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RÉSUMÉ

La cryptographie est omniprésente dans nos sociétés connectées. Cette science englobe
toutes les méthodes pour concevoir, analyser et mettre en œuvre des algorithmes dits
cryptographiques tels que les chiffrements, les signatures et les fonctions de hachage. Les
algorithmes cryptographiques permettent, par exemple, la transmission d’une informa-
tion tout en garantissant sa confidentialité, son intégrité et son authenticité. Un exemple
classique d’utilisation de la cryptographie est le protocole HTTPS. Il permet à deux per-
sonnes (par exemple Alice et Bob) de communiquer un message alors qu’une personne
mal intentionnée peut intercepter le message (Eve). Cependant, la propriété de confiden-
tialité empêche Eve de comprendre le message, l’intégrité permet à Bob de savoir si le
message a été modifié et l’authenticité permet à Bob de savoir que c’est bien Alice qui
a envoyé le message. La propriété de confidentialité est historiquement assurée par des
chiffrements symétriques, nécessitant le partage d’une même clef secrète entre Alice et
Bob. En 1977, un algorithme de chiffrement asymétrique a été inventé pour la première
fois. Ce mécanisme repose sur deux clefs distinctes, la clef publique utilisée pour le chiffre-
ment, et la clef privée nécessaire au déchiffrement. Grâce à cet algorithme, tout le monde
peut chiffrer un message avec la clef publique mais seule Alice peut les déchiffrer car cela
requiert la clef privée. Dans de nombreux protocoles, on effectue un échange de clef re-
posant sur la cryptographie asymétrique, puis on utilise cette clef fraîchement générée et
partagée pour poursuivre les échanges avec la cryptographie symétrique. En effet, même
si la cryptographie asymétrique présente de nombreux avantages, elle est plus coûteuse
que les chiffrements symétriques qui s’avèrent plus efficaces pour l’échange de grands vol-
umes de données. La conception, l’étude et la mise en œuvre des chiffrements symétriques
représentent donc une partie importante de la cryptographie.

La recherche opérationnelle (RO) est originellement définie par “la mise en œuvre de
méthodes scientifiques, essentiellement mathématiques, en vue de prendre la meilleure
décision possible” pour des problèmes comme l’ordonnancement ou la planification. Le
problème le plus connu est probablement le voyageur de commerce où une personne doit
visiter un grand nombre de villes en prenant le plus court chemin possible. En RO, les
problèmes sont d’abord modélisés, c’est-à-dire qu’ils sont exprimés sous forme de modèles
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qui peuvent être utilisés par les solveurs. Puis les solveurs résolvent le problème grâce à
un ensemble de méthodes de résolution. Les solveurs ont la capacité de fournir la solu-
tion optimale, une solution valide, l’ensemble des solutions possibles ou encore de révéler
l’absence de solution. Ces dernières années, les progrès réalisés dans le perfectionnement
de ces solveurs les ont rendus particulièrement attrayants pour les enjeux complexes de la
cryptanalyse. Cependant, la modélisation d’un problème n’est pas toujours immédiate et
le choix du solveur peut grandement impacter l’efficacité de la résolution. Pour résoudre
efficacement un problème cryptographique avec un solveur, il faut donc des connaissances
en cryptographie et en modélisation.

Cryptanalyse des chiffrements symétriques

Les chiffrements symétriques sont des algorithmes qui prennent en entrée un texte
et une clef secrète et qui renvoient un texte chiffré. Ce texte chiffré doit être indistin-
guable d’un texte aléatoire et il doit exister un algorithme capable de déchiffrer le texte
chiffré avec cette même clef secrète. En 1949, il a été établi qu’un chiffrement sécurisé
devait comporter deux propriétés : la diffusion et la confusion. La diffusion assure que
chaque partie du texte chiffré dépende de tout le texte clair. De cette façon, si une seule
lettre du texte clair change, tout le texte chiffré sera impacté. La diffusion est souvent
assurée par des opérations comme des permutations, des décalages et d’autres opérations
linéaires comme le XOR. La confusion est l’idée que le texte doit être chiffré de manière
"complexe", ce qui se traduit par des opérations non-linéaires dont la plus utilisée est la
Boite-S. La Boite-S est une table qui mélange une petite partie d’un texte de manière
non-linéaire. Les chiffrements symétriques sont souvent des fonctions itérées, c’est-à-dire
que l’on va appliquer plusieurs fois une même fonction, appelée fonction de tour. Une con-
struction classique est le réseau de substitution-permutation (SPN) où la fonction de tour
est composée d’une application de Boites-S suivie d’une permutation. L’exemple le plus
connu de SPN est le standard AES mais il en existe beaucoup d’autres. Les chiffrements
se distinguent en deux grandes catégories. Les chiffrements par bloc (comme les SPN et
les réseaux de Feistel) qui découpent le message en plusieurs blocs, et les chiffrements par
flot (comme Grain et Trivium) qui chiffrent un message au fur et à mesure.

L’analyse des chiffrements symétriques passe principalement par la recherche de dis-
tingueurs, des propriétés qui permettent de distinguer le chiffrement d’une permutation
aléatoire. S’il existe un distingueur sur un chiffrement, alors on peut, en théorie, monter
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une attaque et le casser, c’est-à-dire que l’on peut retrouver des messages sans la clef ou
déduire une partie de la clef. Faire les attaques n’est pas toujours facile car cela dépend
beaucoup de l’efficacité du distingueur, mais en pratique, un chiffrement sur lequel on
trouve un distingueur est déprécié. Beaucoup de distingueurs de différents types ont été
découverts dans l’histoire de la cryptanalyse (par exemple les distingueurs intégraux qui
exploitent la forme algébrique des chiffrements ou les distingueurs différentiels qui étudient
la propagation d’une différence à travers le chiffrement, . . . ). Pour être déclaré robuste,
un chiffrement doit être analysé par rapport à chacun des distingueur connus.

Recherche opérationnelle

Les méthodes de recherche opérationnelle se divisent en plusieurs paradigmes. Les plus
connus sont les suivants:

Mixed Integer Linear Programming (MILP). La programmation linéaire utilise
une modélisation exclusivement sous forme d’équations linéaires. Elle utilise des variables
réelles ou entières, ou parfois même les deux. Pour résoudre les problèmes, elle utilise
des méthodes comme l’algorithme du simplex ou l’algorithme des points intérieurs pour
optimiser un objectif lui aussi linéaire. Si on veut modéliser un problème non-linéaire en
MILP, il existe des méthodes de linéarisation mais elles se font au prix de l’introduction de
nouvelles variables et contraintes, ce qui peut affecter les performances du solveur. Dans
cette thèse, nous utiliserons le solveur Gurobi pour résoudre nos modèles MILP.

Boolean Satisfiability (SAT). Le problème de satisfiabilité booléenne ne porte que
sur des variables booléennes. Les modèles SAT utilisent des clauses booléennes sous la
forme normale conjonctive, une conjonction de disjonctions. Pour résoudre les problèmes,
les solveurs SAT récents utilisent un algorithme appelé le conflict driven clause learning
(CDCL) pour déterminer s’il existe une assignation des variables qui rend la formule vraie.
Nous utiliserons les solveurs picatSAT [ZK16], Z3 [dMB08], Glucose [AS09] et Crypto-
minisat [Soo16].

Constraint Programming (CP). La programmation par contraintes est plus expres-
sive que les deux précédents paradigmes car elle repose sur une collection de différents
types de contraintes qui définissent chacune une relation. Par exemple, la plus connue,
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AllDifferent, assure que chaque variable a une valeur différente. Chaque type de con-
trainte possède un algorithme qui lui permet de faire en sorte que la relation qu’elle
contraint soit respectée. Pour résoudre les problèmes, les solveurs de programmation par
contraintes utilisent un algorithme de recherche en profondeur ainsi que les algorithmes
de chaque contrainte pour trouver une ou plusieurs solutions s’il y en a. Il existe un grand
nombre de contraintes (plusieurs centaines dans le catalogue des contraintes [BCDP07])
et il est possible d’en faire de nouvelles. Nous utiliserons principalement les solveurs
Choco [PF22], Chuffed [Stu10] et Or-tools.

Contributions

Cette thèse porte sur l’amélioration des techniques de cryptanalyse et des solveurs.
En particulier, nous nous intéressons à la recherche de distingueurs sur les chiffrements
symétriques avec des solveurs de programmation par contraintes.

Distingueur dans Trivium. Trivium est un chiffrement avec une fonction de tour
très simple mais qui comprend un grand nombre de tours (il faut 1152 tours pour ini-
tialiser Trivium). À chaque tour après l’initialisation, Trivium produit un nouveau
booléen utilisé pour chiffrer un bit du message. Ce booléen est le résultat de l’état ini-
tial du chiffrement puis de l’application d’au moins 1152 fois la fonction de tour. Si on
développait toutes les fonctions de tour depuis l’état initial, on obtiendrait un grand
polynôme qui décrit exactement le booléen de sortie. Connaître la présence ou l’absence
de certains monômes dans ce polynôme peut servir de distingueur et permet de monter
des attaques dites intégrales [DS09]. Cependant, ce polynôme est beaucoup trop grand
pour être retrouvé en temps raisonnable au-delà de 300 tours. On va donc rechercher
une sous-partie du polynôme appelée le superpoly. Les méthodes existantes pour trouver
le superpoly utilisent des modèles MILP à base de booléens et une stratégie diviser-
pour-régner [HSWW20, HLM+20]. Une des difficultés du problème intervient quand deux
monômes identiques sont dans le superpoly. Dans ce cas ils s’annuleront car l’addition des
booléens est le XOR. Il y a un grand nombre d’annulations de ce genre dans le superpoly
des grandes instances de Trivium. Le problème est donc de trouver tous les monômes du
superpoly tout en faisant attention à la parité des occurrences de chaque monôme.

Comme première contribution, nous proposons une modélisation sous forme de graphe
de l’application des fonctions de tour de Trivium. Cette modélisation permet de dé-
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tecter des sous-graphes qui donneront un nombre pair de fois le même monôme et de
restreindre ces cas dans les modèles. Le modèle graphe permet aussi d’utiliser des for-
mules d’approximation de la taille des monômes pour trouver ceux qui nous intéressent
rapidement.

Diffusion dans les réseaux de Feistel généralisés. Le réseau de Feistel est une des
premières structures de chiffrement standardisé. Un chiffrement de type Feistel sépare le
texte en deux blocs, applique une fonction de tour, ajoute un des blocs avec l’autre puis in-
verse leur "positions" et recommence. La version généralisée des réseaux de Feistel (GFN)
est une application en parallèle de plusieurs paires de Feistel [Nyb96]. De plus, une permu-
tation mélange tous les blocs à chaque tour. Cette permutation doit apporter la diffusion
dans le chiffrement, c’est-à-dire le fait que tous les blocs d’entrée impactent chaque bloc
de sortie. Pour choisir la permutation qui diffuse le plus, toutes les permutations étaient
énumérées et leur diffusion était testée [SM10]. Malheureusement, l’énumération exhaus-
tive n’est plus possible pour des permutations de grande taille. Pendant l’énumération des
petites permutations, il a été observé que l’ensemble des meilleures permutations conte-
nait toujours une permutation avec une propriété particulière appelée even-odd (chaque
bloc d’indice pair était envoyé sur un bloc d’indice impair et inversement). Des travaux
plus récents ont permis l’énumération de permutations de plus grande taille (jusqu’à 36
blocs) avec cette propriété particulière [CGT19, DFLM19]. Cependant, il n’y a aucun
résultat permettant de savoir si ces permutations sont les meilleures pour la diffusion.

Comme deuxième contribution, nous proposons une modélisation sous forme de graphe
des permutations des GFN. Nous présentons un algorithme efficace qui exploite la struc-
ture du graphe pour chercher des permutations sans la propriété even-odd et concluons
qu’elles ne peuvent pas diffuser strictement mieux que celles ayant la propriété even-odd,
et ce, pour les permutations jusqu’à 32 blocs. Nous proposons aussi des variations de cet
algorithme pour optimiser d’autres critères que la diffusion.

Génération de modèles. Les distingueurs différentiels sont connus depuis les an-
nées 1990 [BS93, BS90]. Ils consistent à trouver une différence entre deux messages qui
permettent de retrouver avec une bonne probabilité une différence entre les deux textes
chiffrés correspondants. Un composant important des chiffrements pour éviter les dis-
tingueurs différentiels est la Boite-S. La modélisation de recherche d’une différentielle se
fait souvent en deux parties [BN10, FJP13, GLMS20]. La première partie modélise une
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version tronquée du problème où les Boites-S sont approximées. La deuxième partie essaie
d’instancier les solutions tronquées ce qui nécessite de modéliser les Boites-S. La program-
mation par contraintes a montré dans la littérature qu’elle est une solution adaptée pour
modéliser la propagation des différences à travers les Boites-S. De plus, il existe déjà des
outils génériques pour résoudre la version tronquée du problème [LDLS21].

Comme troisième contribution, nous proposons un outil pour générer des modèles
CP pour résoudre l’instanciation de différentielles tronquées. Les modèles sont générés à
partir d’une description simple du chiffrement sous forme d’un graphe. Pour modéliser
ce problème, nous avons dû ajouter des contraintes dans le solveur Choco et nous avons
étudié leur efficacité. Nous proposons aussi une simplification automatique des modèles
et une résolution multicœurs.

Amélioration des solveurs CP. La difficulté des problèmes de cryptanalyse pousse
les solveurs à leurs limites et ils ne sont pas toujours suffisants pour analyser les chiffre-
ments complets (on étudie souvent des versions réduites des chiffrements en considérant
un plus petit nombre de tours). Pour améliorer la recherche de distingueur, proposer
des modèles plus astucieux n’est pas toujours suffisant. Une autre piste consiste donc à
améliorer les solveurs eux-mêmes. Au début des années 2000, l’apprentissage de conflits
(CDCL) a grandement amélioré l’efficacité des solveurs SAT. Pour améliorer les solveurs
CP, une adaptation de l’algorithme CDCL a été développée [Stu10, VS10]. Cependant,
les algorithmes CP-CDCL ont besoin de pouvoir expliquer le raisonnement de chaque
contrainte et déterminer ces explications n’est pas toujours simple.

Comme quatrième contribution, nous proposons un algorithme capable de générer des
explications de contraintes. Nous avons défini un ensemble de règles de réécriture qui
peuvent déduire les explications d’une contrainte à partir d’un ensemble de contraintes
plus petites qui définissent la même relation. Pour valider notre approche, nous avons
montré l’efficacité des explications générées sur les différents problèmes des instances
publiques du challenge MiniZinc.

VIII



TABLE OF CONTENTS

1 Introduction 1
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Symmetric encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Some historical aspects of symmetric cryptography . . . . . . . . . 2
1.2.2 Stream ciphers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.3 Block ciphers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.4 Lightweight encryption . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.1 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.2 Differential distinguisher . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.3 Other distinguishers and their corresponding attacks . . . . . . . . 10

1.4 Tools to find distinguishers . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4.1 Linear programming (LP) . . . . . . . . . . . . . . . . . . . . . . . 14
1.4.2 Boolean satisfiability (SAT) . . . . . . . . . . . . . . . . . . . . . . 15
1.4.3 Constraint programming (CP) . . . . . . . . . . . . . . . . . . . . . 16
1.4.4 MiniZinc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.5.1 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Superpoly recovery on Trivium 21
2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.1 Trivium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.1.2 Cube attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1.3 Monomial prediction . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 New graph representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.1 Graph of Trivium . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.2 Doubling patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2.3 Arity approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3 New models using our graph representation . . . . . . . . . . . . . . . . . . 42

IX



TABLE OF CONTENTS

2.3.1 SAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.3.2 CP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.3.3 MILP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.3.4 Results regarding the CP and MILP models . . . . . . . . . . . . . 48

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.4.1 Nested monomial propagation . . . . . . . . . . . . . . . . . . . . . 50
2.4.2 Nested graph model and new patterns . . . . . . . . . . . . . . . . 50
2.4.3 Ternary world of Trivium . . . . . . . . . . . . . . . . . . . . . . . 50
2.4.4 Graph model on Grain . . . . . . . . . . . . . . . . . . . . . . . . 51

3 Diffusion analysis on Feistel ciphers 55
3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2 Related work on diffusion in GFNs . . . . . . . . . . . . . . . . . . . . . . 61
3.3 New representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3.1 Boolean matrix product . . . . . . . . . . . . . . . . . . . . . . . . 69
3.3.2 Successors union set . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.3.3 Graph representation . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.3.4 GFN graph as automaton and regular expressions . . . . . . . . . . 77

3.4 New strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.4.1 New recursive path algorithm . . . . . . . . . . . . . . . . . . . . . 82
3.4.2 Results for the non-even-odd case . . . . . . . . . . . . . . . . . . . 85

3.5 New criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.5.1 Number of paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.5.2 Number of S-Boxes . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.5.3 Maximum S-Box path . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.6 Towards a lower bound proof for the general case . . . . . . . . . . . . . . 97
3.6.1 An interesting example . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.6.2 Decaying trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4 Automatic generation of CP models 103
4.1 Tagada . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.1.1 Differential cryptanalysis . . . . . . . . . . . . . . . . . . . . . . . . 104
4.1.2 How Tagada works . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.1.3 First step results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.2 Model generation for the second step . . . . . . . . . . . . . . . . . . . . . 109

X



TABLE OF CONTENTS

4.2.1 Modelling DDT with table constraints . . . . . . . . . . . . . . . . 109
4.2.2 Modelling other operators . . . . . . . . . . . . . . . . . . . . . . . 111

4.3 Connect the two steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.4 Second Step Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.4.1 Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.4.2 DAG simplification . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.4.3 Competitive parallel solving . . . . . . . . . . . . . . . . . . . . . . 120

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.6 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5 Explanations in Constraint Programming 123
5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.1.1 CP modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.1.2 CP solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.2 Related work on explanations for CP . . . . . . . . . . . . . . . . . . . . . 128
5.3 New explanations from decompositions . . . . . . . . . . . . . . . . . . . . 132
5.4 Rewriting system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.4.1 Intuition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.4.2 Rewriting algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.5 Implementation and results . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.6 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6 Conclusion 143
6.1 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.2 Perspective for future work . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Bibliography 147

List of figures 177

XI





Chapter 1

INTRODUCTION

1.1 Context

Cryptography is the art and science of transforming communication into puzzles,
guarding the digital realm’s most vital treasures with the power of mathematical wiz-
ardry. Nowadays, our connected societies use cryptography everywhere. For example, the
web protocol for secure connections (HTTPS) can be resumed by two entities (usually
named Alice and Bob) who want to share a message with some properties:

— Confidentiality, be sure that only Bob can understand the message sent by Alice.
— Integrity, be sure that the message was not modified.
— Authentication, be sure that the message was sent by Alice.
Confidentiality is generally obtained with a cipher, an algorithm that transforms the

message, called the plaintext, to a random-like message, called the ciphertext. This process
is called encryption. The ciphertext can then be sent to Bob, who can decrypt the cipher-
text back to the plaintext. The encryption algorithm originally uses one secret key, and
this key is known only by Alice and Bob. Thus, they are the only ones able to encrypt and
decrypt the messages. When Alice and Bob share a secret key, the encryption algorithm is
called a symmetric cipher. A straightforward example of symmetric cipher is the Caesar
code. Each letter of a message is replaced by another according to a shift. In this example
the shift is the secret key. However, this cipher is weak because it can be brute-forced
by trying the 26 possible shifts. Symmetric cipher methods were upgraded over the years
alongside the development of machines and computers, but the question of how to share
the secret key is not trivial.

In the late 1970s, an asymmetric cipher was invented [DH76, RSA78]. Asymmetric
ciphers use two keys, a private key and a public key. To illustrate this, we can think of
the public key as a box with a padlock and the secret key as the padlock’s key. Alice
gives the box with the open padlock to Bob and keeps the key. Bob puts his secret in
the box and locks the padlock before sending it back to Alice. Alice can then open the
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box and recover the secret. In RSA [RSA78], the secret key is two prime numbers, and
the public key is the product of these two primes. The security of this cipher then relies
on the hardness of recovering the two primes from their product. Asymmetric ciphers are
very slow compared to symmetric ciphers. Therefore, they are mainly used to exchange a
secret key. Alice and Bob then know the same secret key and can use a symmetric cipher
to communicate. In 1994, a quantum algorithm was discovered to find prime factors, and
it was much more efficient than classical algorithms i.e., it has a theoretical complexity
polynomial in the size of prime factors [Sho94]. Consequently, the National Institute of
Standards and Technology (NIST) started a competition to standardize a new cipher
relying on a different problem than factorization as a replacement. Since it should resist
the quantum algorithm, these new ciphers will be called post-quantum algorithms, even
if we do not know when a strong enough quantum computer will be built to break RSA.
In the end, these new algorithms may replace RSA but the use of symmetric cipher is still
mandatory.

Our starting example of Alice and Bob with the basic security properties requires a sim-
ple protocol. However, more complex configurations and security properties can be imag-
ined. In our societies, we may need to have end-to-end auditable voting systems [RBH+09],
blind signatures [Cha83], secure multiparty computation [CDN15], . . . For these protocols,
we need asymmetric and symmetric ciphers, and we need them to be secure.

Cryptography has adopted binary encoding with modern machines: plaintext, cipher-
text, and keys are all bitstrings in F∗

2. Therefore, security is often expressed as a comparison
to the key length in the number of bits. A cipher is considered "broken" when an algorithm
can find the secret key without trying all the possible keys. Of course, the key length is
also significant to say that a cipher is safe. A non-broken cipher with a key whose length
is too small can be brute-forced.

1.2 Symmetric encryption

The work of this thesis will focus on symmetric ciphers.

1.2.1 Some historical aspects of symmetric cryptography

The first cryptographic technique in human history is probably long forgotten but we
have some records of substitution ciphers, like the Caesar code, in Egypt, Mesopotamia,
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Greece, India, Roman empire, Arabic world, . . . The invention of new means of commu-
nications, computers, and then World Wide Web gave rise to new needs of cryptography.
The first applications were military communications. In 1883, it was stated in a French
military journal that a good cipher should be secure but not secret [Ker83]. If the secret
key is the only secret, then the enemy can discover the cipher without consequences. Note
that ciphers were simple electromagnetic machines at this time. The most famous one
is Enigma. Invented in 1918 in Germany, it was widely used by the Axis military forces
during World War Two to secure radio communication. The number of possible keys was
around 267, so the cipher was considered secure. However, in 1938, the Poland mathe-
matician M.A.Rejewski and his colleagues made a machine that could decrypt Enigma
ciphertexts [Rej81]. It exploited some redundancy in the plaintexts to guess the key ef-
ficiently. The decryption machine was shared with the Allied forces and was upgraded
by A.Turing and his team. It is estimated that this cryptanalysis had a considerable
impact on the outcome of the war. In 1973, the American National Bureau of Stan-
dards (later renamed NIST) called for candidates ciphers for a Data Encryption Standard
(DES) [S+99], a symmetric cipher for non-military uses. The winner was a cipher made
by H. Feistel and his colleagues at IBM [Smi71] with the participation of the NSA. This
cipher was replaced in another competition in 1997-2001 by the Advanced Encryption
Standard (AES) [Ano97]. DES was replaced because the size of the key was too small
(56 bits), whereas AES keys have 128 to 256 bits. Cipher competition for standards is
an excellent way to stimulate research around new ciphers and allows everyone to have a
better trust in their robustness. The two latest competitions are the post-quantum cryp-
tography standardization (2016-2022) for asymmetric cryptography (a second round is
planed), and the lightweight cryptography standardization process (2018-2023) for sym-
metric ciphers. Each competition is composed of several rounds where all the candidate
ciphers are studied and attacked by the cryptographic community.

In symmetric cryptography, there is one cipher that cannot be cracked. It is called
the One-Time Pad. The first version was invented for telegram bank communications
in 1883 [Mil82]. However, it requires a key at least as long as the plaintext. The cipher
is simple and relies on only one operator, usually the XOR. Each bit of the plaintext is
XORed with a bit of the key. To decrypt the message, each bit of the ciphertext is XORed
with the same key. With this method, if the key is "random" and used only once, the cipher
provides absolute security. However, we cannot afford long, "random", and single-use keys
in modern cryptography, so we need to find an alternative.
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1.2.2 Stream ciphers

Stream ciphers are deterministic algorithms that can generate pseudorandom sequences
of bits from a key. The output of a stream cipher is an infinite sequence of bits that can
be used like the key of a One-Time Pad cipher. Since pseudorandom generators are deter-
ministic, this sequence will loop in the end, so stream ciphers must be reset with a new
key from time to time.

A widely used structure to build stream ciphers is feedback shift registers (FSR) [Mas69,
Rue84]. They are composed of an internal state called a register of bits, and a clock. At
each clock tick, a new bit is computed with a feedback function that depends on the
bits of the register. This new bit is put at the beginning of the register, and each bit is
shifted. The last bit of the register goes out and becomes the next bit of the sequence.
The register bits are usually initialized with the secret key. The feedback function is often
linear (LFSR). For example, in Figure 1.1, Si is a bit of the register and ci is a coefficient
of the linear feedback function. The feedback function can also be non-linear (NLFSR) if
at least one of the XOR of Figure 1.1 is replaced by an AND.

S1 S2 S`−1 S`

c1 c2 . . .

. . .

. . .

. . .

. . .

. . .

c`−1 c`

Figure 1.1 – Feedback shift register

A stream cipher can use one FSR or combine multiple FSR to compute a single output
sequence bit (see Figure 1.2).

Early standards were mostly stream ciphers (A5/1 (1987), RC4 (1987), E0 (1999)),
but they did not age well. Most of them were broken over the years, and some even had
backdoors [BSW00, BBFL22].

Shift registers-based stream ciphers were widely used in early cryptography because
they can be implemented efficiently. Indeed, shift registers can be directly implemented
in a simple electronic circuit called a flip-flop cascade.

Block ciphers may have replaced stream ciphers in the new standards because we have
a better understanding of block cipher security.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Figure 1.2 – Stream cipher based on three LFSR (A5/1)

In 2004, the eSTREAM competition introduced new resistant stream ciphers, in par-
ticular the NLFSR Trivium [CP08] that will be the target of Chapter 2.

1.2.3 Block ciphers

Unlike stream ciphers, block ciphers only operate on fixed length groups of bits called
blocks. The use of blocks seems more specific than stream ciphers, but a single key can be
used to encrypt multiple blocks thanks to algorithms called modes of operations [DSD01].
A poorly designed mode paired with an unbreakable cipher can be a weak encryption
algorithm (for example the Electronic Codebook Block mode). Some modes can also
provide interesting properties like authentication and integrity (for example the Galois
Counter Mode).

In [Sha49], Shannon established two essential criteria to design a secure cipher, namely
Diffusion and Confusion.

Diffusion is the fact that each bit of the ciphertext must depend on all the bits
of the plaintext. This is usually obtained with permutations and other linear op-
erations like the XOR.
Confusion is the idea that each bit must be encrypted in a "complex way". Intu-
itively, we can say that the cipher needs non-linear operators. For efficiency reasons,
the most used non-linear operator is the S-Box, a non-linear function described by a
small table (usually 4 or 8 bits). Bit products and finite field arithmetic operations
like multiplications and additions can also be used.

The search for good S-Boxes is a complex topic that will not be studied in this thesis.
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There are a lot of block ciphers, but they can be roughly put into the two following
categories.

Substitution-permutation Network (SPN). SPN are ciphers that alternate two
types of layers:

— The substitution layer is usually a parallel application of S-Boxes. Its role is to
provide confusion.

— The permutation layer is a series of linear operators to provide diffusion.

AES is a good example of SPN [DR99]. The internal state of AES is a 4 × 4 matrix
of bytes (of 8 bits each). Like most symmetric ciphers, AES is composed of one iterated
function called the round function. The round function of AES is composed of four layers
(see Figure 1.3).

— AddRoundKey (AR) adds the key to the state with a bit-wise XOR.
— SubBytes (SB) is a parallel application of an S-Box on each byte.
— ShiftRows (SR) ensures diffusion in the rows by shifting the bytes.
— MixColumns (MC) ensures diffusion in the columns with a matrix multiplication

on each column.

AR SB

S-Box

x
x
x
x

SR

C ←M× C

x
x

x
x

MC

Xi−1 Xi

Figure 1.3 – AES round function

Feistel Networks. Feistel network ciphers are the second big category of block ciphers.
The main advantage of Feistel networks is that they provide a structure that allows the
usage of non-invertible functions. In contrast, each SPN operator must be invertible for
the decryption algorithm. There are many Feistel network variations. Chapter 3 of this
thesis will study one of them, the Generalized Feistel Network.

DES is an excellent example of a Feistel cipher [Smi71]. The plaintext is split into two
blocks of equal length (X0, X1). A non-invertible function F is used to compute the blocks
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of the next round (X1, X0 ⊕ F (X1, Kr)) with Kr a key. In this example of Feistel cipher,
the F function is an SPN i.e., it is composed of an S-Box layer and a permutation layer.

F

X0 X1

X1 X0 ⊕ F (X1,Kr)

Figure 1.4 – DES round function

SPN and Feistel networks use round functions that may need a key at each round (Kr).
For example the AddRoundKey operator in AES and the F function of DES. The round
keys are generated from the secret key with a key schedule algorithm. If a key schedule is
too simple, it may introduce a bias in the cipher so this component must be studied as
well [KM04].

1.2.4 Lightweight encryption

The latest symmetric competition organized by the NIST (2018-2023) was about
lightweight ciphers. The idea was to select symmetric ciphers more suited for constrained
environments. A lightweight cipher can be designed for a specific environment or simply
for global efficiency [BP17]. Since there are different use cases, these ciphers may not
have the same efficiency goals. They are generally designed to have some of the following
properties: fast throughput, low number of logical gates, or small power consumption.
Moreover, lightweight ciphers have to be secure like all the other ciphers. The design
phase of lightweight ciphers may also be analysed for attacks on the physical chip because
the hardware implementation is central.

There is a wide variety of lightweight block and stream ciphers and most of them
are referenced and compared in [BP15]. Block and stream ciphers both were proposed
to the NIST Lightweight Cryptography competition and the two ideas can be combined
in several ways since stream-inspired block ciphers [CDK09] have been proposed and
conversely [EJMY19].
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1.3 Attacks

To convince that a new symmetric cipher is secure, it must resist all known attacks.
Therefore, the definition of a cipher is always followed by a security analysis to evaluate
the resistance of the cipher against each known attack.

Brute-force. The brute-force attack is when the adversary tries all the keys to find the
correct one. However, the complexity of the brute-force attack is 2k (with k the number
of bits of the key) so it is impracticable for ciphers with a reasonable number of security
bits like 128 bits. In cryptanalysis, a cipher is considered "broken" if an algorithm can find
the key faster than the brute-force attack.

1.3.1 Security

The security can be formalized as follows. Let F be a vectorial Boolean function taking
as argument the key K ∈ {0, 1}k and a message x ∈ {0, 1}n i.e.,

F : {0, 1}k × {0, 1}n → {0, 1}n

For each key K, the function must be a permutation because we need its inverse to de-
crypt the messages. To be secure, this permutation must be a pseudorandom permutation
i.e., it must be indistinguishable from random noise. Because we cannot simply create a
pseudorandom permutation, we will estimate its security by searching how to distinguish
the function from a random noise.

To do so, we will define an adversary and an oracle. The oracle is an entity that will
randomly provide either F (K, x) or a random noise in {0, 1}n to the adversary for each
input x. The goal of the adversary is then to distinguish the cipher from the random noise.
If the adversary has an algorithm that can find the right answer with a probability higher
than 0.5, the cipher is considered as not secure. In practice, the adversary may not have
full access to the cipher. To take this into account, we will use different attacker models
such as:

— Ciphertext only: The adversary has only access to the ciphertexts.
— Known plaintext: The adversary knows some plaintext-ciphertext pairs.
— Chosen plaintext: The adversary can choose plaintexts and get their corresponding

ciphertexts.
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— Chosen ciphertext: The adversary can choose ciphertexts and get their correspond-
ing plaintexts.

— Related key: The adversary can get ciphertexts of the same plaintext with other
keys derived from the secret key. The other keys are derived in a known way.

Each model corresponds to a real world situation and some distinguishers may not be
compatible with the most restrictive attack models.

The attack. Making the attack is possible if the distinguisher has a high enough prob-
ability and the attack model is possible in practice. The attacker searches for the distin-
guisher with plaintext, ciphertext or related-key attacks depending on the attack model.
The attacker can then recover some messages or it can deduce the secret key. Practical at-
tacks are rarely made, and a cipher is deprecated if a distinguisher with a high probability
is found on it. We will illustrate in more detail a common distinguisher, the differential
distinguisher [BS90].

1.3.2 Differential distinguisher

Differential analysis is a method to analyze the effect of particular differences in plain-
text pairs on the differences of the resultant ciphertexts. Differential analysis was first
introduced in [BS93, BS90] to study the cipher DES and some DES variants. It was then
applied to many other ciphers [MPP09, NPSS10, SY11, BPW15, BGG+23b, MPRS09,
MRST09, GP10, Gil14, GR20].

A difference is the result of a substraction between two messages. In cryptanalysis,
the bit-wise XOR operation is mainly used, and we will note it + for clarity. For a cipher
function F , a is an input difference if x and x+a are both plaintexts or both keys. a would
be an output difference if x and x+a were ciphertexts. There is a differential distinguisher
against F for a pair of differences (a, b) if the probability that F (x) = F (x+a)+ b is high
i.e., the input difference a has a good probability of ending up to the output difference
b. This behaviour is not present in pseudorandom functions, so we do not want it in any
cipher. Since we cannot search for all pair of differences a and b to find a distinguisher
because there are too many of them, we need to find more efficient methods.

In differential analysis, we decompose the study of the propagation of the input differ-
ence a through all the cipher operators. The paths of the difference is called a differential
trail. The linear operators of the cipher like the XOR will always propagate the difference.
For example, if we have two variables x and y in a cipher that end up with the differences
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a and b, then the difference in the variable z = x + y is a + b. However, the confusion part
of a cipher is composed of non-linear operators that will propagate a difference with a
probability lower than one. For example, we can compute the probability of every input-
output pair of differences of an S-Box. If there are more than one S-Box in the trail,
their probabilities are multiplied assuming the Markov property of the cipher i.e., the
difference probability is independent of the plaintext [LMM91]. The problem of searching
a differential trail is usually hard. However, we only need to be sure that the best trails
have a low enough probability to say that a cipher is secure.

