interests us now, and construct a discrete family of green curves labelled {𝑠 𝑘 } (here we use again that we can identify a green curve and a value of the function 𝑢 on it, and we label curves with these values; the exact numbers 𝑠 𝑘 are to be precised later). These curves will approximate the snowflake 𝑆 𝛼 | [-1/2,1/2] "from above" better as 𝑘 goes to infinity (in terms of the Hausdorff distance, say). Simultaneously, we construct a discrete family of red curves {𝜃 𝑘 }, which together with the family {𝑠 𝑘 } will serve as a supporting structure (the large scale net from Introduction) to build the rest of the net (we explain later how). Note that the two (discrete) families of green and red curves we get in this section are not going to be smooth at a discrete family of points, while in the previous section we had our curves at least 𝐶 2 and orthogonal. This is not critical and will be fixed later in Section 5: we will apply a mollifying procedure around those non-smoothness points, which allows us to eliminate both inconsistencies.

We now start the construction by defining the transformation 𝐹 we mentioned earlier. We already saw in the introduction a version of this transformation for intervals, see figure 1, but we will need its more general version to construct {𝑠 𝑘 }.

Definition (transformation F). Given a parameter 𝛼, 0 < 𝛼 < 𝜋/3, define

𝑙 = 1 2(1 + cos 𝛼) . ( 10 
)
Given a compact set 𝐼 in R 2 = C, points 𝑝 𝐼 , 𝑞 𝐼 ∈ 𝐼 which we will call its left end and right end, and a point 𝑝, define the transformation 𝐹 𝛼 (𝐼, 𝑝) as

𝐹 𝛼 (𝐼, 𝑝) = 𝐹 (𝐼, 𝑝) = 𝐹 1 (𝐼) ∪ 𝐹 2 (𝐼) ∪ 𝐹 3 (𝐼) ∪ 𝐹 4 (𝐼) with 𝐹 1 (𝐼) = (𝐼 -𝑝 𝐼 )𝑙 + 𝑝, 𝑧 𝐹 1 (𝐼) = (𝑧 𝐼 -𝑝 𝐼 )𝑙 + 𝑝, 𝐹 2 (𝐼) = (𝐼 -𝑝 𝐼 )𝑙𝑒 𝑖𝛼 + 𝑞 𝐹 1 (𝐼) , 𝑧 𝐹 2 (𝐼) = (𝑧 𝐼 -𝑝 𝐼 )𝑙𝑒 𝑖𝛼 + 𝑧 𝐹 1 (𝐼) , 𝐹 3 (𝐼) = (𝐼 -𝑝 𝐼 )𝑙𝑒 -𝑖𝛼 + 𝑞 𝐹 2 (𝐼) , 𝑧 𝐹 3 (𝐼) = (𝑧 𝐼 -𝑝 𝐼 )𝑙𝑒 -𝑖𝛼 + 𝑧 𝐹 2 (𝐼) , 𝐹 4 (𝐼) = (𝐼 -𝑐 𝐼 )𝑙 + 𝑞 𝐹 3 (𝐼) and 𝑧 𝐹 4 (𝐼) = (𝑧 𝐼 -𝑝 𝐼 )𝑙 + 𝑧 𝐹 3 (𝐼) , (11) 
where 𝑧 𝐼 denote any point on 𝐼, and 𝑧 𝐹 𝑖 (𝐼) -its images: for example, 𝑞 

Given this, it should not be too surprising for the reader, especially if one is familiar enough with the Koch's snowflake, that, as often with fractals, we need to index points, intervals and arcs of curves with multi-indices. So we index ends of intervals which compose 𝑆 𝑘 𝛼 and 𝑠 𝑘 with words/strings of symbols {1, 2, 3, 4} of length 𝑘 + 1, because they encode naturally how 𝑆 𝑘 𝛼 and 𝑠 𝑘 are constructed. We denote these words ℐ 𝑘 , ℐ 𝑘 = {𝑤 = 𝑤 1 . . . 𝑤 𝑘 𝑤 𝑘+1 , 𝑤 𝑖 = 1, 2, 3, 4}, Indeed, according to the definition (12), from an interval [𝑧 𝑤 1 , 𝑧 𝑤 2 ] at the 𝑘th iteration 𝑆 𝑘 𝛼 (where 𝑧 𝑤 1 and 𝑧 𝑤 2 are its left end and right end respectively, as usual), we make four of equal length with the aid of three supplementary points

𝑧 𝑤 1 2 = 𝑞 𝐹 1 ([𝑧𝑤 1 ,𝑧𝑤 2 ]) , 𝑧 𝑤 1 3 = 𝑞 𝐹 2 ([𝑧𝑤 1 ,𝑧𝑤 2 ]) and 𝑧 𝑤 1 4 = 𝑞 𝐹 3 ([𝑧𝑤 1 ,𝑧𝑤 2 ])
, where 𝑤 1 𝑖 is the string concatenation. We also rename 𝑤 1 to 𝑤 1 1 and 𝑤 2 to 𝑤 2 1. This allows us to reconstruct easily the location of a point 𝑧 𝑤 by its index 𝑤: we read the word symbol by symbol and choose one of the four intervals (𝑤 𝑖 th for the symbol number 𝑖) at each iteration, which is where 𝑧 𝑤 is situated. Sometimes we say that 𝑧 𝑤 ∈ 𝑆 𝑘 𝛼 with the word 𝑤 shorter than 𝑘 + 1-symbol word. In that case we mean that 𝑧 𝑤1...1 ∈ 𝑆 𝑘 𝛼 , where we put enough ones at the end so that 𝑤1 . . . 1 has 𝑘 + 1 symbols. This leads to no confusion because, by the notation above, points 𝑧 𝑤 and 𝑧 𝑤1...1 are factually the same.

Another notation remark: while the green curves {𝑠 𝑘 } will be enumerated by integers, in this section we enumerate the red curves {𝜃 𝑘 } with words as well for everybody's convenience, so the correct notation is {𝜃 𝑤 }.

Before we finally start the construction of our green and red curves, we'd like to highlight the important role transformation 𝐹 plays in the whole business. While the curves 𝑠 1 , 𝑠 2 and a couple of first red curves have to be defined manually, 𝐹 will allow us to define everything else quasi-automatically and trace the self-similarity of the construction.

Step 1. Recall that by the definition of 𝐹 we have 

𝑆 1 𝛼 = [𝑧
See figure 6 below. Step 2. Again, recall that, by ( 12), we have We now start defining 𝑠 2 . Our (vague) goal is to have 𝑠 𝑘 sort of more and more self-similar, just as the iterations 𝑆 𝑘 𝛼 . This will be achieved quasi-automatically on step 3 and later, as announced, but for now we need to build 𝑠 2 by hand and we still want to have some similarity to 𝑠 1 . So, since the piece of 𝑆 The purpose of property a) is to help building the intermediate curves between 𝑠 2 and 𝑠 3 later on. Intuition behind property b) is that it makes a Brownian traveller modulated by our elliptic operator land with the same probability on 𝑆 𝛼 everywhere. Property c) we need in order to preserve all the different symmetries of the system after we mollify the construction in Section 5. We will comment more on all of them later (so as not to overcrowd the part where we define everything). We also do not want 𝑠 2 to intersect with all the other green curves of the {𝑠 𝑘 } family, which will imply another (not too restrictive) cos 𝛼 , so whatever our curve is, it cannot be a straight line. On the picture below we chose a jagged broken line, just because it is the simplest choice in terms of geometry; but we repeat that we have some degree of freedom here. Again, see figure 7 to have an idea about how a variant of the curve (𝜁 114 , 𝜁 122 ) looks like. This completes the definition of 𝑠 2 in the considered region.

At the end of the step 2 we define Before we move on to Step 3, observe that

𝑆 2 𝛼 = 𝐹 (𝑆 1 𝛼 , 𝑧 11 ), (15) 
and we can even define all the points of the second generation on 𝑆 2 𝛼 using (15) as a definition: 𝑧 1𝑖𝑗 = 𝑧 𝐹 𝑖 (𝑆 1 𝛼 ) for 𝑧 = 𝑧 1𝑗 , 𝑖, 𝑗 = 1, 2, 3, 4 (see Definition 11).

Step 3. From this step on, we will exploit the transformation 𝐹 a lot. We define (a piece of) the new green curve 

𝜁 𝑤 1 𝑖𝑤 2 𝑤 3 = 𝑧 𝐹 𝑖 (𝑠 2 ) for 𝑧 = 𝜁 𝑤 1 𝑤 2 𝑤 3 , 𝑖 = 1, 2, 3, 4; 𝑤 = 𝑤 1 𝑤 2 𝑤 3 ∈ ℐ 2 , 𝑤 1 = 1. (16) 
We also define new red curves

𝜃 𝑤 1 𝑖𝑤 2 𝑤 3 = [𝑧 𝑤 1 𝑖𝑤 2 𝑤 3 , 𝜁 𝑤 1 𝑖𝑤 2 𝑤 3 ] for 𝑧 = 𝜁 𝑤 , 𝑖 = 1, 2, 3, 4; 𝑤 ∈ ℐ 2 , 𝑤 1 = 1. (17) 
The curve 𝑠 3 is however not complete, because by the definition (16) 

where (𝜁 114 , 𝜁 122 ) and (𝜁 124 , 𝜁 132 ) are pieces of 𝑠 2 between the two points indicated. See figure 8 for a sketch of 𝑆 3 𝛼 , the curves 𝑠 1 , 𝑠 2 and 𝑠 3 and all the red curves defined up to that point to the left of the axis {𝑥 = 0}.

We now can complete the set of exact conditions we impose on the curve (𝜁 114 , 𝜁 122 ). At Step 2 we described vaguely the condition we are about to specify as "this part of the curve 𝑠 2 does not intersect the other curves 𝑠 𝑘 ". In particular, (𝜁 114 , 𝜁 122 ) should not intersect our newly defined (𝜁 1144 , 𝜁 1212 ). Suppose that we can treat the curve (𝜁 114 , 𝜁 122 ) as a graph of a function 𝑓 1 over the segment [𝜁 114 , 𝜁 122 ]; therefore, by similarity, we can treat (𝜁 1144 , 𝜁 1212 ) as a graph of a function 𝑓 2 over the segment [𝜁 1144 , 𝜁 1212 ]. Then max 𝑓 2 = 𝑙 max 𝑓 1 and min 𝑓 2 = 𝑙 min 𝑓 1 . We ask in addition max 𝑓 1 = | min 𝑓 1 | so not to complicate things. It is clear from the picture that, for the two graphs not to intersect, we need to impose the condition

| min 𝑓 1 | + max 𝑓 2 = max 𝑓 1 (1 + 𝑙) < dist([𝜁 114 , 𝜁 122 ], [𝜁 1144 , 𝜁 1212 ]) = Define new red curves 𝜃 𝑤 1 𝑖𝑤 2 ...𝑤 𝑘 = [𝑧 𝑤 1 𝑖𝑤 2 ...𝑤 𝑘 , 𝜁 𝑤 1 𝑖𝑤 2 ...𝑤 𝑘 ] for 𝑧 = 𝜁 𝑤 , 𝑖 = 1, 2, 3, 4; 𝑤 ∈ ℐ 𝑘-1 , 𝑤 1 = 1. (23) 
To complete the definition of 𝑠 𝑘 we need to draw curves between 

We finish with the observation that

𝑆 𝑘 𝛼 = 𝐹 (𝑆 𝑘-1 𝛼 , 𝑧 1 ), (25) 
and

𝑧 𝑤 1 𝑖𝑤 2 ...𝑤 𝑘 = 𝑧 𝐹 𝑖 (𝑆 𝑘-1 𝛼 ,𝑧 1 ) for 𝑧 = 𝑧 𝑤 1 𝑤 2 ...𝑤 𝑘 , 𝑖 = 1, 2, 3, 4; 𝑤 = 𝑤 1 𝑤 2 . . . 𝑤 𝑘 ∈ ℐ 𝑘-1 , 𝑤 1 = 1. (26) 
4 Tiling of the space

In this section we prepare the terrain for completing the net of curves in a neighbourhood of the part of the fractal generated by the unit interval [𝑧 1 , 𝑧 2 ]. Do to this, we divide certain regions composed from the cells of our large-scale net from the previous section (formed by adjacent green curves 𝑠 𝑘 and 𝑠 𝑘+1 and red curves 𝜃 𝑤 ) into two types. All the regions of the same type will be similar to each other. By similar we mean the usual thing in Euclidean geometry: 𝐴 and 𝐵 are similar if one is an image of the other under a composition ℎ ∘ 𝑚, where ℎ is a scaling transformation and 𝑚 -a motion. Once this is done, we will explain in Section 6 how to fill in a region of each of those two types with green and red curves, so that in addition those intermediate curves glue nicely to the surrounding picture. It will suffice to give this explanation only once for each type of region, since we can complete the net in the rest of the regions of the same type by the similarity and using our transformation 𝐹 . Thus we will cover with the net all the target neighbourhood of [𝑧 In the neighbourhood of the snowflake which we consider, between the curves 𝑠 2 and 𝑠 3 , there are other four tiles of type 1 of the same size (similar to 𝑇 1 with coefficient 1): Note that the five tiles of type 1 and two tiles of type 2 enlisted above tile all the space between 𝑠 2 and 𝑠 3 in the neighbourhood of the snowflake restricted by the left half of the triangle 𝑧 1 𝑧 2 𝜁 13 , except for two small regions near [𝑧 bounded by two red segments, a piece of 𝑠 3 and a segment on the line (𝑧 1 𝜁 13 ), and the region 𝜁 1433 𝜁 1434 𝜁 144 𝜁 1441 = -𝜁 1114 𝜁 1113 𝜁 112 𝜁 1121 . So we may assume that for now the tiling of the space between 𝑠 2 and 𝑠 3 is complete (modulo this little area just mentioned, with which we deal with later). Figure 12 shows how the tiling looks like to the left of the axis {𝑥 = 0}.

