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Résumé
En cas de rejet accidentel de substances dangereuses en milieu urbain ou sur un site industriel,

cartographier la concentration en polluants est un véritable défi pour évaluer l’exposition du

public à des doses toxiques. Il s’agit d’une problématique à la fois opérationnelle et scientifique

car l’interaction de la couche limite atmosphérique avec la canopée urbaine rend la dynamique

de l’écoulement complexe et nécessite des outils de modélisation physique haute-fidélité. En ré-

solvant explicitement l’essentiel du spectre de turbulence, l’approche de simulation aux grandes

échelles (SGE) permet de représenter la variabilité spatio-temporelle de la concentration de pol-

luants dans un environnement complexe. Concevoir une approche qui synthétise cette grande

quantité d’informations est d’un grand intérêt pour ensuite l’injecter dans des modèles opéra-

tionnels de plus basse fidélité. Néanmoins, dans ce contexte accidentel, l’approche de SGE reste

sujette à des incertitudes, à la fois atmosphériques et concernant la source d’émission, et néces-

site un cadre de modélisation d’ensemble pour représenter l’éventail des scénarios plausibles de

dispersion. Cependant, ce cadre multi-requêtes est inaccessible dans un contexte en temps réel

car les simulations SGE reposent sur des moyens de calcul conséquents.

Dans cette thèse, nous explorons di↵érentes approches d’apprentissage statistique pour con-

struire un modèle réduit informé par l’approche de SGE afin d’obtenir des prévisions de concen-

tration physiquement cohérentes, tout en diminuant considérablement le coût de calcul. Cette

étude est e↵ectuée sur un cas bidimensionnel de dispersion de traceur dans un écoulement tur-

bulent de couche limite atmosphérique autour d’un obstacle isolé, pour lequel les conditions aux

limites sur l’écoulement en entrée du domaine et la localisation de la source sont incertaines.

Dans un premier temps, nous mettons en œuvre une approche de modèle réduit basée sur

les données de SGE pour prévoir les statistiques du champ de concentration du traceur. Nous

comparons plusieurs approches i) de compression (décomposition orthogonale en modes pro-

pres/POD versus auto-encodeur) pour réduire la dimension les champs d’intérêt à un nombre

limité de variables latentes, et ii) di↵érents modèles de régression (e.g. chaos polynomial, proces-

sus gaussiens) pour représenter la réponse des variables latentes aux variations des paramètres

incertains. La POD combinée à la régression par processus gaussiens permet d’obtenir de bonnes

prévisions pour un grand jeu de données de SGE d’entrâınement (composé de 450 solutions).

L’hétérogénéité de la concentration proche de la source en amont de l’obstacle nécessite un grand

nombre de modes POD pour être bien représentée. De plus, la capacité du modèle à réduire la

dimension des champs peut être améliorée en remplaçant l’approche POD par un auto-encodeur

convolutif.

En réduisant le nombre de données d’entrâınement, nous observons que les prévisions du

modèle réduit manquent de consistance avec les lois de la physique. Pour surmonter ce problème,

dans un deuxième temps, nous mettons en œuvre une approche de modèle réduit hybride basée

sur l’équation de transport de traceur RANS (Reynolds-averaged Navier-Stokes) informée par

les données de SGE afin d’intégrer des contraintes physiques dans le processus d’apprentissage.

L’idée-clé est de découpler les incertitudes atmosphériques des incertitudes de source, et de

remplacer les termes classiques de fermeture de la turbulence dans l’approche RANS par des
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ii Résumé

modèles sur l’écoulement d’air émulés à partir des données de SGE. Cette approche nécessite

beaucoup moins de données de SGE (seulement 50 solutions) que le modèle réduit directement

émulé à partir des données de SGE. Nous montrons finalement qu’une approche multi-fidélité

(combinant un petit nombre de solutions de SGE avec un grand nombre de prévisions du modèle

réduit hybride) o↵re une perspective de recherche intéressante pour optimiser la performance du

modèle réduit.

Mots-clés. Dispersion atmosphérique, Modélisation numérique, Mécanique des fluides numériques,

SGE, RANS, Incertitudes paramétriques, Obstacle isolé, Apprentissage statistique, Réduction

de dimension, Régression, Science des données guidée par la physique, Multi-fidélité

Résumé de vulgarisation. En cas de rejet accidentel de substances dangereuses dans l’atmosphère,

certaines zones urbaines peuvent être sujettes à une forte dégradation de la qualité de l’air, ce

qui peut avoir des conséquences sur la santé et l’environnement. Identifier ces zones nécessite

de recourir à des modèles représentant finement les interactions entre le vent et les bâtiments.

Ces modèles reposent sur les équations fondamentales de la physique des écoulements, et un

ensemble de simulations est requis pour estimer l’enveloppe des scénarios possibles lors d’un

évènement. En raison des moyens de calcul qu’ils nécessitent, ces modèles ne sont pas directe-

ment applicables à des cas de grande échelle. Dans ces travaux, nous cherchons à identifier les

outils statistiques apparentés à l’intelligence artificielle les plus adaptés pour concevoir un mod-

èle simplifié capable d’intégrer les données venant des modèles physiques, tout en permettant de

réaliser des prévisions d’ensemble en temps réel de l’évènement.
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Abstract

In the event of an accidental release of hazardous substances in an urban area or on an industrial

site, tracking pollutant concentration is particularly important for assessing public exposure to

toxic doses. This is an operational but also a scientific challenge, as the interaction of the atmo-

spheric boundary layer with the urban canopy makes the near-surface flow dynamics complex

and requires high-fidelity physics modelling tools. By explicitly solving for most of the turbu-

lence spectrum, the large-eddy simulation (LES) approach has the potential to represent the

spatial and temporal variability of pollutant concentration in a complex environment. Finding a

way to synthesise this large amount of information to inject into lower-fidelity operational mod-

els is particularly appealing. Still, in this accidental context, the LES approach remains subject

to atmospheric and emission source uncertainties, and requires an ensemble modelling frame-

work to represent the range of plausible dispersion scenarios. But this multi-query framework

is far out of reach in a real-time context as LES simulations require very large computational

resources.

In this thesis, we explore di↵erent statistical learning approaches to design a reduced-order

model informed by LES to produce physically consistent concentration predictions, while sub-

stantially decreasing computational cost. This study is carried out on a two-dimensional tracer

dispersion case in a turbulent atmospheric boundary-layer flow over an isolated obstacle, in

which both the inflow boundary condition and source location are uncertain.

In a first step, we design a data-driven reduced-order model approach based on LES data to

predict tracer concentration field statistics. We compare several dimension reduction approaches

(proper orthogonal decomposition/POD versus autoencoder) to reduce the field statistics to a

limited number of latent variables. We also compare several regression models (e.g. polynomial

chaos, Gaussian processes) to represent the response of the latent variables to changes in the

uncertain parameters. POD combined with Gaussian process regression provides fairly good

predictions for a large LES training dataset (made of 450 snapshots). Near-source concentra-

tion heterogeneity upstream of the obstacle requires a large number of POD modes to be well

captured. Moreover, the field dimension reduction capability of the model can be improved by

replacing POD with a convolutional autoencoder.

By reducing the number of training snapshots, we observe a loss of consistency with physics

principles in the reduced-order model predictions. To overcome this issue, in a second step,

we design a hybrid reduced-order model approach based on a LES-informed Reynolds-averaged

Navier-Stokes (RANS) tracer transport equation to integrate physical constraints in the training

process. The key idea is to decouple the atmospheric uncertainties from the source location

uncertainties and to replace the classical RANS turbulent closure terms with data-driven airflow

models emulated from LES data. This approach requires much less LES data (only 50 snapshots)

than the LES data-driven reduced-order model. We finally show that a multi-fidelity approach

(combining a small number of LES snapshots with a large number of hybrid model predictions)

o↵ers an interesting avenue of research to optimise the reduced-order model performance.
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Keywords. Atmospheric dispersion, Numerical modelling, Computational fluid dynamics, LES,

RANS, Parametric uncertainties, Isolated obstacle, Statistical learning, Dimension reduction,

Regression, Physics-guided data science, Multi-fidelity

Plain language summary. In the event of an accidental release of hazardous substances into

the atmosphere, some urban areas may be subject to severe air quality degradation, which may

have public health and environmental impacts. Mapping these areas requires the use of models

that accurately represent the interactions between the wind and the buildings. These models

rely on the fundamental equations of fluid dynamics, and an ensemble of simulations is required

to assess the envelope of plausible situations during an event. Due to the high computational

resources they require, these models cannot be directly applied to large-scale cases. In this work,

we seek to identify the statistical tools related to artificial intelligence that are best suited to

designing a simplified model able to integrate physical model data while allowing for real-time

predictions of the event.

iv



Remerciements
Ce manuscrit fait état de trois années d’apprentissage, et quelle curieuse sensation que d’arriver

au bout de cette aventure. Aussi interminables qu’éphémères, quelques trois années d’échanges,
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Un immense merci à mes amis de Monaco, loin des yeux mais près du cœur, Giorgia, Mathieu,
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Johann, Löıc et Thomas, aux bisounours, Robin, Lilas, Andréa, Maxime, et Mathieu, dont je
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Introduction générale
La dispersion atmosphérique des polluants désigne l’évolution spatiale et temporelle d’espèces

(gaz, particules solides/liquides) rejetées dans l’atmosphère, transportées et dispersées dans un

environnement complexe sous l’e↵et de l’écoulement de l’air ambiant. Comme l’a récemment

mis en évidence l’accident de l’usine Lubrizol à Rouen en 2019, mâıtriser les rejets acciden-

tels de substances dangereuses constitue un enjeu majeur pour les pouvoirs publics. Avec la

présence de sites industriels à haut risque à proximité de zones urbaines densément peuplées, les

conséquences sanitaires et environnementales peuvent être potentiellement sévères1 [Brunekreef

and Holgate, 2002]. Les e↵ets toxiques sont particulièrement centraux pour la prévention des

risques technologiques (par exemple, la directive Seveso-3 et la loi ”RISQUES”adoptée à la suite

de l’accident industriel d’AZF à Toulouse en 2001).

Le suivi des seuils de pollution dans un environnement urbain ou sur un site industriel

constitue un véritable défi en raison de la nature complexe des écoulements urbains [Britter

and Hanna, 2003; Dauxois et al., 2021]. À la micro-échelle urbaine, l’écoulement atmosphérique

est fortement turbulent et couvre une large gamme d’échelles spatio-temporelles allant de la

circulation météorologique de grande échelle jusqu’aux échelles de Kolmogorov. En particulier,

une forte turbulence est engendrée par les fortes interactions entre l’écoulement du vent de surface

et la topographie urbaine composée d’obstacles de nature, taille et forme variables (bâtiments,

arbres, etc.). Par exemple, l’organisation des rues a un impact non-négligeable sur la forme et la

concentration du panache toxique puisque les bâtiments perturbent l’écoulement atmosphérique

pour donner naissance à des structures complexes de dispersion telles que des gradients de

pression négatifs ou des flux de cisaillement, conduisant à des phénomènes locaux de séparation

et de recirculation. Pour obtenir une représentation précise de ces structures d’écoulement et

de la variabilité de la concentration qui en résulte à l’échelle d’une rue ou d’un quartier, des

approches de modélisation haute-fidélité basées sur la mécanique des fluides numérique (CFD

pour Computational Fluid Dynamics en anglais) sont nécessaires. Elles constituent une approche

complémentaire aux expériences de terrain pour mieux comprendre les écoulements urbains et

la dispersion atmosphérique à micro-échelle [Franke et al., 2011]. En e↵et, les expériences de

terrain ne peuvent couvrir qu’un nombre restreint de scénarios en raison de coûts élevés de mise

en œuvre. De plus, elles ne fournissent qu’une vision partielle, quoique précise, d’un scénario

donné car les capteurs prennent généralement des mesures ponctuelles et ne fournissent pas de

cartes complètes des quantités d’intérêt (même si les progrès récents sur les drones ouvrent la

possibilité d’améliorer la couverture et la résolution des données acquises).

Le principe de la mécanique des fluides numérique est de résoudre numériquement les équa-

tions fondamentales de la dynamique des fluides (c’est-à-dire les équations de Navier-Stokes

pour la dynamique de l’écoulement de l’air et l’équation de transport d’un scalaire pour la dis-

persion du traceur), tout en étant capable de traiter une géométrie complexe [Tominaga and

Stathopoulos, 2013]. La mécanique des fluides numérique pour les écoulements urbains englobe

1https://www.ecologie.gouv.fr/risques-technologiques-directive-seveso-et-loi-risques
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une grande variété d’approches qui di↵èrent par leur manière d’appréhender l’e↵et des grandes

échelles turbulentes sur l’écoulement moyen et le transport du traceur. Le choix du modèle de

turbulence résulte d’un compromis entre complexité, précision et coût de calcul. D’une part, les

approches de type moyenne de Reynolds (ou RANS pour Reynolds-averaged Navier-Stokes en

anglais) modélisent entièrement la turbulence et constituent une option basse fidélité. D’autre

part, les simulations aux grandes échelles (ou LES pour large-eddy simulation en anglais) consid-

èrent les équations de Navier-Stokes filtrées: elles résolvent explicitement les grandes échelles de

turbulence, tandis que l’impact des plus petits tourbillons sur les quantités d’intérêt est modélisé

par un modèle de turbulence sous-maille. Les simulations LES sont reconnues pour fournir des

solutions plus haute-fidélité que les simulations RANS pour les écoulements fortement instation-

naires et anisotropes, que l’on trouve typiquement dans le sillage d’obstacles urbains [Blocken,

2018; Garćıa-Sanchez et al., 2018]. Elles donnent également accès à des informations plus dé-

taillées sur l’écoulement et la concentration de traceur (y compris des statistiques de second

ordre telles que les flux de masse) que les approches RANS (qui ne fournissent que des quantités

de premier ordre moyennées en temps). Cependant, la précision, en général accrue des simula-

tions LES par rapport aux simulations RANS, s’accompagne d’un coût de calcul beaucoup plus

important.

Pour garantir la capacité de prévision à grande échelle des approches LES et RANS dans le

contexte de dispersion micro-échelle, il est nécessaire de mettre en œuvre un cadre probabiliste

pour la mécanique des fluides numérique, dans lequel un ensemble de simulations peut être

réalisé pour refléter les incertitudes inhérentes à un événement donné. Ces incertitudes sont en

partie dues à la variabilité naturelle des écoulements de couche limite atmosphérique [Dauxois

et al., 2021], qui rend di�cile la caractérisation des conditions aux limites et le fonctionnement

des modèles de mécanique des fluides numérique. Dans le contexte accidentel, des incertitudes

sont également liées au manque d’informations disponibles sur la source d’émission du polluant.

Cependant, l’échantillonnage de ces incertitudes requiert la génération d’un grand ensemble de

données de simulations, dans lequel chaque simulation représente un scénario probable di↵érent

(par exemple, di↵érentes conditions atmosphériques – vitesse du vent, stabilité – et sources

d’émission – position, débit, espèces). La génération d’un grand ensemble de données peut être

hors de portée pour les cas de dispersion à grande échelle, en particulier pour les simulations

LES qui sont beaucoup plus coûteuses que les simulations RANS. Il est donc nécessaire de

concevoir un modèle simplifié, également appelé modèle d’ordre réduit, qui soit capable de

restituer les processus physiques essentiels identifiés dans les simulations RANS ou LES, tout

en permettant une prévision rapide des scénarios possibles durant un évènement. La prise en

compte des incertitudes dans les modèles physiques d’ordre réduit est citée comme l’un des

trois défis pour les simulations d’écoulement urbain dans l’étude de Dauxois et al. [2021]. C’est

l’objectif principal poursuivi dans ce travail de thèse.

Les approches d’apprentissage automatique et profond o↵rent une piste de recherche in-

téressante pour représenter de façon e�cace et précise la réponse des modèles physiques aux

variations des paramètres d’entrée incertains. Cette réponse peut être complexe en raison des

2
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non-linéarités présentes dans les données RANS ou LES dans les applications d’écoulement

urbain à micro-échelle. Les modèles orientés données n’intègrent pas d’hypothèses physiques,

mais au contraire apprennent des structures statistiques extraites de grands volumes de don-

nées. Ces modèles d’apprentissage sont des fonctions d’approximation très flexibles, capables de

s’adapter à des réponses complexes non-linéaires. Cette flexibilité provient du grand nombre de

paramètres (les poids du modèle) à optimiser à partir des données disponibles. Une fois que les

poids du modèle sont calibrés, un modèle d’apprentissage peut être considéré comme une fonc-

tion analytique rapide à évaluer, qui peut produire des prévisions en temps réel des quantités

d’intérêt. Malgré leur grand potentiel, la mise en œuvre de ces approches d’apprentissage pour

la dispersion micro-échelle n’est pas évidente et se heurte à un certain nombre de probléma-

tiques : i) de multiples sources d’incertitudes sont en jeu ; ii) les grandes valeurs du nombre de

Reynolds caractéristiques des écoulements urbains requièrent des maillages fins pour les modèles

de mécanique des fluides numérique, ce qui augmente de manière considérable la dimension des

statistiques de sortie à apprendre par les modèles orientés données ; et iii) le lien entre les entrées

incertaines et les statistiques de sortie est fortement non-linéaire en raison des interactions entre

le vent et les obstacles dans la canopée urbaine. Un tel problème nécessiterait un très grand

volume de données pour bien explorer l’espace d’incertitudes. Cependant, comme les approches

de mécanique des fluides numérique sont coûteuses, l’apprentissage de modèles réduits basés sur

les données ne peut se faire que sous la contrainte de données disponibles parcimonieuses.

La littérature sur le couplage entre apprentissage automatique et mécanique des fluides

numérique pour les écoulements urbains et la dispersion à micro-échelle est en plein essor. Toute-

fois, de notre point de vue, un certain nombre de questions restent ouvertes afin d’identifier les

approches statistiques les plus pertinentes pour construire des modèles réduits capables de faire

des prédictions à la fois robustes et physiquement cohérentes d’un évènement donné. Les études

déjà parues dans la littérature sont di�cilement comparables par manque d’homogénéité dans

le choix du cas d’étude (topographie du terrain, sources d’incertitude, etc.), dans l’approche

de modélisation utilisée pour générer la base de données d’entrâınement, ou dans le choix des

métriques de performance. Par la di�culté à appréhender l’ensemble des disciplines, elles ne

traitent qu’une fraction des di�cultés inhérentes à l’apprentissage automatique pour la disper-

sion à la micro-échelle urbaine, à savoir : le grand nombre d’incertitudes en entrée, la grande

dimension des quantités d’intérêt en sortie, l’explicabilité du modèle réduit, et la cohérence

physique des prévisions du modèle réduit. Par exemple, Garćıa-Sánchez et al. [2017] ont élaboré

une expansion en chaos polynomial (i.e. une approche par régression polynomiale) à partir de

données issues de 729 simulations RANS pour relier les incertitudes sur le profil du vent en entrée

au champ de concentration moyen du traceur dans le centre-ville d’Oklahoma City. Cette étude

traite des questions de non-linéarité et d’incertitudes, mais n’aborde pas la haute dimension des

sorties (un modèle d’apprentissage est formé pour chaque nœud de maillage dans le domaine de

calcul). Sur la base du même cas test du centre-ville d’Oklahoma City, Margheri and Sagaut

[2016] ont mis en œuvre une approche par krigeage basée sur la décomposition ANOVA pour

isoler la dépendance des sorties aux entrées incertaines et sur la décomposition orthogonale pro-

pre (ou POD pour proper orthogonal decomposition en anglais) afin de réduire la dimension des
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sorties d’un modèle physique de type Lattice Boltzmann. Leur méthodologie est plus avancée

que l’étude de Garćıa-Sánchez et al. [2017] mais les résultats sont di�cilement comparables.

Objectifs de la thèse

Dans cette thèse, nous explorons et comparons une diversité d’approches de modélisation orientée

données, gravitant autour de l’apprentissage automatique et profond, afin de mettre en œuvre

un modèle réduit informé par les simulations LES pour produire des prévisions de concentration

physiquement consistantes, tout en diminuant substantiellement leur coût de calcul. Cette étude

porte sur un cas bidimensionnelle de dispersion d’un traceur dans un écoulement turbulent de

couche limite atmosphérique autour d’un obstacle isolé, dans lequel les conditions limites d’entrée

et la position de la source d’émission sont incertaines. Il convient de mentionner que dans ce

travail, les quantités d’intérêt sont des statistiques de champ où la dimension temporelle n’est

pas considérée et où l’objectif est d’émuler la variabilité spatiale des quantités d’intérêt. De plus,

nous ne considérons que des entrées incertaines scalaires. Néanmoins, ce cas canonique permet

une analyse approfondie de la précision et de la robustesse des modèles réduits vis-à-vis de trois

problématiques énoncées ci-dessous :

– Réduction de dimension. Comment réduire la dimension des statistiques de champs LES

d’intérêt pour identifier un espace latent de petite taille qui minimise la perte d’information ?

– Non-linéarité. Quels modèles réduits fournissent le cadre le plus approprié et le plus flexible

pour construire un processus d’apprentissage capable de représenter les di↵érentes échelles

portées par les variables de l’espace latent ?

– Base d’apprentissage réduite. Comment mettre en œuvre un modèle réduit capable de

prévoir des statistiques de champs LES physiquement cohérentes, en particulier dans

le sillage de l’obstacle et dans les zones de recirculation, alors que la base de données

d’entrâınement est limitée ?

Plan du manuscrit

Ce manuscrit est divisé en cinq chapitres. Afin de bien positionner ce travail de thèse par rapport

à la littérature, le chapitre I présente une introduction aux processus de dispersion en milieu

urbain à micro-échelle, aux approches de modélisation associées et aux opportunités o↵ertes par

les méthodes d’apprentissage automatique et profond pour la mécanique des fluides numérique.

Le chapitre II présente l’approche par modèle réduit proposée dans ce travail, incluant une

composante de réduction de la dimension et une composante de régression. L’étude de cas

bidimensionnel ainsi que le choix des incertitudes et des outils de modélisation physiques et

statistiques utilisés dans ce travail sont présentés au chapitre III. Le chapitre IV examine une

série de modèles réduits par apprentissage entrâınés à partir de données LES, et identifie la

meilleure approche pour émuler les champs de concentration de traceur moyennés en temps.

Le chapitre V présente et évalue les performances d’un modèle réduit hybride pour pallier les

limitations des modèles orientés données discutés au chapitre IV. Le nouveau modèle réduit

4



Introduction générale 5

permet d’inclure des contraintes physiques dans le processus d’apprentissage et donc dans les

prévisions de concentration de traceur par le biais d’une équation RANS de transport de scalaire

informée par la LES. Cette approche ouvre la voie à la construction de modèles réduits entrâınés

sur des données de type multi-fidélité.
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General introduction
Pollutant atmospheric dispersion refers to the spatial and temporal evolution of species (gas,

solid/liquid particles) released into the atmosphere, transported and dispersed in a complex

environment by the e↵ect of the atmospheric airflow. As highlighted by the recent Lubrizol

industrial accident in Rouen in 2019, monitoring the accidental release of hazardous substances

is a major issue for public authorities with the presence of many high-risk industrial facilities

near densely-populated urban areas and the immediate severe consequences on human health

and environment2 [Brunekreef and Holgate, 2002]. Toxic e↵ects are particularly central to the

prevention of technological risks (e.g. Seveso-3 directive and the ”RISQUES” law that was

enacted following the AZF industrial accident in Toulouse in 2001).

Tracking the pollutant concentration in an urban environment or on an industrial site remains

a challenge due to the complexity of urban flows [Britter and Hanna, 2003; Dauxois et al., 2021].

At the urban microscale, the atmospheric flow is highly turbulent and covers a broad range of

spatio-temporal scales ranging from the large-scale weather circulation to Kolmogorov scales. In

particular, strong turbulence is induced by the complex interactions between near-surface wind

flow and urban topography made of obstacles of varying nature, size and shape (e.g. buildings,

trees). For instance, the street layout has a significant impact on the shape and concentration

of the toxic plume since buildings disrupt the atmospheric flow to give rise to complex patterns

such as adverse pressure gradients or shear flows, leading to local separation and recirculation

phenomena. To obtain an accurate representation of these complex flow patterns and of the

subsequent pollutant concentration variability at the scale of a street or a neighbourhood, high-

fidelity modelling approaches based on computational fluid dynamics (CFD) are required. They

o↵er a complementary approach to field experiments to provide further insights into microscale

urban flow and atmospheric dispersion [Franke et al., 2011]. Indeed, field experiments can

only cover a limited number of urban flow scenarios because of their high setup costs and can

only provide a partial but accurate view of a given scenario, as sensors usually take point-wise

measurements and do not yet provide complete maps of the quantities of interest (even though

recent progress on UAVs is promising to improve the coverage and resolution of the acquired

data).

CFD numerically solves for the fundamental equations of fluid dynamics (i.e. Navier-Stokes

equations for air flow dynamics and a scalar transport equation for tracer dispersion) while

being able to deal with complex geometry [Tominaga and Stathopoulos, 2013]. Urban flow CFD

encompasses a variety of approaches that di↵er in the way they represent the e↵ect of large-

range turbulence scales on the mean flow and tracer transport. The choice of the turbulence

model results from a trade-o↵ between complexity, accuracy and computational cost. On the one

hand, Reynolds-averaged Navier-Stokes (RANS) simulation approaches fully model turbulence

and o↵er a low-fidelity option. On the other hand, large-eddy simulations (LES) solve for

the filtered Navier-Stokes equations: they explicitly solve for the large turbulence scales, while

2https://www.ecologie.gouv.fr/risques-technologiques-directive-seveso-et-loi-risques
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8 General introduction

the impact of the smallest eddies on the quantities of interest are modelled by a subgrid-scale

turbulence model. LES are known to provide more high-fidelity solutions than RANS for highly

unsteady flows with strong anisotropy, typically found in the wake of urban obstacles [Blocken,

2018; Garćıa-Sanchez et al., 2018]. They also give access to more detailed flow and tracer

concentration information (including second-order statistics such as mass fluxes) than RANS

approaches (which only deliver first-order time-averaged quantities). However, this increased

accuracy of LES over RANS in certain situations comes with a much higher computational cost.

To ensure full-scale predictive capability of LES and RANS approaches in the context of

microscale pollutant dispersion, it is necessary to design a probabilistic CFD framework where

an ensemble of simulations can be carried out to account for the uncertainties involved in a

given event. These uncertainties are partly due to the inherent variability of the atmospheric

boundary-layer flow [Dauxois et al., 2021], which makes it di�cult to characterise the boundary

and operating conditions that are necessary to configure CFD models for a given case study.

They are also due to the limited information available on the pollutant emission source in the

accidental context. However, sampling these uncertainties requires the generation of a large

dataset of CFD simulations, in which each simulation represents a di↵erent possible scenario

(e.g. di↵erent atmospheric conditions – wind velocity, stability – and emission sources – position,

flow rate, species). Generating a large dataset may be out of reach for large-scale dispersion

cases, in particular for LES that are much more computationally intensive than RANS. There

is therefore a need to design a simplified model, also referred to as a reduced-order model,

that is able to reproduce key physical processes learned from RANS or LES simulations, while

allowing for quick predictions of possible scenarios during an event. “Accounting for uncertainty

in reduced-order physics models” is cited as one of the three challenges for urban flow simulations

in Dauxois et al. [2021]. This is the main objective pursued in this PhD thesis work.

Machine and deep learning approaches are an interesting avenue for accurately and e�ciently

representing the response of physics-based models to variations in uncertain inputs. Such map-

ping can be complex due to the nonlinearities present in the RANS or LES data in microscale

urban flow applications. Data-driven models based on machine learning do not incorporate

physical assumptions but instead learn statistical patterns extracted from large volumes of data.

These learning models stand as strongly flexible approximation functions that are able to fit

nonlinear complex mappings. This flexibility comes from the large number of parameters (the

weights) to be optimised based on the available data. Once its model weights are calibrated, a

learning model can be seen as a fast-evaluating analytical function that can produce real-time

predictions of the quantities of interest. Despite its great potential, the implementation of learn-

ing approaches for microscale dispersion problems is not straightforward and faces a number of

issues: i) there are multiple sources of uncertainty at play; ii) the large Reynolds number of the

urban flows requires fine CFD meshes that dramatically increase the dimension of the output

statistics to be learned from the data-driven models; and iii) the mapping between uncertain

inputs and output statistics is strongly nonlinear due to wind-building interactions in the urban

8



General introduction 9

canopy. Such a problem would require a large amount of data to densely explore the uncertainty

space. However, because CFD is computationally expensive, learning data-driven reduced-order

models can only be done along with sparse data.

The literature on this coupling between machine learning and CFD models for microscale

urban flows and dispersion is emerging, but from our point of view, there are still many points

to study in order to identify the most suitable approaches to building a robust reduced-order

modelling approach that produces physically consistent predictions of a given event. Studies

already published in the literature are di�cult to compare due to lack of homogeneity in the

choice of the case study (e.g. terrain topography, sources of uncertainty), in the modelling

approach used for generating the training database, or in the choice of the performance metrics.

Necessarily, they only address a fraction of all machine learning issues for microscale urban flow

and dispersion, namely: the large number of input uncertainties, the high dimension of the

output quantities of interest, the reduced-order model explicability, and the physical consistency

of the data-driven model predictions. For instance, Garćıa-Sánchez et al. [2017] designed a

polynomial chaos expansion (i.e. a polynomial regression approach) to map uncertainties on the

inlet wind profile to the mean tracer concentration field in downtown Oklahoma City using a

training database made of 729 RANS snapshots. This study deals with the issues of nonlinearity

and uncertainty but does not address the high-dimensionality of the outputs (one learning model

is trained for each mesh node of the computational domain). Based on the same test-case

of downtown Oklahoma City, Margheri and Sagaut [2016] designed a kriging approach based

on ANOVA decomposition to isolate the outputs’ dependency on each uncertain input and on

proper orthogonal decomposition (POD) to reduce the output dimension for a Lattice Boltzmann

physics-based model. Such a framework is more advanced compared to the study of Garćıa-

Sánchez et al. [2017] but the results are di�cult to compare.

Objectives of the thesis

In this thesis, we explore and compare a variety of data-driven modelling approaches based on

machine and deep learning to design a reduced-order model informed by LES to produce phys-

ically consistent concentration predictions while substantially decreasing their computational

cost. This study is carried out on a two-dimensional tracer dispersion case in a turbulent at-

mospheric boundary-layer flow over an isolated obstacle, in which both the inflow boundary

condition and source location are uncertain. It is worth mentioning that in this work, the quan-

tities of interest are field statistics, implying that the temporal dimension is not considered and

that we focus on emulating the spatial variability of the quantities of interest. Moreover, we

only consider uncertain inputs that are scalars. Still, this canonical case allows for an in-depth

analysis of the reduced-order model’s accuracy and robustness with respect to the following three

issues:

– Dimension reduction. How to properly reduce the dimension of the LES field statistics of

interest to identify a small latent space that minimises information loss?

– Nonlinearity. Which reduced-order modelling approach provides the most appropriate and

9
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flexible framework for fitting the learning process to the di↵erent length-scales of the latent

variables?

– Limited training database. How to design a reduced-order modelling approach that is able

to produce physically consistent LES field statistics predictions, in particular in the wake

of the obstacle and in the recirculation regions, while the training database is limited?

Manuscript outline

The manuscript is divided into five chapters. Chapter I provides an introduction to microscale

urban dispersion processes, related modelling approaches and the possibilities o↵ered by machine

learning and deep learning for CFD, in order to properly position this PhD thesis work in relation

to the literature. Chapter II presents the reduced-order modelling approach proposed in this

work, including a dimensionality reduction component and a regression model component. The

two-dimensional case study, along with the choice of the uncertainties and the physical/statistical

modelling tools used in this work, is presented in Chapter III. Chapter IV compares a variety

of reduced-order modelling approaches directly obtained from LES data and identifies the best

approach to emulate the time-averaged tracer concentration fields. Chapter V presents and

evaluates the performance of a hybrid reduced-order modelling approach to overcome the purely

data-driven model limitations observed in Chapter IV. This new reduced-order model allows

for the introduction of physical constraints in the learning process and thereby in the tracer

concentration prediction through the RANS scalar transport equation informed by LES data.

This approach paves the way towards reduced-order modelling approaches based on multi-fidelity

data.

10



Chapter I

Introduction

This first chapter provides an overview of the fundamental concepts related with the multidis-

ciplinary subject of reduced-order modelling for microscale urban flow and tracer dispersion.

More details are given on urban wind flow and dispersion processes in Sect. I.1, on the

modelling approaches available for atmospheric dispersion with a focus on RANS and LES

approaches in Sect. I.2, and on the state-of-the-art statistical learning applications for CFD

problems in Sect. I.3. In particular, data science interconnections are discussed in order to

study the opportunities and challenges arising from the use of machine and deep learning

techniques combined with CFD. This allows us to position the framework of this PhD thesis

and its objectives in Sect. I.4.

I.1 Physical processes in urban air dispersion

Urban atmospheric dispersion refers to the spatial and temporal evolution of species (aerosols,

gases) released into the atmosphere, which are transported and dispersed in a complex urban-

type environment. This urban environment is made of buildings, trees and other elements of

varying size. These roughness elements impact the flow structures and the pollutant dispersion

in the lowest layers of the atmosphere, known as the atmospheric boundary-layer, through fluxes

of momentum, heat, water vapour, pollutant species, etc. The study of the interactions between

the urban surface and the atmosphere at fine scales (Æ 1 km), including the di↵usion and near-

range pollutant transport, belongs to the field of micrometeorology.

Pollutant concentrations are di�cult to track in urban areas due to the complex interactions

between the pollutant plume, the atmospheric dynamics and the urban topography [Britter

and Hanna, 2003; Belcher, 2005]. For instance, the street layout combined with the inflow

wind direction has a significant impact on the plume shape and concentration as highlighted in

Fig. I.1. Pollutant dispersion depends on pollutant physical properties (e.g. chemical composi-

tion, density, di↵usivity), emission characteristics (continuous/intermittent, smooth release/high

speed leak), atmospheric conditions (e.g. wind field, temperature, stability condition), mutual

pollutant-atmospheric interactions (e.g. chemical reactions) as well as urban topography (nature

of the ground, obstacles).

11
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FIGURE 6. (Colour online) Isosurface of mean scalar concentration, K = 0.022, for the
staggered (0�), skewed (45�), and aligned (90�) flow directions, shaded by height: (a) 0�,
zs = 0.2hm; (b) 45�, zs = 0.2hm; (c) 90�, zs = 0.2hm. The release location is indicated by a •

and the flow direction is indicated by an arrow.

isosurface shows the vertical plume spreading to be larger for the 45 and 90� cases
while horizontal spreading is larger for 0 and 45�. The channelling effect of the
90� case inhibits horizontal spreading while the release is entrained in the wake of
building A adjacent to the source. The plume is mixed upwards as it passes over the
shear layers emanating from the tops of buildings downwind of the source neighbour
building. For the 0� case, the diverging/converging pattern of streamlines around the
staggered arrangement enhances the horizontal spreading. Similar to the 90� case, the
scalar is entrained behind building A next to the release location. The next building
directly downstream, however, is located 2hm away. Subsequent vertical mixing is
reduced as compared to the 90� case where the buildings were spaced at a distance of
hm in the streamwise direction. It can be seen that in the 0� case the second building
A roof downstream of the source is not reached by the concentration of the scalar
isosurface, but for the 90� case it is covered by the surface. On the other hand, the
45� case is effective at both vertical and horizontal mixing such that the streamwise
extent of the isosurface is the shortest in this case. Another point to note about the
plume generated from the 45� case is its skewed distribution with height. The centre of
mass for a horizontal slice of the plume near ground level is further to the left (facing
downstream) than that of a horizontal cut at the top of the canopy. The explanation for
this lies in figure 7 which shows the variation in mean flow direction, ↵ with elevation

Figure I.1: Isosurface of mean scalar concentration shaded by height due to a point-source emission (black
dot) obtained for three di↵erent flow directions (indicated by the black arrow) [Philips et al., 2013].

I.1.1 Pollutant physical and release properties

The pollutant plume characteristics depend on (1) the physical properties of the released species,

(2) their chemical interactions with the surrounding air, and (3) the conditions under which they

are released.

1. Chemical species can be in various physical states (e.g. soot is in solid form, carbon

monoxide is in a gaseous state), which can a↵ect the plume density and induce buoyancy

e↵ects (e.g. denser gases will tend to spread on the ground surface due to gravity).

2. Chemical reactions with the surrounding air might occur. The released products may be

more or less stable, remain in their original state or undergo chemical transformations (e.g.

reactions between sulphur dioxide – SO2, nitrogen dioxide – NO2, water, oxygen and other

chemicals may lead to acid rains). These transformations may change the nature of the

plume resulting in complex dispersion dynamics [Leelőssy et al., 2014].

3. The storage conditions, the type of release and the shape of the leaking opening also

a↵ect the pollutant initial temperature and momentum. Accidental emissions are usually

associated with high initial pressure and tracer momentum.

Passive tracer assumption. All of these interactions might be challenging to represent. In

many situations, assumptions on the pollutant properties could help simplify the modelling

process. For instance, assuming the pollutant behaves as a passive tracer means that the tracer

is nonreactive, does not induce density variation, and has no self momentum. This type of

release occurs in the case of highly diluted stable gases and for emission conditions that are close

to atmospheric conditions. In practice, this assumption is useful to decouple the flow dynamics

12
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from the plume dynamics since passive tracer emission and dispersion have no feedback on the

carrier flow.

I.1.2 Urban wind flow

At microscale, we are interested in relatively short time scales (of the order of a minute) and

small spatial dimensions (i.e. at the scale of a building, a street or a district). Microscale flows

result from multi-scale processes in the atmospheric boundary-layer: they depend on both large-

scale (mesocale) meteorology governing long-term behaviour (>10 minutes, >10 kilometers),

and small-scale processes like turbulence (< 1 minute, <100 meters) influenced by local urban

topography and air flow dynamics.

Atmospheric-to-urban scales. The atmosphere is subject to a wide variety of phenomena, which

are characterised by their own spatial and time scales (from jet stream at planetary scales to

thunderstorms at mesoscale and tornadoes at microscale). Oke [2002] suggests a classification

of observation scales reported in Table I.1, which is useful to define what is implied by the

term “microscale”. Plume dispersion generally occurs in the atmospheric boundary layer, whose

depth can vary between 100 m and 3 km as it is directly influenced by the Earth’s surface

thermal e↵ects and topography, resulting in large vertical wind shear, momentum, heat, and

mass turbulent exchanges [Garratt, 1992; Oke et al., 2017]. The atmospheric boundary-layer

over urbanised areas, named urban boundary layer (UBL), has a very specific structure. When

it comes to dispersion over urban areas, it is typical to relate the di↵erent observation scales to

the type and dimension of the obstacles. Accordingly, the plume dispersion evolves in specific

atmospheric sublayers. For example, the mesoscale focuses on the dispersion up to the city scale

(Fig. I.2c) in the UBL. Closer to the ground surface, the local scale relates to the dispersion

in a street or a neighbourhood (Fig. I.2b) in the surface layer. The microscale relates to the

dispersion around a few buildings (Fig. I.2c) in the lowest part of the UBL called the roughness

sublayer, which is highly impacted by the roughness elements.

Table I.1: Atmospheric scales of motion adapted from Oke [2002].

Global/Macroscale from 10
2 up to 10

5 km weeks, centuries polar jet stream
Mesoscale from 10

1 up to 10
2 km minutes, days thunderstorm

Local scale from 10
≠1 up to 10

1 km seconds, minutes large cumulus, tornado
Microscale from 10

≠5 up to 10
0 km seconds, minutes small cumulus, dust-devil

Atmospheric turbulence and impact on dispersion. In reality, the di↵erent atmospheric scales

form a continuum, each scale being influenced by the larger and smaller scales. Urban atmo-

spheric conditions are controlled by global meteorological events, occurring on longer time scales,

which drive the background flow conditions. Turbulence, by its multiscale and nonlinear nature,

directly contributes to the coupling of the di↵erent scales: it can transfer energy back and forth

across scales, from large atmospheric turbulence eddies (of several kilometres in diameter) to

scales smaller than urban topology down to Kolmogorov dissipative scales (0.1-10 millimetres)

where molecular mixing comes into play.

13



14 Chapter I. Introduction

Figure I.2: Schematic of the atmospheric boundary-layer over an urban area. Three overlapping scales
of observation, (a) mesoscale, (b) local scale, and (c) microscale, are represented according to the type
and size of the urban obstacles (revised by Oke and Rotach after a figure in [Oke, 1997]).

Eddies of di↵erent sizes have a di↵erent impact on the dispersion patterns as illustrated in

Fig. I.3. Turbulent eddies significantly smaller than the plume leads to micro-mixing, which

essentially spreads the plume (Fig. I.3a). Eddies much larger than the plume structure advects

the plume following the large-scale turbulent motion, without altering its internal structure

(Fig. I.3b). Turbulent structures with a size comparable to the plume alter its shape and

expand its contour (Fig. I.3c).

At microscale, all these processes occur simultaneously. The flow variability can be distin-

guished into (1) large-scale fluctuations induced by large-scale forcing variability (e.g. geostrophic

wind) down to mesoscale; and (2) small-scale fluctuations related to turbulence production, pri-

marily induced by buoyancy, wind shear and interaction with the obstacles in the surface layer,

down to microscale. In microscale studies, turbulence refers to the second flow variability type.

It is worth noting that large-scale variability is often not embedded in microscale studies, it is

rather seen as an external source of variability.

Buoyancy e↵ects. Thermal e↵ects can play a major role in the generation of turbulent flow

structures through buoyancy. For instance, the energy balance is altered by the city thermal

properties. Ground materials (steel, cement, asphalt, etc.) increase the absorption of solar

radiation and limit evaporation, raising the local air temperature [Couillet, 2002]. The ground

ability to absorb and release heat via radiation can have a substantial impact on the vertical

temperature distribution. If the ground heats up significantly quicker than air due to radiation,

it can lead to an unstable atmosphere where buoyancy contributes to turbulence production. In

contrast, a clear night with low wind speeds corresponds to a stable atmosphere where turbulence

is essentially mechanical.

14



I.1. Physical processes in urban air dispersion 15

Figure I.3: Dispersion of scalar concentration under turbulent eddies of size (a) smaller, (b) larger and
(c) comparable to the characteristic size of the plume [Seinfeld, 1986].

Atmospheric stability can be characterised by several criteria, e.g. the Richardson number

[Richardson, 1921], the Monin-Obukhov theory [Obukhov, 1971], and the Pasquill classification

[Pasquill, 1961].

– The Richardson number Ri measures the ratio between thermal and mechanical production

of turbulent kinetic energy by comparing potential temperature (◊) gradient (characterising

buoyancy) to wind shear

Ri =
g

T

Q

ca
ˆ◊
ˆz1

ˆu
ˆz

22
+

1
ˆv
ˆz

22

R

db , (I.1)

where g is the gravity constant, T is the temperature, u and v are the horizontal wind

velocity components, and z is the vertical coordinate. The sign of the Richardson number

highlights the role of buoyancy: Ri < 0 indicates unstable conditions as there is turbulent

production by buoyancy that becomes dominant for very large negative values; buoyancy

has a stabilising e↵ect for Ri > 0; and neutral conditions correspond to Ri ¥ 0.

– The Monin-Obukhov length LMO represents the height at which turbulence production by

buoyancy becomes dominant compared to wind shear. It is expressed as:

LMO = ≠
u3

· fl Cp T

g k q
, (I.2)

where u· is the friction velocity, fl is the air density, Cp is the heat capacity, k is the von

15



16 Chapter I. Introduction

Kármán constant, and q is the sensible heat flux. Neutral conditions are characterised

by an infinite LMO-ength, stable conditions by positive values and unstable conditions by

negative values.

– The Pasquill classification discretizes atmospheric stability in six classes ranging from the

most unstable condition (A) to the most stable condition (F) based on 10-m wind speed,

incident solar radiation and total cloud cover.

Interaction with urban topography. Within the urban canopy, terrain complexity is described

i) by obstacles of a size comparable to the observation scale, and ii) by the roughness elements,

which correspond to small obstacles that act uniformly on the flow [Wiernga, 1993; Grimmond

and Oke, 1999]. For instance, when observing the flow at the street scale, the paved road

irregularities can be modelled on average by a roughness length, which represents the height at

which the flow speed virtually becomes zero in the logarithmic profiles of the surface boundary

layer. Typical roughness lengths for terrain irregularities are presented in Table I.2.

Table I.2: Typical surface roughness lengths for di↵erent types of terrain.

Type of terrain Roughness length (m)
Sand 10

≠4
≠ 10

≠3

Sea surface 5 ◊ 10
3

Grass 10
≠2

≠ 10
≠1

Forest and woodland 10
≠1

≠ 10
0

Suburban areas 1 ≠ 2

City 1 ≠ 4

The presence of obstacles disrupts the flow, generating counter gradient di↵usion e↵ects and

vortex profiles around the obstacles and in its wake, resulting in local separation and recirculation

regions. Figure I.4 illustrates the typical flow patterns observed around an isolated wall-mounted

obstacle [Li and Meroney, 1983a; Martinuzzi and Tropea, 1993; Li and Stathopoulos, 1997;

Tominaga et al., 1997; Meroney et al., 1999; Blocken et al., 2008a; Tominaga and Stathopoulos,

2008]. In this configuration, a certain amount of pollutant is periodically trapped and spread in

the wake of the obstacle through vortex shedding [Louka et al., 2000].

Flow separation Flow reattachment Shear layer

Recirculation areaVortex

Figure I.4: Flow vertical cross-section around an isolated wall-mounted obstacle [Turbelin, 2000].
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I.1. Physical processes in urban air dispersion 17

Within the urban canopy made by an ensemble of obstacles, the atmospheric flow pertur-

bation depends on the distance between obstacles and on their individual heights. This has

been extensively studied through canonical multi-obstacle configurations such as idealised street

canyon [Leitl and Meroney, 1997; Chan et al., 2002; Baik and Kim, 2002; Kim and Baik, 2004;

Gromke et al., 2008; Garbero, 2008] and idealised urban areas [Milliez and Carissimo, 2007;

Philips et al., 2013; Carpentieri and Robins, 2015]. Based on the aerodynamic interactions

between buildings, three distinct flow regimes illustrated in Fig. I.5 have been identified [Oke,

1988]. These regimes can be distinguished based on the obstacle aspect ratio H/W , where W

corresponds to the typical distance between two obstacles and H corresponds to their typical

height H.

– Lower ratio values, i.e. H/W œ [0.15, 0.2], are associated with the isolated roughness

regime (Fig. I.5a). Since the obstacles are widely separated, the flow field is simply a

superposition of flow fields obtained for isolated buildings (Fig. I.4). This implies that the

recirculation regions upstream and downstream of each obstacle are independent from the

other obstacles.

– Intermediate ratio values, i.e. 0.2 < H/W < 0.65, are associated with the wake interference

regime (Fig. I.5b). When two buildings are su�ciently close each other, the resulting flow

pattern becomes more complex: the wakes induced by one obstacle upstream interact with

the downstream obstacles.

– Higher ratio levels, i.e. H/W > 0.65, correspond to the skimming flow regime in which the

obstacles are densely packed. In this case, the flow dynamics in-between the obstacles is

local (vortex frequency is directly influenced by the obstacle aspect ratio) and is relatively

decoupled from the flow dynamics above the urban canopy.