Truncated trails The truncated differential analysis simplifies the idea of a differential
trail [Knu94]. Each difference will be replaced by a single Boolean variable. This variable
encodes the existence of the difference without tracking its value. For the probability
of propagation through the S-Boxes, we will take the best probability for the attacker.
The best truncated trail then gives an upper bound on the probability of differential
trails. If this probability is low enough, we can stop the differential analysis there. In
cryptographic papers, the truncated trails results are often resumed by the lowest number
of S-Boxes in the best trail (we say that there are n active S-Boxes). When the truncated
trails have a promising probability, we must try to instantiate them with real differences.
Because the truncated trails are a simplification of real trails, they may not lead to real
differential trails. In general, the search for differential distinguishers is separated into
two steps [BN10, FJP13, GLMS20]. The first step is the search for truncated trails. The
second step tries to instantiate the truncated trails with real difference values. The second
step of this problem will be studied in more details in Chapter 4.

1.3.3 Other distinguishers and their corresponding attacks

There are many distinguishers in cryptanalysis [SPQ03]. We give in this section a short
overview of the most famous ones.

Boomerang attack. Boomerang attack is a differential-style attack in which the at-
tacker does not try to cover the whole cipher with a single highly-probable differential
pattern. Instead, the attacker tries to find two high-probability differentials that are not
necessarily related to each other but together cover the whole cipher. In its basic version,
it requires the ability to make chosen-plaintext and chosen-ciphertext queries [Wag99].
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Variants of the boomerang attacks are called rectangle attack [BDK01] or sandwich at-
tack [DKS10].

Impossible differential attacks. Impossible differential attacks are an other differen-
tial variant [BBS99]. They consist of finding differentials trails with a probability of 0.
These trails can be used by the adversary to test less keys.

Higher order differential attacks. Higher order differential attacks extends the dif-
ference propagation to multi-difference propagation. The idea is to study the propagation
of a sum of differences to a single output difference by exploiting a low algebraic degree
of the cipher [Knu94].

Integral attacks. Integral attacks (also called square [DKR97] or saturation or multi-
set attacks) are chosen plaintext attacks studying the propagation of well-chosen sets of
plaintexts through the cipher. It has the particularity that we get information only by
considering specific sums of ciphertexts.

Linear attacks. Linear cryptanalysis is a known plaintext attack that exploits a linear
relation between the inputs and outputs of a cipher [Mat93]. If a linear relation has a good
probability, it can be used as a distinguisher to make an attack. This might happen if the
S-Boxes and the other non linear operators of a cipher have a close linear approximation
and if they are few.

Interpolation attacks. Interpolation cryptanalysis is a known or chosen plaintext at-
tack applicable to ciphers for which the round function can be written as a reasonably
simple algebraic expression [JK97]. It relies on the application of the Lagrange interpola-
tion formula.

Meet-in-the-middle attack. Meet-in-the-middle attack is a known plaintext attack
that relies on the idea to utilize both the encryption and decryption algorithms of a cipher
and try to find pairs of keys that are compatible [DH77]. This attack has shown great
results on 2DES and is the main reason why we use 3DES, a successive application of
three DES ciphers.
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Slide attacks. Slide attacks exploit the degree of repetitiveness of a block cipher and
thus are applicable to iterative block ciphers with a periodic key schedule [BW99]. This
attack is unrelated to the number of rounds.

1.4 Tools to find distinguishers

Until recently, the search of distinguishers was performed with dedicated algorithms.
However, as we have seen in the previous section, there are a lot of distinguishers and a
lot of ciphers. To ensure their robustness, we must search for each distinguisher on each
cipher. In parallel, the operation research methods and solvers gained in efficiency and
became attractive tools to solve these cryptographic problems. A solver is a toolbox of
solving methods that are used to solve a model. The advantage of a solver is that you
only need to declare the model and the solver will solve it, you do not need to implement
the state of the art solving methods. Thus using a solver can save a lot of development
time. However, solvers act as black boxes and this can become problematic if we want to
control it precisely. Moreover, there are many ways to model the same problem and there
is often one model that will be solved more quickly by the solver. Some early applications
to cryptanalysis led to unsatisfactory results [Mas99, MZ06, Sta14]. Indeed, the model
and solver choice is essential. For example, a non-linear problem can be linearized but
a linear solver may struggle to solve it. In the solver efficiency comparison on truncated
differentials on the cipher Skinny [DDH+21], the solvers have big efficiency differences and
the fastest method was a handmade algorithm. These results show the trade-off between
solvers that need a carefully chosen model and the dedicated methods that need to be
built from scratch.

Operations research. The term "operations research" originates from using automatic
analytic methods to estimate losses in military operations. These techniques became very
useful with the development of computers. Indeed, they can be applied in a lot of in-
dustrial situations. Two prominent examples are transportation and scheduling problems.
For example, the travelling salesperson problem (TSP) is a problem where a person or a
vehicle needs to find the shortest path to visit all the cities of a country [ABCC11]. A
complex example of scheduling problem is finding the optimal schedule for all students
and teachers of a university. In practice, each situation is specific, and there may be a lot
of variants. Transportation problems can involve multiple vehicles, timing constraints, ca-
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pacity constraints, energy constraints, pollution constraints, . . . Transportation problems
also depend on the terrain, for example, rail, sea, road, air, space, pipeline, cable or more
than one of these. Scheduling problems have even more variants because every industrial
process can be scheduled and some cases may involve both problems. For example, the
maintenance schedule of trains or planes impacts the transportation problem. For the
largest problems, finding the optimal solution might take too much time. Therefore, the
exact methods are sometime replaced by incomplete methods. Rather than giving the op-
timal solution, the incomplete methods find a "good" solution in reasonable time without
any proof of how good this solution is. However, in cryptographic problems, we often want
security guarantees, so we mainly use exact methods to recover the best solution or all
the solutions.

For each problem, deciding the adapted solving technique is an important ques-
tion. Operations research includes the development and application of a wide variety of
problem-solving techniques such as Linear Programming (LP), Integer Linear Program-
ming (ILP), Constraint Programming (CP), Boolean satisfiability (SAT), Satisfiability
modulo theory (SMT), . . .

We will present these techniques with the following running example:

Example 1.1 (nqueens) Let a chess board of size n × n. We want to place the most
queens possible such that no two queens share the same line, column, or diagonal. See a
solution for the 4queen problem in Figure 1.5

Q

Q

Q

Q

Figure 1.5 – 4queen solution
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1.4.1 Linear programming (LP)

A linear program (LP) includes constraints in the form of linear equalities and inequal-
ities and a linear objective function to maximize or minimize. It operates on real variables.
The historical algorithm used to solve a linear program is the simplex algorithm. This
idea originated in the Fourier–Motzkin elimination methods in 1827, but it was formalized
in 1947 by Dantzig [Dan02]. The name simplex refers to the simplest possible polytope
in any dimension. In the same years, the interior-point method (or barrier method) was
also invented but was not suitable for computers of the time. In 1984, an efficient barrier
algorithm was proposed with better performances than the simplex. However, it was not
suited for all situations, so both algorithms are available in most solvers nowadays. An
essential part of the solving process uses the dual problem. Indeed, linear inequalities
form a polytope, and we can invert it to have a dual polytope that gives bounds on the
objective or optimallity proofs.

An Integer Linear Program (ILP) is a LP with only integer variables The idea orig-
inates in 1958 [Gom02, Gom10]. The solving algorithm is a branch-and-cut algorithm.
This algorithm uses a decision tree. A decision is the assignment of a value to a variable.
After each decision, a relaxation of the ILP is solved as an LP. The solution is used to find
some bounds and new constraints called cuts [Chv73, Raj90] to help the next decision. If
the problem becomes infeasible, a backtracking procedure changes a previous decision to
create a new branch. The well known Mixed Integer Linear program (MILP) uses both
real and integer variables.

Example 1.2 The nqueen problem can be described with the following ILP. The variables
of the problem are Boolean, they represent the presence of a queen on a square (1.1). The
objective is to maximize the number of queens (1.2). The first constraint ensures that there
is no more than one queen by column (1.3). Same for the lines with constraint (1.4). And
same for the two diagonals with the last four constraints (1.5),(1.6),(1.7),(1.8).

xi,j =

1 if there is a queen on the square i, j

0 otherwise
(1.1)

max
n∑

i=1

n∑
j=1

xi,j (1.2)

14



1.4. Tools to find distinguishers

∑n

i=1 xi,c ≤ 1 ∀c ∈ J1, nK (1.3)∑n

j=1 xl,j ≤ 1 ∀l ∈ J1, nK (1.4)∑n−c

d=0 x1+d,c+d ≤ 1 ∀c ∈ J1, nK (1.5)∑n−l

d=0 xl+d,1+d ≤ 1 ∀l ∈ J1, nK (1.6)∑c−1
d=0 x1+d,c−d ≤ 1 ∀c ∈ J1, nK (1.7)∑n−l

d=0 xl+d,n−d ≤ 1 ∀l ∈ J1, nK (1.8)

MILP solvers have gained the most interest in the cryptographer community, espe-
cially with the performances of the solver Gurobi [SHW+14, BJK+16, ST17, MWGP11,
HSWW20, HLM+21]. Gurobi is a commercial solver known for his strong preprocess i.e., a
model simplification algorithm [Gur21]. It is used in academic research because it has an
academic licence and because it is one of the best MILP solvers, as we can see on some
comparison benchmarks 1 on MILP problem libraries like [GHG+21].

1.4.2 Boolean satisfiability (SAT)

A Boolean satifiability problem is a problem composed of Boolean variables and simple
logical operators such as OR, AND, and NOT (∨,∧,¬) [Coo71]. The SAT problem is a
Boolean formula in the Conjunctive Normal Form (CNF) i.e., a conjunction of disjunction
of variables or their negation. Each disjunction is a constraint called a clause and the goal
is to determine if the problem is satisfiable or not i.e., if there is an assignment of variables
where no clause is false.

The state of the art SAT solving algorithm is called the Conflict Driven Clause Learn-
ing algorithm (CDCL) [SS96]. This algorithm uses a decision tree. After each decision,
the clauses are simplified with an algorithm called the unit clause propagation. If the
problem becomes infeasible, a backtracking procedure changes a previous decision to cre-
ate a new branch. The specificity of the CDCL algorithm is that when the problem
becomes infeasible, a learning algorithm will search in the decision tree for the respon-
sible previous decisions that explain this failure. This will produce an explanation of
the conflict that can be added to the model as a new clause in the CNF. The conflict
learning algorithm is very efficient but we must take care of the cases where the learnt
clauses would be too many. SAT solvers were used for various cryptanalysis problems like

1. https://plato.asu.edu/ftp/milp.html
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[MZ06, Sto16, DKM+17, Laf18, GLST22]. The best SAT solvers are compared in annual
competitions 2.

Example 1.3 The nqueen problem can be described with the following CNF. The variables
of the problem are Boolean, they represents the presence of a queen on a square (1.9). The
satisfaction problem is to know if we can put n queens on the n× n board. Therefore we
need at least one queen on each column (1.10) and each line (1.11). We also want no
more than one queen by column (1.12) and line (1.13) and same for the diagonals with
the clauses (1.14),(1.15),(1.16),(1.17).

xi,j =

true if there is a queen on the square i, j

false otherwise
(1.9)

∨n

i=1 xi,c ∀c ∈ J1, nK (1.10)∨n

j=1 xl,j ∀l ∈ J1, nK (1.11)

¬xi,c ∨ ¬xi′,c ∀i∀i′∀c ∈ J1, nK, i′ ̸= i (1.12)

¬xl,j ∨ ¬xl,j′ ∀j∀j′∀l ∈ J1, nK, j′ ̸= j (1.13)

¬x1+d,c+d ∨ ¬x1+d′,c+d′ ∀d∀d′ ∈ J0, n− cK, d′ ̸= d,∀c ∈ J1, nK (1.14)

¬xl+d,1+d ∨ ¬xl+d′,1+d′ ∀d∀d′ ∈ J0, n− lK, d′ ̸= d,∀l ∈ J1, nK (1.15)

¬x1+d,c−d ∨ ¬x1+d′,c−d′ ∀d∀d′ ∈ J0, c− 1K, d′ ̸= d,∀c ∈ J1, nK (1.16)

¬xl+d,n−d ∨ ¬xl+d′,n−d′ ∀d∀d′ ∈ J0, n− lK, d′ ̸= d,∀l ∈ J1, nK (1.17)

1.4.3 Constraint programming (CP)

Constraint programming (CP) is a much more flexible paradigm than the others. It
was invented in the mid 70s ([Mon74, Lau78, Ros88]) to solve combinatorial problems.

The main definitions and usual notations can be found in the Handbook of Constraint
Programming [RvBW06]. A constraint program is composed of two things:

— Variables are defined with a domain. The domains are usually finite (a set of
integers) or sometime infinite (real bounds) but some variables can also be sets
or graphs as long as you can define their domains. For example, a graph variable
would have a graph domain with a lower bound graph containing the mandatory

2. www.satcompetition.org
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nodes and edges and an upper bound graph containing the possible nodes and
edges.

— Constraints are relations over variables. Unlike LP and SAT that only support
linear equations and CNF clauses, the CP constraints can be of any type as long
as we can define their relation (also called contract) and that this relation can be
used in an algorithm called filtering algorithm. The filtering algorithm removes the
impossible values of the variable domains according to the constraint.

To solve a CP model, the solver uses a backtracking algorithm paired with the filtering
algorithms of each constraint in the model. The solving process starts with all the possible
values in each variable domain. According to a strategy, the solver takes a decision (for
example, a variable is assigned to a value). After this decision, the filtering algorithms are
called to remove all the inconsistent values in the other variables domains. This process
is called constraint propagation. When no more values can be filtered, the solver makes
another decision and repeats the process. If a filtering algorithm empties a domain, we
have a conflict and must backtrack to a previous decision. The solver stops when it has
found one or more solutions or if all the decisions lead to conflicts i.e., the problem has
no solution. The fact that constraints have independent filtering algorithms makes CP
extremely expressive and expandable.

Example 1.4 The nqueen problem can be described with the following CP constraints.
The variables of the problem are integers. Each variable represents a line and each integer
value represents the column of the queen. For example, x2 = 3 is a queen at line 2 and
column 3 (1.18). To ensure that all queens are on different columns we use the constraint
AllDifferent (1.19). We use the same constraint on the diagonals (1.20),(1.21).

xi ∈ J1, nK ∀i ∈ J1, nK (1.18)

AllDifferent({xi, ∀i ∈ J1, nK}) (1.19)

AllDifferent({xi + i, ∀i ∈ J1, nK}) (1.20)

AllDifferent({xi − i, ∀i ∈ J1, nK}) (1.21)

To compare CP solvers, there is the MiniZinc 3 and xcsp 4 competitions. Some of the

3. www.MiniZinc.org/challenge
4. www.xcsp.org/competitions
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best ones are Or-tools 5, chuffed 6 and Choco [PF22]. Although Constraint programming
is less used, it has been successfully applied to differential cryptanalysis [GMS16, ENP19,
DDH+21]. Sometimes, the cryptographic problem can be split into multiple smaller prob-
lems. For example, the differential analysis can be divided into two problems, enumerate
the optimal truncated trails and instantiate the trails with differences. It turns out that
CP solvers are very efficient in the second step. The differential analysis described in
[DDH+21] is then a combination of methods, an ad hoc method for the first step and a
CP solver for the second one. However, there are many ciphers and many distinguishers,
and developing a model for each solver for every distinguisher to find the most appropriate
one is time-consuming. Hopefully, there are modelling languages that can communicate
with multiple solvers.

1.4.4 MiniZinc

One of the best ways to find the appropriate solver for a problem is to use the MiniZinc
modelling language. With MiniZinc, we can specify the problem variables and constraints
using a simple high-level syntax. Indeed, MiniZinc is not a solver itself, but a MiniZinc
model can be translated into the FlatZinc format. This FlatZinc representation is more
machine-readable and is designed to close the gap between the model and the solvers.
Many solvers can understand and solve problems in the FlatZinc format, for example,
Gurobi, PicatSAT, OR-tools, Choco, . . . For each solver we choose to connect to MiniZinc,
the FlatZinc model will automatically rewrite the MiniZinc constraints into constraints
in the solver’s scope. For example, an integer product constraint in MiniZinc will be
decomposed into a set of linear equations for the linear solvers or a CNF for SAT solvers.
The translation to the solver constraints may not be the most efficient one but thanks to
this we can test very different solvers with only one model. We used it for most of our
early analyses.

1.5 Contributions

There are many distinguishers and many ciphers. Since all of them need to be resistant
to all the known attacks, much development is needed. However, the development of

5. github.com/google/or-tools
6. https://github.com/chuffed/chuffed
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operations research methods and solvers is making them viable solutions to solve some
complex problems of cryptography.

This thesis began with the observation that constraint programming was an excellent
paradigm for solving cryptographic problems like differential analysis. The most used
methods in the cryptographic community are MILP and SAT. Therefore, the project
was to work on CP models for other cryptographic problems and CP solving algorithm
enhancement. Although our target was CP modelling, we did not restrain our models to
CP and we also have some competitive MILP models and hand-made algorithms.

The first problem we studied is the search for the main component of the cube at-
tack, the superpoly, with CP techniques. We found that a graph representation of the
stream cipher Trivium made the modelling easier for both MILP and CP. Moreover, this
representation allowed us to highlight new constraints on this problem.

The second problem we studied is the diffusion in the Generalized Feistel Networks,
especially the search for the best diffusing permutation. The CP models we developed
did also tend to a graph representation. With this new representation, we could find new
properties and propose an efficient algorithm to find the optimal permutations.

The third problem we studied was differential analysis. In particular, we were interested
in the development of a generic tool to generate CP models to solve the second step of the
differential analysis. This was made in collaboration with the tool Tagada that already
implemented the first step. The goal of the tool is to offer a simple DAG representation
of ciphers and the automatic search for differential characteristics on it.

Finally we were interested in the improvement of the CP solving methods. Conflict
learning in CP solvers is not widely used because all the constraint types need an explana-
tion. In this work, we propose an algorithm to generate these explanations. Furthermore,
we demonstrate that these explanations are competitive with the state-of-the-art conflict
learning solvers on public instances.

1.5.1 Thesis outline

Chapter 2 is dedicated to the cryptographic problem of superpoly recovery on the
stream cipher Trivium. The superpoly recovery is the main component of an integral
attack variant called the cube attack. After some prototype models, we published a graph-
based MILP model to recover the superpolys more efficiently [DDGP21]. Our new graph
representation of this problem gives a helpful structure to add more constraints to the
model.
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Chapter 3 concerns the diffusion study in the Generalized Feistel Networks. The dif-
fusion study is essential to make new secure and efficient ciphers. After some prototype
models, we published a path-based ad hoc algorithm to solve this problem [DDGP22]. We
also used a graph representation to define new properties to help the algorithm.

Chapter 4 contributes to the Tagada tool, especially the second part of the differential
analysis handled with CP solvers. From a generic graph representation of any cipher, we
generate and solve CP models of differential analysis with the Choco solver. We compared
the generic approach to the previous works with good results. Genericity and efficiency
are often contradictory, and we tried to implement all the known methods to conceal both.
This work has been accepted at Indocrypt 2023.

Chapter 5 focuses on improving the solving algorithms of CP solvers. We were inter-
ested in the conflict analysis in CP solvers, particularly the explanation formulas essential
to this algorithm. We proposed an explanation generator based on a set of constraints.
Our method relies on a rewriting algorithm to deduce new explanations.
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Chapter 2

SUPERPOLY RECOVERY ON TRIVIUM

Introduction

Trivium is a stream cipher with a rather simple description and yet a strong resistance
to cryptanalysis [CP08]. Indeed, one round of Trivium is composed of three equations
plus some bit shifts. These equations have four terms, and the non-linear operation is a
product of only two bits. Therefore algebraic attacks may be very suited. In this chapter,
we first present the cipher Trivium and recall the previous methods used to study the
algebraic structure of stream ciphers. These methods rely on MILP models [HSWW20,
HLM+20] to recover information on the cipher, namely the superpoly. We first tried to
transcribe these methods in CP but we did not get interesting results. Then, we introduce
a new graph representation to recover the superpoly of Trivium. This new representation
allows us to find new forbidden patterns and strengthen the model with new constraints.
This representation also allows us to use previous works on the degree approximation to
implement an efficient strategy. In the end, our graph model can recover the superpoly
of reduced round Trivium at least ten times faster than previous models and opens the
question of exploiting new patterns.
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This contribution supports the following conclusions:
— Trivium can be represented as a simple automaton. From

the automaton, we can generate Directed Acyclic Graphs
(DAGs) representing the Algebraic Normal Form (ANF) of
Trivium.

— DAGs highlight useful doubling patterns that can be used
to constrain the search of specific monomials in the ANF of
Trivium, but these patterns might conflict, so they must be
used carefully.

— The graph model can exploit arity approximation as a search
strategy to be faster than previous divide-and-conquer
strategies.

Takeaway

2.1 Background

This chapter will focus on the analysis of the stream cipher Trivium. We will search
for algebraic properties of this cipher that can be used in cube attacks.

2.1.1 Trivium

Trivium is the Latin word for three-way crossroad and the semantic root of the
word trivial. In symmetric cryptography, it was introduced to renew the stream ciphers.
In the late 90s, stream ciphers were slowly replaced by more recent block ciphers for
communication standards. For example, the GSM standard A5/1 (1987) was replaced
by the block cipher A5/3 (1999) [BSW00] and the stream cipher RC4 (1987) of the wifi
standard IEEE 802.11 was replaced by AES (1997) [MS01, Mir02, SP03]. This decreasing
usage might be explained by a better understanding of block ciphers security and the
improvement of block ciphers efficiency. Indeed, the main reason to choose a stream cipher
over a block cipher was the efficiency gain in a limited hardware setup [Bir04]. In 2004, the
question “Are stream ciphers dead or alive ?” led to the eSTREAM project to promote new
stream ciphers like Trivium [CP08] and Grain [HJM07]. In this chapter, we will focus
on Trivium, a stream cipher with a simple description designed for hardware-oriented
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performances.
Trivium is a Non-linear Feedback Shift Register cipher (NFSR). As its name suggests,

it is composed of a shift register and a non-linear feedback function. A shift register is an
array of bits paired with a notion of clock. For ciphers, the clock is simply the successive
rounds. At each round, the register is shifted, meaning that each bit is stored in the next
index of the register. The last bit of the register is the output, and the first bit is the
input. When we use a feedback function to generate the input bit from some well-chosen
bits of the register, the sequence of output bits can be used as a pseudo-random generator.

The internal state of Trivium is represented by a 288-bit state (s1, s2, . . . , s288) dis-
tributed on three registers A, B, and C. The first state is initialized with the secret key K

and a set of public variables called Initialization Vector (IV ). This vector is mandatory
to be able to encrypt two plaintexts to two different ciphertexts.

To initialize Trivium, the 80-bit secret key K is loaded to register A, and the 80-
bit IV is loaded to register B. The other state bits are set to 0 except the last three bits
in register C. Namely, the initial state bits are represented as:

s1, . . . , s80, s81, . . . , s93 ← K[1], . . . , K[80], 0, . . . , 0
s94, . . . , s174, s175, s176, s177 ← IV [1], . . . , IV [80], 0, 0, 0, 0

s178, . . . , s285, s286, s287, s288 ← 0, . . . , 0, 1, 1, 1

At each round, we first compute the results of the feedback functions t1, t2, and t3 as:

t1 ← s66 + s91s92 + s93 + s171

t2 ← s162 + s175s176 + s177 + s264

t3 ← s243 + s286s287 + s288 + s69

Then, the three registers are shifted, and the first bit of each register is updated as follows:

A ← t3, s1, . . . , s92 B ← t1, s94, . . . , s176 C ← t2, s178, . . . , s287

The state is updated 1152 times, and then, at each new round, an output bit z is produced:
z ← s66 + s93 + s162 + s177 + s243 + s288. Figure 2.1 depicts graphically transitions of the
Trivium stream cipher.

The output bits are then XORed with the plaintext bits to produce the ciphertext.
One key of Trivium can produce up to 264 output bits until it needs to be reset with a
new key.
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Figure 2.1 – The Trivium cipher.

Figure 2.2 – The Trivium cipher in circle shape.

In cryptography, the feedback function was mainly linear, like in A5/1 for GSM com-
munications (composed of 3 linear feedback shift registers) or E0 (1999) for Bluetooth
(composed of 4 LFSRs). However, LFSRs were shown amenable to fast correlation at-
tacks [MS89, ÅLHJ12] and the algebraic attacks [CM03, Arm06]. To explain them briefly,
in a fast correlation attack, we try to find correlations between the keystream and the
output bits. In algebraic attacks, we first look for a set of equations in the secret bits of
the key and the output bits. Then, we solve this equation system to recover the key using
methods like Gröbner bases. Unlike these LFSRs, Trivium uses a non-linear feedback
function with only one bit-product. Despite its simplicity, Trivium showed remarkable
resistance to cryptanalysis. When designing a symmetric cipher, one has to ensure that
it cannot be broken by any known attack. In the security analysis section, the authors of
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Trivium themselves stated that Trivium might be “a particularly attractive target for
algebraic attacks” because of the small size and low degree of the equations. The lineariza-
tion techniques might not be easy to apply, but “other techniques might be applicable and
[...] need to be investigated”. The monomial prediction is a method to find information on
the polynomial of an iterated function [Tod15, HSWW20]. Since its discovery, the mono-
mial prediction has been studied on round-reduced Trivium to find polynomials that can
be used to find distinguishers for algebraic attacks like cube attacks. The community op-
timized this technique to use it on round-reduced Trivium with more and more rounds.
The current maximum number of rounds is 848 rounds [HHPW22]. Trivium has yet to
be threatened by this attack because it has 1152 initialization rounds.

2.1.2 Cube attacks

The cube attack was first introduced in [DS09] and successfully applied against various
stream ciphers, e.g. [ADMS09, DS09, FV13]. It is a descendant of high order differential
attacks [Lai94] and algebraic input vector differential attack [Vie07].

This attack relies on the fact that stream ciphers are Boolean functions and that
Boolean functions can be described by a unique polynomial, their ANF. More precisely,
a stream cipher has n Boolean variables x ∈ Fn

2 as input and one Boolean output z ∈
F2 at each round. Therefore, for each output bit z, the cipher is a Boolean function
f(x1, . . . , xn) = z and its ANF is:

f(x1, . . . , xn) =
∑

I⊆J1,nK

∏
i∈I

xi = z

We will note xI the monomial ∏
i∈I xi.

An important observation is that for any function f , we can recover the monomial with
the highest degree using a sum. For example, the function f(x1, x2) = x1x2+x1+x2 can be
summed with all the possible combination of variables C = {(x1, x2), (x1, 0), (0, x2), (0, 0)}
as:

∑
C

f(x1, x2) = f(x1, x2) + f(x1, 0) + f(0, x2) + f(0, 0)

= (x1x2 + x1 + x2) + (0 + x1 + 0) + (0 + 0 + x2) + (0 + 0 + 0)

= x1x2
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This can be used to make a distinguisher on simple functions [EJT07].
In the context of a stream cipher, the function f has two types of variables: The secret

key variables k and the IV variables v. The cube attack uses the sum idea to sum the
function f on the IV variables. A cube is a monomial on the IV variables vI . Given this
cube, the polynomial of f can then be separated into two polynomials: the polynomial
for which each monomial contains the cube (vIpI) and rest of the ANF q.

f(k, v) = vIpI + q

The polynomial pI is called the superpoly of I in f . It is a polynomial over non-cube
variables.

Example 2.1 Let f be the Boolean function described by the following ANF.

k1v1v2 + k2v3 + v1v2 + k1 + 1

Let vI = v1v2 be a cube. The ANF can be split according to vI as follows:

vIpI = v1v2(k1 + 1) q = k2v3 + k1 + 1

In this example, the superpoly is pI = k1 + 1.

If CI is the set of all the possible values that the variables of the cube can take, then
the sum over all these values reduces to the superpoly:

∑
cI∈CI

(
cIpI + q

)
= pI

Indeed, each monomial in the polynomial q lacks at least one variable from the cube (say
vi). Consequently, these monomials will be eliminated in the sum since they will appear
an even number of times: once when vi = 0 and once when vi = 1. Moreover, only the
cube (1, 1, . . . , 1) will not cancel the superpoly monomials. As a consequence, the sum
over the values of the cube is equal to the superpoly.

To make a cube attack, we need to use cubes to recover superpolys. These superpolys
can then form a system of equations that can be solved in some situations. For example,
if the superpolys have a maximum degree of one, we can set a linear system of equations
and use it to recover bits of the key. For example, if we find a cube vI = v1v2 with a
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linear superpoly of one monomial k1 then we can retrieve this bit of the key. To do so,
we encrypt a message for each value of the cube CI . We sum the output bits of all these
encryptions to recover the first value of the secret key k1. This secret bit is found with
only #CI encryptions and thus reduces the cipher security from 2n to 2n−1 + #CI . If
we use more cubes to recover more bits, the complexity is 2n−s + #(⋃

I∈L CI) where s

is the number of bits recovered, and L is a list of cubes. Of course, this is an example,
and such perfect superpolys may never exist. In the case of a more complex superpoly,
the encryptions will give the right-hand side of a non-linear equation pI = ∑

v∈CI
f(k, v).

To solve the non-linear system, we have to use more complex algorithms like Gröbner
bases, XL or XSL algorithms [AFI+04, CKPS00, CP03, YCC04, CP02]. Therefore, the
efficiency of the cube attacks depends on the ability to find small-degree superpolys with
small cubes, and we will focus on this problem. The most successful methods to retrieve
some superpolys are based on the monomial prediction and its variants.

2.1.3 Monomial prediction

The monomial prediction is a method to recover the ANF of an iterated function.
Fortunately, stream ciphers are iterated functions, so we can use it to search for superpolys.

The monomial prediction has been introduced in [HSWW20] and used in [HST+21]
to find the best-known superpolys for Trivium, Grain, and Kreyvium (a Trivium
variant). The monomial prediction uses a notion of trail. A trail is the propagation of a
monomial through iterated functions. We introduce it with the following example.

Example 2.2 (Running example) Consider the functions f and g defined as follows:

(y1, y2) = f(x1, x2, x3) = (x1 + x3, x1x2 + x1)
(z1, z2) = g(y1, y2) = (y1y2, y1 + y2)

Assume that our cipher is given by g◦f . We can compute the ANF of the entire cipher
to determine the monomials that compose this function, but performing this computation
is not possible on real ciphers. Here, we have that:

(z1, z2) = (g ◦ f)(x1, x2, x3) = (x1 + x1x2 + x1x3 + x1x2x3, x3 + x1x2)

Instead of computing the ANF, consider the monomial x1. Since the ANF of f and g are
known, we can compute the ANF of each monomial of f and g and deduce the trails of
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x1 (a trail is noted with a succession of arrows):

ANF of each monomial of f monomial trails of x1

y1 = x1 + x3 x1 → y1

y2 = x1x2 + x1 x1 → y2

y1y2 = x1x2x3 + x1x2 + x1x3 + x1 x1 → y1y2

ANF of each monomial of g monomial trails of x1

z1 = y1y2 x1 → y1y2 → z1

z2 = y1 + y2 x1 → y1 → z2, x1 → y2 → z2

z1z2 = y1y2 + y1y2 = 0

We have one trail from x1 to z1, so we know that x1 appears in the ANF of z1. However,
there are two trails from x1 to z2. If we compute the complete ANF of z2, we can see that
the two occurrences of the monomial x1 cancel each other z2 = x1 + x3 + x1x2 + x1 =
x1x2 + x3. More generally, if there is an even number of trails, we can deduce that x1 will
not appear in the ANF of z2.

To recover a polynomial in the ANF of an iterated function, we have to consider all
the monomials and to decide whether there is an even or an odd number of trails for each
of them.

Division property. The division property is an older method to recover some informa-
tion about the ANF of an iterated function. The first versions of the method were unable
to count the number of trails and thus could only say that some monomials were not in the
ANF [DS09, TM16]. Therefore the method does not allow us to recover the exact super-
poly, nevertheless it is still useful as it broke the full version of the cipher MISTY [Tod17].
The division property was upgraded several times [BC16, HLM+20, HLM+21]. The last
upgrade, namely the three-subset bit-based division property without unknown subset,
is able to count exactly the number of trails and therefore is equivalent to the monomial
prediction.

MILP models for monomial prediction. Several algorithms have been developed to
evaluate the monomial propagation on ciphers. Some are based on the so-called breadth-
first search algorithm [Tod15, TM16] whereas some others implement this search using
the MILP method [HLM+20].
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In MILP models, the monomial propagation is represented within tables. For example,
the tables below represent respectively the behaviours of the functions f and g.

x1 x2 x3 y1 y2

0 0 0 0 0
1 0 0 1 0
0 0 1 1 0
1 0 0 0 1
1 1 0 0 1
1 1 0 1 1
1 0 0 1 1
1 1 1 1 1
1 0 1 1 1

y1 y2 z1 z2

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0
0 0 1 1

The tables are small for this simple example. However, for real ciphers computing the
whole propagation table of the round function may be infeasible or requires too many
inequalities to be described in MILP solvers. Hence, in most cases, propagation rules are
added for each basic operator of the cipher (xor, and, copy). Each of the three rules are
modelled with the following equations (a, b, c are Boolean variables):

a and b = c ⇐⇒

a = c

b = c
a xor b = c ⇐⇒

a + b = c

a + b ≤ 1

(a, b) = copy(c) ⇐⇒


a + b ≥ c

c ≥ a

c ≥ b

A MILP model is then constructed from these linear constraints. For example, the
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Chapter 2 – Superpoly recovery on Trivium

model for our running example is:

(x11, x12, x13) = copy(x1)
y1 = xor(x11, x3)
a = and(x12, x2)

y2 = xor(a, x13)
(y11, y12) = copy(y1)
(y21, y22) = copy(y2)

z1 = and(y11, y21)
z2 = xor(y12, y22)

The main solver used in the literature to solve MILP models is Gurobi 1 because it is
one of the fastest and it allows solution enumeration. However, the monomial propagation
models become very large when we try to find the superpoly on higher rounds of Trivium.
The solution usually used to reduce the problem size is to cut the search space with one
or multiple cuts. The idea is that when the model is too big to be solved efficiently, we
cut it into several smaller models. This can be done with one arbitrary cut [HLM+20] or
some adaptive cuts like the nested method in [HST+21].

