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Abstract ix

Detection of Baryon Acoustic Oscillation using Lyman-alpha Forests in
DESI/Eboss

Abstract

Les oscillations acoustiques baryoniques (BAO) sont une sonde puissante permettant de mesurer
l’expansion accélérée de l’univers et de fournir des contraintes sur les modèles d’énergie noire. Il peut
être mesuré à l’aide de la fonction de corrélation à deux points des traceurs de matière, et le but de cette
thèse est de mesurer le BAO à des redshifts 𝑧 > 2, 1 élevés en utilisant les forêts Lyman-𝛼 (Ly𝛼). Cette
thèse utilise des données d’observation spectroscopiques et des catalogues simulés (simulations) de deux
grandes enquêtes cosmologiques, eBOSS (DR16) et DESI (EDR). Je présente l’analyse comparative Ly𝛼
de ces deux enquêtes et je les trouve cohérentes en termes de qualité et d’ajustement des données. J’ai
étudié à la fois sur des simulations et sur des données, l’un des effets systématiques les plus importants
de l’analyse Ly𝛼, la présence de systèmes à haute densité de colonnes (HCD). J’ai proposé un modèle
empirique et développé un modèle analytique, le modèle Voigt, pour caractériser leur impact sur les
fonctions de corrélation Ly𝛼. Le modèle Voigt est bien vérifié sur des simulations et fournit une mesure
physique des paramètres de biais et RSD des HCD, ainsi qu’une bonne contrainte sur les paramètres
Ly𝛼.

Keywords: cosmologie, structure à grande échelle

Résumé

The Baryon Acoustic Oscillations (BAO) is a powerful probe to measure the accelerated expansion of
the universe and provide constraints on dark energy models. It can be measured using the two-point
correlation function of matter tracers, and the goal of this thesis is to measure the BAO at high redshifts
𝑧 > 2.1 using Lyman-𝛼 (Ly𝛼) forests. This thesis makes use of spectroscopic observation data and
simulated catalogs (mocks) from two large cosmological surveys, eBOSS (DR16) and DESI (EDR). I
present the comparison Ly𝛼 analysis of these two surveys and found them consistent in terms of data
quality and fits. I studied on both mocks and data, one of the most important systematic effects of Ly𝛼
analysis, the presence of High Column Density Systems (HCDs). I proposed an empirical model and
further developed an analytical model, the Voigt model, to characterize their impact on Ly𝛼 correlation
functions. The Voigt model is well verified on mocks and provides a physical measurement of the bias
and RSD parameters of HCDs, and a good constraint on the Ly𝛼 parameters.

Mots clés : cosmology, large-scale structure, bao
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Introduction (English version)

Modern cosmology was developed after the discovery of Hubble (Hubble’s law, 1929), arguing
that extragalactic nebulas are moving away from each other and as an observation that was
interpreted as evidence of the expansion of the universe. 70 years later, the measurement of
the acceleration of the expanding universe with type Ia supernovae further suggests a dynamic
universe currently well-modeled by the so-called standard cosmological model, the ΛCDM model.

The Baryon Acoustic Oscillations (BAO) is a powerful probe to measure the Hubble parame-
ter and provide constraints on the ΛCDM model. It imprints the density fluctuations of baryons
and photons, which propagated in the form of sound waves the in the early universe baryon-
photon plasma. The BAO can be measured as a peak in the two-point correlation function of
matter tracers, and the goal of this thesis is to study this probe using Lyman-𝛼 (Ly𝛼) forests.

The Ly𝛼 forests are present as absorption lines in the quasar’s spectrum, caused by the Ly𝛼
transitions of photons passing through the intergalactic medium (IGM) in the universe. Using
Ly𝛼 forests provides the measurement of the BAO peak at high redshift 𝑧 > 2.

In this Ph.D. manuscript, I give a brief introduction to the cosmology model in Chapter
1. Chapter 2 presents the two cosmology surveys that my analyses benefit from, the extended
Baryon Acoustic Oscillation (eBOSS), and the Dark Energy Spectroscopic Instrument (DESI).
I provide a description of the synthetic Ly𝛼 data, the so-called Ly𝛼 mocks, in Chapter 3. These
mocks are used to validate our Ly𝛼 analysis pipeline, which is described in Chapter 4.

I contributed as an active member in the DESI collaboration to the comparison analyses of
Ly𝛼 forest BAO using mocks and data from both eBOSS and DESI. This part of my work is
presented in Chapter 5, and is included in several collaboration publications of DESI.

I present in Chapter 6 the most important contribution of this thesis to the DESI collabora-
tion, the analysis of High Column Density systems (hereafter HCDs), one of the most important
systematic effects for Ly𝛼 forest BAO. I developed a theoretical model, which I call the Voigt
model, to explain the non-local damping effect of HCDs on the Ly𝛼 correlation functions. This
model also provides a physical ground to explain the phenomenological models that were used
in previous studies.
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Introduction (French version)

La cosmologie moderne s’est développée après la découverte de Hubble (loi de Hubble, 1929),
arguant que les nébuleuses extragalactiques s’éloignent les unes des autres et comme une obser-
vation interprétée comme une preuve de l’expansion de l’univers. 70 ans plus tard, la mesure
de l’accélération de l’univers en expansion avec des supernovae de type Ia suggère encore un
univers dynamique actuellement bien modélisé par le modèle cosmologique dit standard, le mo-
dèle �CDM. Le Baryon Acoustic Oscillations (BAO) est une sonde puissante pour mesurer le
paramètre de Hubble et fournir des contraintes sur le modèle �CDM. Il imprime les fluctuations
de densité des baryons et des photons, qui se sont propagés sous forme d’ondes sonores dans le
plasma baryon-photon de l’univers primordial. Le BAO peut être mesuré comme un pic dans
la fonction de corrélation à deux points des traceurs de matière, et le but de cette thèse est
d’étudier cette sonde à l’aide de forêts de Lyman-𝛼 (Ly𝛼). Les forêts Ly𝛼 sont présentes sous
forme de raies d’absorption dans le spectre du quasar, causées par les transitions Ly𝛼 des photons
traversant le milieu intergalactique (IGM) dans l’univers. L’utilisation de forêts Ly𝛼 fournit la
mesure du pic BAO à un décalage vers le rouge élevé 𝑧 > 2. Dans ce doctorat. manuscrit, je
donne une brève introduction au modèle de cosmologie. Le chapitre 2 présente les deux études de
cosmologie dont bénéficient mes analyses, l’oscillation acoustique baryonique étendue (eBOSS)
et l’instrument spectroscopique à énergie noire (DESI). Je fournis une description des données
synthétiques Ly𝛼, les soi-disant simulations Ly𝛼, au chapitre 3. Ces simulations sont utilisées
pour valider notre pipeline d’analyse Ly𝛼, qui est décrit au chapitre 4. J’ai contribué en tant que
membre actif de la collaboration DESI aux analyses comparatives du BAO de la forêt Ly𝛼 en
utilisant des simulations et des données provenant à la fois d’eBOSS et de DESI. Cette partie de
mon travail est présentée dans le chapitre 5, et est reprise dans plusieurs publications collabora-
tives du DESI. Je présente dans le chapitre 6 la contribution la plus importante de cette thèse à
la collaboration DESI est l’analyse des systèmes à haute densité de colonne (ci-après HCD), l’un
des effets systématiques les plus importants pour le BAO de la forêt Ly𝛼. J’ai développé un mo-
dèle théorique, que j’appelle le modèle de Voigt, pour expliquer l’effet d’amortissement non local
des HCD sur les fonctions de corrélation Ly𝛼. Ce modèle fournit également une base physique
pour expliquer les modèles phénoménologiques qui ont été utilisés dans les études précédentes.
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Chapitre 1

Introduction to Cosmology

Cosmology is the field of science studying the structure and evolution of the Universe. For cen-
turies, observational tools and theoretical models have been developed to explain the observed
universe. In the past century, modern cosmology was developed and greatly changed our un-
derstanding of the universe. In this chapter, I describe the theoretical foundations of modern
cosmology, as well as the observational probes to constrain these models. The notions introduced
in this chapter will be used throughout this thesis.

General Relativity (GR) provides a theoretical ground to develop cosmological models. Ac-
cording to observations, GR was modified several times. In Einstein’s time, GR was used to
describe a static universe with a cosmological constant. This was changed sooner after the ob-
servation of an expanding universe (Hubble 1929), where the astronomy community removed
this constant to interpret a dynamical universe. In recent decades, observations of distant Type
Ia supernovae (SNIa) indicated the acceleration of the expansion of the universe (Riess et al.
2000 ; Perlmutter et al. 1999), and the cosmological constant was reconsidered as Dark energy
to explain the acceleration.

Besides Dark energy, Dark matter and baryons also play an important role in the evolution
of the universe. The standard cosmological model is then built based on a geometrical setup of
GR and an energy-matter setup of these energy components.

The evolution of the universe is interpreted based on the cosmological principle that it is
homogeneous and isotropic (Bondi et Gold 1948 ; Hoyle, Burbidge et Narlikar 1993). The
structures of the universe, both at large and smaller scales, offer different cosmological probes to
study the matter distribution and time-dependent evolution of the universe.

In this chapter, I describe Baryon Acoustic Oscillations (BAO), one of the fundamental probes
to study the expanding universe. Moreover, I introduce the Ly𝛼 forest, seen as absorptions in
quasar spectra, that can be used to detect BAO at high redshift (see Chapter 5). Ly𝛼 forest of
distant quasars are the main probe the work of this thesis is based on.

This chapter is inspired from reference books (Peter et Uzan 2009 ; Dodelson et F.
Schmidt 2020) and previous theses (De Sainte Agathe 2019 ; Stermer 2022 ; Zarrouk
2018a ; Ravoux 2022 ; Chabanier, Palanque-Delabrouille et al. 2019).

1



2 CHAPITRE 1. Introduction to Cosmology

Figure 1.1 : Matter-energy contents of the Universe (Aghanim et al. 2020).

1.1 The standard cosmology model

The observation of Hubble (Hubble’s law, 1929) was interpreted as evidence for the expansion of
the universe. It suggests a dynamic universe, currently well-modeled by the so-called standard
cosmological model, the ΛCDM model. The ΛCDM model was tested with great success using
the Cosmic Microwave Background (CMB), and the measurement of the acceleration of the
expanding universe with type Ia supernovae (see Section 1.2 Riess et al. 2000 ; Perlmutter
et al. 1999). In this model, the universe was born after a ’Big Bang’ around 13.8 billion years ago
and evolved to its current state after several evolution phases, dominated by different contents.

1.1.1 The ΛCDM model

In this section, I describe the ΛCDM cosmological model with its parametrization, as well as the
constraints from the CMB.

The content of the universe

According to the ΛCDM model, the universe is made of the following components (as shown in
Figure 1.1) :

• Baryonic matter that can be observed by direct detections, such as stars and gas in galaxies,
the intergalactic medium (IGM), etc. However, today only a small fraction (5%) of the
total energy density is composed of baryonic matter, while most of the matter necessary
to explain the dynamical evolution of galaxies and clusters remain undiscovered.

• Cold dark matter (CDM), the dominant matter contents (25%) of the universe today.
CDM particles are non-relativistic, pressureless, and only interact through gravitational
effects. CDM has a dominant impact on the large-scale structure (LSS) of the universe, as
well as the formation of sub-structures at the galaxy scale. Potential candidates of CDM
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particles cover a wide range of energy scales, such as Weakly interacting massive particles
(WIMPs, Jungman, Kamionkowski et Griest 1996), axions (Donnelly, Freedman,
Lytel, Peccei et Schwartz 1978 ; J. E. Kim et Carosi 2010), etc. However, up to today,
no significant direct evidence has been found for these DM candidates with the past and
ongoing experiments.

• Radiation and relativistic matter contents, such as photons and hot dark matter particles
(HDM, such as relativistic neutrinos). These particles play an essential role in the evolution
of the early universe, while also influencing the formation of LSS.

• Dark energy, the dominant contribution to the energy density of the universe today, which
is the possible explanation of its late expansion. It is identified with a cosmological constant
Λ in the standard cosmological model based on General Relativity (GR). Some extended
theories suggest a dynamical dark energy equation of state, that can be well constrained
using various probes, such as the Baryon Acoustic Oscillations (BAO, see Section 1.2.1),
which is the purpose of this thesis.

Dark energy and CDM comprise most of the energy density of the universe today (∼ 95%). The
ΛCDM model and its extensions can be constrained by different cosmological probes, such as
the CMB, the BAO, Weak Lensing (WL), Gravitational Waves (GW), Type Ia SNIa, etc.

The Cosmic Microwave Background

The CMB refers to the photon radiation, produced at the epoch of recombination (nearly 380, 000
years after the ’Big Bang’), at redshift 𝑧 ∼ 1100. Before recombination, photons, electrons, and
protons were tightly coupled with each other by Compton and Coulomb scatterings, and formed
a baryon-photon plasma. In this plasma, electrons, neutrons, and protons could not combine
into Hydrogen atoms since the mean energy of photons was higher than the ionization level of
atoms. At the epoch of recombination, the plasma had cooled enough for atoms to form. After
recombination, photons can move freely in the universe without scattering with other particles.
These photons are redshifted today to the microwave wavelength range and form the Cosmic
Microwave Background. The anisotropic energy distribution of CMB photons can be further
used to measure the matter density fluctuations in the baryon-photon plasma, and constrain
cosmological models. The CMB was first detected in the 1960s (Penzias et R. W. Wilson
1965 ; Penzias et R. W. Wilson 1979), and the latest constraints were provided by the Planck
satellite (Aghanim et al. 2020). Figure 1.2 shows the anisotropic temperature distribution of
CMB photons, which imprints the matter fluctuation in the early universe before recombination.
The red regions, i.e., hotter photons, trace over-densities, and the blue regions are related to
lower-density regions.

To give a more detailed description of the temperature anisotropies, the relative temperature
fluctuations are projected on a two-dimensional spherical space with two angular coordinates �
and 𝜙, using a spherical harmonics basis 𝑌𝑙𝑚 :

𝛿𝑇
𝑇

(�, 𝜙) =
∞∑
𝑙=0

𝑙∑
𝑚=−𝑙

𝑎𝑙𝑚𝑌𝑙𝑚(�, 𝜙). (1.1)

Here 𝑎𝑙𝑚 are the amplitudes of multipoles 𝑙 and 𝑚.
The two-point correlation function is often used to characterize the statistical properties of

the temperature fluctuations, and is defined as :

𝐶𝑙 = ⟨|𝑎𝑙𝑚 |2⟩𝑚 , (1.2)
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Figure 1.2 : Anisotropic temperature distribution of CMB photons, measured by Aghanim
et al. 2020. Blue regions show lower temperatures and red regions show higher temperatures.

where ⟨⟩ denotes an average over multipoles 𝑚. Figure 1.3 shows the power spectrum 𝐷𝑇𝑇
𝑙

=

𝑙(𝑙 + 1)𝐶𝑙/2𝜋 as a function of multipole 𝑙 in angular space, which can be roughly divided into
three regions :

• The large scales where 𝑙 < 100 corresponds to the early universe, that can be used to detect
the primordial fluctuations generated at inflation.

• The region between 𝑙 = 100 and 𝑙 = 1000 corresponds to the Baryon Acoustic Oscillations
(BAO, see Section 1.2.1), and shows a series of acoustic peaks.

• The smaller scales for 𝑙 > 1000 correspond to the last baryon-photon scattering surface
during recombination.

Constraining the ΛCDM model

CMB is one of the fundamental cosmological probes to constrain the ΛCDM model. This model
is parameterized by 6 parameters 1 :

• 𝑛s : the spectral index of primordial scalar perturbations.

• Ω𝑏ℎ
2 : the baryon density parameter today. Here ℎ =

𝐻0

100 km·s−1 ·Mpc−1 , 𝐻0 is the Hubble
constant, and Ω𝑏 is the baryon density as a fraction of the critical energy density of the
universe today (see definition in Equation 1.32).

1Density parameters are functions of time and the ΛCDM model is parametrised as a function of their values
as of today
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Figure 1.3 : Power spectrum of CMB photons measured by Aghanim et al. 2020. The two-point
correlation function 𝐶𝑙 is multiplied by 𝑙(𝑙 + 1)/2 to better see the oscillations.
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Tableau 1.1 : Parameter constraints on the ΛCDM model using CMB data from Aghanim
et al. 2020.

Parameters Constraints
𝑛s 0.9652 ± 0.0042

Ω𝑏ℎ
2 0.02233 ± 0.00015

Ω𝑏𝑐
2 0.1198 ± 0.0012

𝜏 0.0540 ± 0.0074
ln(1010)𝐴s 3.043 ± 0.014
100�MC 1.04089 ± 0.00031
Ωmℎ

2 0.1428 ± 0.0011
𝐻0[ km · s−1 · Mpc−1] 67.37 ± 0.54

Age[Gyr] 13.801 ± 0.024
𝜎8 0.8101 ± 0.0061

𝑆8 = 𝜎8(Ωm/0.3)0.5 0.830 ± 0.013
𝑧Re 7.64 ± 0.74

100�∗ 1.04108 ± 0.00031
𝑟drag[Mpc] 147.18 ± 0.29

• Ω𝑐ℎ
2 : the cold dark matter density parameter today. Here Ω𝑐 is the cold dark matter

density as a fraction of the critical energy density of the universe (see definition in Equa-
tion 1.32).

• 𝜏 : the optical depth at the epoch of reionization. Reionization refers to the time when
the earliest galaxies formed, and emitted photons that reionized the surrounding Neutral
Hydrogen atoms. This effect is mostly seen at high 𝑙.

• ln(1010)𝐴s : where 𝐴s is the amplitude of the primordial matter power spectrum.

• 100�MC : where �MC is the apparent angle of the first acoustic peak’s position.

The latest measurement from the Planck satellite constrained the ΛCDM parameters with a 1%
precision, as shown in Table 1.1. The first six parameters are ΛCDM parameters, and the other
ones are derived parameters :

• Ωmℎ
2 : where Ωm is the total matter density today in the universe (see definition in

Equation 1.32), as a fraction of the critical energy density, and multiplied by ℎ2.

• 𝐻0[ km · s−1 · Mpc−1] : Hubble constant.

• Age[Gyr] : age of the universe.

• 𝜎8 : the normalization of matter fluctuations today, averaged over spheres of radius 8ℎ−1Mpc.

• 𝑆8 : a derived parameter using 𝜎8 and Ωm, taking into account their correlations.

• 𝑧Re : redshift of reionisation.

• 100�∗ : numerical result for the acoustic scale angle 100�MC (see definition above).

• 𝑟drag : the comoving scale of the BAO sound wave at the epoch of recombination (see
Section 1.2.1).
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In the following sections, I will describe the theoretical basis of the ΛCDM model, as well as the
equations of state of the different energy density components.

Redshifts in cosmology

Redshift is one of the fundamental concepts in cosmology since most observations capture
signals coming from distant astrophysical objects. It is commonly defined as :

1 + 𝑧 = �obs

�RF
, (1.3)

where �obs and �RF refer to the wavelength in the observation frame and the rest frame,
respectively.
There are two notions of redshift used in cosmology : the one due to Doppler shift,
and the cosmological redshift. The cosmological redshift (related to the expansion of the
universe) is defined in Equation 1.25, as a function of the cosmology scale factor 𝑎. In
particular, 𝑧 = 0 corresponds to the present epoch for which 𝑎 = 𝑎0. The Doppler redshift
of an astrophysical object is defined as the Doppler shift of its signal due to its peculiar
velocity 𝑣 :

1 + 𝑧 ≈

√
1 + 𝑣

𝑐

1 − 𝑣
𝑐

. (1.4)

This formula can be approximated as 𝑧 ≈ 𝑣
𝑐 for low-redshift (𝑧 ≪ 1) astrophysical objects,

which is the method that Hubble used to measure the distance and velocities of a few
nearby galaxies, and proposed Hubble’s law (see Figure 1.4) :

𝑣 = 𝐻0𝐷. (1.5)

Here 𝐻0 is the Hubble constant, and 𝐷 is the distance between the observer and the
galaxy.

1.1.2 General relativity in cosmology

The ΛCDM model is based on an isotropic and homogeneous universe described by General
Relativity (GR). For simplicity, I use in the following sections the usual convention of units :

𝑐 = ℏ = 𝑘𝐵 = 1. (1.6)

Einstein’s theory of GR assumes that a massive object placed in a gravitational field is affected
by the same gravitational strength, independently of its nature. This assumption is called the
Equivalence Principle. In Einstein’s theory, this gravitational effect is a consequence of curved
space-time, thus enabling a geometrical equivalence of gravitational interaction.

The geometry of the space-time

In general, the invariant quantity 𝑑𝑠2 of a 4-dimensional space-time is described by a metric-
tensor 𝑔�� :

𝑑𝑠2 = 𝑔��(x)𝑑𝑥�𝑑𝑥� , (1.7)
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where x = (𝑥0 , 𝑥1 , 𝑥2 , 𝑥3) with 𝑥0 representing the time coordinate, and 𝑥1 , 𝑥2 , 𝑥3 referring to
the space coordinates. For a Minkowski space (considering no curvature), 𝑔�� is equivalent to
the Minkowski metric ���, which is a pseudo-tensor :

𝑔�� = ��� =
©«
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

ª®®®¬ . (1.8)

Einstein’s equation

Einstein’s equation of GR describes gravity using an equivalent form of the space-time geometry
and the energy density of objects. On one hand, the Einstein tensor 𝐺�� can be expressed in
terms of geometric tensors :

𝐺�� = 𝑅�� −
𝑅

2
𝑔�� , (1.9)

where 𝑅�� = 𝑅𝑘�𝑘� is the Ricci tensor, and 𝑅 = 𝑅
�
� is the Ricci scalar. Here 𝑅𝑘�𝑘� is the Riemann

curvature tensor, defined as :

𝑅𝑖
𝑗𝑘𝑙

=
𝜕Γ𝑖

𝑙 𝑗

𝜕𝑥𝑘
−

𝜕Γ𝑖
𝑘 𝑗

𝜕𝑥 𝑙
+ (Γ𝑖

𝑘𝑝
Γ
𝑝

𝑙 𝑗
− Γ𝑖

𝑙𝑝
Γ
𝑝

𝑘 𝑗
). (1.10)

Here Γ is the Christoffel symbol, defined by considering the transformation of a dynamical metric :

Γ𝑚𝑖𝑗 =
1

2
𝑔𝑚𝑘( 𝜕

𝜕𝑥 𝑗
𝑔𝑘𝑖 +

𝜕

𝜕𝑥 𝑖
𝑔𝑘 𝑗 −

𝜕

𝜕𝑥𝑘
𝑔𝑖 𝑗) =

1

2
𝑔𝑚𝑘(𝑔𝑘𝑖, 𝑗 + 𝑔𝑘 𝑗,𝑖 − 𝑔𝑖 𝑗 ,𝑘). (1.11)

On the other hand, Einstein’s equations relate the geometric expression of Equation 1.9 with
the energy content of the universe :

𝐺�� = 8𝜋𝐺𝑇�� . (1.12)

Here 𝑇�� is the energy-momentum tensor which describes the energy content of the universe. The
combination of Equation 1.9 and Equation 1.12 indicates that the existence of massive objects
changes the curvature of space-time, and all the other objects move following a geodesics path
in this curved space-time (Equivalence Principle) :

𝑑2𝑥�

𝑑𝑠2
+ Γ

�
𝑖 𝑗

𝑑𝑥 𝑖

𝑑𝑠

𝑑𝑥 𝑗

𝑑𝑠
= 0, (1.13)

where 𝑠 is a scalar parameter of motion, e.g., in Minkowski space it is the proper time.



1.1. The standard cosmology model 9

Distances in cosmology

There are several important notions of distance in cosmology, including :

• The comoving distance : the distance between two objects that is independent of
time. It has different expressions along and across the line-of-sight.

Along the line-of-sight, it is defined as :

𝐷C =

∫ 𝑧

0

𝑐𝑑𝑧′

𝐻(𝑧′) , (1.14)

which is an integration of the inverse of the Hubble parameter over redshift from
the observer at 𝑧 = 0 to the astrophysical object at redshift 𝑧.

Along the transverse direction across the line-of-sight of a distant astrophysical
object, the comoving distance is defined as :

𝐷M =


𝐷H

1√
Ω𝑘

sinh (
√
Ω𝑘

𝐷C

𝐷H
), Ω𝑘 > 0

𝐷C , Ω𝑘 = 0

𝐷H
1√
Ω𝑘

sin (
√
Ω𝑘

𝐷C

𝐷H
), Ω𝑘 < 0

(1.15)

Here Ω𝑘 is the curvature energy density (see definition in Equation 1.32), 𝐷H = 𝑐
𝐻0

is the Hubble distance, and one can figure out that 𝐷M = 𝐷C for a flat universe
(𝑘 = 0).

• The angular diameter distance 𝐷A : the angular diameter distance of an astrophy-
sical object with an actual size 𝑑 and an angular size Δ� is defined as 𝐷A = 𝑑

Δ� . In
cosmology, it interprets the physical distance between two astrophysical objects. It
relates to 𝐷M by :

𝐷A =
𝐷M

1 + 𝑧 , (1.16)

where 𝑧 is the redshift of the astrophysical object.

• The luminosity distance 𝐷L : the distance from an astrophysical source with a
measured luminosity 𝐿 (the emitted total electromagnetic energy per unit of time)
from the total flux 𝐹 (the total energy that crosses a unit area per unit time), defined
as :

𝐷L =

√
𝐿

4𝜋𝐹
. (1.17)

A general relation between these three distances is :

𝐷L = (1 + 𝑧)𝐷M = (1 + 𝑧)2𝐷A. (1.18)
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1.1.3 An expanding universe

The expansion of the universe was first discovered thanks to the observation of Hubble 1929.
Figure 1.4 shows the measured velocities of galaxies as a function of their distances from the
observer. The slope of the fitted line shows the proportionality of galaxy peculiar velocities with
their distances from the observer, and is the so-called Hubble constant (𝐻0 in Equation 1.5).

Figure 1.4 : Hubble diagram measured using neaby galaxies (Hubble 1929). It shows the
velocities of galaxies as a function of their distances from the observer, indicating that the
universe is expanding.