(a)

(b)

(c)

Figure I.5: Flow regimes for di↵erent building layout. (a) Isolated roughness regime. (b) Wake interfer-
ence regime. (c) Skimming flow regime [Garbero, 2008].

17



18 Chapter I. Introduction

In this work, we limit our study to the isolated roughness regime under neutral atmospheric

conditions, implying that there are no buoyancy e↵ects on the flow and plume dynamics.

The tracer is assumed to be passive. Consequently, the plume behaviour is mainly driven

by mechanical e↵ects, i.e. by turbulent production from mean shear and interaction of the

wind flow with an isolated obstacle. Our problem complexity is essentially linked to the

consideration of uncertainties, and on their impact on the flow dynamics and tracer dispersion

around the obstacle.

I.2 Modelling approaches for urban air dispersion

This section provides an overview of the main modelling approaches used for atmospheric dis-

persion and discusses their complementarity with the measurements (Fig. I.6). These models

are not universal because they are not adapted to the same scales of observation. They do not

feature the same level of accuracy, the same setup complexity or the same computational cost.

Mesoscale Microscale

City Neighbourhood Building

Gaussian Plume

LES

RANS

Field experiments
Increasing
setup cost

Figure I.6: Overview of available modelling approaches for pollutant dispersion according to the atmo-
spheric scales of observation. Adapted from Philips [2012].

I.2.1 Advantages and limitations of experiments

I.2.1.a Field-scale experiments

On-site experiments provide information on the full complexity of dispersion processes in the

atmospheric boundary-layer. They have been used to improve our understanding of the plume

dynamics, first conducted in cities in the USA (Salt Lake City, Utah – Allwine et al., 2002;

Oklahoma City Joint Urban 2003 Experiment, Oklahoma – Allwine et al., 2004; Allwine and

Flaherty, 2006) or in idealised urban-like canopy (MUST/Mock Urban Setting Test in the desert

of Utah – Biltoft, 2001). However, these experiments are not necessarily generalisable due to the

wide variety of urban geometry and climate conditions that are present in the cities across the

world. For this reason, many studies have been carried out, particularly in Europe, to investigate

the impact of site specificity on dispersion: e.g. in Basel (Switzerland) [Rotach et al., 2004], or

in Birmingham and London (UK) [Britter et al., 2002; Arnold et al., 2004; Dobre et al., 2005;

Martin et al., 2008].

18



I.2. Modelling approaches for urban air dispersion 19

Still, large-scale field experiments remain expensive, time-consuming and only give access

to sparse data on the flow and plume dynamics because of experimental limitations. It would

require too many sensors and long acquisition times under a variety of weather conditions to

provide a complete view of the possible plume dispersion scenarios. In this context, on-site

measurements usually collect data at the street level but more rarely study vertical dispersion

issues (e.g. tracer loss due to dispersion in the boundary-layer above roof level).

I.2.1.b Laboratory-scale experiments

In complement to field experiments, more controlled wind-tunnel experiments (usually carried

out with a working scale of the order of 1:50 to 1:500) have been carried out to provide insights

into the fundamental processes involved in air pollution dispersion [Saathof et al., 1995; Saatho↵

et al., 1998; Meroney et al., 1999; Stathopoulos, 2002; CEDVAL, 2022]. Some of these experi-

ments focus on single-building configurations such as isolated blu↵ obstacles [Li and Meroney,

1983a; Tominaga et al., 1997; Li and Stathopoulos, 1997; Meroney et al., 1999; Tominaga and

Stathopoulos, 2008; Blocken et al., 2008a; Gamel, 2015]. These configurations are useful for

understanding localised flow structures around an obstacle as illustrated in Fig. I.4 [Murakami,

1993; Vinçont et al., 2000]. It would be very di�cult to access such fine flow details in large-scale

experiments, which are valuable for model validation.

Laboratory experiments take advantage of the turbulent flow scalability. To properly re-

produce atmospheric boundary-layer conditions in a wind tunnel, geometric similarity must be

ensured by consistent scaling. Dynamic similarity, involving similar flow patterns, is derived

from the dimensional analysis of the Navier-Stokes equations. In particular, the Reynolds num-

ber Re is a key dimensionless number for characterising the level of turbulence in a flow defined

as:

Re =
U L

‹
, (I.3)

where U is a reference velocity, L is a characteristic length-scale, and ‹ is the fluid kinematic

velocity. The Reynolds number must be identical between the reduced-scale representation of

the urban boundary-layer and the actual flow conditions that one seeks to reproduce at small

scale. Stated di↵erently, a given atmospheric flow in neutral conditions may be represented

by another flow with the same Reynolds number. In general, the non-dimensional boundary

conditions must be also identical to impose the same velocity and turbulence intensity profiles

in the wind-tunnel boundary layer as in the actual flow conditions.

These small-scale experiments are valuable for several reasons. First, laboratory settings are

favourable to reproductibility since they provide control over the boundary conditions, allowing

the collection of long time-series to obtain converged flow statistics. Second, they give access

to high-quality validation data and in particular to complex flow pattern observations through

advanced diagnostics that are not applicable to field experiments. For instance, Garbero et al.

[2010] studied passive tracer dispersion inside an idealised urban canopy based on velocity mea-

surements obtained using a Laser Doppler Anemometer (LDA) and Hot Wire Anemometry

(HWA) as well as concentration measurements obtained using flame ionisation detectors (FID).

The issue with these instruments is to provide adequate spatial resolution of the velocity field
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20 Chapter I. Introduction

so as to detect high frequency fluctuations in the turbulent flow and to properly estimate plume

concentrations without altering the flow.

However, wind-tunnel experiments su↵er from similarity issues because of their reduced

scale. Some atmospheric conditions such as low wind conditions and stable/unstable atmospheric

stratification are di�cult to reproduce in wind tunnels [Blocken, 2014] as the exact Reynolds

similarity is impossible to respect in most practical case studies. Moreover, such experiments

are still too costly and time-consuming to assist the design of a new building or urban area. In

this regard, modelling approaches such as CFD are attractive options to study a wide range of

dispersion conditions and to give access to the spatio-temporal variability of the quantities of

interest (wind flow velocity components, tracer concentration) [Blocken, 2018], which are useful

for a deeper analysis of microscale atmospheric dispersion processes in urban environment.

I.2.2 Introduction to modelling approaches

I.2.2.a Parametric Gaussian models

To be compatible with multi-query and real-time assessment, simple models based on phe-

nomenological considerations of air dispersion have been developed. One representative exam-

ple is the Gaussian model [Sutton, 1947]. This model relies on an analytical expression for the

tracer concentration, obtained as the solution of the advection-di↵usion equation for simplified

boundary conditions [Stockie, 2011]. In its most simple formulation, the tracer concentration

can be expressed as:

K(x, y, z) =
Qs

2fi U ‡y ‡z
exp

A

≠
(y ≠ ysrc)2

2 ‡2
y

≠
(z ≠ zsrc)2

2 ‡2
z

B

, (I.4)

where U is the uniform velocity in the streamwise direction (x-direction), Qs is the pollutant

release rate, ‡y and ‡z are the spanwise and vertical plume spread parameters that depend on

the distance from the emission source (xsrc, zsrc).

The main di�culty in setting up a Gaussian model is to define appropriate values for the

spread parameters ‡y and ‡z, which are related to turbulent di↵usivity. As the turbulent dif-

fusivity itself is generally unknown, these parameters are often computed from experimental

measurements and observations. In particular, they depend on the atmospheric stability con-

dition, which can be defined based on Pasquill stability classes [Holmes and Morawska, 2006;

Turner, 2020]. For instance, Pasquill-Turner correlations formulate the standard deviations ‡y

and ‡z in the following general form:

‡ = a xb
+ c, (I.5)

where the constants a, b and c are determined from large-scale field measurements in an open

flat terrain, and their values depend on the Pasquill atmospheric stability class. In addition, the

Gaussian model is based on several strong assumptions related to tracer and flow conditions:

homogeneous flat terrain without obstacle, homogeneous turbulent di↵usion, uniform wind field

of at least 1 to 2 m s≠1 with a constant vertical profile. More advanced models can take into
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I.2. Modelling approaches for urban air dispersion 21

account wind speed fluctuation, air temperature, atmospheric density with height, etc. In prac-

tice, Gaussian models are widely used for their ease of implementation and their cost-e↵ective

integration. They are valid for representing the far field of the emission source but are not

appropriate for microscale and isolated barrier studies [Bluett et al., 2002; Couillet, 2002].

I.2.2.b Computational fluid dynamics

CFD is based on the numerical resolution of partial di↵erential equations, including a transport

equation for the scalar and the Navier-Stokes equations to represent the airflow motions. For

a typical atmospheric dispersion simulation, the user has to set up the computational domain

geometry and mesh, the boundary conditions and wall treatment, the numerical schemes, etc.

Additional parameters may also be added such as the turbulence model depending on the adopted

CFD approach (see Sect. I.2.3 for a discussion on LES and RANS approaches).

For passive tracer dispersion under neutral conditions, the system of equations for incom-

pressible flow includes the continuity equation (or mass conservation equation), the momentum

conservation equation, and the advection-di↵usion equation for tracer conservation (or tracer

transport equation):
ˆui

ˆxi
= 0,

ˆui

ˆt
+

ˆui uj

ˆxj
= ≠

1

fl

ˆp

ˆxi
+

ˆ

ˆxj
(2 ‹ sij) ,

ˆK
ˆt

+
ˆK uj

ˆxj
=

ˆ

ˆxj

A

D
ˆK
ˆxj

B

,

(I.6)

where ui denotes the ith component of the instantaneous airflow velocity field, xi is the spatial

position, p is the instantaneous pressure, t is the time, fl is the air density, ‹ is the kinematic

molecular viscosity, K is the scalar concentration, D is the molecular di↵usion coe�cient, and

sij the strain tensor expressed as:

sij =
1

2

A
ˆui

ˆxj
+

ˆuj

ˆxi

B

. (I.7)

This system of equations simulates the entire turbulence spectrum, meaning that all spatial and

temporal scales are resolved down to the lowest dissipative Kolmogorov microscales. This is

referred to as direct numerical simulation (DNS). In this framework, the required number of

mesh points Nh grows with respect to the Reynolds number (Eq. I.3), resulting in considerable

resource requirements (N > Re9/4, Pope 2000). Philips [2012] uses the example of a flow around

a 12-m high building to illustrate this point: the Reynolds number would be around 3.8 ◊ 10
6

on a mild wind day with a 5 m s≠1 breeze. Such high Reynolds number is far out of reach for

DNS. More a↵ordable CFD approaches such as RANS and LES can be derived from Eq. (I.6),

but a turbulence model should be introduced (Sect. I.2.3).
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The CFD paradigm accurately represents tracer dispersion within a complex geometry as the

obstacles can be directly embedded in the computational grid and as the interactions between

the wind and the obstacles can be explicitly solved.

Specific challenges arise from wind flow in urban areas: (1) high Reynolds numbers require

fine grid resolutions and accurate wall functions in near-wall regions; (2) complex flow field

dynamics with localised vortex impingement, separation and shedding; (3) numerical issues

related to numerical schemes for flow around blu↵ bodies with sharp edges; and (4) inflow

boundary condition that should be able to account for turbulence [Murakami, 1998].

To have confidence in CFD predictions, validation against wind-tunnel and field-scale exper-

imental data is a necessary step. There is a strong synergy between trustworthy small-scale

trials [Meroney, 2016] and CFD that can be transposed from these canonical configurations

to considerably more complex field conditions.

I.2.3 Focus on RANS and LES approaches for urban dispersion

The two widely-used CFD approaches in urban flow simulations are RANS and LES approaches.While

turbulence is fully modelled in the RANS approach, a significant fraction of the turbulence spec-

trum is explicitly resolved in the LES approach, which improves accuracy at the expense of

increased computational cost (Fig. I.7). In this section, we describe the governing equations

and briefly discusses the methods identified from the literature in the context of urban airflow

modelling and dispersion.
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Figure I.7: Hierarchical representation by computational cost of most commonly-used CFD approaches:
DNS, direct numerical simulations; LES, large-eddy simulations; RANS, Reynolds-averaged Navier-
Stokes [Xiao and Cinnella, 2019].

I.2.3.a Governing equations

Reynolds averaging. For atmospheric dispersion, the RANS equations result from the appli-

cation of Reynolds averaging to the flow and scalar quantities u, p and K (Eq. I.8) that are

involved in the Navier-Stokes equations and in the scalar transport equation. These quantities

are formally decomposed into a mean part ( · operator) and a fluctuating part (Õ superscript):

u = u + uÕ , p + pÕ , K + KÕ . (I.8)
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When the Reynolds averaging operation is applied to the original set of conservation equations

(Eq. I.6), this results in the RANS equations for Navier-Stokes variables and scalar transport:
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where sij is the mean strain-rate tensor expressed as:

sij =
1

2

A
ˆui

ˆxj
+

ˆuj

ˆxi

B

. (I.10)

The system of RANS equations cannot be directly solved because it has unclosed terms aris-

ing from the nonlinear advection terms: two additional second-order unknowns appear in the

equations, namely the Reynolds stresses uÕ
iu

Õ
j and the turbulent scalar flux KÕuÕ

j . The modelling

challenge lies in the construction of appropriate formulations to estimate these terms uÕ
iu

Õ
j and

KÕuÕ
j . Such formulations are known as turbulence models.

Closure models for the Reynolds stresses. Closure models for the Reynolds stresses uÕ
iu

Õ
j are de-

rived using physical assumptions. They are usually classified as either first-order or second-order

turbulence models. The first-order closure for Reynolds stresses is achieved using the Boussi-

nesq (or eddy-viscosity) assumption, which is based on the similarity with momentum transfer

through molecular motion in gases, which is characterised by molecular viscosity. Under this

assumption, the Reynolds stresses are expressed as a function of the mean flow gradient and the

turbulent eddy-viscosity ‹t:

≠uÕ
iu

Õ
j = 2 ‹ si j ≠

2

3
ktke ”i j , k =

1

2
uÕ

iu
Õ
j , (I.11)

where ktke is the turbulent kinetic energy. Turbulence models relying on the Boussinesq assump-

tion are referred to as eddy-viscosity models (EVM). An appropriate estimation of turbulent

viscosity is crucial for ensuring performance but adequacy is strongly case-dependent. Many

formulations have been developed in the literature, among whom:

– the one-equation Spalart-Allmaras model [Spalart and Allmaras, 1994] used in building

simulations, turbomachinery and aerospace applications, solving for a transport equation

for kinematic eddy-viscosity and performing well for boundary-layers with adverse pressure

gradients;

– the standard k-‘ model [Jones and Launder, 1972] commonly used to simulate mean flow

characteristics for turbulent flow conditions: it is a two-equation model on the turbulent

kinetic energy k and the rate of dissipation ‘;

– the standard two-equation k-Ê model [Wilcox, 2008] on turbulence kinetic energy k and
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specific rate of dissipation Ê.

Popular first-order models such as k-‘ and k-Ê models have significant shortcomings in complex

engineering flows due to the use of the eddy-viscosity assumption. Eddy-viscosity based closures

cannot replicate the anisotropic behaviour of turbulent flows. Such models, for instance, perform

poorly in flows with substantial anisotropy, considerable streamline curvature, rotational e↵ects,

flow separation, or recirculation flow. Reynolds stress equation models provide substantially

higher accuracy in such cases.

The Reynolds stress equation model (RSM), often known as the second-order/moment clo-

sure model, is the most comprehensive method to classical turbulence modelling. It does not rely

on the Boussinesq assumption; instead, transport equations for the Reynolds stresses are derived

from the orginal set of equations. Still, this reports the problem of closure to third-order terms.

Despite its finer description of the Reynolds stress tensor, the RSM model did not demonstrate

consistent superior performance compared to EVM for urban wind engineering (e.g. Ferziger

1990; Murakami 1997, 1998; Nielsen et al. 2007).

Closure models for the turbulent scalar flux. For dispersion applications, closure models for the

turbulent scalar flux KÕuÕ
j can be derived by analogy to the Reynolds stresses from the standard

gradient di↵usion hypothesis. The turbulent flux is then expressed as a function of the mean

concentration gradient using a turbulent di↵usivity Dt:

uÕKÕ = ≠Dt
ˆK
ˆxi

, (I.12)

where Dt varies spatially. It is generally related to the turbulent viscosity ‹t through a turbulent

Schmidt number Sct as follows:

Dt =
‹t

Sct
. (I.13)

Sct is generally assumed to be constant for a given type of flow. Numerous investigations

highlighted the strong sensitivity to turbulent Schmidt number values for dispersion applications

(e.g. Tominaga and Stathopoulos 2007, 2009, 2010, 2013; Gousseau et al. 2011; Gromke and

Blocken 2015; Blocken et al. 2016b; Toja-Silva et al. 2017; Li et al. 2018; Kang et al. 2018). It

is common practice to provide constant values for Sct in RANS simulations, albeit doing so can

reduce significantly their modelling capability.

Higher order closure models and anisotropic models are also feasible for the turbulent scalar

flux. However, such models are rarely used in CFD for building simulation in practice [Blocken,

2018]. A more detailed view of non-isotropic models is provided in Chapter V (Sect. V.1.4).

LES filtering. Unlike RANS, LES explicitly solves for the larger scales of turbulence. A dis-

tinction is made between the large eddies in the flow, mainly driven by the domain geometry,

and the smaller eddies, which are expected to exhibit a more universal behaviour described by

a subgrid-scale turbulence model. In this context, the Reynolds averaging operator is replaced

by a filtering operation, which is also formally applied to the original set of governing equations

(Eq. I.6).
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Mathematically, a filter consists of a spatial convolution applied to the flow quantities to

remove the eddies of size lower than a characteristic filter size �. For a given quantity „, the

corresponding filtered quantity can be expressed as

Â„(x) =

⁄

�
„(xÕ

) G(x, xÕ, �) dxÕ, (I.14)

where � is the fluid domain, and G is the spatial filter. The filter size � determines the scale of

the resolved eddies. Similarly to the Reynolds decomposition, the original quantities can then

be expressed as a resolved contribution (Â· ) below the cut-o↵ scale and a subgrid contribution (Õ

superscript):

ui = Âui + uÕ
i , p = Âp + pÕ , K = ÂK + KÕ . (I.15)

The resulting filtered Navier-Stokes equations are expressed as:
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+
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ˆxj
,

(I.16)

where Âsij , ·ij , qij characterise the strain rate tensor, the subgrid-scale Reynolds stresses and the

subgrid-scale scalar flux defined as follows:

Âsi j =
1

2

A
ˆÂui

ˆxj
+

ˆÂuj

ˆxi

B

, ·i j = Áuiuj ≠ ÂuiÂuj , qi j = ÂKÂuj ≠ ÁKuj . (I.17)

To close the system of equations, similarly to the RANS approach, a suitable expression for

the second-order terms must be determined. In LES, the model used to provide the closure is

known as a subgrid-scale (SGS) model since it deals with the eddies of smaller size than the

mesh cells [Pope, 2000]. The most widely used hypothesis in SGS models is the Boussinesq

assumption:

·ij ≠
1

3
·kk ”ij = ≠2 ‹t Âsi j , (I.18)

where ‹t is the SGS turbulent viscosity. Various SGS models are available for the estimation of ‹t.

The Smagorinsky-Lilly SGS model [Smagorinsky, 1963] was the first to be developed. Assuming

that the energy production is balanced by small-scale energy dissipation, it approximates ‹t as:

‹t = (Cs �)
2

Ò
2 Âsij Âsij , (I.19)

where � corresponds to the filter width related to the characteristic grid cell size, and Cs œ

[0.1, 0.2] is the Smagorinsky constant. Later on, many other models were developed such as the

Germano approach providing a dynamic estimation of Cs [Germano et al., 1991; Lilly, 1992].
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I.2.3.b LES and RANS in the context of urban dispersion

When choosing between RANS and LES approacehes, there are two main factors that come into

play: the simulation cost and the accuracy. The computational cost of LES is higher than for

RANS simulation. The LES equations are derived from the governing equations in a similar

manner to that of the RANS equations. However, because of the use of spatial domain filtering

and the resolution of a part of the turbulent spectrum, the flow must be simulated on much finer

meshes, leading to a significant computational cost increase.

The low cost of the RANS approach is the main reason why, in outdoor building simulation

applications, RANS was first used rather than LES. The ability to perform more simulations

at a reduced cost allows for greater coverage of uncertainty on flow conditions (e.g. urban

topography, atmospheric conditions, tracer emission source) [Vervecken et al., 2013; Margheri

and Sagaut, 2016; Garćıa-Sánchez et al., 2017]. The plurality of RANS studies now o↵ers robust

guidelines for a wide range of configurations [Blocken, 2018]. In the context of flow around

isolated obstacles, studies cover sensitivity to the grid resolution (e.g. Murakami and Mochida

1989; Murakami et al. 1990a,b; Baskaran and Stathopoulos 1992), the boundary conditions (e.g.

Murakami and Mochida 1989; Paterson and Apelt 1990; Baetke et al. 1990; Stathopoulos and

Baskaran 1990; Baskaran and Stathopoulos 1992), and the turbulence model (e.g. Baskaran and

Stathopoulos 1989; Murakami et al. 1992; Murakami 1993; Mochida et al. 2002). In the context

of dispersion, the increasing availability of computational power allowed to study multi-obstacle

urban-like configurations (e.g. Murakami 1997; Stathopoulos and Baskaran 1996; Hanna et al.

2006; Philips et al. 2013; Blocken et al. 2016b; Garćıa-Sánchez et al. 2017).

If it were only a matter of computational cost, RANS would be a more appropriate method for

dispersion. However, RANS does not always succeed in accurately simulating urban flows. Urban

wind studies at pedestrian level have shown that the RANS approach can properly model the

mean wind speed in areas of high wind speed. However, their e↵ectiveness can be compromised

in areas of low wind speed (Yoshie et al. 2007; Blocken and Carmeliet 2008; Blocken et al. 2008a,

2011, 2016a). More generally, the RANS approach performs poorly in strong anisotropic cases,

when the flow features vortex shedding in the wake of blu↵ obstacles or counter gradient di↵usion

e↵ects, for instance in separation and recirculation regions, which are particularly prevalent in

urban topography with sharp-edged obstacles, leading to poor estimation of the turbulent kinetic

energy (Murakami 1993; Yoshie et al. 2007; Blocken et al. 2008a).

LES have recently emerged as a benchmark solution for accurately representing the highly

unsteady and complex flow topologies typically found in the wake of buildings in urban canopies

[Philips et al., 2013; Vervecken et al., 2015a; Grylls et al., 2019]. In particular, the LES ap-

proach demonstrates improved prediction accuracy over the RANS approach for highly unsteady

flows with strong anisotropy, typically found in the wake of urban-like obstacles [Tominaga

and Stathopoulos, 2010; Blocken, 2018]. In addition to improved accuracy, the LES approach

provides access to high-order quantities of interest (e.g. turbulent scalar flux, pressure-scalar

fluctuation correlation), which serve to identify deficits in lower fidelity models (e.g. RANS)

and guide models improvements. For instance, Tominaga and Stathopoulos [2012] studied the

ability of LES to recover the turbulent scalar flux for near-field dispersion around buildings, and
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compared results with conventional RANS models. With the emergence of machine learning,

there is also a growing interest in building data-driven RANS models, where conventional RANS

models can be informed from higher fidelity LES data Duraisamy et al. [2019b].

Dispersion modelling approaches di↵er in the fundamental modelling approach to turbulent

dispersion and their assumptions on i) the flow boundary conditions, and ii) the representation

of turbulence in terms of scales (e.g. Reynolds average, LES filter) and of closure terms (e.g.

RANS scalar flux closure model, LES SGS model). LES and RANS stand as two versatile,

accurate and feasible approaches to study microscale dispersion in an uncertainty context.

In this PhD thesis, we explore how to combine LES and RANS approaches with machine

learning to improve prediction performance. The next section summarises the state-of-the-

art in statistical learning methods for CFD.

I.3 Machine learning for computational fluid dynamics

Over the past decades, fluid mechanics data have been collected through field and wind tunnel

experiments, as well as numerical simulations to improve the understanding of physics for a

variety of engineering and environmental problems [Rogallo and Moin, 1984; Goldstein, 2017;

Dauxois et al., 2021]. As long as the volume of data remained limited, major improvements were

due to expert knowledge, elementary statistical analysis and intuitive design. Recent techno-

logical improvements have lowered the costs involved in data acquisition, storage and transfer.

Consequently, the volume of data in all areas has dramatically expanded, opening up exciting

opportunities for applying advanced learning approaches to the field of fluid mechanics [Brunton

et al., 2019].

Machine learning has emerged with the goal of learning relevant domain knowledge from large

volume of data using appropriate algorithms. It has gained popularity in the last decade due to

the strong growth of data in many scientific fields, and fluid mechanics is no exception [Pollard

et al., 2017]. For instance, in the field of urban flow mechanics, machine learning has a role to play

to e↵ectively and accurately quantify uncertainties in urban flow and pollutant concentration

simulations, which is essential to mitigate adverse health e↵ects from pollution [Dauxois et al.,

2021].

To properly identify the opportunities arising from machine learning for fluid mechanics,

it is crucial to understand (1) which are the specific needs and challenges for fluid mechanics

issues, and (2) which data are available. These aspects are discussed in Sect. I.3.1. The focus

is then made on two approaches for improving CFD using machine learning: designing reduced-

order models on the one hand (Sect. I.3.2), and informing turbulence models on the other hand

(Sect. I.3.3).

I.3.1 Challenges and opportunities

Fluid mechanics is often related with critical fields of application (e.g. energy transition, trans-

port, health, safety and military engineering technology), where interpretability, explicability
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and generalisation capacity of the modelling approach are of primary importance to guarantee

accuracy and reliability.

Fluid flows exhibit complex multiscale phenomena including eddies of varying size and energy.

The resulting phenomena may be very local, with highly nonlinear responses ranging with strong

scale disparity. For example, urban flows are governed by large-scale weather patterns down to

Kolmogorov microscale turbulence. Machine learning approaches suitable for fluid mechanics

problems should therefore be able to reproduce this multiscale nature of the flows.

The Navier-Stokes equations accurately represent flow dynamics but this comes with a high

level of complexity in the implementation and resolution of these equations [Bai et al., 2017].

In fact, flow complexity often requires accurate computational methods to avoid distorting the

underlying physics with numerical artefacts. Fine computational meshes required to resolve the

smallest scales leads to exceedingly high dimension and computational cost [Choi and Moin,

2012]. This leads to unfavorable trade-o↵ between accuracy and tractability, especially if the

objective of the modelling system is to perform real-time risk assessment. Furthermore, appli-

cations are usually subject to uncertainties and require to go beyond the classical deterministic

modelling framework for CFD. For instance, uncertainties in atmospheric microscale dispersion

modelling come from large-scale atmospheric conditions that have their own intrinsic variabil-

ity, making the atmospheric boundary conditions for the microscale domain uncertain [Garćıa-

Sánchez et al., 2014]. Furthermore, in an accidental case, the event characteristics (e.g. position,

flow and composition of the emission source) are partially known, while they are of primary im-

portance to map the near-source peak concentrations. There is therefore a need to develop a

novel probabilistic modelling approach that is suitable for fluid mechanics problem and that

can describe the variety of plausible scenarios [Dauxois et al., 2021]. While fine meshes enable

high-dimensional solutions in space and time discretisation accurately captures the temporal

dimension, sampling the uncertain space is computationally expensive as it requires performing

multiple CFD simulations and as each CFD simulation alone is already costly.

In this uncertainty quantification context, using very high-fidelity modelling approaches

(DNS, LES) comes at the cost of a small number of simulations to represent the investigated

phenomena. In the opposite, using more a↵ordable but less accurate modelling approaches (e.g.

RANS) allow to increase the number of simulations and thereby the number of scenarios to

explore. In this context, machine learning techniques provide new opportunities [Brunton et al.,

2016; Duraisamy et al., 2019b; Vinuesa and Brunton, 2022]. We can mention three of them:

(1) speed up DNS or LES simulations to allow more simulations to be carried out; (2) synthesise

the information from a small number of DNS or LES simulations to substitute their future use by

inexpensive models such as reduced-order models, and (3) allow the use of lower fidelity models

such as RANS but improve their performance by exploiting high fidelity data (Fig. I.8).
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Figure I.8: Overview of topics where machine learning enhances CFD models [Vinuesa and Brunton,
2022]; ranging from computationally-intensive DNS to LES and RANS, whose performance relies on
multiple parameters and assumptions. The information gathered (through simulation or observation)
can be aggregated into cheaper models known as reduced-order models.

This thesis mainly focuses on the second approach “synthetise high-fidelity data”, with the

key idea of exploring new ways to synthesise LES information into a data-driven model for

direct prediction of quantities of interest. The third approach “improve lower fidelity models”

is also addressed by informing RANS modelling approach for tracer dispersion with high

fidelity information from LES. Recent machine learning algorithms allow to extract relevant

information and to emulate fluid flows in an optimised reduced-order modelling procedure

from a relatively small amount of data. They provide opportunities to directly benefit from the

high-fidelity information of LES in a context of uncertainty quantification (Sect. I.3.2). They

also provide opportunities to improve RANS predictions whose performance highly depends on

closure models, which can be improved or substituted by machine learning (Sect. I.3.3). Yet,

the literature on the combination of high-fidelity CFD models with data-driven techniques is

on the rise but still in its early stages. While a number of research have already been conducted

in the context of atmospheric dispersion (e.g. Vervecken et al. 2013, 2015b; Garćıa-Sánchez

et al. 2014, 2017; Margheri and Sagaut 2016; Lange et al. 2021; Mendil et al. 2022), much

work remains to be done to develop e�cient data-driven approaches and to identify the most

relevant models from the variety of machine and deep learning models available.

29



30 Chapter I. Introduction

I.3.2 Reduced-order modelling for computational fluid mechanics

Data-driven techniques such as machine learning and deep learning may be used to design

reduced-order models for fluid dynamics. Reduced-order models rely on the assumption that

the flow complexity is essentially carried by a small number of dominant structures. As a result,

reduced-order models only characterise the evolution of the dominant structures in order to

produce fast predictions, which may be used instead of direct CFD simulations. Reduced-order

model e�ciency comes at the expense of generalisation capacity. As reduced-order models are

tailored to specific flow setups, they provide a huge speedup but on limited scope.

I.3.2.a Challenges for reduced-order modelling

Expensive high-fidelity simulations such as LES may be required for a large number of en-

vironmental/industrial applications for their ability to accurately resolve the flow in complex

environment and produce accurate flow statistics (e.g. urban environment, Philips et al. 2013;

Garćıa-Sanchez et al. 2018). Despite these advantages, their computational cost raises chal-

lenges in an operational context, particularly for real-time risk assessment. In this context,

reduced-order modelling may be a way to provide fast surrogate models for CFD solvers, en-

abling optimisation and control tasks that involve many model iterations or quick response

feedback.

Reduced-order models for fluid mechanics must meet the challenges of interpretability, accu-

racy, and robustness. Ultimately, they would embed knowledge of the physics to ensure gener-

alisation capacity to various multi-request flow configurations, initial and boundary conditions,

etc. [Loiseau and Brunton, 2018; Wang et al., 2020; Guan et al., 2021; Frezat et al., 2021]. To

tackle these objectives, reduced-order models rely on the assumption that even complex flows

can be described by a few dominant flow patterns. The resulting sparsity produces coherent

structures that uncover underlying physics laws [Taira et al., 2017, 2020]. For instance, common

reduced-order modelling strategies constrain the flow system on a learned low-dimensional space

of projection. The reduced-order models simulate the evolution of the flow system projected

components, which are eventually transformed back to the initial high-dimensional space.

As a result, the task is twofold: reduced-order models must (i) provide an optimal reduced-

basis coordinate space of representation, and (ii) characterise the (possible strongly nonlin-

ear) evolution of the reduced-basis projected components with respect to uncertain parameters

and/or time [Brunton et al., 2019]. Both correspond to machine learning tasks since they aim

at establishing links between inputs and outputs of a system based on data, yet they are of

di↵erent type (Fig. I.9). The task (ii) is a regression problem that can be qualified as supervised

learning. Supervised learning involves labelled data, where labels corresponds to the outputs

of the learning algorithm (obtained for instance from expert evaluation), with the objective to

learn general rules that map inputs to outputs for prediction, optimisation, etc. In contrast, the

task (i) belongs to the category of unsupervised learning and more specifically dimensionality

reduction. It aims at identifying data underlying structure and at extracting features when no

label is given. Dataset snapshots generally carry many features, and the learning task is then to

learn useful data patterns for data compression, correlation analysis, noise reduction, etc. Since
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CFD solvers are expensive, appropriate algorithms are required to e�ciently solve tasks (i) and

(ii).

It is worth mentioning that for supervised and unsupervised learning tasks, the dataset is

fixed. This is no more the case for reinforcement learning where the learning algorithm does

not have access to labelled data but interacts with the environment to gradually learn correct

information using reward and punishment for each action done by the algorithm. This type of

semi-supervised learning algorithms will not be further discussed in this thesis; more information

can be found in Mnih et al. [2013], and Sutton and Barto [2018].

Figure I.9: Categories of learning algorithms depending on the target task, the nature and amount of
available data (PCA stands for principal component analysis, and POD for proper orthogonal decompo-
sition) [Brunton et al., 2019].

I.3.2.b Reduced-basis representation

To tackle the first task (optimal reduced-basis representation i), it is necessary to build a low-

dimensional space of representation (the latent space) as well as transformation functions (the

encoder and decoder, respectively). These functions represent the mapping between the high-

dimensional space and the reduced dimensional space, i.e. that compresses (encodes) and decom-

presses (decodes) information (Fig. I.10a). This constrains the amount of candidate algorithms.

Two families of methods suitable for this task are presented here.

Proper orthogonal decomposition. Proper orthogonal decomposition (POD) [Sirovich, 1987;

Berkooz et al., 1993] stands as a core dimensionality-reduction data-driven modelling technique

for CFD. POD provides a linear subspace of orthogonal modes to approximate field data in a non-

intrusive manner, resulting in simpler straightforward yet e�cient and interpretable reduced-

order models. This technique has therefore been used in a wide variety of problems, for instance

to develop a low-dimensional parametrisation for nonlinear Poisson equation and cavity viscous

flows [Hesthaven and Ubbiali, 2018], for pedestrian turbulent wind flow and toxic gas dispersion

in a full-scale city area [Margheri and Sagaut, 2016; Xiao et al., 2019], or for a flow around an

airfoil [Swischuk et al., 2019].

POD can be extended to handle time evolution with dynamic mode decomposition (DMD)
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[Deng et al., 2021; Schmid, 2022]. Robust algorithms of POD can find some applications for

fluids with highly corrupted data. For instance, Scherl et al. [2020] applied robust principal

component analysis (PCA) to a modal decomposition of a turbulent channel flow. For non-

negative quantities of interest, the non-negative matrix factorisation (NMF or NNMF) algorithm

[Wang and Zhang, 2012] is an interesting alternative to POD. Gleichauf et al. [2020] showed its

potential to better distinguish flow regimes from thermographic images .

However, linear methods such as POD may not be very e↵ective for systems that evolve on

strongly nonlinear manifolds. In particular, Murata et al. [2020] reported that well-designed

methods may be necessary to handle complex turbulent flows. Indeed, many spatial modes

may be required to represent the fine structures of turbulence. Several nonlinear algorithms

can be suggested. For instance, PCA has been extended to nonlinear manifold representation

with kernel PCA [Schölkopf et al., 1998]. The Gaussian process latent variable model (GPLVM)

[Lawrence, 2003; Titsias and Lawrence, 2010] performs dimensionality reduction from local cor-

relation structure and uncertainty by merging latent variable model framework with Gaussian

processes. However, these models do not provide an encoder formulation as seen in Table I.3,

which summarises the capability of di↵erent approaches. It may partly explain the lack of

research momentum in their direction relatively to neural networks.

Table I.3: Overview of dimensionality reduction algorithms (adapted from Lawrence, 2005), where the
encoder corresponds to the mapping from the input high-dimensional space onto the latent space, and
where the decoder performs the inverse mapping from the latent space onto the input high-dimensional
space.

Encoder Decoder Nonlinear

POD X X
Robust PCA X X

NMF X X
Kernel PCA X X
GPLVM X X

Autoencoder X X X

Neural-network autoencoders. Neural networks o↵er interesting prospects for dimensionality

reduction. They can be organised into a bottleneck architecture (Fig. I.10a), thus forming nonlin-

ear autoencoders for developing both latent space representation and nonlinear encoder/decoder

transformations [Le Cun and Fogelman-Soulié, 1987; Bourlard and Kamp, 1988; Hinton and

Zemel, 1993]. However, basic neural network architectures failed to capture the patterns in

pixel data. This is why LeCun et al. [1989] introduced convolutional autoencoders composed of

convolutional layers to deal with grid-like architecture data such as images.

Autoencoders can naturally handle nonlinearities and are therefore thought as nonlinear

extension of POD [Milano and Koumoutsakos, 2002; Goodfellow, 2010]. POD solutions can in-

deed be achieved by a linear implementation of autoencoders minimising the squared-error loss

function [Baldi and Hornik, 1989]. In the fluid mechanics community, autoencoders have shown

promising performance results. Milano and Koumoutsakos [2002] implemented a nonlinear au-
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toencoder from DNS to emulate the near-wall field in a turbulent flow channel. Murata et al.

[2020] applied a convolutional autoencoder to a laminar cylinder wake and its transient process,

and demonstrated improved performance compared to POD. Similar results were obtained for

turbulent flows [Eivazi et al., 2022].

Even though nonlinear autoencoders may be more e�cient than POD, they usually lack inter-

pretability. Interpreting the physical meaning of the latent vector in autoencoders is exceedingly

challenging. The autoencoder modes cannot be arranged through an energy criterion like POD

modes. Saegusa et al. [2004] developed the concept of hierarchical autoencoder to extract the au-

toencoder modes in their contribution order. Later, Fukami et al. [2020] extended this approach

to mode-family hierarchical autoencoders and applied it to a two-dimensional cylinder wake and

its transient process for both laminar and turbulent flows. Unfortunately, these architectural

enhancements do not succeed in making autoencoders as explainable as POD, thus resulting in

a trade-o↵ between model interpretability and performance.

I.3.2.c Reduced-basis projected component evolution

POD and autoencoders are powerful approaches to project high-dimensional field data onto a

latent space. However, they do not model the flow field response with respect to time or when

varying the input parameters. When building a reduced-order model, some type of interpolation

techniques is therefore required to model (or metamodel) how the latent variables (or the reduced

components) vary with respect to time or to uncertain input parameters. Basic interpolation

techniques may fail to capture major patterns of the flow response [Brunton et al., 2019]. Machine

learning algorithms o↵er a fairly generic framework to solve this metamodelling problem.

In the context of reduced-order modelling, regression models learn from the CFD database

the mapping between uncertain input parameters and latent variables over a wide range of vari-

ation for the input parameters [Garćıa-Sánchez et al., 2014; Margheri and Sagaut, 2016; Garćıa-

Sánchez et al., 2017; Lamberti and Gorlé, 2021]. For instance, Garćıa-Sánchez et al. [2014, 2017]

studied how parametric atmospheric uncertainties (inlet wind magnitude and direction, terrain

roughness length) propagate on flow and pollutant dispersion quantities in downtown Oklahoma

City based on ensemble RANS simulations combined with polynomial chaos expansion. This

pioneering work demonstrated the feasibility and interest of emulating RANS simulations for

microscale pollutant dispersion applications. However, Garćıa-Sánchez et al. [2014, 2017] did not

provide an analysis of the polynomial chaos expansion metamodel error, whereas it is a necessary

step to develop reliable and robust reduced-order models adapted to a variety of atmospheric

boundary-layer flows and dispersion conditions.

In the literature, a wide variety of methods have been applied for predictive regression

learning on numerical data such as neural networks [Hesthaven and Ubbiali, 2018; Swischuk

et al., 2019; Ma et al., 2021; Lucor et al., 2022], multilinear models on nonlinear feature space

(e.g. SINDy – Brunton et al. [2016]; polynomial chaos expansion – Rochoux et al. [2014]; Garćıa-

Sánchez et al. [2014, 2017]; El Garroussi et al. [2022]), decision trees [Xiang et al., 2021] and

Bayesian frameworks such as Gaussian process regression (GPR) models [Margheri and Sagaut,

2016; Guo and Hesthaven, 2018; Xiao et al., 2019]. The search for adapted machine learning
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Figure I.10: Schematic of reduced-order models adapted from Vinuesa and Brunton [2022], which repre-
sent the evolution of high-resolution flow fields K with respect to time t and/or uncertain input parameters
µ. (a) Autoencoder structure for dimensionality reduction with an encoder to map the high-dimensional
data K onto the low-dimensional latent space k and a decoder to have an approximate reconstruction ‚K
of the high-dimensional data. (b) Regression model structure to metamodel the latent variables ‚k and
recover high-dimensional features ‚K using the decoder. (c) Regression model structure in the specific
context of time evolution, where the time-evolution of the latent variables k̇ can be handled by classic
Galerkin-projection model or machine-learning regression.

tools coincides with the requirement for a careful and documented study of the processed data,

the reduced-order model performance, its robustness, and its explicability. In this direction,

Swischuk et al. [2019] examined the e↵ectiveness of several regression modelling approaches for

predicting high-dimensional flow outputs. They noted the need for interpretation of reduced-

order model predictions, but also the choice of the reduced-order model approach depending on

available data. To the best of our knowledge, such analysis is missing in the context of microscale

pollutant dispersion modelling.

It is worth noting for the specific case of flow time evolution (Fig. I.10c), Galerkin projec-

tion [Barone et al., 2009; Hijazi et al., 2020] may replace machine learning regression models.

The Galerkin projection benefits from a closer connection to the governing equations, and can

allow for a good integration of physical constraints [Loiseau and Brunton, 2018]. However, these

advantages require a numerical implementation of the governing equations, sometimes even in-

trusive modifications of the numerical solver that are easy to implement in legacy codes [Vinuesa

and Brunton, 2022]. We do not investigate this approach in this work since we focus on response

to input parameters rather than time evolution.
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Reduced-order modelling for CFD can be described as a two-step approach: (1) dimension

reduction to reduce spatial flow fields to a small number of highly representative components;

and (2) regression modelling (or metamodelling) to represent flow response to variation in

uncertain inputs parameters. Both tasks rely on a dataset of CFD simulations that provide

high-fidelity data as training examples. Machine-learning models stand as popular candidates

to perform these tasks. When successful, the reduced-order models e�ciently emulate fluid

flows at a fraction of the CFD solver computational cost. Yet, this e�ciency comes a loss of

generality. Reduced-order models are designed to perform well for specific flow configurations

(included in the training database), allowing for tremendous speed-up but limited generalisa-

tion capacity. Consequently, it is challenging to obtain guarantees of reduced-order model’s

performance and robustness, which are of first importance for risk assessment problems.

I.3.3 Data-driven turbulence closure models

DNS and well-resolved LES of the Navier–Stokes equations is impractical for many real-world

applications due to the high computational cost required to resolve the wide range of turbu-

lence length and time scales, together with flow subtleties arising from complex geometry. For

this purpose, industrial and environmental CFD modelling problems mostly rely on RANS ap-

proaches (e.g. Milliez and Carissimo, 2007, for simulating pollutant dispersion in an idealized

urban area) due to their relatively low computational requirement [Tracey et al., 2013].

Contrary to LES, no turbulent scales are directly simulated in the RANS approach. However,

closing the system of equations requires modelling the nonlinear Reynolds stress term introduced

by the RANS time-averaging procedure (Sect. I.2.3.a). Many turbulence models have been de-

veloped [Hanjalić and Launder, 1972; Spalart and Allmaras, 1994; Wilcox, 2008]. However, their

accuracy for turbulent flows can be limited. Shortcomings of eddy-viscosity models for captur-

ing the Reynolds stress anisotropy has been demonstrated in many engineering turbulent flows

(e.g. flows with body force e↵ects arising from curvature, system rotation, impingement, separa-

tion [Lumley, 1979; Launder, 1990; Speziale, 1991]). Even nonlinear stress-strain relationships in

turbulence modelling [Craft et al., 1996; Wallin and Johansson, 2000; Pope, 2000] have not been

widely adopted since they do not provide consistent performance, and might result in decreased

convergence and stability [Gatski and Speziale, 1993; Belhoucine et al., 2004]. Consequently,

there is a need to improve RANS approaches with better designed turbulence models.

Recent investigations have been carried out in using machine learning methods to design new

data-driven model components for RANS models, and in particular to develop new Reynolds

stress closures from high-fidelity simulation data. For instance, Tracey et al. [2013] used kernel

regression to model the Reynolds stress anisotropy tensor from high-fidelity DNS data for a

channel flow. Tracey et al. [2015] implemented a three-layer multilayer perceptron (i.e. one of

the most simple neural network structures) to emulate boundary-layer flows. Parish and Du-

raisamy [2016] demonstrated the ability of Gaussian process regression to provide corrections

of a standard k-Ê closure model using DNS in a turbulent channel flow. Ling et al. [2017]

implemented random forest (ensemble of decision trees) regression to emulate Reynolds stress

anisotropy from LES data in a low Mach, incompressible, jet-in-crossflow configuration. The
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significant improvement over baseline RANS eddy-viscosity models is of particular interest for

complex flow problems. Further investigations on machine learning applications to improve tur-

bulence modelling emphasised how imposing physical constraints and incorporating uncertainty

quantification alongside machine-learning-based models could improve accuracy and robustness

[Mishra and Iaccarino, 2017; Duraisamy et al., 2019a; Rezaeiravesh et al., 2021]. Ling et al.

[2016a] demonstrated the ability of random forests and neural networks to predict the Reynolds

stress anisotropy with rotationally invariant input features. Ling et al. [2016b] demonstrated

the ability of simple-designed multilayer perceptrons to enforce Galilean invariance into the

predicted anisotropy tensor.

In parallel with this work on the RANS approach, investigations have also been conducted to

improve LES subgrid-scale models using machine learning. For instance, Maulik et al. [2019] and

Beck et al. [2019] demonstrated the ability of multilayer perceptrons and convolutional neural

networks to predict subgrid-scale model terms using DNS high-fidelity data for a canonical

problem of decaying homogeneous isotropic turbulence. More complex flows can be addressed

with convolutional neural networks such as buoyancy-driven flows [Ajuria Illarramendi et al.,

2022] and premixed turbulent flames [Lapeyre et al., 2019].

In recent years, machine learning approaches have shown their potential to improve turbulence

modelling by providing a powerful statistical framework to integrate detailed information on

a variety of flow configurations from high-fidelity numerical data. In microscale pollutant

dispersion problems, due to its limited computational cost compared to LES, the RANS

approach remains the most widely used CFD approach, even if the interactions between the

flow and the buildings may induce complex flow structures that are di�cult to capture by

RANS. For risk assessment problems, it is therefore of high interest to improve the RANS

approach by integrating information from a LES database that can be generated o✏ine.