However, MILP solvers like Gurobi are usually made to solve optimization problems.
Therefore, we thought that Constraint Programming might be more suited for this enu-
meration problem and we tested two new CP models.

CP model with table constraints. In CP, we can model the propagation table of
the round functions of Trivium with only one table constraint. We recall that the round
function of Trivium has the form:

F (a, b, c, d, e) = (f, g, h, t, j)

with
t = a + bc + d + e, a = f, b = g, c = h, e = j

Note that d is the variable at the end of the register. Moreover, t is the new variable
at the beginning of the register and f, g, h, j are just the shifted variables that becomes
respectively a, b, c, e. All the valid tuples to describe this function are given in Table 2.1.

This table constraint (Table 2.1) is not so big for a CP solver, but the issue is that

1. https://www.gurobi.com/
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a b c d e f g h t j
0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1
1 0 0 0 0 0 0 0 1 0
0 1 1 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 1 0
0 0 0 0 1 0 0 0 1 0
1 0 0 0 1 0 0 0 1 1
0 1 1 0 1 0 0 0 1 1
0 0 0 1 1 0 0 0 1 1
0 0 0 0 1 0 0 0 1 1
0 0 1 0 0 0 0 1 0 0
0 0 1 0 1 0 0 1 0 1
1 0 1 0 0 0 0 1 1 0
0 1 1 0 0 0 0 1 1 0
0 0 1 1 0 0 0 1 1 0
0 0 1 0 1 0 0 1 1 0
1 0 1 0 1 0 0 1 1 1
0 1 1 0 1 0 0 1 1 1
0 0 1 1 1 0 0 1 1 1
0 0 1 0 1 0 0 1 1 1
0 1 0 0 0 0 1 0 0 0
0 1 0 0 1 0 1 0 0 1

a b c d e f g h t j
1 1 0 0 0 0 1 0 1 0
0 1 1 0 0 0 1 0 1 0
0 1 0 1 0 0 1 0 1 0
0 1 0 0 1 0 1 0 1 0
1 1 0 0 1 0 1 0 1 1
0 1 0 1 1 0 1 0 1 1
0 1 0 0 1 0 1 0 1 1
0 1 1 0 1 0 1 0 1 1
0 1 1 0 0 0 1 1 0 0
0 1 1 0 1 0 1 1 0 1
1 1 1 0 0 0 1 1 1 0
0 1 1 0 0 0 1 1 1 0
0 1 1 1 0 0 1 1 1 0
0 1 1 0 1 0 1 1 1 0
1 0 0 0 0 1 0 0 0 0
1 0 0 0 1 1 0 0 0 1
1 0 0 0 0 1 0 0 1 0
1 1 1 0 0 1 0 0 1 0
1 0 0 1 0 1 0 0 1 0
1 0 0 0 1 1 0 0 1 0
1 1 1 0 1 1 0 0 1 1
1 0 0 1 1 1 0 0 1 1

a b c d e f g h t j
1 0 1 0 0 1 0 1 0 0
1 0 1 0 1 1 0 1 0 1
1 0 1 0 0 1 0 1 1 0
1 1 1 0 0 1 0 1 1 0
1 0 1 1 0 1 0 1 1 0
1 0 1 0 1 1 0 1 1 0
1 1 1 0 1 1 0 1 1 1
1 0 1 1 1 1 0 1 1 1
1 1 0 0 0 1 1 0 0 0
1 1 0 0 1 1 1 0 0 1
1 1 0 0 0 1 1 0 1 0
1 1 1 0 0 1 1 0 1 0
1 1 0 1 0 1 1 0 1 0
1 1 0 0 1 1 1 0 1 0
1 1 1 0 1 1 1 0 1 1
1 1 0 1 1 1 1 0 1 1
1 1 1 0 0 1 1 1 0 0
1 1 1 0 1 1 1 1 0 1
1 1 1 1 0 1 1 1 1 0
1 1 1 0 1 1 1 1 1 0
1 1 1 0 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1

Table 2.1 – Monomial propagation table of Trivium

there are a lot of them (three per round). Therefore, the model was not very efficient as
it was unable to find the trails of Trivium with 675 initialization rounds (Trivium 675)
in less than a day.

CP model with max constraints. Since we can use non-linear constraints in CP, we
can also replace the copy and operators with max constraints. The model for one equation
of Trivium then becomes:

max(acopy, f) =a

max(ytmp, g) =b

max(ytmp, h) =c

max(ecopy, j) =e

acopy + ytmp + d + ecopy =t

However, this model was still unable to find the trails of Trivium 675 in less than a
day.
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Chapter 2 – Superpoly recovery on Trivium

CP model difficulties The main problem of these models is that they all model an
equation that is close to a linear equation, and a constraint solver is very unlikely to be
faster on a linear problem than a linear solver. Moreover, as we increase the number of
rounds, the number of possible trails becomes larger. For example, for Trivium 842, there
are around 3 millions trails for a superpoly of only several hundred monomials.

The downside of all these approaches is that we can hardly add new properties to
cut these redundant trails and strengthen the model, as a global view of the problem is
missing.

2.2 New graph representation

In this section, we present a novel and simple graph-based model to recover monomials
in iterated functions, and we use it to recover the superpoly of a stream cipher for a given
cube. It is a graph representation of the monomial propagation since it can recover the
superpoly, but it has the main advantage of being much simpler, more intuitive and easier
to manipulate to find new properties.

We represent all the intermediate variables and monomials using a directed graph G.
A node of G represents a variable, and an edge from x to y indicates that y appears in
the ANF of x. We present a simple example.

Example 2.3 Recall the functions f and g of our running example (Example 2.2).
f ◦ g can be expressed as a DAG G = (V, E) where :
— V = {x1, x2, x3, y1, y2, z1, z2} is the set of nodes,
— E = {(y1, x1), (y1, x3), (y2, x1), (y2, x2), (z1, y1), (z1, y2), (z2, y1), (z2, y2)} is the set of

edges.
A trail is then a DAG with a root and some leaves. The root is the output bit, and

the leaves are the variables of the monomial.
The graph and the trails of x1 are represented in Figure 2.3. In these graphs, the red

double edges represent bit products. To find these trails, we use the following constraints
over the edges of a trail T . For example the constraint 2.1 represents the product of y1 and
y2 in z1, the constraint 2.2 represents the xor of y1 and y2 in z2. The two last constraints
ensure that the trail does not end midway. Note that they are variants of the conservation
of flow constraints in the Maximum flow problem i.e., a classic optimization problem where
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z1 z2

y1 y2

x1 x2x3

z1

y1 y2

x1

z2

y1

x1

z2

y2

x1

Figure 2.3 – Graph of f ◦ g (left) and 3 monomial trails of x1 (right)

a flow is propagated through a DAG.

(z1, y1) ∈ T ⇐⇒(z1, y2) ∈ T (2.1)

(z2, y1) /∈ T ∨(z2, y2) /∈ T (2.2)

(y2, x2) ∈ T =⇒ (y2, x1) ∈ T (2.3)

(y1, x1) /∈ T ∨(y1, x3) /∈ T (2.4)

∪i((zi, y1) ∈ T )⇐⇒∪i ((y1, xi) ∈ T ) (2.5)

∪i((zi, y2) ∈ T )⇐⇒∪i ((y2, xi) ∈ T ) (2.6)

It is interesting to compare our model to the model based on monomial propagation
with basic propagation rules. The monomial propagation model contains 15 variables,
four copy-constraints, three xor-constraints and two and-constraints, which result into 22
linear constraints. Our model has eight variables (the edges) and six constraints (or eight
linear constraints).

The main advantage of our model relies on its simplicity and the ease of adding extra
constraints to remove false (even) trails and deploying strategies. To illustrate this, we
use the graph model to search for some superpoly of the stream cipher Trivium.

2.2.1 Graph of Trivium

Figure 2.4 depicts the Deterministic Finite Automaton (DFA) obtained from the de-
scription of Trivium. Note that the DFA develops Trivium backwards: from the output
bit to the first round. There are four possible transitions to go from one register (A, B or
C) to its successors: three of them are simple, and one is doubling (=⇒). In the following,
the three simple transitions will be named the looping (· · ·>), the short (99K), and the
long (−→) one. For example, in the possible transitions from the register A, 69 is the
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Chapter 2 – Superpoly recovery on Trivium

looping transition, 66 is the short transition, 111 is the long transition and {110, 109} is
the doubling transition.

One may have noticed that the DFA relies only on the first bit of each register. Indeed,
for the other bits, the application of the round function simply consists of shifting them
to the left. The value of the shifted bits only changes when they turn back to the first
position of a register. Moreover, none of these shifted bits is a result of a round function,
so they have no use in the DFA. In summary, the DFA already simplifies all the shifted
bits at each round on each register to focus on the one produced in the corresponding
round function (t1,t2, and t3). The node A (resp. B, C) represents the first bit of register
A (resp. B, C). Whenever a transition is taken, the generated bit will have to be shifted k

times to be on the first position of its register again. The number of shifts k is reported
on the edges of the DFA. For example, if the bit at the first position of register A is set
to 1 at round R, then it can be propagated to register C or A. If A is selected, then the
first bit of A will be activated at round R − 69 because it will be shifted k = 69 before
returning on the first bit of a register. Otherwise, if C is selected, there are two scenarios.
Either a simple transition is taken (short or long), which corresponds to the activation of
the first bit of C at either round R− 66 or R− 111. Or the doubling transition is picked,
and the first bit of the register C will be activated at round R− 110 and R− 109.

A B

C

66, 111, {110, 109} 69
, 8
4,
{8
3,
82
}

66, 93, {92, 91}
69 78

87

Figure 2.4 – A DFA that encodes possible transitions for the Trivium cipher.

Now we will present the way to build a graph modelling a division trail based on the
DFA (Fig. 2.4), using a breadth-first search algorithm (Algorithm 1). The node corre-
sponding to the output bit z at round R is created first and pushed into a queue. This
triggers a loop that ends when the queue is empty. A node is popped from the queue and
marked as visited. If the node has a positive R value, its child nodes described by the
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2.2. New graph representation

DFA are created if needed (if they are not in the graph already), added to the queue, and
the involved edges are created. Creating a node requires knowing its round R: anytime a
transition is visited, the number of shifts k that label it on the DFA is subtracted from
the R value of its parent node. If a popped node has a negative R value, which corresponds
to the first state of the cipher, no action is performed. When the loop stops, the graph of
all possibilities is declared. Such a graph is not very deep, but it is very wide since any
node has potentially five child nodes. However, each node in a solution i.e., a trail, has
only one or two outgoing edges.

Algorithm 1: MakeGraphfromDFA(reg, round)
Data: reg: starting register, round: starting round, G = (V, E): a graph

1 Push (reg,round) in Queue
2 while Queue is not empty do
3 (reg,round) ← Pop Queue
4 if round > 0 then
5 for (reg2,shift) in successors of reg from DFA do
6 if (reg2,round−shift) not in V then
7 add (reg2,round−shift) to V
8 add (reg2,round−shift) to Queue
9 add ((reg,round),(reg2,round−shift)) to E

Figure 2.5 shows a graph solution for Trivium 672 with the starter node s243, i.e. the
66th bit of register C. Therefore, the source node is labelled by C with R = 672−66 = 606
since the bit at position 66 in register C has to be shifted 66 times to be on the first position.
The blue nodes are the cube bits, and the red ones are the key bits. This solution represents
one trail for the superpoly monomial x16.

Once we have formalized our problem as a graph problem, we can rely on a MILP
solver or a CP solver to enumerate all the solutions.

In the following, we choose Gurobi [Gur21] for our MILP model because it already
showcased its efficiency on division property, and Choco [PF22] for our CP model since
it natively supports constraints over graph variables [Fag15].

2.2.2 Doubling patterns

To retrieve the superpoly, we need to enumerate all the trails and count how many
trails there are for each monomial. Indeed, a monomial with an even number of trails will
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not appear in the superpoly.
In the graph-based representation, a doubling pattern is a pair of distinct sub-graphs

connecting the same two sets of starting and ending nodes. If a trail uses one sub-graph
of a doubling pattern, then the trail using the other sub-graph will produce the same
monomial. Therefore, preventing doubling patterns from existing in the graph will reduce
the number of trails which cancel each other out. By studying the DFA of Trivium, we
identified several doubling patterns.

Pattern 1 (long-double)

Between each pair of registers, there is the long transition with a given number of
shifts p, and the doubling transition with p−1 and p−2 shifts. Therefore, if the doubling
edge is followed by two long edges, we will get the same leaves than taking the long edge
first and the doubling edge after, as depicted in Figure 2.6.

Legend:

doubling edges

long edges

shord edges

looping edges

C100

B18 B17

A−74 A−75

C100

B16

A−74 A−75

Figure 2.6 – long-double pattern

To discard this pattern, we have to take care that the intermediate nodes, here B16,
B17, and B18, are not used in any other part of the trail. Indeed, if one of these nodes
is mandatory for another part of the trail, there is only one half of the doubling pattern
available, and thus the cancellation will not be correct.

Pattern 2 (3 consecutive bits)

Another doubling pattern is when three bits are at consecutive rounds on the same
register, as depicted in Figure 2.7. On this figure, we have three example nodes C97, C98,
and C99. If the doubling edges are taken on C97 and C99, the long and the doubling edges
of the middle bit can then be removed because these two choices lead to the same output
nodes (B14,B15,B16,B17). The advantage of this pattern is that there are no intermediate
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nodes that can be mandatory in other parts of the trails like for the Pattern 1. However,
we still need to take care of the case where we have four consecutive bits or more because
if we constrain two times the same edges, the cancellation will not be correct.

C97 C98 C99

B14 B15 B16 B17

C97 C98 C99

B14 B15 B16 B17

Figure 2.7 – 3 consecutive bits pattern

Pattern 3 (looping)

When a looping transition is taken i.e., the bit stays on the same register, and if all
the outgoing edges of the looping register return to the same register at least once in the
trail, then a similar result can be obtained by not taking the first looping transition but
taking it on each outgoing edge as shown in Figure 2.8 (numbers are omitted for clarity).
This pattern has a lot of configurations, and constraining all of them will end up in a
large model.

C

C

B B

A A A

C C C

C

B B

A A A

C C C

C C C

Figure 2.8 – looping pattern

Pattern 4 (simple cycle)

A cycle pattern is completed whenever the path returns to the first register without
doubling, then taking any different edge of the cycle after is a doubling pattern. Indeed,
any edge after the cycle could be taken before the cycle, as shown in Figure 2.9.
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C250 B181 A115 C49 B−35

C250 B166 A100 C34 B−35

Figure 2.9 – simple cycle pattern

By considering all these patterns, it seems possible to reduce the number of even
solutions and save some useless trail explorations without changing the parity of each
solution. However, we faced many problems. First, adding the constraints for all these
patterns slows down the solving process and finding the right trade-off between solution
space reduction and time consumption is not easy. Second, we have to ensure that a dou-
bling pattern does not interfere with another one. More precisely, let (p1, p2) be doubling
patterns. We may have an issue if it is possible to reach a trail containing p1 while it is
impossible to reach p2 because of another doubling pattern. This is a big issue because
the parity of the trails is very important. We want to make sure that each constrained
pattern is free to be constrained. One option to do this is to apply a constraint if and only
if all the nodes involved in a doubling pattern are not reached by other edges than the
ones from the pattern. However, in practice, doing so highly limits the number of times
doubling patterns are applied. As a result of our experimentation, we decided to take into
account pattern two only as it seems to be the most efficient.

Thus selecting the right patterns to add to the model is still an open and interesting
question.

2.2.3 Arity approximation

The idea of approximating the number of cube bits reachable for each bit of the cipher
was explored in [Liu17], and we propose to use it to reduce the search space in our graph-
based model.

The reasoning on arity is as follows. Starting from the bits of the IV and going back
to the active bit, each intermediate node aggregates an over-approximation of the number
of bits of the cube that it would allow to reach if we took it. This value is called arity
and is built by consulting all or part of its descendants. Under certain conditions between
the arity of a node and the arity of its predecessors or successors, it is possible to deduce
whether the node may belong to a trail or not. This is particularly useful in the search
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for superpolys because to have small superpolys, we constrain big cubes. For example,
the cube size for Trivium 841 [HLM+20] is 78 bits. Therefore, we can discard the part
of the graph that do not achieve at least this arity.

As shown in [Liu17], an approximation regarding the arity can be computed by recur-
sively taking two consecutive transitions into account and by propagating the arity from
the cube to the output bit.

Example 2.4 Consider the case where one wants to compute the arity of register C at
round 100, and the doubling transitions are selected.

ar(C100) = ar(B18) + ar(B17) (2.7)

These terms are developed as follows:

ar(B18) = max(ar(B−60), ar(A−48), ar(A−75), ar(A−74) + ar(A−73)) (2.8)

ar(B17) = max(ar(B−61), ar(A−49), ar(A−76), ar(A−75) + ar(A−74)) (2.9)

Suppose now that the arity of registers with negative rounds are all equal to the same
value, say the value 1. Then (2.8) and (2.9) can be simplified to:

ar(B18) = ar(A−74) + ar(A−73) (2.10)

ar(B17) = ar(A−75) + ar(A−74) (2.11)

By replacing ar(B18) and ar(B17) by (2.10) and (2.11) in (2.7), we remark that the arity
of A−74 is counted twice. In the graph representation, the node labelled A−74 is reachable
multiple times from C100. Such an over-approximation would be accumulated along the way
to the output bit, making the bound pretty far from the real value. An example can be found
in Figure 2.10 where the root node would be wrong by 20 on the arity for counting only
the first successors, and this error is growing when the information is further propagated
to the predecessors.

For a given node, the approximation of its arity has to take into account all the child
cases of the doubling edges and take the maximum of their arities to better approximate
the arity of the source. Note that a similar reasoning can also be applied to compute the
minimum arity of a node.
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58 or 78

38 40

18 20 20

Figure 2.10 – Arity example

Let n be a node and a, b, c, d, e its successors respectively obtained with the loop-
ing, short, long and the two doubling edges as well as the successors of the successors
aa, ab, ac, ad, ae obtained in the same way. The arity of n can be simply computed as:

n = max(a, b, c, d + e)

To detect the redundancies, we must develop the long and doubling edges:

n = max(a, b, max(ca, cb, cc, cd + ce), max(da, db, dc, dd + de) + max(ea, eb, ec, ed + ee))

We know from the description of Trivium that the long and the doubling edges are
always side by side with one round separating them as seen in Figure 2.11. Therefore we
have that cd = dc, ce = dd = ec, and de = ed . We can use it to reduce the formula and
keep only one of each in every scenario.

n

a b c d e

cc

dc

cd

ec
dd

ce

ed

de ee

Figure 2.11 – Arity formula redundancy on two rounds
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n = max(a, b, c, da + e, db + e, dc + e, dd + de + max(ea, eb, ee))

This approximation of the arity can then be used as a strategy or a constraint. Since
the goal is to find the superpoly, it is expected that a significant part of the graph will be
cut from the search due to its low arity.

2.3 New models using our graph representation

This section presents the different models we made with our graph representation.
For the most efficient ones, we added some constraints for the doubling patterns and
tried to use the arity approximation. Finally, we tested our models to compare them to
state-of-the-art methods on round reduced Trivium (675, 735, 840, 841, 842 rounds).

2.3.1 SAT

SAT solvers can solve Boolean satisfaction problems encoded in the Conjunctive Nor-
mal Form (CNF). The CNF is a conjunction of disjunction of variables. It can be seen as
the opposite idea of a table since a Boolean table constraint is essentially a disjunction
of conjunctions, which is a Disjunctive Normal Form (DNF). All the edges of the graph
of Trivium are Boolean variables, so we can model the round function of Trivium as
follows:

Let p be the input edges of a node and s the output edges such that s1, s2, s3 are
respectively the looping edge, the short edge and the long edge, and s4, s5 are the doubling
edges. The Boolean formula for the round function of Trivium is:

∧
i∈J1,5K

¬pi

∨
i∈J1,3K

(si

∧
j∈J1,3K,j ̸=i

¬sj) ∨
∧

i∈J1,3K

¬si

∧
i∈J4,5K

si

We introduce the five variables, P for the predecessor edges, Si for each simple successor
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edge and Sd for the doubling edge:

P =
∧

i∈J1,5K

¬pi

Si = si

∧
j∈J1,3K,j ̸=i

¬sj ∀i ∈ J1, 3K

Sd =
∧

i∈J1,3K

¬si

∧
i∈J4,5K

si

We transform the first formula and the conservation of flow constraints in the following
list of clauses:

¬P ∨ ¬pi ∀i ∈ J1, 5K ¬Si ∨ si ∀i ∈ J1, 3K

P
∨

i∈J1,5K

pi ∀i ∈ J1, 1K ¬Si ∨ ¬sj ∀i ∈ J1, 5K

¬P ∨ ¬si ∀i ∈ J1, 5K ¬Sd ∨ si ∀i ∈ J4, 5K

P
∨

i∈J1,3K

Si ∨ Sd ∀i ∈ J1, 1K ¬Sd ∨ ¬si ∀i ∈ J1, 1K

Sd
∨

i∈J1,3K

si

∨
i∈J4,5K

¬si ∀i ∈ J1, 1K Si ∨ ¬si

∨
j∈J1,5K,j ̸=i

sj ∀i ∈ J1, 1K

The SAT solvers usually only solve satisfaction problems. However, when it finds a
solution, we can restart it with a new constraint that discards this solution, and thus
count the number of solutions. There is still one problem with this in our case. Due to the
number of solutions (3 million for 842 rounds), the model becomes very hard and cannot
be solved within a day for Trivium 840.

2.3.2 CP

Constraint programming [RvBW06] is a technique for solving combinatorial problems.
Unlike SAT and MILP, it is not necessary to express the rules solely in terms of linear
constraints or Boolean clauses. In addition, CP solves a problem in a way similar to branch-
and-bound except that it eliminates, by filtering, impossible states or combinations. CP
techniques have already been successfully applied to cryptanalysis problems [GMS17,
GLMS20, DDH+21].

Here, we use a directed graph variable G [DDD05, Fag15]. In CP, a graph variable G
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has a domain defined by a graph interval [G, G]. G is the lower bound of G and defines
nodes and edges that must appear in any solution. In our case, it is declared with the
mandatory nodes of the cube. G is the upper bound of G and defines nodes and edges that
can appear in any solution. In our case, it is the full graph developed from the automaton.
A solution is found when G = G. The solving processes by adding nodes or edges from
G or by removing nodes or edges from G. Such modifications are triggered by constraints
defining properties on G that need to be satisfied in any solution.

In the following, D is a view ([JP22]) of G, which only contains doubling edges and
the endpoint nodes; L is another view of G, which only contains the long edges and the
endpoint nodes; K stores leaf nodes of G. The functions predX(n) and succX(n) give the
predecessors and the successors of a node n in the (sub-)graph X.

The graph model is declared as (2.12) ∧ ((2.13) ∨ (2.14)) ∧ (2.15) ∧ (2.16) where:

|predG(n)| > 0 ∀n ∈ G, n ̸= source (2.12)

|succG(n)| = 1 ∧ (n, s) /∈ D ∀n ∈ G, n /∈ K, ∀s ∈ succG(n) (2.13)

|succG(n)| = 2 ∧ (n, s) ∈ D ∀n ∈ G, n /∈ K, ∀s ∈ succG(n) (2.14)

(n, s1) ∈ G ⇐⇒ (n, s2) ∈ G ∀n ∈ G, (n, s1) ∈ D, (n, s2) ∈ D (2.15)

(n, s1) /∈ G ⇐⇒ (n, s2) /∈ G ∀n ∈ G, (n, s1) ∈ D, (n, s2) ∈ D (2.16)

The constraint (2.12) ensures that each node selected in a solution has at least one
predecessor except the source node. Constraints (2.13) and (2.14) maintain the number
of successors of each node except the leaf ones. If a given node takes a simple transition,
then it has exactly one successor; if it takes a doubling transition, then it has exactly two
successors. The two conditions cannot hold simultaneously. Finally, constraints (2.15) and
(2.16) ensure that either a single edge or a pair of doubling edges is selected.

The doubling constraints are added to the CP model in the form of clauses expressed
on the disjoint membership of edges in G and are propagated using an SAT-like constraint.
The algorithm for estimating the degree of Trivium-like ciphers [Liu17] can directly be
integrated into the graph model as an additional constraint. Without going into too much
details, it imposes to declare additional integer variables that we call RIV (for Reachable
Initialization Vector). An integer variable v has a domain [v, v] where v (resp. v) denotes
the smallest (resp. the largest) value it can be assigned to. The RIV variables store,
for each node in G, an approximation of the number of nodes of the cube it can reach.
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2.3. New models using our graph representation

The algorithm [Liu17] is directly applied dynamically to refine the bounds of each RIVi

variable associated to node i, based on RIVj, ∀j ∈ succG(i). It is important to note that
RIV variables are bounded as long as the involved nodes and edges are in G. When a RIV

domain is emptied or is inconsistent with those of its neighbours, then the corresponding
node is removed from G.

Strategy. Unlike Gurobi, we can fully control the strategy deployed by Choco. However,
this solver is inherently sequential, and thus we decided to apply the divide-and-conquer
strategy to run several instances in parallel. The main issue we faced was that only a
few instances were hard to solve. Thus, we regularly need to redivide models in order to
maximize the use of available cores.

2.3.3 MILP

Mixed Integer Linear Programming aims at solving problems described with linear
constraints. The MILP graph model is written as a relaxed flow problem. A flow problem
is usually defined with the conservation of flow constraints. This constraint states that
anything that enters a node must leave it. In our case, this is relaxed because multiple
incoming transitions are possible. Having multiple incoming transitions means that a
variable is in the monomial multiple times. Regardless of the incoming number of edges,
if it is reached, then the out transition is either simple or double.

In the following, Pred(i) gives all the predecessors of the node i, and Succ(i) gives all
the linear successors and one of the doubling successors. The functions brother1(i) and
brother2(i) give the two doubling sons of i.

First, all the edges are declared as Boolean variables:

Xi,j =

1 if the edge (i, j) is in the trail

0 otherwise
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To implement the graph model of Trivium, we add the following constraints:

∑
j∈Pred(i)

Xj,i ≥
∑

j∈Succ(i)
Xi,j ∀i ∈ V (2.17)

∑
j∈Pred(i)

Xj,i ≤ |Pred(i)|
∑

j∈Succ(i)
Xi,j ∀i ∈ V (2.18)

Xi,brother1(i) = Xi,brother2(i) ∀i ∈ V (2.19)∑
j∈Succ(i)

Xi,j ≤ 1 ∀i ∈ V (2.20)

The constraints (2.17) and (2.18) are the conservation of flows constraints while (2.19)
and (2.20) are related to the edges outputting a node (and thus dedicated to Trivium).
The cube and the output bit are constrained in the solution by the following:

∑
j∈Pred(i)

Xj,i ≥ 1 ∀i ∈ cube (2.21)

∑
j∈Pred(i)

Xj,i = 0
∀i∈leaves,

i/∈cube, i/∈key,
i/∈non-zero-constants

(2.22)

The key bits are free, as well as the non-zero constants, because they can also appear in
the superpoly.

Constraints for doubling patterns. The MILP model can be strengthened with
constraints to discard the doubling patterns. Let P be a set of doubling patterns (p1, p2)
with p1, p2 sub-graphs with the same sources and the same leaves.

We used only Pattern 2, for which both the sub-graphs p1 and p2 are composed of,
respectively, 5 and 6 edges of the form:

— p1 = {(x1, y1), (x1, y2), (x2, y4), (x3, y3), (x3, y4)}
— p2 = {(x1, y1), (x1, y2), (x2, y2), (x2, y3), (x3, y3), (x3, y4)}

Thanks to the equalities of doubling edges, we can simplify both p1 and p2 such that:
— p1 = {(x1, y2), (x2, y4), (x3, y4)}
— p2 = {(x1, y2), (x2, y2), (x3, y4)}

Because (x2, y4) and (x2, y2) cannot be active both at the same time, we can add the
inequality X(x1,y2) + X(x2,y2) + X(x2,y4) + X(x3,y4) ≤ 2 to remove both p1 and p2. However,
a problem occurs if the node x4 consecutive to x3 is active and reaches y4. Indeed, the
configuration for which the four consecutive nodes follow the doubling edges would be
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removed twice. Thus we modified the inequality into:

2X(x1,y2) + 2X(x2,y2) + X(x2,y4) + 2X(x3,y4) −X(x4,y4) ≤ 4

This inequality forbids three consecutive nodes to all take the doubling edge and forbids
x2 to take the long edge if x4 does not take the doubling edge. Thus adding this inequality
to all consecutive nodes leads to the right ANF.

Strategy. In both [HLM+20] and [HLLT20], authors used a divide-and-conquer strategy
together with their MILP models. Basically, they developed the polynomial of the root
node for several hundreds of rounds (between 200 and 400) and then applied their models
to each monomial of the polynomial. Without this strategy, the solving times are much
higher, making it unfeasible to retrieve the superpoly in a reasonable time. This shows
that Gurobi fails to identify the right variables to branch on. While Gurobi does not allow
the user to fully control the branch-and-cut strategy, it offers several options to modify
it, and we mainly used two of them:

— BranchPriority: With this option, it is possible to give each variable of the model
a priority during the selection of the next variable to branch on. We tried several
strategies, and it seems that the best choice is to sort the variables according to
their arity. More precisely, given an edge (x, y), we choose to:

1. set a negative priority if ar(y) ≤ 0, i.e. if the variable y cannot lead to any cube
variable;

2. set the priority to zero for all simple edges, based on the idea that we have to
focus on doubling edges;

3. set the priority to ar(x) for all doubling edges to focus on the edges which can
reach the most cube variables.

— VarHintVal: With this option, we can tell Gurobi that we think the value of a
variable will be in a solution. We choose to set to 0 all simple edges, again to focus
on doubling edges.

Using both those options, it became unnecessary to use the divide-and-conquer strategy
as we reached approximately the same running times with and without it. However, we
believe there is still room for improvement. First, the BranchPriority is static, while a
dynamic approach would be much better. Second, both options above apply to variables
only, while we may want to use them on linear combinations of variables. The problem is
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that if we create a new variable x and add a constraint x = y + z, x will be removed from
the model during the presolve, and it seems Gurobi does not keep its branch priority.

2.3.4 Results regarding the CP and MILP models

We ran our new models together with the MILP ones from both [HLM+20] and [HSWW20]
on our server (AMD EPYC 7742 64-Core Processor), limiting the number of available cores
to 32. Indeed, Gurobi supports parallelism but faces issues when the number of threads is
too high and the model is too large. Actually, the large models are slower if we run them
with 64 threads.

Results are given in Tables 2.2 and 2.3 while the cubes used to perform our experiments
are detailed in Table 2.4. The code is publicly available at https://gitlab.inria.fr/agontier/
trivium-superpoly

Model [HSWW20] [HLM+20] MILP Graph CP Graph
R = 675 3m 1m 3s 15s
R = 735 4m 2m 10s 31m

R = 840/1 472m 269m 10m > 24h
R = 840/2 316m 91m 10m
R = 840/3 351m 108m 6m
R = 841 956m 282m 19m
R = 842 > 24h 990m 182m

Table 2.2 – Results on Trivium

We see that the graph model of Trivium performs better with the MILP imple-
mentation and the Gurobi solver. One explanation might be that Trivium is not highly
combinatorial. Indeed, the round function of Trivium has only one non-linear case, and
it is a simple product. Our graph model implemented in MILP is consistently much faster
than the models from Hu et al. [HSWW20] based on monomial prediction and from Hao
et al. [HLM+20] based on division property. One important note is that our models do
not need the cut proposed in [HLM+20]. In fact, our model is slower if we add the same
cut. We think that this is mainly due to the arity approximation strategy that fulfils the
same role more efficiently.
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2.4. Conclusion

Regarding the number of trails outputted by our model, it is reduced by a factor
between 2 and 4, which shows how useful are the doubling patterns we described. But as
we already explained, we were not able to use all of them. Checking a posteriori the trails
for Trivium 842 shows that taking into account all the doubling patterns could remove
much more trails. We believe this is an interesting research direction for future work.

Graph solver R = 840/1 R = 841 R = 842

without any patterns 12 909 30 177 3 188 835
with Pattern 2 5 953 18 929 720 779

Table 2.3 – Number of solutions

Rounds Cube indices
675 3, 14, 21, 25, 38, 43, 44, 47, 54, 56, 58, 68
735 2, 5, 9, 12, 13, 14, 19, 28, 36, 38, 40, 47,

49, 51, 52, 53, 55, 57, 63, 64, 66, 73, 79
840 /1 IV \ {34, 47}
840 /2 IV \ {71, 73, 75, 77, 79}
840 /3 IV \ {73, 75, 77, 79}

841 IV \ {9, 79}
842 IV \ {19, 35}

Table 2.4 – Cubes used in our experiments for Trivium

2.4 Conclusion

In this work, we introduced a new graph representation of the superpoly recovery
problem for the symmetric stream cipher Trivium. We found some patterns and we
were able to integrate them as well as the arity approximation in a MILP model to solve
this problem more efficiently. This work was published in 2021 and more research has
been done on this topic latter on. In the following, we present some recent work on the
superpoly recovery of Trivium and we give the DFA representation of Grain, another
stream cipher that could be modeled within our graph representation in some future work.