The metric of a dynamical universe

Based on Einstein’s equations and knowing from Hubble’s law that the universe is expanding, I
describe in this subsection the geometry of an expanding universe. There are two fundamental
principles to describe the observed matter distribution of our universe :

• The universe is homogeneous, meaning that the matter distribution is uniform, seen from
a much larger scale than the galaxy scale.

• The universe is isotropic, seen from all directions.

These two principles form the cosmological principle and allow the universe to be described by a
so-called Friedmann-Robertson-Walker (FRW) metric (Robertson 1936 ; Walker 1937) with
only two parameters 𝑎(𝑡) and 𝑘 :

𝑑𝑠2 = 𝑐2𝑑𝑡2 − 𝑎(𝑡)2[ 𝑑𝑟2

1 − 𝑘𝑟2 + 𝑟2(𝑑�2 + sin2(�)𝑑𝜙2)], (1.19)
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with a metric tensor :

𝑔�� =
©«
1 0 0 0

0 − 𝑎2

1−𝑘𝑟2 0 0
0 0 −𝑎2𝑟2 0
0 0 0 𝑎2𝑟2 sin2 �

ª®®®¬ . (1.20)

Here 𝑎(𝑡) is the time-dependent scale factor of the universe, and 𝑘 = 𝑅
6 is the curvature of

the universe. 𝑘 = 0 describes a flat and infinite universe, 𝑘 > 0 a spherical and finite universe,
and 𝑘 < 0 an hyperbolic and infinite one.

Dynamics in the universe

Apart from geometry, the cosmological principle of an expanding universe also implies an energy-
momentum tensor considering the universe as a perfect fluid in thermodynamical equilibrium :

𝑇�� = (𝜌 + 𝑃)𝑢�𝑢� − 𝑃𝑔�� . (1.21)

Here 𝑃 is the pressure of the fluid, 𝜌 is the energy density, and 𝑢 is the fluid velocity four-vector.
By solving Einstein’s equation with the FRW metric and the energy-momentum tensor in

Equation 1.21, two independent dynamic equations can be obtained :

( ¤𝑎
𝑎
) = 8𝜋𝐺

3
𝜌 − 𝑘

𝑎2
, (1.22)

and
( ¥𝑎
𝑎
) = 4𝜋𝐺

3
(𝜌 + 3𝑃). (1.23)

Here the dots denote time derivatives. Equation 1.22 tells how fast the universe is expanding.
The Hubble parameter is thus defined as :

𝐻(𝑡) = ¤𝑎(𝑡)
𝑎(𝑡) . (1.24)

The scale factor of today’s universe is noted 𝑎0, and the cosmological redshift is equal to :

1 + 𝑧 = 𝑎0

𝑎
. (1.25)

Since 𝑎 is a function of time, this equation provides an equivalence of distance, time and redshift :
low 𝑧 indicates a closer distance and time from the current observer, while high 𝑧 the opposite.

The evolution of the universe

Combining Equation 1.22 and 1.23, one obtains a derived equation :

¤𝜌 + ¤𝑎
𝑎
[𝜌 + 𝑃] = 0. (1.26)

Considering the equation of state of fluid as 𝑃 = 𝜌𝑤 (𝑤 is the equation of state parameter of a
perfect fluid), the integration of Equation 1.26 yields :

𝜌(𝑡) = 𝜌(𝑡0)(
𝑎0

𝑎(𝑡) )
3(𝑤+1). (1.27)
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Different density contents (see Section 1.1.1) are described by different 𝑤 values, thus implying
different structure evolution :

• Baryons and CDM : are pressureless, so that 𝑃 ≪ 𝜌. The density evolution is thus :

𝜌𝑚(𝑎) ∝ 𝑎−3. (1.28)

• Radiation : the equation of state is 𝑃 =
𝜌
3 , which yields

𝜌𝑟(𝑎) ∝ 𝑎−4. (1.29)

• Cosmological constant : The cosmological constant Λ can be considered as a fluid of
constant density with negative pressure 𝑃 = −𝜌. In this case, the dark energy density
will be independent of time and expansion of the universe :

𝜌Λ(𝑎) = constant. (1.30)

The total energy density in the universe can be further defined as the sum of all these contents :

Ωtotal = Ωm +Ωr +ΩΛ = 1 −Ω𝑘 . (1.31)

Here each energy density content is normalised by the critical density of the universe 𝜌crit =
3𝐻2

8𝜋𝐺 ,
that is :

Ω𝑖 =
𝜌𝑖
𝜌crit

, 𝑖 = m, r, Λ,

Ω𝑘 =
−𝑘𝑐2
𝑎2𝐻2

.

(1.32)

The first Friedmann equation 1.22 can therefore be rewritten as :

𝐻2(𝑡) = 𝐻2
0 [Ωr,0𝑎(𝑡)−4 +Ωm,0𝑎(𝑡)−3 +Ω𝑘,0𝑎(𝑡)−2 +ΩΛ,0], (1.33)

where subscript 0 denotes present-time values. This is visualized in Figure 1.5 for a flat universe
(𝑘 = 0) as a function of time (redshift). One can see from the plot that radiation dominated the
evolution of the early universe, matter dominated the universe between 0.5 < 𝑧 < 3600, and the
current universe is governed by Dark Energy (here a cosmological constant).

1.2 The accelerated expansion of the universe

In the initial formulation of Einstein’s equation, a cosmological constant was introduced as a
correction of space curvature to ensure a static universe. This constant was removed after the
measurement of Hubble’s law (Hubble 1929), allowing GR to interpret an expanding universe. In
this case, a homogeneous universe as described in previous sections will slow down its expansion
with the evolution of gravity.

However, around 70 years later, two independent research groups (Riess et al. 2000 ; Perlmutter
et al. 1999) discovered that the universe expansion was accelerating using Type Ia supernovae
(SNIa) up to redshift 𝑧 ∼ 0.7. These measurements were then explained by the ΛCDM model
with a flat universe Ω𝑘 = 0 and ΩΛ = 0.7 at present time, considering the cosmological constant
Λ again in GR, as an energy component.
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Figure 1.5 : The evolution of the energy density for a flat universe (𝑘 = 0), as a function
of redshift, for different components of the universe : baryons and CDM (blue), cosmological
constant (green), and radiation (red). Credits : Zarrouk 2018b.

Type Ia supernovae

SNIa are interpreted as extreme explosions of white dwarfs that accrete matter from
neighboring stars (Yoon et Langer 2004 ; Mazzali, Ropke, Benetti et Hillebrandt
2007) to a critical mass limit a.
SNIa provides precise measurements of the luminosity distance 𝐷L (see previous section).
These luminosity distances can be used to constrain Ωm and ΩΛ using the ΛCDM model.
However, 𝐷L do not directly measure 𝐻0, and the constraints on 𝐻0 depend on both
SNIa and distance ladder (nearby distances measured using Cepheid stars) (Mörtsell,
Goobar, Johansson et Dhawan 2022). This distance ladder constraint on 𝐻0 has a
discrepancy of several 𝜎 compared to the results from other probes (see Figure 1.6, Di
Valentino et al. 2021), e.g., CMB. This discrepancy is called the Hubble tension, and
is still under investigation by the astronomy community.

aThe mass limit is the so-called Chandrasekhar limit (Bethe, Brown et Worpole 1985 ; Mazzali,
Ropke, Benetti et Hillebrandt 2007)

In order to understand the expansion history of the universe and forecast its future, It is
essential to study the nature of Dark energy and its time-dependent equation of state with some
extended models. In next section, I describe another independent probe besides SNIa, the Baryon
Acoustic Oscillations (BAO), to measure the expansion of the universe at different redshifts.

1.2.1 The Baryon Acoustic Oscillations

The Baryon Acoustic Oscillations (BAO) is another powerful probe to measure the expansion of
the universe and provide constraints on the ΛCDM model. Studying this probe is the goal of my
thesis, and I will describe in this subsection the physics of the BAO.

The inflation of the universe right after the ’Big Bang’ generated density fluctuations of
baryons, Dark matter, and photons, due to the quantum fluctuations of initial fields. These
inhomogeneities of the matter density field evolved into overdense and underdense regions, and
turned into the large-scale structure of the universe, as a result of gravitational clustering.
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Figure 1.6 : The constraints on 𝐻0 from different probes and different experiments. Credits :
Di Valentino et al. 2021.
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Before recombination, the primordial density fluctuations generated during inflation propa-
gated in the form of sound waves in the baryon-photon plasma, and left a shell at the sound
horizon 𝑟d, after the baryon-photon decoupling. The sound horizon is therefore defined as the
maximum length of this sound wave that traveled until decoupling :

𝑟d =

∫ ∞

𝑧drag

𝑐s

𝐻(𝑧) . (1.34)

Here 𝑧drag refers to the drag epoch where the photons were fully decoupled from baryons. Fi-
gure 1.7 (D. J. Eisenstein, H.-j. Seo, Sirko et Spergel 2007) shows the mass profile of the
different components of the baryon-photon plasma before and after recombination. Before re-
combination (two upper plots), baryons and photons were tightly coupled so they followed the
same mass profile. The primordial fluctuations generated by inflation then propagated as a sound
wave. After recombination, photons decoupled from the plasma and left the previous fluctuations
as a peak in the correlation functions of matter tracers. One can see in Figure 1.7 the BAO peak
from baryons and CDM, at a scale ∼ 100 ℎ−1 Mpc.

1.2.2 The two-point correlation function

As mentioned in the previous section, the BAO peak is seen in the fluctuations of baryons and
CDM. In this regard, statistical approaches such as the two-point correlation function of matter
tracers can be used to measure this peak.

Consider the perturbation of the matter density field 𝜌 at a position ®𝑥 as the density contrast
(𝛿 refers to the density field) :

𝛿(®𝑥) = 𝜌(®𝑥)
�̄�

− 1. (1.35)

The two-point correlation function (2PCF) at a separation ®𝑟 is expressed as :

�(®𝑟) = ⟨𝛿(®𝑥)𝛿(®𝑥 + ®𝑟)⟩, (1.36)

where the brackets ⟨⟩ denote the mean average over ®𝑥.
The associated power spectrum is then derived as the Fourier Transform of the two-point

correlation function :

𝑃(®𝑘) =
∫ +∞

−∞
�(®𝑟)𝑒(−𝑖 ®𝑘·®𝑟)𝑑3®𝑟. (1.37)

1.2.3 Matter tracers

The BAO signal can be detected as a peak in the 2PCF using discrete matter tracers (galaxies,
quasars, voids, etc) or continuous matter tracers (Ly𝛼 forests). These matter tracers are usually
considered biased matter density fields in the first- or second-order approximations.

The bias

Consider the matter tracers 𝛿T at a redshift 𝑧 as a biased tracer of the underlying dark matter
density field :

𝛿T(®𝑟, 𝑧) = 𝑏T(𝑧)𝛿matter(®𝑟, 𝑧). (1.38)
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Figure 1.7 : The mass profile of different matter contents in the baryon-photon plasma before
and after the recombination. Credits : D. J. Eisenstein, H.-j. Seo, Sirko et Spergel 2007.
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The 2PCF is then derived as :

�T(®𝑟, 𝑧) = 𝑏2T(𝑧)�matter(®𝑟, 𝑧). (1.39)

Redshift distortions

Due to gravitation, matter in galaxy clusters is attracted by over-density regions and has a
peculiar velocity directed towards these regions. As a result, matter on opposite sides of an over-
density regions along or across a line-of-sight will have opposite contributions to the measured
redshift.

In practice, the measured redshifts of galaxy clusters are affected by their peculiar velocities,
which implies :

𝑧obs = 𝑧cosmo + 𝑧𝑣 , (1.40)

where 𝑧cosmo refers to the cosmological redshift and 𝑧𝑣 is a redshift due to peculiar velocities (the
so-called redshift space distortions effect, RSD). These two redshifts can not be distinguished
from measurements, and thus the RSD need to be modeled. Figure 1.8 details different cases
of this effect : the upper plots show a flattened measurement (when peculiar velocity is smaller
than the cluster scale) of a cluster in redshift space, which is interpreted as a squashing or
Kaiser effect (Kaiser 1987) ; the bottom plots present the case where the galaxy distribution is
elongated along the line-of-sight (when peculiar velocity is larger than the cluster scale), and is
referred to as the ’Finger of God’ (FoG) effect (Jackson 1972).

Considering the redshift-dependent density field in Fourier space :

�̂�(®𝑘, 𝑧) =
∫

�̂�(®𝑥, 𝑧)𝑒(−𝑖 ®𝑘· ®𝑥)𝑑3 ®𝑥, (1.41)

then the RSD effect can be modeled as :

�̂�RSD(®𝑘, 𝑧) = (1 + 𝑓 (𝑧)�2
𝑘)�̂�(®𝑘, 𝑧), (1.42)

which is the simplest RSD model, that is used for Ly𝛼 analysis. Here �𝑘 =
®𝑘

| | ®𝑘 | |
· ®� (®� is the

direction along the line-of-sight). 𝑓 is the linear growth rate as a function of the scale factor 𝑎,
and is defined as (A. Hamilton 2001) for the ΛCDM model :

𝑓 (𝑎) = 𝑑 ln(𝐷(𝑎))
𝑑 ln 𝑎

= −1 − Ωm

2
(1 − 5𝑎

𝐷(𝑎) ) +ΩΛ , (1.43)

with

𝐷(𝑎) = 2Ωm

2

𝐻(𝑎)
𝐻0

∫ 𝑎

0

𝑑𝑎′

(𝑎′𝐻(𝑎′)/𝐻0)3
. (1.44)

1.2.4 The Lyman-𝛼 forest
I describe in this subsection the physics of quasars and Lyman-𝛼 (Ly𝛼) forests, seen as series
absorption lines in the quasar spectrum (between the Ly𝛽 and Ly𝛼 emission peak).

Quasars

Quasars, or quasi-stellar objects, are the most luminous objects in the universe. They were
first observed in 1963 by Matthews et Sandage 1963 and their spectra are measured by
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Figure 1.8 : The example of the impact of peculiar velocities on the redshift measurement
distortions. Credits : A. Hamilton 1998.
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Region �min
RF [ Å] �max

RF [ Å]
Ly𝛼 1040 1216
Ly𝛽 920 1020

Tableau 1.2 : The wavelength intervals of Ly𝛼 and Ly𝛽 regions in rest frame.

Greenstein et M. Schmidt 1979. Quasars are point-like objects with a continuum, very broad
emission lines, and some absorptions (see an example in Figure 1.9). They are sub-classes of
active galactic nuclei (AGN), with supermassive black holes highly active at the galaxy center,
and accreting the surrounding gas or dust into a disk. AGNs eject their matter as luminous jets,
and quasars are AGNs with jets directly pointing at the observer.

Quasars are characterized by strong emissions in radio, infrared, optical, ultraviolet, X-ray,
and gamma-ray wavelength ranges. The emission spectral lines of different atoms (Hydrogen,
helium, carbon, magnesium, iron, oxygen, etc.) are broadened due to the large velocities and
heating of the rotating matter close to the quasar (Doppler broadening).

The strong Ly𝛼 emission line of quasars makes it possible to study the absorber features
along the line-of-sight, and I will introduce Ly𝛼 forest in the next sub-section, which can be used
to probe cosmological models.

Ly𝛼 forests

When photons emitted by quasars go across the intergalactic medium (IGM) in the universe and
meet with gases of Neutral Hydrogen atoms, they have a probability to excite these atoms and
produce a Ly𝛼 (wavelength of 1215.67 Å in the rest frame) absorption in the quasar spectra.
This effect generated by IGM at different redshifts shifts the absorption in quasar spectra at an
observing wavelength �obs = (1 + 𝑧IGM)�Ly𝛼. The collection of all shifted Ly𝛼 absorption lines
by hydrogen along the line-of-sight is called the Ly𝛼 forest. Figure 1.9 shows a quasar spectrum
(𝑧QSO = 2.96) observed by DESI. One can see the Ly𝛼 forest range � ∈ [1040, 1216] Å rest-
frame between the Ly𝛼 and Ly𝛽 peaks. The black curve shows the estimated quasar continuum,
which is the quasar spectrum without any Ly𝛼 absorption. The Ly𝛼 absorption lines also exist
on the left side of the Ly𝛽 peak, and are mixed with the Ly𝛽 absorption lines. Ly𝛼 forests can
be used as continuous matter tracers to detect the BAO at high redshift, 𝑧 > 2. The combined
analysis of Ly𝛼 forests in both the Ly𝛼 region (�rf ∈ [1040, 1216] Å see Table 1.2) and Ly𝛽
(�rf ∈ [920, 1020] Å)region is discussed in Des Bourboux, Rich et al. 2020, and I will not focus
on this in my thesis. Consider these photons with total flux 𝐹 going through the IGM across
length 𝑑𝐿 and Neutral Hydrogen column density 𝑛HI. The absorbed flux 𝑑𝐹 is then expressed
as :

𝑑𝐹 = 𝑛HI𝜎Ly𝛼𝐹𝑑𝐿, (1.45)

where 𝜎Ly𝛼 is the Ly𝛼 cross-section. Integrating this equation one get :

𝐹 = 𝐹0𝑒
−𝜏 , (1.46)

where 𝜏 is defined as the optical depth :

𝜏 = 𝜎Ly𝛼

∫
𝑛HI𝑑𝐿. (1.47)
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Figure 1.9 : An example of a quasar spectrum (𝑧QSO = 2.96) observed by DESI.

The flux fluctuations of 𝛿Ly𝛼(®𝑥, 𝑧) = 𝐹Ly𝛼(®𝑥,𝑧)
�̄�

− 1 can then be used as continuous biased matters
to detect the BAO. I will further describe the technical details of measuring the BAO using Ly𝛼
forests in Chapter 5, which is the main goal of this thesis.

High Column Density systems

In the IGM, bound gas concentrations of Neutral Hydrogen (hereafter HI) atoms with HI column
densities 1020.3cm−2 > 𝑁HI > 1017.2cm−2 are called Lyman limit systems (LLS), and those with
𝑁HI > 1020.3cm−2 are called Damped Lyman-alpha systems (DLAs). In this manuscript I will call
the combination of these two categories of systems the High Column Density systems (HCDs)
with 𝑁HI > 1017.2cm−2. HCDs are seen as strong absorptions with damping wings in the Ly𝛼
forests (see Figure 1.10 a DLA centered at 𝑧DLA = 3.286.). Their damping wings are usually
parametrized by Voigt profiles (see Section 6.2.3), which is a convolutional product of a Gaussian

� 0.4 

0.2 

0.0 

10000 

Figure 1.10 : An example of the Voigt profile fitting of a DLA centered at 𝑧DLA = 3.286 (J. X.
Prochaska et Herbert-Fort 2004).
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profile and a Lorenztian profile, corresponding to the thermal Doppler effect and the collisional
cross-section of Neutral Hydrogen atoms. Figure 1.11 shows a comparison of a Gaussian profile,
a Lorentzian profile, and a Voigt profile. The Lorentzian profile characterizes the damping wings
while the Gaussian profile determines the shape of the trough.

Figure 1.11 : A schematic diagram for a Gaussian profile, a Lorentzian profile, and a Voigt
profile.

The presence of these HCDs has a similar effect on the Ly𝛼 power spectrum as the ’fingers
of God’ effect of galaxies (see Section 1.2.3), which both affect along the line-of-sight and on
small scales. However, the ’fingers of God’ effect is local and affects the redshift estimation, while
the damping wings of HCDs extend out to all absorption lines in the Ly𝛼 forest along the line-
of-sight. The cross-correlations between quasars or Ly𝛼 forests with these HCDs with damping
wings, will then result in a suppression (at the scale of HCD widths) on the Ly𝛼 power spectrum
after Fourier Transform. Figure 1.12 presents an illustration of Voigt profiles with different HI
column densities and their Fourier Transform.
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Figure 1.12 : Examples for Voigt profiles with different HI column densities, and their associated
Fourier Transform : unnormalized (upper) and normalized (bottom).



22 CHAPITRE 1. Introduction to Cosmology

Bibliographie du présent chapitre

Hubble, E. (1929). “A relation between distance and radial velocity among extra-galactic nebu-
lae”. In : Proceedings of the national academy of sciences 15.3, p. 168-173.

Robertson, H. P. (1936). “Kinematics and World-Structure III.” In : Astrophysical Journal,
vol. 83, p. 257 83, p. 257.

Walker, A. G. (1937). “On Milne’s theory of world-structure”. In : Proceedings of the London
Mathematical Society 2.1, p. 90-127.

Bondi, H. et T. Gold (1948). “The steady-state theory of the expanding universe”. In : Monthly
Notices of the Royal Astronomical Society 108.3, p. 252-270.

Matthews, T. A. et A. R. Sandage (1963). “Optical Identification of 3C 48, 3C 196, and 3C
286 with Stellar Objects.” In : Astrophysical Journal, vol. 138, p. 30 138, p. 30.

Penzias, A. A. et R. W. Wilson (1965). “Measurement of the Flux Density of CAS a at 4080
Mc/s.” In : The Astrophysical Journal 142, p. 1149.

Jackson, J. (1972). “A critique of Rees’s theory of primordial gravitational radiation”. In :
Monthly Notices of the Royal Astronomical Society 156.1, 1P-5P.

Donnelly, T., S. Freedman, R. Lytel, R. Peccei et M. Schwartz (1978). “Do axions exist ?”
In : Physical Review D 18.5, p. 1607.

Greenstein, J. L. et M. Schmidt (1979). “The quasi-stellar radio sources 3c 48 and 3c 273”.
In : A Source Book in Astronomy and Astrophysics, 1900–1975. Harvard University Press,
p. 811-818.

Penzias, A. A. et R. W. Wilson (1979). “A measurement of excess antenna temperature at 4080
MHz”. In : A Source Book in Astronomy and Astrophysics, 1900–1975. Harvard University
Press, p. 873-876.

Bethe, H., G. Brown et I. Worpole (1985). “How a Supernova Explodes”. In.
Kaiser, N. (1987). “Clustering in real space and in redshift space”. In : Monthly Notices of the

Royal Astronomical Society 227.1, p. 1-21.
Hoyle, F., G. Burbidge et J. V. Narlikar (1993). “A quasi-steady state cosmological model

with creation of matter”. In : Astrophysical Journal, Part 1 (ISSN 0004-637X), vol. 410, no.
2, p. 437-457. 410, p. 437-457.

Jungman, G., M. Kamionkowski et K. Griest (1996). “Supersymmetric dark matter”. In :
Physics Reports 267.5-6, p. 195-373.

Hamilton, A. (1998). “Linear redshift distortions : A Review”. In : The Evolving Universe :
Selected Topics on Large-Scale Structure and on the Properties of Galaxies, p. 185-275.

Perlmutter, S. et al. (1999). “Measurements of Ω and Λ from 42 high-redshift supernovae”.
In : The Astrophysical Journal 517.2, p. 565.

Riess, A. G. et al. (2000). “Tests of the accelerating universe with near-infrared observations of
a high-redshift type Ia supernova”. In : The Astrophysical Journal 536.1, p. 62.

Hamilton, A. (2001). “Formulae for growth factors in expanding universes containing matter
and a cosmological constant”. In : Monthly Notices of the Royal Astronomical Society 322.2,
p. 419-425.

Prochaska, J. X. et S. Herbert-Fort (2004). “The sloan digital sky survey damped Ly𝛼
survey : data release 1”. In : Publications of the Astronomical Society of the Pacific 116.821,
p. 622.

Yoon, S.-C. et N. Langer (2004). “Presupernova evolution of accreting white dwarfs with
rotation”. In : Astronomy & Astrophysics 419.2, p. 623-644.

Eisenstein, D. J., H.-j. Seo, E. Sirko et D. N. Spergel (2007). “Improving cosmological
distance measurements by reconstruction of the baryon acoustic peak”. In : The Astrophysical
Journal 664.2, p. 675.



Bibliographie du présent chapitre 23

Mazzali, P. A., F. K. Ropke, S. Benetti et W. Hillebrandt (2007). “A common explosion
mechanism for type Ia supernovae”. In : Science 315.5813, p. 825-828.

Peter, P. et J.-P. Uzan (2009). Primordial cosmology. Oxford University Press.
Kim, J. E. et G. Carosi (2010). “Axions and the strong C P problem”. In : Reviews of Modern

Physics 82.1, p. 557.
Zarrouk, P. (2018a). “Clustering Analysis in Configuration Space and Cosmological Implica-

tions of the SDSS-IV eBOSS Quasar Sample”. Thèse de doct. Université Paris-Saclay (Co-
mUE).

— (2018b). “Clustering Analysis in Configuration Space and Cosmological Implications of the
SDSS-IV eBOSS Quasar Sample”. Thèse de doct., p. 17.

Chabanier, S., N. Palanque-Delabrouille et al. (2019). “The one-dimensional power spec-
trum from the SDSS DR14 Ly𝛼 forests”. In : Journal of Cosmology and Astroparticle Physics
2019.07, p. 017.

De Sainte Agathe, V. (2019). “Mesure de la position du pic d’oscillations acoustiques baryo-
niques dans les forêts Ly𝛼 et Ly𝛽 des spectres des quasars du relevé eBOSS-SDSS IV”. Thèse
de doct. Sorbonne université.

Aghanim, N. et al. (2020). “Planck 2018 results-VI. Cosmological parameters”. In : Astronomy
& Astrophysics 641, A6.

Des Bourboux, H. D. M., J. Rich et al. (2020). “The completed SDSS-IV extended baryon
oscillation spectroscopic survey : baryon acoustic oscillations with Ly𝛼 forests”. In : The
Astrophysical Journal 901.2, p. 153.

Dodelson, S. et F. Schmidt (2020). Modern cosmology. Academic press.
Di Valentino, E. et al. (2021). “In the realm of the Hubble tension—a review of solutions”. In :

Classical and Quantum Gravity 38.15, p. 153001.
Mörtsell, E., A. Goobar, J. Johansson et S. Dhawan (2022). “The Hubble tension revisited :

additional local distance ladder uncertainties”. In : The Astrophysical Journal 935.1, p. 58.
Ravoux, C. (2022). “One-and three-dimensional measurements of the matter distribution from

eBOSS and first DESI Lyman-𝛼 forest samples”. Thèse de doct. Université Paris-Saclay.
Stermer, J. (2022). “Utilisation de catalogues simulés pour les analyses BAO Lyman-alpha du

relevé eBOSS”. In.