We now explain how to tile the space between the curves 𝑠 𝑘-1 and 𝑠 𝑘 , 𝑘 > 3. Once again, we will tile the whole stripe inside the triangle 𝑧 1 𝑧 2 𝜁 13 , except for the regions 𝜁 1...14 𝜁 1...13 𝜁 1...12 𝜁 1...21 (lying between the line (𝑧 1 , 𝜁 13 and the red curve [𝜁 1...12 , 𝑧 1...12 ]) and the one centrally symmetric to it with respect to {𝑥 = 0}, -𝜁 1...14 𝜁 1...13 𝜁 1...12 𝜁 1...21 (lying between the line (𝜁 13 , 𝑧 2 ) and the red curve [𝜁 14...4 , 𝑧 14...4 ]). We do that again by induction, exploiting the definition [START_REF] Hofmann | Uniform rectifiability and harmonic measure I: uniform rectifiability implies Poisson kernels in Lp[END_REF] of 𝑠 𝑘 , that is, the transformation 𝐹 . The tiling of the space between 𝑠 2 and 𝑠 3 we have just done is the base.

From now on we will call tiles 𝑇 1 or 𝑇 2 all the figures similar to 𝑇 1 or 𝑇 2 respectively. In what follows we also denote by 𝑆𝑡(𝑠 𝑘 , 𝑠 𝑘+1 , 𝐼, 𝐽) the piece of stripe lying between the curves 𝑠 𝑘 and 𝑠 𝑘+1 bounded by the red segments 𝐼 and 𝐽.

We illustrate what happens on the stripe between 𝑠 3 and 𝑠 4 (which corresponds to the first step of induction). Figure 13 represents how the whole picture of the tiling we did on the base step along with the curve 𝑠 4 looks like. Observe that, according to ( 22) and ( 23 For those figures, the following identities hold:

𝐹 3 = 𝑙(𝑇 1 -𝑧 113 ) + 𝑧 1311 , (30) 
𝐹 1 = 𝑙(𝑇 2 -𝑧 121 ) + 𝑧 1211 and 𝐹 2 = -𝐹 1 . (31) 
We explain first [START_REF] Lewis | Quasi-linear PDEs and low-dimensional sets[END_REF]. The second equality there is just a corollary of the symmetry of the entire construction with respect to the axis {𝑥 = 0}. The first one is the combination of the following observations. First, by [START_REF] Hofmann | 𝐴 ∞ implies NTA for a class of variable coefficient elliptic operators[END_REF], we have The definition [START_REF] Hofmann | Transference of scale-invariant estimates from Lipschitz to Non-tangentially accessible to Uniformly rectifiable domains[END_REF] and analogous computations for the red sides of 𝐹 1 finally give us the first identity in [START_REF] Lewis | Quasi-linear PDEs and low-dimensional sets[END_REF]. So 𝐹 1 and 𝐹 2 are also tiles 𝑇 2.

We now treat [START_REF] Lavrent'ev | Boundary problems in the theory of univalent functions[END_REF]. By [START_REF] Hofmann | 𝐴 ∞ implies NTA for a class of variable coefficient elliptic operators[END_REF], and the same holds for the red sides of 𝐹 2 , which combined gives [START_REF] Lavrent'ev | Boundary problems in the theory of univalent functions[END_REF] and that 𝐹 3 is a 𝑇 1 tile. This completes the tiling of the stripe between 𝑠 3 and 𝑠 4 . Figure 14 shows how the picture of this tiling looks like to the left of {𝑥 = 0}. (with "4"s after 13 and "1"s after 14) is symmetric to 𝐹 1 , 𝐹 2 = -𝐹 1 , so it is also similar to 𝑇 2, is 𝐹 1 is. One follows the scheme above to check that 𝐹 1 is similar to the tile 𝑇 2 above it in the stripe between 𝑠 𝑘-1 and 𝑠 𝑘 , 𝑆𝑡(𝑠 𝑘-1 , 𝑠 𝑘 , [𝑧 11...4 , 𝜁 11...4 ], [𝑧 12...2 , 𝜁 12...2 ]) (where . . . means 𝑘 -3 "4"s or "1"s in a row) and that the same is true for 𝐹 3 and the tile 𝑇 1 above it.

[

Mollified curves and tiles

The large scale net we constructed cannot yet be a part of the system of curves we reconstruct our coefficient 𝑎 from, since every green curve from our family {𝑠 𝑘 } is not smooth at countably many points, and moreover whenever a red curve crosses a green one, they do not meet orthogonally as required (because tangents at these points are not even defined). We tackle this by correcting green curves around each of these bad points. We will do so in a way that preserves the self-similarity, the symmetries, and the length conditions (including property b) from the definition of the curve that joins 𝜁 114 and 𝜁 122 , and everything what follows from it).

Consider the green curve 𝑠 2 . Choose a radius 0 < 𝑟 << 1 such that the property c) for the curve (𝜁 114 , 𝜁 122 ) is satisfied for the radius 𝑟 2 = 𝑙 2 𝑟. Mollify the curve inside the balls with radius 𝑟 2 centred at points 𝜁 133 , 𝜁 114 and 𝜁 121 , keeping it symmetric inside those balls with respect to the axis (𝜁 1131 , 𝜁 113 ), (𝜁 1141 , 𝜁 114 ) and (𝜁 1211 , 𝜁 121 ) respectively. Mollify as well the parts of the curve (𝜁 114 , 𝜁 121 ) around the points where it is not smooth (if needed, make 𝑟 smaller, so that 𝑟 2 < 1 10 min 𝑥 𝑖 ,𝑥 𝑗 |𝑥 𝑖 -𝑥 𝑗 |, where by 𝑥 𝑖 we denote the points of non-smoothness). Evidently there is some freedom about how we mollify 𝑠 2 around each of the enlisted points. The exact procedure does not really matter, but the result has to satisfy the following restriction. It is very important for our construction that the pieces of the curve (𝜁 113 , 𝜁 114 ) and (𝜁 114 , 𝜁 121 ) have the same length. We want to keep this property for the mollified versions of the curve.

Therefore If we are to use the symmetries of the construction, here is what we do. Fist we complete the definition of the mollified 𝑠 2 curve. We adopt for it the local notation ̃︀ 𝑠 2 . We reflect the mollification of the neighbourhood of 𝜁 114 with respect to (𝜁 113 , 𝜁 1131 ) to get the mollification of the neighbourhood of 𝜁 112 . Then we reflect the mollified curve (𝜁 112 , 𝜁 113 , 𝜁 114 , 𝜁 121 ) with respect to the axis (𝜁 121 , 𝑧 121 ). This is indeed the mollification of the initial curve 𝑠 2 , thanks to the property c) from the definition of (𝜁 114 , 𝜁 122 ): 𝑠 2 in the small neighbourhoods of 𝜁 122 is symmetric with respect to (𝜁 123 , 𝜁 1231 ) to 𝑠 2 in the small neighbourhood of 𝜁 124 . Last, to mollify 𝑠 2 in the neighbourhood of 𝜁 131 , we reflect the mollification of the neighbourhood of 𝜁 123 with respect to (𝜁 124 , 𝜁 1241 ). Then we reflect the new curve with respect to the axis {𝑥 = 0}.

To define the mollified version of the curve 𝑠 𝑘 , ̃︀ 𝑠 𝑘 , we apply the inductive definition ( 22) and ( 24) to the new curve ̃︀ 𝑠 2 instead of the non-smooth version 𝑠 2 . Clearly this gives the same result as the explicit mollification procedure given above, in particular because of the property c) in the definition of (𝜁 114 , 𝜁 122 ). From now on we will refer to the new smooth versions of the green curves as {𝑠 𝑘 }: {𝑠 𝑘 } := { ̃︀ 𝑠 𝑘 }. Of course the smooth version does not differ from the old one outside small neighbourhoods of points 𝜁 𝑤 , so overall the new 𝑠 𝑘 diverges only slightly from the initial curve.

But still, consequently, our tiling of the neighbourhood of 𝑆 𝛼 | [𝑧 1 ,𝑧 2 ] is no longer compatible with the large scale net of curves. So we redefine the tiles 𝑇 1 and 𝑇 2 as in the previous section, but whenever we refer in it to a piece of a green curve joining 𝜁 𝑤1 with 𝜁 𝑤2 , we refer to the new version of this green curve. This is the same as if we would have applied the explicit mollification procedure to the boundaries of the tiles. Observe that these new smooth figures still tile the space: the proof is word for word the same as in the previous Section. We will now call 𝑇 1 and 𝑇 2 the smooth version of the initial tiles. Note that the new tiles also differ only slightly from the old versions. See figure 16 We start this section with finally explaining how to build the intermediate red and green curves inside (smooth) tiles 𝑇 1 and 𝑇 2. Each tile has two green and two red "sides" of the boundary. We will call the green sides lower side or upper side, and red sides -left side or right side, according to the layout on the plane of the representatives inside the stripe between 𝑠 2 and 𝑠 3 . Namely, for the model tile 𝑇 ], the right. We denote by 𝑥 1 the length of the upper green side of a tile, and by 𝑥 2 the length of the lower green side of a tile; by the construction it is true that the lower and upper side lengths are the same for the tiles of both types of the same scale (but it is going to be particularly important later). We construct the intermediate red curves first. Recall that each tile has an axis of symmetry which divides it into the left half and the right half. Treat a point on the upper side as a 𝑡 1 ∈ [0, 𝑥 1 ], and a point on the lower side as a 𝑡 2 ∈ [0, 𝑥 2 ]. We draw smooth curves which enter orthogonally the lower and the upper side and join 𝑡 1 with the point 𝑡 2 = 𝑥 2 𝑥 1 𝑡 1 on the left half of the tile: for 𝑡 1 < 𝑥 1 /2. For example, we can draw segments between those two points, and then modify them a little bit near the green sides so they enter them orthogonally (and so that all the curves stay at least 𝐶 4 -smooth). Then we reflect the curves on the left half of the tile to the right half of the tile. Observe that they will still enter lower and upper sides orthogonally, and that they joint a point 𝑡 1 on the upper side with the point 𝑥 2 𝑥 1 𝑡 1 on the lower one. By the procedure described in Section 2, we reconstruct the green curves in the tile (the procedure reconstructs red curves from the green, but of course the same can be done the other way round, and if a function 𝑣 is conjugate to 𝑢, then 𝑢 is conjugate to 𝑣). Observe that all the green curves are symmetric with respect to the axis of symmetry of the tile, thanks to the construction of the red curves. See figures 17 and 18.

Thus the net of red and green curves is built on the whole triangular neighbourhood of 𝑆 𝛼 above [𝑧 1 , 𝑧 2 ], apart from the areas near the legs [𝑧 1 , 𝜁 13 ] and [𝜁 13 , 𝑧 2 ] (they are composed of all the pieces of type 𝜁 1...14 𝜁 1...13 𝜁 ...12 𝜁 ...21 and -𝜁 1...14 𝜁 1...13 𝜁 ...12 𝜁 ...21 with ones instead of . . . ): we equip all the tiles of the same type with the net of curves as above. Recall that, if figures 𝐹 1 and 𝐹 2 are tiles of the same type, by construction we have 𝐹 2 = 𝑔(𝐹 1) where 𝑔 = ℎ ∘ 𝑚 with a homothety ℎ and a motion 𝑚, and we use the map 𝑔 to transfer the coloured net to 𝐹 2.

It is time we check the main property (9) for the net we built above 𝑆 𝛼 constructed on [𝑧 1 , 𝑧 2 ]. First, we need to choose a green curve and parameterise it. Choose the piece of 𝑠 2 we constructed and parameterise it naturally (with length). This restricts for now the Second, we need to complete the labelling. We have just labelled our red curves, it is now the turn of the green ones. We start with declaring the labelling for the discrete family {𝑠 𝑘 }. We put

𝑠 𝑘 = 𝑙 𝑘𝑑 , ( 33 
)
where 𝑑 is the Hausdorff dimension of the snowflake 𝑆 𝛼 . We label the intermediate curves 𝑠 the following way. Assume that a green curve 𝑠 crosses the left lid of a tile in a stripe between 𝑠 𝑘 and 𝑠 𝑘+1 . Identify the left lid of the tile with a segment [0, ℎ 𝑘 ]; one can compute ℎ 𝑘 explicitly, but we do not need to do it. The curve 𝑠 crosses the lid somewhere at a point

𝑦 ∈ [0, ℎ 𝑘 ]. Put 𝑠 = 𝑙 𝑘𝑑 𝑦 ℎ 𝑘 + 𝑙 (𝑘+1)𝑑 ℎ 𝑘 -𝑦 ℎ 𝑘 . ( 34 
)
This definition is coherent, meaning, it does not depend on the tile we chose, since all the red sides of tiles in the stripe 𝑆𝑡(𝑠 𝑘 , 𝑠 𝑘+1 ) have the same length, and if a green curve starts from a point 𝑦 on the left lid of a tile, it arrives at the symmetric point 𝑦 on the right lid of the tile. So we can identify all of them with [0, ℎ 𝑘 ], and 𝑠 crosses each of them at the same point 𝑦 ∈ [0, ℎ 𝑘 ].