49



Chapter 2 – Superpoly recovery on Trivium

2.4.1 Nested monomial propagation

A recent update on the monomial prediction is the nested monomial prediction [HST+21].
This method was able to recover a superpoly for Trivium 845 and then Trivium 848
among other superpolys in [HHPW22]. The idea is to cut the problems into sub-problems
whenever they are too hard to solve i.e., if they reach a time limit. This allows for clean
parallelism and smaller models for Gurobi to handle.

2.4.2 Nested graph model and new patterns

In 2023, [CQ23] improved our work by proposing an algorithm to search for all the
doubling patterns with one layer of edges (like the three consecutive bit patterns). They
focus on one-layer patterns only because multi-layer patterns are hard to constrain with
all the possible overlaps we have seen before. They were able to find 11 new patterns and
found that these doubling patterns are most useful in the first rounds of the cipher. More-
over, they also improved the graph-based model by adding the nested method [HST+21].
As a result, they were able to find a superpoly for Trivium 843 on limited hardware
(32 threads and 96G of RAM) in 36h. For some comparison, our graph model alone can
find the superpoly of Trivium 842 in around three hours, whereas the graph model with
the nested approach finds it in eleven hours. However, the graph model alone encounters
memory issues for higher cubes. A problem partially solved by the nested approach. This
work showed that studying doubling patterns can lead to more efficient models.

2.4.3 Ternary world of Trivium

Some unpublished work on the graph model has also been done by A. Derrien and
C. Prud’homme. They noticed that all the linear transitions of Trivium are multiple of
three. The doubling transitions are 3n + 1 and 3n + 2. We can see it as three worlds that
are connected by the doubling edges. On the trails example of Figure 2.12, we represented
the three worlds by 0, 1 and 2.

When searching for a superpoly, we know the output bit and the cube. Therefore we
may be able to use the ternary property to know which transition of which type is needed
to reach the cube. This information may be used for additional constraints or refined
strategies for future models.
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0

1 2

0 2 2

2 1 2 2

2 1 2 0 1

2 1 0 1 2 0

Figure 2.12 – Example trail with world number on nodes

2.4.4 Graph model on Grain

Grain is another stream cipher of the eSTREAM competition [HJM07]. It has two
registers, a bigger key than Trivium (128 bits) and a much more complex round function.
However, it has fewer initialization rounds, 256 (versus 1152 for Trivium).

Grain description. The two 128-bit registers are initialized with the key and the Ini-
tialization Vector:

(b0, . . . , b127) =(K1, . . . , K128)

(s0, . . . , s127) =(IV1, . . . , IV96, 1, . . . , 1, 0)

Each round, the registers will be updated with the following functions:

(b0, . . . , b127)←(b1, . . . , b127, g + s0 + z)

(s0, . . . , s127)←(s1, . . . , s127, f + z)
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where g, f, h, and z are the following functions:

g ←b0 + b26 + b56 + b91 + b96 + b3b67 + b11b13 + b17b18 + b27b59

+ b40b48 + b61b65 + b68b84 + b22b24b25 + b70b78b82 + b88b92b93b95

f ←s0 + s7 + s38 + s70 + s81 + s96

h←b12s8 + s13s20 + b95s42 + s60s79 + b12b95s94

z ←h + s93 + b2 + b15 + b36 + b45 + b64 + b73 + b89

Grain DFA. We can develop the update functions and deduce the automaton of Grain.
Note that they are much more complex doubling edges in the h function. There are bit
products combining bits of the two registers. These are the red doubling edges and the
additional point nodes in the graph of Figure 2.13.

•

• •
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8

42

94

12

95

12.95

0,2,15,26,36,45,56,64,73,89,96

0,93,{13.20},{60.79}

0,2,15,26,36,45,56,64,73,89,91,96,

{22.24.25},{70.78.82},{88.92.93.95}

{3.67},{11.13},{17.18},{27.59},

{40.48},{61.65},{68.84},

0,7,28,70,81,93,96,

{13.20},{60.79}

Figure 2.13 – Grain DFA

On this automaton, we can see several properties. First of all, some of Trivium’s
doubling patterns also hold for Grain. These are the looping pattern and the simple
cycle pattern. These patterns seem to be on every steam cipher with looping edges and
a cycle-shaped automaton. However, there must be much complex doubling patterns. For
example, we can see that there are several edges with common values that can be taken on
both registers, namely: 0, 93, {13.20}, {60.79}, 2, 15, 26, 36, 45, 56, 64, 73, 89, 96, combined
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with the doubling edges available from both registers we can see patterns like the one in
Figure 2.14. However, there might be some pattern overlaps, as we have seen on Trivium.
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Figure 2.14 – Example of doubling pattern of Grain
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Chapter 3

DIFFUSION ANALYSIS ON FEISTEL

CIPHERS

Introduction

The Feistel structure is an old but non-aging idea to design symmetric block ci-
phers. The NIST Lightweight Cryptography competition had several propositions fea-
turing Feistel structures (ACE [AAG+19], FlexAEAD [dNX19], LOTUS [CDJ+19], Orib-
atida [BLLN21], Saturnin [CDL+20], SPARKLE [BBdS+19], SPIX [AGH+19]) and Gener-
alized Feistel inspired structures (CiliPadi [ZJR+19], lilliput [BFMT15], SKINNY [BJK+16],
SpoC [AGH+], TGIF [IKM+19]). In block ciphers, the diffusion is the notion of one block
influencing the others. Indeed, if each output block is influenced by all the input blocks,
then two similar plaintexts will have completely different ciphertexts. To design a se-
cure block cipher, we want the diffusion to be as fast as possible. The diffusion in the
Generalized Feistel Network is an ongoing research topic that lately focuses on even-odd
permutations. In this chapter, we first recall the previous representations and strategies
to build GFN with optimal full diffusion. Then, we present our new representations, prop-
erties and strategies to find optimal diffusion in the general case.
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This contribution supports the following conclusions:
— GFN can be represented with graphs on which we can find

useful properties.
— The optimal diffusion in the general case of GFN is not

strictly better than the previously studied even-odd case for
up to 32 blocks.

— New criteria might be needed to find GFN permutations with
both good diffusion and good differential characteristics.

Takeaway

3.1 Background

The Feistel network is a generic symmetric cipher structure that was originally pro-
posed by Horst Feistel and his colleagues at IBM in the early 70s [Smi71]. To design a
cipher with a Feistel network, one needs only to choose a function F and put it in the
Feistel network. The network is composed of several identical rounds. Each round will
use the F function with a round sub-key deduced from the key of the cipher. A Feistel
network round is shown in Figure 3.1. The plaintext X is split into two blocks (X0, X1).

F

X0 X1

X1 X0 ⊕ F (X1,Kr)

Figure 3.1 – Feistel Network round

These blocks have the same length in most of the cases but the F function also allows for
unbalanced ciphers like in [BS94] or for more recent works in [AGP+19]. In both cases,
the block X1 passes through the function F that may depend on a round key Kr and is
then XORed with X0.

Definition 3.1 (Feistel Scheme) Let X ∈ Fs+t
2 be the plaintext split into two blocks

(X0 ∈ Fs
2, X1 ∈ Ft

2). Let K0, K1, . . . , Kn be n + 1 sub-keys in Fu
2 and let F be a function
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from Fu+t
2 to Fs

2. For each round r ∈ {0, 1, . . . , n} the round function of a Feistel network
is :

(X0, X1) −→ (X1, X0 ⊕ F (X1, Kr))

Feistel network-based ciphers have the really interesting property that the decryption
of the ciphertext is only made by running the encryption algorithm with the round keys in
reverse order. This also means that the F function of a Feistel network does not need to be
invertible. Moreover, if this function is pseudorandom, then a Feistel network with at least
4 rounds is indistinguishable from a pseudorandom permutation [LR88, Pie90, PRS02].
Because of this nice property, many Feistel ciphers have been designed and some of them
are still used today. The first cipher using this structure was Lucifer in 1971 [Smi71, Fei73].
It was proposed to the National Bureau of Standards (ancestor of the NIST). After some
modifications, it became the Data Encryption Standard (DES [S+99]) and was used for
all unclassified data encryption i.e., for all non-military uses. DES was used from 1977
to 1999. It was deprecated in 1999. The size of the key (56 bits) was judged too small
to resist the increasing computer performances [DH77, HC99] and the public discovery of
differential cryptanalysis [BS90] and linear cryptanalysis [Mat93, Mat94]. In 1999, Triple
DES (3DES [DH77]) was recommended by the NIST as a replacement. 3DES is simply
three DES ciphers one after another. There are different keying options but even with
three independent keys, 3DES was shown to have only 112 bits of security against meet-
in-the-middle attacks. This is why we use it with only two keys, one for the middle DES
and one for the first and last DES. In 2016, the sweet32 attack 1 showed that block collision
attacks on 64-bits block ciphers are practical [BL16]. Thus, 3DES was deprecated by the
NIST in 2017. The long life of DES and 3DES as standards shows the robustness of
the Feistel network designs. The only thing left to choose is a F function and there are
many different designs because a practical perfect pseudorandom function does not exists.
Indeed, the F function can be composed of several operators that may vary a lot from
cipher to cipher. For example the F function of DES first XOR the block with the round
key, then applies in parallel 8 S-Boxes from 6 to 4 bits and then applies a permutation. It
is a rather complex function that allows the cipher to have only 16 rounds to be secure. In
contrary, the SIMON [BSS+13] cipher (also based on a Feistel network) uses an F function
that only uses bit shifts, logical ANDs and XORs. Because of this simple F function, more
rounds are needed. DES has 16 rounds and SIMON family members have 32 to 72 rounds
depending on the block and key sizes. The function schemes are shown side by side in

1. https://sweet32.info/
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Figure 3.2.
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Figure 3.2 – F function of DES and SIMON

Three generalizations of the Feistel scheme were proposed and studied in [ZMI89],
namely Type-1, Type-2 and Type-3 Feistel transformations. They can be found respec-
tively in Figures 3.3, 3.4 and 3.5. The authors concluded that only the Type-2 Feistel
transformation is “optimal” because they proved that it was the only transformation
with the following property: If the F functions are independent pseudorandom functions,
and 2k is the number of blocks, then a (2k + 1)-round Type-2 Feistel cipher is indistin-
guishable from a pseudorandom permutation. Therefore, most of the generalized Feistel
ciphers are of Type-2 e.g., HIGHT [HSH+06], CLEFIA [SSA+07], . . . . However, there are
some examples of ciphers using Type-1 Feistel (CAST 256 [AG99]) and Type-3 Feistel
(MARS [BCD+98]). Here, we will focus on the Type-2 ciphers. The Type-2 Feistel network
is essentially a parallel application of k Feistel networks followed by a cycle shift on all the
blocks. Later, it was upgraded into Type-2 Generalized Feistel Network (GFN) in [Nyb96].
In this scheme, the cycle shift is replaced by a permutation π as seen in Figure 3.6 and
Definition 3.2.

Definition 3.2 (Type-2 Generalized Feistel Network) Let k be the number of Feis-
tel pairs, n the number of rounds, m a word size, π a permutation over 2k elements and
k× n keyed functions F i

j from Fm
2 to Fm

2 (with 1 ≤ i ≤ n, and 1 ≤ j ≤ k). The ciphertext
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F

X1X0 X2 X3 . . . Xk

X1 ⊕ F (X0) X0X2 X3
. . .

Xk

Figure 3.3 – Type-1 Feistel transformation

F

X1X0

X1 ⊕ F (X0) X0

F

X3X2

X3 ⊕ F (X2)X2

. . .

. . .

F

X2k−1X2k−2

X2k−1 ⊕ F (X2k−2)X2k−2

Figure 3.4 – Type-2 Feistel transformation

F

X1X0

X1 ⊕ F (X0) X0

F

X2

X2 ⊕ F (X1)

F

X3

X3 ⊕ F (X2)

. . .

. . .

. . .

Xk−1

Xk−1 ⊕ F (Xk−2)

F

Xk

Xk ⊕ F (Xk−1)

Figure 3.5 – Type-3 Feistel transformation

59



Chapter 3 – Diffusion analysis on Feistel ciphers

F

Xr
0 Xr

1

Xr+1
0 Xr+1

1

F

Xr
2 Xr

3

Xr+1
2 Xr+1

3

. . .

. . .

F

Xr
2k−2 Xr

2k−1

Xr+1
2k−2 Xr+1

2k−1

π

Figure 3.6 – GFN round function

of a message of size 2k ·m is given by R1 ◦ . . . ◦ Rn, where Ri is the round function:

Ri : (X0, . . . , X2k−1)→ π(X0 ⊕ F i
1(X1), X1, . . . , X2k−2 ⊕ F i

k(x2k−1), X2k−1)

The advantage of a GFN over a Type-2 Feistel with a simple cycle shift is that it can
use this permutation to be able to shuffle all the blocks faster than the cycle shift. The
shuffling efficiency can be measured with the notion of diffusion round first introduced
in [SM10]. Intuitively, it is the number of rounds needed such that each output block
depends on each input block. A diffusion comparison is given in Figure 3.7. The left GFN
uses a chosen permutation and the right one uses the cycle shift. We can see that the
GFN with the cycle shift needs much more rounds to fully diffuse the first block on all the
blocks. This means that for the same number of rounds, a GFN with a good permutation
will be more shuffled. Moreover, if the diffusion round can be lower, then we can reduce
the number of rounds of a GFN without affecting security. The diffusion round was first
introduced in [SM10] and its definition is recalled below (Definition 3.3).

Definition 3.3 (Diffusion Round) Given a GFN with a permutation π over 2k ele-
ments, DRi(π) is the minimum number of rounds r such that X0

i is diffused to all output
blocks. Then, the diffusion round of a permutation π is given by DR(π) = max0≤i<2k{DRi(π)}.

The GFN scheme has been used in many recent ciphers (LBlock [WZ11], Piccolo [SIH+11],
TWINE [SMMK12], WARP [BBI+20]). These ciphers have also in common to be lightweight
ciphers, meaning they need security but also efficiency. Therefore the number of rounds
has to be as low as possible. To lower the number of rounds of GFN ciphers, permutations
with low diffusion round are needed. This is why the search for permutations with the
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Figure 3.7 – Full Diffusion in a GFN and a Type-2 Feistel

optimal diffusion round is an important research topic. Note that the decryption of a GFN
is the GFN with keys in reverse order and inverse permutation. As a consequence, the
diffusion round of the inverse GFN with the inverse permutation π−1 is also important.
Indeed, a GFN with a good diffusion round needs to have at least the same diffusion round
for the inverse GFN. Another way to decrease the diffusion round is to change the permu-
tation at every round. For example, this was studied in [AGP+19] for secure multi-party
computation (each person of a group has a secret and they want to compute a function
together). In this specific context it was shown that changing the permutation at each
round of a Feistel was a good trade-off between diffusion and complexity of the cipher.
They also observed that unbalanced Feistel networks are more suited in this context than
the most widely used balanced Feistel network.

3.2 Related work on diffusion in GFNs

To study diffusion in GFNs, the authors of [SM10] used an exhaustive search to find
all the permutations with the best diffusion round from 2 to 8 pairs of blocks. In all the
sets of best permutations, they observed that there is always at least one permutation
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with the even-odd property.

Definition 3.4 (even-odd permutation) Let π be a permutation over 2k elements.
An even-odd permutation is a permutation that sends each even-indexed element on an
odd-indexed element and conversely i.e., ∀i ∈ J1, kK ∃j ∈ J1, kK π(2i) = 2j + 1 and
∀i ∈ J1, kK ∃j ∈ J1, kK π(2i + 1) = 2j.

The even-odd property is very interesting in several ways. Firstly, it brings a lower
bound for the diffusion round, given by the Fibonacci sequence [CGT19, DFLM19].

Proof. In a GFN, each odd-indexed block Xi (i an odd integer) diffuses to both the
blocks Xπ(i) and Xπ(i−1) at the next round. Therefore, if π is an even-odd permutation and
F (Xi) is the maximum number of nodes we can reach in the diffusion of Xi at a round
R, we have that F (Xi) = F (Xπ(i−1)) + F (Xπ(π(i))). Since π(i − 1) and π(π(i)) are odd,
they have the same diffusion as F (Xi) with respectively one and two rounds less. Thus if
we write F (Xi) as Fn (with n the number of round), we have that Fn = Fn−1 + Fn−2. □

Thanks to this, we can compute a lower bound on the number of rounds needed to
have full diffusion. It is the smallest integer i such that the Fibonacci sequence at index
i − 1 is greater than the number of pairs of blocks k (F(i−1) ≥ k). Although the optimal
diffusion round is not always equal to this lower bound, for all the current known optimal
diffusion round they are at most one round away from the bound. The bounds are given
in Table 3.1.

k 1 2 3 4 5 6-8 9-13 14-21 22-34 35-55 56-64
Fibonacci lower bound 2 4 5 6 6 7 8 9 10 11 12

Table 3.1 – Fibonacci lower bound of the DR

The second advantage of even-odd permutations is that there are far fewer of them.
Indeed, for 2k Feistel branches, there are (2k)! possible permutations but only (k!)2 even-
odd ones. This reduced search space makes the search of good permutations easier.

In [SM10], the exhaustive search for optimal permutations is limited to 8 pairs of
blocks but the authors presented a method to find good even-odd permutations for a
higher number of pairs. This method comes with the following drawbacks: we do not
know if the permutations are optimal, and the number of blocks is limited to powers of
two. This method uses a graph representation of the even-odd permutations. The GFN
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is represented as a directed graph where each node represents a pair of blocks and each
edge represents a permutation transition. This compact representation allowed them to
find a family of even-odd permutations with a diffusion round of 2log2(2k) for GFN with
k = 2s (s an integer s ≥ 2). The method uses Colored De Bruijn graphs. These directed
graphs have node labels in Fn

2 and the specific property that for each edge, the next node
has the same label with the first bit forgotten and one new bit at the end. For example a
node labelled 10 is connected to the nodes 00 and 01 (the De Bruijn graph with s = 2 is
given in Figure 3.8).

00

01

10

11

Figure 3.8 – De Bruijn graph for s=2

Designing GFN with De Bruijn graphs structure helped the authors of [SM10] to
find some good permutations regarding the diffusion round. Indeed, the diffusion rounds
they obtained are quite close to the lower bound. However, in the context of truncated
differential analysis, the De Bruijn graph structure makes the cipher quite weak. Indeed, in
truncated differential analysis, we are interested in propagating differences into a cipher.
If an input difference is efficiently diffused in the cipher, it will go through more S-Boxes,
making a differential attack harder. However, if one difference is XORed to the same
difference, they are cancelled and this reduces the diffusion. In the context of De Bruijn
graphs, each two nodes with the same name except the first bit (a|x and a|x) will end
up in a difference cancellation. Indeed, each node of the De Bruijn graph represents a
Feistel pair of blocks and the four outgoing edges of these two pairs will end up on the
same two pairs (x|1 and x|0) (See Figure 3.9). This makes difference cancellation common
in GFN permutations generated from a De Bruijn graph. To see this in practice, we can
perform truncated differential analysis on all the GFN with 2k = 16 blocks because there
are not too much of them. Then, we can compare the optimal number of active S-Boxes
to the number of active S-Boxes of the permutations deduced from the De Bruijn graphs
(Table 3.2). In this table, we can see that none of these GFNs have the optimal number
of active S-Boxes after round 11.

Search strategies. To find the optimal permutations, the exhaustive search used by
[SM10] is not practical as soon as we want to search for permutations with more than 16
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Round 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Optimal 0 1 2 3 4 6 8 11 14 19 22 26 29 31 34 37

De Bruijn

0 1 2 3 4 6 8 10 12 12 14 16 16 18 20 20
0 1 2 3 4 6 8 10 12 14 16 20 24 30 32 34
0 1 2 3 4 6 8 10 12 14 16 20 22 26 30 31
0 1 2 3 4 6 8 11 14 19 21 24 25 27 30 31
0 1 2 3 4 6 8 11 14 19 21 24 25 27 30 31
0 1 2 3 4 6 8 11 14 18 22 24 27 30 32 35
0 1 2 3 4 6 8 10 12 14 16 20 24 30 32 34
0 1 2 3 4 6 8 10 12 14 16 20 22 26 30 31
0 1 2 3 4 6 8 10 12 14 16 20 22 26 30 31
0 1 2 3 4 6 8 10 12 14 16 20 24 30 32 34
0 1 2 3 4 6 8 10 12 12 14 16 16 18 20 20

Table 3.2 – Best number of active S-Boxes for De Bruijn GFN

(a|x)

(a|x)

(x|1)

(x|0)

Figure 3.9 – Double cancellation in De Bruijn graph

blocks. To go further, [CGT19] first defined equivalence classes of Feistel permutations.
Indeed, the pairs of blocks of a permutation π can be re-indexed to give a new permutation
with the same diffusion properties. We can find a permutation ϕ such that π′ = ϕ−1◦π◦ϕ.
The specificity of Feistel permutations is that the blocks are in pairs due to the transition
with the S-Box from each odd to each even node. Thus the equivalence classes are pair-
equivalence classes and the permutation ϕ needs to keep the two blocks of a pair together.
The number of pair-equivalence classes compared to the number of permutations for
general and even-odd cases are shown in Table 3.3 and Table 3.4.

2k number of classes number of solutions (2k)!
4 16 24
6 134 720
8 1796 40320

Table 3.3 – Number of pair-equivalence classes in the general case

There are far less pair-equivalence classes than possible permutations. The main idea
is then to find a way to compute efficiently only one representative of each class. To do so
[CGT19] gives two strategies; one for the general case and another one for the even-odd
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2k number of classes number of solutions (k!)2

4 4 4
6 11 36
8 43 576
10 161 14400
12 901 518400
14 5579 25401600

Table 3.4 – Number of pair-equivalence classes in the even-odd case

case. Note that a permutation can be categorized by its cycle decomposition a.k.a the
number and length of cycles it contains.

Example 3.1 For example, the permutation π = (1 0 3 2 4 6 7 5) has 4 cycles that can be
represented by (1 0)(3 2)(4)(5 6 7). The cycle decomposition of π can be written only with
number of cycles and their length: one cycle of length one (1, 1) two cycles of length two
(2, 2) and one cycle of length three (3, 1). Any permutation with the same cycles will have
the same decomposition for example ϕ = (1 0 2 4 5 3 7 6) also has a cycle decomposition
in (1, 1), (2, 2), (3, 1). Another way to write a cycle decomposition is to give a list of the
cycle lengths like (3, 2, 2, 1) for our example.

The number of cycle decompositions of a permutation of length k is the number of parti-
tions of the integer k noted Nk.

The strategies presented in [CGT19] first takes only one representative of each cycle
decomposition to reduce the permutation enumeration. The first strategy focuses on even-
odd permutations.

1. The first step sets one cycle decomposition representative of half of the permuta-
tion:
For each cycle decomposition type t of size k, set an arbitrary permutation ϕt that
satisfies this decomposition type.

2. The second step enumerates the second half of the permutation:
For all permutations θ of k elements, construct the permutation πϕt,θ given by

πϕt,θ(2j + 1) = 2ϕt(j)

πϕt,θ(2j) = 2θ(j) + 1

3. The last step computes the diffusion round of this permutation:
Compute the diffusion of πϕt,θ
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With this strategy, the number of permutations on which we have to compute the diffusion
round on is reduced to Nk × k!.

In the general case, the strategy becomes more complex.

1. The first step takes one cycle decomposition representative of the whole permuta-
tion.
For each cycle decomposition type t of size 2k, set an arbitrary permutation gt that
satisfies this decomposition type.

2. The second step chooses k sorted elements among 2k to represent the first half of
the permutation and put them on the odd indexes.
For each possible set {x1, . . . , xk} of k elements among 2k assumed sorted, set an
arbitrary permutation ϕa such that ϕa(xi) = 2i + 1.

3. The third step enumerates the second half of the permutation.
For all permutations θ of k elements, construct the permutation π given by

π(2j + 1) = 2j + 1

π(2j) = 2θ(j)

4. The last step computes the diffusion of everything together.
Compute the diffusion of (π ◦ ϕa)−1 ◦ gt ◦ (π ◦ ϕa)

With this strategy, the number of permutations on which we have to compute the diffusion
round is reduced to N2k × (2k)!

k! . The number of diffusion round to test can be further
reduced by removing the cycles decompositions with non diffusing cycles such as 1-cycles
or subsets of cycles which only diffuse to themselves.

With these strategies, the optimal permutations were found for 18 pairs in the general
case, and for 24 pairs on the even-odd case. As in the previous works, the authors of
[CGT19] then proposed a heuristic to build good even-odd permutations. This method
tries to build permutations with a low number of collisions in the first rounds of the
diffusion. A collision occurs when two branches join in the diffusion tree (see Figure 3.7).
The belief that low collision permutations may lead to better diffusion rounds comes from
the cases k = 8 and k = 13 pairs. In these cases of GFN, there is a low number of
solutions with optimal DR and they all have as few collisions as possible in their diffusion
tree. However, in other cases, there are some permutations with optimal diffusion round
that do not have this property. The heuristic takes as input an integer r as a small number
of rounds on which no collision is allowed. The even-odd strategy is then adapted in step

66



3.2. Related work on diffusion in GFNs

2 to only enumerate the permutations that satisfy this property. This heuristic has the
complexity of O(2 k

4 ) which allows them to compute good permutations for 32, 64 and 128
blocks. In this paper, they also open a discussion on a lower bound of the diffusion round
on the general case which we will discuss later on.

Search strategies for even-odd. In the paper [DFLM19] the focus was made on
even-odd permutations. On this case, the authors highlighted the following property.

Corollary 3.1 Let π = (p, q) be an even-odd permutation over 2k elements. DR(π) = r

if, and only if, each even block X0
2j diffuses to at least one block of each pair of the (r−1)-th

round X
(r−1)
2j′ or X

(r−1)
2j′+1 .

By separating the even-odd permutation π into two permutations p and q for even blocks
and odd blocks, they were able to define the diffusion set of indexes and to compute the
diffusion round of a permutation faster than previous methods. For example the diffusion
set of indexes for 6 rounds is given by

J6
j = {(p4)(j), (qp3)(j), (pqp2)(j), (p2qp)(j), (qpqp)(j), (p3q)(j), (qp2q)(j), (pqpq)(j)}

They are interested in the diffusion of the even nodes only (Corollary 3.1) so the first
common permutation p is omitted to simplify the diffusion computation.

They will also exploit the fact that if p is known, J6
j can be computed only with 7

guesses over the image of q namely:

q(j), (qp)(j), (qp2)(j), (qp3)(j)(qpq)(j), (qp2q)(j), (qpqp)(j)

Moreover, they found that if we separate J6
j into two sets

X6
j = {(qp3)(j), (pqp2)(j), (p2qp)(j), (qpqp)(j), (p3q)(j), (qp2q)(j), (pqpq)(j)}

and
Y6

j = {(qp3)(j), (qp2q)(j), (pqpq)(j)}

one can express J8
j as

J8
j = p2(X6

j ∪Y6
j ) ∪ (pq)(X6

j) ∪ (qp)(X6
j ∪Y6

j )
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With these properties, [DFLM19] presented an efficient algorithm to find all the even-
odd permutations with a diffusion round of 9. The first step of their search is similar to the
first steps of [CGT19]. They set half of the permutation (namely p) with one representative
of each cycle decomposition of size k. The search exploits all the previous properties in a
branch-and-bound algorithm optimized to perform as few guesses as possible on q.

1. For each cycle decomposition type t of size k, set an arbitrary permutation p that
satisfies this decomposition type.

2. Take a first element j of the smallest cycle
3. Guess J6

j (7 guesses) and add a constraint

|p2(X6
j ∪Y6

j ) ∪ (pq)(X6
j) ∪ (qp)(X6

j ∪Y6
j )| ≥ k

(this constraint enforces that at least all blocks can be reached from j in 9 rounds)
4. While the constraints are all valid and q is not entirely found, continue to guess on

p(j) (3 guesses) to add constraints. If p(j) is already guessed, go to a new j on step
2. If some constraints are incompatible, backtrack to change the previous guess.

With this efficient algorithm, the authors of [DFLM19] were able to find all the optimal
even-odd permutations for GFN with 26, 28, 30, 32, and 36 blocks. The algorithm found
no even-odd permutations of diffusion round of 9 for GFN with 34, 38, 40, and 42 blocks.

The authors also performed a security analysis for each permutation found and in
particular, differential analysis. They found that the truncated differential characteristics
vary a lot between two permutations that have optimal diffusion round. For k = 16, they
found between 26 and up to 40 active S-Boxes whereas some non optimal permutations
with regard to the diffusion round may have 70 active S-Boxes.

One of the main question left open in the literature remains to be whether a non-even-
odd permutation can achieve better diffusion than the well studied even-odd permutations.
Indeed, we have no proof that the optimal even-odd permutations are actually optimal
permutations in the general case beyond k = 10 pairs of blocks. The authors of [CGT19]
also raised the question of a lower bound for the general case. Moreover, the results in
[DFLM19] tend to question if the diffusion round is a good metric for differential analysis
resistance. In the next section, we present new representations of GFN to hopefully answer
these three questions.
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3.3 New representations

The first goal of our work was to find a representation for the diffusion in the GFN
with non-even-odd permutations (Definition 3.5).

Definition 3.5 (non-even-odd permutation) Let π be a permutation over 2k ele-
ments. A non-even-odd permutation is a permutation that sends at least one even-indexed
element on an even-indexed element.

Before finding a good representation, we tried several models described in the following
sections. In graph theory, both walk and path define a sequence of edges which joins a
sequence of vertices but the walk allows for redundant edges and vertices. Since we do not
need to know whether the edges are redundant or not for the diffusion round, this section
will use the term path for any sequence of edges which joins a sequence of vertices even
if it is not graph theory terminology.

3.3.1 Boolean matrix product

A permutation π can be described as an adjacency matrix Aπ with exactly one 1 in
each line and column. For example if π = (1, 4, 0, 2) then:

Aπ =


0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0


The GFN is a permutation with some additional transitions from each odd block to

its even block. To fully represent a GFN in an adjacency matrix, one needs to add to each
odd line a 1 in the same column as in the previous even line. For example, we add the
ones (in red) and B is obtained from Aπ:

B =


0 1 0 0
0 1 0 1
1 0 0 0
1 0 1 0


Then, we can use Property 3.1 to check the diffusion round.
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Property 3.1 An adjacency matrix A to the power of n contains in each cell An
i,j the

number of paths from i to j.

Therefore, we have the following results:

Corollary 3.2 Let π be a GFN permutation over 2k elements. DR(π) = r if, and only
if, r is the smallest integer such that the adjacency matrix of the GFN to the power of r

contains only non-zero integers.

If we compute powers of the example matrix B, we can see that the first one to have no
0 is B4 so the diffusion round is 4.

B3 =


1 1 1 1
2 2 1 1
0 1 0 1
0 2 0 1

 B4 =


2 2 1 1
2 4 1 2
1 1 1 1
1 2 1 2

 B5 =


2 4 1 2
3 6 2 4
2 2 1 1
3 3 2 2


The diffusion round property is obtained if there is at least one path between each pair

of blocks. As a consequence, we can replace the integer matrices by Boolean matrices where
a true Boolean indicates if there is at least one path. Furthermore, the matrix product
is simplified. Indeed, we can replace additions and multiplications by disjunctions and
conjunctions. We also use fast exponentiation i.e., instead of computing B8 with seven
matrix products (B ×B ×B ×B ×B ×B ×B ×B) we can perform three products and
compute only B2, B4, and B8 (B2 = B ×B, B4 = B2×B2 and B8 = B4×B4).

To test this representation, we modelled it in MiniZinc [NSB+07]. MiniZinc is an
expressive CP modelling language which is suitable for modelling problems for a range
of solvers. We made a model using the matrix representation to search for non-even-
odd permutations with a given DR for GFN. The model is composed of the following
constraints:

A is the adjacency matrix of π, each line and column must have only one true Boolean:

∑
j∈J0,2k−1K

Ai,j = 1 ∀i ∈ J0, 2k − 1K

∑
i∈J0,2k−1K

Ai,j = 1 ∀j ∈ J0, 2k − 1K
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The full diffusion is impossible if a block is only sent on itself therefore 1-cycles are
constrained by:

Ai,i = 0 ∀i ∈ J0, 2k − 1K

The full diffusion is also impossible if the two blocks of a pair are sent on each other
therefore they are constrained by:

A2i,2i + A2i,2i+1 + A2i+1,2i + A2i+1,2i+1 ≥ 1 ∀i ∈ J0, k − 1K

The GFN permutation B is constructed from A with the additional 1:

B2i,j = A2i,j ∀i ∈ J0, k − 1K ∀j ∈ J0, 2k − 1K

B2i+1,j = A2i,j ∨ A2i+1,j ∀i ∈ J0, k − 1K ∀j ∈ J0, 2k − 1K

Br is constrained with fast exponentiation and Boolean matrix products like:

B2i,j = Bi,k ∧Bk,j ∀i, j ∈ J0, 2k − 1K ∃k ∈ J0, 2k − 1K

In practice, this model was very slow paired with any solver (CP, MILP and SAT).
Furthermore, many permutations were similar. This corresponds to the pair-equivalence
classes described in [CGT19]. To break these symmetries and to find less redundant solu-
tions, we tried static and dynamic symmetry breaking constraints. A static way to prevent
some symmetries is to first set an order in which the variables will be chosen (from 0 to
2k in our case). After that, we can let only one pair of free variables available on each line.
For example, in the following matrix the zeros in the top right corner are the forbidden
transitions. 

? ? ? ? 0 0 0 0
? ? ? ? ? ? 0 0
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
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To go in more details, the search will first try to set p(0) and will only have the free pair
(2, 3) in addition to its own pair (0, 1) to choose from. Then to set p(1) only one new
free pair is available (4, 5), . . . The problem with these static constraints is that they only
constrain the small upper right triangle of the matrix as if the search will always use the
new free pair but if this pair is not chosen at one step, it remains the free pair for the
next step. To constrain this, we designed a dynamic version of this idea where the pair
(Ai,2j, Ai,2j+1) is always the only free pair available in the constraint:

Ai,2j ≤
∑

i′∈J0,i−1K

∑
j′∈J2j−2,2k−1K

Ai′,j′ ∀i ∈ J2, 2k − 1K ∀j ∈ J1, k − 1K

We used this model with several solvers and we were able to recover the results pre-
sented in [CGT19]. This MiniZinc model allows to quickly identify the most efficient solver
and we found the performances of the solvers interesting. The model is using only Boolean
variables but Picat-SAT solver was very slow. The best solver was Chuffed followed by
Or-Tools CP-SAT, and the worst one was Gurobi because of the highly combinatorial
constraints of the matrix product. Unfortunately, the models based on the matrix repre-
sentation were not fast enough to find solutions in reasonable time for a higher number
of pairs. Moreover, we tested Chuffed with and without the clause learning and found
no significant difference. Our hypothesis for this behavior is that the constraints are too
small and basic (sum and logical constraints) for the explanation process to be useful.