24 CHAPITRE 1. Introduction to Cosmology



Chapitre 2

The spectroscopic surveys eBOSS
and DESI

For the past centuries, astrophysical observations were carried out by traditional optical teles-
copes and manual data collection. However, with the advancements in optoelectronic systems
over the past few decades, galaxy surveys conducted using large telescopes have emerged as the
primary approach for observational cosmology research.

This thesis benefits from spectroscopic observation data from two large cosmological surveys,
eBOSS and DESI. The survey validation program of DESI was started almost at the same time
as this thesis, thus enabling me to get involved in the data quality checking, target selection
pipeline test, collection of the main survey data, and scientific analysis of DESI.

In this chapter, I describe the scientific goals, survey designs, target selection procedures,
instrument setup, and observation enrollments of these two surveys.
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2.1 SDSS

The realization of large cosmology surveys were facilitated with the development of high precision
optical instruments (e.g., Charged Coupled Devices CCDs and multi-object fiber spectroscopy)
and computational resources, thus enabling the exploration of cosmology into a new phase. The
first large cosmology survey, the Sloan Digital Sky Survey (SDSS), was motivated and proposed
by York et al. 2000 in the 1980s. Organized by a large astronomy collaboration, it aimed at
mapping the universe from the local group to the largest clustering of galaxies. After a decade of
preparation and construction, SDSS took its first testing light in 1998, and started observations
in 2000. It used a 2.5m Ritchey-Chrétien telescope installed at Apache Point Observatory (APO)
in New Mexico, USA.

The scientific goal of SDSS was to get a better understanding of the large scale structure of
the Universe and the growth of structure. Therefore, measuring the distribution of matter and
studying the nature of dark energy using BAO became the core approaches.

2.1.1 Survey design

SDSS launched different phases of both photometric and spectroscopic surveys every few years.
In this section I will describe these different generations of surveys.

SDSS-I, II, and III

Equipped with two spectrographs connected to an imaging camera and a fiber plate respecti-
vely, the first observation program SDSS-I (2000 − 2005) provided a photometric survey with
∼ 8000 deg2 footprint and a spectroscopic survey with ∼ 5700 deg2. The famous detection of
BAO using luminous red galaxies (LRGs) (D. J. Eisenstein, Zehavi et al. 2005), was announ-
ced during SDSS-II (2005 − 2008), which provided a photometric survey with ∼ 11500 deg2

footprint and a spectroscopic survey with ∼ 7500 deg2.
Following by SDSS-II, the third observation program SDSS-III (2008− 2014) was carried out

with upgraded spectrographs, and four different surveys were completed for different scientific
goals :

• The Baryon Oscillation Spectroscopic Survey (BOSS), a six-year spectroscopic survey de-
dicated to the measurement of BAO using extragalactic targets. The entire survey collected
∼ 1.5 million LRGs (𝑧 between 0.2 and 0.75) and 150, 000 high-reshift quasars (QSOs with
𝑧 > 2), covering ∼ 10000 deg2. Thanks to those high-redshift QSOs, a sufficient number of
Ly𝛼 forests were observed from the QSOs’ spectra, and the BAO peak was detected from
both the Ly𝛼 auto-correlation function (J. E. Bautista et al. 2017) and the Ly𝛼-QSO
cross-correlation function (Delubac, Rich et al. 2013).

• The Sloan Extension for Galactic Understanding and Exploration 2 (SEGUE-2), designed
to observe ∼ 120, 000 stars in our galaxy halo, and better understand the sub-structures of
the Milky Way.

• The Apache Point Observatory Galactic Evolution Experiment 1 (APOGEE-1), which
measured ∼ 100, 000 red giant stars with precise peculiar velocities in our galaxy.

• The Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS), a spec-
troscopic survey planned to observe ∼ 11, 000 bright stars in our galaxy, and study the
formation and evolution of planet systems with high-precision.
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SDSS-IV and eBOSS

Having achieved fruitful and remarkable scientific results based on three successive generations
of surveys, the fourth program of SDSS was proposed to further investigate more near-field and
extragalactic targets. SDSS-IV (2014−2019)1 (Blanton et al. 2017) provided the latest available
data release DR16 (Ahumada et al. 2020) and DR17 (Abdurro’uf et al. 2022), and is composed
of three surveys :

• The APO Galactic Evolution Experiment 2 (APOGEE-2), aimed at exploring the history
and evolution of the Milky Way by targeting an enormous number of nearby stars.

• The Mapping Nearby Galaxies at APO (MaNGA), observed stars and gas in 10, 000 nearby
galaxies.

• The extended Baryon Oscillation Spectroscopic Survey (eBOSS) (K. S. Dawson et al.
2016), was designed as an extension of BOSS to detect the BAO with percent-level preci-
sion in the redshift range 0.6 < 𝑧 < 3.5, by collecting large catalogs of different types of
extragalactic galaxies and QSOs. I will further give more details about the eBOSS survey
in the next section (see Section 2.1.3).

2.1.2 The instrument

The 2.5m Ritchey-Chrétien telescope was used for the data collection of both BOSS and eBOSS
surveys, with both photometric and spectroscopic programs. The instrument was therefore de-
signed for both modes : the photometric mode with an imaging camera composed by an array
of 6 columns of 5 CCDs equipped with different filters 𝑢, 𝑔, 𝑟, 𝑖, 𝑧, with central wavelengths of
3590, 4810, 6230, 7640, 9060 Å (Gunn, M. Carr et al. 1998) ; the spectroscopic mode used 1000
fibers (fiber diameter of 120 �m) placed on a fiber cartridge on the focal plane. The fiber cartridge
or the camera can be connected to 2 identical spectrographs (Smee et al. 2013). Figure 2.1 gives
a graphic of this structure. This gives at the end a field of view (FOV) of 7 deg2.

2.1.3 eBOSS

In this section, I will describe in detail the eBOSS survey, which provided the largest sample
of high-redshift extragalactic targets among the different cosmological surveys carried out in
SDSS. In this survey, four samples of targets were observed (see Figure 2.3), including a large
sample of high-redshift LRGs, a new sample of emission line galaxies (ELGs, blue star-forming
galaxies) in the redshift range 0.6 < 𝑧 < 1.2, a low-redshift QSOs sample (hereafter tracer QSOs,
with 𝑧 < 2), and a high-redshift QSOs sample (hereafter Ly𝛼 QSOs). A visualization of the
eBOSS QSO footprint is shown in Figure 2.2, which includes all the QSO targets in SDSS-I, II,
BOSS, and eBOSS. Using these data, the first detection of the BAO peak using tracer QSOs
(𝑧 < 2) (Ata et al. 2018) was made possible, thus enabling percent-level measurements of the
BAO peak position over a wide redshift range (see Figure 2.4). These measurements provided an
unprecedentedly strong constraint on the ΛCDM model and its extended theories (Alam et al.
2021). Figure 2.4 shows the ratio of the BAO measurement compared to the Planck 2018 result
using CMB with the ΛCDM model (Aghanim et al. 2020). One can also tell from Figure 2.4
that Ly𝛼 forests give the highest redshift constraints of BAO, which is the goal of my PhD study,
i.e., using the eBOSS/DESI data to get higher redshift BAO measurement.

1https://www.sdss.org/
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Figure 2.1 : The upper plot presents a description of the SDSS/eBOSS instrument. In spec-
troscopic mode, the fiber cartridge was connected to the 2 spectrographs. The lower plot shows
the schematic structure of the spectrographs used in eBOSS. The input light will be transformed
into a beam by a collimator, and the splitted beam will be collected from the red and the blue
cameras, each of which contains 8 lenses and a CCD with 4096 × 4096 pixels.
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Figure 2.2 : Footprint of eBOSS DR16 QSOs (Lyke et al. 2020) (including all the QSO targets
from SDSS-I, II, BOSS, and eBOSS).

eBOSS Target selection

eBOSS made a target selection of 4 classes of extragalactic galaxies and quasars. Figure 2.3
presents the combined BOSS and eBOSS targets :

• Luminous red galaxies (LRGs), 377, 458 spectra in the redshift range 0.6 < 𝑧 < 1.0 (J.
Bautista 2020).

• Emission line galaxies (ELGs), 69, 243 in the redshift range 0.6 < 𝑧 < 1.2 (Raichoor,
Comparat et al. 2017).

• Tracer Quasars (QSOs), in the redshift range 0.9 < 𝑧 < 2 (Alam et al. 2021).

• Ly𝛼 Quasars (QSOs), 0.7 million Ly𝛼 quasars in the redshift range 2 < 𝑧. The final DR16
(Des Bourboux, Rich et al. 2020) catalog collects 200, 000 Ly𝛼 QSOs.

Quasar target selection

My PhD research mostly makes use of the high-redshift Ly𝛼 QSOs catalog in DR16 (Des
Bourboux, Rich et al. 2020). I hereby describe the target selection and classification pipe-
line used in eBOSS.

The classification of targets was performed firstly using the photometric data of each target.
At low redshifts, stars and quasars can be distinguished (Richards et al. 2002) by looking at
their measured magnitudes in the four-dimensional color band (𝑢, 𝑔, 𝑟, 𝑖). Moreover, the spectra
of quasars can be easily distinguished from those of stars, that roughly follow a black body
spectrum. However, at higher redshifts 𝑧 ∼ 2.8, the distribution of quasars and stars overlap
in the 𝑢 − 𝑔 color band regions, making it difficult to distinguish these classes efficiently. The
XDQSOz method (Croom et al. 2009 ; Bovy et al. 2011) was used to improve this selection
process, which is a probabilistic target-selection technique that uses density estimation of quasars
in flux space. Moreover, additional information for the mid-infrared color band was added using
the data from WISE (Wide-field Infrared Survey Explorer) (Wright et al. 2010), to help the
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Figure 2.3 : Clustering of targets collected in BOSS and eBOSS, over a wide range of redshift.
Credits : https://www.sdss.org/surveys/eboss/.

Figure 2.4 : BAO measurement from SDSS, BOSS, and eBOSS using different tracers of galaxies
and quasars, over a wide range of redshift. Credit : Ashley J.Ross and SDSS.



2.1. SDSS 31

selection of QSOs (the complete QSOs selection strategy described in A. D. Myers, Palanque-
Delabrouille et al. 2015).

The determination of QSOs redshifts is essential for further two-point analysis, where the
redshift error will contribute as a non-negligible systematic effect for the detection of the BAO
peak (Youles et al. 2022). The eBOSS pipeline will do the classification and redshift estimation
by fitting each target spectrum with templates and Principal Component Analysis (PCA). Then
a least-squares minimization is performed by comparing each spectrum to all the templates, and
the final classification and redshift are made by determining the lowest 𝜒2 (A. S. Bolton, D. J.
Schlegel et al. 2012).

A Visual Inspection (VI) program was conducted to ensure the purity of the quasar sample
and the accuracy of the estimated redshift. For each spectrum to be visually inspected, a power
law fit of the continuum and all the emission lines is displayed and can be displaced by inspectors
to reach the maximum fitting. The MgII line is usually used for redshift estimation as it is not
strongly affected by systematic shifts of quasar outflows (Shen et al. 2016). The CIV line was
used if the MgII line was not available or hard to identify.
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2.2 Dark Energy Spectroscopic Instrument

Figure 2.5 : DESI’s forecast measurement of the Hubble diagram in function of redshift using
BAO (Aghamousa et al. 2016a). Credits : DESI key figures for external communication.

The eBOSS survey has made great success in verifying the ΛCMD model. As a continuation of
eBOSS, the Dark Energy Spectroscopic Instrument (DESI) (M. Levi et al. 2013), was proposed
in 2012 and the construction was started in 2015. It collected its first light in October 2019, while
the commissioning phase and survey validation program was postponed to late 2020 due to a 7-
month shutdown during the Covid-19 pandemic. Affected by this particular pandemic, the 5-year
observation commission was started in May 2021 and is entirely remote for supporting observing
scientists during 2021-2022 (in-person shifts are available since 2023). DESI was deployed with
the 4-meter Mayall telescope at Kitt Peak National Observatory in Arizona, USA. It will collect
the largest galaxy catalog to date with more than 40 million spectra of galaxies and quasars
(Aghamousa et al. 2016a) from the nearby universe to beyond redshift 𝑧 > 3.5, over 14,000
deg2 of the sky.

The DESI survey was designed as a stage-IV cosmology survey. Its scientific goal is to fur-
ther explore the nature of dark energy through the measurement of BAO with a more precise
determination of the matter distribution of the local Universe, and to probe modifications of ge-
neral relativity by measuring the growth of structure through Redshift Space Distortions (RSD).
The enormous amount of DESI data will not only constrain the ΛCDM model with unprece-
dented statistical precision, but will also be useful for the understanding of neutrino masses and
extension theories beyond ΛCDM. With DESI data, BAO will be used as a probe to measure
the isotropic cosmic distance scale to 0.28% precision in the redshift bin 0 < 𝑧 < 1.1 and to
0.39% precision in the redshift bin 1.1 < 𝑧 < 1.9. It will also measure the Hubble parameter
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at 1.9 < 𝑧 < 3.7 to 1.05%. More details about the scientific goals for each tracer are described
in Abareshi et al. 2022. A forecast of DESI’s measurement of the Hubble parameter using dif-
ferent tracers is presented in Figure 2.5. Ly𝛼 forest BAO is expected to give the constraints at
the highest redshift, which is the main goal of this thesis.

The main analysis of this thesis relies mainly on the DESI Ly𝛼 quasar data. Figure 1.9 in
Chapter 1 shows an example of an observed quasar spectrum in DESI. I contributed as an active
member to the analysis of DESI data quality, and its comparison with the eBOSS DR16 data.
Moreover, simulated mocks for both DESI/eBOSS surveys are also made to validate and test the
analysis pipeline. I will further describe these Ly𝛼 analyses in Chapter 5.

2.2.1 Survey design

In order to meet its scientific purpose, DESI is designed to cover 14,000 deg2 of the sky area and
observe more than 40 million galaxies and quasars in its five-year mission time. The footprint of
DESI survey is present in Figure 2.6, which is designed by the DESI Legacy Imaging Surveys (A.
Dey et al. 2019). It is constructed from a combination of a few surveys, including The Mayall
z -band Legacy Survey (MzLS 2), the Beijing-Arizona Sky Survey (BASS 3), the Dark Energy
Camera Legacy Survey (DECaLS 4) that provide optical imaging data in the g, r, and z bands,
and the Wide-field Infrared Survey Explorer (WISE 5) satellite that provides all-sky mid-infrared
imaging in the 3.4 �m and 4.6 �m WISE bands. It is composed of two regions, one in the North
Galactic Cap (NGC) covering 9900 deg2 and one in the South Galactic Cap (SGC) covering
4400 deg2. In addition to the above-mentioned surveys, the Dark Energy Survey (DES 6) is also
used as an external source to complete the SGC footprints. Figure 2.6 shows all the surveys that
contribute to the DESI Legacy Imaging Surveys.

2.2.2 Target selection

The observing targets of DESI are provided by the photometric datasets of DESI Legacy Imaging
Surveys. Then an integrated pipeline (A. D. Myers, Moustakas et al. 2022) is applied for the
DESI target selection (TS), to obtain the desired number of targets for each class of galaxies
or quasars. Those targets will be categorized into 5 classes (see Figure 2.7 for a visualization),
and the TS is detailed in C. Hahn et al. 2023 for the Bright galaxy sample (BGS), Zhou et al.
2023 for Luminous red galaxies (LRGs), Raichoor, Moustakas et al. 2023 for Emission line
galaxies (ELGs), and Chaussidon et al. 2023 for QSOs :

• BGSs, 10 million in the redshift range 0 < 𝑧 < 0.4.

• LRGs, 6 million in the redshift range 0.4 < 𝑧 < 1.0. The average density should be at least
300 deg−2, and the redshift completeness (see definition in Equation 2.1) should be larger
than 95% for each pointing averaged over all fibers that observe objects.

• ELGs, 17 million in the redshift range 0.6 < 𝑧 < 1.6. The average density should be at
least 1280 deg−2, and the redshift completeness should be larger than 90% for each pointing
averaged over all targets above the O II flux limit.

2https://www.legacysurvey.org/mzls/
3https://www.legacysurvey.org/bass/
4https://www.legacysurvey.org/decamls/
5https://www.nasa.gov/mission_pages/WISE/main/index.html
6https://www.darkenergysurvey.org/
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Figure 2.6 : Footprint of the DESI Legacy Imaging Surveys, and all the imaging surveys that
it is composed of. MzLS/BASS contributes to the northern part of NGC (9900 deg2). DECaLS
contributes to the southern part of NGC and all of the SGC (4400 deg2). DES is used as an
external source to complete the SGC footprints. Credits : DESI key figures for external commu-
nication.
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• Tracer Quasars (QSOs), 1.7 million tracer quasars in the redshift range 0.9 < 𝑧 < 2.1.
The average density should be at least 120 deg−2, and the redshift completeness should be
larger than 90% for each pointing averaged over all fibers that observe objects.

• Ly𝛼 Quasars (QSOs), 0.7 million Ly𝛼 quasars in the redshift range 2.1 < 𝑧. The average
density should be at least 50 deg−2 in this redshift range and 𝑟 < 23.5 mag.

Figure 2.7 : Different expected target catalogs of DESI’s five-year plan. Note that the expected
number of LRGs has updated to 6 million, and overall, DESI is observing more targets than
expected. Credits : DESI key figures for external communication.

The QSO selection procedure is mainly composed of two steps :

• The TS pipeline : selecting QSOs apart from stars based on photometric data of 𝑔, 𝑟, 𝑧
optical bands and infrared bands 𝑊 . Figure 2.8 shows this selection where red points are
classified as stars, and points from blue to yellow are classified as QSOs at different redshifts.
A Random Forests (RF) machine learning algorithm (Yèche et al. 2020 ; Chaussidon et
al. 2023) is used to ensure the efficiency of this selection.

• The classification pipeline : after the TS, a classification pipeline is applied to the QSO
candidates to construct a true QSO catalog. It is a combination of three algorithms used
to further classify QSOs and provide precise redshift estimations :

– The DESI pipeline classifier Redrock (RR (Bailey in preparation)), which is a template-
based fitting classifier. It applies a PCA decomposition for the target spectrum, and
determines the lowest 𝜒2 compared to all the template spectra. In the end, the best-
fitted target class (star, galaxy, or QSO) and an estimated redshift are provided. This
algorithm gives an accurate estimation of the redshift, while the completeness (see
definition in Equation 2.1) is not sufficient. Therefore, we use it at first to pre-select
the QSO targets to be retained in the final catalogs.

– A broad Mg II line finder (Mg II), which uses the Mg II broad line for the classification,
since some quasars will have broad Mg II line and thus be falsely missed by RR. It uses
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Figure 2.8 : QSO TS based on photometric data of 𝑔, 𝑟, 𝑧 optical bands and infrared bands
𝑊 . Red points are classified as stars, while points from blue to yellow are classified as QSOs at
different redshifts. Credits : Chaussidon et al. 2023.
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Figure 9. Flow chart to produce the quasar catalog.
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Figure 10. Efficiency and purity as a function of redshift and A magnitude,
using the VI catalog as control sample. The efficiency is the fraction of
the control sample that is selected in the catalog. The purity is the fraction
of the catalog objects that are confirmed QSOs. Starting with QSO targets
selected as described in Sec. 5, the three algorithms, RR, MgII and QN,
are successively applied. The violet curve corresponds to the main selection
described in Sec. 3 using the three algorithms (RR+MgII+QN).

A selection based on the detection of the QSO intrinsic variability
with the,�(� light curves represents a very interesting alternative
because it shows a better spatial uniformity. However, the conclusions
are similar to those of the Color Cut selection. The union with the
main selection would increase by 15% the target budget with a QSO
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Figure 11. Fraction of additional QSOs selected by relaxing the morpholog-
ical criterion as a function of the redshift and the A magnitude.

gain of 3%, mainly at low redshift (see second row of Figure 12).
Therefore, this selection was not retained.
We have also extended the RF selection to very faint objects 22.7 <

A < 23.5with an additional color allowing us to select high-z quasars.
This selection was extremely expensive in terms of target budgets
(+30% for A > 23.0) and the gain in terms of QSOs was extremely
small, as we can see on the third row of Figure 12, especially for
A > 23.0. In the main selection, we extended the magnitude limit cut
from the original A = 22.7 upper bound to A = 23.0. In contrast, it
was not worth selecting targets above A = 23.0.
Finally, this I & 5 QSO selection has identified ∼ 60 QSOs at

3.9 ≤ I ≤ 5.7 during SV observations. Since at I ∼ 5 the LyU
emission line is in the 8 band, the color selection that does not include 8
band photometry will help to construct a sample without dependence
on LyU line luminosity. This selection does identify weak-line and
strong broad-absorption-line QSOs missed by the previous I ∼ 5
selection based on A − 8/8 − I colors (McGreer et al. 2013; Wang
et al. 2016). However, this selection has high contamination rate due
to the lack of 8 band data. The success rate is about 2-3% and most

MNRAS 000, 1–16 (2022)

Figure 2.9 : Workflow of the QSO classification pipeline to create a QSO catalog.
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Label Ground False 0 Ground Truth 1
Prediction 0 True Negative (TN) False Negative (FN)
Prediction 1 False Positive (FP) True Positive (TP)

Tableau 2.1 : Confusion Matrix for quasar classification.

the RR output as an input and fits a Gaussian centered at the Mg II line determined
by RR. The Mg II line will be considered as a broad line if the 𝜒2 is improved by
16, then the target will be considered as a QSO. This method does not modify the
estimated redshift by RR but is used as an afterburner to discover the QSOs missed
by RR.

– A machine learning classifier QuasarNET (Balland et al. 2018 ; Farr, Font-Ribera
et Pontzen 2020) based on a convolutional neural network (CNN) (see Figure 2.10).
This algorithm searches for six emission lines : Ly 𝛼, C IV, C II, Mg II, H 𝛼, H 𝛽. A
target will be classified as a QSO if one of these six emission lines’ confidence level is
larger than 0.5 (see Figure 2.11).

A true QSO catalog collected by visual inspection (D. M. Alexander et al. 2023) is
used to validate the classification algorithms. A confusion matrix is built to summarize
the classification by comparing the predicted results with the true catalog, as shown in
Table 2.1. The overall classification efficiency is then defined by purity and completeness
as

Purity =
TP

TP + FP
,

Completeness =
TP

TP + FN
.

(2.1)

Here TP, FP, FN are defined in Table 2.1. A workflow of these three algorithms is designed
to maximize the classification purity and completeness, which is visualized in Figure 2.9.
With this strategy, a target is considered a QSO once classified by one of these algorithms
in the order RR→Mg II→QuasarNET. In the end, an overall 99.3% purity and 94.0%
efficiency are achieved (see Figure 2.12).

During my PhD, I contributed to the implementation of the QSO classification pipeline
into the DESI working environment and performed the first test of the QSO catalog. These
contributions are summarised in Chaussidon et al. 2023.
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Figure 2.10 : The CNN structure of QuasarNET, composed of 4 convolutional layers and a
connected layer. The input spectrum is down-sampled to 443 pixels, while the final classification
relies on a multi-task classification for 6 emission lines.

Figure 2.11 : A QSO classified by QuasarNET. The four emission lines with confidence level
larger than 0.5 are : Ly 𝛼, C IV, C II, Mg II.
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Figure 2.12 : Efficiency and purity of the DESI QSO classification, using the visual inspection
data, with a combination of three algorithms (RR, Mg II and QuasarNET). The performance is
presented as a function of redshift and 𝑟 magnitude. The main selection is performed following
the procedure shown in Figure 2.9.
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2.2.3 The instrument

Focal Plane Assembly with ---
5000 Fiber Positioners 

Top Ring, Vanes, 
and Cage 

Ten Thermally-Controlled, 
3-Channel Spectrographs
360-980 nm

Calibration Lamp 
System 

Six-lens, 8 sq. deg, 
Wide-Field Corrector 

on a Hexapod 

Ten, 50-m long 
Fiber Cables 

Fiber View 
----

Camera 

Figure 2.13 : Main structure of the DESI 4-meter Mayall telescope at Kitt Peak in Arizona,
USA (Abareshi et al. 2022).

DESI uses a multi-object system (Aghamousa et al. 2016b ; Abareshi et al. 2022) composed
of a corrector, a focal plane with 5000 fiber robots, ten 3-arm spectrographs in the Coudé room
(a special room used for instrument setups and hosting the thermal enclosure, to ensure the
necessary thermal and humidity stability) and ten fiber cables that connect the focal plane
with the spectrographs. The high stability and performance of these instruments guarantee the
efficiency and precision of the survey. Figure 2.13 shows the main structure of the instrument.

The corrector

The corrector (Sholl et al. 2012 ; T. Miller et al. 2022, in prep ; T. N. Miller et al. 2018)
system is designed to maintain the optical alignment for all the lenses (to make sure that the
combination of lenses works correctly to collect light). It has six lenses each one with 1-meter in
diameter, that in total provide the telescope focal ratio around 𝑓 /2.8− 𝑓 /3.9 (a unitless number
defined by dividing the focal length of the telescope by the aperture), and a 3.2◦ field of view. Four
of the lenses are fused silica and two of them have one aspheric surface, as shown in Figure 2.14.
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Figure 2.14 : The corrector for DESI (Abareshi et al. 2022), that is composed of six lenses,
four of which are fused silica (C1, C2, C3, C4), and two of them have one aspheric surface (ADC1,
ADC2).

The two aspheric lenses compose the atmospheric dispersion compensator (ADC), which is used
to correct the spectral spread of light when passing by the atmosphere. This ADC system then
needs to be adjusted according to the actual atmosphere situation.

Focal plane

Figure 2.15 : The two-step positioning move : the first blind move (left) and a second corrected
move (right) with the help of the FVC imaging. Histograms of all the positioner accuracies for
both cases are also shown at the bottom. One can tell from the plots that the RMS (root mean
square) of positioner accuracies drops from ∼ 50 �m (blind move) to < 5 �m (final move).