Labelling done, we first check property (9) for the tiles that are adjacent to 𝑠 2 , or, in other words, fill in the stripe 𝑆𝑡(𝑠 2 , 𝑠 , therefore property (9) follows. Now pick a tile 𝑇 from the stripe 𝑆𝑡(𝑠 𝑘 , 𝑠 𝑘+1 ), and a point 𝑧 in it. Pick a cell containing 𝑧 composed by two green curves 𝑎 and 𝑏, 𝑎, 𝑏 ∈ [0, ℎ 𝑘 ], and two red curves θ1 and θ2 , θ1 , θ2 ∈ [0, 𝑥 𝑘 ], where [0, 𝑥 𝑘 ] parameterises the upper lid of the tile. Note that 𝑎, 𝑏, θ1 and θ2 is a "local" labelling, and our goal here is to reconstruct the global one 𝑠 𝑎 , 𝑠 𝑏 , 𝜃 1 and 𝜃 2 . From the previous paragraph we know that the ratio between the "green" distance dist 𝐺 and the "red" distance dist 𝑅 is approximately (so that it does not intersect the curve 𝑠 2 ).

To join 𝜁 1...12 with 𝑠(𝜁 1...12 ) on the curve 𝑠 𝑘 , put (𝑠(𝜁 1...12 ), 𝜁 1...12 ) = (𝑠(𝜁 112 , 𝜁 112 ) -𝑧 1 )𝑙 𝑘-2 + 𝑧 1 .

(38)

See figure 19 for the sketch of the curves to the right of the point 𝑧 1 . Here is how the upper-half space above 𝑆 1 𝛼 is tiled. First, we use the scaling 𝐻 𝑙 to extend the tiling to the right of the interval [-1/2, 1/2]. Denote by 𝑈 1 = 𝑈 the neighbourhood of 𝑆 𝛼 | [-1/2,1/2] we tiled and filled with a net of curves in Sections 3-6. By the inductive definition (37), on the first step we tile 𝑈 2 = 𝐻 𝑙 (𝑈 1 ) by images of tiles under 𝐻 𝑙 . On step 𝑛, we tile 𝑈 𝑛 = 𝐻 𝑙 (𝑈 𝑛-1 ). To get the tiling to the left of the interval [-1/2, 1/2], we reflect the whole construction above 𝑆 1 𝛼 | {𝑥≥-1/2} with respect to {𝑥 = -1/2}, as in (37). Thus, the domain (R 2 ∖ 𝑆 1 𝛼 ) + is tiled except for the sector between the rays {𝑦 =tan (𝛼)(𝑥 + 1/2)} and {𝑦 = tan (𝛼)(𝑥 + 1/2)}, plus the images of 𝜁 1113 𝜁 112 𝜁 1121 𝜁 1114 under 𝐻 𝑛 𝑙 , 𝑛 ≥ 0, and the symmetric with respect to the axis {𝑥 = -1/2} regions. It is left for us to tile these parts. Denote 𝜁 1...1 = {𝑥 = -1/2} ∩ (𝑠(𝜁 1...12 ), 𝜁 1...12 ). We call tiles of type 3 all the regions which are similar to the figure (39)

The whole region below 𝑠 1 near 𝑧 1 = -1/2, which was not tiled yet, tiles with the images 𝐻 𝑛 𝑙 (𝑇 3), 𝑛 ∈ Z. We build the net of intermediate red and green curves in the same way we did it inside 𝑇 1 and 𝑇 2. The proof that this piece of net also satisfies ( 9 We complete the definition of 𝑠 𝑘 in the same way we did for 𝑆 1 𝛼 above 𝑧 1 . Again, we use the notation 𝑠(𝑝) -the point symmetric to 𝑝 with respect to {𝑥 = -1/2}. We join 𝜁 1...12 with 𝑠(𝜁 1...12 ) as we do for 𝑆 1 𝛼 , see (38). For the rest of half-integer points, put 𝑠 𝑘 | ((𝑠(𝜁 1...12 ),𝜁 1...12 ))+𝑛 = ((𝑠(𝜁 1...12 ), 𝜁 1...12 )) + 𝑛.

All the areas below the curve 𝑠 1 around the half-integer points which are not tiled yet can be tiled with 𝑇 3. The intermediate green and red curves are build as above, and (9) holds for the resulting net by the same argument again as in Section 6. See figure 21 for a sketch of the global tiling we did. Note that the part of the domain (R 2 ∖ 𝑆 2 𝛼 ) + above the curve 𝑠 1 is not tiled yet. cos 𝛼 𝑡 1 and enter 𝑠 0 and 𝑠 1 orthogonally. We can do it the same way as when constructing the net inside our tiles 𝑇 1, 𝑇 2 and 𝑇 3: join 𝑡 1 and 𝑡 2 with a straight line, and then correct it a little bit around 𝑠 0 and 𝑠 1 . Then reconstruct the green curves from the red ones. Note that this net is symmetric with respect to {𝑥 = 0}. Extend the net on the whole stripe 𝑆𝑡(𝑠 0 , 𝑠 1 ) using the definition of 𝑆 2 𝛼 : to get the net inside 𝑆𝑡(𝑠 0 , 𝑠 1 ) ∩ {-1/2 + 𝑛 ≤ 𝑥 ≤ 1/2 + 𝑛} for 𝑛 > 0, for example, reflect with respect to {𝑥 = -1/2 + 𝑛} the region 𝑆𝑡(𝑠 0 , 𝑠 1 ) ∩ {-1/2 + (𝑛 -1) ≤ 𝑥 ≤ 1/2 + (𝑛 -1)}.

Thus we have the coefficient 𝑎 continuous and defined everywhere on (R 2 ∖ 𝑆 𝛼 )

+ . The bounds (2) still holds for the globally defined 𝑎 with the same constant 𝐶.

We are ready to return to Theorem 1, which we state below for the reader's convenience. Let 𝜇 be the Hausdorff measure ℋ 𝑑 | 𝑆𝛼 on the snowflake 𝑆 1 𝛼 or 𝑆 2 𝛼 , where 𝑑 = ln (4) ln (2(1+cos 𝛼)) is the snowflake's dimension. Let 𝑤 𝑧 𝐿 be the elliptic measure of the operator 𝐿 = -div 𝑎∇ on the upper half-plane above the snowflake 𝑆 𝛼 (𝑆 1 𝛼 or 𝑆 2 𝛼 ) with the coefficient 𝑎 constructed above. We denote by 𝑤 ∞ 𝐿 the (weak) limit of 𝑤 𝑧 𝐿 as 𝑧 tends to infinity. Theorem 2. There exists an absolute constant (probably dependent on 𝛼) 𝐶 ≥ 1 and a continuous function 𝑎 : (R 2 ∖ 𝑆 𝛼 )

+ → (0, +∞) such that (9) holds, and if 𝑤 ∞ 𝐿 denotes the elliptic measure with pole at ∞, associated to the operator 𝐿 = -div 𝑎∇ on the domain Ω = (R 2 ∖ 𝑆 𝛼 )

+ , then 𝑤 ∞ 𝐿 = 𝜇. Also, 𝐶 -1 𝜇(𝐴) ≤ 𝑤 𝑧 𝐿 (𝐴) ≤ 𝐶𝜇(𝐴)

for all 𝑧 such that 𝛿(𝑥) = dist(𝑥, 𝑆 𝛼 ) ≥ 1, 𝐴 ⊂ 𝑆 𝛼 measurable.

Proof. Let 𝑎 be the coefficient constructed above and 𝐺 the 𝐿-harmonic function which level lines are the green curves also constructed above. We claim that 𝐺 is a constant multiple of the Green function of the operator 𝐿 with pole at infinity: it is 𝐿-harmonic, positive, vanishes at the boundary and regular enough. The latter is true by our construction: combining the labelling [START_REF] Semmes | Analysis vs. geometry on a class of rectifiable hypersurfaces[END_REF] and the fact that dist(𝑆 𝛼 , 𝑠 𝑘 ) ≈ 𝑙 𝑘 , we have that 𝐺(𝑧) ∼ dist(𝑧, 𝑆 𝛼 ) 𝑑 .

Since the boundary 𝑆 𝛼 of our domain Ω is irregular, we will approximate it with already constructed curves 𝑠 𝑘 , so we can work with 𝐺 more easily. Denote Ω 𝑘 = (R 2 ∖ 𝑠 𝑘 ) + , and concentrate on this approximating domain. 𝐺 is still 𝐿-harmonic in Ω 𝑘 , and therefore 𝐺 𝑘 = 𝐺 -𝑙 𝑘𝑑 is a (constant multiple) of the Green function on Ω 𝑘 with pole at ∞. The boundary 𝑠 𝑘 is smooth, so for the elliptic measure 𝑤 𝑘 with pole at infinity associated to 𝐿 on Ω 𝑘 we can write 𝑑𝑤 𝑘 = -𝑎𝑔 𝑘 𝑑𝜇 𝑘 , where 𝜇 𝑘 is the (normalised) arch-length on 𝑠 𝑘 , 𝑔 𝑘 = 𝜕𝐺 𝑘 𝜕𝑛 , and 𝑎 is our scalar coefficient (see [13], p.6). We claim that the product -𝑎𝑔 𝑘 does not depend on 𝑘 and is equal to one everywhere on 𝑠 𝑘 . Indeed, suppose we know that -𝑎𝑔 2 = 1 on 𝑠 2 . Let 𝑝 be a point on the curve 𝑠 𝑘 , 𝑘 ̸ = 2. Without loss of generality, we can assume that it does not coincide with any of the points 𝜁 𝑤 . Then, 𝑝 lies on the upper green side of a tile 𝐹 of the type 𝑇 1, 𝑇 2 or 𝑇 3. By definition this means that there exists an affine transformation 𝑓 = ℎ ∘ 𝑚, where ℎ is a scaling with the coefficient 𝑙 𝑘-2 and 𝑚 a motion, such that 𝐹 = 𝑓 (𝑇 𝑖 ) with 𝑖 = 1, 2 or 3. Denote 𝑝 ′ = 𝑓 -1 (𝑝). Then 𝑔 𝑘 (𝑝) = 𝑔 2 (𝑝 ′ ), since 𝐺 𝑘 (𝑧) + const = 𝐺(𝑓 -1 (𝑧)), and the normal vector 𝑛 at two points coinsides up to the correct scaling. We also have 𝑎(𝑝) = 𝑎(𝑝 ′ ) (because locally pictures are the same, but scaled).

Concerning the product -𝑎𝑔 2 = -𝑎 𝜕𝐺 2 𝜕𝑛 on the curve 𝑠 2 , by definition of 𝑎 we have

-𝑎 𝜕𝐺 2 𝜕𝑛 = - |∇𝑣| |∇𝐺| 𝜕𝐺 2 𝜕𝑛 = |∇𝑣| |∇𝐺| |∇𝐺| = |∇𝑣|,
where 𝑣 is the conjugated function to 𝐺, because the curves 𝑠 𝑘 are level lines of 𝐺. The vector ∇𝑣 is tangent to the curve 𝑠 2 by construction. It is left to recall that our global labelling was chosen in such a way that the curve 𝑠 2 is naturally paratemetised, so |∇𝑣| = 1. This gives us the statement we want, because 𝜇 𝑘 tends (weakly) to 𝜇 (sets 𝑠 𝑘 tend to 𝑆 𝛼 , meaning, the Hausdorff distance between 𝑠 𝑘 and 𝑆 𝛼 tends to zero), and 𝑤 𝑘 tends (weakly) to 𝑤 ∞ 𝐿 . So we have 𝑤 ∞ 𝐿 = lim 𝑤 𝑘 = lim 𝜇 𝑘 = 𝜇. The double inequality (40) follows from the comparison principle.

Variants and open questions

Theorem 1 also covers compact versions of our snowflakes. To construct a first compact version, we could start from, like one does with the classical Koch snowflake, with a regular polygon of angle 𝜋 -2𝛼. If in this case our angle 𝛼 in the snowflake construction is of the form 𝜋 𝑁 , where 𝑁 is the number of vertices of our regular polygon, we can preserve the symmetries present in the classical construction. The upside is that these symmetries will allow us to eliminate 𝑇 3 from the tiling. One could say that this is more elegant than the unbounded fractal version we have in the previous section, but our original intention was to snow some counterexample on a non-compact unbounded set. Plus, we do not want to limit ourselves to the angles of the form 𝜋 𝑁 only. We do not want to enter the details of how our tiling works in this case, but locally everything works the same as in Sections 3-6, and the extension to the rest of the domain (R 2 ∖ 𝑆 𝛼 ) + (the non-compact of the two possible options) is quite straightforward. See figure 22 for a sketch of tiling around the compact snowflake 𝑆 𝛼 . We suspect, however, that, by twitching our construction slightly, one could cover this case as well. While defining (13), we are not really obliged to choose this particular form of the curve (𝜁 12 , 𝜁 14 ). We could do something more flat, avoiding the gluing described above for the limiting case.

Concerning the open questions we have, it would be interesting to see if our construction could be adapted for the case when, instead of building an isosceles triangle always above the segment we are modifying, one replaces the middle of the segment of two sides of isosceles triangle build either above or below the segment, depending on where we are in the construction. The same question but about varying the angle 𝛼 of the isosceles triangles depending on where we are (probably combined with the sign change) is also amusing. We suspect that one cannot do something completely random. For example, changing randomly the sign of the angle 𝛼 in the construction, which corresponds to the choice of whether to build a triangle above of below the base segment, should not be allowed. That is, one can probably still show that (actually we suspect this really can be done, see later), for small enough absolute values of 𝛼, if the sign of the angle changes randomly, there still exists a good operator in the sense of Theorem 1. We just doubt that such a result can be obtained by the methods this paper describes. To get a good operator with our tiling method, some regularity in the structure of a step of the construction of a snowflake should be maintained, so that, at the end of the day, we are able to have a finite set of tiles which covers the whole upper half-space (or at least a band adjacent to We wonder if our method is applicable to other self-similar fractals in R 2 . There are plenty of fractal sets which are generated by actions of some mappings like our favourite transformation 𝐹 above. The positive answer could widen the range of dimensions for which a good operator exists, as lots of those sets have dimensions larger than ln (4) ln (3) . Here we would like to share only an impression that comes from some drawing experiments. It seems like, the higher dimension of the fractal is, the harder it is to pack nice approximating curves in the space (because the fractal itself has to be packed rather densely to have a large dimension).

