
HAL Id: tel-04390337
https://theses.hal.science/tel-04390337v1

Submitted on 12 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Early Timing and Energy Prediction and Optimization
of Artificial Neural Networks on Multi-Core Platforms

Quentin Dariol

To cite this version:
Quentin Dariol. Early Timing and Energy Prediction and Optimization of Artificial Neural Networks
on Multi-Core Platforms. Electronics. Nantes Université, 2023. English. �NNT : 2023NANU4033�.
�tel-04390337�

https://theses.hal.science/tel-04390337v1
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

NANTES UNIVERSITÉ

ÉCOLE DOCTORALE NO 641
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Électronique

Par

Quentin DARIOL
Early Timing and Energy Prediction and Optimization of Artificial
Neural Networks on Multi-Core Platforms

Thèse présentée et soutenue à Nantes, France, le 27/11/2023
Unité de recherche : IETR UMR CNRS 6164

Rapporteurs avant soutenance :

Prof. Dr. Matthias JUNG Full professor, Würzburg Universität, Germany
Dr. Angeliki KRITIKAKOU Associate professor - HDR, IRISA/INRIA, Université de Rennes, France

Composition du Jury :
Président : Prof. Dr. Frédéric PÉTROT Full professor, TIMA, Université Grenoble Alpes, France
Examinateurs : Dr. Kim GRÜTTNER Head of department, German Aerospace Center (DLR), Germany

Prof. Dr. Matthias JUNG Full professor, Würzburg Universität, Germany
Dr. Angeliki KRITIKAKOU Associate professor - HDR, IRISA/INRIA, Univ. Rennes, France
Prof. Dr. Gregor SCHIELE Full professor, Duisburg-Essen Universität, Germany

Dir. de thèse : Prof. Dr. Sébastien PILLEMENT Full professor, IETR, Nantes Université, France
Encadrant : Dr. Sébastien LE NOURS Associate professor - HDR, IETR, Nantes Université, France

Invité :

Dr. Domenik HELMS Principal scientist, German Aerospace Center (DLR), Germany

Table of Contents

Résumé long 17

Acknowledgement 25

I Introduction 27
I.1 Context . 27

I.1.1 Artificial Intelligence (AI) and Neural Networks (NNs) 27
I.1.2 Internet of Things (IoT) and TinyML 29
I.1.3 Available platforms at the edge . 30
I.1.4 NN deployment on embedded platforms 33

I.2 Research challenges . 35
I.3 Contributions . 35
I.4 Organization . 36

II Related work 39
II.1 Evaluation of NN deployments on edge platforms 39

II.1.1 Rapid prototyping . 40
II.1.2 Evaluation using models . 43

II.2 Design Space Exploration (DSE) . 50

III Work hypothesis 53
III.1 Considered types of NNs . 53
III.2 Description of NNs in Synchronous Data Flow (SDF) 57

III.2.1 SDF Model of Computation (MoC) 57
III.2.2 Modeling of NNs in SDF . 59

III.3 Model of Architecture (MoA) . 62
III.3.1 Composition of the MoA . 62
III.3.2 Power management within the MoA 65

3

TABLE OF CONTENTS

III.4 Mapping of NNs modeled in SDF on platforms respecting the MoA . . . 67
III.5 Real platform prototype implementation and considered applications . . 69

IV Simulation-based timing properties prediction approach 75
IV.1 Timing modeling and prediction flow overview 75
IV.2 Computation time modeling approach . 78

IV.2.1 Analytical computation time models 78
IV.2.2 Measurement-based characterization approach for computation

time models . 82
IV.3 Communication time modeling approach 84

IV.3.1 Analytical timing model for token production/reading in shared
memory . 84

IV.3.2 Message level communication time model 85
IV.3.3 Measurement-based characterization approach for the communi-

cation time model . 86
IV.4 Simulation model description in SystemC 87
IV.5 Experiment results . 89

IV.5.1 Tested scenarios . 89
IV.5.2 Pure analytical model for comparison against the simulation . . 90
IV.5.3 Validation results . 90

IV.6 Discussions . 93
IV.7 Conclusion . 96

V Power and energy modeling and analysis flow 99
V.1 Power modeling and analysis flow overview 99
V.2 Power model proposal . 101
V.3 Power model calibration . 107

V.3.1 Calibration methodology . 107
V.3.2 Application of the calibration and results 114

V.4 Integration in the simulation flow and energy prediction 118
V.5 Evaluation of the power modeling flow . 119

V.5.1 Analytical power and energy model for comparison 119
V.5.2 Evaluation on a fixed multi-core platform 120
V.5.3 Evaluation of the scalability in regards to the number of tiles

and private memory size . 127

4

V.6 Conclusion . 132

VI Design space exploration using the proposed timing and energy models135

VI.1 Proposed DSE flow overview . 135
VI.2 DSE using high level pure analytical models 140

VI.2.1 Proposed clustering optimization approach 140
VI.2.2 Proposed mapping optimization approach 142

VI.3 Demonstration of the use of the DSE flow 146
VI.4 DSE flow evaluation . 149

VI.4.1 Comparison of Branch & Bound-enhanced and exhaustive clus-
tering search . 149

VI.4.2 Comparison of Branch & Bound-enhanced and exhaustive map-
ping search . 151

VI.4.3 Use of pure analytical models for pruning 153
VI.5 Conclusion . 154

VII Conclusion 155

VII.1 Synthesis . 155
VII.2 Identified limitations . 158
VII.3 Perspectives . 158
VII.4 Ouverture . 160

List of publications 160

Bibliography 163

Appendices 175

A Considered NN clusterings and mappings to validate our models 175
B Place and route and utilization results of the different prototype platforms178
C Model of private memory size of tile . 184

5

LIST OF FIGURES

List of Figures

I.1 Typical organization of an IoT application. At the edge, data is read from
sensors. Usually the data is sent through the fog to the cloud (transfers 1
and 2), where it is processed using AI algorithms. The results of the AI
algorithm are then transmitted through the fog to the edge (3 and 4) to be
returned to the user (5). This figure was inspired by work presented in [17, 18]. 30

I.2 Schematic of generic multi-core platform architecture 32

I.3 Plots sorting notable CNN classifier architectures from the state of the
art. Graph (a) shows commonly used quantities to classify NNs. Graph (b)
shows preferred quantities to classify NNs deployed onto edge devices. The
data presented in this figure was obtained through the implementation and
measurement of the CNNs on a NVIDIA Jetson TX1. These results come
from the paper [28] (please refer to this paper for more information about
the presented CNNs). 32

I.4 Proposed modeling flow for the prediction of timing and power properties of
NNs deployed on multi-core platforms. The three main contributions of this
work are depicted in orange. 36

II.1 Diagram showing the main steps in a measurement-based approach aiming
at evaluating NN deployment on embedded platforms. This diagram takes
inspiration from [29]. 41

III.1 Example of a MLP. This NN is entirely constituted of dense layers, which are
composed of a set of neurons fully connected to the previous layer. In this
example, the MLP predicts that the input MNIST [11] image is a 2. 54

III.2 Example of a CNN. This NN is composed of convolution and pooling layers,
used to perform feature extraction in order to ease the classification process
performed by the dense layers placed afterwards. 54

6

LIST OF FIGURES

III.3 Illustration of the operations performed by a kernel convolution with a kernel
denoted K on an input image denoted I . 56

III.4 Illustration of the processing performed by a max pooling 2 × 2 layer on an
input image. 57

III.5 A simple SDF graph. Actors are depicted in green whereas communication
channels are depicted in blue. The element "Src" is the source of the SDF
graph and the element "Snk" is the sink. Black numbers sided next to actors
and hovering communication channels are the token rates of actors. The
graphical notation of the SDF graph in this figure are reused identically in
the rest of the figures of the manuscript. 58

III.6 Three different clusterings of a dense layer composed of 4 neurons. 1 corre-
sponds to the coarsest granularity, as the whole layer is encapsulated into 1
actor. 3 corresponds to the finest granularity, as every neuron is encapsulated
into 1 individual actor. 2 corresponds to an intermediate granularity between
1 and 3 . 60

III.7 Example of platform which subscribes into our MoA. The MoA is composed
of a set of tiles containing a single-core processor with private data and
instruction memory. A shared memory is available for communications between
tiles, which is accessed through a communication bus featuring an arbiter. . 62

III.8 The considered versions of the platform. Version 1 features polling-based
communications without the use of clock gating. Version 2 features interrupt-
based communications with the use of clock gating. Automates describing the
behavior of tiles when checking the availability of tokens respectively provided
in 3 and 4 and examples of activity diagram in 5 and 6 66

III.9 Three different mappings of a NN described in the SDF MoC on the considered
platform. 68

III.10 Block diagram of the prototype implementation platform used in this work. 70

7

LIST OF FIGURES

III.11 Experimental setup used in the scope of this thesis. The board is the ZCU102
UltraScale MPSoC+ [87]. 1 marks the two pins of PMOD bank (part of the
Inputs/Outputs of the FPGA) that we use as UART ports for our timing
measurement infrastructure (UART_TIME_TX signal on Figure III.10). 2
marks the UART-to-USB bridge device that we use to transmit the timing data
to our PC 3 marks the position of the probes for power measurements. Those
probes are positioned on the two pins of the VCCINT power supply shunt
resistor. 4 marks the R&S HMC8012 Digital Multimeter [88], which measures
the voltage across the VCCINT shunt resistor. 5 marks the connection
between the multimeter and the PC. The multimeter can be operated through
Standard Commands for Programmable Instruments (SCPI). 6 marks the
connection of the board to the PC. This connection is used to program
and debug the board. The UART_TX and UART_RX signals as shown in
Figure III.10 are implemented on this connection. 70

III.12 The considered NN applications described as SDF graphs with the coarsest
level of granularity (layer grain, in which every layer’s clustering is C = 1).
We considered 3 MLPs and 1 CNN. The graphs on this figure do not feature
a decoder actor due to the last layer’s clustering being C = 1. 72

IV.1 Overview of the timing modeling flow. A mapping of clusterized NN onto
the platform is evaluated using an executable model described in SystemC,
which uses separate computation and communication time models for delay
prediction. These two models are characterized through measurements. The
prediction of the models are validated against real measurements. The new
contributions to the flow are marked with the ☀ symbol. 76

IV.2 Extraction of the analytical computation time model for dense layers from
NNs described as SDF graphs. The pseudo-code of the dense layer den1 is
provided. The elementary delays DΣ, Dφ and Dsetup can be identified from
the code. 79

IV.3 Extraction of the analytical computation time model for convolution lay-
ers from NNs described as SDF. The pseudo-code of the convolution layer
conv issued from the SDF graph presented in Figure IV.2 is provided. The
elementary delays D∗, Dφ and Dsetup can be identified from the code. 80

8

LIST OF FIGURES

IV.4 Extraction of the analytical computation time model for max pooling layers
from NNs described as SDF graphs. The pseudo-code of the max pooling
layer pool issued from the SDF graph presented in Figure IV.2 is provided.
The elementary delays Dmax and Dsetup can be identified from the code. . . . 81

IV.5 Examples of plots obtained from the calibration of the analytical computation
time model for dense layers. The measurements are obtained on a tile consisting
of a MicroBlaze core and its private memory. The MicroBlaze code and data
are stored entirely in the private memory (in compliance with the MoA). The
plot on the left shows the evolution of the execution time of a neuron based
on the number of inputs it has. The plot on the right shows the evolution of
the execution time of an actor based on the number of neurons it contains
(with a fixed number of inputs). Plots in this figure represent a subset of the
tested parameters and measured data, on which multi-linear regression was
applied. 82

IV.6 Illustration of the message level communication time model from [68] com-
pared to a transaction level model. The diagram shows the calls to the
communication time model that need to be performed in order to predict the
time spent by a tile to undertake a write operation of k tokens on the shared
memory with a waiting period. 86

IV.7 Illustration of the use of the SystemC model to simulate the execution of a
NN mapped onto a multi-core platform. The simulation calls the computation
or communication time models based on the delay that need to be predicted. 88

9

LIST OF FIGURES

IV.8 Predicted end to end latency and throughput by the simulable model for the
considered MLP mappings. The prediction error against measurements in
absolute and percentage is also provided for every mapping. On the plot of the
latency, the % of time spent on average by cores during the execution of the
application in computation, read and write and waiting phases are depicted.
In X-axis, information about the tested mapping is provided: the top number
Mi is the mapping index, which can be used to find more information about
the mapping in appendix to this manuscript. The number Cm below Mi is
the communication mode - P stands for polling, while I stands for interrupt.
The number of tiles used is indicated by the indice of T . Then respectively
the number of actors A in the SDF graph and the average time spent in
communication by tiles Cr (combination of read/write time and wait time)
are provided. 91

IV.9 Predicted end to end latency and throughput by the simulable model for the
considered CNN mappings. The absolute prediction error against measure-
ments is also provided for each mapping. More information about the legend
of the plots can be found in the caption of Figure IV.8. 92

V.1 Overview of the methodology to obtain a power model for power and energy
prediction of NNs on multi-core platforms. 100

V.2 Estimation of power consumption in regards to the phase of tiles during the
execution of NN mappings. Possible phases are: computation, read/write on
shared memory and waiting for buffer availability. The estimation of power
consumption on the bottom right of the figure is provided for a platform
without power management (△). 102

V.3 Extract of the measured power consumption profiles (in W) for tiles in
computation, shared memory access and clock gated phases. The provided
data include both static and dynamic power consumption. Graph (a) provides
the profiles for tiles tested individually, which correspond to the configurations
II of Equation V.19. Graph (b) provides the profiles for tiles progressively
enabled all together, which corresponds to the configurations marked III . The
configuration I can also be seen on the graph (b): it corresponds to the static
power consumption, obtained when 0 tile is executing. The reader can refer
to Equation V.19 for more information on the different tested configurations.
The plots also show the proposed calibrated model. 115

10

LIST OF FIGURES

V.4 Extract of data gathered from XPE estimates showing the evolution of
estimated power consumption of one tile based on its private memory size.
The power consumption of the tile as estimated by XPE is depicted using
orange dots. In orange dash lines with cross markers, our proposed model
of one tile depending on its private memory size is provided. The power
consumption of the core of the tile (MicroBlaze block) is depicted in green,
and the interface between MicroBlaze and private memory (in blue). 116

V.5 Predicted power and energy consumption by the simulable model for the
considered MLP mappings. The prediction error in absolute value is also
provided for each mapping. In X-axis, information about the tested mapping
is provided: the top number Mi is the mapping index, which can be used to
find more information about the mapping in appendix of this thesis. The letter
Cm below Mi is the communication mode - P stands for polling (without
power management), while I stands for interrupt (with). The number of tiles
used is indicated by the indice of T . Then respectively the number of actors
A in the SDF graph and the average time spent in communication by tiles
Cr (combination of read/write time and wait time) are provided. 121

V.6 Predicted power and energy consumption by the simulable model for the
considered CNN mappings. The absolute prediction error is also provided for
each mapping. More information about the legend of the plots can be found
in the caption of Figure V.5 . 123

V.7 Predicted and measured static power consumption for the considered multi-
core platforms. 129

V.8 Predicted and measured static power consumption for the considered single-
core platforms. 129

V.9 Predicted and measured system power (including static and dynamic) and
energy consumption for the considered mappings on multi-core platforms. . . 130

V.10 Predicted and measured system power (including static and dynamic) and
energy consumption for the considered mappings on single-core platforms. . 131

VI.1 Proposed DSE flow, which is organized in two main phases: first the design
space is pruned using analytical models, and then selected mappings are
evaluated using the simulation-based flow. 137

VI.2 Illustration of the clustering exploration process on the MLP2. The number
inside actors is the number of neurons they contain. 141

11

VI.3 Example of the mapping formulation used in our DSE flow for a mapping of
CNN1. 143

VI.4 Mapping exploration flow . 144

VI.5 Graph and table showing the highest score mappings found for the MLP1. In
(a), the graph shows the predicted execution time and energy of the 50 highest
ranked mappings based on the phase in the flow. As a reminder, in phase 1,
pure analytical models are used, whereas in phase 2, the simulation-based
evaluation flow is used. In (b), the score, encoding with respects to Figure VI.3
and communication mode of the 10 highest ranked mappings are provided. For
the communication mode, P stands for polling (without power management),
I stands for interrupt (with power management). 146

VI.6 Graph (a) and table (b) showing the highest score mappings found for the
CNN1. Refer to the caption of Figure VI.5 for more details. 147

VI.7 Graph (a) and table (b) showing the highest score mappings found for the
CNN2. Refer to the caption of Figure VI.5 for more details. 147

A.1 Illustration of the different clusterings considered for the validation of the
models for MLP1. "A" corresponds to the number of actors in the clustering
and "CC" to the number of communication channels. Note: due to the density
of the communication channels on the clustering MLP1-C7 the number of
tokens have been indicated only once for each actor (all communication
channels issued by the same actor have the same number of tokens). 176

B.2 Place and route and utilization results of the different prototype platforms
we considered for the evaluation of the power modeling flow. These platforms
are used to evaluate scalability of the power modeling flow in consideration
of multi-core platforms with varying sizes (in regards to number of tiles and
private memory size). 178

B.3 See Figure B.2 caption and legend. 179

B.4 See Figure B.2 caption and legend. 180

B.5 See Figure B.2 caption and legend. 181

B.6 See Figure B.2 caption and legend. 182

B.7 See Figure B.2 caption and legend. 183

12

LIST OF TABLES

List of Tables

II.1 Summary of main features of approaches from the state-of-the-art. In this
table, evaluated quantities are provided in initials: QoS designates the Quality
of Service (i.e. functional properties, and especially classifier’s accuracy), T
designates the timing properties (inference time, throughput), E designates
the power consumption and energy, M designates memory, and A designates
area (relevant for approaches using FPGAs). 49

III.1 Main features of nine different multi-core platforms. When communicated by
the chip provider, the core type, number of cores, core frequencies, memory
sizes, communication medium and possible HW accelerator are provided in
this table. 64

III.2 Number of layers, data-set and classification accuracy of the considered NNs 71

IV.1 Calibrated elementary delays for the communication time model for polling
and interrupt-based communications. All delays are in processor cycle num-
ber. The delays that differ between the two communication procedures are
highlighted in bold. 87

IV.2 Observed average and maximum error against measurements on tested map-
pings regarding the end to end latency in processor cycles (L) and the
throughput in outputs/s (Φ). The column titled "# tested mappings" pro-
vides the total number of different mappings tested for each application.
All details about the tested mappings can be found in appendix. In this
table, the mappings using polling-based and interrupt-based communications
are combined. The evaluation time using the simulation flow is ≈ 20 s when
including compilation time. Without compilation time, it is in the order of
tenth of seconds. The evaluation time using pure analytical models is in the
order of ms. 92

13

LIST OF TABLES

IV.3 Summary of the average and maximum prediction error on latency (in absolute
value) of the simulation-based power modeling flow based on (a): the number
of cores used in the mapping (b): the communication rate. Similar results are
observed for throughput. 94

V.1 Observed average and maximum error on tested mappings regarding the
power consumption in W (P) and the energy consumption in mJ (E). The
column titled "# tested mappings" provides the number of tested mappings.
Each mapping is tested with and without power management. All details
about the tested mappings can be found in appendix of this manuscript. . . 122

V.2 Summary of the average and maximum prediction error on power consumption
of the simulation-based power modeling flow based on (a): the number of
cores used in the mapping and (b): the communication rate. 126

V.3 Dimensions of the different considered platforms. The value inside the table
indicate the size in kilobits of the private memory of tile. The symbol / means
that this tile is not used. 128

VI.1 Number of clusterings selected by the Branch & Bound enhanced search based
on their rank, with Tmax = 7 . 150

VI.2 Number of clusterings found by the enhanced search with Branch & Bound
based on their rank with Tmax = 7 . 150

VI.3 Number of mappings found by the Branch & Bound-enhanced search based
on their rank with Tmax = 3. The lower in the rank interval the higher the
score of the mapping. E.g. mappings that belongs in the < 1 % rank range
have a highest score than 99 % than the other mappings. 152

VI.4 Number of mappings found by the enhanced search with Branch & Bound
based on their rank with Tmax = 3 . 152

VI.5 Number of mappings found by the enhanced search with Branch & Bound
using the simulation-based flow with Tmax = 3 154

VI.6 Number of mappings found by the enhanced search with Branch & Bound
using the simulation-based flow with Tmax = 3 154

A.1 Considered clusterings of MLP1 for the validation of the models. The resulting
clusterings are illustrated in the Figure A.1. 175

14

LIST OF TABLES

A.2 Considered mappings of MLP1 for the validation of the models. The considered
clusterings identified based on "C_ID" are provided in Table A.1. "#T" is
the number of tiles for the mapping. "M_ID" is the identifier of the mapping
and "P" stands for polling-based communications whereas "I" stands for
interrupt-based communications. 175

A.3 Considered clusterings of MLP2 for the validation of the models. 176
A.4 Considered mappings of MLP2 for the validation of the models. The considered

clusterings identified based on "C_ID" are provided in Table A.3. "#T" is
the number of tiles for the mapping. "M_ID" is the identifier of the mapping
and "P" stands for polling-based communications whereas "I" stands for
interrupt-based communications. 176

A.5 Considered clusterings of MLP3 for the validation of the models. 177
A.6 Considered mappings of MLP3 for the validation of the models. The considered

clusterings identified based on "C_ID" are provided in Table A.5. "#T" is
the number of tiles for the mapping. "M_ID" is the identifier of the mapping
and "P" stands for polling-based communications whereas "I" stands for
interrupt-based communications . 177

A.7 Considered clusterings of the CNN for the validation of the models. 177
A.8 Considered mappings of the CNN for the validation of the models. The

considered clusterings identified based on "C_ID" are provided in Table A.7.
"#T" is the number of tiles for the mapping. "M_ID" is the identifier of the
mapping and "P" stands for polling-based communications whereas "I" stands
for interrupt-based communications. 177

C.9 Proposed model for private memory size needed for tile execution 184

15

RÉSUMÉ LONG

Contexte: La croissance importante du domaine de l’Internet des objets (IoT) s’accompagne
du besoin d’applications reposant sur l’utilisation d’algorithmes d’Intelligence Artificielle
(IA) et en particulier de Réseaux de Neurones artificiels (NNs). Habituellement, les NNs
sont exécutés au niveau du cloud des applications IoT, car il contient une quantité suffisante
de ressources de calcul pour permettre une exécution rapide et efficace. Toutefois, cela
nécessite la transmission des données récoltées par les capteurs du niveau edge jusqu’au
cloud pour le traitement. Les résultats du NN sont ensuite retransmis du cloud jusqu’à
l’edge pour être communiqués à l’utilisateur de l’application. Les tendances actuelles visent
plutôt à déployer les algorithmes d’IA au niveau edge en supprimant ainsi les transferts
de données coûteux entre edge et cloud, permettant notamment l’amélioration du temps
d’exécution et de la consommation énergétique.

Cela n’est néanmoins pas une tâche aisée, car les plates-formes embarquées disponibles
au niveau edge ont des ressources de calcul et de mémoire limitées ainsi qu’un budget
strict en termes de temps et d’énergie, et les NNs sont gourmands en calcul et en mémoire.
Pour trouver des solutions qui optimisent les performances, l’énergie et l’utilisation des
ressources, plusieurs approches d’évaluation et optimisation des NNs au niveau edge ont
déjà été proposées. Beaucoup se concentrent sur le prototypage rapide, qui vise à déployer
et caractériser par la mesure les déploiements de NNs sur cible réelle. Ce type d’approche
requiert cependant un effort conséquent car de nombreuses solutions potentielles doivent
être déployés et testés sur la plateforme cible. La technologie de mise en œuvre est également
figée en raison de la nécessité d’avoir la plate-forme réelle dans la boucle, ce qui limite les
possibilités en ce qui concerne l’exploration architecturale.

Pour ces raisons, d’autres approches ont été proposées, se basant sur des modèles
analytiques purs qui permettent une exploration rapide et efficace des accélérateurs
matériels pour les NN. Ces approches peuvent par contre difficilement être appliquées sur
les plateformes multicœurs, qui sont des cibles d’implémentation privilégiées au niveau
edge. Sur les plateformes multicœurs, les accès concurrents des cœurs de traitement aux
ressources partagées occasionnent des contentions, qui impactent le temps d’exécution et
l’énergie consommée. Pour l’exécution en pipeline des NNs sur les plates-formes multicœurs,

17

LIST OF TABLES

plusieurs aspects rendent difficile l’évaluation des propriétés non fonctionnelles :

(1) l’expression et l’utilisation de différents parallélismes de NNs tels que le parallélisme
intra- et inter-couche (pipeline) qui doivent être convenablement modélisés pour
permettre l’optimisation de l’exécution.

(2) les conflits des cœurs de traitement pour accéder aux ressources partagées telles
que le bus et la mémoire qui peuvent également survenir lorsque plusieurs cœurs
tentent d’y accéder simultanément, ce qui entraîne des sur-coûts importants en
termes de temps et d’énergie qui doivent être correctement modélisés,

(3) L’architecture de la plateforme : le nombre et les types de composants (cœurs,
mémoire, bus, périphériques) ont un effet important sur les propriétés temporelles
et la consommation d’énergie qui doit être correctement modélisé.

(4) le comportement dynamique du système, où les cœurs exécutent différentes phases
(calcul, communication) et peuvent être activés ou désactivés (par exemple via
l’utilisation du clock gating).

(5) les différentes charges de calcul/communication liées au NN d’entrée, les NNs
pouvant avoir différents nombre, types et tailles de couches.

Outre les défis liés à l’évaluation, il existe un grand nombre de déploiements possibles
d’un NN sur une plateforme multicœur. Les plateformes au niveau edge ont souvent de
fortes contraintes de temps et d’énergie, et une exploration intensive du vaste espace de
conception est donc nécessaire pour trouver des déploiements qui respectent ces contraintes.
Il est nécessaire de proposer un flot automatisé d’exploration de l’espace de conception
(DSE) permettant une évaluation rapide et fiable des différents déploiements, en tenant
compte des enjeux susmentionnés, afin d’identifier des solutions optimisées. Ce flot doit
notamment permettre de :

(1) Trouver des déploiements optimisés de NNs sur une plateforme fixe spécifiée par
l’utilisateur,

(2) Optimiser conjointement les dimensions de la plateforme matérielle (nombre de
cœurs, taille des mémoires) et le déploiement logiciel des NNs.

Enjeux de recherche: Le travail présenté dans le cadre de cette thèse vise à répondre
aux questions de recherche suivantes :

(I) Comment fournir une évaluation rapide et précise en amont des phases de concep-
tion des propriétés temporelles et de l’énergie des déploiements de NNs sur des

18

LIST OF TABLES

plateformes multicœurs ?

(II) Est-ce qu’une approche basée sur des modèles est plus pertinente que le prototypage
rapide ?

(III) Une approche basée sur les modèles est-elle adaptée à l’exploration rapide et fiable
de l’espace de conception (DSE) des déploiements de NNs sur des plateformes
multi-cœurs ?

Proposition: Nous présentons un flot complet de prédiction et d’optimisation des
propriétés temporelles et de l’énergie qui combine plusieurs approches de modélisation. Le
flot proposé permet d’optimiser l’occupation des ressources sans dégrader les performances
des NNs mis en œuvre. Ces travaux permettent d’aboutir aux contributions suivantes :

(1) Un flot de modélisation hybride pour les propriétés temporelles. Ce flot s’appuie
des modèles analytiques décrivant les phases de calcul et de communication des
cœurs exécutant des NNs. Ces modèles sont calibrés par la mesure et utilisés dans
une simulation de haut niveau qui permet de prendre en compte les ressources
partagées.

(2) Un flot de modélisation de la puissance et de l’énergie, qui se base sur la caractéri-
sation par la mesure et les traces d’exécution estimées par le flot de prédiction du
temps.

(3) Un flot d’Exploration de l’Espace de Conception (DSE) qui utilise des modèles
analytiques de haut niveau d’abstraction pour trouver des implémentations de
NNs optimisées. Le flot de modélisation proposé en (1) et (2) est ensuite utilisé
pour correctement classer les solutions sélectionnées et ainsi retourner les meilleurs
implémentations candidates.

Hypothèses de travail: Dans cette thèse, nous nous concentrons sur l’étude des Multi-
Layer Perceptrons (MLPs) aussi appelés réseaux entièrement connectés ainsi que sur les
Réseaux Neuronaux Convolutifs (CNN). Afin de faciliter le processus de déploiement,
d’analyse et d’optimisation des NNs, nous les modélisons dans un Modèle de Calcul (MoC)
orienté flot de données appelé Synchronous DataFlow (SDF). Nous expliquons notamment
comment nous décrivons les NNs avec différents niveaux de granularité, appelés clusterings,
qui définissent le nombre de groupes de neurones générés par couche du NN. Le clustering
exprime le parallélisme intra-couche des NNs, permettant l’exécution des neurones en
parallèles, mais occasionnant davantage de communications.

19

LIST OF TABLES

Nous utilisons un Modèle d’Architecture (MoA) basée sur des tuiles pour les plateformes
multicœurs, qui comprend un nombre de tuiles défini par l’utilisateur, ainsi qu’un bus et une
mémoire partagée. Le MoA peut aussi intégrer l’utilisation de gestion de la consommation
par le biais du "clock gating" et l’utilisation d’un signal d’interruption. Les NNs sont
programmés sur les plates-formes qui souscrivent à notre MoA en affectant aux cores
les phases de calcul des neurones et les canaux de communication en mémoire. Cette
étape s’appelle le mapping et elle permet d’exploiter le parallélisme intra-couche issu du
clustering et également le parallélisme inter-couche (exécution en pipeline) des NNs - en
mappant les différentes couches sur des cœurs différents.

Pour mener nos expériences (calibration et validation des modèles), nous avons mis
au point un prototype de plateforme multicœur sur FPGA UltraScale. Cette plateforme
est constituée d’un ensemble de tuiles comportant un coeur de calcul MicroBlaze et sa
mémoire locale privée de données et d’instructions, d’un bus partagé AXI et d’une mémoire
partagée. Cette plateforme est dotée d’une infrastructure de mesure du temps et de la
puissance. Pour la validation de notre approche, nous considérons 4 NNs dont 3 MLPs aux
caractéristiques différentes et 1 CNN. Nous avons testé un total de 54 mappings différents
issus de ces 4 NNs.

Prédiction des propriétés temporelles: Nous présentons une méthodologie de mod-
élisation permettant de prédire les propriétés temporelles, telles que la latence et le
débit pour les NN déployés sur des plates-formes multicœurs qui respectent notre modèle
d’architecture. La principale contribution de la méthodologie proposée est d’offrir des
prédictions rapides et précises des propriétés temporelles en étant scalable vis à vis:

— du NN considéré en entrée,
— du clustering/mapping de ce NN,
— du nombre de tuiles utilisées,
— de la quantité de calcul/communication,
— de différentes procédures de communication (scrutage ou interruption).

Ce flot s’appuie sur des modèles analytiques décrivant les phases calculatoires et de
communications sur la plateforme lors de l’exécution des NNs, sur la calibration par la
mesure, et sur la simulation pour modéliser les ressources partagées. La combinaison de
ces différentes approches de modélisation permet d’aboutir à un modèle hybride rapide à
exécuter et offrant une grande précision et modularité. Les modèles analytiques de temps
de calcul pour les NN décrivent les opérations exécutées dans les couches. Les prédictions

20

LIST OF TABLES

sont confrontées à des mesures obtenues lors de l’implémentation sur cible réelle. Pour les
54 mappings testés, les modèles proposés ont une précision de plus de 97%. Ils prennent
une durée de l’ordre de la centaine de millisecondes pour évaluer un mapping. Ce temps
d’évaluation monte à 20 s si on prend en compte le temps nécessaire pour compiler le
modèle exécutable. Pour comparaison, nous observons que notre infrastructure de mesure
automatique du temps d’exécution prend 40 s pour évaluer un mapping. Dans ce cas
là, les modèles permettent un gain de temps d’un facteur 2 vis à vis d’une approche de
prototypage rapide. Il est important de noter que le délai fourni pour le prototypage rapide
ne prend pas en compte le temps d’entrainement du NN et génération des fichiers sources
en C, de synthèse du FPGA, de génération du BSP et de compilation des librairies pour
supporter l’exécution de software sur la plateforme. De même le temps de calibration des
modèles n’est pas pris en compte.

Prédiction de l’énergie: Nous présentons un flot de prédiction de la puissance et
de l’énergie pour les NNs déployés sur des plateformes multicœurs qui respectent notre
MoA. Les modèles proposés s’appuient sur notre flot de simulation pour la prédiction
des propriétés temporelles. Il est utilisé pour prédire la puissance et la consommation
d’énergie en fonction des phases exécutées par les tuiles et de l’éventuelle contention des
ressources. Le modèle est obtenu par une phase de caractérisation par la mesure pour offrir
une modélisation précise de la consommation d’énergie dans les plateformes multi-cœurs.
Notre approche de modélisation combine la simulation et la caractérisation par la mesure,
ce qui permet d’obtenir un modèle scalable vis à vis du clustering, du mapping, de la
charge de travail en calcul et communication ainsi que l’utilisation de stratégies de gestion
de l’énergie. Le flot de prédiction de l’énergie peut être utilisé à deux fins:

(1) Évaluer et trouver des mappings de NNs optimisés sur une plateforme multi-cœur
fixe.

(2) Optimiser conjointement les dimensions de la plateforme multicœur (nombre de
tuiles, taille des mémoires) et le déploiement des NNs.

Nous présentons une étape de calibration complémentaire qui permet d’étendre
l’applicabilité du modèle aux plateformes avec différents nombres de tuiles et tailles
de mémoire privée, au prix d’un effort de caractérisation plus intensif. Nous évaluons notre
flot de modélisation de la puissance et de l’énergie sur les 54 mappings des 4 NN considérés.
Nous testons également son applicabilité sur 7 versions de plateformes différentes. Les
résultats montrent que le flot permet de prédire la puissance et l’énergie avec plus de 93 %

21

LIST OF TABLES

de précision. Les prédictions sont rapides, le modèle étant implémenté sous la forme d’un
script Python utilisé en post-processing du flot de modélisation des propriétés temporelles.
Le temps d’exécution du script est négligeable vis à vis du temps de compilation des
modèles de simulation, le temps d’évaluation restant donc de 20 s approximativement pour
la prédiction du temps et de l’énergie par mapping. Le flot de prédiction des propriétés
temporelles et de l’énergie que nous proposons permet de répondre aux questions de
recherche (I) et (II).

Exploration de l’Espace de Conception (DSE): Nous présentons un flot de DSE
permettant de chercher efficacement et d’optimiser les mappings de NNs sur les plateformes
multicœurs respectant notre MoA sous des contraintes définies par l’utilisateur pour les
propriétés temporelles et l’énergie. Le flot peut être utilisé de deux manières :

(1) Rechercher des clusterings/mappings optimisés pour les NNs déployés sur une
plateforme fixe spécifiée par l’utilisateur,

(2) Optimiser conjointement la plateforme concernant le nombre de cœurs et la taille
des mémoires, ainsi que l’implantation du logiciel (clustering/mapping des NNs).

L’objectif dans la mise en œuvre de ce flot est de démontrer comment des modèles à haut
niveau d’abstraction peuvent être utilisés pour rapidement explorer l’espace des solutions.
Le flot de DSE comprend 3 étapes:

(1) Explorer et sélectionner les clusterings optimisés du NN considéré. Bien que le
nombre de clusterings soit relativement limité, le nombre de mappings qui peuvent
être générés pour chaque clustering est très grand. Une limitation du nombre
de clusterings considérés est donc nécessaire. Cela est fait à l’aide de modèles
analytiques rapides d’exécution et à l’aide de l’utilisation de l’algorithme de Branch
& Bound.

(2) Explorer et sélectionner les mappings optimisés pour chaque clustering. L’espace
de conception des mappings est très large, cette étape est donc à nouveau menée à
l’aide de modèles analytiques rapides à exécuter et de l’algorithme de Branch &
Bound.

(3) Évaluer les mappings sélectionnés à l’aide du flot de modélisation proposé basé sur
la simulation. Ce dernier permet une évaluation rapide et précise des mappings,
et ainsi de les classer par temps d’exécution et énergie croissants. La liste des
mappings triée de cette façon est retournée à l’utilisateur. Notre flot offre également
la possibilité de générer le code C permettant l’inférence des mappings sélectionnés.

22

LIST OF TABLES

Nous appliquons notre flot de DSE à 5 NNs différents et discutons les résultats. Nous
comparons les résultats de notre flot vis à vis de l’exploration exhaustive pour un nombre
de cœurs réduits afin d’évaluer sa capacité à trouver les mappings les plus optimisés. Les
résultats mis en évidence par le flot de DSE proposé permettent de répondre à la question
de recherche (III).

23

ACKNOWLEDGEMENT

I would like to express my deepest gratitude to all those who have contributed to the
completion of this doctoral thesis. This journey has been as challenging as rewarding, and I
could not have succeeded without the support and encouragement of numerous individuals.
First and foremost, I am profoundly grateful to my advisors at Nantes Université, Prof. Dr.
Sebastien Pillement and Dr. Sebastien Le Nours, for their guidance, expertise, trust and
patience throughout the entire PhD program. Their insights and feedback have been
invaluable, shaping not only the content of this thesis but also my development as a
researcher. I extend my sincere appreciation to Dr. Kim Grüttner, Dr. Domenik Helms,
and Ralf Stemmer for their ongoing support and feedback throughout the program, and for
welcoming me in Oldenburg at the German Aerospace Center (DLR). I extend my thanks to
the members of my doctoral committee, Prof. Dr. Matthias Jung, Dr. Angeliki Kritikakou,
Prof. Dr. Gregor Schiele and Prof. Dr. Frédéric Pétrot for their constructive criticism and
insightful suggestions when reviewing my dissertation and during the PhD defense. The
collaborative environment at the IETR lab and DLR has been a crucial aspect of my
research experience, and I am grateful for the generosity and professionalism demonstrated
by my colleagues. In particular I express my gratitude to Sandrine Charlier, Marc Brunet
and Inge Kuper for their administrative and technical support.

Heartfelt appreciation goes to my father Rodolphe, my mother Sandrine, my sister
Oriane, and all other members of my family for their unwavering support and understanding
throughout this academic journey. Their encouragement has been a constant source of
strength, and I am grateful for their belief in my abilities. Last but not least, I extend
my gratitude to my great friends and colleagues, for their encouragement, camaraderie,
and occasional distractions that provided much-needed breaks during intense periods of
research: Rafal, Romain, (Alexis D.)2, Gaby, Gaël, Safouane, Hai Dang, May, Tamar,
Guillaume, Antoine, Corentin, Nolwenn, Juliette, Reem, Fatima, Oriane, Jules, Gourav,
Armel, Filippos, Magat, Katerina, Angela, Sony, Benedek, Sat, Linda, Ishan, Adrian,
Avinaash, Patrick, Jan, Thomas, Bewoayia, Jannick, Rolf, Georg, Henning, Frank, Gregor,
Bernd... I dedicate this work as well to all those I couldn’t mention, who have contributed
in one way or another to making this experience so enriching.

25

To my friend Simon

Chapter I

INTRODUCTION

I.1 Context

I.1.1 Artificial Intelligence (AI) and Neural Networks (NNs)

The interest for AI has grown tremendously in the last decade. As shown in the 2023
AI Index Report published by Stanford Institute for Human Centered-AI (HAI) [1], the
total number of publications on the AI topic has more than doubled since 2010. AI is
a concept first introduced in 1956 [2] to designate the simulation of human intelligence
in machines, allowing them to perform tasks that typically require human intelligence.
Products that implement AI have become part of our daily lives, as in 2022, one-third
of the US consumers owned a smart speaker [3], that integrate virtual assistants used to
perform home automation actions using AI-driven key word spotting in human speech [4].
Since the 2010s, we’ve been experiencing the third wave of AI:

1. The first wave of AI took place between the 40s and 60s. In 1943, the behavior of
human brain neurons was described for the first time by two psychologists in [5] as
a logical model. In the late 50s, the psychologist F. Rosenblatt [6, 7] did the first
hardware implementation of a single neuron called the Perceptron. Many consider
the work of F. Rosenblatt as the first record in human history of a machine that
implemented human-like learning process, through trial and error. This subset of AI
was later called Machine Learning (ML) [8]. It includes all algorithms which are not
programmed directly to solve a specific problem, but rather to learn by themselves
how to solve the problem. During this first wave, AI algorithms remained however
relatively simple, as it was impossible to train complex algorithms without advanced
training methods.

2. The second wave of AI in the 80-90s was triggered by the introduction of back-
propagation learning algorithm [9]. It rendered possible the adjustment of weights
from all layers of Multi-Layer Perceptrons (MLPs), thus rendering the training of

27

Introduction

more complex NNs possible. MLPs are NNs that are constituted of several layers of
percetrons (aka neurons). Using this new learning approach, Y. Le Cun introduced
in 1989 the first Convolutional Neural Network (CNN) [10] called LeNet. CNNs
use first a set of convolution and pooling layers for extracting data from input
images. The results of these layers are then passed to a MLP to classify the data.
Y. Le Cun showed that CNNs could be used reliably for the recognition of hand
written characters, and introduced several versions of the LeNet as well as the
handwritten database MNIST [11]. However, due to the lack of computational
power of hardware in this era and due to the lack of training data, more complex
AI applications were still impossible.

3. The third wave of AI started around 2010 and is still ongoing. It was rendered
possible by the fast evolution of hardware platforms, GPUs in particular. This
evolution of hardware enabled the training of much more complex NNs such as
AlexNet [12], a CNN featuring 62 million of parameters, against 60 thousand for
LeNet5. AlexNet started the third wave of AI by being the first winner of the
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [13] 1 in 2012. The
third wave of AI was also enabled thanks to such contests and the massive sharing
of data-sets on the Internet on websites like Kaggle 2.

NNs have become the reference ML algorithm nowadays to handle data classification
and regression problems. Their shape is inspired by biological NNs, in which large sets of
neurons are interconnected. Overall, NNs have revolutionized the field of ML and enabled
the development of a wide range of applications across various domains by providing a
flexible, data-driven approach to problem-solving that complements classical programming
techniques. They show high performance for pattern recognition and generalization in
large data-sets, are inherently capable of modeling non-linear functions, which are involved
in many real-world problem, and show high adaptability due to their resilience to noise
and variability in tested data and their ability to learn. NNs are applications with a high
degree of parallelism. They mainly have two types of parallelism 3:

— Intra-layer parallelism: NN layers are composed of neurons. The neurons are inde-

1. ILSVRC is held yearly since 2010, and makes software programs compete to reach the highest
classification accuracy on the ImageNet data-set introduced in 2009 [14]. ImageNet contains 1000 different
classes of objects organized in sub-trees, with numerous images for each class.

2. https://www.kaggle.com/, last accessed: 27.09.2023.
3. Some types of NNs have other forms of parallelism due to the nature of the calculations carried out

in the layers. This is discussed, for example, in [15].

28

https://www.kaggle.com/

Introduction

pendent of each other and can be executed in parallel.
— Inter-layer parallelism: although consecutive layers depend on each other, it is

possible to run different iterations of the NN simultaneously, in order to activate a
streaming (or in other words pipeline) execution of the NN.

Leveraging the two forms of parallelism is necessary to optimize the execution time
and consequently the energy of NNs. This is especially important for the execution of NNs
on embedded platforms, which have strong timing and energy constraints.

I.1.2 Internet of Things (IoT) and TinyML

The important growth of the Internet-of-Things (IoT) field comes with the need for
smart applications using NNs. The number of connected devices by 2030 is expected to
reach 29.4 billion [3]. This would represent a 350 % increase in the ongoing decade, as
their estimated number in 2019 was 8.6 billion. Usually NNs are executed at the cloud
level of IoT applications, as it provides sufficient amount of resources to support fast and
efficient execution. However, as shown in Figure I.1, executing NNs in the cloud requires
transmitting the data harvested by sensors at the edge through the fog level up to the
cloud (1 - 2). The results of the NN executions must then be transmitted again to the
edge through the fog (3 - 4) to finally be returned to the user (5). Current trends aim at
bringing the AI algorithm at the edge and thus removing transfers 1 to 4 [16]. Deploying
NNs at the edge represents an opportunity for improvement in many areas:

1. Response times with effect on latency (execution time) and throughput (number of
processed data per second), as data transmissions are costly in terms of time.

2. Power and energy consumption improvements, as data transmissions between the
different levels of IoT applications as well as the processing on the cloud are energy
intensive.

3. Security, as transmitted data can be intercepted.

4. Alleviation of data privacy issues, as data harvested by sensors can be stored on
the cloud and utilized without user’s knowledge,

5. Reduced bandwidth problems, as connectivity to the network vary depending on
the location and cannot be always ensured. Bandwidth shows also limitations for
transferring heavy data packets.