The DESI focal plane is composed of 5000 fiber robots, segmented into 10 petals. Each petal
is connected with a single spectrograph, two additional fibers that connect to the sky monitor
system, and a Guide/Focus/Alignment (GFA) detector system (six of them are used for the
guidance of reference stars, and four of them are used to maintain the optical alignment between
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the prime focus corrector and the primary mirror (Silber et al. 2022)). Figure 2.16 shows an
overview of the fibers and their positioners. A fiber view camera (FVC) placed in an opening at
the center of the mirror is used to obtain an accurate positioning of the fibers. The positioning
consists of two steps : a first blind move and a second move corrected with the FVC imaging.
This operation increases the accuracy of the positioners at their desired locations from around
50�m rms to less than 10�m rms (see Figure 2.15), which is reasonably small compared to the
107�m diameter of the fibers. As a result of this two-step positioning procedure, the loss of
collected light from each fiber is much reduced.

Spectrographs

Each petal in the focal plane is connected with one 3-arm spectrograph (Poppett et al. 2022,
in prep ; Jelinsky et al. 2022, in prep) in the Coudé room, covering different optical wavelength
ranges for blue (3600− 5930Å), red (5600− 7720Å), and NIR (7470− 9800Å). Each spectrograph
channel utilizes a cryostat that hosts a 4096 × 4096 CCD, with 15 �m pixels, four readout
channels, and a readout rate of 100 kHz. This yields a resolution �/Δ� of 2000-3000 for the blue
spectrograph, 3500-4500 for the red, and 4000-5500 for the near-infrared, respectively.

Figure 2.16 : The left plot shows an overview of the focal plane and the right plot shows the
positioners (Abareshi et al. 2022).

2.2.4 Observing with DESI

During my PhD, I contributed as a Support Observing Scientist (SO) remotely for more than
one month. In this section, I will describe the observation with DESI with the help of a complex
monitoring system, that is composed of the DESI Instrument Control system (ICS), Data System,
and a collaborated observation schedule. All of these systems are highly automated and all the
associated parameters are adjusted according to observing conditions. For example, the exposure
time and the region (tile) to observe are optimized depending on the observing conditions, which
makes the observation highly efficient.
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System description

The Sky Monitor System connected with the focal plane petals through fibers, is composed of a
photometry camera near the Coudé room. These fibers are attached to specific positioners that
are pointed at the blank sky in order to measure the brightness of the sky through an exposure.
The expected Signal to Noise can be calculated together with the point-spread function (PSF) of
guide stars, measured by the GFA. Comparing the expected exposure with the effective exposure
time measured from the spectrograph, we are able to validate the status of the telescope, and
adjust in time in case of any problem, such as weather issues or instrumental errors.

The DESI ICS contains all the monitoring infrastructures for instrument operations, data
acquisition, and system maintenance, including the DESI Online System (DOS), and the Ob-
servation Control System (OCS). The DOS is a software built on Pyro2 (Harpole, Zingale,
Hawke et Chegini 2019), that contains all the user interfaces for controlling the dashboard,
telemetry, and image previews. The OCS is used to control the acquisition, flow, and storage of
data.

The duty of the DESI Data System is to monitor consistently the pipeline of target selection,
transfer, archiving, and distribution of data. The targets are selected according to the DESI
Legacy Imaging surveys, and the correct targets are assigned to fibers with the help of the
Next Field/Tile Selection (NFS/NTS). Calibrations, spectra extraction and sky subtraction are
executed one after another after the completion of target selection.

Weather monitoring

Every night before observation, it is essential to check the weather forecast and monitor its status
during the night. The required attributes are as follows :

• Humidity. Observers should track the trend of humidity and make sure that it is still within
safe margins (< 90%).

• Wind. Observers should track the trend, direction of the wind, and make sure that it is
still within safe margins (< 45 mph).

• Cloud cover. Observers should check the status of the cloud cover, and if there are any
holes for observing.

• Upcoming weather/Clouds.

A survey simulation was performed using 10-years of Mayall weather history in order to ensure
the weather conditions. The real-time and forecast of the weather can be found on KPNO weather
page 7. Figure 2.17 gives an example of a screenshot from this weather monitoring website.

Observation scheduling

Daily observation plans are scheduled for every night and are announced at the Afternoon mee-
ting (a regular meeting organized at 17h pm everyday to make daily observing plans). There will
be one Observing Associate (OA), one Lead Observer (LO), and two Support Observing Scien-
tists (SO) responsible for different tasks. The OA is present at the telescope, responsible for its
operation, safety, and performance. The task for SO is mainly for monitoring the data pipeline
by assessing the data quality and instrument performance using a software named NightWatch
8.

7http://www-kpno.kpno.noirlab.edu/Info/Mtn_Weather/
8https://desi.lbl.gov/trac/wiki/DESIOperations/NightWatch



2.2. Dark Energy Spectroscopic Instrument 45

Figure 2.17 : Weather monitoring tool on KPNO weather page, that is useful to determine the
current/forecast wind and humidity at the telescope.

Before starting observation, the LO needs to set up the system with the following major
steps :

• Setup focal plane. We need to distribute all positioners in a starting position and identify
the positioners that were frozen due to any issues.

• Denoise GFAs. We need to subtract the additional noise caused by GFAs.

• Home the ADCs (see definition in Section 2.2.3). The ADCs need to be set at their original
position, and are adjusted according to the amount of atmosphere that light passes through
(airmass).

• Focus. DESI uses an auto-focus pipeline to determine the best setting to focus the instru-
ment, which is applied at the start of each exposure. It is realized by looking at images
from the focused GFAs (take an exposure for 60 seconds) and the donut analysis (stars
appear as donuts in the images. To achieve a good focus, we need to see holes in the middle
of each donut. See Figure 2.18 as an example) in order to set up the best focus settings.

After the system setup, the SO will complete spectrograph calibrations with the following ope-
rations :

• Make sure that the system is ready and the ICS instance has been restarted, then run
Zeros (CCD intrinsic readout noise measurement) and Darks (CCD electronic noise during
observations, this is measured with the shack and the dome being dark) to test if any issues
arise in these two cases. These two noise will be subtracted in the data processing pipeline.
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Figure 2.18 : An example image from the focus GFAs. Stars appear as donuts in the plot. To
achieve a good focus, we need to see holes in the middle of each donut.
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• After the electronic maintenance (EM, engineering group) or the OA moves the telescope
to the desired position. Confirm that the Zeros are complete, the dome is dark, the mirror
covers are opened, and the mirror cooling is on.

• Run calibration tests (with the dome being dark, mirror covers opened, and the telescope
pointing at the white spot initial position) and check the images at NightWatch.

Observation will usually start at 12◦ twilight and end at 12◦ dawn, where the sun is 12◦ below
the horizon. It is controlled and monitored by the ICS, and can be visualized by a set of software
in the DOS (see Figure 2.19). Figure 2.19 shows an example of the all-sky camera taken from
one of my observation shifts, and it can be used to visualize the cloud status by eye.

Figure 2.19 : The left plot shows all the software in DOS used to control the instrument. The
right plot gives an example of the all-sky camera image, taken from one of my observation shifts.
There were a few clouds, and some light pollution at the edge of the camera. The overall weather
condition and the survey speed were good.

The LO and SO will use the DOS to operate the observations. Figure 2.20 shows the screenshot
of the Observer Console GUI that contains most of the operations in the DOS, including the
ICS status, the System control, the Exposure control, the Request queue, the details of the
current exposure, the request history, the DOS message, the setup, the positioning, the observing
conditions, etc.

Data collection

DESI collected its first testing data in October 2019, and completed the Survey Validation data
collection (SV also named Fuji, Lan et al. 2022 ; D. M. Alexander et al. 2023) in December
2020 - June 2021. This dataset is also called the ‘One-Percent Survey’ since it covers 140 deg2 of
the sky (∼ 1% of the DESI footprint) with typical exposures of the main survey. The SV data is
used to characterize the performance of DESI operation, improve the data quality, and validate
the scientific requirements described in Aghamousa et al. 2016a.

After SV, the first two months of main survey data collected from mid-May to mid-July 2021
is named Guadalupe. The whole data release combining Fuji, Guadalupe, and one year of main
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Figure 2.20 : Observer Console GUI that contains most of the operations in the DOS.
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survey data is named Himalayas/Iron. The DESI collaboration released Guadalupe + Fuji as the
Early Data Release (EDR, (Adame et al. 2023 ; Ramırez-Pérez, Pérez-Ràfols et al. 2023))
in early 2023, and plans Iron as Year 1 Data Release (DRY1) about one year later.

Observation status

The main survey started officially on May 2021, and was shut down for several months from
June 2022 to September 2022 because of the forest fire near Kitt Peak 9. The forest fire has left
unforeseen implications on the instrument and the services around it. The usage of utility power
and internet were restored after 3 months of the fire, and it has caused the warming-up of all
30 cryostats, and irreversible damage to 2 CCDs. However, thanks to the excellent performance
of the DESI instrument and pipeline, DESI is functioning with an underestimated survey speed
and is still 3 months ahead of schedule for the dark-time survey (observing the main targets of
DESI at dark time, mainly for LRGs, ELGs, QSOs). Figure 2.21 shows the status of the survey,
with up to November 2022, 35.3% completion of the dark-time survey and 49.7% completion of
the bright-time survey (observing BGS and the Milky Way Survey at bright time). The whole
survey is expected to be completed in April 2024 for the bright-time program and in May 2025
for the dark-time program.

Figure 2.21 : The left plot gives the status of the DESI observation schedule, credits : Michael
Levi, DESI collaboration meeting Dec 2022. The right plot shows a side view of the forest fire
near the telescope in June 2022, credits : Michael Levi, DESI collaboration meeting June 2022.

2.2.5 DESI spectroscopic pipeline
The raw CCD images collected using the 10 spectrographs of DESI are processed into flux-
calibrated spectra with a spectroscopic pipeline (Guy et al. 2023). The post-processed spectra
cover a wavelength range from near-UV (3600 Å) to near-infrared (9800 Å) with a pixel width
of 0.8 Å. This pipeline is composed of the following main steps :

• CCD calibration, corrections on raw CCD images using calibration images.

• Spectroscopic extraction, a monitoring software nightwatch is used to assess spectra quality
during the observation, and an algorithm based on "spectroperfectionism" methodology
(A. S. Bolton et D. J. Schlegel 2010) is applied for spectra extraction.

9https://noirlab.edu/public/news/noirlab2213/
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• Spectral calibration, which is performed using the spectra of calibration stars.

• Co-adding exposures, which co-adds the multiple spectra observed for the same targets.

• Noise evaluation, different sources coming from the CCD are estimated, e.g., Poisson noise,
readout noise (measured during the Zeros and Darks), etc.

The sky subtraction and spectra calibration steps mentioned in this section will be modeled for
the Ly𝛼 analysis, that will be described in Section 3.2.3.

2.2.6 DESI-Ib and DESI-II
Since the DESI instrument has shown excellent performance in its first-year observation, the
DESI collaboration is planning to launch a continuous project as an extension to the current
survey (detailed in Michael Levi, DESI collaboration meeting Dec 2022). Based on different
updates on the instrument and scientific goals, it is designed into two potential proposals, that
are still under discussion by the direction board.

DESI-Ib is designed to be a continued commission with three or more years with the existing
instrument. The potential surveys can be added directly to the current survey. With an increased
completeness and survey area (3000− 4000deg2), the planned dark-time survey can improve sys-
tematic errors in the LRG and ELG samples, and the bright-time survey can improve systematic
errors for BGS samples.

DESI-II would upgrade the instrument with twice the number of fibers, which needs a more
complicated collaboration plan in 8 years in the future. It will be able to explore more science
topics, e.g. collecting samples of Lyman Alpha Emitters (LAEs, star-forming galaxies with si-
gnificant emission peaks that can be easily found by narrow-band detection) and Lyman Break
Galaxies (LBGs, high-redshift galaxies with Ly𝛼 regions fully absorbed) to have a better unders-
tanding of the high redshift Universe, improving dark matter science by mapping the Milky way
and a clearer prescription of the local Universe.
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2.3 Summary and prospects

In this chapter, I presented an overview of both the scientific and operational designs of the
SDSS/eBOSS and DESI survey. These two surveys provide an enormous amount of data for
cosmology studies, facilitating particularly the measurement of the BAO peak position with
percent-level precision.

This thesis makes use of Ly𝛼 forests collected in eBOSS and DESI to measure the BAO.
In the next chapter, I will describe in detail the Ly𝛼 analysis pipeline from data collection to
cosmological interpretation, and the associated model for fitting. This pipeline is then tested and
validated using a set of simplified simulations, the so-called mocks, that will be introduced in
Chapter 4. I will further present the analysis results on mocks and real data in Chapter 5, and
discuss one of the most important systematic effects of this analysis, the HCDs, in Chapter 6.
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Chapitre 3

The Ly𝛼 forest correlation function

In this chapter, I describe the pipeline to measure the two-point correlation function of Ly𝛼 fo-
rests, and their cross-correlation function with quasars. This pipeline was applied for the eBOSS
DR16 analysis, and is updated for DESI data with minor developments. As introduced in Sec-
tion 1.2.4, Ly𝛼 forests are seen as a series of absorption lines in quasar spectra. In order to
measure their fluctuations, the first important step is to estimate the unabsorbed quasar conti-
nuum. This is achieved based on quasar spectra templates and fitting algorithms. The fitting
procedure (Continuum Fitting) takes into account the instrumental effects, the redshift de-
pendency of Ly𝛼 forests, and quasar diversity. Moreover, a distortion effect is introduced by
Continuum Fitting, thus a distortion matrix (see Section 3.1.1) is applied to each Ly𝛼 delta
field (fluctuations of Ly𝛼 flux absorption in contrast to the unabsorbed quasar continuum) to
correct this systematic effect. We measure the correlations of each Ly𝛼 delta field pair (or forest-
quasar pair) in the angular redshift space (positions parametrized by the angular position � and
redshift 𝑧) and make a coordinate transformation to directions along and across the line-of-sight.
The correlation functions can then be expressed in a two-dimensional map of {𝑟| |, 𝑟⊥}.

To model the Ly𝛼 correlation function, an analytical model is developed for its Fourier trans-
form, i.e., the Ly𝛼 power spectrum (see Section 3.2.1). We divide the correlation function into
two parts : a smooth part that does not contain the BAO peak, and a ’peak-only’ part. We
model the correlations from all the other sub-dominant contaminants as additional correlations
to the total Ly𝛼 correlation function, e.g., metals, HCDs (see Section 1.2.4), sky subtraction,
and quasar radiation (see Equation 3.22 and Equation 3.23).

Since the cosmological simulations of Ly𝛼 forests are computationally expensive to provide an
accurate covariance matrix, we use an estimated sub-sample covariance matrix (see Section 3.1.1)
for the fitting of Ly𝛼 correlation functions. The fitting results will be further discussed in Chap-
ter 5.

During my thesis, I studied several systematic effects of the Ly𝛼 analysis. I tested the pa-
rameter convergence of the Continuum Fitting procedure using mocks and real data (see Sec-
tion 3.1.1), and proposed a new method to ensure convergence (see Section 3.1.1). Moreover,
I analyzed the binning effect and the modeling of HCDs on the Ly𝛼 correlation function. In
this respect, I will describe a new model, the Voigt model, in Chapter 6, which is the main
contribution of this thesis to the DESI collaboration.
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3.1 Measuring the Ly𝛼 correlation function

In this section, I describe the steps of measuring the Ly𝛼 correlation functions from mocks or real
data, for the auto-correlation function in Section 3.1.1, and for the cross-correlation function in
Section 3.1.2. During my thesis, I contributed to the fitting pipeline to estimate the unabsorbed
quasar spectra continuum and analyzed the parameter convergence issue (see the following section
on continuum convergence).

3.1.1 The Ly𝛼 auto-correlation function

The Ly𝛼 auto-correlation function is measured following the analysis pipeline detailed in Des
Bourboux, Rich et al. 2020. Given a catalog of quasar spectra, we first measure the flux-
transmission field 𝛿𝑞(�) (the so-called delta field) as :

𝛿𝑞(�) =
𝑓𝑞(�)

𝐶𝑞(�)�̄�(�)
− 1. (3.1)

Here 𝑓𝑞(�) is the observed flux in each quasar line-of-sight 𝑞 at wavelength �, 𝐶𝑞(�) is the
quasar continuum without absorptions, estimated using a continuum fitting pipeline (see the
next subsection). It is thus different for each quasar spectrum. �̄�(�) is the mean transmissions
averaged over all quasars and is therefore the same for all of them.

Continuum fitting

The spectrum of photons emitted from a quasar will be redshifted according to the quasar red-
shift. A quasar spectrum without any absorption features is called a quasar continuum, and needs
to be fitted in order to study only foreground Ly𝛼 absorption. For Ly𝛼 mocks, the unabsorbed
quasar continuum 𝐶𝑞(�) can be obtained in two ways : either from transmission fields in the
raw mocks directly, the so-called True Continuum method, or from a normalization fitting using
synthetic quasar spectra generated from the routine quickquasars (described in Section 4.2),
the so-called Continuum Fitting method. For real data, only Continuum Fitting could be used
since the true transmissions are unknown.

This normalization continuum fitting was developed in Delubac, Rich et al. 2013, where
the quasar continuum is expressed as a first-order polynomial expansion :

𝐶𝑞(�)�̄�(�) = �̄�(�rf)(𝑎𝑞 + 𝑏𝑞 𝑙𝑜𝑔(�)). (3.2)

Here �̄�(�rf) is the mean of all quasar continua as a function of the rest-frame wavelength �rf.
In practice, the product of quasar continuum and the mean of transmission 𝐶𝑞(�)�̄�(�) is fitted,
instead of the continuum itself. 𝑎𝑞 and 𝑏𝑞 are two parameters accounting for quasar diversity,
that are fitted separately for the Ly𝛼 (�RF ∈ [1040, 1200] Å, �RF is the restframe wavelength)
and Ly𝛽 wavelength ranges (�RF ∈ [920, 1020] Å), for each quasar spectrum, by maximizing the
likelihood function :

ln 𝐿 = −1

2

(∑
𝑖

( 𝑓𝑞(�𝑖) − �̄�(�𝑖)𝐶𝑞(�𝑖 , 𝑎𝑞 , 𝑏𝑞))2

𝜎2
𝑞 (�𝑖)

+ ln(𝜎2
𝑞 (�𝑖))

)
. (3.3)

This likelihood is fitted for each quasar spectrum, and after several runs (by default 20 iterations)
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to get convergence. It takes into account the flux variances for each spectrum pixel, computed as

𝜎2
𝑞 (�) = �(�)𝜎2

pip,𝑞(�) + 𝜎2
LSS(�)(�̄�(�)𝐶𝑞(�))2 + 𝜖(�)

(�̄�𝐶𝑞(�))2

𝜎pip,𝑞(�)
. (3.4)

The three components of 𝜎2
𝑞 (�) are :

• The instrumental noise 𝜎pip,𝑞(�) from the flux uncertainty, which is at first estimated by
the analysis pipeline, then corrected by a free parameter �(�) after iterations as described
below.

• The redshift-dependent variance of the Ly𝛼 absorption fields, 𝜎LSS. It is associated with the
density of absorbers at a certain redshift, thus is called the large-scale structure variance.

• The quasar diversity variances 𝜖(�), which increases at high SNR. Therefore, this com-
ponent is re-scaled by 1

𝜎pip,𝑞 (�) , which is proportional to the SNR.

Continuum convergence

The nuisance parameters �̄�, �, 𝜎LSS, and 𝜖 are evaluated using the likelihood mentioned in
Equation 3.3 with several iterations, which is time-consuming. In order to ensure convergence in
a limited number of iterations, I performed an analysis of these parameters for a total number
of iterations 𝑛 = 20. The test results on eBOSS DR16 mocks (described in Section 4.1.1) are
shown in Figure 3.1. I plot the differences between these parameters (�̄�, �, 𝜎LSS) of each iteration
compared to those of the last (20th) iteration, which is assumed to be the best converged. All
iterations are separated by the red dashed lines. Inside a given iteration, all of these parameters
are plotted as a function of the wavelength � (� ∈ [3600, 5500]Å). It can be seen that � and
𝜎LSS converge after 5 iterations. On the other hand, the mean continuum �̄� still iterates after
10 iterations. One can tell from Figure 3.1 and Figure 3.2 that the convergence of parameters is
slower on data than on mocks. This is because the diversities of quasar spectra in data are more
complicated than in mocks, making the continuum fitting harder to convergent.

To improve the convergence speed, I suggested a modified iteration approach :

Φ′
𝑛+1 = Φ𝑛 + 𝑘(Φ𝑛+1 −Φ𝑛), (3.5)

where Φ ∈ {�, 𝜎LSS , 𝜖, �̄�} is one of the parameters, Φ𝑛 is the fitted parameter at the 𝑛th iteration,
Φ′
𝑛+1 is the value estimated at the 𝑛 + 1th iteration with the new method, while Φ𝑛+1 is the

value estimated using the original method. 𝑘 is an ad hoc parameter to adjust the convergence
process : 𝑘 = 1 recovers the default original method. I tested 𝑘 = 0.5 (new method, blue lines) on
the analysis for the eBOSS DR16 data, and found a significant improvement compared to 𝑘 = 1
(original method, black lines), as shown in Figure 3.2 : �̄� converges quickly after 5 iterations with
the new method. A further investigation of this 𝑘 parameter can be explored in future analyses.

The distortion matrix

For each quasar spectrum, the Continuum Fitting process introduced in Equation 3.2 estimates
the quasar continuum using the observed flux 𝑓𝑞(�) of all the pixels in the wavelength range of
interest. This fitting method introduces an additional correlation for the continuum at each
wavelength �𝑖 , from the observed flux at all other wavelengths � 𝑗 , and in the end results in
a distortion effect of the Ly𝛼 correlation function, as shown in J. E. Bautista et al. 2017.
This additional correlation on each measured flux-transmission field �̂�𝑞(�𝑖) (the hat denotes the
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Figure 3.1 : The convergence of the parameters {�, 𝜎LSS , �̄�} for a Saclay mock (see Section 4.1.1)
in 20 iterations. The differences between these parameters of each iteration are shown compared
to those of the last (20th) iteration, which is assumed to be the best converged. All iterations are
separated by the red dashed lines. Inside a given iteration, all of these parameters are plotted as
a function of the wavelength � (� ∈ [3600, 5500]Å). For example, the black curve between the
first and the second red dashed lines in the bottom plot shows �̄�0(�)

�̄�19(�)
− 1 with � ∈ [3600, 5500]Å,

which indicates the difference between the first and the last iteration of �̄�.
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Figure 3.2 : The convergence of the parameters �̄� for eBOSS DR16 data in 20 iterations.
The differences of this parameter for each iteration are shown compared to the one of the last
(20th) iteration, which is assumed to be the best converged. All iterations are separated by the red
dashed lines. In each iteration, �̄� is plotted as a function of the wavelength � (� ∈ [3600, 5500]Å).
A comparison of the new convergence method (blue line) is compared to the original model (black
line), as described in Equation 3.5.
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measurement) can be seen as a linear combination of all the other true transmission fields 𝛿𝑞(� 𝑗)
along the same line-of-sight. Therefore, we can model this effect analytically by considering a
projection function :

�̂�𝑞(�𝑖) = 𝒢(𝛿𝑞(�min), ..., 𝛿𝑞(� 𝑗), ..., 𝛿𝑞(�max)). (3.6)

Here the transforming function 𝒢 can be modeled by applying a distortion matrix �𝑖 𝑗 to each 𝛿𝑞
by Des Bourboux, Rich et al. 2020 :

𝛿𝑞(�𝑖) → �̂�𝑞(�𝑖) =
∑

𝑗 of all pixels

�
𝑞

𝑖𝑗
𝛿𝑞(� 𝑗), (3.7)

with

�
𝑞

𝑖𝑗
= 𝛿𝐾𝑖𝑗 −

𝑤 𝑗∑
𝑘

𝑤𝑘
−
𝑤 𝑗(Λ𝑖 − Λ̄𝑞)(Λ𝑗 − Λ̄𝑞)∑

𝑘

𝑤𝑘
. (3.8)

Here 𝛿𝐾
𝑖𝑗

is the Kronecker delta, 𝑘 sums over all the pixels, Λ𝑖 = log�𝑖 in log scale, Λ̄𝑞 is the
mean of Λ𝑞 = log� for the 𝑞𝑡ℎ quasar spectrum. The weights 𝑤𝑖 are estimated by :

𝑤𝑖 = 𝜎−2
𝑞 (�𝑖)(

1 + 𝑧𝑖
1 + 2.25

)𝛾Ly𝛼−1 , (3.9)

taking into account the redshift evolution of the Ly𝛼 bias (𝛾Ly𝛼 = 2.9 (McDonald, Seljak,
Burles et al. 2006)) at an effective redshift 𝑧eff = 2.25 (based on SDSS data (York et al.
2000)). The effective redshift is a value near the mean redshift of a quasar sample, determined
by minimizing the errors of fitted parameters, see details in Appendix of de Sainte Agathe
et al. 2019a. Here 𝜎−2

𝑞 (�) refers to the pixel variance due to instrumental noise and large-scale
structure (LSS) (Des Bourboux, Rich et al. 2020). These pixel variances are also discussed for
mocks in Section 4.3.1.