3.3.2 Successors union set

The second representation we proposed was much closer to CP. Each element of the
permutation is represented with an integer variable Pi ∀i ∈ J0, 2k − 1K. To model the fact
that P is a permutation we declare the constraint

AllDifferent(P )

Then, we add set variables Si,r that contain all the reachable blocks after r rounds from
each starting block i. On the first round, the reachable blocks are deduced from the
permutation variables Pi as:

S2i,1 = {P2i}

S2i+1,1 = {P2i, P2i+1}
∀i ∈ J0, k − 1K
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For the reachable variables with a greater r they are defined by the union of all the
successors of the reachable blocks at the previous round r − 1:

Si,r =
⋃

j∈Si,r−1

Sj,1 ∀i ∈ J0, 2k − 1K ∀r ∈ J2, RK

Unfortunately, there is no Union constraint with the index set as a variable in the con-
straint catalog or in the available solvers. To model our problem we defined the filtering
algorithms of this constraint and we added it into the solver Choco. A filtering algorithm
should describe all the situations where a value can be removed from each variable do-
main (e /∈ S) and all the situations where a value becomes mandatory in the domain of
its variable (e ∈ S). Let the set variables U , I and S be such that U = ⋃

i∈I Si

- If a value is removed from U , then it is also removed from the possible values of
the mandatory sets S:
e /∈ U, ∀i ∈ I =⇒ e /∈ Si

- If a value is added to the mandatory set of U and if there is only one set S with
this value, then it becomes mandatory:
e ∈ U, ∃i ∈ I, ∀j ∈ I, j ̸= i, e /∈ Sj =⇒ e ∈ Si, i ∈ I

- If an index is removed from I then all the values only supported by this set in U

are removed:
i /∈ I, ∀e ∈ Si, ∀j ∈ I, j ̸= i, e /∈ Sj =⇒ e /∈ U

- If an index becomes mandatory, then all the mandatory values of the corresponding
set S becomes mandatory in the union U :
i ∈ I, ∀e ∈ Si =⇒ e ∈ U

- If a value is removed from a set and this value is in no other sets, then it is removed
from the union too:
e /∈ Si, ∀j ∈ I, j ̸= i, e /∈ Sj =⇒ e /∈ U

- If a value is mandatory in a set and this set is mandatory, then the value is manda-
tory in the union too:
e ∈ Si, i ∈ I =⇒ e ∈ U

Note that some of the filtering rules can be redundant which is not a problem.

We reused the dynamic symmetry breaking constraints of the matrix representation
by adapting them to the permutation integer variables P . As a result we were able to find
optimal permutations for 24 blocks which is better than the best previous methods for
the general case [CGT19]. However, we wanted to go further and solution we proposed to
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solve the symmetry issue was not very satisfying.

3.3.3 Graph representation

The third and main representation we explored is to model GFN as directed graphs
for the general case (the graph of [CGT19] was representing only even-odd permutations).
We were then able to define new properties, explore some ideas towards a lower bound
proof, and finally find an efficient algorithm to find all the optimal permutations for
non-even-odd GFN up to 32 blocks.

Definition 3.6 (GFN Graph) Given a permutation π over 2k elements, the GFN graph
associated to π is the graph Gπ = (V, E) where:

V = Ve ∪ Vo with
Ve = {0, 2, . . . , 2k − 2}, the even nodes
Vo = {1, 3, . . . , 2k − 1}, the odd nodes

E = Eϵ ∪ Eπ with
Eϵ = {(1, 0), (3, 2), (5, 4), . . . , (2k − 1, 2k − 2)}, pairwise edges
Eπ = {(u, v) | u, v ∈ V ∧ π(u) = v}, permutation edges

The set V is the set of all nodes which is divided into two halves, the set of even
nodes Ve and the set of odd nodes Vo representing respectively the even blocks and the
odd blocks of a GFN. The set Eπ is the set of all the edges representing the permutation
π, whereas Eϵ is the set of edges representing the S-Box passages from the odd to the
even blocks (also called ϵ-transitions). For example, the GFN graph of the permutation
π = (2, 4, 5, 6, 9, 11, 7, 1, 3, 12, 15, 0, 13, 14, 8, 10) can be found on Figure 3.10.

In the following, we will often refer to the GFN graph Gπ of a permutation π. The sets
Ve, Vo, Eπ, Eϵ will be used to represent the even blocks, the odd blocks, the permutation
transitions and the ϵ-transitions.

To formally define the Diffusion Round on a GFN graph we need to define the following
notion of path and diffusable path (also called d-path)

Definition 3.7 (Path & Diffusable Path) A path p = (e1, . . . , en) is a finite sequence
of edges from E which joins two nodes from V . Moreover, when en ∈ Eπ, such a path is
called a diffusable path (or d-path for short).

We say that a path p is of length ℓ if there are exactly ℓ edges from Eπ in p. We consider
paths were there can be multiple occurrences of the same edge, if so they will be counted
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Legend :

Vo: odd blocks
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Figure 3.10 – GFN graph Gπ associated to the permutation π

in the length as many times as they appear in the path. For some properties, we need to
consider d-paths since a GFN round is composed of one potential edge in Eϵ followed by
one edge in Eπ. This is because the GFN round always end by the permutation. Based
on this graph representation, we proposed a new characterization of DR(π).

Corollary 3.3 DR(π) is the smallest integer R such that:
∀ u, v ∈ V , there exists a d-path of length R from u to v in Gπ.

In order to compute the diffusion round of a permutation π, we can consider the d-
paths of a certain length between all pairs of nodes in the graph Gπ. However, as already
noticed by [DFLM19] and recalled in Corollary 3.1, in the specific setting of even-odd
permutations, it is actually sufficient to consider some specific sets of nodes, and only
paths of length R − 1 to establish that the diffusion round is equal to R. With the GFN
graph we can define a similar property for the non-even-odd case (Proposition 3.1) and
we can extend it for the even-odd case (Proposition 3.2).

Proposition 3.1 Let π be a permutation, DR(π) is the smallest integer R such that:
∀a ∈ Ve, ∀b ∈ Vo, there exists a path of length R− 1 from a to b in Gπ.

Proof. Let a ∈ Ve and b ∈ Vo, we have that (a + 1, a), (b, b − 1) ∈ Eϵ with a + 1 ∈ Vo

and b − 1 ∈ Ve. Furthermore, we have g, h ∈ V such that (b, g), (b − 1, h) ∈ Eπ (see the
graph below with i = a + 1 and j = b− 1).
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a

i

. . . . . . . . . b

j h

g

1) From Corollary 3.3, we know that there is a d-path of length R from a to g, thus
there is a path of length R− 1 from a to b.

2) Now, suppose that there is a R′ < DR(π) such that ∀ a ∈ Ve, b ∈ Vo there is a path
of length R′ − 1 from a to b. We then have a d-path of length R′ from i to g, from i to
h and from a to h. Since we have these d-paths for each pair a ∈ Ve, b ∈ Vo, we have full
diffusion with R′ leading to a contradiction. □

For any permutation π, the Proposition 3.1 reduces the number of paths we have to
consider when studying diffusion. In the case of an even-odd permutation, the length of
these paths can be further reduced.

Proposition 3.2 Let π be an even-odd permutation, DR(π) is the smallest integer R

such that: ∀c ∈ Vo, ∀d ∈ Ve, there exists a path of length R− 3 from c to d in Gπ.

Proof. Let b, c ∈ Vo and a, d ∈ Ve with (a, c), (d, b) ∈ Eπ. We have that (a + 1, a), (b, b−
1) ∈ Eϵ with a + 1 ∈ Vo and b − 1 ∈ Ve. Furthermore, we have g, h ∈ V such that
(b, g), (b− 1, h) ∈ Eπ (see the graph below with i = a + 1 and j = b− 1).
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. . . d b

j h

g

1) From Proposition 3.1, we know that there is a path of length R − 1 from a to b,
thus there is a path of length R− 3 from c to d.

2) Now suppose that there is R′ < DR(π) such that ∀ c ∈ Vo, d ∈ Ve there is a path
of length R′ − 3 from c to d. We then have a d-path of length R′ from i to g, from i to h

and from a to h. Since we have these d-paths for all pairs a ∈ Ve, b ∈ Vo then we have full
diffusion with R′ leading to a contradiction. □

Proposition 3.1 and 3.2 are useful for both our previous models because they reduce
the search space. They are also very useful for path based algorithms. The graph repre-
sentation will be further used in the next sections especially to get rid of symmetries.
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3.3. New representations

3.3.4 GFN graph as automaton and regular expressions

The GFN graph defined in the previous section looks like an automaton. A finite-state
automaton is composed of a finite set of states, symbols of an alphabet and transition
functions. They can be represented using state diagrams like in Figure 3.11.

S0 S1 S2

S1 S0

S2 S3

a

a

a

a

a

ε

ε ε

Figure 3.11 – Automaton examples

An automaton can recognise a language (set of words). On the leftmost automaton
of Figure 3.11, let S0 be the starting state and S2 the ending state. In formal language
theory, the letter ϵ represents a free transition so this automaton can recognise the words:
aa, aaa, aaaa, . . .. Therefore it defines the language given by the regular expression aaa∗.
Moreover, if we take a look at the rightmost automaton of Figure 3.11 from state S0 to
state S3, we can find its regular expression: (aa|aaa)∗. This expression is deduced from a
different graph but it is the same as aaa∗ after simplification. Since the two graphs have
the same regular expression, this means that they contains paths of same lengths. This
remark may be useful to simplify the search of graphs with optimal diffusion round. If we
note the transitions of Eπ with the letter a and the transitions of Eϵ with the letter ϵ, we
can give an other characterisation of the diffusion round:

Corollary 3.4 DR(π) is the smallest integer R such that: ∀ u, v ∈ V , the regular expres-
sion corresponding to Gπ from u to v recognise the word a . . . a (R times).

The advantage of regular expression is that we can simplify them to detect the equiv-
alent sub-graphs one can use to build a GFN graph. For example, if we need to link
two nodes with a path of length 2, 4 and 5, both sub-graphs of Figure 3.11 can be used
interchangeably.

However, dealing with regular expressions simplifications for each pair of node while
building a GFN graph is a very complicated task. It is left as an open question to see if
this can be useful to improve the efficiently of a search algorithm.

77



Chapter 3 – Diffusion analysis on Feistel ciphers

3.4 New strategies

As seen in the previous approaches, the number of possible permutations of a GFN is
too high to be simply enumerated. A GFN of k pairs have (2k)! potential permutations
(red curve of Figure 3.12) so we will need strategies to reduce the search space.

k

log2(nb)

4 6 8 10 12 14 16 18 20 22 24 26 28 30

25
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275

(2k)!

Nkk!

(k!)2

Figure 3.12 – Number of possible permutations for values of k

As explained in [CGT19], in the even-odd case, the permutation can be split in two
parts. This reduces the search space to (k!)2 (blue curve of Figure 3.12). Moreover, the first
half of the permutation can be further reduced to all its possible cycle decompositions to
break some symmetries. This reduces the search space to Nk×k! where Nk is the number
of partitions of k (green curve of Figure 3.12).

Skeletons. In this section, we propose a generalization of the cycle decompositions to
consider non-even-odd permutations as well. With this structure that we call skeleton,
the number of permutations in the search space is then reduced from (2k)! to the curve 2

(k!)2 of Figure 3.12. This skeleton will also guide the enumeration algorithm. For this
generalization, we rely on our graph representation and the following definitions of cycles
and chains.

2. There is no exact formula but when we count the possibilities, the curve is very close to (k!)2

78



3.4. New strategies

Definition 3.8 (ϵ-cycle) An ϵ-cycle is a path c = (e1, . . . , e2l) in which the first and last
nodes are equal and edges alternate between Eπ and Eϵ one by one.

We note a l-ϵ-cycle an ϵ-cycle of size l i.e. with l ϵ-transitions. Moreover, we will only use
one representative of c = (e1, . . . , e2l) and we will not consider all the equivalent ϵ-cycles
like (e2l, e1, . . . , e2l−1) or (e1, . . . , e2l, e1, . . . , e2l). Some examples are given in Figure 3.13.

Figure 3.13 – 1-ϵ-cycle, 2-ϵ-cycle, and 3-ϵ-cycle

Let P be a partition of the integer k. For each i ∈ P , we set one representative ϵ-cycle
of the corresponding size. For example, there are three possible decompositions in ϵ-cycle
for k = 3, i.e. {3}, {2, 1}, and {1, 1, 1}. This corresponds to one 3-ϵ-cycle, or one 2-ϵ-cycle
with one 1-ϵ-cycle, or three 1-ϵ-cycles. This holds only for the even-odd case because even
nodes can only have edges to the odd nodes and conversely whereas even to even, and
odd to odd edges are allowed in the general case. To have a similar method in the general
case, we rely on ϵ-chains to handle the non-even-odd parts of the permutation.

Definition 3.9 (ϵ-chain) An ϵ-chain is a path c = (e1, . . . , e2l+1) in which the two first
nodes are in Vo and the two last nodes are in Ve. The edges alternate between Eπ and Eϵ

one by one.

We note an l-ϵ-chain an ϵ-chain of size l, i.e. with l ϵ-transitions. Except for the first and
the last node, all the nodes in an ϵ-chain are pairwise distinct. Indeed, if a node appears
twice in an ϵ-chain, then it is not an ϵ-chain but an ϵ-cycle because each node has only
one successor. However, the first and last node of the chain can be in an other ϵ-cycle or
an other ϵ-chain, or in the same ϵ-chain, making the ϵ-chain loops on itself (Examples of
chains and looping chains in Figure 3.14). This loop may occur at the beginning of the
ϵ-chain, at its end, or on both sides.

Definition 3.10 (Skeleton) A skeleton of size k is a set of ϵ-cycles and ϵ-chains whose
sum of sizes is k.
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Figure 3.14 – A 3-ϵ-chain with looping examples

We will use the same notation as for cycle decomposition but with two sides, the ϵ-cycle
side and the ϵ-chain side. The skeleton in Figure 3.15 is noted (3, 1, 1)(2, 1).

Example 3.2 The skeleton of the graph given in Example 3.10 is depicted below (see
Figure 3.15). It is composed of three ϵ-cycles of size 3, 1, and 1, as well as two ϵ-chains
of size 2 and 1.

Figure 3.15 – Skeleton of Figure 3.10

The skeleton of Figure 3.15 is also valid for graphs similar to Example 3.10 but with
different node names. In fact we can permute two pairs of nodes to find a different per-
mutation having the same skeleton (some examples in Figure 3.16). This is why we will
only use one representative of each skeleton.

The number of possible skeletons is given by the formula ∑k
i=0Ni ×Nk−i with Ni the

number of partitions of the integer i. The formula has two parts, one for the ϵ-cycles with
Ni and one for the ϵ-chains with Nk−i. The formula then sums the skeletons with each
possible division into ϵ-cycles and ϵ-chains. To give an idea, for 2k = 16, there are only 22
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Figure 3.16 – Three graphs with same diffusion obtained with pair renumbering

even-odd skeletons whereas there are 163 skeletons with at least one ϵ-chain. For 2k = 32,
there are 231 even-odd skeletons, and 5591 non-even-odd ones.

Skeleton completion to enumerate GFN. Thanks to these skeletons we have re-
duced the number of permutation we have to enumerate for the general case of GFN. The
number of permutation we have is “The number of skeletons × The enumeration of the
edges left to set”. The edges left to set are the odd to even edges ({(a, b) | a ∈ Vo, b ∈ Ve}),
and the first and last edges of the ϵ-chains. If there is only one ϵ-chain, the number of edges
to enumerate is k!× k. If there are k ϵ-chains the formula is (k!)2. An example of skeleton
completion is given in Figure 3.17. The leftmost graph is the skeleton of Figure 3.15 and
the rightmost one is a GFN. The number of edges to test is still too high to be naively

Figure 3.17 – Skeleton completion example

enumerated for high values of k. Therefore we will complete each skeleton using a path
algorithm we developed for that purpose.
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3.4.1 New recursive path algorithm

The previous enumeration methods i.e., ([SM10, CGT19, DFLM19], were based on
simple enumerations or restricted to even-odd permutations. The focus was made on
satisfying the full diffusion for each node of the GFN. The new algorithm we are going to
describe now, focuses on each path between two nodes and is not restricted to even-odd
permutations. The algorithm will try every possible path between each pair of nodes. By
doing so it will complete a GFN graph until all the edges are chosen. The complexity of
this algorithm is k(3k

2 )R in the worst case (the edges are always free). If we compare it to
the (2k)! tests of diffusion round of the naive search, this algorithm is more efficient when
R is quite low. Hopefully, the lower bound of the even-odd case suggests that R does grow
much slower than k. Moreover, most of the paths are incompatible so the building of a
GFN graph with optimal diffusion round is faster in practice. Thanks to Propositions 3.1
and 3.2, we will only consider paths of length R − 3 from odd to even nodes in the
even-odd case and paths of length R − 1 from even to odd nodes in the general case. To
obtain effective procedures, we enumerate the paths while building a GFN graph. With
this method, the more paths we add to the graph, the fewer possibilities remain for the
following ones. Thanks to this, we can also define a strategy to cut the search as soon as
possible by trying the paths with the least possibilities first.

Our algorithm is composed of the three following functions:
— MakePath builds all the possible paths from a node a to a node b and is described

in Algorithm 2. Starting from node a, the function calls itself on each possible next
node for the path until it reaches b with the length R. More precisely, on a node
x, there is only three possibilities:
— If x is odd, there is one call to the even node x − 1. In this call, the length l

does not decrease because ϵ-transitions are not counted in the path length (line
2-3).

— If π[x] has already been set, we have no choice, and thus we follow it (line 4-5).
— If π[x] is free, we have to try all the remaining free nodes (line 7-9).
On each valid path, the function calls NextPath that will choose the next path
to build (line 13).

— HasProperty checks whether the property of interest is satisfied between two
nodes. For example, when considering the full diffusion property, we have to check
whether a path of length R exists between the two nodes. As we will see later,
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some other properties can be considered too.
— NextPath chooses two nodes a and b that do not have the property described in

HasProperty. If such a pair of nodes exists, it calls MakePath on it to link
them with the next path. It is described in Algorithm 3.

Algorithm 2: MakePath(x, π, b, l)
Data: x: current node, π: partial permutation, b: target node, l: remaining length

to reach R
1 if l > 0 then
2 if x is odd then
3 MakePath(x− 1, π, b, l);
4 if π[x] is set then
5 MakePath(π[x], π, b, l − 1);
6 else
7 for all y not used in π do
8 π[x]← y;
9 MakePath(y, π, b, l − 1);

10 free π[x];
11 else if x = b then NextPath(π) ;

Algorithm 3: NextPath(π)
Data: π: partial permutation

1 for all (a, b) given by Strategy() do
2 if ¬HasProperty(a, π, b, R) then
3 MakePath(a, π, b, R);
4 return ;

5 Add π to solution pool

Start and stop conditions. Our algorithm starts by a call to NextPath with an
undefined permutation and a given global parameter R. It stops when one of the following
conditions holds:

1. There is no possible path from a to b, and thus there is no solution.

2. The permutation is complete, i.e. fully defined: it is a solution if HasProperty
is true for each pair of nodes.
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3. The algorithm ends without seting the whole permutation. In this case, any com-
pletion of the permutation leads to a valid solution.

Once all the recursive branches of our algorithm have been explored, all the paths
of length R have been exhausted. Thus, at the end of the algorithm, we find all the
permutations achieving full diffusion at round R if any. The algorithm can build these
permutations from scratch, but it will find a lot of similar solutions. This corresponds
to the pair-equivalence classes defined in [CGT19]. To avoid these redundancies, we use
the skeletons defined in the previous section to reduce the search space. The algorithm
can be run on each skeleton independently to help parallelization. Nevertheless, there are
some symmetries left in our algorithm. Indeed, a l-ϵ-cycle will produce l similar solutions.
Moreover, if there are m times the same ϵ-cycle or ϵ-chain, there will be m! similar
solutions. Breaking these symmetries in our algorithm increases its running time, and
it is left to future work to take them into account effectively.

The search strategy. For the choice of a and b in the NextPath function, the strategy
consists of starting by the paths with the least possibilities. To do so, we can either count
the remaining possible paths during the search, or we can set a static path priority based
on the skeleton of the graph. The best strategy we found was to first build the paths that
start and end on the smallest ϵ-chains. This is because the paths starting by consecutive
even nodes and ending by consecutive odd nodes have fewer possibilities and therefore
are most likely to be impossible to build.

Example 3.3 (MakePath execution to find a GFN with DR=5)
Let the four following nodes as a starting structure example:

2 1 30

If we want a DR = 5, we need paths of length 4 from the green to the red nodes (Proposi-
tion 3.1). The algorithm will first try to make a path from the node 0 to 3. There are two
possibilities.

The first possibility for 0 to 3 is to add a node to link 2 and 1 like:
2 1 30 4

Once this path is completed the next path to build will be from 0 to 1 with length 4.
Regardless of the nodes added in the previous step, this path cannot be built. The algorithm
will then try the second possibility for the first path
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The second possibility for 0 to 3 is to add a pair of nodes linked by an ϵ-transition :

2 1 30 2 1 30 5 4

The path from 0 to 3 is completed and there is only one option left for the path from 0 to
1:

2 1 30 5 4

The path from 2 to 3 already exists so the next path to build is the one from 2 to 1.
Again, this path is impossible and we have exhausted all the possibilities so the algorithm
concludes that from this starting structure, there is no permutation with DR = 5. Note
that this example is valid for any k except for k = 2 because in this case, the node 4 would
not have been available.

3.4.2 Results for the non-even-odd case

To test whether a non-even-odd permutation can have a better diffusion round than the
even-odd ones, we used Algorithm 2 on all the skeletons having at least one ϵ-chain. We set
R to be one round less than the diffusion round known for the best even-odd permutation,
and ran our algorithm with the property HasPath (described in Algorithm 4).

Algorithm 4: HasPath(x, π, b, l)
Data: x: current node, π: partial permutation, b: target node, l: remaining length

1 if l > 0 then
2 return (x is odd ∧ HasPath(x− 1, π, b, l))
3 ∨ (π[x] is set ∧ HasPath(π[x], π, b, l − 1));
4 else return x = b ;

The case 2k = 22 is easy with our algorithm so we increased R to find the optimal non-
even-odd permutations. They are given in Table 3.5. These optimal permutations have a
diffusion round of 9 which is one round more than the optimal even-odd permutations.

For 2k = 24 to 2k = 32, our algorithm ended without finding any non-even-odd
permutations with a better diffusion round than the optimal even-odd ones. As a result,
we establish that the non-even-odd permutations do not achieve a better diffusion round
than the even-odd permutations up to 2k = 32. For 2k = 34 the algorithm found no non-
even-odd permutations for R = 8 but the optimal even-odd permutation has a diffusion
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π =(3, 18, 5, 16, 7, 12, 9, 10, 1, 14, 13, 2, 15, 8, 11, 21, 17, 4, 19, 6, 0, 20)
π =(3, 6, 5, 12, 7, 10, 9, 18, 1, 2, 13, 4, 15, 16, 17, 8, 11, 21, 19, 14, 0, 20)
π =(3, 12, 5, 0, 7, 10, 9, 18, 1, 2, 13, 4, 15, 16, 17, 21, 11, 8, 19, 14, 6, 20)
π =(3, 8, 5, 16, 7, 21, 9, 14, 1, 2, 13, 18, 15, 0, 17, 6, 11, 12, 19, 4, 10, 20)
π =(3, 21, 5, 10, 7, 0, 9, 14, 1, 2, 13, 18, 15, 8, 17, 6, 11, 12, 19, 4, 16, 20)
π =(3, 8, 5, 6, 7, 4, 1, 12, 11, 2, 9, 21, 15, 19, 13, 17, 10, 16, 14, 20, 0, 18)
π =(3, 4, 5, 14, 7, 0, 9, 16, 11, 2, 1, 12, 15, 21, 13, 6, 19, 10, 17, 8, 18, 20)
π =(3, 6, 5, 10, 7, 16, 9, 18, 11, 14, 1, 2, 15, 4, 13, 0, 19, 8, 17, 21, 12, 20)

Table 3.5 – Optimal non-even-odd permutations for 2k=22

round of R = 10. Sadly, our algorithm with R = 9 did not end in less than a week of
computation. However, for 2k = 36 since the best even-odd permutation has a DR of 9 we
were able to show that there is no even-odd permutation strictly better. Results of this
algorithm are summarised in Table 3.6. They have been published in [DDGP22]. These
results have been obtained on a 128 core CPU (AMD EPYC 7742 64-Core Processor) and
the source code is publicly available at:

https://gitlab.inria.fr/agontier/ANewAlgoForGFN

For a light comparison, in [CGT19], it is mentioned that “246.4 tests of diffusion rounds”
are needed when considering 20 blocks. Actually, our algorithm is faster and tackles this
instance in around 8 seconds on our server.

3.5 New criteria

As studied in the literature, the diffusion round is a property that can be used to
find good Feistel permutations. This criteria is tied to the resistance of the resulting ci-
phertext against e.g. impossible differentials, saturation attacks and pseudorandomness
analysis [SM10]. However, permutations with optimal diffusion round can also be weak
against other cryptanalysis techniques. For instance, the designers of WARP [BBI+20] se-
lected a permutation achieving full diffusion in 10 rounds while permutations with a
diffusion round of 9 actually exist. The main reason is that all optimal permutations for
the diffusion round are much weaker regarding truncated differential cryptanalysis than
the one they selected. These permutations require at least 32 rounds to reach 64 active
S-Boxes, while the permutation used in WARP (which is non optional w.r.t. the diffusion
round) only requires 19 rounds to reach the same resistance.
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2k
Fibonacci even-odd non-even-odd

bound DR Ref DR Ref
6 5 5

[SM10]

6

[SM10]

8 6 6 6
10 6 7 7
12 7 8 8
14 7 8 8
16 7 8 8
18 8 8

[CGT19]

9 [CGT19]20 8 9 9
22 8 8 9

[DDGP22]

24 8 9 ≥ 9
26 8 9

[DFLM19]

≥ 9
28 9 9 ≥ 9
30 9 9 ≥ 9
32 9 9 ≥ 9
34 9 10 ≥ 9
36 9 9 ≥ 9

Table 3.6 – State of the art regarding optimal Diffusion Round.

Therefore, it would be interesting to look for other properties which might lead to
stronger ciphers. With our algorithm it is quite simple to change the property we are
looking for as we only need to provide a new HasProperty function. In this section, we
thus propose several properties derived from the diffusion round and study the quality of
their solutions against truncated differential cryptanalysis. We consider two properties,
the first one is a generalization of the diffusion round where we consider not one but X

paths between each pair of blocks. The second one consists of counting the S-Boxes on
each path instead of the paths themselves.

3.5.1 Number of paths

The diffusion round property ensures that each solution has at least one d-path of
length R between each pair of blocks. We propose a new property parameterized by an
integer X, namely X-DR, which extends the diffusion round to at least X d-paths of
length R between each pair of blocks.

Definition 3.11 X-DR(π) is the smallest integer R such that:
∀u, v ∈ V , there are at least X d-paths of length R from u to v in Gπ.
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This new property introduces the parameter X denoting the minimum number of paths
we want between each pair of nodes. When X = 1, this corresponds to the full diffusion
property. To use this new property in our algorithm, the call to HasProperty (line 2 of
Algorithm 3) is replaced by a call to NumberOfPaths with the slight modification that
this number of paths must be greater or equal to the parameter X. This function counts
the number of paths between two nodes, it is given in Algorithm 5.

Algorithm 5: NumberOfPath(x, π, b, l)
Data: x: current node, π: partial permutation, b: target node, l: remaining length

1 if l > 0 then
2 if π[x] is set then
3 if x is odd then
4 return

NumberOfPath(x− 1, π, b, l) + NumberOfPath(π[x], π, b, l − 1);
5 else return NumberOfPath(π[x], π, b, l − 1) ;
6 else return 0 ;
7 else
8 if x = b then return 1 ;
9 else return 0 ;

Since we want more than one path between two nodes, the function MakePath may
need to create multiple paths. Due to these multiple paths, we must set an order between
paths to prevent introducing new symmetries. For example, we should not build a path p

after a path q if we already tried to build them in the reverse order. Proposition 3.2, stated
and proved for the diffusion round, is still valid when considering X-DR. It is stated in
Proposition 3.3, the proof is very similar.

Proposition 3.3 Let π be an even-odd permutation, X-DR(π) is the smallest integer R

such that: ∀c ∈ Vo, d ∈ Ve, there are X paths of length R− 3 from c to d in Gπ.

Proof. Let b, c ∈ Vo and a, d ∈ Ve with (a, c), (d, b) ∈ Eπ. We have that (a + 1, a), (b, b−
1) ∈ Eϵ with a + 1 ∈ Vo and b − 1 ∈ Ve. Furthermore, we have g, h ∈ V such that
(b, g), (b− 1, h) ∈ Eπ (see the graph below with i = a + 1 and j = b− 1).

a

i

. . . . . . . . . b

j h

g
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1) From Definition 3.11, we know that there is X d-paths of length R from a to g,
thus there is X paths of length R− 3 from c to d.

2) Now suppose that there is R′ < X-DR(π) such that ∀ c ∈ Vo, d ∈ Ve there is X

paths of length R′−3 from c to d. We then have X d-paths of length R′ from i to g, from i

to h and from a to h. Since we have these d-paths for all pairs a ∈ Ve, b ∈ Vo then we have
full diffusion with X-DR(π) = R′ and thus the contradiction X-DR(π) < X-DR(π). □

To compare this criterion w.r.t. truncated differential analysis, we computed the min-
imal number of active S-Boxes for each possible permutation by enumerating all of them
for k = 6, k = 7, and k = 8. We give in Table 3.7 the best number (i.e. the minimum one)
we obtained from round 1 to round 16 :

k
Round 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

6 0 1 2 3 4 6 8 11 14 16 19 22 24 26 28 29
7 0 1 2 3 4 6 8 11 14 19 23 26 28 30 33 35
8 0 1 2 3 4 6 8 11 14 19 22 26 29 31 34 37

Table 3.7 – Best minimal number of active S-Boxes for each round

The case k = 8 is the most interesting one and we describe it more precisely for each
cycle decomposition in Table 3.8. The red bold numbers are the optimal number of S-
Boxes for R ≥ 10. In this table, we can see that there is a very low proportion of optimal
solutions. We also see that a solution cannot have the maximal number of S-Box on all
the rounds at the same time.

To compare the new criterion with the diffusion round, we took the 500 first solutions
given by our algorithm for the criterion. We choose the number 500 arbitrary to have
a representative solution pool and also have fast computing times. We computed the
minimal number of active S-Boxes for each of these solutions, and we counted the number
of solutions that reached the optimal value for each round from 10 to 16. The results are
given in Table 3.9. Note that to get 500 solutions, we sometimes needed to consider the
criterion to a higher round than the optimal one. For example four paths diffusion round
for k = 8 is R = 10. However, there are less than 500 solutions with these parameters.
Thus, we had to increase R until we reached 500 solutions. This is summarized in the
range column of Table 3.9.

For k = 8, we do not see a trend and we have similar results for k = 7 and k = 6.
In fact, the property seems uncorrelated to the optimal number of active S-Boxes. We
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R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14

Max number of S-Box 0 1 2 3 4 6 8 11 14 19 22 26 29 31
p.c. sol reaching max 100% 37% 10% 4.4% 3.9% .0013% .0012% .0006% .0012% .0034%
nb sol reaching max 887040 326326 88654 39670 34679 52 48 24 48 136
Cycle decomposition Best minimal number of active S-Box

[8] 0 1 2 3 4 6 8 11 14 17 21 24 28 31
[7, 1] 0 1 2 3 4 6 8 11 14 19 21 24 28 30
[6, 2] 0 1 2 3 4 6 8 11 14 19 22 24 27 30

[6, 1, 1] 0 1 2 3 4 6 8 11 14 18 21 26 28 30
[5, 3] 0 1 2 3 4 6 8 11 14 17 21 24 27 30

[5, 2, 1] 0 1 2 3 4 6 8 11 14 18 21 24 28 30
[5, 1, 1, 1] 0 1 2 3 4 6 8 11 14 17 21 24 27 30

[4, 4] 0 1 2 3 4 6 8 11 14 18 22 24 27 30
[4, 3, 1] 0 1 2 3 4 6 8 11 14 18 21 26 29 31
[4, 2, 2] 0 1 2 3 4 6 8 11 14 17 21 24 27 31

[4, 2, 1, 1] 0 1 2 3 4 6 8 11 14 18 22 24 28 30
[4, 1, 1, 1, 1] 0 1 2 3 4 6 8 11 14 16 19 23 27 31

[3, 3, 2] 0 1 2 3 4 6 8 11 14 18 21 24 27 30
[3, 3, 1, 1] 0 1 2 3 4 6 8 11 14 19 22 24 29 31
[3, 2, 2, 1] 0 1 2 3 4 6 8 11 14 17 21 24 27 30

[3, 2, 1, 1, 1] 0 1 2 3 4 6 8 11 14 16 19 24 27 29
[3, 1, 1, 1, 1, 1] 0 1 2 3 4 6 7 9 12 14 17 20 24 26

[2, 2, 2, 2] 0 1 2 3 4 6 8 11 14 16 19 24 26 29
[2, 2, 2, 1, 1] 0 1 2 3 4 6 8 11 14 17 20 24 27 31

[2, 2, 1, 1, 1, 1] 0 1 2 3 4 6 8 11 14 16 19 22 24 27
[2, 1, 1, 1, 1, 1, 1] 0 1 2 3 4 6 7 9 12 14 16 19 22 25

[1, 1, 1, 1, 1, 1, 1, 1] 0 1 2 3 4 6 7 9 10 13 15 17 19 22
TWINE [SMMK12] 0 1 2 3 4 6 8 11 14 18 22 24 27 30

Table 3.8 – Best minimal number of active S-Boxes by cycle decomposition for k = 8

can see that increasing the parameter X increases the round R we need to go to find 500
solutions. Indeed when we search for two paths instead of one, the property is so strict
that there are no solutions for R = 8. We also see that few to none of the 500 solutions
are optimal in general.