Returning to the three questions we announced in the introduction, we think that one can significantly extend the class of examples of unrectifiable sets for which a good operator in sense of Theorem 1 exists. Namely, we conjecture that for all Reifenberg flat sets on the plane with a small enough (flatness) constant one can construct such an operator. For the definition and some examples of Reifenberg flat sets, see, for example, [9]. Note that these sets can be very irregular, so we doubt that some tiling technique can work in this case. One would have to invent a completely new approach.

Finally, we would like to build some examples of good operator for "bad" sets in higher dimensions. We can do some already, as mentioned in Section 5 of [8], by taking sets like 𝑆 𝛼 × R in R 3 and an accompanying operator with the coefficient 𝐴(𝑥, 𝑦, 𝑧) = 𝑎(𝑥, 𝑦), but this does not look like a proper higher dimensional fractal. The main difficulty here is to invent the procedure which reconstructs an operator coefficient from the level surfaces of its solution. To our knowledge, such a procedure, presented in Section 2, is known only in dimension 2. It also seems that identifying the correct set of restrictions on the coefficient 𝐴 so that they are geometrically more relevant to the story than just a coefficient obtained from a generalization of a quasiconformal mapping from a half-space above the higher dimensional snowflake to the standard half-space (in dimension 2 we have a scalar-valued coefficient versus a matrix-valued one), might be not easy. And there once again we wonder if one can construct a good operator for all higher-dimensional Reifenberg flat sets with a small enough constant, as opposed to some snowflake-type sets with a rich group of symmetries.
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Figure 1 :

 1 Figure 1: Transformation 𝐹 𝛼

Figure 2 :Figure 3 :

 23 Figure 2: Compact snowflake 1

Figure 4 :

 4 Figure 4: Non-compact snowflake 𝑆 2

Figure 6 :

 6 Figure 6: Transformation 𝐹 𝛼

1

 1 𝛼 , observés de loin, ressembleront à un cercle. Pour les construire, on prend un polygone régulier et érige sur chaque segment 𝐼 ∈ 𝑃 un flocon de neige 𝑆 𝛼 | 𝐼 comme décrit précédemment. Alors 𝑆 1 𝛼 := ∪ 𝐼∈𝑃 𝑆 𝛼 | 𝐼 , voir la figure 7. Les flocons de neige compacts les plus beaux qu'on a sont ceux qui sont construits à partir d'un polygone régulier avec 𝑁 ≥ 4 sommets et le paramètre 𝛼 égal à 𝜋 𝑁 , voir la figure 8.

Figure 7 :Figure 8 :

 78 Figure 7: Flocon de neige compact 1

Figure 9 :

 9 Figure 9: Flocon de neige non-compact 𝑆 2 𝛼 Les flocons de neige du troisième type seront purement fractals : ce seront des ensembles non compacts qui ne ressemblent pas à une ligne mais qui auront la même apparence (modulo une rotation) à toutes les échelles et positions, voir la figure 10. On prend un intervalle unitaire 𝐼 = [0, 1] et on construit 𝑆 𝛼 | 𝐼 . Ensuite on pose 𝜅 = 2(1 + cos 𝛼), et définie une homothétie 𝐻 𝜅 avec le coefficient 𝜅 et le centre zéro. Enfin, on définit

Figure 10 : 3 𝛼 3 .

 1033 Figure 10: Flocon de neige non-compact 𝑆 3 𝛼
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2 .

 2 the families of densities {𝜑 𝑡 } and graph functions {𝜓 𝑡 } are Frechet differentiable at zero in 𝐵𝑀 𝑂(R 𝑑 ): there exist functions𝜕𝜑𝑡(𝑦) 𝜕𝑡 | 𝑡=0 = 𝜕𝜑𝑡 𝜕𝑡 (0, 𝑦) and 𝜕𝜓𝑡(𝑦) 𝜕𝑡

Theorem 1 .Theorem 2 .

 12 For and integer 𝑑 < 𝑛-2 and 𝐸 = R 𝑑 there are no non-trivial one-parameter differentiable families of flat perturbations of the solution 𝐷 𝛼,𝜇 with 𝜇 = 𝑐ℋ 𝑑 | 𝐸 of the equation 𝐿 𝛼,𝜇 𝐷 𝛼,𝜇 = 0. For any integer 𝑑 < 𝑛-2 there are no non-trivial one-parameter differentiable families of graph perturbations of the solution 𝐷 𝛼,𝜇 with 𝜇 = 𝑐ℋ 𝑑 | 𝐸 and 𝐸 = R 𝑑 of the equation 𝐿 𝛼,𝜇 𝐷 𝛼,𝜇 = 0.

Theorem 4 .

 4 Let 𝑢 be a function harmonic outside the 𝑑-Ahlfors regular set 𝐸 ⊂ R 𝑛 such that |𝑢(𝑥)| ≤ 𝐶𝛿(𝑥) -𝑛+𝑑+2 . Then there exists a function 𝑓 ∈ 𝐿 ∞ (𝐸) such that

Lemma 1 .

 1 Let 𝑓 be a function in 𝐿 ∞ (𝐸, 𝑑𝜎). Consider 𝑢 𝑓 (𝑥) = R𝑛 𝑓 (𝑦) |𝑥 -𝑦| 𝑛-2 𝑑𝜎(𝑦);

Lemma 7 .

 7 Let 𝑓 𝑖 , 𝑖 = 1, . . . , 𝑚 be functions in 𝐵𝑀 𝑂(R 𝑑 ). With the same notation as in (14), we have R𝑑 |𝑓 1 (𝑦) . . . 𝑓 𝑚 (𝑦)|𝑑𝑦 |𝑥 -𝑦| 𝑑+𝛽 ≤ 𝐶(1 + 𝛿(𝑥) -(𝑑+𝛽) )(1 + ln |𝑥 0 |) 𝑚 𝑚 ∏︁ 𝑖=1 (‖𝑓 𝑖 ‖ 𝑚 𝐵𝑀 𝑂 + |𝑚 𝐵(0,1) 𝑓 𝑖 | 𝑚 ) 1/𝑚

(

  𝑚-𝑗)/𝑚 . If 𝑗 = 𝑚 -1, we are done, otherwise we apply Hölder once again to R𝑑 |𝑓 𝑗+1 (𝑦) . . . 𝑓 𝑚 (𝑦)| 𝑚 𝑚-𝑗 𝑑𝑦 |𝑥 -𝑦| 𝑑+𝛽 with 𝑝 𝑗+1 = 𝑚 -𝑗, 𝑞 𝑗+1 = 𝑚-(𝑗+1) 𝑚-𝑗 and functions

  Note that Ŕ𝑑 𝐾𝑒𝑟(𝑦)𝑑𝑦 = 0. Consider the (closed) functional space 𝒮 generated by linear combinations with coefficients 𝑐 𝑖 of 𝐿 1 -normalized translations and dilatations of the function 𝐾𝑒𝑟 with the norm ‖ • ‖ = inf ∑︀ 𝑖 |𝑐 𝑖 |, where inf is taken over all representations of an element of 𝒮. If 𝜑 was an element of the dual space of 𝒮, then (

Figure 1 :

 1 Figure 1: Simple version of transformation F

Figure 2 : 2 𝛼

 22 Figure 2: 𝑆 2 𝛼

Figure 3 :

 3 Figure 3: 𝑆 1

Figure 4 :

 4 Figure 4: A cell of the net of green and red curves

𝐹 1 (

 1 𝐼) = (𝑞 𝐼 -𝑝 𝐼 )𝑙 + 𝑝. So the left end and the right end of the set 𝐹 (𝐼, 𝑝) are also defined: 𝑝 𝐹 (𝐼,𝑝) = 𝑝 and 𝑞 𝐹 (𝐼,𝑝) = 𝑞 𝐹 4 (𝐼) . The basic example of how the transformation 𝐹 acts is given by 𝐼 being a horizontal interval 𝐼 = [𝑝 𝐼 , 𝑞 𝐼 ] and 𝑝 = 𝑝 𝐼 . This is the version of the transformation mentioned in the introduction. Recall that it replaces the middle of interval 𝐼 with two legs of the isosceles triangle with the angle 𝛼 and the middle of 𝐼 as a base. So the four intervals obtained, [𝑝, 𝑞 𝐹 1 (𝐼) ], [𝑞 𝐹 1 (𝐼) , 𝑞 𝐹 2 (𝐼) ], [𝑞 𝐹 2 (𝐼) , 𝑞 𝐹 3 (𝐼) ] and [𝑞 𝐹 3 (𝐼) , 𝑞 𝐹 4 (𝐼) ], have equal length |𝐼|𝑙 and the picture stays symmetric with respect to the bisection of 𝐼. See figure 5.

Figure 5 :

 5 Figure 5: The advanced version of the transformation 𝐹

Figure 6 :

 6 Figure 6: 𝑆 1 𝛼 and the curve 𝑠 1

  𝑆 2 𝛼 = [𝑧 111 , 𝑧 112 ] ∪ [𝑧 112 , 𝑧 113 ] ∪ [𝑧 113 , 𝑧 114 ] ∪ [𝑧 114 , 𝑧 121 ]∪ [𝑧 121 , 𝑧 122 ]∪[𝑧 122 , 𝑧 123 ]∪[𝑧 123 , 𝑧 124 ]∪[𝑧 124 , 𝑧 131 ]∪[𝑧 131 , 𝑧 132 ]∪[𝑧 132 , 𝑧 133 ]∪[𝑧 133 , 𝑧 134 ]∪[𝑧 134 , 𝑧 141 ]∪ [𝑧 141 , 𝑧 142 ] ∪ [𝑧 142 , 𝑧 143 ] ∪ [𝑧 143 , 𝑧 144 ] ∪ [𝑧 144 , 𝑧 211 ] with 𝑧 111 = 𝑧 11 , 𝑧 112 = 𝑧 111 +𝑙(𝑧 12 -𝑧 11 ), 𝑧 113 = 𝑧 112 +𝑙(𝑧 12 -𝑧 11 )𝑒 𝑖𝛼 , 𝑧 114 = 𝑧 113 +𝑙(𝑧 12 -𝑧 11 )𝑒 -𝑖𝛼 , 𝑧 121 = 𝑧 12 , 𝑧 122 = 𝑧 121 +𝑙(𝑧 13 -𝑧 12 ), 𝑧 123 = 𝑧 122 +𝑙(𝑧 13 -𝑧 12 )𝑒 𝑖𝛼 , 𝑧 124 = 𝑧 123 +𝑙(𝑧 13 -𝑧 12 )𝑒 -𝑖𝛼 , 𝑧 131 = 𝑧 13 , 𝑧 141 = 𝑧 14 , and 𝑧 13𝑖 = -𝑧 12(6-𝑖) , 𝑧 14𝑖 = -𝑧 11(6-𝑖) for 𝑖 = 2, 3, 4.

Figure 7

 7 is the sketch of the part of what we have constructed thus far which lies to the left of {𝑥 = 0}. To have the full picture it suffices to reflect the one below with respect to {𝑥 = 0}.

𝑠 3 =

 3 𝐹 (𝑠 2 , 𝜁 1112 ) with 𝜁 1112 = 𝑧 1111 + 𝑙(𝑧 112 -𝑧 111 )𝑒 𝑖𝛼 , and

Figure 7 :

 7 Figure 7: 𝑆 2 𝛼 and the curve 𝑠 2

Figure 9 :

 9 Figure 9: Tile T1

Figure 10 :

 10 Figure 10: Tiles of type 1 between the curves 𝑠 2 and 𝑠 3

Figure 11 :

 11 Figure 11: Tile T2

Figure 14 :

 14 Figure 14: Tiling between the curves 𝑠 2 and 𝑠 4 The proper induction step does not differ from what we just did for 𝑆𝑡(𝑠 3 , 𝑠 4 , [𝑧 1112 , 𝜁 1112 ], [𝜁 1444 , 𝜁 1444 ]). According to (22) and (23), we have 𝑆𝑡(𝑠 𝑘 , 𝑠 𝑘+1 , [𝑧 11...2 , 𝜁 11...2 ], [𝑧 11...4 , 𝜁 11...4 ]) = 𝐹 1 (𝑆𝑡(𝑠 𝑘-1 , 𝑠 𝑘 , [𝑧 1...2 , 𝜁 1...2 ], [𝑧 1...4 , 𝜁 1...4 ])), 𝑆𝑡(𝑠 𝑘 , 𝑠 𝑘+1 , [𝑧 12...2 , 𝜁 12...2 ], [𝑧 12...4 , 𝜁 12...4 ]) = 𝐹 2 (𝑆𝑡(𝑠 𝑘-1 , 𝑠 𝑘 , [𝑧 1...2 , 𝜁 1...2 ], [𝑧 1...4 , 𝜁 1...4 ])), 𝑆𝑡(𝑠 𝑘 , 𝑠 𝑘+1 , [𝑧 13...2 , 𝜁 13...2 ], [𝑧 13...4 , 𝜁 13...4 ]) = 𝐹 3 (𝑆𝑡(𝑠 𝑘-1 , 𝑠 𝑘 , [𝑧 1...2 , 𝜁 1...2 ], [𝑧 1...4 , 𝜁 1...4 ])), and

2 .