The Ly𝛼 auto-correlation

In this section, I describe the method to measure the two-point correlation function using Ly𝛼
forests. Given the measured Ly𝛼 fluctuation delta field �̂�(®𝑥) in real space at the position ®𝑥 (after
applying the distortion matrix), the Ly𝛼 two-point auto-correlation function of these delta fields
at a fixed separation ®𝑟 is given by

�(®𝑟) = ⟨�̂�1(®𝑥)�̂�2(®𝑥 + ®𝑟)⟩, (3.10)

where ⟨⟩ denotes an average over ®𝑥. The right plot of Figure 3.3 shows a representation of these
two delta fields at ®𝑥 and ®𝑥 + ®𝑟. Practically, all of these Ly𝛼 delta fields are distributed in the
angular redshift space, by their angular position � and redshift 𝑧. Therefore, for two delta fields
positioned at (�, 𝑧) and (� + Δ�, 𝑧 + Δ𝑧) with a separation (Δ�,Δ𝑧), we perform a coordinate
transformation from (�, 𝑧) to (𝑟| | , 𝑟⊥) :

𝑟| | = [𝐷𝑐(𝑧) − 𝐷𝑐(𝑧 + Δ𝑧)] cos(Δ�
2

),

𝑟⊥ = [𝐷M(𝑧) + 𝐷M(𝑧 + Δ𝑧)] sin(Δ�
2

),
(3.11)

where (𝑟| | , 𝑟⊥) refer to the directions along and across the mid-point line-of-sight, which is deter-
mined by � =

𝑟| |
|®𝑟 | . This coordinate transformation is visualized in the left plot of Figure 3.3. Here
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Figure 3.3 : The observation of two different Ly𝛼 tracers from the same observer (left plot).
The direction between the two observed quasars is defined by � =

𝑟| |
|®𝑟 | . The right plot shows Ly𝛼

forests from two different lines-of-sight. The two-point correlation function takes all the delta
pairs of these delta fields at a certain pixel separation.

𝐷𝑐(𝑧) =
∫ 𝑧

0
𝑑𝑧
𝐻(𝑧) is the comoving distance, and 𝐷𝑀(𝑧) is the comoving angular diameter distance.

To estimate the 3D Ly𝛼 auto-correlation function, we then use an estimator to sum up all
the pairs of these delta fields :

�̂𝐴 =

∑
(𝑖 , 𝑗)∈𝐴

𝑤𝑖𝑤 𝑗 �̂�𝑖 �̂� 𝑗∑
(𝑖 , 𝑗)∈𝐴

𝑤𝑖𝑤 𝑗
. (3.12)

Here A defines the bins in (𝑟| | , 𝑟⊥) space for the correlation function. �̂�𝑖 and �̂� 𝑗 are two dif-
ferent tracers, 𝑖 and 𝑗 refer to wavelength indices, and 𝑤𝑖 refers to Ly𝛼 weights as defined in
Equation 3.9.

We compute the correlations for all pixel pairs within [0, 200]ℎ−1Mpc and for separations of
4ℎ−1Mpc in both directions, which means that binsize is 4ℎ−1Mpc for both 𝑟| | , 𝑟⊥ and 𝑟⊥. The
measured correlation function has 𝑁bin = 50 × 50 = 2500 bins. For eBOSS DR16 mocks with
∼ 200, 000 quasars, this amounts to ∼ 8.2 × 1012 pairs of correlations.

The covariance matrix

For all separation bins in (𝑟| | , 𝑟⊥) space, the covariance matrix element between two different bins
𝐴 and 𝐵 is defined as

𝐶AB = ⟨�̂A�̂B⟩ − ⟨�̂A⟩⟨�̂B⟩, (3.13)

where �̂A and �̂B are values of the correlation function in two bins. The whole covariance matrix
thus contains 𝑁2

bin = 25002 elements. The correlation matrix is then defined by normalizing the
covariance matrix by its diagonal terms :

𝐶𝑜𝑟𝑟AB =
𝐶AB√
𝐶AA𝐶BB

. (3.14)



62 CHAPITRE 3. The Ly𝛼 forest correlation function

In practice, we use the sub-sampling estimation (Delubac, J. E. Bautista et al. 2015) of the
covariance matrix by dividing the entire survey into ∼ 880 sub-samples, with 𝑛side = 16 (number
of HEALPIX pixels per side). In this way, each sub-sample covers 3.72 = 13.4 deg2 of the sky.

We then estimate the covariance matrix in Equation 3.13 as a weighted average of all these
sub-samples (details can be found in Des Bourboux, Rich et al. 2020) :

𝐶AB =
1

𝑊A𝑊B

∑
𝑠

𝑊 𝑠
A𝑊

𝑠
B[�̂𝑠A�̂𝑠B − �̂A�̂B], (3.15)

where 𝑊A is a summed weight over sub-samples 𝑠, 𝑊A =
∑
𝑠
𝑊 𝑠

A, and 𝑊 𝑠
A is the sum of the

weights of pairs in sky pixels 𝑠 contributed to bin Az. We use a total number of 880 sub-samples
to estimate the covariance matrix, which proved to give a good relative statistical precision of
∼ 0.02 (Delubac, J. E. Bautista et al. 2015) for each element of the correlation matrix (and
percent level constraint on BAO). This sub-sample method gives an estimation compared to
the true covariance matrix, and the number of sub-samples is chosen to match at the same
magnitude the number of plates on which the quasars are observed. Moreover, the correlations
between different sub-samples are neglected.

The diagonal terms of the covariance matrix are the variances of the correlation function
𝐶AA = VarA, and are inversely proportional to the number of pair counts (Des Bourboux,
Rich et al. 2020) :

VarA ≈ ⟨�̂�2⟩2

𝑓 𝑁
pair
A

. (3.16)

Here 𝑁pair
A indicates the number of correlation pairs, ⟨�̂�2⟩2 gives the variance of the transmission

fields, and 𝑓 is a factor showing the effective decrease of the number of pairs due to the correlations
between neighboring pixels. This variance is further discussed in Section 5.2 for the data quality
comparison of eBOSS DR16 and DESI data. The off-diagonal terms of the covariance matrix,
however, are much noisier and have a dependence on the separation (Δ𝑟| | ,Δ𝑟⊥). We smooth these
terms by applying the following approach to the correlation matrix :

Corr𝑠AB =

∑
A′ ,B′ CorrA′ ,B′

𝑁AB
, (3.17)

where A′, B′ refer to all the correlation bins that satisfy Δ𝑟| | = 𝑟A
′

| | − 𝑟B′

| | and Δ𝑟⊥ = 𝑟A
′

⊥ − 𝑟B′
⊥ ,

and 𝑁AB is the number of correlation pairs for this normalization.

3.1.2 The Ly𝛼-quasar cross-correlation function

The estimator of the Ly𝛼-quasar cross-correlation function is defined similarly as Equation 3.12 :

�𝐴 =

∑
(𝑖 , 𝑗)∈𝐴

𝑤𝑖𝑤 𝑗 �̂�𝑖∑
(𝑖 , 𝑗)∈𝐴

𝑤𝑖𝑤 𝑗
, (3.18)

where quasars are considered as point-like objects with �̂� 𝑗 = 1. 𝑤𝑖 are the Ly𝛼 weights defined
in Equation 3.9. However, quasars evolved with different redshift dependence compared to Ly𝛼
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forests. We therefore use different weights for quasars :

𝑤 𝑗 = (
1 + 𝑧 𝑗
1 + 2.25

)𝛾QSO−1 , (3.19)

with 𝛾QSO = 1.44 ± 0.08 (Des Bourboux, Rich et al. 2020) at an effective redshift 𝑧eff = 2.25.
The cross-correlation function takes all the pair counts for the same range of 𝑟⊥ as before,
𝑟⊥ ∈ [0, 200]ℎ−1Mpc with bin width of 4ℎ−1Mpc. However, since we can take into account
quasars in front of the forests with 𝑧QSO < 𝑧Ly𝛼, we are capable to look at a wider range for
𝑟| |, namely 𝑟| | ∈ [−200, 200]ℎ−1Mpc (𝑟| | is negative when Δ𝑧 > 0, Δ𝑧 is defined in Equation 3.11
as the redshift difference : 𝑧QSO − 𝑧Ly𝛼). In this case, the total number of correlation bins 𝑁bin
changes from 2, 500 to 5, 000.
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3.2 Modeling of the Ly𝛼 correlation function

The modeling of the Ly𝛼 correlation function is developed in a way such that the position
of the BAO peak is independent of the smooth part of the correlation function (which does
not contain the BAO peak). The position of the BAO peak is detected in the angular-redshift
space, as a function of the angular and redshift separations (Δ�,Δ𝑧), and after a coordinate
transformation (see Equation 3.10), as a function of (𝑟| | , 𝑟⊥). This can be further derived as a
function of the Alcock-Paczynski parameters 𝛼 | | and 𝛼⊥ (Alcock et Paczyński 1979), which
give the normalized proportionalities of 𝐷H and 𝐷M to 𝑟𝑑 (introduced in Section 1.1) :

𝛼 | | =
𝐷H(𝑧eff/𝑟𝑑)
𝐷H(𝑧eff/𝑟𝑑)fid

𝛼⊥ =
𝐷M(𝑧eff/𝑟𝑑)
𝐷M(𝑧eff/𝑟𝑑)fid

.

(3.20)

Here the subscript ’fid’ refers to the fiducial cosmology for which 𝛼 | | = 𝛼⊥ = 1. With this
parametrization, the Ly𝛼 correlation function can be separated into two parts :

�(𝑟| | , 𝑟⊥ , 𝛼 | | , 𝛼⊥) = �smooth(𝑟| | , 𝑟⊥) + �peak(𝑟| |𝛼 | | , 𝑟⊥𝛼⊥), (3.21)

where �smooth is the smooth correlation function underneath the BAO peak, and �peak is the
peak-only function.

In addition to the Ly𝛼 forest auto-correlations, the cross-correlations of Ly𝛼 forests with
absorbers such as HCDs (see Section 1.2.4) or metals present in the Ly𝛼 (or Ly𝛽) absorption
region, or their auto-correlations, could contribute to the total correlation function, and thus bias
our measurements. Moreover, the sky subtraction (see Section 2.2.5 Section 3.2.3) in the analysis
pipeline also has a non-negligible impact. To model all of these sub-dominant systematics, the
total Ly𝛼 auto-correlation function is written as :

�Ly𝛼×Ly𝛼
Total = �Ly𝛼×Ly𝛼 +

∑
𝑖

�Ly𝛼×𝑚𝑖 +
∑
𝑖 , 𝑗

�𝑚𝑖×𝑚𝑗 + �𝑠𝑘𝑦 , (3.22)

where �Ly𝛼×Ly𝛼 refers to the Ly𝛼 absorption auto-correlation function, 𝑚𝑖 , 𝑗 refer to different
absorbers, and �𝑠𝑘𝑦 is the sky-subtraction correlations. The Ly𝛼-quasar cross-correlation function
can be expressed as :

�Ly𝛼×QSO
Total = �Ly𝛼×QSO +

∑
𝑖

�QSO×𝑚𝑖 + �𝑇𝑃 , (3.23)

with the last term �𝑇𝑃 modeling the quasar ionizing radiation reducing the Ly𝛼 absorption on
the surrounding IGM gas. This is the so-called Transverse Proximity (TP) effect (Font-Ribera,
Arnau et al. 2013), which is mainly along the line-of-sight. We model this effect assuming an
isotropic emission from quasars as :

�𝑇𝑃 = �𝑇𝑃0 (1ℎ
−1Mpc
𝑟

)2 exp ( −𝑟
�UV

) (3.24)

with the amplitude �𝑇𝑃0 as free parameter, and �UV = 300ℎ−1Mpc (Rudie, Steidel, Shapley
et Pettini 2013).
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3.2.1 Modeling of the Ly𝛼 power spectrum

The modeling of the Ly𝛼 correlation function is usually performed by modeling its Fourier
transform, i.e., the Ly𝛼 power spectrum. In the following paragraphs, I describe the quasi-linear
power spectrum that models the large-scale structure growth, as well as the non-linear effects
involved at small scales.

The quasi-linear power spectrum

The two components of the correlation function in Equation 3.21 are compted by using the linear
power spectrum from CAMB at a fiducial cosmology and an effective redshift. Starting from a linear
power spectrum 𝑃L, it is firstly Fourier transformed into a correlation function �L, which only
contains the large-scale fluctuations. The smoothed component �smooth is obtained by fitting �L
in the outside region of the BAO peak and interpolating �L in the peak region (86−150ℎ−1Mpc).
𝑃smooth is then the Fourier transform of �smooth, and 𝑃peak is derived by subtracting 𝑃smooth from
𝑃L, yielding :

𝑃QL(®𝑘, 𝑧) − 𝑃smooth(®𝑘, 𝑧) = exp (−
𝑘2| |Σ

2
| | + 𝑘

2
⊥Σ

2
⊥

2
)𝑃peak(®𝑘, 𝑧), (3.25)

where the subscript QL denotes the quasi-linear power spectrum since this has not included
the non-linear small-scale effect of Ly𝛼 forests. The non-linear correction for BAO broadening
(velocity and nonlinear collapse of matter move the position of BAO peak) is modeled as a
Gaussian with two parameters (Σ| | ,Σ⊥), with Σ| | = 6.41ℎ−1Mpc (Σ| | = Σ⊥(1 + 𝑓 ), 𝑓 ∼ Ω0.55

m (𝑧)
is the linear growth rate of structure) and Σ⊥ = 3.26ℎ−1Mpc (D. J. Eisenstein, H.-J. Seo et
White 2007). This effect mainly happens at low redshift, and its redshift evolution is a negligible
second-order effect.

Non-linear effects at small scales

At small scales, the non-linear effects of Ly𝛼 forests and quasars need to be taken into account
and are modeled as a non-linear function for Ly𝛼 forests 𝐷auto

NL,Ly𝛼(®𝑘), and for quasars 𝐷auto
NL,QSO(®𝑘).

Regarding the Ly𝛼 auto-correlation function, the non-linear growth of structure will enhance the
power spectrum, while pressure due to thermal broadening and peculiar velocities will suppress
the power spectrum along the line-of-sight (the finger-of-god effect (Jing et Börner 2001)).
A fitting function for 𝐷auto

NL,Ly𝛼(®𝑘) was proposed in McDonald 2003 and revised in Arinyo-i-
Prats, Miralda-Escudé, Viel et Cen 2015 with higher resolution simulations :

𝐷auto
NL,Ly𝛼(®𝑘) = exp

{[
𝑞1Δ

2(®𝑘) + 𝑞2Δ4(®𝑘)
] [
1 − (

®𝑘
𝑘𝑣

)𝑎𝑣�𝑏𝑣
]
− (

®𝑘
𝑘𝑝

)2
}
, (3.26)

with
Δ2(®𝑘) = 1

2𝜋2
®𝑘3𝑃QL(®𝑘). (3.27)

Here Δ2(®𝑘) refers to the linear matter density fluctuations and Δ4(®𝑘) refers to higher order
fluctuations. This fitting function has 6 free parameters, where 𝑞1 and 𝑞2 characterize the power
spectrum amplitude, 𝑘𝑝 describes the suppression below the Jeans scale (Rorai, Hennawi et
White 2013) due to gas pressure, and {𝑘𝑣 , 𝑎𝑣 , 𝑏𝑣} are used to characterize the quasar non-linear
peculiar velocities and the thermal broadening effect. This fitting function is further discussed
for Ly𝛼 forests and HCDs in Figure 6.22 of Section 6.5.
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For the Ly𝛼-quasar cross-correlation, the quasar non-linear peculiar velocities have the biggest
impact, and 𝐷cross

NL,Ly𝛼(®𝑘) is given by W. J. Percival et White 2009 :

𝐷cross
NL,Ly𝛼(®𝑘) =

1

1 + (𝑘 | |𝜎�)2
, (3.28)

where 𝜎� is a free parameter that characterizes the quasar velocity dispersion. Note that this
effect suppresses the power spectrum at a comparable scale as the HCD damping effect, thus is
hard to be constrained (see Section 6.5).

In practice, the quasar redshifts are measured using the quasar classification pipeline described
in Section 2.2.2, thus resulting in a systematic effect along the line-of-sight on 𝑟| | :

𝑟| | = 𝑟| |,measure + Δ𝑟| |,QSO. (3.29)

This effect is discussed in detail in Youles et al. 2022.

The binning effect

Since the correlation functions are measured on separation grids with bins of a given width, as
described in Section 3.1, the effect of this binning needs to be modeled. The Fourier transform
of the rectangle bins can be modeled as a product of sinc functions :

𝐺(®𝑘) = sinc(
𝑘 | |𝑅 | |
2

)sinc( 𝑘⊥𝑅⊥
2

), (3.30)

where 𝑅 | | and 𝑅⊥ refer to the widths of bins along the radial and transverse directions (here
𝑅 | | = 𝑅⊥ = 4ℎ−1Mpc).

The Ly𝛼 power spectrum

Gathering all the effects above and taking into account the fact that the tracers are biased, I
hereby present the entire expression of the Ly𝛼 power spectrum model :

𝑃F(®𝑘) = 𝑏𝑖𝑏 𝑗(1 + 𝛽𝑖�
2
𝑘)(1 + 𝛽 𝑗�

2
𝑘)𝑃QL(®𝑘)𝐷NL,Ly𝛼(®𝑘)𝐺(®𝑘), (3.31)

where the indices 𝑖 and 𝑗 refer to different tracers : 𝑖 = 𝑗 = Ly𝛼 for the Ly𝛼 auto-correlation
and 𝑖 = Ly𝛼, 𝑗 = QSO for the Ly𝛼-quasar cross-correlation. 𝑏 is the bias parameter and 𝛽 is the
RSD parameter (see Section 1.1). Since the correlation functions are measured at an effective
redshift, we assume a redshift dependence of 𝑏Ly𝛼 ∝ (1 + 𝑧)𝛾Ly𝛼−1 with 𝛾Ly𝛼 = 2.9 (McDonald,
Seljak, Burles et al. 2006), and an approximation that 𝛽Ly𝛼 does not have redshift evolution.
In this case, the effective redshift could be calculated. For the cross-correlation, we use a quasar
redshift dependence as

𝑏QSO(𝑧) = 3.77( 1 + 𝑧
1 + 2.334

)1.44 , (3.32)

by setting 𝑏QSO(𝑧eff) = 3.77 at the effective redshift 𝑧eff = 2.334 (for eBOSS DR16, we use 𝑧eff =

2.376 for DESI EDR data). The quasar RSD effect is also assumed to be redshift independent
and 𝛽QSO is expressed as :

𝛽QSO =
𝑓

𝑏QSO
, (3.33)
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where 𝑓 = 0.9704 and 𝛽QSO = 0.269 for the fiducial cosmology of eBOSS DR16 analysis (Ade
et al. 2016). For DESI the fiducial cosmology uses Aghanim et al. 2020.

3.2.2 Astrophysical contaminants

Astrophysical contaminants that are observed in quasar spectra such as HCDs and metals, contri-
bute to the Ly𝛼 correlation function. They can be modeled as biased discrete matter tracers with
their unique biases and redshift dependencies.

High column density systems

High Column Density systems (HCDs, see Section 1.2.4) are seen as strong absorptions with
damping wings in the Ly𝛼 forests and are usually parametrized by a Voigt profile. The Voigt
profile fitting is further described in Section 6.1.1. According to these absorption profiles, HCDs
are classified into Damped Lyman-alpha systems (DLAs) with 𝑁HI > 1020.3cm−2 and Lyman
limit systems (LLS), with 1020.3cm−2 > 𝑁HI > 1017.2cm−2. DLAs are detectable using visual
inspection or machine learning algorithms (see Section 6.1). Therefore, we usually mask the
DLAs and smooth the Ly𝛼 fluctuations in the delta field. An example is shown in Figure 3.4.

No HCDs      Add HCDs      Masked DLAs

Figure 3.4 : The Ly𝛼 transmission (see definition in Section 3.1.1) fluctuation fields, obtained
from different Saclay mocks : mocks without HCDs (Blue), mocks with HCDs (Orange), and
mocks with DLAs masked (Green). The green curve shows our approach of masking the DLAs
and smoothing the fluctuation fields.

Although most large DLAs can be detected and masked, the HCDs undetected because of
the limitation of machine learning algorithms will bias our measurement of the Ly𝛼 correlation
function, since they are falsely treated as Ly𝛼 absorption lines. Moreover, the damping wings of
HCDs will result in a suppression of the Ly𝛼 power spectrum in Fourier space. The modeling of
this effect on the Ly𝛼 correlation function is detailed in Section 6.2, and I will simply describe
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the model here. Similarly to the modeling of Ly𝛼 forests that are treated as biased tracers of
the underlying dark matter density field with its specific bias and RSD effects (Equation 3.31),
HCDs can also be modeled with their characteristic bias and RSD parameters. The contribution
of HCDs and Ly𝛼 forests can be combined to get the effective Ly𝛼 bias and RSD parameters :

𝑏′Ly𝛼 = 𝑏Ly𝛼 + 𝑏HCD𝐹HCD(𝑘 | |)
𝑏′Ly𝛼𝛽

′
Ly𝛼 = 𝑏Ly𝛼𝛽Ly𝛼 + 𝑏HCD𝛽HCD𝐹HCD(𝑘 | |),

(3.34)

where 𝑏HCD and 𝛽HCD refer to the bias and RSD effect of HCDs. 𝐹HCD(𝑘 | |) is a non-linear function
to model the HCD damping effect, which is an exponential function 𝐹HCD(𝑘 | |) = exp (−𝐿HCD𝑘 | |)
(Equation 6.22) in the eBOSS DR16 analysis (Des Bourboux, Rich et al. 2020).

Broad absorption line quasars

Broad absorption line (BAL) QSOs are a subclass of QSOs with blue-shifted broad absorption
lines with velocities larger than 2000 kms−1 (R. J. Weymann, S. L. Morris, C. B. Foltz et P. C.
Hewett 1991). Depending on the spectral lines that show broad absorptions, BAL QSOs are
divided into different classes, such as HiBALs (C IV �1549), LoBAL (Mg II), FeLoBALs (Fe II),
etc. For Ly𝛼 forests with 𝑧 > 2 and wavelength range �rf ∈ [1040, 1200]Å, broad absorption fea-
tures from NV �1239, �1243, OVI �1032, �1038, PV �1118, �1128 (Ak et al. 2014 ; Hamann,
Herbst, Paris et Capellupo 2019) could have non-negligible impacts, and these QSOs are
discarded in our analysis. The fraction of these BAL QSOs over the whole QSO sample strongly
depends on the selection method, i.e., 10 − 30% using UV and optical wavelengths (C. Foltz,
Chaffee, P. Hewett, R. Weymann et S. Morris 1990 ; J. R. Trump et al. 2006), and 40%
using IR wavelengths (Dai, Shankar et Sivakoff 2008). In our analysis, a Convolutional Neu-
ral Network (CNN) (Guo et Martini 2019) is used to classify BAL QSOs and generate the
associated catalog, which was used in the eBOSS DR16 analysis (Des Bourboux, Rich et al.
2020). Two characteristic indices, the Balnicity Index (BI) (R. J. Weymann, S. L. Morris,
C. B. Foltz et P. C. Hewett 1991) and the Intrinsic Absorption index (AI) (P. B. Hall et al.
2002), are used to characterize BALs using C IV and Si IV absorption regions. BI is defined as
an integration of the quasar flux over the blueshift velocity range from 25, 000 to 3, 000 kms−1
for C IV or Si IV :

BI = −
∫ 3000

25000

(1 − 𝑓 (𝑣)
0.9

)𝐶(𝑣)𝑑𝑣, (3.35)

where 𝑓 (𝑣) is the quasar flux at the shifted velocity 𝑣 relative to the considered emission line,
𝐶(𝑣) is a binary function defined as :

𝐶(𝑣) =
1, when (1 − 𝑓 (𝑣)

0.9
) continuously positive over a 2, 000 kms−1 wide range of velocities,

0, on the other hand.
(3.36)

AI is defined as :

AI = −
∫ 0

25000

(1 − 𝑓 (𝑣)
0.9

)𝐶′(𝑣)𝑑𝑣, (3.37)
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Catalog QSOs BI > 0 BI% AI > 0 AI% BI > 0 and AI > 0
DESI EDR 199398 6674 3.3% 27716 13.9% 6662

DESI EDR (𝑧 > 2) 116523 4314 3.7% 17920 15.4% 4305

Tableau 3.1 : Catalog of BAL QSOs for DESI EDR data. The definition of different columns :
QSOs : Total number of QSOs in the catalog ; BI> 0 : number of QSOs with BI> 0 ; BI% :
percentage of QSOs with BI> 0 ; AI> 0 : number of QSOs with AI> 0 ; AI% : percentage of
QSOs with AI> 0 ; BI> 0 and AI> 0 : number of QSOs with both BI> 0 and AI> 0.

where 𝐶′(𝑣) is

𝐶′(𝑣) =
1, when (1 − 𝑓 (𝑣)

0.9
) continously positive over 450 kms−1 wide range of velocities,

0, on the other hand.
(3.38)

Essentially, BI characterizes absorption troughs larger than 2, 000 kms−1 while AI determines
smaller troughs.

In the DESI EDR data, we found 6662 BAL QSOs out of 199398 QSOs with BI > 0 and
AI > 0, as shown in Table 3.1. For Ly𝛼 QSOs with 𝑧 > 2, we found 4305 BAL QSOs out of
116523 QSOs with the fraction of ∼ 3.7%. The distribution of BI and AI are shown in Figure 4.3,
for both DESI EDR data and DESI EDR mocks.

Metal absorption lines

Figure 3.5 : A quasar spectrum observed from DESI at the redshift 𝑧QSO = 3.42, showing
different metal absorption lines. Credits : Ravoux 2022.

Elements with atomic numbers above 2 are referred to as metals, and have absorption and
emission spectra different from Hydrogen. Figure 3.5 shows a list of metal emissions observed
in DESI quasar spectra, i.e., NV, Si II, O I, C II, Si IV, C IV, C III, etc. Among these metal
transitions, redshifted absorption lines of Si III �1207, Si II �1190, Si II �1193 and Si II �1260
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Metal line �Metal[Å] 𝑟| |[ℎ−1Mpc]
Si III 1207 -21
Si II 1190 -64
Si II 1193 -56
Si II 1260 +111

Tableau 3.2 : The presence of different metal lines present in quasar spectra affects the measu-
rement of the Ly𝛼 correlation function. This table shows the affected positions of different metal
lines on the correlation function along the line-of-sight 𝑟| | at an effective redshift 𝑧eff = 2.334.

could overlap with Ly𝛼 absorptions and be falsely treated as Ly𝛼 absorptions (the metal redshift
is measured as �obs/�Ly𝛼 − 1 instead of �obs/�Metal − 1). This effect will bias the measurement
of the Ly𝛼 correlation function and need to be added separately, each metal line with its own
bias and RSD parameters, as shown in Equation 3.31.