3.5.2 Number of S-Boxes

Having X paths between each pair of blocks does not ensure that these paths are
good from the differential analysis point of view. Instead of constraining the number of
paths, we propose to ensure that a minimum number of S-Boxes are present in the d-paths
between each pair of blocks.

Definition 3.12 X-SB(π) is the smallest integer R such that: ∀u, v ∈ V , there are X

S-Boxes traversed by d-paths of length R from u to v in Gπ. A S-Box reached by two paths
of the same length will be counted only once.
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X-DR
Round 10 11 12 13 14 15 16 Range

1 path 9 16 0 0 0 0 0 8
2 paths 24 37 0 0 0 0 0 9
3 paths 0 4 0 0 0 0 0 10
4 paths 15 15 0 0 0 0 0 10-11
5 paths 0 1 0 0 0 0 0 11
6 paths 9 9 0 0 0 0 0 11-12
7 paths 0 0 0 0 0 0 0 12
8 paths 0 0 0 0 0 0 0 12

Table 3.9 – Number of solutions with an optimal number of active S-Boxes from round
10 to round 16 in the 500 first solutions considering k = 8

For example, in the two paths of length 5 from a to d depicted below, the S-Box corre-
sponding to the red edge (b, b′) will be counted twice (as it occurs at two different lengths),
whereas the S-Box corresponding to the red edges (a′, c) will be counted only once (even
if it occurs on both paths).

a b a b c d

b′ a′ b′ a′

To use this new property in our algorithm, the call to HasProperty (line 2 of
Algorithm 3) is replaced by a call to DetectS-Boxes with the slight modification that
the sum of detected S-Boxes must be greater or equal to the parameter X. DetectS-
Boxes is described in Algorithm 6. Unlike paths, we cannot simply count the S-Boxes
because of the redundancy described in the previous example. We have to use a Boolean
matrix of dimension 2 or an equivalent structure to remember at which path length l we
encountered each S-Box.

Proposition 3.2, stated and proved for the diffusion round, is also valid when consid-
ering X-SB. It is stated in Proposition 3.4, the proof is very similar to previous ones.

Proposition 3.4 Let π be an even-odd permutation, X-SB(π) is the smallest integer R

such that: ∀c ∈ Vo, d ∈ Ve, there are X S-Boxes traversed by paths of length R− 3 from c

to d in Gπ. A S-Box reached by two paths of the same length will be counted only once.

Proof. Let b, c ∈ Vo and a, d ∈ Ve with (a, c), (d, b) ∈ Eπ. We have that (a + 1, a), (b, b−
1) ∈ Eϵ with a + 1 ∈ Vo and b − 1 ∈ Ve. Furthermore, we have g, h ∈ V such that
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Algorithm 6: DetectS-Boxes(x, π, b, l, M)
Data: x: current node, π: partial permutation, b: target node, l: remaining

length, M : Boolean matrix of dimension 2
1 M0← Matrix filled with false values;
2 if l > 0 then
3 if π[x] is set then
4 if x is odd then
5 M2← copy(M);
6 M2[x, l]← true;
7 M3← DetectS-Boxes(π[x], π, b, l − 1, M);
8 M4← DetectS-Boxes(x− 1, π, b, l, M2);
9 return Bit-wise OR(M3,M4);

10 else return DetectS-Boxes(π[x], π, b, l − 1, M) ;
11 else return M0 ;
12 else
13 if x = b then return M ;
14 else return M0 ;

(b, g), (b− 1, h) ∈ Eπ (see the graph below with i = a + 1 and j = b− 1).

ca

i

. . . d b

j h

g

1) From Definition 3.12, we know that there is X S-Boxes in all the d-paths of length
R from a to g, thus there is X S-Boxes in all paths of length R− 3 from c to d.

2) Now suppose that there is R′ < X-SB(π) such that ∀ c ∈ Vo, d ∈ Ve there is X

S-Boxes in all the paths of length R′ − 3 from c to d. We then have X S-Boxes in all the
d-paths of length R′ from i to g, from i to h and from a to h. Since we have these d-paths
for all pairs a ∈ Ve, b ∈ Vo then we have full diffusion with X-SB(π) = R′ and thus the
contradiction X-SB(π) < X-SB(π). □

As for the X-DR criterion, we looked at the quality of optimal permutations for the
X-SB criterion regarding truncated differential cryptanalysis for k = 6, k = 7, and k = 8.
The results are summarized in Table 3.10 for k = 8 and are similar for lower k.

Overall, these two new properties did not bring better solutions for the truncated
differential analysis. For each criterion, the number of optimal solutions in the 500 first
solutions is very low.
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X-SB
Round 10 11 12 13 14 15 16 Range

1 S-Box 25 44 0 0 0 0 0 8
2 S-Boxes 25 44 0 0 0 0 0 8
3 S-Boxes 0 1 0 0 0 0 0 9
4 S-Boxes 18 30 0 0 0 0 0 9
5 S-Boxes 4 12 0 0 0 0 0 9-10
6 S-Boxes 4 9 0 2 2 2 0 9-10
7 S-Boxes 0 6 0 0 0 0 0 10
8 S-Boxes 0 9 0 0 0 0 0 10-11
9 S-Boxes 0 1 0 1 15 1 0 11
10 S-Boxes 0 4 0 0 0 0 0 11
11 S-Boxes 0 6 0 0 0 0 0 11-12
12 S-Boxes 0 0 0 0 0 0 0 11-12

Table 3.10 – Number of solutions with an optimal number of active S-Boxes from round
10 to round 16 in the 500 first solutions considering k = 8

Comparison with the permutation used in TWINE [SMMK12] The values of
our criteria for TWINE are given in Table 3.11. To see if these are good values, we used
our algorithm to enumerate permutations with strictly greater values for our criteria. The
algorithm concluded that there is no permutation with a better X-SB than TWINE up
to X = 22. The experimentation was not done beyond due to its computational cost.
However, TWINE is not optimal for 4-DR and 6-DR. There is only one permutation that

1 to 2-SB 3 to 6-SB 7 to 8-SB 9 to 14-SB 15 to 22-SB
8 9 10 11 12

1-DR 2-DR 3-DR 4 to 5-DR 6 to 9-DR
8 9 10 11 12

Table 3.11 – X-DR and X-SB values for TWINE

is optimal on 4-DR and 6-DR at the same time. This permutation is π =(3, 4, 5, 8, 1, 12,
9, 10, 11, 2, 7, 14, 13, 6, 15, 0). To compare it with TWINE, we computed the truncated
differentials on both permutations in Table 3.12.

Round 8 9 10 11 12 13 14 15 16
TWINE 11 14 18 22 24 27 30 32 35

π 11 14 19 22 24 26 28 30 32

Table 3.12 – Truncated Differentials for TWINE and π
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This new permutation π is better than TWINE and optimal at round 10. However, it is
worse for rounds 13 to 16. In fact, in all the permutations with k = 8, none can reach the
optimal number of active S-Boxes at every round.

3.5.3 Maximum S-Box path

In this section, we are trying to build a GFN that contains the maximal number of
S-Boxes in the even-odd case. To do so, we use paths with the maximal number of S-Boxes
(i.e., ϵ-transitions). Between two nodes a and b, the path with the maximal number of
ϵ-transitions is unique and has R + 1 ϵ-transitions. This maximal path alternates edges
from Eπ and Eϵ. We call it the max-path (see the first path of Figure 3.18). In order to
achieve full diffusion, we need more paths. The second best path is one that alternates
edges from Eπ and Eϵ except that it has somewhere three consecutive edges in Eπ. We
call it a sec-path path and it has R − 1 ϵ-transitions (see the second and third paths of
Figure 3.18 as examples).

R V 1

R V 2

R V 3

Figure 3.18 – Paths with maximal number of S-Boxes

To build a GFN with only these paths (the max-path and the sec-paths) we are in
fact restricted to only one skeleton. The reason is the following:

— First of all, we need k paths to have the full diffusion so we need k − 1 sec-paths.
To have k− 1 different sec-paths from the same starting node, we need them to be
of length R = k − 1. Thanks to Proposition 3.2 this makes DR = k + 2.

— Secondly, from a starting node, we have k paths to reach k nodes so we cannot
have two paths reaching the same destination.
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When combined with a skeleton, this second reason becomes a very restrictive con-
straint. To properly define this constraint we need some new definitions first. First note
that ϵ-cycles contain all the edges from Ve to Vo. Therefore, edges from Vo to Ve have
either both ends in the same ϵ-cycle (inner edge) or each end on a different ϵ-cycle (outer
edge).

Definition 3.13 (Shift) Let an ϵ-cycle and an inner edge e from node a to node b. We
call the shift of e the number of ϵ-transition from a to b in the ϵ-cycle (some shift examples
are given in Figure 3.19).

R

2

45

Figure 3.19 – Inner edges of shifts 2, 4 and 5 from a node R in a 8-ϵ-cycle

The max-path has no edge from Vo to Ve so it cannot leave an ϵ-cycle or take an inner
edge. The sec-paths have exactly one edge from Vo to Ve so they can leave an ϵ-cycle once
or they can have one inner edge. We then have the following property:

Property 3.2 All the sec-paths starting on a node R cannot take an inner edge whose
shift is equal to 2 and each of these shifts must be different.

Proof. A sec-path from a node R with a shift equal to 2 has the same destination as
the max-path from R. If two sec-paths start on R and have the same shift, they will end
up at the same destination. □

Finally we have that:

Property 3.3 A GFN of DR = k + 2 built from the max-path and the sec-paths can only
have the skeleton (k − 1, 1).
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Proof.
1) An ϵ-cycle without inner edge can only be of size one: Any sec-path that start on

this ϵ-cycle cannot end in it because they take exactly one outer edge. Therefore, only the
max-path stays on the ϵ-cycle.

2) An ϵ-cycle of size smaller than k − 1 cannot have inner edges: The length of the
sec-paths is equal to k − 2, therefore on smaller ϵ-cycle the sec-paths will be able to take
two times the same inner edge and end up on the same destination node.

3) An ϵ-cycle of size k cannot have all the paths: From each node ni ∈ Vo of the
ϵ-cycle, the nodes {ni, ni+1, . . . , ni+k−2} must map to the shifts {0, 1, 3, 4 . . . , k − 1}.
But if {n0, n1, . . . , nk−2} map to {0, 1, 3, 4, 5, . . . , k − 1} then {n1, n2 . . . , nk−1} map to
{1, 3, 4, . . . , k−1, 0} and {n2, n3, . . . , nk−1, n0} map to {3, 4, . . . , k−1, 0, 0}. Two sec-paths
from n2 have the same destination.

Therefore, the only ϵ-cycle decomposition available is (k − 1, 1) □

CP model. By setting this skeleton, a CP model can easily find all GFN permutations
with the max-paths. Since the skeleton is set, we need to find the odd to even permutation
q which is an array of integer variables of domain the node labels. To break some more
symmetries, we choose the node 0 to be the 1-ϵ-cycle . It is connected to the (k − 1)-ϵ-
cycle with the edge (1, 0).

Alldifferent(q)

q[1] = 0

All shifts must be different and not be equal to 2 (Property 3.3).

Alldifferent({shift(i, q[i]), ∀i ∈ J2, k − 1K})

shift(i, q[i]) ̸= 2 ∀i ∈ J2, k − 1K

In Minizinc, the shift function is written: if p[i] ≥ i then p[i]− i else p[i] + k − 1− i.
This model is very efficient and can compute GFN with k up to 2048 in an hour. We

report in Table 3.13 the truncated differentials for all the GFN with k = 8 to compare
them to TWINE and the optimal values. The red bold numbers indicate when the number
of active S-Boxes is optimal. This table shows that this method gives good to optimal
differential characteristics but not consistently. Moreover, the DR is in the worst case
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Number of active S-Box
Permutation R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R23 R24

[3 0 1 6 2 5 7 4 ] 10 12 15 19 24 25 27 29 30 32 35 37 39 42 43 45 48
[3 0 6 2 7 5 4 1 ] 11 14 16 18 22 25 27 30 31 33 35 37 39 42 43 45 48
[3 0 7 6 4 2 5 1 ] 11 13 15 17 20 24 26 28 30 33 36 38 39 41 44 47 51
[3 0 5 7 2 4 6 1 ] 11 14 15 16 18 20 23 26 28 31 36 38 40 42 44 46 48
[3 0 2 6 1 4 7 5 ] 10 12 15 18 22 26 28 30 32 34 36 38 40 42 44 46 48
[3 0 7 4 1 5 2 6 ] 11 14 17 20 23 26 28 30 32 34 36 38 40 42 44 46 48
[3 0 5 2 1 6 4 7 ] 11 14 17 20 24 26 29 31 32 33 35 37 40 43 46 49 52
[3 0 6 4 2 1 5 7 ] 11 14 15 18 22 25 27 30 31 33 36 37 39 42 43 45 48
[3 0 6 2 4 1 7 5 ] 11 14 19 21 24 25 27 30 31 33 36 37 39 42 43 45 48
[3 0 6 2 5 1 4 7 ] 11 14 16 19 22 25 28 30 32 33 35 37 40 43 47 50 53
[3 0 2 7 5 1 4 6 ] 10 12 15 18 22 25 27 30 32 34 36 38 40 42 44 46 48
[3 0 7 2 5 1 6 4 ] 11 14 16 20 22 26 28 30 33 35 36 38 40 43 45 48 51
[3 0 1 6 5 2 4 7 ] 11 14 19 21 24 25 27 30 31 33 36 37 39 42 43 45 48
[3 0 1 4 7 2 6 5 ] 11 14 17 20 24 25 27 30 31 33 36 37 39 42 43 45 48
[3 0 5 1 4 2 7 6 ] 10 12 15 16 18 20 23 26 29 33 36 38 40 41 43 45 48
[3 0 1 6 4 2 7 5 ] 11 14 16 19 22 24 27 30 31 33 35 37 39 42 43 45 48
[3 0 6 1 5 4 2 7 ] 10 12 15 19 22 24 27 30 32 34 36 37 39 41 44 47 49
[3 0 1 7 4 6 2 5 ] 11 13 15 17 19 21 24 27 30 33 36 37 39 42 43 45 48
[3 0 2 1 7 6 5 4 ] 10 12 14 16 18 20 22 25 29 33 36 37 39 42 44 46 48

TWINE 11 14 18 22 24 27 30 32 35 36 39 41 44 45 48 50 53

Table 3.13 – Differential characteristics of GFN with maximal paths

k + 2. Similarly to the number of S-Boxes criteria, we conclude that having good paths or
even the best paths is not sufficient to have the optimal number of active S-Boxes. This
means that this property can be useful if combined with other criteria like the diffusion
round.

3.6 Towards a lower bound proof for the general case

The proof that the non-even-odd permutations cannot lead to GFN with better diffu-
sion has only been established empirically and we expanded it to 32 blocks, but a formal
proof would be very much welcomed. In [CGT19], the authors started a reasoning on a
lower bound for the non-even-odd case to compare it to the Fibonacci lower bound of
the even-odd case. Unfortunately, there are a lot of possible diffusion trees in the general
case. In the end, they were not able to reason on the diffusion trees because it is not clear
which tree is the best at each depth.

Intuitively, a non-even-odd permutation should not reach a better diffusion round
than the optimal even-odd one. Indeed, every time there are two consecutive odd nodes
u, v ∈ Vo such that (u, v) ∈ Eπ, there are also somewhere in the graph Gπ two consecutive
even nodes x, y ∈ Ve such that (x, y) ∈ Eπ. We recall that each odd node has two outgoing
edges (one in Eπ and one in Eϵ) whereas each even node has only one. Therefore, all the
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paths starting from the node x have one edge less to achieve full diffusion and any path
that passes through (u, v) will gain one edge. Since the number of even to even edges is
the same as the number of odd to odd edges, one could think that they compensate.

3.6.1 An interesting example

One of our objectives during this work was to provide a formal proof that the diffusion
round of the non-even-odd permutations is also bounded by the Fibonacci bound as for
even-odd permutations. We recall that the Fibonacci suite gives an upper bound on the
number of paths and thus a lower bound on the diffusion round in the even-odd case.
Thus we made the following conjecture:

Conjecture: “The number of paths of length R in a non-even-odd GFN graph can not
be greater than the number of paths of length R in an even-odd GFN graph and the same
property holds for the inverse permutation too.”

However, we found a non-even-odd permutation for which the number of odd nodes
reached from the even nodes was in total, and with redundancy, greater than the even-odd
Fibonacci bound, which suggests that an improvement of the diffusion round is possible
by considering non-even-odd permutations. This permutation is given in Example 3.4.

Example 3.4 We consider the permutation π =(3,2,1,5,0,6,7,4) depicted in the leftmost
graph of Figure 3.20. The rightmost one represents π−1.

0 3

5

67

4

21

0 3

5

67

4

21

Figure 3.20 – Permutation graph of π and π−1

On these two graphs, we give in Table 3.14 the number of paths of length R = 5 from
even to odd nodes. There are 22 paths for π, and 21 paths for π−1.
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start node 0 2 4 6
number of paths 5 8 5 4

start node 0 2 4 6
number of paths 4 5 5 7

Table 3.14 – Number of paths in π and π−1

When considering only the even-odd permutations, the maximum number of paths
given by the Fibonacci suite is 5 for each node and thus 4× 5 = 20 in total. This example
shows that the diffusion round in the general case (i.e. considering both even-odd and
non-even-odd permutations) cannot be bounded by the Fibonacci suite if we consider the
sum of all paths on π and π−1. However, we may note that there is one node (e.g. node
6 for π) having less paths than the Fibonacci suite. We always observe this phenomenon
on the permutations we considered. We think that to establish a conjecture like stated
before, we should focus on these nodes.

3.6.2 Decaying trees

We have the intuition that the lower bound on the diffusion round in the general case
should not be better than the Fibonacci bound. An idea to find a proof of this would be
to reason on the diffusion trees of the weak nodes observed in the previous section. We
did not found a clean formulation of this idea, and we only give below an example to
explain it.

Example 3.5 We start by the even-odd diffusion tree of depth 6 (Figure 3.21).

odd:
even:

0
1

1
1

1
2

2
3

3
5

5
8

8
13

Figure 3.21 – Diffusion tree in the even-odd case

In order to have a better diffusion tree than the one depicted in Figure 3.21, more
than 8 odd nodes are needed in the leaves, and thus an extra red to red transition has to
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be added. For instance one option would be the tree of Figure 3.22:

odd:
even:

0
1

1
1

1
2

2
3

3
5

5
8

9
13

Figure 3.22 – Better diffusion tree than the even-odd case

With this non-even-odd edge we gained one extra odd node. However, the diffusion
round must be at least equal for the inverse permutation too. In the graph representation,
the inverse graph is the same graph but with inverted edges and the node colors swapped.
So the red to red transition becomes a green to green transition in the inverse graph. The
diffusion round also need to be better on the inverse permutation that starts by this green
to green transition. To compensate this green to green transition, we need to add new red
to red transitions to have more than 8 odd nodes in the leaves. For example Figure 3.23.

odd:
even:

0
1

0
1

1
1

1
2

2
3

4
5

9
9

Figure 3.23 – Better diffusion tree than the even-odd case in the inverse

In this tree, we now have three consecutive red nodes that will be three consecutive
green nodes in the inverse tree. Note that the upper path can also have two separated red
to red transitions. In our example with depth 6, there is no problem because this path also
lead to three consecutive red nodes in the next tree. However, we do not know if there will
always be a worst path on trees of higher depth. In our case, the problem is that even if we
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put red nodes everywhere else (Figure 3.24), we cannot get a better tree than the even-odd
tree we started from.

odd:
even:

0
1

0
1

0
1

1
1

2
2

4
4

8
8

Figure 3.24 – Diffusion tree that cannot be better than the even-odd case

This suite of decaying trees gives a nice example but the generalization of this idea
brings some open questions. What is the best way to add non-even-odd transitions to get
a better tree ? Which part of the tree do we need to invert at each step ? Is there always
a worst tree for higher depths ? Formalising this idea in order to obtain a form of proof
is left as future work.
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Chapter 4

AUTOMATIC GENERATION OF CP
MODELS

Introduction

In the previous chapters, we have seen that generic solvers can be valuable tools for
solving cryptographic problems because they only require a model. However, modelling
may not be straightforward and we still need to make a model for each cipher. In this
chapter, we propose a CP model generator to solve the second step of differential crypt-
analysis. We rely on the graph cipher representation of Tagada, a tool that generates
MiniZinc models for the first step of differential cryptanalysis. Unlike the first step, we
solely rely on the Choco CP solver because we need to implement new filtering algorithms
and test their efficiency. Moreover, we propose to integrate implementation optimizations
such as graph simplification and multi-core solving.

This contribution supports the following conclusions:
— CP models for differential analysis can be generated from

the graph cipher representation of Tagada.
— We tested new filtering algorithms for cryptographic opera-

tors (XOR, multiplication in finite field, and LFSRs)
— The models can be automatically optimized.

Takeaway

4.1 Tagada

Tagada (Tool for Automatic Generation of Abstraction-based Differential Attack) is a
tool proposed in [LDLS21] that can generate models for computing truncated differential
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characteristics for any word-oriented cipher. It relies on a graph representation of the
cipher and uses several techniques to optimize the models. In this background section, we
first recall differential analysis and then explain the graph representation of Tagada and
how it generates models for the first step of this problem. Moreover, we describe some of
the optimizations Tagada proposed for the first step of this problem.

4.1.1 Differential cryptanalysis

Differential analysis is a method to analyze the effect of differences in plaintext pairs
on the differences of the resultant ciphertexts. The difference is usually obtained with
the bit-wise XOR; we will note it +. For a cipher function F and two plaintexts x and
y where y is created by injecting an input difference δin, i.e., y = x + δin, the output
difference δout is computed as δout = F (x) + F (y). There is a differential distinguisher
for F if the probability that δout = F (x) + F (x + δin) is high i.e., the input difference
δin has a good probability of ending up in the output difference δout. Symmetric ciphers
are iterated functions like F (x) = f(f(. . . f(f(x)) . . .)). To see if the difference δin can
end up by the difference δout, we study the propagation of the differences through all the
rounds and all the cipher operators. We usually note δxi the difference of an intermediate
variable of the cipher xi. The tracking of differences from δin to δout through the complete
cipher is called a differential trail or differential characteristic.

Symmetric ciphers are generally composed of two types of operators: linear operators
like XORs or permutations and non-linear operators like S-Boxes:

— Linear operators will always propagate differences with probability 1. Indeed a per-
mutation will simply reorganize the differences. Another common linear operator is
the XOR of three variables y = x2 +x3 were the differences will be propagated with
another XOR: δy = δx2 + δx3. Note that if δx2 = δx3 then the output difference is
cancelled δy = 0.

— However, non-linear operators, called S-Boxes, will propagate a difference with a
probability that may be lower than one. For each S-Box, the propagation probabil-
ities of the pair of input-output differences can be computed with their Difference
Distribution Table (DDT). Since it is necessary to enumerate all the possible pairs
of inputs to generate the DDTs they are cached and it is not possible to compute
them if the input size of the associated operator is too big. Usually it is possible to
compute DDTs for word oriented ciphers as they are working with 4-bit (nibbles)
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and 8-bit (bytes) words. Tagada is designed for word oriented ciphers, for which
the propagation of differences in non-linear operators can be computed with DDTs.
Tagada will have very poor performances on bit-oriented ciphers (e.g. [BSS+13]),
or on word-oriented ciphers that operate on words larger than bytes.

If a differential trail contains two or more S-Boxes, the probability of the trail is the multi-
plication of the probabilities given by the DDTs because we assume that the probabilities
are independent [LMM91]. Therefore, the probability of a trail will be lower if we add
more S-Boxes to it, and low-probability trails may not be useful for standard differential
attacks (however, differential trails with zero probability can be used in impossible at-
tacks for example). To make ciphers more resistant, we want to have S-Boxes with the
most balanced probabilities possible. However, this is hard to achieve among all the other
required properties of S-Boxes [Hey02].

As the search of differential trails is hard, it is usually split into two steps in the most
recent works [BN10, FJP13, GLMS20].

First step: find truncated trails. The first step is the search for truncated differential
trails [Knu94]. A truncated differential trail is an abstraction of a differential trail in
which we only retain whether a difference exists or not, i.e., each difference variable δxi,
associated to cipher’s intermediate word xi of size n, is abstracted by a Boolean variable
∆xi where

∆xi =

0 if δxi = 0

1 if δxi ∈ [1; 2n − 1]

Because each Boolean variable ∆xi encodes the existence of the difference without
tracking its value, several aspects of the problem change.

— For the probability of propagation through the S-Boxes, we cannot know which
probability to pick in the DDT except when the Boolean variable associated with
the input difference is equal to 0, in which case we know for sure that the Boolean
variable associated with the output difference is also equal to 0. When the Boolean
variable associated with the input variable is equal to 1, we only know that the S-
Box is active i.e., involved in the trail. Therefore, we will use the highest probability
to have an upper bound on the probability of the differential trail.

— The second change is that we cannot capture the difference cancellations of the
XOR operations. Therefore, there are usually a lot of false positive trails i.e., trails
that cannot be instantiated.

105



Chapter 4 – Automatic generation of CP models

Truncated differential analysis can be enough to say that a cipher is secure in the case
where the best truncated trail (the one with the fewest active S-Boxes) has a low enough
probability. On the other hand, when a truncated trail has a high probability, we must
successfully instantiate it with real difference values to have a differential trail.

Second step: instantiate the trails. In the second step, we enumerate all possible
differential trails (starting from active S-boxes) to find the best one. The two steps can
be done separately (find all truncated trails, then try to instantiate them all) or together
like in Algorithm 9 that will be explained more in Section 4.3.

In [DDH+21], the authors compare a dedicated implementation (based on dynamic
programming) with SAT, MILP, and CP models that are solved by generic solvers on
the two steps of the differential cryptanalysis of the cipher SKINNY. In conclusion, they
found that their hand-made algorithm is the fastest on the first step, followed by SAT and
MILP. For the second step, they conclude that the CP solver is the most efficient solver
by far. This work points out a key issue of cryptanalysis problems. It has to be done on
every cipher, and the development time is not the same for a hand-made algorithm or a
model for tools like SAT, MILP and CP.

4.1.2 How Tagada works

In [LDLS21], a generic graph representation of ciphers was proposed. This graph is
encoded in a text format to be able to simplify the communication of the cipher defini-
tion. Tagada uses this graph to generate MiniZinc models to solve the first step of the
differential analysis, and we will use the same graph to generate models for the second
step too.

DAG: unifying description of ciphers. The input graph is a Directed Acyclic graph
where the nodes correspond to all the cipher parameters (inputs, outputs, constants, . . . )
and operators (XOR, S-Box, permutations, . . . ). The edges of the DAG link the operators
to the parameters. Hence the DAG is a bipartite graph. Figure 4.1 shows the DAG of a
2-round toy example Feistel cipher.

The text format used to define the DAG is a JSON composed of a list of three types
of objects.

— The variables (parameters) with their domain ranges.
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Legend:

P Parameters

O Operators

x0 S x1

x2⊕

x3 S

x4 ⊕

x5

Figure 4.1 – DAG of a simple example 2-round toy Feistel cipher.

— The functions (operators) with input domains, output domains and specificities.
For example, an S-Box will declare its lookup table, a LFSR will declare its length,
shift direction and feedback polynomial, . . .

— The transitions are triplets composed of a list of variables, a function and another
list of variables. They describe the link between the operators and their input and
output variables.

The advantage of a text format like JSON is that it is easy to generate and parse for
any language. Moreover, the DAG has to be made only once for each cipher, thus saving
a lot of time compared to the development of a hand-made algorithm or a solver-specific
model. The difficulty of the DAG representation is that the DAG must be able to represent
all the operators in order to be able to model any cipher. Tagada currently handles the
following operators: equality, bit-wise XOR, Galois field multiplication, LFSR, left shift
register, right shift register, permutation, concatenation, split and S-Box. Tagada also
proposes to describe new operators by means of tables describing all the possible in/out
tuples. However, this option is possible only when the table is not too large.

Truncated differential graph and optimizations. To solve the first step of the
differential analysis, Tagada first builds a truncated version of the graph of the input
cipher. Then, this graph is optimized with a simplification of the useless parts of the
graph. Indeed, differential analysis does not use constants nodes, and equality operators
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can be removed from the graph by merging the equal nodes.
A second optimization is done to detect some inconsistent differential trails by adding

constraints, as illustrated in Example 4.1.

Example 4.1 Let δ1, δ2, δ3 be three differential variables, and ∆1, ∆2, ∆3 be their corre-
sponding truncated differential variables. Let ∆1 + ∆2 = 0 and ∆1 + ∆2 + ∆3 = 0 be two
equations generated from the DAG.

If we look at the first equation, it is satisfied if ∆1 = 0 and ∆2 = 0. However, the
difference can also be cancelled if they have the same value (δ1 = δ2). Therefore, the
equation is also satisfied if ∆1 = 1 and ∆2 = 1.

For the same reason, the second equation accepts the solution ∆1 = 1, ∆2 = 1, ∆3 = 1.
In the truncated model, there is no problem. However, in the second step model, the first
equation implies that δ1 = δ2 and that they are equals to a non-zero difference, so δ3 ̸= 0
would never be a valid assignment.

To detect this kind of inconsistencies, Tagada combines XOR equations to generate
new equations. Generating new equations is a key point for an efficient model. These
equations were hand-made in [GMS16, GLMS20], whereas they are automatically derived
from the DAG in Tagada. In [RS20], an abstract-XOR constraint has been designed to
better propagate XOR constraint in CP solvers.

Once optimized, a mathematical model is automatically generated from the truncated
graph. This model is expressed using the MiniZinc language, which is a high-level language
for defining constraint satisfaction problems [NSB+07]. Many different solvers are able to
solve problems defined in MiniZinc such as, for example, Choco, Chuffed or Picat. We
may also use Picat to automatically generate SAT or MILP models from a MiniZinc
model, thus allowing one to use SAT or MILP solvers. In many cases, the best solver is
Picat-SAT.

4.1.3 First step results

In [LDLS21] the Tagada models were able to recover the state-of-the-art truncated
trails of the ciphers AES, Midori, SKINNY, and Craft in either single-key or related-key
scenarios.

However, truncated trails may not lead to valid differential trails. To be able to make a
strong statement on the differential characteristics of a cipher, we must try to instantiate
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these trails with the second step. Therefore, another program or model has to be made
to solve the second step, and we propose to generate it from the DAG representation of
the cipher like Tagada generated the first step models.

4.2 Model generation for the second step

In this section, we present our contribution to the Tagada project, focusing on the
modelling of the second step of the differential analysis, the instantiation of truncated char-
acteristics. Contrary to the first step, we rely only on a CP solver, namely Choco [PF22].
There are two reasons for that. Firstly, in both [GMS16] and [DDH+21], the CP solver
was said to perform very well for this particular problem. Secondly, we wanted to de-
velop dedicated filtering algorithms for operators like the bit-wise XOR in a CP solver to
improve the overall efficiency of the solving process.

In the second step of the differential analysis, we use the solutions of the first step and
we try to instantiate them. More precisely, we make a complete model of the cipher, and
we constrain the S-Box variables according to the truncated trail i.e., the active S-Boxes
in the truncated trail have a full domain, and the inactive S-Boxes be set to zero. To
generate models for the second step, we need constraints for each operator and the most
important one is the S-Box.

4.2.1 Modelling DDT with table constraints

The probability of the propagation of a differences through an S-Box is described in
a Difference Distribution Table (DDT). For example, the DDT of the first S-Box of the
F function of DES is given in Table 4.1. This S-Box has six input bits and four output
bits. Therefore, the DDT is a table with 26 × 24 entries. In this table, we can see that
the first difference (0) always propagates to 0 (64 times over the 64 possible input pairs
of difference 0). In the second line, we can see that the input difference 1 propagates to
the output difference 3 six times over 64 possible input pairs of difference 1. Therefore,
the probability of this propagation is 6× 2−6. In the truncated model, we would use only
the best probability of this table which is 16×2−6, but this probability holds only for one
transition (34 −→ 2).