6. In line with the points mentioned above, for safety-critical systems, deployment

29

Introduction

Resources:

Energy cost:

Application
layer

Cloud

Fog
Networking

layer

Plenty

Heavy

Resources:

Energy cost:

Moderate

Moderate

Sensing
layer

Edge

Resources:

Energy cost:

Scarce

Low

Sensors

2

1

3

4

User
5

Server

Local network

Edge devices

Figure I.1 – Typical organization of an IoT application. At the edge, data is read from
sensors. Usually the data is sent through the fog to the cloud (transfers 1 and 2), where
it is processed using AI algorithms. The results of the AI algorithm are then transmitted
through the fog to the edge (3 and 4) to be returned to the user (5). This figure was
inspired by work presented in [17, 18].

at the edge is an absolute necessity to satisfy the stringent requirements of these
applications, e.g. real time constraints.

We mainly focus on points 1,2 and 6 in this work.

I.1.3 Available platforms at the edge

Various types of embedded platforms are available at the edge:

1. MicroController Units (MCUs): MCUs are low-power, cost-effective embedded
systems with limited processing power and memory. Notable MCU chip providers
are ST Microelectronics, NxP Semiconductors and Microchip. Other providers
such as GreenWaves Technologies have emerged to offer specialized MCUs for AI
processing.

2. MultiProcessor Units (MPUs): MPUs often offer more computing power than MCUs,
as they integrate multiple processing cores, GPU, memory, and peripherals onto a

30

Introduction

single chip. They offer a good balance of performance and power efficiency. Notable
examples include the GreenWave Technologies GAP9 SoC 4, the NVIDIA Jetson
series, such as the NVIDIA Jetson Nano 5, which is often used in academic work [19,
20], and the Qualcomm Snapdragon Series.

3. FPGAs (Field-Programmable Gate Arrays): FPGAs are programmable hardware
devices that can implement logical circuits. They offer high parallel processing
capabilities, making them attractive to implement hardware accelerators for NN
inference [21, 22, 23]. They also offer versatility due to their re-programmable
nature. Although FPGAs are sometimes used at the edge, their overall higher
power consumption as well as the important timing and energy overheads caused
by their reprogramming [24, 25] make them arguably more appropriate to be used
in the cloud. AMD and Intel (formerly Xilinx and Altera) are leading FPGA
manufacturers. It is worth noting that some products, called Multi-Processor SoCs
(MPSoCs), integrate a FPGA as well as a multi-core system onto the same chip e.g.
AMD Zynq7000 and UltraScale series, and Intel Cyclone series.

4. Edge AI accelerators: New chips have also emerged specifically for the processing of
NNs. Notable examples are the Intel Movidius Myriad aka Neural Compute Stick,
used in many academic works [26, 24, 27], the NVIDIA EGX Edge AI platform
and the Meta Training and Inference Accelerator (MTIA) 6.

Most of the aforementioned platforms are based on multi-core systems, with the
exception of the majority of MCUs, which are single-core. FPGA-based MPSoCs are multi-
processor, edge AI accelerators feature clusters of processing units, which executes very
similarly to multi-core platforms, the NVIDIA Jetson Nano features 4 ARM A57 cores and
the GAP9 has 10 RISC-V cores. Multi-core systems are quite naturally at the heart of all
these platforms, because they can perform calculations in parallel, which is a key feature for
the efficient execution of NNs. Multi-core platforms are thus a promising implementation
target for NNs. Figure I.2 gives a general schematic of the architecture of multicore
platforms. They contain several processing cores, which have their own private memory

4. The GAP9 features 10 RISC-V, 9 for AI acceleration, and 1 used as a controller. https:
//greenwaves-technologies.com/gap9_processor/, last accessed 09.10.2023.

5. The NVIDIA Jetson Nano features 4 ARM A57 processing cores and a 128-cores NVIDIA
Maxwell GPU, https://developer.nvidia.com/embedded/jetson-nano-developer-kit, last ac-
cessed: 09.10.2023.

6. The MTIA, as presented by Meta in May 2023, is an Application-Specific Integrated Circuits (ASIC)
dedicated to AI acceleration. It is based on an array of 64 PEs connected via a mesh network. https:
//ai.meta.com/blog/meta-training-inference-accelerator-AI-MTIA/, last accessed: 09.10.2023.

31

https://greenwaves-technologies.com/gap9_processor/
https://greenwaves-technologies.com/gap9_processor/
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://ai.meta.com/blog/meta-training-inference-accelerator-AI-MTIA/
https://ai.meta.com/blog/meta-training-inference-accelerator-AI-MTIA/

Introduction

Private
memory

Processing
Element

Shared
Memory

Other
Shared

Resources

...

Possible
power

management

ArbiterShared communication bus

Private
memory

Processing
Element

Private
memory

Processing
Element

Figure I.2 – Schematic of generic multi-core platform architecture

(a) CNNs sorted by operations, classification accu-
racy and number of parameters

9.5

10

10.5

11

11.5

12

12.5

13

13.5

0 20 40 60 80 100 120 140 160 180 200 220

Inference time [ms]

Po
w

er
 c

o
n

su
m

p
ti

o
n

 [
W

]

200MB 400MB 800MB

(b) CNNs sorted by inference time (ms), power con-
sumption (W) and memory cost (MB)

Figure I.3 – Plots sorting notable CNN classifier architectures from the state of the art.
Graph (a) shows commonly used quantities to classify NNs. Graph (b) shows preferred
quantities to classify NNs deployed onto edge devices. The data presented in this figure
was obtained through the implementation and measurement of the CNNs on a NVIDIA
Jetson TX1. These results come from the paper [28] (please refer to this paper for more
information about the presented CNNs).

for data and instructions. They also include a shared communication bus, that allow
cores to access shared resources such as shared memories used for communication between
cores. They can also integrate power management to optimize their power consumption in
runtime.

32

Introduction

I.1.4 NN deployment on embedded platforms

The deployment of NNs on embedded platforms is difficult. Platforms available at the
edge have limited processing and memory resources as well as strict timing and energy
budget, whereas NNs are computation and memory intensive. Optimizing the resource
use, latency and energy without degrading the classification accuracy represents a major
but necessary challenge. Around this problematic, a number of communities have sprung
up, including the TinyML (for Tiny Machine Learning) Fundation 7, which aims to bring
together researchers and industrials working on the implementation of ML algorithms
on ultra-low power and resource-constrained platforms. An important trend of TinyML
aims at proposing workflows for the evaluation and benchmarking 8 of NN deployments.
In TinyML, the priority is put on the optimization of non-functional properties: timing,
energy and cost in regards to resource usage, especially memory, and secondarily on
functional properties (classification accuracy) [29]. As shown in Figure I.3, the position of
the regarded NNs can differ (in particular GoogLeNet, BN-NIN and Inception-v4) based
on the plot (a) or (b), (a) representing usually considered metrics to evaluate NNs, and
(b) representing metrics that matter in the scope of TinyML.

It is necessary to perform an evaluation of NN deployments under timing and energy
constraints to find solutions that meet the constraints imposed on the system. Several
evaluation flows for edge NN deployment have been proposed. They can be divided in two
categories:

1. Rapid prototyping: these approaches focus on systematic implementation and
characterization of NNs on a real platform. Notables examples are: [26, 19, 29]. The
two main drawbacks of these approaches is that:

(a) they do not allow an evaluation of candidate solutions early in design phases,
prior to the deployment on the real hardware.

(b) they require an important characterization effort as each configuration must be
systematically compiled, deployed and tested.

2. Modeling flows: these approaches rely on the building of models to predict timing
and energy properties of candidate solutions. Due to the abstraction necessary to
establish the models, they are less accurate than rapid prototyping. However, they

7. https://www.tinyml.org/, last accessed: 01.10.2023
8. See for example the ML Commons Inference Tiny Benchmark: https://mlcommons.org/en/

inference-tiny-10/, Last accessed: 01.10.2023

33

https://www.tinyml.org/
https://mlcommons.org/en/inference-tiny-10/
https://mlcommons.org/en/inference-tiny-10/

Introduction

require less evaluation effort and can be performed early in design phases. Notable
examples are [23, 30, 31, 32].

Instead of rapid prototyping, models with fast execution time and highly confident
prediction are preferable to quickly identify optimized solutions. State-of-the-art modeling
approaches for NNs deployed on edge devices show however limitations in fully covering
the scope of NNs on multi-core platforms. We plan in this work to propose adapted models
for such platforms.

On multi-core platforms, several aspects render the evaluation of non-functional prop-
erties tedious. The proposed models must be scalable, i.e. must have good and invariable
prediction accuracy and evaluation time, in regards to these aspects. The models must also
offer scalability to all aspects simultaneously, which adds to the complexity of the task.

1. The different sources of parallelism: NNs have different sources of parallelism (intra
and inter-layer). Leveraging these sources of parallelism is necessary to enhance
non-functional properties. However, the proposed models must allow exploring the
effect of leveraging both parallelisms simultaneously.

2. The contentions for shared resources: on multi-core platforms, contentions occur
when multiple processing cores try to access shared resource such as bus and memory
simultaneously. Contentions lead to important timing overheads, with consequence
on energy, and it is necessary to properly model them.

3. The architecture of the platform: the number and types of components (cores,
memory, bus, peripherals) have an important effect on timing properties and power
consumption, and must be properly modeled.

4. The dynamic behavior of the system: on multi-core platforms, cores execute different
phases (computation, communication). When using power management techniques,
such as clock gating [33], cores may additionally be enabled or disabled (i.e. clock
gated) over time. The effect of dynamic behavior and power management on energy
but also on timing, as the enabling of low power modes can introduce timing
overheads, must be properly accounted for in the models.

5. Different computation/communication workloads linked to the input NN: NN
classifiers differ in architecture. They can have different numbers, types and size
(number of neurons) of layers. The modeling flow must provide accurate predictions
in regards to the different computation/communication workloads of NNs.

The design space for NNs deployed on multi-core platforms is tremendous. In addition

34

Introduction

to having a fast yet accurate prediction flow for timing properties and energy, a Design
Space Exploration (DSE) flow must be proposed to efficiently use the models to discard
lesser solutions while selecting most optimized ones. The design space of NNs deployments
is indeed very large, and evaluating every possible solution is not feasible, even with
very fast models. The DSE flow is also necessary to find a solution that meet the strong
constraints of edge platforms. The DSE flow must allow two different objectives:

1. Finding deployments of NNs onto a user specified fixed multi-core platform,

2. Jointly design the hardware platform’s dimensions and software deployment of the
NN.

I.2 Research challenges

The presented work aims at answering the following research questions:

1. How to provide fast yet accurate evaluation early in design phases of timing and
energy properties for streaming NNs deployments on multi-core platforms?

2. Is a model-based approach more relevant than rapid prototyping?

3. Is a model-based approach suited for early, fast and confident Design Space Explo-
ration (DSE) of streaming NNs deployments on multi-core platforms?

I.3 Contributions

To address these research challenges we propose the modeling flow depicted in Figure I.4.
On this figure, the contributions regarding early evaluation of NN mappings onto multi-core
platforms are highlighted in orange. They are the following:

1. A hybrid timing modeling flow, which relies on analytical models, characterization
through measurement, and simulation. This combination of modeling approaches
allows delivering fast yet accurate timing predictions with scalability in regards to
the aforementioned challenging aspects,

2. A power and energy modeling flow, which offers accurate power predictions with
scalability considering dimensions of multi-core platforms. The power model uses
the simulated execution traces issued by the timing modeling flow in order to predict
power and energy.

35

Introduction

Design Space
Exploration NN clustering using a

MoC

Mapping on the platform

Models
validation

Simulation (SystemC)

Computation
time model

Time measurement

Communication
time model

Power measurement

Power
model

Latency

Cores

Power

Cores

Coarser
grains

Finer
grains

...

Input Neural
Network (NN)

...

Timing modeling flow

C#0

C#1

Shared memory

C#n

...

 Possible
power manager

Characterization Characterization Characterization

Real
measure-

ments

Processing
cores

Power
 modeling flow

Predic-
tions

Channel 1
Channel 2

Channel m

...

Figure I.4 – Proposed modeling flow for the prediction of timing and power properties
of NNs deployed on multi-core platforms. The three main contributions of this work are
depicted in orange.

3. An efficient DSE flow for high level models. The flow first prunes the vast design
space through the use of pure analytical models with very fast evaluation time and
Branch and Bound algorithm to progressively optimize solutions and disregard sub-
optimal branches. The second phase aims then at evaluating the selected mappings
using the proposed timing and power modeling flow to provide more accurate and
reliable evaluation but on a limited number of solutions.

The implemented flow and experimental results presented in this manuscript are avail-
able on our GitLab repository: https://gitlab.univ-nantes.fr/lenours-s/pssim4ai.

I.4 Organization

We first provide in Chapter II a review of the published literature in the scope of
evaluation and DSE for NNs deployed onto edge devices. The provided review justifies the
contributions of our approach.

We then present in Chapter III the technical background and work hypotheses under
which this work is conducted. We present the types of NNs considered, the dataflow-
oriented Model of Computation (MoC) used to describe their execution, our Model of
Architecture (MoA) and how applications are mapped on platforms compatible with our
MoA. The implementation of a platform prototype for model calibration and validation is
also presented, including details about the neural networks used for validation.

36

https://gitlab.univ-nantes.fr/lenours-s/pssim4ai

Introduction

In Chapter IV, we introduce our primary contribution, which is our timing prediction
and analysis flow as shown in Figure I.4. Our methodology combines measurements,
analytical models, and simulations to offer fast yet accurate predictions of timing properties
with scalability in regards to various factors: NN parallelism expression, core usage,
computation and communication workload and type of communications. Our models are
validated against real timing measurements of 54 different mappings of 4 NNs and show
an accuracy of more than 97 % on end to end latency and throughput, for an evaluation
time per mapping of 20 s. We also provide a comparison of our modeling flow against pure
analytical models with respect to related work.

In Chapter V we present the power and energy prediction flow. It leverages the
simulation from our timing modeling flow as well as analytical models calibrated through
measurements, to accurately model power and energy consumption. It offers flexibility
for optimizing NN mappings on fixed platforms in regards to the identified challenging
factors, as well as allowing conjointly optimizing platform dimensions and NN deployment.
Similarly to the timing models, we validated our power and energy prediction flow on
the 54 NN mappings, and they show an accuracy 93 % and again an evaluation time of
20 s for both energy and timing prediction. We also validate the scalability of our models
regarding platforms of different dimensions.

We present the third and last contribution of our work in Chapter VI. In this chapter,
we introduce a Design Space Exploration (DSE) flow that utilizes the models proposed and
validated in Chapters IV and V. This DSE flow allows for the optimization of NN mappings
on multi-core platforms while adhering to user-defined constraints for both timing and
energy properties. It provides efficient pruning of design space using analytical models and
subsequent accurate evaluation leveraging the proposed simulation-based modeling flow.
We test the DSE flow on different NNs and evaluate its limitations.

The Chapter VII provides our conclusions regarding the research work presented in
the manuscript. It also identifies prospects on interesting directions that could be led to
extend the scope of the proposed flow in future work.

37

Chapter II

RELATED WORK

This chapter provides a review of the research work in the field of evaluation and
optimization of NNs deployed on edge devices. First we provide a review of approaches
focused on the evaluation of NN deployments regarding timing properties and energy.
Then we provide a review of optimization techniques used in the field of embedded systems
development.

II.1 Evaluation of NN deployments on edge platforms

As shown in Figure I.3 in Chapter I and as discussed in [29], the focus of works regarding
the deployment of NNs on edge devices is put on optimizing non functional properties such
as inference time and energy, without sacrificing Quality of Service (QoS). In this chapter,
when using the term QoS, we refer to the NN’s classification/regression accuracy and other
relevant functional properties dependent on the application. The non-functional properties
often considered for the optimization of edge NN implementations are the following:

1. Execution time, also called inference time, which designates the duration between
the start and the end of NN execution.

2. Throughput, which designates the number of inputs a NN deployment can process
per a quantity of time. High throughput is particularly important for applications
focused on the processing of a streaming flow of data, e.g. key word spotting [4].

3. Power consumption in Watts, which refers to electrical energy consumed by the
system per second. Optimizing the power consumption is necessary as edge devices
are often operating using batteries, which have limited supply and must thus be
preserved. Power consumption in electronic systems is split into [33]:
— Static power consumption, which is due to the leakage current between the

source and drain of Field Effect Transistors (FETs) used to implement electronic
circuits. This current is observed regardless of the state of the transistor, as long

39

Chapter II – Related work

as the circuit is supplied in power. For this reason, static power consumption is
usually obtained by measuring the power consumption of a circuit when not
clocked.

— Dynamic power consumption, which is principally due to the switching of
FETs, when the circuit is operating in normal conditions.

4. Energy, which corresponds to the power consumption of the system integrated
over time. For NN evaluation, the quantity that is typically considered is the energy
cost per inference.

5. Resource usage, which is usually considered for cost reasons, as using more
components in a circuit design leads to higher cost of production. For NNs, what is
often regarded is memory usage. NNs are indeed memory intensive, and reducing
memory cost can be necessary to enable the execution on devices that lack such
resources. It can also positively impact latency and power, as memory accesses in
edge devices cause important overheads on these quantities.

Approaches have been proposed for the evaluation of NN deployments in regards of
these quantities, in order to find optimized solutions. These approaches can be separated
into two main trends:

1. Rapid prototyping, which focus on systematic implementation of the targeted
hardware and measurement of tested metrics during the execution. These approaches
offer the best evaluation quality, but require important characterization effort. We
provide a review of such approaches in Section II.1.1.

2. Modeling flows, which propose models to predict non-functional properties. The
time and effort is lesser than rapid prototyping, at the cost of less confident
evaluations. We provide a review of these approaches in Section II.1.2.

II.1.1 Rapid prototyping

Many approaches focus on the evaluation of NN deployments through systematic
implementation on a real platform and characterization using measurements. Measuring
directly the quantities at test, such as latency and energy, offers the highest possible
evaluation accuracy. In Figure II.1 we provide a view of the main steps and process that
can be found in most of these approaches. Neural Architecture Search (NAS) engines are
often used in these flows during Step 1 . NAS [34] aims at automating the design of NNs
in regards to their architectural features (i.e. number of layers, number of neurons inside

40

II.1. Evaluation of NN deployments on edge platforms

NN classifier
design

NN classifier
optimization

1 2 Deployment on
embedded system
and benchmarking

3

Feedback loop

List of optimized
deployments

4

5

Figure II.1 – Diagram showing the main steps in a measurement-based approach aiming
at evaluating NN deployment on embedded platforms. This diagram takes inspiration
from [29].

layers). The design is done in such a way to optimize functional (classification accuracy)
and non-functional (timing, energy) properties. In the reminder of this chapter, we will
refer to classifier accuracy as Quality of Service (QoS), as in [19]. In step 2 , compression
is applied to the NN model. The compression of NNs constitutes an entire field of research
that aims at proposing methods to reduce the memory footprint (number of weights)
and the computation/communication workload of NNs while minimizing the loss in NN
classification accuracy [35, 36, 37, 38]. The NN is then trained, compiled and deployed
on the real embedded platform, on which perceptible metrics such as timing properties
(latency, throughput) and energy are measured 3 . The measured data is then fed forward
back to 1 in order to guide the optimization of the NN. Deployments that meet user
defined constraints are then returned to the user 5 .

The approach in [29] provides an exploration flow for NN deployments under QoS,
latency and energy constraints. It focuses on the measurements of tested quantities after
the implementation of NNs on a ST Microelectronics MCU. The presented flow corresponds
to the one in Figure II.1. This paper provides intermediate results, showing the effect of
using certain ISA (Instruction Set Architecture) extensions such as Floating Point Units
(FPUs) on the tested quantities.

The authors in [19] propose an evaluation and exploration flow for NNs deployed
on NVIDIA Jetson TX2 GPU under timing, energy and QoS constraints. It respects
the phases presented in Figure II.1. NAS is performed with a feedback loop with QoS,
timing and energy measurements obtained after training and implementation on the
GPU. Experimental results show up to 79 % reduction in energy consumption and 36 % in
inference time, with a loss of QoS up to only 2 %, against the default implementation.

In [39], and exploration flow for CNN classifier architectures for semantic segmentation
of aerial images with QoS and timing constraints is presented. The proposed methodology

41

Chapter II – Related work

takes the specifications of the hardware target into account when performing NAS, to ensure
hardware architecture and algorithm adequation and consequently improve performance.
The experiments were conducted on a NVIDIA V100 Tensor Core GPU 1 even though
the approach can arguably be transposed to edge devices. The results show that NN
complexity could be reduced by 88 % with significant gains in performance and memory
use and minimal loss of QoS (3 %), against the default implementation.

The authors of [26] propose a DSE flow to find CNN deployments that optimize latency
and energy on Intel Movidius Myriad 2 (USB Neural Compute Stick). The Myriad is
instrumented to obtain timing and energy measurement used to rank possible deployments.
While this approach does not support NAS, it puts the emphasis on exploring the clustering,
mapping and scheduling of the NN on the targeted hardware unlike [29, 19, 39]. In our
approach we will also highlight that the exploration of NN partitioning, mapping and
scheduling using a Model of Computation (MoC) is a key element to properly take
advantage of NN intra- and inter-layer parallelism with latency and energy enhancements.

The approach in [20] focuses on exploring NN deployments on the heterogeneous
NVIDIA Jetson boards, which feature a 4 ARM cores MPU and a Maxwell GPU. Sim-
ilarly to [26], the emphasis is not on NAS but rather on the optimization of hardware
implementation. To this end, this approach evaluates the effect of modifying the clock
frequency of the devices. It offers up to 66.3 % performance improvement compared to the
default implementation, with a reduction of power consumption of up to 61.5 %.

As a general criticism, exploring NN deployments through measurement requires
an important effort as numerous mappings must be deployed and tested on the real
platform. When also considering NAS, the training and compression of the NN must also
be systematically done (steps 1 and 2 of Figure II.1), which takes additional effort. For
this reason such approaches do not focus on the exploration of different levels of granularity
for the partitioning/mapping of the NN. We will show in our approach that this is an
important aspect to consider for the optimization of NN deployments. Evaluation through
measurement also requires having fixed the real implementation platform, which restrict
the possibilities in regards to architectural exploration. To avoid these drawbacks, other
approaches propose models that ease the exploration of the design space, at the detriment
of a loss in evaluation accuracy.

1. This device is found at cloud level of IoT applications - see https://www.nvidia.com/en-us/
data-center/v100/, last accessed 19.09.2023.

42

https://www.nvidia.com/en-us/data-center/v100/
https://www.nvidia.com/en-us/data-center/v100/

II.1. Evaluation of NN deployments on edge platforms

II.1.2 Evaluation using models

Modeling flows for NNs deployed on edge devices are often characterized through linear
regression [40, 41] of timing and power measurements. They are mainly based on analytical
formulas. The timing models are, for the most part, derived from operations executed
inside NN layers. The power models describe the static power consumption of the circuit
when the clock is disabled, and the dynamic power consumption of NN computation phases
on the platform and memory accesses. The average power consumption of the system is
predicted and integrated over the estimated time to acquire the energy. These models are
said to be of high level of abstraction, which means that they abstract numerous details
regarding the implementation of the NN to offer simplified formulas with fast evaluation
time [42].

The approach in [30] focuses on the characterization of analytical timing and energy
models by measurement on two edge multi-core platforms, by manually varying the number
of layer parameters (i.e. neurons for dense layers). Models are derived from measurements
using multi-linear regression. The characterization phase is performed for two different
compiler settings, which allows obtaining high accuracy with both, as measurements allow
modeling the behavior of both compiler and hardware. Both for timing and power, they
use a simple model memory access cost (network data retrieval and layer input and output
communications between cores). Their models remains at the layer level of NNs, and do
not allow the exploration a finer grained deployments issued from the partitioning of layers,
as we will explain in Chapter III, Section III.2.2.

AutoDice [32] is a framework for fast exploration of NNs deployed onto multiple
heterogeneous edge devices on the same network (e.g. GPUs, MCUs, multi-core CPUs).
The exploration is done using high level analytical models for throughput, memory and
energy evaluation. The execution time and consequently the energy is established through
an estimation of the number of MAC operations executed inside the targeted edge devices to
process the NN’s layers. The approach does not allow custom partitioning with intermediate
granularity for NN layers. The framework allows automatically generating the C code for
the execution of optimized NN mappings.

The aforementioned modeling approaches [30, 32] share the inconvenient of not offering
strong scalability in regards of the fine grained partitioning of the NN. The models
from [30, 32] in their current form are limited for the prediction of non-trivial NN intra-
layer parallelism expression and use. In general, this observation can be done for approaches
that rely on the most used Deep Learning frameworks featuring a Python API, such as

43

Chapter II – Related work

Tensorflow [43, 44], PyTorch [45], Caffe [46] and Keras [47], and NN 2 compiler for edge
inference such as TVM [48] and OpenVino [49]. These tools offer a high level of abstraction
to the engineer developing NNs for edge devices, which highly reduce the development effort,
but limits the custom deployment possibilities, such as using intermediate partitioning and
mapping of NNs. In our approach, we show that non-trivial partitioning and mappings of
NNs on multi-core edge devices must be considered to find more optimized solutions.

It is also worth noting that some Deep Learning frameworks and NN compiler tools for
edge inference propose a latency and sometimes also energy estimation tool. This is the
case for example of TVM [48], TensorFlow Lite Micro [44] and N2D2 [50]. The estimators
are however calibrated for dedicated compiler settings and platform specifications, and
tend to bear inaccurate estimations for unsupported platforms. As shown in [27], which
proposes analytical timing models for NN layers on Intel Movidius Myriad2 while using
OpenVino, the compiler selects optimization settings unbeknownst to the developer with
tremendous effect on timing, that can hardly be modeled. Building confident models when
entirely relying on these tools can be tedious. To alleviate this issue and consequently ease
the modeling effort, the authors of [32] train NNs using Deep Learning frameworks and
then carry out their deployment using a custom library in C programming language.

The approach in [15] focuses on the design and development of an FPGA-based
accelerator for CNNs. The flow allows DSE regarding several sources of parallelism withing
these applications: inter and intra-layer, but also inter and intra-kernel for convolution
layers. Analytical formulas are proposed for the different computations performed inside
layers. Their results show an important speedup of AlexNet’s execution [12] compared to
the state-of-the-art. This approach is however only focused on timing evaluation.

fpgaConvNet [51] relies on a fine-grained description of CNNs in the Synchronous
Dataflow (SDF) [52] Model of Computation (MoC) to optimize their deployment on FPGAs.
As shown in the paper [53] by the same authors, analytical models for timing prediction
are proposed by using the formulas obtained from the SDF paradigm, complemented by
the delays required to perform CNN computations on FPGA. The proposed models have
a prediction accuracy of more than 92.9 % on timing properties. The authors use the fast
analytical models and transformations of CNN mappings described in SDF to efficiently
explore the design space.

Timeloop [54] is a framework used to explore the design space of NN mappings on
GPUs and hardware accelerators by evaluating solutions using analytical models. It uses

2. Often in the Open Neural Network eXchange (ONNX) format.

44

II.1. Evaluation of NN deployments on edge platforms

an analytical model for performance (computation time), area and energy prediction and
a mapper (dataflow mapping explorer) to explore mappings on the targeted architecture.

The approach in [55] proposes an optimization flow based on analytical models for
timing and energy prediction of CNNs mapped on CPU-GPU MPSoC. The proposed
flow allows optimizing power management use in the platform when executing CNNs
using voltage and frequency scaling. Their approach offers high accuracy (95 % on timing,
91 % percent on power/energy) on several mappings of three different CNNs from the
state-of-the-art executed on the NVIDIA Jetson TX2 board, and allows finding optimized
settings for these applications. While this approach explores the mapping/scheduling on
the CPU, the GPU provides most of the computational power, with limited effect of shared
resource contention, which is not the case on all multi-processor based systems. Also the
proposed models in their current form cannot be easily extended to allow exploring the
hardware platform’s dimensions (e.g. number of cores) under timing and power constraints.

HALF (Holistic Auto machine Learning for FPGAs) [56] proposes a multi-criteria
optimization approach for NNs deployed on FPGA. Optimized hardware accelerator for
NNs, which are similar to FINN [21]-based solutions, are obtained by exploring computa-
tional IPs for NN layers in an IP bank, considering application, algorithm, architecture,
and platform criterias. Communications between IPs are implemented using AXI streams.
The approach leads to solutions that can outperform the baseline implementation on a
NVIDIA Jetson AGX Xavier board. The resulting solutions demonstrate superior perfor-
mance compared to baseline implementations on a NVIDIA Jetson AGX Xavier board.
However, when using AXI stream, the communication time is relatively marginal, and thus
in this approach, the timing prediction flow does not model communication times, and
while the power consumption of idle IPs (i.e. which are waiting for data) is modeled, the
effect on power of communications is disregarded. On multi-core platforms, more versatile
communication mediums are preferred, which tend to have non-marginal communication
times. On such platforms, contentions also occur when several cores access shared resources
simultaneously, which bear important effects on non-functional properties and must be
correctly modeled.

NNest [57] is an early-stage design space exploration tool that can rapidly and accurately
estimate the area/performance/energy of different NN accelerator architectures, also using
analytical models. This approach allows both fine tuning of the hardware architecture and
high intra- and inter-layer parallelism use from NNs. It involves the use of compression
techniques.

45

Chapter II – Related work

MAESTRO [58] (for Modeling Accelerator Efficiency via Spatio-Temporal Resource
Occupancy) is an analytical modeling approach to optimize the timing properties and
energy of NNs deployed on hardware accelerators. It offers a data-centric approach that put
the emphasis on data re-use, while evaluating the use of the different phases of processing
of the NN. The approach uses a MoC to describe NNs.

ZipCNN [31, 59] is based on an analytical modeling flow for energy, latency and memory
prediction of NNs deployed on MCUs. It offers scalability in regards to the operating
frequency, and help finding the frequency that allow the most savings in timing and power
consumption for the inference of NNs. ZipCNN’s models achieve an average prediction
accuracy of more than 91 % on latency, 93 % on energy, and 96 % on memory for the
LeNet5 [11] and ResNet [60] NNs with various operating frequencies.

The aforementioned approaches are however all based on pure analytical modeling flows,
which demonstrate very high evaluation speed and accurate prediction of timing properties
for NN implementation on hardware accelerators. However they have limited scalability for
multi-core platforms due to the possible influence of shared resources (bus, memory). As
the number of cores and shared resource contentions increase, the complexity of analytical
models grows exponentially, rendering the prediction of non functional properties in a
fast yet accurate manner tedious. Simulation can model how cores contend for shared
resources, thus providing high scalability in regards to the number of cores and amount of
communications on the platform.

The authors of [61] propose a platform-aware NAS flow for NNs implemented using
accelerators in the form of NPUs (Neural Processing Units), i.e. arrays of Processing
Elements (PEs), on FPGA. This flow uses a NPU Dataflow Simulator to evaluate possible
HW/SW deployments of NNs on the platform. However, this simulation approach does not
aim at modeling shared resources, but rather the complex dataflow inside arrays of PEs.

NNSim [62] is a SystemC/Transaction Level Modeling (TLM) simulator for NN accel-
erators using the Eyeriss accelerator architecture [63, 22], which corresponds to an array of
PEs interconnected through a Network-on-Chip. Compared to RTL 3 implementation, the
proposed model has a prediction accuracy of more than 97 % on timing properties, with
3000 up to 13 000 times simulation speedup. While NNSim enables timing predictions,
it aims primarily at providing a fast functional model to help designers perform the
verification and validation of NN implementations using the Eyeriss architecture.

3. The Register Transfer Level (RTL) is an abstraction for electronic system design, which is focused
on the level of registers and instruction sets, and more specifically on the dataflow inside synchronous
hardware circuits.

46

II.1. Evaluation of NN deployments on edge platforms

The approach in [23] provides a DSE flow to find optimized accelerator architectures
for the inference of CNNs, which relies on system-level modeling and IP-based design
methodology. NNs are described into the Kahn Process Network (KPN) MoC [64] to model
the dataflow between NN layers and strictly separate computation and communication
phases. Computations are implemented as functional IPs featuring a set number of PEs
and communications are implemented as interconnect IPs. Both are picked from a user
defined IP bank. As shown in [65], they use SystemC simulation to model shared resource
contention with an evaluation time in the order of seconds for simple NNs up to the order
of hundreds of seconds for NNs with larger layers (e.g. input layer containing more than 2
million pixels). The model achieves more than 92 % accuracy on timing prediction.

The main difference between our work and [23, 65] is that they focus on IP search,
while we focus more on the fine grained SW implementation of the NN on processing cores.
Our models also offer a higher accuracy of 97 % on timing and much faster evaluation
time. In the case of our flow, the evaluation time is also observed to be unaffected by the
complexity of the NN or the architecture. Our modeling flow also offers power consumption
and energy prediction, which [23, 65] does not offer.

The authors of [66] propose a framework aimed at optimizing the mapping of con-
current dataflow applications on heterogeneous multi-core platforms. The flow relies on
the description of targeted applications’ dataflow in KPN, and predicts non functional
properties using simulation and analytical models. It can be used to optimize mappings
in regards to several metrics such as timing and memory use. However the proposed flow
doesn’t allow power or energy prediction. The timing analytical models are calibrated
using estimates from RTL simulation of time spent executing different instructions. Several
heuristics are proposed to quickly find solutions that optimize user criteria. They show that
their approach works on three different applications, and that the heuristic offering fastest
convergence towards the most optimized points is highly dependent on the application.
When targeting NNs, the models can be simplified, which allows enhancing the evaluation
speed without losing prediction accuracy.

In previous papers, our work team proposed a message level timing modeling flow for
the streaming execution of SDF graphs on multi-core platforms [67, 68]. The flow is based
on SystemC simulation, timing measurement and the use of Statistical Model Checking
(SMC) [69, 70]. A communication model for multi-core platforms using AXI interconnect
shared bus has been proposed [68], and is still used in this thesis work.

When executing NNs, we have observed marginal execution variability. We thus do not

47

Chapter II – Related work

rely on SMC, which allows saving consequential effort, as it requires the analysis of large
amounts of data and add complexity to the simulation. Instead, we propose an approach
which offers more scalability in regards to NN layer partitioning into actors, without the
need to re-calibrate for every generated actor. The evaluation time is decreased to the order
of hundreds of milliseconds 4. In [67] the evaluation time ranges from 1 min 44 s up to more
than 25 min in some cases4. The prediction accuracy of timing properties has remained in
the same order of magnitude, although it is observed to be slightly more accurate and
it is validated on a larger number of mappings in this thesis work: 97 % for 54 mappings
against 95 % for 6 mappings. In this thesis we also extend the modeling flow to power and
energy prediction, and enable its use both for finding optimized deployments of NNs onto
a set multi-core platform, and jointly optimize the NN deployment and the multi-core
platform’s dimensions in regards to core number and memory sizes. We also propose an
automatized DSE flow that uses high level models, which is entirely new compared to
work led in the past.

Table II.1 summarizes the review of state-of-the-art approaches. In this table, the
relevance of approaches regarding different aspects is evaluated using a system of more or
less filled circles. Full circles correspond to the highest grade, while empty circles
correspond to the lowest grade. For example the grade for evaluation speed means that
the flow is very fast. The grade for intra-layer parallelism means that the flow allows
scalability regarding this aspect with limited exploration possibilities, whereas the grade

means that the flow offers complete scalability regarding this aspect. Related to the
state-of-the-art, our evaluation flow offers the following contributions:

1. Confident prediction of timing and power properties: The proposed timing and
energy modeling flow offers an accurate evaluation of candidate deployments.

2. Scalability in consideration of:
— NN intra- and inter-layer parallelism expression and use,
— Modeling of shared resources,
— Effect of power management,
— Platform dimensions in regards to the number of cores and memory sizes.

3. Fast evaluation time: The proposed modeling flow offers fast evaluation time. This
allows saving crucial effort over other simulation modeling flows like [23, 67] and
rapid prototyping approaches like [19, 26].

4. When only considering the simulation time and excluding compilation time.

48

II.1. Evaluation of NN deployments on edge platforms

Ta
bl

e
II

.1
–

Su
m

m
ar

y
of

m
ai

n
fe

at
ur

es
of

ap
pr

oa
ch

es
fro

m
th

e
st

at
e-

of
-t

he
-a

rt
.I

n
th

is
ta

bl
e,

ev
al

ua
te

d
qu

an
tit

ie
s

ar
e

pr
ov

id
ed

in
in

iti
al

s:
Q

oS
de

sig
na

te
s

th
e

Q
ua

lit
y

of
Se

rv
ic

e
(i.

e.
fu

nc
tio

na
lp

ro
pe

rt
ie

s,
an

d
es

pe
ci

al
ly

cl
as

sifi
er

’s
ac

cu
ra

cy
),

T
de

sig
na

te
s

th
e

tim
in

g
pr

op
er

tie
s

(in
fe

re
nc

e
tim

e,
th

ro
ug

hp
ut

),
E

de
sig

na
te

s
th

e
po

we
r

co
ns

um
pt

io
n

an
d

en
er

gy
,M

de
sig

na
te

s
m

em
or

y,
an

d
A

de
sig

na
te

s
ar

ea
(r

el
ev

an
t

fo
r

ap
pr

oa
ch

es
us

in
g

FP
G

A
s)

.

W
or

k
H

W
ta

rg
et

A
pp

ro
ac

h
ty

pe
E

va
lu

at
ed

m
et

ri
cs

M
oC

E
va

lu
at

io
n

sp
ee

d
E

va
lu

at
io

n
A

cc
ur

ac
y

C
on

si
de

rs
sh

ar
ed

re
so

ur
ce

s
In

te
r-

la
ye

r
pa

ra
lle

lis
m

In
tr

a-
la

ye
r

pa
ra

lle
lis

m
P

ow
er

m
an

ag
em

en
t

H
W

di
m

en
si

on
s

[2
9]

M
C

U
R

.P
.

Q
oS

,T
,E

×
N

.A
.

N
.A

.
N

.A
.

N
.A

.
[1

9]
G

PU
R

.P
.

Q
oS

,T
,E

×
N

.A
.

[3
9]

G
PU

R
.P

.
Q

oS
,T

,E
×

N
.A

.
[2

6]
V

PU
R

.P
.

T
,E

×
N

.A
.

[2
0]

M
ul

tic
or

e
+

G
PU

R
.P

.
T

,E
×

N
.A

.
[3

0]
M

ul
tic

or
e

A
na

ly
tic

al
T

,E
×

[3
2]

A
ll

A
na

ly
tic

al
T

,E
,M

SD
F

[4
3,

44
,4

8,
50

]
A

ll
A

na
ly

tic
al

,
es

tim
at

es
T

,M
×

[2
7]

V
PU

A
na

ly
tic

al
T

×

[1
5]

FP
G

A
A

na
ly

tic
al

T
×

N
.C

.
[5

1]
FP

G
A

A
na

ly
tic

al
T

SD
F

N
.C

.
[5

4]
FP

G
A

,G
PU

A
na

ly
tic

al
T

,E
[5

7]
FP

G
A

A
na

ly
tic

al
T

,E
,A

[5
8]

FP
G

A
A

na
ly

tic
al

T
,E

,M
[3

1,
59

]
M

C
U

A
na

ly
tic

al
Q

oS
,T

,E
,M

×
N

.A
.

N
.A

.
N

.A
.

[7
1]

M
ul

tic
or

e,
G

PU
LU

T
E

×
N

.A
.

N
.A

.
[6

1]
N

PU
s

Si
m

ul
at

io
n

T
,E

N
.A

.
[6

2]
So

C
Si

m
ul

at
io

n
Q

oS
×

N
.A

.
N

.A
.

N
.A

.
N

.A
.

N
.A

.
N

.A
.

[2
3,

65
]

G
PU

M
ea

su
re

m
en

t
T

,A
K

PN
T

hi
s

wo
rk

M
ul

tic
or

e
H

yb
rid

T
,E

SD
F

49

Chapter II – Related work

II.2 Design Space Exploration (DSE)

To reduce the time spent in exploration of NN deployments onto edge devices, engineers
and researchers use optimization algorithms. The design space of NN deployments on
edge devices is tremendous. As presented in [72], optimization algorithms are commonly
used in the field of embedded system development to quickly converge towards solutions
that optimize multiple intertwined properties. As shown in the previous section, NN
deployment optimization focus on properties such as QoS, timing quantities (execution
time, throughput), power and energy, and resource usage (area, memory). The optimization
algorithms can be separated into two main categories:

1. Exhaustive search algorithms, that allow performing an enhanced search of the
design space usually by pruning less optimized design points. These algorithms
always converge towards the optimal solution, but they are computation-intensive
and have a higher evaluation cost than their counterpart. In general, exploration
with these algorithms is done with a time limit. Once the time limit has been
reached, the results are returned to the user. However, the user still has the option
of continuing the search, until the entire design space has been explored. Notable
examples of such algorithms used in our field are:
— Branch & Bound (BB) [73]. A notable example of the use of the BB algorithm

to optimize DSE for streaming applications on embedded systems is [74].
— Integer Linear Programming (ILP) [75], used for example in [76].

2. Heuristics search algorithms, that allow searching the design space using heuristics
and randomly generated solutions. They perform usually faster searches than the
exhaustive ones, but they have the drawback of converging towards local optimum
and not always global ones. Notable examples of such algorithms are:
— the Genetics Algorithm (GA) [77]. It is the most prominent optimization algo-

rithm for DSE of NN deployments on edge devices. It used for example in [72] for
SDF graphs deployed onto MPUs, and in [61, 32] for the deployment of NNs on
edge devices. The GA is often paired with the use of a MoC (e.g. SDF) and the
introduction of an encoding of NN mappings on the platform. Mappings undergo
successive mutations inspired by those of chromosomes and genes observed in the
living world over generations. Mutated mappings that optimize tested metrics
are selected, and the proposed methodology allows eventually converging to an
optimized mapping.

50

II.2. Design Space Exploration (DSE)

— Tabu search [78],
— Simulated annealing. [79] uses for example the simulated annealing to help

optimize NN classification accuracy in a NAS setup.
— Ant colony optimization approach [80], e.g. [81],
— Iterative racing (iRACE) [82], e.g. [83].

In our approach, we focus on the optimization of timing, energy and cost (in regards to
the number of cores used and private memory sizes). Our contribution regarding the DSE
aspect is to provide a demonstration of an efficient DSE flow using high level models with
high scalability for NNs deployments on multi-core platforms. The proposed flow uses the
Branch & Bound algorithm to quickly optimize intra and inter-layer layer parallelism use.
Our search stops when user constraints are satisfied. Since the BB algorithm is exhaustive,
the user always has the possibility to run additional iterations to try finding more optimized
solutions. We explain in Chapter VI how we use the BB algorithm in our work. Our models
are built to offer scalability to the platform’s dimensions regarding the number of PEs
and memory sizes. For this reason, the proposed DSE flow can be used for two objectives:

1. Finding deployments of NNs onto a user specified fixed multi-core platform,

2. Jointly design hardware platform’s dimensions and software deployment of the NN.

51

Chapter III

WORK HYPOTHESIS

This chapter aims at presenting the hypothesis we formulate in order to delimit the
scope of our study. We first present the types of NNs that have been considered. We then
present how we model NNs in a dataflow-oriented Model of Computation (MoC) to ease
their analysis and optimization process. The following sections present what hypotheses
we formulate about our Model of Architecture (MoA), and how we map the applications
described in the MoC onto platforms that subscribe to our MoA. The final section of this
chapter presents the implementation of a platform that respects our MoA and includes
timing and power measurement infrastructures, which are used for the calibration and
validation of our models. This chapter also presents which NNs have been used and how
they have been trained and deployed onto the platform in order to perform the validation
of the modeling flow.

III.1 Considered types of NNs

As presented in the introduction of this manuscript, many different NN algorithms
have emerged with the raise of interest for AI. In this work we consider two of the
main algorithms considered in both industry and academia: the Multi Layer Perceptrons
(MLPs) [6, 7] and the Convolutional Neural Networks (CNNs) [10]. MLPs are composed
of only one type of layer: the dense layer, also called fully-connected layer, which allows
classifying data. In addition to dense layers, CNNs also contain convolutional and pooling
layers generally placed before the dense ones. These additional layers extract features
from the input data to improve the classification process of dense layers. CNNs can also
contain other types of layers such as normalization layers and branch and merge layers. In
this work, we choose to focus on convolutional, pooling and dense layers. An example of
MLP is shown in Figure III.1 and an example of CNN is provided in Figure III.2. Our
approach focuses on evaluating the performance and energy cost of the inference of NNs
on multi-core platforms. The training of the NN is assumed to be done beforehand.

53

Chapter III – Work hypothesis

...

28x28x1
MNIST
Image

Input
Layer
(784)

Hidden
Layer
(32)

Hidden
Layer
(16)

Output
Layer
(10)

...

0%

0%

100%

0%

Prediction of
'0' in input

Prediction of
'1' in input

Prediction of
'2' in input

Prediction of
'9' in input

...

: activated
neuron

: deactivated
neuron

: unknown
neuron state

Figure III.1 – Example of a MLP. This NN is entirely constituted of dense layers, which
are composed of a set of neurons fully connected to the previous layer. In this example,
the MLP predicts that the input MNIST [11] image is a 2.

28x28x1
MNIST Image

5x28x28
Convolution

5x14x14
Pooling

...

...

Prediction of

the class of

the input

image

Dense
(980)

Dense
(10)

Feature extraction Classification

Figure III.2 – Example of a CNN. This NN is composed of convolution and pooling layers,
used to perform feature extraction in order to ease the classification process performed by
the dense layers placed afterwards.