I.4 Aim of the thesis

I.4.1 Scope of the thesis

Better predicting wind patterns and pollutant concentration in the urban canopy is essential

for city safety, resilience and sustainability, in particular for mitigating health impacts from air

pollution due to chronic emissions and/or accidental emissions (e.g. Lubrizol industrial acci-

dent in 2019 in Rouen, France). Microscale pollutant dispersion phenomena in urban areas are

complex due to (1) local flow structures driven by the urban geometry, and (2) uncertainties as-

sociated with the variability of large-scale meteorological conditions and the limited information

on pollutant emission characteristics in the event of an accident.

Simplified modelling approaches such as Gaussian plume models are unable to capture com-

plex dispersion patterns of microscale urban flows. More sophisticated approaches based on

the CFD modelling paradigm can provide insights into the wind-building interactions but their

computational cost is significant and they do not account for uncertainties limiting their indi-

vidual prediction capability. As emphasized by Dauxois et al. (2021), there is a need to design
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novel probabilistic modelling strategies for detailed urban flow simulations, which can e�ciently

generate and handle an ensemble of scenarios representative of the uncertainties at play.

In this thesis, we investigate machine learning approaches to harness the high-fidelity capa-

bilities of CFD (LES and RANS) in a context of uncertainties on the urban flow simulations.

Ultimately, the aim is to benefit from accurate CFD outputs without the drawback of high com-

putational cost. Machine learning tools o↵er an interesting solution by taking advantage of the

high-fidelity CFD data. They have the potential to learn how to synthesise the most relevant

flow patterns in a multi-query context, in order to deliver new predictions for a wide range of

parameter variation with a very low computational cost. The challenge is to limit the loss of

information to design robust reduced-order models that could, in the long term, be used for

operational risk assessment studies.

The research group supervised by Catherine Gorlé at Stanford University (e.g. Garćıa-

Sánchez et al. 2014, 2017; Sousa and Gorlé 2019) introduced the idea of metamodelling wind

and tracer concentration fields for RANS modelling approaches applied to real-scale urban flows

(Joint Urban 2003 Experiment in Oklahoma City). The proposed metamodel is based on a

polynomial chaos expansion and is directly applied to each grid-point of the field quantities of

interest (time-averaged wind velocity and tracer concentration fields). There is no dimension-

ality reduction approaches to compress them, unlike in the work proposed by Margheri and

Sagaut [2016] for instance. We consider that dimensionality reduction is an important compo-

nent of a reduced-order model to account for the spatial correlations inherent to the coherent

structures of urban flows and to have quantitative arguments to define the optimal latent space.

Unfortunately, no machine learning algorithm is universally embraced; the learning community

frequently argues that there is no universal model and that the algorithm to be used depends on

the task at hand. To overcome this issue in the context of microscale pollutant dispersion mod-

elling, in this work, we carry out a detailed comparison of di↵erent metamodelling approaches

based on machine learning.

This PhD thesis at the interface between environmental CFD, machine learning and un-

certainty quantification was funded by CERFACS, a private research laboratory in Toulouse,

France. The work was done through a collaboration between CECI (climate-environment top-

ics) and CFD (fluid mechanics-combustion topics) teams at CERFACS, and the LISN laboratory

(interdisciplinary numerical sciences) at Université Paris-Saclay.

I.4.2 Key objectives of the thesis

The core idea of this thesis is to design, evaluate and provide a detailed comparison of reduced-

order modelling approaches, which include a dimensionality reduction component and a regres-

sion algorithm component to emulate fields of interest. We consider a simplified case of urban

microscale atmospheric dispersion with a simple-designed but representative isolated obstacle

to make this detailed analysis without too much restriction on the size of the learning database

due to computational cost constraints. This analysis provides guidelines for future field-scale

applications such as the MUST experiment. The goal is to predict plume flow statistics (e.g. the

mean tracer concentration around the obstacle) to better represent and understand the spatial
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variability of the plume processes for a wide range of inflow wind and emission source conditions.

These uncertain conditions are represented through a set of uncertain scalar parameters, and

reduced-order models aim at propagating these uncertainties to the field statistics of interest.

The main di�culty in setting up these reduced-order models is to handle the high-dimension of

the field statistics and their possible nonlinear response to changes in the input parameters.

In this thesis, two main objectives are addressed. The first objective is to directly emulate the

LES fields of interest using non-intrusive reduced-order models. The second issue is to design an

indirect intrusive approach to construct an hybrid approach combining RANS tracer transport

equation with LES airflow data using machine learning.

First main goal: Emulating the LES field statistics of interest using machine learning to design

a data-driven reduced-order model.

We aim at designing and evaluating a reduced-order model suitable for LES, which learns

the mapping between input uncertainties (associated with atmospheric conditions and source

location) and the output concentration statistics. This is a challenging problem due to the limited

database that is available for training, validation and test. This is especially true in a LES setting

that requires more computational resources than the RANS approach and that limits the size of

the training database. For these reasons, in this thesis, we explore several learning algorithms

to reduce the dimension (e.g. using POD or neural-network autoencoder) and to conveniently

map inputs onto outputs through a regression model (e.g. using polynomial chaos expansion,

Gaussian process regression, gradient tree boosting). A detailed analysis of each reduced-order

model component performance is carried out to evaluate the accuracy and robustness of the

di↵erent approaches. The interactions between dimension reduction and regression models are

also explored to find ways to better pose the problem and gain e�ciency.

Second main goal: Informing the RANS scalar transport equation from LES airflow data to

design a hybrid reduced-order model.

Even though non-intrusive reduced-order models are easy to implement and can provide

tracer concentration predictions at a low computational cost for a wide range of atmospheric

and source conditions, there is no guarantee of accuracy, robustness and consistency with physics.

They do well on average, yet they may perform poorly in some very unique scenarios that were

not well represented in the training database. One of the main shortcomings is the lack of

constraints with the major physical laws and assumptions (e.g. mass conservation). In partic-

ular, uncertainties related to tracer source location may lead to a sharp response in parametric

space, which challenges the reduced-order models and requires quite a significant number of

LES snapshots to obtain accurate predictions. To overcome this issue, we explore an alternative

approach embedding physical constraints through the use of hybrid strategy using LES-trained

learning algorithms and a RANS transport equation to solve the plume statistics. The key idea

of the proposed approach is to decouple the atmospheric parameter uncertainties from the source

parameter uncertainties. First, the LES approach allows to e�ciently sample the atmospheric

parameter uncertainties and to build a reduced-order model for quantities related to turbulence
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that are relevant in the RANS framework. Similarly to the first objective, the LES informa-

tion is synthesised in a reduced-order model before being fed to the RANS model. Then, the

LES-informed RANS model is then used to simulate plume statistics for a wide range of source

locations, which is of interest for risk assessment perspectives. Finally, the potential of multi-

fidelity combining a small number of high-fidelity LES snapshots with a large number of lower

fidelity LES-informed RANS model predictions is explored to gain in robustness. Multi-fidelity

could be a way to move towards full-scale prediction capability of the reduced-order model, while

remaining within the limits of acceptable computational cost as emphasised by Dauxois et al.

[2021].

The structure of the manuscript is as follows. Chapter II gives a theoretical overview of

reduced-basis and metamodelling methods implemented in this thesis. Chapter III introduces

the CFD case study, the parametric uncertainties as well as the strategy proposed to design the

reduced-order models and assess their performance. As a first emulation approach, Chapter IV

discusses the results obtained on the non-intrusive emulation of the LES field statistics of interest.

Chapter V discusses the results obtained with the LES-informed RANS approach and a multi-

fidelity strategy. A final chapter summarises the main conclusions and perspectives of this PhD

thesis work.
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Chapter II

Reduced-order modelling approach using

machine learning

A direct numerical approximation of a full-order physical model is not a↵ordable in the

multi-query context of parameterised LES, where di↵erent scenarios associated with multiple

sets of input parameters must be considered to quantify the range of all possible scenarios.

This chapter introduces the reduced-order modelling approach we adopt in this work, and

its di↵erent components required to emulate the LES solution statistics that are of very high

dimension and that can have a nonlinear relationship with the uncertain input parameters.

This is done in a standard statistical learning framework such as the one introduced by Guo

and Hesthaven [2018], where the learning stage corresponds to the construction and evaluation

of the reduced-order model, including a dimensionality reduction component and a regression

model component. This training can be done o✏ine. Later, multi-query evaluations of the

reduced-order model can be done online and provide a large ensemble of predictions at a

testing stage. We focus next on the learning stage.
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II.1 Principle of a reduced-basis approach

The purpose of reduced-basis approaches is to provide statistically e�cient approximate solu-

tions of the full-order model, decreasing the computational burden while minimising the loss of

accuracy. In this work, we aim at learning the mapping between the space of the uncertain input

parameters µ œ Rd and the LES model response Kles œ RNh . It is worth noting that we do not

consider the time dimension and that we only focus on the time-averaged LES statistics in this

work, meaning that Nh represents the LES mesh dimension. The reduced-order model builds

an e�cient representation of a dataset of high-dimensional full-order LES snapshots; that is, a

reduced-basis space of representation described by reduced-basis functions (or modes):

Vrb = Span({Âl}l=1,...,L) µ RNh . (II.1)

The space Vrb is assumed to be of low dimension compared to the number of grid elements

(i.e. L π Nh). Reduced-basis solutions, denoted by Krb, consist of the projected Kles fields on

Vrb. If the projection stands as a linear operator, Krb can be expressed as:

Grb : P ≠æ Vrb

µ ‘≠æ Krb =

Lÿ

l=1
kl(µ) Âl(x) ,

(II.2)

where {Âl}l=1,...,L correspond to the modes and kl(µ) = ÈKles, Âl(x)Í œ R is the lth reduced

coe�cient (or component).

This approach provides a procedure to split the parametric dependency in µ from the spatial

dimension x since local dissimilarity is now carried by the modes. In the literature, various

methods have been used to extract the components k = (kl)l and modes Â = (Âl)l starting from

the well-known POD approach to the most recent neural-network autoencoder architectures. It is

worth noting that Eq. (II.2) is actually valid for a linear decomposition but does not rigorously

extend to nonlinear methods such as nonlinear autoencoder. In the nonlinear context, the
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decomposition can be expressed in a more general manner as the following composition:

Krb = fd ¶ fe(µ), (II.3)

where the encoding step (or compression) stands as k(µ) = fe(µ), and the decoding step (or

decompression) stands as Krb = fd(k). For complex nonlinear functions fd and fe, it is not

always possible to recover analytical formulations of the underlying modes.

The reduced-basis approach transforms LES data, i.e. projects the LES snapshots in a re-

duced space (or latent space) that is spanned by a set of parameter-independent functions

{Âl}l=1,··· ,L. They thereby return discrete reduced-basis coe�cients from the original output

fields (also referred to as the latent variables in the deep-learning community). Once the reduced

basis is identified, regression metamodels (among whom polynomial chaos, Gaussian processes

and decision trees) can be trained to map the uncertain parameters µ onto the reduced coef-

ficients {kl}l=1,··· ,L. The resulting reduced-order model (Eq. II.2) can then be used inline to

estimate new quantities of interest Krb at new parameter values µú (i.e. at parameter values

that are not included in the LES training database).

The issues in building the reduced-order model for LES fields addressed in this work are

three-fold: i) the quantities of interest simulated using LES are of very large dimension (Nh

is on the order of 10
5 in this work); ii) the number of LES snapshots is limited due to the

computational cost of a single LES (i.e. N π Nh); and iii) the mapping between the quantities

of interest K and the input parameters µ may be subject to nonlinearity. Additional di�culties

associated with LES such as flow unsteadiness or the possibly large dimension of the input

uncertainty space are beyond the scope of this work. In the following, Sect. II.2 introduces the

main approaches implemented in this work for dimension reduction, while Sect. II.3 presents

the metamodelling approaches to solve the regression problems before Sect. II.4 provides an

overview of the proposed reduced-order model architecture.

II.2 Some dimensionality reduction methods

II.2.1 Proper orthogonal decomposition

II.2.1.a Snapshot dataset

In practice, POD [Sirovich, 1987; Berkooz et al., 1993] computes an estimate of the optimal

solution V
ú
rb from a collection of LES snapshots gathered in the snapshot matrix:

S =

Ë
K(1)

les | . . . | K(N)
les

È
œ RNh◊N , (II.4)

where K(n)
les represents the nth LES snapshot, i.e. a vector made of Nh grid elements. POD seeks

the optimal reduced basis of rank L that stands as the optimal orthogonal projection manifold
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with respect to the Frobenius norm:

V
ú
rb = arg min

Srb = p(S;Vrb),
rank(Vrb) Æ L

ÎS ≠ SrbÎF, (II.5)

with p( · ; Vrb) the projection from RNh to Vrb.

The idea behind POD is to find an orthonormal basis maximising the variance of the projected

field ensemble. Therefore, POD is usually implemented on the centred snapshot matrix. Let

T ( · ) be the linear operator applying an a�ne transformation (centering and normalisation) to

the snapshot data:

T : RNh ≠æ RNh

Kles ‘≠æ
1

Ô
N ≠ 1

(Kles ≠ Ê(Kles)),
(II.6)

where Ê(Kles) =

Ë
Ê(Kles,1), . . . , Ê(Kles,Nh)

È
œ RNh is the empirical mean of the quantity of

interest computed over the N snapshots for each grid element, i.e. for the ith grid element:

Ê(Kles,i) =
1

N

Nÿ

n=1
K(n)

i . (II.7)

In the following, T (S) refers to the matrix of transformed snapshots
1
T (K(n)

les )

2

n
.

II.2.1.b Eigendecomposition and interpretation

POD may now solve the diagonalisation of the covariance matrix:

Cov(Kles, Kles) = T (S) T (S)
T

= � �
2

�
T ,

with

Y
______]

______[

Cov(Kles, Kles) œ RNh◊Nh

� = [Â1 | . . . | ÂNh
] œ RNh◊Nh an orthonormal matrix

� = diag(‡1, . . . , ‡Nh) œ RNh◊Nh
+ , ‡1 Ø · · · Ø ‡Nh > 0.

(II.8)

Orthonormal vectors of �, called the reduced-basis modes, carry some fraction of the ensem-

ble variance quantified by the related eigenvalues in � denoted by {‡l}l=1,··· ,Nh
and satisfying

T (S) T (S)
T Âl = ‡l Âl.

Since the number of mesh elements Nh is very large, it becomes advantageous to keep the L

first modes (among the Nh modes) that preserve the maximum variance of the original ensemble.

The resulting truncated matrices are denoted by Â� = [Â1 | . . . | ÂL] œ RNh◊L and Â� =

diag(‡1, . . . , ‡L) œ RL◊L. It is worth noting that the number of modes L to retain to obtain an

accurate reduced-order model is problem-dependent, and that this is an open question for the

problem of microscale pollutant dispersion that is addressed in this work.

POD acts as a change of basis and the meaning of each mode can be interpreted by a corre-

lation analysis between the modes and the original features. In practical terms, the correlation

between the lth POD mode Âl and a given snapshot in the initial grid space Kles (varying
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between -1 and 1 by definition) may be stated as the following matrix:

Corr(Kles, Âl) =

S

U
Û

‡l

V̂(Kles,i)
Âl,i

T

V

i,j

, (II.9)

where the indices i and j correspond to a given element of the matrix Corr(Kles, Âl) œ RNh◊Nh ,

where Âl,j corresponds to the jth element of Âl œ RNh , the lth function in Â�, and where V̂(Kles,i)

represents the variance unbiased estimation over the snapshots for the ith grid element. This

variance is estimated as:

V̂(Kles,i) =
1

N ≠ 1

Nÿ

n=1

1
K(n)

les,i ≠ Ê(Kles,i)
22

. (II.10)

where the mean is defined in Eq. (II.7).

II.2.1.c Performance metrics

As the POD performs a projection subspace maximising the ensemble variance of the original

data, an intuitive measure of its performance is the cumulative variance carried by the first L

modes, i.e. the variance of the projected samples on the L-dimensional POD subspace to the

total variance of the original data. The explained variance ratio is expressed as:

Q2
e.v. =

lÿ

i=1
‡i

? min(Nh,N)ÿ

i=1
‡i, (II.11)

where ‡i denotes the ith eigenvalue of the data covariance matrix.

II.2.1.d Reduced-coe�cient dataset

The quantity of interest vector field can be projected upon the POD space. The projection can

be expressed as:

F : RNh ≠æ RL

Kles ‘≠æ k = Â�≠1/2 Â�T
T (Kles),

(II.12)

where Â�≠1/2
= diag(1/

Ô
‡1, . . . , 1/

Ô
‡Nh) œ RL◊L and Â� œ RNh◊L are the matrices restricted

to the L first modes, and where k = [k1, · · · , kL] œ RL is the vector of POD reduced coe�cients

(Eq. II.2).

In complement, whitening (or sphering) can be implemented from POD (e.g. Kessy et al.,

2018). It consists in centring and standardising the reduced coe�cients obtained in Eq. (II.12).

The elements in k have therefore the following statistical properties:

Y
_____]

_____[

E[kl] = 0 ’ l = 1, . . . , L ,

E[kl km] =

Y
_]

_[

1 if l = m,

0 otherwise.
’ l, m = 1, . . . , L.

(II.13)
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The transformation in Eqs. (II.12)–(II.13) is applied to the original LES dataset (expressed in

the grid space) to create a new dataset of POD reduced coe�cients k for varying inputs µ. In

Chapters IV–V, the statistical properties given to the POD reduced coe�cients will be used as

constraints for designing consistent mappings fl : µ ‘æ kl such that:

Ê[fl] = Ê[kl] = 0 , V̂(fl) = V̂(kl) = 1 , ’l. (II.14)

II.2.1.e Inverse reconstruction

The compressed information obtained through Eqs. (II.12)–(II.13) can be used to design e�cient

mappings of µ ‘æ k since the dimension of k is small compared to the dimension of Kles

(Sect. II.3). However, in practice, there is a need to map back the reduced coe�cients onto the

physical space to have access to the LES fields of interest (for instance, to validate the POD

approach by comparing reconstructed fields and LES fields of reference).

The linearity in the operator T in Eq. (II.12) makes it simple to express the inverse recon-

struction operator from which the original LES field of interest may be recovered from the POD

reduced coe�cients:

Krb(µ) = T
≠1

A
Lÿ

l=1

Ô
‡l kl Âl

B

. (II.15)

POD stands as a linear combination of the snapshots (Eq. II.2), which can be a limitation

when the response of LES fields features strong nonlinearities. If this is the case, neural-network

autoencoders stand as an alternative and can be seen as a nonlinear extension to POD.

II.2.2 Autoencoder neural networks

Autoencoder neural networks can in theory deal with nonlinearities in the LES dataset to provide

highly compressed reduced coe�cients k. In this work, we are particularly interested in convo-

lutional autoencoders (neural networks composed by convolutional layers) since they have great

potential to compress information in problems of high dimension and subject to nonlinearities.

II.2.2.a Introduction to neural networks

In this section, we briefly recall the basic principles of neural networks to define what is a neural

network and highlight the advantages of convolutional autoencoders.

Neuron definition. A (linear) neuron can be described as a mathematical model, based on an

analogy with biological neurons. It stands as a linear model with respect to some inputs u:

s = f(u) = ⁄0 +

bÿ

j=1
⁄j uj . (II.16)

The neuron output s is given from the linear combination of the inputs u œ Rb, with ⁄ =

{⁄j}j=1,··· ,b the associated weights. Considered individually, a neuron can be seen as a basic

machine learning model, whose weights must be trained to predict some output s. Its individual
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predictive capacity is weak as it is a linear model. Combining neurons in the form of a neural

network becomes interesting to approximate complex mapping.

Neural-network definition. A neural network is the graph of interconnected neurons. It is

specified by the graph architecture (number of layers, number of neurons per layer/width, con-

nections), the type of neurons, the learning task (e.g. supervised/unsupervised), etc.

Figure II.1 shows a simple example of a multilayer perceptron made of three layers. The

inputs of the learning problem are collected in the input layer and then sequentially transformed

as they run through the network hidden (intermediate) layer and the output layer. Hidden

layer neuron outputs are referred to as internal states and are used as inputs of the next layer

neurons. This network is qualified as feed-forward since information linearly propagate through

the layers from the input to the output, and since connections between neurons only occur

between successive layers. It is also qualified as dense since all neuron outputs in each layer are

connected to the next layer neuron inputs.

s2=k

Kles	 = s0

s1

Output layer

Hidden layer

Input layer

Figure II.1: A simple feed-forward multilayer perceptron made of three layers, each layer i being described
by its internal state si.

Mathematically, in line with Eq. (II.16), network outputs can be expressed as:

k = fout(s1) = ⁄out,0 +

2ÿ

j=1
⁄out,j s1,j , (II.17)

where s1 = (s1,1, s1,2) is the output vector from the hidden layer, and ⁄out = (⁄out,0, ⁄out,1, ⁄out,2)

includes the weights of the output neuron. The full neural network can then be expressed as the

function composition of all successive layers k = Fe(Kles) = fout ¶ fhid(Kles).

Multilayer perceptron autoencoder. The simple structure of the multilayer perceptron pre-

sented in Fig. II.1 can be used for unsupervised learning. For instance, the operator Fe can be

trained to map high-dimensional LES snapshots Kles to lower-dimensional reduced coe�cients

k when the output layer width is small. This network may be expanded with additional layers

to return the original high-dimensional data Kles from the reduced coe�cients k through the

operator Fd (Fig. II.2). The vector of reduced coe�cients k defines the low-dimensional latent

space.
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k = ℱ#(Kles) Kles = ℱ$(k)

%* = argmin%L(Kles,ℱ(Kles))

Latent vector
s& =	k

Kles	 = s0

s1

ℱ Kles = s4

s3

Figure II.2: Example of a multilayer perceptron autoencoder neural network.

The multilayer perceptron autoencoder has a bottleneck architecture. The first encoder

subnetwork Fe maps the input field Kles onto the latent space. Then, the second decoder

subnetwork expands the reduced coe�cients k back to the original high-dimensional space. The

loss function L (e.g. the mean-squared error) is the metric used to estimate the reconstruction

error of the autoencoder. Minimising the loss function encourages the network F to output the

same LES snapshots that were given as inputs such that Kles ¥ F(Kles; ⁄) while restraining

the number of reduced coe�cients k. ⁄ represent the autoencoder parameters (e.g. the neuron

weights) to be calibrated. Contrary to POD, in such a neural network framework, all encoder,

decoder and latent space are learnt simultaneously during the training stage.

It is known that multilayer perceptron autoencoders may fail when the input data are large.

They are in fact designed for vectors with dense connectivity, meaning that each output unit

interacts with each input unit through matrix multiplication. This leads to a very high number

of connections and weights in the network, which may make model optimisation intractable.

II.2.2.b Convolutional neural networks

Neural networks are of high interest for image processing because their architecture is relatively

flexible and can be adapted to only capture the correlations between neighbouring pixels (in

an image, the closer the pixels are, the more likely they are to be correlated). In particular,

convolutional layers are of high interest to focus on the most relevant connections.

Convolutional layer. A convolutional neural network (CNN) operates directly on matrices or

even tensors. The core convolutional layer involves the convolution between an input tensor

and a multidimensional kernel. Mathematically, convolution (also known as cross-correlation,

see Goodfellow et al. 2016) can be expressed as a linear combination between the inputs and

some kernel weights:

si = ⁄0 +

nkÿ

j=1
⁄j ◊ ui≠1+j , (II.18)
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where si is the ith pixel of the output vector, ui is the ith pixel of the input vector, and

(⁄j)j=0,...,nk are the kernel weights. Figure II.3 presents a simple example of convolution with

nk = 3.

Figure II.3: Example of convolution of a 1-D input array with a kernel of size nk = 3. The output in red
is obtained by multiplying each kernel weight by the corresponding input pixel and by returning the sum
of the products [pel, 2022].

Convolutional layers actually make use of three concepts that might improve image pro-

cessing: (i) sparse interactions, (ii) parameter sharing, and (iii) equivariant representations.

Equation (II.18) shows that the linear combination involves sparse connectivity. Stated di↵er-

ently, the discrete convolution may be thought of as a sparse matrix multiplication: the output

features only depend on a few input features, and the same kernel is employed throughout the

convolution (parameter sharing), resulting in only four weights in this case. Long-range corre-

lations are neglected due to the convolution properties. Kernels are therefore suitable to learn

local redundant patterns. It does not matter where the pattern appears in the image; convo-

lution will return the same output each time it occurs. This means that convolutional layers

make the network equivariant to translation. These properties of convolutional layers reduce

the number of parameters in the neural network. This reduces the memory and computing

requirements of the autoencoder, and improves its statistical e�ciency compared to multilayer

perceptron [Goodfellow et al., 2016].

Convolutional autoencoder. So far we have discussed the case of a convolutional layer with a

single kernel. This is rather restrictive, given that one kernel learns one unique redundant pattern

and that an image generally embeds several patterns. It is therefore of primary importance to

have several kernels in the CNN to well characterise the information in the fields of interest. For

instance, let us consider the LES snapshots Kles have been reshaped to a regular grid and are

now matrix elements of RI,J . Each snapshot is associated with several quantities (also named

filters or channels) such as the tracer concentration and the velocity field, implying that each

snapshot is now a 3-D tensor evolving in RC,I,J . The resulting convolutional layer applied to a

multi-channel tensor can still be expressed as a linear combination of the inputs with kernels of

size H ◊ H:

sc i j = ⁄0 +

C(u)ÿ

k=1

Hÿ

m=1

Hÿ

n=1
⁄c k m n uk i+m≠F j+n≠F , (II.19)

where sc i j is the output filter c œ C(s) at pixel location (i, j). The index shift F = ÂH/2Ê

characterises the image padding, ensuring that convolution does not extend beyond the image’s

range. Figure II.4 illustrates the tensor convolution operation.

By combining convolutional layers and a multilayer perceptron, a convolutional autoencoder

can be designed to handle high-dimensional data as in Fig. II.5. Convolutional layers are added
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Figure II.4: Schematic representation of a multi-channel convolution [Fukami et al., 2020]. Kernels are
represented in blue squares. Image tensors are represented in grey colours.

on both sides of a central multilayer perceptron to drastically reduce the number of connections

in the network even if high-dimensional multi-filter images are given as inputs. First, the encoder

deals with spatial correlations using convolutional layers. Dimension reduction can be performed

using downsampling operations such as stride or pooling [Boureau et al., 2010; Jia et al., 2012;

Goodfellow et al., 2016]. A multilayer perceptron is inserted to deal with the compressed tensors

and reduce even further the latent space. Then, the reduced components k are expanded back

to the shape of the original input tensor. Upsampling can easily be performed by replicating

tensor pixels between convolutional layers [Goodfellow et al., 2016].

filtersKles = s (0)

H
HP

P

s (1) ℱ Kles =s (L )s (l )

k = ℱ#(Kles) Kles = ℱ$(k)

Multiple layer perceptron

%* = argmin%L(Kles,ℱ(Kles))

k
Latent vector

⋱⋱⋱

Figure II.5: Schematic view of a convolutional autoencoder involving a central multilayer perceptron and
convolutional layers in the encoder and decoder parts [Fukami et al., 2020].

Despite its complex architecture, this convolutional autoencoder is still linear in the input

data and it is therefore currently unable to return richer information than POD. To extend

the capability of autoencoders to nonlinear problems, the choice of the activation functions is

essential.

Nonlinear activation functions. Nonlinear activation functions can be introduced to wrap neu-

ron outputs:

s = g

Q

a⁄0 +

bÿ

j=1
⁄j uj

R

b . (II.20)

The choice for the function g depends on the task at hand. There are several options among

whom rectified linear unit (ReLU), sigmoid logistic function, hyperbolic tangent (Tanh) and the
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softplus function (Table II.1). In the following, we discuss the advantages and drawbacks of each

activation function, and how they can be used to design a proper autoencoder.

Table II.1: Examples of nonlinear activation functions.

Name Equation Range

Rectified Linear Unit (ReLU) x ‘æ x+ [0, +Œ[

Sigmoid logistic function x ‘æ
1

1+e≠x ]0, 1[

Hyperbolic tangent (Tanh) x ‘æ
2

1+e≠2x ≠ 1 ] ≠ 1, 1[

Softplus x ‘æ log(1 + ex
) [0, +Œ[

Adding nonlinear activation functions to the network should be done with caution since

it a↵ects the gradient descent procedure required to calibrate the network weights during the

training stage. The choice of the activation functions is closely linked with the answer of the

two following conditions: (i) Does the output range fit the problem? (ii) Is learning the network

weights more di�cult?

– The first issue is quite easy to solve as the discussion on the output range mainly concerns

the network output layer. For instance, the ReLU and softplus functions may be appro-

priate for modelling tracer concentration as they provide positive outputs. The sigmoid

function returns normalised outputs in the range [0, 1] and may be applied to probability

distributions.

– The choice of the activation function for the hidden layers is more critical for optimisation

purposes, making the second issue more tricky to solve. One must ensure the convergence

of neural weights towards a su�cient optimum. Gradient backpropagation is a simple

and computationally-e�cient method. However, it may be slow to converge, converge to

a non-satisfying solution, or convergence may not occur at all, particularly when dealing

with large multilayer networks and non-convex high-dimensional response surfaces. Several

issues may arise such as node saturation or vanishing gradient. A naive choice of activation

functions can reduce backpropagation performance and increase convergence time [LeCun

et al., 2012]. Properly configuring the network activation functions and following good

practices for (a) weight initialisation, (b) data normalisation, and (c) step decay scheme

may improve the gradient descent procedure.

Historically, the sigmoid function was the most commonly used activation function for sim-

plicity and explicability: it is monotonically increasing and di↵erentiable, with bounded positive

output values in the range of [0, 1], which prevents optimisation divergence. However, the Tanh

function is often preferred to the sigmoid function as it may lead to faster convergence [LeCun

et al., 2012]. This phenomenon can be attributed to the symmetry property of Tanh and the

stronger magnitude of its gradient (Fig. II.6). LeCun et al. [1989] also suggested that input data

should be centered and standardised, and that the weights should be initialised around 0 to

benefit from better descent directions and larger steps, and thereby avoid gradient saturation.

Both sigmoid and Tanh functions su↵er from the vanishing gradient problem, which may

hamper gradient descent in the case of very deep networks [Hochreiter, 1998; Glorot and Bengio,
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Figure II.6: Gradient of the sigmoid logistic (dotted line) and Tanh (solid line) functions.

2010]. This means that the error decreases after it is backpropagated through each hidden layer,

resulting in very slow updates of the weights. The ReLU function (and extensions such as the

leaky ReLU) can fix this issue. ReLU can also enhance network sparsity by removing unnecessary

nodes, which facilitates its training [Glorot et al., 2011].

It is worth noting that weight initialisation is not straightforward for the ReLU function.

Weights are usually initialised randomly. Glorot and Bengio [2010] highlighted the benefits of

normalising initial weights with respect to the layer widths so that the output variance remains

the same for each layer in the network. They also suggested this could be applied to other

activation functions to reduce vanishing gradient e↵ects. This is line with the work by Kumar

[2017], which suggested to initialise weight distributions from the activation function and the

number of neurons in the layers.

II.2.2.c Training large nonlinear neural networks

For large deep neural network architectures, the number of parameters to optimise can be-

come substantial, and the good practices stated so far (data normalisation, choice of activation

functions, weight initialisation) are not always su�cient to ensure good gradient descent con-

vergence. In addition to the node saturation and vanishing gradient issues, the loss function

can be made highly irregular by the nonlinear network structure. Some techniques can help

regularising high-dimensional loss functions. For instance, network sparsity can be enhanced by

adding ReLU activation functions or dropout layers [Srivastava et al., 2014]. A penalty term

can also be added to the loss function [Tibshirani, 1996; Kavukcuoglu et al., 2010; Rifai et al.,

2011].

Adaptive learning rate schemes and stochastic mini-batch extensions of gradient descent can

also speedup the optimisation procedure and prevent it from adhering to an unfavourable local

optimum [Heskes and Kappen, 1993; Orr, 1995; Bottou et al., 1998]. In particular, adaptive

learning rate schemes will reduce the learning rate when the gradient direction oscillates, and

increase it when the gradient direction remains steady across epochs [Sompolinsky, 1995; Sutton,

1992]. For instance, it seems intuitively reasonable to make the learning rate large at the

beginning of the procedure to achieve faster convergence, and decrease it to ensure finer tuning

and converge to a local solution. When gradient directions are very chaotic due to significant

noise, a momentum term can be added to attenuate the gradient direction oscillations and
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to smooth the descent procedure [Polyak, 1964; Tseng, 1998]. A more recent version of the

momentum approach referred to as the Nesterov accelerated gradient is due to Nesterov [1983]

and Sutskever et al. [2013]. Sophisticated adaptive algorithms such as resilient backpropagation

(RProp) [Riedmiller and Braun, 1993] involving the sign of the gradient, root mean square

propagation (RMSProp) as a mini-batch version of the RProp [Tieleman et al., 2012], adaptive

gradient (Adagrad) involving di↵erent learning rates for the weights [Duchi et al., 2011] or

adaptive moment estimation (Adam) as an update of RMSProp [Kingma et al., 2020] are now

widely used by the deep-learning community for training neural networks.

POD and autoencoders can compress high-dimensional data to a smaller latent space of

reduced-basis coe�cients. The latent space representation is learned along with the encoder

and decoder models, which map the high-dimensional data to the compressed coe�cients and

vice versa. The convolutional autoencoder allows for e�cient processing of high-dimensional

images and can handle nonlinearities by introducing activation functions. It is therefore an

attractive extension to POD. However, POD ensures statistical properties to the reduced

coe�cients, and guarantees a hierarchical decomposition of the information. Each approach

has its own advantages and drawbacks in terms of performance and explicability. Both POD

and autoencoders are tested in this work to evaluate their capacity to provide a good latent

space representation for microscale pollutant dispersion problems.

II.3 Regression models

Rather than constructing a cumbersome metamodelling procedure involving the high-dimensional

LES fields Kles, we prefer to train metamodels to predict the reduced coe�cients k = [k1, · · · , kL]

introduced in the previous sections from the input parameters µ. Various learning algorithms

are available to solve this regression task. For instance, polynomial chaos expansion [Garćıa-

Sánchez et al., 2014, 2017; El Garroussi et al., 2022], Gaussian process regression (GPR)/kriging

models [Margheri and Sagaut, 2016; Guo and Hesthaven, 2018; Xiao et al., 2019], and decision

trees [Xiang et al., 2021] have shown promising results in recent CFD literature. This section

discusses their mathematical formulation and the hyperparameters to be tuned for the more

specific task of predicting reduced basis coe�cients.

II.3.1 Overview of the metamodelling task

II.3.1.a Metamodel formulation

Dimension reduction approaches rely on ensemble variance decomposition. Each latent vari-

able carries specific energetic structures of data, and the characteristics of the latent variables

can be very di↵erent from each other. For instance, POD decomposes ensemble variance into

hierarchical information carried by the L reduced coe�cients: the first modes carry the large

energetic structures contained in the data, whereas the higher modes focus more and more on

local e↵ects. Moreover, parametric variability induces strong changes in the modal decomposi-

tion distribution. For instance, a change in the tracer emission position drastically a↵ects the

53



54 Chapter II. Reduced-order modelling approach using machine learning

amplitude and/or the signs of the reduced coe�cients. As a result, the associated response

surfaces k © k(µ) tend to reflect very di↵erent characteristic scales of the tracer concentration

patterns.

It is essential to design metamodels capable of capturing the specific nature of each latent

variable in order to accurately and robustly describe the possible variation of the reduced coef-

ficients. For this reason, in this work, we design L independent metamodels, i.e. we learn the

relation between each reduced coe�cient kl and the input parameters µ = (µ1, . . . , µd):

kl = fl(µ) + ‘l, ’l = 1, · · · , L, (II.21)

where ‘l ≥ N (0, s2
l ) is an additive noise term with variance s2

l to account for noise in the training

database. Each metamodel fl is learnt by minimising the error with respect to a criterion L made

on predictions of kl. In order to obtain the best available approximation to the true response

kl, one can measure the loss L(kl, fl(µ; ⁄l)) between the true reduced coe�cient kl associated

with a given input µ and the metamodel prediction fl(µ; ⁄l) (⁄l represent the learning model

parameters that must be calibrated). The loss expected value is given by the following risk

functional:

R(⁄l) =

⁄
L(kl, f(µ; ⁄l)) dQ(µ, kl), (II.22)

where the di↵erent elements are defined as random variables to characterise their probability

of occurrence, implying that Q(µ, kl) represents the joint probability distribution of the inputs

µ and the reduced coe�cient kl. In practice, the joint probability distribution Q is usually

unknown and generally requires modelling assumptions. Finally, the objective is to find the

function f minimising Eq. (II.22) over one or several classes (or families) of models f for a given

probability distribution on the observations.

In this work, we are particularly interested in parametric metamodels built around combina-

tions of inputs µ. This parametric nature refers to the requirement to estimate model parameters

from the training data. For instance, a polynomial regression model assumes a polynomial re-

lationship between the input features µ and the output kl. As an example, we could take the

total electricity demand of the city of Toulouse k œ R as the sum of the polynomial features

between the two major individual demands (µ1, µ2) œ R2. Mathematically, it is expressed as:

k = ⁄0 + ⁄1 µ1 + ⁄2 µ2 + ⁄3 µ2
1 + ⁄4 µ2

2 + ⁄5 µ1µ2 + ‘, (II.23)

where combinations of inputs are taken with a total polynomial order P = 2. Usually, the model

parameters are unknown a priori; the training stage has the objective to learn the parameter

optimal values from data observations but not all model parameters can be optimised simul-

taneously. These non-optimisable parameters – the ones that must be determined outside the

learning algorithm – are called hyperparameters. In the polynomial model example (Eq. II.23),

{⁄0, · · · , ⁄5} are model parameters; while the total polynomial order P is a hyperparameter

(P = 2 in the example). In practice, the user will generally test several values of P to determine

an appropriate model choice.

Each learning algorithm di↵ers in how it handles data and expresses the map between inputs
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µ and the output kl. A broad range of methods are provided in statistical learning [Hastie et al.,

2009], with the linear Gaussian model being the most basic, oldest, and well-known statistical

model. As soon as the map to be modelled between inputs and outputs is not linear or the

volume of data is large, more advanced methods (e.g. polynomial chaos expansion, Gaussian

processes, decision trees) may be required. In practice, there is no single best metamodelling

strategy and the choice of the metamodelling approach depends on the problem specificities.

II.3.1.b Metamodel resolution

Dataset management. The dataset available for solving the lth metamodelling problem can be

formulated as an ensemble of input/output pairs of N elements, i.e.

Dl = (U , Kl) = {(µ(n), k(n)
l ), 1 Æ n Æ N}, (II.24)

where the nth pair (µ(n), k(n)
) represents a snapshot in the reduced-coe�cient database.

The main problem in metamodelling is to develop an unbiased assessment of the risk (Eq. II.22)

based on limited LES data. The measure of model’s error on the training data (the training er-

ror) may lead to an underestimation of the actual model’s error. In practice, to avoid overfitting,

we are interested in how well the learning model will perform on new independent data through

the estimation of the generalisation error. For this purpose, the snapshots in the database Dl

are generally split into two subsets: i) the training dataset for model learning and minimising

the risk during the optimisation procedure, and ii) the test dataset for final model performance

evaluation. In the following, we make the distinction between the training sample (U , Kl) and

the test sample (U
ú, K

ú
l ).

Error estimation. The objective in the metamodelling process is to find the statistical model

fl (i.e. to estimate the optimal parameters ⁄l) that minimise the risk R [Vapnik, 1999]. In

practice, an empirical risk estimate can be obtained by evaluating the loss function across an

ensemble of inputs in Dl:

‚R(fl, Dl) =
1

N

Nÿ

n=1
L

1
k(n)

l , fl(µ
(n)

)

2
. (II.25)

where the loss function L(kl, fl(µ)) measures a distance between the reference output value kl

and its estimate fl(µ). In the context of regression, losses are generally defined in Lp (p Ø 1).

The choice of a loss function introduces a bias to favour a specific desired behaviour of the

learning model. For multidimensional data, the loss function measures the total distance between

two points as the aggregation of the distance in each dimension. The choice of the loss is then

inextricably linked to the choice of how to weight the distance in each dimension. For instance, in

a regression task, a small value of p further penalises small prediction errors, whereas a large value

of p further penalises large errors. This means that a small value of p aims primarily at having a

small systematic error in the statistical model predictions, making possible to have wrong outlier

predictions. In the opposite, when p is large (with the extreme case of the infinite norm measuring
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the maximum error over the snapshots), the objective is to primarily reduce the model’s error

on the few most challenging snapshots with largest error. In low dimension, the Euclidean norm

(associated with the L2-space) is commonly used in machine learning frameworks. It provides

a reasonable compromise between systematic errors and outliers, and its di↵erentiability makes

it appropriate for training learning algorithms.

II.3.1.c Metamodel generalisation capacity and selection

Standard statistical methods (e.g. polynomial model) generally fail in handling high-dimensional

data with a small training dataset. Alternatives combining more advanced models (e.g. gradient

boosting, neural network) may be developed but they may su↵er from a lack of interpretability,

while it may be an important criterion for the target problem. From a methodological point of

view, it is essential to have a well-defined framework and protocol to compare metamodelling

methods in order to select the most appropriate one for a given problem. In this process, there

are two subquestions: (i) finding the best model structure (the best hyperparameters) for a given

family (e.g. choosing the most suitable total polynomial order P for a polynomial regression

model), and (ii) finding the best model family (or class) for a given problem (e.g. polynomial

model, Gaussian processes, decision trees).

The training error does not reflect model’s generalisation capacity on new independent snap-

shots. For instance, it is biased by model complexity. One can always find the polynomial of

degree P that passes through the P snapshots of the database. The more sophisticated a model,

the more flexible it is, allowing it to adjust to the data and generate a low adjustment error.

However, such a model generalisation may fail during the prediction step when applied to new

independent data. As a result, the test error (the error estimated on the unbiased test data)

o↵ers a suitable metric for evaluating the generalisation capacity of the statistical model and

for answering questions (i) and (ii) stated above. The gap between the training error and the

test error gives insights into model capacity and complexity. Overfitting occurs when the test

error is larger than the training error, indicating that the model’s complexity is too high and the

patterns learned from the training snapshots do not generalise to new snapshots. Conversely, a

training error that is larger than the test error is often a sign of underfitting, meaning that the

model has di�culty representing the variability in the data and its complexity may be increased.

For example, a linear model capacity may be expanded by including more explanatory variables

in its formulation or increasing the total polynomial order in Eq. (II.23). Changing the learning

model structure may leverage its balance towards data fitting (Fig. II.7). The trade-o↵ between

model complexity and goodness-of-fit is often referred to as bias-variance trade-o↵.

In the following, an overview of each model family is given and the key hyperparameters of

each model family are highlighted. Section II.3.2 introduces how polynomial chaos expansion im-

proves the flexibility of the linear model by integrating polynomial features of the inputs. Then,

Sect. II.3.3 explains why the Gaussian process formalism is particularly well-suited to emulate

a wide range of length-scales across the latent variables. And finally, Sect. II.3.4 presents how

decision trees can be implemented to solve a regression problem and how the major problems of

variance instability may be solved by using a boosting procedure. These di↵erent metamodelling
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Figure II.7: Illustration of underfitting and overfitting issues to for arbitrary data observations (dots)
sampled from a quadratic function [Goodfellow et al., 2016]. Left panel: A linear model su↵ering from
underfitting cannot capture the data curvature. Middle panel: A well-suited quadratic function generalises
well to new data observations. Right panel: A high-level polynomial model su↵ering from overfitting
interpolates well the data at the training points but highly oscillates between them.

approaches o↵er a large flexibility of emulation but require some solid knowledge of the many

hyperparameters they handle.

II.3.2 Polynomial chaos expansion

We introduce polynomial chaos expansion as an extension of the linear regression model. The

linear model may be enriched with polynomial combinations of the input parameters, which

can be rearranged to produce an orthogonal polynomial basis adapted to the input probability

distribution.

II.3.2.a Formulation

General formulation. Polynomial chaos expansion uses a linear combination of inputs on a poly-

nomial expansion basis to map the uncertain parameters µ œ Rd to the lth reduced coe�cient

kl:

kl(µ) = ⁄0 H0 +

dÿ

–1=1
⁄–1 H1(µ–1) +

Œÿ

–1=1

–1ÿ

–2=1
⁄–1–2 H2(µ–1 , µ–2) + . . .

=∆ kl(µ) =

ÿ

–

⁄– �–(µ),

(II.26)

where Hi(µ–1 , . . . , µ–d) denote basis polynomials, ⁄– = (⁄0, ⁄–1 , ⁄–1–2 , · · · ) are the model

weights, and – = (–1, · · · , –d) is a multi-index that identifies the components of the multi-

variate polynomials �–. Note that the second line in Eq. (II.26) is more convenient and that

the polynomials �– are re-ordered and match the functions Hi. For instance, in the original

polynomial chaos formulation (i.e. the homogeneous chaos introduced by Wiener [1938]), the

terms Hi were chosen as the Hermite polynomials:

Hi(µ–1 , . . . , µ–d) = (≠1)
d

exp

1
1/2 µT µ

2 ˆd

ˆµ–1 . . . µ–n

exp

1
≠1/2 µT µ

2
. (II.27)
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Table II.2: Optimal choice of polynomial basis based on the input probability distribution [Xiu and
Karniadakis, 2003].

Random inputs Wiener-Askey chaos Support

Gaussian Hermite-chaos R
Gamma Laguerre-chaos R+
Beta Jacobi-chaos [a, b]

Uniform Legendre-chaos [a, b]

For example, one-dimensional Hermite polynomials read:

H0 = 1, H1(µ) = µ, H2(µ, µ) = µ2
≠ 1, H3(µ, µ, µ) = µ3

≠ 3µ, . . . (II.28)

Polynomial basis. The polynomial chaos functions form a orthogonal basis in the L2-space with

respect to the joint probability density distribution of the input parameters µ:

È�–(µ), �—(µ)Í =

⁄

Z
�–(µ)�—(µ) dp(µ) = ”–—, ’–, —, (II.29)

where È · , · Í denotes the inner product in the Hilbert space of the random variables, Z œ Rd is

the space in which µ evolves, p(µ) is the probability density distribution of the inputs, and ”–—

is the Kronecker delta-function.

Historically, the Hermite-chaos expansion has been e↵ective in the context of Gaussian and

non-Gaussian input distributions [Ghanem, 1999]. The popularity of the Hermite polynomial

expansion has been somewhat motivated by Cameron-Martin’s theorem, which states the L2-

convergence of polynomial expansions for any functional of L2 with bounded support [Cameron

and Martin, 1947]. However, for non-Gaussian distributions, the convergence rate is not guar-

anteed and may deteriorate significantly. To overcome this issue, polynomial chaos expansions

were combined with the Askey scheme’s sets of orthogonal polynomials to extend the procedure

to more general random inputs, implying that the choice of the polynomial basis is determined

in practice by the distribution p(µ). Table II.1 gives the correspondence between several Askey

schemes and the associated random distributions. Each type of polynomial in the Askey scheme

forms a complete orthogonal basis that can speed-up the convergence for non-Gaussian distribu-

tions [Ogura, 1972; Xiu and Karniadakis, 2002, 2003]. For example, the Legendre polynomials

form the optimal basis when the input parameters follows a uniform distribution.

In practice, the multivariate orthogonal basis can be made orthonormal and is often built

using the tensor product of one-dimensional polynomial functions:

�– = „–1 ◊ „–2 ◊ · · · ◊ „–d (II.30)

where „–i represents the one-dimensional polynomial function associated with the input –i.