 2 Repeat the same for the ball around 𝜁 114 . For the ball around 𝜁 121 and for all the non-smoothness points on the part of the curve (𝜁 114 , 𝜁 121 ) we do a bit differently. First we precise that, since we do not have the axis of symmetries prescribed to all the other non-smoothness points on (𝜁 114 , 𝜁 121 ) apart from 𝜁 121 , as a domain of definition of the function 𝑓 , which represents 𝑠 2 locally, we take the line (𝜁 114 , 𝜁 122 ) (recall the property d) when constructing 𝑠 2 between 𝜁 114 and 𝜁 122 ). There exists a function 𝜓 2 : R → R such that it is zero outside, say, [-2/3𝑟 2 , 2/3𝑟 2 ], one in a small neighbourhood of 0, takes intermediate values in between, smooth, and, moreover, once we replaced 𝑠 2 in all the balls around 𝜁 121 and all the non-smoothness points on (𝜁 114 , 𝜁 121 ) by 𝑓 * 𝜓 2 , the mollified versions of (𝜁 113 , 𝜁 114 ) and (𝜁 114 , 𝜁 121 ) have the same length. So this is what we choose as a smoothing procedure for the neighbourhoods of 𝜁 121 and all the non-smoothness points on (𝜁 114 , 𝜁 121 ). See figure 15.

Figure 15 :

 15 Figure 15: The mollified curve 𝑠 2 Once we are done with 𝜁 113 , 𝜁 114 and 𝜁 121 , we can either define explicitly the mollification at the rest of the non-smoothness points of the family of the green curves, or reconstruct the mollification of rest of 𝑠 2 and the family {𝑠 𝑘 } 𝑘>2 by the symmetries of the system, thanks to transformation 𝐹 . The explicit mollification goes like this. Suppose we have a point of non-smoothness 𝜁 𝑤 marked on 𝑠 𝑘 . Consider 𝑠 𝑘 ∩ 𝐵(𝜁 𝑤 , 𝑙 𝑘 𝑟) as a graph of a symmetric function 𝑓 with the line orthogonal to [𝜁 𝑤 , 𝜁 𝑤1 ] as a domain of definition. Define 𝜑 𝑘 (𝑥) = 𝜑 2 (𝑥/𝑙 𝑘-2 ) and 𝜓 𝑘 (𝑥) = 𝜓 2 (𝑥/𝑙 𝑘 𝑟). Replace the curve 𝑠 𝑘 ∩ 𝐵(𝜁 𝑤 , 𝑙 𝑘 𝑟) with the graph of function 𝑓 * 𝜑 𝑘 or 𝑓 * 𝜓 𝑘 , if 𝑤 ends on 21 or 41, or on 11 and is not of the form 31 . . . 1 (where we have some ones instead of . . . ). Or, in other words, we replace with 𝑓 * 𝜑 𝑘 , if at least one part of the curve 𝑠 2 around 𝜁 𝑤 , (𝜁 𝑤-1 , 𝜁 𝑤 ) or (𝜁 𝑤 , 𝜁 𝑤+1 ), is a segment, and by 𝑓 * 𝜓 𝑘 otherwise. For the rest of non-smoothness points 𝑝, we do the same replacement by 𝑓 * 𝜓 𝑘 , with the only difference with the choice of the domain of definition for 𝑓 in the procedure. By the construction such points 𝑝 are situated on a curve which joins 𝜁 𝑤 and 𝜁 𝑤+2 . We choose the line (𝜁 𝑤 , 𝜁 𝑤+2 ) as the domain of definition. If we are to use the symmetries of the construction, here is what we do. Fist we

Figure 16 : 2 6

 162 Figure 16: Mollified tiles 𝑇 1 and 𝑇 2

Figure 17 :

 17 Figure 17: Curves inside 𝑇 1

Figure 18 :

 18 Figure 18: Curves inside 𝑇 2

Figure 19 :

 19 Figure 19: Globally defined green curves near the segment [-1/2, 0]

𝑇 3 =

 3 𝑠(𝜁 112 )𝜁 111 𝜁 112 𝜁 1121 𝜁 1114 𝜁 1113 𝜁 1112 𝜁 1111 𝑠(𝜁 1112 )𝑠(𝜁 1113 )𝑠(𝜁 1114 )𝑠(𝜁 1121 ).

  ) is analogous to what was done in Section 6. See on figure20how the complete tiling looks like between the segment [-1/2, 0] and the curve 𝑠 1 . To get the idea of how the global tiling looks like, one can zoom in around 𝑧 1 the picture 20.

Figure 20 :

 20 Figure 20: Global tiling near the segment [-1/2, 0], tiles 𝑇 3

Figure 21 :

 21 Figure 21: Global tiling above 𝑆 2 𝛼

Figure 22 :

 22 Figure 22: Tiling for a compact snowflake with 𝛼 = 𝜋 𝑁

Figure 23 :

 23 Figure 23: Tiling for a compact snowflake with any 𝛼

Figure 24 :

 24 Figure 24: The limit case of 𝛼 = 𝜋/3

  

  

  

  

  

  Definition 7. Un domaine Ω dans R 𝑛 est appelé non-tangentiellement accessible (NTA) si les trois conditions suivantes sont satisfaites : 1. Ω est un domaine "à tire-bouchon" : il existe une constante 𝑐 ≥ 1 telle que pour chaque 𝑥 ∈ 𝜕Ω et 0 < 𝑟 < diam(Ω), on peut trouver un point 𝑦(𝑥, 𝑟) ∈ 𝐵(𝑥, 𝑟) avec la propriété 𝐵(𝑦, 𝑐 -1 𝑟) ⊂ 𝐵(𝑥, 𝑟) ∩ Ω ; 2. R 𝑛 ∖ Ω est un domaine "à tire-bouchon" ; 3. Ω a des chaînes de Harnack : pour tout 𝐴 > 0 et pour chaque 𝑥, 𝑦 ∈ Ω tels que |𝑥 -𝑦| ≤ 𝐴 min(dist(𝜕Ω, 𝑥), dist(𝜕Ω, 𝑦)), il existe un nombre 𝑁 (𝐴, Ω) tel qu'on peut construire une chaîne de boules 𝐵 1 (𝑥 1 ), . . . 𝐵 𝑁 (𝑥 𝑁 ) qui relie 𝑥 et 𝑦 et qui se trouve à l'intérieur de Ω : 𝑥 1 = 𝑥, 𝑥 𝑁 = 𝑦, 𝐵 𝑖 (𝑥 𝑖 ) ∩ 𝐵 𝑖+1 (𝑥 𝑖+1 ), 𝑖 = 1, . . . , 𝑁 -1, et 2𝐵 𝑖 (𝑥 𝑖 ) ⊂ Ω.

  où 𝜇 est une mesure 𝑑-dimensionnelle Ahlfors régulière sur 𝐸 (𝜇(𝐵(𝑥, 𝑟)) ∼ 𝑟 𝑑 pour 𝑥 ∈ 𝐸 et 0 < 𝑟 < diam(𝐸)), 𝛼 > 0 est un paramètre, et la fonction de distance lisse correspondante 𝐷 𝛼,𝜇 est définie par

  𝜑 ∈ 𝐶 ∞ 0 we have ⟨∆𝑢 𝑓 , 𝜑⟩ = ⟨𝑢 𝑓 , ∆𝜑⟩ by the definition of the distribution ∆𝑢 𝑓 . But ⟨𝑢

𝑓 , ∆𝜑⟩ = R𝑛 𝑢 𝑓 (𝑥)∆𝜑(𝑥)𝑑𝑥 = R𝑛 R𝑛 𝑓 (𝑦)𝑑𝜎(𝑦) |𝑥 -𝑦| 𝑛-2 ∆𝜑(𝑥)𝑑𝑥. Since we know that 𝑢 𝑓 ∈ 𝐿 1,𝑙𝑜𝑐 (R 𝑛 ), Ŕ𝑛 |𝑢 𝑓 (𝑥)∆𝜑(𝑥)|𝑑𝑥 < ∞, and by Fubini's theorem

  , we fix 𝑥 ∈ 𝐸, suppose that 𝑟 << 𝜌 and estimate B(𝑥,𝜌) |∆(𝑢 * 𝜑 𝑟 )|. Since 𝑢 * 𝜑 𝑟 is harmonic at distance at least 𝑟 from 𝐸, we really integrate over the set 𝐵(𝑥, 𝜌) ∩ {𝛿(𝑦) ≤ 𝑟}. We can cover this set by less than 𝐶 (︀ 𝜌 𝑟 )︀ 𝑑 balls 𝐵(𝑥 𝑖 , 𝑟) centered at 𝐸. Indeed, let {𝐵(𝑥 𝑖 , 𝑟/5)} 𝑖∈𝐼 be any covering of 𝐸 ∩ 𝐵(𝑥, 𝜌). The Vitali lemma says that we can choose a finite 𝐼 0 ⊂ 𝐼 such that 𝐵(𝑥 𝑖 , 𝑟/5), 𝑖 ∈ 𝐼 0 do not intersect, and ∪ 𝐼 0 𝐵(𝑥 𝑖 , 𝑟) covers 𝐸 ∩ 𝐵(𝑥, 𝜌). The 𝑑-Ahlfors regularity of 𝐸 then implies that |𝐼 0 |𝑟 𝑑 ≤ 𝐶𝜌 𝑑 , which implies the bound on the number of balls in the covering {𝐵(𝑥 𝑖 , 𝑟)} 𝑖∈𝐼 0 . The set 𝐵(𝑥, 𝜌) ∩ {𝛿(𝑦) < 𝑟} can be covered by the {𝐵(𝑥 𝑖 , 2𝑟)} 𝑖∈𝐼 0 . Using this development, and also that sup |∆𝜑 𝑟 | is less than 𝑟 -2 , we can estimate the total mass of the Laplacian of 𝑢 * 𝜑 𝑟 from above: 𝑑 𝐶𝑟 𝑑 ≤ 𝐶𝜌 𝑑 . Lemma 3. Let 𝜇 be a 𝑑-upper-regular measure on 𝐸, then it has a bounded density with respect to the measure 𝜎 = ℋ 𝑑 | 𝐸 . Moreover, if the measure 𝜇 is 𝑑-Ahlfors regular, then the density is also bounded away from zero. Proof. Let us check first that 𝜇 is absolutely continuous with respect to 𝜎, or, equivalently, that if 𝜎(𝐴) = 0, then 𝜇(𝐴) = 0 as well. Indeed, 𝜎(𝐴) = 0 if and only if for every 𝜀 > 0 exist a covering {𝐵(𝑥 𝑖 , 𝑟 𝑖 )} of the set 𝐴 such that ∑︀

	≤	∑︁ 𝑖	𝐶𝑟 -2 𝑟 𝑑+2 ≤	𝑟 (︁ 𝜌	)︁

B(𝑥,𝜌) |∆(𝑢 * 𝜑 𝑟 )| = B(𝑥,𝜌)∩{𝛿≤𝑟} 𝑢 * |∆𝜑 𝑟 | ≤ ∑︁ 𝑖 B(𝑥 𝑖 ,𝑟) 𝑢 * |∆𝜑 𝑟 | ≤ ∑︁ 𝑖 sup |∆𝜑 𝑟 | B(𝑥 𝑖 ,2𝑟) 𝑢 𝑖 𝑟 𝑑 𝑖 < 𝜀. Then |𝜇(𝐴)| ≤ |𝜇(∪𝐵(𝑥 𝑖 , 𝑟 𝑖 ))| ≤ ∑︁ 𝑖 |𝜇(𝐵(𝑥 𝑖 , 𝑟 𝑖 ))| ≤ 𝐶 ∑︁ 𝑖 𝑟 𝑑 𝑖 < 𝐶𝜀,

  Therefore an element 𝑎 𝑖𝑗 of the 𝑑 × 𝑑 matrix 𝐴 = (𝑎 𝑖𝑗 ) = (𝐷𝜂 𝑡 ) 𝑇 𝐷𝜂 𝑡 is equal to 𝜕𝑦 𝑗 , where 𝜒 𝑖=𝑗 is one if 𝑖 = 𝑗 and zero otherwise. So, the determinant det((𝐷𝜂 𝑡 ) 𝑇 𝐷𝜂 𝑡 ) is of the form 1 + 𝑀 𝑡 (𝑦) + 𝑅 𝑡 (𝑦),

	where 𝑀 𝑡 (𝑦) =	𝑛 ∑︀ 𝑖=1	𝑛 ∑︀ 𝑘=𝑑+1	(︁	𝜕(𝜓𝑡) 𝑘 𝜕𝑦 𝑖
						⎞
						. . . 0 𝜕(𝜓𝑡) 𝑑+1 𝜕𝑦 1 . . .	. . . . . . . . . 𝜕(𝜓𝑡) 𝑑+1 . . . 1 𝜕𝑦 𝑑 . . . . . .	⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ⎟ ⎟	.
						𝜕(𝜓𝑡)𝑛 𝜕𝑦 1	. . . 𝜕(𝜓𝑡)𝑛 𝜕𝑦 𝑑
	𝜒 𝑖=𝑗 +	𝑘=𝑑+1 𝑛 ∑︀	𝜕𝑦 𝑖 𝜕(𝜓𝑡) 𝑘	𝜕(𝜓𝑡) 𝑘

  11 , 𝑧 12 ] ∪ [𝑧 12 , 𝑧 13 ] ∪ [𝑧 13 , 𝑧 14 ] ∪ [𝑧 14 , 𝑧 21 ] with 𝑧 11 = 𝑧 1 , 𝑧 12 = 𝑧 11 + 𝑙(𝑧 2 -𝑧 1 ), 𝑧 13 = 𝑧 12 + 𝑙(𝑧 2 -𝑧 1 )𝑒 𝑖𝛼 , 𝑧 14 = 𝑧 13 + 𝑙(𝑧 2 -𝑧 1 )𝑒 -𝑖𝛼 = 𝑧 21 -𝑙(𝑧 2 -𝑧 1 ), 𝑧 21 = 𝑧 2 . define 𝑠 1 = [𝜁 12 , 𝜁 13 ] ∪ [𝜁 13 , 𝜁 14 ] with 𝜁 12 = 𝑧 11 + 𝑙(𝑧 2 -𝑧 1 )𝑒 𝑖𝛼 , 𝜁 13 = 𝜁 12 + 𝑙 cos 𝛼 (𝑧 2 -𝑧 1 )𝑒 𝑖𝛼 , 𝜁 14 = 𝜁 13 + 𝑙 cos 𝛼 (𝑧 2 -𝑧 1 )𝑒 -𝑖𝛼 = 𝑧 21 -𝑙(𝑧 2 -𝑧 1 ), (13) and 𝜃 12 = [𝑧 12 , 𝜁 12 ], 𝜃 13 = [𝑧 13 , 𝜁 13 ], 𝜃 14 = [𝑧 14 , 𝜁 14 ].