Dense layers are composed of a set of base elements called neurons. Each neuron
produces a single scalar as output, which indicates whether the neuron is activated based
on the inputs processed. Every neuron inside a dense layer process all inputs of the layer.
MLPs are also commonly called fully-connected networks because in such a configuration
all neurons from a layer are connected to all neurons from the previous layer. We denote the
output of the neuron νm, with m ∈ (1, 2 ... M) and M being the number of neurons inside
the considered layer. νm depends on the input X = (x1, x2 ... xN) with N being the total
number of inputs, the weights Wm = (wm,1, wm,2 ... wm,N) and bias Bm of the neuron, and
the activation function φ. The weights Wm and the bias Bm are obtained as a result of the

54

III.1. Considered types of NNs

training of the NN. The activation function of the neuron φ works as a threshold function
to determinate if the neuron is activated by the inputs. The equation III.1 provides the
relation that gives the output of a neuron νm, and the equation III.2 provides the output of
an entire dense layer denoted D. Because neurons from a same dense layer are independent
from one another, it is possible to parallelize their execution.

νm(X) = φ(
N

∑
i=1

wm,ixi +Bm) (III.1)

D(X) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ν1(X)

ν2(X)

⋮

νM(X)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(III.2)

In CNNs, convolution layers perform a set of convolution operations called kernel
convolution on an input image. A convolution operation constitute a convolution layer’s
neuron. To help the reader make the difference between convolution and kernel convolution,
we choose in this thesis to denote convolutions with the operator ∗ and kernel convolutions
with the operator ⊛. Equation III.3 provides the relation to obtain the result of a convolution
of two matrices of size (m, n). The result of a convolution is a scalar.

X ∗ Y =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x1,1 x1,2 ⋯ x1,n

x2,1 x2,2 ⋯ x2,n

⋮ ⋮ ⋱ ⋮

xm,1 xm,2 ⋯ xm,n

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∗

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

y1,1 y1,2 ⋯ y1,n

y2,1 y2,2 ⋯ y2,n

⋮ ⋮ ⋱ ⋮

ym,1 ym,2 ⋯ ym,n

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=
m−1
∑
i=0

n−1
∑
j=0

xm−i,n−j ⋅ y1+i,1+j (III.3)

We define a kernel convolution as the operation of performing convolutions between
a set of matrices obtained from the input image denoted I of size (m, n) by a matrix
denoted K of size (k, l) with k <m and l < n. K is referred as the convolution kernel or
filter. The input image is split in a set of matrices Ii,j of size (k, l) (same size as K) with
i ∈ {1, 2⋯m} and j ∈ {1, 2⋯n}. The relation that defines the Ii,j is given in Equation III.4.
In this relation, I(λ, µ) designates the element at index (λ, µ) of the input image I and
⌊x⌋ designates the integer part of the real number x.

55

Chapter III – Work hypothesis

Ii,j =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

I (i − ⌊k
2 ⌋ , j − ⌊ l

2⌋) I (i − ⌊k
2 ⌋ , j − ⌊ l

2⌋ + 1) ⋯ I (i − ⌊k
2 ⌋ , j + ⌊ l

2⌋)

I (i − ⌊k
2 ⌋ + 1, j − ⌊k

2 ⌋) I (i − ⌊k
2 ⌋ + 1, j − ⌊ l

2⌋ + 1) ⋯ I (i − ⌊k
2 ⌋ + 1, j + ⌊ l

2⌋)

⋮ ⋮ ⋱ ⋮

I (i + ⌊k
2 ⌋ , j − ⌊ l

2⌋) I (i + ⌊k
2 ⌋ , j + 1) ⋯ I (i + ⌊k

2 ⌋ , j + ⌊ l
2⌋)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

(III.4)

The splitting is done as such: the first matrix produced starts with the element
I (⌊k

2⌋ , ⌊
l
2⌋). Then at every step of the splitting, the resulting matrix is obtained by moving

1 pixel to the right of the input image. When it reaches the end of the line, the resulting
matrix is obtained by moving to the beginning of the next line and moved by 1 pixel
to the bottom (to the following line). During every step, the convolution of the matrix
at the current location of the input image by the kernel is performed. The result of a
kernel convolution is a matrix of size (n − ⌊k

2⌋ , m − ⌊
l
2⌋) containing all the results of the

individual convolutions Ii,j ∗K. This process is illustrated in Figure III.3. Convolution
layers generally perform several kernel convolution on the input image, they have for this
reason a number f of kernels. For example the convolution layer of the CNN presented
in Figure III.2 has f = 5 different kernels. The result of a convolution layer is a set of f

matrices corresponding to the results of each kernel convolution. The computations of
kernel convolutions inside a convolution layer are independant and can thus be parallelized.

0
0 1 1 0

1
1

0
0 1
1

1 1 0 0

0
0
0
0
0

0
1

0
0

1 1 1

1
1

0
1

1 0 1

x1 x0 x1

x1 x0 x1

x0 x1 x0

3

3
2

1
3

4 1

4
4

I⊛KKI

I1,2
I1,2∗K

Figure III.3 – Illustration of the operations performed by a kernel convolution with a
kernel denoted K on an input image denoted I

Pooling layers down sample the resulting image from a convolution in order to summarize
the features extracted from the image by the convolution to ease the remaining processing.
Two types of pooling layers are classically used: maximum and average pooling. In the
scope of this study we only considered maximum pooling (also referred to as max pooling),
but we argue that the modeling flow presented in the remainder of the manuscript can
also be re-used with average pooling without loss of accuracy. Max pooling layers split the

56

III.2. Description of NNs in Synchronous Data Flow (SDF)

input image into a set of smaller images, from which it extracts the maximum value of the
pixels. For example in a max pooling layer 2×2 as in the CNN from Figure III.2, the input
image is splitted into smaller matrices of size 2 × 2. Equation III.5 provides the output of
one max pooling 2 × 2 operation. Figure III.4 gives an illustration of the processing done
by a max pooling 2 × 2 layer on an input image. Pooling down samples the input image.

pn,m

⎛

⎝

⎛

⎝

x1,1 x1,2

x2,1 x2,2

⎞

⎠

⎞

⎠
=max(x1,1, x1,2, x2,1, x2,2) (III.5)

9
7

2
8

4
6

6
4

1
1

1
3

1
5

2
4 9

6 3
5MaxPooling(2x2)

Figure III.4 – Illustration of the processing performed by a max pooling 2 × 2 layer on an
input image.

III.2 Description of NNs in Synchronous Data Flow
(SDF)

III.2.1 SDF Model of Computation (MoC)

To ease the analysis and optimization process of NN deployments on embedded
platforms, dataflow-oriented Models of Computation (MoC) are commonly used. For
instance in ZigZag [84], the authors model the dataflow of NNs in order to optimize the
data exchanges with the memory to implement efficient accelerator architectures. The
approach led by the authors of Eyeriss [63] aims at proposing a new dataflow representation
called row-stationary to optimize the exchanges between the processing elements that
compose a systolic array for the inference of NNs on FPGA. In this work we rely on the
Synchronous Data Flow (SDF) Model of Computation (MoC) introduced in [52]. SDF is
commonly used to describe digital processing applications deployed on multi-core platforms
(for example, see [67]).

57

Chapter III – Work hypothesis

SDF offers a clear and well-known semantic for the description of applications, which:
— allows to guarantee absence of interlocking in the application, taking into account

the defined token production/consumption rates for communications,
— offers the separation of computation phases and communication phases, thus making

possible the characterization and analysis of these two aspects independently from
one another,

— supports real implementation on multi-processor hardware targets,
— offers the possibility to express an application’s parallelism through the partitioning

of the application in sets of actors,
— is adapted to pipeline/streaming execution of application.
Describing a system in SDF aims at splitting it into a set of actors. Actors model an

element of computation. Their behavior is separated into three phases: read, compute
and write. During the compute phase, no interference with any other actor can occur.
The execution of an actor is called "firing". The dataflow between actors is modeled as
communication channels, which are buffers containing data labeled as tokens exchanged
between actors under the First In First Out (FIFO) principle. The use of bounded FIFOs
prevents memory overflows. Actors exchange data labeled as token via communication
channels, which act as buffers. For every communication channel in the SDF graph, each
actor has a defined token production rate and a token consumption rate, which correspond
to the amount of tokens the actor respectively generates upon firing or requires to fire.
SDF graphs can also incorporate a source element, which models the arrival of input data
from an external source, and a sink, which models the output of the system sent externally.
An example of SDF graph is provided in Figure III.5.

A BSrc Snk
3 3 1 2 1 1

Figure III.5 – A simple SDF graph. Actors are depicted in green whereas communication
channels are depicted in blue. The element "Src" is the source of the SDF graph and the
element "Snk" is the sink. Black numbers sided next to actors and hovering communication
channels are the token rates of actors. The graphical notation of the SDF graph in this
figure are reused identically in the rest of the figures of the manuscript.

SDF offers a strict separation of computation and communication (read, write) phases
of actors, under the condition that these phases are respected in the latter hardware
and software implementation of the SDF graph. A SDF graph can be represented by a

58

III.2. Description of NNs in Synchronous Data Flow (SDF)

topology matrix, which contains the token rates of every actor for each communication
channel. In this work, we use SDF to model NNs with separation of the computation and
communication phases. We then complement SDF with timing and power models used to
address the effect of shared resources on the execution of the application on multi-core
platforms. In the next section, we explain how we use SDF to model NNs while offering
the possibility to express different degrees of parallelism from the application point of
view.

III.2.2 Modeling of NNs in SDF

In this work, we target multi-core platforms, which allow an acceleration of the execution
of NNs by exploiting their intrinsic parallelism. SDF allows expressing different degrees
of parallelism of the application with respect to the computations and communications
performed. In [85], the authors present a way of capturing MLPs in SDF using several
levels of granularity:

1. NN grain: where the whole NN is modeled as an actor,

2. Layer grain: where each layer of the NN is modeled as an actor,

3. Neuron grain: where each neuron is modeled as an actor,

4. Operation grain: where each operation (e.g. multiplication, sum, etc.) is modeled
as an actor.

In this work, we further extend the work of [85] for intermediate granularity between
levels 2. and 3. In opposition to [85], we also allow mixing the level of granularity inside a
model: each layer of the NN has its own grain. We also extend this modeling to convolution
layers in addition to dense layers. In the coarsest level of granularity a layer is modeled as
one single actor. The finest level of granularity considered is the neuron / kernel convolution
granularity, in which every neuron / kernel convolution in the layer is described as one actor.
For example Figure III.6 provides an illustration of three different levels of granularity
that can be used to model a given dense layer composed of 4 neurons. In the coarsest
level of granularity denoted 1 , the 4 neurons are modeled as one actor. In this case the
computation phase corresponds to the sequential execution of 4 neurons, which therefore
does not allow for parallel execution. This will lengthen the execution time of the layer
with repercussions on the power consumption. In the finest level of granularity denoted 2 ,
the 4 neurons are modeled each as one actor. This enables their execution in parallel,
with possible execution time and energy enhancement, but it can be noted that this also

59

Chapter III – Work hypothesis

N1

N2

N3

N4

64 inputs 4 neurons 4 outputs

N4

N1

N2

N3
Channel
IN[64]

Actor Actor1
N1

N4

N1

N2

N3
Channel
OUT[4]

Channel
OUT1 [2]

Channel
OUT2 [2]

Channel
IN1 [64]

Actor1

Actor2 4x Channel
OUT [1]

Clustering: description in SDF

Dense layer of a neural network

Coarse grains Fine grains

1 2 3

Channel
IN2 [64]

Actor2
N2

Actor3
N3

Actor4
N4

4x Channel
IN [64]

Figure III.6 – Three different clusterings of a dense layer composed of 4 neurons. 1
corresponds to the coarsest granularity, as the whole layer is encapsulated into 1 actor. 3
corresponds to the finest granularity, as every neuron is encapsulated into 1 individual
actor. 2 corresponds to an intermediate granularity between 1 and 3 .

generate extra communication channels (4 channels of 64 inputs and 4 channels of 1 output
against 1 channel of 64 inputs and 1 channel of 4 outputs for the coarsest grain). The
additional channels will generate communication overheads with possible congestion on
shared communication medium during concurrent accesses by cores, which will impact
both latency and energy. Intermediate levels of granularity between the coarsest and finest
grains such as 3 provide a balanced ratio between parallelism execution of the layer and
communication overhead. An evaluation of the level of granularity used to model NN
layers is thus necessary to find solutions that optimize latency and power consumption.

To properly define intermediate levels of granularity, we introduce the notion of
clustering of a layer in SDF, and we denote C the number of actors generated from a
layer. For dense layers, the actors issued from the clustering contain sets of neurons. For
convolution layers, the actors issued from the clustering contain sets of filter operations.

60

III.2. Description of NNs in Synchronous Data Flow (SDF)

In Figure III.6, 1 corresponds to a clustering C = 1 as only one actor is generated from
the layer, 2 corresponds to C = 2 and 3 corresponds to C = 4. In this work, we only
considered the clustering of layers into actors containing equitable computation workloads.
For a dense layer, all actors issued from the clustering of a layer contain roughly the same
number of neurons. For example, if the layer contains 4 neurons and C = 3, then two actors
will contain 1 neuron and the last actor will contain 2 neurons. The same principle is
applied to convolution layers with kernel convolutions. The proposed modeling flow could
also be applied to uneven clusterings (without equitable share of workload among actors
issued from a same layer) without modification.

Communication channels of NNs modeled in SDF correspond to the data exchanged
between layers. Kernel convolutions and neurons require all the outputs from the previous
layer to execute, therefore the token production rate is identical to the token consumption
rate. In this thesis, we then refer to the number of tokens exchanged in a communication
channel as the token rate, and we only depict the token rate once per communication
channel on illustrations of NNs modeled as SDF graphs. The clustering of NN layers in
SDF effects the number and token rate of communication channels in the SDF graph. The
token rate of a communication channel is defined by the number of features (neurons or
kernel convolutions) contained in the producing actor, which depends on the clustering.
The number of communication channels between a layer denoted l and the next layer
denoted l+1 is Cl ⋅Cl+1 where Cl is the clustering of layer l and Cl+1 of layer l+1. The actors
of a layer must all be connected to every actor from the previous layer. This highlights the
importance of exploring and evaluating the clustering of layers under timing and power
constraints, as the number of channels and tokens exchanged increases rapidly with the
complexity of the graph, with consequences on the time spent in communication and power
consumption.

In this work, we also re-use the introduction of a complementary actor named "decoder"
as in [85] when the clustering of the last layer of a NN is higher than 1. This actor reads
the outputs from the actors issued of the clustering of the last layer and assembles them
in order to write all into a single output channel directed to the sink of the SDF graph.
This actor makes it easier to analyze the graph by clearly identifying when it ends (the
tokens from the decoder have been written to the single channel of the sink). It can also
be used to normalize the output of the NN, for example by applying the Softmax function,
to indicate more clearly which class has been recognized, but in our work the decoder does
not apply any additional processing to the NN classification results.

61

Chapter III – Work hypothesis

Although this was not considered in this work, it would be possible to set up boundaries
regarding the size of clusters using the memory model presented in Appendice C when
performing the clustering. For example if the maximum memory of a tile is 1024 kB, and
it must execute an actor issued from a dense layer with an input of 784 floats 1, then this
tile can support a maximum of 320 neurons from this dense layer.

III.3 Model of Architecture (MoA)

III.3.1 Composition of the MoA

Private
memory

Processing
Element

Private
memory

Shared
Memory

Private
memory

...

Tile#0 Tile#1 Tile#T

Shared communication bus

Processing
Element

Processing
Element

Arbiter

Figure III.7 – Example of platform which subscribes into our MoA. The MoA is composed
of a set of tiles containing a single-core processor with private data and instruction memory.
A shared memory is available for communications between tiles, which is accessed through
a communication bus featuring an arbiter.

The considered MoA is a tile-based model, in which each tile is one single-core processor
with its private data and instruction memories. Executing instructions from this private
memory causes no interference with other tiles. Tiles are assumed to be identical except for
the size of the memory. Data exchanges between different tiles are performed via a shared
memory. The accesses to the shared memory are done using a shared communication bus.
The shared communication bus integrates an arbiter to manage concurrent accesses to the
shared memory by tiles. This MoA allows respecting the separation of computation phases
(performed privately inside tiles) and communication phases (which involve accesses to the
shared memory) from SDF. This MoA preserves thus the properties of SDF (comm/comp

1. This corresponds to the MNIST dataset [11] input image size.

62

III.3. Model of Architecture (MoA)

separation) and is therefore fully compositional, i.e. adding tiles does not disturb the
properties of other tiles. The use of this MoA then allows to propose performance and
power models that are also composable with respect to the number of tiles used in the
implementation platform. A diagram that positions the different constituents of the MoA
is given in Figure III.7.

Table III.1 presents notable real multi-core platforms used both in industry and
academia for the processing of NNs and compare them with the platform used in this
work. The PETA-MC platform [68, 67] (last entry of the table) is the implementation
platform used in previous work of our project, which respects the presented MoA. For most
listed platforms, cores are equipped with a private memory of limited size, and a shared
memory of bigger size, accessible through a simple communication medium such as a shared
interconnect. Real platforms however also feature sometimes additional larger on-chip
shared memories and external DRAM. This is the case for example of the Tilera Tile-GX
architecture, which feature a 32 MB internal SRAM and DRAM. The Tilera Tile-GX
architecture offers the possibility to switch off these extra memories, which have their own
power supply in case they are not needed for the execution of an application. When the
extra memories (SRAM, DRAM) are not used, the listed platforms subscribes well into our
MoA. From the considered platforms, the NxP MSC8156 DSP is the closest to our MoA as
it features 6 tiles with private memory and a shared memory accessible through a shared
interconnect. Other platforms such as the Kalray MPPA DPU, the Intel SCC and the
Tilera Tile-GX features more complex communication medium between cores such as mesh
networks. Apart from the communication medium, these platforms are built to be modular
in regards to the number of tiles (e.g. the Tilera Tile-Gx architecture features platforms
containing 16 up to 100 cores). Other recent platforms integrate hardware accelerators
for fast inference of NNs. This is the case of the Coral dev board featuring a NXP i.MX
8M SoC (Quad-core Cortex-A53 plus Cortex-M4F), the NVIDIA Jetson Nano (4 ARM
A57 cores) and the Sipeed MAIX Go Suit (2 RISC-V cores). The multi-core SoC used in
these platforms uses cores with their own private memory, and internal shared memory
accessible through a shared interconnect, as well as an access to DRAM. Compared to the
other listed platforms, the Intel Movidius Myriad2 has a singular architecture, it features 2
LEON cores used to run a Real Time Operating System (RTOS) and manage peripherals in
real time, and 12 Vector Processing Units (VPUs), which are efficient for processing large
chunks of data issued from images and which are therefore often used as NN accelerators
(see for example [26, 24, 27]). It also features more than 20 hardware accelerators meant for

63

Chapter III – Work hypothesis

Table
III.1

–
M

ain
featuresofnine

differentm
ulti-core

platform
s.W

hen
com

m
unicated

by
the

chip
provider,the

core
type,

num
berofcores,core

frequencies,m
em

ory
sizes,com

m
unication

m
edium

and
possible

H
W

acceleratorare
provided

in
this

table.

P
roduct
nam

e
C

ore
typ

e
N

um
b

er
of

cores
C

ore
frequencies

M
em

ory
sizes

C
om

m
unication

m
edium

A
ccelerator

N
xP

M
SC

8156
D

SP

N
xP

SC
3850

6
1

G
H

z

64kB
P

M
,

512kB
SM

,
1056kB

add.SM
,

ext.D
R

A
M

Shared
interconnects

/

K
alray

M
P

PA
D

P
U

V
LIW

64-bits
core

5
clusters

containing
16

cores
(80)

600
M

H
z

up
to

1
.2

G
H

z

32kB
P

M
,

4
M

B
SM

(per
cluster),

ext.D
R

A
M

N
ot

com
m

u-
nicated

E
ach

core
features

a
co-processor

for
acceleration

Intel
SC

C

IntelP
54C

P
entium

32-bits

24
"tiles"

containing
2

cores
(48)

400
M

H
z

up
to

1
.2

G
H

z

32kB
core

P
M

,
256kB

tile
SM

,
ext.D

R
A

M

M
esh

netw
ork

/

T
ilera

T
ile-G

x

V
LIW

64-bits
core

16
up

to
100

tiles
1.0

up
to

1.5
G

H
z

64kB
L1

P
M

,
256

kB
L2

P
M

,
32

M
B

on-chip
SR

A
M

,
ext.D

R
A

M

M
esh

netw
ork

/

C
oral

dev
board

(N
X

P
i.M

X
8M

SoC
)

C
ortex

A
53

64-bits
+

C
ortex

M
4F

32-bits

4
+

1
1.5

G
H

z
64kB

P
M

,
1M

B
SM

,
ext.D

R
A

M

Shared
interconnect

M
achine

Learning
A

ccelerator
G

oogle
E

dge
T

P
U

co-processor

N
V

ID
IA

Jetson
N

ano

A
R

M
A

57
64-bits

4
1.43

G
H

z
80kB

P
M

,
2M

B
SM

,
ext.D

R
A

M

Shared
interconnect

128-core
N

V
ID

IA
M

axw
ellG

P
U

Sipeed
M

A
IX

G
O

Suit
R

ISC
-V

2
400-

500
M

H
z

8
M

B
SM

(on-chip
SR

A
M

),
P

M
not

com
m

u-
nicated

N
ot

com
m

u-
nicated

K
P

U
(N

eural
N

etw
ork

P
rocessor)

Intel
M

ovidius
M

yriad2

LE
O

N
32-bits
(R

ISC
)

+
V

P
U

s

2
+

12
600

M
H

z

LE
O

N
→

P
M

cache
(1×

40
kB

,
1×

192
kB

),
V

P
U

s→
2M

B
SM

,
512M

B
D

D
R

M
ain

com
m

unication
bus→

LE
O

N
Shared

interconnect
→

V
P

U
s

20+
program

m
able

H
W

accelerators

P
E

TA
-M

C
platform

M
icroB

laze
32-bits
(R

ISC
)

7
100

M
H

z
32-256kB

P
M

8kB
SM

Shared
interconnect

/

64

III.3. Model of Architecture (MoA)

a fast execution of various DSP computation-intensive tasks. The Movidius Myriad2 is the
only platform on the list that does not fit in our MoA, in addition to the use of external
DRAM or the use of mesh networks as communication medium. Our MoA doesn’t support
the use of the external memory (such as DDR-RAM). In fact, using the external memory
would break the hypothesis of both MoA and SDF that tiles cannot be interrupted when
performing computations: tiles may require additional instruction or data triggering an
access to the external memory, which may then lead to competitions between the tiles
during computation phases. Possible solutions to extend our MoA and MoC to support the
use of external memory are discussed in the perspectives, in conclusion of this manuscript.
In the scope of this work, we do not consider more complex memory hierarchies involving
external memory. We show that for the execution of simple NNs, our MoA is suited as it
avoids important latency and energy overheads due to external memory usage. Our MoA
also offers a structure for which the modeling effort is reasonable.

III.3.2 Power management within the MoA

In the scope of this study, we considered two communication modes. The first one
is the one used in previous work [68, 67], and the second one introduced in this work,
which allows an optimization of the power consumption within the platform. During the
execution of NNs on a multi-core platform, when tiles require unavailable tokens to execute,
they enter a waiting state until the tokens are available. When tiles are waiting, they are
not contributing to the execution of the NN and can therefore be switched to a lower
power consumption mode. Several techniques can be used in order to manage and reduce
the power consumption of multi-core systems. Notable ones are:

— Dynamic Voltage & Frequency Scaling (DVFS) as used for example in [71]. It
introduces different execution modes for cores with dedicated voltage and frequency
settings.

— Power gating as used for example in [86, 25]. This technique aims at switching off
the power supply from a device when it is not used. Switching off the power supply
of a processing element deletes its execution context, which leads to important
overheads when restarting the system afterwards.

— Clock gating, as presented in [33]. Clock gating reduces the power consumption of
tiles at runtime by temporarily disabling their input clock signal. It does not reduce
the static power consumption of circuits as they are still supplied with power. It
however allows removing the dynamic part of power consumption as all activities

65

Chapter III – Work hypothesis

Tile0 (T0)

Hidden
Layer

Tile1 (T1)

Output
Layer

Shared
memory

Channel
IN

Channel
HL-OL

Channel
OUT

Tile0 (T0)
Hidden
Layer

Tile1 (T1)
Output
Layer

Shared
memory

Channel
IN

Channel
HL-OL

Channel
OUT

Interrupt
Controller

(IC)

Clock
gating
control.

Clock
gating
control.

Polling Interrupt + Clock gating

Choice of communication mode and mapping on the platform

Check
token

NO

YES

Communication procedure:

Check
token

NO

YES

Clock
gating

enabled

Interrupt
received
Wake up

Perform
Read/Write

Token
available?

Token
available?

Perform
Read/Write

Wait
Interrupt

Hidden
Layer

IN Output
Layer OUT

Channel
IN

Channel
 HL-OL

Channel
OUT

784 784 3232 10 10

ANN described as SDF graph

Figure III.8 – The considered versions of the platform. Version 1 features polling-based
communications without the use of clock gating. Version 2 features interrupt-based
communications with the use of clock gating. Automates describing the behavior of tiles
when checking the availability of tokens respectively provided in 3 and 4 and examples
of activity diagram in 5 and 6 .

are suspended when the clock is disabled. It also has the advantage of offering
minimal latency overheads due to the ease of enabling and disabling the clock signal
and the low delay needed by the tile to resume its execution.

In this work, we chose to implement clock gating. In order to evaluate the impact
of clock gating on NN execution on tile-based multi-core platforms, we considered two
platforms with different communication modes, as depicted in Figure III.8 1 and 2 :

1. One mode with an active wait implemented as polling-based communications
without the use of clock gating. When a tile needs unavailable data to execute, it

66

III.4. Mapping of NNs modeled in SDF on platforms respecting the MoA

polls the shared memory until the data is available, as depicted in Figure III.8 3 .
This is the communication mode used in previous work [67] [68],

2. One mode with a passive wait implemented as interrupt-based communications
with the use of clock gating. When a tile needs unavailable data to execute, it enters
the low power mode (clock gating) until its clock is re-enabled by an interrupt
signal, which indicates that the data is now available, as shown on the right in
Figure III.8 4 ,

The interrupt-based platform introduces an interrupt controller to manage the interrupt
signal, and clock gating controllers to manage the activation and deactivation of clock gating,
as shown in Figure III.8 2 . The interrupt signal is enabled by the interrupt controller
peripheral when requested by a tile. When finishing a read/write transaction, tiles enables
the interrupt signal through the use of the interrupt controller. When the interrupt is
enabled, clock gated tiles exit the low power mode and resume their execution. The
additional components (interrupt controller and clock gating controllers) cause overheads
in latency and increase the power consumption of the system, as illustrated in the execution
diagram in Figure III.8 6 . However they enable the usage of low power mode instead
of polling on the shared memory (see Figure III.8 5 and 6), which can lead to power
consumption enhancements. The trade-off in latency and power consumption between the
two communication modes must therefore be evaluated on a case-by-case basis for each
considered NN deployments. The next section explains how we map NNs modeled as SDF
graphs on multi-core platforms that respects the hypothesis of our MoA.

III.4 Mapping of NNs modeled in SDF on platforms
respecting the MoA

The actors from the clustering are mapped on the tiles available on the platform.
The communication channels between actors are mapped on the shared memory. The
tiles will read (ReadTokens() statement) and write (WriteTokens() statement) the data
necessary for the execution of the actors in the communication channels. During the
execution of the computation phase of actors, cores cannot be interrupted. The application
is self-scheduled: the scheduling is established based on the dependency between actors.
For a given SDF graph, several mappings of the application are possible. Examples of
mapping for a given NN modeled in SDF is shown in Figure III.9. In this example, the SDF

67

Chapter III – Work hypothesis

graph contains 3 actors HL1, HL2 and OL. In the first mapping all actors are mapped
onto one core, which does not exploit possible parallel execution. In the second mapping,
the actor HL1 is mapped on tile 0 while the other actors are mapped on tile 1. This
enables a streaming execution of the graph by allowing executing HL1 in parallel to the
two other actors. In the third mapping, each actor is mapped on different tiles, which also
enables a streaming execution of the graph, but this time HL2 and OL are also executed
in parallel. Each of these mappings have different latency and energy consumption, as
presented in the table on the right on Figure III.9. In general using more cores enable
a parallel execution of the application but it also generates more communications, with
impact on the application’s latency. Similarly, using more cores will increase the power
consumption but the use of passive wait can significantly reduce it. The performance
and power consumption of NN deployments on multi-core platforms is highly dependent
on the mapping. It is thus necessary to proceed with a thorough evaluation of possible
mappings under latency and energy constraints to find optimized ones. Comparing both
levels of granularity and mappings of the application allows finding solutions that jointly
optimize timing and power properties as well as the number of tiles used, as shown in
Chapters IV, V and VI.

Tile0

HL1

Mapping#1

HL2 OLHL1

Channel
HL1-HL2

Channel
HL2-OL

Channel
OUT

Channel
IN

Shared
memory

Channel
IN

Channel
HL1-HL2

Channel
HL2-OL

Channel
OUT

HL2

OL

Tile0

HL1

Mapping#2

Shared
memory

Channel
IN

Channel
HL1-HL2

Channel
HL2-OL

Channel
OUT

Tile1

HL2

OL

Tile0

HL1

Mapping#3

Shared
memory

Channel
IN

Channel
HL1-HL2

Channel
HL2-OL

Channel
OUT

Tile2

OL

Tile1

HL2

Possible mappings on platform

...

NN described as SDF graph

Mapping#1 -- ++
-Mapping#2 -

Timing Power

Mapping#3 ++ --

Mapping performance/power evaluation

Figure III.9 – Three different mappings of a NN described in the SDF MoC on the
considered platform.

68

III.5. Real platform prototype implementation and considered applications

III.5 Real platform prototype implementation and
considered applications

In order to obtain real time and power measurements to compare with the predictions
of the modeling flow presented in the next chapters, we implemented a tile-based multi-core
platform which respects the MoA, shown in Figure III.10. Our measurement setup is
shown in Figure III.11. Two versions of the platform are implemented: one which relies on
interrupt-based communications with clock gating and one which relies on polling-based
communications without clock gating. The platforms are implemented on a Xilinx ZCU102
board, which features a UltraScale MPSoC+ FPGA [87]. They are implemented on the
programmable logic section of the FPGA. The processing core of the tiles is a MicroBlaze.
The private memory of tiles and the shared memory are implemented as Block Random
Access Memory (BRAM), which is internal to the FPGA SoC. The communication medium
to access the shared memory is implemented as a shared interconnect Advanced eXtensible
Interface (AXI). In the clock gating version, the interrupt controller and the clock gating
controller are IPs provided by Xilinx. The main version of the implemented platforms is
composed of 7 tiles, including one with 1MB of private memory (Tile0) and others with
256kB of private memory 2. Other versions have been implemented too as discussed in
Chapter V to evaluate the applicability of our power model to platforms with different
number of tiles and private memory sizes.

The targeted FPGA features several power supplies [87]. We probed VCCINT, which
corresponds to the supply voltage of the programmable logic of the FPGA, and VCCBRAM,
which corresponds to the supply voltage for the BRAM. The BRAM supply voltage is
already well optimized by the provider as discussed in [89], and we observed no variation of
power consumption on VCCBRAM when performing our tests. In fact, the activity linked to
memory usage is observed rather on the VCCINT power supply, as the memory controllers
are implemented on the programmable logic part of the FPGA. The correctness of this
observation is confirmed through the use of the Xilinx Power Estimator (XPE) [90] available
in Vivado, which predicts marginal dynamic contribution to the system consumption on the
VCCBRAM voltage supply. For this reason, we focus only on VCCINT power consumption
in this study.

The timing measurement infrastructure presented in [91] relies on code instrumentation

2. One tile contains a bigger private memory than the others to enable the execution of single-core
scenarios, which require important amounts of memory.

69

Chapter III – Work hypothesis

Shared Memory
(BRAM)

UART

U
AR

T_
TX

U
AR

T_
R

X

AXI Interconnect

UART_TIME_TXComputation time
measurement
infrastructure

Tile[0..6]

MicroBlaze

Local
Memory
(BRAM)

Communication time
measurement
infrastructure

ILA

Implementation platform prototype

ZCU102 UltraScale FPGA Power
measurement
infrastructure

FPGA
Supply
Voltage

Figure III.10 – Block diagram of the prototype implementation platform used in this work.

Figure III.11 – Experimental setup used in the scope of this thesis. The board is the
ZCU102 UltraScale MPSoC+ [87]. 1 marks the two pins of PMOD bank (part of the
Inputs/Outputs of the FPGA) that we use as UART ports for our timing measurement
infrastructure (UART_TIME_TX signal on Figure III.10). 2 marks the UART-to-USB
bridge device that we use to transmit the timing data to our PC 3 marks the position of
the probes for power measurements. Those probes are positioned on the two pins of the
VCCINT power supply shunt resistor. 4 marks the R&S HMC8012 Digital Multimeter [88],
which measures the voltage across the VCCINT shunt resistor. 5 marks the connection
between the multimeter and the PC. The multimeter can be operated through Standard
Commands for Programmable Instruments (SCPI). 6 marks the connection of the board
to the PC. This connection is used to program and debug the board. The UART_TX and
UART_RX signals as shown in Figure III.10 are implemented on this connection.

70

III.5. Real platform prototype implementation and considered applications

to issue a start signal at the beginning of the execution of the SDF graph and issue a stop
signal at the end, at the cost of the execution of a single instruction (two clock cycles).
The overhead on timing when using this infrastructure is thus marginal. Based on the
elapsed time between the start and stop signals, the execution time of the SDF graph
is measured. In the scope of this work, we focus on streaming SDF applications, and we
therefore measure the end-to-end latency of SDF graphs. To do so, we measure the elapsed
time between two stop signals. In addition to this, the Integrated Logic Analyzer (ILA) [92]
can also be used to measure the duration of transfers on the shared interconnect bus. The
power measurements are obtained using the R&S HMC8012 Digital Multimeter [88] at a
sampling rate of approximately 100 samples per second. As the execution times measured
are in the order of milliseconds or even hundreds of microseconds, we took 10 000 for
each considered measurement in order to obtain a representative sample of the system
consumption. We then used the average of the measurements.

We considered three MLPs and one CNN to test our timing and power modeling flow.
The CNN2, which features the LeNet5 topology [11], is used only in the DSE chapter VI.
The four considered NNs vary in complexity with respect to both computations (number of
layers, number of neurons and filters) and communications (number of channels, amount of
tokens) workloads, which allows for a thorough validation of the modeling flow presented
in the remainder of this manuscript. The considered NNs are presented as SDF graphs in
Figure III.12, which also contains the number of layers, the number of features by layer
(neurons, kernel convolutions) and the number of tokens exchanged between layers. The
data-set used to train the NNs and the classification accuracy after training are provided
in Table III.2. The MLP1 has a small amount of computations while the MLP2 features
a more complex structure with two hidden layers and a bigger amount of computations.
The different computation and communication workloads presented by these applications
allow testing the validity of our flow in this regard. Testing the validity of our flow when
applied to different data-sets is necessary as it allows also to test different sizes of inputs

Table III.2 – Number of layers, data-set and classification accuracy of the considered NNs

NN name Number of layers Data-set Accuracy
MLP1 2 MNIST [11] 85%
MLP2 3 MNIST [11] 89%
MLP3 3 GTSRB [93] 20%
CNN1 4 MNIST [11] 77%
CNN2 7 MNIST [11] N.A.

71

Chapter III – Work hypothesis

CNN1:

F=5 N=64 N=10

1x32x32 5x28x28 5x14x14
64 10

N=16 N=10

32 16 10

MLP2:

1x28x28

N=32

N=10

10 10

MLP1:

1x28x28

N=10

N=30 N=43

30 30 43

MLP3:

1x24x24

N=30 : SDF graph sink

: SDF graph source

: Communication channel
containing T tokens

T
Legend

: Actor modeling a
 dense layer containing
 N neurons
: Actor modeling a
 convolution layer
 containing F filters

: Actor modeling a
 pooling layer

N

F

F=6 F=16

CNN2
(LeNet5):

N=84 N=10N=120

1x32x32 6x28x28 6x14x14 16x10x10 16x5x5 120 84 10

Figure III.12 – The considered NN applications described as SDF graphs with the coarsest
level of granularity (layer grain, in which every layer’s clustering is C = 1). We considered
3 MLPs and 1 CNN. The graphs on this figure do not feature a decoder actor due to the
last layer’s clustering being C = 1.

and outputs. For this reason we also consider a third MLP denoted MLP3, which was
trained on the German Traffic Sign Recognition Benchmark (GTSRB) [93]. To highlight
the possibility to use our modeling flow also with CNNs, we consider the CNN1 application
trained on the MNIST [11] data-set, developed for MicroBlaze by [94]. As shown in
Figure III.12, MLP1 and MLP2 have an input channel of 28 × 28 = 784 tokens, as the
images issued from the MNIST [11] handwritten digit recognition data-set are black and
white images with a width and length of 28 pixels. The CNN1 however has an input
channel of 1024 = 32 × 32 pixels. Zero-padding 3 is in fact applied to the input images
of the NN before the processing of the convolution layer to resize the images from the
MNIST data-set. The MLP3 features an input channel containing 512 tokens (24 × 24
grayscale image). It must be noted that the GTSRB is a complex data-set featuring images
of different resolutions with colors. To enable the use of this data-set on our embedded

3. In CNNs, zero-padding aims at surrounding the input image with zeroes. This helps preserve features
that exist at the edges of the original image and control the size of the output of the convolution layer.

72

III.5. Real platform prototype implementation and considered applications

multi-core platform prototype, we apply a processing on the input image sizes to normalize
them all to black and white format and 24 × 24 size. We also consider a second CNN,
named CNN2, and which features the LeNet5 [11] architecture. This CNN is not used for
the validation of our flow, but it is used for the demonstration of our DSE flow.

The considered NNs were trained and implemented using lightweight C libraries: the
open source Fast Artificial Neural Network Library (FANN) [95] for MLPs, and a similar
open source library for CNNs 4. Lightweight C libraries have limitations regarding the
NN’s classification accuracy, as they do not offer as much optimizations of NN architecture
and training as the mainly used Deep Learning frameworks with Python APIs, e.g.
Tensorflow [43, 44], PyTorch [45], Caffe [46] and Keras [47]. However, using lightweight
C libraries eases highly the deployment of the NN onto edge devices. While compilers
have been proposed to help with the deployment of NNs trained with the mainly used
Deep Learning frameworks at the edge, e.g. Apache TVM [48] and the onnx2c project 5,
they do not always provide support for all hardware targets, and their use often results
in a loss of precision when describing the NN in C language. Some approaches from the
related work train NNs with Tensorflow [43, 44] and then implement trained NNs at the
edge using custom C libraries [32, 59] 6. Another major advantage of using C libraries
is that they are very lightweight, thus making it easier to satisfy memory constraints of
edge platforms. These libraries are valid choices for the implementation of NNs on edge
devices. Despite being first online in 2003, LibFANN is still used in recent academic work
for the implementation of ML-based applications such as cattle tracking [96], hand gesture
recognition [97] and for lane change tracking in Advanced Driver Assistance Systems
(ADAS) [98]. Similarly to LibFANN, the company Neuton [99] proposes simple MLP-based
ML solutions coded in lightweight C code.

It can be noted in Table III.2 that MLP3 has very low accuracy. This is due to the
high reduction of the input images and simple structure of the network, used for the
complex GTSRB data-set [93]. The CNN1 has lower accuracy than the MLP1 and the
MLP2 as usually a second convolution layer with another max pooling layer is used after

4. Available on: https://github.com/tranleanh/CNN-cpp. Last accessed: 10.10.2023, commit:
aac4107.

5. onnx2c is a Open Neural Network eXchange (ONNX) to C compiler. It generates C code based
on an input ONNX file. ONNX files can be generated by Tensorflow [43, 44], PyTorch [45], Caffe [46]
and Keras [47] to save a trained NN model. See more on https://github.com/kraiskil/onnx2c. Last
accessed: 10.10.2023, commit: dff37f0.

6. The C library for CNNs used in [32] is available on https://github.com/Tencent/ncnn, last
accessed: 10.10.2023, commit: d1289fb

73

https://github.com/tranleanh/CNN-cpp
https://github.com/kraiskil/onnx2c
https://github.com/Tencent/ncnn

Chapter III – Work hypothesis

the first one to increase the NN’s accuracy, as it is done for example in the LeNet5 CNN
topology (CNN2) [11]. It can also be noted that the library used to train the network
uses elementary training methods, which limits the accuracy. In the scope of this work,
the classification accuracy of the network is secondary. Our aim is to propose models to
evaluate the non functional properties (latency, power consumption) of NN mapped on
multi-core platforms. The optimization of functional properties such as the classification
accuracy is outside the scope of this work. All NNs are trained with float32 precision and
they use the ReLU activation function. We tested several clusterings and mappings of the
considered NNs. All details regarding the tested clusterings and mappings can be found in
appendices of this manuscript.

In the next chapter, we will present the proposed fast yet accurate timing prediction
flow for NNs deployed on multi-core platforms under the work hypothesis formulated in
this chapter.

74

Chapter IV

SIMULATION-BASED TIMING PROPERTIES

PREDICTION APPROACH

In this chapter, we present a modeling methodology to enable prediction and analysis
of timing properties, such as latency and throughput, for NNs deployed on multi-core
platforms that respect our MoA. The main contribution of the proposed methodology is
to offer fast yet accurate timing predictions considering the clustering/mapping of the NN,
the number of tiles used, the computation/communication workload and the possible use
of power management. We propose a hybrid modeling flow, which combines measurements,
analytical models and simulation. We explain how we build analytical computation time
models for NNs based on the operations executed in layers. The analytical models are used
along with a communication time model inside a simulation of the system, which allows
taking shared resources into account and predict possible contentions. The computation
and communication time models are calibrated through measurement. The validation of
our modeling flow for several mappings of different NNs and the comparison with pure
analytical models is provided and discussed.

IV.1 Timing modeling and prediction flow overview

The analysis of timing properties for NNs deployed onto multi-core platforms is
necessary to optimize solutions and verify that timing constraints are met. Proposing
models to achieve this goal is however tedious, as:

1. Contention on shared resources (e.g. shared bus and memory) arise when
multiple tiles attempt to access them simultaneously. When they occur, contentions
lead to important timing overheads that must be modeled. Because contention effects
are highly dependent on tile-specific usage patterns and on the clustering/mapping
of the application, they are particularly difficult to model.

75

Chapter IV – Simulation-based timing properties prediction approach

2. Computation and communication workload variation: NNs are applications
that highly benefit from several types of parallelization such as inter-layer paral-
lelism (i.e. streaming execution) and intra-layer parallelism (clustering). Proposing
models that allow exploring both intra- and inter-layer optimization is necessary to
find optimized deployments, but difficult as the computation and communication
workloads highly depend on the partitioning of the NN, with important effects on
timing. The computation and communication workloads are also dependent on NNs
themselves, as workloads differ highly based on the considered application.

3. Communication procedures: Multi-core platforms can support different commu-
nication procedures, such as polling-based without clock gating and interrupt-based
communications with clock gating 1. The communication procedure has important
impact on timing properties of NNs deployments and must be modeled.

To tackle these problems, we propose a modeling methodology to offer prediction of
timing properties in consideration of the clustering / mapping of NNs, communication
workload and two communication procedures (polling and interrupt-based). Figure IV.1
shows an overview of our timing modeling flow. The novelties of the timing modeling
methodology proposed in this chapter compared to the flow developed prior to this
project [67] [68] are highlighted on Figure IV.1 by the symbol ☀. The contributions to
this flow are the following:

1. The proposition of an analytical computation time model to offer a fast prediction of

1. These two communication procedures are described in details in Chapter III.

Clustering /
mapping

Communication
time model

Evaluation

Time measurement

Computation
time model

Simulation
(SystemC)

C#0

C#1

SM

Timing predictions

Real measurements

Characterization Characterization

Figure IV.1 – Overview of the timing modeling flow. A mapping of clusterized NN onto the
platform is evaluated using an executable model described in SystemC, which uses separate
computation and communication time models for delay prediction. These two models are
characterized through measurements. The prediction of the models are validated against
real measurements. The new contributions to the flow are marked with the ☀ symbol.

76

IV.1. Timing modeling and prediction flow overview

the delay required to process NN operations on processing elements. We also present
our measurement-based characterization approach to appropriately calibrate delay
models and enable accurate predictions.

2. The extension of the communication time model proposed in [68] to interrupt-based
communications with the use of clock gating.

3. The integration of the new computation time model and the updated communication
time model inside the existing simulable SystemC code, which allows modeling
shared resources.

4. The validation of the modeling flow on mappings of different NNs to highlight the fast
yet accurate predictions regardless of the clustering, mapping and communication
workload of NNs onto multi-core platforms.

5. The comparison of our modeling flow’s accuracy and evaluation speed compared to
a pure analytical model with respect to models proposed in related work, to further
comment on the benefits and limitations of our flow.