Polynomial chaos expansion still stands as a linear model with respect the polynomial basis

functions. The polynomial functions alleviate the limited flexibility and expressiveness of linear

models, while keeping their easiness of implementation and interpretation.
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II.3.2.b Basis truncation

Once the probability distribution is chosen, {⁄–} are the unknowns to calibrate during the

training stage to build the polynomial chaos metamodel. This calibration can be done through

a Galerkin pseudo-spectral projection (by using the orthonormality property of the polynomial

basis – Eq. II.29) or by solving a regression problem [Berveiller et al., 2006]. With this last

approach, the polynomial chaos expansion coe�cients are obtained by solving a least-square

minimization problem. A gradient descent approach can be used for this purpose. One important

question lies in the choice of the coe�cients to be estimated.

Standard truncation rule. Equation (II.26) describes an infinite sum, which is not easily solv-

able numerically. In practice, a truncated version of the polynomial chaos expansion is used.

Building a polynomial chaos expansion therefore implies to adopt a truncation rule to determine

which polynomial features to keep in the representation, i.e.

kl = fl(µ) =

ÿ

–œ�
⁄– �–(µ), (II.31)

where � is a finite set of orthonormal polynomial functions. A first simple choice comes from

selecting a maximum degree of truncation in �–(µ), meaning that all polynomials involving

the d inputs of maximum degree less or equal to P are retained. Hence, – = (–1, · · · , –d) œ

{0, 1, · · · , P}
d. Stated di↵erently, the set of selected multi-indices for the multi-variate polyno-

mials � is defined as:

� © �(d, P ) = {– œ Nd
: |–| Æ P} µ Nd, (II.32)

where |–| = ||–||1 = –1 + · · · + –d is the multi-index total order. In this case, the number of

explanatory variables in the polynomial model can be very large and rapidly explode when the

number of input parameters increases:

Card (�) =

Q

ad + P

P

R

b =
(d + P )!

d! P !
. (II.33)

We refer to this basis as the full basis for a given total polynomial order P .

Promoting sparsity. In most cases, not all terms in the polynomial basis are relevant and

the most important terms tend to be the main e↵ects and the low-order explanatory variable

interactions. This implies that the high-order interaction terms between the inputs can usually

be removed from the polynomial basis without any e↵ect on the model predictions. In practice,

there are two main techniques to build a sparse polynomial basis: applying a truncation scheme

to the full basis, or adding a penalty term.

Truncation schemes excluding high-order interaction terms have been proposed in the liter-

ature. For instance, Blatman [2009] suggested the hyperbolic truncation scheme involving the
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q-semi-norm:

� © �(d, P, q) =

Ó
– œ Nd

: ||–||q Æ P
Ô

, ||–||q ©

A
dÿ

i=1
(–i)

q

B1/q

, (II.34)

where q œ [0, 1]. The adoption of such a semi-norm penalizes high-rank indices and high-order

interactions. The lower the value of q, the higher the penalty in the determination of �. Note

that q = 1 corresponds to the simple truncation scheme expressed in Eq. (II.32). An alternative

to the hyperbolic truncation scheme is the cleaning strategy, which builds an optimal sparse

polynomial chaos expansion containing at most P significant basis functions. Starting from the

full basis, the terms that have a low magnitude coe�cient are discarded from the basis, i.e. when

|⁄–| Æ v ◊ max
–œ�

|⁄–|, (II.35)

where v is the significance factor. The polynomial chaos is iteratively enriched with significant

terms until either P terms are retained or if the given maximum index for – has been reached.

Sparsity can also be promoted by adding a penalty term to the least-square minimisation

problem, for instance through a L1 penalty factor with least absolute shrinkage and selection

operator (LASSO) [Tibshirani, 1996] or least-angle regression (LAR) [Blatman and Sudret, 2011].

In the polynomial chaos framework, the model’s parameters are the coe�cients {⁄–}–œ�,

while the main hyperparameters are the total polynomial order P and the truncation scheme

parameters such as the hyperbolic coe�cient q when using hyperbolic truncation scheme or

the significance factor v and the maximum number of terms when using the cleaning strategy.

II.3.3 Gaussian process regression model

In complement to polynomial chaos expansion, we aim to construct a Gaussian process regression

model. As stated by Rasmussen and Williams [2006], a Gaussian random process is a random

stochastic process indexed over the parameter space for which any finite collection of functions

has a joint Gaussian distribution. It is then fully described by its mean and correlation structure

(or kernel) that are conditioned by the training dataset (U , Kl). This implies that a Gaussian

process regression model can make predictions of the quantities of interest incorporating prior

knowledge and can provide uncertainty estimates over the predictions. In the present context of

reduced-order modelling, the Gaussian process regression model aims at predicting the reduced

coe�cients over the variation interval of the uncertain parameters µ.

II.3.3.a Formulation

Reduced-coe�cient prediction. The Gaussian process regression framework assumes that the

mapping fl is a Gaussian stochastic process such that:

kl = fl(µ) ≥ GP (ml(µ), rl(µ, µú
)) ’ (µ, µú

) œ P ◊ P, (II.36)
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where ml(µ) = E[fl(µ)] is the mean function of the Gaussian process, and rl(µ, µú
) = E[(fl(µ)≠

ml(µ)) (fl(µú
) ≠ ml(µú

))] is its associated covariance function.

Gaussian process regression starts with a prior distribution over the mean and covariance

function. For instance, the prior mean can be assumed constant and equal to the empirical

average of kl estimated on the training samples Kl. The prior covariance is specified by choosing

a kernel (Sect. II.3.3.b). Note that in the framework of POD, some properties on the reduced

basis coe�cients are satisfied (Sect. II.2.1.d). When whitening is applied, the prior mean of the

Gaussian process regression model can be set to 0, and its prior variance can be set to 1. The

learning stage consists in updating the mean and covariance by integrating the information from

the reduced-coe�cient dataset.

The joint distribution between the training dataset (U , Kl) and some new test evaluations

(U
ú, K

ú
l ) is expressed with respect to the kernel as:

S

UKl

K
ú
l

T

V ≥ N

Q

a0,

S

Url(U , U) + s2
l I rl(U , U

ú
)

rl(U
ú, U) rl(U

ú, U
ú
)

T

V

R

b , (II.37)

where sl is the noise variance (Eq. II.21), and I stands for the identity matrix. We can derive the

inference formula for the test reduced coe�cients from the following conditional distribution:

K
ú
l | U , Kl, U

ú
≥ N (mú

l , cov(K
ú
l )) , (II.38)

where Y
_]

_[

mú
l = rl(U

ú, U)
#
rl(U , U) + s2

l I
$≠1

Kl

cov(K
ú
l ) = rl(U

ú, U
ú
) ≠ rl(U

ú, U)
#
rl(U , U) + s2

l I
$≠1

rl(U , U
ú
).

(II.39)

All terms in Eq. (II.39) are known. The covariance formulation depends on prior variance

rl(U
ú, U

ú
) over the test dataset refined by information from the training dataset. Note that

in practice, the matrix [rl(U , U) + s2
l I] in Eq. (II.39) can be inverted using a computationally-

e�cient Cholesky decomposition [Rasmussen and Williams, 2006]. The posterior distribution

for the lth reduced coe�cient kl can then be directly estimated using Eq. (II.38). The Gaussian

process regression estimator is set as the mean posterior, which is a linear combination of kernel

distances computed between the test point and all the training data.

II.3.3.b Choice of the kernel

The choice of the kernel rl(µ, µú
) is at the core of Gaussian process regression as it entails specific

assumptions on data covariance in the input space P, i.e. it describes how similar two data

points (µ, µú
) behave. The metamodel is mainly built by estimating the kernel hyperparameters

(e.g. variance, characteristic length-scales) that provide a good fit to the training dataset. Several

kernel functions are available in the literature among whom the radial basis function kernel and

the more general Matérn kernels.

Radial basis function kernel. The radial basis function (RBF), also known as the squared ex-

ponential kernel, is the most widely used kernel in the framework of Gaussian process regression.
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The RBF is a stationary kernel as it is expressed as a function of the ¸2-norm Euclidean distance

d(µ, µú
) = Îµ ≠ µú

Î2 for µ and µú, two sets of parameters of the input space P:

rrbf(µ, µú
) = Í exp

A

≠
d(µ, µú

)
2

2 ⁄2

B

. (II.40)

where Í is the signal variance parameter, and ⁄ is the length-scale (or stability) hyperparameter.

The RBF kernel is infinitely di↵erentiable and has therefore interesting smoothness properties.

Matérn kernel. The Matérn class of covariance functions can be seen as a generalisation of the

RBF kernel. In additional to the length-scale ⁄, it also includes a smoothness hyperparameter.

The Matérn kernels are also stationary and can be generally expressed as:

rMatérn(µ, µú
) = Í

2
1≠‹

“(‹)

AÔ
2‹

⁄
d(µ, µú

)

B‹

B‹

AÔ
2‹

⁄
d(µ, µú

)

B

, (II.41)

where “( · ) is the Gamma function and B‹( · ) is a modified Bessel function, and where Í is the

signal variance parameter and ⁄ > 0 is the length-scale as for the RBF kernel in Eq. (II.40), and

where ‹ > 0 is the smoothness hyperparameter. The smaller ‹, the less smooth the metamodel

is. When ‹ æ Œ, it becomes equivalent to the RBF kernel.

The stochastic Gaussian process resulting from a Matérn kernel is Á‹Ë≠1 times di↵erentiable

in the mean-square sense. The smoothness parameter ‹ will take the form ‹ = p + 1/2, p œ

N, since it is a common choice in machine learning framework (e.g. Elbeltagi et al., 2021;

Mukesh Kumar and Kavitha, 2021).

Anisotropic kernel. The length-scale parameter ⁄ in the RBF or Matérn kernel represents the

level of variability in the reduced coe�cients as a function of distance in the input space P. In

practice, the length-scale can either be a scalar or can vary for each dimension of the input vector

µ. The kernel is then qualified as anisotropic. When the input parameters are of very di↵erent

nature, it is recommended to adopt an anisotropic kernel. Anisotropy may be embedded using

a distinct correlation length-scale per dimension:

d(µ(m), µ(n)
) =

Ò
(µ(m) ≠ µ(n))T � (µ(m) ≠ µ(n)), (II.42)

where µ(m) and µ(n) are realisations of the input vector µ, and where � œ Rd◊d corresponds to

the length-scale matrix (with d the size of the input vector µ). If the di↵erent length-scales are

assumed independent, the matrix � will be of the form:

� = diag(1/(⁄2
µ1), 1/(⁄2

µ2), · · · , 1/(⁄2
µd

)), (II.43)

where µi represents the ith input parameter in µ. This form of the Gaussian process length-scale

matrix is referred to as automatic relevance determination (ARD) in the literature.
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II.3.3.c Hyperparameter optimisation

Hyperparameter settings have a substantial impact on the Gaussian process regression model

prediction performance. An optimisation process is usually used to determine an optimal value

for the hyperparameters rather than simply specifying them. In the present context of reduced-

order modelling, the reduced coe�cients can be very di↵erent due to the complex nature of

the latent space. It is therefore important to optimise the hyperparameters for each of the L

Gaussian process regression models to adapt to the characteristic length-scale of each mode

(Sect. II.3.3.a). For the present noisy Gaussian process regression framework with anisotropic

kernel, the set of hyperparameters ◊l includes the correlation length-scales, the noise variance

as well as the Gaussian process variance, meaning that ◊l = {s2
l , Í, ⁄µ1 , · · · , ⁄µd} œ Rd+2.

Empirical Bayesian maximisation is used to determine the optimal set of the hyperparameters

maximising their posterior:

◊l,opt = arg max

◊l

log p(◊l | U , Kl)

∆ ◊l,opt = arg max

◊l

log p(Kl | U , ◊l) + log p(◊l),
(II.44)

The first term called the marginal log-likelihood is assumed to be Gaussian; and the second term

involves the prior distribution over the hyperparameters. In the literature, gradient descent is

widely used to find the local optimum of Eq. (II.44) [Rasmussen and Williams, 2006].

Maximum log-likelihood estimation. Without making any further assumption about the noise

or the length-scales, one may proceed with a naive optimisation of the log-likelihood, assum-

ing uniform prior distributions over the hyperparameters (i.e. the term p(◊l) in Eq. II.44).

Unfortunately, gradient descent algorithms perform poorly in this case due to multiple local

optima. To overcome this issue, one way is to perform multiple gradient descent iterations start-

ing from di↵erent hyperparameter initial conditions. The final solution is then chosen as the

one achieving the highest maximal log-likelihood (MLL) score. These multiple gradient descent

iterations increase the computational cost of the Gaussian process regression, especially since

the optimisation process is repeated L times for each reduced coe�cient.

Maximum a posteriori estimation. To ensure convergence to a solution consistent with reduced-

basis properties, the optimisation procedure can be informed by providing prior distributions

(the term p(◊l) in Eq. II.44) and an appropriate starting point for the hyperparameters. These

information can be derived from the reduced basis coe�cients. This approach is referred to as

the maximum a posteriori (MAP) estimation in the following.
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The key settings of Gaussian process regression are related to the kernel: the kernel func-

tion (e.g. RBF, Matérn), and the kernel hyperparameters – the correlation length-scales

(⁄µ1 , · · · , ⁄µd), the noise variance s2
l and the Gaussian process variance Í. These hyperpa-

rameters are estimated through an optimisation process (MLL, MAP) that can be costly but

that is necessary to find the Gaussian processes that fit the most the observations. Note that

the Matérn class of functions includes an additional smoothness parameter ‹. In practice,

strong smoothness is irrelevant when dealing with experimental data since it might be hard

to distinguish high values of smoothness (‹ Ø 7/2) from noisy data [Rasmussen and Williams,

2006]. Since the training dataset is assumed to be noisy in this work, it is important to evalu-

ate the sensitivity of Gaussian process regression to the choice of the kernel and in particular

of the smoothness parameter ‹.

II.3.4 Gradient tree boosting

Gradient boosting is an ensemble learning algorithm that sequentially aggregates metamodels. It

can be applied to di↵erent metamodelling classes but decision trees are typically good candidates

for boosting when their size is reasonable. They are rather fast to train and yield interpretable

models, but they may su↵er from significant instability (slight variations in data can result

in significantly di↵erent trees) and typically result in high variance. Boosting mitigates these

limitations.

II.3.4.a Principle of boosting

In practice, a boosted model fl can be expressed as a sum of metamodels belonging to the same

class of functions T :

kl = fl(µ) =

Mÿ

m=0
Tm(µ; ⁄m)

¸ ˚˙ ˝
fl,M (µ)

, (II.45)

where T denotes the class of metamodels (e.g. decision trees), M the number of individual

metamodels to be trained, and ⁄m the hyperparameters related to the mth metamodel Tm (e.g.

the number of leaves for decision trees).

The idea behind boosting is to iteratively add new metamodels to the existing sum to provide

increasingly robust predictions. Boosting stands as a functional gradient descent. In a general

framework, boosting aims at minimising the risk function (Eq. II.22). For a given di↵erentiable

loss function L, the minimisation problem can be approximated using gradient descent on the

empirical loss (Eq. II.25):

Y
_]

_[

fl,0 = T0 œ R

fl,M = fl,M≠1 ≠ fl Ò ‚R(fl,M≠1, Dn) ≈∆ TM = ≠fl Ò ‚R(fl,M≠1, Dn), ’ M > 0,
(II.46)

where fl œ R is the gradient descent step (or shrinkage), and the initial guess fl,0 is usually set
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as the mean over the training snapshots.

At each iteration, a new metamodel fl,M is introduced as an estimator of ÒL(fm), leading

to sequentially dependent learners. Note that when the risk is derived from the squared-error

loss, the gradient term ÒL(fl,M ) matches the pseudo-residuals. In this specific case, the new

metamodel is fitted to the current least-square pseudo-residuals:

fl,M : µ ‘æ kl ≠ fl,M≠1(µ), (II.47)

with kl the reference lth reduced coe�cient. In a more general framework, any almost everywhere

di↵erentiable loss can be implemented for boosting. More robust criterion such as the absolute

error or the Huber loss [Friedman, 2001; Huber, 2011] may provide stronger resistance to outliers,

while being almost as e�cient as squared-errors.

Techniques for improving gradient descent also apply to the boosting procedure.

– It is possible to tune the learning step through a shrinkage term fl œ ]0, 1] that controls

the learning rate and prevents overfitting [Friedman, 2001]. However, smaller values of fl

(more shrinkage) increase the computational cost: it slows down the convergence of the

gradient boosting procedure as fl,M requires a larger amount M of metamodels. Usually,

fl is set small (less than 0.1) and an optimal value for M is obtained by an early stopping

criterion.

– Stochastic gradient boosting, in analogy with stochastic gradient descent (SGD), can pro-

duce more accurate boosting models through variance reduction while reducing computa-

tional cost by introducing random mini-batch averaging. It uses subsamples of the training

batch to estimate empirical risk gradient at each iteration [Friedman, 1999]. Usually, the

fraction of data kept in the mini-batch is less than 50% of the training batch size.

– An early stopping criterion may be used to determine how many trees should be retained

in the boosting model to prevent overfitting and to maximise generalisation error. Hy-

perparameters control the early stopping rule such as the proportion of data set aside for

validation, the number of iterations without performance improvement or the tolerance

threshold (the algorithm is stopped when the performance is not improved by at least the

tolerance value).

II.3.4.b Regression trees

We now introduce decision trees – or more precisely classification and regression trees (CART) –

as a piecewise constant function [Breiman et al., 2017]. Decision trees partition the input space of

µ into subregions {R1, R2, . . . , RA} associated with constant local responses {“1, “2, . . . , “A}.

Mathematically, a decision tree model can be written as:

T (µ; ⁄) =

Aÿ

a=1
“a 1(µ œ Ra), (II.48)

with ⁄ = {Ra, “a}a=1,...,A.
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Approximate suboptimal solutions of ⁄ can be computed from an iterative recursive algo-

rithm. The algorithm can be summarized as follows: at each iteration, the algorithm chooses

an optimal input parameter (µi, i = 1, . . . , d) to split the domain along with a splitting value

s. For the first iteration, the full domain is split into two subsets R1(i, s) = {µ | µi Æ s} and

R2(i, s) = {µ | µi > s}. Solutions for µiú and sú are obtained from the following minimisation

problem:

min
i,s

S

Umin
“1

ÿ

µœR1(i,s)
L(“1, k(n)

l ) + min
“2

ÿ

µœR2(i,s)
L(“2, k(n)

l )

T

V , (II.49)

where L is the loss function, “1 and “2 are constant values associated with the two subspaces R1

and R2, and {k(n)
l }n the reduced basis coe�cients of the training snapshots. Finding optimal

values for s and i is done by scanning through all of the inputs. It remains computationally

feasible but scales with the dataset size. Determining the domain partitions “1 and “2 is usually

an easy task. For instance, the optimal solution for the mean-square error is the mean value

obtained over the corresponding subspace, i.e. “1 = mean(k(n)
l |’µ(n)

i œ R1(i, s)). Finally, this

process is repeated recursively on all of the resulting subregions. At the end of the process, the

final subregions correspond to the terminal nodes of the tree and related “ values coincide to

the metamodel responses.

One issue in decision trees relates to the size of the trees, or more generally to their statistical

complexity. The aforementioned procedure has no stopping criteria, meaning that the procedure

maximises the tree complexity as it splits the input space into as many snapshots as there are

in the training database. The final subregions (the leaf nodes of the tree) will only contain a

unique sample. This will result in both overfitting and increased computational cost. We now

discuss how to handle the complexity of trees in the context of gradient boosting.

II.3.4.c Managing tree complexity for boosting

Tree complexity is characterized by the depth D and the number of terminal nodes J . While

a large tree overfits data, a small tree might not capture the key patterns present in the data.

Boosting partially removes the issue of tree complexity: if a tree does not capture the full

complexity of the response surface, the next trees will balance this lack of accuracy and improve

the overall response. In practice, tree complexity is usually kept small in the context of boosting

for computational reasons.

An initial guess on maximum tree depth can be given from the interaction level complexity

of the input variables. For instance, if the input dimension stands as µ = {µ1, . . . , µd} œ Rd,

no interaction of order larger that d is possible. A tree with a maximum depth d + 1 handles

at most dth-order e↵ects. For instance, three-depth tree will allow second-order interactions at

maximum. There is therefore no reason to have trees with a depth much larger than the input

dimension D Æ d + 1. It should be noted, however, that for statistical reasons, which are highly

dependent on the cases studied, enabling slightly increased tree depth may be likely to slightly

increase the performance of the boosting method. As a result, the rule is merely a hint of the

order of magnitude to select and usual tree depth is chosen such that D ¥ d + 1.
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Trees naturally tend towards overfitting. Tree complexity must therefore be constrained

by setting hyperparameters. One may configure (i) a minimum number of samples per leaf

node, (ii) a maximum depth of the tree, (iii) the features to look at for choosing the splitting

rule, (iv) a minimum threshold for the decrease of the cost function (Eq. II.49) and/or (v) a

penalisation term. For instance, cost-complexity pruning introduces an additive penalisation

term to the tree cost function. For the mean-squared error, the new cost can be expressed as:

C–CCP(T ) =

Jÿ

m=1
Nm Qm(T ) + –CCP J,

where

Y
________]

________[

Nm = Card ({µ œ Rm}) ,

“m =
1

Nm

ÿ

µ(n)œRm

k(n)
l ,

Qm(T ) =
1

Nm

ÿ

µ(n)œRm

(k(n)
l ≠ “m)

2,

(II.50)

where J denotes the number of terminal leaves, and –CCP Ø 0 is the penalisation hyperparam-

eter (larger values of –CCP result in smaller trees). To find the optimal tree, we successively

collapse the internal node that produces the smaller increase in
q

m NmQm(T ). The procedure

is reproduced sequentially until reaching the single-node (root) tree. This algorithm is referred

to as weakest link pruning. Optimal estimation of –CCP may be achieved by cross-validation.

The main strength of gradient boosting is its ability to approximate highly non-linear response

surfaces, even with severe discontinuities, using boosted decision trees. Gradient boosting is

typical of machine learning algorithms that provide a high degree of flexibility since it is

based mostly on a statistical representation of the data but quickly loses physical meaning.

The flexibility of boosting is ensured by a large number of parameters that concern both the

configuration of the boosting procedure (similar to a gradient descent) and the decision trees.

Tuning all these parameters can be tedious and requires a good comprehensive knowledge of

statistics fundamentals.

II.4 Learning algorithm synthesis

The reduced-order models we consider in this work include two components: a dimension re-

duction component (Sect. II.2) and a regression component (Sect. II.3). The construction of the

reduced-order models can be done using a training dataset. The resulting reduced-order models

are then evaluated using an independent dataset referred to as the test dataset.

Statistical model hyperparameters add degrees of freedom to the reduced-order model con-

struction. The test dataset should not be used to both choose the model hyperparameters and

compare the di↵erent model families. Otherwise, one may overfit each model candidate by fine-

tuning their hyperparameter values based on the test performance. This issue is particularly

present if the number of hyperparameters is large as in gradient tree boosting and in neural

network approaches (having a large number of hyperparameters gives more flexibility in the

model construction). Moreover, using a dataset that is independent of the training dataset to
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determine the hyperparameters values is essential to provide unbiased estimations of optimal

hyperparameters and ensure generalisation capacity of the reduced-order models. Hence, the

full LES dataset is split into three subsets: i) a training dataset to learn the dimension reduction

model and the mapping between the uncertain inputs µ and the reduced coe�cients k using re-

gression models; ii) a calibration dataset to investigate multiple hyperparameter configurations

within each family; and iii) a test dataset to evaluate the capacity to predict LES quantities

of interest for new samples of the uncertain input parameters. A fairly standard trade-o↵ for

splitting the database is roughly 60%, 20%, 20% for training, validation and test, respectively.

The algorithm we use to train and validate the reduced-order models can be summarised as

the following training/prediction two-step process.

Training stage

1. Build the latent space representation (Eq. II.3), including training the encoder and decoder

functions (using POD or autoencoders).

2. Transform data inputs µ and outputs Kles: the inputs µ follow a uniform statistical

distribution on [0, 1]
d (where d is the number of uncertain inputs); and the outputs Kles

are encoded into the latent variables and whitened.

3. Train the L regression models {fl}l=1,...,L (e.g. using polynomial chaos expansion, Gaussian

process regression and gradient tree boosting) independently: i.e. estimate the weight

parameter values {◊l,opt}l=1,...,L (e.g. using ordinary least squares or gradient descent

depending on the model) from training data.

4. Choose the best values of the hyperparameters to maximise the regression model’s perfor-

mance from calibration data.

Prediction stage

1. Predict the latent variables {kl(µú
)}l=1,...,L for LES test samples of input parameters µú

(Eqs. II.38-II.39),

2. Perform decoding to recover the fields Kú
rb from the predicted latent variables for the test

samples (Eq. II.15),

3. Compare the emulated fields with the reference LES test samples Kú
les (Eqs. IV.3-IV.4).

Figure II.8 shows the final architecture of the reduced-order model, and illustrates the three

successive key steps: data preprocessing, emulation on the reduced-dimensional latent space,

and decoding to the original high-dimensional space. The performance of the reduced-order

model may be validated by comparing the emulated fields to the LES reference solutions over

the test database. The performance criterion can be chosen according to the objective of the

reduced-order model. For example, in a regression context, Chapter IV relies on the Q2 metric

to evaluate the model accuracy.
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Figure II.8: Schematic of the reduced-order modelling approach consisting in training L independent
metamodels to emulate the L reduced coe�cients [k1, · · · , kL] with respect to the input parameters µ,
and then to reconstruct the LES field of interest by an inverse decoding transformation (the emulated
LES field can be compared to the LES test dataset for validation).
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Chapter III

Case study of dispersion around a wall-

mounted obstacle

The scope of this thesis is to thoroughly investigate di↵erent reduced-order modelling ap-

proaches informed by LES simulations, which provide a complex description the flow and

tracer concentration patterns in urban environment. To achieve this objective, we need to

choose a suitable case study that is representative of the microscale urban flow structures but

that also provides access to a large database for detailed analysis. We therefore consider a two-

dimensional case of dispersion in an atmospheric boundary-layer interacting with an isolated

surface-mounted obstacle, for which inlet atmospheric conditions and source parameters are

uncertain and induce uncertainties in the flow velocity and tracer concentration field statistics.

The obstacle has a simplified square section, which is simple enough to limit computational

cost but at the same time the induced flow structures are well studied in the literature by

experimental wind tunnel studies [Li and Meroney, 1983a,b] and CFD simulations [Li and

Stathopoulos, 1997; Blocken et al., 2008b; Tominaga and Stathopoulos, 2009, 2010; Gousseau

et al., 2012; Bazdidi-Tehrani et al., 2013]. This chapter details the case study and the asso-

ciated numerical setup. The complexity of the flow and tracer response is briefly illustrated,

along with the diversity of the response to the uncertain parameters. The generation of the

LES ensemble in this parametric setting is then described.
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III.1 Case study description

This section presents the numerical solver and the case study that is simulated using LES in

this work.

III.1.1 Numerical solver

The computations are performed with the AVBP1 DNS and LES code developed by CER-

FACS [Schönfeld and Rudgyard, 1999; Gicquel et al., 2011]. AVBP solves the compressible

Navier-Stokes equations on unstructured grids. Additional advection-di↵usion equations are

solved for passive scalar dispersion. It is widely used to predict non-reactive and reacting un-

steady flows in simple or complex geometries, and is applicable to pollutant formation and

atmospheric dispersion [Poubeau et al., 2016; Paoli et al., 2020].

In this work, the numerical discretisation is based on an explicit, centred scheme from the

continuous Taylor-Galerkin family called TTG4A, which is third-order in space and fourth-

order in time on unstructured grids [Colin and Rudgyard, 2000]. An artificial compressibility

approach (also known as Pressure Gradient Scaling/PGS [Ramshaw et al., 1985]) is used as

compressibility and acoustics e↵ects are not relevant for atmospheric flows that are very low-

Mach flows: with this approach, the solution of the incompressible equations (Eq. I.16) are

1AVBP documentation, see http://www.cerfacs.fr/avbp7x/
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recovered with this transformation of the compressible formulation of AVBP. It enables to artifi-

cially reduces the speed of sound and thereby relaxes the constraint on the time-step due to the

Courant-Friedrichs-Lewy (CFL) condition (for explicit time discretisation scheme). This makes

the artificial compressibility approach competitive with incompressible solvers.

III.1.2 Case study description

The case study is selected to be representative of a canonical dispersion problem, namely the

interaction of an atmospheric boundary flow with a surface-mounted obstacle. In a context of

construction and validation of reduced-order models, it is necessary i) to dispose of as many

LES snapshots as may be needed for a thorough evaluation of the source errors, and ii) to

be able to quickly implement and evaluate di↵erent approaches. This is in contradiction with

the use of LES, which involves an important computational and storage burden, with database

sizes that are expected to be limited in practical applications (about 10 to 100 snapshots). For

the sake of this study, the canonical problem is restricted to a two-dimensional computational

domain. It induces artefacts in the numerical models, as turbulence, which is partly resolved

in LES, is intrinsically three-dimensional: the two-dimensional structures are perfectly coherent

in the missing (spanwise) direction; fundamental mechanisms like vortex stretching are absent

in two-dimensional flow simulations [Pope, 2000], while other phenomena like back-scatter be-

come significant [Rivera et al., 2003]. Still, the proposed two-dimensional setup described below

involves the main physical processes that are relevant for atmospheric dispersion and the asso-

ciated challenges in terms of reduced-order modelling: the problem exhibits a wide variety of

scales (with di↵erent time-scales for the incoming flow, vortex shedding and turbulence around

the obstacles), with a strong nonlinear response to input parameters, in particular to tracer

source location uncertainty.

As illustrated in Fig. III.1, we consider a case in which a single obstacle interacts with a

fully-developed neutral turbulent boundary-layer flow.

H=1m

10 H 21 H

!" =10 H
z

x

Roughness !$

Tracer source area 
(&'(" , !'(" )

Wind profile

Reference velocity +,-

Ground surface

Obstacle
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turbulent inlet

Free surface

Imposed
pressure outlet

Figure III.1: Sketch of the test case modelling a turbulent boundary-layer flow (coming from the left
boundary) interacting with a surface-mounted square obstacle (crosshatched area). Text boxes indicate
the uncertain parameters. The grey area indicates the area for the tracer emission source.

The height of the obstacle is H = 1 m. The two-dimensional computational domain is 31-m

long (x-axis, streamwise direction) by 10-m high (z-axis, vertical direction). The domain height
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74 Chapter III. Case study of dispersion around a wall-mounted obstacle

is ten times the obstacle height following guidelines for urban flow simulations [Franke et al.,

2011]. It is discretised with a uniform triangular mesh comprising 240,000 elements with an edge

size �xz = H/10.

The left boundary of the domain (at x = ≠10 m) corresponds to a turbulent inlet boundary

where unsteady wind conditions are imposed to mimic atmospheric boundary-layer turbulence,

as detailed in Sect. III.1.3. The right boundary (at x = 21 m) and the upper boundary (at

z = 10 m) correspond to an outlet with imposed pressure condition to mimic the atmosphere.

The ground (at z = 0 m) is modelled as a rough surface with a law of the wall based on the

roughness length z0 [m]. The obstacle surfaces (the obstacle is centred in (x, z) = [0.5, 0.5] m◊m)

are modelled with the standard law of the wall.

The passive gas tracer emission source is constant in time and modelled by a Gaussian shape

in space with a spread parameter ‡src = 0.1 m around the center of release (xsrc, zsrc):

Qs(x, z; xsrc, zsrc) =
1

2fi ◊ ‡2
src

exp

;
≠

1

2 ◊ ‡2
src

1
(x ≠ xsrc)

2
+ (z ≠ zsrc)

2
2<

. (III.1)

The emission source can be either located upstream, above or downstream of the obstacle as

seen from the tracer source area in Fig. III.1.

III.1.3 Inflow boundary condition modelling

Mean inlet wind profile. The inlet wind condition imposes a mean vertical profile uinlet, based

on the Monin-Obukhov similarity theory in neutral conditions:

Y
__]

__[

uinlet(z) =
u·

Ÿ
log

3
z + z0

z0

4
,

uinlet(z = zc) = uzc ,

(III.2)

where u· [m s≠1] is the friction velocity, Ÿ = 0.41 is the dimensionless von Kármán constant,

z0 [m] is the aerodynamic roughness length, and z [m] is the vertical axis in the domain. In this

study, the velocity uzc at the reference height zc = 10 m and the characteristic surface roughness

length z0 are used as input parameters in order to mimic operational conditions, where velocity

measurements are typically obtained at some arbitrary reference height [Brutsaert, 2013; Sousa

and Gorlé, 2019]. From uzc and z0, Eq. (III.2) can be inverted to obtain the corresponding

friction velocity u· :

u· =
Ÿ

log

1
1 +

zc
z0

2uzc . (III.3)

In accordance with the inlet profile, the same surface roughness length z0 is considered assuming

a fully developed boundary-layer flow in equilibrium with the rough terrain.

Inlet wind fluctuations. In addition to the mean inlet wind profile from Monin-Obukhov simi-

larity theory, wind fluctuations are superimposed on the mean profile to obtain a turbulent inlet

boundary condition that mimics boundary-layer turbulence. The synthetic fluctuations are gen-

erated with the Kraichnan method [Kraichnan, 1970], and follow the Passot-Pouquet turbulence
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spectrum [Passot and Pouquet, 1987]. The target turbulent kinetic energy ktke at the inlet is

estimated as ktke = u2
· /


Cµ [Richards and Hoxey, 1993].

III.1.4 Flow and tracer dispersion main features

We present here what is identified as the reference LES run of the parametric study in order to

provide insights into the unsteady physical processes that are captured by LES. This reference

LES run corresponds to the nominal snapshot, i.e. it corresponds to the averaged atmospheric

conditions over the ensemble of LES snapshots that we generate in the uncertainty quantification

study (that is further discussed in Sect. III.2.2.a). For this reference snapshot, the inlet wind

profile is defined by the parameters uzc = 5.78 ms≠1 and z0 = 2.79 ◊ 10
≠2 m; the emission

source is centred at (xsrc, zsrc) = (≠1.01m, 0.83m).

III.1.4.a Output variable normalisation

To analyse the LES simulations, we normalise the output velocity and concentration variables u

and K by a reference velocity u(ref)
· = 3.7◊10

≠1 ms≠1 and a reference length scale (the obstacle

height H = 1m) as follows:

Âu =
u

u(ref)
·

, ÊK = K

A
u(ref)

· H
2

Qs

B

, (III.4)

where the normalised velocity and tracer concentration variables are denoted by Âu and ÊK,

respectively, and where Qs is the flow rate. The value of u(ref)
· represents the mean friction

velocity for the flow conditions explored in the parametric study (see Sect. III.2.2.a for further

details). In the following, we drop the tilde notation for the sake of simplification.

III.1.4.b Instantaneous flow and tracer dispersion features

Figure III.2 shows several instantaneous normalised tracer concentration fields along with in-

stantaneous vertical profiles of streamwise wind velocities for the nominal LES snapshot.

The tracer concentration patterns observed in Fig. III.2 illustrate the complexity of the

dispersion process:

– Upstream of the obstacle, the perturbed logarithmic profile (at x = ≠3.5 H) highlight the

turbulent nature of the flow. As a result of the flow fluctuations, the plume dispersion

upstream of the obstacle is bi-modal: the tracer is either trapped in the recirculation zone

on the windward face of the obstacle, or advected downstream of the obstacle.

– Downstream of the obstacle, the flow is driven by a combination of the quasi-periodic

vortex shedding induced by the flow-obstacle interaction and the background turbulence

propagating from the inlet. The velocity profiles at x = 5 H and x = 10 H indicate

that a reverse flow occurs near the ground, associated with a second recirculation region,

transporting the tracer back towards the obstacle.
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76 Chapter III. Case study of dispersion around a wall-mounted obstacle

Figure III.2: Instantaneous normalised tracer concentration fields at times t = 100, 250 and 400 s from
the reference LES with inlet flow parameters uzc = 5.78 ms≠1, z0 = 2.79 ◊ 10

≠2 m, and tracer source
position coordinates xsrc = ≠1.01 m and zsrc = 0.83 m. Three vertical profiles of instantaneous streamwise
velocities at x = ≠4, 5 and 10 m are superimposed on the fields.

These qualitative observations match the typical patterns observed for flow and tracer dispersion

in the vicinity a square obstacle. In spite of the two-dimensional representation of turbulence,

the numerical results are qualitatively similar to several experiments with bidimensional square

section obstacles (infinitely long in the spanwise direction) [Vinçont et al., 2000; Gamel, 2015].

III.1.4.c Flow and tracer concentration field statistics

The time-averaged tracer concentration is the primary output of interest for a dispersion study.

Other flow statistics, such as mean airflow statistics or second-order statistics (kinetic energy,

momentum and scalar turbulent fluxes), are useful for physical understanding and modelling

of plume dispersion. These quantities can be extracted from LES data, as they o↵er a rich

description of the turbulent flow. However, it implies to define a time-averaging window to

collect the statistics.

Time-averaging process. Identifying the physical time of simulation necessary to achieve con-

verged LES statistics is one issue when generating a database of parameterised LES snapshots

to avoid introducing noise during the reduced-order model training stage.

For each LES snapshot, the initial flow field is specified in adequation with the inflow bound-

ary condition (Sect. III.1.3). A spin-up is then necessary to establish turbulence throughout the

computational domain and overcome the initial time transient. Following the spin-up, the LES
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model should be run a certain time period to obtain LES field statistics (this is the statistically-

stationary phase). This time period depends on the choice of the inflow parameters and therefore

on each LES snapshot of the database.

In the present case, the averaging window is based on the characteristic time scale of the

vortex shedding. Each LES simulation is run for a total duration corresponding to 40 periods

of the vortex shedding, and the first four periods are excluded from the averaging process. For

the nominal snapshot, this process leads to 414 s of physical time, which corresponds to about

50 convective times based on the length of the domain and the inlet mean velocity at the height

of the obstacle.

First-order statistics. To illustrate the flow complexity around the obstacle, Fig. III.3 shows

the line integral convolution (LIC) vector field obtained from the time-averaged airflow for the

nominal snapshot. LIC consists of a visualisation technique convolving noise with the vector

field u to produce streaking patterns that follow vector field tangents [Cabral and Leedom,

1993]. This figure highlights four specific flow regions associated with (1) clockwise rotation

i) close to the inlet, ii) above the obstacle rooftop, and iii) in the wake of the obstacle centred

on (x, z) ¥ (5.3 m, 1 m); and (2) counter-clockwise rotation in the vicinity of the leeward surface

of the obstacle centred on (x, z) ¥ (1.6 m, 0.5 m). The topology of the recirculation areas is

consistent with the experimental data available in the literature for surface-mounted obstacles

with high aspect ratios [Martinuzzi and Tropea, 1993; Vinçont et al., 2000].

Figure III.3: Line integral convolution (LIC) of the velocity field (white lines) along with horizontal
mean velocity (m s≠1; background colormap) for the time-averaged reference snapshot corresponding to
Uzc = 5.78 ms≠1 and z0 = 2.79 ◊ 10

≠2 m.

These complex airflow features are critical for plume dispersion prediction, as the tracer tends

to be trapped in recirculation regions. Regarding the tracer field, the features already observed

in the instantaneous fields in Fig. III.2 are present in the time-averaged tracer concentration

field of Fig. III.4. Close to the windward wall of the obstacle, there is a first tracer accumulation

area, with significant tracer concentration close to the ground, which extends to axial locations

upstream of the emission sources due to the reverse flow velocity in this region (Fig. III.3).

77



78 Chapter III. Case study of dispersion around a wall-mounted obstacle

Above the obstacle top wall, the tracer is deflected and convected downstream, following the

deviation of the mean flow induced by the obstacle. In the wake of the obstacle, the plume

disperses due to the unsteady motion induced by vortex shedding. A fraction of the tracer

plume accumulates in the wake clockwise recirculation zone. Conversely, there is no significant

tracer accumulation in the anti clockwise recirculation close to the leeward wall for this case. It

is further evidenced in Sect. III.2.2.c that varying the tracer source location leads to di↵erent

regions of tracer accumulation, highlighting the strong nonlinearity of the concentration field

response to the uncertain input parameters.

These downstream features are consistent with what was observed by Philips [2012] (Chap-

ter 3) for an emission source located on a cubical obstacle roof, and by Vinçont et al. [2000] for

a release downstream of a high aspect ratio obstacle with a square section.

Figure III.4: Time-averaged normalised tracer concentration field for the LES reference snapshot corre-
sponding to Uzc = 5.78 ms≠1, z0 = 2.79 ◊ 10

≠2 m and (xsrc, zsrc) = (≠1.01 m, 0.83 m).

Second-order flow statistics. LES also provides access to higher-order quantities that are of

interest for modelling tracer concentration statistics. For instance, the Reynolds averaging

of the momentum and scalar transport equations yields second-order terms associated with

correlations between flow features. For the scalar transport equation, the second-order term is

the turbulent scalar. Its resolved part obtained with LES is shown in Fig. III.5 for the nominal

snapshot. Figure III.5a shows that the streamwise turbulent scalar transport primarily occurs

in the streamwise direction above the height of the obstacle, and in the opposite direction in

the obstacle wake. As for the vertical turbulent transport in Fig. III.5b, it primarily leads to an

upward transport of the scalar.

The two components of the turbulent scalar flux highlight the potential di�culty of the

reduced-order models for such quantities, which feature both horizontally elongated patterns

and sharp sign changes along critical lines related to flow topology (shear layer, recirculation

regions).
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(a)

(b)

Figure III.5: Resolved turbulent scalar flux components (a) uÕKÕ and (b) vÕKÕ, obtained from LES, where
· denotes the Reynolds time-averaging operator, for the reference snapshot.

To conclude this section, the flow and tracer concentration field statistics are the quantities

of interest in this work, implying that we do not consider the time dimension. The objective

of this PhD thesis is therefore to design a reduced-order modelling approach that is able

to reproduce (or emulate) the spatial variability of these quantities of interest in a range of

conditions that are representative of the uncertainties considered. While the reduced-order

modelling is primarily focused on the direct prediction of the tracer concentration, as detailed

in Chapter IV, the approach is versatile: it is extended to higher order statistics relevant for

RANS formalism in Chapter V.

III.2 Uncertainty modelling

In the previous section, we focused on the flow and tracer concentration analysis for the nominal

LES simulation snapshot. We now describe how we propagate uncertainties in the LES frame-

work. The starting point is to define the uncertain input parameters that characterise both the

inflow conditions and the emission source.

III.2.1 Choice of the uncertain input parameters

In this study, we consider four uncertain parameters: i) the reference velocity magnitude uzc at

the reference height zc = 10 H; ii) the aerodynamic roughness length z0; iii) the emission source

axial position xsrc; and iv) the emission source height zsrc. The input vector on uncertainty

parameters can be expressed as the four-dimensional vector µ = (uzc , z0, xsrc, zsrc)T . Such

parameters have been chosen accordingly with previous uncertainty studies for atmospheric

dispersion [Garćıa-Sánchez et al., 2014, 2017; Margheri and Sagaut, 2016].

In this uncertainty quantification context, we need to define an interval of variation for

each parameter that covers a range of realistic physical conditions. These intervals of variation

define the four-dimensional uncertainty space over which we aim to emulate the LES model
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80 Chapter III. Case study of dispersion around a wall-mounted obstacle

response. For this purpose, we need to generate a set (or ensemble) of LES snapshots that sample

the uncertainty space. A number of constraints can be prescribed to perform this sampling,

including statistical distributions on the parameters to give a probability of occurrence at the

di↵erent sample points. In this work, uniform distributions are used to remain as generic as

possible, except for the roughness parameter z0 for which the values may vary by several orders

of magnitude and the uniform distribution is therefore not appropriate.

III.2.2 Parameter statistical distributions

III.2.2.a Parameterisation of the inlet wind conditions

The uncertain roughness length z0 and the reference velocity magnitude uzc impact the mean

inlet wind profile, implying that the inlet mean wind profile u(xinlet, z) becomes uncertain.

A wide range of aerodynamic roughness length is considered, ranging from small roughness

length corresponding typically to small obstacles between grass (up to 1 cm high), to larger

roughness length corresponding to 1-to-2 m high vegetation [Brutsaert, 2013], leading to z0 œ

[10
≠3, 10

≠1
] m. Its distribution is assumed to be log-uniform with the following probability

density function:

log(z0) ≥ U

1
log(10

≠3
), log(10

≠1
)

2
, (III.5)

corresponding to a mean value E[z0] ¥ 0.021 m and a standard deviation ‡(z0) ¥ 0.025 m (the

coe�cient of variation, i.e. the ratio of the mean value to the standard deviation, is 1.16). The

distribution on z0 is defined as log-uniform so that the marginal distribution u(xinlet, z)|u· is

close to a uniform distribution.

Streamwise velocity magnitude at the reference height uzc is supposed to follow a uniform

distribution so that the marginal distribution u(xinlet, z)|z0 is also uniform:

uzc ≥ U([3, 9]) ms≠1 , (III.6)

corresponding to a mean value E[uzc ] = 6.0 m s
≠1 and a standard deviation ‡(uzc) ¥ 1.7 m s

≠1

(the corresponding coe�cient of variation is 0.29). The range of variation for uzc is typical of

urban air dispersion studies in the literature [Garćıa-Sánchez et al., 2014].

It is of interest to study how the statistics on z0 and uzc impact the statistical distribution of

u· (Eq. III.3). The analytical expression for this distribution is non-trivial because of the inverse

of the log-transform of z0. Still, it can be numerically approximated. Figure III.6 shows the ap-

proximate probability density function of u· using random Monte-Carlo sampling of Eq. (III.3).

This sampling is obtained by perturbing both the roughness length z0 and the streamwise ve-

locity magnitude uzc following the statistical distributions defined in Eqs. (III.5)–(III.6). It is

worth noting that the reference velocity u(ref)
· = 0.37 ms≠1 (introduced in Sect. III.1.4) stands

as the mean value over the Monte Carlo ensemble (i.e. E[u· ]).

The probability distribution on the inlet mean wind profile u(xinlet, z) depends on the

marginal distributions chosen on the two uncertain parameters z0 and uzc . Figure III.7 shows

how this distribution varies vertically (i.e. with respect to the vertical axis z). At the reference
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Figure III.6: Approximate probability density function (PDF) of the friction velocity u· (m s≠1) using
Monte Carlo random sampling (10

5 samples).

height z = zc = 10 m, it follows a uniform distribution corresponding to the distribution on uzc .

But this is no longer the case when getting closer to the ground surface (i.e. when z < 10 m),

the probability distribution support decreasing as z decreases. Several inlet mean wind profiles

based on varying entries for uzc and z0 are also plotted in Fig. III.7 to illustrate the variety of

profiles in the LES ensemble.

Figure III.7: Probability distribution of the mean streamwise velocity inlet profile uinlet(z). The shaded
blue area denotes the bounded support of non-zero probability. Streamwise velocity probability distribu-
tions are plotted at heights z = 1, 4, 7, 10 m. Examples of logarithmic profiles are shown for z0 = 10

≠3 m
(dashed lines) and z0 = 10

≠1 m (dotted lines). The nominal case (Fig. III.3) profile is also plotted (solid
line).