To solve this systematic problem, a reconstruction matrix is applied to each bin of the Ly𝛼
correlation function (Blomqvist, Pieri et al. 2018). The metals mainly affect the correlation
function along the line-of-sight at 𝑟⊥ = 0 and 𝑟| | ≈ (1+ 𝑧)𝐷H(𝑧)(�Metal−�Ly𝛼)/�Ly𝛼. For different
metals, the affected position of 𝑟| | at an effective redshift 𝑧eff = 2.334 is summarized in Table 3.2
(Des Bourboux, Rich et al. 2020).

3.2.3 Sky subtraction
For SDSS (J. E. Bautista et al. 2017 ; Des Bourboux, Rich et al. 2020), the sky subtraction
is performed for spectra obtained with each spectrograph in the data reduction pipeline. The
Poisson fluctuations that are in the sky spectra will induce an extra correlation for data taken
from the same spectrograph, and bias the measurement of the auto-correlation function along
the line-of-sight. Although this correlation could be removed by subtracting correlation pairs
from the same spectrograph, the continuum fitting (described in Section 3.1) generates a smooth
distortion along 𝑟| |, that can be modeled using a Gaussian function (Des Bourboux, K. S.
Dawson et al. 2019) :

�sky(𝑟| | , 𝑟⊥) =
{

𝐴sky

𝜎sky
√
2𝜋

exp (− 1
2

𝑟2⊥
𝜎2
sky

) , if 𝑟| | = 0

0 , if 𝑟| | ≠ 0,
(3.39)

where 𝐴sky and 𝜎sky are two free parameters referring to the scale and the width of this corre-
lation. The contribution of this sky subtraction correlation to the total correlation function is
shown in Equation 3.22.

For DESI, the calibration of spectra is performed for each of the 10 petals (each petal holding
one spectrograph). The sky subtraction is modeled with an empirical function (Gordon et al.
2023) :

�sky(𝑟| | , 𝑟⊥) =
{

𝐴inst( 𝑟⊥80 − 1)2 , if 𝑟⊥ < 80ℎ−1Mpc and 𝑟| | = 0,

0 , if 𝑟⊥ > 80ℎ−1Mpc and 𝑟| | ≠ 0.
(3.40)

Here 𝐴inst is a free parameter, and the limit of 80ℎ−1Mpc corresponds to the angular size of a
petal on the sky at the effective redshift.
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3.3 Summary and prospects

In this chapter, I presented the analysis pipeline for the measurement and the modeling of the Ly𝛼
correlation function. To validate this pipeline, different types of Ly𝛼 mocks have been developed
by several groups within eBOSS/DESI. I will describe the construction of these mocks in the next
chapter, and the analysis results using these mocks in Section 5.1 of Chapter 5. Furthermore,
this pipeline has been used for previous Ly𝛼 analyses (J. E. Bautista et al. 2017 ; de Sainte
Agathe et al. 2019a ; Des Bourboux, Rich et al. 2020), and will be used for the DESI Ly𝛼
analysis. I will describe in Chapter 5 a preliminary comparison of the Ly𝛼 analysis using eBOSS
DR16 data and DESI EDR data.

It is essential to have a clear understanding of the various systematic effects mentioned in this
chapter. During my thesis, I mainly contributed to the Continuum Fitting process (described in
this chapter), the binning effect (analysis of the Ly𝛼 correlation functions with different binsize),
and the modeling of HCDs on the Ly𝛼 correlation function. I will describe in detail a new model,
the Voigt model, in Chapter 6, which is the most important contribution of this thesis to the
DESI collaboration.
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Chapitre 4

The Production of Mocks

Hydrodynamical or N-body cosmological simulations are commonly used in cosmology. They are
essential for Ly𝛼 analyses to test the analysis pipeline, analytical or instrumental systematics, and
estimate the covariance matrix of the correlation function. However, large simulation volumes are
needed to cover tens of Gpc3, while high resolution is also required to simulate the intergalactic
medium at Jean’s scale (Jeans 1902), ∼ 100ℎ−1Kpc for the Ly𝛼 absorption. This requires large
computational resources as well as accurate physical modeling. Therefore, synthetic Ly𝛼 data, the
so-called Ly𝛼 mocks, are created based on Gaussian random fields (GRF). To produce quasar and
Ly𝛼 forest distributions that match observations, a log-normal approximation (Coles et Jones
1991 ; Angulo et O. Hahn 2022) is applied for the quasar density field and the fluctuating
Gunn-Peterson approximation (FGPA) (Gunn et B. A. Peterson 1965) is used to generate
the Ly𝛼 forest optical depth (see Section 1.2.4). Synthetic quasar spectra are then simulated by
applying quasar continuum and instrumental noise with the help of the quickquasars package
(Herrera-Alcantar et al. in preparation). These mocks are not as realistic as simulations but
are useful to test the Ly𝛼 analysis pipeline, the Ly𝛼 and quasar biases, the implementation of
astrophysical contaminants (HCDs, BALs, and metals), the instrumental effects, the validation
of the covariance matrix, as well as the BAO parameter constraints.

Early-stage mocks proposed by Font-Ribera, McDonald et Miralda-Escudé 2012 have
been used for the BOSS DR11 analysis (Delubac, J. E. Bautista et al. 2015) of the Ly𝛼
auto-correlation function, where the Ly𝛼 transmission fields were generated along the lines-of-
sight of quasars. However, no cross-correlation between quasars and Ly𝛼 forests was included,
which was later found useful for the detection of the BAO peak (Font-Ribera, Kirkby et al.
2014). An updated approach was then proposed by J. Le Goff et al. 2011, where quasars were
assigned to GRF with a log-normal probability, and thus were correlated with the associated
Ly𝛼 transmissions. This approach was adapted for the auto- and cross-correlation analysis for
the eBOSS DR14 analysis (Blomqvist, Des Bourboux et al. 2019 ; Sainte Agathe et al.
2019b). Furthermore, the increase in the statistical power of the eBOSS DR16 analysis (Des
Bourboux, K. S. Dawson et al. 2019) required more realistic mocks and more accurate modeling
of systematic effects. Based on two different approaches of adding the RSD effect into the mocks,
two groups within the eBOSS collaboration have developed two types of mocks : the Saclay mocks
(Etourneau et al. in preparation), using a modified FGPA with a velocity-gradient tensor and
the LyaCoLoRe mocks (Farr, Font-Ribera, Des Bourboux et al. 2020), using the FGPA
with gravitational linear velocities. These two versions of mocks are further used for the DESI
analysis, with updated models of the instrumental effects (see Section 4.2).

During my PhD, I contributed to the generation of DESI mocks as a main co-author (Herrera-
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Alcantar et al. in preparation), responsible for the implementation of astrophysical contami-
nants, i.e., HCDs, BALs, etc. These mocks are produced for the DESI EDR data (see Sec-
tion 2.2.4), and the forecast for the DESI Y5 data. I will further present the Ly𝛼 analysis using
these mocks in Section 5.1.

In this chapter, I will describe the main steps to produce mock Ly𝛼 transmissions in Sec-
tion 4.1, synthetic quasar spectra in Section 4.2, and different type of mocks for eBOSS and
DESI analysis in Section 4.3 and Section 4.4.
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4.1 The Ly𝛼 raw mocks

I present in this Section the first step for the generation of Ly𝛼 mocks : the raw mocks, which
only contain Ly𝛼 transmitted flux field (i.e., transmission fields), and no quasar continuum,
instrumental noise, or astrophysical contaminants. In these mocks, quasars are inserted following
a log-normal probability such that the quasar density field recovers the observed quasar bias while
cross-correlating with the Ly𝛼 forests. Ly𝛼 transmissions are generated by applying the FGPA
to the quasar density field, with tuned FGPA parameters to recover the measured observed Ly𝛼
bias. In order to model the redshift evolution of IGM, two different approaches are carried out in
two different versions of mocks : the LyaCoLoRe mocks use simple gravitational linear velocities,
and the Saclay mocks use a modified FGPA with a velocity-gradient tensor.

4.1.1 The Saclay mocks

Saclay mocks were developed for the eBOSS DR16 analysis and will be further used in the DESI
analysis. They are produced with a dedicated code (publicly available code on GitHub 1), which
generates the matter density field using GRF, and constructs Ly𝛼 transmissions using log-normal
approximation and the FGPA. A visualization of all these steps is presented in Figure 4.1. I will
describe these steps in the following sections.

During my thesis, I mostly performed my analysis on Saclay mocks, including the continuum
fitting pipeline (see Section 3.1 and Figure 3.1), the binning effect (see Section ??), Ly𝛼 cor-
relation functions (see Section 5.1), comparison with data (see section 4.2.2), and HCDs (see
Section 6.2). I also create a series of specific mocks for HCDs with or without Ly𝛼 forests, that
are particularly useful for the analysis of HCDs (see Section 4.4).

The matter density field

We first generate a simulation box with a volume of 2560× 2560× 1536 cubic voxels 2, with each
voxel side length of 𝐿voxel = 2.19ℎ−1Mpc at 𝑧 = 0. Then Gaussian random fields (GRF) 𝛿GRF are
generated in each voxel, to produce the matter density field, which, in Fourier space, is defined
as

�̂�L(k) =
√
𝑃𝑚(k)
𝑉

�̂�GRF(k). (4.1)

Here 𝑉 is the volume of the simulation box 𝑉 = 𝐿3voxel, 𝑃𝑚(k) is an input 3D matter power spec-
trum, obtained using the Code for Anisotropies in the Microwave Background (CAMB (Lewis,
Challinor et Lasenby 2000)) with a set of fiducial parameters (Ade et al. 2016). Each Fourier
mode of �̂�GRF(k) is computed by taking a 3D Fourier transform of the matter density field, using

the fast Fourier transform algorithm (FFT). Then a quantity
√

𝑃𝑚 (k)
𝑉 is applied for each �̂�GRF(k),

to generate large-scale matter density fluctuations. The matter density field in real space 𝛿L(r)
is then the inverse Fourier transform of �̂�L(k). Note that 𝛿L(r) only includes the large-scale fluc-
tuations (hence the subscript L) with scales large than 𝐿voxel, while small-scale astrophysical
(baryonic) effects at the galaxy or sub-galaxy levels are not taken into account.

1https://github.com/igmhub/SaclayMocks
2Regular cubes of 3D pixels.
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Figure 1. From top to bottom, the first graph shows the large-scale fields δL, c(z)η∥ and the sum of
the two. The second presents the sum δL + δS and the field g = δL + δS + c(z)η∥. The third presents
the transmitted flux fraction F , and the last graph presents the spectrum, in which a DLA with high
column density has been added at λRF ≈ 1165 A. [JMLG: δl → δL and δg → g in the figure]

velocity gradient at the redshift where photons of a given observed wavelength can induce the Lyα
transition [14]. This formula is valid if when thermal broadening and turbulence can be neglected
as indicated by hydrodynamical simulations of the IGM. In addition, the simple physics that
governs the ionization of the low density intergalactic medium implies that nH1 ∝ (1 + δ)b [15].
If one neglects peculiar velocity fluctuations, the lognormal approximation [13, 16] then leads
to τ ∝ exp(bδ), and the more readily measured transmitted flux fraction is F = exp(−τ) =
exp[−a exp(bδ)] 4

Including line-of-sight velocity gradient fluctuations, η∥, within the lognormal approxima-

trum is discussed in the appendix.
4this is also sometimes referred to as the FGPA, e.g. Eq 2.5 in Ref. [9].

– 5 –

Figure 4.1 : Steps of raw mock production for Saclay mocks : matter density field and velocity-
gradient tensor field that accounts for the RSD effect (first plot) ; the combination of the large-
scale and small-scale matter density field (second plot, 𝛿𝑔 represents 𝛿𝑙 + 𝛿𝑠 + 𝑐(𝑧)�| |) ; Ly𝛼
transmitted flux fields (third plot) and synthetic quasar spectrum (fourth plot) simulated using
quickquasars (see Section 4.2). Credits : Saclay mock (Etourneau et al. in preparation).
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The quasar density field

The next step of the mock production is generating a desired quasar catalog in redshift space.
Each quasar is assigned properly to the matter density field, so that mocks recover the observed
quasar bias and redshift evolution, while also correlating with Ly𝛼 transmissions. For this pur-
pose, the quasar density field is considered as a discrete biased tracer of the matter density field,
and is generated by :

�̂�𝑞(k) =
√
𝑃𝑞(k)
𝑉

�̂�GRF(k). (4.2)

Here 𝑃𝑞(k) is the Fourier transform of �𝑞(r, 𝑧0), which is the quasar density field derived from
the matter density field. In order to ensure that the quasar correlation function reproduces
the observed biases, quasars are assigned to voxels following a probability proportional to the
lognormal field, such that

�𝑞(r, 𝑧) = log (1 + �exp,𝑞)(r, 𝑧), (4.3)

where
�exp,𝑞(r, 𝑧) = 𝑏2𝑞(𝑧)�𝑚(r, 𝑧). (4.4)

Here �exp,𝑞(r, 𝑧) the correlation function of the lognormal field exp (𝛿𝑞(r)), since the correlation
function of exp (𝛿𝑞(r)) is �exp,𝑞(r, 𝑧) = exp (�𝑞(r, 𝑧)) − 1 (Coles et Jones 1991). �𝑚(r, 𝑧) is the
two-point correlation function of the matter density field, which is the Fourier transform of 𝑃𝑚(k)
at a given redshift 𝑧.

The quasar redshift evolution is implemented by applying the redshift-dependant quasar bias :
𝑏𝑞(𝑧) = 3.7( 1+𝑧

1+2.33 )1.7 (Laurent et al. 2017), with 𝑏eff = 3.7 an effective quasar bias at an effective
redshift 𝑧eff = 2.33. In practice, due to computation limitation, the redshift-dependent quasar
correlation function is obtained by interpolating over only three redshifted quasar density fields
at 𝑧 = 1.9, 2.75 and 3.6 (enough to produce a smooth redshift evolution).

A number 𝑁(𝑧) quasars are assigned to each voxel, to reach the target density of a de-
sired survey. Therefore, the log-normal probability of assigning a quasar is proportional to
𝑁(𝑧) exp (𝛿𝑞(r)). Inside each voxel, the positions of quasars are uniformly distributed.

The quasar redshift-space distortions

As introduced in Section 1.2.3, the measurement of galaxy and quasar positions will suffer from
systematic uncertainties due to their peculiar velocities along the lines of sight. In order to
take into account this redshift-space distortion (RSD) effect of quasars in our mocks, redshift-
dependant velocity fields need to be applied to the quasar density fields. The positions of quasars
in real space are defined as ®𝑋(𝑧) at redshift 𝑧, the shifted measured distance Δ𝑋 = | |Δ ®𝑋 | | from
the observer along the line of sight is

Δ𝑋 =
1 + 𝑧
𝐻(𝑧) 𝑣 | |(𝑧) =

𝑓 (𝑧)
𝑓0𝐻0

𝑣 | |(𝑧0), (4.5)

where 𝐻(𝑧) is the Hubble parameter (introduced in Section 1.1), 𝑓 (𝑧) = 𝑑𝑙𝑛𝐺
𝑑𝑙𝑛𝑎

is the linear growth
rate with 𝑎 = 1

1+𝑧 the universe scale factor and 𝐺 the growth factor. 𝑣 | | is the peculiar velocity of
quasars along each line-of-sight. Subscripts 0 denote quantities at 𝑧 = 0. The Fourier transform
of the velocity fields can be expressed in terms of the matter density field (Dodelson et F.
Schmidt 2020) :

�̂� 𝑗(®𝑘) =
𝑖 𝑓 (𝑧)𝐻(𝑧)

1 + 𝑧
𝑘 𝑗

𝑘2
�̂�𝐿(®𝑘). (4.6)
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The peculiar velocities can thus be computed by projecting the velocity field along the line-of-
sight :

𝑣 | | = ®𝑢 · ®𝑣(r), (4.7)

with ®𝑢 =
®𝑋

| | ®𝑋 | |
being the unit vector along a given line-of-sight.

The associated velocity-gradient fluctuation within linear approximation in ®𝑘-space is

�̂𝑝𝑞(®𝑘) = 𝑓
𝑘𝑝 𝑘𝑞

𝑘2
�̂�𝐿(®𝑘), (4.8)

The line-of-sight velocity gradient is then �∥ = 𝑢𝑝𝑢𝑞�
𝑝𝑞 .

The Ly𝛼 transmitted flux fields

As mentioned in previous sections, the quasar density fields are generated using GRF at each
simulation voxel. In order to produce lines-of-sight in the optical wavelength range (for DESI � ∈
[3476.11, 5591.566]Å), the density fields are interpolated at each pixel (6524 pixels of 0.2ℎ−1Mpc).
Gaussian smoothing is applied at each pixel to avoid discontinuities with neighboring pixels. This
smoothing removes the small-scale effects with 𝑘 > 𝑘𝑠 =

𝜋
𝐿voxel

, and adds additional correlations
to the Ly𝛼 correlation function. However, this smoothing effect can be modeled analytically, and
its uncertainty is much smaller than other observational uncertainties (see Etourneau et al.
in preparation for more details). Since the small-scale fluctuations are smoothed, an additional
small-scale field needs to be introduced. It is obtained from an input 1D flux power spectrum,
which is an integration of the 3D flux power spectrum :

𝑃1𝐷(𝑘 | |) =
1

2𝜋

∫ ∞

0

𝑃𝐹(𝑘 | | , 𝑘⊥)𝑘⊥𝑑𝑘⊥. (4.9)

The small-scale matter density field is thus determined as :

�̂�𝑆(𝑧, ®𝑘) =
√
𝑃1𝐷(𝑧, 𝑘 | |)
𝐿3pixel

�̂�GRF(®𝑘). (4.10)

Here 𝑃1𝐷(𝑧, 𝑘 | |) is an input 1D flux power spectrum at a certain redshift 𝑧, which is tuned to re-
produce the 1D flux power spectrum from observations (Chabanier, Palanque-Delabrouille
et al. 2019), 𝐿pixel refers to the pixel size in the measurement. The total matter density field is
then composed of both the large-scale and the small-scale fields :

𝛿m(𝑧) = 𝛿L(𝑧) + 𝛿S(𝑧). (4.11)

The Ly𝛼 absorption fields 𝐹 (the so-called Ly𝛼 transmitted flux fields), are constructed by
taking an exponential of the optical depth :

𝐹(𝑧) = exp (−𝜏(𝑧)), (4.12)

where the Ly𝛼 optical depth 𝜏(𝑧) is determined by modifying the Fluctuating Gunn-Peterson
Approximation (FGPA, an approximation neglecting the thermal broadening and peculiar ve-
locity fluctuations of neutral hydrogen atoms) (Gunn et B. A. Peterson 1965), from 𝜏(𝑧) =
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𝑎GP(𝑧) exp (𝑏GP(𝑧)𝐺(𝑧)𝛿m) to :

𝜏(𝑧) = 𝑎GP(𝑧) exp (𝑏GP(𝑧)𝐺(𝑧)(𝛿m + 𝑐GP(𝑧)�| |)). (4.13)

This model has three free paramaters : 𝑎GP is related to the Ly𝛼 bias 𝑏Ly𝛼, 𝑐GP controls the RSD
parameter 𝛽Ly𝛼, and 𝑏GP accounts for the redshift dependence of Ly𝛼 forests. �| | is the velocity
gradient along the line-of-sight related to the RSD effect. It is computed as the projection of the
velocity-gradient tensor field along a given line-of-sight 3 :

�| | = 𝑢𝑖𝑢𝑗�
𝑖 𝑗 , (4.14)

where in Fourier space :

�̂𝑖 𝑗(k) = 𝑘 𝑖 𝑘 𝑗

𝑘2
𝑓 �̂�𝐿(k). (4.15)

Given Equation 4.12, we can then derive the expression of the Ly𝛼 transmitted flux field as

𝐹 = exp (−𝑎GP(𝑧) exp (𝑏GP(𝑧)𝐺(𝑧)(𝛿L(𝑧) + 𝛿S(𝑧) + 𝑐GP(𝑧)�| |))). (4.16)

𝑎GP, 𝑏Ly𝛼, and 𝑐GP are tuned to recover their observed values (Palanque-Delabrouille et al.
2013) : 𝑏GP can be predicted by considering the equilibrium of photo-ionization of HI and the
recombination of electrons and protons (Etourneau et al. in preparation). In this scenario, the
redshift evolution of IGM with an equation of state (1+𝛿)𝛾(𝑧)−1 gives 𝑏GP = 2−0.7(𝛾(𝑧)−1) = 1.58
at 𝑧 ∼ 3 (with 𝛾(𝑧 = 3) = 1.6 (Hui et Gnedin 1997)).

4.1.2 The LyaCoLoRe mocks

The LyaCoLoRe mocks are generated following a similar procedure as the Saclay mocks. Firstly,
the CoLoRe 4 (Ramırez-Pérez, Sanchez, Alonso et Font-Ribera 2022) package is used
to create the quasar catalog and Gaussian field skewers, where a set of Gaussian random fields
are produced and quasars are sampled into these fields following a lognormal transformation
with an input number density and bias. The Gaussian field skewers at different redshifts are
then generated by taking an interpolation of the Gaussian field and an associated radial velocity
field. The LyaCoLoRe 5 package takes these Gaussian field skewers as input and adds small-scale
fluctuations by considering a desired 1D flux power spectrum (McDonald, Seljak, Burles
et al. 2006), defined as

𝑃1D(𝑘) ∝ (1 + ( 𝑘
𝑘0

)𝑛)−1 , (4.17)

where 𝑘0 and 𝑛 are two free parameters tuned to achieve the observed 1D power spectrum
(McDonald, Seljak, Burles et al. 2006). The final skewers are derived as

𝛿𝐹(𝑧) = 𝛿𝐶 + 𝜎S(𝑧)𝛿S , (4.18)

where 𝛿𝐶 is the Gaussian skewers taken from CoLoRe package, 𝛿S stands for the small-scale
fluctuations, and 𝜎S(𝑧) is another free parameter to account for redshift evolution.

The Ly𝛼 optical depth is further generated by using the FGPA approximation and considering
the RSD effect due to gravitational linear velocities in the IGM at different redshifts. The flux
transmission skewers are converted from optical depth by taking an exponential : 𝐹 = exp (−𝜏).

3Here we use the Einstein notation to represent the projection along each dimension (Einstein 1916).
4https://github.com/damonge/CoLoRe
5https://github.com/igmhub/LyaCoLoRe



80 CHAPITRE 4. The Production of Mocks

The main difference between the Saclay mocks and the LyaCoLoRe mocks is at the step of
generating the optical depth : the Saclay mocks use a modified FGPA with a velocity-gradient
tensor to account for the RSD effect, while the LyaCoLoRe mocks use the FGPA with gravita-
tional linear velocities, which is simpler but less realistic.
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4.2 The Ly𝛼 synthetic spectra

The raw mocks generated in the previous section contain only Ly𝛼 transmitted flux fields. They
are useful to test the Ly𝛼 analysis pipeline by studying their correlation function. However, in
real observation, we measure quasar spectra, and estimate Ly𝛼 transmissions by taking their
absorption fluctuations with respect to the quasar unabsorbed continuum, fitted using the pipe-
line introduced in Section 3.2. In this continuum fitting procedure, various systematic effects will
bias the measurement and need to be understood, such as the distortion matrix, astrophysical
contaminants, and instrumental effects (see Section 3.2 for all these effects). Therefore, synthe-
tic quasar spectra need to be simulated in our mocks, as precisely as real observed spectra, to
validate our analysis pipeline.

For this purpose, a simulation package named quickquasars 6 (Herrera-Alcantar et al.
in preparation) in the desisim 7 simulation package is used to generate synthetic quasar spectra
based on the Ly𝛼 transmission skewers in raw mocks. It includes several steps to simulate a quasar
spectrum, namely : a quasar continuum, astrophysical contaminants, and experimental effects
such as instrument response and observing conditions. I describe these steps in the following
sub-sections.

4.2.1 The quasar continuum

The quasar continuum is generated by using one of the two possible templates : Simqso (default)
or PCA-qso.

Simqso

The Simqso software in the desisim package produces the quasar continuum from a broken
power-law, and adds each Gaussian emission line with defined observed wavelength, width, and
dispersion (defined using spectra from Harris et al. 2016). Quasars are produced in the redshift
range 𝑧 ∈ [2.1, 3.5] and with rest-frame wavelength range �rf ∈ [800, 3300] Å, while BAL or DLA
quasars are excluded. Note that the emission line parameters are adjusted differently for eBOSS
DR16 mocks (Des Bourboux, Rich et al. 2020) and DESI mocks (Herrera-Alcantar et al.
in preparation) to match their desired mean continuum. Figure 4.2 shows the good agreement of
emission features between quasar spectra from DESI mocks and DESI EDR data (described in
Section 2.2.4).

PCA-qso

These templates are generated from a principal component analysis (PCA) decomposition of
quasar spectra collected from SDSS DR7 (𝑧 ∈ [0.4, 2]) and BOSS DR10 (𝑧 ∈ [2, 4]). A random
sample of eigenvalues and eigenvectors of PCA templates are first generated, then a parametri-
zation procedure is performed to match the desired DESI spectra. A detailed description of this
process can be found in Herrera-Alcantar et al. in preparation.

4.2.2 Astrophysical contaminants

Different astrophysical contaminants, e.g., BALs, HCDs, and metals are inserted into the quasar
synthetic spectra using the following approaches :

6https://github.com/desihub/desisim/blob/main/py/desisim/scripts/quickquasars.py
7https://github.com/desihub/desisim
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Figure 4.2 : Comparison of an observed quasar spectrum from DESI EDR data and a synthetic
spectrum from DESI mocks produced using quickquasars. The mock spectrum reproduces well
the emission features seen in DESI data. Credits : DESI EDR mock (Herrera-Alcantar et al.
in preparation).