The main points of our workflow presented in Figure IV.1 are 1. the hybrid modeling
approach, 2. the simulation-based prediction and 3. the evaluation of the approach.

Hybrid modeling approach: The input of our modeling flow is a NN described as a
SDF graph mapped onto a multi-core platform that respects our MoA. The separation
of communication and computation of NNs described in SDF and respected by our MoA
allows building separate communication and computation models. We propose analytical
computation time models (depicted in green in the middle of Figure IV.1) for NN’s layers.
The analytical computation time models are presented in Section IV.2. The communication
time model (depicted in blue in the middle of Figure IV.1) is issued from [68] and was
initially proposed and calibrated for polling-based communications. We explain how this
model is constituted in Section IV.3, and how we extended this model to interrupt-based
communications. Both computation and communication time models are calibrated through
measurements using the timing measurement infrastructure from [67] in order to offer
accurate latency predictions.

Simulation-based prediction: The computation and communication time models are
used in a simulation model, which captures the structural and behavioral features of the
studied architecture. This simulation model is described with the SystemC framework.

77

Chapter IV – Simulation-based timing properties prediction approach

The simulation workflow allows considering the shared resources and predicting possible
contentions when several cores try accessing the same resource simultaneously. The
simulation calls the computation time model for delays regarding computation, and
the communication time model for delays regarding communications. The simulation is
presented in Section IV.4.

Evaluation of the approach: The final step (on the right of Figure IV.1) aims at vali-
dating the predictions of our modeling flow against latency and throughput measurements
obtained from the real implementation of the NN on our platform prototype on FPGA. We
also propose a pure analytical timing model for NNs mapped onto multi-core platforms,
which is presented in Section IV.5.2. We use this model to compare its prediction time
and accuracy with the proposed simulation-based modeling flow, to further discuss the
advantages and limitations of the flow. The validation results and the comparison of the
pure analytical model against the proposed simulation flow are presented in Section IV.5,
and discussed in Section IV.6.

IV.2 Computation time modeling approach

In this section we first present our analytical computation time models, and how they
are established based on the operations executed inside NN layers. We then describe
the characterization process followed in order to derive and calibrate our models from
measurements. Our analytical computation time models are used to predict the time spent
in computation by cores when executing NN layer operations. They are depicted in green
in Figure IV.1.

IV.2.1 Analytical computation time models

Dense layers: First, we focus on the analytical computation time model proposed for
dense (fully-connected) layers 2. This model can be used to predict the computation delay
of any actor containing a set of neurons issued from the clustering of a dense layer. The
analytical model is based on the operations executed by each core to compute a dense
layer, as illustrated in Figure IV.2. On the right of this figure, a zoom is provided on the
pseudo-code of the dense layer actor den1. Based on the code, three base delays can be

2. The operations executed inside dense layers (and also convolutional and pooling layers) are presented
in Chapter III.

78

IV.2. Computation time modeling approach

conv den1pool den2

F=5 N=64 N=10

Tile0 (T0)

conv
Shared
memory

conv-pool
pool

Tile1 (T1)

den1

den2 output

den1-den2

input

pool-den1

|WHILE(1):
 ...
| ReadTokens(pool-den1);
| ExecuteActorDen1(N=5x14x14, M=64, FLOAT
 input[N],FLOAT output[M]):
| INTEGER m;
| FOR m FROM 0 TO M-1:
| INTEGER n; FLOAT sum = 0;
| FOR n FROM 0 TO N-1:
| sum <= sum + weights[m][n]*input[n];
| sum <= sum + bias;
| output[m] <= ActivationFunction(sum);
| WriteTokens(den1-den2);
 ...

DΣ

Dsetup
Mapping on platform

NN described in SDF

F=5

980 5x28x28 5x14x14 64 10

Dφ

den1 actor pseudo-code

Figure IV.2 – Extraction of the analytical computation time model for dense layers from
NNs described as SDF graphs. The pseudo-code of the dense layer den1 is provided. The
elementary delays DΣ, Dφ and Dsetup can be identified from the code.

identified: DΣ, associated to the code highlighted in orange, Dφ, associated to the code
in red, and Dsetup, associated to the code in purple. DΣ is the delay needed to perform
the Multiply-ACcumulate operation (MAC): the multiplication of the input of the neuron
by the weight and its addition to the output of the neuron. Dφ corresponds to the delay
needed to compute the activation function of the neuron but also to add the bias (see
Equation III.1). In addition to these two delays, the initialization of the variables at the
beginning of the function ExecuteDen1 and the call and return procedures of the function
causes a delay denoted Dsetup.

According to the definition of a neuron of a dense layer, its computation depends
linearly on the number of inputs it has. In the pseudo-code on Figure IV.2, we can see that
the MAC operation (delay DΣ) is executed N times inside a for loop, where N denotes
the number of inputs of the dense layer. The addition of the bias and computation of the
activation function (Dφ) are only done once per neuron. Because neurons from a same
dense layer are independent, the execution time of a cluster of neurons depends linearly
on the number of neurons it contains. As seen in the pseudo-code, the computations of
the activation function and addition of the bias (delay Dφ) are repeated M times in a for
loop, where M is the number of neurons inside the actor. Since the MAC operations (DΣ)

79

Chapter IV – Simulation-based timing properties prediction approach

are also encapsulated in this second for loop, they are repeated a total of M ⋅N times.
Equation (IV.1) presents the formula of the total delay needed to compute a cluster of
neurons issued from a dense layer. We suppose that during the computation phase of the
cluster of neurons, all the data (neuron’s weights, inputs) and instructions are available in
the local memory of tiles (assumption in line with our MoA). The model is thus scalable
in consideration of the number of neurons contained in actors issued from the clustering of
dense layers.

Ddense(M, N) =M ⋅N ⋅DΣ +M ⋅Dφ +Dsetup (IV.1)

This equation is valid for processing elements computing NNs under the hypothesis
of our MoC and MoA and would not be applicable to architectures incompatible with
our MoA. It can be observed on Figure IV.2 that the delays DΣ and Dφ also extra-delays
linked to the implementation in code of the NN. For instance, DΣ and Dφ also include
delays for the initialization and increment of variables used inside for loops. Dφ also
contains the delay to initialize the variable containing the neuron’s result denoted sum.

conv actor pseudo-code
|WHILE(1):
 ...
| ReadTokens(input);
| ExecuteActorConv(F=5, Iw=32, Ih=32, Kx=5, Ky=5, input[Iw][Ih],
 output[F][Iw-4][Ih-4]):
| INTEGER f;
| FOR f FROM 0 TO F-1:
| INTEGER i;
| FOR i FROM 2 TO Iw-2:
| INTEGER j;
| FOR j FROM 2 TO Ih-2:
| output[f][i][j] = 0;
| INTEGER k;
| FOR k FROM 0 TO Kx-1:
| INTEGER l;
| FOR l FROM 0 to Ky-1:
| output[f][i-2][j-2] <= weights[f][k][l] * input[-2+i+k][-2+j+l]
 + output[f][i-2][j-2];
| output[f][i-2][j-2] <= output[f][i-2][j-2] + bias[f][i-2][j-2];
| output[f][i-2][j-2] <= ActivationFunction(output[f][i-2][j-2]);
| WriteTokens(conv-pool);
 ...

D*
Dφ

Dsetup

Figure IV.3 – Extraction of the analytical computation time model for convolution layers
from NNs described as SDF. The pseudo-code of the convolution layer conv issued from
the SDF graph presented in Figure IV.2 is provided. The elementary delays D∗, Dφ and
Dsetup can be identified from the code.

80

IV.2. Computation time modeling approach

Convolutional layers: Using the same approach, we propose an analytical computation
time model for actors issued from the clustering of convolution layers (Equation IV.2).

Dconv(F, Iw, Ih, Kx, Ky) = F ⋅ Iw ⋅ Ih ⋅Kx ⋅Ky ⋅D∗ + F ⋅ Iw ⋅ Ih ⋅Dφ +Dsetup (IV.2)

Dconv depends on the number of convolution filters F , the width of the input image Iw

and its height Ih, and the filters’ width Kx and height Ky. Based on the code executed
to obtain the results of a convolution layer presented in Figure IV.3, we also identify the
elementary delays D∗, which is the delay needed to perform the convolution operation, Dφ,
which is the delay needed to add the bias and compute the activation function, and Dsetup,
which is the time needed to call the ExecuteActorConv function. It can be noted from
Figure IV.3 that all delays contain also extra delays linked to the initialization of variables
and the increment of variables used in for loops. For example Dφ also contains the delays
to increment the variables (for loops) in order to perform all convolution operations when
performing kernel computations.

|WHILE(1):
 ...
| ReadTokens(conv-pool)
| ExecuteActorPool(F=5, Iw=28, Ih=28, Kx=2, Ky=2;
 float input[F][Iw][Ih],
 float output[F][Iw/Kx][Ih/Ky]):
| FLOAT max = 0;
| INTEGER f;
| FOR f FROM 0 TO F-1:
| INTEGER i;
| FOR i FROM 0 TO Iw-1 INC +2:
| INTEGER j;
| FOR j FROM 0 TO Ih-1 INC +2:
| max = input[f][i][j];
| INTEGER k;
| FOR k FROM 0 TO Kx-1:
| INTEGER l;
| FOR l FROM 0 TO Ky-1:
| IF input[f][i+k][j+l] > max:
| max = input[f][i+k][j+l];
| output[f][i/2][j/2] = max;
| WriteTokens(pool-den1)
 ...

Dmax

Dsetup

pool actor pseudo code

Figure IV.4 – Extraction of the analytical computation time model for max pooling layers
from NNs described as SDF graphs. The pseudo-code of the max pooling layer pool issued
from the SDF graph presented in Figure IV.2 is provided. The elementary delays Dmax

and Dsetup can be identified from the code.

Pooling layers: The analytical computation time model for actors of max pooling layers
is provided in Equation IV.3.

81

Chapter IV – Simulation-based timing properties prediction approach

Dpool(F, Iw, Ih, Kx, Ky) = F ⋅ Iw ⋅ Ih ⋅Kx ⋅Ky ⋅Dmax +Dsetup (IV.3)

The delay needed to compute actors issued from the clustering of max pooling layers
depends on the number of filters F , the input image’s width Iw and height Ih, and the
maximum filter’s width Kx and height Ky. Figure IV.4 shows that two elementary delays
can be identified from the computation of these operations: Dmax, which corresponds to
the delay needed to compute the maximum of Kx ⋅Ky pixels from the input image and
parse the input image, and Dsetup, which corresponds to the delay needed to call the
function ExecuteActorPool. Once again it can be noted from the provided snippet that
extra delays linked to the initialization of variables and increment of variables used in for
loop are also included in Dmax and Dsetup.

IV.2.2 Measurement-based characterization approach for com-
putation time models

y = 47,007x + 180,96

0 100 200 300 400 500 600 700 800 900
0

5000

10000

15000

20000

25000

30000

35000

40000

Number of inputs

Ex
ec

ut
io

n
tim

e
(p

ro
ce

ss
or

 c
yc

le
s)

Evolution of neuron execution time based on input number
(one neuron)

y = 36997x + 36,913

0 5 10 15 20 25 30 35
0

200000

400000

600000

800000

1000000

1200000

1400000

Number of neurons in actor

Ex
ec

ut
io

n
tim

e
(p

ro
ce

ss
or

 c
yc

le
s)

Evolution of execution time of actor based on the number of
neurons it contains (fixed 784 inputs)

Figure IV.5 – Examples of plots obtained from the calibration of the analytical computation
time model for dense layers. The measurements are obtained on a tile consisting of a
MicroBlaze core and its private memory. The MicroBlaze code and data are stored entirely
in the private memory (in compliance with the MoA). The plot on the left shows the
evolution of the execution time of a neuron based on the number of inputs it has. The plot
on the right shows the evolution of the execution time of an actor based on the number of
neurons it contains (with a fixed number of inputs). Plots in this figure represent a subset
of the tested parameters and measured data, on which multi-linear regression was applied.

In our approach elementary delays identified in the proposed models (e.g. DΣ) are
calibrated through measurement. Another possibility to alleviate the calibration effort is
to provide an estimation of the elementary delays for a given processor, using information

82

IV.2. Computation time modeling approach

from the chip provider for example. Nevertheless the advantage of characterization through
measurements over estimations is to offer higher accuracy, as measurements allow to
properly model the effect of the code implementation of the NN (i.e. for instance the
initialization of variables used for the computation) as well as the effect of the compiler on
timing. Our experiments have shown indeed that base delays vary highly depending on
the hardware used (e.g.: use of FPUs or multipliers) and the compiler settings (e.g. -O0,
-O1, etc.).

The calibration is performed by measuring the execution time of elementary NN layer
operations on tiles consisting of a MicroBlaze core from the prototype implementation
platform while manually varying the parameters of the cluster in the code (e.g. for dense
layers N the number of neurons and I the number of inputs). In the scope of our experiments
all tiles feature one MicroBlaze core equipped implementing a FPU and a multiplier, and
we use the mb-gcc compiler with -O0 option. A multi-linear regression is performed on the
measured data to extract the calibrated elementary delays. An example of the evolution
of the execution time of actors issued from dense layers measured and regressed in order
to obtain the calibrated model based on the tested parameters is provided in Figure IV.5.
Once calibrated, the models can be used to predict the computation time of any actor
issued from the clustering of NN layers without further re-calibration for a given core and
compiler setting. Because tiles are assumed to be identical except for their private memory
size, they can be used to predict the computation time of clusters on any tile.

To calibrate the analytical computation time models, we used the measurement in-
frastructure implemented inside our platform prototype as presented in Chapter III. The
elementary delays for the analytical computation time model have been calibrated as
follows (all delays provided in processor cycle number):

— Dense layers (MLP): DΣ = 47, Dφ = 146 and Dsetup = 39,
— Dense layers (CNN): DΣ = 50, Dφ,ReLU = 106, Dφ,None = 53 and Dsetup = 31,
— Max pooling layers: Dmax = 25 and Dsetup = 106,
— Convolution layers: D∗ = 77, Dφ = 631 and Dsetup = 28.
We observed little to no variability when calibrating these base delays, with the excep-

tion of the activation function, whose delay depends on the value (several if statements).
We took the average value for all measured delays. The elementary delays for the dense
layers are calibrated with different values for MLPs and CNNs. This is due to the different
implementation of the dense layers between the library LibFANN we used for the training
and inference of MLPs, and the CNN_C library we use for the training and inference of

83

Chapter IV – Simulation-based timing properties prediction approach

CNNs. The analytical formula is unchanged, only the elementary delays are calibrated with
different values. This highlights the importance of the characterization process through
measurements, which allows properly modeling the effect of the implementation of the NN
and the compiler settings, which can differ between deep learning frameworks. If we would
have use estimations instead of measurements, while making the coarse grained assumption
that each statement 3 requires 3 instructions, which take 1 cycle to be processed, the
delays for dense layers of MLPs would have been DΣ = 30, Dφ = 61 and Dsetup = 6, which
represents a major underestimation against the values obtained through measurements.
This shows that the base delay values are not trivial to predict and that measurement is
required to properly set them.

IV.3 Communication time modeling approach

The communication time model is depicted in blue in the middle of Figure IV.1. The
communication time model was initially proposed in [68] to offer fast yet accurate timing
prediction of dataflow applications on multi-core platforms that respects the MoA. It uses
an analytical timing model to predict the delay of tiles when writing/reading tokens in
shared memory presented in Section IV.3.1. This timing model is combined with a high
level abstraction executable model of channels introduced in Section IV.3.2. This leads to
an activity-sensitive model, which makes possible to predict the usage of communication
resources even in the case of contention due to concurrent accesses. The characterization
process of the model through measurements is explained in Section IV.3.3.

IV.3.1 Analytical timing model for token production/reading in
shared memory

In the considered MoA, the communications of data between tiles are implemented using
the shared memory, which is accessed through the shared bus. An arbiter is implemented
on this bus to ensure that only one tile is accessing the shared memory at a time. In
this section, we present the analytical timing model for token production/consumption
(write and read access) in shared memory. A write or read access to the shared memory
is composed of three main phases: check token availability, buffer access (read/write)
and token status update. Equation IV.4 presents the analytical model issued from the

3. i.e. variable initialization, assignment, operations, memory accesses, etc.

84

IV.3. Communication time modeling approach

communication time model presented in [68], which provides the delay denoted DRW needed
to read/write a total of nT tokens inside a channel on shared memory. It is important to
note that this delay does not model contentions for shared resources.

DRW (nT) = tinit,RW + tp

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Check token availability

+tpre,RW + tRW ⋅ nT + tRW l ⋅ (nT − 1)
´¹¹¹¸¹¹¹¶

Buffer access

+tpost,RW + tw

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Token status update

(IV.4)

In this equation, nT is the total number of tokens to read/write. The buffer access,
which aims at reading/writing the nT tokens, is preceded by an operation to check the
buffer’s availability by reading a single value, and followed by the token status update,
which corresponds to the writing of a single value. tinit,RW is the delay to initiate the
read/write transaction. tp is the delay to check the availability of a token. tpre,RW is the
time needed to prepare the read/write transaction. tRW is the delay of performing one
token read/write transaction. tRW l is a delay needed to wait to proceed with the next
read/write operation. tpost,RW is the delay needed to terminate the memory access. tw is
the delay needed to write the new token availability status after the read/write transaction.

This analytical model allows modeling communications on the platform with a coarse
granularity, as it only models the time to perform a read and write transaction. In reality
when executing NNs on multi-core platforms, contentions occur due to concurrent accesses
of tiles to shared memory, which generate important overheads in timing. The analytical
model in Equation IV.4 must therefore be extended to also model the shared communication
medium, the shared memory and contentions.

IV.3.2 Message level communication time model

In [68], the authors proposed to integrate the analytical model from Section IV.3.1 in
an executable model, which takes into account all communication phases of tiles (read,
write, wait), as well as the behavior of communication channels, the shared bus and the
shared memory. The proposed model is a message level communication model, which was
compared to a cycle-accurate communication time model in [100] and showed significant
prediction speedup without loss of accuracy. The principle behind this model is depicted
in Figure IV.6. An execution diagram is provided, representing how many simulation
synchronization events are necessary in order to predict the time spent by a tile to perform
a write operation in shared memory with a waiting period. With the cycle accurate model,

85

Chapter IV – Simulation-based timing properties prediction approach

Cycle accurate model

Message level model

tp tpl tp tpl tp tp

Waiting time

Application
starts, buffer
unavailable

Buffer
available

tpre,RW
tRW tRWl

tRW tRWl
tRWtpost,RW

tw

RW access
end

Time

RW operation time

: Simulation synchronization event

Figure IV.6 – Illustration of the message level communication time model from [68]
compared to a transaction level model. The diagram shows the calls to the communication
time model that need to be performed in order to predict the time spent by a tile to
undertake a write operation of k tokens on the shared memory with a waiting period.

simulation synchronization events are needed after each delay from Equation IV.4. With
the message level model, simulation events are only required upon the change of buffer
availability. The number of simulation events with the message level model is highly
reduced, which allows improving the simulation speed.

This communication time model was tested in [68] with the same communication bus as
we use in our experiment platform. It was tested for polling-based communications on plat-
forms that respects our MoA. In this work, this model is used to predict the communication
durations between clusters issued from the clustering of NN layers while considering the
influence of platform shared resources. To support interrupt-based communications with
the use of clock gating, we performed a new characterization process, which highlighted
that the model’s structure can be re-used identically for interrupt-based communications
with different values of elementary delays, obtained through measurements.

IV.3.3 Measurement-based characterization approach for the
communication time model

The characterization of the model for both communication procedures is done using the
Integrated Logic Analyzers (ILA) implemented inside the Xilinx Vivado design suite. The
ILA probes the signals linked to the usage of the shared memory. We generated artificial
communication workloads on the shared memory and used the delays obtained from the
data probed by the ILAs to calibrate the elementary communication delays used in the
model. Table IV.1 provides the values of the elementary delays in processor cycle count

86

IV.4. Simulation model description in SystemC

obtained through measurements based on the communication procedure. Elementary delay

Table IV.1 – Calibrated elementary delays for the communication time model for polling
and interrupt-based communications. All delays are in processor cycle number. The delays
that differ between the two communication procedures are highlighted in bold.

Communication
procedure tr tp tw trl twl tpl trloop

twloop
tploop

tprr tpor tprw tpow tinitr tinitw

Polling 8 8 5 14 13 7 22 18 15 15 11 15 9 15 16
Interrupt 8 0 5 14 13 0 22 18 0 15 11 15 9 348 349

notations are maintained between the two communication procedures. It can be noted
that most delays are calibrated with the same values between the two communication
models. The differences lie in the delays related to polling, which are all set to 0 in the
interrupt-based platform since polling is replaced by waiting for the interrupt signal to be
enabled. The delay for the initialization phase of the read/write transactions is much longer
on the interrupt-based platform, since the core must enable its sensitivity to interrupt
sequences and set the interrupt controller, which is not the case with the polling-based
communications.

IV.4 Simulation model description in SystemC

Our performance models were created with the SystemC framework with the same
organization as in [67]. In order to predict the performance of NN mapped onto multi-
core platforms, both the analytical computation time model presented in Section IV.2
and the message level communication time model presented in Section IV.3 are used
inside simulations of the platform executing the NN described in SystemC. The resulting
executable model allows to model all the tiles composing the system as well as the
shared resources, and predicting the impact of possible contentions on the latency of the
application. Figure IV.7 provides an illustration of the use of the SystemC models. The
computation and communication time models are integrated in a behavioral description of
each tile, which describes the sequence of the mapped computation and communication
statements, as shown in Figure IV.7 inside the tiles on the right. When an actor is being
executed in simulation, the analytical computation time model is called to compute the
corresponding wait delay. During communications through channels, the communication
time model is called to compute the delays of communications on the platform even in the
case of contentions at shared resources. The simulation predicts the state of tiles (wait,

87

Chapter IV – Simulation-based timing properties prediction approach

Tile0

Tile 0

Tile1

Tile0

conv

Shared
memory

conv-pool
pool

Tile1

den1

den2 output

den1-den2

input

pool-den1

Mapping of NN

Call to the
communication time

model (Sec. 3) to
estimate the delay

Call to the analytical
computation time
models (Sec. 2) to
estimate the delay

Shared
bus

Shared memory

Setup of the SystemC simulation for the
considered mapping

Actor "conv"

WriteTokens(conv-pool)

ReadTokens(input)

ComputeActorConv

Actor "pool"

WriteTokens(pool-den1)

ComputeActorPool

ReadTokens(conv-pool)

Actor "den1"

ComputeActorDen1

ReadTokens(pool-den1)

WriteTokens(den1-den2)

Actor "den2"

ComputeActor(den2)

ReadTokens(den1-den2)

WriteTokens(output)

Shared
bus

Channel "input"

Channel "conv-pool"

Channel "pool-den1"

Channel "den1-den2"

Channel "output"

Figure IV.7 – Illustration of the use of the SystemC model to simulate the execution
of a NN mapped onto a multi-core platform. The simulation calls the computation or
communication time models based on the delay that need to be predicted.

read, write or compute) and shared resources during the execution of the NN on the
platform.

Once the simulation terminated, the estimated execution traces are output, which
contain the information about tiles and shared resource states as well as the actor being
executed by tiles at any given time of the simulated execution. The latency and throughput
of the NN mapping can be extracted from the execution traces. The number of iterations
simulated by the SystemC model is specified by the user. Simulating several iterations
is necessary to evaluate the effect on timing of The number of iterations must be high
enough to properly evaluate the effect of streaming execution, i.e. the execution of several
iterations of the NN on the platform simultaneously. It must also be low enough to save
evaluation time. In our experiments, for each considered mapping, we empirically set the
total number of iterations to 100. This number offers a good compromise between fast
evaluation time and good prediction accuracy. To evaluate our approach, several mappings
are simulated and the obtained results are compared with measurements.

88

IV.5. Experiment results

IV.5 Experiment results

IV.5.1 Tested scenarios

We tested and stressed our timing modeling flow in regards to the following aspects:

1. Consideration of applications of different complexity. We considered several NNs,
with different computation and communication workloads. We used SDF graphs
with a low amount of actors and communication channels, respectively 2 and 3 as
lowest (MLP1 C1 as shown in Table A.1 in Appendices), as well as complex SDF
graph featuring up to 22 actors and 113 communication channels (MLP2 C7 as
shown in Table A.3 in Appendices).

2. Consideration of single-core mappings as well as multi-core mappings containing up
to 7 tiles. The multi-core mappings leverage both NN in-layer parallelism (clusters
from a same layer mapped on different tiles to parallelize their computation)
and intra-layer parallelism (mapping of layers on different tiles to parallelize the
computation of layers and offer a streaming execution of the NN).

3. Consideration of mappings with high and low communication rates. The commu-
nication rate is defined as the percentage of time spent by all tiles on average in
communication. The lowest observed communication rate is 2 % on one mapping
and the highest is 70 % on another mapping.

4. Every mapping is tested both with and without power management, i.e. both
with polling-based communications without the use of clock gating and with
interrupt-based communications, in which cores are clock gated when waiting for
the availability of data.

We tested 27 different mappings of the 4 considered NNs (CNN1 and all MLPs) with
both communication procedures (which amounts to 54 mappings in total). All tested
mappings are presented in details in Appendices A. We predict the end-to-end latency and
throughput using the SystemC model and a pure analytical timing modeling flow presented
in the next section. The predictions are compared with real end-to-end latency and
throughput measured on the platform prototype. Two FPGA boards have been successively
considered for the implementation of the platform prototype: the ZCU102 board, which
features a UltraScale FPGA, and the ZC702 board, which features a Zynq7000 FPGA.
The ZC702 was replaced by the ZCU102, which offered more resources. The difference in
latency and throughput per mapping measured on the two boards is marginal.

89

Chapter IV – Simulation-based timing properties prediction approach

IV.5.2 Pure analytical model for comparison against the simula-
tion

In order to evaluate the contribution of simulation to model shared resource contentions
and to compare our flow with respect to purely analytical modeling flows from related
work, we introduce a pure analytical timing model for NNs on multi-core platforms. The
pure analytical timing model evaluates the latency and throughput of cores based on the
mapping, using the computation time model presented in Section IV.2 and the analytical
model used inside the communication time model as presented in Section IV.3.1. The pure
analytical timing model neglects shared resource contentions and therefore corresponds to
a best case or lower bound model. The accuracy and evaluation time using both modeling
flows are compared in Section IV.6.

IV.5.3 Validation results

Table IV.2 shows the average and maximum prediction error on end to end latency
and throughput for single-core and multi-core mappings for all applications, using the
simulation model and the pure analytical model. Prediction errors are computed using
the formula XP−XM

XM
where XP is the prediction and XM is the measurement. The errors

are provided in absolute value and percentage. In this table, both the mappings with
polling-based and interrupt-based communications are provided. The detailed predictions
of the simulation for both end to end latency and throughput with the error for every
tested mapping are shown in Figure IV.8 and IV.9. For example, on Figure IV.8 (c)
it can be observed that the lowest predicted latency for the MLP2 is reached for the
mapping with index 21. The predicted latency’s value can be read on the left Y axis, it is
approximately equal to 241 thousands of cycles. The prediction error can be read on the
right Y axis, it is approximately equal to 0.04 % for this mapping. The same process on
Figure IV.8 (d) allows reading the predicted throughput’s value, which is approximately
equal to 415 inferences per second, and the prediction error on throughput, which is also
equal to 0.04 %.

90

IV.5. Experiment results

1
P
T1
2

5%

2
P
T2
2

51%

3
P
T1
7

13%

4
P
T3
7

26%

5
P
T7
7

70%

6
P
T1
15

25%

7
P
T7
15

56%

8
I

T1
2

5%

9
I

T2
2

52%

10
I

T1
7

14%

11
I

T3
7

28%

12
I

T7
7

68%

13
I

T1
15

31%

14
I

T7
15

55%
Mapping

0

150

300

450

600

La
te

nc
y

(th
ou

sa
nd

s o
f c

yc
le

s)

Mi:
Cm:

T:
A:
Cr:

0

1

2

3

4

Er
ro

r %

computation time
read/write time
waiting time
error

(a) MLP1 - Latency

1
P
T1
2

5%

2
P
T2
2

51%

3
P
T1
7

13%

4
P
T3
7

26%

5
P
T7
7

70%

6
P
T1
15

25%

7
P
T7
15

56%

8
I

T1
2

5%

9
I

T2
2

52%

10
I

T1
7

14%

11
I

T3
7

28%

12
I

T7
7

68%

13
I

T1
15

31%

14
I

T7
15

55%
Mapping

0

220

440

660

880

Th
ro

ug
hp

ut
(o

ut
pu

ts
 /

se
co

nd
)

0

1

2

3

4

Er
ro

r %

Mi:
Cm:

T:
A:
Cr:

throughput
error

(b) MLP1 - Throughput

15
P
T1
3

2%

16
P
T3
3

66%

17
P
T1
10
5%

18
P
T3
10
8%

19
P
T7
10

60%

20
P
T1
22

11%

21
P
T7
22

28%

22
I

T1
3

2%

23
I

T3
3

66%

24
I

T1
10
6%

25
I

T3
10
9%

26
I

T7
10

59%

27
I

T1
22

15%

28
I

T7
22

28%
Mapping

0

400

800

1200

1600

La
te

nc
y

(th
ou

sa
nd

s o
f c

yc
le

s)

Mi:
Cm:

T:
A:
Cr:

0

1

2

3

4

Er
ro

r %

computation time
read/write time
waiting time
error

(c) MLP2 - Latency

15
P
T1
3

2%

16
P
T3
3

66%

17
P
T1
10
5%

18
P
T3
10
8%

19
P
T7
10

60%

20
P
T1
22

11%

21
P
T7
22

28%

22
I

T1
3

2%

23
I

T3
3

66%

24
I

T1
10
6%

25
I

T3
10
9%

26
I

T7
10

59%

27
I

T1
22

15%

28
I

T7
22

28%
Mapping

0

115

230

345

460

Th
ro

ug
hp

ut
(o

ut
pu

ts
 /

se
co

nd
)

0

1

2

3

4

Er
ro

r %

Mi:
Cm:

T:
A:
Cr:

throughput
error

(d) MLP2 - Throughput

29
P
T1
7

3%

30
P
T2
7

4%

31
P
T7
7

70%

32
P
T1
13
7%

33
P
T4
13

14%

34
P
T1
19

10%

35
P
T6
19

20%

36
I

T1
7

4%

37
I

T2
7

4%

38
I

T7
7

69%

39
I

T1
13
9%

40
I

T4
13

14%

41
I

T1
19

14%

42
I

T6
19

24%
Mapping

0

300

600

900

1200

La
te

nc
y

(th
ou

sa
nd

s o
f c

yc
le

s)

Mi:
Cm:

T:
A:
Cr:

0

1

2

3

4

Er
ro

r %

computation time
read/write time
waiting time
error

(e) MLP3 - Latency

29
P
T1
7

3%

30
P
T2
7

4%

31
P
T7
7

70%

32
P
T1
13
7%

33
P
T4
13

14%

34
P
T1
19

10%

35
P
T6
19

20%

36
I

T1
7

4%

37
I

T2
7

4%

38
I

T7
7

69%

39
I

T1
13
9%

40
I

T4
13

14%

41
I

T1
19

14%

42
I

T6
19

24%
Mapping

0

145

290

435

580

Th
ro

ug
hp

ut
(o

ut
pu

ts
 /

se
co

nd
)

0

1

2

3

4

Er
ro

r %

Mi:
Cm:

T:
A:
Cr:

throughput
error

(f) MLP3 - Throughput

Figure IV.8 – Predicted end to end latency and throughput by the simulable model for
the considered MLP mappings. The prediction error against measurements in absolute
and percentage is also provided for every mapping. On the plot of the latency, the % of
time spent on average by cores during the execution of the application in computation,
read and write and waiting phases are depicted. In X-axis, information about the tested
mapping is provided: the top number Mi is the mapping index, which can be used to find
more information about the mapping in appendix to this manuscript. The number Cm

below Mi is the communication mode - P stands for polling, while I stands for interrupt.
The number of tiles used is indicated by the indice of T . Then respectively the number
of actors A in the SDF graph and the average time spent in communication by tiles Cr

(combination of read/write time and wait time) are provided.

91

Chapter IV – Simulation-based timing properties prediction approach

43
P
T1
4

2%

44
P
T2
4

33%

45
P
T4
4

66%

46
P
T1
8

2%

47
P
T5
8

52%

48
P
T7
8

37%

49
I

T1
4

2%

50
I

T2
4

33%

51
I

T4
4

66%

52
I

T1
8

2%

53
I

T5
8

52%

54
I

T7
8

37%
Mapping

0

4

8

12

16

La
te

nc
y

(m
illi

on
s o

f c
yc

le
s)

Mi:
Cm:

T:
A:
Cr:

0

1

2

3

4

Er
ro

r %

computation time
read/write time
waiting time
error

(a) CNN - Latency

43
P
T1
4

2%

44
P
T2
4

33%

45
P
T4
4

66%

46
P
T1
8

2%

47
P
T5
8

52%

48
P
T7
8

37%

49
I

T1
4

2%

50
I

T2
4

33%

51
I

T4
4

66%

52
I

T1
8

2%

53
I

T5
8

52%

54
I

T7
8

37%
Mapping

0

8

16

24

32

Th
ro

ug
hp

ut
(o

ut
pu

ts
 /

se
co

nd
)

0

1

2

3

4

Er
ro

r %

Mi:
Cm:

T:
A:
Cr:

throughput
error

(b) CNN - Throughput

Figure IV.9 – Predicted end to end latency and throughput by the simulable model for the
considered CNN mappings. The absolute prediction error against measurements is also
provided for each mapping. More information about the legend of the plots can be found
in the caption of Figure IV.8.

Table IV.2 – Observed average and maximum error against measurements on tested
mappings regarding the end to end latency in processor cycles (L) and the throughput
in outputs/s (Φ). The column titled "# tested mappings" provides the total number of
different mappings tested for each application. All details about the tested mappings can
be found in appendix. In this table, the mappings using polling-based and interrupt-based
communications are combined. The evaluation time using the simulation flow is ≈ 20 s
when including compilation time. Without compilation time, it is in the order of tenth of
seconds. The evaluation time using pure analytical models is in the order of ms.

Application Mapping
type

tested
mappings Metric

Pure analytical
model - Error %

Simulation-based
flow - Error %

avg max avg max

MLP1
Single-core 6 L 1.07 4.94 0.50 0.95

Φ 1.24 5.19 0.50 0.94

Multi-core 8 L 7.63 22.13 1.08 2.85
Φ 9.43 28.33 1.09 2.94

MLP2
Single-core 6 L 1.08 4.55 0.16 0.33

Φ 0.96 3.49 0.16 0.33

Multi-core 8 L 3.91 12.97 0.42 1.13
Φ 4.29 14.86 0.42 1.15

MLP3
Single-core 6 L 1.42 4.41 0.47 0.75

Φ 1.28 4.60 0.47 0.76

Multi-core 8 L 3.63 11.52 0.73 1.64
Φ 3.86 12.97 0.73 1.61

CNN
Single-core 4 L 1.32 2.49 0.32 0.44

Φ 1.29 2.43 0.32 0.44

Multi-core 8 L 0.87 3.13 0.59 1.45
Φ 0.89 3.23 0.60 1.47

92

IV.6. Discussions

IV.6 Discussions

Results overview: The proposed simulation-based flow allows predicting both the
latency and throughput of the 54 mappings with more than 97 % accuracy. The worst
observed error of the simulable model is 2.85 % on latency and 2.94 % on throughput. The
model is also fast with an evaluation time of approximately 20 s per mapping.

This is rendered possible by the hypothesis of strict separation of computations and
communications using SDF and the MoA, which allows building separate computation
time models for NN layers and communication time model. The calibration through
measurements of these models for a given core, compiler setting and communication
medium allows high prediction accuracy. The analytical computation time model is
validated by the high accuracy - 99.63 % on average for both latency and throughput -
obtained on single-core scenarios, which have a limited amount of communications.

The use of simulation and the message level communication time model offer an
accurate modeling of communications on the platform and contentions when multiple cores
access the shared memory simultaneously. This allows offering high accuracy on multi-core
mappings (99.29 % on average for both latency and throughput). In the following of this
section, we will discuss the observed validation results in regards to the identified elements
that render the evaluation of NNs on multi-core platforms difficult.

Evaluation speed: The evaluation speed of a NN mapping using the SystemC model
is 20 s including compilation time. This high evaluation speed is rendered possible by
the use of analytical models to predict computation and communication time inside
our system level simulation. The evaluation of a mapping using the proposed modeling
flow is 2 times faster than our automatized timing measurement infrastructure, which
takes 40 s including also compilation and FPGA programming time, but excluding NN
training, FPGA design synthesis, BSP generation and source code development. When also
considering the NN training and SW/HW development of the application, the modeling
flow offers a significant speed-up. Our SystemC model allows engineer to perform a fast and
reliable evaluation of candidate NN deployments under latency and throughput constraints,
while alleviating important effort spent on the development of NN applications on the
targeted implementation platform.

Scalability regarding NNs: The highest prediction error is observed for the MLP1
with 0.83 % latency prediction error on average on all tested mappings. The maximum

93

Chapter IV – Simulation-based timing properties prediction approach

error on latency for the MLP1 is 2.85 %, which is also the highest observed error for all
applications. We observe 0.31 % error on average for the MLP2, 0.62 % for the MLP3 and
0.43 % for the CNN. Overall the prediction error is slightly higher on the MLP1 as it is
the application with the highest communication workload percentage compared to the
computation workload. The error is still very low, which allows validating the scalability
of the simulation-based flow in consideration of the application. Similar observations are
done regarding throughput.

Scalability regarding communication procedure: The average prediction error is
0.49 % on the 22 mappings using polling-based communications without clock gating and
0.61 % on the 22 mappings using interrupt-based communications with clock gating. The
maximum error is 2.85 % for polling-based communications, and 2.21 % for interrupt-based
communications. The accuracy of the model appears to be stable from one communication
procedure to the other. This validates the scalability of the proposed timing modeling flow
in regards to the communication procedure.

Scalability regarding the number of cores used: The evolution of the prediction
error of the proposed modeling flow based on the number of cores in the mapping can be
observed in Table IV.3. While the error is stable for mappings relying on 1 up to 5 cores,
it raises up to 1.03 % and 1.08 % on average for mappings using respectively 6 and 7 tiles.
The prediction accuracy of the modeling flow remains acceptable and does not seem to
correlate directly with the number of cores used. It is important to note though that the
number of mappings with 5 and 6 cores is low, which can add a bias to these results. This
allows anyhow validating the scalability of the modeling flow in regards to the number of
cores used in the mapping.

Table IV.3 – Summary of the average and maximum prediction error on latency (in
absolute value) of the simulation-based power modeling flow based on (a): the number of
cores used in the mapping (b): the communication rate. Similar results are observed for
throughput.

(a) Core number
Core number 1 2 3 4 5 6 7
Average error 0.37 0.27 0.44 0.46 0.21 1.03 1.08

Max error 0.95 0.49 1.43 1.11 0.40 1.64 2.85
Total mapping

number 22 6 6 4 2 2 12

(b) Communication rate
Comm. rate 0-9% 10-19% 20-29% 30-39% 40-59% +60%

Average error 0.28 0.50 0.76 0.77 0.65 0.72
Max error 0.54 1.11 1.63 1.45 2.21 2.85

Total mapping
number 17 9 7 5 6 10

94

IV.6. Discussions

Scalability regarding communication rates: Table IV.3 provides the prediction
error of the modeling flow based on the average percentage of time spent by tiles in
communication for the tested mapping. The average prediction error increases with the
amount of communications for communication rates ranging up to 29 %. It then remains
stable around 0.7 % regardless of the communication rate. However the observed maximum
error keeps raising with the communication rate up to 2.85 % for communication rates
higher than 60 %. It can be noted that such communication rates are however high and
were used in our test cases to stress and thoroughly validate the modeling flow. They are
not usually found for real relevant mappings, as it results from a poor usage of resources
since in such settings tiles spend more time waiting for resource than contributing by doing
computations. The error remains acceptable for such high communication rates, which
allows validating the scalability of the modeling flow in this regard.

Comparison against the pure analytical model: The time taken to evaluate a
mapping using the purely analytical model is of the order of a millisecond, i.e. 104 an order
of magnitude faster than the SystemC model. The evaluation speed of a mapping using
the pure analytical timing model is approximately 1 ms, which is faster than the SystemC
model. However, the pure analytical timing model always underestimates the effect of
shared resources on the latency and throughput. For example, the highest observed error
of the pure analytical model to 28.33 % on throughput and −22.13 % on latency on the
mapping with index 14 of MLP1 with clustering C = 7, 7 tiles used and interrupt-based
communications. The fact that the prediction error raises with the communication rate
due to the important use of shared resources make this model unreliable for the evaluation
of timing properties of NNs deployed on multi-core platforms. These results highlight the
need to use the proposed simulation-based flow over pure analytical modeling flows for
such platforms. Due to its fast evaluation time, the pure analytical modeling flow can
however be used in conjunction with the simulation flow to offer a fast pruning of the
design space before the evaluation of relevant mappings by the SystemC model, which
offers slower but more reliable predictions.

Conclusion: The results allow validating the use of the proposed simulation flow for
fast-yet-accurate evaluation of NN mappings onto multi-core platforms. The flow offers
indeed an accuracy of more than 97 % on timing for an evaluation time of 20 s per
mapping. Its applicability in consideration to NN applications, clustering, number of

95

Chapter IV – Simulation-based timing properties prediction approach

tiles, communication rate and communication procedure are successfully validated. In
comparison, pure analytical modeling flows show limitations as they cannot efficiently
predict the effect of shared resources on timing properties.

Due to its high accuracy, evaluation speed and scalability, the proposed modeling flow
can be used to efficiently explore the design space of NN deployments onto multi-core
platforms. It allows finding NN deployments that optimize timing properties on a user
defined multi-core platform, as well as optimizing multi-core platform architectures for
NN deployments under timing constraints.

IV.7 Conclusion

In this chapter, we presented the proposed modeling flow for the timing of NNs deployed
on multi-core platforms. The presented contributions are

1. the analytical computation time model, which allows predicting the execution time
of any actor issued from the clustering of a NN in SDF,

2. the extension of the communication time model used in previous work to support
interrupt-based communications,

3. the integration of the computation time model and communication time model
inside a SystemC simulation to model shared resources.

The modeling flow is validated against latency and throughput measurements from a
real implementation of 54 mappings of 4 different NNs, with various clustering complexity,
low and high communication rates, and with both polling-based and interrupt-based
communications. It allows predicting the latency and throughput of the tested mappings
with more than 97 % accuracy. In addition to its high accuracy, the modeling flow offers
fast predictions with an average prediction time of approximately 20 s per mapping. We
compared our modeling flow to a pure analytical model with respect to propositions from
related work, which showed limitations to predict efficiently the latency and throughput
when applied to multi-core mappings using shared resources.

This is rendered possible by the separation of computation and communication respected
by our MoC and MoA, which allows building separate computation and communication
time models. Both models are calibrated through measurements, which allows modeling the
effect of the HW/SW implementation and compiler settings and offer high accuracy. They
are used inside a simulation captured in SystemC of the platform infering the mapping,

96

IV.7. Conclusion

which allows modeling the shared resources. The high level of abstraction of all considered
models allow offering high evaluation speed.

The computation time models were calibrated for MicroBlaze cores using FPUs and
multipliers with compiler setting "-O0". They must be recalibrated for use with other core
types and compiler settings. This can represent an important effort, but it is necessary
to guarantee high accuracy. The communication time model was calibrated for a shared
interconnect AXI bus with a First Come First Served policy. It can be re-used for the
same communication medium without re-performing calibrations. However, if another
communication medium or another arbiter policy is used, it must also be re-calibrated.
In the scope of this work, we tested MLPs and CNNs, but the models could be extended
to other classes of NNs by proposing analytical computation time models using the same
approach. In the next chapter, we present how this timing modeling flow is extended to
allow power and energy predictions.

97

Chapter V

POWER AND ENERGY MODELING AND

ANALYSIS FLOW

In this chapter, we present the power and energy prediction flow for NNs deployed on
multi-core platforms that respects our MoA. The proposed flow enhances our simulation-
based flow for timing prediction presented in Chapter IV. It is used to predict power
and energy consumption in regards to the phases executed by tiles and possible resource
contention. One benefit of our modeling approach is the combination of simulation and
measurement-based characterization, which allows offering scalability in regards to the
clustering, mapping, communication workload and power management. We present an
additional calibration step to extend the power model’s applicability to platforms with
different number of tiles and private memory sizes, at the cost of a more intensive
characterization effort. We evaluate our power and energy modeling flow on 27 mappings
of 4 NNs with and without power management, and 7 different platform versions.

V.1 Power modeling and analysis flow overview

Embedded platforms come with strong energy constraints, while NNs are power intensive
applications due to computations. To deploy NNs onto such platforms, it is therefore
essential to optimize deployments under power and energy constraints. As discussed in
Chapter II, most approaches for the evaluation of NNs on embedded platforms show
limitations when applied to tile-based multi-core platforms.