III.2.2.b Parameterisation of the tracer source location

Tracer uncertainty relates to the horizontal and vertical coordinates of the source location

(xsrc, zsrc), also referred to as position and height, respectively. In this study, tracer emission

can occur upstream, downstream or above the obstacle. The range of variation is chosen so as

to cover a broad panel of existing experimental studies [Li and Meroney, 1983a; Mavroidis and
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Gri�ths, 2000; Mavroidis et al., 2003; Gamel, 2015]. The marginal distributions associated with

the source position and height are set uniform as:

xsrc ≥ U([≠3.5, 3.5]) m, zsrc ≥ U([0.2, 2.0]) m. (III.7)

The lower limit for the source height is slightly above the ground surface to avoid a truncation

of the spatially Gaussian source term. The area [0, 1.2] m ◊ [≠0.2, 1.2] m is removed from the

range of variation to avoid having a source inside the obstacle.

III.2.2.c Diversity of flow and tracer field topologies in the ensemble

The wide intervals retained for the parameter distributions result in a large diversity of flow

and tracer concentration fields. It is illustrated here through three snapshots picked from the

ensemble of LES snapshots, in order to highlight the complexity of the response to be emulated

by a reduced-order model.

Figure III.8 shows examples of normalised tracer concentration and streamwise velocity mean

fields for: (a) the nominal case, (b) the case of a near-ground source emission located downstream

of the obstacle within a recirculation area with moderate wind conditions (Uzc = 5.79 ms≠1, z0 =

7.89 ◊ 10
≠3 m), and (c) the case of a high source emission where there is no significant influence

of the obstacle on the dispersion and where the wind conditions are stronger (Uzc = 7.45 ms≠1,

z0 = 1.3 ◊ 10
≠3 m). Significant variations are observed for both the velocity and tracer fields.

Regarding the velocity field, a critical feature is the reattachment point, which corresponds to

the interaction of zero axial velocity isoline with the ground. Its location varies significantly with

the inlet parameters: it ranges from x = 10 H in Fig. III.8ab, up to x = 13.5 H in Fig. III.8c.

Regarding the tracer dispersion, for the nominal case (Fig. III.8a), the tracer accumulates in two

of the three main recirculation regions, as previously discussed. For the second case (Fig. III.8b),

the tracer primarily accumulates in the recirculation region near the leeward face of the obstacle,

while there is no significant interaction between the plume and the recirculation regions for the

third case (Fig. III.8c).

This diversity of flow topologies and tracer concentration distributions evidences the chal-

lenges in constructing reduced-order models as changing the input parameters may induce non-

linear changes in the field quantities of interest. This implies that the mapping between the

input parameters and the field statistics that we seek to learn with the reduced-order models

may be subject to significant nonlinearities.

III.2.3 Large-eddy simulation database

III.2.3.a Synthesis of the input-output mapping problem

The uncertainties are described by uncertain scalar parameters that are considered as inputs to

the LES problem and that form the input vector parameter:

µ = (µatm, µtr)
T

= (uzc , z0, xsrc, zsrc)
T

œ R4. (III.8)
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(a)

(b)

(c)

Figure III.8: Time-averaged normalised tracer concentration field with superimposed time-averaged
streamwise velocity vertical profiles at abscissa x = ≠4, 5 and 10 m (yellow vertical solid lines) and zero-
velocity magnitude contour lines (white dotted lines) for three LES snapshots of the LES test database:
(a) the nominal snapshot (associated with Figs. III.2 to III.5) corresponding to Uzc = 5.78 ms≠1,
z0 = 2.79 ◊ 10

≠2 m and (xsrc, zsrc) = (≠1.01 m, 0.83 m); (b) the snapshot with Uzc = 5.79 ms≠1,
z0 = 7.89 ◊ 10

≠3 m and (xsrc, zsrc) = (1.5 m, 0.44 m); and (c) the snapshot with Uzc = 7.45 ms≠1,
z0 = 1.3 ◊ 10

≠3 m and (xsrc, zsrc) = (≠3.49 m, 1.86 m).

The input parameters impact the simulated flow response and drive the quantities of interest

Kles = {K1, . . . , KNh}
T

œ RNh . The following Chapters IV–V investigate several quantities

of interest depending on the context. In Chapter IV, the term Kles corresponds to the time-

averaged tracer concentrations predicted at the Nh grid points of the discretised computational

domain (the nominal snapshot example is given in Fig. III.8a). In Chapter V, various quantities

are targeted, such as the streamwise and vertical components of the flow velocity, the turbulent

kinetic energy ktke, as they are re-used in a lower fidelity model for dispersion.

The LES full-order model prediction of the quantities of interest comes a significant compu-

tational cost, which prevents real-time outputs and requires extensive computational resources

(the average cost of one simulation is about 800 CPU hours). These issues motivate the use of a

reduced-order model, which can result in significant speedups to predict the quantities of interest

for any new value of the input vector µ. Therefore, the objective of the reduced-order model is

to approximate the LES model response based on a collection of N snapshots {K(1)
les , · · · , K(N)

les }

corresponding to a collection of N input sets {µ(1), · · · , µ(N)
} with N π Nh. One challenge

for training and validating the reduced-order model is that the number of snapshots N remains

limited in the context of LES (from ten to one hundred for a practical three-dimensional case).
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III.2.3.b Sampling strategy

In this work, we build a large dataset of LES snapshots (750 LES in total that can be considered

as untractable for a LES application on a real dispersion case, but still remains limited from a

statistical learning perspective) in order to train and carefully evaluate the di↵erent formulations

of the reduced-order model. This ensemble is obtained from sampling the input parameter

vector µ (Eq. III.8) on the probability space (�, P), where � represents the four-dimensional

uncertainty space (i.e. the set of all possible samples) and P represents the associated probability

measure. The coverage of the space � requires samples to be “well” distributed, i.e. to minimise

the distance to the closest sample with respect to the related distribution P. This step is of

primary importance as the samples are the datasets to train and validate the reduced-order

models in a reliable way.

Notion of discrepancy. Mathematically, the uncertainty space coverage by the samples is char-

acterised using the notion of discrepancy. The discrepancy is low if the local distribution of the

samples is close to the probability measure P. For the simple case where � is the one-dimensional

interval [0, 1] and P is the uniform probability measure, the discrepancy is expressed as:

DN ({µ(1), . . . , µ(N)
}) = sup

0Æa<bÆ1

----
#{µi œ [a, b[}

N
≠ ⁄([a, b[)

---- , (III.9)

where {µ(1), . . . , µ(N)
} is the N -ensemble of uncertain parameters, # is the cardinal of the related

ensemble, and ⁄ is the Lebesgue measure on [0, 1]. The discrepancy corresponds to the largest

di↵erence between the theoretical distribution and its related discrete approximation. DN is the

optimal value but is not achievable for continuous probability measures with a finite number

of samples. It is therefore of primary importance to use a sampling strategy that minimises

discrepancy.

In this work, due to the significant computational cost of a given LES, the sampling strategy

should allow to build the LES database in an incremental way. It should be easy to add new

samples and update the reduced-order model as the LES database grows. A counter-example is

the rectangle strategy to sample the interval [0, 1]: for N = 2, the optimal set is {µ(1), µ(2)
} =

{1/3, 2/3}; adding a new point changes the whole dataset as for N = 3 the new set becomes

{µ(1), µ(2), µ(3)
} = {1/4, 1/2, 3/4}. This implies that increasing the dataset size requires to

recomputing all the samples (which would be impractical in the context of LES). Although

randomised Monte Carlo approaches would allow cheaper resampling, they may su↵er from

discrepancy issues.

Low-discrepancy sequences. Low-discrepancy sequences, also known as quasi Monte Carlo sam-

pling approaches, are designed to have a lower asymptotic discrepancy than in the purely Monte

Carlo random approach. In a one-dimensional case, a Van der Corput sequence can be con-

sidered as a low-discrepancy sequence. It generates in a deterministic way, a series of numbers

over the unit interval that has a low discrepancy in the context of a uniform probability mea-

sure [Lemieux, 2009]. The nth sample value of the sequence µ(n) is computed from the integer
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decomposition (ak(n))k of n in base b:

µ(n)
=

+Œÿ

k=0
ak(n) b≠k≠1, n =

+Œÿ

k=0
ak(n) bk. (III.10)

For instance, the first seven Van der Corput samples for b = 2 are {1/2, 1/4, 3/4, 1/8, 5/8, 3/8, 7/8}.

Halton [1960] generalises the Van des Corput sequences to higher dimensions [Lemieux, 2009].

To do so, each dimension is associated with a prime number. For instance, in a two-dimensional

case, the first dimension is related to b = 2 and the second dimension to b = 3. This simple trick

prevents the samples from being located on the hypercube diagonals. Halton sequences allow a

simple resampling of the uncertainty space, while guaranteeing a low discrepancy whatever the

number of samples N . It is known that its asymptotic discrepancy is of the order of O(
(log(n)d

n ),

where d is the space dimension. For comparison, the discrepancy for a uniform sequence is of

the order of O(n≠1/d
) and of O(

Ô
ln ln nÔ

n
) for a fully random Monte Carlo sampling [Lemieux,

2009]. In practice, Halton sequences are known to perform well when the uncertain dimension

d is small. In this work, the dimension is d = 4, which can be considered as small. For this

reason, we adopt the Halton sequence to sample the input vector parameter µ.

Extension to non-uniform sampling. In its simplest form, for a given dimension d, the Halton

sequence provides a uniform sampling of the hypercube [0, 1]
4. When the uncertain parameter of

interest varies along an interval [a, b], the Halton samples can be transformed using a�ne trans-

formation. Indeed, a non-uniform sampling may be easily recovered from the Halton sequence

using the inverse transformation method when the cumulative distribution function (CDF) is

available. In this work, for instance, the roughness parameter z0 follows a log-uniform distribu-

tion in the interval [10
≠3, 10

≠1
]. Let Fz0 denote its CDF, and U be a random variable satisfying

U ≥ U([0, 1]). The random variable Z defined as

Z = F ≠1
z0 (U), with F ≠1

z0 : u ‘æ 10
≠1

A
10

≠3

10≠1

Bu

, ’ u œ [0, 1], (III.11)

follows a log-uniform distribution on [10
≠3, 10

≠1
]. Consequently, the samples for z0 satisfying

the target log-uniform distribution over the interval [10
≠3, 10

≠1
] can be directly obtained from

a Halton sequence on the interval [0, 1] using the F ≠1
z0 transformation.
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To conclude this section, the objective of the reduced-order models is to represent how the

LES flow and tracer concentration field statistics (in particular the mean tracer concentration

field and the mass flux tensor) respond to perturbations in four input parameters, including

the reference velocity magnitude uzc and the aerodynamic roughness length z0 that impact

the inflow streamwise velocity vertical profile and the emission source location (xsrc, zsrc).

A large ensemble of LES snapshots (made of 750 simulations in total) has been generated

based on Halton’s low-discrepancy sequence of the four parameters. These parameters are

mostly characterised by uniform statistical distributions to remain as generic as possible,

except for z0 that follows a log-normal distribution. This leads to a diversity of flow and

tracer concentration conditions in the ensemble that is challenging to emulate.

III.3 Practical implementation

III.3.1 Ensemble large-eddy simulation management

Generating an ensemble of LES snapshots requires to run multiple instances of the AVBP code,

each instance corresponding to a set of parameters µ and being supervised by the Lemmings sim-

ulation manager developed by CERFACS. Lemmings2 is an open-source Python code designed

to simplify the submission of multiple dependent jobs on HPC cluster schedulers. It eases the

simulation workflow for repetitive and sequenced steps by automating a certain number of tasks

such as job chained submissions (e.g. until the required physical simulation time is reached)

or preprocessing, model integration and postprocessing tasks. This Lemmings workflow is very

useful for this work as it facilitates the generation of the large LES database: all simulation in-

stances share the same structure, as only the uncertain parameters (inflow boundary condition

and tracer emission source location) vary from one simulation to another.

In terms of computational cost, the average CPU cost for one LES simulation is 800 CPU

hours, which requires a total budget of 600,000 CPU hours to generate all 750 LES snapshots.

A three-dimensional computation is expected to be an order magnitude higher in terms of cost:

it justifies the restriction to a two-dimensional setup for this study, which focuses primarily on

the reduced-order modelling method rather than on a detailed investigation of the physics.

The LES runs have been performed on CERFACS Kraken supercomputer, a total of 72 core

processors (Intel Skylake architecture) has been used for each LES run.

III.3.2 Machine- and deep-learning librairies

The emergence of open-source community libraries enables the relatively straightforward im-

plementation of most conventional machine and deep-learning model formulations. Table III.1

summarises the various statistical libraries considered in this PhD thesis, as well as the algo-

rithms, processing units (CPUs/GPUs), and primary features assessed. The GPUs used are

Nvidia Volta V100/16GB.

2See Lemmings webpage at https://gitlab.com/cerfacs/lemmings
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Table III.1: Overview of the machine-learning and deep-learning approaches used in this work.

Category Tool Library Architecture Hyperparameters

Sampling Halton OpenTURNS CPU

Dimension
reduction

POD Scikit-Learn CPU

Autoencoder Keras–Tensorflow GPU Activation functions,
nb. of layers, layer
depth, learning rate

Regression Gradient Scikit-Learn CPU trees depth, tolerance,
boosting learning rate, pruning,

nb. of trees

k-nearest Scikit-Learn CPU nb. of neighbours, norm,
neighbours weight function

Gaussian Scikit-Learn CPU kernel, learning rate
processes /SMT /CPU

/GPyTorch /GPU

Polynomial OpenTURNS CPU truncation strategy,
chaos cleaning strategy,

maximum polynomial
degree

The Python package Scikit-Learn provides implementations for both dimension reduction

tools (e.g. POD), regression models (e.g. Gaussian processes, linear regression models, decision

trees with boosting technique) and many other machine-learning algorithms [Pedregosa et al.,

2011]. In particular, data preprocessing and model selection algorithms largely facilitate the de-

ployment of reduced-order modelling pipelines. For Gaussian processes, although Scikit-Learn

provides a fairly standard implementation su�cient for preliminary investigation, we also used

GPyTorch and Surrogate Modeling Toolbox (SMT) [Gardner et al., 2018; Bouhlel et al., 2019].

Scikit-Learn only supports CPUs, and for large datasets, GPyTorch provides considerable GPU

acceleration for model training. GPyTorch also proposes other advanced Gaussian process for-

mulations, e.g. Gaussian process latent variable models (GPLVM) for dimension reduction. The

SMT library was used for co-kriging implementation in the multi-fidelity framework proposed

in Chapter V.

Among the various models we tested in this work, only the neural networks and the polyno-

mial chaos expansion are not supported by the Scikit-Learn package. We used Keras–Tensorflow

for the implementation of neural networks using GPUs [Chollet et al., 2015]. OpenTURNS, as

Scikit-Learn, is a fairly exhaustive package. It is used to implement polynomial chaos expansion

and to perform Halton’s sampling.
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Chapter IV

Reduced-order model for mean tracer pre-

diction based on LES data

In this chapter, we aim at building and learning a reduced-order model that can directly

emulate LES field statistics. Building such a reduced-order model is a two-step process

that includes a dimensionality reduction component and a regression component. Proper

orthogonal decomposition (POD) is used as the baseline approach for dimension reduction and

is compared to a more advanced deep-learning approach based on convolutional autoencoder.

Several families of regression models among whom polynomial chaos expansion, Gaussian

process regression and gradient tree boosting are implemented and optimised to identify

which is the best strategy for the pollutant dispersion test case studied in this work. The

mean tracer concentration field is used as the quantity of interest to assess the potential of

each approach to emulate the LES field statistics.
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IV.1 Construction and evaluation strategy of the reduced-order model

The objective is to build a reduced-order model that can leverage LES data in such a manner

that patterns may be learned and reproduced on new unseen data. The reduced-order model

combines a dimension reduction component with a regression model as detailed in Chapter II

to represent how the mean tracer concentration fields Kles change with respect to the uncertain

input parameters µ.

IV.1.1 Dataset acquisition

In this study, we consider di↵erent sources of uncertainty in the LES full-order model: i) uncer-

tainties associated with the large-scale atmospheric flow conditions µatm (a↵ecting the inflow and

surface boundary conditions), and ii) uncertainties with the tracer emission source characteris-

tics µtr. These uncertainties are described by uncertain scalar parameters that are considered

as inputs to the LES problem (Sect. III.2), and that form the input vector parameter:

µ = (µatm, µtr)
T

= (uzc , z0, xsrc, zsrc)
T

œ R4. (IV.1)

The input parameters impact the simulated flow response and drive the quantities of interest

Kles = {K1, . . . , KNh}
T

œ RNh , namely means of tracer concentrations predicted at the Nh grid

elements of the discretised computational domain (the nominal snapshot example is given in

Fig. III.4).

We build a dataset of 750 LES snapshots in order to train and carefully test our reduced-order

model. Each snapshot of the dataset corresponds to di↵erent random sample of the input vector

µ = (uzc , z0, xsrc, zsrc)T . The samples are obtained using Halton’s low-discrepancy sequence.

Moreover, all LES were conducted on the same numerical setting (same grid, convection scheme,

LES model, etc.). Since the LES setup is robust, the non-intrusive procedure is well decoupled

from the LES model to only handle the parametric variability.

IV.1.2 From training to validation

The algorithm we use to train and validate the reduced-order model can be summarised as the

following training/prediction two-step process.

– Training stage (learning)

1. Extract the modes {Âl}l=1,...,L using encoder transformation (POD or convolutional

autoencoder) and truncate the reduced basis to the first L modes from the mean

tracer concentration fields Kles in the training dataset,
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2. Train the regression model’s parameters using the training dataset,

3. Choose the best values of the hyperparameters to maximise the regression model’s

performance from the validation dataset.

– Prediction stage (validation)

1. Compute the reduced coe�cients {kl(µú
)}l=1,...,L for the test sample of input param-

eters µú using the regression model,

2. Perform decoder transformation (inverse POD or convolutional autoencoder) to re-

cover the predicted mean tracer concentration fields Kú
rb from the reduced coe�cients

for the test samples,

3. Compare the emulated fields Kú
rb with the reference LES test snapshots Kú

les.

The full LES dataset (made of 750 snapshots, as described in Sect. III.2) is split into three

subsets following Halton’s sequence ordering (see explanations in Sect. II.4): i) a training dataset

made of Ntrain = 450 snapshots (60% of the full LES dataset) to learn the dimension reduction

model and the mapping between the uncertain inputs µ and the reduced coe�cients k using

regression models; ii) a calibration dataset made of Ncalib = 150 snapshots (20% of the full LES

dataset) to investigate multiple hyperparameter configurations within each family; and iii) a

test dataset made of Ntest = 150 snapshots (20% of the full training dataset) to evaluate the

capacity to predict LES quantities of interest for new samples of the uncertain input parameters.

IV.1.3 Performance metrics

The choice of the performance metric is essential for the machine learning framework as it

introduces bias to favour a specific desired behaviour of the learning model. In low-dimension,

mean-squared error (MSE) is a suitable function for assessing the quality of a model as it

incorporates both variance and bias contributions [Wackerly et al., 2014]. However, MSE appears

unsuitable for ordering comparisons on quantities with di↵erent variance magnitudes, which is

the case of time-averaged tracer concentration that can vary by several orders of magnitude

between two grid points. A simple solution to this problem is to normalise the MSE by the

variance estimation. This is called the explained variance criterion, also denoted by Q2.

Individual model performance evaluation. In this work, we quantify individual model perfor-

mance using a Q2 (explained variance) criterion applied to reduced-coe�cient prediction. We

highlight here the example of Q2 performance for POD reduced-coe�cient prediction using re-

gression models. With this criterion, the prediction error of the lth regression model is weighted

by the variance over the reduced coe�cients kl of the lth POD mode:

Q2
l = 1 ≠

Îkl ≠ mú
l Î

2
2

Îkl ≠ Ê[kl]Î
2
2

, ’l = 1, . . . , L, (IV.2)

where mú
l is the lth regression model mean prediction (e.g. Eq. II.39 for Gaussian process

regression). When dealing with POD, since we use whitening, reduced coe�cients have zero-

91



92 Chapter IV. Reduced-order model for mean tracer prediction based on LES data

mean and unit-variance, meaning that this per-mode Q2 metric directly reflects the MSE on the

predicted reduced coe�cients (i.e. Q2
l ¥ 1 ≠ MSE).

Reduced-order model performance evaluation. To quantify the performance of the reduced-

order model in the physical space, we evaluate the Q2 criterion on each feature (on each grid

point) of the domain of interest. The reconstruction/prediction error is weighted by the variance

over the LES snapshots for each grid element i:

Q2
i = 1 ≠

ÎKles,i ≠ Krb,iÎ
2
2

ÎKles,i ≠ ‚E[Kles,i]Î
2
2

, ’i = 1, . . . , Nh. (IV.3)

For instance, if Krb,i stands as the standalone POD reconstruction of LES snapshots, Q2
i carries

the performance of the encoding/decoding process on the ith grid point. Krb,i may also be

replaced by reduced-order model prediction ‚Krb,i to quantify prediction performance (including

encoding/decoding and regression operations). Thus, the di↵erence in the Q2 criterion calculated

on the standalone decoding/decoding process and on the complete prediction process allows to

quantify the error introduced by the standalone regression process. In this work, final assessment

of Q2
i on the LES calibration dataset helps selecting optimal model’s hyperparameters, while

assessment on the test dataset evaluates the reduced-order model generalisation capacity.

To help with the analysis, we also derive a global score from the variance weighted local Q2

criterion as:

Q2
global =

Nhÿ

i=1
Êi Q2

i , Êi =

‚V(Kles,i)
Nhÿ

j=1

‚V(Kles,j)

,
(IV.4)

where ‚V(Kles,i) corresponds to the variance unbiased estimation over the snapshots defined in

Eq. (II.10). It is worth noting that Q2
global can also be derived on subdomains to study the

spatial variability of the reduced-order model error.

The Q2 metric is homogeneous with the MSE taken over all grid points and normalised by

the ensemble variance:

Q2
global = 1 ≠

Nhÿ

k=1
||Kles,j ≠ K̂les,j ||

2
2

(N ≠ 1)

Nhÿ

j=1
V̂(Kles,j)

. (IV.5)

It can also be proven that Q2
global applied to POD reconstruction is equivalent to the POD

cumulative explained variance ratio. Indeed, when Krb,i matches snapshots reconstructed from

the first l modes, Q2
global can be expressed as Q2

e.v. (Eq. II.11).

IV.1.4 Domain of interest

Because of the directional nature of plume flow, the dispersion phenomena are localised to

a subregion of the domain. To minimise statistical modelling e↵orts, the area of interest is

restricted on the x-axis to the interval [≠3.5, 13.5] m, containing 99.9% of the overall ensemble

variance (this area encloses the space of uncertainty on the source location position xsrc and
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height zsrc). This is equivalent to keeping all grid points with a variance greater than 6.4 ◊

10
≠7. Figure IV.1 shows the mean and variance ensemble statistics estimated from the 750 LES

snapshots but restricted on the subdomain of interest.

(a)

(b)

Figure IV.1: Ensemble statistics for the mean tracer concentration fields obtained over the full LES
dataset (750 snapshots) on the restricted subdomain of interest: (a) ensemble mean, (b) ensemble standard
deviation with 1

3 - and
2
3 -quantiles denoted by white solid lines.

The domain restriction focuses attention on the grid points well represented by the LES

database snapshots. Outside of the restricted region, the variance reported by the LES ensemble

is dominated by numerical noise. The quality of the representation is essential for building a

machine learning framework and quantifying performance. For this reason, it is essential to

discard areas where learning data are already known to be inadequate.

From the 1
3 - and

2
3 -quantiles of ensemble variance (Fig. IV.1b), we identify three subdomains

of equal number of grid points, sorted by variance quantiles. In the following, the subregion of

local variance nodes below the 1
3 -quantile will be noted as T0, the subregion of medium-range

variance between the 1
3 - and

2
3 -quantiles as T1, and the high-variance nodes as T2.

IV.2 Performance evaluation of proper orthogonal decomposition

In this section, POD is used as the baseline approach to reduce the dimension of the mean tracer

concentration fields obtained with LES. We investigate here the impact of truncating the POD

decomposition at the first L modes on the representation of the ensemble variance and on the

reconstruction of the LES fields. Recall that the number of POD modes directly determines the

number of regression models to train (Eq. II.2).

IV.2.1 Impact of reduced-basis truncation

Statistical evaluation for the training dataset. Several criteria are available in the literature

for selecting the number of modes, the vast majority relying on the explained variance metrics
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evaluated on training data (e.g. the cumulative explained variance, the Kaiser and elbow rules

– Jolli↵e, 2002). Figure IV.2 shows the cumulative explained variance (Eq. II.11) of the full

training dataset (made of 450 LES snapshots) when decomposed on the POD reduced basis as a

function of the L POD modes. The first mode alone contributes to about 50% of the explained

variance on the whole computational domain, the first fifteen modes explain more than 95%

and the first hundred modes about 99.7%. Alternatively, the Kaiser rule applied to 70% of

the mean eigenvalue suggests keeping only 23 modes; this corresponds to 96.3% of the total

ensemble variance. The elbow rule estimates the truncation threshold from the sign change in

the eigenvalue second-order derivative with respect to the mode index: only the first fives modes

shall be kept following this rule, which corresponds to 85.6% of the total ensemble variance. This

first comparison shows that these di↵erent truncation rules lead to very di↵erent number L of

modes. A finer analysis of the POD modes is necessary to determine an appropriate truncation

level L.

Figure IV.2: Cumulative explained variance (Q2 in %, see Eq. II.11) for the POD reduced-basis size L
varying between 1 and 100 (solid line). The truncation thresholds for the Kaiser rule (L = 23) and the
elbow rule (L = 5) are represented in vertical dashed lines.

Statistical evaluation for the test dataset. The cumulative explained variance computed over

the test dataset (using Eq. IV.5) for L = 100 modes is globally equal to Q2
= 99.3%, which

is slightly smaller than for the training set (Table IV.1). This implies that POD slightly over-

fits data. However, not all areas of the domain are equally a↵ected by overfitting. While the

explained variance criterion is useful for characterising the overall e�ciency of POD reconstruc-

tion, it may be worthwhile to investigate local disparities of the explained variance. Figure IV.3

shows the local capability of POD to represent the ensemble variance using a Q2 metric on each

grid point of the computational domain (Eq. IV.3).

– Figure IV.3ab compares the spatial performance of POD reconstruction on the (a) training

and (b) test datasets using L = 100 modes. We can observe that the reconstruction error is

very low over most of the domain but that there is a sharp drop in performance upstream

of the obstacle at the domain edge. This drop in performance is stronger for the test

dataset than for the training dataset.
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This is consistent with POD ensemble variance maximisation behaviour. Far from the

ground and from the obstacle, the number of representative snapshots (i.e. plumes flowing

in this area) is reduced because of the distribution of emission source position and height.

These grid points are characterised by small ensemble variance, which drastically penalises

the Q2 criterion and explains the sharp drop in performance spatially.

This is confirmed by Table IV.1, indicating that over the lowest variance area the average

Q2 is equal to 98.5% for the training dataset, while it is equal to 91.6% for the test dataset.

In the contrary, the average Q2 remains above 98% for the medium and largest variance

regions even for the test dataset, with di↵erences of the order of 1% or less between the

training and test datasets.

– Figure IV.3cd shows the POD reconstruction error for varying number L of modes. We

can observe that decreasing the number of modes gradually a↵ects areas of low variance,

then of high variance. The drop in performance remains stronger in low variance area

with a 40% decrease of the average Q2 in the low variance area versus a 10% decrease in

the high variance area between the cases L = 100 and L = 5 (Table IV.1). Spatially, this

results in a satisfactory POD reconstruction performance close to the obstacle but a severe

degradation far from the ground.

Table IV.1: Explained variance ratio (in %) computed from training and test datasets for di↵erent number
L of modes. The global Q2 criterion represents the POD performance on all grid points. Local explained
variance information can be obtained for lowest variance region Q2

T0
, medium variance region Q2

T1
and

largest variance region Q2
T2
. Rigorous domain splitting was obtained from the 1/3 and 2/3 variance

quantiles.

Dataset Number L of modes Q2
global Q2

T0 Q2
T1 Q2

T2

Train 100 99.7 98.5 99.4 99.7

Test 100 99.3 91.6 98.0 99.5

Test 23 97.0 87.0 93.7 97.3

Test 5 86.1 52.4 79.1 87.0

Snapshot reconstruction example. Figure IV.4 illustrates, through the example of the nominal

snapshot from the LES test database, the capacity of reconstructing the mean tracer concentra-

tion fields from POD for di↵erent truncation levels L. Only accounting for the very first modes

as suggested by the elbow rule (L = 5) provides a good representation of highly dispersed tracer

areas downstream and of the tracer accumulation in the recirculation areas near the obstacle

(Fig. IV.4d). However, it does not handle well sharp patterns resulting from tracer advection-

dominated dispersion near the emission source. Moreover, the peak emission of the source is

underestimated and not well located. The Kaiser rule (Fig. IV.4c) partially reconstructs the

wake structures by including more modes (L = 23) but cannot correctly recover the plume

structure close to the emission source. When including up to L = 100 modes in the reduced

basis (Fig. IV.4b), improvements in the field reconstruction mainly relate to the intensity and

location of the source peak emission and to the localised structures around the source.
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(a) Train L = 100

(b) Test L = 100

(c) Test L = 23

(d) Test L = 5

Figure IV.3: POD reconstruction error based on local Q2 (%) computed at each grid point (Eq. IV.3) for
the training and test datasets: (a) training dataset using L = 100 modes in the reduced basis; (b) test
dataset using L = 100 modes; (c) test dataset using L = 23 modes; and (d) test dataset using L = 5

modes. Black dashed lines correspond to Q2-contour lines; white thin lines correspond to the 1/3 and
2/3 variance quantiles.

IV.2.2 Spatial structures of the modes

We now analyse the variance structures carried by the POD modes from the correlation maps

in the physical space (Eq. II.9) to better understand the need to have a large number L of

modes. The correlation structures are associated with physical patterns of the mean LES fields.

Figure IV.5 presents five out of the first hundred POD modes, which carry patterns that are

representative of the whole set of POD modes.

– The first modes have spatially widespread structures with horizontally elongated shapes,

looking like streaks aligned with the streamwise direction. The first PODmode (Fig. IV.5a)

consists of two anti-correlated horizontal layers. Large tracer concentrations in the lower

part of the domain are unlikely to occur along with high concentrations in altitude because

of the flow horizontal structure. Indeed, the plume dispersion is more or less a↵ected by the
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(a) LES

(b) L = 100

(c) L = 23

(d) L = 5

Figure IV.4: POD reconstruction for the nominal snapshot. (a) LES reference solution (mean normalised
tracer concentration field). POD reconstruction absolute error using (b) L = 100 modes, (c) L = 23

modes (Kaiser rule), and (d) L = 5 modes (elbow rule).

obstacle depending on the emission source location. For the nominal snapshot (Fig. IV.5a),

we observe that the plume dispersion is primarily controlled by the vortex shedding re-

sulting from the flow interaction with the obstacle and the development of a recirculation

region downstream of the obstacle. The corner eddy enhances the accumulation of tracer

concentration upstream of the obstacle, while downstream tracer concentration is dispersed

by turbulence. Overall, in the nominal case, high tracer concentration values remain lo-

calised near the ground. Di↵erently, when the emission source is positioned higher (see

example of Fig. IV.5c), the plume remains far from the ground and from the obstacle.

– The second POD mode (Fig. IV.5b) highlights the variety of concentration fields within

the ensemble, and shows interactions between plume and recirculation areas, depending if

the tracer source is upstream or downstream of the obstacle. When the source is located

upstream and su�ciently close to the ground, the obstacle constrains the plume dispersion

in an accumulation area close to its left boundary. Similarly, when the emission source is
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(a) l = 1

(b) l = 2

(c) l = 3

(d) l = 10

(e) l = 50

Figure IV.5: Correlation maps (between -1 and 1) between the lth POD mode Âl and the LES snapshots
(Eq. II.9) sorted by increasing order of POD mode indices from l = 1 to l = 50 (i.e. by decreasing order
of eigenvalues ‡l).

located downstream close enough to the obstacle (see example of Fig. III.8b), the tracer

is trapped in a second recirculation area where large tracer concentration values can be

obtained.

– The third mode (Fig. IV.5c) highlights the tracer emission position for which the plume

stops being trapped in recirculation areas. This occurs when the emission source is located

su�ciently far from the obstacle and from the ground. In that case, the plume is trans-

ported above the obstacle and disperses vertically further downstream because of vortex
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shedding.

– From the tenth POD modes (Fig. IV.5d), we can see narrower correlation structures that

are associated with the near-source advection-dominated dispersion of the tracer by the

mean flow. The di↵erent streaks are directly related to the di↵erent source positions of the

LES database since upstream emission source locations induce very refined, horizontally-

elongated plume wakes.

– Finally, the example of the fiftieth mode (Fig. IV.5e) highlights that the very high POD

modes focus on the remaining ensemble variance heterogeneity. This mode features very

localised bubble structures, which match tracer concentration peaks due to emission source

locations present in the POD training database. The small structure values also raise the

question of the potential noise induced from the lack of training data and time-averaging

convergence.

To conclude this section on POD, high-order modes contain fine spatial structures related to

the near-source physics embedded in the LES snapshots. This large number of modes relates

to the specificity of our problem, as changing the source location induces very sharp and

localised plume structures near the source in the ensemble. Using POD, it is essential to keep

a large number of modes to well represent local spatial concentration structures. We therefore

choose at this stage, to keep L = 100 POD modes. Using this reduced basis, we investigate

how to tune regression models to map POD coe�cients of mean tracer concentration fields

from any set of uncertain parameters.

IV.3 Comparison of regression models

In this section, we consider di↵erent regression models combined with POD and we assess their

ability to represent how the POD reduced coe�cients evolve with respect to the four uncer-

tain parameters µ = (uzc , z0, xsrc, zsrc)T . The choice of a regression model involves both the

identification of a class (or family) of regression models and an appropriate choice for their hy-

perparameters. This study compares four classes: (a) Gaussian process regression, (b) gradient

tree boosting, (c) polynomial chaos expansion, and (d) k-nearest-neighbours algorithm. Within

each class, we search for the set of hyperparameters that maximises the regression model per-

formance dependently from the POD mode index. It is indeed of high interest to study how the

regression model classes behave in relation to the descending hierarchical scales of POD.

IV.3.1 Optimal hyperparameter search

The parameters of regression models can be classified into two groups: non-trainable hyperpa-

rameters and trainable weights (as discussed in Sect. II.3). As the hyperparameters are not

optimised during the training process, we need to define a criterion to set their values. This

is done using a grid search approach, which requires testing all predetermined hyperparameter

settings and retaining the one (if any) that performs best on the validation dataset. It is worth
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mentioning that for some hyperparameters, the problem background may help in setting ap-

propriate values. In particular, some hyperparameter values may be intuited from POD mode

behaviour and reduced-coe�cient statistics.

IV.3.1.a Gaussian process regression

Gaussian process hyperparameters depend mainly on the choice of kernel (Sect. II.3.3). We

explore here two kernel classes that di↵er in their smoothness assumptions: the radial basis

function (RBF) kernel, and the Matérn kernel that is characterised by the smoothness hyper-

parameter ‹. We test three di↵erent values of ‹ (1
2 , 3

2 and 5
2). The anisotropic correlation

length-scales, the noise variance and the Gaussian process variance are estimated here from

maximum log-likelihood estimation (MLL).

Figure IV.6 shows the per-mode Q2 performance (Eq. IV.2) for all four kernel configurations.

The performance of Gaussian process regression seems to be robust regardless of the covariance

kernel used. The performance on the first modes is close to the maximum (with a per-mode Q2

close to 100%) and decreases with increasing mode index (with a per-mode Q2 around 45% for

the hundredth mode l = 100). For further work, we keep the Matérn 5/2-kernel since it is the

most reasonable in terms of the di↵erentiability assumption. Indeed, the RBF kernel induces an

infinitely di↵erentiable response surface, whereas Matérn 1/2 induces no di↵erentiability at all,

which is not physically reasonable. Between Matérn 3/2 and Matérn 5/2, we noted a greater

stability of the Matérn 5/2 hyperparameters during the learning procedure, which explains our

final choice.

Figure IV.6: Comparison of Gaussian process regression model performance with respect to the mode
index l (evaluated using the per-mode Q2 metric in %, see Eq. IV.2) for di↵erent choices of covariance
kernel (RBF versus Matérn kernel with di↵erent values of smoothness ‹).

IV.3.1.b Gradient tree boosting

Gradient tree boosting combines both the hyperparameters of the decision trees and the hyperpa-

rameters of the boosting procedure (Sect. II.3.4). For consistency with explained POD explained

variance maximisation, tree impurity and boosting loss are set to the MSE. To prevent overfit-

ting, a minimum tolerance is set to 10
≠5 and 10

≠4 for tree impurity and boosting performance

decay, respectively. These values are small relatively to the POD reduced-coe�cient variance

100



IV.3. Comparison of regression models 101

equal to one due to whitening. It is worth noting that the tolerance on boosting performance

decay constrains the number of trees in the boosting procedure: a minimum tolerance of 10
≠4

means that gradient boosting stops adding new trees if the performance does not decrease by

at least 10
≠4 in the next twenty iterations. Similarly, the tolerance on tree impurity directly

impacts the size of the trees. In order to build trees of reasonable size, the maximum depth D

was set to five based on the condition D Æ (d ≠ 1) with d = 4 the number of uncertain input

parameters in this study. This ensures that all interactions are accounted for, resulting in a

maximum number of 2
5

= 32 terminal leaves.

We explore the change of gradient tree boosting performance when modifying for each re-

duced coe�cient the learning rate fl related to the boosting gradient descent convergence, and

the cost-complexity pruning (CCP) coe�cient –CCP. Figure IV.7 shows how the per-mode Q2

computed on the calibration dataset evolves with respect to the mode index l in the reduced

basis when changing fl or –CCP. The choice of fl = 0.1 for the learning rate maximises the

performance of gradient tree boosting for each mode, even if there is a strong decrease in per-

formance for higher-order modes. A very small value of the learning rate (fl = 10
≠3) results in

poor performance on the first POD modes due to a lack of gradient descent convergence, while a

very large value (fl = 0.5) results in very poor performance on the high-order POD modes due to

boosting instability. Moreover, gradient tree boosting performance seems almost insensitive to

the choice of the cost-complexity pruning coe�cient –CCP in a reasonable range. Still, –CCP = 0

demonstrates a better score on the first POD modes, suggesting that pruning should be avoided

for the first modes. Di↵erently, a larger value –CCP = 10
≠3 seems more appropriate on higher-

order modes, indicating that small trees are becoming prevalent to represent the behaviour of

high-order POD reduced coe�cients. Too much pruning (–CCP = 10
≠1) leads to a very poor

performance over all modes, suggesting a poor generalisation capacity of the trees.

(a) (b)

Figure IV.7: Gradient tree boosting per-mode Q2 metric (in %) with respect to the mode index l for
varying (a) learning rate fl and (b) cost-complexity pruning coe�cient –CCP.

Finally, the complexity of the decision trees with respect to the mode index l is studied

in Fig. IV.8. The number of trees is derived from the tolerance and the maximum number of

iterations without performance improvement. It is found to be strongly influenced by the POD

mode index l. The gradient boosting on the first modes can have deep trees (up to 350 trees);

however, the number of trees significantly reduces with increasing mode index (less than 50 trees

are considered for the hundredth reduced coe�cient).
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To ensure optimality of gradient tree boosting, additional tests on the hyperparameters (not

shown here) were carried out. They indicated that stochastic gradient descent, robust impurity

metrics (such as Friedman MSE [Friedman, 2001]) or varying minimum impurity decrease and

tolerance thresholds do not improve the performance of gradient boosting for this problem.

Figure IV.8: Number of trees per mode in the gradient tree boosting approach.

For regression model comparison in Sect. IV.3.2, we configure the gradient tree boosting

approach with the learning rate fl = 0.1 and a flexible value for the pruning coe�cient –CCP

to have a better generalisation capacity. The automatic selection procedure for the number of

trees shows that the high-order POD modes require fewer decision trees, which may be caused

by increased di�culty to fit the noisy POD reduced coe�cients.

IV.3.1.c Polynomial chaos expansion

Polynomial chaos expansion can be considered as a polynomial regression approach. Since the

distributions on the input parameters are assumed to be uniform in this study (Sect. III.2), the

polynomial basis is made of Legendre polynomials according to the Askey scheme (Sect. II.3.2).

Then, the main question relates to the complexity of the polynomial combinations that should

be included in the expansion to maximise performance. For this purpose, we study here how

the polynomial chaos expansion performance varies according to the total polynomial order P

(ranging from 1 to much more complex polynomial combinations up to a degree equal to 13).

We also study if having a sparse polynomial basis can improve performance by i) adopting a

hyperbolic truncation rule (using an hyperbolic coe�cient q varying between 0.4 and 0.9 – q = 1

corresponds to the full polynomial basis), and by ii) applying the cleaning strategy. In the latter

case, we keep between 40 and 100 most significant coe�cients and all polynomials associated

with non-significant coe�cients (the threshold varies between 10
≠7 and 10

≠3) are removed from

the polynomial basis.

Figure IV.9 shows how the per-mode Q2 criterion computed on the calibration dataset evolves

with respect to the mode index l for di↵erent values for the hyperparameters: the retained num-

ber of significant coe�cients (Fig. IV.9a), the hyperbolic truncation strategy q (Fig. IV.9b), the

significance threshold (Fig. IV.9c), and the total polynomial order (Fig. IV.9d). We first observe

that the sensitivity to hyperparameters is stronger for polynomial chaos expansion than for pre-
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viously tested regression models (i.e. Gaussian process regression and gradient tree boosting),

especially for the first fifty modes. We also notice that on the first 10 modes, the choice of a

complex model maximises performance, with maximised performance obtained when retaining

80 and 100 significant coe�cients, a soft hyperbolic truncation q = 0.9 (meaning that many

coe�cients are retained in the expansion), a significance threshold equal to 10
≠7 and a high

total polynomial order P = 13. This is possible since the first modes carry little noise. Con-

versely, complex polynomial models perform worse than simple models for high-order modes

as data noise prevents the training of a high number of parameters. For instance, Fig. IV.9bd

demonstrates a significant drop in Q2 for a total polynomial order above 11 and a soft truncation

coe�cient q = 0.9 for the highest modes.

(a) (b)

(c) (d)

Figure IV.9: Polynomial chaos per-mode Q2 metric (in %) with respect to the mode index l for varying
(a) number of significant coe�cients, (b) hyperbolic truncation value q, (c) significance threshold, and
(d) total polynomial order P .

For regression model comparison in Sect. IV.3.2, we optimise the polynomial chaos hyper-

parameters based on the calibration performance. Thus, the first modes will be represented by

a complex polynomial expansion (high total polynomial order, soft truncation coe�cient and

activation of the cleaning strategy), and the model’s complexity will be gradually decreased for

higher order modes to only retain the most significant coe�cients and ensure robustness.

IV.3.1.d k-nearest-neighbours algorithm

The k-nearest-neighbours algorithm is tested as a baseline approach for the regression model

comparison. Its principle is to represent each reduced coe�cient as the weighted average of the

values of the k-nearest neighbours in the parameter space. We study here how the performance

of the algorithm evolves if we change the following hyperparameters: i) the number of neighbours
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(a) (b) (c)

Figure IV.10: k-nearest-neighbours algorithm per-mode Q2 performance (in %) with respect to the mode
index l depending on the choice of (a) the number of neighbours, (b) the Lp-norm with p varying between
1 and 3, and (c) the weight function (uniform gives all neighbours equal weights; distance means that the
weight is proportional to the inverse of the distance).

(ranging between 1 and 20), ii) the choice of the Lp-norm used to measure the distance between

samples in the parameter space (L1, L2 and L3-norms), and iii) the choice of the weight function

(the weighted k-nearest neighbour average either depends on the distance in the parameter space,

or is assigned a uniform weight independently of the distance).

We observe in Fig. IV.10 that the k-nearest-neighbours algorithm is sensitive to the number

of neighbours but is not significantly impacted by the choice of the Lp-norm and of the weight

function. The optimal number of neighbours changes with respect to the mode index: a low

number of neighbours enhances performance in the low-order POD modes (l Æ 40), while a

large number of neighbours improves the Q2 score for high-order modes. This is consistent

with the fact that the first reduced coe�cients are noise free and the regression model can

capture the local variations of the reduced coe�cients by taking only five neighbors. However,

on higher-order modes, POD reduced coe�cients are embedded with noise and having a small

number of neighbours makes the regression model prediction unstable. Increasing the number

of neighbours to 20 limits the drop in performance and brings the response of the k-nearest-

neighbours algorithm closer to the ensemble mean.

In the following comparison, we build the k-nearest-neighbours algorithm by adopting the

L1-norm, the distance weight function and an adaptive number of neighbours with respect to

the mode index l.

In conclusion to this section on the regression model hyperparameters, this grid search ap-

proach allowed us to select the optimal hyperparameter settings within each class of regression

models (Gaussian process regression, gradient tree boosting, polynomial chaos expansion, k-

nearest-neighbours algorithm) using the calibration dataset. The next objective is to compare

the di↵erent classes of regression models to identify the most relevant one to emulate the POD

reduced coe�cients and to accurately predict the mean tracer concentration fields.
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IV.3.2 Performance comparison

To identify the most appropriate regression model for our problem, we consider several criteria:

accuracy, e�ciency (or computational cost), explicability, and robustness. In this section, we

focus on the accuracy and e�ciency criteria.

IV.3.2.a Accuracy

Mode-per-mode analysis of the error. As for the optimal hyperparameter search, we use the

per-mode Q2 metric to evaluate the accuracy of each regression model class (Fig. IV.11). Q2-

results show the quality of the Gaussian process regression model that achieves the best perfor-

mance for all mode indices, with a net lead over the other regression models. In the opposite, the

k-nearest-neighbours algorithm has the lowest Q2-score over the first fifty modes, and it is then

joined by polynomial chaos expansion. Both achieve a very poor performance for higher-order

modes. This highlights the added value of more advanced regression models such as Gaussian

process regression and gradient tree boosting for emulating the POD reduced coe�cients.

Figure IV.11: Comparison of per mode-Q2 metric (in %) evaluated on the test dataset (Eq. IV.3) for
four classes of regression models: k-nearest-neighbours algorithm (kNN) in yellow dashed-dotted line,
gradient tree boosting (GB) in blue dashed line, polynomial chaos expansion (PC) in red dotted line, and
Gaussian process regression (GPR) in black solid line.

Let us have a closer look at the performance evolution with respect to the mode index l.