	We

  2 𝛼 we got above the segment [𝑧 11 , 𝑧 12 ] is similar to 𝑆 1 𝛼 above [𝑧 1 , 𝑧 2 ], we want to have in 𝑠 2 two segments [𝜁 112 , 𝜁 113 ] and [𝜁 113 , 𝜁 114 ] with 𝜁 112 = 𝑧 111 +𝑙(𝑧 12 -𝑧 11 )𝑒 𝑖𝛼 , 𝜁 113 = 𝜁 112 + 𝑙 cos 𝛼 (𝑧 12 -𝑧 11 )𝑒 𝑖𝛼 , 𝜁 114 = 𝜁 113 + 𝑙 cos 𝛼 (𝑧 12 -𝑧 11 )𝑒 -𝑖𝛼 . The piece of 𝑆 2 𝛼 above the segment [𝑧 12 , 𝑧 13 ] is also similar to 𝑆 1 𝛼 , so we also want to have in 𝑠 2 two segments [𝜁 122 , 𝜁 123 ] and [𝜁 123 , 𝜁 124 ] with 𝜁 122 = 𝑧 121 +𝑙(𝑧 13 -𝑧 12 )𝑒 𝑖𝛼 , 𝜁 123 = 𝜁 122 + 𝑙 cos 𝛼 (𝑧 13 -𝑧 12 )𝑒 𝑖𝛼 , 𝜁 124 = 𝜁 123 + 𝑙 cos 𝛼 (𝑧 13 -𝑧 12 )𝑒 -𝑖𝛼 . Analogously, we add to 𝑠 2 segments [𝜁 132 , 𝜁 133 ], [𝜁 133 , 𝜁 134 ], [𝜁 142 , 𝜁 143 ] and [𝜁 143 , 𝜁 144 ] with 𝜁 13𝑖 = -𝜁 12(6-𝑖) and 𝜁 14𝑖 = -𝜁 11(6-𝑖) for 1 = 2, 3, 4. Go to figure 7 below to see how the defined pieces to the left of {𝑥 = 0} look like. We finish the definition of 𝑠 2 by connecting 𝜁 114 with 𝜁 122 , 𝜁 134 with 𝜁 142 , and 𝜁 124 and 𝜁 132 with the symmetry axis {𝑥 = 0}. The last one is easy: we add to 𝑠 2 segments [𝜁 124 , 𝜁 131 ] and [𝜁 131 , 𝜁 132 ] with 𝜁 131 = 𝜁 124 + 𝑙 cos 𝛼 (𝑧 13 -𝑧 12 )𝑒 𝑖𝛼 . With other parts we need to be more careful. To start with, of course, we want the two curves (𝜁 134 , 𝜁 142 ) and (𝜁 114 , 𝜁 122 ) to be symmetric to each other (with respect to {𝑥 = 0}): (𝜁 134 , 𝜁 142 ) = -(𝜁 114 , 𝜁 122 ), so we concentrate on (𝜁 114 , 𝜁 122 ). We need the curve (𝜁 114 , 𝜁 122 ) to satisfy the following properties: a) first, symmetry with respect to the bisection of [𝜁 114 , 𝜁 122 ] (which is the line (𝑧 12 , 𝜁 12 )), b) second, to have the same length as the piece of 𝑠 2 composed of [𝜁 121 , 𝜁 113 ] and [𝜁 113 , 𝜁 114 ] together, c) and third, in small balls centred at 𝜁 114 and 𝜁 122 , where small means that the radius is much less than 𝑙 2 , the curve is symmetric with respect to the axis (𝑧 114 , 𝜁 114 ) or (𝑧 122 , 𝜁 122 ) to the segment [𝜁 114 , 𝜁 113 ] or [𝜁 122 , 𝜁 123 ] respectively.

  condition we formulate precisely at the next step; vaguely, this condition says that the curve stays close to the segment [𝜁 114 , 𝜁 122 ] and does not wiggle around too much. This implies in particular that this part of 𝑠 2 does not intersect the lines 𝑧 121 -𝑡𝑒 -𝑖𝛼 , 𝑧 121 + 𝑡𝑒 𝑖2𝛼 and 𝑧 111 + 𝑡𝑒 𝑖𝛼 , 𝑡 ∈ R. The length of [𝜁 121 , 𝜁 113 ] and [𝜁 113 , 𝜁 114 ] is 𝑙 2 cos 𝛼 . According to our restrictions above, we can choose any curve of the length 𝑙 2 cos 𝛼 which begins with the line segment according to c), does not intersect all the lines mentioned (plus behaves reasonably as indicated above) and connects 𝜁 114 and the bisection of [𝜁 114 , 𝜁 122 ], and then reflect it with respect to the latter bisector to get a curve which connects 𝜁 114 with 𝜁 122 . Note that |[𝑧 121 , 𝜁 114 ]| = 𝑙 2 < 𝑙 2

  12 new red lines 𝜃 112 = [𝑧 112 , 𝜁 112 ], 𝜃 113 = [𝑧 113 , 𝜁 113 ], 𝜃 114 = [𝑧 114 , 𝜁 114 ], 𝜃 122 = [𝑧 122 , 𝜁 122 ], 𝜃 123 = [𝑧 123 , 𝜁 123 ], 𝜃 124 = [𝑧 124 , 𝜁 124 ], and finally 𝜃 13𝑖 = -𝜃 12(6-𝑖) , 𝜃 14𝑖 = -𝜃 11(6-𝑖) for 𝑖 = 2, 3, 4.

  𝜁 𝑖-1 and 𝜁 𝑖+1 for 𝑖 = 121 . . . , 141 . . . and 131 . . . , where . . . once again denotes 𝑘 -2 ones in a row. We draw (𝜁 𝑖-1 , 𝜁 𝑖+1 ) = ((𝜁 124...4 , 𝜁 13...12 ) -𝑧 131... )𝑙 + 𝑧 131... for 𝑖 = 131 . . . , (𝜁 𝑖-1 , 𝜁 𝑖+1 ) = ((𝜁 114...4 , 𝜁 12...12 ) -𝑧 121... )𝑙 + 𝑧 121... for 𝑖 = 121 . . . , where the first . . . denote 𝑘 -3 fours in a row, and all the others -𝑘 -3 ones, and (𝜁 𝑖-1 , 𝜁 𝑖+1 ) = -(𝜁 1144...4 , 𝜁 121...12 ) for 𝑖 = 141 . . . .

  1 , 𝑧 2 ]. We will call "tile" a representative of one type of regions, because the two types of regions tile the neighbourhood of 𝜕Ω we are interested in.Type 1 tiles. We will call tiles of type 1 all the regions which are similar to the figure𝑇 1 =𝜁 1121 𝜁 112 𝜁 113 𝜁 114 𝜁 1141 𝜁 1134 𝜁 1133 𝜁 1132 𝜁 1131 𝜁 1124 𝜁 1123 𝜁 1122 ,

	(27)

composed by two red segments [𝜁 1121 𝜁 112 ] and [𝜁 114 , 𝜁 1141 ], and two pieces of green curves 𝑠 2 and 𝑠 3 : [𝜁 112 , 𝜁 113 ]∪[𝜁 113 , 𝜁 114 ] and (𝜁 1121 , 𝜁 1122 , 𝜁 1123 , 𝜁 1124 , 𝜁 1131 )∪(𝜁 1131 , 𝜁 1132 , 𝜁 1133 , 𝜁 1134 , 𝜁 1141 ). Note that 𝑇 1 is symmetric with respect to the axis (𝜁 113 , 𝜁 1131 ). See figure 9.

  𝜁 1221 𝜁 122 𝜁 123 𝜁 124 𝜁 1241 𝜁 1234 𝜁 1233 𝜁 1232 𝜁 1231 𝜁 1224 𝜁 1223 𝜁 1222 = (𝑇 1 -𝜁 112 )𝑒 𝑖𝛼 + 𝜁 122 , 𝜁 1321 𝜁 132 𝜁 133 𝜁 134 𝜁 1341 𝜁 1334 𝜁 1333 𝜁 1332 𝜁 1331 𝜁 1324 𝜁 1323 𝜁 1322 = (𝑇 1 -𝜁 112 )𝑒 -𝑖𝛼 + 𝜁 132 , 𝜁 1421 𝜁 142 𝜁 143 𝜁 144 𝜁 1441 𝜁 1434 𝜁 1433 𝜁 1432 𝜁 1431 𝜁 1424 𝜁 1423 𝜁 1422 = (𝑇 1 -𝜁 112 ) + 𝜁 142 , and 𝜁 1241 𝜁 124 𝜁 131 𝜁 132 𝜁 1321 𝜁 1314 𝜁 1313 𝜁 1312 𝜁 1311 𝜁 1244 𝜁 1243 𝜁 1242 = (𝑇 1 -𝜁 112 ) + 𝜁 124 .Figure10shows all the tiles of type 1 in the stripe between 𝑠 2 and 𝑠 3 to the left of the axis {𝑥 = 0}.Type 2 tiles. We will call tiles of type 2 all the regions which are similar to the figure𝑇 2 =𝜁 1141 𝜁 114 𝜁 121 𝜁 122 𝜁 1221 𝜁 1214 𝜁 1213 𝜁 1212 𝜁 1211 𝜁 1144 𝜁 1143 𝜁 1142 , (28) composed by two red segments [𝜁 1141 𝜁 114 ] and [𝜁 122 𝜁 1221 ], and two pieces of green curves 𝑠 2 and 𝑠 3 : the curve [𝜁 114 , 𝜁 121 ] ∪ [𝜁 121 , 𝜁 122 ] and the curve (𝜁 1141 , 𝜁 1142 , 𝜁 1143 , 𝜁 1144 , 𝜁 1211 ) ∪ (𝜁 1211 , 𝜁 1212 , 𝜁 1213 , 𝜁 1214 , 𝜁 1221 ). Note that 𝑇 2 is symmetric with respect to the axis (𝜁 121 , 𝜁 1211 ). See figure 11. In the same neighbourhood, between the curves 𝑠 2 and 𝑠 3 , we have another tile of type 2: 𝜁 1341 𝜁 134 𝜁 141 𝜁 142 𝜁 1421 𝜁 1414 𝜁 1413 𝜁 1412 𝜁 1411 𝜁 1344 𝜁 1343 𝜁 1342 = -(𝑇 2 -𝑧 1211 ) + 𝑧 1411 .

  1 , 𝜁 13 ] and [𝜁 13 , 𝑧 2 ]: 𝜁 1114 𝜁 1113 𝜁 112 𝜁 1121 ,

  ), we have 𝑆𝑡(𝑠 3 , 𝑠 4 , [𝑧 1112 , 𝜁 1112 ], [𝑧 1144 , 𝜁 1144 ]) = 𝐹 1 (𝑆𝑡(𝑠 2 , 𝑠 3 , [𝑧 112 , 𝜁 112 ], [𝑧 144 , 𝜁 144 ])), 𝑆𝑡(𝑠 3 , 𝑠 4 , [𝑧 1212 , 𝜁 1212 ], [𝑧 1244 , 𝜁 1244 ]) = 𝐹 2 (𝑆𝑡(𝑠 2 , 𝑠 3 , [𝑧 112 , 𝜁 112 ], [𝑧 144 , 𝜁 144 ])), 𝑆𝑡(𝑠 3 , 𝑠 4 , [𝑧 1312 , 𝜁 1312 ], [𝑧 1344 , 𝜁 1344 ]) = 𝐹 3 (𝑆𝑡(𝑠 2 , 𝑠 3 , [𝑧 112 , 𝜁 112 ], [𝑧 144 , 𝜁 144 ])), and 𝑆𝑡(𝑠 3 , 𝑠 4 , [𝑧 1412 , 𝜁 1412 ], [𝑧 1444 , 𝜁 1444 ]) = 𝐹 4 (𝑆𝑡(𝑠 2 , 𝑠 3 , [𝑧 112 , 𝜁 112 ], [𝑧 144 , 𝜁 144 ])) (29) with 𝑝 = 𝑧 1 in the definition of transformation 𝐹 . Therefore, since the figure 𝑆𝑡(𝑠 2 , 𝑠 3 , [𝑧 112 , 𝜁 112 ], [𝑧 144 , 𝜁 144 ]) is tiled completely by 𝑇 1 and 𝑇 2 , the whole stripe between 𝑠 3 and 𝑠 4 is also almost tiled, except for three figures 𝐹 1 = 𝜁 11441 𝜁 1144 𝜁 1211 𝜁 1212 𝜁 12121 𝜁 12114 𝜁 12113 𝜁 12112 𝜁 12111 𝜁 11444 𝜁 11443 𝜁 11442 , 𝐹 2 = 𝜁 13441 𝜁 1344 𝜁 1411 𝜁 1412 𝜁 14121 𝜁 14114 𝜁 14113 𝜁 14112 𝜁 14111 𝜁 13444 𝜁 13443 𝜁 13442 and 𝐹 3 = 𝜁 12441 𝜁 1244 𝜁 1311 𝜁 1312 𝜁 13121 𝜁 13114 𝜁 13113 𝜁 13112 𝜁 13111 𝜁 12444 𝜁 12443 𝜁 12442 .