The proposed power model is separated into two main terms: static and dynamic
power consumption. The dynamic power consumption model captures the contribution
of tiles to power in the different phases of NN inference, such as computation of layers,
and communications on shared memory. It also takes shared resource contentions into
account. The static power consumption model allows capturing the power consumption of
the platform when not clocked, including the power consumption of tiles when clock gated

99

Chapter V – Power and energy modeling and analysis flow

(if using power management). Both models use the simulation presented in Chapter IV to
obtain information regarding the use of shared resources and the phase in which tiles are
during the execution. The proposed power modeling flow is based on quantities calibrated
through measurements. We also present an additional calibration approach to extend the
static power model to platforms with varying number of tiles and private memory sizes to
enable the use of the model to size multi-core platforms in a DSE setup. The proposed
power and energy modeling flow can achieve two objectives:

1. Evaluate power and energy for NNs deployments on a user-defined multi-core
platform and identify optimized mappings,

2. Jointly evaluate and optimize multi-core platform architectures and NN deployments
under power and energy constraints.

In Figure V.1 the proposed power and energy model is represented in yellow in the
middle. It is presented in Section V.2. As shown in the legend, the methodology to obtain
the power model is split into two main phases: the first phase (1 - 4) colored in red
corresponds to its calibration, and the second phase (5 - 8) colored in teal corresponds
to its validation and application. To perform the calibration through measurements, we
focus on the prototype implementation platforms presented in Chapter III. As explained
in Section III.3.2, two main platforms are considered: one with power management which
implements interrupt-based communications and clock gating, and one without, which
implements polling-based communications without clock gating.

-

Chapter III
Candidate

deployments

Implementation platforms and power
measurement infrastructure

With power
management

(interrupt + clock
gating)

Without power
management

(polling)

Predicted
execution traces

Power &
energy

predictions

Section V.4

Evaluation

Measured
power &
energy

Configurations for
to characterize the

power model

Sections V.3.

1

2

5 6

7

8

Section V.5

Chapter III

SystemC
simulation

NN mappings to
test for evaluation

Power consumption
characterization

Sections V.3.

Possible static
power model

extension
3

Configurations to extend
the static power model

1 4

-5 8

: Power model
 characterization flow

: Power model
 evaluation flow

LEGEND

Sections V.2 & V.3

Calibrated
power model

4Power
measurements

Figure V.1 – Overview of the methodology to obtain a power model for power and energy
prediction of NNs on multi-core platforms.

100

V.2. Power model proposal

In Section V.3, we explain the calibration methodology of the power model, and we
present the calibration’s results on our platform. 1 and 2 correspond to the character-
ization of static and dynamic power consumption of tiles. A multi-linear regression is
applied on the measured power profiles in order to obtain the calibrated power model.
Optionally, 3 and 4 allow extending the calibrated power model to offer scalability in
regards to the number of tiles in the platform and private memory sizes. The resulting
power model allows estimating the power consumption of multi-core platforms executing
NNs, while being scalable in consideration to the platform’s dimensions.

Once the power model obtained, we proceed with its use and evaluation. The SystemC
model generates execution traces 6 for candidate mappings 5 , which are used by the
power model to predict the power consumption and energy of the system inferring these
mappings 7 . The use of the SystemC simulation with the power model is described
in Section V.4. The power and energy predictions are finally compared with measured
power and energy from a real implementation of the tested mappings 8 to evaluate the
accuracy of the model. The validation methodology and results are given and discussed in
Section V.5. We validate our modeling flow with a total of 27 different mappings of the 4
considered NNs tested with and without power management 1. These different mappings
allow verifying the scalability of the power model to the criterias outlined above. We also
tested its applicability to a total of 7 different prototype platforms implemented on FPGA,
including single and multi-core platforms with varying size of private memory.

V.2 Power model proposal

Coarsed-grained model: To obtain the power consumption of the system Ptotal(t),
we must consider both static and dynamic power consumption. We consider that the
static power consumption Pstatic is the power consumption of the system when supplied
with power but not clocked. When using power management, additional components
are implemented to support interrupt-based communications and clock gating. We thus
introduce different models for the static power consumption of the platform: with power
management P▲, static and without P△, static.

Regarding dynamic power consumption, when executing NNs, tiles execute computation
and communication activities, which are strictly separated due to SDF and our MoA. The
different tile phases during the execution of NN mappings are illustrated on the execution

1. In total, this amounts to 2 × 27 = 54 mappings.

101

Chapter V – Power and energy modeling and analysis flow

diagram on the right of Figure V.2 when not using power management: the phase in
green corresponds to computations, and phases in blue (read, write, wait) correspond to
communications. We describe the dynamic power consumption of the platform executing
NNs using the following terms:

— Pcomp(t), the total power consumption of tiles in computation (comp.) phase at
time t.

— P▲, comm(t), the total power consumption in communication (comm.) phase at time t

when using power management, and P△, comm(t) when not using power management.

To summarize, the total power consumption of the system at time t is provided in
Equation V.1 and Equation V.2 respectively when using (▲) / not using (△) power
management.

P▲(t) = P▲, static + Pcomp(t) + P▲, comm(t) (V.1)

P△(t) = P△, static + Pcomp(t) + P△, comm(t) (V.2)

Phases of tiles during the execution

T1

T2

PT1

PT2

Read Compute Write

Wait Read

Application
starts

Wait ...

Tile1 (T1)

Hidden
Layer

Tile2 (T2)

Output
Layer

Shared
memory

Channel
IN

Channel
HL-OL

Channel
OUT

Mapping
NN described
as SDF graph

Hidden
Layer

Output
Layer

Channel
IN

784

Channel
HL-OL10

Channel
OUT10

OUT

...

Pcomp,T1

Time
Estimated power consumption

without power management

Ptotal

P ,static,T1

P ,static,T2

P ,comm,T1 P ,comm,T1

P ,comm,T2

Figure V.2 – Estimation of power consumption in regards to the phase of tiles during
the execution of NN mappings. Possible phases are: computation, read/write on shared
memory and waiting for buffer availability. The estimation of power consumption on the
bottom right of the figure is provided for a platform without power management (△).

102

V.2. Power model proposal

Refinement of Pcomp(t): When tiles are in computation phase, they are performing
the computations of the neural network (e.g. processing neurons from dense layers). In
this phase, tiles are independent from one another as all necessary data is contained in the
private memory of the tile. The proposed model for Pcomp(t) is thus linear in consideration
of tiles in computation phase. The model for Pcomp(t) is provided in Equation V.3.

Pcomp(t) =
T

∑
i=1

Pcomp,i αcomp,i(t)

with αcomp,i(t) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 if tile i is in computation phase at time t

0 otherwise

(V.3)

In this equation, T denotes the number of tiles in the platform. Pcomp,i is the power
consumption of tile i in computation phase, with with 1 ≤ i ≤ T . αcomp,i(t) is a factor
indicating if tile i is in computation phase at time t: it is equal to 1 if tile i is in computation
phase at time t, else it is equal to 0. The αcomp,i(t) are obtained from the execution traces
of the simulation.

Refinement of Pcomm(t): When tiles are in the communication activity, they either:
1. perform a read or write in the shared memory, 2. wait for the availability of data. As
presented in Chapter III, with power management, tiles enter clock gated mode when
waiting for data, and without, tiles perform active waiting by polling the shared memory.
When clock gated, tiles are by definition not supplied with the clock. They contribute
theoretically only to the static power consumption of the system P▲, static, and are thus not
modeled in P▲, comm(t). Read, write and polling operations are interleaved and correspond
to the total power consumption of tiles accessing the shared memory at time t. The
shared memory is a unique resource. When several tiles try to access the shared memory
simultaneously, the bus arbiter gives the access to only one tile and the others are paused
until the shared memory access is free. The shared memory can thus be accessed by only
one tile at any given time t. To simplify our model, we assume that tiles in read, write
and polling phases share the same dynamic contribution to power denoted Psm, which
corresponds to the power consumption of tiles accessing the shared memory. In light of this,
the power consumption Pcomm(t) is either equal to Psm when at least one tile is accessing
the shared memory, or 0 otherwise. The proposed models for Pcomm(t) with and without
the use of power management (▲/△) are given in Equations V.5 and V.4.

103

Chapter V – Power and energy modeling and analysis flow

P▲, comm(t) = P▲, rw(t) = Psm (1 −
T

∏
i=1
(1 − αrw, i (t))) (V.4)

=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

Psm if at least one tile is reading
or writing on shared memory at time t

0 otherwise

P△, comm(t) = P△, rwp(t) = Psm (1 −
T

∏
i=1
(1 − αrwp, i (t))) (V.5)

=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

Psm if at least one tile is reading, writing
or polling on shared memory at time t

0 otherwise

In this equation, T denotes the number of tiles in the platform. Psm is the power
consumption of one tile accessing the shared memory. αrwp, i (t) is a factor indicating if
tile i is accessing the shared memory at time t when not using power management: it is
equal to 1 when it is the case (tile i is in polling, read or write phase), else it is equal
to 0. αrw, i (t) is the factor defined similarly when using power management, which thus
excludes the waiting phases: it is equal to 1 when tile i is in read or write phase, else it
is equal to 0. The α terms are obtained from the execution traces of the simulation, as
presented in Section V.4.

Possible refinement of Pstatic: The static power consumption is highly dependent on
the number of tiles implemented in the system and the private memory sizes. In order to
offer scalability in regards to these aspects, we propose a refined model for Pstatic. This
refined model must be considered to jointly size a multi-core platform and optimize NN
deployment under energy constraints. In Equation V.6 we propose the model for P▲, static

for platforms with power management, and in Equation V.7 the model P△, static for ones
without power management.

104

V.2. Power model proposal

P▲, static(T,M) =
T

∑
i=1

Ptile, memMi + TPtile, core + Pcircuit + P▲, components (V.6)

P△, static(T,M) =
T

∑
i=1

Ptile, memMi + TPtile, core + Pcircuit (V.7)

In these equations, T is the number of tiles in the considered platform. The term
Mi corresponds to the private memory size 2 of tile i. The private memory of a tile is
used to store its instructions and data. The term M = {M1,M2 ... MT} is a vector
of T elements that corresponds to the private memory size of each tile. Ptile, mem is the
base contribution to static power consumption of a unit of private memory. Ptile, core is
the contribution of the processor core of tiles to the static power consumption, which is
independent of the private memory size. Pcircuit is the contribution of the remainder of
the circuit to the static power consumption, which corresponds to the shared memory
and shared interconnect. Finally, P▲, components is the contribution to the static power
consumption of the additional components used to support power management, i.e. the
interrupt and clock gating controllers.

Resulting model of system’s power consumption: When taking into account the
aforementioned refinements, we obtain the system’s power consumption model as shown
in Equations V.8 and V.9.

Ptotal,△(t) = P△, static(T,M) + Pcomp(t) + P△, comm(t) (V.8)

=
T

∑
i=1

Ptile, memMi + TPtile, core + Pcircuit

+
T

∑
i=1

Pcomp,i αcomp,i(t) + Psm (1 −
T

∏
i=1
(1 − αrwp, i (t)))

Ptotal,▲(t) = P▲, static(T,M) + Pcomp(t) + P▲, comm(t) (V.9)

=
T

∑
i=1

Ptile, memMi + TPtile, core + Pcircuit + P▲, components

+
T

∑
i=1

Pcomp,i αcomp,i(t) + Psm (1 −
T

∏
i=1
(1 − αrw, i (t)))

2. In our work, this value is in kB.

105

Chapter V – Power and energy modeling and analysis flow

Adaptations due to our implementation technology: In our work, due to the
technology selected to implement our platform prototypes, we adapted the model to improve
accuracy. Our platform prototypes are implemented on the ZCU102 board, which features
a UltraScale+ MPSoC [87]. When implementing our platform as presented in Chapter III,
additional components are implemented on the programmable logic section of the FPGA
to support the use of several peripherals by the arm cores present in the SoC, even though
they are not used in the scope of our work. We also implement a MicroBlaze debugger IP
provided by AMD for each tile, and one shared UART peripheral, which can be accessed
through the bus. These additional components are used in order to support debug of the
software executed by tiles. When performing the power measurements, these components
are not used and thus they do not contribute to the dynamic power consumption. However,
they contribute to the static power consumption, in particular Pcircuit. On the FPGA
chip, there are also LUTs that are not used for the system’s implementation, but are
still powered. They thus have a contribution to the static power consumption too. Their
contribution in Pcircuit is captured when performing the model’s calibration.

When using power management, the contribution of clock gated tiles on the system’s
power consumption is also influenced by our implementation technology. In fact, we observe
that, when using clock gating on our platform prototype, the clock is not delivered to both
the processing core and private memory block. However, when performing the measurement
of static power consumption, tiles are stopped through the use of the debugger IPs, which
actually blocks the delivery of the clock to the core but still delivers it to the private
memory block. In this case, the private memory block of the tile bears an additional
contribution to power, which is captured in the static power consumption calibrated
value but is not observed when using clock gating. Due to this difference, we introduce a
complementary static power consumption model for tiles in clock gating phase. The total
contribution of clock gated tiles to the system’s power consumption is modeled as P▲, cg(t)

as shown in Equation V.10. This contribution is negative due to the difference between
the observed static power consumption of the platform when tiles are stopped and when
they are clock gated.

P▲, cg(t) = −
T

∑
i=1

Pcg,i αcg,i(t) (V.10)

In this equation, T denotes the number of tiles in the platform. Pcg,i is the power

106

V.3. Power model calibration

consumption of tile i when clock gated: it corresponds in fact to the difference between
the power consumption of tile i when only the core has the clock removed and when both
core and private memory block have the clock removed. αcg,i(t) is a factor indicating
if tile i is in clock gated phase at time t. The model for the consumption of tiles in
communication phase with power management P▲, comm(t) provided in Equation V.4 thus
becomes (Equation V.11):

P▲, comm(t) = P▲, rw(t) + P▲, cg(t) = Psm (1 −
T

∏
i=1
(1 − αrw, i (t))) −

T

∑
i=1

Pcg,i αcg,i(t) (V.11)

And the model for Ptotal,▲(t) given in Equation V.9 is refined in Equation V.12. The
term Pcg,i is a base power consumption term.

Ptotal,▲(t) = P▲, static(T,M) + Pcomp(t) + P▲, comm(t) (V.12)

=
T

∑
i=1

Ptile,δMi + TPtile, fix + Pcircuit + P▲, components

+
T

∑
i=1

Pcomp,i αcomp,i(t) + Psm (1 −
T

∏
i=1
(1 − αrw, i (t))) −

T

∑
i=1

Pcg,i αcg,i(t)

In the next section, we explain how the power model is calibrated through measurements.

V.3 Power model calibration

V.3.1 Calibration methodology

V.3.1.1 Main calibration approach through measurements

The base power consumption terms Psm, Pcomp,i, Pcg,i used in the power model in
Equations V.8 and V.12 are calibrated through measurements (Steps 1 and 2 in Fig-
ure V.1). Calibrating a power model through measurements allows offering a more accurate
representation of the system’s power consumption than using estimates. It allows finely
capturing the effect of the compiler and of the hardware architecture.

In this step the dynamic power consumption of tiles in the different phases are measured,
and the measured data is regressed in order to obtain the calibrated power model. The
regression allows setting the terms Psm, Pcomp,i, Pcg,i based on the data measured for

107

Chapter V – Power and energy modeling and analysis flow

the platform set in numerous different configurations. In this work, we use multi-linear
regression. Since P▲, rw(t) and P△, rwp(t) are not linear, they cannot be modeled using this
regression method. For these models, in addition to the multi-linear regression process
we thus calibrate Psm directly with measured data and verify if it suits the gathered
power profiles. The regression also allows calibrating the value of P△, static(T,M) and
P▲, static(T,M), with the number of tiles T and private memory sizesM corresponding to
those of the prototype platform used.

The multi-linear regression aims at solving a system of equations denoted (S), which
is expressed in matrix form in Equations V.13 and V.14. In our case we perform the
regression two times: one time for the platform with power management (S▲) containing
K▲ equations and one time for the platform without power management (S△) containing
K△ equations.

(S△) ∶ A△ ⋅P△, base = P△ (V.13)

(S▲) ∶ A▲ ⋅P▲, base = P▲ (V.14)

In these equations, the unknowns to determine are represented by the vectors P△, base

and P▲, base. They correspond to the base power consumptions used inside our model (e.g.:
Pcomp). The vectors P△ and P▲ correspond to the measured values of the system’s power
consumption in the configurations of the platform specified inside the tile configuration
matrices A▲ and A△.

Base power consumptions to determine Pbase: The unknowns P△, base and P▲, base

correspond to the base power consumption terms. Those terms are Pcomp and Psm, which
are common to both platforms, P△, static for the platform without power management, and
P▲, static and Pcg for the platform with power management. The definition of P△, base and
P▲, base are given in Equations V.15 and V.16.

108

V.3. Power model calibration

P△, base =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

P△, static

Pcomp,1

Pcomp,2

⋮

Pcomp,T

Psm,1

Psm,2

⋮

Psm,T

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(V.15)

P▲, base =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

P▲, static

Pcomp,1

Pcomp,2

⋮

Pcomp,T

Psm,1

Psm,2

⋮

Psm,T

Pcg,1

Pcg,2

⋮

Pcg,T

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(V.16)

Measured values of the system’s power consumption Ptotal: To solve (S), mea-
surements of the system’s power consumption are required. Each power measurement is
performed on the platform set in configurations specified in the matrix A are required. K△
and K▲ denotes the total number of equations in (S). The vectors Ptotal,△ and Ptotal,▲
provided in Equations V.17 and V.18 contains the measured power consumption of the
system in the tested configurations.

Ptotal,△ =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

Ptotal,△,k=1

Ptotal,△,k=2

⋮

Ptotal,△,k=K△

⎞
⎟
⎟
⎟
⎟
⎟
⎠

(V.17) Ptotal,▲ =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

Ptotal,▲,k=1

Ptotal,▲,k=2

⋮

Ptotal,▲,k=K▲

⎞
⎟
⎟
⎟
⎟
⎟
⎠

(V.18)

Considered configurations and example: Performing the multi-linear regression to
get the calibrated values of all Pbase terms amounts to solving the system of equations (S).
Each configuration is specified as a line in the matrix A and corresponds to an equation
in the system (S). At least one configuration is thus required for every unknown variable
Pbase. In addition to the minimum number of configurations, we also consider additional
ones to further stress the multi-linear regression, which allows reinforcing the quality of
the calibration. This is necessary as power measurements bear measurement uncertainty,
which effect can be mitigated by adding complementary configurations. This also allows

109

Chapter V – Power and energy modeling and analysis flow

verifying the proposed analytical model for power consumption, by testing its applicability
to the additional cases.

To help the reader understand the tested configurations, we provide in Equation V.19
an example of matrix A△ in the case of a platform without power management and
composed of 3 tiles. At the top of the matrix are the α terms corresponding to the matrix
index in the column. These α terms define the setting of tiles in the test configuration. For
example, on the second line of the matrix in Equation V.19, the second term, corresponding
to αcomp,1 is set to 1, which means that tile 1 is set in computation phase. All other α

terms are set to 0, which means that only tile 1 is executing. The first term is always equal
to 1, it corresponds to the static power consumption. To the right of the matrix, markers
indicate the different configuration types tested.

Equation V.20 gives the expression of the system of equations to be solved (S△) in
the case of the considered example with the platform containing 3 tiles and implementing
no power management. It can be noted that the configurations marked by I and II are
sufficient to solve the system (S△), but additional configurations III and IV are also
considered to improve the quality of the calibration.

Once the measurements obtained in the different configurations, the data is regressed.
In the following section, we explain how to extend the power model calibration to extend
its scalability in regards to platform of different dimensions with reduced calibration effort.

110

V.3. Power model calibration

The following configurations are considered:

I All tiles are disabled in order to characterize P△, static / P▲, static. For the configuration
marked by I on Equation V.19, we can see that only the static component is tested.

II One tile is set to execute the phase at test when others are deactivated to characterize
the contribution to power consumption of each individual tile. For configurations marked
by II on Equation V.19, we can see that only one tile is activated at a time.

III Tiles are progressively tasked to execute the phase at test simultaneously to characterize
the evolution of power consumption when several tiles are enabled.

IV Complementary configurations are also considered to further constraint and improve
the quality of the characterization. Testing all possible configurations on platforms with
numerous tiles would require an important characterization effort. Instead we generated
randomly a tenth of additional configurations in which tiles are arbitrarily either set
in activity or disabled. In our example on Equation V.19, all possible complementary
configurations were considered. This is because, in the case of this example, there are
only 4 additional configurations in total.

A△ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 αcomp,1 αcomp,2 αcomp,3 αrwp,1 αrwp,2 αrwp,3

1 0 0 0 0 0 0

1 1 0 0 0 0 0

1 0 1 0 0 0 0

1 0 0 1 0 0 0

1 0 0 0 1 0 0

1 0 0 0 0 1 0

1 0 0 0 0 0 1

1 1 1 0 0 0 0

1 1 1 1 0 0 0

1 0 0 0 1 1 0

1 0 0 0 1 1 1

1 1 0 1 0 0 0

1 0 1 1 0 0 0

1 0 0 0 1 0 1

1 0 0 0 0 1 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∣ I

∣ II

∣ III

∣ IV

(V.19)

111

Chapter V – Power and energy modeling and analysis flow

(S△) ∶ A△ ⋅P△, base = P△,total (V.20)

⇔

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 0 1 0 0 0 0
1 0 0 1 0 0 0
1 0 0 0 1 0 0
1 0 0 0 0 1 0
1 0 0 0 0 0 1
1 1 1 0 0 0 0
1 1 1 1 0 0 0
1 0 0 0 1 1 0
1 0 0 0 1 1 1
1 1 0 1 0 0 0
1 0 1 1 0 0 0
1 0 0 0 1 0 1
1 0 0 0 0 1 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⋅

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

P△, static

Pcomp,1

Pcomp,2

Pcomp,3

Psm,1

Psm,2

Psm,3

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

P△,total,1

P△,total,2

P△,total,3

P△,total,4

P△,total,5

P△,total,6

P△,total,7

P△,total,8

P△,total,9

P△,total,10

P△,total,11

P△,total,12

P△,total,13

P△,total,14

P△,total,15

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⇔

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

P△, static = P△,total,1

P△, static + Pcomp,1 = P△,total,2

P△, static + Pcomp,2 = P△,total,3

P△, static + Pcomp,3 = P△,total,4

P△, static + Psm,1 = P△,total,5

P△, static + Psm,2 = P△,total,6

P△, static + Psm,3 = P△,total,7

P△, static + Pcomp,1 + Pcomp,2 = P△,total,8

P△, static + Pcomp,1 + Pcomp,2 + Pcomp,3 = P△,total,9

P△, static + Psm,1 + Psm,2 = P△,total,10

P△, static + Psm,1 + Psm,2 + Psm,3 = P△,total,11

P△, static + Pcomp,1 + Pcomp,3 = P△,total,12

P△, static + Pcomp,2 + Pcomp,3 = P△,total,13

P△, static + Psm,1 + Psm,3 = P△,total,14

P△, static + Psm,2 + Psm,3 = P△,total,15

112

V.3. Power model calibration

V.3.1.2 Possible additional calibration phase to extend scalability in consid-
eration of platform dimensions

The calibration methodology presented in the previous section can be applied to
any platform respecting our MoA. It allows obtaining a power model applicable to any
NN deployment on the platform on which it was calibrated. When targeting platforms
which respect our MoA but feature different number of tiles and private memory sizes,
the methodology is still applicable, but the power model must be re-calibrated, which
represents an important effort. To alleviate this, we present in this section a possible
additional calibration approach to extend the scalability of the model to platforms with any
tile number and private memory sizes. This extension should be considered by users willing
to have a power model to jointly evaluate and optimize hardware and NN deployment. Once
the additional calibration phase terminated, the power model is scalable in consideration
of platform dimensions without needing re-calibrations.

This complementary calibration approach is based on our hypothesis that only the
static power consumption has strong dependency with the platform’s dimensions, which
will be tested during the validation of model (Section V.5.3). Therefore, the methodology
aims at performing a regression on a set of measurements of static power consumption for
different platforms respecting the MoA to calibrate the model of P△/▲, static(T,M) from
Equations V.6 and V.7. The following settings must be considered:

1. Different numbers of tiles: calibration of Ptile, core by varying the parameter T of
the model,

2. Different sizes of private memory of tiles: calibration of Ptile, mem by varying the
parameter M of the model,

3. With and without power management (△/▲): calibration of P▲, components.

The remaining term Pcircuit is a constant that is independent to the parameters of
the model, and is calibrated as such when performing the calibration of the other terms.
The measured static power consumption data is regressed using multi-linear regression in
order to calibrate the model. A minimum of 8 static consumption of different platform
settings must be considered to properly calibrate the model. The 8 platforms must
all be different in regards to either the number of tiles, the private memory sizes or
the use of power management. We however encourage using more measurements and
parameter combinations to further constraint the regression and improve the accuracy of
the calibration. Once the multi-linear regression process terminated, the extended model

113

Chapter V – Power and energy modeling and analysis flow

for extension for P△/▲, static(T,M) is calibrated. This model can be used to predict the
static power consumption of multi-core platforms of varying dimensions.

V.3.2 Application of the calibration and results

V.3.2.1 Calibrated base power model from regression of measurements

A measurement system is set up to calibrate the proposed models, using our prototype
implementation platforms. As discussed in Chapter III, the power measurement infrastruc-
ture relies on probing the VCCINT power level of the board using the R&S HMC8012
Digital Multimeter with a sampling rate of approximately 100 samples per second. When
measuring a power profile, tiles are set to execute the tested phase inside an infinite
loop, and 10 000 power measurements are performed, which allows having a representative
sample of the system consumption. We then verify that the standard deviation on the
measured data is marginal, which ensures that the observed behavior is properly captured,
and use the average value. The calibration is performed for both versions of the platform:
with and without power management (△/▲).

Static power consumption: The multi-linear regression gives: P△ static = 1.227 W and
P▲ static = 1.260 W. The increase in the value on the platform with power management (▲)
is explained by the introduction of the interrupt controller and clock gating controllers.

Computation and clock gated phases: As shown in Figure V.3, Pcomp and Pcg evolve
linearly with the number of tiles being used. In this figure, it is important to note that
the provided data include both static and dynamic power consumption. On plot (a), it
can be seen that the tiles 2 to 7, which feature 256 kB of private memory, have a nearly
identical contribution to power consumption regardless of the phase at test. The tile 1,
which features a private memory of 1024 kB, has a slightly higher power consumption
than the others. For example for Pcomp,1, the increase is 3.45 %. Because the difference of
power consumption between the tiles of different private memory is so small, we decided to
make the hypothesis that all tiles share the same base power consumption in computation
and clock gated phases, i.e. ∀i ∈ {1, 2, ..., T} , Pcomp,i = Pcomp and Pcg,i = Pcg. We calibrate
Pcomp = 0.058 W and Pcg = 0.058 W. The two base power consumption are calibrated with
identical value. The values obtained by regression differ only by a few tenths of mW, which
is lower than the accuracy of our power measurement infrastructure. We have no particular
explanation for this phenomenon, which seems to be a coincidence.

114

V.3. Power model calibration

t1 t2 t3 t4 t5 t6 t7
Tile at test

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

Po
we

r c
on

su
m

pt
io

n
(W

)

model: computation phase
model: shared memory access phase
model: clock gating phase
measurements: computation phase
measurements: shared memory access phase
measurements: clock gating phase

(a) Configurations II

0 1 2 3 4 5 6 7
Number of tiles executing

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Po
we

r c
on

su
m

pt
io

n
(W

)

model: computation phase
model: shared memory access phase
model: clock gating phase
measurements: computation phase
measurements: shared memory access phase
measurements: clock gating phase

(b) Configurations III

Figure V.3 – Extract of the measured power consumption profiles (in W) for tiles in
computation, shared memory access and clock gated phases. The provided data include
both static and dynamic power consumption. Graph (a) provides the profiles for tiles
tested individually, which correspond to the configurations II of Equation V.19. Graph
(b) provides the profiles for tiles progressively enabled all together, which corresponds to
the configurations marked III . The configuration I can also be seen on the graph (b): it
corresponds to the static power consumption, obtained when 0 tile is executing. The reader
can refer to Equation V.19 for more information on the different tested configurations.
The plots also show the proposed calibrated model.

Shared memory access phases: To properly characterize the power consumption of
tiles accessing the shared memory Psm,i with i ∈ {1, 2, ..., T}, we followed the procedure
as presented in Section V.3.1.1. However the test cases presented in this section cause
the shared memory to be used 100 % of the time as long as at least one tile access it.
Since the shared memory is always used at 100 %, it can lead to an incorrect calibration of
Psm. To alleviate this issue, we added complementary configurations, in which tiles, inside
their infinite loop, are tasked to access 10 % of the time the shared memory, and then
actively wait 90 % of the time. We also added configurations in which tiles are tasked to
execute 100 % of the time an active wait, to properly assert the consumption of tiles in
this additional activity and then correctly set the Psm,i. These additional test cases allow
to conveniently characterize the power consumption of tiles accessing the shared memory.

The characterization shows that, as assumed, P△, rwp(t) and P▲, rw(t) cannot be properly
modeled as linear. As shown in Figure V.3 (b), the total power consumption of tiles accessing
the shared memory stagnates with the number of tiles: it is equal to Psm when one tile or

115

Chapter V – Power and energy modeling and analysis flow

more is accessing the shared memory, or 0 when none is accessing it. This allows confirming
the model provided in Equations V.5 and V.4. On Figure V.3 (b) it can be noted again
that the tile, which features 1024 kB of private memory instead of 256 kB like the 6 others,
has a higher power consumption when accessing the shared memory, but the difference is
marginal as it amounts to 2.82 %. We thus calibrate Psm = 0.060 W.

Conclusion regarding the characterization through measurements: The proposed
methodology from Section V.3.1.1 allows calibrating the proposed power model for multi-
core platforms that respects our MoA. It can then be used along our timing modeling
flow as presented in Section V.4 to predict power and energy for NN deployments in
consideration of the clustering and mapping on that platform. The calibration shows that
the dynamic power consumption depends marginally on the tile’s private memory size.

However as discussed in Section V.3.1.2, it is necessary to re-calibrate the power model
when targeting another platform to keep high accuracy. We explain in the following section
how we alleviate this by applying the calibration extension approach for the static power
consumption model.

V.3.2.2 Calibration of the extended static power model

0 250 500 750 1000 1250 1500 1750 2000
t: Private memory size in kilobytes

0.00

0.05

0.10

0.15

0.20

0.25

Po
we

r c
on

su
m

pt
io

n
(W

)

Proposed model: Ptile, mem t + Ptile, core

XPE: core
XPE: private memory
XPE: tile (core + private mem.)

Figure V.4 – Extract of data gathered from XPE estimates showing the evolution of
estimated power consumption of one tile based on its private memory size. The power
consumption of the tile as estimated by XPE is depicted using orange dots. In orange
dash lines with cross markers, our proposed model of one tile depending on its private
memory size is provided. The power consumption of the core of the tile (MicroBlaze block)
is depicted in green, and the interface between MicroBlaze and private memory (in blue).

116

V.3. Power model calibration

The calibration of the extended static power model requires to gather static power
consumption measurements from several platforms respecting our MoA. Due to our
implementation technology, we had the possibility to alleviate this by using instead chip
provider estimates. AMD/Xilinx provides indeed a tool named Xilinx Power Estimator
(XPE) presented in [90]. This tool allows predicting the power consumption of a FPGA
design after its synthesis and implementation phase. It is important to note that we
didn’t use XPE for the main calibration phase, as it isn’t suitable for predicting the
dynamic power consumption of multi-core platforms. For this task, it is preferable to use
measurements, which accurately reflects the effects of the compiler and Instruction Set
Architecture (ISA). XPE is however reliable for predicting static power consumption.

We created designs of multi-core platforms that respect our MoA with varying number
of tiles and private memory sizes, as well as with and without power management,
and predicted their static power consumption using this tool. We then performed a
linear regression of the estimated data from XPE, to obtain a model of the static power
consumption of the system based on the three identified parameters (see Equations V.8
and V.9). We provide in Figure V.4 a graph that shows a subset of the gathered data for
the evolution of tile power consumption based on private memory size. This graph shows
that the contribution to static power consumption of tiles evolves linearly with the private
memory size. It also shows that the power consumption can be decomposed in two terms:
the consumption of the MicroBlaze core and the private memory interface. This verifies
our assumption regarding the use of the two terms Ptile, mem and Ptile, core in the model
presented in Equations V.6 and V.7.

We obtain Ptile, mem = 1.16 × 10−3 W, Ptile, core = 0.031 W and P▲, components = 0.033 W
through the regression of XPE estimates. To conveniently set Pcircuit, we calculate the
difference between the measured static power consumption on our platform prototype (with
parameters T = 7 and M = {1024, 256, 256, 256, 256, 256, 256}, values provided in kB) and
the model obtained from XPE estimates. Through this process we obtain Pcircuit = 0.678 W.
Once the power model calibrated, it can be integrated with the timing prediction flow to
provide power and energy prediction for NNs mappings onto multi-core platforms. This
process is presented in the following section.

117

Chapter V – Power and energy modeling and analysis flow

V.4 Integration in the simulation flow and energy
prediction

To predict power and energy consumption, the proposed model requires knowledge
regarding the phases in which tiles are throughout the execution of NNs. It also requires
knowledge regarding the use of shared resources (and possible contentions). We use for
this the execution traces from the simulation-based timing prediction flow presented in
Chapter IV, which allows modeling the effect of shared resources for NNs deployed onto
multi-core platforms. The execution traces delivered by the simulation flow contain time
markers with the current phase (compute, read, write, poll or clock gated) for each tile. A
new marker is generated when a tile changes phase during the execution. The execution
traces from simulation allows thus knowing the state of all cores and shared resources
at any time of the estimated execution. An example of traces output by the SystemC
simulation and the use of the information by the proposed model to predict power can
be seen in Figure V.2. The power model presented in the previous section is used as post
processing of the execution traces output by the SystemC simulation. The model is used
to predict the evolution of power consumption during the execution of the NN. The energy
consumed during the execution of a NN on the platform is given by Equation V.21.

E =
∫

tf

t0
P (t)dt

Nit
(V.21)

In this equation, E is the energy in J consumed for one inference of the NN mapping
on the platform. P (t) is the power consumption of the system dependent on the time t. t0

is the time at which the power acquisition begins, and tf the time at which it ends. Nit

denotes the number of inferences that occurs in the time frame tf − t0. If the number of
inferences is sufficiently important, then tf−t0

Nit
≈ L with L denotating the average end to end

latency of the NN executed on the platform. If we use the average power consumption P̄

over the execution of the NN on the platform, which is then constant over the duration of
the NN’s execution, we get Equation V.22. The mathematical relations in this equation use
the mean value theorem for integrals, which serves as lemma for proving the fundamental
theorem of calculus [101].

118

V.5. Evaluation of the power modeling flow

E =
∫

tf

t0
P̄ dt

Nit
= P̄
∫

tf

t0
dt

Nit
= P̄

tf − t0

Nit
= P̄L (V.22)

To predict the energy consumption E with our model we thus multiply the estimated
end to end latency L with the estimated average power consumption P̄ , obtained using
the proposed power model with the execution traces from the simulation. We do the same
when evaluating energy on the real experiment prototype, using the measured end-to-end
latency and the power consumption for fair comparison.

V.5 Evaluation of the power modeling flow

In this section, we present and discuss the results that allow evaluating our power and
energy modeling flow. In the first subsection, we present a power and energy pure analytical
modeling flow, which does not model shared resources. This modeling flow is used to
compare the accuracy and evaluation speed of our evaluation flow. Then, we evaluate the
power modeling flow in regards to the two objectives as discussed in Section V.1:

1. Use to evaluate power and energy for NNs deployments on a user-defined multi-core
platform and identify optimized mappings.

2. Use to jointly evaluate and optimize multi-core platform architectures and NN
deployments under power and energy constraints.

To do so, we first validate in Section V.5.2 our flow in regards to the clustering, the
number of tiles used in the mapping, the communication workload and the usage of
power management on a fixed multi-core platform. In Section V.5.3, we then focus on the
evaluation of the modeling flow for platforms with varying number of tiles and private
memory size for tiles.

V.5.1 Analytical power and energy model for comparison

In order to compare the proposed power and energy modeling flow, we introduce a pure
analytical model. It does not rely on simulation and thus do not model shared resources
and contentions. In Chapter IV, Section IV.5.2, we presented a pure analytical modeling
flow for timing prediction. We re-use this model and extend it for power and energy
prediction. The pure analytical timing model is used to estimate the end-to-end latency

119

Chapter V – Power and energy modeling and analysis flow

and the time spent in computations, read and write transactions and waiting. These
information are used to predict for each tile the average value of the power consumption
during one inference of the NN with the proposed power model (Equations V.8 and V.12).
Similarly to the simulation-based approach, the energy is obtained by multiplying the
estimated latency with the estimated power.

V.5.2 Evaluation on a fixed multi-core platform

V.5.2.1 Tested configurations

In order to evaluate our power and energy modeling flow, we tested and stressed it in
the following regards:

1. Consideration of applications of different complexity. We considered several NNs,
with different computation and communication workloads. We used SDF graphs
with a low amount of actors and communication channels, respectively 2 and 3 as
lowest (MLP1 C1 as shown in Table A.1 in Appendices), as well as complex SDF
graph featuring up to 22 actors and 113 communication channels (MLP2 C7 as
shown in Table A.3 in Appendices).

2. Consideration of single-core mappings as well as multi-core mappings containing
up to 7 tiles. The multi-core mappings leverage both NN in-layer (clustering) and
inter-layer parallelism (streaming execution).

3. Consideration of mappings with high and low communication rates. The commu-
nication rate is defined as the percentage of time spent by all tiles on average in
communication. The lowest observed communication rate is 2 % on one mapping
and the highest is 70 % on another mapping.

4. Every mapping is tested both with and without power management.

All tested mappings are presented in details in Appendices A. In addition to these
evaluation cases, we also compare the proposed power model relying on simulation against
the pure analytical modeling flow from Section V.5.1. All considered mappings were tested
on the main platform prototype with 7 tiles, to evaluate the applicability of the flow to
search and optimize NN deployments on a user defined multi-core platform.

120

V.5. Evaluation of the power modeling flow

1
P
T1
2

5%

2
P
T2
2

51%

3
P
T1
7

13%

4
P
T3
7

26%

5
P
T7
7

70%

6
P
T1
15

25%

7
P
T7
15

56%

8
I

T1
2

5%

9
I

T2
2

52%

10
I

T1
7

14%

11
I

T3
7

28%

12
I

T7
7

68%

13
I

T1
15

31%

14
I

T7
15

55%
Mapping

1.00

1.15

1.30

1.45

1.60

Po
we

r c
on

su
m

pt
io

n
(W

)

0

2

4

6

8

Er
ro

r %

Mi:
Cm:

T:
A:
Cr:

power
error

(a) MLP1 - Power

1
P
T1
2

5%

2
P
T2
2

51%

3
P
T1
7

13%

4
P
T3
7

26%

5
P
T7
7

70%

6
P
T1
15

25%

7
P
T7
15

56%

8
I

T1
2

5%

9
I

T2
2

52%

10
I

T1
7

14%

11
I

T3
7

28%

12
I

T7
7

68%

13
I

T1
15

31%

14
I

T7
15

55%
Mapping

0

2

4

6

8

En
er

gy
 c

on
su

m
pt

io
n

(m
J)

0

2

4

6

8

Er
ro

r %

Mi:
Cm:

T:
A:
Cr:

energy
error

(b) MLP1 - Energy

15
P
T1
3

2%

16
P
T3
3

66%

17
P
T1
10
5%

18
P
T3
10
8%

19
P
T7
10

60%

20
P
T1
22

11%

21
P
T7
22

28%

22
I

T1
3

2%

23
I

T3
3

66%

24
I

T1
10
6%

25
I

T3
10
9%

26
I

T7
10

59%

27
I

T1
22

15%

28
I

T7
22

28%
Mapping

1.00

1.15

1.30

1.45

1.60

Po
we

r c
on

su
m

pt
io

n
(W

)

0

2

4

6

8

Er
ro

r %

Mi:
Cm:

T:
A:
Cr:

power
error

(c) MLP2 - Power

15
P
T1
3

2%

16
P
T3
3

66%

17
P
T1
10
5%

18
P
T3
10
8%

19
P
T7
10

60%

20
P
T1
22

11%

21
P
T7
22

28%

22
I

T1
3

2%

23
I

T3
3

66%

24
I

T1
10
6%

25
I

T3
10
9%

26
I

T7
10

59%

27
I

T1
22

15%

28
I

T7
22

28%
Mapping

0

5

10

15

20

En
er

gy
 c

on
su

m
pt

io
n

(m
J)

0

2

4

6

8

Er
ro

r %

Mi:
Cm:

T:
A:
Cr:

energy
error

(d) MLP2 - Energy

29
P
T1
7

3%

30
P
T2
7

4%

31
P
T7
7

70%

32
P
T1
13
7%

33
P
T4
13

14%

34
P
T1
19

10%

35
P
T6
19

20%

36
I

T1
7

4%

37
I

T2
7

4%

38
I

T7
7

69%

39
I

T1
13
9%

40
I

T4
13

14%

41
I

T1
19

14%

42
I

T6
19

24%
Mapping

1.00

1.15

1.30

1.45

1.60

Po
we

r c
on

su
m

pt
io

n
(W

)

0

2

4

6

8

Er
ro

r %

Mi:
Cm:

T:
A:
Cr:

power
error

(e) MLP3 - Power

29
P
T1
7

3%

30
P
T2
7

4%

31
P
T7
7

70%

32
P
T1
13
7%

33
P
T4
13

14%

34
P
T1
19

10%

35
P
T6
19

20%

36
I

T1
7

4%

37
I

T2
7

4%

38
I

T7
7

69%

39
I

T1
13
9%

40
I

T4
13

14%

41
I

T1
19

14%

42
I

T6
19

24%
Mapping

0

4

8

12

16

En
er

gy
 c

on
su

m
pt

io
n

(m
J)

0

2

4

6

8

Er
ro

r %

Mi:
Cm:

T:
A:
Cr:

energy
error

(f) MLP3 - Energy

Figure V.5 – Predicted power and energy consumption by the simulable model for the
considered MLP mappings. The prediction error in absolute value is also provided for each
mapping. In X-axis, information about the tested mapping is provided: the top number
Mi is the mapping index, which can be used to find more information about the mapping
in appendix of this thesis. The letter Cm below Mi is the communication mode - P stands
for polling (without power management), while I stands for interrupt (with). The number
of tiles used is indicated by the indice of T . Then respectively the number of actors A in
the SDF graph and the average time spent in communication by tiles Cr (combination of
read/write time and wait time) are provided.

121

Chapter V – Power and energy modeling and analysis flow

V.5.2.2 Results

We have measured the power and energy consumption of 27 different mappings, with
power management and without (which amounts to 54 mappings in total), and compared
the model’s prediction with the measurements. The tested mappings are available in
appendices of this manuscript. Table V.1 shows the average and maximum prediction
error for single-core and multi-core mappings for all applications, using the simulation
model and the pure analytical model. Prediction errors are computed using the formula
XP−XM

XM
where XP is the prediction and XM is the measurement. The errors are provided

in absolute value and percentage. In this table, the mappings with and without power
management are separated to validate the model for both cases. For mappings that use
less tiles than available on the platform, the unused tiles are disabled using MicroBlaze
debuggers with the Xilinx Software Command-Line Tool (XSCT). When a tile is disabled,
its processing core is not clocked but its private memory is. The detailed prediction of

3. Refer to Chapter III Section III.5 for more information about the applications and mappings.

Table V.1 – Observed average and maximum error on tested mappings regarding the power
consumption in W (P) and the energy consumption in mJ (E). The column titled "#
tested mappings" provides the number of tested mappings. Each mapping is tested with
and without power management. All details about the tested mappings can be found in
appendix of this manuscript.