Broad Absorption Lines systems

Within the DESI collaboration, I am responsible for the insertion of BALs (Section 3.2.2) into
our mocks. BALs are simulated using 1500 templates created from the SDSS DR16 BAL catalog
(Guo et Martini 2019) with 53, 760 BALs from 320, 821 quasars. We randomly select simulated
quasars in mocks with the same BAL quasar ratio as in the data (∼ 13%, see Section 3.2.2), and
apply BAL corrections by multiplying the quasar continuum 𝐹CONT with the BAL continuum
𝐹BAL (fitted using DR14 quasars with Principal Component Analysis, see Guo et Martini
2019). A comparison of BAL features (used to determine BALs using C IV and Si IV absorption
regions, see Section 3.2.2), the Balnicity Index (BI ,R. J. Weymann, S. L. Morris, C. B. Foltz
et P. C. Hewett 1991) and the Intrinsic Absorption index (AI, P. B. Hall et al. 2002), is
shown in Figure 4.3. It compares BALs from DESI EDR mocks with those detected from DESI
EDR data using a CNN algorithm (Guo et Martini 2019) with BICIV > 0 and AICIV > 0 (the
subscript C IV denotes the metal line C IV). This comparison shows that our mocks reproduce
well the distribution of BALs of the DESI data.

High Columns Density systems

I am also responsible for assigning HCDs (see Section 3.2.2) into our mocks. HCDs are usually
modeled by Voigt profiles (see Section 6.2.3) at the Ly𝛼 optical depth level. This means that
we should add HCDs in the Ly𝛼 transmissions of mocks, rather than add them in the quasar
continuum. Moreover, this operation ensures the production of the correlations of HCDs and Ly𝛼
forests. HCDs are inserted into mocks following a given redshift distribution and a probability
density distribution of HI column densities 𝑁HI, hereafter denoted as 𝑛, computed using the
IGM physics package pyigm 8 (J. Prochaska, Tejos, Wotta et al. 2017 ; J. X. Prochaska,
Madau, O’Meara et Fumagalli 2014), which was calibrated by fitting a set of detected HCDs
in the literature (J. X. Prochaska, Madau, O’Meara et Fumagalli 2014). The probability
distribution of 𝑛 is defined as (R. F. Carswell, Morton, M. G. Smith, Stockton, Turnshek

8https ://github.com/pyigm/pyigm
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Figure 4.3 : Normalized distribution of BICIV and AICIV from DESI EDR data using CNN
(red) and DESI EDR mock (blue). Credits : DESI EDR mock (Herrera-Alcantar et al. in
preparation).

et R. J. Weymann 1984 ; Rudie, Steidel, Shapley et Pettini 2013)

𝑓 (𝑛, 𝑋)𝑑𝑛𝑑𝑋 =
𝑚

Δ𝑛Δ𝑋
𝑑𝑛𝑑𝑋, (4.19)

where 𝑚 is the number of HCDs with column densities in the range Δ𝑛, and with the comoving
path lengths (J. N. Bahcall et Peebles 1969) along the line-of-sight in the range Δ𝑋. The
comoving path length is obtained from (in a flat universe)

Δ𝑋 =

∫ 𝑧max

𝑧min

𝐻0

𝐻(𝑧) (1 + 𝑧)
2𝑑𝑧 =

∫ 𝑧max

𝑧min

(1 + 𝑧)2√
ΩΛ +Ωm(1 + 𝑧)3

𝑑𝑧. (4.20)

The locations of HCDs are determined by choosing the peaks of the Gaussian density fields above
a given threshold. This threshold is tuned to get the desired bias for HCDs, 𝑏HCD(𝑧). Usually,
this value is chosen to be 𝑏HCD(𝑧) = 2, which is measured by the cross-correlations between
DLAs and Ly𝛼 forests (Pérez-Ràfols, Miralda-Escudé, Arinyo-i-Prats, Font-Ribera
et Mas-Ribas 2018). Figure 4.4 shows the comparison of the eBOSS DR16 mocks and DESI
EDR mocks for the distribution of 𝑁HI and 𝑧DLA. There is no difference in the input distribution
of 𝑁HI. However, DESI EDR mocks are produced with a higher range and means for 𝑧DLA and
𝑧QSO, because of the observation of higher redshift quasars in DESI data.

Metals

Different redshifted metal absorption lines (Section 3.2.2), such as Si II �1260, Si III �1207, Si II
�1193, and Si II �1190, will overlap with Ly𝛼 forests and thus bias the measured Ly𝛼 correlation
function. These metal contaminants are inserted into our mocks by re-scaling the Ly𝛼 optical
depth 𝜏 with a set of characteristic coefficients 𝐴𝑚 for each metal 𝑚 individually, which gives
the metal optical depth 𝜏𝑚 = 𝐴𝑚𝜏. These coefficients represent the strength of these metal
correlations compared to the Ly𝛼 correlations, and can be adjusted by tuning the metal biases
in mocks to what is measured in observational data. Figure 4.5 shows the tuned metal biases 𝑏�
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for both eBOSS mocks and DESI EDR mocks (these values were tuned to match the values from
eBOSS DR14 data (de Sainte Agathe et al. 2019a)), compared with the measurements from
observational data, i.e., eBOSS DR14 data, eBOSS DR16 data, and DESI EDR data.
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Figure 4.5 : The measurement of metal biases 𝑏� in the Ly𝛼 auto-correlation function. Colored
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4.3 Mocks for eBOSS/DESI surveys

In this section, I describe the experimental conditions, and the survey settings introduced in the
previous mocks to simulate a cosmology survey. For the eBOSS analysis, I work on the generation
of mocks built for the eBOSS DR16 data. For DESI, two types of mocks are made : the DESI
EDR mocks are used for the analysis of the DESI EDR data (only include the survey validation
data and two months of main survey data, see Section 2.2.4) ; the DESI Y5 (the entire DESI five
years data) mocks are made to cover the entire DESI footprint and quasar density.

4.3.1 Experimental effects

We use the specsim package implemented in quickquasars to simulate synthetic quasar spectra
with good agreement on the real instrumental effects. In this section I will describe these different
effects in our mock production.

Spectrograph

As described in Section 2.1.2 and Section 2.2.3, each of the ten DESI spectrographs has three arms
(𝑔, 𝑟, and 𝑧) to cover blue, red, and near-infrared bands, while the instrument for BOSS/eBOSS
only used two bands (𝐵 and 𝑅). Nevertheless, for most Ly𝛼 quasars and forests, spectrograph B
is enough to cover the useful wavelength range. The pixel binning of wavelengths used for eBOSS
and DESI is different : a logarithm grid of pixels was used in eBOSS, whereas DESI uses a linear
grid of pixels. Small discrepancies appear when changing the pixel grid from logarithm to linear,
which is detailed in Ignasi et al. in preparation.

Exposure time

The typical exposure time of each observation is fixed as 2,000s for eBOSS mocks, to be consistent
with data. For DESI, all objects are expected to have 4,000s of effective exposure time, which is
twice longer than that of eBOSS. We therefore assign each DESI quasar with 4,000s exposures.
However, if the simulated quasars are not expected to have the same exposure time, then for
each of the HEALPIX pixels of the footprint, we assign a multiple of 1000s for each quasar with
respect to the distribution exposure time distribution.

Magnitude distribution

We randomly sample the transmission skewers of the raw mocks, and assign magnitudes for each
band following a given magnitude distribution. For DESI EDR mocks as an example, the desired
magnitude distribution is described in Chaussidon et al. 2023, and is shown in Figure 4.6. This
comparison shows a good agreement between the magnitude distributions of our mocks and DESI
data.

Source

The source flux is characterized by its spectral energy distribution, modeled as a point source
profile with a quasar continuum. We use the specsim package to convert an input spectral energy
distribution (SED) into arrays of expected mean detected flux with variances for each arm of
the spectrograph. Then the source templates are created by setting a very large exposure time
to get rid of noise (typically 2,000,000s).
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Figure 4.6 : The comparison of magnitude distributions of three bands 𝑔, 𝑟, 𝑧, for DESI EDR
mocks (orange) and DESI EDR data (blue).

Atmosphere

For DESI, we use a point spread function (PSF) to model the observed spectral flux of a point
source at the telescope, which is convolved with the source profile. The effect of the atmosphere,
is modeled by a fixed Moffat model (Moffat 1969) :

𝐼(𝑟) = 𝐼0(1 +
𝑟

𝛼
)𝛽 . (4.21)

Here 𝛽 = 3.5 and 𝛼 = FWHM
2
√
21/𝛽−1

(Abareshi et al. 2022), where FWHM is computed as twice the
radius at which 𝐼(𝑟) = 0.5𝐼0.

The instrument model

A set of instrumental parameters, listed in Table 4.1, is used as an input for the instrumental
model, implemented in the specsim package of quickquasars. These parameters are used to
characterize different instrumental effects such as the readout noise, and the gain of CCDs for
each of the spectrograph cameras, the collected flux, fiber loss, observing conditions, etc. As
a result, an example of a simulated quasar spectrum is shown in Figure 4.7, where one can
see separately the quasar continuum without any Ly𝛼 absorption fluctuations, the noiseless
spectrum, and the spectrum with all the instrumental effects taken into account.

4.3.2 The survey settings

Based on the instrumental models described in the previous section, I will now provide a des-
cription of the survey settings in order to simulate the eBOSS/DESI surveys.

Redshift distribution

As described in Section 4.1.1, we assign quasars into the mocks following a lognormal proba-
bility field, while ensuring the redshift distribution from the IGM physics package pyigm 9 (J.
Prochaska, Tejos, Wotta et al. 2017 ; J. X. Prochaska, Madau, O’Meara et Fumagalli
2014). Figure 4.8 shows the good agreements between the redshift distributions used in our

9https ://github.com/pyigm/pyigm
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Parameter Value
Instrument : DESI
Primary mirror Diameter 3.797 m
Fiber diameter 107.0 um
Field radius 414.0 mm
Fiber loss method fastsim
Cameras : b,r,z
Read noise 3.29, 3.69, 3.69 electron/pixel2
Dark current 1.89, 1.14, 1.14 electron/(hour pixel2)
Gain 1.0, 1.0, 1.0, 1.0 electron/adu
Observatory : KPNO
Nominal exposure time 1000s
Temperature 15 ºC
Relative humidity 0

Tableau 4.1 : Input parameters for specsim used to model the instrumental effects of the
telescope. Credits : DESI EDR mock (Herrera-Alcantar et al. in preparation).

mocks compared with their relevant data. One can also tell from the plots that we use a redshift
distribution in DESI slightly different (𝑧 ∼ 2.25) from what was used in eBOSS.

Figure 4.8 : Comparison of the redshift distributions of quasars, for DESI EDR mocks (dashed
green), DESI EDR data (solid green), eBOSS DR16 mocks (dashed red), eBOSS DR16 data
(solid red). The forecasted distribution for DESI Y5 mocks (dashed blue) is also shown as a
comparison.

Footprint for eBOSS mocks

The eBOSS DR16 mocks that I work on are produced to cover the 10,000 deg2 of the eBOSS
survey footprint, and an average quasar density of around 25 deg−2. Figure 4.9 presents a com-
parison of the footprints of eBOSS DR16 mocks and DESI Y5 mocks. The DR16 mocks contain
a catalog of 261854 quasars, 232544 forests, and 91659 HCDs with 𝑧 > 2. The cosmological pa-
rameter values used to generate these mocks are {Ω𝑚 = 0.31457,ΩΛ = 0.68543,Ω𝑘 = 0}, taken
from (Ade et al. 2016).
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Figure 4.9 : Comparison of survey footprint and Ly𝛼 quasar density (𝑧 > 1.8) for eBOSS DR16
mocks (10,000 deg2, filled triangles) and DESI Y5 mocks (14,000 deg2, filled circles). The NGC
covering 9,900 deg2 is shown on the left, and the SGC covering 4,400 deg2 is shown on the right.
The plots are created using HEALpix pixels with nside=16 (the number of pixels on each side).
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Footprint for DESI mocks

Figure 4.10 shows the footprint of DESI EDR mocks, compared with the nominal DESI footprint.
We can tell from Figure 4.9 and Figure 4.10 that the average Ly𝛼 quasar density (𝑧 > 1.8) of
the DESI EDR mocks is at the same level as the eBOSS DR16 mocks, ∼ 25 deg−2, since the
DESI EDR data only covers a small amount of DESI data, and without co-adding exposures.
The DESI Y5 mocks are constructed to match the footprints of the entire DESI survey, with the
forecasted average Ly𝛼 quasar density at around 100 deg−2. The fiducial cosmological parameter
values used for DESI mocks are taken from Aghanim et al. 2020.

Figure 4.10 : The comparison of survey footprint and Ly𝛼 quasar density (𝑧 > 1.8) for DESI
EDR mocks (light blue) and DESI data (14,000 deg2, shaded gray). The plots are made using
HEALPIX pixels with nside=16.
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4.4 Mocks for eBOSS/DESI analysis

Based on the procedure described in the previous sections, different types of Ly𝛼 mocks were
produced to validate the analysis pipeline and various systematic effects used to analyse real
data, e.g. the continuum fitting, the addition of HCDs, the addition of metals, etc. I hereby
define these different mocks :

• 𝑒𝑏𝑜𝑠𝑠− 𝑟𝑎𝑤 mocks : as was described in Section 4.1.1, 𝑒𝑏𝑜𝑠𝑠− 𝑟𝑎𝑤 mocks contain only Ly𝛼
transmission skewers, without simulations of quasar spectra. These mocks are particularly
helpful for the validation of Ly𝛼 biases, continuum fitting, distortion matrix, etc.

• 𝑒𝑏𝑜𝑠𝑠 − 0.0 mocks : these mocks were produced by adding synthetic quasar continuum and
noise to the raw mocks.

• 𝑒𝑏𝑜𝑠𝑠 − 0.2 mocks : these mocks were produced by adding HCDs with HI column densities
(𝑁HI, hereafter 𝑛) following a realistic probability distribution 𝑓 (𝑛), using the method
described in Section 4.2. 𝑓 (𝑛) is obtained from the pyigm package, as is shown in Figure 4.4.

• 𝑒𝑏𝑜𝑠𝑠 − 0.2+ mocks : in order to study the systematic effect of HCDs in the Ly𝛼 analysis
and better understand the modeling of this effect, I create several stacks of 10 Saclay
mocks with or without HCDs. Specifically, all the HCDs hold the same 𝑛, where 𝑙𝑜𝑔(𝑛) =
19.5, 20.0, 20.5, 21cm−2.

• 𝑒𝑏𝑜𝑠𝑠 − 0.3 mocks : add metals following the method described in Section 4.2 on top of
𝑒𝑏𝑜𝑠𝑠 − 0.2 mocks.

• 𝑒𝑏𝑜𝑠𝑠−0.4 mocks : based on 𝑒𝑏𝑜𝑠𝑠−0.2+ mocks, I also generate mocks without Ly𝛼 forests,
with only HCDs.

Figure 4.11 shows a comparison of the simulated quasar spectra for these different scenarios. The
mocks with no Ly𝛼 forests and no HCDs are produced with only the continuum and noise, while
those with HCDs have the same 𝑙𝑜𝑔(𝑛) = 21 cm−2.
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Figure 4.11 : A quasar spectrum at the redshift 𝑧 = 2.52, taken from eBOSS DR16 mocks for
different scenarios : no Ly𝛼 forests and no HCDs (red), no Ly𝛼 forests and with HCDs (blue),
with Ly𝛼 forests and with HCDs (black). The Ly𝛼 peak is shown as the black dashed line.

4.4.1 Summary and prospects
In this chapter, I described the main steps to produce simulated Ly𝛼 transmissions, and syn-
thetic quasar spectra for raw mocks. Then I described the method to implement astrophysical
contaminants (HCDs, BALs, etc) and instrumental effects to make raw mocks more realistic.
Moreover, I also presented different versions of mocks (different astrophysical contaminants) for
the eBOSS and DESI surveys.

In the next chapter, I will describe the Ly𝛼 analyses based on these mocks, and compare with
those for real data (eBOSS and DESI data).
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Chapitre 5

Results of the Ly𝛼 analysis on
mocks and data

The two-point correlation function of discrete matter tracers of the quasi-linear matter density
field, e.g., galaxies (W. J. Percival, Cole et al. 2007 ; W. J. Percival, Reid et al. 2010) and
quasars (Ata et al. 2018), is a powerful probe to constrain the BAO peak position. The BAO
peak position can also be measured using continuous matter tracers, such as Lyman-𝛼 forests
(J. E. Bautista et al. 2017 ; de Sainte Agathe et al. 2019a ; Des Bourboux, Rich et al.
2020) (see Section 1). The continuous fields of these forests are used as biased matter tracers
of the underlying dark matter field, in which the BAO scale is imprinted. Since Ly𝛼 forests are
seen in high-redshift (𝑧 > 2) quasar spectra, they provide most highest redshift constraint of the
BAO scale (see Figure 2.4), thus are helpful for the study of dark energy models and structure
growth in the universe (combining RSD analyses).

In this chapter, I describe the measurement and analysis of the Ly𝛼 auto- and cross-correlation
functions, following the pipeline and model described in Chapter 3. I perform the analysis on both
DESI EDR data, eBOSS DR16 data, and different types of mocks (introduced in Chapter 4). Then
I compare their correlation functions, fitting results, and correlations between model parameters.
The analysis on Ly𝛼 mocks show that the Ly𝛼 analysis pipeline performs well and motivates
further development of the model for HCDs and metals. A good consistency is found between the
correlation functions and parameter constraints of DESI data and DR16 data. However, further
investigation should be carried out to compare these two datasets using future DESI data.

In this chapter, I will also give a detailed analysis of the masking of large HCDs (i.e., DLAs)
in Ly𝛼 pixels, in order to minimize the systematic effect of HCDs. My results show that HCDs
mainly affect the correlation function along the line-of-sight beneath the BAO peak, and suggest
an investigation of improving the HCD model.

In the DESI collaboration, I have contributed to most of these analyses during my PhD study,
and the results are summarized in Gordon et al. 2023 ; Etourneau et al. in preparation ; Ting
et al. in preparation.
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5.1 Results of mock analyses

In the DESI collaboration, I am one of the main contributors of mock analyses, focusing on
Saclay mocks (see Section 4.1.1). Part of my mock analysis is included in Etourneau et al. in
preparation ; Herrera-Alcantar et al. in preparation and Ting et al. in preparation. In this
section, I measure the correlation functions of Ly𝛼 mocks following the same pipeline as used for
data (see Section 3.1.1). For the fitting of these mocks (see the model in Section 3.2.1), we have
7 free parameters {𝛼 | | , 𝛼⊥ , 𝑏�,Ly𝛼 , 𝛽Ly𝛼 , 𝑏�,HCD , 𝛽HCD , 𝐿HCD} for the auto-correlation function,
where 𝑏�,Ly𝛼 = 𝑏Ly𝛼 × 𝛽Ly𝛼 and 𝑏�,HCD = 𝑏HCD × 𝛽HCD. We have one more free parameter
for the cross-correlations, taking into account the quasar velocity distribution parameter 𝜎�
(see Section 3.2.1). The parameters 𝑏QSO and 𝛽QSO are fixed because they are not significantly
constrained by the cross-only (using only the cross-correlation function) fits (Des Bourboux,
Rich et al. 2020).

I will present the analysis on a series of eBOSS mocks (DESI mocks are not ready at the
moment) : 𝑒𝑏𝑜𝑠𝑠 − 𝑟𝑎𝑤, 𝑒𝑏𝑜𝑠𝑠 − 0.0, 𝑒𝑏𝑜𝑠𝑠 − 0.2, and 𝑒𝑏𝑜𝑠𝑠 − 0.3 mocks (see the definition in
Section 4.4). Each of them is produced for a stack of 10 Saclay mocks.

5.1.1 The auto-correlation function

Figure 5.1 shows the measurement of the auto-correlation function (𝑟 ∈ [0, 200]ℎ−1Mpc with
binsize = 4ℎ−1Mpc for both 𝑟| | and 𝑟⊥, resulting 2500 correlation function bins) for the above
four types of mocks to fit these measurements. To fit these measurements, I use the Kaiser
model (see Equation 1.42 in Section 1.2.3) for mocks with no HCDs, i.e., 𝑒𝑏𝑜𝑠𝑠 − 𝑟𝑎𝑤 (red)
and 𝑒𝑏𝑜𝑠𝑠 − 0.0 (black, mocks without HCDs). For 𝑒𝑏𝑜𝑠𝑠 − 0.2 (blue, mocks with HCDs) and
𝑒𝑏𝑜𝑠𝑠−0.3 mocks (yellow, mocks with HCDs and with metals), the Exp model (see Equation 6.22)
is used to fit HCDs. Note that instead of fixing 𝐿HCD to 10ℎ−1Mpc (designed to determine the
characteristic suppression scale of HCDs, which relates to the HCD size, see Equation 6.22), it is
a free parameter. For 𝑒𝑏𝑜𝑠𝑠−0.3 mocks, the Kaiser model is used for each metal line, as described
in Section 3.2.2. One can tell from Figure 5.1 and Table 5.1 that :

• HCDs and metals mainly affect the Ly𝛼 auto-correlation function at smaller scales (𝑟 ∈
[20, 80]ℎ−1Mpc) beneath the BAO scale, and along the line-of-sight, when � > 0.8. The
BAO peak position is not affected by these effects, as seen from the constraints on 𝛼 | | and
𝛼⊥ where all the scenarios give 𝛼 | | ∼ 1 and 𝛼⊥ ∼ 1 within 1𝜎.

• The existence of HCDs and metals contributes to additional biases in the correlation func-
tion. Extra correlation features due to Si III �1207, Si II �1190 and Si II �1193 appear
significantly in auto- and cross-correlation functions with 0.95 < � < 1.0, at 𝑟| | ∼ 20ℎ−1Mpc
and 𝑟| | ∼ 60ℎ−1Mpc, as predicted in Table 3.2.

• The discrepancy between the 𝑒𝑏𝑜𝑠𝑠 − 𝑟𝑎𝑤 mocks (red) and the 𝑒𝑏𝑜𝑠𝑠 − 0.0 mocks (black)
is due to the distortion effect of the continuum fitting (see Section 3.1.1). This distortion
effect can be corrected with the help of the distortion matrix as described in Section 3.1.1.

• Compared to the fits of the 𝑒𝑏𝑜𝑠𝑠 − 0.0 mocks, we obtain worse 𝜒2 for mocks with HCDs
(one more free parameter) or metals (five more free parameters), which motivates the search
for better models.

• In all scenarios, we get 𝑏�,Ly𝛼 ∼ −0.2 and 𝛽Ly𝛼 ∼ 1.7, which agrees with measurements
from observations (see the fits of eBOSS DR16 data and DESI data in Section 5.2). 𝑏HCD ∼
−0.02 which is around 5 times smaller than 𝑏Ly𝛼 = 𝑏�,Ly𝛼/𝛽Ly𝛼 ∼ −0.1. This verifies our
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Mocks eboss-raw eboss-0.0 eboss-0.2 eboss-0.3
Correlations LY𝛼 × LY𝛼 LY𝛼 × LY𝛼 LY𝛼 × LY𝛼 LY𝛼 × LY𝛼
HCD Model Kaiser model Kaiser model Exp model Exp model

𝜒2 1667.2 1463.39 1533.46 1601.4
𝑁data 1574 1574 1574 1574
𝑁par 4 4 7 12
𝑃 0.04 0.97 0.72 0.24
𝛼 | | 0.994±0.023 0.983±0.012 0.984±0.015 1.008±0.017
𝛼⊥ 0.985±0.014 1.010±0.008 1.003±0.009 0.990±0.010

𝑏�,LY𝛼 -0.194±0.002 -0.207±0.001 -0.208±0.002 -0.202±0.003
𝛽LY𝛼 1.800±0.040 1.680±0.010 1.580±0.050 1.980±0.160
𝑏𝐹
HCD

-0.026±0.004 -0.045±0.006
𝛽HCD 0.480±0.090 0.550±0.090

𝑏�,SiII�1260 -0.00231±0.00020
𝑏�,SiIII�1207 -0.00614±0.00037
𝑏�,SiII�1193 -0.00183±0.00016
𝑏�,SiII�1190 -0.00299±0.00020
𝑏�,CIVeff -0.01943±0.00288
𝐿HCD 9.480±2.570 8.990±1.790

Tableau 5.1 : Best fit parameters of the Ly𝛼 auto-correlation function, for different eBOSS
Saclay mocks : 𝑒𝑏𝑜𝑠𝑠 − 𝑟𝑎𝑤, 𝑒𝑏𝑜𝑠𝑠 − 0.0, 𝑒𝑏𝑜𝑠𝑠 − 0.2, and 𝑒𝑏𝑜𝑠𝑠 − 0.3. P is the p-value of the
fit. Here 𝑏𝐹HCD is the flux bias of HCDs, since we use the Exp model for HCDs (see definition in
Equation 6.22).

assumption that HCDs are a small correction to the Ly𝛼 forest power spectrum. The best-
fitting value of 𝐿HCD is around 10ℎ−1Mpc. Since the BAO parameters are hardly affected
by this parameter, it is reasonable to fix it to 10ℎ−1Mpc, as was used in the eBOSS DR16
analysis (Des Bourboux, Rich et al. 2020).