For the very first modes, the Q2 score is close to 100%, especially for polynomial chaos expan-

sion and Gaussian process regression. This means that the regression models perform almost

perfectly on large variance structures with limited overfitting. However, all regression models

cannot maintain this level of performance when moving to high-order modes, which feature more

complex and localised structures and which are therefore more complex to predict. This is visible

through the Q2 performance decay rate with the mode index l. For Gaussian process regres-

sion, the decay rate remains small compared to other regression models (the Q2-metric evolves

between 60 and 40% from the fiftieth mode onwards). The Q2 decay rate for polynomial chaos

expansion is steeper than for gradient tree boosting: polynomial chaos expansion is better at

predicting low-order POD reduced coe�cients, but gradient tree boosting becomes better from

the fifth mode onwards. This may be explained by the ability of the polynomial chaos expansion

to reconstruct smooth response surface, while gradient boosting is known for its capacity to
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deal with highly nonlinear response surface and noisy data. Still, polynomial chaos expansion

and gradient tree boosting have a Q2 metric below 40% from the thirtieth mode onwards, while

Gaussian process regression never goes below this threshold.

Spatial analysis of the error. The analysis of the regression model performance can also be

conducted in the physical space of the mean concentration fields by comparing emulated test

snapshots with LES snapshots through the calculation of a spatial Q2 field (Fig. IV.12). We can

observe that the Q2 is not homogeneous throughout the domain. Downstream of the obstacle the

area near the ground is well predicted (Q2 > 90%) by all regression model classes. Well predicted

areas are strongly correlated with high ensemble variance areas that are carried by the first POD

modes; these modes are globally well emulated by the four regression models with a Q2 near

100% (Fig. IV.11). The downstream area far above the ground the performance is much lower

(Q2 varies between 50 and 90%), but it is upstream of the obstacle, in the area where the emission

sources are located, that we see a very severe drop in the performance of the regression models

(with a Q2 value well below 50%). In this area, information is carried by higher-order modes

(Fig. IV.5), which are more challenging to predict (Fig. IV.11). Gaussian process regression is

the best approach to represent the response of these high modes to parametric variations with

a per mode-Q2 value that remains over 40% and a much smaller area of very low Q2 value (red

area in Fig. IV.12a).

Table IV.2: Global and variance sorted Q2-scores (in %) computed from the test dataset for L = 100

modes. The global Q2 criterion represents the reduced-order model performance on all grid points, and
local explained variance information can be obtained for lowest variance region Q2

T0
, medium variance

region Q2
T1

and largest variance region Q2
T2

as in Table IV.1.

Class Q2
global (%) Q2

T0 (%) Q2
T1 (%) Q2

T2(%)

POD 99.3 91.6 97.9 99.5

Gaussian process regression 96.7 81.8 94.0 97.0

Gradient tree boosting 91.1 81.5 86.0 91.5

Polynomial chaos 90.5 73.6 86.2 90.9

k-nearest neighbours 87.7 74.7 83.8 88.1

This discussion can be summarised by Table IV.2. The best global performance is obtained

through Gaussian process regression (Q2
= 96.7%). This approach also achieves the best perfor-

mance on each subregion of the domain consistently with the results on the modes in Fig. IV.11.

Gradient tree boosting and polynomial chaos expansion achieve almost the same global perfor-

mance above 90%. They obtain a very similar performance in the high-variance region (only

0.5% of Q2
T2-di↵erence), while the di↵erence is quite significant on the low-variance region (7.9%

of Q2
T0-di↵erence). This can be explained by the fact that the global Q2-score favours high vari-

ance grid points by assigning a weight proportional to the overall variance (Eq. IV.4). Note that

the k-nearest-neighbours algorithm achieves the lowest performance, except on the low variance

region (Q2
T0), where it is ahead of polynomial chaos expansion by 1.1%. This may be explained

by a poor estimation of the Q2 in this area: when the variance tends towards 0, the Q2-estimator

lacks reliability because of its ratio analytical expression (Eq. IV.3).
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(a) GPR

(b) GB

(c) PC

(d) kNN

Figure IV.12: Regression model prediction error based on local Q2-score (in %) computed at each grid
point for the test dataset using L = 100 PODmodes. (a) Gaussian process regression (GPR). (b) Gradient
tree boosting (GB). (c) Polynomial chaos expansion (PC). (d) k-nearest-neighbours algorithm (kNN).
Black dashed lines correspond to 50%, 95% and 99% Q2-contour lines. White thin lines split the spatial
regions with respect to the 1

3 and 2
3 variance quantiles.

Field prediction examples. Previous results show that Gaussian process regression is better

suited to emulate mean tracer concentration fields over a wider area of the domain, including

the low-variance region. As an illustration, Fig. IV.13 to Fig. IV.15 show the mean normalised

tracer concentration fields predicted by the Gaussian process regression model for three snapshots

of the LES test dataset.

– For the nominal snapshot (Fig. IV.13), the largest prediction errors are made i) close to

the emission source with largely underestimated tracer concentration (about 50% of the

LES reference concentration), and ii) in the accumulation area upstream of the obstacle

with overestimated coarser-structured tracer concentration levels. Further away from the

source, the tracer concentration in the wake of the obstacle is well predicted. Upstream

of the obstacle, we can distinguish slight noise in no-tracer areas due to high-order POD

modes that carry small noisy structures (Fig. IV.5).
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(a)

(b)

Figure IV.13: Nominal snapshot mean normalised tracer concentration field obtained with (a) Gaussian
process prediction. (b) Prediction absolute error calculated with respect to LES snapshot (Fig. III.4).
Contour line of the mean normalised tracer concentration equal to 5 ◊ 10

≠4 is superimposed on predicted
field to highlight the presence of low-magnitude noisy structures.

– We also present the prediction result for a case where the emission source is far from

the obstacle and the ground (Fig. IV.14). This case emphasises what has already been

observed in the nominal case. The tracer concentration at the actual emission source and

along the wake is hard to predict. The prediction absolute error can reach up to 75% of

the LES solution. The fine structures of the plume are hard to predict since information is

mostly carried by multiple high-order POD modes in a region where there are only a few

samples of the emission source in the LES dataset (this case is located at the boundary of

the tracer source area – Fig. III.1).

– We finally present the prediction result for a case where the emission source is located

in the recirculation area downstream of the obstacle (Fig. IV.15). This case is much

better predicted by the regression model. The areas of high tracer concentrations form a

wide-spread structure in areas carried by the first POD modes. Most of the information

can be therefore conveniently recovered from the first reduced coe�cients with accurate

regression models, including in the recirculation area downstream of the obstacle. The

largest prediction error is on the order of 10% of the LES solution.

These three snapshots highlight the capacity of the Gaussian process regression model to pre-

dict the main tracer concentration structures, in particular when the emission source is located

in recirculation zones near the obstacle. In this situation, the tracer concentration patterns are

smooth as the dispersion is dominated by turbulent di↵usion, making the prediction task easier.

The main challenge in this work is therefore to reconstruct the mean tracer concentration in the

upstream region near the emission sources.

108



IV.3. Comparison of regression models 109

(a)

(b)

Figure IV.14: Same caption as in Fig. IV.13 for a LES snapshot with a high emission source (Fig. III.8c).

(a)

(b)

Figure IV.15: Same caption as in Fig. IV.13 for a LES snapshot with an emission source downstream of
the obstacle (Fig. III.8b).
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110 Chapter IV. Reduced-order model for mean tracer prediction based on LES data

IV.3.2.b E�ciency

Although Gaussian process regression achieves the best performance for emulating the POD re-

duced coe�cients, its training stage is very CPU intensive. Table IV.3 summarises the CPU cost

for both training and prediction steps of POD and all four regression models. Even though the

k-nearest-neighbour algorithm achieves the poorest Q2-performance, the training and prediction

of tracer concentration fields is very fast (there is no additional cost compared to a standalone

inverse POD reconstruction). Training and prediction by the other regression models are be-

tween one and three orders of magnitude higher than the k-nearest-neighbours algorithm. The

high cost of polynomial chaos training is due to the cleaning procedure, while Gaussian process

regression su↵ers from the cost due to hyperparameter optimisation (Sect. II.3.3.c). If uniform

prior distributions are assumed over the hyperparameters, gradient descent has di�culty to con-

verge due to multiple local optima. To overcome this issue, one way is to perform multiple

gradient descent iterations starting from di↵erent hyperparameter initial conditions. The final

solution is then chosen as the one achieving the highest maximal log-likelihood (MLL) score.

These multiple gradient descent iterations increase the computational cost of Gaussian process

regression.

Table IV.3: CPU cost (in s) for the training and prediction steps for standalone POD and reduced-order
models (POD combined with regression models). In the column “training”, the CPU cost aggregates the
score for the 100 subtraining tasks (i.e. the training task associated with each mode index between 1 and
100) that are done for a training dataset made of 450 snapshots. In the column “prediction”, the score
represents the CPU time for the spatial prediction of a single snapshot including both emulation and
inverse POD reconstruction.

Family Training (sCPU) Prediction (sCPU)

POD 10
≠1

10
≠4

Gaussian process regression 10
3

10
≠3

Gradient tree boosting 10
1

10
≠1

Polynomial chaos expansion 10
3

10
≠3

k-nearest neighbours 10
0

10
≠4

To conclude this section on the regression model comparison, Gaussian process regression

obtains the best prediction performance with a clear lead over the other regression approaches,

in particular for the high-order modes that are necessary to include in the reduced basis to

well represent the tracer concentration in the wake of the emission sources. However, the

MLL optimisation approach for the hyperparameters is costly. Due to its great accuracy, it

is of interest to find ways to make the Gaussian process optimisation step more e�cient.

IV.4 Improving Gaussian process regression e�ciency

Given the superior performance of Gaussian process regression over alternative metamodels, it

is worthwhile to enhance the learning of Gaussian process hyperparameters in order to reduce

the training computational cost. One way to accelerate the optimisation process is to provide

an appropriate starting point for the hyperarameters to avoid performing multiple gradient de-
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scent iterations as in the MLL procedure. For this purpose, the optimisation procedure can be

informed by providing prior distributions for the hyperparameters that are not uniform. We

propose in this work to infer these distributions from the POD reduced coe�cients using the

validation dataset. This approach is referred to as the maximum a posteriori (MAP) estima-

tion (Sect. II.3.3.c) and is compared to the standard MLL approach in terms of accuracy and

e�ciency.

IV.4.1 Hyperparameter prior distribution

Gaussian process regression requires optimising hyperparameters ◊l = {s2
l , Í, ⁄uzc

, ⁄z0 , ⁄xsrc , ⁄zsrc}

for the lth reduced-order model. We present here how to calibrate Gamma and Gaussian dis-

tributions for the hyperparameters from POD modes and reduced-coe�cient features that are

required as input to the MAP optimisation procedure.

Noise prior. POD often assumes that the variability of the low-order reduced coe�cients is

related to systematic behaviour among the LES dataset, whereas the variability carried by the

high-order reduced coe�cients matches data noise [Jolli↵e, 2002]. This is equivalent to treating

the reduced coe�cients on the first modes as unbiased data. In this study, Gaussian process

regression accounts for the noise on the lth reduced coe�cient through the hyperparameter s2
l

(Eq. II.21). In this work, we assume that a prior estimate of s2
l may be obtained from the noise

introduced by the time-averaging process performed on the LES. Note that this is not the only

source of noise introduced during the generation of the LES database, but this provides a lower

bound noise estimation that is useful to demonstrate the added value of our methodology.

The main parameter involved in the time-averaging process is the length of the time-averaging

window used to acquire LES statistics. To evaluate the noise for the lth reduced-order model, we

compare the reduced coe�cient of converged simulations (kl) with the non-converged reduced

coe�cient obtained by averaging over only 50% of the full simulation time window (kl,50%) as:

ŝl
2

¥
1

2N

Nÿ

n=1

1
kl(µ

(n)
) ≠ kl,50%(µ(n)

)

22
. (IV.6)

Figure IV.16 shows the ŝl
2-estimates obtained on the validation samples. The estimated noise

increases from 10
≠4 to 10

≠2. It is small compared to the variability of the reduced coe�cients

(normalised to unity). Estimates of s2
l vary over several orders of magnitude. Since s2

l is

positive, we set a Gamma prior distribution for s2
l . The mode of the Gamma prior is set from

the smoothed estimation for each of the L reduced-order models (thick line in Fig. IV.16).

Since reduced coe�cients are normalised to unit-variance, we have 0 Æ s2
l Æ 1. The mean of

the Gamma distribution is set to 0.5 (middle value of the interval). For the hyperparameter

optimisation step, the starting point of the gradient descent for s2
l is taken as the Gamma

distribution mode value.

Mean and scaling priors. Now we establish prior information on the mean and variance of

the Gaussian processes (Eq. II.36). In our Gaussian process regression formalism, the mean is
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112 Chapter IV. Reduced-order model for mean tracer prediction based on LES data

Figure IV.16: Estimation of the noise hyperparameter s2
l for each reduced-order model l. The thin line

corresponds to the noise estimation ŝl
2 from the POD modes (Eq. IV.6). The thick line corresponds to

the average trend found by regression and defined by the following equation ŝ2
l = 2.16 ◊ 10

≠4 l0.93.

assumed to be constant, and the variance is decomposed into a systematic component and a

noise component. From the expression of the noisy regression models, we obtain for each POD

reduced coe�cient l:

E[kl] = ml , Var(kl) = Í + s2
l , (IV.7)

where the signal variance hyperparameter Í (Eq. II.41) characterises systematic variability, while

s2
l characterises noise variability.

Figure IV.17 shows the mean and variance statistics of the reduced coe�cients on the di↵erent

LES datasets (Sect. IV.1.2). The variance evaluated on the training data is equal to one by

construction. This is no longer the case when the variance is evaluated on the calibration and

test data. Still, the variance statistics oscillate on average around one with a Gaussian-like

distribution. Similar behaviour can be observed for the mean statistics that are equal to zero

on the training data and on average around zero on the calibration and test data.

In this study, to be consistent with these results, the Gaussian process mean is set as deter-

ministic with ml = 0 for all l = 1, · · · , 100. Concerning the variance, this is represented using

a scaled Matérn kernel. When compared to the total variability of the Gaussian process, the

proportion of variability attributed to noise (associated with s2
l ) appears to be small. For this

reason, we assume that the total variability is essentially induced by systematic behaviour of

LES data and carried by the hyperparameter Í. We set a Gaussian prior distribution for Í with

mean and variance estimated from the validation data ensemble statistics and set to 1 and 0.03,

respectively. During the optimisation step, the starting point of the gradient descent for Í is set

to the Gaussian distribution mean.

Correlation length-scale prior. We are now interested in the prior distributions of the Matérn

kernel correlation length-scales (as described in Sect. II.3.3.b) {⁄xsrc , ⁄zsrc , ⁄Uzc
, ⁄z0}. The anal-

ysis of the POD modes (Fig. IV.5) reveals an increase in small-scale spatial heterogeneity for

increasingly higher-order modes, which results from the ensemble variability driven by the emis-
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Figure IV.17: Ensemble variance of reduced coe�cients {kl}l=1,...,L evaluated on the three subsets of the
LES data: training data (dashed line), calibration data (solid line), and test data (dotted line). Related
statistical distributions are plotted on the right.

sion source location.

The first modes have spatially widespread structures with horizontally elongated shapes,

looking like streaks aligned with the streamwise direction. When the POD mode index increases,

the number of alternated streaks, corresponding to shorter wavelengths in the vertical direction.

Due to the alternated signs of the POD modes, it seems natural to anticipate the correlation

lengths of the random processes used to model the POD coe�cients as being strongly influenced

by these patterns. In particular, we can see that the typical correlation length along the source

height should be related to the number of streaks, and should therefore decrease as we consider

higher POD modes.

Based on these considerations, we model a decrease in the length-scales ⁄xsrc and ⁄zsrc asso-

ciated with xsrc and zsrc when moving to higher-order modes. For low-order POD modes, the

length-scales tend to be large (i.e. the process is stable relatively to source position and height).

For high-order POD modes, they tend to be smaller (i.e. the process is unstable relatively to

source position and height). Because the correlation length-scales are positive, we adopt a prior

Gamma distribution for ⁄xsrc and ⁄zsrc . The mode of each Gamma distribution is determined by

the simple decreasing rule: 1/l for l = 1, . . . , 100. The variance of the Gamma distribution is set

to 1, which corresponds to the interval length associated with the normalised input parameters

([0, 1]
4). Since there is no analogous interpretation of decreasing length-scales for z0 and Uzc ,

we retain prior Gamma distributions with constant mode and variance equal to 1 for ⁄Uzc
and

⁄z0 . During the hyperparameters optimisation step, the starting point of the gradient descent

for {⁄xsrc , ⁄zsrc , ⁄Uzc
, ⁄z0} is set to the Gamma distribution mode.
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114 Chapter IV. Reduced-order model for mean tracer prediction based on LES data

It is therefore possible to define prior distribution for the Gaussian process hyperparameters

based on POD information. This information is then used as a starting point of the gradient

descent in the MAP optimisation step of Gaussian process regression.

IV.4.2 Comparison of Gaussian process regression optimisation procedures

We now compare the reduced-order model solutions obtained from MLL and MAP hyperparam-

eter optimisation procedures to show the added value of MAP. We also quantify the noise of the

coe�cients on each POD mode.

Comparison of optimisation solutions. Figure IV.18 presents the modes of the hyperparameter

prior distribution (dashed lines) and the optimised hyperparameter solutions obtained with

MAP (dotted lines). The MLL solution (solid lines) is also plotted for comparison with MAP.

Figure IV.18abcd shows that MAP and MLL procedures converge to similar solutions. Estimated

correlation length-scales are close to each other. However, MAP estimates are systematically

underpredicted compared to MLL solutions on the first fifty modes.

(a) (b)

(c) (d)

(e) (f)

Figure IV.18: Gaussian process correlation length-scales for (a) uzc , (b) z0, (c) xsrc, and (d) zsrc. Corre-
lation length-scales can be optimised using MLL (solid lines) or MAP (dotted lines) starting from prior
modes (dashed lines). Noise in the MLL and MAP estimates (e) is used to determine s2

l (f).

Noise estimates in Fig. IV.18ef are consistent for almost all POD modes. Only the estimates
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for the variance hyperparameter Í strongly di↵er between MLL and MAP procedures. To

explain this di↵erence, we note that the prior distribution associated with Í features a low

variance. Therefore, the MAP procedure converges to values close to the prior distribution

mode. The MLL procedure is not constrained by the prior distribution, and the Í-estimates

diverge on the first modes towards the upper bound value (set at 2). Additional tests (not

shown) demonstrated that the MLL procedure applied with Í = 1 leads to correlation length-

scales identical to MAP estimates. This indicates that the Í-estimates obtained with MLL and

MAP impact the associated length-scales. For MLL, the excess of variance on the low-order

modes (associated with a larger value of Í) is balanced by a greater stability with respect to

the input parameters (associated with larger correlation length-scales). From the fiftieth mode

onwards, the MLL Í-estimates decrease around one, and the MLL correlation length-scales are

no longer systematically greater than the MAP correlation length-scales. The decrease in Í is

explained by the fact that the variance on the reduced coe�cients remains close to 1 for each

POD mode (due to whitening) and at the same time s2
l increases (Fig. IV.18).

In the end, the major di↵erence between the MLL and MAP results concerns Í on the first

POD modes and consequent length-scales. Nevertheless, since noise is negligible on the first

modes (because Í ∫ s2
l ), the associated Gaussian process mean predictions are almost equal

(Eq. II.38). Hence, MLL and MAP procedures converge towards similar optima for the Gaus-

sian process regression hyperparameters, meaning that they correspond to equivalent predictive

models but with an economy concerning numerical costs for MAP compared to MLL: the coarse

prior distributions are su�cient to ensure MAP convergence in a single gradient descent when

fifteen iterations are required for MLL (this factor of fifteen is all the more important as this

optimisation procedure is repeated for each of the L = 100 regression models).

Gaussian process noise analysis. Figure IV.18f also shows that the estimated noise (s2
l ) is two

orders of magnitude above the prior solution. This suggests that the temporal convergence

error may not be the primary source of noise in the data. On the first POD modes, the noise

is small compared to the signal variance. This is consistent with the fact that the first POD

modes are almost noise free since they carry large variance structures. But the noise increases

continuously on high-order modes such that it can be substantial compared to the signal variance

(the maximum noise estimate is close to 0.3 for very high modes, which is of the same order

of magnitude as the signal variance that is around 1). This gradual increase of noise indicates

that there are not two distinct behaviours among the modes, namely those that carry systematic

information on the one hand and those that carry noise on the other hand. It is worth noting

that the ratio between s2
l and Í could be a way to choose the number of POD modes L to retain

in the reduced basis.

Correlation length-scale analysis. We now identify the most relevant input parameters in the

Gaussian process regression models. The order of magnitude for ⁄Uzc
and ⁄z0 is equivalent to

⁄xsrc and ⁄zsrc on the first POD modes (Fig. IV.18abcd). This means that the variance on the

reduced coe�cients is equally due to the variations on all input parameters. On high POD

modes, the values of ⁄Uzc
and ⁄z0 are larger than ⁄xsrc and ⁄zsrc . This implies that the reduced
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116 Chapter IV. Reduced-order model for mean tracer prediction based on LES data

coe�cients are relatively insensitive to variations in Uzc and z0, and are mainly explained by xsrc

and zsrc. This is why the optimisation process for ⁄Uzc
and ⁄z0 becomes unstable for high-order

POD modes. The correlation length-scales on position parameters xsrc and zsrc decrease in a

stable manner over the first hundred POD modes as in the prior solutions. This suggests that the

value of the reduced coe�cients becomes more sensitive to small variations in source position

and height on the higher POD modes. This is consistent with the small structures observed

in the high-order modes and associated with tracer concentration wakes (Sect. IV.2). A large

number of POD modes (L = 100) is necessary here to characterise the high sensitivity of the

tracer concentration upstream of the obstacle to the source height and position.

Gaussian process regression accuracy and e�ciency. We now evaluate the accuracy of the

Gaussian process regression models over the test dataset for validation. Figure IV.19 shows that

the models obtained from MLL and MAP procedures are equivalent as anticipated from the

equivalent correlation length-scales in Fig. IV.18. Optimising the hyperparameters mode per

mode greatly improves the Gaussian process accuracy compared to simply imposing prior trend

on hyperparameters. This gain in Q2 is more pronounced when moving to high-order modes.

Figure IV.19: Per mode-Q2 (Eq. IV.2) for Gaussian process regression models with noise and length-
scales that are either imposed using prior information (dashed line) or optimised by MLL (solid line) or
MAP (dotted line).

To conclude this section, there is a way to make Gaussian process regression more e�cient

without losing accuracy. This can be done through the implementation of a MAP procedure,

which requires defining a non-uniform prior distribution for each of the Gaussian process

hyperparameters. This prior information is partly given through a statistical analysis of the

POD reduced coe�cients, showing that the dimensionality reduction step and the regression

step are not independent. In the end, the response time of the MAP approach is about

twenty times quicker than that of MLL for the same level of accuracy. The comparison is not

completely fair since the MAP procedure was solved using GPU, while the MLL procedure

was implemented on CPU.
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IV.5 Sensitivity of Gaussian process regression to the training dataset

We now assess the ability of Gaussian process regression to emulate a more general and classical

LES problem. Previous results were obtained by considering a large number of modes in the

reduced basis with a rich training dataset (Ntrain = 450). Such a large LES database is im-

practicable in all realistic atmospheric dispersion cases involving larger computational domains

and three-dimensional e↵ects. In this section, we analyse how reducing the training dataset

to Ntrain = 100 and even 50 snapshots impacts the regression performance. This number of

snapshots corresponds to a more achievable budget in practice, even if it already represents a

significant computational e↵ort.

Similarly to Sect. IV.4, 90% of the training snapshots are used to determine the POD reduced

basis, while the remaining 10% is used for calibration. This implies that the maximum number

of modes in the reduced basis is directly equal to the POD training size (90 for Ntrain = 100;

45 for Ntrain = 50). The only di↵erence is that here the whole dataset is used to optimise the

Gaussian process regression models since the dataset is of very limited size. The test dataset

remains the same as before to avoid introducing bias during the validation stage.

Figure IV.20 compares the evolution of per-mode Q2 for both full and reduced training

datasets. The Gaussian process regression model accuracy significantly decreases for the reduced

database for all reduced coe�cients. There is a faster linear decrease towards Q2
= 0 than with

the full training dataset (the threshold Q2
= 0 is approximately reached for the fiftieth mode for

Ntrain = 100 and the the twenty-fifth mode for Ntrain = 50). This suggests that the number of

POD modes to consider in the reduced-order models should be reduced due to the too limited

size of the training dataset.

Figure IV.20: Per mode-Q2 metric (in %, see Eq. IV.2) for Gaussian process regression model trained
with 472 snapshots (dotted line corresponding to the MAP result already presented in Fig. IV.19), 100
snapshots (dash-dotted line) or 50 snapshots (densely dash-dotted line).

Including higher-order modes in the reduced-order model can even degrade its global per-

formance. Here, the optimal choice for Ntrain = 100 is to keep L = 80 modes and L = 38

modes for Ntrain = 50. The associated global Q2 score is equal to 90.8% and 83.7%, respectively,

and can be compared to 96.8% for the full training dataset (Sect. IV.4.2). These scores may

seem satisfactory but when looking at the nominal snapshot prediction, the prediction errors

observed before are amplified. Figure IV.21 presents the nominal snapshot prediction result for

Ntrain = 100. The shape of the tracer concentration wake is retrieved but the reduced-order
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118 Chapter IV. Reduced-order model for mean tracer prediction based on LES data

model has di�culty to predict the correct tracer concentration magnitude: the tracer concen-

tration is underestimated at the emission source and upstream of the obstacle, and the high

tracer concentrations correspond to a much thinner region than for the full training dataset

(Fig. IV.13). This highlights that the analysis of the overall Q2 score can be misleading about

the reduced-order model accuracy, since the prediction quality is spatially heterogeneous and

can fastly degrade upstream of the obstacle due to the large tracer concentration gradients near

the emission source.

(a)

(b)

Figure IV.21: Same caption as in Fig. IV.13 for Gaussian process regression model prediction with
Ntrain = 100 training snapshots.

Even if the prediction performance is reduced when the training dataset includes 100 snap-

shots, the Gaussian process regression model predictions remain physically-consistent. This is

no longer the case when further reducing the training dataset since some non-physical large-scale

structures appear in the predicted tracer concentration fields. Figure IV.22 shows three examples

of predictions from the test dataset when considering 50 LES snapshots in the training dataset.

Downstream of the obstacle, the plume shape remains relatively consistent with the reference

LES statistics despite non-negligible magnitude di↵erences (particularly visible in Fig. IV.22c

near the source). However, physical consistency is lost upstream of the obstacle: there is no clear

emission source position in the emulated fields (especially in Fig. IV.22ab); the low concentra-

tion magnitude isolines are much coarser, and spurious structures appear. This loss of physical

consistency becomes worse when only considering 25 LES snapshots in the training dataset in

Fig. IV.23.

To conclude this section, the minimum budget required to emulate the mean tracer concen-

tration field from LES data using POD combined with Gaussian process regression is of the

order of 100 LES snapshots in this configuration. We also analysed the emulation sensitivity

to the level of noise in the LES data by decreasing the time-averaging window (not shown).

In principle, this is an important aspect of robustness but the Gaussian process regression

approach was found to be relatively insensitive to noise.
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(a)

(b)

(c)

Figure IV.22: Gaussian process regression model predictions of mean normalised tracer concentration field
with Ntrain = 50 training snapshots obtained for three LES test snapshots (see the reference solutions
in Fig. III.8). White lines correspond to the mean normalised tracer concentration contour line equal to
5 ◊ 10

≠4 to indicate low-magnitude noisy structures.

(a)

(b)

(c)

Figure IV.23: Same caption as in Fig. IV.22 but for Ntrain = 25 snapshots in the training dataset.
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IV.6 Improving Gaussian process regression using deep learning

Until now we have explored the ability of POD-based reduced-order models to emulate mean

tracer concentration fields. The approach combining POD with Gaussian process regression

was shown to be su�ciently versatile to ensure proper emulation of concentration field statistics

when substantial data are used for training. As POD is based on linear algebra, decomposing

information with significant nonlinearity can be tricky. In this work, this issue translates into

the large number of modes (L = 100) required in the reduced basis to reconstruct su�cient

information upstream of the obstacle, highlighting the inability of POD to e↵ectively reduce

the physical space dimension. However, such a large number of modes is not feasible when

LES training data are limited. To overcome this issue, we explore here the capacity of deep-

learning-inspired techniques such as convolutional autoencoders [Fukami et al., 2020] to improve

concentration field compression while meeting the constraint of reduced training dataset.

As explained in Sect. II.2.2, convolutional autoencoders can be considered as a nonlinear

extension to POD. In the following, we present the architecture we adopt for the convolutional

autoencoder and its implementation for data living on unstructured grids before evaluating its

compression and emulation ability for our case study.

IV.6.1 Convolutional autoencoder structure

IV.6.1.a LES snapshots interpolation as preliminary step

Convolutional autoencoders cannot be directly applied to unstructured meshes, because their

convolutional kernels rely on a cartesian grid. For this reason, the autoencoder is not imple-

mented on the original unstructured mesh. A linear interpolation is used to map the LES data

on a uniform mesh that is slightly larger (20 cm larger in each direction) than the region of inter-

est [≠3.5, 13.5] m◊ [0, 5] m to avoid di�culties on the boundaries associated with convolutional

layer padding. The spatial discretisation of the uniform cartesian grid is chosen in adequation

with that of the unstructured mesh, resulting in a spatial resolution of 17 cm and a total of

25,960 grid points. Resulting tensors are of dimension R295◊88.

IV.6.1.b Autoencoder neural-network architecture

As discussed in Sect. II.2.2.b and following the choices made by Murata et al. [2020], the con-

volutional autoencoder we adopt follows a bottleneck architecture shown in Fig. IV.24 with

symmetric operations between the encoding part and the encoding part. First, the encoder re-

duces the original high-dimensional input tensor X to a low-dimensional latent vector “. Then,

the decoder transforms the latent vector back to the original high-dimensional image resulting

in Y ¥ X. The layers closest to the latent space correspond to a dense multilayer perceptron to

handle the highly compressed data, which is surrounded by convolutional layers to handle the

high-dimensional tensors at the network input and output. This architecture was already used

in the work of Murata et al. [2020].

The choice of activation functions is an important point of attention as discussed in Sect. II.2.2.b.
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We only use hyperbolic tangent (Tanh) functions on the hidden layers; only the last layers near

the output Y contain the activation functions Sigmoid, ReLU and Softplus. We have chosen

to primarily use Tanh for its symmetry properties and to avoid the use of sparse layers (e.g.

ReLU) and gradient discontinuity. A single exception is made at the end of the network with

the introduction of a unique ReLU layer: this choice was made to reduce the computational cost

of the neural-network training and no drop in performance was observed for a single ReLU layer

(adding more ReLU layers would reduce the neural-network prediction accuracy). The final

sequence of activation functions – Sigmoid, ReLU and Softplus – retained in the final version

of our autoencoder neural-network corresponds to a progressive debiasing of the mean concen-

tration fields to obtain a positive output Y . Moreover, Softplus is adopted in the last layer to

provide a better estimation of low tracer concentration values.
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Figure IV.24: Convolutional autoencoder architecture consisting of (i) convolutional layers (first and last
columns) to handle high-dimensional tensors and limit the number of network weights, and (ii) a dense
multilayer perceptron (middle column) to deal with highly compressed data. The dimension of the latent
vector “ which is a hyperparameter to be specified by the user. Each box describes a layer operation and
input/output tensor dimensions are specified outside in brackets.
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It is worth mentioning that the number of channels is large near the network input and

output and is reduced near the latent space to allow for greater flexibility in the size of the

central multilayer perceptron. Inside of the dense network, the dimension is reduced progressively

proportionally to the size of the latent space.

IV.6.1.c Training metric

Training the network was performed minimising the MSE (which is equivalent in our case to Q2

maximisation). The cartesian grid points associated with prediction of non-relevant areas (for

instance, inside the obstacle) are assigned a zero weight and are not accounted for in the MSE

formulation. The Adam method is used to optimise the network and to change the learning rate

and the mini-batch size during training. For the first steps, the learning rate was set to 10
≠4

with ten-snapshot mini-batches. Near convergence (after 500 to 2,000 iterations depending on

the latent space dimension and the training set size), the learning rate was lowered to 10
≠5 for

online learning during a few iterations (5 to 10).

IV.6.2 Convolutional autoencoder performance

In this section, we evaluate the performance of the convolutional autoencoder in terms of com-

pression and prediction, and we compare it to our baseline approach combining POD and Gaus-

sian process regression.

IV.6.2.a Compression performance

Statistical analysis. Similarly to the POD performance evaluation in Sect. IV.2, the convolu-

tional autoencoder compression performance is shown in Table IV.4. The compression perfor-

mance is presented through the Q2-explained variance criterion for di↵erent sizes of the training

dataset and of the latent space. Results show that the convolutional autoencoder outperforms

POD in every tested configuration, both globally and per area.

When considering the full training dataset (made of 450 LES snapshots) and 25 latent

variables, the convolutional autoencoder achieves a global score of Q2
global = 99.7%, which is

better than the POD score obtained with 25 modes (97.2%) and even 100 modes (99.3%, see

Table IV.1). Still, the convolutional autoencoder is subject to the same bias towards better

representation of high variance areas. Indeed, higher ensemble variance area obtains a better

score (Q2
T2 = 99.7%) than middle and lower range ensemble variance areas (Q2

T1 = 99.3% and

Q2
T0 = 98.3%, respectively) .

The ability of the convolutional autoencoder to further compress the information to only

10 latent variables is also evaluated in Table IV.4. There is a slight loss of information with a

0.7% drop in the global Q2 when moving from 25 to 10 latent variables. However, this loss of

information is not homogeneously distributed over the domain; it is mainly concentrated in the

low-variance area where the di↵erence in Q2 is 7.1% (compared to equal or less than 1.1% in

the high- and medium-variance areas). This suggests that 25 latent variables are not excessive

for a learning database of 450 snapshots, and that the additional 15 features carry relevant
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Table IV.4: Explained variance ratio (Q2 in %) obtained for the convolutional autoencoder over the test
dataset configured with varying dimension of the latent space and of the training dataset (a comparison to
POD performance is given in brackets). The global Q2 criterion represents the compression performance
on all grid points. Local explained variance information can be obtained for lowest variance region Q2

T0
,

medium variance region Q2
T1

and largest variance region Q2
T2
.

Training Latent space Q2
global Q2

T0 Q2
T1 Q2

T2
size Ntrain dimension L

450 25 99.7 (97.2) 98.3 (87.1) 99.3 (94.0) 99.7 (97.5)

450 10 99.0 (92.6) 91.2 (80.6) 98.2 (88.3) 99.1 (93.1)

100 10 96.7 (92.2) 89.3 (76.2) 94.9 (87.5) 96.9 (92.7)

50 10 92.6 (90.8) 72.6 (72.5) 91.2 (85.4) 92.8 (91.4)

50 5 89.8 (84.3) 66.2 (63.6) 84.5 (80.6) 90.4 (84.8)

information about the mean concentration spatial patterns, mainly in areas that represent a

smaller share of the ensemble variance.

As in Sect. IV.5, we test the sensitivity of the convolutional autoencoder compression per-

formance to the learning dataset by reducing the training size from 450 to 100 and even 50

snapshots. The dimension of the latent space is reduced accordingly to 10 and even 5. When

considering 10 latent variables, the global Q2-performance equals 96.7% and 92.6% for 100 and

50 training snapshots, respectively. It should be noted that reducing the number of training

snapshots mainly a↵ects the areas of low ensemble variance. While the di↵erence in global Q2

is 6.4% between 450 and 50 snapshots, the di↵erence in the low-variance area Q2 reaches 18.6%

(Q2
T0), while it is limited to 6.3% in the high-variance area (Q2

T2). These results are consistent

with the trends observed for POD. It should also be noted that the choice of 10 latent variables

for 50 training snapshots seems to be a coherent choice since there is a non-negligible di↵erence

in performance when compared to 5 latent variables.

Snapshot reconstruction example. The reconstruction of the reference nominal snapshot in

Fig. IV.25 reflects the improved quality when using a convolutional autoencoder instead of POD

for dimension reduction. We can observe that for all configurations (varying training size and

latent space dimension), the plume shape matches well the reference LES, both downstream

of the obstacle and upstream near the emission source. When considering the full training

dataset but only 25 latent variables (Fig. IV.25b), we retrieve almost identical levels of tracer

concentration, including near the emission source. Reducing the training dataset, for instance

to 100 or 50 LES snapshots (Fig. IV.25cd), has a noticeable impact on the plume shape close

to the emission source and near the upstream face of the obstacle. In Fig. IV.25c, the peak

concentration is shifted downstream from the actual source position. The autoencoder training

procedure is not stable, and some behaviour is di�cult to anticipate. A larger training database

does not increase reconstruction quality consistently as shown in Fig. IV.25cd; the solution

obtained from the autoencoder trained with 50 LES snapshots appears to be more accurate

than the solution obtained from the autoencoder trained with 100 LES snapshots.

123



124 Chapter IV. Reduced-order model for mean tracer prediction based on LES data

(a) LES

(b) L = 25, Ntrain = 450

(c) L = 10, Ntrain = 100

(d) L = 10, Ntrain = 50

Figure IV.25: Reconstruction of the (a) LES nominal snapshot of mean normalised tracer concentration
field, obtained from autoencoder with training dataset and latent space dimension of (b) Ntrain = 450

and L = 25 modes, (c) Ntrain = 100 and L = 10 modes, and (d) Ntrain = 50 and L = 10 modes.
Contour line of the mean normalised tracer concentration equal to 5 ◊ 10

≠4 is superimposed on mean
tracer concentration fields to highlight low-magnitude concentration patterns.

IV.6.2.b Prediction performance

We now evaluate the prediction performance of the full reduced-order model that includes the

convolutional autoencoder for dimension reduction and a Gaussian process regression model

for representing the dependency of each latent variable to the four uncertain parameters µ =

(uzc , z0, xsrc, zsrc)T . This implies that the reduced-order model architecture remains identical to

the previous sections, with the di↵erence that the POD step is now replaced by the convolutional

autoencoder to reduce the dimension of mean concentration fields. An interesting question is to

analyse how Gaussian process regression models can deal with the nonlinearities introduced by

the latent space of the convolutional autoencoder.

Statistical analysis. Table IV.5 summarises the prediction performance of the autoencoder-

based reduced-order model for di↵erent configurations of the training dataset (the number
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of training snapshots varies from 450 to 50) and of the latent space (the dimension of the

latent space varies from 25 to 5 in adequation with the number of training snapshots as in

Sect. IV.6.2.a).

Table IV.5: Explained variance ratio (Q2 in %) obtained for the convolutional autoencoder-based reduced-
order model over the test dataset for varying dimension of the latent space and of the training dataset
(the Q2 statistics for the POD-based reduced-order model are given in brackets for comparison). The
global Q2 criterion represents the prediction performance on all grid points. Local explained variance
information can be obtained for lowest variance region Q2

T0
, medium variance region Q2

T1
and largest

variance region Q2
T2

as in previous analyses.

Training Latent space Q2
global Q2

T0 Q2
T1 Q2

T2
size Ntrain dimension L

450 25 97.9 (95.2) 92.4 (82.0) 96.8 (91.2) 98.0 (95.6)

450 10 97.4 (91.1) 87.1 (76.1) 96.7 (86.1) 97.5 (91.7)

100 10 93.4 (88.6) 76.0 (71.5) 89.9 (81.1) 94.5 (89.3)

50 10 84.8 (83.1) 43.4 (60.9) 74.9 (74.0) 85.9 (84.1)

50 5 81.6 (78.7) 73.3 (56.5) 84.0 (72.9) 81.5 (79.4)

Results show that when considering the full training dataset, the autoencoder-based reduced-

order model improves the prediction performance compared to the POD-based reduced-order

model. With 25 latent variables, it achieves a global Q2-metric of 97.9%, which is 3% higher

than for the POD-based reduced-order model (this corresponds to a MSE decrease of 60%).

A more significant improvement occurs in the low-variance area with a 10%-di↵erence in Q2
T0

between autoencoder- and POD-based reduced-order model predictions.

When reducing the training dataset, for instance in the case of 10 latent variables and 50

training snapshots, the di↵erence between autoencoder- and POD-based reduced-order model

predictions is narrowing, and even the autoencoder performance in the low-variance area (Q2
T0)

drops to 43.4%, well below the POD performance (60.9%). This suggests that the POD-based

reduced-order model could be more robust for predicting the physical processes in the low-

variance areas when the number of training snapshots is very limited.

It should be noted that in the case of 10 latent variables and 50 training snapshots the

convolutional autoencoder compression performance is very good (92.6% for the global Q2 and

72.6% for Q2
T0 , see Table IV.4. The lack of training snapshots is therefore di�cult to handle

for the Gaussian process regression mode component. This may be due to the high complexity

of the response surface on some latent variables. An argument in favour of this explanation

is the much better Q2
T0-performance achieved in the case of 5 latent variables and 50 training

snapshots (73.3% for 5 latent variables comapred to 43.4% for 10 latent variables). Decreasing

the dimension of the latent space may be a way to have only smooth response surfaces and thus

improve the robustness of the emulation process in low-variance areas. However, this will be at

the expense of areas where the variance is better represented (for instance, the Q2-score in the

large variance area – Q2
T2 – is 4.5% higher when considering 10 latent variables instead of 5).

Snapshot prediction example. The prediction of the reference nominal snapshot in Fig. IV.26

also reflects the improved quality of emulation when using a convolutional autoencoder instead
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126 Chapter IV. Reduced-order model for mean tracer prediction based on LES data

of POD for dimension reduction. Similarly as for the reconstruction step (Sect. IV.6.2.a), we

can observe that for all configurations (varying training size and latent space dimension), the

plume shape still matches well the reference LES solution, both downstream of the obstacle

and upstream near the emission source. When considering the full training dataset but only 25

latent variables (Fig. IV.26b), we retrieve the right levels of tracer concentration, including near

the emission source, which is not the case for the POD-based reduced-order model (Fig. IV.13).

As already observed for the reconstruction, the only exception is the concentration close to the

upstream face of the obstacle that is slightly overestimated by the autoencoder-based reduced-

order model. Reducing the training dataset, for instance to 50 snapshots (Fig. IV.26c), has

a slight impact on the plume shape near the emission source and on the peak concentration

location. Nevertheless, it is intriguing to observe that the position error of peak concentration

observed for reconstruction in Fig. IV.25c does not occur for prediction in Fig. IV.26c. This

means that the prediction outperforms the reconstruction, which is unexpected. The exact

reason for such behaviour has not yet been explored.

Although one can appreciate the quality of the autoencoder predictions, Fig. IV.26 also il-

lustrates the di�culties arising from using complex convolutional autoencoders. It is di�cult

to identify the spatial patterns of the errors, and to understand where they come from. When

considering the full training dataset (Fig. IV.26b), we observe concentration overprediction up-

stream and underprediction downstream of the obstacle, close to the ground. In contrast, when

reducing the training dataset to 100 snapshots (Fig. IV.26c), it is inverted. When consider-

ing only 50 snapshots (Fig. IV.26d), we observe concentration underprediction upstream and

downstream of the obstacle. The mechanisms governing the integration of information in the

autoencoder seem rather unstable, which limits its explicability.

To conclude this section, convolutional autoencoder can lead to improved concentration field

data compression and emulation when used instead of POD in the Gaussian process-based

reduced-order model. However, some latent variables may be subject to strong nonlinearities

with respect to the uncertain input parameters, which makes the regression problem more

di�cult to solve for Gaussian processes. The performance increase is achieved at the expense

of model explicability. The nonlinear expression of the encoder and decoder no longer allows

for an easy hierarchical representation of the latent variables (or modes). Further analysis

of these nonlinearities is required to better understand the behaviour of the convolutional

autoencoder-based reduced-order model when changing the dimension of the latent space and

the training dataset. In complement, we further investigated innovative designs of hierarchical

convolutional autoencoder architectures [Saegusa et al., 2004; Murata et al., 2020; Fukami

et al., 2020] but our preliminary results were not conclusive, even compared to POD. Other

dimension reduction tools were also investigated to replace POD, for instance non-negative

matrix factorisation (NMF) and Gaussian process latent variable model (GPLVM). A GPLVM

does not provide an encoder, which limits its use for reduced-order modelling, but preliminary

tests showed interesting performance that could be further investigated.
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(a) LES

(b) L = 25, Ntrain = 450

(c) L = 10, Ntrain = 100

(d) L = 10, Ntrain = 50

Figure IV.26: Nominal snapshot of mean normalised tracer concentration field obtained with (a) LES
(b) Ntrain = 450 and L = 25 modes, (c) Ntrain = 100 and L = 10 modes and (d) Ntrain = 50 and L = 10

modes. Contour line of the mean normalised tracer concentration equal to 5 ◊ 10
≠4 is superimposed on

mean tracer concentration fields to highlight low-magnitude concentration patterns.

IV.7 Conclusion

In this study, the objective was to design and evaluate a non-intrusive reduced-order modelling

approach suitable to emulate near-source tracer concentration field statistics simulated by LES

in a multi-query uncertainty quantification context. This reduced-order modelling approach

includes a dimension reduction approach to e�ciently represent the fields of interest as a reduced

set of latent variables or modes, and a regression model to map the evolution of these latent

variables with respect to uncertain inputs. A two-dimensional case study corresponding to a

turbulent atmospheric flow over a surface-mounted obstacle was considered to generate a large

LES ensemble database (750 snapshots in total) based on perturbed inflow boundary conditions

and emission source position and height. The performance of the di↵erent configurations of the

reduced-order model was evaluated through the Q2-metric and was illustrated here through the

example of the mean tracer concentration field.
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POD was used as the baseline approach for dimension reduction since it is widely used ap-

proach in CFD problems. Low-order modes were found to carry concentration information in

widely-spread areas and near the obstacle, whereas high-order modes were found to characterise

the concentration high variability near the emission sources upstream of the obstacle. To ac-

curately represent this concentration variability, it was necessary to include a large number of

POD modes (up to 100) in the reduced basis, which multiplies the number of regression prob-

lems to be solved. To overcome POD limitations, we implemented a convolutional autoencoder

neural network inspired from the work by Murata et al. [2020], combining convolutional layers

and a dense multilayer perceptron. The convolutional autoencoder demonstrated remarkable

compression capabilities (25 latent variables were su�cient instead of 100 modes for POD) but

this came at the expense of model explicability. Further research on the hierarchical expression

of latent variables is needed for this approach to become a good candidate for reduced-order

modelling, especially for risk assessment studies, where there is a need for interpretability.

The regression component was formulated as a set of regression subproblems, with the key

idea of building a regression model for each POD mode, since each POD mode has its own

length-scales and since a significant performance gain is obtained by optimising the regression

model hyperparameters mode-by-mode. The choice of the regression model class is reported

to be problem-dependent in the literature. To find the most suitable class for the near-source

atmospheric dispersion problem studied in this work, a detailed comparison of several regres-

sion model classes was carried out, including the well-known polynomial chaos expansion, the

Gaussian process regression model and even gradient tree boosting, i.e. a more recent machine

learning approach combining decision trees and a boosting procedure. The Gaussian process

regression model performed by far the best in mapping the POD reduced coe�cients over a

wide range of input parameter variation. The high-order modes were found to be the most

challenging to emulate. They feature very localised spatial structures associated with perturbed

emission location, which are di�cult to predict and which are prone to more noise than low-

order modes. This issue worsens when the training database is reduced. Still, the Gaussian

process regression model prediction performance remained acceptable when considering about

100 LES training snapshots. Moreover, the Gaussian process hyperparameter optimisation was

made more e�cient by running a MAP optimisation procedure informed by hyperparameter

prior distributions and requiring a single gradient descent per POD mode (instead of a standard

N -restart MLL maximisation approach). All these results tend to demonstrate that Gaussian

process regression has the potential to tackle real cases of pollutant dispersion problems such as

the MUST field-scale experiment.