Application 3 Mapping
type

tested
mappings Metric

Polling-based comm.
without clock gating

Interrupt-based comm.
with clock gating

Pure analytical
model - Error %

Simulation-based
flow - Error %

Pure analytical
model - Error %

Simulation-based
flow - Error %

avg max avg max avg max avg max

MLP1
Single-core 3 P 0.64 0.83 1.92 2.14 1.45 2.19 1.45 2.17

E 0.45 0.58 2.30 2.52 3.11 7.02 0.83 1.24

Multi-core 4 P 8.42 18.59 0.53 0.72 2.06 3.88 3.32 4.88
E 4.40 12.51 1.15 3.55 7.27 20.78 3.21 6.85

MLP2
Single-core 3 P 0.62 0.94 1.98 2.22 2.09 2.47 2.09 2.46

E 0.92 1.28 1.84 2.30 3.78 6.91 2.13 2.66

Multi-core 4 P 5.84 13.71 1.49 2.23 2.47 4.95 3.61 4.94
E 5.57 9.08 1.53 2.51 6.03 13.06 3.61 5.30

MLP3
Single-core 3 P 0.85 1.34 1.74 2.14 2.31 2.50 2.31 2.50

E 1.40 1.61 1.19 1.37 4.55 6.70 2.70 2.95

Multi-core 4 P 5.04 16.66 1.25 2.50 2.89 6.58 4.29 6.79
E 5.98 13.47 0.92 1.53 6.43 12.36 4.11 6.22

CNN
Single-core 2 P 3.94 4.06 1.42 1.54 3.02 4.54 3.03 4.54

E 2.82 4.20 1.10 1.33 2.81 4.68 2.71 4.33

Multi-core 4 P 4.69 6.92 3.12 4.59 4.13 5.71 2.95 4.94
E 3.03 5.40 3.57 5.08 2.81 4.35 3.35 6.01

122

V.5. Evaluation of the power modeling flow

43
P
T1
4

2%

44
P
T2
4

33%

45
P
T4
4

66%

46
P
T1
8

2%

47
P
T5
8

52%

48
P
T7
8

37%

49
I

T1
4

2%

50
I

T2
4

33%

51
I

T4
4

66%

52
I

T1
8

2%

53
I

T5
8

52%

54
I

T7
8

37%
Mapping

1.00

1.15

1.30

1.45

1.60

Po
we

r c
on

su
m

pt
io

n
(W

)

0

2

4

6

8

Er
ro

r %

Mi:
Cm:

T:
A:
Cr:

power
error

(a) CNN - Power

43
P
T1
4

2%

44
P
T2
4

33%

45
P
T4
4

66%

46
P
T1
8

2%

47
P
T5
8

52%

48
P
T7
8

37%

49
I

T1
4

2%

50
I

T2
4

33%

51
I

T4
4

66%

52
I

T1
8

2%

53
I

T5
8

52%

54
I

T7
8

37%
Mapping

0

50

100

150

200

En
er

gy
 c

on
su

m
pt

io
n

(m
J)

0

2

4

6

8

Er
ro

r %

Mi:
Cm:

T:
A:
Cr:

energy
error

(b) CNN - Energy

Figure V.6 – Predicted power and energy consumption by the simulable model for the
considered CNN mappings. The absolute prediction error is also provided for each mapping.
More information about the legend of the plots can be found in the caption of Figure V.5

the SystemC model and prediction error for each mapping are provided in the graphs in
Figures V.5 and V.6.

V.5.2.3 Discussions

Overview of the simulation-based flow evaluation results: The SystemC model
has a prediction accuracy of more than 93 % compared to the measurements for both power
and energy on all tested mappings. This high prediction accuracy is achieved thanks to
the calibration through measurements, which allows setting the base power consumption
terms with fine granularity. The power consumption linked to the different phases of tiles
(NN computation, shared memory access, clock gated) are correctly modeled through the
use of the execution traces from our simulation-based timing modeling flow. The overall
results show the power model can be used efficiently to evaluate mappings in a DSE setup,
allowing to optimize the deployment of NNs onto multi-core platforms.

It can be noted that the prediction accuracy on power and energy is slightly lower than
the prediction accuracy of the timing modeling flow as seen in Chapter IV (more than
97 % accurate on all tested mappings). This is due to the following:

1. The power measurement infrastructure offers less accurate measurements than the
timing measurement infrastructure. This leads to a more important error on the
elementary power consumption terms (e.g. Pcomp) used for the calibration of the
model but also on the measurements used to validate the model.

2. Power predictions are performed using the execution traces issued from the timing

123

Chapter V – Power and energy modeling and analysis flow

modeling flow, which means the timing error is also propagated on power predictions.

The error on energy prediction is also slightly higher than the error on power. This is
due to the propagation of the timing error a second time when predicting energy, as it
is computed as the integration of the average power consumption of the system over the
end-to-end latency.

Fast evaluation speed: The time needed to evaluate a mapping using our SystemC
models (lower part of Figure V.1) is approximately 20 s, which is mostly spent in the
compilation of the SystemC model. The power model is coded as a Python script. It
processes the execution traces produced by the SystemC model after its execution. The
execution time of the Python script describing the power model is negligible compared to
the simulable model compilation and execution.

When probing power consumption using our power measurement infrastructure, a total
of 10 000 samples are measured at a sampling rate of 100 sample/s, which corresponds to
an evaluation time of 100 s, which is 5 times more than our evaluation flow. It can also be
noted that this duration excludes the effort needed to synthetize the FPGA design, build
the Board Support Package (BSP) necessary to execute software on the tiles, train the
NN, develop and compile the code to infer the NN on the platform as well as programming
the FPGA and the tiles with the compiled code. The proposed power modeling flow thus
allows saving important evaluation time, which is important to allow a fast and thorough
evaluation of the design space to optimize NN deployments on multi-core platforms.

Applicability to MLPs and CNNs: The average prediction error on power and
energy for all considered mappings of MLPs combined is respectively 2.20 % and 2.17 %.
The average prediction error for the CNN is 2.76 % on power and 2.94 % on energy. The
prediction error on the CNN is in the same order as the prediction error on the MLPs,
despite being slightly higher. It is important to note that these results are obtained with
the same value of Pcomp for all layer types, despite the difference of computations inside
layers. It could be arguably possible to improve the accuracy of the power model by
calibrating different values of Pcomp for every layer. It must be noted that this represents a
more important calibration effort and the model’s accuracy is already excellent without.

The error of the model increases with the computation workload contained in the
application. The average prediction error is the lowest for the MLP1, which is the application
with the lowest amount of computations that we considered. On the MLP1, the model

124

V.5. Evaluation of the power modeling flow

averages a prediction error of 1.82 % on power and 1.92 % on energy. On the MLP3, which
is the MLP with the highest computation workload, the average prediction error is 2.45 %
on power and 2.27 % error on energy. The increase in error is however minimal between
the two applications, as it is less than 1 %.

These results validate the applicability of the proposed modeling flow for applications
with various computation workloads and to both MLPs and CNNs.

Mappings with and without power management: The average prediction error of
the SystemC modeling flow when applied to the 27 polling-based mappings (i.e. without
power management) is 2.11 % on power and 2.22 % on energy. When applied to the 27
interrupt-based mappings with clock gating (i.e. with power management), the average
prediction error is 3.92 % on power and 3.91 % on energy. Similarly we observe that the
maximum error on power is 4.59 % and on energy is 5.08 % for polling-based communications
while the maximum error on power is 6.79 % and on energy 6.85 % for the interrupt-based
communications. Overall the prediction error of the model is slightly higher on interrupt-
based communications than on the polling-based communications.

This higher prediction error is due to the choice to consider that during waiting phases,
the cores are always clock gated in order to reduce the complexity of the model (see
Equation V.10). In fact, the interrupt-based platform relies on a single interrupt signal
for all tiles. When the interrupt signal is enabled, all tiles are switched on and check the
availability of tokens in the shared memory. Tiles for which the token is unavailable are
switched back to clock gating right after. However, this switching of modes is not captured
in the proposed power modeling flow. In addition, when tiles enter the waiting phase on
the real platform, they also have short delays at the beginning of the phase when they
check the availability of tokens in the shared memory and switch on their sensitivity to
interrupt signals. For these two reasons, the prediction error on power and energy for
interrupt-based communications with the use of clock gating is slightly higher than the
error for polling-based communications.

Even though the prediction error for interrupt-based communications is higher, it
remains acceptable as it is overall less than 2 % higher than the polling counterpart and
remains under 7 %, which is relatively low for a modeling flow with a high level of abstraction.
This validates the proposed power model for both polling-based communications without
clock gating and interrupt-based with clock gating.

125

Chapter V – Power and energy modeling and analysis flow

Clustering: In this paragraph, we discuss the applicability of the proposed modeling flow
to different clusterings. As shown in the tables in Appendices, we tested mappings with
low feasible clustering (2 actors and 3 channels) and others with high possible clustering
(22 actors and 113 channels). For the MLP1 application (Figure V.5 (a)) for mappings
with mapping index Mi = (8, 10, 13) , the clustering is increased progressively (they have
respectively A = 2, 7 and 15 actors) and the error on power prediction also increases with
the clustering up to approximately 2 %. However on the MLP3 application (Figure V.5 (e))
for mappings Mi = (29, 32, 34), the opposite is observed as the error decreases with the
clustering (respectively A = 7, 13 and 19 actors). Other obtained results also show that
there is no correlation between clustering and prediction error (see the results obtained on
the MLP2 for example). The same observations can also be done for the energy prediction.
This allows validating that the clustering of the NN in SDF does not impact the prediction
accuracy using the proposed power modeling flow.

Number of tiles and communication workload: Table V.2 provides a summary of
the average and maximum prediction error on power consumption of the simulation-based
power modeling flow depending on (a): the number of cores used in the mapping and
(b): the communication rate. Overall, as it can be observed from Table V.2 (a), the
prediction error increases with the number of cores. It can be noted that for single-core
mappings the average error of the model is 1.73 %, for mappings using 2 up to 4 tiles
it is approximately 2.50 % and for mappings using 5 up to 7 tiles it is approximately
4.42 %. The same observation can be drawned from Table V.2 (b) with the communication
workload: the prediction error of the proposed modeling flow increases with the amount
of communications in the mapping. The number of tiles used and the communication
workload are closely linked, as increasing the amount of cores tend to increase the amount
of shared resource contentions, which effect timing and power consumption. The increase

Table V.2 – Summary of the average and maximum prediction error on power consumption
of the simulation-based power modeling flow based on (a): the number of cores used in the
mapping and (b): the communication rate.

(a) Core number
Core number 1 2 3 4 5 6 7

Average error % 1.73 2.39 2.40 2.80 4.96 3.86 4.42
Max error % 4.54 4.07 4.74 7.01 4.98 5.70 6.79

Total mapping
number 22 6 6 4 2 2 12

(b) Communication rate
Comm. rate 0-9% 10-19% 20-29% 30-39% 40-59% +60%

Average error % 1.84 1.52 2.56 3.67 3.79 4.48
Max error % 4.54 2.46 5.70 5.84 4.98 7.01

Total mapping
number 17 9 7 5 6 10

126

V.5. Evaluation of the power modeling flow

of shared resource contentions leads to the observed increase of prediction error. However
it can be noted that despite the error increase, the model’s predictions remain acceptable
for up to 7 tiles and communication rates up to 70 % as the maximum observed error is
7.01 %. In this paragraph we focused on power consumption but similar observations can
also be drawn for the energy prediction. This validates the applicability of the modeling
flow for up to 7 tiles and communication workload up to 70 %.

Comparison of the pure analytical model and the simulation: The pure analytical
model does not offer accurate predictions on all considered mappings. The error is especially
high on multi-core mappings, as this model averages 6.46 % error on power consumption
with a maximum error of 18.59 % and 7.55 % error on energy with a maximum of 20.78 %.
These errors are so high because the pure analytical model always underestimates the
effect of shared resource on the power and energy consumption. These results show the
importance of modeling the influence of shared resource for power and energy prediction,
and thus the importance of using a simulation-based approach. The predictions of the pure
analytical flow on single-core mappings are acceptable due to the absence of shared resource
influence in these scenarios. The pure analytical model has an evaluation time in the order
of a millisecond, which is 104 an order of magnitude faster than the simulation-based
approach. Due to its fast evaluation time, the pure analytical modeling flow can be used,
despite its low accuracy, in conjunction with the simulation flow to offer a fast pruning of
the design space, before the evaluation of relevant mappings by the SystemC simulation
flow, which offers slower but more reliable predictions.

V.5.3 Evaluation of the scalability in regards to the number of
tiles and private memory size

V.5.3.1 Tested configurations

In this section, we evaluate the usage of the modeling flow to jointly optimize multi-core
platform’s dimensions and NN deployment. To this end we evaluate the applicability of
our modeling flow to platforms with different number of tiles and private memory sizes.
We considered a total of four multi-core platforms and three single-core platforms, which
are presented in Table V.3. These platforms allow testing the following:

— P7 (which is the platform used in the previous section) and P5 allows testing platform
with a high number of tiles (respectively 7 and 5) and unequal distributions of

127

Chapter V – Power and energy modeling and analysis flow

private memory size among tiles,
— P2 and P3 allow testing several mappings with platforms with identical and low

private memory size (64 kB) and reduced amount of tiles (respectively 2 and 3),
— Single-core platforms (variations of P1) allow testing the applicability of the modeling

flow when applied to single-core platforms and private memory sizes ranging from
512 kB up to 2048 kB.

Table V.3 – Dimensions of the different considered platforms. The value inside the table
indicate the size in kilobits of the private memory of tile. The symbol / means that this
tile is not used.

Platform Tile number
T0 T1 T2 T3 T4 T5 T6

P7 1024 256 256 256 256 256 256
P5 1024 512 512 256 256 / /
P3 64 64 64 / / / /
P2 64 64 / / / / /

P1,2048kB 2048 / / / / / /
P1,1024kB 1024 / / / / / /
P1,512kB 512 / / / / / /

It must be noted that for the P7 platform, we implemented a version with power
management (denoted P7,I , I standing for Interrupt) and a version without (denoted
P7,P , P standing for Polling). For all other considered platforms, we implemented the
interrupt controller and clock gating controllers. Doing so allows testing mappings both
with and without power management. The P7 platform, due to its memory setting, is
the only one that enables the execution of the 27 considered mappings. We thus tested
only a subset of mappings on each considered platforms. For the single-core platforms, we
tested two sub-versions of each platform, issued from two different FPGA implementation
strategies using the Xilinx tools. We used the default implementation strategy, as well
as a strategy focused on power optimization when conducting placement, routing and
bitstream generation steps of the FPGA design. We choose to provide a focus on static
consumption in addition to dynamic power consumption in our validation approach to
evaluate the hypothesis we formulated that only the static power consumption depends on
the tile number and private memory size implemented in the platform.

128

V.5. Evaluation of the power modeling flow

V.5.3.2 Results

To evaluate the scalability of the proposed modeling flow to platforms with various
number of tiles and private memory sizes, we provide:

— in Figure V.7 the comparison of predicted and measured static power consumption
for the multi-core platforms that we considered.

— in Figure V.9 the comparison of the predicted and measured dynamic power
consumption for the multi-core platform.

— in Figure V.8 the comparison of the predicted and measured static power consump-
tion for the single-core platforms.

— in Figure V.10 the comparison of the predicted and measured dynamic power
consumption for the multi-core platforms.

V.5.3.3 Discussions

Static consumption: For all considered platforms, the error on static consumption
remains under 5 % regardless of the number of tiles. The model tend to underestimate

P2 P3 P5 P7, P P7, I

Considered platform

0.4

0.6

0.8

1.0

1.2

1.4

Po
we

r (
W

)

0

1

2

3

4

5
Er

ro
r %

predicted
measured
error (%)

Figure V.7 – Predicted and measured static power consumption for the considered multi-
core platforms.

2048 1024 512
Private memory size (kB)

0.6

0.7

0.8

0.9

1.0

1.1

Po
we

r (
W

)

0

1

2

3

4

5

Er
ro

r %

predicted
measured
measured (opti)
error (%)

Figure V.8 – Predicted and measured static power consumption for the considered single-
core platforms.

129

Chapter V – Power and energy modeling and analysis flow

slightly the static power consumption of multi-core platforms with low amount of tiles
and low private memory size as shown in Figure V.7. The error is higher on P2 (almost
5 %) and P3 than on the other platforms with higher tile numbers. However the error
decreases from 2 tiles (P2) to 1 tile (see Figure V.8), which does not allow establishing
a correlation between the number of tiles and high error. For single-core platforms, the
error is overall lower on the version with 512 kB of private memory than the two others
with 1024 kB and 2048 kB. This can be explained by the fact that the place and route is
more constrained with bigger memory sizes, generating overheads in power consumption 4.
The prediction error remains acceptable. We conclude that the modeling flow provides
acceptable predictions of static power consumption in regards to the number of tiles and
private memory size.

Dynamic consumption: As shown in Figure V.9, on multi-core mappings the
prediction error seems to be not influenced by the number of cores or the private memory
sizes. The highest error is indeed observed on one mapping of P3, but on another scenario
the error is lower, so it is not directly linked to core number. The same observation can be
done for energy prediction, the highest errors being observed on P3 up to more than 5 %,
with very low error on P2 and an error under 3 % for P5.

We however observe clear limitations on single-core platforms, as shown in Figure V.10.
The prediction error rises over 10 % for two mappings on the version of the platform with

4. The interested reader can find the place and route schematics of the different platforms in Appen-
dices B.

4
P3
P
7

26%

11
P3
I
7

28%

18
P3
P

10
8%

25
P3
I

10
9%

30
P2
P
7

4%

37
P2
I
7

4%

47
P5
P
8

52%

53
P5
I
8

52%
Mapping

0.4

0.6

0.8

1.0

1.2

1.4

Po
we

r c
on

su
m

pt
io

n
(W

)

0

2

4

6

8

10

Er
ro

r %

Mi:
P:

Cm:
A:
Cr:

predicted
measured
prediction error

(a) Power

4
P3
P
7

26%

11
P3
I
7

28%

18
P3
P

10
8%

25
P3
I

10
9%

30
P2
P
7

4%

37
P2
I
7

4%

47
P5
P
8

52%

53
P5
I
8

52%

0

20

40

60

80

Po
we

r c
on

su
m

pt
io

n
(W

)

0

2

4

6

8

Er
ro

r %

Mi:
P:

Cm:
A:
Cr:

predicted
measured
error

(b) Energy

Figure V.9 – Predicted and measured system power (including static and dynamic) and
energy consumption for the considered mappings on multi-core platforms.

130

V.5. Evaluation of the power modeling flow

6
P

15
25%

13
I

15
31%

15
P
3

2%

22
I
3

2%

46
P
8

2%

52
I
8

2%
Mapping

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Po
we

r c
on

su
m

pt
io

n
(W

)

0

2

4

6

8

10

12

Er
ro

r %

Mi:
Cm:
A:
Cr:

predicted
measured
measured (opti)
prediction error

(a) 2048kB memory - Power

6
P

15
25%

13
I

15
31%

15
P
3

2%

22
I
3

2%

46
P
8

2%

52
I
8

2%
Mapping

0

30

60

90

120

150

180

En
er

gy
 c

on
su

m
pt

io
n

(m
J)

0

2

4

6

8

10

12

Er
ro

r %

Mi:
Cm:
A:
Cr:

predicted
measured
measured (opti)
prediction error

(b) 2048kB memory - Energy

6
P

15
25%

13
I

15
31%

15
P
3

2%

22
I
3

2%

46
P
8

2%

52
I
8

2%
Mapping

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Po
we

r c
on

su
m

pt
io

n
(W

)

0

2

4

6

8

10

12

Er
ro

r %

Mi:
Cm:
A:
Cr:

predicted
measured
measured (opti)
prediction error

(c) 1024kB memory - Power

6
P

15
25%

13
I

15
31%

15
P
3

2%

22
I
3

2%

46
P
8

2%

52
I
8

2%
Mapping

0

30

60

90

120

150

180

En
er

gy
 c

on
su

m
pt

io
n

(m
J)

0

2

4

6

8

10

12

Er
ro

r %

Mi:
Cm:
A:
Cr:

predicted
measured
measured (opti)
prediction error

(d) 1024kB memory - Energy

6
P

15
25%

13
I

15
31%

15
P
3

2%

22
I
3

2%

46
P
8

2%

52
I
8

2%
Mapping

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Po
we

r c
on

su
m

pt
io

n
(W

)

0

2

4

6

8

10

12

Er
ro

r %

Mi:
Cm:
A:
Cr:

predicted
measured
measured (opti)
prediction error

(e) 512kB memory - Power

6
P

15
25%

13
I

15
31%

15
P
3

2%

22
I
3

2%

46
P
8

2%

52
I
8

2%
Mapping

0

30

60

90

120

150

180

En
er

gy
 c

on
su

m
pt

io
n

(m
J)

0

2

4

6

8

10

12

Er
ro

r %

Mi:
Cm:
A:
Cr:

predicted
measured
measured (opti)
prediction error

(f) 512kB memory - Energy

Figure V.10 – Predicted and measured system power (including static and dynamic) and
energy consumption for the considered mappings on single-core platforms.

131

Chapter V – Power and energy modeling and analysis flow

2048 kB of private memory. The prediction error decreases with the private memory size,
as it approximates 7 % for the version of the platform with 1024 kB and 4 % for the version
with 512 kB. The prediction error is slightly reduced with the versions of the platforms
with optimized power consumption, with a maximum decrease of 1 %. Since the decrease
in error is low, it eliminates the possibility that the observed prediction error would be
due to the place and route strategy. The high prediction error shows that, for single-core
platforms, the hypothesis that the dynamic power consumption of tiles is independent
of tile memory is false. The error remains acceptable for memory sizes up to 512 kB for
single-core platforms (as shown in Figure V.10 (e) and (f)) and for multi-core platforms
containing one tile with 1024 kB as shown by the results on platforms P5 and P7.

Conclusion: Static power consumption is well predicted by the model in consideration
of the tile number and private memory size in the tested platform. Dynamic power
consumption is also well predicted for multi-core platforms. However, the model shows
limitations to predict the dynamic contribution in the case of single-core platforms with
important private memory (1024 kB, 2048 kB). For such platforms, the hypothesis that
tile’s dynamic power consumption is independent of their private memory size is incorrect.
Despite this, the proposed modeling flow offers acceptable results for memory up to 512 kB
on single-core platforms and has shown to provide good prediction accuracy on multi-core
platforms featuring one tile with 1024 kB.

V.6 Conclusion

In this chapter we proposed a power and energy modeling flow for NNs mapped onto
tile-based multi-core platforms. This modeling flow relies on calibration through power
measurements, which allows offering accurate power predictions. It is then combined with
estimates from the chip provider to offer scalability in regards to the platform’s size. The
flow relies on the execution traces generated by our simulation-based timing modeling flow
to obtain the information about tile phases (compute, shared memory access, clock gated)
and shared resource states in order to offer accurate power and energy predictions. The
proposed flow offers more than 93 % accuracy on 27 mappings of NNs with and without
power management, and with various clusterings, tile usage and communication rates. Due
to its high accuracy, the modeling flow can be confidently used to identify when using
power management is relevant to save power and energy. It offers acceptable predictions

132

V.6. Conclusion

when applied to 7 platforms implementing 1 up to 7 tiles, and private memory sizes from
64 kB up to 2048 kB. The evaluation time using our modeling flow is approx. 20 s per
mapping, which represents an important time saving compared to rapid prototyping. Due
to its high prediction accuracy, evaluation speed and scalability, our timing and energy
modeling flows can be used to efficiently explore the design space of NNs deployment onto
multi-core platforms. They can be used both to find optimized deployments of NNs onto a
user defined multi-core platform, and to design a multi-core platform for optimized NN
inference. We identified two main limitations of our flow:

1. We note an influence of the communication rate on the prediction error when it
becomes important. It reaches a maximum of 7 % error for a mapping featuring
70 % communication rate, which is still relatively low.

2. On single-core platforms with important private memory (1024 kB and 2048 kB),
the modeling flow has high prediction error (> 10 %). This shows that the hypothesis
that the influence of the private memory size on dynamic power consumption can
be considered marginal, is invalid in this situation. On the other tested platforms
including a single-core platform with 512 kB of private memory, as well as multi-core
platforms with 2 up to 7 tiles, the prediction accuracy is acceptable.

In the next chapter, we will see how the proposed modeling flow can be used to perform a
fast and efficient exploration of the design space under timing and power/energy constraints.

133

Chapter VI

DESIGN SPACE EXPLORATION USING THE

PROPOSED TIMING AND ENERGY

MODELS

In this chapter, we present a Design Space Exploration (DSE) flow to search and
optimize NN mappings onto multi-core platforms regarding timing and energy. The flow
can be used in two ways:

(1) Find optimized NN clustering/mapping onto a fixed platform specified by the user,

(2) Jointly optimize hardware in regards to the number of cores and private memory
sizes, and software (NN clustering/mapping).

The objective of this chapter is to provide a demonstration of how the timing and energy
modeling flow from Chapters IV and V can be used in a DSE setup. Through the use of
analytical models, which provide very fast evaluation, the large design space is pruned to
select the most promising clusterings and mappings. The selected mappings are then passed
to the simulation-based timing and energy modeling flow as presented in Chapters IV
and V for a rapid but more precise evaluation. The list of mappings ranked by their
predicted timing and energy properties is returned to the user. The proposed flow offers
automatized generation of source code in C programming language for real implementation
of user’s selected mappings. In the experiment, we applied our DSE flow to 5 different
NNs and discuss the results.

VI.1 Proposed DSE flow overview

Finding highly optimized NN deployments into multi-core edge systems is difficult but
necessary. NNs are computation and memory intensive, while multi-core edge systems have
resource limitations and strong timing and power constraints to satisfy. A fast yet confident

135

Chapter VI – Design space exploration using the proposed timing and energy models

exploration of NN mappings onto edge multi-core platforms is crucial to quickly identify
deployments that optimize resource usage, performance and energy. Efficient DSE for such
applications is however tedious. On the one hand, the design space is vast due to the
numerous NN clustering/mapping and HW dimension possibilities that must be evaluated
to find optimized solutions. On the other hand, highly scalable models are required to
confidently evaluate and select optimized solutions from the large design space. Possible
solutions can have different computation/communication workloads, NN-parallelism usage,
communication procedure, use of power management and hardware specifications. An
alternative to using models is to use rapid prototyping through systematic implementation
and benchmarking of possible solutions, but this requires a huge effort and limits the
possibility in regards to hardware exploration.

In Chapters IV and V, we proposed and validated a timing and energy modeling flow for
fast yet accurate evaluation of NN mappings onto multi-core platforms. This modeling flow
allows addressing the aforementioned challenges. However, while the proposed modeling
flow offers a fast evaluation time of approximately 20 s per mapping (observed for 54
mappings), this evaluation speed proves to be insufficient regarding the large design space.
To illustrate this with an example, for the deployment of the CNN1 featuring 4 layers
on platforms with a maximum number of cores Tmax = 3, there is a total of 27 different
clusterings, and a total of 109 332 mappings 1. Using the proposed modeling flow, it would
take more than 25 days to evaluate all mappings, which is very long. This example focuses
on the simple CNN1 with 4 layers and a reduced amount of cores. The size of the design
space raises tremendously with the number of cores and amount of layers in the NN.

Proposed DSE flow overview: We propose the DSE flow as shown in Figure VI.1.
Our approach is based on two main stages, which use two different types of models:

1. The first stage is the DSE stage, where we use purely analytical models to perform
a fast exploration of the design space, and identify the most promising mappings
(1 and 2). This search is divided into two phases: first performing an exploration
of clusterings, then an exploration of mappings that can be generated from that
clustering. To carry out these phases, we use the pure analytical models introduced
in Chapters IV and V. Their low accuracy is minor here over their ability to perform
a very fast exploration (approximately 1 ms) of the large design space. A selection
of optimized mappings is returned at the end of this stage.

1. These numbers are obtained when performing exhaustive search as shown in Section VI.4

136

VI.1. Proposed DSE flow overview

 Branch & Bound enhanced
clustering generation

1

 Branch & Bound enhanced
mapping generation

2

T#0

T#1

SM

Section V.2.1.

Section V.2.2.

 Evaluation with simulation-
based models

3

T#0

T#1

SM

Selection of optimized
mappings

Evaluation

Generation of
SystemC simulation

scenarios

Optimization using
analytical models

User defined
constraints:

max core = 7,

min_throughput = ϕ,
max_energy = E,

...

Considered NN

...

Stage 2: R
e-assessm

ent, validation and
possible .C

 code generation
Stage 1: D

esign Space Exploration for N
N

s on m
ulti-core

platform
s

Selection of optimized
clusterings

.cpp

Ranking of
mappings

1st

2nd

...

Identification of pareto best
mappings

En
er

gy

Timing

Optimization using
analytical models

Inputs

Scenario simulation
Communication

time model
Computation
time model

Power model

Outputs

Section V.3.

Optional: user specified
platform specifications

T#1
64kB
T#2

SM

T#1
2MB
T#1

T#1
64kB
T#2

.C

Possible generation
of mapping C code

Figure VI.1 – Proposed DSE flow, which is organized in two main phases: first the design
space is pruned using analytical models, and then selected mappings are evaluated using
the simulation-based flow.

137

Chapter VI – Design space exploration using the proposed timing and energy models

2. The second stage serves as a validation and refinement of the estimates obtained in
the first stage, by using the slower but highly confident simulation-based models 3 .
To this end we use the simulation-based flow, proposed in previous chapters. After
their re-assessment, the mappings are ranked and are returned to the user. The
flow supports the generation of the C source files needed for the execution of the
mapping on the targeted platform.

Inputs of the flow:

1. The first input of our flow is the considered NN. It is important to note that the
input NN does not need to be trained in order to perform the DSE (it is however,
necessary, if the user wants to generate the .C code at the end of stage 2). Our
flow relies on parameters of the NN’s application: the number of layers, type of
layers, input and output size of each layer and number of features 2. This is rendered
possible by the proposed modeling flow and use of the SDF MoC, which allow
predicting the timing and energy cost of computations and communications of NNs
with only these parameters.

2. The second input of our modeling flow are the user defined constraints regarding the
timing and power properties. The user can specify maximum/minimum threshold for
evaluated quantities (e.g. the energy must not exceed a threshold value). The user
must also define Tmax: the maximum number of tiles implemented in the platform.
In our work, we do not consider constraints regarding functional properties such as
the NN’s classification/regression accuracy.

3. The third and last input is optional: it corresponds to the platform specifications in
the case the user wants to find the best mapping of a given NN for a fixed platform.
This input fixes the number of tiles inside the platform, size of private memory of
tiles and its support for power management.

Stage 1 - Step 1 - Branch & Bound enhanced clustering exploration: The
step 1 of the proposed DSE flow aims at exploring the clustering of NNs. As presented in
Chapter III, the notion of clustering refers to the way NNs are described in the SDF MoC,
and more specifically to the number of actors generated per layer. It corresponds to the
intra-layer parallelism expression. Coarsed-grained clusterings correspond to SDF graphs in

2. The number of features correspond to the number of neurons for dense layers and number of
convolution filters for convolution layers.

138

VI.1. Proposed DSE flow overview

which NN layers are split into limited amount of actors, and consequently limited amount
of channels between actors. On the opposite, fine-grained clusterings correspond to SDF
graphs in which the layers of the NN are split into important amount of actors, and thus
important amount of channels between actors. One must find a good compromise between
intra-layer parallelism expression, which is necessary to accelerate the NN’s processing,
and communication overheads caused by the additional channels. In our case, we use the
Branch & Bound algorithm to optimize the clustering search. While the design space of
clusterings itself is not massive, numerous mappings can be generated for every clustering.
Selecting clusterings is therefore needed to reduce the number of mappings to evaluate.

Stage 1 - Step 2 - Branch & Bound enhanced mapping exploration: For every
considered clustering, a tremendous amount of mappings is possible. Despite the pruning
of lesser clusterings performed in Step 1 , it is also necessary to prune the mapping design
space using an optimization algorithm. For each selected clustering from 1 , 2 uses Branch
& Bound to select mappings in consideration to user preferences and prune the design
space out of less optimized ones. Step 2 is presented in Section VI.2.2.

In Step 2 , when jointly optimizing hardware and software implementation, correctly
sizing tiles private memory is necessary due to their non-negligible influence on energy
properties. We thus introduced a memory size model to predict the size of private memory
(instructions and data) of tiles in regards to the requirements of mappings. This model is
presented in Appendices C. It was built and validated by analyzing the memory needs of
tiles for NN execution. This model is proposed for the MicroBlaze, but could be applied
to any processing core with minimal porting effort.

Stage 2 - Step 3 - Evaluation with simulation-based models After the DSE in
stage 1, selected mappings are passed to the simulation-based modeling flow to perform
highly accurate evaluation of the tested properties. The models used in this step and
their contribution were presented in Chapters IV and V. Once the evaluation performed,
mappings that do not satisfy the constraints specified by the user are eliminated. The
remaining mappings are ranked and returned to the user.

139

Chapter VI – Design space exploration using the proposed timing and energy models

VI.2 DSE using high level pure analytical models

VI.2.1 Proposed clustering optimization approach

As discussed in Section VI.1, an optimized clustering exploration is necessary. It allows
reducing the number of considered clusterings with consequence to greatly reduce the
number of mappings to evaluate, as well as guaranteeing that the most relevant clusterings
are still considered. First we consider that the maximum number of clusters that can
be generated for every layer is Tmax. This assumption is well justified because having a
number of clusters higher than the number of cores mean that they cannot be executed
simultaneously. For this reason, the execution does not benefit from the additional intra-
layer parallelism expression of the higher clustering, but is hindered by the additional
communication channels that are implemented. Despite this first assumption, the number
of clusterings can be further decreased. For example with Tmax = 7, the CNN1 has 245
clustering possibilities with each of them leading to numerous mappings. Reducing the
number of clusterings by pruning less optimized ones through the use of Branch & Bound is
thus imperative in order to save important exploration time and effort. Step 1 is presented
in Section VI.2.1.

To optimize the clustering search process in this work, we use Branch & Bound. The way
we implemented this algorithm to enhance the clustering search is illustrated in Figure VI.2.
To allow comparing clusterings and performing a selection, we introduce the notion of
clustering score. We choose for the clustering score to consider only a timing quantity,
as energy properties are highly dependent on the mapping and platform specifications.
Energy properties will be instead considered and optimized inside the mapping exploration
flow. The clustering score is defined as the sum of the computation time of the actor with
the highest number of neurons (or kernel computation for convolution layers) inside the
clustering with the total communication time of channels read/write inside the clustering.
To account for the amount of intra-layer parallleism expressed from the NN, only one
actor is considered by layer. If all actors were considered, then all clusterings would share
the same computation time, as they all share the same total computation workload: the
computation workload of the considered NN. The communication time of clusterings
depends on the number of channels to implement, which is linked to the number of
actors, and the size of data. The predictions of those delays are done using analytical
models introduced in Chapter IV: the models for computation time of NN layers from
Section IV.2.1 and the model for token production/reading in shared memory model

140

VI.2. DSE using high level pure analytical models

32 1016

IN
(784)

L1
(32)

L2
(16)

OL
(10)

...

16
1016

16

8
10

8

Best score => branch selected

32 32
5

5
16

Selection of next branch

Generation of first clustering

8
10

8

5

5
16

16

16

16

16
10

11

10

1016

Lower score => branch discarded

User defined
settings:

T_max = 7

784×32 32×16 16×10

✖

Branch#1 Branch#2 Branch#3

✅ ✖

Branch#1 Branch#2 Branch#3

✖

...

5

5

5

5

4

4

4

3

3

2

2

2

2

2

2

2

2

1

1

1

1

L1 L2 L3

L1 L2 L3 L1 L2 L3 L1 L2 L3

L1 L2 L3
L1 L2 L3 L1 L2 L3

L1 L2 L3

1

2

Evaluation using analytical model

Branch with best score is selected

Add selected branch to

the list of selected
clusterings

3

4
✖ ✅

Selection of next branch2'

Evaluation using analytical model

Branch with best score is selected

Add selected branch to

the list of selected
clusterings

3'

4'

Selection of next branch 2''

Add final clustering to the list
of selected clusterings and

return the list.

6

Final clustering is reached
(no more evolution possible)5

Lower score => branch discarded

Figure VI.2 – Illustration of the clustering exploration process on the MLP2. The number
inside actors is the number of neurons they contain.

141

Chapter VI – Design space exploration using the proposed timing and energy models

presented in Equation IV.4. The algorithm is presented in Figure VI.2:
— Inside the main procedure, the first clustering is generated, in which every layer is

composed of only 1 actor. On Figure VI.2 this corresponds to 1 .
— Until the last clustering (4) is reached, the next possible branches are generated

and evaluated 2 and 3 . The one with the highest clustering score is selected.
— For every layer in the NN, if the layer can be clustered (i.e. if it is a convolution

or dense layer) and if the current number of clusters for this layer is less than
the maximum number of clusters, then a new branch is created, in which the
number of clusters for this layer is increased by 1. This can be observed for all
branches on the figure.

— If no new branch was found, this means that the last clustering has been reached
4 . If branches were found, the selected clustering is stored in the list of all
selected clusterings, and a new iteration is executed.

— When the last clustering is found (5), the list of all selected clusterings is returned.
Several clusterings are discarded at each branch. The branches are stored, which enables

resuming the execution of the Branch & Bound clustering search to consider additional
clusterings from the remaining ones. The next section explains how an optimized mapping
search is conducted from the selection of clusterings. In Section VI.4, we will evaluate the
contribution of the Branch & Bound algorithm for clustering exploration.

VI.2.2 Proposed mapping optimization approach

Despite the reduction of clusterings from Section VI.2.1, the design space remains large
as numerous mappings are generated for each clustering. Evaluating every one of them
using the simulation-based flow is time-intensive. A major proportion can be discarded as
they offer less optimized timing and power properties. We thus propose in this section a
methodology to allow an early identification and pruning of lesser mappings. As a reminder
from Chapter III mappings are self scheduled for platforms using our MoA, and since NNs
are directed graphs, by always mapping in ascending order, we avoid deadlocks.

To enable the exploration, we must introduce a formulation to encode mappings.
Figure VI.3 provides an example of the formulation we use for a mapping of the CNN1. On
this figure, one clustering of the CNN1 is considered. Possible mappings of layers for this
clustering are described as tables denoted M[l], in which l ∈ {1, 2, ..., L} denotes the layer
number. In these tables, the indexes correspond to the cluster number c ∈ {1, 2, ..., C} and
the values correspond to the tile number t ∈ {1, 2, ..., T} on which the cluster is mapped.

142

VI.2. DSE using high level pure analytical models

c=2

c=2

c=1

c=2

One possible clustering of the CNN1

c=3

c=1
c=1 c=1

l=1
conv

l=2
pool

l=3
den1

l=4
den2

t=1

c=1

l=5
decoder OUTIN

t=2 t=3

c=1 c=2 c=3

t=4

c=1

t=5 t=6

c=1 c=2

t=5 t=6

c=1 c=2

t=7

c=1

Expression of a possible mapping for each layer

Ml=1,conv Ml=2,pool Ml=3,den1 Ml=4,den2 Ml=5,decoder

Actual NN mapping notation

t=1 t=2 t=3

c=1 c=2 c=3

t=4

c=1

t=5 t=6

c=1 c=2

t=5 t=6

c=1 c=2

t=7

c=1

Index: cluster number

Value: tile on which
actor is mapped

l=1

Ml=1,conv Ml=2 Ml=3,den1 Ml=4,den2 Ml=5

Index: layer number

M=

l=2 l=3 l=4 l=5

Figure VI.3 – Example of the mapping formulation used in our DSE flow for a mapping of
CNN1.

As shown at the bottom of the figure, the NN mapping M is a table of the L tables M[l].
It is important to note that all communication channels are mapped on the unique shared
memory, hence they are not considered in the provided formulation.

To prune the design space of lesser mappings, we use the Branch & Bound algorithm
and the analytical models introduced in Chapters IV and V. The analytical models are
used to evaluate the latency, throughput, power and energy of the mappings and perform
their selection. The selection is done by comparing mapping scores, which we define as
the latency multiplied by the energy. The score allows taking into account both timing
and power properties. It can be modified by the user in the code. An illustration of the
mapping search flow is shown in Figure VI.4:

1. Inside the main procedure, the first mapping is generated 1 . In the first mapping,
all actors are mapped on tile 1. If the clustering of the last layer is higher than 1,
then the decoder actor is also added to the mapping.

2. The Branch & Bound-enhanced mapping search then starts. While the last mapping
is not reached, the next possible branches are evaluated and the best one is selected.
(a) Possible next branches from the provided mapping are generated and evalu-

143

Chapter VI – Design space exploration using the proposed timing and energy models

Branch#1

Hidden
Layer

Shared
memory

Channel
IN

Tile#0
Shared
memory

All
channels

...

L1C2

L1C3

L2

L3

Tile#1

L1C1

Hidden
Layer

Shared
memory

Channel
IN

Tile#0
Shared
memory

All
channels

...

L1C1

L1C3

L2

L3

Tile#1

L1C2

Hidden
Layer

Shared
memory

Channel
IN

Tile#0
Shared
memory

All
channels

...

L1C1

L1C2

L1C3

L2

Tile#1

L3

Branch#2 Branch#5

...

Evaluation using pure analytical model

Branch with best score is selected

✖ ✔ ✖

Clustering from previous DSE flow step

L1C2

L1C1

L1C3

L3L2

Hidden
Layer

Shared
memory

Channel
IN

Tile#0

L1C1
Shared
memory

All
channels

...

L1C2

L1C3

L2

L3

Generation of first mapping

Add mapping to
selected mappings list

Add selected branch
mapping to selected

mappings list

Branch#1

Hidden
Layer

Shared
memory

Channel
IN

Tile#0
Shared
memory

All
channels

...

L1C3

L2

L3

Tile#1

L1C1

Branch#2

...

✖ ✔

Selection of next branch

Selection of next branch

Tile#2

L1C2

Hidden
Layer

Shared
memory

Channel
IN

Tile#0
Shared
memory

All
channels

...

L1C3

L2

L3

Tile#1

L1C1

L1C2

Evaluation using pure analytical model

Branch with best score is selected

User defined
score function

User defined
score function

Add selected branch
mapping to selected

mappings list

...

1

2

2a 2b 2c

Figure VI.4 – Mapping exploration flow

144

VI.2. DSE using high level pure analytical models

ated 2 . The branches are generated following two criterias:

i. Intra-layer parallelism leverage: the algorithm checks for every NN layer if
all clusters of this layer are mapped on different tiles. If this is not the case,
then the algorithm increases by 1 the tile number on which one of the cluster
is mapped, within the limit of the maximum number of tiles Tmax. 2a and
2b are examples of intra-layer parallelism optimization induced branches.

ii. Inter-layer parallelism leverage: the algorithm checks if the actors from
different NN layers are mapped on different tiles. If this is not the case, the
algorithm increases by 1 the tile number on which the actors of a layer, unless
it exceeds Tmax. The mapping of layers on different tiles allows ensuring
that they are executed simultaneously, thus leading to an optimized pipeline
execution. 2c is an example of mapping issued from this optimization.

(b) The different branches are then evaluated and ranked according to their score.
The branch with the highest score is added to the selected mapping list (3 and
4).

(c) When no new branch is generated, it means that the optimization process as
finished for one full branch.

3. The list of all mappings is returned.

The discarded branches are stored, and can be re-used when performing additional
iterations of the mapping search in case additional mappings must be considered. Once
stage 1 terminated, the DSE loop is finished. The selected mappings are passed to the
second phase. In stage 2, mappings are re-evaluated using the simulation-based modeling
flow to offer a more accurate assessment of non functional properties. Mappings that do
not meet user defined constraints are discarded, and the remaining mappings are ranked
by their timing and energy properties and returned to the user. In the next section, we
provide a demonstration of the use of the proposed DSE flow on several NNs.

145

Chapter VI – Design space exploration using the proposed timing and energy models

VI.3 Demonstration of the use of the DSE flow

In order to demonstrate the use of the proposed DSE flow, we tested its application on
the MLP1 and two CNNs: the CNN1 and the CNN2, which features the LeNet5 topology,
as shown in Figure III.12. We left the platform dimensions unspecified i.e. we let the DSE
flow jointly optimize the platform in regards to the number of tiles and private memory
size of each tile 3, and the NN’s deployment. We set the maximum number of tiles Tmax = 7.
Figures VI.5, VI.6 and VI.7 give the scores of the highest ranked selected mappings of
the considered NNs, their encoding with respects to Figure VI.3 and their communication
mode (i.e. use of power management). For the MLP1, 181 mappings were selected, for the
CNN1 over 500 and for LeNet5 over 1000.

Results analysis: The results show that the first approach considered when deploying
NN, which aims at leveraging the intra and extra-layer parallelisms at most on the
maximum number of tiles possible, is not systematically the best way to deploy NNs.

3. The memory needs of tiles are predicted using the private memory size model provided in Appen-
dices C

95000 100000 105000 110000 115000
Execution time (cycles)

1.1

1.2

1.3

1.4

1.5

1.6

En
er

gy
 c

on
su

m
pt

io
n

(m
J)

phase 1
phase 2

(a) MLP1 - 50 best mappings

Rank Score Mapping Mode
1 135718 [[1, 2, 3, 4, 5], [1, 2, 3], [1]] P
2 137869 [[1, 2, 3, 4, 5], [1, 2], [1]] P
3 137970 [[1, 2, 3, 4, 5], [3, 5, 6, 7], [1]] I
4 138361 [[1, 2, 3, 4, 5], [5, 4], [1]] P
5 138428 [[1, 2, 3, 4, 5], [4, 6, 7], [1]] I
6 138752 [[1, 2, 3, 4, 5], [3, 2], [1]] P
7 139680 [[1, 2, 3, 4, 5], [5, 6], [1]] P
8 139873 [[1, 2, 3, 4, 5], [4, 4, 5], [1]] P
9 140102 [[1, 2, 3, 4, 5], [3, 3, 4], [1]] P

10 140227 [[1, 2, 3, 4, 5], [2, 2, 3], [1]] P

Mappings with the highest ranks for MLP1

(b) MLP1 - 10 best mappings details

Figure VI.5 – Graph and table showing the highest score mappings found for the MLP1.
In (a), the graph shows the predicted execution time and energy of the 50 highest ranked
mappings based on the phase in the flow. As a reminder, in phase 1, pure analytical models
are used, whereas in phase 2, the simulation-based evaluation flow is used. In (b), the score,
encoding with respects to Figure VI.3 and communication mode of the 10 highest ranked
mappings are provided. For the communication mode, P stands for polling (without power
management), I stands for interrupt (with power management).