  𝜁 1141 , 𝜁 1142 )∪[𝜁 1142 , 𝜁 1143 ]∪[𝜁 1143 , 𝜁 1144 ] = 𝑙((𝜁 141 , 𝜁 142 )∪[𝜁 142 , 𝜁 143 ]∪[𝜁 143 , 𝜁 144 ]-𝑧 1 )+𝑧 11 , so(𝜁 11441 , 𝜁 11442 ) ∪ [𝜁 11442 , 𝜁 11443 ] ∪ [𝜁 11443 , 𝜁 11444 ] = 𝑙(((𝜁 1141 , 𝜁 1142 ) ∪ [𝜁 1142 , 𝜁 1143 ] ∪ [𝜁 1143 , 𝜁 1144 ] -𝑧 11 ) + 𝑧 14 -𝑧 1 ) + 𝑧 1 = = 𝑙((𝜁 1141 , 𝜁 1142 ) ∪ [𝜁 1142 , 𝜁 1143 ] ∪ [𝜁 1143 , 𝜁 1144 ]) + 𝑙(𝑧 14 -2𝑧 1 ) + 𝑧 1 .One can compute that 𝑙(𝑧 14 -2𝑧 1 ) + 𝑧 1 = -𝑙𝑧 12 + 𝑧 12 , so we indeed have(𝜁 11441 , 𝜁 11442 )∪[𝜁 11442 , 𝜁 11443 ]∪[𝜁 11443 , 𝜁 11444 ] = 𝑙((𝜁 1141 , 𝜁 1142 )∪[𝜁 1142 , 𝜁 1143 ]∪[𝜁 1143 , 𝜁 1144 ]-𝑧 12 )+𝑧 12 .

	Third, again by (22),

(𝜁 1144 , 𝜁 1212 ) = ((𝜁 114 , 𝜁 122 ) -𝑧 121 )𝑙 + 𝑧 1211 , (𝜁 11444 , 𝜁 12112 ) = ((𝜁 1144 , 𝜁 1212 ) -𝑧 1211 )𝑙 + 𝑧 12111 .

Figure 12: Tiling of the region between the curves 𝑠 2 and 𝑠 3 Second, by (22), (𝜁 11441 , 𝜁 11442 )∪[𝜁 11442 , 𝜁 11443 ]∪[𝜁 11443 , 𝜁 11444 ] = 𝑙((𝜁 1441 , 𝜁 1442 )∪[𝜁 1442 , 𝜁 1443 ]∪[𝜁 1443 , 𝜁 1444 ]-𝑧 1 )+𝑧 1 = = 𝑙(𝑙((𝜁 141 , 𝜁 142 ) ∪ [𝜁 142 , 𝜁 143 ] ∪ [𝜁 143 , 𝜁 144 ] -𝑧 1 ) + 𝑧 14 -𝑧 1 ) + 𝑧 1 , and ([𝜁 12112 , 𝜁 12113 ]∪[𝜁 12113 , 𝜁 12114 ]∪(𝜁 12114 , 𝜁 12121 ) = 𝑙([𝜁 1112 , 𝜁 1113 ]∪[𝜁 1113 , 𝜁 1114 ]∪(𝜁 1114 , 𝜁 1121 )-𝑧 1 )𝑒 𝑖𝛼 +𝑧 12 = = 𝑙(𝑙([𝜁 112 , 𝜁 113 ] ∪ [𝜁 113 , 𝜁 114 ] ∪ (𝜁 114 , 𝜁 121 ) -𝑧 1 ) + 𝑧 1 -𝑧 1 )𝑒 𝑖𝛼 + 𝑧 12 =

Figure 13: Tiling between the curves 𝑠 2 and 𝑠 3 , the curve 𝑠 4 𝑙 2 ([𝜁 112 , 𝜁 113 ] ∪ [𝜁 113 , 𝜁 114 ] ∪ (𝜁 114 , 𝜁 121 ) -𝑧 1 )𝑒 𝑖𝛼 + 𝑧 12 , and [𝜁 1212 , 𝜁 1213 ]∪[𝜁 1213 , 𝜁 1214 ]∪(𝜁 1214 , 𝜁 1221 ) = 𝑙([𝜁 112 , 𝜁 113 ]∪[𝜁 113 , 𝜁 114 ]∪(𝜁 114 , 𝜁 121 )-𝑧 1 )𝑒 𝑖𝛼 +𝑧 12 , so [𝜁 12112 , 𝜁 12113 ]∪[𝜁 12113 , 𝜁 12114 ]∪(𝜁 12114 , 𝜁 12121 ) = 𝑙([𝜁 1212 , 𝜁 1213 ]∪[𝜁 1213 , 𝜁 1214 ]∪(𝜁 1214 , 𝜁 1221 )-𝑧 12 )+𝑧 12 .

  𝜁 1244 , 𝜁 1311 ] ∪ [𝜁 1311 , 𝜁 1312 ] = 𝑙([𝜁 124 , 𝜁 131 ] ∪ [𝜁 131 , 𝜁 132 ] -𝑧 131 ) + 𝑧 1311 , and [𝜁 12444 , 𝜁 13111 ] ∪ [𝜁 13111 , 𝜁 13112 ] = 𝑙([𝜁 1244 , 𝜁 1311 ] ∪ [𝜁 1311 , 𝜁 1312 ] -𝑧 1311 ) + 𝑧 13111 . (𝜁 12441 , 𝜁 12442 )∪[𝜁 12442 , 𝜁 12443 ]∪[𝜁 12443 , 𝜁 12444 ] = 𝑙((𝜁 1441 , 𝜁 1442 )∪[𝜁 1442 , 𝜁 1443 ]∪[𝜁 1443 , 𝜁 1444 ]-𝑧 1 )𝑒 𝑖𝛼 +𝑧 12 = 𝑙((𝑙((𝜁 141 , 𝜁 142 ) ∪ [𝜁 142 , 𝜁 143 ] ∪ [𝜁 143 , 𝜁 144 ] -𝑧 1 ) + 𝑧 14 ) -𝑧 1 )𝑒 𝑖𝛼 + 𝑧 12 . 𝑙((𝜁 141 , 𝜁 142 ) ∪ [𝜁 142 , 𝜁 143 ] ∪ [𝜁 143 , 𝜁 144 ] -𝑧 1 )𝑒 𝑖𝛼 + 𝑧 12 = (𝜁 1241 , 𝜁 1242 ) ∪ [𝜁 1242 , 𝜁 1243 ] ∪ [𝜁 1243 , 𝜁 1244 ]. 𝜁 12442 )∪[𝜁 12442 , 𝜁 12443 ]∪[𝜁 12443 , 𝜁 12444 ] = 𝑙((𝜁 1241 , 𝜁 1242 )∪[𝜁 1242 , 𝜁 1243 ]∪[𝜁 1243 , 𝜁 1244 ]-𝑧 12 ) 𝑧 12 A computation shows that 𝑙𝑧 13 -𝑙𝑧 12 + 𝑙(𝑧 14 -𝑧 1 )𝑒 𝑖𝛼 + 𝑧 12 = 𝑧 13 , so we have (𝜁 12441 , 𝜁 12442 )∪[𝜁 12442 , 𝜁 12443 ]∪[𝜁 12443 , 𝜁 12444 ] = 𝑙((𝜁 1241 , 𝜁 1242 )∪[𝜁 1242 , 𝜁 1243 ]∪[𝜁 1243 , 𝜁 1244 ]-𝑧 13 )+𝑧 13 . Similar computations show that [𝜁 13112 , 𝜁 13113] ]∪[𝜁 13113 , 𝜁 13114 ]∪(𝜁 13114 , 𝜁 13121 ) = 𝑙([𝜁 1312 , 𝜁 1313 ]∪[𝜁 1313 , 𝜁 1314 ]∪(𝜁 1314 , 𝜁 1321 )-𝑧 13 )+𝑧 13 ,

	Next,
	This gives
	(𝜁 12441 ,

+𝑙(𝑧

14 -𝑧 1 )𝑒 𝑖𝛼 + 𝑧 12 = 𝑙((𝜁 1241 , 𝜁 1242 ) ∪ [𝜁 1242 , 𝜁 1243 ] ∪ [𝜁 1243 , 𝜁 1244 ] -𝑧 13 )+ 𝑙𝑧 13 -𝑙𝑧 12 + 𝑙(𝑧 14 -𝑧 1 )𝑒 𝑖𝛼 +

  13...2 , 𝜁 13...2 ], [𝑧 13...4 , 𝜁 13...4 ]) = 𝐹 3 (𝑆𝑡(𝑠 𝑘-1 , 𝑠 𝑘 , [𝑧 1...2 , 𝜁 1...2 ], [𝑧 1...4 , 𝜁 1...4 ])), and 𝑆𝑡(𝑠 𝑘 , 𝑠 𝑘+1 , [𝑧 14...2 , 𝜁 14...2 ], [𝑧 14...4 , 𝜁 14...4 ]) = 𝐹 4 (𝑆𝑡(𝑠 𝑘-1 , 𝑠 𝑘 , [𝑧 1...2 , 𝜁 1...2 ], [𝑧 1...4 , 𝜁 1...4 ])) (32) with 𝑝 = 𝑧 1 in the definition of transformation 𝐹 , and where . . . denote 𝑘 -2 ones in a row if the word ends with 2, and 𝑘 -2 in a row if the word ends with 4. The figure 𝑆𝑡(𝑠 𝑘-1 , 𝑠 𝑘 , [𝑧 1...2 , 𝜁 1...2 ], [𝑧 1...4 , 𝜁 1...4 ]) is tiled with 𝑇 1 and 𝑇 2 by the induction hypothesis. So to tile 𝑆𝑡(𝑠 𝑘 , 𝑠 𝑘+1 , [𝑧 11...2 , 𝜁 11...2 ], [𝑧 14...4 , 𝜁 14...4 ]), we need to check again that 𝐹 1 = 𝜁 11...41 𝜁 11...4 𝜁 12...1 𝜁 12...2 𝜁 12...21 𝜁 12...14 𝜁 12...13 𝜁 12...12 𝜁 12...11 𝜁 11...44 𝜁 11...43 𝜁 11...42 , where . . . mean 𝑘 -2 "4"s if the word begins with 11 or 𝑘 -2 "1"s if the word begins with 12, is similar to 𝑇 2, and that 𝐹 3 = 𝜁 12...41 𝜁 12...4 𝜁 1311 𝜁 13...2 𝜁 13...21 𝜁 13...14 𝜁 13113 𝜁 13...12 𝜁 13...11 𝜁 12...44 𝜁 12...43 𝜁 12...42 , where . . . mean 𝑘 -2 "4"s if the word begins with 12 or 𝑘 -2 "1"s if the word begins with 13, is similar to 𝑇 1. The figure 𝐹 2 = 𝜁 13...41 𝜁 13...4 𝜁 14...1 𝜁 14...2 𝜁 14...21 𝜁 14...14 𝜁 14...13 𝜁 14...12 𝜁 14...11 𝜁 13...44 𝜁 13...43 𝜁 13...42

  we prefer to write explicitly what we do. Take the ball 𝐵(𝜁 113 , 𝑟 2 ). The curve 𝑠 2 ∩ 𝐵(𝜁 113 , 𝑟 2 ) is symmetric with respect to [𝜁 1131 , 𝜁 113 ]. Consider 𝑠 2 ∩ 𝐵(𝜁 113 , 𝑟 2 ) as a graph of a symmetric function 𝑓 with the line 𝐿 orthogonal to [𝜁 1131 , 𝜁 113 ] as a domain of definition: 𝑓 : 𝐵(𝜁 113 , 𝑟 2 ) ∩ 𝐿 → 𝐵(𝜁 113 , 𝑟 2 ). Choose a mollifier 𝜑 2: R → R such that 𝜑 2 = 0 outside [-2/3𝑟 2 , 2/3𝑟 2 ], 𝜑 2 = 1 inside [-1/3𝑟2 , 1/3𝑟 2 ], smooth and takes intermediate values on [-2/3𝑟 2 , -1/3𝑟 2 ] and [1/3𝑟 2 , 2/3𝑟 2 ]. Replace the curve 𝑠 2 ∩ 𝐵(𝜁 113 , 𝑟 2 ) with the graph of function 𝑓 * 𝜑