DDT to table constraint. The main advantage of the CP solver is that we can directly
model the DDT with a table constraint. A table constraint constrains a list of n variables
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0 1 2 3 4 5 6 7 8 9 A B C D E F
0 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 6 0 2 4 4 0 10 12 4 10 6 2 4
2 0 0 0 8 0 4 4 4 0 6 8 6 12 6 4 2
3 14 4 2 2 10 6 4 2 6 4 4 0 2 2 2 0
4 0 0 0 6 0 10 10 6 0 4 6 4 2 8 6 2
5 4 8 6 2 2 4 4 2 0 4 4 0 12 2 4 6
6 0 4 2 4 8 2 6 2 8 4 4 2 4 2 0 12
7 2 4 10 4 0 4 8 4 2 4 8 2 2 2 4 4
8 0 0 0 12 0 8 8 4 0 6 2 8 8 2 2 4
9 10 2 4 0 2 4 6 0 2 2 8 0 10 0 2 12
A 0 8 6 2 2 8 6 0 6 4 6 0 4 0 2 10
B 2 4 0 10 2 2 4 0 2 6 2 6 6 4 2 12
C 0 0 0 8 0 6 6 0 0 6 6 4 6 6 14 2
D 6 6 4 8 4 8 2 6 0 6 4 6 0 2 0 2
E 0 4 8 8 6 6 4 0 6 6 4 0 0 4 0 8
F 2 0 2 4 4 6 4 2 4 8 2 2 2 6 8 8
10 0 0 0 0 0 0 2 14 0 6 6 12 4 6 8 6
11 6 8 2 4 6 4 8 6 4 0 6 6 0 4 0 0
12 0 8 4 2 6 6 4 6 6 4 2 6 6 0 4 0
13 2 4 4 6 2 0 4 6 2 0 6 8 4 6 4 6
14 0 8 8 0 10 0 4 2 8 2 2 4 4 8 4 0
15 0 4 6 4 2 2 4 10 6 2 0 10 0 4 6 4
16 0 8 10 8 0 2 2 6 10 2 0 2 0 6 2 6
17 4 4 6 0 10 6 0 2 4 4 4 6 6 6 2 0
18 0 6 6 0 8 4 2 2 2 4 6 8 6 6 2 2
19 2 6 2 4 0 8 4 6 10 4 0 4 2 8 4 0
1A 0 6 4 0 4 6 6 6 6 2 2 0 4 4 6 8
1B 4 4 2 4 10 6 6 4 6 2 2 4 2 2 4 2
1C 0 10 10 6 6 0 0 12 6 4 0 0 2 4 4 0
1D 4 2 4 0 8 0 0 2 10 0 2 6 6 6 14 0
1E 0 2 6 0 14 2 0 0 6 4 10 8 2 2 6 2
1F 2 4 10 6 2 2 2 8 6 8 0 0 0 4 6 4

0 1 2 3 4 5 6 7 8 9 A B C D E F
20 0 0 0 10 0 12 8 2 0 6 4 4 4 2 0 12
21 0 4 2 4 4 8 10 0 4 4 10 0 4 0 2 8
22 10 4 6 2 2 8 2 2 2 2 6 0 4 0 4 10
23 0 4 4 8 0 2 6 0 6 6 2 10 2 4 0 10
24 12 0 0 2 2 2 2 0 14 14 2 0 2 6 2 4
25 6 4 4 12 4 4 4 10 2 2 2 0 4 2 2 2
26 0 0 4 10 10 10 2 4 0 4 6 4 4 4 2 0
27 10 4 2 0 2 4 2 0 4 8 0 4 8 8 4 4
28 12 2 2 8 2 6 12 0 0 2 6 0 4 0 6 2
29 4 2 2 10 0 2 4 0 0 14 10 2 4 6 0 4
2A 4 2 4 6 0 2 8 2 2 14 2 6 2 6 2 2
2B 12 2 2 2 4 6 6 2 0 2 6 2 6 0 8 4
2C 4 2 2 4 0 2 10 4 2 2 4 8 8 4 2 6
2D 6 2 6 2 8 4 4 4 2 4 6 0 8 2 0 6
2E 6 6 2 2 0 2 4 6 4 0 6 2 12 2 6 4
2F 2 2 2 2 2 6 8 8 2 4 4 6 8 2 4 2
30 0 4 6 0 12 6 2 2 8 2 4 4 6 2 2 4
31 4 8 2 10 2 2 2 2 6 0 0 2 2 4 10 8
32 4 2 6 4 4 2 2 4 6 6 4 8 2 2 8 0
33 4 4 6 2 10 8 4 2 4 0 2 2 4 6 2 4
34 0 8 16 6 2 0 0 12 6 0 0 0 0 8 0 6
35 2 2 4 0 8 0 0 0 14 4 6 8 0 2 14 0
36 2 6 2 2 8 0 2 2 4 2 6 8 6 4 10 0
37 2 2 12 4 2 4 4 10 4 4 2 6 0 2 2 4
38 0 6 2 2 2 0 2 2 4 6 4 4 4 6 10 10
39 6 2 2 4 12 6 4 8 4 0 2 4 2 4 4 0
3A 6 4 6 4 6 8 0 6 2 2 6 2 2 6 4 0
3B 2 6 4 0 0 2 4 6 4 6 8 6 4 4 6 2
3C 0 10 4 0 12 0 4 2 6 0 4 12 4 4 2 0
3D 0 8 6 2 2 6 0 8 4 4 0 4 0 12 4 4
3E 4 8 2 2 2 4 4 14 4 2 0 2 0 8 4 4
3F 4 8 4 2 4 0 2 4 4 2 4 8 8 6 2 2

Table 4.1 – DDT of the first S-Box of DES

to be instantiated to an n-tuple chosen within a collection of all valid n-tuples. Any
constraint can be declared in extension i.e., declared as a table constraint. However, this
might not be the best way to model a constraint, especially if there are a lot of tuples.
For example, to constrain three Boolean variables a, b, and c to have a sum equal to 2, we
may define the table constraint (a, b, c) ∈ {(1, 1, 0), (1, 0, 1), (0, 1, 1)} but the same sum
with integer variables (with domains like J−1000, 1000K) would require too many tuples.
This is why constraints are often best declared in intention i.e., with a dedicated filtering
algorithm. However, an efficient filtering algorithm may not always be available.

Table filtering. The table constraint not only requires a filtering algorithm but also
needs to be cautious of the data structure used to store and manipulate the table. This
is because the memory used by the table depends on the number of tuples. In the lit-
erature [LS06, GJMN07, Ull07, Lec11, LLY12, MHD14], a lot of work has been done to
optimize this algorithm for various situations (positive tables, binary tables, big or small
tables, . . . ). The general idea is to pre-compute and try to maintain a set of indexes of
valid tuples. When a tuple is no longer valid, an efficient search method will search for an-
other valid tuple in the table. If there are no more valid tuples, the constraint is violated.
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There are a lot of variations depending on the situation.
The DDT is an extensive definition of all the possible transitions of a difference through

an S-Box with its probability and it is usually not possible to define these transitions in
intention, by means of a small number of arithmetic constraints. Therefore, the table
constraint is the most suited way to model it. In CP, this takes the form of a table T

composed of a list of tuples (δxin, δxout, p) ∈ T where δxin and δxout are the input and
output variables of the S-Box, respectively, and p is a variable which corresponds to the
probability of observing the output difference δxout given the input difference δxin. To
avoid rounding errors, the probability is replaced by the negation of its base 2 logarithm
(and probability multiplications are replaced with additions).

For MILP and SAT, this table would require a lot more intermediate variables and
constraints [Udo21].

4.2.2 Modelling other operators

Unfortunately, the other operators are not available in CP solvers except for some
exceptions, like the modular addition. To model the other operators, we could also use
table constraints. However, tables are often too large to be efficient. Therefore, we will
develop new filtering algorithms. In particular for the bit-wise XOR operator because it
is used everywhere.

Bit-wise XOR. We first consider the bit-wise XOR in the case of three variables:
a + b = c. Note that if there is less than one variable among a, b, c then the XOR is
constant. If there are two variables (for example if c is constant), the XOR can be replaced
with an equality operator. For the three variable case, we used some previous work from
[DDH+21]. The filtering algorithm is not very smart. To filter the values of Dc, the domain
of c, the algorithm computes a set that contains all the possible XORs between the values
of the domains of a and b. This set is then used to remove the inconsistent values from
the domain of c. The algorithm is given in Algorithm 7.

This algorithm has two weaknesses. First, the computing of the set is time-consuming
but most of all, the set can reach the maximum size very fast. Indeed, if a, b and c have
the same domain sizes, for example, 8 bits, then this algorithm will compute 28×28 XORs
but will fill a set of maximum 28 values. In practice, this filtering algorithm takes a lot of
time to build the set that does not filter anything in most cases. Therefore, this filtering is
only performed in some cases decided by a chosen condition. In [DDH+21], this condition
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Algorithm 7: 3-variable XOR filtering algorithm
Input: IntVar a, IntVar b, IntVar c: the target domain to filter

1 set ← ∅;
// Loop through possible values

2 for all v1 ∈ Da do
3 for all v2 ∈ Db do
4 set← set ∪ {v1⊕ v2};
5 if set contains all possible values in variable domains then
6 return ;

7 Dc ← Dc ∩ set;

is that the sum of the domains of a and b is lower than the maximal domain size of c. We
will see later that this condition is not the best one.

Bit-wise XOR of arbitrary arity. To model a XOR of higher arity with only three
variable XOR constraints, we need to introduce intermediate variables and declare addi-
tional XORs. For Tagada, we wanted to avoid the introduction of new variables, so we
extended the idea of this algorithm to a XOR of arbitrary arity. The algorithm uses a
recursive loop to compute the set of all the possible XORs between the values of n − 1
domains to filter the target domain. The algorithm is depicted in Algorithm 8. This al-
gorithm is less efficient to constrain a 3-variable XOR than the previous propagator but
the more variables we have, the more efficient this algorithm becomes compared to a de-
composition with 3-variable XORs constraints and new intermediate variables (more than
five variables XORs decompositions gives slower models). However, as we will see at the
end of this section, the chosen condition to activate the filtering was also a problem.

Operations in the Galois Field. In cryptography, we sometimes use addition and
multiplication in some fields. For CP modelling, operations like the MixColumns of AES
have often been modelled with table constraints [MSR14]. For the modular addition, the
modulo constraint exists in CP solvers. To model the modular addition a⊞b = c mod m,
we need one intermediate variable x and the two constraints a+b = x and x mod m = c.
Unfortunately, modelling the multiplication is not possible with existing constraints. Like
the XOR, we must make a new filtering algorithm for multiplication and division in a
finite field. The filtering algorithm we made follows the same idea of Algorithm 7. We
create a set of all the possible values of c from the domains of a and b except that in
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Algorithm 8: n-variable XOR filtering algorithm
Input: int target: index in vars table of the domain to filter

1 Function combiXor(target, current, x):
// skip target

2 if current == target then
3 combiXor(target, current + 1, x);
4 else

// add the value x to the set of values
5 if current == vars.length - 1
6 or (current + 1 == target
7 and current + 1 == vars.length - 1) then
8 for all v ∈ Dcurrent do
9 set← set ∪ {x⊕ v};

10 else
// Loop through domain with recursion

11 for all v ∈ Dcurrent do
12 combiXor(target, current + 1, x ⊕ v);

13 set ← ∅;
14 combiXor(target, 0, 0);
15 Dtarget ← Dtarget ∩ set;

the line set ← set ∪ {v1 ⊕ v2}, the ⊕ is replaced by ProdGF(v1,v2) or DivGF(v1,v2)
where ProdGF and DivGF are algorithms to perform the modular product and division
depending on the context. In real ciphers, the product is usually between a variable and
a constant, so the algorithm is more likely to filter properly.

LFSR. The last operator we added is the LFSR. Similarly to the product, we replace
the line 4 of Algorithm 7 with a function that can compute the next step of the LFSR.
The LFSR could be decomposed into several variables and a XOR, but we would need to
use concat and split constraints to divide an integer variable into the corresponding array
of bit variables. The constraints concat and split are currently modelled with tables in
Tagada.

Filtering efficiency. As stated before, the filtering of bit-wise XOR constraints needs a
parameter to avoid useless computations. During our tests, we observed that the trade-off
between the time gained from filtering and the time taken by the filtering algorithm is in
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favour of less filtering. To be efficient, we must find at which domain size we would have
a good chance to filter. For the XOR with two variables, we can write it as follows. Let
a, b be two variables, Da and Db, their domain of max sizes n. Let c be a constant in the
constraint a + b = c. In this case, we can filter the values in Db if this set of values is not
contained in Da. For two variables, this condition is very probable. However, if now c is
also a variable with a domain Dc of max size n, then the filtering is possible if the XORs
of all the possible values of Da and Db is a set that does not include Dc. The number of
values from the XORs is #Da × #Db, and each value is in the domain range of Dc. In
the end, it is like if we pick at random #Da×#Db values in the range of J0, nK and hope
that we did not pick all the values of Dc. For the XOR with more variables (⊕

i xi), the
number of values is ∏

i ̸=j #Dxi
. As a consequence, the probability of being able to filter

some values of Dj is very low. To test the filtering efficiency of our XOR constraints, we
implemented a forward-checking version of the filtering algorithms. The forward-checking
(FC) method only filters when all the variables are fixed except one. In some early tests,
we saw that the FC version was performing nearly as well as the full filtering algorithms.
This means that the filtering algorithms for the 3-variable and n-variable XOR constraints
are not helping the solving process that much. Therefore, we deduce that the CP model’s
strength is the DDT’s table constraint. Moreover, the new dedicated filtering algorithms
are still helpful because we would have to use table constraints instead, so they at least
reduce the memory used by the model. A list of the operators we added to the model
generator is depicted in Table 4.2.

4.3 Connect the two steps

At the beginning, the first step of Tagada was not designed to work with the second
step but only to find the best truncated differential trail. While it can be possible to only
use truncated differential trails optimizing, the whole process can be more efficient than
only optimizing the two steps separately. To do so we improve the linking algorithm of
[RGMS22] by splitting the first step search in three parts.

Step1-opt. The aim of Step1-opt is to find the optimal truncated differential trail. We
define its signature with Signature 1.
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Linear Operators
Operator Name First step support Second step Implementation

= Equal ✓ Native support
LFSR Linear Feedback Shift Register ✓ Custom filtering algorithm

AB → (A, B) Split ✓ Constraint table (native)
(A, B)→ AB Concat ✓ Constraint table (native)
≪ or ≫ Left (Right) Shift ✓ Custom filtering algorithm
≪ or ≫ Left (Right) Circular Shift ✓ Custom filtering algorithm

&K Bitwise AND with Constant ✓ Constraint table (native)
∥K Bitwise OR with Constant ✓ Constraint table (native)

⊕ N-ary Bitwise XOR ✓
Custom filtering algorithm or

decomposition (for n-ary equations)

⊗K
Galois Field Multiplication

✓ Custom filtering algorithmwith Constant

⊙K
Galois Field Matrix

✓
Decomposition and delegation

Multiplication with Constant Matrix to the ⊗K and ⊕ operators
T Linear Lookup Table ✓ Constraint table (native)

Non-linear Operators
DDT Differential Distribution Table ✓ Constraint table (native)

Table 4.2 – List of supported operators in Tagada (both first and second steps).

Signature 1 Step1-Opt
Input:

G∆: the Differential Graph of the cipher
seen: the set of all the already found solutions
UB: the current upper bound

Output:
sol: the Truncated Differential Trail with the highest probability such as P (sol) ≤ UB

and sol not in seen. If no such solution exists, returns null.

Step1-next. Instead of looking for an optimal solution Step1-next (Signature 2) is
designed to find one truncated differential trail with a given upper bound (UB). While
Step1-opt solves an optimization problem, Step1-next solves a satisfaction problem.

Usually solving optimization problems is more complicated than solving a satisfaction
problem. Indeed for both optimization and satisfaction problems we have to find a solution
but for optimization problems we also need to find the best one which is generally done
by finding a sequence of solutions of increasing quality and proving that there is no better
solution than the last one found.

To improve the overall time of the two steps algorithm (Algorithm 9) we try to use
the Step1-next method as much as possible instead of the Step1-opt method. Step1-opt is
only called at the beginning of the function when we have to compute the upper bound.
The second call of Step1-opt is done when we have iterated over all the solutions that
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Signature 2 Step1-Next
Input:

G∆: the Differential Graph of the cipher
seen: the set of all the already found solutions
UB: the current upper bound

Output:
sol: a Truncated Differential Trail such as P (sol) ≤ UB and sol not in seen. If no such

solution exists, returns null.

reach the current upper bound.

Step1-next-possible-UB (Signature 3). As said previously, step1-opt is the function
that consumes the most calculation time. When we have iterated over all the solutions of a
current upper bound we need to find the next upper bound. The search of the next upper
bound is performed by another call to Step1-opt. However it is possible in some cases
to bypass the function by using a new function Step1-next-possible-UB. The purpose of
Step1-next-possible-UB is to find very quickly a lower approximation of the next upper
bound. If this approximation is equal or lower than the current lower bound then we can
stop the search without doing any more computations.

Example 4.2 Let us take the example of the 4-round Rijndael-128-128 instance. The
step1-opt finds a truncated differential trail with an upper bound probability of 2−72. For
this trail the second step will find a valid differential trail of probability 2−75 and set it
as the current lower bound. As 2−72 > 2−75 we need to find another truncated differential
trail that matches 2−72. For this cipher we only have one truncated differential trail of this
probability. As we have a gap between the two probabilities we need to tighten the bounds
which is done by decreasing the upper bound. For Rijndael all the S-Boxes are the same
and their maximum probability is 2−6 (a trail of 2−72 is composed of 12 × 2−6 S-Boxes).
In our case, the only way to find a new trail is to activate another S-Box, in that case
the probability will be at least of 13 × 2−6 = 2−78 which is lower than 2−75. This simple
computation saves one call of Step1-opt.

4.4 Second Step Optimizations

To gain some generic solving efficiency, we propose three optimizations.
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Signature 3 Step1-Next-Possible-UB
Input:

G∆: the Differential Graph of the cipher
UB: the current upper bound

Output:
UB′: an approximation of the next reachable UB.

4.4.1 Heuristics

Another way to improve the search speed is to use heuristics. Constraint Programming
solvers usually use two kind of heuristics, a value heuristic and a variable heuristic. As
their names suggest, the value heuristic is responsible of selecting the next value to test for
a variable and the variable heuristic is used to select the next variable on which to branch.
By default, generic solvers propose known general purpose search heuristics for both value
and variable heuristics, but when we have extra information on a specific problem we can
help the solver by designing custom heuristics.

We propose a custom value heuristic adapted to our second step. In this step, we want
to maximize the probability of the differential trail. As the probability only depends on
non-linear operators we can focus our heuristics on those operators. For each non-linear
operator we have three available variables:

— δx which is the input differential variable
— δsx which is the output differential variable
— p which is the probability of the transition δx→ δsx

If the solver branches on a p variable, we only have to select the highest probability
available. When the solver branches on a δx variable, if its δsx variable is instantiated,
i.e., it has only one possible value, then we can select the value that maximizes the
transition to δsx, more formally:

next-value(δx) = argmax
v∈dom(δx)

P (v → value(δsx))

When the solver branches on a δsx we can perform the same computation with its
corresponding δx variable.
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Algorithm 9: Twostep(G∆, Gδ)
Input:

G∆: step1 model
Gδ: step2 model

1 LB ← 0
2 UB ← 1
3 best ← null
4 sol1 ← Step1-opt(G∆, seen, UB)
5 seen ← {}
6 UB ← P (sol1)
7 while LB < UB do
8 seen ← seen ∪ {sol1}
9 sol2 ← Step2(Gδ, sol1,LB)

10 if LB < UB then
11 sol1 ← Step1-next(G∆, seen, UB)
12 if sol1 is null then
13 UB ← Step1-next-possible-ub(G∆, seen, UB)
14 if LB ≥ UB then
15 break

16 sol1 ← Step1-opt(G∆, seen, UB)
17 UB ← P (sol1)

18 return best

4.4.2 DAG simplification

To make the model more efficient, we would like to add a graph simplification algo-
rithm. From the first step solution, we know which S-Boxes are active and which are not.
Therefore, we can simplify the model by removing the variables in the inactive part of
the graph and all the related constraints. For example, let G be a graph composed of
two S-Boxes S1 and S2, their output variables out1 and out2 and one XOR operation
out1 ⊕ out2 = out3 (see Figure 4.2). If the truncated trail says that only the first S-Box
is active, then instead of fixing the domain of out2 to 0, we can remove the S2 and out2

nodes from the graph. After this, we can further simplify the graph by removing the XOR
node and the out1 variable. In the end, we only need to keep S1 and out3.

The simplification is split into two parts. The first part propagates from the active
S-Boxes, all the nodes that can or will have a difference. In some cases, we can be more
precise. In particular, we know that the difference always propagates through unary op-

118



4.4. Second Step Optimizations

S1 S2

out1 ⊕ out2

out3

→

S1

out3

Figure 4.2 – Step2 graph shaving example

erators, so we can propagate this information in the graph. This information can then be
used in the CP model. When we know that a variable necessarily has a difference, we can
remove the value 0 from the variable domain when we declare it. We start with a graph
containing all nodes with an "uncertain" marker. For each input and output variable of the
S-Boxes, we use the information of the truncated trail to fix them to "active" or "inactive".
For the linear operators, we can deduce the following status propagation rules:

— If there is only one "uncertain" variable in its input or output variables and all the
other variables are inactive, it can be set to "inactive".

— If there is only one variable "active" and all the others are inactive, this is an error.
This is not possible if the truncated trail is correct.

— If there is only one "active" variable and one "uncertain" variable, they both must
be "active".

The "active" and "inactive" information is propagated iteratively in the graph until
reaching a fixed point where no further propagation is possible. After these statuses are
propagated, we can reduce the graph by removing all the "inactive" variables and all
the operators only linked to them. We can also replace the XOR operators that have one
inactive variable with equality operators, and finally, we can remove the equality operators
and merge their input and output nodes. The simplified graph is then transformed into
the CP model.

If we give the complete graph to the CP solver, it would eventually reach the same
conclusion and set all the inactive variables to 0. However, this simplification is easy to
do in advance and removing useless variables and constraints in a model is always a good
idea.
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4.4.3 Competitive parallel solving

In the previous CP model for the second step on SKINNY [DDH+21], a parallel method
was used. Each model from the first step was launched on a separate thread, and the best
solution found was shared with all the other threads. This new bound is added to the
models that remain to be solved, and this information can be used to cut a large part of
their search space.

In Tagada, we added a similar parallel competition between the models to solve
the second step models from a list of truncated trails. In this setup, Tagada was able
to recover the same results with similar solving times than the hand-made model of
[DDH+21]. The generated models were only two to three times slower than the hand-
made models.

An interesting future work would be to study the feasibility of parallel computing in
the two-step method (Algorithm 9).

4.5 Results

We have implemented the model generator in Java and Kotlin to communicate more
easily with the Choco solver. This generator can parse the JSON file of the Tagada DAGs
and an associated file for the truncated trails. The generator then builds a CP model
and calls the Choco solver to find the differential characteristics. The second step model
generator can be used with the first step of Tagada in the two-step solving algorithm
depicted in Algorithm 9, or it can also be used alone in a parallel setup if we can give a
truncated trails list as input.

To compare the generated models, we reproduced the results of ad-hoc models with
Tagada on the two-step differential analysis. We set a time limit of one day. The compu-
tation was done on a Debian GNU/Linux 11 (bullseye) x86_64 sever with two Intel Xeon
Gold 6254 (3.10 to 4.00 GHz) processors and 64MB of RAM. Each instance was launched
on a single core. We were able to reproduce the results shown in Table 4.3.

The second step code is available in 1 and will be available in the Tagada library 2

1. https://drive.google.com/file/d/1EJGRmMZuAgZ4OznmHca6jkzQamA3ZMzp/view?usp=drive_
link

2. https://gitlab.limos.fr/iia_lorouque/tadaga-step2
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4.6. Perspectives

4.6 Perspectives

We have presented a model generator for the second step of the differential analysis
that relies on the DAG representation of the model generator of the first step Tagada.
We have shown that these generated models can recover the results of state-of-the-art
ad-hoc models in reasonable times.

The idea of a simple tool to perform differential analysis is interesting, and other
recent works are also working in this direction [RR22, BGG+23a]. Moreover, we think
that a unified cipher format would help the comparison and development of these tools.
Tagada could be improved by integrating previous solving methods dedicated to ARX
ciphers [Leu12] and bit-based ciphers [Köl]. In these cases, more work is needed to deter-
mine if the CP solver is still the best solving tool. In the end, Tagada could be extended
to search for the variants of differential analysis (boomerangs, impossible differentials,
. . . ).
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Cipher Max Round Probability Reference
Midori-64 16 2−16 [Gér18]
Midori-128 20 2−40 [Gér18]

Warp 41 2−40 [TB22]
Twine-80 18 2−64 [SMS+20]
Twine-128 16 2−52 [SMS+20]

Skinny-64-TK1 11 2−64 [DDH+21]
Skinny-128-TK1 11 2−74 [DDH+21]
Rijndael-128-128 5 2−105 [GLMS20]
Rijndael-128-160 7 2−120 [RGMS22]
Rijndael-128-192 9 2−146 [GLMS20]
Rijndael-128-224 12 2−212 [RGMS22]
Rijndael-128-256 14 2−146 [GLMS20]
Rijndael-160-128 4 2−112 [RGMS22]
Rijndael-160-160 6 2−138 [RGMS22]
Rijndael-160-192 8 2−141 [RGMS22]
Rijndael-160-224 9 2−190 [RGMS22]
Rijndael-160-256 11 2−204 [RGMS22]
Rijndael-192-128 3 2−54 [RGMS22]
Rijndael-192-160 5 2−118 [RGMS22]
Rijndael-192-192 7 2−153 [RGMS22]
Rijndael-192-224 8 2−205 [RGMS22]
Rijndael-192-256 9 2−179 [RGMS22]
Rijndael-224-128 3 2−54 [RGMS22]
Rijndael-224-160 4 2−122 [RGMS22]
Rijndael-224-192 5 2−124 [RGMS22]
Rijndael-224-224 7 2−196 [RGMS22]
Rijndael-224-256 8 2−182 [RGMS22]
Rijndael-256-128 3 2−54 [RGMS22]
Rijndael-256-160 4 2−130 [RGMS22]
Rijndael-256-192 5 2−148 [RGMS22]
Rijndael-256-224 4 2−115 [RGMS22]
Rijndael-256-256 6 2−128 [RGMS22]

Table 4.3 – Best differential trails recovered with Tagada (time limit of one day).



Chapter 5

EXPLANATIONS IN CONSTRAINT

PROGRAMMING

Introduction

From the Latin word explano, explanation means to make plain and clear. However, the
work described in this chapter uses a more specific definition. In CP solvers, an explanation
is a set of events that describes the behaviour of a sub-part of a solver. This explanation can
then be used by the solver to make better reasoning. Therefore explanations can increase
the solving efficiency which is a welcome upgrade for solving the complex problems we
encounter in cryptanalysis. We will discuss in the conclusion how the solver explanations
can be related to human-readable explanations or machine-verifiable proofs.

Constraint programming (CP) is a flexible declarative language used to model and
solve combinatorial problems. The advantage of CP over MILP and SAT is that it comes
with a large collection of constraints. All the constraints can work together in a single
model, and we can even define new ones if needed. This is useful when a problem can
hardly be modelled with only linear equations or Boolean clauses. To solve a problem, CP
solvers use the filtering algorithms of each constraint to reduce the search space. These
algorithms are paired with a Depth-First Search (DFS) algorithm. The DFS builds a
decision tree. Each leaf of this tree denotes either a solution or a conflict. When every
variable of the problem has a value and all the constraints are satisfied, we have solution.
When a variable has no more possible values, we have a conflict. If there is a conflict, the
DFS algorithm backtracks to the previous decision to make a new branch and continues
the search. One way to speed up the search is to reduce the number of conflicts. This idea
was first introduced in the SAT solvers as the Conflict Driven Clause Learning algorithm
(CDCL) [SS99, MLM09]. With this algorithm, the solver can learn from a conflict by
searching for all the events that triggered it. This knowledge can be turned into a new
constraint to add to the problem. The solving time to find the conflict may already be
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spent, but this new constraint will hopefully prevent searching for a similar conflict. This
idea was first implemented in SAT solvers with excellent results [SS96, MMZ+01, ES03],
so the adaptation of this idea to CP solvers is interesting. However, SAT solvers use
only one type of constraint, the Boolean clause. One first attempt to use CDCL in a CP
solver was to make a Lazy Clause Generation solver. This is a CP solver paired with a
SAT solver. The CP solver uses filtering algorithms, and the SAT solver only handles the
CDCL algorithm. Later on, the CDCL algorithm was implemented in pure CP solvers. In
both cases, each constraint of the solver must be explained i.e., an explanation algorithm
must be able to describe the filtering algorithms, which might not be straightforward
for all of them. In addition, the global constraint catalog [BCDP07] references several
hundreds of constraints. Therefore the key to the development of conflict analysis in CP
solvers relies on explaining constraints.

In this chapter, we explore automatic explanation generation. We rely on the fact that
most constraints can be reformulated as a conjunction of constraints called a decomposi-
tion. We can use it to generate an explanation of global constraints from the explanations
of the decomposition.

This contribution supports the following conclusions:
— Constraint decomposition can be used to generate explana-

tions for global constraints
— Our prototype can automatically define explanations for 14

global constraints.
— When added to CP solvers, the generated explanations are

competitive with state-of-the-art explanations.

Takeaway

5.1 Background

Constraint programming was invented in the mid-70s ([Mon74, Lau78, Ros88]) to solve
combinatorial problems. The first idea is very simple “find a value for each variable of a
problem where constraints specify which values that cannot be used together”. Therefore,
CP has been used to find solutions to various problems with various search algorithms and
heuristics. Even some cryptographic problems were tackled in [Bur69]. The CP community
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began to share these methods in the early 90s with the CP conference and the constraints
journal. In 2005, an extensive list of constraints was proposed in the first version of the
constraint catalog. In 2006, CP had an extensible definition in the Handbook of Constraint
Programming [RvBW06].

5.1.1 CP modelling

A constraint satisfaction problem is defined with three items.

Variables. The variables X = {x1, . . . , xn} represent the unknowns of a problem for
which we must find a value. They can be of any type, Boolean, integer, real [CDR98], set
variables [Ger94], or even graph variables [DDD05], . . .

For example, suppose the problem is how to plant vegetables in a garden. In that case,
integer variables can represent the number of tomatoes, potatoes, and carrots, . . . Real
variables can represent their positions in the garden, and a graph variable can represent
the watering pipe system.

Domains. The variable domains D = {Dx1 , . . . , Dxn} contains all the possible values of
each variable. They can be sets of values or bounds. In our example, the integer domains
contain all the values of the available number of vegetables. The real domains contain the
bounds of the gardens. The graph domain contains all the possible pipe configurations.

Constraints. The constraints C = {c1, . . . , cm} define the relations between variables.
There can be simple constraints like arithmetic constraints (e.g., x1 < x2, x3 ̸= x4), or
more complicated ones called global constraints [BH03, BCDP07]. The best known global
constraint is AllDifferent({x1, . . . , xn}). This constraint states that all the variables in
{x1, . . . , xn} must have a different value. Each constraint must be paired with a filtering
algorithm (also called a propagator) to remove the values of its variables that do not
respect the constraint. The most basic filtering algorithm is to define every combination of
valid values using a table. However, these tables have some limitations. When the tables
are large, memory consumption issues may arrive. Therefore, it is interesting to define
constraints with dedicated filtering algorithms. A very simple constraint like x1 < x2

will use a simple filtering algorithm (remove all the values of Dx1 that are greater than
the largest value of Dx2 and conversely with the lowest values). On the contrary, a global
constraint like AllDifferent has much more complex filtering algorithms [vH01]. There
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is a large number of constraints (423 referenced with their filtering algorithms in the
constraint catalog 1 in 2023).

In our example, if we want to have enough vegetables to eat, we can add an AtLeast 2

constraint on the number of vegetable variables. If we want to make sure that every
plant has enough space, we can use a DiffN 3 constraint on the position variables i.e., a
constraint that prevents shapes from overlapping in a space. To control the proximity
of certain vegetables that want to grow side by side or not, we can use Distance 4

constraints on the positions variables. The pipe system shape can be constrained with a
graphCrossing 5 constraint to prevent pipes from crossing each other. Finally, we can
adapt the garden with the seasons with a slidingTimeWindow 6 constraint that can
prevent planting vegetables at the wrong season. All these very different constraints and
their filtering algorithms will be used together in a model to solve our example garden
problem.

5.1.2 CP solving

Filtering and backtracking. The idea of the backtracking algorithm originates in
[Leh57, GB65, FW74, BR75]. This algorithm builds a search tree where each node contains
a decision (a domain reduction for example) and verifies if the constraints can be satisfied.
When a constraint is not satisfied, the algorithm backtracks to the previous decision to
make a new branch by choosing another value. The algorithm is complete because it
continues until it finds a solution or shows that there are none when all the branches
are exhausted. Early backtracking algorithms spent a lot of time trying all combinations
of inconsistent values (trashing). Constraint Programming was invented when filtering
algorithms were merged within a backtracking algorithm to obtain consistency i.e., at each
decision, the domains only contain values that respect the constraints [Mac77]. The idea is
to use filtering algorithms to remove the inconsistent values of the domains of the variables.
The filtering algorithms of each constraint are called until no more values can be removed
i.e., it reaches a fixed point. Then a new decision is taken, and the filtering algorithms
are called again. There are several levels of consistency. The most important one is called

1. https://sofdem.github.io/gccat/
2. https://sofdem.github.io/gccat/gccat/Catleast.html
3. https://sofdem.github.io/gccat/gccat/Cdiffn.html
4. https://sofdem.github.io/gccat/gccat/Call_min_dist.html
5. https://sofdem.github.io/gccat/gccat/Cgraph_crossing.html
6. https://sofdem.github.io/gccat/gccat/Csliding_time_window_sum.html
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arc consistency. This consistency ensures that the filtering algorithms remove all the
inconsistent values in the domains. Another important one is bound consistency, where
the filtering process only ensures that the bounds of the domains respect the constraints.
In some extreme cases, consistency does not need to be that strong. For example, the
forward checking method (FC) does not call the filtering algorithms at every decision to
save some computation time [HE79].

The complexity of a constraint programming solving process depends on the filtering
algorithms complexity, the order of the decisions (the strategy) and the consistency. The
filtering algorithm complexity can be computed, but the other two can only be estimated
on specific problems. Therefore, it is impossible to give an exact complexity in general.
However, several researches were conducted to speed up the search. For example, studies
on the search showed that failing early is generally a good way to reduce the search
space. Most importantly, backtracking can be smarter than simply undoing the previous
decision. In [SS77, Gas78, Bru81, Dec90, Pro93, Gin93], backtracking was replaced by a
backjumping method. When it reaches a conflict, the algorithm searches for a "culprit"
decision in the tree and backjumps to it to explore the new branch. This idea went further
with the introduction of nogoods in [SS77, SV94, RJL03].