146

VI.3. Demonstration of the use of the DSE flow

2.6 2.8 3.0 3.2 3.4
Execution time (cycles) 1e6

35.0

37.5

40.0

42.5

45.0

47.5

50.0

52.5

55.0

En
er

gy
 c

on
su

m
pt

io
n

(m
J)

phase 1
phase 2

(a) CNN1 - 50 best mappings

Rank Score Mapping Mode
1 130871982 [[1, 2, 3, 4, 5], [3], [1, 2, 3, 4, 5, 6, 7], [1]] I
2 131373920 [[1, 2, 3, 4, 5], [3], [1, 2, 3, 4, 5, 6, 7], [1, 1], [1]] I
3 131381322 [[1, 2, 3, 4, 5], [3], [1, 2, 3, 4, 5, 6, 7], [2, 1, 1, 1], [1]] I
4 131747024 [[1, 2, 3, 4, 5], [3], [1, 2, 3, 4, 5, 6, 7], [2, 1, 1, 1, 1], [1]] I
5 131747691 [[1, 2, 3, 4, 5], [3], [1, 2, 3, 4, 5, 6, 7], [1, 1, 1], [1]] I
6 132121902 [[1, 2, 3, 4, 5], [3], [1, 2, 3, 4, 5, 6, 7], [1, 1, 1, 1], [1]] I
7 132496561 [[1, 2, 3, 4, 5], [3], [1, 2, 3, 4, 5, 6, 7], [1, 1, 1, 1, 1], [1]] I
8 146657872 [[1, 2, 3, 4, 5], [4], [1, 2, 3, 4, 5, 6], [2]] I
9 146733092 [[1, 2, 3, 4, 5], [3], [1, 2, 3, 4, 5, 6], [2]] I

10 149423018 [[1, 2, 3, 4, 5], [1], [1, 2, 3, 4, 5], [1]] I

Mappings with the highest ranks for CNN1

(b) CNN1 - 10 best mappings details

Figure VI.6 – Graph (a) and table (b) showing the highest score mappings found for the
CNN1. Refer to the caption of Figure VI.5 for more details.

0.8 0.9 1.0 1.1 1.2
Execution time (cycles) 1e7

110

120

130

140

150

En
er

gy
 c

on
su

m
pt

io
n

(m
J)

phase 1
phase 2

(a) LeNet5 - 50 best mappings

Rank Score Mapping Mode
1 1.613E+09 [[1, 2, 3, 3, 4, 5], [1], [2, 3, 4, 5, 6, 7], [2], [2, 1, 1], [1], [2]] P
2 1.645E+09 [[1, 2, 3, 4, 5, 6], [7], [2, 3, 4, 5], [1], [1, 2], [1], [1]] I
3 1.645E+09 [[1, 2, 3, 4], [2], [3, 7, 5, 6], [1], [1, 2], [1], [1]] I
4 1.65E+09 [[1, 2, 3, 4, 5], [6], [4, 5, 6, 7], [3], [1, 2], [1], [2]] I
5 1.651E+09 [[1, 2, 3, 4, 5], [6], [4, 5, 6, 7], [3], [1, 2], [1], [3]] I
6 1.657E+09 [[1, 2, 3, 4, 5, 6], [7], [2, 3, 4, 5, 6], [3], [1, 2], [1], [2]] I
7 1.72E+09 [[1, 2, 3, 4, 5, 6], [6], [2, 3, 4, 5], [1], [1, 2], [1], [1]] I
8 1.721E+09 [[1, 2, 3, 4], [2], [3, 4, 5, 6], [1], [1, 2], [1], [1]] I
9 1.721E+09 [[1, 2, 3, 4], [2], [3, 4, 5, 6], [1], [1, 2], [1], [1]] I

10 1.722E+09 [[1, 2, 3, 4, 5, 6], [2], [2, 3, 4, 5], [1], [1, 2], [1], [1]] I

Mappings with the highest ranks for LeNet5 CNN

(b) LeNet5 - 10 best mappings details

Figure VI.7 – Graph (a) and table (b) showing the highest score mappings found for the
CNN2. Refer to the caption of Figure VI.5 for more details.

147

Chapter VI – Design space exploration using the proposed timing and energy models

For example, on all the highest ranked mappings of the CNN2 (LeNet5) as shown in
Figure VI.7 (b), the second convolution layers and all the dense layers are never clusterized
at the maximum. The first convolution layer, which has the biggest computation workload
of all layers for this NN, is also not always split into the maximum of actor, as seen in
mappings ranked 3, 4, 5, 8 and 9. On the highest ranked mapping (1), this layer is split
in 6 actors, which is the maximum for this layer, but two of the actors are mapped onto
the same tile. Regarding the streaming aspect, it can be observed that it is leveraged in
most mappings. However, we can observe that the mappings ranked 7 up to 10 use less
than 7 tiles, which shows that favoring the use of as many tiles as possible to support a
streaming execution does not necessarily lead to better mapping score.

The same observations can be done for the MLP1 (Figure VI.5), for which the two
highest ranked mappings only use 5 tiles, and only two of the 10 highest ranked mappings
use 7 tiles. The 10 highest ranked mappings of the MLP1 also do not maximize the use of
clustering: the first layer is split into 5 actors when it could be split into more, and the
second layer is split in either 2, 3 or 4 actors.

The results also show the importance of having a flow that allows modeling the effect
of using power management. For example, we can observe on the results of the LeNet5
application on Figure VI.7 (b) that the highest ranked mapping does not use power
management, while the next 9 highest ranked mappings uses it. For the MLP1, most of
the highest ranked mappings do not use power management. For the CNN1 (Figure VI.6)
on the contrary, all of the 10 highest ranked mappings use power management.

Comparison of score in first phase and second phase: The pure analytical models
tend to be too optimistic and underestimate the overhead in timing and energy due to
shared resource contention. For example in Figure VI.7 (a), the design points as evaluated
by the simulation-based flow (phase 2) are found on the top right of the graph, with
systematically higher execution time and energy consumption than the points evaluated
by the pure analytical models (phase 1). Similar observations can be done on all different
provided graphs. This shows the importance of re-evaluating the mappings using the
simulation-based flow, to conveniently rank them and select the most optimized ones.

Evaluation speed: The pruning phase using pure analytical models (phase 1) takes on
average less than 1 minute for every considered application. This fast pruning step is really
important as it allows quickly disregarding less optimized mappings, which would take

148

VI.4. DSE flow evaluation

much more time to evaluate in the second phase (we evaluate in the following section the
pruning efficiency). The evaluation phase using the simulation-based flow (phase 2) takes
approximately 2 hours and 15 minutes to evaluate 500 different mappings, per application.
The flow thus allows having a fast evaluation of NN mappings onto multi-core platforms
ahead of deployment phase, which is crucial to optimize both the hardware and software
implementation of NN at design phase.

VI.4 DSE flow evaluation

In order to evaluate the contributions and possible limitations of using Branch & Bound
for clustering/mapping search with pure analytical models, we perform different tests:

1. Comparison of Branch & Bound-enhanced and exhaustive clustering search,

2. Comparison of Branch & Bound-enhanced and exhaustive mapping search,

3. Comparison of the use of pure analytical modeling flow and simulation-based
modeling flow to identify optimized mappings with the Branch & Bound algorithm.

VI.4.1 Comparison of Branch & Bound-enhanced and exhaustive
clustering search

Test configuration: To test the gain regarding exploration effort of using Branch
& Bound and verify that it allows reliably selecting high rank clusterings, we run the
exhaustive clustering search, and rank clusterings by score. We then run the Branch &
Bound-enhanced clustering search, and evaluate the ranking of the selected clusterings
using Branch & Bound. This test is done for the three NNs considered for DSE: the MLP1,
the CNN1 and LeNet5. It is done with Tmax = 7.

Results for the MLP1: The total number of clusterings selected using the Branch &
Bound enhanced search is 9 while the total number of clusterings found using exhaustive
search is 49. More than 80 % of the clustering design space is pruned. The clusterings with
the following ranks are found using Branch & Bound, compared to exhaustive: 1, 3, 5,
6, 7, 20, 35 and 42. The highest ranked clustering (1) and five clusterings from the top
7 are found. We observe that the Branch & Bound enhanced search converges diligently
towards high ranked clusterings, as only three clusterings were found outside of the 10
highest ranked ones.

149

Chapter VI – Design space exploration using the proposed timing and energy models

Results for the CNN1: The total number of clusterings selected using the Branch &
Bound enhanced search is 15 while the total number of clusterings is 245, which represents
a reduction of the design space of more than 93 %. Table VI.1 provides the number of
clusterings found in regards to their ranking. For example, in the first column, we can
read the amount of clusterings found by the Branch & Bound algorithm that are part of
the 1 % best mappings found through exhaustive search: 2 out of 3.

Table VI.1 – Number of clusterings selected by the Branch & Bound enhanced search
based on their rank, with Tmax = 7

Clustering part of the … % best < 1% [1%, 5%] [5% , 10%] [10%, 25%] [25%, 50%] >50%
% of clusterings found 66.67% 33.33% 13.33% 4.44% 2.86% 3.00%

Number of clusterings found / total
number of clusterings

2/3 4/12 2/15 2/45 2/70 3/100

CNN1 - Amount of clusterings based on rank found with Tmax=7

It can be noted that an important proportion of highly ranked clusterings are found
and most of the low rank clusterings are eliminated. Regarding the 10 clusterings at highest
rank, the Branch & Bound algorithm managed to find the 1st, 3rd, 5th, 6th and 7th
compared to exhaustive.

Results for the CNN2 (LeNet5): The total number of clusterings selected using the
Branch & Bound enhanced search is 27 while the total number of clusterings is 14 406,
which represents a reduction of the design space of more than 99.8 %. Table VI.2 provides
the number of clusterings found in regards to their ranking. In addition to this, the Branch
& Bound algorithm managed to find the 1st, 3rd, 5th and 6th clustering of the 10 highest
ranked clusterings.

Table VI.2 – Number of clusterings found by the enhanced search with Branch & Bound
based on their rank with Tmax = 7

Clustering part of the … % best < 1% [1%, 5%] [5% , 10%] [10%, 25%] [25%, 50%] >50%
% of clusterings found 6.21% 1.21% 0.00% 0.09% 0.11% 0.07%

Number of clusterings found / total
number of clusterings

9/145 7/580 0/721 2/2160 4/3600 5/7200

LeNet5 - Amount of clusterings based on rank found with Tmax=7

Discussions: The first observation that can be made regarding the enhanced clustering
search flow is that it offers an important pruning of the clustering design space up to more
than 99.8 % for the LeNet5 on 7 tiles. This reduction of the design space is very important,

150

VI.4. DSE flow evaluation

as reducing the number of clusterings will also drastically reduce the amount of mappings
considered, leading to faster evaluation times.

The proposed clustering exploration flow also finds reliably most optimized clusterings.
It can be observed that for all tested configurations, the clustering with the highest rank
is always found. The found clusterings are also in higher proportions in the intervals
corresponding to highest ranks. In this study we considered three NNs with different
number and type of layers, which offers different computation/communication workload.
This allows validating the proposed clustering exploration flow.

VI.4.2 Comparison of Branch & Bound-enhanced and exhaustive
mapping search

Test configuration: We test the gain regarding exploration effort of using Branch &
Bound and verify that it allows reliably selecting high rank mappings. For the clusterings
obtained through the use of the Branch & Bound algorithm, we run the exhaustive mapping
search. The mappings obtained through the exhaustive search are ranked in regards to
their score. Then we run the Branch & Bound enhanced mapping search and evaluate the
number of found mappings and their ranks in the list of all mappings obtained through
exhaustive search. This test is done with the MLP1 and the CNN1, and Tmax = 3 in order
to reduce the important time needed to perform the exhaustive mapping search.

Results with the MLP1: With Tmax = 3, the total number of mappings selected using
the Branch & Bound enhanced search is 40 while the total number of mappings is 1348,
which represents a reduction of the design space of more than 97 %. Table VI.3 provides
the number of mappings found in different rank intervals. For example, in the first column,
we can read the amount of mappings found by the Branch & Bound algorithm that are
part of the 1 % best mappings found through exhaustive search. The Branch & Bound
algorithm allows finding 3 of the 14 mappings in this category, which corresponds to
21.43 %. In addition to this, the Branch & Bound algorithm managed to find the 2nd, and
8th mappings of the 10 highest ranked mappings.

Results with the CNN1: With Tmax = 3, the total number of mappings selected using
the Branch & Bound enhanced search is 71 while the total number of mappings is 109 332,
which represents a reduction of the design space of more than 99.9 %. Table VI.4 provides
the number of mappings found in different rank intervals.

151

Chapter VI – Design space exploration using the proposed timing and energy models

Table VI.3 – Number of mappings found by the Branch & Bound-enhanced search based
on their rank with Tmax = 3. The lower in the rank interval the higher the score of the
mapping. E.g. mappings that belongs in the < 1 % rank range have a highest score than
99 % than the other mappings.

Mapping part of the … % best < 1% [1%, 5%] [5% , 10%] [10%, 25%] [25%, 50%] >50%
% of mappings found 21.43% 1.79% 2.86% 10.48% 8.05% 3.69%

Number of mappings found / total
number of mappings

3/14 1/56 2/70 22/210 28/348 24/650

MLP1 - Amount of mappings based on rank found with Tmax=3

Table VI.4 – Number of mappings found by the enhanced search with Branch & Bound
based on their rank with Tmax = 3

Mapping part of the … % best < 1% [1%, 5%] [5% , 10%] [10%, 25%] [25%, 50%] >50%
% of mappings found 0.55% 0.69% 0.37% 0.00% 0.07% 0.12%

Number of mappings found / total
number of mappings

6/1094 30/4376 20/5470 0/16410 18/27332 68/54650

CNN1 - Amount of mappings based on rank found with Tmax=3

Unfortunately for this NN, the Branch & Bound algorithm couldn’t find any of the 10
best mappings. When evaluating different branches with Branch & Bound, the best one is
selected. But sometimes, a less optimized branch at the time of selection, which is then
discarded, can eventually lead to a better score after several optimizations. In our case, we
only go down one main branch until the mapping cannot be optimized anymore, and then
we stop exploring. Considering additional iterations afterwards by exploring discarded
branches would allow finding better mappings. Despite not finding the 10 best mappings,
it is possible to note that the Branch & Bound enhanced search allows finding a notable
proportion of the most optimized mappings in Table VI.4.

Discussions: The design space for mappings is significantly vaster than the clusterings’
one, as discussed in Section VI.2.2. We can see that the proposed DSE flow allows reducing
the huge design space by more than 97 % in both studied applications. Similarly to what
was observed with clusterings, we can expect the design space pruning to be even more
important with more complex applications and higher numbers of tiles.

The proposed search algorithm allows finding in majority mappings within the 5 % with
highest scores. A non marginal proportion of less optimized mappings is also selected, due
to this algorithm requiring more iterations than the clustering search algorithm to reach
optimized mappings. This is especially true since two optimizations (intra and inter-layer
leverage) are considered simultaneously. One can note that the mapping search does not

152

VI.4. DSE flow evaluation

systematically finds the mapping with the first rank returned by the exhaustive search.
This can be justified by the fact that branches with a lower score at the time of selection
are disregarded, but could actually lead to a better score than the selected branch after
additional optimization steps. This phenomena is amplified by the two optimizations (intra
and inter-layer parallelization) leveraged simultaneously, which lead to more branches
disregarded at each step, and thus a faster convergence time with a smaller number of
selected mappings - but also a higher risk of disregarding important branches. To alleviate
this, and especially if the user constraints are not met, it is possible to perform a new
iteration of the DSE flow. During this new iteration, the remaining branches (i.e. the
pruned out ones) are re-evaluated and the best ones are explored to select additional
mappings. The possibility to find more optimized mappings, including the first ranked
ones, is then higher.

While the best mappings are not guaranteed to be found after the first clustering/map-
ping search, a notable proportion of optimized mappings from the < 5 % range are found,
which should be sufficient to satisfy user defined constraints without requiring a second
execution of the DSE.

VI.4.3 Use of pure analytical models for pruning

To assess the advantages/drawbacks of using pure analytical models to perform the
design space pruning ahead of evaluation using SystemC, we perform the following test:
we run the Branch & Bound mapping exploration process for a limited number of tiles
Tmax = 3 using the simulation-based flow and the pure analytical flow. We then evaluate
the proportion of the mappings that were found by both modeling flows. We also compare
the proportion of mappings found based on rank by the simulation flow and the pure
analytical model against the exhaustive search, as shown in Tables VI.3 and Table VI.4
for the analytical models, and VI.5 and VI.6 for the simulation.

For the MLP1, the analytical flow found 80 mappings, while the simulation flow found
76. For the CNN1, the analytical flow found 142 and the simulation flow found 120. The
analytical modeling flow tend to find slightly more mappings than the simulation-based
flow. For the MLP1, the flows have approximately 72 % mappings in common, and for the
CNN1, they have approximately 57 % mappings in common. Overall, both flows tend to go
for the same branches in the first iterations, before they split and find different mappings.

Regarding the proportion of mappings found based on ranking, we can observe that
they are nearly identical for both flows on both NNs. For the MLP1, we note that the

153

Chapter VI – Design space exploration using the proposed timing and energy models

simulation flow found a bigger proportion of mappings in the range [1%, 5%] (6 mappings
found against 1 for the analytical modeling flow), while for the CNN1, the analytical
modeling flow found a bigger proportion of mappings in the range [1%, 5%] (30 against 12
for the simulation). These observations allow confirming that, despite the low reliability of
the pure analytical models, they can be used confidently to prune the design space.

Table VI.5 – Number of mappings found by the enhanced search with Branch & Bound
using the simulation-based flow with Tmax = 3

Mapping part of the … % best < 1% [1%, 5%] [5% , 10%] [10%, 25%] [25%, 50%] >50%
% of mappings found 14.29% 10.71% 0.00% 9.52% 6.90% 3.69%

Number of mappings found / total
number of mappings

2/14 6/56 0/70 20/210 24/348 24/650

MLP1 - Amount of mappings based on rank found using simulation-based models, Tmax=3

Table VI.6 – Number of mappings found by the enhanced search with Branch & Bound
using the simulation-based flow with Tmax = 3

Mapping part of the … % best < 1% [1%, 5%] [5% , 10%] [10%, 25%] [25%, 50%] >50%
% of mappings found 0.55% 0.27% 0.29% 0.00% 0.09% 0.11%

Number of mappings found / total
number of mappings

6/1094 12/4376 16/5470 0/16410 24/27332 62/54650

CNN1 - Amount of mappings based on rank found using simulation-based models, Tmax=3

VI.5 Conclusion

In this chapter, we proposed an efficient DSE flow to evaluate NN mappings on multi-
core platforms. The flow demonstrates how the models proposed in Chapter IV and
Chapter V can be used to efficiently explore the design space. The results show that the
proposed DSE flow allows to quickly and reliably find mappings with optimized timing
and energy properties. It allows evaluating mappings with and without power management
and see when implementing it is beneficial, as shown for example in Figure VI.7 (b). It is
important to note that the analytical models used for phase 1 are currently an important
limitation. As shown in previous chapters, the pure analytical models bear a prediction
error of almost 30 % on timing and 20 % on power. While they allow finding a notable
proportion of the highest ranked clusterings/mappings obtained through exhaustive search,
more confident models would offer better results. Additional research work is required to
propose analytical models that can confidently prune the design space of lesser mappings
and guarantee finding a bigger proportion of the high-ranked clusterings/mappings.

154

Chapter VII

CONCLUSION

VII.1 Synthesis

This thesis work takes place in a context where the need for deploying NNs on edge
devices is growing. Most edge devices feature multi-core SoCs. The evaluation of NNs
mappings on multi-core platforms is necessary to find configurations that optimize temporal
properties (latency, throughput) as well as power consumption and energy under user-
defined constraints. It needs to be carried out using models that allow rapid yet confident
evaluation early in the design process so as to avoid time-consuming prototyping and
testing phases, which can lead to sub-optimal solutions. These models must offer scalability
in regard to the following aspects, in order to allow efficient exploration of a large solution
space:

(a) the NN complexity in regards to the types (e.g. convolution, dense) and number of
layers and amount of neurons.

(b) the expression and use of intra- and inter-layer parallelism from the NN (cluster-
ing/mapping) - and thus various computation and communication workloads,

(c) the contentions for shared resources such as memories and communication buses,

(d) the dynamic behavior of the system and use of power management techniques
such as clock gating and different communication procedures (polling-based or
interrupt-based).

In Chapters IV and V, we have presented a modeling flow for the prediction of timing
properties and energy of NN deployed on multi-core platforms. The modeling flow is
hybrid: it relies on system level simulation described using the SystemC library and
analytical models characterized through multi-linear regression of measurements. The
calibration of the models through measurements offers a fine-grained modeling of the
effect of the compiler and hardware over the use of estimations for calibration. The use of
analytical models along with system level simulation allows a fast evaluation of interesting

155

mappings while modeling shared resources contentions. The flow was tested against a
real implementation of 54 different mappings of 4 NNs. The modeling flow offers timing
prediction with more than 97 % accuracy and energy prediction with more than 93 %
accuracy. The high accuracy is rendered possible by the separation of computation and
communication using the SDF model of computation and respected by our composable
model of architecture.

The predictions are fast with an average simulation time of 0.23 s for 100 iterations of
simulation - 20 s when considering also the compilation time of the SystemC framework.
The proposed models can be applied to architectures featuring MicroBlaze cores equiped
with ISA extensions to support the use of FPUs and Mult, as well as AXI bus. To support
other components, the characterization methodology presented in this thesis must be
re-done. More specifically to support other processor cores, the base delays (e.g. Dφ and
DΣ) of the computation time model must be re-calibrated by performing a regression of
the execution time of layers with varying size of input and number of neurons. In case
the communication bus IP is changed, then the calibration of the communication time
model must be re-performed, by measuring the base delays used in the model with the
new component. For other types of communication medium, the model’s structure should
be adapted. For the power model, changing components inside the platform also requires
re-performing the characterization phase as documented in Sections V.3.1.1 and V.3.1.2.

In Chapter VI we provide a demonstration of how models of a high level of abstraction
such as the ones presented in this work can be used to optimize the Hardware / Software
implementation of NNs on multi-core platforms. We show that the proposed DSE flow
allows finding mappings that offer optimized timing and energy, while discarding less
optimized solutions to guarantee fast exploration time, due to Branch & Bound. Our
approach allows determining when the use of power management should be considered on
the platform to optimize timing properties and energy. The proposed modeling and DSE
flows can be used for two distinct objectives:

1. Evaluate and find optimized NN mappings on a fixed multi-core platform.
2. Jointly optimize multi-core platforms’ dimensions (number of cores, private memory

sizes) and NN deployments.
The work presented in this thesis provides the following answers to the identified

research challenges:
1. How to provide fast yet accurate evaluation early in design phases of timing and

energy properties for streaming NNs deployments onto multi-core platforms?

156

→ The proposed methodology allows obtaining fast yet accurate timing and power
models to evaluate NN deployments on multi-core platforms early in design
phase. This is rendered possible by:
— Analytical formulas for both timing and power models, which allows offering

a fast evaluation time.
— Characterization through measurements for both models to offer accurate

prediction, thanks to the fine-grained analysis of the compiler’s and hardware
effects on non functional properties.

— Simulation to model the shared resources.
— Strict separation of computation and communication phases using the SDF

MoC, and supported by our MoA.

2. Is the evaluation of possible solutions through a model-based approach relevant
against rapid prototyping approaches?
→ The proposed modeling flow can evaluate a NN mapping (without requiring the

NN to be trained) in 20 s with high accuracy. Under the assumption that the
evaluation of NN mappings using implementation and testing takes approxi-
mately 2 minutes, which is the time required by our automatized measurement
infrastructure 1. In that case, the proposed modeling flow is 6 times faster than
the rapid prototyping approach. For the evaluation of 1000 mappings, the models
would take approximately 5 hours and 30 minutes while the rapid prototyping
approach would take approximately 28 hours. It is also worth remembering that
the number of mappings evaluated in a single loop of the proposed DSE flow
(which disregards a large part of the less optimized design space) exceeds 1000
mappings. High level models are thus a necessity to explore the design space of
NN deployments on multi-core platforms.

3. Is a model-based approach suited for early, fast and confident DSE of streaming
NNs deployments on multi-core platforms?
→ We demonstrate how such a DSE flow can be setup using Branch & Bound

to rapidly find most optimized clusterings and mappings, while discarding less
promising branches. We use high level analytical models due to their very high
evaluation speed. They are then complemented by our simulation-based flow for

1. Note: In this duration, we only consider the time to compile the application’s C code for MicroBlaze,
program the FPGA, program the MicroBlaze cores, run the application and perform the timing and
power measurements. It excludes the training of the NN, generation of the FPGA design bitstream and
generation of the BSP, required libraries and NN inference source files in C for MicroBlaze cores.

157

confident assessment and ranking of selected mappings. The list of mappings
sorted by rank is then provided to the user. The flow offers the possibility to
automatically generate C code needed to infer the mappings selected by the
user.

VII.2 Identified limitations

We identified the following limitations to our flow:

1. We note an influence of the communication rate on power and energy prediction
error when it becomes important. The maximum prediction error is 7 % for a
mapping in which tiles are 70 % of the time in communication. This error remains
relatively low.

2. On single-core platforms with important private memory allocated (1024 kB and
2048 kB), the modeling flow has high prediction error (> 10 %). It shows that the
assumption we made that dynamic power consumption does not depend on private
memory size is invalid in this situation. On other tested platforms featuring 5 and
7 tiles including one tile featuring 1024 kB, the prediction error was however low.

3. The demonstration in Chapter VI is done with the pure analytical models from
Chapters IV and V. However additional work should be done on these models to
render them more efficient for the DSE process.

VII.3 Perspectives

In this thesis, we propose and validate a modeling approach for the prediction and opti-
mization of NN mappings on multi-core platforms. We identify several research perspectives
that could enhance the proposed methodology:

Neural Architectural Search (NAS): One major prospect for our prediction and
optimization flow would be to integrate NAS. NAS aims at exploring the topology of the
input NN, i.e. the number of layers, number of neurons per layer, and possibly the use of
compression techniques (see Figure II.1). This is usually done under QoS constraints as
altering the NN’s architecture can lead to loss of classification accuracy. Recent studies [29,
19, 39] propose to lead the NAS process simultaneously to the DSE for NN executed

158

on embedded systems In these approaches, NAS is led with regards to measured timing
properties and energy on a real platform. In comparison to these approaches, using our
modeling flow instead of rapid prototyping on real target would highly reduce search effort.
Especially since our flow does not require the NN to be trained to evaluate its timing and
energy properties.

The DSE flow proposed in this thesis could be used with an input NN with known
classification accuracy. It could improve the NN’s architecture and evaluate the effect
on resource use, timing and energy. After full exploration of the flow, the best mapping
found with the starting NN would be compared with the best mapping with the NN
updated through NAS. The updated NN could be trained using automatized deep learning
flows, such as TensorFlow Lite [43, 44], Apache TVM [48] or N2D2 [50]. This would allow
providing the difference in classification accuracy. Our flow could then generate the C
source code corresponding to the mapping selected by the user.

External memories (DDR): Another perspective could be to extend this work to
architectures with external memories such as DDR, along with caches and/or DMAs.
When considering the use of such memories, the focus of the optimization approach is
however different: since external memory accesses bear a high timing and energy cost, the
optimization process focuses mainly on reducing and optimizing those accesses. The focus
is then less on finding a good compromise between the leverage of intra-layer parallelism
(clustering) and communications in internal shared memories. Fine-grained optimizations
optimizations and compromises offered by our flow bear a reduced effect on timing/power
optimizations compared to optimizing external memory accesses, while they can lead to
important timing and power savings on devices when not using external memory.

Variability due to data dependent paths : In embedded systems, variability in
execution time and energy can be observed due to the hardware architecture and data
dependent paths. For example, certain ISA optimize multiplications in trivial cases, e.g.
one of the term is 1 or 0. In that case, some multiplication operations are faster to execute
than others, which can have important repercussions on non functional properties.

One of the original hypothesis formulated at the start of this thesis work was that
variability in execution time and energy for NNs on multi-core platforms was not marginal
We however observed marginal variability of execution time and energy in our experiments
focused on the platform prototype.

159

When performing the characterization of our timing and power models on other multi-
core platforms, engineers might observe non-marginal variability. It can be caused by
having different data dependent paths in the targeted hardware. In such case, the proposed
methodology must be extended. To deal with variability, approaches relying on Statistical
Model Checking (SMC) and probabilistic models are commonly used. A possible prospect
would be to identify cases in which data variability is observed and discuss the application
and performance of such modeling techniques.

VII.4 Ouverture

In many fields, NNs are now helping to solve problems that were unthinkable only a
decade ago. For example, hearing aids are now implementing NNs, which can recognize
environments (e.g.: work place, restaurant, concert) in order to adapt the frequency
treatment in real time [102]. NNs can help radiologists detect different types of cancer with
high confidence [103]. Regarding agriculture, NNs can be used to keep track of livestock and
detect abnormal behaviors [96] or to help enhance sowing, watering and harvesting [104].
In the IoT field, there are many applications [3]. In the field of transportation, NNs are
used for semantic segmentation [39], and automobile systems now integrate NNs into
Advanced Driving Assistance Systems (ADAS) [105, 106]. The flow proposed in this work
can enable solutions to be found quickly and confidentially for deploying NNs for this type
of application, satisfying their time and energy constraints.

160

LIST OF PUBLICATIONS

Lectures in international conferences:
— [107] Quentin Dariol, Sébastien Le Nours, Domenik Helms, Ralf Stemmer, Sébastien Pillement,

and Kim Grüttner. « Fast Yet Accurate Timing and Power Prediction of Artificial Neural Networks
Deployed on Clock-Gated Multi-Core Platforms ». Conference: RAPIDO’23: Rapid Simulation
and Performance Evaluation for Design Optimization: Methods and Tools. Toulouse, France,
Association for Computing Machinery, January 2023, pp. 79–86. DOI: 10.1145/3579170.3579263.

— [108] Quentin Dariol, Sébastien Le Nours, Sébastien Pillement, Ralf Stemmer, Domenik Helms,
and Kim Grüttner. « A Hybrid Performance Prediction Approach for Fully-Connected Artificial
Neural Networks on Multi-core Platforms ». In: International Conference on Embedded Computer
Systems: Architectures, Modeling, and Simulation (SAMOS 2022). Ed. by Alex Orailoglu, Marc
Reichenbach, and Matthias Jung. Springer International Publishing, 2022, pp. 250–263. DOI:
10.1007/978-3-031-15074-6_16

Communications in national colloquium:
— [109] Quentin Dariol, Sébastien Le Nours, Sébastien Pillement, Ralf Stemmer, Domenik Helms,

and Kim Grüttner. « Early Performance and Energy Prediction of Neural Networks Deployed on
Multi-Core Platforms ». In: 29° Colloque sur le traitement du signal et des images. 2023-1144.
Grenoble: GRETSI - Groupe de Recherche en Traitement du Signal et des Images, Aug. 2023, p.
309–312. Available at: https://gretsi.fr/data/colloque/pdf/2023_dariol1144.pdf.

— [110] Quentin Dariol, Sébastien Le Nours, Sébastien Pillement, Ralf Stemmer, Domenik Helms
and Kim Grüttner. «Hybrid Performance Prediction Models for Fully-Connected Neural Networks
on MPSoC». In: 16ème Colloque National du GDR SOC2. June 2022. Available at: https:
//hal.science/hal-03758026

— [111] Quentin Dariol, Sébastien Le Nours, Sébastien Pillement, Ralf Stemmer, Kim Grüttner,
and Domenik Helms. « A Measurement-based Performance Evaluation Framework for Neural
Networks on MPSoCs ». In: 15ème Colloque National du GDR SOC2. June 2021. Available at:
https://hal.archives-ouvertes.fr/hal-03248152

Technical report:
— [112] Quentin Dariol, Sebastien Le Nours, Sebastien Pillement, Kim Grüttner, Domenik Helms, and

Ralf Stemmer. « Setup of an Experimental Framework for Performance Modeling and Prediction
of Embedded Multicore AI Architectures ». Tech. rep. Nantes University, IETR UMR CNRS
6164, France and Deutsches Zentrum für Luft und Raumfahrt (DLR), Germany, 2022. Available
at: https://hal.science/hal-03546804

Open source Git repository: https://gitlab.univ-nantes.fr/lenours-s/pssim4ai

161

10.1145/3579170.3579263
10.1007/978-3-031-15074-6_16
https://gretsi.fr/data/colloque/pdf/2023_dariol1144.pdf
https://hal.science/hal-03758026
https://hal.science/hal-03758026
https://hal.archives-ouvertes.fr/hal-03248152
https://hal.science/hal-03546804
https://gitlab.univ-nantes.fr/lenours-s/pssim4ai

BIBLIOGRAPHY

[1] Nestor Maslej, Loredana Fattorini, Erik Brynjolfsson, John Etchemendy, Katrina Ligett, Terah
Lyons, James Manyika, Helen Ngo, Juan Carlos Niebles, Vanessa Parli, Yoav Shoham, Russell
Wald, Jack Clark, and Raymond Perraul. The AI Index 2023 Annual Report. Tech. rep. Stanford
Institute for Human-Centered Artificial Intelligence (HAI), Apr. 2022. url: https://aiindex.
stanford.edu/wp-content/uploads/2023/04/HAI_AI-Index-Report_2023.pdf.

[2] John McCarthy, Marvin Minsky, Nathaniel Rochester, and Claude Shannon. Dartmouth Summer
Research Project on Artificial Intelligence. Last accessed: 11.10.2023. 1956. url: https://home.
dartmouth.edu/about/artificial-intelligence-ai-coined-dartmouth.

[3] Nick G. How Many IoT Devices Are There in 2023? Last accessed: 27.09.2023. Aug. 2023. url:
https://techjury.net/blog/how-many-iot-devices-are-there/.

[4] Yundong Zhang, Naveen Suda, Liangzhen Lai, and Vikas Chandra. Hello Edge: Keyword Spotting
on Microcontrollers. 2018. arXiv: 1711.07128 [cs.SD].

[5] Warren S. McCulloch and Walter Pitts. « A logical calculus of the ideas immanent in nervous
activity ». In: The bulletin of mathematical biophysic 5 (Dec. 1943), pp. 115–133.

[6] Frank Rosenblatt. « The perceptron: a probabilistic model for information storage and organization
in the brain. » In: Psychological review 65 6 (1958), pp. 386–408.

[7] Frank Rosenblatt. Principles of Neurodynamics Perceptrons and the Theory of Brain Mechanisms.
Washington DC: Spartan Books, 1962.

[8] Ethem Alpaydin. Introduction to machine learning. MIT press, 2020.

[9] D. Rumelhart, G. Hinton, and R. Williams. « Learning representations by back-propagating
errors ». In: Nature 323 (1986), pp. 533–536. doi: https://doi.org/10.1038/323533a0.

[10] Yann Lecun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L.D.
Jackel. « Backpropagation applied to handwritten zip code recognition ». English (US). In: Neural
Computation 1.4 (1989), pp. 541–551. issn: 0899-7667.

[11] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. « Gradient-based learning applied to document
recognition ». In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324. doi: 10.1109/5.726791.

[12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. « ImageNet Classification with Deep
Convolutional Neural Networks ». In: Advances in Neural Information Processing Systems. Ed. by
F. Pereira, C.J. Burges, L. Bottou, and K.Q. Weinberger. Vol. 25. Curran Associates, Inc., 2012.

[13] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. « Imagenet large scale visual
recognition challenge ». In: International journal of computer vision 115 (2015), pp. 211–252.

163

https://aiindex.stanford.edu/wp-content/uploads/2023/04/HAI_AI-Index-Report_2023.pdf
https://aiindex.stanford.edu/wp-content/uploads/2023/04/HAI_AI-Index-Report_2023.pdf
https://home.dartmouth.edu/about/artificial-intelligence-ai-coined-dartmouth
https://home.dartmouth.edu/about/artificial-intelligence-ai-coined-dartmouth
https://techjury.net/blog/how-many-iot-devices-are-there/
https://arxiv.org/abs/1711.07128
https://doi.org/https://doi.org/10.1038/323533a0
https://doi.org/10.1109/5.726791

[14] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. « ImageNet: A large-scale
hierarchical image database ». In: 2009 IEEE Conference on Computer Vision and Pattern
Recognition. 2009, pp. 248–255. doi: 10.1109/CVPR.2009.5206848.

[15] Mohammad Motamedi, Philipp Gysel, Venkatesh Akella, and Soheil Ghiasi. « Design Space
Exploration of FPGA-based Deep Convolutional Neural Networks ». In: 2016 21st Asia and South
Pacific Design Automation Conference (ASP-DAC) (Jan. 2016), pp. 575–580. issn: 2153-697X.
doi: 10.1109/ASPDAC.2016.7428073.

[16] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. « Edge Computing: Vision and
Challenges ». In: IEEE Internet of Things Journal 3.5 (2016), pp. 637–646. doi: 10.1109/JIOT.
2016.2579198.

[17] Nilupulee A. Gunathilake, William J. Buchanan, and Rameez Asif. « Next Generation Lightweight
Cryptography for Smart IoT Devices: : Implementation, Challenges and Applications ». In: 2019
IEEE 5th World Forum on Internet of Things (WF-IoT). 2019, pp. 707–710. doi: 10.1109/WF-
IoT.2019.8767250.

[18] Muhammad Habib ur Rehman, Ibrar Yaqoob, Khaled Salah, Muhammad Imran, Prem Prakash
Jayaraman, and Charith Perera. « The role of big data analytics in industrial Internet of Things ».
In: Future Generation Computer Systems 99 (2019), pp. 247–259. issn: 0167-739X. doi: https:
//doi.org/10.1016/j.future.2019.04.020.

[19] Ioannis Galanis, Iraklis Anagnostopoulos, Chinh Nguyen, Guillermo Bares, and Dona Burkard.
« Inference and Energy Efficient Design of Deep Neural Networks for Embedded Devices ». In:
2020 IEEE Computer Society Annual Symposium on VLSI (ISVLSI) (July 2020), pp. 36–41. issn:
2159-3469. doi: 10.1109/ISVLSI49217.2020.00017.

[20] Ourania Spantidi, Ioannis Galanis, and Iraklis Anagnostopoulos. « Frequency-based Power Effi-
ciency Improvement of CNNs on Heterogeneous IoT Computing Systems ». In: 2020 IEEE 6th
World Forum on Internet of Things (WF-IoT). 2020, pp. 1–6. doi: 10.1109/WF-IoT48130.2020.
9221252.

[21] Yaman Umuroglu, Nicholas J. Fraser, Giulio Gambardella, Michaela Blott, Philip Leong, Magnus
Jahre, and Kees Vissers. « FINN: A Framework for Fast, Scalable Binarized Neural Network Infer-
ence ». In: Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays (2017).

[22] Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, Joel Emer,
and Vivienne Sze. « Eyeriss v2: A Flexible Accelerator for Emerging Deep Neural Networks on
Mobile Devices ». In: IEEE Journal on Emerging and Selected Topics in Circuits and Systems 9.2
(July 2018), pp. 292–308. doi: 10.1109/JETCAS.2019.2910232. arXiv: 1807.07928 [cs.DC].

[23] Salita Sombatsiri, Jaehoon Yu, Masanori Hashimoto, and Yoshinori Takeuchi. « A Design Space
Exploration Method of SoC Architecture for CNN-based AI Platform ». In: SASIMI 2019
Proceedings (2019).

164

https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/ASPDAC.2016.7428073
https://doi.org/10.1109/JIOT.2016.2579198
https://doi.org/10.1109/JIOT.2016.2579198
https://doi.org/10.1109/WF-IoT.2019.8767250
https://doi.org/10.1109/WF-IoT.2019.8767250
https://doi.org/https://doi.org/10.1016/j.future.2019.04.020
https://doi.org/https://doi.org/10.1016/j.future.2019.04.020
https://doi.org/10.1109/ISVLSI49217.2020.00017
https://doi.org/10.1109/WF-IoT48130.2020.9221252
https://doi.org/10.1109/WF-IoT48130.2020.9221252
https://doi.org/10.1109/JETCAS.2019.2910232
https://arxiv.org/abs/1807.07928

[24] Angelos Kyriakos, Elissaios-Alexios Papatheofanous, Bezaitis Charalampos, Evangelos Petrong-
onas, Dimitrios Soudris, and Dionysios Reisis. « Design and Performance Comparison of CNN
Accelerators Based on the Intel Movidius Myriad2 SoC and FPGA Embedded Prototype ». In: 2019
International Conference on Control, Artificial Intelligence, Robotics Optimization (ICCAIRO).
2019.

[25] Mohammad Hosseinabady and Jose Luis Nunez-Yanez. « Energy optimization of FPGA-based
stream-oriented computing with power gating ». In: 2015 25th International Conference on Field
Programmable Logic and Applications (FPL). 2015.

[26] Foivos Tsimpourlas, Lazaros Papadopoulos, Anastasios Bartsokas, and Dimitrios Soudris. « A
Design Space Exploration Framework for Convolutional Neural Networks Implemented on Edge
Devices ». In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
(2018).

[27] Adrian Osterwind, Julian Droste-Rehling, Manoj Rohit Vemparala, and Domenik Helms. « Hard-
ware Execution Time Prediction for Neural Network Layers ». In: ITEM 2022. Machine Learning
and Principles and Practice of Knowledge Discovery in Databases. Springer Nature Switzerland,
2022, pp. 582–593. doi: 10.1007/978- 3- 031- 23618- 1_39. url: https://elib.dlr.de/
188922/.

[28] Alfredo Canziani, Adam Paszke, and Eugenio Culurciello. An Analysis of Deep Neural Network
Models for Practical Applications. 2017. arXiv: 1605.07678 [cs.CV].

[29] Lennart Heim, Andreas Biri, Zhongnan Qu, and Lothar Thiele. « Measuring what Really Matters:
Optimizing Neural Networks for TinyML ». In: arXiv preprint, arXiv:2104.10645 (Apr. 2021).
arXiv: 2104.10645.

[30] Delia Velasco-Montero, Jorge Fernandez-Berni, Ricardo Carmona-Galan, and Angel Rodriguez-
Vazquez. « PreVIous: A Methodology for Prediction of Visual Inference Performance on IoT
Devices ». In: IEEE Internet of Things Journal (2020), pp. 1–1. doi: 10.1109/jiot.2020.
2981684.

[31] Thomas Garbay, Petr Dobias, Wilfried Dron, Pedro Lusich, Imane Khalis, Andrea Pinna, Khalil
Hachicha, and Bertrand Granado. « CNN Inference Costs Estimation on Microcontrollers: the EST
Primitive-based Model ». In: 2021 28th IEEE International Conference on Electronics, Circuits,
and Systems (ICECS). 2021, pp. 1–5. doi: 10.1109/ICECS53924.2021.9665540.

[32] Xiaotian Guo, Andy D. Pimentel, and Todor Stefanov. « Automated Exploration and Implemen-
tation of Distributed CNN Inference at the Edge ». In: IEEE Internet of Things Journal (2023),
pp. 1–1. doi: 10.1109/JIOT.2023.3237572.

[33] Jan Rabaey. Low Power Design Essentials. Ed. by Springer. Springer New York, NY, 2009.

[34] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. « Neural Architecture Search: A Survey ».
In: Journal of Machine Learning Research (JMLR) 20.1 (Jan. 2019), pp. 1997–2017. issn: 1532-
4435. url: https://arxiv.org/abs/1808.05377.

165

https://doi.org/10.1007/978-3-031-23618-1_39
https://elib.dlr.de/188922/
https://elib.dlr.de/188922/
https://arxiv.org/abs/1605.07678
https://arxiv.org/abs/2104.10645
https://doi.org/10.1109/jiot.2020.2981684
https://doi.org/10.1109/jiot.2020.2981684
https://doi.org/10.1109/ICECS53924.2021.9665540
https://doi.org/10.1109/JIOT.2023.3237572
https://arxiv.org/abs/1808.05377

[35] Tailin Liang, John Glossner, Lei Wang, Shaobo Shi, and Xiaotong Zhang. « Pruning and Quan-
tization for Deep Neural Network Acceleration: A survey ». In: Neurocomputing 461 (2021),
pp. 370–403. issn: 0925-2312. doi: https://doi.org/10.1016/j.neucom.2021.07.045.

[36] Zhuo Li, Hengyi Li, and Lin Meng. « Model Compression for Deep Neural Networks: A Survey ».
In: Computers 12.3 (2023). issn: 2073-431X. doi: 10.3390/computers12030060.

[37] Florent Crozet, Stéphane Mancini, and Marina Nicolas. « Compression par pseudo-randomisation
partielle des réseaux de neurones convolutifs sous fortes contraintes mémoire ». In: 28° Colloque
sur le traitement du signal et des images. 001-054. Nancy, Sept. 2022, p. 217–220. url: https:
//gretsi.fr/data/colloque/pdf/2022_crozet932.pdf.