  1 we described in the beginning of Section 4, the green sides are (𝜁 112 , 𝜁 113 , 𝜁 114 ), upper, and (𝜁 1121 , 𝜁 1122 , 𝜁 1123 , 𝜁 1124 , 𝜁 1131 , 𝜁 1132 , 𝜁 1133 , 𝜁 1134 , 𝜁 1141 ), lower, with two red sides which are segments -left, [𝜁 1121 , 𝜁 112 ], and [𝜁 1141 , 𝜁 114 ], right. The model tile 𝑇 2 from Section 4 has two green sides (𝜁 114 , 𝜁 121 , 𝜁 122 ), upper, and (𝜁 1141 , 𝜁 1142 , 𝜁 1143 , 𝜁 1144 , 𝜁 1211 , 𝜁 1212 , 𝜁 1213 , 𝜁 1214 , 𝜁 1221 ), lower, and two red -the left [𝜁 1141 , 𝜁 114 ], and [𝜁 1221,𝜁 122

  3 , [𝑧 112 , 𝜁 112 ], [𝑧 144 , 𝜁 144 ]). It suffices to consider a model tile 𝑇 1 𝜁 112 𝜁 113 𝜁 114 𝜁 1141 𝜁 1134 𝜁 1133 𝜁 1132 𝜁 1131 𝜁 1124 𝜁 1123 𝜁 1122 𝜁 1121 , and a model tile 𝑇 2 𝜁 114 𝜁 121 𝜁 122 𝜁 1221 𝜁 1214 𝜁 1213 𝜁 1212 𝜁 1211 𝜁 1144 𝜁 1143 𝜁 1142 𝜁 1141 . Without loss of generality, concentrate on the first tile. Choose a cell of the net containing 𝑧 ∈ 𝑇 1 which consist of pieces of two green curves labelled 𝑠 𝑎 and 𝑠 𝑏 , and two red segments labelled, say, 𝜃 1 and 𝜃 2 . Denote 𝑤 𝐺 (𝑧) the vector of speed on a green curve at a point 𝑧, and 𝑤 𝑅 (𝑧) the vector of speed on a red curve at a point 𝑧. We know that there are constants 𝑐 1 and 𝑐 2 such that 𝑐 -1 1 ≤ 𝑤 𝐺 (𝑧) ≤ 𝑐 1 and 𝑐 -1 2 ≤ 𝑤 𝑅 (𝑧) ≤ 𝑐 2 everywhere on 𝑇 1. Plus, 𝑠 𝑎 and 𝑠 𝑏 can be represented as 𝑠 𝑎 (𝑡) = Thanks to the nice dependence of the solution on the initial data, the distance between the curves 𝑠 𝑎 and 𝑠 𝑏 is comparable to |𝑠 𝑎 -𝑠 𝑏 |. The same is true about 𝜃 1 and 𝜃 2 . So we have dist 𝐺 dist 𝑅 ≈ |𝑠𝑎-𝑠 𝑏 | |𝜃 1 -𝜃 2 |

𝑡 0 𝑤 𝐺𝑎 (𝑧(𝑡))𝑑𝑡, 𝑠 𝑏 (𝑡) = 𝑡 0 𝑤 𝐺 𝑏 (𝑧(𝑡))𝑑𝑡.

  |𝑎-𝑏| | θ1 -θ2 | . Therefore dist 𝐺 |𝜃 1 -𝜃 2 | dist 𝑅 |𝑠 𝑎 -𝑠 𝑏 | ≈ |𝑎 -𝑏||𝜃 1 -𝜃 2 | |𝑠 𝑎 -𝑠 𝑏 || θ1 -θ2 | . (35)Denote labels of the lids of the tile 𝜃 𝑙 , 𝜃 𝑟 , 𝑠 𝑢 and 𝑠 𝑑 , the indices stand for left, right, up and down, 𝑠 𝑢 = 𝑠 𝑘 and 𝑠 𝑑 = 𝑠 𝑘+1 . By the construction of intermediate curves we have|𝑠 𝑎 -𝑠 𝑏 | = |𝑠 𝑘+1 -𝑠 𝑘 | |𝑎 -𝑏| ℎ 𝑘 and |𝜃 1 -𝜃 2 | = |𝜃 𝑙 -𝜃 𝑟 | | θ1 -θ2 | 𝑥 𝑘 . 𝑏||𝜃 1 -𝜃 2 | |𝑠 𝑎 -𝑠 𝑏 || θ1 -θ2 | = ℎ 𝑘 |𝑎 -𝑏||𝜃 𝑙 -𝜃 𝑟 || θ1 -θ2 | 𝑥 𝑘 |𝑠 𝑘+1 -𝑠 𝑘 ||𝑎 -𝑏|| θ1 -θ2 | = ℎ 𝑘 𝑥 𝑘 |𝜃 𝑙 -𝜃 𝑟 | |𝑠 𝑘+1 -𝑠 𝑘 | .The ratio ℎ 𝑘 𝑥 𝑘 by the construction is constant for the tiles of the same type, so it is a global constant (which depends on 𝛼) and does not depend on 𝑘. Therefore it is left for us to check that|𝑠 𝑘+1 -𝑠 𝑘 | ≈ |𝜃 𝑙 -𝜃 𝑟 |. (36)complete the definition of green curves 𝑠 𝑘 by joining 𝜁 1...12 , where . . . are 𝑘 -2 "1"s, with 𝑠(𝜁 1...12 ). We do something similar to when we were inventing the curve (𝜁 114 , 𝜁 121 ). Draw a curve joining 𝜁 12 with 𝑠(𝜁 12 ) such that a) it is symmetric with respect to {𝑥 = -1/2} and at 𝑥 = -1/2 it has horizontal tangent, b) smooth, c) has twice the length of [𝜁 12 , 𝜁 13 ], 2 𝑙 cos 𝛼 , d) in small (radius much smaller than 𝑙 2 ) ball centred at 𝜁 12 , the curve is symmetric to the segment [𝜁 12 , 𝜁 13 ] with respect to the axis (𝑧 12 , 𝜁 121 ), e) the curve stays inside a small neighbourhood of the line 𝑦 = Im(𝜁 12 ), where small means, say, at distance less than Im(𝜁 12 )-Im(𝜁 113 ) 2

	So (35) transforms into
	|𝑎 -
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I am very grateful to my PhD thesis advisor, Professor Guy David, for introducing me to the problem, and for fruitful discussions. Many thanks both to him and to Antoine Julia for reading and making useful suggestions to improve the earlier versions of this manuscript. We can do versions without the restriction 𝛼 = 𝜋 𝑁 , 𝑁 ≥ 4 ∈ N, as well, but this is less elegant. For example, we could start with a regular polygon and treat all its sides as initial segments 𝐼 = [𝑧 1 , 𝑧 2 ], build snowflakes on them, tile their neighbourhoods like we did in Section 4, and then do some gluing with tiles of another type around vertices of the initial polygon like we did for our non-compact versions of the snowflakes in the previous section. Once again, we just give a sketch f tiling around the snowflake, see figure 23.

The case of the classical Koch snowflake with the angle 𝛼 = 𝜋/3 is not covered by Theorem 1. "Going to a limit" using precisely the construction we have above does not work for the following reason. Consider the curve 𝑠 2 which we use later as a model to construct all other approximating curves 𝑠 𝑘 . As 𝛼 goes to 𝜋/3, points 𝜁 113 and 𝜁 123 , as well as 𝜁 114 and 𝜁 122 , get closer and closer to each other. This means that at 𝛼 = 𝜋/3 segments [𝜁 113 , 𝜁 114 ] and [𝜁 122 , 𝜁 123 ] are the same, so different parts of our curve are glued together, and instead of a proper part of a curve we have three green segments [𝜁 112 , 𝜁 113 ], [𝜁 113 , 𝜁 114 ] and [𝜁 123 , 𝜁 124 ] which stick out from the same point 𝜁 113 = 𝜁 123 . See figure 24.

This also implies that the green sides of our tile 𝑇 2 get more and more distorted, and that red sides of tiles get shorter and shorter: in fact, their length tends to zero when 𝛼 tends to 𝜋/3. Since the constant 𝐶 in the inequality (2) we aim for can be roughly estimated as the ratio of the length of an upper green lid of a tile and the length of a red lid of a tile, we see that the constant 𝐶 = 𝐶 𝛼 indeed tends to infinity as 𝛼 goes to 𝜋/3, as

Good elliptic operators on snowflakes

Polina Perstneva * October 17, 2023

Abstract

We construct elliptic operators with scalar coefficients on the complements (R 2 ∖ 𝑆) + of some Koch-type snowflakes 𝑆, whose Hausdorff dimensions cover the full range (1, ln (4)/ ln (3)), such that the operator's elliptic measures are equal to the Hausdorff measure on the boundary. This provides another example of the phenomenon that, though purely unrectifiable boundaries of domains are often characterised by the harmonic measure being singular with respect to the Hausdorff measure on the boundary, for some purely unrectifiable boundaries one can construct an elliptic operator whose elliptic measure behaves in a drastically different way. Plus, in R 2 , this operator can be chosen in a way that its coefficient is scalar, as opposed to a 2 × 2 matrix-valued one. 2 Building the coefficient 𝑎 from the level lines of a Green function

Contents

In this section we describe how to construct (locally) the scalar coefficient 𝑎 from a function 𝑢 in such a way that div𝑎∇𝑢 = 0. The procedure is somewhat geometric, and will rely mostly on the level lines of the function 𝑢. Furthermore, it will be explained how certain properties of the family of level lines of 𝑢 are translated to the properties of the coefficient 𝑎. Therefore, in a general perspective, our goal will be to construct a function 𝑢, which will end up being the Green function with the pole at infinity (a universal solution in some sense of the equation div𝑎∇• = 0), with certain desired properties. So that, at the end of the day, the restored coefficient 𝑎 will satisfy all the conditions in Theorem 1. This part of the proof of Theorem 1 is the same as for the analogous result of David and Mayboroda about the four-corner Cantor set, and this Section repeats Section 2 in [8] for the sake of completeness and probably makes some parts of it a little clearer.

= cos

To summarise, the exact condition we impose on the curve (𝜁 114 , 𝜁 122 ), in addition to the symmetry and the length conditions, is that (𝜁 114 , 𝜁 122 ) is a graph of a (continuous and smooth except for a finite number of points) function 𝑓 1 and that 𝑓 1 admits (19). To complete the list above, we will call it condition d).

Again, observe that

and we could have even defined all the points of the third generation on 𝑆 3 𝛼 using this relation as a definition: By [START_REF] Semmes | Analysis vs. geometry on a class of rectifiable hypersurfaces[END_REF] we have

Computing |𝜃 𝑙 -𝜃 𝑟 | is a little bit more subtle. To do this we need to trace back the history of the red sides of our tile 𝑇 and find where they cross the curve 𝑠 2 , since its natural parameterization serves as the global labeling of red curves. Luckily we are not interested in the exact values of 𝜃 𝑟 and 𝜃 𝑙 , only their difference is important, so the matters are slightly easier than that. By the construction of tiles in the stripe 𝑆𝑡(𝑠 𝑘 , 𝑠 𝑘+1 ), the upper green lid has length 2 𝑙 𝑘 cos 𝛼 , and the lower green lid has length 8 𝑙 𝑘+1 cos 𝛼 . So the piece of 𝑠 𝑘 between θ𝑙 and θ𝑟 in "local" coordinates, or 𝜃 𝑙 and 𝜃 𝑟 in the global coordinates, has length 2 𝑙 𝑘 1 cos 𝛼 . By definition of intermediate red curves, the piece of 𝑠 𝑘-1 between 𝜃 𝑙 and 𝜃 𝑟 has length 2

Tracing back by induction the length of pieces of curves between 𝜃 𝑙 and 𝜃 𝑟 , we'll have that on 𝑠 2 the length between 𝜃 𝑙 and 𝜃 𝑟 is

Recall that we have |𝑠 𝑘+1 -𝑠 𝑘 | ≈ 𝑙 𝑘𝑑 . The Hausdorff dimension 𝑑 of the snowflake is ln ( 4) ln (1/𝑙) , so 𝑙 -𝑑 = 4, which implies that (36) holds. 7 The proof of the main theorem Before we finally prove Theorem 1, we need to complete the net of green and red curves on the whole upper-space for both types of our snowflake 𝑆 𝛼 announced in the introduction -𝑆 1 𝛼 and 𝑆 2 𝛼 . We start with 𝑆 1 𝛼 , because, after we deal with it, it is going to be clear how to deal with 𝑆 2 𝛼 as well. Recall the definition of 𝑆 1 𝛼 from p. 5. First, take as the initial set 𝐼 the snowflake

, where 𝐻 𝑙 is the scaling transform with the coefficient 1/𝑙 defined by (10) and the center -1/2. By induction, define (𝑆 𝛼 ) 𝑛 = 𝐻 𝑙 ((𝑆 𝛼 ) 𝑛-1 ). Finally, we define

See figure 3. This definition also extends our green and red curves {𝑠 𝑘 } and {𝜃 𝑤 }. Indeed, for example, the set ∪ 𝑛≥0 𝐻 𝑛 𝑙 (𝑠 𝑘+𝑛 ) extends the green curve 𝑠 𝑘 to the whole half-plane {𝑥 ≥ 0} (to be more precise, to the right of the point 𝜁 1...12 with 𝑘 -2 "1"s). To extend the curve 𝑠 𝑘 to the left of the interval [-1/2, 1/2], we just reflect the whole picture with respect to {𝑥 = -1/2}, as in (37). If a point 𝑝 lies on the half-space {𝑥 ≥ -1/2}, we refer to the point symmetric to it with respect to {𝑥 = -1/2} as to 𝑠(𝑝). Note that we still need to