Most of this chapter content is the subject of a first article “Reduced-order modeling for

parameterized large-eddy simulations of atmospheric pollutant dispersion”, which is currently

under revision for publication in the Stochastic Environmental Research and Risk Assessment

(SERRA) journal [Nony et al., 2022]. The article focuses on the performance evaluation of the

reduced-order model combining POD and Gaussian process regression. The intercomparison of

regression models (Sect. IV.3) and the evaluation of convolutional autoencoder-based reduced-

order model (Sect. IV.6) are recent complements to this article.
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Chapter V

Reduced-order model based on LES-informed

Reynolds-averaged tracer transport equa-

tion

The ability to emulate tracer concentration fields in a parametric setting obtained from an

ensemble of LES using a reduced-order model was demonstrated in Chapter IV. The emulation

process allows to accurately reproduce the LES predictions, while reducing the computational

cost to query a snapshot for a new set of parameters by several orders of magnitude. However,

a large LES training dataset is required to achieve accurate emulation without artefacts,

which may be out of reach for practical three-dimensional realistic applications. The need

for a large training dataset is mostly due to fine plume structures in the near-source regions

caused by uncertainty in the emission source location. By reducing the number of training

snapshots, a loss of consistency with physics principles has also been observed: for instance,

non-physical noisy structures may appear in tracer-free regions (as seen in Fig. IV.21), as

the reduced-order model is built in a purely data-driven manner, which is not constrained

by physics principles. To overcome these limitations, this chapter presents an alternative

hybrid RANS/reduced-order modelling approach, which is based on the key idea of injecting

detailed flow information from LES into a lower fidelity tracer transport equation in the

RANS formalism. A reduced-order model combining POD with Gaussian process regression

following the methodology of Chapter IV is used in this chain as intermediate step to e�ciently

represent the relevant LES statistics. This hybrid LES/RANS approach is compared to the

direct approach of Chapter IV. Since models with di↵erent levels of fidelity (LES, hybrid

LES/RANS) are available in this context, a multi-fidelity strategy is also investigated to

exploit the benefits of each approach.
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V.1 Construction of the hybrid RANS/reduced-order model approach

V.1.1 Principle

We propose an alternative approach to Chapter IV, which aims to combine emulation of relevant

flow quantities from LES that are injected in a lower fidelity representation of the tracer disper-

sion. Similar ideas of exploiting the rich LES information with a simplified transport model for

the tracer dispersion for fast inference are also found in the literature: for instance, Du et al.

[2020] proposed a simplified transport model (transport-based recurrence) for the tracer, which

is based on precomputed LES data of the flow statistics. This two-step process allows fast in-

ference time for the evaluation of the tracer dispersion, while preserving the rich information of

the LES dataset. However, their study is limited to a single LES case, which does not address
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atmospheric parametric uncertainties. Following this idea of a two-step process, we propose in

this chapter an hybrid method in parametric setting, which includes three steps:

1. parametric LES data generation;

2. emulation of the relevant LES statistics with a reduced-order model;

3. integration of the emulated LES statistics into a simplified transport model: for this sim-

plified transport model, we make the choice to use a Reynolds average transport equation

for the tracer, which is several orders of magnitude cheaper than a full LES (it could be

inserted into other formalisms, like the recurrence CFD model of Du et al. [2020]).

Combining a reduced-order model and a more conventional transport equation for the tracer is

expected to benefit from the advantages of each approach:

– A first strength of the method is to exploit the rich information of the LES dataset in

an e�cient way with the reduced-order model: exploiting the fact that the flow dynam-

ics is decoupled from the tracer dynamics, we make the choice to build the approach by

only emulating LES quantities related to flow properties (mean flow field, turbulent ki-

netic energy, etc.). This drastically reduces the number of uncertain parameters, as tracer

related uncertainties are no longer required in the LES training database. Thus, the ma-

chine learning approach only handles atmospheric uncertainties (i.e. the reference velocity

magnitude uzc and the aerodynamic roughness length z0) to map relevant flow quantities.

Since the flow quantities do not exhibit the fine characteristic structures related to tracer

source location uncertainty, it is expected for POD to better reduce dimension of the

quantities of interest and for Gaussian process regression to perform well from a smaller

number of LES training samples compared to the direct approach of Chapter IV. The cost

of the LES ensemble generation is thus expected to be lower, which makes the approach

computationally appealing in the o✏ine phase.

– The second strength of the method is that the uncertainties related to the emission source

location are directly handled through the RANS tracer transport equation. The source

position uncertainty is readily handled by the source term in the RANS transport equation

for the tracer. Relying on a transport equation also guarantees essential physical properties

(e.g. tracer conservation) and can smear out potential noise introduced by direct reduced-

order model prediction of the quantities of interest, while being several orders of magnitude

cheaper than a direct LES prediction. However, since the LES training data are agnostic to

tracer dispersion properties, this implies to rely on conventional RANS closure for unclosed

term in the tracer transport equation, which may limit the approach accuracy.

This hybrid approach is referred to as EMUL-RANS-TE (emulated quantities in a RANS trans-

port equation) in the following. For the method construction and validation, LES field statistics

can be used directly in the same framework instead of their emulated counterparts to bypass

the emulation step. It allows to decouple error related to the lower order transport equation

and to the reduced-order modelling errors: this approach used for validation is referred to as

LES-RANS-TE (LES quantities in a RANS transport equation).
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With the objective of constructing the hybrid framework, a first step is to establish the link

between LES and RANS formalisms. The Reynolds-averaged governing equations are derived

along with the modelling assumptions, which are verified with an a priori and a posteriori

validation of the framework. After recalling the RANS governing equations, it is demonstrated

by formally averaging the LES equations that the mean tracer field obtained from the LES

equation can be obtained with a RANS transport equation. This can be done by injecting

relevant LES statistics into these equations. The formalism is demonstrated to be exact if the

true turbulent tracer flux (see example in Fig. III.5) can be inserted in the averaged tracer

equation. However, since the LES data generation and emulation procedure is agnostic to the

tracer dispersion here, an appropriate tracer turbulent flux closure is required. The nominal

snapshot is used to highlight the impact of the RANS closure limitations in this context.

V.1.2 Conventional modelling of tracer transport in a RANS context

As discussed in Chapter I, the RANS equations can be obtained by averaging in time ( · operator)
the original set of governing equations from Eq. (I.6) related to incompressibility constraint,

momentum conservation and tracer transport conservation. They read:

ˆui

ˆxi
= 0, (V.1)

ˆuiuj

ˆxj
= ≠

1

fl

ˆp

ˆxj
+

ˆ

ˆxj
(2‹si j) ≠

ˆ

ˆxj

1
uÕ

iu
Õ
j

2
, (V.2)
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ˆxj
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ˆxj

1
KÕuÕ

j

2
. (V.3)

In these equations, unclosed terms related to second-order correlations between velocity com-

ponents (the Reynolds stress tensor uÕ
iu

Õ
j) and velocity-tracer cross correlations (KÕuÕ

j) appear.

These unclosed terms require to define appropriate closures. A widely-used assumption to close

the momentum equations is the Boussinesq assumption, which states that the Reynolds stress

tensor is related to the mean velocity gradients in the form:

uÕ
iu

Õ
j = ≠2 ‹RANS

T sij , with sij =
1

2

A
ˆui

ˆxj
+

ˆuj

ˆxi

B

, (V.4)

where ‹RANS
T is the turbulent eddy-viscosity. By analogy, a closure of the same form is usually

adopted for the relation between velocity-tracer cross correlation and mean tracer gradient:

KÕuÕ
j = ≠

‹RANS
T

Sc
RANS
T

A
ˆK
ˆxj

B

, (V.5)

where Sc
RANS
T is the turbulent Schmidt number.

In the closures in Eqs. (V.4)–(V.5), the estimation of ‹RANS
T is usually based on a transport

equation for second-order statistics related to turbulence. A common model is the k ≠ ‘ model,

for which two transport equations are solved or the turbulent kinetic energy ktke =
1
2uÕ

iu
Õ
i and
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the turbulent dissipation rate ‘ = 2‹sÕ
ijsÕ

ij . These two equations read:

uj
ˆktke
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T SijSij ≠ ‘ +
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Based on these two quantities, the turbulent eddy-viscosity ‹RANS
T can be estimated as:

‹RANS
T = Cµ ktke ·T with ·T =

ktke

‘
, (V.8)

where ·T is a relevant turbulent time scale that is assumed to be equal to the eddy turnover

time. An alternative to Eq. (V.8) is to solve an additional transport equation for the turbulent

eddy-viscosity itself, as proposed by Spalart and Allmaras [1994] or Yoshizawa et al. [2012]. In

the model of Yoshizawa et al. [2012], the transport equation takes the following form:

uj
ˆ‹RANS

T

ˆxj
= CµP ktke ≠ Cµ‘

1

·T
‹RANS

T + Ò ·
AA
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‹RANS

T
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Ò‹T

B

, (V.9)

where CµP , Cµ‘, ‡‹ are modelling constants associated with turbulent production, dissipation,

and di↵usion. Again, ·T is a relevant flow time scale estimated by Yoshizawa et al. [2012] as:

Y
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‘ �
,

� =

Û

1 + Cs

3
ktke

‘
si j

42
+ C�

3
ktke

‘
�i j

42
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(V.10)

Compared to the conventional k ≠ ‘ model of Eq. (V.8), a correction factor � is introduced

for the time scale estimation to blend the original time scale estimation with time scales related

to the mean strain rate sij and mean vorticity tensors �ij . The Yoshizawa model can be seen

as an extension of the original k ≠ ‘ model, which improves the capability to deal with non-local

transport e↵ects such as advection in turbulent flows. In the limit of negligible advection and

di↵usion transport in Eq. (V.9), the turbulent eddy-viscosity can be expressed as:

‹RANS
T =

CµP

Cµ‘
ktke ·T , (V.11)

which recovers the same form as Eq. (V.8).

V.1.3 Link between LES and RANS formalisms

As the main goal of the method is to substitute LES prediction by RANS tracer transport equa-

tion for the passive tracer, the formal connection between the two approaches is demonstrated

here. It also enables to identify the exact closure term for the RANS tracer equation: with this

exact term, the mean tracer field obtained from the RANS solution should match the mean LES

tracer field. This property is useful to guide the closure of the RANS equations.
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In the context of LES, the transport equation for the passive tracer is recalled as:

ˆ ÂK
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+ Êuj
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+ R . (V.12)

It is reminded that any LES-filtered quantity Â� can be formally decomposed using Reynolds

decomposition in a mean and fluctuating parts:

Â� = � + Â�Õ . (V.13)

By applying the Reynolds operator to the LES tracer transport equation of Eq. (V.12), an

equivalent time-averaged equation is obtained for the tracer transport:
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ˆ

ˆxj
Êuj

Õ ÂKÕ + R , (V.14)

which has the same form as the original equation of Eq. (V.3). This implies that the unclosed

RANS turbulent tracer flux of the original model can be identified from the LES data as:

uj
ÕKÕ = Êuj

Õ ÂKÕ ≠
ˆ

ˆxj

A
‹LES

T

Sc
LES
T

ˆ ÂK
ˆxj

B

. (V.15)

This equivalency between time-averaged LES and RANS equations is verified in Sect. V.1.5.

This demonstrates the potential of a RANS tracer transport equation to predict the mean tracer

concentration field, provided that a satisfactory closure for the turbulent tracer fluxes uj
ÕKÕ is

found. In this perspective, as the“true”closure can be obtained from LES data using Eq. (V.15),

it is used here to evaluate the relevant RANS closure and potential model deficiencies.

V.1.4 LES and RANS coupling in the hybrid approach

The spirit of the hybrid approach (EMUL-RANS-TE) is to solve the tracer transport equation

of Eq. (V.3) by feeding the relevant LES information. The idea of injecting rich data (DNS or

LES) into lower-order equations such as RANS is a common strategy found in the literature,

in particular to build machine learning based closure of RANS equations: from this injection,

corrective closures terms can be learned [Steiner et al., 2022] or inverse modelling can be used

to infer corrective fields [Parish and Duraisamy, 2016], in order to improve RANS accuracy,

with significant generalisation capability. In the present case, we take a more direct approach,

as we do not seek generalisation capability in this context: the main mean flow quantities

(velocity components, kinetic energy, and turbulent dissipation) are directly replaced by the

LES fields or their emulated counterparts (noted with a ı superscript in the following). This

has the advantage of discarding the resolution of these quantities with a conventional RANS

approach, which is subjected to significant model sensitivity, as highlighted for instance by Rodi

[1997] for RANS calculations of surface-mounted obstacles, in particular for the prediction of

the turbulent kinetic energy. For the reduced-order modelling perspective, these quantities are

relatively straightforward to emulate, as i) they can be represented by a small number of POD
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modes, and ii) they do not depend on the tracer source parameters as flow quantities are not

dependent on the tracer dynamics.

With this substitution, the tracer transport equation of Eq. (V.15) reads:

uj
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ˆxj
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‹
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ˆ

ˆxj

1
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j

2
. (V.16)

where uj
ı is the emulated time-averaged velocity jth component from LES data.

The turbulent transport closure KÕuÕ
j in Eq. (V.16) is obtained by adopting the transport

equation for the turbulent eddy-viscosity from Yoshizawa et al. [2012] (Eq. V.9):
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It should be noted that the terms k
ı

tke and ·
ı

T can be directly extracted for the LES solution.

This removes the error associated with predicting these quantities, which can be di�cult in a

RANS context. It should also be noted that the use of the Yoshizawa transport equation is

preferred to the direct algebraic model as i) it can smear out noise in the injected LES data,

and ii) from a physical perspective it better deals with non-local advection e↵ects.

Once the turbulent eddy-viscosity ‹RANS
T is obtained, the turbulent tracer flux can then

be estimated with di↵erent forms of closure. Detailed investigations of di↵erent closures in a

RANS context have been performed by Rossi et al. [2010] and Gamel [2015]. The main available

closures are detailed below.

– The standard gradient di↵usion hypothesis (SGDH) assumes that the di↵usion is isotropic

and occurs in the direction of the mean tracer gradient:

KÕuÕ
j = ≠

‹RANS
T

Sc
RANS
T

ˆK
ˆxj

. (V.18)

– Anisotropic model with a tensorial tracer di↵usivity has also been proposed and is investi-

gated here. A first model from Daly and Harlow [1970] is the generalised gradient di↵usion

model (GGDH), which takes the form:

KÕuÕ
j = ≠

‹RANS
T
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iu

Õ
j
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ˆK
ˆxi

. (V.19)

This model was further refined by Abe and Suga [2001] in the form of the high-order

generalised gradient di↵usion model (HOGGDH):

KÕuÕ
j = ≠

‹RANS
T

Sc
RANS
T

uÕ
iu

Õ
k uÕ

kuÕ
j

k2
tke

ˆK
ˆxi

. (V.20)

In both the GGDH and HOGGDH models, the isotropic eddy-di↵usivity is replaced by a

tensorial representation, which can account for the anisotropic nature of turbulent tracer

transport and therefore give more reliable tracer transport prediction [Rossi, 2010].
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V.1.5 Validation of the turbulent tracer flux closure

A priori validation. To determine the turbulent tracer flux closure to retain in the hybrid

approach, the di↵erent aformentioned closures (SGDH, GGDH and HOGGDH) are evaluated

a priori, meaning that the ground truth LES mean tracer field K is injected in the closure

forms of Eqs. (V.18)–(V.19)–(V.20). This is useful to evaluate the accuracy of the di↵erent

closures by comparing the resulting horizontal and vertical components of the turbulent tracer

flux KÕuÕ
j with the ground truth obtained from LES data (Eq. V.15). This a priori evaluation is

performed on the nominal snapshot. Standard values are used for all closure related parameters

(Sc
RANS
T = 1, CµP = 4/15, Cµ‘ = 2.22, and ‡‹ = 3 in Yoshizawa transport equation of Eq. V.17).

The comparison of the vertical turbulent tracer flux is shown in Fig. V.1.

Figure V.1: Spatial fields of vertical turbulent tracer flux KÕvÕ for (a) ground truth data from LES,
(b) SGDH closure, (c) GGDH closure, and (d) HOGGDH closure. The closure term is obtained using
the a priori concentration field K from LES.

The solution obtained with the LES ground truth data indicates that a strong upward trans-

port by turbulence occurs in the upper part of the plume in the wake of the obstacle. For

the three approximate closures, the same feature is observed and the vertical flux magnitude is

rather well predicted with the standard closure coe�cients. A slight improvement in the mag-
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nitude prediction in the downstream region is observed for the HOGGDH closure. However, a

significant departure is observed in the recirculating flow area behind the obstacle: a significant

downward turbulent tracer flux is predicted by the three closures, while LES predicts weak ver-

tical flux in this area. As for the horizontal fluxes shown in Fig. V.2, a misprediction is obtained

for all three models compared to the ground truth data. Similar deficiencies of RANS modeling

approach for horizontal flux prediction in the wake of obstacles were reported numerically by

Gamel [2015] and experimentally by Vinçont et al. [2000], with significant counter-gradient dif-

fusion that is not well represented by gradient-based closures. This could also be an artefact of

the two-dimensional setup, which may not be representative of the three-dimensional turbulent

transport process here. Still, this local misprediction can have a limited impact if the transport

is dominated locally by the mean flow advection.

Figure V.2: Same caption as in Fig. V.1 but for the horizontal turbulent tracer flux KÕuÕ.

A posteriori validation. To evaluate how the discrepancies in the prediction of the turbulent

tracer flux translate on the prediction of the tracer field, an a posteriori evaluation is performed:

the set of two transport equations for the tracer and the turbulent eddy-viscosity are solved.

This corresponds to the LES-RANS-TE framework in which the LES terms are directly injected
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Figure V.3: Nominal snapshot of mean tracer concentration. Comparison between direct LES prediction
and LES-RANS-TE prediction obtained with di↵erent closures: ground truth LES (exact closure), SGDH,
GGDH and HOGGDH approximate closures.

in the RANS transport equations. The comparison of the resulting mean tracer concentration

field in Fig. V.3 shows that the ground truth closure solution is very close to the original LES

concentration field. This validates the time-averaged formalism introduced previously. This

also confirms that the accuracy of the method lies in the choice of the tracer flux closure.
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The predictions of the mean concentration field obtained with the three approximate closures

(SGDH, GGDH, and HOGGDH) look qualitatively similar to the LES reference solution. Still, a

significant deviation from the LES reference solution is observed near the ground and the leeward

wall of the obstacle. This is attributed to the overly strong downward flux in these regions for

the approximate closure solutions compared to the LES reference solution, as evidenced in the

a priori analysis of the turbulent tracer flux.

To conclude, this analysis highlights the potential of the hybrid approach, which can recover

the LES solution almost exactly if combined with an accurate turbulent transport closure,

as illustrated on the nominal snapshot. By construction of the framework, which is agnostic

to tracer dispersion in the training phase, the accuracy of the method is limited by the

turbulent tracer flux closure required in the Reynolds average formalism: severe modelling

deficiencies are identified for the flux prediction, which directly translate in terms of mean

tracer concentration. Acknowledging this lack of precision, the framework might still be

relevant in a low-order modelling context, as it may require a significantly cheaper LES

database compared to the prediction framework presented in Chapter IV. A full assessment

of the method is carried out in the following, for which the SGDH model is retained as

i) it does not require to evaluate the Reynolds-stress tensor, which simplifies the emulation

process; and ii) more advanced models based on tensorial di↵usivity (GGDH and HOGGDH)

do not provide a significant gain in accuracy in the present case study.
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V.1.6 Summary of the hybrid approach

The hybrid model relies on a two-equation system (turbulent eddy-viscosity and mean tracer

concentration) that requires information on the mean flow components (uı, vı
), the turbulent

kinetic energy kı
tke and the turbulent flow time-scale ·ı

T . The turbulent viscosity is computed

based on the transport equation from Yoshizawa et al. [2012], and the SGDH model is used to

close the turbulent tracer flux. The final formulation of the hybrid model is summarised below.

Formulation of the LES-/EMUL-RANS-TE framework:

uj
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ˆxj
=
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with the baseline constants from the litterature:

Sc
RANS
T = 1.0 , CµP = 4/15 , Cµ‘ = CµP /Cµ = 2.22 , ‡‹ = 3 . (V.23)

The quantities to be emulated in the EMUL-RANS-TE framework (or directly extracted from

the LES solutions for the LES-RANS-TE framework) are the mean flow field components

ui
ı, the turbulent kinetic energy kı

tke, and the turbulent flow time-scale ·ı
T . The resulting

workflow shown in Fig. V.5 involves the use of four data-driven reduced-order models to

emulate the LES fields injected in the RANS transport equations over the range of variation

of the atmospheric uncertainties (Uzc , z0).

To isolate the error related to the emulation from the modeling error in the transport equation

of the EMUL-RANS-TE approach, it is of interest to bypass the use of the emulated quantities

and to directly use the LES data. This results in the LES-RANS-TE approach (schematically

described in Fig. V.5) which can be compared to the EMUL-RANS-TE predictions to isolate the

impact of the emulation step on the prediction. The LES-RANS-TE approach servers solely for

the validation of the method. From a practical point of view it does not bring any cost reduction

since a new integration of the LES model must be performed to query any new snapshot.
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Figure V.4: Schematic of the EMUL-RANS-TE approach based on the emulation of LES fields injected
in the RANS transport equations. Atmospheric uncertainties are handled by four machine-learning-based
reduced-order models (Fig. II.8), which emulate the LES airflow quantity fields of interest from the atmo-
spheric uncertainties (Uzc , z0). The two-equation system is solved using emulated fields (ı superscript)
and a given emission source position (xsrc, zsrc) that acts on the source term R.
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Figure V.5: Schematic of the LES-RANS-TE approach using ground truth LES fields (not using the
data-driven reduced-order models).

V.2 Performance evaluation of the hybrid approach

In this section, the objective is to evaluate the prediction performance and the cost of the

training phase (the required size of the LES ensemble) of the EMUL-RANS-TE hybrid approach

developed in Sect. V.1 for our two-dimensional test case. The same four uncertain parameters

are retained: two atmospheric parameters, i.e. the inlet boundary horizontal wind magnitude

Uzc at height zc = 10H and the roughness length z0, as well as the two parameters on tracer

emission source location (xsrc, zsrc). We evaluate the prediction performance of the EMUL-

RANS-TE framework using the same performance metrics as for the direct prediction framework

of Chapter IV.

V.2.1 Performance evaluation of the airflow reduced-order models

V.2.1.a Reduced-order model configuration

To build the EMUL-RANS-TE framework, we design four machine-learning-based reduced-

order models to map at low-cost the high-fidelity LES fields from the atmospheric uncertainties

(Uzc , z0), including the mean velocity components (u, v), the turbulent kinetic energy ktke, and

the turbulent flow time-scale ·T .

To emulate these LES quantities, we rely on the optimal architecture deduced from the

comparison carried out in Sect. IV.3, based on POD for dimension reduction and adaptive

Gaussian process regression (with Matérn 5/2 kernel) for reduced-coe�cient metamodelling.

Each reduced-order model is built independently, thus the number of POD modes to be retained

may di↵er for the di↵erent quantities of interest depending on the complexity of their spatial

features. For the specific case of turbulent kinetic energy and turbulent flow time-scale, a

logarithmic transformation is applied before applying POD to account for the strong disparity

of scales.

For the direct prediction framework of Chapter IV, a strong sensitivity to the size of the

training database Ntrain was shown, which is also the main driver of the computational cost of

the training phase. A strong degradation of the prediction was observed for Ntrain = 50 (see

142



V.2. Performance evaluation of the hybrid approach 143

Fig. IV.22). This same size is retained here, with the objective to evaluate if the EMUL-RANS-

TE framework can maintain good prediction performance for the mean tracer concentration

when the training dataset is very limited.

V.2.1.b Reduced-basis truncation

As in Chapter IV (Sect. IV.2), we analyse the impact of the POD basis truncation on the

reconstructed quantities of interest on the test dataset (made of 150 LES snapshots).

– For the horizontal wind velocity component u, POD cumulative explained variance exceeds

99.9% when only retaining the first three modes. This corresponds to a global Q2-criterion

equal to 99.6% on the test dataset.

– For the vertical wind velocity component v, four POD modes are required to reach a

cumulative explained variance of 99.6%. This corresponds to a global Q2-criterion equal

to 96.5%.

– For the turbulent kinetic energy ktke, optimal performance Q2
= 99.1% is obtained when

retaining the first five modes in the POD basis (this corresponds to a cumulative explained

variance of 99.9%).

– Ten modes are required for the turbulent flow time-scale ·T . to achieve a total explained

variance of 98.2% and a global-Q2 performance of 92.0%.

These results show that only a few POD modes are necessary for airflow quantities. Dimension

reduction appears to be more challenging for the turbulent flow time-scale ·T than for the

other three quantities. Still, the number of POD modes is much smaller than for the tracer

concentration quantity in Chapter IV for which 100 modes are required to explain 99.3% of the

ensemble variance.

V.2.1.c Prediction performance

Figure V.6 shows the spatial Q2 performance of the four data-driven reduced-order models.

Almost all regions of interest are correctly emulated. Decreased performance is strongly cor-

related with low-variance areas. Indeed, Fig. V.6ad indicates weaker prediction performance

downstream of the obstacle that are spatially correlated with low-u areas. These areas indicate

the boundary of the recirculation areas. These flow critical point vary from one snapshot to

another but to a very limited extent (this is an area where the ensemble variance is very low).

This implies that there is a drop in the prediction performance near these critical points. The

same behaviour can be observed for other quantities. The vertical wind velocity component v

in Fig. V.6b obtains weaker performance in areas corresponding to the low-variance areas close

to zero vertical velocity, located close to the obstacle and downstream at x ¥ 7.5 H. The tur-

bulent time-scale (Fig. V.6d) is also poorly predicted in a band that corresponds to a shear-free

region downstream of the obstacle, corresponding to large values of ·T . As for the turbulent

kinetic energy shown in Fig. V.6c, the reduced-order model performs well in all regions of the
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(a)

(b)

(c)

(d)

Figure V.6: Spatial fields of Q2-criterion showing reduced-order model emulation performance for (a) hor-
izontal mean flow u, (b) vertical mean flow v, (c) turbulent kinetic energy ktke, and (d) turbulent flow
characteristic time-scale ·T .

domain, except close to the leeward face of the obstacle where this a slight decrease in the

Q2-performance.

V.2.2 Prediction performance of the mean tracer concentration field

V.2.2.a Statistical analysis

Figure V.7 shows the Q2-performance field of the EMUL-RANS-TE hybrid approach combining

the airflow data-driven closure models (Sect. V.2.1) and the resolution of the RANS tracer

transport equation. The predicted mean tracer concentration fields corresponding to the EMUL-

RANS-TE solutions are directly compared to the LES test snapshots, resulting in a global Q2-

performance of 69.6%. We find that upstream of the obstacle and far above the ground, the

tracer concentration is well recovered with high Q2 values (Q2 > 90%). Moreover, the upstream

accumulation region is well represented in the EMUL-RANS-TE solutions. This is due to the

fact that most of the variance in this area is driven by snapshots whose emission source is
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Figure V.7: Q2 spatial performance of the mean tracer concentration field prediction over the test
database obtained for the EMUL-RANS-TE hybrid approach when compared with the LES reference
snapshots.

Figure V.8: Q2 spatial performance of the mean tracer concentration field prediction over the test
database obtained for the EMUL-RANS-TE hybrid approach when compared with the LES-RANS-TE
solutions.

located in the accumulation region, and that the EMUL-RANS-TE approach well represents

these snapshots. However, downstream of the obstacle, near the ground surface, there is a

significant drop in Q2-performance. This is consistent with the a posteriori analysis of the

nominal snapshot (Section V.1.5, which showed the poor accuracy of the turbulent transport

model in the wake region). This performance analysis on the whole ensemble confirms that the

EMUL-RANS-TE approach performs well in the upstream region of the obstacle, and but the

performance degrades significantly in the wake region, especially close to the ground.

In complement, Fig. V.8 compares the performance of EMUL-RANS-TE to the LES-RANS-

TE solutions (instead of the LES reference solutions in Fig. V.7). Both approaches are found

to be very close to each other. The LES-RANS-TE approach is associated with a global Q2-

performance of 71.7%, which is slightly higher than for the EMUL-RANS-TE approach (69.6%).

This implies that injecting the emulated LES flow statistics in the RANS transport equation

results in a low performance decrease compared to the ideal LES closure statistics.

To summarise, the decoupling strategy e↵ectively deals with both atmospheric and tracer

uncertainties. However, in its current state, the transport equation model is not fully suited

for modelling tracer dispersion in recirculation areas and the EMUL-RANS-TE framework

would greatly benefit from better modelling assumptions in the transport equations.
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V.2.2.b Snapshot prediction example

The EMUL-RANS-TE approach is further evaluated through the example of the nominal snap-

shot (which is part of the LES test database).

Figure V.9 shows the tracer concentration prediction for the LES-RANS-TE approach (exact

LES data in the RANS transport equation) and compares it to the LES solution in the nominal

case. It corresponds to the a posteriori validation case already shown in Sect. V.1.5, with a

strong tracer concentration misprediction close to the ground: some tracer quantity is trapped

in the leeward face recirculation zone for LES-RANS-TE, whereas there is no tracer accumulation

in this zone for the LES data.

(a)

(b)

(c)

Figure V.9: Nominal snapshot mean normalised tracer concentration field obtained with: (a) LES solution
and (b) LES-RANS-TE prediction. (c) Prediction absolute error measuring the discrepancy between the
LES solution and the LES-RANS-TE prediction.

In a second step, the impact of the LES data emulation for the EMUL-RANS-TE approach is

examined in Fig. V.10. The predicted tracer field with airflow statistics emulation (Fig. V.10a) is

very close the field obtained without emulation (Fig.V.9b). This highlights that the emulation

step has no significant impact on the prediction performance, consistently with the previous

statistical analysis in Sect. V.2.2. This is confirmed by the field of absolute error between

EMUL-RANS-TE and LES-RANS-TE (Fig. V.10b), which shows only minor di↵erences for the

tracer concentration in the near-obstacle region. Overall, this confirms that the weak point of the

EMUL-RANS-TE hybrid framework is the turbulent tracer flux closure, which primarily leads

to a tracer concentration overprediction in the recirculation region downstream of the obstacle.
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(a)

(b)

Figure V.10: Nominal snapshot mean normalised tracer concentration field obtained with (a) the EMUL-
RANS-TE solution. (b) Prediction absolute error measuring the discrepancy between the EMUL-RANS-
TE solution and the LES-RANS-TE solution (Fig. V.9b).

To conclude this section, the LES-informed hybrid approach (EMUL-RANS-TE) has been

designed to decouple atmospheric uncertainties from tracer location uncertainties, since emu-

lating the LES response to variations in the tracer location was found to require a very large

training dataset in Chapter IV (at least 100 LES snapshots), which induces to significant

computational cost for the training phase. The hybrid approach has the advantage of being

e�ciently trained using a small number of LES snapshots (50), while maintaining field physi-

cal consistency. The use of the RANS scalar transport equation provides physical constraints,

which can absorb noise arising for the emulation process, and limits the occurrence of pre-

diction artefacts. In particular, the hybrid approach limits noise on the tracer prediction in

the advection dominated upstream region compared to Chapter IV. Still, the hybrid approach

prediction performance is limited by the RANS closure of turbulent fluxes, which is well suited

for shear flows but not fully adequate for a wake behind an obstacle. The two-dimensional

nature of the turbulence in this setup may exaggerate this departure, as RANS closures are

constructed and calibrated for three-dimensional turbulence. EMUL-RANS-TE prediction

performance is therefore reduced in the wake of the obstacle, but is relatively good in regions

dominated by mean advection (close to tracer source) and shear.

Moreover, the direct approach and EMUL-RANS-TE o↵er di↵erent o✏ine and online cost.

There is a factor of 10 on the size of the training dataset (500 for the direct approach versus 50

snapshots for EMUL-RANS-TE). Even if it could be optimised, integrating the RANS trans-

port equation to produce new online predictions remains several orders of magnitude higher

than a machine learning model such as Gaussian process regression (a few milliseconds for

the direct approach versus a few CPU hours for EMUL-RANS-TE). The two approaches are

therefore complementary and could yield a very e�cient and accurate approach if e↵ectively

combined in a multi-fidelity framework, which is the object of the next section.
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V.3 Towards a multi-fidelity reduced-order model

In Chapter IV, we investigated direct reduced-order modelling approaches from LES solutions

for real-time assessment of tracer concentration. Since such direct approaches require large

training data to achieve acceptable accuracy, the EMUL-RANS-TE hybrid approach combin-

ing airflow data-driven reduced-order models and a RANS tracer transport equation may be

used as a cheaper training data generator than the direct LES model. This idea is explored

in this section through two approaches, a reduced-order modelling approach based exclusively

on EMUL-RANS-TE solutions on the one hand (Sect. V.3.1), and a multi-fidelity reduced-

order modelling approach combining EMUL-RANS-TE and LES solutions on the other hand

(Sect. V.3.2).

V.3.1 Emulation of the hybrid approach from low-fidelity solutions

In this section, we investigate the prediction performance of a reduced-order model trained from a

database of EMUL-RANS-TE solutions, considered as low-fidelity, by contrast with the LES data

which is considered as“high-fidelity”. This reduced-order model is referred to as DIRECT-ROM-

LF (for direct prediction with reduced-order model based on low-fidelity solutions), and provides

prediction of the mean tracer concentration field when varying the four uncertain parameters

µ = (Uzc , z0, xsrc, zsrc), as in Chapter IV. The main expected benefit is a faster inference time

compared to the direct LES model or to the LES-informed RANS tracer transport equation

(EMUL-RANS-TE). This is attractive for two main reasons:

– Computational time is saved during the o✏ine training phase: less full-order LES snapshots

(50 in this case) are required to construct the EMUL-RANS-TE hybrid model and a

very large ensemble of EMUL-RANS-TE snapshots is a↵ordable because of its reduced

computational cost compared to LES.

– The resulting data-driven model is very e�cient to evaluate for any new set of parameters

in the online phase (compared to solving the RANS tracer transport equation for any new

source location).

The DIRECT-ROM-LF reduced-order model is built using POD and adaptive Gaussian

process regression. We use a training database of 450 EMUL-RANS-TE snapshots, themselves

derived from 50 full-order LES solutions to emulate the airflow field statistics (as previously ex-

plained in Sect. V.2). We then evaluate the prediction performance of the resulting reduced-order

model against reference LES solutions. The performance of DIRECT-ROM-LF is illustrated in

Fig. V.11 through the example of the nominal snapshot. It should be noted that in the following,

the reduced-order modelling approach developed in Chapter IV is referred to as DIRECT-ROM-

HF (for direct prediction with reduced-order mode from LES high-fidelity data by opposition to

DIRECT-ROM-LF based on lower fidelity data).

Figure V.11 shows the predicted field from the DIRECT-ROM-LF reduced-order model, and

compares it to the reference LES solution. We observe that the reduced-order model prediction

su↵ers from the weakness of both the EMUL-RANS-TE approach and the DIRECT-ROM-HF
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(a)

(b)

Figure V.11: Prediction of the mean normalised tracer concentration field from the DIRECT-ROM-LF
reduced-order model (trained on 450 EMUL-RANS-TE snapshots). (a) Reduced-order model prediction.
(b) Prediction absolute error computed with respect to the reference LES snapshot (Fig. V.9b).

approach developed in Chapter IV. On the one hand, the wake close to the emission source is

poorly reconstructed with the same numerical artefacts already observed in Chapter IV. On the

other hand, the prediction in the recirculation region downstream of the obstacle su↵ers from the

same biased pattern as the EMUL-RANS-TE solutions, with overly strong accumulation of tracer

concentration in this region. The resulting global performance compared to the reference LES

solution drops to Q2
global = 64.8%. For comparison, the DIRECT-ROM-HF reduced-order model

trained on 50 LES snapshots (in Chapter IV) gives a performance of 83.1% (see Table IV.5). The

weak performance of the DIRECT-ROM-LF reduced-order model is clearly explained because

of the biased training snapshots due to imperfect turbulent closure.

From this first result one may conclude that it is better to train the data-driven reduced-

order model directly from the 50 LES snapshots rather than going through the DIRECT-ROM-

LF approach (which requires the integration of 450 EMUL-RANS-TE solutions and 50 LES

snapshots for emulating the airflow field statistics).

V.3.2 Multi-fidelity emulation approach

To solve this issue, we investigate if mixing LES solutions and EMUL-RANS-TE solutions can

provide a way to obtain a more robust and more e�cient data-driven reduced-order model. This

mix of solutions of di↵erent fidelity levels is referred to as multi-fidelity [Goodfellow et al., 2016].

The key idea is to take advantage of the benefits of the di↵erent types of solutions to have

a more physically-consistent prediction of the mean tracer concentration field. In particular,

multi-fidelity allows to generate a larger training database at a reduced computational cost

(compared to the DIRECT-ROM-HF approach presented in Chapter IV). The resulting multi-

fidelity reduced-order model is referred to as DIRECT-ROM-MF in the following.

In practice, in the present framework, the available training database is made of 50 LES snap-

shots and 450 EMUL-RANS-TE solutions (that are considered as biased data, see Sect. V.3.1).
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Thus, the training database now consists of multi-fidelity data composed of high-fidelity LES

and biased lower-fidelity EMUL-RANS-TE solutions. It is worth noting that the same 50 LES

snapshots are also used to emulate the airflow field statistics for the EMUL-RANS-TE approach.

V.3.2.a Introduction to multi-fidelity methods

The quality of the reduced-order model prediction output heavily relies on the training data.

When the amount of data is excessively limited (as for expensive solvers such as LES), or

when data are of poor quality (as for low-fidelity models such as the EMUL-RANS-TE hybrid

approach), fully data-driven reduce-order models perform poorly. The aim of this section is to

investigate how to jointly use LES and EMUL-RANS-TE solutions to generate a satisfactory

training dataset.

Statistical approaches presented in Chapter II stand as a particular class of data-driven

techniques suited for single-level data. Here we focus on several extensions to multilevel response

models, which feature a similar structure to the two-step approach introduced in Fig. II.8 and

developed in Chapter IV: in a first step, dimension reduction is carried out to compress the

high-dimensional mean tracer concentration fields Kles(µ) and Kemul(µ) obtained from LES

and EMUL-RANS-TE, respectively; and in a second step, the uncertainty parameters µ are

mapped onto the resulting compressed coe�cients kles(µ) and kemul(µ) in the latent space

using a regression model.

Multi-fidelity should be integrated at two stages, in the dimension reduction component

and in the latent-variable emulation component. Basic machine learning tools such as POD

or simple Gaussian processes cannot handle multi-fidelity data. A possible alternative is to

use convolutional autoencoders and more advanced Gaussian processes that are well suited to

the multi-fidelity setting, with autoencoders based on transfer learning, and Gaussian processes

based on co-kriging plus autoregressive models. These techniques are briefly introduced in the

following [Le Gratiet, 2013; Brevault et al., 2020].

Transfer learning for convolutional autoencoders. For dimension reduction, we implement a

convolutional autoencoder using transfer learning [Goodfellow et al., 2016]. In our case, transfer

learning simply defines the network training process. Once the network architecture has been

set up, the network weights are trained with a two-step learning approach. In a first step,

the network is trained on the large dataset of low-fidelity EMUL-RANS-TE solutions Kemul

(the large dataset ensures loss function convergence). The autoencoder is then suitable for

EMUL-RANS-TE data compression, but not for LES data compression. Stated di↵erently, both

the encoder, decoder and latent space components are optimal for Kemul but not yet for Kles.

The second learning step consists of restarting weight training from the pre-trained solution

obtained at the end of the first step. The new descent procedure is carried out until loss function

convergence is reached again. At the end of this second step, we obtain the final network weights

that are used to derive the latent variables kemul and kles (from the high-dimensional statistics

Kemul and Kles, respectively). The resulting decoder will be used in the final multi-fidelity

reduced-order model DIRECT-ROM-MF.
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In this work, we use the same convolutional autoencoder architecture as in Chapter IV

(Sect. IV.6.1). The size of the latent space is set to L = 10. Both gradient descent procedures

(in the two learning steps) are identical and are based on the Adam descent scheme with an

initial learning rate set to 10
≠3 and manually decreased to 10

≠4 and 10
≠6.

Multi-fidelity Gaussian processes using co-kriging and autoregressive models. The Gaussian

process regression framework is enhanced to model the mapping from the uncertain input pa-

rameters to the latent variables, i.e. µ ‘æ kles. We adopt the standard formulation introduced

in Chapter II, meaning that L independent Gaussian process regression models are fitted to the

L latent variables. However, what di↵ers from Chapter II is that here we use a multilevel formu-

lation for Gaussian processes to be built from co-kriging and autoregressive models [Kennedy

and O’Hagan, 2000; Le Gratiet, 2013].

As for standard Gaussian process regression, we assume kl,les(µ) and kl,emul(µ) to be re-

alisations of two Gaussian processes (recall that the index l corresponds to the index of the

latent variables, with l varying between 1 and L). In addition, co-kriging assumes that the

joint process (kl,les(µ), kl,emul(µ)) is also Gaussian given some parameters. The training of the

multi-fidelity Gaussian process regression model is done through a two-step approach. In a first

step, a standard Gaussian process regression model (as in Chapter IV) is trained to emulate

the low-fidelity latent variables kl,emul(µ). The second step is to emulate the high-fidelity latent

variables kl,les(µ) by modelling a dependency on the low-fidelity latent variables kl,emul(µ). To

build the Gaussian process regression model for the most accurate data kl,les(µ), the objective

is to determine the predictive conditional distribution of kl,les(µú
) for new inputs µú, given the

observations (kl,les(µ), kl,emul(µ)). We assume the Markov property:

Cov( kl,les(µ
ú
), kl,emul(µ) | kl,emul(µ

ú
) ) = 0, ’ µ ”= µú. (V.24)

Equation (V.24) means that nothing can be learned about the value of kl,les(µú
) from any other

solution of the EMUL-RANS-TE model than kl,emul(µú
). From this Markov property and the

Gaussianity assumptions, Le Gratiet [2013] models the high-fidelity response as the following

autoregressive model:

kl,les(µ) = fll(µ) kl,emul(µ) + ”l(µ), (V.25)

where ”l(µ) and kl,emul(µ) are assumed to be independent standard Gaussian processes (as

introduced in Sect. II.3.3). Modelling choices must be made such as selecting an appropriate

kernel (e.g. Matérn, RBF). Hyperparameters for ”l(µ) and kl,emul(µ) are denoted by ◊l,” and

◊l,emul, respectively. The additional Gaussian process fll(µ) corresponds to a scale factor between

kl,les(µ) and kl,emul(µ) satisfying:

fll(µ) =
Cov( kl,les(µ), kl,emul(µ) )

V( kl,emul(µ) )
. (V.26)

From such modelling assumptions, a Bayesian prediction model for the high-fidelity latent

variables kl,les(µú
) can be derived from the posterior Gaussian distribution of kles(µ) given
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the dataset collection of EMUL-RANS-TE and LES solutions D, the scale factor fl, and the

hyperparameters ◊l,emul and ◊l,” :

kl,les(µ
ú
) | D, fll, ◊l,emul, ◊l,” ≥ N (ml(µ

ú
), rl(µ, µú

)), (V.27)

with ml and rl the mean and covariance function of the Gaussian process. A closed form for the

expression of ml(µú
) is described in the work of Le Gratiet [2013], allowing for a fast numerical

implementation of the emulation strategy.

In this work, since we choose to have a 10-latent variable convolutional autoencoder, we train

L = 10 Gaussian process regression models and adopt the co-kriging approach for each regression

model. For each regression model indexed by l, we rely on the autoregressive model (Eq. V.26)

proposed by Le Gratiet [2013] to link the high-fidelity latent variable to the low-fidelity latent

variable in the co-kriging approach. We assume ”l(µ) and kl,emul(µ) are modelled using noisy

Gaussian processes based on the anisotropic Matérn kernel of type ‹ = 5/2 following choices

made in Chapter IV. The scale factor fl is assumed to be constant, which is a usual assumption

in practice (this constant value is calibrated during the training process). The Gaussian process

hyperparameters are optimised using the standard MLL procedure (with 10 restarts).

Figure V.12 shows a schematic representation of the multi-fidelity approach from the per-

spective of response surfaces. The mapping to be reproduced is the relationship between the

uncertain parameters µ and the latent mode representation of the time-averaged tracer re-

sponse. First, the multi-fidelity data (both the LES and EMUL-RANS-TE samples denoted by

black points and green stars) is handled using transfer learning to learn a rather e�cient low-

dimensional representation. This step produces a first loss of information between the performed

dimension reduction representation mode (denoted by dashed line – AE-CNN (MF) mode) and

the theoretical optimal mode (denoted by the solid line – LES reference). The AE-CNN mode

approximate is rather satisfactory considering a reduced number of LES samples and system-

atically wrong EMUL-RANS-TE samples. Note that the mode representation is just a mental

picture and is not known in practice. Indeed, the interpolation model attempts to approximate

it from a small number of samples. Using co-kriging to handle multi-fidelity data for interpola-

tion, the final DIRECT-ROM-MF (dotted line) succeeds in approximating the AE-CNN mode

(dotted and dashed lines are very similar).

In the end, we aim at designing a DIRECT-ROM-MF approach, whose response surface

is the closest to the LES reference (i.e. the dotted line to be the closest to the solid line in

Fig. V.12).

V.3.2.b Prediction performance evaluation

Dimension reduction. As a first step, we study how the mixture of multi-fidelity data can help to

improve dimension reduction. In the present case, multi-fidelity data are complementary. Indeed,

EMUL-RANS-TE solutions are well-adapted to model near-source patterns and upper region of

the domain (Fig. V.7). These regions feature low-ensemble variance and are associated with high

wavelength spatial structures, thus requiring a large training dataset to be correctly represented:
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Figure V.12: Response surface schematic representation of the multi-fidelity approach using neural au-
toencoders along with transfer learning and co-kriging.

the lack of LES snapshots due to high computational cost may not allow satisfactory description

of these low-variance areas. Since EMUL-RANS-TE data is abundant (low computational cost

in the training phase) and well represents these regions, significant improvements are expected

if this low-fidelity data can be exploited. For high-variance areas, a small number of simulations

of high-fidelity is su�cient to ensure appropriate representation, and LES is well-adapted for

this purpose (Sect. IV.5).

Figure V.13a shows the local Q2 performance obtained when reconstructing the mean tracer

concentration field using the convolutional autoencoder to evaluate the compression/decompression

capacity of the autoencoder. This performance is evaluated directly against the LES test

database. All regions in the domain of interest feature very high Q2 values (except close to

the upper boundary). This suggests that the autoencoder benefits from the LES information

in the recirculation area and from the EMUL-RANS-TE information in the lower-ensemble

variance areas. The global test performance of reconstruction is equal to Q2
global = 96.6% (Ta-

ble V.1). The multi-fidelity approach outperforms the 10-latent space convolutional autoencoder

trained on only 50 LES snapshots that is included in the DIRECT-ROM-HF approach in Chap-

ter IV (the global test performance is equal to Q2
global = 92.6% in the DIRECT-ROM-HF case,

see Table IV.4 in Sect. IV.6.2.a). It also outperforms the dimension reduction component of

the DIRECT-ROM-LF approach (for which the global test performance could not go above

Q2
global = 71.7%). This demonstrates that the complementary information coming from the LES

and EMUL-RANS-TE snapshots improves the reconstruction capability of the convolutional

autoencoder.