[38] Manoj Rohit Vemparala, Nael Fasfous, Pierpaolo Mori, Saptarshi Mitra, Sreetama Sarkar,
Alexander Frickenstein, Lukas Frickenstein, Domenik Helms, Naveen Shankar Nagaraja, Claudio
Passerone, and Walter Stechele. « Accelerating and Pruning CNNs for Semantic Segmentation on
FPGA ». In: Design Automation Conferene 2022. Vol. 59. Proceedings of the ACM/EDAC/IEEE
Design Automation Conference. IEEE Press, July 2022. url: https://elib.dlr.de/185416/.

[39] Agathe Archet, François Orieux, Nicolas Ventroux, and Nicolas Gac. « Exploration d’architectures
de réseaux de neurones pour la segmentation sémantique d’images aériennes ». In: 29eme Colloque
sur le traitement du signal et des images. 2023-1158. Grenoble: GRETSI - Groupe de Recherche
en Traitement du Signal et des Images, Aug. 2023, p. 361–364. url: https://gretsi.fr/data/
colloque/pdf/2023_archet1158.pdf.

[40] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An Introduction to Statistical
Learning. Vol. 103. Springer Texts in Statistics 1. Part of the book series: Springer Texts in
Statistics (STS, volume 103). Springer New York, NY, June 2013. isbn: 978-1-4614-7138-7. doi:
https://doi.org/10.1007/978-1-4614-7138-7.

[41] Muhammad Mudussir Ayub and Franz Kreupl. « A Modular and Distributed Setup for Power and
Performance Analysis of Multi-Processor System-on-Chip at Electronic System Level ». In: 2020
IEEE 39th International Performance Computing and Communications Conference (IPCCC).
2020, pp. 1–8. doi: 10.1109/IPCCC50635.2020.9391516.

[42] Paul Pop, Petru Eles, and Zebo Peng. « System-Level Design and Modeling ». In: Analysis and
Synthesis of Distributed Real-Time Embedded Systems. Boston, MA: Springer US, 2004, pp. 15–40.
isbn: 978-1-4020-2873-1. doi: 10.1007/978-1-4020-2873-1_2.

[43] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg,
Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan,
Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. « TensorFlow: A System for
Large-Scale Machine Learning ». In: 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16). 2016, pp. 265–283.

166

https://doi.org/https://doi.org/10.1016/j.neucom.2021.07.045
https://doi.org/10.3390/computers12030060
https://gretsi.fr/data/colloque/pdf/2022_crozet932.pdf
https://gretsi.fr/data/colloque/pdf/2022_crozet932.pdf
https://elib.dlr.de/185416/
https://gretsi.fr/data/colloque/pdf/2023_archet1158.pdf
https://gretsi.fr/data/colloque/pdf/2023_archet1158.pdf
https://doi.org/https://doi.org/10.1007/978-1-4614-7138-7
https://doi.org/10.1109/IPCCC50635.2020.9391516
https://doi.org/10.1007/978-1-4020-2873-1_2

[44] Robert David, Jared Duke, Advait Jain, Vijay Janapa Reddi, Nat Jeffries, Jian Li, Nick Kreeger,
Ian Nappier, Meghna Natraj, Shlomi Regev, Rocky Rhodes, Tiezhen Wang, and Pete Warden.
« TensorFlow Lite Micro: Embedded Machine Learning on TinyML Systems ». In: Proceedings of
the 4 th MLSys Conference. San Jose, CA, USA, 2021. arXiv: 2010.08678 [cs.LG].

[45] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf,
Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. « PyTorch: An Imperative Style, High-
Performance Deep Learning Library ». In: Advances in Neural Information Processing Systems
32. Curran Associates, Inc., 2019, pp. 8024–8035.

[46] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick,
Sergio Guadarrama, and Trevor Darrell. « Caffe: Convolutional Architecture for Fast Feature
Embedding ». In: Proceedings of the 22nd ACM International Conference on Multimedia. MM
’14. Orlando, Florida, USA: Association for Computing Machinery, 2014, pp. 675–678. isbn:
9781450330633. doi: 10.1145/2647868.2654889.

[47] Francois Chollet et al. Keras. Last accessed: 10.10.2023, commit: a108358. 2015. url: https:
//github.com/fchollet/keras.

[48] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen Shen, Meghan
Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy.
« TVM: An Automated End-to-End Optimizing Compiler for Deep Learning ». In: 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 18). Carlsbad, CA: USENIX
Association, Oct. 2018, pp. 578–594. isbn: 978-1-939133-08-3.

[49] V. V. Zunin. « Intel OpenVINO Toolkit for Computer Vision: Object Detection and Semantic
Segmentation ». In: 2021 International Russian Automation Conference (RusAutoCon). 2021,
pp. 847–851. doi: 10.1109/RusAutoCon52004.2021.9537452.

[50] CEA-LIST. Neural Network Design & Deployment (N2D2). N2D2 is an open source CAD
framework for Deep Neural Network simulation and full DNN-based applications building. Last
accessed: 10.10.2023, 2019. url: https://github.com/CEA-LIST/N2D2.

[51] Stylianos I. Venieris and Christos-Savvas Bouganis. « fpgaConvNet: Mapping Regular and Irregular
Convolutional Neural Networks on FPGAs ». In: IEEE Transactions on Neural Networks and
Learning Systems (2019).

[52] E.A. Lee and D.G. Messerschmitt. « Synchronous data flow ». In: Proceedings of the IEEE 75.9
(1987), pp. 1235–1245. doi: 10.1109/PROC.1987.13876.

[53] Stylianos Venieris and Christos Bouganis. « Latency-driven design for FPGA-based convolutional
neural networks ». In: 27th International Conference on Field Programmable Logic and Applications
(FPL). Sept. 2017, pp. 1–8. doi: 10.23919/FPL.2017.8056828.

167

https://arxiv.org/abs/2010.08678
https://doi.org/10.1145/2647868.2654889
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://doi.org/10.1109/RusAutoCon52004.2021.9537452
https://github.com/CEA-LIST/N2D2
https://doi.org/10.1109/PROC.1987.13876
https://doi.org/10.23919/FPL.2017.8056828

[54] Angshuman Parashar, Priyanka Raina, Yakun Sophia Shao, Yu-Hsin Chen, Victor A. Ying,
Anurag Mukkara, Rangharajan Venkatesan, Brucek Khailany, Stephen W. Keckler, and Joel
Emer. « Timeloop: A Systematic Approach to DNN Accelerator Evaluation ». In: 2019 IEEE
International Symposium on Performance Analysis of Systems and Software (ISPASS). 2019,
pp. 304–315. doi: 10.1109/ISPASS.2019.00042.

[55] Erqian Tang, Svetlana Minakova, and Todor Stefanov. « Energy-Efficient and High-Throughput
CNN Inference on Embedded CPUs-GPUs MPSoCs ». In: Embedded Computer Systems: Architec-
tures, Modeling, and Simulation. Ed. by Alex Orailoglu, Matthias Jung, and Marc Reichenbach.
Cham: Springer International Publishing, 2022, pp. 127–143. isbn: 978-3-031-04580-6.

[56] Jonas Ney, Dominik Loroch, Vladimir Rybalkin, Nico Weber, Jens Krüger, and Norbert Wehn.
« HALF: Holistic Auto Machine Learning for FPGAs ». In: 2021 31st International Conference on
Field-Programmable Logic and Applications (FPL). 2021, pp. 363–368. doi: 10.1109/FPL53798.
2021.00069.

[57] Liu Ke, Xin He, and Xuan Zhang. « NNest: Early-Stage Design Space Exploration Tool for Neural
Network Inference Accelerators ». In: Proceedings of the International Symposium on Low Power
Electronics and Design. ISLPED ’18. New York, NY, USA: Association for Computing Machinery,
2018. doi: 10.1145/3218603.3218647.

[58] Hyoukjun Kwon, Prasanth Chatarasi, Vivek Sarkar, Tushar Krishna, Michael Pellauer, and
Angshuman Parashar. « MAESTRO: A Data-Centric Approach to Understand Reuse, Performance,
and Hardware Cost of DNN Mappings ». In: IEEE Micro 40.3 (2020), pp. 20–29. doi: 10.1109/
MM.2020.2985963. url: https://maestro.ece.gatech.edu/.

[59] Thomas Garbay. « Zip-CNN ». Thèse de doctorat dirigée par Granado, BertrandHachicha, Khalil et
Pinna, Andrea Sciences et technologies de l’information et de la communication Sorbonne université
2023. PhD thesis. Sorbonne Université, 2023. url: http://www.theses.fr/2023SORUS210.

[60] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. « Deep Residual Learning for Image
Recognition ». In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
2016, pp. 770–778. doi: 10.1109/CVPR.2016.90.

[61] Jooyeon Lee, Junsang Park, Seunghyun Lee, and Jaeha Kung. « Implication of Optimizing
NPU Dataflows on Neural Architecture Search for Mobile Devices ». In: ACM TODAES -
Transactions on Design Automation of Electronic Systems 27.5 (June 2022). issn: 1084-4309. doi:
10.1145/3513085.

[62] Yi-Che Lee, Ting-Shuo Hsu, Chun-Tse Chen, Jing-Jia Liou, and Juin-Ming Lu. « NNSim: A Fast
and Accurate SystemC/TLM Simulator for Deep Convolutional Neural Network Accelerators ».
In: 2019 International Symposium on VLSI Design, Automation and Test (VLSI-DAT), Hsinchu,
Taiwan. Hsinchu, Taiwan: IEEE, 2019, pp. 1–4. isbn: 978-1-7281-0656-4. doi: 10.1109/VLSI-
DAT.2019.8741950.

[63] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. « Eyeriss: A Spatial Architecture for Energy-Efficient
Dataflow for Convolutional Neural Networks ». In: 2016 ACM/IEEE 43rd Annual International
Symposium on Computer Architecture (ISCA) (2016).

168

https://doi.org/10.1109/ISPASS.2019.00042
https://doi.org/10.1109/FPL53798.2021.00069
https://doi.org/10.1109/FPL53798.2021.00069
https://doi.org/10.1145/3218603.3218647
https://doi.org/10.1109/MM.2020.2985963
https://doi.org/10.1109/MM.2020.2985963
https://maestro.ece.gatech.edu/
http://www.theses.fr/2023SORUS210
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1145/3513085
https://doi.org/10.1109/VLSI-DAT.2019.8741950
https://doi.org/10.1109/VLSI-DAT.2019.8741950

[64] Gilles Kahn. « The semantics of a simple language for parallel programming ». In: Information
processing 74.471-475 (1974), pp. 15–28.

[65] Salita Sombatsiri, Yoshinori Takeuchi, and Masaharu Imai. « An efficient performance estimation
method for configurable multi-layer bus-based SoC ». In: Information and Media Technologies
10.2 (2015), pp. 192–203.

[66] Jeronimo Castrillon, Rainer Leupers, and Gerd Ascheid. « MAPS: Mapping Concurrent Dataflow
Applications to Heterogeneous MPSoCs ». In: IEEE Transactions on Industrial Informatics 9.1
(2013), pp. 527–545. doi: 10.1109/TII.2011.2173941.

[67] Ralf Stemmer, Hai-Dang Vu, Sébastien Le Nours, Kim Grüttner, Sébastien Pillement, and Wolfgang
Nebel. « A Measurement-Based Message-Level Timing Prediction Approach for Data-Dependent
SDFGs on Tile-Based Heterogeneous MPSoCs ». In: Applied Sciences (2021).

[68] Hai-Dang Vu. « Fast and Accurate Performance Models for Probabilistic Timing Analysis of
SDFGs on MPSoCs ». PhD thesis. Université de Nantes, 2021.

[69] Thomas Hérault, Richard Lassaigne, Frédéric Magniette, and Sylvain Peyronnet. « Approximate
probabilistic model checking ». In: Verification, Model Checking, and Abstract Interpretation:
5th International Conference, VMCAI 2004 Venice, Italy, January 11-13, 2004 Proceedings 5.
Springer. 2004, pp. 73–84.

[70] Ayoub Nouri, Marius Bozga, Anca Molnos, Axel Legay, and Saddek Bensalem. « Building faithful
high-level models and performance evaluation of manycore embedded systems ». In: 2014 Twelfth
ACM/IEEE Conference on Formal Methods and Models for Codesign (MEMOCODE) (Oct. 2014),
pp. 209–218. doi: 10.1109/MEMCOD.2014.6961864.

[71] Sergio Mazzola, Thomas Benz, Björn Forsberg, and Luca Benini. « A Data-Driven Approach
to Lightweight DVFS-Aware Counter-Based Power Modeling for Heterogeneous Platforms ».
In: Embedded Computer Systems: Architectures, Modeling, and Simulation: 22nd International
Conference, SAMOS 2022, Samos, Greece, July 3–7, 2022, Proceedings. 2022.

[72] Andy D. Pimentel. « Exploring Exploration: A Tutorial Introduction to Embedded Systems
Design Space Exploration ». In: IEEE Design & Test 34.1 (2017), pp. 77–90. doi: 10.1109/MDAT.
2016.2626445.

[73] A. H. Land and A. G. Doig. « An Automatic Method of Solving Discrete Programming Problems ».
In: Econometrica 28.3 (1960), pp. 497–520. doi: https://doi.org/10.2307%2F1910129. (Visited
on 10/01/2023).

[74] Shobana Padmanabhan, Yixin Chen, and Roger D. Chamberlain. « Optimal design-space explo-
ration of streaming applications ». In: ASAP 2011 - 22nd IEEE International Conference on
Application-specific Systems, Architectures and Processors. 2011, pp. 227–230. doi: 10.1109/ASAP.
2011.6043274.

[75] Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial optimization: algorithms and
complexity. Courier Corporation, 1998.

169

https://doi.org/10.1109/TII.2011.2173941
https://doi.org/10.1109/MEMCOD.2014.6961864
https://doi.org/10.1109/MDAT.2016.2626445
https://doi.org/10.1109/MDAT.2016.2626445
https://doi.org/https://doi.org/10.2307%2F1910129
https://doi.org/10.1109/ASAP.2011.6043274
https://doi.org/10.1109/ASAP.2011.6043274

[76] Ralf Niemann and Peter Marwedel. « An Algorithm for Hardware/Software Partitioning Using
Mixed Integer Linear Programming ». In: Des. Autom. Embedded Syst. 2.2 (Mar. 1997), pp. 165–
193. issn: 0929-5585. doi: 10.1023/A:1008832202436.

[77] John H. Holland. « Genetic Algorithms ». In: Scientific American 267.1 (1992), pp. 66–73. issn:
00368733, 19467087. url: http://www.jstor.org/stable/24939139 (visited on 10/02/2023).

[78] Fred Glover. « Future paths for integer programming and links to artificial intelligence ». In:
Computers & Operations Research 13.5 (1986). Applications of Integer Programming, pp. 533–
549. issn: 0305-0548. doi: https://doi.org/10.1016/0305-0548(86)90048-1. url: https:
//www.sciencedirect.com/science/article/pii/0305054886900481.

[79] LM Rasdi Rere, Mohamad Ivan Fanany, and Aniati Murni Arymurthy. « Simulated annealing
algorithm for deep learning ». In: Procedia Computer Science 72 (2015), pp. 137–144.

[80] Marco Dorigo, Mauro Birattari, and Thomas Stutzle. « Ant colony optimization ». In: IEEE
computational intelligence magazine 1.4 (2006), pp. 28–39.

[81] Fabrizio Ferrandi, Pier Luca Lanzi, Christian Pilato, Donatella Sciuto, and Antonino Tumeo.
« Ant Colony Heuristic for Mapping and Scheduling Tasks and Communications on Heterogeneous
Embedded Systems ». In: IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 29.6 (2010), pp. 911–924. doi: 10.1109/TCAD.2010.2048354.

[82] Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres, Mauro Birattari, and Thomas
Stützle. « The irace package: Iterated racing for automatic algorithm configuration ». In: Operations
Research Perspectives 3 (2016), pp. 43–58.

[83] L. Steiner, G. Delazeri, I. Prando Da Silva, M. Jung, and N. Wehn. « Automatic DRAM Subsystem
Configuration with irace ». In: International Conference on High-Performance and Embedded
Architectures and Compilers 2020 (HiPEAC), Workshop on: Rapid Simulation and Performance
Evaluation: Methods and Tools (RAPIDO). 2023.

[84] Linyan Mei, Pouya Houshmand, Vikram Jain, Sebastian Giraldo, and Marian Verhelst. « ZigZag:
Enlarging Joint Architecture-Mapping Design Space Exploration for DNN Accelerators ». In:
IEEE Transactions on Computers (2021).

[85] Daniel Luenemann, Maher Fakih, and Kim Gruettner. « Capturing Neural-Networks as Syn-
chronous Dataflow Graphs ». In: MBMV 2020 - Methods and Description Languages for Modelling
and Verification of Circuits and Systems; GMM/ITG/GI-Workshop. Stuttgart, Germany: VDE,
2020, pp. 1–10.

[86] Mohammad Hosseinabady and Jose Luis Nunez-Yanez. « Run-Time Power Gating in Hybrid
ARM-FPGA Devices ». In: 2014 24th International Conference on Field Programmable Logic and
Applications (FPL). 2014, pp. 1–6. doi: 10.1109/FPL.2014.6927503.

[87] UltraScale™ Architecture and Product Data Sheet: Overview (DS890 v4.4.1). Last accessed:
03.10.2023. July 2023. url: https://docs.xilinx.com/v/u/en- US/ds890- ultrascale-
overview.

170

https://doi.org/10.1023/A:1008832202436
http://www.jstor.org/stable/24939139
https://doi.org/https://doi.org/10.1016/0305-0548(86)90048-1
https://www.sciencedirect.com/science/article/pii/0305054886900481
https://www.sciencedirect.com/science/article/pii/0305054886900481
https://doi.org/10.1109/TCAD.2010.2048354
https://doi.org/10.1109/FPL.2014.6927503
https://docs.xilinx.com/v/u/en-US/ds890-ultrascale-overview
https://docs.xilinx.com/v/u/en-US/ds890-ultrascale-overview

[88] Rohde & Schwarz HMC8012 Digital Multimeter User Manual. Last accessed: 03.10.2023. url:
https://scdn.rohde-schwarz.com/ur/pws/dl_downloads/pdm/cl_manuals/user_manual/
5800_4505_01/HMC8012_UserManual_de_en_06.pdf.

[89] Behzad Salami, Erhan Baturay Onural, Ismail Emir Yuksel, Fahrettin Koc, Oguz Ergin, Adrian
Cristal Kestelman, Osman Unsal, Hamid Sarbazi-Azad, and Onur Mutlu. « An Experimental
Study of Reduced-Voltage Operation in Modern FPGAs for Neural Network Acceleration ». In:
2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN). 2020.

[90] Anup Kumar Sultania, Chun Zhang, Darshak Kumarpal Gandhi, Fan Zhang, Anup Kumar
Sultania, Chun Zhang, Darshak Kumarpal Gandhi, and Fan Zhang. « Designing with Xilinx®
FPGAs: Using Vivado ». In: ed. by Sanjay Churiwala and Sanjay Churiwala. Springer International
Publishing, 2017. Chap. Power Analysis and Optimization, pp. 177–187.

[91] Christof Schlaak, Maher Fakih, and Ralf Stemmer. « Power and Execution Time Measurement
Methodology for SDF Applications on FPGA-based MPSoCs ». In: International Workshop on
High Performance Energy Efficient Embedded Systems (HIP3ES) (Jan. 2017). arXiv: 1701.03709
[cs.DC]. url: http://arxiv.org/abs/1701.03709.

[92] Xilinx Integrated Logic Analyzer v2.0 Data Sheet (DS875). Last accessed: 03.10.2023. July 2012.
url: https://docs.xilinx.com/v/u/en-US/ds875-ila.

[93] Sebastian Houben, Johannes Stallkamp, Jan Salmen, Marc Schlipsing, and Christian Igel. « De-
tection of Traffic Signs in Real-World Images: The German Traffic Sign Detection Benchmark ».
In: International Joint Conference on Neural Networks. 2013.

[94] Oriane Thiery and Jules Bouton. « Réseau CNN sur MicroBlaze ». MA thesis. Polytech’Nantes -
Graduate School of Engineering of Nantes Université, 2022.

[95] Steffen Nissen. Implementation of a Fast Artificial Neural Network library (FANN). Tech. rep.
Last accessed: 10.10.2023, commit: 8409b42. Department of Computer Science, University of
Copenhagen (DIKU), Dec. 2003. url: https://github.com/libfann/fann.

[96] Daniel Gutierrez-Galan, Juan Pedro Dominguez-Morales, Elena Cerezuela-Escudero, Antonio
Rios-Navarro, Ricardo Tapiador-Morales, Manuel Rivas Perez, Manuel Dominguez-Morales, Angel
Jimenez-Fernandez, and Alejandro Linares-Barranco. « Embedded neural network for real-time
animal behavior classification ». In: Neurocomputing 272 (2018), pp. 17–26. doi: 10.1016/j.
neucom.2017.03.090.

[97] Nico Zengeler, Thomas Kopinski, and Uwe Handmann. « Hand Gesture Recognition in Automotive
Human–Machine Interaction Using Depth Cameras ». In: Sensors 19.1 (2019). issn: 1424-8220.
doi: 10.3390/s19010059.

[98] Juan Borrego-Carazo, David Castells-Rufas, Ernesto Biempica, and Jordi Carrabina. « Resource-
Constrained Machine Learning for ADAS: A Systematic Review ». In: IEEE Access 8 (2020),
pp. 40573–40598. doi: 10.1109/ACCESS.2020.2976513.

171

https://scdn.rohde-schwarz.com/ur/pws/dl_downloads/pdm/cl_manuals/user_manual/5800_4505_01/HMC8012_UserManual_de_en_06.pdf
https://scdn.rohde-schwarz.com/ur/pws/dl_downloads/pdm/cl_manuals/user_manual/5800_4505_01/HMC8012_UserManual_de_en_06.pdf
https://arxiv.org/abs/1701.03709
https://arxiv.org/abs/1701.03709
http://arxiv.org/abs/1701.03709
https://docs.xilinx.com/v/u/en-US/ds875-ila
https://github.com/libfann/fann
https://doi.org/10.1016/j.neucom.2017.03.090
https://doi.org/10.1016/j.neucom.2017.03.090
https://doi.org/10.3390/s19010059
https://doi.org/10.1109/ACCESS.2020.2976513

[99] Blair Newman. « Neuton TinyML: Automatic Design of Ultra-tiny ML Models ». In: tinyML EMEA
Innovation Forum. Last accessed: 28.09.2023. June 2023. url: https://cms.tinyml.org/wp-
content/uploads/ew2023/tinyML-EMEA_Blair-Newman.pdf.

[100] Hai-Dang Vu, Sébastien Le Nours, Sébastien Pillement, Ralf Stemmer, and Kim Grüttner. « A
Fast Yet Accurate Message-level Communication Bus Model for Timing Prediction of SDFGs on
MPSoC ». In: Asia and South Pacific Design Automation Conference_ASP-DAC 2021 (Virtual
Conference). ASP-DAC 2021. Tokyo, Japan, Jan. 2021, p. 1183. url: https://hal.archives-
ouvertes.fr/hal-02938566.

[101] David M. Bressoud. « The Fundamental Theorem of Calculus ». In: Second Year Calculus: From
Celestial Mechanics to Special Relativity. New York, NY: Springer New York, 1991. Chap. 10,
pp. 279–332. isbn: 978-1-4612-0959-1. doi: 10.1007/978-1-4612-0959-1_10.

[102] David A Fabry and Achintya K Bhowmik. « Improving speech understanding and monitoring
health with hearing aids using artificial intelligence and embedded sensors ». In: Seminars in
Hearing. Vol. 42. 03. Thieme Medical Publishers, Inc. 333 Seventh Avenue, 18th Floor, New York,
NY . . . 2021, pp. 295–308.

[103] Charnpreet Kaur and Urvashi Garg. « Artificial intelligence techniques for cancer detection in
medical image processing: A review ». In: Materials Today: Proceedings 81 (2023). International
Virtual Conference on Sustainable Materials (IVCSM-2k20), pp. 806–809. issn: 2214-7853. doi:
https://doi.org/10.1016/j.matpr.2021.04.241. url: https://www.sciencedirect.com/
science/article/pii/S2214785321031618.

[104] Tanha Talaviya, Dhara Shah, Nivedita Patel, Hiteshri Yagnik, and Manan Shah. « Implementation
of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides
and herbicides ». In: Artificial Intelligence in Agriculture 4 (2020), pp. 58–73. issn: 2589-7217.
doi: https://doi.org/10.1016/j.aiia.2020.04.002. url: https://www.sciencedirect.
com/science/article/pii/S258972172030012X.

[105] Oliver Klemp, Maher Fakih, Kim Grüttner, Ralf Stemmer, and Wolfgang Nebel. « Experimental
Evaluation of Scenario Aware Synchronous Data Flow Based Power Management ». In: Proceedings
of the International Conference on Omni-Layer Intelligent Systems. COINS ’19. Crete, Greece:
Association for Computing Machinery, 2019, pp. 80–85. isbn: 9781450366403. doi: 10.1145/
3312614.3312634. url: https://doi.org/10.1145/3312614.3312634.

[106] Abdallah Moujahid, Mounir ElAraki Tantaoui, Manolo Dulva Hina, Assia Soukane, Andrea
Ortalda, Ahmed ElKhadimi, and Amar Ramdane-Cherif. « Machine Learning Techniques in ADAS:
A Review ». In: 2018 International Conference on Advances in Computing and Communication
Engineering (ICACCE). 2018, pp. 235–242. doi: 10.1109/ICACCE.2018.8441758.

[107] Quentin Dariol, Sebastien Le Nours, Domenik Helms, Ralf Stemmer, Sebastien Pillement, and
Kim Grüttner. « Fast Yet Accurate Timing and Power Prediction of Artificial Neural Networks
Deployed on Clock-Gated Multi-Core Platforms ». In: RAPIDO ’23. Toulouse, France: Association
for Computing Machinery, 2023, pp. 79–86. doi: 10.1145/3579170.3579263. url: https:
//doi.org/10.1145/3579170.3579263.

172

https://cms.tinyml.org/wp-content/uploads/ew2023/tinyML-EMEA_Blair-Newman.pdf
https://cms.tinyml.org/wp-content/uploads/ew2023/tinyML-EMEA_Blair-Newman.pdf
https://hal.archives-ouvertes.fr/hal-02938566
https://hal.archives-ouvertes.fr/hal-02938566
https://doi.org/10.1007/978-1-4612-0959-1_10
https://doi.org/https://doi.org/10.1016/j.matpr.2021.04.241
https://www.sciencedirect.com/science/article/pii/S2214785321031618
https://www.sciencedirect.com/science/article/pii/S2214785321031618
https://doi.org/https://doi.org/10.1016/j.aiia.2020.04.002
https://www.sciencedirect.com/science/article/pii/S258972172030012X
https://www.sciencedirect.com/science/article/pii/S258972172030012X
https://doi.org/10.1145/3312614.3312634
https://doi.org/10.1145/3312614.3312634
https://doi.org/10.1145/3312614.3312634
https://doi.org/10.1109/ICACCE.2018.8441758
https://doi.org/10.1145/3579170.3579263
https://doi.org/10.1145/3579170.3579263
https://doi.org/10.1145/3579170.3579263

[108] Quentin Dariol, Sebastien Le Nours, Sebastien Pillement, Ralf Stemmer, Domenik Helms, and
Kim Grüttner. « A Hybrid Performance Prediction Approach for Fully-Connected Artificial
Neural Networks on Multi-core Platforms ». In: International Conference on Embedded Computer
Systems: Architectures, Modeling, and Simulation (SAMOS 2022). Ed. by Alex Orailoglu, Marc
Reichenbach, and Matthias Jung. Springer International Publishing, 2022, pp. 250–263. doi:
10.1007/978-3-031-15074-6_16.

[109] Quentin Dariol, Sébastien Le Nours, Sébastien Pillement, Ralf Stemmer, Domenik Helms, and
Kim Grüttner. « Early Performance and Energy Prediction of Neural Networks Deployed on
Multi-Core Platforms ». In: 29° Colloque sur le traitement du signal et des images. 2023-1144.
Grenoble: GRETSI - Groupe de Recherche en Traitement du Signal et des Images, Aug. 2023, p.
309–312. url: #https://elib.dlr.de/196733/#.

[110] Quentin Dariol, Sébastien Le Nours, Sébastien Pillement, Ralf Stemmer, Kim Grüttner, and
Domenik Helms. « Hybrid Performance Prediction Models for Fully-Connected Neural Networks
on MPSoC ». In: 16ème Colloque National du GDR SOC2. June 2022. url: https://hal.
science/hal-03758026.

[111] Quentin Dariol, Sébastien Le Nours, Sébastien Pillement, Ralf Stemmer, Kim Grüttner, and
Domenik HELMS. A Measurement-based Performance Evaluation Framework for Neural Networks
on MPSoCs. 15ème Colloque National du GDR SOC2. Poster. June 2021. url: https://hal.
archives-ouvertes.fr/hal-03248152.

[112] Quentin Dariol, Sebastien Le Nours, Sebastien Pillement, Kim Grüttner, Domenik Helms, and
Ralf Stemmer. Setup of an Experimental Framework for Performance Modeling and Prediction
of Embedded Multicore AI Architectures. Tech. rep. Nantes University, IETR UMR CNRS 6164,
France and Deutsches Zentrum für Luft und Raumfahrt (DLR), Germany, 2022.

173

https://doi.org/10.1007/978-3-031-15074-6_16
#https://elib.dlr.de/196733/#
https://hal.science/hal-03758026
https://hal.science/hal-03758026
https://hal.archives-ouvertes.fr/hal-03248152
https://hal.archives-ouvertes.fr/hal-03248152

APPENDICES

A Considered NN clusterings and mappings to vali-
date our models

Table A.1 – Considered clusterings of MLP1 for the validation of the models. The resulting
clusterings are illustrated in the Figure A.1.

Clustering
name

Number of clusters
(actors) per layer Actor

number
Comm.
channel
numberHidden

Layer
Output
Layer

C1 1 1 2 3
C3 3 3 7 16
C7 7 7 15 64

Table A.2 – Considered mappings of MLP1 for the validation of the models. The considered
clusterings identified based on "C_ID" are provided in Table A.1. "#T" is the number
of tiles for the mapping. "M_ID" is the identifier of the mapping and "P" stands for
polling-based communications whereas "I" stands for interrupt-based communications.

C_ID #T M_ID Mapping of actors on platform
P I Hidden layer Output layer Decoder

MLP1
C1

1 1 8 0 0 /
3 2 9 0 1 /

MLP1
C3

1 3 10 0 0 0 0 0 0 0
3 4 11 0 1 2 0 1 2 0
7 5 12 0 1 2 3 4 5 6

MLP1
C7

1 6 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 7 14 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0

175

HL_C1
N=3

784

HL_C2
N=3

HL_C3
N=4

OL_C1
N=3

OL_C2
N=3

OL_C3
N=4

784

784

3
3

3

3
3
3

4
4

4

3

3

4

MLP1-C3
(A=7, CC=16)

Deco
der

10
Hidden
Layer
(HL)
N=10

Output
Layer
(HL)
N=10

784 10 10

MLP1-C1
(A=2, CC=3)

HL_C1
N=1

HL_C2
N=1

HL_C3
N=1

OL_C1
N=3

OL_C2
N=3

OL_C3
N=4

1

1

1

MLP1-C7
(A=15, CC=64)

Deco
der

10HL_C4
N=1

HL_C5
N=2

HL_C6
N=2

HL_C7
N=2

OL_C4
N=1

OL_C5
N=2

OL_C6
N=2

OL_C7
N=2

1

2

2

2

1

1

1

1

2

2

2

784

Figure A.1 – Illustration of the different clusterings considered for the validation of the
models for MLP1. "A" corresponds to the number of actors in the clustering and "CC" to
the number of communication channels. Note: due to the density of the communication
channels on the clustering MLP1-C7 the number of tokens have been indicated only once
for each actor (all communication channels issued by the same actor have the same number
of tokens).

Table A.3 – Considered clusterings of MLP2 for the validation of the models.

Clustering
name

Number of clusters
(actors) per layer Actor

number
Comm.
channel
numberHidden

Layer 1
Hidden
Layer 2

Output
Layer

C1 1 1 1 3 4
C3 3 3 3 10 25
C7 7 7 7 22 113

Table A.4 – Considered mappings of MLP2 for the validation of the models. The considered
clusterings identified based on "C_ID" are provided in Table A.3. "#T" is the number
of tiles for the mapping. "M_ID" is the identifier of the mapping and "P" stands for
polling-based communications whereas "I" stands for interrupt-based communications.

C_ID #T M_ID Mapping of actors on platform
P I Hidden Layer 1 Hidden Layer 2 Output Layer Decoder

MLP2
C1

1 15 22 0 0 0 /
3 16 23 0 1 2 /

MLP2
C3

1 17 24 0 0 0 0 0 0 0 0 0 0
3 18 25 0 1 2 0 1 2 0 1 2 0
7 19 26 0 1 2 3 4 5 3 4 5 6

MLP2
C7

1 20 27 0
7 21 28 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0

176

Table A.5 – Considered clusterings of MLP3 for the validation of the models.

Clustering
name

Number of clusters
(actors) per layer Actor

number
Comm.
channel
numberHidden

Layer 1
Hidden
Layer 2

Output
Layer

C2 2 2 2 6 13
C4 4 4 4 12 41
C6 6 6 6 18 85

Table A.6 – Considered mappings of MLP3 for the validation of the models. The considered
clusterings identified based on "C_ID" are provided in Table A.5. "#T" is the number
of tiles for the mapping. "M_ID" is the identifier of the mapping and "P" stands for
polling-based communications whereas "I" stands for interrupt-based communications

C_ID T# M_ID Mapping of actors on platform
P I Hidden Layer 1 Hidden Layer 2 Output Layer Decoder

MLP3
C2

1 29 36 0 0 0 0 0 0 NA
2 30 37 0 1 0 1 0 1 NA
7 31 38 0 1 2 3 4 5 6

MLP3
C4

1 32 39 0 0 0 0 0 0 0 0 0 0 0 0 0
4 33 40 0 1 2 3 0 1 2 3 0 1 2 3 0

MLP3
C6

1 34 41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 35 42 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0

Table A.7 – Considered clusterings of the CNN for the validation of the models.

Clustering
name

Number of clusters
(actors) per layer Actor

number
Comm.
channel
numberConvo

lution Pooling Dense1 Dense2

G1 1 1 1 1 4 5
G2 5 1 1 1 8 13

Table A.8 – Considered mappings of the CNN for the validation of the models. The
considered clusterings identified based on "C_ID" are provided in Table A.7. "#T" is the
number of tiles for the mapping. "M_ID" is the identifier of the mapping and "P" stands
for polling-based communications whereas "I" stands for interrupt-based communications.

C_ID #T M_ID Mapping of actors on platform
P I Convolution Pooling Dense 1 Dense 2

CNN1
G1

1 43 49 0 0 0 0
2 44 50 1 0 0 0
4 45 51 1 2 0 3

CNN1
G2

1 46 52 0 0 0 0 0 0 0 0
5 47 53 0 1 2 3 4 0 0 0
7 48 54 1 2 3 4 5 6 0 0

177

B Place and route and utilization results of the dif-
ferent prototype platforms

(a) P7, I - floorplan (b) P7, I - utilization

(c) P7, P - floorplan (d) P7, P - utilization

: Tile0

: Tile1

: Tile2

: Tile3

: Tile4

: Tile5

: Tile6

: Remainder of the platform

Legend

(e) Legend (color map) of the pro-
vided placement & route plans

Figure B.2 – Place and route and utilization results of the different prototype platforms
we considered for the evaluation of the power modeling flow. These platforms are used to
evaluate scalability of the power modeling flow in consideration of multi-core platforms
with varying sizes (in regards to number of tiles and private memory size).

178

(a) P1,2048 kB - without
power optimization - floor-
plan

(b) P1,2048 kB - without power optimization - utilization

(c) P1,1024 kB - without
power optimization - floor-
plan

(d) P1,1024 kB - without power optimization - utilization

Figure B.3 – See Figure B.2 caption and legend.

179

(a) P1,512 kB - without power
optimization - floorplan

(b) P1,512 kB - without power optimization - utilization

(c) P1,2048 kB - with power
optimization - floorplan

(d) P1,2048 kB - with power optimization - utilization

Figure B.4 – See Figure B.2 caption and legend.

180

(a) P1,1024 kB - with power
optimization - floorplan

(b) P1,1024 kB - with power optimization - utilization

(c) P2 - floorplan (d) P2 - utilization

Figure B.5 – See Figure B.2 caption and legend.

181

(a) P1,1024 kB - with power
optimization - floorplan

(b) P1,1024 kB - with power optimization - utilization

(c) P2 - floorplan (d) P2 - utilization

Figure B.6 – See Figure B.2 caption and legend.

182

(a) P3 - floorplan (b) P3 - utilization

(c) P5 - floorplan (d) P5 - utilization

Figure B.7 – See Figure B.2 caption and legend.

183

C Model of private memory size of tile

To help and propose accurate power and energy prediction with scalability in regards to
the dimensions of multi-core platforms, we propose a coarsed-grained private memory size
model. This model is characterized by retrieving and analyzing the utilization of private
memory based on executed code for the considered NN mappings presented in Section A.
The model is presented in Table C.9.

Table C.9 – Proposed model for private memory size needed for tile execution

Tile private memory
sections (in order) Actual content Memory size model (bytes)

.vectors SW/HW exceptions management,
reset, etc. 128

.text Instructions 8192 + 512 ⋅Nactor
.init, .fini, .ctors,

.dtors, .rodata, .sdata2 / Marginal, neglected

.data Initialized global variables:
Weights and input image A

.sdata, .sbss / Marginal, neglected
.bss Uninitialized global variables 256

.heap Dynamically allocated space 2048

.stack Local variables used inside functions,
SDF token_buffers and channels B

Equation C.1 gives the model used to approximate the size of the .data section of a
tile (A in the table):

A ∶ Bl=0 +
A

∑
a=1

λaWa (C.1)

with Wa =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

4 ⋅Nneuron,a ⋅ (Ninputs + 1) if a is an actor from a dense layer

4 ⋅Ka ⋅ (Fh ⋅ Fw +Ninputs) if a is an actor from a convolution layer

and λa =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 if actor a is mapped on the considered tile

0 otherwise

In this equation, Bl=0 denotes the size of the input layer (i.e. the size of the input
image). A designates the total number of actors. λa is a variable used to indicate if actor a

is mapped on the considered tile. Wa denotes the memory footprint of the weights needed
to execute the actor a. Ninputs denotes the number of inputs of actor a. Nneuron,a is the
number of neurons inside the actor a, if a is issued from a dense layer. Ka denotes the

184

number of convolution kernels inside the actor a, if a is issued from a convolution layer. Fh

and Fh respectively denotes the height and width of the convolution kernel, if a is issued
from a convolution layer. The multiplication by 4 is due to the encoding of all these values
as floats on 32 bits i.e. 4 bytes. Equation C.2 gives the model used to approximate the
size of the .stack section (B in the table):

B ∶ 4 ⋅ (2 ⋅Nchannels +
L−1
∑
l=0

Bl) (C.2)

In this equation, Nchannels is the number of channels in the SDF graph. The formula
for Nchannels is presented in Section III.2.2. Channels are encoded as a structure containing
two elements: first address and total buffer size, so Nchannels is multiplied by 2. Bl denotes
the sizes of buffer l: it corresponds to the number of tokens exchanged between l and l + 1,
l = 0 corresponding to the input layer of the NN, and l = L − 1 to the output layer. The
multiplication by 4 is due to the encoding of all these values as floats (4 bytes).

The estimation using this model is rounded to the next higher power of 2, and this value
is used as the private memory size for the considered tile. For example, if the considered
tile processes the input image of the MNIST dataset (784 floats, so 3136 bytes), using a
dense layer that is composed of 300 neurons, the estimated memory cost using the model
is 979 184 B i.e. 956 kB. The next higher power of 2 is 210 = 1024 kB, which corresponds to
the private memory size to implement for the tile.

185

Titre : Prédiction et optimisation des propriétés temporelles et de l’énergie des réseaux de
neurones artificiels implémentés sur les plateformes multicœurs

Mot clés : Intelligence artificielle embarquée, conception au niveau système, prédiction des

propriétés temporelles et de l’énergie

Résumé : Le besoin de mettre en oeuvre les
Réseaux de Neurones artificiels (NNs) sur des
plates-formes multicœurs embarquées est de-
venu fondamental. La prédiction des proprié-
tés temporelles (temps d’inférence, latence,
débit) et énergétiques au plus tôt dans le
processus de conception est nécessaire pour
trouver des solutions qui optimisent l’utilisation
des ressources et respectent les contraintes
imposées au système. Une difficulté majeure
de cette modélisation vient de la nécessité
de décrire correctement l’influence du partage
de ressources (processeur, mémoire, bus de
communication) au sein des plateformes mul-
ticoeurs. Dans cette thèse, nous présentons
un flot complet de prédiction et d’optimisa-

tion des propriétés temporelles et de l’éner-
gie qui combine plusieurs approches de mo-
délisation. Ce flot conduit à optimiser l’occupa-
tion des ressources sans dégrader les perfor-
mances des NNs mis en oeuvre. Les prédic-
tions sont confrontées à des expérimentations
sur cibles réelles. Les modèles proposés ont
une précision de plus de 97% sur le temps et
93% sur l’énergie sur 54 mappings de 4 NNs,
avec un temps de prédiction de 20s par map-
ping. Nous montrons comment utiliser les mo-
dèles pour explorer efficacement l’espace de
conception et trouver des solutions optimisées
qui satisfont les contraintes imposées au sys-
tème.

Title: Early Timing and Energy Prediction and Optimization of Artificial Neural Networks on
Multi-Core Platforms

Keywords: Embedded artificial intelligence, system level design, timing and energy prediction

Abstract: The need to implement artificial
Neural Networks (NNs) on embedded multi-
core platforms has become fundamental. Pre-
dicting timing properties (inference time, la-
tency, throughput) and energy as early as pos-
sible in the design process is necessary to find
solutions that optimize resource use and re-
spect the constraints imposed on the system.
A major modeling difficulty comes from the
need to correctly describe the influence of re-
source sharing (processor, memory, communi-
cation bus) within multi-core platforms. In this
thesis, we present a complete flow for predict-

ing and optimizing timing properties and en-
ergy, combining several modeling approaches.
This flow leads to optimized resource occu-
pancy without degrading the performance of
implemented NNs. Predictions are compared
with measurements on real targets. The pro-
posed models have an accuracy of over 97%
on timing and 93% on energy for 54 mappings
of 4 NNs, with a prediction time of 20s per
mapping. We show how to use the models to
efficiently explore the design space and find
optimized solutions that satisfy the constraints
imposed on the system.

	Résumé long
	Acknowledgement
	Introduction
	Context
	Artificial Intelligence (AI) and Neural Networks (NNs)
	Internet of Things (IoT) and TinyML
	Available platforms at the edge
	NN deployment on embedded platforms

	Research challenges
	Contributions
	Organization

	Related work
	Evaluation of NN deployments on edge platforms
	Rapid prototyping
	Evaluation using models

	Design Space Exploration (DSE)

	Work hypothesis
	Considered types of NNs
	Description of NNs in Synchronous Data Flow (SDF)
	SDF Model of Computation (MoC)
	Modeling of NNs in SDF

	Model of Architecture (MoA)
	Composition of the MoA
	Power management within the MoA

	Mapping of NNs modeled in SDF on platforms respecting the MoA
	Real platform prototype implementation and considered applications

	Simulation-based timing properties prediction approach
	Timing modeling and prediction flow overview
	Computation time modeling approach
	Analytical computation time models
	Measurement-based characterization approach for computation time models

	Communication time modeling approach
	Analytical timing model for token production/reading in shared memory
	Message level communication time model
	Measurement-based characterization approach for the communication time model

	Simulation model description in SystemC
	Experiment results
	Tested scenarios
	Pure analytical model for comparison against the simulation
	Validation results

	Discussions
	Conclusion

	Power and energy modeling and analysis flow
	Power modeling and analysis flow overview
	Power model proposal
	Power model calibration
	Calibration methodology
	Application of the calibration and results

	Integration in the simulation flow and energy prediction
	Evaluation of the power modeling flow
	Analytical power and energy model for comparison
	Evaluation on a fixed multi-core platform
	Evaluation of the scalability in regards to the number of tiles and private memory size

	Conclusion

	Design space exploration using the proposed timing and energy models
	Proposed DSE flow overview
	DSE using high level pure analytical models
	Proposed clustering optimization approach
	Proposed mapping optimization approach

	Demonstration of the use of the DSE flow
	DSE flow evaluation
	Comparison of Branch & Bound-enhanced and exhaustive clustering search
	Comparison of Branch & Bound-enhanced and exhaustive mapping search
	Use of pure analytical models for pruning

	Conclusion

	Conclusion
	Synthesis
	Identified limitations
	Perspectives
	Ouverture

	List of publications
	Bibliography
	Appendices
	Considered NN clusterings and mappings to validate our models
	Place and route and utilization results of the different prototype platforms
	Model of private memory size of tile