A nogood is a set of decisions that is inconsistent with any solution. It is a redundant
constraint that can be deduced when the decision tree fails. The cost of this failure is
already paid, but the deduced nogood will hopefully prune the future search space. The
nogoods were only compatible with a simple backtracking algorithm until [JDB00, Jus03]
introduced the filtering consideration in the nogood generation. The idea is to record each
filtering. When a failure occurs, we can then look at the records to generate the nogood.
In this work, the authors noticed that the nogoods were useful except for the randomly
generated problems. However, real problems are never random. In [KB05], the filtering
is not recorded to make the nogoods. Instead, some rules are defined on each constraint
to generate the nogood and we may call them explanation rules in the following. In
this work, explanation rules were proposed for the AllDifferent, Range, and Roots
constraints. Note that sometimes, there are multiple possible explanations to explain a
conflict. In general, using the smallest one is most efficient for the solver. Note also that
the explanation generation can be problematic because we can end up with an overflowing
number of new constraints. To solve this issue, the old explanations are forgotten. Even
if there were multiple definitions of nogoods in the literature, we can consider that they
are early ideas of the recent explanations in [Stu10, VS10].
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Of course, the idea of learning from the conflicts is not restricted to SAT and CP, and
some work tried to implement it in MILP solvers with promising results [Ach07, BFS10,
WBH17].

Alongside backjumping, Constraint Programming was upgraded over the years with
better constraint propagation [SS08], branching strategy studies [LSHS13], views [ST13,
HM14], . . . One of the most important events for CP is probably the development of
MiniZinc [NSB+07], a standard modelling language for CP that links several solvers.
This common language and the MiniZinc challenges that provide a solver comparison on
multiple problems made the use of CP easy even for non-CP users.

5.2 Related work on explanations for CP

Learning the reasons of a conflict has recently gained a rising interest in Constraint
Programming (CP) and has been adapted to CP in the last decade [Stu10, VS10]. To
explain a conflict during the solving algorithm, we use two important notions.

Event. An event stores a domain modification. It can be expressed by a unary constraint
on the variable. For example x = 3 or y < 7. This modification is always a domain
reduction. It may have been triggered by a filtering algorithm, or it can be a decision (for
example a variable is assigned to a value).

Implication graph. The implication graph is a DAG that stores the events and their
relationships regarding the constraints during the solving process.

Example 5.1 Let x, y, z be three variables and c1, c2, c3, three constraints. An implication
graph can be seen in Figure 5.1. In this figure, the red square nodes are decision events, and
the green circle ones are events caused by a constraint filtering algorithm. The constraint
is labelled on the edges that led to the event.

If an event of the implication graph is a conflict (for example, D′′′
x ), the clause learning

algorithm will search for the responsible decisions in the implication graph. To do so, we
go backwards in the implication graph until our backward tree has only decision events as
leaves (initial domains are considered as decision events). A naive way to find the events is
to consider that all the events involved are responsible [SS96]. In our example, a naive list
of responsible events is (Dx,Dy,D′′′

y ,D′′′
z ). However, further research in [MMZ+01] showed
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Figure 5.1 – Implication graph

that smaller clauses were more efficient. To find a smaller valid clause, the Conflict learning
algorithm will search for an Unique Implication Points (UIP). UIP are mandatory nodes
between the last decision and the conflict. Each UIP node can generate a clause, but we will
usually use the last decision (1-UIP). In our example, the clause will be (D′′

x,D′′
y ,D′′′

z ). This
last decision is called the articulation, and it is usually the backjump node. In our example,
it is D′′′

z . From our naive list of responsible events, we have that (D′′
x∧D′′

y ∧D′′′
z ) =⇒ D′′′

x .
Since we want to prevent this conflict, we will add the constraint c4 = ¬D′′

x∨¬D′′
y ∨¬D′′′

z .
This reasoning is correct if c1, c2, c3 are Boolean clauses because all the variables of a
Boolean clause are responsible for every event in the clause. However, CP has much more
complex constraints, and the events may have more complex explanations. The naive
clause (every event involved is responsible) is not incorrect for CP conflict learning, but it
introduces useless events that make the constraint weak, i.e., useless events will prevent
the learnt clause from filtering efficiently. To find the responsible and only these ones, we
need to explain how the constraints filtering algorithms did produce the events.

Explanation. An explanation is a Horn clause of events i.e., it can be written as a
disjunction of events that imply an event. A default explanation contains all the incoming
events in the disjunction, but as we said earlier, it is not very helpful. Ideally, a stronger
explanation will not mention irrelevant events in the disjunction. For example, the expla-
nation of D′′′

x by the constraint c3 could be D′′′
z =⇒ D′′′

x , thus producing a much stronger
constraint c4 = ¬D′′′

z from this conflict. With this example, we can see the advantage
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of conflict analysis over the backtracking algorithm alone. In another context, i.e., an-
other sub-part of the decision tree, the decision D′′′

z will be tried again. With the learning
algorithm, we learned that D′′′

z will never be a valid event regardless of the rest of the
problem.

Explanations are usually noted as follows:

R
e

e1 ∨ . . . ∨ el

Where R is the rule’s name, e is an event, and e1 ∨ . . . ∨ el is the clause of events that
explains e. Note that explanations can be considered as the inverse implications of the
filtering algorithms.

In CP, global constraints [BCDP07] are often used, either for efficiency or for modelling
reasons. Global constraints are constraints with an arbitrary number of variables. They
are more formally defined in [BH03]. Explaining global constraints requires integrating the
sophisticated filtering rules of the constraint into a dedicated explanation. Some important
constraints have been explained in [SFSW11, DFS12, FS14, SS16, GS20]. Considering that
there are now hundreds of global constraints [BCDP07], providing dedicated explanations
for each of them is a long and tedious task. Unfortunately, to apply conflict analysis,
the solver needs all the constraints of the problem to be equipped with an explanation
algorithm. In practice, having to explain global constraints restricts the development of
explanation frameworks.

Lazy Clause Generation (LCG). LCG is a method for generating SAT clauses for
CP solvers only when needed during the search [OSC07, OSC09, Stu10, Chu11, FSS13].
The idea is to use both a SAT solver and a CP solver with integer variables to combine
the strength of learning and filtering. However, to model integer variables, the SAT solver
needs a Boolean variable for each possible pair of integer variable and integer value. This
would introduce too many Boolean variables in the SAT solver, so the lazy clause genera-
tion will generate only the needed Boolean variables on the fly. For example, if we have an
integer variable with the domain Dx = J1, 2000K, a SAT solver would need 2000 indepen-
dent Boolean variables. The LCG solver will generate a Boolean variable only when the
CP filtering algorithms reduce the domain or when a decision is taken. In our example, if
the decision x < 700 is taken, a corresponding Boolean variable will be generated in the
SAT solver. Therefore the SAT solver is light and has all the variables needed to perform
CDCL on conflicts. This idea was implemented with the solver Chuffed. To make it as
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efficient as possible, LCG is paired with a minimalist CP solver handling integer variables
and ten commonly used global constraints and their explanations. In [DFS12], the LCG
solver is compared with several standard CP solvers on the constraint AllDifferent
with different propagators. In conclusion, the LCG solver is hugely beneficial and high-
lights the efficiency of explanations. However, if new constraints are added in Chuffed,
they must also be explained.

Like every previous conflict learning algorithm, there is an issue when many clauses are
learned. The solution for CP is usually to forget the oldest or the clauses that performed
less filtering. One other advantage of conflict learning is that it can be helpful in a parallel-
solving process [RM18]. The problem is run with a different strategy on each thread, and
the learnt clauses are shared between them.

Constraint decomposition. Constraint decomposition is a good way to express a
global constraint when a solver does not implement it. A constraint decomposition is a set
of constraints that expresses a global constraint [BKNW09, BKN+09, Nar11]. For exam-
ple, on the three integer variables x1, x2, x3, the constraint AllDifferent(x1, x2, x3) can
be replaced by three inequality constraints, x1 ̸= x2, x1 ̸= x3, x2 ̸= x3. Some decomposi-
tions may need to add intermediate variables. A common way to do this is to use constraint
reification. A reified constraint is a constraint with is equivalent to a Boolean variable. If
the constraint holds, the Boolean is true and conversely, for example, in x < 7 ⇐⇒ b.

In [BH03], the authors defined three categories of global constraints:
— A constraint R is semantically global if there exists no constraint decomposition

for R.
— A constraint R is operationally global if there exists no constraint decomposition

with the same filtering quality.
— A constraint R is algorithmically global if there exists no constraint decomposi-

tion with the same filtering complexity.
For constraint programming solvers, constraint decomposition is very useful because

this means that solvers does not need to implement all the constraints of the cata-
log [BCDP07]. The main example of this is the modelling language MiniZinc. When a
solver is called to solve a MiniZinc model, all the constraints unknown to the solver
will be decomposed, thus making a generic interface with most solvers. Most of the time,
decompositions are slower than algorithmically, operationally and semantically global con-
straints. However, it was shown in LCG solvers that less efficient decompositions can be
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more useful than global constraints without explanations [FS09].

5.3 New explanations from decompositions

In this section, we present a rewriting system to generate explanations from decompo-
sitions. First, we chose a minimalist decomposition language inspired by [Nar11]. It can
also be easily expanded with new constraints.

Definition 5.1 (Decomposition language) Let x be integer variables, b be Boolean
literals, v be an integer value, and i be an integer index. The constraints of the decompo-
sition language are:

x = v ⇐⇒ b, x ≥ v ⇐⇒ b,∧
i

bi ⇐⇒ b,
∑

i

bi < v ⇐⇒ b,
∨
i

bi ⇐⇒ b

Our goal is to use this decomposition language to generate explanation formulas for
global constraints. This is a preliminary step for the development of a solver. The formula
completes the filtering algorithm during the implementation of a constraint in a solver. In
the end, the decomposition language will not be used in the solver, and the explanation
formula should not be confused with an explanation of a conflict produced by the solver.

The explanation generation method is the following:
— Let C be a global constraint and D be its decomposition in our language. (multiple

decompositions may be possible)
— For each possible type of event of C, deduce an explanation formula with D and a

rewriting system.
— Finally, implement the formula as an explanation algorithm of C in a solver.
The formula operates on two types of terms. The first type of term represents the

events of the global constraints. (M is a special set of indices defined later)

E = {xi = t, xi ̸= t, xi < t, xi ≥ t | i ∈M, t ∈M}

The second type of term represents the additional Boolean variables that are introduced
with the decomposition i.e., they do not exist in the global constraint.

B = {b⋄
i | i ∈M, ⋄ ∈ {optional name}}
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Each of these terms can be negated. For example ¬bi and ¬(xi = v) ⇐⇒ (xi ̸= v).
To make them work together, the decomposition language uses the same basic terms as
the formula (E, B). Our formula is defined in the following definition.

Definition 5.2 (formula) A formula F is defined by the grammar,

F ::= E | B | F ∧ F | F ∨ F | ⊤ | ⊥

In our formula, the term ⊥ represents the inexplicable event, and ⊤ represents the always
true event. From a starting event term E0, we will use a rewriting system to find a formula
F that contains the responsible events. We will then simplify the formula to find rules
like R E0∧

i
Ei

. For example, if we simplify the formula (⊤∨E1)∧ (E2 ∨E3)∧E4 ∨ (E5 ∧⊥)
we will produce two explanations: R1 E0

E2∧E4
, and R2 E0

E3∧E4
.

To see why we need a special set of indexes M, we can look at the decomposition of
the constraint Increasing. This constraint ensures that the variables X = x1, . . . , xn

have strictly increasing values.

Increasing(X) ⇐⇒

(xi ≥ t) ⇐⇒ bi,t ∀i ∈ J1, nK

¬bi−1,t ∨ bi,t ∀i ∈ J2, nK

In the second equation, there is an i − 1 in the index. Therefore, the formula terms
must be able to represent these indices relations. A more complex case is the sum where
multiple events are responsible together. In this case, the formula may need a new index
with a quantifier like ∀j, j ̸= i. In the end, we identified the following index relations:

— i ∈ S, The index i belongs to the set of index value S

— j ̸= i, j < i, j > i, j has a relation with another index i

— j = i + n, j = i− n, j = i + di, j = i− di,
j has an additive relation with i (n is an integer and d is an integer array).

— ∃i, ∀i, A new index is introduced with a quantifier.

There might be more relations to handle, and finding the most efficient way to represent
the indices is left as future work.
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5.4 Rewriting system

We propose an inference system that computes, from a logical expression representing
a constraint in our decomposition language and an event type as defined in E, an expla-
nation. The explanation will be a formula, but only on the event terms E appearing in the
initial constraint. The additional Boolean terms B that may appear in the decomposition
are removed in the process. Our method is purely symbolic. It is made off solver and only
needs to be done once for each new constraint.

5.4.1 Intuition

Given an event, the rules are meant to deduce what happened that provoked this
event. We describe the idea in three examples.

From the event term E0 = (x = t) in the constraint x = t ⇐⇒ b, the only explanation
for the event E0 is b thus we can deduce the rewriting rule R b

x=t
.

Now consider the constraint b1 ∨ b2 ⇐⇒ b3, and we want to explain b1 i.e., we want
to know in which situation the variable b1 will be set to true. The only possible reason
why this event has been generated is the following situation: b3 is true, and b2 is false.
Thus, we can deduce the rewriting rule: R b1

b3∧¬b2
.

Finally, consider the sum constraint b1 + b2 + b3 ≤ 2 ⇐⇒ b4 and assume that we
want to explain ¬b1. The only situation where such an event can be generated is: b4 is
true, and both b2 and b3 are true. Thus we can deduce the rewriting rule: R ¬b1

b4∧b2∧b3
.

5.4.2 Rewriting algorithm

The rewriting rules explaining an event are derived from pseudo-Boolean logic. For
each case, we deduce from the event the situation that made it happen, similarly as above.

Definition 5.3 (Rewriting rules) For clarity purposes, the reified terms are labelled
with the name of the constraint (eq, sum, . . . ). The first 8 rules are only for the reified
events (xi = t) ⇐⇒ beq

it and (xi ≥ t) ⇐⇒ bgeq
it . They describe all the possible

implications.
R1

=
(xi = t)

beq
it

R2
=

(xi ̸= t)
¬beq

it

R3
=

beq
it

(xi = t) R4
=
¬beq

it

(xi ̸= t)

R1
≥

(xi ≥ t)
bgeq

it

R2
≥

(xi < t)
¬bgeq

it

R3
≥

bgeq
it

(xi ≥ t) R4
≥
¬bgeq

it

(xi < t)
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In the following, the index i is implicitly in a set of indices I that describes the variables
involved in the disjunction, conjunction or sum. Moreover, every ∀i, ∀j and ∃i are in the
same set I.

Rules for the disjunction ∨
i bi ⇐⇒ bor are:

R1
∨

bi

bj|∀j ∧ bor R2
∨
¬bi

¬bor R3
∨

bor

bi|∃i
R4

∨
¬bor

¬bi|∀i

Rules for the conjunction ∧
i bi ⇐⇒ band are:

R1
∧

bi

band R2
∧

¬bi

bj|∀j ∧ ¬band R3
∧

band

bi|∀i
R4

∧
¬band

¬bi|∃i

Rules for the sum ∑
i bi < v ⇐⇒ bsum are:

R1
Σ

bi

¬bj|∀j ∧ ¬bsum R2
Σ

¬bi

bj|∀j ∧ bsum R3
Σ

bsum

¬bi|∀i
R4

Σ
¬bsum

bi|∀i

These rules are then used in a rewriting algorithm described in Algorithm 10. The
algorithm starts with an event of the global constraint to explain and rewrites it to a for-
mula. The algorithm stops when the formula is composed of terms involving only variables
that are in the scope of the global constraint. Indeed, when the decomposition introduces
additional variables, they must not appear in the formula since they have no existence
within the global constraint. A call to PossibleRules(v, D) returns a set of rules such

Algorithm 10: Rewrite(v: term, F : formula, D: decomposition)
1 F1 ← empty formula
2 for all r ∈ PossibleRules(v, D) do
3 F2 ← empty formula
4 Sv ← set of terms replacing v according to rule r
5 for all v′ ∈ Sv do
6 F2 ← F2 ∧ v′

7 if v′ is not an event of the global constraint then
8 Rewrite(v′, F2)

9 F1 ← F1 ∨ F2

10 Replace v by F1 in F

that: v is the leftmost term of any of them, and no rule provides a term previously used
to write the current term (v). The second condition ensures the termination of the algo-
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rithm, enforcing that a modification event cannot be explained by itself. This resulting
formula of Algorithm 10 is composed of terms, conjunctions and disjunctions. Depending
on the rewriting rules, many terms may be created (lines 4-5). All of them are needed for
the explanation and included in the formula with a logical conjunction (∧, line 6). When
more than one rewriting rule is available (line 2), each of them may be part of the expla-
nation. These sub-formulas are included in the formula with a logical disjunction (∨, line
9). When there is no rewriting rule available, a false term (⊥) is written in replacement
of v. A post-processing phase described in Algorithm 11 transforms the formula into a list
of explanation clauses.

Algorithm 11: Extract(F : formula)
1 if F is a term then
2 return a list containing a list containing F
3 else if F is a disjunction of formulas then
4 return Flatten(Map(Extract, list of sub-Formulas))
5 else if F is a conjunction of formulas then
6 return Concat(Map(Extract, list of sub-Formulas))

Where Map applies a function on each element of a list, Flatten transforms a list
of lists into a list, and Concat transforms a conjunction of disjunction of formulas into a
disjunction of conjunction of formulas with the De Morgan laws. Finally, a simplification
algorithm removes all the ⊤ and ⊥ terms.

Example 5.2 presents an execution of Algorithm 10 on the simple constraint Atmost.

Example 5.2 (Inference rule generation) Consider the Atmost(u,X,t) global con-
straint. It takes an integer u, an array of n > 0 variables X = [x1, · · · , xn] and an integer
t as input. The constraint ensures that at most u variables from X are assigned to t. Its
filtering algorithm can filter values from X. In particular, when exactly u variables from
X are instantiated to t, this value is removed from the other variables’ domain. Based on
the following decomposition of Atmost, it is then possible to generate the explanation
formula of a value removal.

Atmost(u, X, t) ⇐⇒

(xi = t) ⇐⇒ beq
i,t ∀i ∈ J1, #XK∑

i∈J1,#XK beq
i,v ≤ u ⇐⇒ ⊤

Algorithm 10 proceeds as follows with the value removal event term v = (xi ̸= t) as input:
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1. R2
= rewrites v as ¬b

eq
i,t;

2. R2
Σ rewrites ¬bi,t as bj,t|∀j ∈ J1, #XK ∧ bsum. All should be considered;

3. bsum is rewritten ⊤ because the sum constraint reified variable is ⊤ in our decomposition.
This is a terminal term;

4. R3
= rewrites bj,t as (xj = t);

5. Finally, all terms are terminal and F = (⊤ ∧ ((xj = t)|∀j ∈ J1, #XK)).

The post-processing phase simplifies F to ((xj = t)|∀j ∈ J1, #XK). This explanation states
that the removal of the value t from xi is explained by all the other variables instantiated to
the value t. The explanation F can then be implemented in a CP Solver for the Atmost
constraint.

Now we can use Algorithm 10 with the value affectation event term v = (xi = t) as
input:

1. R1
= rewrites v as b

eq
i,t;

2. R1
Σ rewrites bi,t as ¬bj,t|∀j ∈ J1, #XK ∧ ¬bsum. All should be considered;

3. ¬bsum is rewritten ⊥ because the sum constraint reified variable is ⊤ in our decomposition.
This is a terminal term;

4. R2
= rewrites ¬bj,t as (xj ≥ t);

5. Finally, all terms are terminal and F = (⊥ ∧ ((xj ≥ t)|∀j ∈ J1, #XK)).

The post-processing phase simplifies F to ⊥. We cannot find an explanation for this event,
and if we look at the filtering algorithm of the Atmost constraint, this event cannot be
triggered.

Example 5.3 presents a generated explanation on the more complex constraint Cum-
mulative with a graph representation of the formula.

Example 5.3 Consider the Cumulative(X, d, t) constraint. This constraint expresses
a capacity constraint in a scheduling problem. The variables X = [x1, · · · , xn] represent
the starting time of each task. Each task has a fixed duration di, and there is a maximal
task capacity c. We use here the Cumulative’s variant with fixed durations and a fixed
task height of 1. For this constraint, we have the following decomposition [SFS13]:

Cumulative(X, d, t) ⇐⇒


xi ≥ t ⇐⇒ bgeq

i,t ∀i ∈ J1, #XK

(bgeq
i,(t−di) ∧ ¬bgeq

i,t ) ⇐⇒ band
i,t ∀i ∈ J1, #XK∑

i∈J1,#XK band
i,t < c ⇐⇒ ⊤

137



Chapter 5 – Explanations in Constraint Programming

The first constraint (5.3) reifies a domain modification of the cumulative variables. The
second constraint (5.3) and its reified variable band encodes the overlap of the ith task on
time t. The last equation (5.3) constrains the number of overlapping tasks not to exceed
the integer c.

Algorithm 10 on this decomposition with the lower bound modification event xi ≥ t

will result in the formula described in Figure 5.2.

xi ≥ t b
geq
i,t ∨

∧

b
geq
i,(t−di)

xi ≥ t− di

¬bandi,t bandj,t |∀j ∧

b
geq
j,(t−dj)

¬bgeqj,t

xj ≥ t− dj

xj < t

bandi,(t+di)
∧ ⊥

¬bandj,(t+dj)|∀j ∨

¬bgeqj,t

b
geq
j,(t+dj)

xj < t

xj ≥ t+ dj

R1
≥

R
2∧

R 2∧

R 1∧

R3
≥

R2
Σ

R1
Σ

R
1Σ

R
4∧

R 4∧

R4
≥

R3
≥

R
3∧

R 3∧

R3
≥

R4
≥

Figure 5.2 – Generated Formula graph representation of the explanation of the lower
bound event of the cumulative constraint.

After simplification, the resulting explanation is:

(xi ≥ t− di) ∧ (xj ≥ t− dj) ∧ (xj < t)|∀j ∈ J1, #XK

In this explanation, we can see that the two first terms ensure that the task xi overlaps
the time t, and the last term represents all the other tasks that saturate this time value.

5.5 Implementation and results

Algorithm 10 has been implemented in OCaml. We chose this programming language
because the static type system is helpful in defining terms and formulas and the functional
paradigm with pattern matching are great tools for building formulas. The code is publicly
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available 7. The complexity of Algorithm 10 is exponential in the number of constraints
and variables of the decomposition. Moreover, the formula simplification of Algorithm 11
also has an exponential complexity. However, constraint decompositions are usually rather
small, and the program always terminated in less than a second in our tests.

Some early tests were conducted in the Choco solver with our generated explanations
of the cumulative constraint. We solved the ten rcpsp (resource-constrained project
scheduling problem) instances of the MiniZinc Challenge 2008. We compared the number
of nodes of the Choco solver with and without explanation, and we also ran the LCG
solver Chuffed on the same problem. Chuffed uses the cumulative constraint with hand-
made explanations. The results are shown in Figure 5.3. We observe a similar number
of nodes for the LCG and Choco with the generated explanations. The problem without
explanations is much harder. These results correspond to the conclusions of previous works
on the rcpsp problem with LCG techniques [SFSW13].

rcpsp instance
number

by difficulty
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•• •••
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•
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225
224
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n4

4049049

n8

Figure 5.3 – Explanation comparison of cumulative on rcpsp problems

To test the validity of the entire approach, we ran our prototype and integrated some of
the generated inference rules in the well-known LCG solver Chuffed. The recommended
way to use this solver is to run it with MiniZinc [NSB+07] models. Among the set of
constraints defined by MiniZinc, Chuffed only supports a few and relies on decompositions
for the others, in particular for the constraints Count and Increasing. We illustrate
the feasibility of our approach by implementing the two constraints into Chuffed, and we

7. https://github.com/ArthurGontierPro/Explaining-Global-Constraints-from-Decompositions
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instance explanation nodes fails backjumps time (ms)
chu 10487 9717 639 393

league def 51383 51067 187 2641
(model15-4-3 ) gen 4501 4038 330 189

chu 3724887 3616895 107972 179025
oocsp def 3951358 3875074 76263 219893

(racks_030_mii8 ) gen 3807940 3713037 94882 186959
chu 71044 54342 16367 4432

oc-rooster def 792690 774296 18055 24617
(4s-23d) gen 82421 62145 19939 5530

Table 5.1 – Three example instances comparing Chuffed, the default explanation and the
generated explanations.

add their generated explanations. Table 5.1 shows the results on three MiniZinc instances
using these constraints, with the following three configurations: chu (Chuffed based on the
decompositions), def (Chuffed implementing Count and Increasing with the default
explanations) and gen (Chuffed with the new constraints and generated explanations).
We only report three interesting instances because most of the other instances do not take
great advantage of Count and Increasing. Therefore, most of them do not change with
the new constraints. All the other instances with raw data can be found online alongside
the generator and the chuffed constraints.

Our results show that generated explanations are always more efficient than the de-
fault ones when global constraints are implemented (def and gen). On the other hand,
the interest in implementing or not explaining global constraints, as opposed to decom-
posed global constraints, is debatable: the performances vary slightly from one problem
to another for Count and Increasing. In the end, both approaches stay close and still
remain better than def.

5.6 Future work

In this chapter, we presented a rewriting rule system to generate a constraint expla-
nation from its decomposition. The framework is made of atomic constraints and can
be extended to any constraint as long as its rewriting rules are provided. Note that the
generated explanations can be added as new rules. We implemented this rewriting algo-
rithm and showed that it can produce explanations without effort. Finally, we tested our
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generated explanation in conflict analysis solvers, firstly against previously made explana-
tions on cumulative and then on two examples of global constraints with no explanation
algorithms.

Explaining a global constraint with its decomposition raises two questions. First, there
can be several decompositions for a given constraint. Therefore, the accuracy of the gen-
erated explanations may depend on the selected decomposition. Second, operationally
global constraints [BH03] reach stronger filtering than their decompositions. This can
lead to situations where the resulting formulas cannot be used directly because the gen-
erated explanation would not be able to explain all the events. In this case, they may
be combined with the default explanation to obtain completeness. In the case of multiple
explanations, we can reason like the CDCL solvers and take the smaller one to gain effi-
ciency [SS96]. More work is needed to understand the impact of explanations on conflict
analysis. Some early comparisons were conducted in [SMTdlB16]. Note that our work can
also be used outside the CDCL context. For instance, in [HS17], the authors introduce a
way to use explanations to better weigh the variables appearing in a constraint that fails
to improve the search efficiency.

If we think further, we can try to use the explanations to build a machine-checkable
proof of failure like in [VS10]. The CDCL algorithm was first designed for solver efficiency,
but some work in the SAT and CP communities adapted it for proofs [HJW13, GMN22].
These solvers are slower than classical solvers for now, but the solution verifiability they
provide can be appreciated in communities that need proof of security. The final upgrade
for explanations would be to make them human-readable. For now, explanations are just
extensive event clauses, but by combining them to find the shortest constraint that causes
the problem contradiction, we could provide the user useful feedback. Similar to readable
proof generation for geometry [CG96].
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Chapter 6

CONCLUSION

In this thesis, we have studied symmetric cryptanalysis problems with solvers. We
proposed new models based on graph representations of these problems. This allows us to
solve them more efficiently and to obtain new results on several instances. Moreover, we
proposed a model generator for differential cryptanalysis, and we also worked to improve
the solving methods of CP solvers. We first recall below the main results we obtained
before discussing some open line of research.

6.1 Summary of results

In the first two chapters, we have modelled cryptographic problems relying on new
graph representations. We studied the search for the superpoly of Trivium and the
search for the permutation with the best diffusion in the Generalized Feistel Networks
(GFN). In both cases, the new representations based on graphs brought new properties
and ideas to model and solve these problems with generic solvers or dedicated algorithms.
For the superpoly of Trivium, we found new constraints and gave a smart strategy to
the MILP solver to find the superpoly 10 to 60 times faster than previous methods. For
the permutations of GFN, we were able to exploit the structures of the graph to design an
efficient algorithm that was able to find new optimal permutations. We also used a graph
representation of ciphers to generate CP models to solve a well-known cryptographic
problem, the instantiation of truncated differential trails. We provide a tool that takes
as input a graph representation of any cipher and some truncated trails to generate and
solve CP models to find the best differential characteristic of the cipher. To make this tool,
we added new constraints in a CP solver (Choco) and studied their efficiency. Moreover,
we proposed an automatic model simplification and a parallel-solving method. Finally,
we were interested in improving the CP solvers with solver explanations that allow them
to learn from search conflicts. We designed a tool to generate constraint explanations
to improve CP solver’s efficiency. These explanations can then be added to the solving
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algorithms of any conflict-learning CP solver. The explanation generator uses a rewriting
rule system and a constraint decomposition to generate explanations of the constraint
to improve their performances. The generated explanations were tested in CP solvers on
public instances of the MiniZinc challenge with promising results.

6.2 Perspective for future work

Specific perspectives. In this thesis, we have seen that new representation can help
finding interesting properties useful to enhance problems solving. However, we have not
used all the forbidden sub-graphs of Trivium, and there may be other properties to be
used in the model (for example, the ternary property of non-doubling edges). During this
thesis, the representation of a problem using a graph has proved interesting on several
occasions, and could be applied to more ciphers. The first target that comes to mind is
Grain since it is quite similar to Trivium. Moreover, our graph representation of the
diffusion in the Generalized Feistel Networks left two open questions. The first question
is the existence of a formal proof that the even-odd property is optimal for the diffusion
property. We provided some examples and new ideas that rely on the graph representation
to start this proof. The second question is the study of new properties to replace or
complement the diffusion. We proposed some properties and we modified our algorithm
to study them, but this part deserves further study.

General perspectives. A broader question is whether it is possible to make a tool to
find distinguishers on any cipher automatically. Such a tool would save development time
for early cryptanalysis of new ciphers. The existing automatic tools for differential analysis
are a good start. They show that cryptanalysis could be done more easily. Indeed, we can
use a simple graph representation to model any cipher and use back-end solvers to solve
cryptanalysis problems on them. However, much more work is needed to have a generic
tool for all cryptographic problems. A good starting extension for differential automatic
tools would be to solve the variants of differential cryptanalysis (boomerangs, impossible
differentials, . . . ). Many cryptographic problems we studied require a lot of variables
and constraints to be modeled. However, these models represent ciphers composed of
one round function applied multiple times. Therefore, the model has a lot of similar
constraints and variables in a similar context. One way to exploit this is to learn from the
structure of the problem during the solving process. The idea of explaining failures was
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ground-breaking for SAT solvers’ efficiency. This idea has been transposed in CP solvers,
and they might be very useful for cryptographic problems. However, conflict learning CP
solvers need to develop an extensive explanation framework. When all constraints will
be explained, further work could be done to use explanations in the similar sub-parts
of a model. For instance, we think that the learnt explanations on a variable may be
useful on other variables that are constrained in the same way. We could add multiple
constraints from one conflict explanation. Finally, explanations may be upgraded to
human readable explanations for the users to better understand the conflicts in their
problems. Explanations may also be used to generate a proof certificate of the solver’s
reasoning. Indeed, there are several cases of cryptographic problems where we do not
want to trust a black box solver, and having a proof certificate that can be verified by
some other tool would help us to trust the obtained results. There is some work on proof
generation in the SAT community [HJW13], and adapting this idea to make CP solvers
would be an interesting research topic.
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Titre : Utilisation de solveurs génériques pour la cryptanalyse de chiffrements symétriques

Mot clés : Cryptanalyse, Chiffrement Symétrique, Programmation par Contraintes

Résumé : La cryptographie est une science
cruciale pour nos sociétés connectées. Elle
implique la conception l’analyse et la mise
en œuvre d’algorithmes de chiffrement. L’ana-
lyse des chiffrements est une étape obligatoire
pour assurer leur sécurité, mais cette tâche
est souvent fastidieuse. En cryptographie sy-
métrique, cette analyse porte principalement
sur la recherche de distingueurs, des proprié-
tés qui distinguent un message chiffré d’un
message aléatoire. Les solveurs génériques
sont des outils créés à l’origine pour résoudre
des problèmes comme la planification ou l’or-
donnancement. Ils sont régulièrement amélio-
rés et sont devenus des bons candidats pour
faciliter la cryptanalyse.

Cette thèse s’intéresse à l’analyse et la
conception des chiffrements symétriques avec

l’aide des solveurs génériques, notamment
de programmation par contraintes (CP). Nous
avons exploré plusieurs pistes pour améliorer
les techniques de cryptanalyse et les solveurs.
Nous avons modélisé sous forme de graphe
la recherche de distingueurs (plus précisé-
ment la recherche de superpoly dans le chif-
frement TRIVIUM) et avons résolu ce problème
plus efficacement. Nous avons étudié la pro-
priété de diffusion dans les réseaux de Feis-
tel généralisés améliorant ainsi leur concep-
tion. Ensuite, nous avons proposé un outil
pour générer automatiquement des modèles
CP utiles pour la cryptanalyse différentielle.
Enfin, nous nous sommes intéressés aux sol-
veurs CP eux-mêmes en proposant une tech-
nique pour générer des explications et ainsi
améliorer leurs performances.

Title: Cryptanalysis of symmetric cipher using generic solvers

Keywords: Cryptanalysis, Symmetric Cipher, Constraint Programming

Abstract: Cryptography is a critical science
for our connected societies. It involves the de-
sign, analysis and implementation of encryp-
tion algorithms. Analyzing ciphers is a manda-
tory step to ensure their security, but this task
is often tedious. In symmetric cryptography,
this analysis mainly focuses on finding distin-
guishers, properties that distinguish a cipher-
text from a random message. Generic solvers
are tools originally created to solve problems
like planning or scheduling. They are regularly
improved and have become good candidates
to facilitate cryptanalysis.

This thesis focuses on the analysis and
design of symmetric ciphers with the help of

generic solvers, in particular constraint pro-
gramming (CP) solvers. We have explored
several leads to improve cryptanalysis tech-
niques and solvers. We modeled as a graph
the search for distinguishers (specifically the
search for superpoly in the TRIVIUM cipher)
and solved this problem more efficiently. We
have studied the property of diffusion in gen-
eralized Feistel networks thus improving their
design. Next, we proposed a tool to automati-
cally generate CP models for differential crypt-
analysis. Finally, we focused on CP solvers
themselves by proposing a technique to gen-
erate explanations and thus improve their per-
formance.
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