Latent variable emulation. Dimension reduction being improved through multi-fidelity, we train

the L = 10 multi-fidelity Gaussian process regression models. All regression models achieve

good performance: the minimum performance is obtained for the ninth latent variable with

Q2
= 88.5%, while the maximum performance is obtained for the first latent variable with
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(a)

(b)

Figure V.13: Local Q2 performance for (a) standalone reconstruction and (b) dimension reduction com-
bined with Gaussian process regression based on co-kriging for the DIRECT-ROM-MF reduced-order
model. DIRECT-ROM-MF is based on a 10-latent space convolutional autoencoder trained on 50 LES
snapshots and 450 EMUL-RANS-TE snapshots. The Q2-criterion is computed against the reference LES
tests snapshots (recall that there are 150 snapshots in the test database).

Q2
= 97.5%. This leads to a global Q2 test performance of 92.6% for DIRECT-ROM-MF

(Table V.1). We observe in Table V.1 that the loss of accuracy between standalone reconstruction

and DIRECT-ROM-MF prediction is more limited than in the DIRECT-ROM-HF approach

trained on 50 LES snapshots only, implying that the Gaussian process regression models are

successful in representing the variability of the latent variables with respect to the uncertain

parameters µ. We also observe that multi-fidelity improves performance in all subregions of

the domain compared to the DIRECT-ROM-HF model. These results are consistent with the

spatial variability of the Q2 test performance in Fig. V.13, where there is no significant di↵erence

between standalone reconstruction (Fig. V.13a) and DIRECT-ROM-MF prediction (Fig. V.13b).

It is worth noting that the performance of the DIRECT-ROM-MF reduced-order model is

even relatively close to the DIRECT-ROM-HF approach trained on 100 LES snapshots (see

Table IV.5). However, the latter is almost twice as expensive as the DIRECT-ROM-MF multi-

fidelity approach (requiring the integration of 50 LES and 450 EMUL-RANS-TE solutions).

Table V.1: Multi-fidelity reduced-order model Q2-scores (in %) obtained by comparison to the LES test
database for standalone reconstruction and for the full DIRECT-ROM-MF approach emulation (including
convolutional autoencoder and co-kriging). The latent space is of dimension L = 10. The number of LES
snapshots used in the training step is 50. Note that the Q2-scores for the DIRECT-ROM-HF approach
based on the convolutional autoencoder (already presented in Table IV.4 for the reconstruction and in
Table IV.5 for the full reduced-order model) are given in brackets for comparison.

Q2
global Q2

T0 Q2
T1 Q2

T2

Reconstruction 96.6 (92.6) 88.7 (72.6) 95.6 (91.2) 96.8 (91.4)

Prediction 92.6 (84.8) 84.6 (43.4) 91.4 (74.9) 92.7 (85.9)
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Example of the nominal case. Figure V.14 shows the nominal prediction using the DIRECT-

ROM-MF multi-fidelity approach along with the absolute error with respect to the reference LES

snapshot. The coarse plume shape is very similar to the LES solution, especially downstream of

the obstacle in the recirculation area, which does not show the defects of the EMUL-RANS-TE

solutions (Fig. V.11). The recirculation area is also better reconstructed than in the DIRECT-

ROM-HF solution (Fig. IV.26d), which is subject to tracer concentration underprediction in

the recirculation area. The tracer concentration magnitude near the emission source is globally

well reconstructed, without noisy structure in the upstream region. Nevertheless, some errors

appear, mainly in the sharp tracer gradients in the accumulation area. Still, the DIRECT-ROM-

HF solution (Fig. IV.26d) is also not perfect in the accumulation area. While the DIRECT-

ROM-MF has a tendency to overpredict tracer concentration in the accumulation area, the

DIRECT-ROM-HF solution has a tendency to underpredict it.

Figure V.14: Nominal snapshot mean normalised tracer concentration field obtained with (a) multi-fidelity
ROM prediction. (b) Prediction absolute error calculated with respect to LES snapshot (Fig. III.8a).
Contour line of the mean normalised tracer concentration equal to 5 ◊ 10

≠4 is superimposed on reduced-
order model predicted field to highlight the presence of low-magnitude noisy structures.

All these results indicate that the multi-fidelity procedure o↵ers an interesting avenue of

research to optimise the reduced-order model performance of tracer concentration real-time

assessment from low-fidelity training data.

V.4 Conclusion

This chapter presents an alternative hybrid RANS/reduced-order modelling approach, which is

based on the key idea of injecting detailed flow information from LES into a lower fidelity tracer

transport equation in the RANS formalism.

The potential of the hybrid approach relies on the accuracy of the closure model to accu-

rately represent the turbulence mass fluxes in the tracer transport equation. Several modelling

techniques have been developed in the literature to address the representation of the flux tensor

in complex urban flow dispersion applications. To identify the most appropriate closure model
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Chapter V. Reduced-order model based on LES-informed Reynolds-averaged tracer transport

equation

for the flux tensor, we performed a comparison of SGDH, GGDH and HOGGDH closure models

in the present case study (Sect V.1.5).

We demonstrated SGDH is the most appropriate closure model among the tested options as i) it

does not require to evaluate the Reynolds-stress tensor, which simplifies the emulation process;

and ii) more advanced models based on tensorial di↵usivity (GGDH and HOGGDH) do not

provide a significant gain in accuracy. For both closure models, the RANS transport equation

performs well in the upstream region near the emission source (compared to the direct predic-

tion approach in Chapter IV) but faces some di�culty in the wake of the obstacle with coarser

dispersion structures when compared to the LES reference solutions.

Using SGDH, the LES-informed EMUL-RANS-TE hybrid approach aims at decoupling the at-

mospheric uncertainties from the tracer location uncertainties (Sect. V.2). The quantities to be

emulated in the EMUL-RANS-TE framework are the mean flow field components u and v, the

turbulent kinetic energy ktke, and the turbulent flow time-scale ·T . The resulting workflow in-

volved the use of four data-driven reduced-order models to emulate the LES fields injected in the

RANS transport equations over the range of variation of the atmospheric uncertain parameters.

Compared to the direct emulation of the mean tracer concentration of Chapter IV, the hybrid

approach has the advantage of being e�ciently trained using a small number of LES snapshots

(50), without su↵ering from a significant loss of information about the physical structures.

The use of the RANS tracer transport equation provides physical constraints to the emulation

process, and limits the occurrence of numerical artefacts in the prediction of the mean tracer

concentration field. In particular, the hybrid approach limits noise in the upstream region.

The use of a reduced LES training database in the hybrid approach is also a very positive

point since the number of required LES snapshots in the training database directly controls the

computational cost of the o✏ine training phase.

The hybrid approach main flaw comes from the RANS closure in the transport equation,

which is well suited for shear flows but not fully adequate in the context of shedding behind an

obstacle. The emulation performance of EMUL-RANS-TE is therefore reduced in the wake of

the obstacle, but performs relatively well in regions dominated by mean advection (close to tracer

emission source) and shear. Thus, the EMUL-RANS-TE framework would greatly benefit from

better modelling assumptions in the transport equations. Acknowledging this lack of accuracy in

the wake region, the hybrid framework might still be relevant in a low-order modelling context,

as it requires a significantly cheaper LES database compared to the prediction framework in

Chapter IV (at least 100 LES snapshots are required in the direct approach). In such context,

the EMUL-RANS-TE approach may be used as a cheaper training data generator than LES.

Both types of data can then be combined in a multi-fidelity reduced-order model framework. In

this work, multi-fidelity was integrated for both dimension reduction and latent space emulation.

We used convolutional autoencoders and co-kriging combined with autoregressive models to

handle the multi-fidelity data collection of 450 EMUL-RANS-TE solutions and 50 full-order

LES solutions. The multi-fidelity approach achieves improved accuracy compared to single-

fidelity reduced-order models only using the 450 EMUL-RANS-TE solutions, or the 50 LES

solutions.
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This multi-fidelity approach opens up interesting prospects for taking advantage of high-

fidelity LES solutions despite their high computational cost. These data can be used to improve

the accuracy of multi-fidelity trained reduced-order models.
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Conclusions and perspectives

The central idea of this PhD thesis work was to explore how machine and deep learning ap-

proaches can best be exploited to emulate accurate but expensive CFD modelling approaches

to predict microscale urban flow and tracer dispersion in a parametric setting, i.e. when there

are significant uncertainties in the inflow boundary conditions and in the emission source

location. The focus was made on learning the spatial variability of field statistics of interest

(mean tracer concentration, mean flow velocity components, turbulent kinetic energy, tur-

bulent flow time-scale) from LES data and its dependency to uncertain inflow and source

parameters. We carried out a detailed comparison of several reduced-order models on a two-

dimensional canonical flow configuration with dispersion, with the idea of defining statistical

learning guidelines to prepare for future large-scale dispersion applications.

Synthesis of main findings

To identify the most suitable emulation approach for the microscale dispersion context, a de-

tailed comparison of dimension reduction approaches (POD, convolutional autoencoder) and

regression models (polynomial chaos expansion, gradient tree boosting, Gaussian process regres-

sion) was carried out. This was made possible by studying a canonical two-dimensional case

study corresponding to a turbulent atmospheric flow over an isolated surface-mounted obstacle.

Despite its limitation on turbulence representation, this case study features complex flow pat-

terns. Upstream of the obstacle, the plume dispersion is bi-modal: the tracer is either trapped in

a first recirculation region on the windward face of the obstacle, or advected downstream of the

obstacle. Downstream of the obstacle, the flow is driven by a combination of the quasi-periodic

vortex shedding induced by the flow-obstacle interaction and the background turbulence prop-

agating from the inlet. Plus, a reverse flow occurs near the ground, associated with a second

recirculation region, transporting the tracer back towards the obstacle. Simulating such case us-

ing LES in a multi-query context is a↵ordable in an o✏ine way. Thus, a very large LES database

made of 750 snapshots corresponding to di↵erent sets of uncertain input parameters (reference

velocity magnitude, aerodynamic roughness length, emission source axial position and height)

was generated, and includes a diversity of flow and tracer field topologies. This diversity makes

the emulation process complex due to the nonlinear response of the field statistics to variations in

the uncertain parameters. This issue becomes even more acute as the field statistics are of very

high dimension (of the order of 10
5 grid points for this case study). To avoid introducing biases

in the emulation process evaluation, the ensemble was split into training, calibration/validation

and test subsets.

First main goal: Emulating the LES field statistics of interest using machine learning to design

a data-driven reduced-order model
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The ability to emulate mean tracer concentration fields from an ensemble of parameterised

LES simulations using a purely data-driven reduced-order model was demonstrated in Chap-

ter IV. The emulation process allows to accurately reproduce the LES predictions for a large

training dataset (made of at least 100 LES snapshots), while reducing the computational cost

to query a snapshot for a new set of parameters by several orders of magnitude.

– POD was used as the baseline approach for compressing the high-dimensional field statis-

tics. A detailed examination of the POD modes highlighted the POD di�culties to deal

with uncertain source position, which induces by definition spatial variability of the tracer

concentration wake upstream of the obstacle. This close link between the uncertainty

space and the space domain is the main reason for these di�culties, as it requires a very

large number of modes (about 100 modes for training database of 450 LES snapshots) to

represent the high spatial variability of the tracer concentration near the emission sources.

The first low-order modes are su�cient to capture the tracer concentration spatial vari-

ability in areas where di↵usion is significant, for instance in the recirculation area behind

the obstacle. In the opposite, high-order modes are necessary to include in the POD basis

to capture the fine plume structures in the near-source regions upstream of the obstacle,

where advection dominates.

– The best metamodelling approach to represent the response of the POD reduced-coe�cients

to changes in the uncertain parameters was found to be Gaussian process regression, with a

mode-per-mode optimisation of the hyperparameters to adapt to the wide range of spatial

scales across the POD basis, leading to very good global Q2-score (above 95%) for a large

LES training database. This best performance of Gaussian processes over other regression

models may be explained by the training data’s low noise and the presence of strong non-

linearities in the mapping between uncertain parameters and POD reduced coe�cients.

Interpolation models like Gaussian processes excel under these conditions.

We further analysed the behaviour of the Gaussian process regression model through a

mode-per-mode Q2-score to understand the spatial variability of the prediction perfor-

mance. We showed that mean tracer concentration in recirculation zones are well predicted,

while there is a drop in performance near the emission sources. There, the mean tracer con-

centration response is carried by high-order POD modes. These high-order modes feature

very localised structures associated with perturbed emission locations, which are di�cult

to predict and which are prone to more noise than low-order modes. We also showed

that this di�culty of predicting high-order modes increases when the training dataset is

reduced, but the prediction performance remains acceptable when considering at least 100

LES snapshots in the training database.

In complement, the Gaussian process hyperparameter optimisation process done for each

POD reduced coe�cient was improved to gain computational time. We showed that a

satisfactory prior distribution for the hyperparameters can be obtained from POD modes

and can be used to inform a MAP optimisation procedure. MAP was found to provide

similar results to a standard N-restart MLL maximisation approach but using a single

gradient descent, providing a reliable e�cient o✏ine training framework.
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– The ability of convolutional autoencoder to better compress the field statistics within the

Gaussian process-based reduced-order model was studied to overcome POD limitations,

starting from the work by Fukami et al. [2020]. We showed that for the full training

database (made of 450 LES snapshots), it is possible to reduce the latent space size by a

factor of 10 compared to POD (10 latent variables versus 100 POD modes) without losing

information; there is even a slight improvement in prediction accuracy. We also highlighted

that the autoencoder training becomes challenging when reducing the training database.

The consistency of the results was not guaranteed, and the autoencoder behaviour was

di�cult to anticipate due to its black-box nature.

Second main goal: Informing the RANS scalar transport equation from LES airflow data to

design a hybrid reduced-order model

The purely data-driven reduced-order model requires a large LES training database to achieve

accurate prediction without numerical artefacts, which may be out of reach for practical three-

dimensional realistic applications. The need for a large training dataset is mostly due to fine

plume structures in the near-source regions caused by uncertainty in the emission source lo-

cation. By reducing the number of training snapshots below 100, a loss of consistency with

physics principles was observed: for instance, non-physical noisy structures appear in tracer-free

regions, as the reduced-order model is built in a purely data-driven manner, which is not con-

strained by physics principles. To overcome these limitations, we designed an alternative hybrid

RANS/reduced-order modelling approach (EMUL-RANS-TE) in Chapter V, which is based on

the key idea of injecting detailed flow information from LES into a lower fidelity tracer transport

equation in the RANS formalism.

– The proposed EMUL-RANS-TE reduced-order model relies on the emulation of airflow

statistics (mean flow field components, turbulent kinetic energy, turbulent flow time-scale)

from LES using a specific data-driven reduced-order model for each quantity. This reduced-

order model combines POD and Gaussian process regression as in Chapter IV, with the

di↵erence that the number of POD modes to be retained in the reduced basis is now

very small (less than or equal to 10) as the emulation problem is simpler with only the

inflow boundary conditions as source of uncertainty. In a second step, the emulated LES

statistics are integrated into the RANS scalar transport equation to close the Reynolds-

averaged turbulent tracer flux. The hybrid model can then be run for varying emission

source axial position and height to obtain mean tracer concentration field predictions.

The main limitation is that the form of the closure is constrained by the RANS formalism,

which has shown some discrepancies with respect to the LES reference solutions in the

recirculation zone near the leeward wall of the obstacle.

– The ability of the EMUL-RANS-TE hybrid approach to emulate mean tracer concentra-

tion fields was demonstrated through a spatial analysis of the Q2-score. We showed that

EMUL-RANS-TE provides accurate prediction in regions dominated by mean advection
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and shear near emission sources, and eliminates the artefacts observed in the purely data-

driven reduced-order model (DIRECT-ROM-HF) predictions in Chapter IV. However, the

performance of EMUL-RANS-TE is reduced in the downstream recirculation area due to

the turbulent tracer flux closure deficiencies.

– With the development of the EMUL-RANS-TE hybrid approach, models with di↵erent lev-

els of fidelity (LES versus hybrid LES/RANS approach) are available. They were mixed in

a multi-fidelity reduced-order model framework (DIRECT-ROM-MF) to benefit from their

complementarity, i.e. the accurate prediction of the LES data-driven model downstream

and of EMUL-RANS-TE upstream of the obstacle. A second advantage is that a very large

training database (made of 450 EMUL-RANS-TE snapshots and 50 LES snapshots) can

be generated since integrating the EMUL-RANS-TE hybrid approach is much cheaper (by

a factor of 10 to 100) than directly integrating a LES model. The multi-fidelity approach

relies on a convolutional autoencoders trained through transfer learning for dimension

reduction, and on Gaussian processes based on co-kriging for metamodelling. The multi-

fidelity approach obtained very satisfactory reconstruction and prediction results, and even

outperformed those achieved with the LES data-driven reduced-order model with an equal

budget of LES simulations.

As a result of this PhD thesis work, multi-fidelity appears as a promising approach to take

advantage of high-fidelity LES solutions in order to build an accurate and e�cient reduced-order

model for microscale dispersion.

Perspectives

Methodological perspectives

From a methodological standpoint, future work both includes (i) improving the design of

reduced-order models in terms of dimension reduction and regression, and (ii) fully exploit the

bayesian framework of Gaussian processes to enable accurate uncertainty analyses.

When dealing with dimension reduction, the explored algorithms minimised the mean-

squared error (MSE) of the reconstruction with respect to the original fields (both for centred

POD and autoencoders). We first applied a standard formulation of the centred POD, matching

the diagonalisation of the covariance matrix and equivalent to the diagonalisation of the cen-

tred snapshot matrix, as the baseline algorithm for dimension reduction. This is equivalent as

minimising the average MSE over all features (the mesh nodes). This formulation is suitable for

modelling regions of high ensemble variance. However, it is not particularly adapted to mod-

elling low concentration regions, often related to low ensemble variance regions. Moreover, this

formulation does not incorporate any kind of physical constraints. An interesting perspective

would be to tune the loss function to improve the properties of the reconstructed fields. For

instance, altering the weights in the feature space for POD has not been investigated in this

work. This can be done by reducing the snapshot matrix (i.e. unit variance features), the re-

duced and centred POD then matches the diagonalisation of the correlation matrix. Ruan et al.
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[2006] showed that areas of low ensemble variance are better recovered with this formulation,

but at the expense of regions of high ensemble variance. As for autoencoders, better tuning the

loss function could improve robustness, physics consistency or interpretability. This is a very

active area of research, where additional penalisation terms and constraints may be applied on

the latent space, on the output fields, or on the network weights [Champion et al., 2019; Kingma

et al., 2019]. For instance, Champion et al. [2019] added sparsity and regularity constraints to

the loss function to promote interpretability and neural network generalisation. As dimension

reduction algorithms are primarily used to produce a latent space representation that regression

algorithms will leverage as output, statistical constraints can be applied on the latent space. For

instance, variational autoencoders [Kingma et al., 2019] enforce a multi-dimensional Gaussian

distribution on the latent space. From the regression algorithm point of view, constraints may

also be added to improve physics-consistency and robustness, e.g. recent developments on con-

strained Gaussian regression processes [Swiler et al., 2020] may help better define the output

manifold in the latent space.

The reduced-order models we used in this work involved dimension reduction and regression

models that were trained independently. First, we designed one regression model per mode

of the latent space in single-output prediction manner. Such methodology does not account

for correlations between modes. In further work, added value of joint optimisation may be

evaluated for multi-output regression models [Borchani et al., 2015]. It would also be of interest

to combine dimension reduction and regression learning at the same time. This could be done

by combining an autoencoder with a multilayer perceptron network. In the long run, it may

be worthwhile to investigate if gradient propagation may enable integrated learning of Gaussian

processes, decision trees, or other regression tools with autoencoders, although this will surely

raise overfitting issues.

The classes of algorithms investigated in this PhD thesis are rather diverse. Nonetheless,

we did not carry out a thorough comparison for transfer learning. The work presented in

Chapter V is rather preliminary and only explored baseline algorithms. In particular for the

regression part, it could be of interest to evaluate the performance of more advanced Gaussian

process frameworks such as deep Gaussian processes, which have been developed in recent years

[Le Gratiet, 2013; Raissi and Karniadakis, 2016; Moreno-Muñoz et al., 2021].

Finally, GPR served as a cornerstone in all presented reduced-order modelling frameworks as

its robust interpolation capabilities were extensively employed for accurate estimation of mean

scenarios. However, the thesis investigations did not explore the Gaussian process’ full potential

for uncertainty quantification. For instance, the Gaussian underlying distribution can help in

the design of confidence intervals to exhibit scenarios at risk.

Application perspectives

From an application standpoint, future work includes applying the reduced-order model to

more realistic atmospheric boundary-layer flows. The next step is to extend the approach to

a three-dimensional field-scale case with multiple obstacles representative of an urban canopy.

The MUST experiment [Biltoft, 2001] is a good candidate as it corresponds to a microscale

163



164 Conclusions and perspectives

dispersion experiment through an idealised urban canopy made of a regular array of containers,

for which 10 to 100 LES simulations can be carried out (as an indication, a LES simulation of a

neutral MUST trial with the AVBP solver has a cost of about 20,000 CPU hours, which is about

25 times more than the two-dimensional case studied in this work). In this context, the purely

LES data-driven reduced-order modelling approach could be tested and the applicability of

the multi-fidelity approach could be explored (the performance of the EMUL-RANS-TE hybrid

model needs to be assessed beforehand to verify its applicability and identify its limitations on

the MUST trial). A first main issue with the MUST application lies in the capability of the

dimensionality reduction component to deal with the high dimension of the field statistics (there

is a jump of two orders of magnitude in the number of grid points, from 10
5 in the present case

study to 10
7 grid points in the neutral MUST trial). A second main issue is the more complex

physics that is represented in the LES snapshots for the neutral MUST trial. For instance,

fundamental mechanisms like vortex stretching are absent in two-dimensional flow simulations.

A more complex physics could induce stronger nonlinearities in the mapping between the field

statistics and the uncertain input parameters. This study on the MUST experiment would be an

interesting step to demonstrate the added value of machine-learning-based reduced-order model

for microscale dispersion applications to produce ensemble forecasts and assess human exposure

to toxic air pollutants in the event of an accident.

In the longer term, to continue the development of machine and deep learning approaches

for micrometeorology, it would be of interest to extend the reduced-order modelling approach

to di↵erent atmospheric stability conditions to go beyond neutral conditions. Stable conditions

are known to be critical for air quality issues as they can favour pollutant accumulation in

the lowest part of the atmospheric boundary-layer [Sabatier et al., 2021]. It is therefore of

primary importance to evaluate the performance of the reduced-order modelling approach in

this context. Unstable conditions are also of interest, both from an application viewpoint and

from a methodological viewpoint. The physical processes become more complex as vertical

convection becomes significant. This raises the question of the applicability of the reduced-order

modelling approach proposed in this work. This also raises the treatment of the time dimension

in the reduced-order model as unstable conditions induce unsteady processes and field statistics

may no longer be the most relevant quantities of interest. Furthermore, unstable conditions are

closely linked with extreme events such as large-scale wildfires, which induce the development

of thermo-convective plumes and which can severely degrade air quality. This could be an

interesting application to target in future work [Costes et al., 2022].
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L’idée centrale de ce travail de thèse était d’explorer comment les approches d’apprentissage

automatique et profond peuvent être exploitées pour émuler des approches de mécanique

des fluides numérique, précises mais coûteuses afin de prévoir l’écoulement et la dispersion

de panache à la micro-échelle urbaine dans un contexte paramétrique, c’est-à-dire dans un

contexte où des incertitudes importantes sur les conditions aux limites de l’écoulement et sur

la localisation de la source d’émission sont présentes. L’accent a été mis sur l’apprentissage

de la variabilité spatiale des champs statistiques d’intérêt (concentration moyenne du traceur,

composantes moyennes de la vitesse d’écoulement, énergie cinétique turbulente, échelle de

temps de l’écoulement turbulent) à partir de données de SGE, et de sa dépendance aux

paramètres incertains d’écoulement et de source. Nous avons réalisé une comparaison détaillée

de plusieurs modèles réduits sur une configuration canonique bidimensionnelle d’écoulement

avec dispersion, avec l’idée de définir des recommandations sur les méthodes d’apprentissage

statistique pour préparer les futures applications de dispersion à grande échelle.

Synthèse des principaux résultats

Afin d’identifier l’approche d’émulation la plus adaptée au contexte de dispersion micro-échelle,

une comparaison détaillée des approches de réduction de dimension (décomposition orthogonale

aux valeurs propres ou POD, autoencodeur convolutif) et des modèles de régression (décompo-

sition en chaos polynomial, gradient de boosting, processus gaussiens) a été réalisée. Ceci a été

rendu possible par l’étude d’un cas d’étude canonique bidimensionnel correspondant à un écoule-

ment atmosphérique turbulent autour d’un obstacle isolé. Malgré les limitations sur la représen-

tation de la turbulence, cette étude de cas présente des structures complexes d’écoulement. En

amont de l’obstacle, la dispersion du panache est bimodale : le traceur est soit piégé dans une

première région de recirculation le long de la face amont de l’obstacle, soit advecté en aval de

l’obstacle. En aval de l’obstacle, l’écoulement est guidé par une association entre le délestage

tourbillonnaire quasi-périodique induit par l’interaction écoulement-obstacle et par la turbulence

grande échelle qui se propage depuis l’entrée du domaine. De plus, un écoulement inverse se

produit près du sol, associé à une seconde région de recirculation, transportant le traceur vers

l’obstacle en amont. La coût de simulation d’un tel cas à l’aide de SGE dans un contexte de re-

quêtes multiples est envisageable de manière hors-ligne. Ainsi , une très grande base de données

de SGE composée de 750 solutions correspondant à di↵érents échantillons de paramètres d’entrée

incertains (vitesse d’écoulement de référence en entrée du domaine, longueur de rugosité, posi-

tion horizontale et hauteur de la source d’émission) a été générée. Elle comprend une diversité de

topologies d’écoulement et de panache. Cette diversité rend le processus d’émulation complexe

en raison de la réponse non-linéaire des statistiques du champ aux variations des paramètres

incertains. Cette problématique devient d’autant plus importante que les statistiques du champ

sont de très grande dimension (de l’ordre de 10
5 points de grille pour cette étude de cas). Pour

éviter d’introduire des biais dans l’évaluation du processus d’émulation, l’ensemble a été divisé
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en sous-ensembles d’entrâınement, de calibration/validation et de test.

Premier objectif : mettre en œuvre un modèle réduit orienté données pour émuler les statis-

tiques de champs SGE

Le Chapitre IV a démontré la capacité d’un modèle réduit basé sur des outils d’apprentissage

à émuler les champs moyens de concentration de traceur obtenus à partir d’un ensemble de

simulations SGE paramétriques. Le processus d’émulation permet de reproduire avec précision

les résultats LES pour un grand ensemble de données d’entrâınement (composé d’au moins 100

solutions de SGE), tout en réduisant de plusieurs ordres de grandeur le coût de calcul pour

prévoir la réponse à un nouveau jeu de paramètres incertains.

– La POD a été utilisée comme approche de référence pour compresser les statistiques de

champ de grande dimension. Une étude détaillée des modes POD a mis en évidence les

di�cultés de la POD à traiter la position incertaine de la source d’émission, qui induit

par définition une variabilité spatiale du sillage de concentration de traceur en amont de

l’obstacle. Ce lien étroit entre l’espace d’incertitude et le domaine spatial est la raison

principale de ces di�cultés. Il nécessite un très grand nombre de modes (environ 100

modes pour la base de données d’entrâınement de 450 solutions de SGE) pour représenter

la grande variabilité spatiale de la concentration du traceur près des sources d’émission.

Les premiers modes POD su�sent pour capturer la variabilité spatiale de la concentration

du traceur dans les zones où la di↵usion est importante, par exemple dans la zone de

recirculation derrière l’obstacle. A l’inverse, il est nécessaire d’inclure des modes d’ordre

élevé dans la base POD pour capturer les structures fines du panache dans les régions

proches des sources d’émission en amont de l’obstacle, où l’advection domine.

– La meilleure approche de métamodélisation pour représenter la réponse des coe�cients

réduits POD aux changements des paramètres incertains s’est avérée être la régression

par processus gaussiens, avec une optimisation mode par mode des hyperparamètres pour

s’adapter à la large gamme d’échelles spatiales présente dans les modes POD. Cette ap-

proche a conduit à un très bon score global Q2 (supérieur à 95%) pour une grande base de

données d’entrâınement de type SGE. Cette meilleure performance des processus gaussiens

par rapport aux autres modèles de régression peut s’expliquer par le faible bruit des données

d’entrâınement et la présence de fortes non-linéarités dans la relation entre les paramètres

incertains et les coe�cients réduits POD. Les modèles d’interpolation comme les processus

gaussiens excellent dans ces conditions.

Nous avons analysé plus en détails le comportement du modèle de régression par pro-

cessus gaussiens à l’aide d’un score Q2 en chaque nœud de maillage pour comprendre la

variabilité spatiale de la performance de prévision. Nous avons montré que la concentra-

tion moyenne du traceur dans les zones de recirculation est bien prédite, tandis qu’une

diminution de la performance apparâıt proche des sources d’émission. La réponse de la

concentration moyenne du traceur y est portée par des modes POD d’ordre élevé. Ces

modes d’ordre élevé présentent des motifs fins et localisés, associés aux emplacements de
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source d’émission perturbés et di�ciles à prédire car caractérisés par un bruit fort. Nous

avons également montré que la di�culté à prévoir les modes d’ordre élevé augmente lorsque

l’ensemble de données d’entrâınement est réduit, mais la performance de prévision reste

acceptable lorsque l’on considère au moins 100 solutions de type SGE dans la base de

données d’entrâınement.

En outre, le processus d’optimisation des hyperparamètres du processus gaussien e↵ectué

pour chaque coe�cient réduit POD a été amélioré pour gagner en coût de calcul. Nous

avons montré qu’une distribution a priori satisfaisante pour les hyperparamètres peut

être obtenue à partir des modes POD et peut être utilisée pour informer une procédure

d’optimisation MAP. Nous avons constaté que la procédure MAP fournit des résultats

similaires à l’approche plus standard de la maximisation MLL à N répétitions (en anglais

– restarts). MAP n’utilise qu’une seule descente de gradient bien choisie, fournissant ainsi

un cadre de d’entrâınement à la fois e�cace et fiable.

– La capacité de l’autoencodeur convolutif à mieux compresser les statistiques des champs

dans le modèle réduit basé sur les processus gaussiens a été étudiée pour pallier les limi-

tations de la POD, en s’inspirant des travaux de Fukami et al. [2020]. Nous avons montré

que pour la base de données d’entrâınement complète (composée de 450 solutions de type

SGE), il est possible de réduire la taille de l’espace latent d’un facteur 10 par rapport

à la POD (10 variables latentes contre 100 modes POD) sans perte d’information ; il y

a même une amélioration de la précision de la prévision. Nous avons également mis en

évidence que l’entrâınement de l’autoencodeur devient di�cile lorsque la base de données

d’entrâınement est réduite. La cohérence des résultats n’est pas garantie et le comporte-

ment de l’autoencodeur est di�cile à anticiper en raison de sa nature de type bôıte noire.

Deuxième objectif principal : informer une équation de transport de scalaire RANS à partir

de statistiques d’écoulement LES pour mettre en œuvre un modèle réduit hybride

Le modèle réduit purement orienté données nécessite une grande base de données d’entrâınement

de type SGE pour obtenir une prévision précise sans artefacts numériques, ce qui est hors de

portée pour des cas d’application réalistes tridimensionnels. La nécessité d’un grand ensemble

de données d’entrâınement est principalement due aux structures fines du panache dans les ré-

gions proches de la source causées par l’incertitude sur la position de la source d’émission. En

réduisant le nombre de solutions disponibles pour l’entrâınement à moins de 100, une perte de

cohérence avec les lois de la physique a été observée : par exemple, des structures bruitées non

physiques apparaissent dans les régions sans traceur. En e↵et, le modèle réduit est construit

uniquement sur un paradigme statistique et n’est pas contraint par les lois de la physique. Pour

pallier ces limitations, nous avons mis en œuvre une approche alternative de modélisation hy-

bride RANS/modèle réduit (EMUL-RANS-TE) dans le Chapitre V, qui est basée sur l’idée-clé

d’injecter des informations détaillées sur l’écoulement provenant de SGE dans une équation de

transport de traceur de moindre fidélité dans le formalisme RANS.

– Le modèle réduit proposé EMUL-RANS-TE repose sur l’émulation des statistiques de

167



168 Conclusions et perspectives

l’écoulement d’air (composantes du champ d’écoulement moyen, énergie cinétique turbu-

lente, échelle de temps de l’écoulement turbulent) à partir de la SGE en utilisant un modèle

réduit spécifique à chaque quantité. Ce modèle réduit combine la POD et la régression par

processus gaussiens comme dans le Chapitre IV, à la di↵érence que le nombre de modes

POD à retenir dans la base réduite est maintenant très faible (inférieur ou égal à 10) car le

problème d’émulation est simplifié avec seulement les conditions aux limites d’écoulement

comme source d’incertitude. Dans un deuxième temps, les statistiques des SGE émulées

sont intégrées dans l’équation de transport de scalaire RANS pour fermer le flux massique

de traceur turbulent moyenné. Le modèle hybride peut ensuite être intégrer pour faire

varier la position horizontale et la hauteur de la source d’émission afin d’obtenir des prévi-

sions du champ de concentration moyen. La principale limitation provient du modèle de

fermeture RANS sur le flux de masse, qui pénalise les prévisions vis-à-vis des solutions de

références des SGE dans la zone de recirculation dans le sillage de l’obstacle.

– La capacité de l’approche hybride EMUL-RANS-TE à émuler les champs moyens de con-

centration a été démontrée à travers une analyse spatiale du Q2. Nous avons montré

qu’EMUL-RANS-TE fournit une prévision précise dans les régions dominées par l’advection

moyenne et le cisaillement près des sources d’émission, et élimine les artefacts observés

dans les prévisions du modèle réduit orienté données (DIRECT-ROM-HF) discuté au

”Chapitre IV. Cependant, la performance d’EMUL-RANS-TE est réduite dans la zone

de recirculation en aval en raison des insu�sances du modèle de fermeture RANS du flux

massique turbulent.

– Avec le développement de l’approche hybride EMUL-RANS-TE, des modèles avec dif-

férents niveaux de fidélité (SGE, approche hybride SGE/RANS) sont disponibles. Ils ont

été intégrés dans un cadre de modèle réduit multi-fidélité (DIRECT-ROM-MF) afin de

bénéficier de leurs points forts, c’est-à-dire la prévision précise du modèle réduit orienté

données en aval et celle du modèle EMUL-RANS-TE en amont de l’obstacle. Un deuxième

avantage est qu’une très grande base de données d’entrâınement (composée de 450 solu-

tions EMUL-RANS-TE et de 50 solutions SGE) peut être générée puisque l’intégration de

l’approche hybride EMUL-RANS-TE est beaucoup moins chère (d’un facteur 10 à 100)

que l’intégration directe d’une simulation SGE. L’approche multi-fidélité s’appuie sur des

autoencodeurs convolutifs entrâınés via apprentissage par transfert pour la réduction de di-

mension, et sur la régession par processus gaussiens via le co-krigeage pour l’interpolation.

L’approche multi-fidélité a obtenu des résultats très satisfaisants en matière de reconstruc-

tion et de prévision, et a même surpassé ceux obtenus avec le modèle réduit orienté données

SGE à budget équivalent.

À la suite de ce travail de thèse, la multi-fidélité apparâıt comme une approche prometteuse

pour tirer profit des solutions de SGE haute-fidélité afin de construire à moindre coût un modèle

réduit précis pour la dispersion à micro-échelle.
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Perspectives

Perspectives méthodologiques

D’un point de vue méthodologique, les futurs travaux viseront à la fois à (i) à améliorer

l’approche par modélisation réduite en termes de réduction de dimension et de régression, et (ii)

à pleinement exploiter l’expression bayésienne des processus gaussiens pour la régression.

En ce qui concerne la réduction de dimension, les algorithmes testés ont minimisé l’erreur

quadratique moyenne (MSE pour mean-squared error en anglais) de la reconstruction par rap-

port aux champs d’origine (tant pour la POD centrée que pour les autoencodeurs). Nous avons

d’abord appliqué une formulation standard de la POD centrée, correspondant à la diagonalisa-

tion de la matrice de covariance et équivalente à la diagonalisation de la matrice des snapshots

centrée, comme algorithme de base pour la réduction de dimension. Ceci équivaut à minimiser

l’erreur MSE moyenne sur toutes les caractéristiques (les nœds du maillage). Cette formulation

est adaptée à la modélisation des régions à forte variance d’ensemble. Cependant, elle n’est

pas très adaptée à la modélisation des régions à faible concentration, correspondant souvent

aux régions à faible variance d’ensemble. De plus, cette formulation n’intègre aucun type de

contraintes physiques. Une perspective intéressante serait d’ajuster la fonction objectif pour

améliorer les propriétés des champs reconstruits. Par exemple, la modification des poids dans

l’espace des caractéristiques pour la POD n’a pas été étudiée dans ce travail. Ceci pourrait être

e↵ectué en réduisant la matrice des snapshots (c’est-à-dire en transformant les caractéristiques

pour que la variance soit égale à un), la POD réduite et centrée correspond alors à la diagonalisa-

tion de la matrice de corrélation. Ruan et al. [2006] ont montré que les régions de faible variance

d’ensemble sont mieux capturées avec cette formulation, mais au détriment des régions de forte

variance d’ensemble. Comme pour les autoencodeurs, une meilleure configuration de la fonction

objectif pourrait améliorer la robustesse, la cohérence physique ou l’interprétabilité. Il s’agit

d’un domaine de recherche très actif, où des termes de pénalisation et des contraintes supplé-

mentaires peuvent être appliqués à l’espace latent, aux champs de sortie, ou aux poids du réseau

[Champion et al., 2019; Kingma et al., 2019]. Par exemple, Champion et al. [2019] ont ajouté des

contraintes de parcimonie et de régularité à la fonction objectif pour favoriser l’interprétabilité et

la généralisation du réseau de neurones. Comme les algorithmes de réduction de dimension sont

principalement utilisés pour produire une représentation de l’espace latent que les algorithmes

de régression seront capables d’exploiter en sortie, des contraintes statistiques peuvent être ap-

pliquées sur l’espace latent. Par exemple, les autoencodeurs variationnels [Kingma et al., 2019]

imposent une distribution gaussienne multidimensionnelle sur l’espace latent. Du point de vue

de l’algorithme de régression, des contraintes peuvent également être ajoutées pour améliorer la

cohérence physique et la robustesse. Par exemple, les développements récents sur les processus

de régression gaussiens contraints [Swiler et al., 2020] peuvent aider à mieux définir la variété

de sortie dans l’espace latent.

Les modèles réduits que nous avons utilisés dans ce travail impliquent réduction de dimension

et modèles de régression qui ont été entrâınés indépendamment les uns des autres. Tout d’abord,
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nous avons mis en œuvre un modèle de régression par mode de l’espace latent donnant une

sortie unique. Une telle méthodologie ne tient pas compte des corrélations entre les modes.

Dans de futurs travaux, la valeur ajoutée de l’optimisation conjointe pourra être évaluée pour les

modèles de régression à sorties multiples [Borchani et al., 2015]. Il serait également intéressant de

combiner simultanément réduction de dimension et apprentissage par régression. Ceci pourrait

être fait en combinant un autoencodeur avec un réseau perceptron multicouche. À long terme, il

pourrait être intéressant d’étudier si la propagation du gradient peut permettre l’apprentissage

intégré de processus gaussiens, d’arbres de décision ou d’autres outils de régression avec des

autoencodeurs, bien que cette approche induira sans doute des problèmes de surapprentissage.

Enfin, les classes d’algorithmes étudiées dans cette thèse sont assez diverses. Néanmoins, nous

n’avons pas e↵ectué une comparaison approfondie pour l’apprentissage par transfert. Le travail

présenté dans le Chapitre chap:5 est plutôt préliminaire et n’a exploré que des algorithmes

de base. En particulier, pour la partie régression, il pourrait être intéressant d’évaluer les

performances de processus gaussiens plus avancés tels que les processus gaussiens profonds, qui

se sont développés ces dernières années [Le Gratiet, 2013; Raissi and Karniadakis, 2016; Moreno-

Muñoz et al., 2021].

Enfin, les GPR ont joué un rôle central dans tous les modèles réduits présentés dans cette

thèse. Leur capacité d’interpolation a été largement utilisée pour pour l’estimation de scé-

narios en moyenne. Néanmoins, les investigations de cette thèse sont restées limitées à cet

aspect et n’ont pas exploré pleinement le potentiel du processus gaussien pour la modélisation

de l’incertitude, notamment via l’exploitation de la covariance sous-jacente de la distribution

gaussienne. En exploitant la distribution complète dérivée des GPR, il devient possible de

générer des intervalles de confiance bien conçus, o↵rant ainsi une perspective intéressante pour

quantifier le manque de prévisibilité de nouveaux scénarios.

Perspectives applicatives

Du point de vue de l’application, les futurs travaux prévoient l’application du modèle réduit à

des écoulements de couche limite atmosphérique plus réalistes. La prochaine étape vise à étendre

l’approche à un cas tridimensionnel, à l’échelle d’un terrain et composé d’obstacles multiples,

représentatif d’une canopée urbaine. L’expérience MUST [Biltoft, 2001] est un bon exemple car

elle correspond à une expérience de dispersion à micro-échelle à travers une canopée urbaine

idéalisée constituée d’une série de conteneurs régulièrement répartis, pour laquelle 10 à 100

simulations de type SGE peuvent être réalisées (à titre indicatif, une simulation SGE d’un essai

MUST dans les conditions neutres avec le solveur AVBP a un coût d’environ 20 000 heures CPU,

soit environ 25 fois plus que le cas bidimensionnel étudié dans ce travail). Dans ce contexte,

l’approche de modélisation réduite orientée données de SGE pourrait être testée et l’applicabilité

de l’approche multi-fidélité pourrait être explorée (les performances du modèle hybride EMUL-

RANS-TE doivent être évaluées au préalable pour vérifier son applicabilité et identifier ses limites

sur le cas MUST). Une première problématique importante avec l’application MUST réside dans

la capacité des outils de réduction de dimension à traiter la très grande dimension des statistiques

de champ (la dimension du maillage est d’environ deux ordres de grandeur au-dessus du cas
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bidimensionnel, de 10
5 dans la présente étude de cas à 10

7 points de grille dans le cas neutre

MUST). Une deuxième problématique importante est la physique plus complexe contenue dans

les simulations SGE du cas MUST sous conditions atmosphériques neutres. Par exemple, des

mécanismes fondamentaux tels que les étirements de tourbillon ne sont pas représentés dans les

simulations d’écoulement bidimensionnel. Une physique plus complexe pourrait induire des non-

linéarités plus fortes dans la relation entre les paramètres d’entrée incertains et les statistiques

de sortie. Cette étude sur l’expérience MUST serait une étape intéressante pour démontrer

la valeur ajoutée du modèle réduit basé sur les algorithmes d’apprentissage pour aller vers les

applications de dispersion à micro-échelle afin de produire des prévisions d’ensemble et d’évaluer

l’exposition sanitaire aux polluants atmosphériques toxiques en cas d’accident.

À plus long terme, pour poursuivre le développement des approches d’apprentissage au-

tomatique et profond pour la micrométéorologie, il serait intéressant d’étendre l’approche de

modélisation réduite à di↵érentes conditions de stabilité atmosphérique pour aller au-delà des

conditions neutres. Les conditions stables sont connues pour être critiques pour la problématique

de la qualité de l’air car elles peuvent favoriser l’accumulation de polluants dans la partie la plus

basse de la couche limite atmosphérique [Sabatier et al., 2021]. Il est donc de première impor-

tance d’évaluer la performance des modèles réduits dans ce contexte. Les conditions instables

présentent également un intérêt, tant du point de vue applicatif que méthodologique. Les pro-

cessus physiques deviennent plus complexes lorsque la convection verticale devient importante.

Ceci pose la question de l’applicabilité de l’approche par modèle réduit proposée dans ce travail.

Cela soulève également la question du traitement de la dimension temporelle dans le modèle

réduit, car les conditions instables induisent des processus instationnaires et les statistiques de

champ peuvent ne plus être les quantités d’intérêt les plus pertinentes. De plus, les conditions

instables sont étroitement liées à l’occurrence d’événements extrêmes tels que les incendies de

forêt à grande échelle, qui induisent le développement de panaches thermo-convectifs et qui peu-

vent fortement dégrader la qualité de l’air. Ceci pourrait être une application intéressante à

cibler dans des travaux futurs [Costes et al., 2022].
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Nomenclature
Acronyms

ABL/PBL/UBL Atmospheric/Planetary/Urban boundary-layer

AE Autoencoder

ARD Automatic relevance determination

CART Classification and regression trees

CCP Cost complexity pruning

CDF Cumulative distribution function

CFD Computational fluid dynamics

CFL Courant–Friedrichs–Lewy

CNN Convolutional neural network

CPU Central processing unit

DNS Direct numerical simulation

EVM Eddy viscosity model

GB Gradient Boosting

GGDH Generalised gradient di↵usion hypothesis

GPR Gaussian process regression

GPU Graphics processing unit

HOGGDH High-order generalised gradient di↵usion hypothesis

kNN k-nearest-neighbours

LES Large-Eddy Simulation

LF/MF/HF Lower/Multi/High-order fidelity

LIC Line integral convolution

MAP Maximum a posteriori

MLL Maximum log-likelihood

MLP Multiple-Layer Perceptron

MSE Mean Square Error

MUST Mock urban setting test

NMF/NNMF Non-negative matrix factorisation

PC/PCE Polynomial chaos expansion

PGS Pressure gradient scaling

POD Proper Orthogonal Decomposition

RANS Reynolds-Averaged Navier-Stokes
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RBF Radial basis function

ReLU Rectified linear unit

RSM Reynolds stress equation model

SGD Stochastic gradient descent

SGDH Standard gradient di↵usion hypothesis

SGS Subgrid scale

Tanh Hyperbolic tangent

TKE Turbulent Kinetic Energy

TTG two-step Taylor-Galerkin
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Y Le Cun and F Fogelman-Soulié. Modèles connexionnistes de l’apprentissage. Intellectica, 2

(1):114–143, 1987. 32

L Le Gratiet. Multi-fidelity Gaussian process regression for computer experiments. PhD thesis,

Université Paris-Diderot-Paris VII, 2013. 150, 151, 152, 163, 170

Y LeCun et al. Generalization and network design strategies. Connectionism in perspective, 19

(143-155):18, 1989. 32, 51

YA LeCun, L Bottou, GB Orr, and K-R Müller. E�cient backprop. In Neural networks: Tricks

of the trade, pages 9–48. Springer, 2012. 51
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