5.1.2 The cross-correlation function

In addition to the Ly𝛼 auto-correlation function, I also measure the Ly𝛼-quasar cross-correlation
function for the same four types of mocks. The correlations, as well as their best-fitting models, are
shown in the four bottom panels of Figure 5.1, and their associated numerical fits are summarized
in Table 5.2. Note that 𝑟min = 20ℎ−1Mpc is used for both auto- and cross-correlation functions.
One can tell from Figure 5.1 and Table 5.2 that :

• For all scenarios, the cross-correlation function gives worse 𝜒2 and p-value (𝑃 in the table)
compared to the auto-correlation function. This might be due to various reasons such as
the small-scale fluctuations are not realistic enough in our mocks since they are produced
by using an input 1D power spectrum (see Section 4.1.1), or the modeling of HCDs and
metals need to be improved. I will present the analysis result of the first effect later in this
section, which proves the small-scale issues and suggests setting 𝑟min = 40ℎ−1Mpc for our
future analysis. As for the second reason, I will present the improved result using a new
HCD model, the Voigt model, in Section 6.2. Note that the fit for 𝑒𝑏𝑜𝑠𝑠 − 𝑟𝑎𝑤 mocks is
very discrepant but the 𝜒2 value is not that bigger than the other fits. The reason may be
that the points in the poorly fitted region have larger errors, while the fits are dominated
by small scales where errors are relatively small.
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Figure 5.1 : Ly𝛼 auto-correlation function (top four panels) and Ly𝛼-quasar cross-correlation
(bottom four panels), for pixels in the Ly𝛼 region (see definition in Table 1.2), and for different
eBOSS Saclay mocks : 𝑒𝑏𝑜𝑠𝑠 − 𝑟𝑎𝑤 (red), 𝑒𝑏𝑜𝑠𝑠 −0.0 (black), 𝑒𝑏𝑜𝑠𝑠 −0.2 (blue), and 𝑒𝑏𝑜𝑠𝑠 −0.3
(yellow). Each correlation function is computed from a stack of ten mocks. The correlations are
multiplied by 𝑟2 to better see the BAO scale. Best-fitting models are shown as solid curves.
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Mocks eboss-raw eboss-0.0 eboss-0.2 eboss-0.3
Correlations LY𝛼 ×QSO LY𝛼 ×QSO LY𝛼 ×QSO LY𝛼 ×QSO

HCD Model Kaiser model Kaiser model Exp model Exp model
𝜒2 3518.04 3341.68 3267.73 3366.23

𝑁data 3148 3148 3148 3180
𝑁par 4 4 8 13
𝑃 0.0 0.01 0.05 0.01
𝛼 | | 1.004±0.007 0.999±0.010 0.997±0.012 1.002±0.011
𝛼⊥ 1.011±0.007 0.999±0.008 1.003±0.010 0.997±0.009

𝑏�,LY𝛼 -0.179±0.001 -0.187±0.002 -0.192±0.003 -0.183±0.005
𝛽LY𝛼 1.560±0.020 1.580±0.020 1.660±0.040 1.960±0.120
𝑏𝐹
HCD

-0.043±0.003 -0.047±0.006
𝛽HCD 0.630±0.080 0.670±0.080

𝑏�,SiII�1260 -0.00229±0.00017
𝑏�,SiIII�1207 -0.00577±0.00021
𝑏�,SiII�1193 -0.00135±0.00020
𝑏�,SiII�1190 -0.00251±0.00019
𝑏�,CIVeff -0.00500±0.00260
𝐿HCD 13.020±2.180 5.790±1.430

Tableau 5.2 : Best fit parameters of the Ly𝛼-quasar cross-correlation function, for different
eBOSS Saclay mocks : 𝑒𝑏𝑜𝑠𝑠 − 𝑟𝑎𝑤, 𝑒𝑏𝑜𝑠𝑠 − 0.0, 𝑒𝑏𝑜𝑠𝑠 − 0.2, and 𝑒𝑏𝑜𝑠𝑠 − 0.3.

• For all scenarios, we do not recover the same 𝑏�,Ly𝛼 as what we obtained from the auto-
correlation function, even for mocks with only Ly𝛼 forests. This problem may be due to the
same reason as above : the small-scale fluctuations are not realistic enough in our mocks.
This will be discussed further below.

• The constraints on all the metal biases are 1− 2𝜎 away from the constraints obtained from
the auto-correlation function, which motivates a further investigation of the metal model.

• In our study, we fix the quasar velocity dispersion parameter as 𝜎� = 5ℎ−1Mpc, which is
poorly constrained using mocks.

In order to investigate the reason for the mismatch of Ly𝛼 biases constrained from the auto-
and cross-correlation function, I fit the cross-correlation function of 𝑒𝑏𝑜𝑠𝑠 − 0.0 mocks with
different 𝑟min = 20, 30, 40, 50ℎ−1Mpc (𝑏QSO, 𝛽QSO, and 𝜎� are fixed since they are not sensitive
to our mocks). A summary of these fits is shown in Table 5.3. It shows that a better p-value
is obtained with an increased 𝑟min. Moreover, we obtain a smaller discrepancy between the
auto and cross biases from ∼ 7𝜎 to ∼ 2.5𝜎 for 𝑏�,Ly𝛼 and 𝛽Ly𝛼 by changing 𝑟min = 20ℎ−1Mpc
to 𝑟min = 50ℎ−1Mpc. This suggests that the current Saclay mocks do not well generate the
small-scale Ly𝛼 fluctuations < 30ℎ−1Mpc (a further study of this issue is ongoing in the DESI
collaboration). This result also suggests we fix 𝑟min = 40 or 50ℎ−1Mpc for future Ly𝛼 analysis.
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Mocks eboss-0.0 eboss-0.0 eboss-0.0 eboss-0.0
Correlations LY𝛼 ×QSO LY𝛼 ×QSO LY𝛼 ×QSO LY𝛼 ×QSO

HCD Model Kaiser model Kaiser model Kaiser model Kaiser model
𝑟min 20 30 40 50
𝜒2 3341.68 3219.45 3109.32 3013.6

𝑁data 3148 3102 3030 2946
𝑁par 4 4 4 4
𝑃 0.01 0.06 0.14 0.17
𝛼 | | 0.999±0.010 0.999±0.010 0.998±0.010 0.998±0.010
𝛼⊥ 0.999±0.008 0.999±0.008 0.999±0.008 0.999±0.008

𝑏�,LY𝛼 -0.187±0.002 -0.193±0.002 -0.194±0.002 -0.196±0.003
𝛽LY𝛼 1.580±0.020 1.640±0.030 1.630±0.030 1.640±0.030

Tableau 5.3 : Best fit parameters of the Ly𝛼-quasar cross-correlation function, for 𝑒𝑏𝑜𝑠𝑠 − 0.0
mocks, with different 𝑟min = 20, 30, 40, 50ℎ−1Mpc.

5.2 Results of the Ly𝛼 data analysis

In this section, I describe the Ly𝛼 analysis on DESI EDR and eBOSS DR16 data, and compare
these results with the results obtained on mocks. In the DESI collaboration, I am one of the
main contributors of this analysis. The results for DESI EDR data are summarized in Gordon
et al. 2023.

5.2.1 Quasar catalogs
I present in this section a brief description of the quasar catalogs for both eBOSS DR16 and
DESI EDR data :

• The eBOSS DR16 quasar catalog contains a total number of 341,468 quasars with 𝑧 > 1.77
and 210,005 quasars with 𝑧 > 2.1.

• The DESI EDR catalog is obtained by running the target selection and post-observation
classification using the method introduced in section 2.2.2. It contains 147,899 quasars with
𝑧 > 1.77 and ∼ 70000 quasars with 𝑧 > 2.1.

Figure 5.2 shows the redshift distributions of these two datasets. One can find that their shapes
are similar if the distributions are normalized.

5.2.2 Measurement of correlation functions
I measure the auto- and cross-correlation function for both DESI EDR and eBOSS DR16 data,
following a similar pipeline as the one described in Section 3.11. The difference in the auto-
correlation function of these two datasets (measured by the quantity (�DESI−�DR16)√

𝜎2
DR16+𝜎2

DESI

) is shown in

the first plot of Figure 5.3, a two-dimensional plot along 𝑟| | and 𝑟⊥. The green lines give the
direction of � =

𝑟| |
|®𝑟 | = 0.5, 0.8, 0.95.One can tell from this plot that the difference between the

correlation functions at each point is homogeneous. The histogram of these differences is shown
in the upper right plot of Figure 5.3, indicating a small difference between these two correlation
functions, with a standard deviation ∼ 1𝜎.

1For eBOSS DR16 data we measured the correlation function on a log wavelength bins, while for DESI we use a linear bin.
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Figure 5.2 : Redshift distributions of quasar catalogs for the eBOSS DR16 data (blue) and the
DESI EDR data (red). The minimum redshift of quasars is 1.77. Credits : Gordon et al. 2023.

We can further quantify the data quality by using Equation 3.16, where we have Variance ≈
⟨�̂�2⟩2
𝑓 𝑁pairs . Since we have twice the number of Ly𝛼 forests in eBOSS DR16 data, we obtain finally
three times the correlation pairs than for DESI EDR data (middle-left plot of Figure 5.3). If we
further take into account the variance of each correlation (middle-right plot of Figure 5.3), the
total weighted fluctuations of all the forests can be estimated by the product of Variance ∗Npairs,
as shown in the bottom plot of Figure 5.3. This indicates that DESI EDR data is ∼ 1.9 times
noisier than eBOSS DR16 data (1.9 =

√
3.5). However, since DESI EDR data only contain one

observation for each target and the entire DESI observation will re-observe each target four times,
the final DESI correlation function should be less noisy than eBOSS data.
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Figure 5.3 : Upper left plot : difference of the Ly𝛼 auto-correlation function between DESI
EDR and eBOSS DR16 data. The quantity (�DESI−�DR16)

𝜎DR16
is used to characterize this difference.

All the correlation pairs are shown in two dimensions along 𝑟| | and 𝑟⊥. The green lines give the
direction of � =

𝑟| |
|®𝑟 | = 0.5, 0.8, 0.95. Upper right plot : the histogram of the difference of correlation

functions. Mid left plot : number of all the correlation pairs of Ly𝛼 forests for these two datasets.
Mid-right plot : variances of each correlation pair. Bottom plot : product of variance and the
number of pairs, which approximately gives the weighted mean of fluctuations of all the forests.
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Data eBOSS DR16 auto eBOSS DR16 cross eBOSS DR16 combined
Correlations LY𝛼 × LY𝛼 LY𝛼 ×QSO LY𝛼 × LY𝛼 + LY𝛼 ×QSO

DLAs masking masking masking
HCD Model Exp model Exp model Exp model

𝑁data 1590 3180 4770
𝜒2 1576.36 3219.08 4846.48
𝑁par 14 14 17
𝛼 | | 0.982±0.042 0.934±0.039 0.959±0.030
𝛼⊥ 1.051±0.032 1.060±0.032 1.052±0.023

𝑏�,LY𝛼 -0.173±0.012 -0.234±0.036 -0.193±0.006
𝛽LY𝛼 3.174±1.011 1.936±0.772 1.971±0.174
𝑏𝐹
HCD

-0.104±0.019 -0.030±0.056 -0.064±0.008
𝛽HCD 0.524±0.083 0.500±0.090 0.606±0.083

𝑏�,SiII�1260 -0.00315±0.00110 -0.00159±0.00081 -0.00197±0.00051
𝑏�,SiIII�1207 -0.00919±0.00178 -0.00159±0.00104 -0.00494±0.00055
𝑏�,SiII�1193 -0.00311±0.00087 0.00218±0.00128 -0.00111±0.00048
𝑏�,SiII�1190 -0.00435±0.00103 -0.00483±0.00128 -0.00293±0.00049
𝑏�,CIVeff -0.00500±0.00256 -0.00500±0.00256 -0.00500±0.00256
𝐿HCD 2.264±0.567 0.000±2.703 4.390±0.829
𝐴sky 0.010±0.001 0.009±0.001
𝜎sky 30.307±1.680 30.898±1.708

Δ𝑟| |,QSO(ℎ−1Mpc) 0.195±0.128 0.007±0.117
𝜎�(ℎ−1Mpc) 9.457±0.473 6.823±0.292

�TP
0 0.721±0.065

Tableau 5.4 : Best fit parameters of the Ly𝛼 auto-correlation function, the Ly𝛼-quasar cross-
correlation function, and the combined fits, for eBOSS DR16 data.

5.2.3 Results of the correlation functions

For eBOSS DR16 data, in addition to the 7 free parameters {𝛼 | |, 𝛼⊥, |𝑏�,Ly𝛼|, 𝛽Ly𝛼, |𝑏𝐹HCD |,
𝛽HCD, 𝐿HCD} used in the fits of mocks (see Section 5.1), we use 5 metal bias parameters {
𝑏�,SiII�1260, 𝑏�,SiIII�1207, 𝑏�,SiII�1193, 𝑏�,SiII�1190, 𝑏�,CIVeff} and two sky subtraction parameters
(see Section 3.2.1) {𝐴sky , 𝜎sky} for the Ly𝛼 auto correlation function, a quasar velocity parameter
𝜎� and a quasar redshift error parameter Δ𝑟| |,QSO for the cross correlation (see Section 3.2.1 and
Equation 3.29), and one more free parameter �TP

0 (see Equation 3.24) for the combined fits.
For DESI EDR data, the BAO parameters {𝛼 | | , 𝛼⊥} and the 𝑏�,C IV𝑒 𝑓 𝑓

metal bias are blinded
(before the analyses are finalized, we use strategies like adding random shifts to data to hide the
critical values of parameters from potential influence by priors). These parameters are therefore
fixed in my analysis. For their fits, 𝐴inst is used instead of 𝐴sky and 𝜎sky to characterize the sky
subtraction effect (see Equation 3.40). A free parameter 𝐴BAO is used to characterize the ampli-
tude of the BAO peak in the correlation function, using a modified formula of Equation 3.21 :

�(𝑟| | , 𝑟⊥ , 𝛼 | | , 𝛼⊥) = �smooth(𝑟| | , 𝑟⊥) + 𝐴BAO�peak(𝑟| |𝛼 | | , 𝑟⊥𝛼⊥). (5.1)

I present in Figure 5.4 the measurement and best-fit models of the Ly𝛼 auto- and cross-
correlation functions, for the eBOSS DR16 and DESI EDR data. One can tell from the plots
that the errors of DESI EDR correlations are larger than those of the eBOSS DR16 since it only
contains about half the number of quasars. The BAO peak can be seen at ∼ 100ℎ−1Mpc in both
datasets, for both the auto- and cross-correlation functions.
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Figure 5.4 : Ly𝛼 auto-correlation function (top four panels) and Ly𝛼-quasar cross-correlation
(bottom four panels), for eBOSS DR16 (black) and DESI EDR data (red), with pixels in the
Ly𝛼 region. The correlations are multiplied by 𝑟2 to better see the BAO scale. The solid curves
show the best-fit models (using the Exp model for HCDs), in four wedges of |�| = | 𝑟| |𝑟 |. The fitted
range is chosen as 𝑟 ∈ [10, 180]ℎ−1Mpc (note that the strategy of using a higher value of 𝑟min is
not applied yet).
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Data DESI EDR auto DESI EDR cross DESI EDR combine
Correlations LY𝛼 × LY𝛼 LY𝛼 ×QSO LY𝛼 × LY𝛼 + LY𝛼 ×QSO

DLAs masking masking masking
HCD Model Exp model Exp model Exp model

𝑁data 1590 3180 4770
𝜒2 1659.16 3205.02 4877.08
𝑁par 11 13 14
𝛼 | | 1.0 1.0 1.0
𝛼⊥ 1.0 1.0 1.0

𝑏�,LY𝛼 -0.207±0.013 -0.171±0.015 -0.200±0.007
𝛽LY𝛼 1.968±0.472 1.329±0.176 1.540±0.165
𝑏𝐹
HCD

-0.045±0.022 -0.030±0.008 -0.025±0.009
𝛽HCD 0.496±0.085 0.500±0.089 0.496±0.088

𝑏�,SiII�1260 -0.00236±0.00139 -0.00253±0.00114 -0.00225±0.00082
𝑏�,SiIII�1207 -0.00489±0.00159 -0.00298±0.00134 -0.00359±0.00090
𝑏�,SiII�1193 -0.00087±0.00098 -0.00000±0.00085 -0.00000±0.00094
𝑏�,SiII�1190 -0.00349±0.00106 -0.00150±0.00114 -0.00272±0.00073
𝐿HCD 4.447±3.553 6.656±4.529 5.997±3.326

Δ𝑟| |,QSO(ℎ−1Mpc) -2.278±0.162 -2.303±0.186
𝜎�(ℎ−1Mpc) 4.848±0.581 5.849±0.504

�TP
0 0.993±0.111

𝐴BAO 1.672±0.477 0.924±0.402 1.194±0.306
𝐴inst 0.000±0.002 0.000±0.002 0.000±0.002

Tableau 5.5 : Best fit parameters of the Ly𝛼 auto-correlation function, the Ly𝛼-quasar cross-
correlation function, and the combined fits, for DESI EDR data.
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The fits for the auto- and cross-correlations, as well as their combined correlation (fit of the
auto- and cross-correlation at the same time, using a combined likelihood), are shown in Table 5.4
for eBOSS DR16 data, and Table 5.5 for DESI EDR data. One can tell from these results that :

• The combined fit gives tighter constraints on the parameters that are used in both the auto-
and cross-correlation. It helps especially in constraining all the bias parameters, except the
C IVeff bias. Because of this, we prefer to fix the value of 𝑏�,C IV(eff) for the fit of DESI
EDR data.

• Both the auto- and cross-correlation can be used to constrain the BAO parameters, 𝛼 | | and
𝛼⊥. The combination of these two correlations gives tighter constraints.

• The ratio of 𝑏𝐹HCD/𝑏�,Ly𝛼 is ∼ 70% for the auto-correlation and ∼ 30% for the combined
correlation, which is much larger than what we detect in mocks ∼ 10% (see Table 6.4).
This might be due to various reasons : HCDs are not inserted into the mocks in the
way that they distribute in the universe ; the modeling of the HCD bias is not accurate
enough, and it captures something else than HCDs in real data. Moreover, for both datasets,
the cross-correlation hardly constrain 𝛽HCD and 𝐿HCD. In all scenarios, 𝛽HCD is not well
constrained (dominated by priors for both datasets). The best value for 𝐿HCD of eBOSS data
is ∼ 2 − 4ℎ−1Mpc, which is several sigmas away from the value in mocks (see Table 6.4).
These values of 𝐿HCD is smaller than the bin size of the measured correlation function
4ℎ−1Mpc, meaning that the HCD modeling is modeling something else than HCDs.

• These two datasets give comparable 𝜒2 and constrained values of |𝑏�,Ly𝛼| and 𝛽LY𝛼 within
several sigmas. Moreover, we do not apply the sky subtraction in DESI data, while a new
parameter 𝐴BAO is used to characterize the amplitude of the correlation function. A further
comparison of the same parameter constraints is investigated in the next Section.

5.2.4 Correlation between parameters
In order to visualize the constraints and correlations on the fitted parameters, I investigate the
parameter inference by performing Gaussian likelihood with Gaussian distributed parameters.
This approach does not give the true posteriors of these parameters that can be determined by
performing Markov chain Monte Carlo (MCMC) simulations, but it is helpful to understand their
correlations. The correlation 𝜌 between two parameters A and B is computed by :

𝜌A,B =
𝑐𝑜𝑣(A,B)
𝜎A𝜎B

, (5.2)

where 𝑐𝑜𝑣(A,B) stands for the covariance between these two parameters, 𝜎A and 𝜎B are the
standard deviations for A and B. 𝑐𝑜𝑣(A,B) is defined as :

E = [(A − �A)(B − �B)]. (5.3)

Here �A , �B are the means and E is the expectation value.
I present triangle plots (which show a series of sub-plots for all the parameters) for eBOSS

DR16 data in Figure 5.5 and for DESI EDR data in Figure 5.6. From these plots, we draw the
following conclusions :

• The BAO parameters, 𝛼 | | and 𝛼⊥, are not correlated with other Ly𝛼 parameters, seen from
Figure 5.5. This is good, since we do not want to have these parameters correlated with
other systematic effects.
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• |𝑏�,Ly𝛼 | is anti-correlated with |𝑏𝐹HCD |, suggesting that the sum of these biases determines
the total bias. However, it is not strongly anti-correlated with other metal biases. It is also
anti-correlated with 𝛽Ly𝛼, which suggests that we need to investigate a better combination
of parameters to determine the monopole and quadrupole of the correlation function. This
is further discussed in Section 6.2.

• From the auto-correlation, 𝐿HCD is strongly correlated with |𝑏𝐹HCD |, indicating that what
matters is the product of these two parameters. A better model needs to be investigated,
and I will describe this study in Section 6.2.

• For eBOSS DR16 data, all metal bias parameters, except 𝑏�,C IV(eff), are strongly correlated
with each other. Moreover, they are also correlated with |𝑏�,Ly𝛼 |. It motivates the search
for better models for metals.

• For DESI EDR data, 𝛽Ly𝛼 is strongly correlated with |𝑏HCD |, and 𝛽HCD is not well constrai-
ned. This might be due to the limitation of the Exp HCD model (see Equation 6.22), and
an improved result using the Voigt model will be presented in Section 6.2. 𝑏�,SiII�1193 is
not well constrained by the cross-correlation and thus should be fixed.

• For both eBOSS and DESI fits, contours from the auto- and cross-correlation overlap in
most cases, which allow meaningful combined constraints to be derived.

To investigate further the comparison between the two datasets, I fix the BAO parameters
𝛼 | | = 𝛼⊥ = 1, and 𝑏�,C IV(eff), while using 𝐴BAO for both datasets. This comparison is shown
in Figure 5.7. One can tell from the plots that the two datasets agree on the correlations and
constraints on most parameters. The exception is 𝑏HCD and 𝛽Ly𝛼 where the two datasets are 2𝜎s
away using combined fits. These two parameters are also strongly correlated with each other. To
break this degeneracy, a new HCD model is developed, and a less correlated parametrization is
proposed in the next chapter.
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Figure 5.5 : Triangle plot for the Ly𝛼 parameters constraints {𝛼 | |, 𝛼⊥, |𝑏�,LY𝛼|, 𝛽LY𝛼, |𝑏𝐹HCD |,
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(blue), with eBOSS DR16 data.
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I fixed the BAO parameters.
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5.3 Masking DLAs

As will be introduced in Section 6.1, large DLAs with log(𝑁HI) > 20.3cm−2 can be detected
by machine learning algorithms. Since we can not fully model the HCD impact with analytical
formulas, masking the DLA pixels is an efficient way to minimize their effect. In this section, I
discuss the impact of masking DLAs on the Ly𝛼 auto-correlation function. Three datasets are
used for comparison in this study : DESI EDR data, eBOSS DR16 data, and 𝑒𝑏𝑜𝑠𝑠 − 0.2 mocks.
Note that for DESI and DR16 data, I am using the DLA catalogs described in Section 6.1.3.
For mocks, the true catalog of inserted HCDs is used for masking. This comparison is shown
in Figure 5.8, and the associated fits are summarized in Table 5.6. In Figure 5.8, the quantity
(�wDLAmasking − �woutDLAmasking)/𝜎woutDLAmasking is used to characterize the difference between
correlation functions computed with or without DLA masking. This is shown as two-dimensional
plots along 𝑟| | and 𝑟⊥. One can tell from the plots that :

• The impact of masking DLAs is mainly along the line-of-sight when 40ℎ−1Mpc < 𝑟| | <
100ℎ−1Mpc, and in transverse direction when 𝑟⊥ < 40ℎ−1Mpc. The small-scale impact is
weaker since we fit from 𝑟min = 10ℎ−1Mpc.

• The correlation function for DESI EDR data is the least affected by DLA masking, with
the smallest standard deviation for the characteristic quantity. Mocks are most affected by
this effect, since we are using a true DLA catalog. The insertion of HCDs into mocks could
also bias this study since they are uniformly randomly located in the possible peaks of the
matter density field (see Section 4.1.1). This effect can be further investigated in a future
analysis.

• For these three samples, masking or not masking DLAs do not change significantly the
results : for every parameter, the results in the two options are within 1 sigma. However,
for eBOSS DR16 data, both cases provide constraints on 𝐿HCD smaller than the bin size
(4ℎ−1Mpc) of the measured correlation function, meaning that the HCD model is modeling
something else than HCDs. This suggests a better modeling of HCDs, which I will describe
in the next chapter.
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Data eboss-0.2 eboss-0.2 eBOSS DR16 eBOSS DR16 DESI EDR DESI EDR
Correlations LY𝛼 × LY𝛼 LY𝛼 × LY𝛼 LY𝛼 × LY𝛼 LY𝛼 × LY𝛼 LY𝛼 × LY𝛼 LY𝛼 × LY𝛼

DLAs masking no masking masking no masking masking no masking
HCD Model Exp model Exp model Exp model Exp model Exp model Exp model

𝜒2 1523.56 1533.46 1576.22 1594.96 1659.04 1709.72
𝑁data 1574 1574 1590 1590 1590 1590
𝑁par 7 7 14 14 12 12
𝑃 0.78 0.72 0.49 0.36 0.08 0.01
𝛼 | | 0.980±0.014 0.984±0.015 0.981±0.042 0.974±0.044 1.000 1.000
𝛼⊥ 1.006±0.009 1.003±0.009 1.048±0.034 1.042±0.034 1.000 1.000

𝑏�,LY𝛼 -0.204±0.002 -0.208±0.002 -0.175±0.013 -0.173±0.013 -0.183±0.014 -0.194±0.013
𝛽LY𝛼 1.670±0.020 1.580±0.050 3.230±1.260 5.250±3.290 1.590±0.340 1.870±0.410
𝑏𝐹
HCD

-0.019±0.001 -0.026±0.004 -0.105±0.022 -0.139±0.020 -0.063±0.020 -0.043±0.021
𝛽HCD 0.470±0.090 0.480±0.090 0.530±0.080 0.510±0.080 0.510±0.090 0.510±0.090

𝑏�,SiII�1260 -0.00316±0.00116 -0.00342±0.00140 -0.00342±0.00140 -0.00338±0.00144
𝑏�,SiIII�1207 -0.00932±0.00204 -0.01046±0.00249 -0.00501±0.00169 -0.00510±0.00176
𝑏�,SiII�1193 -0.00315±0.00093 -0.00309±0.00100 -0.00215±0.00110 -0.00322±0.00128
𝑏�,SiII�1190 -0.00440±0.00112 -0.00490±0.00127 -0.00358±0.00120 -0.00271±0.00128
𝑏�,CIVeff -0.00513±0.00262 -0.00503±0.00260 -0.00511±0.00263 -0.00497±0.00259
𝐿HCD 2.290±0.750 9.480±2.570 2.280±0.630 2.590±0.520 5.180±3.330 4.350±3.660

Tableau 5.6 : Best fit parameters of the Ly𝛼 auto-correlation function, for 𝑒𝑏𝑜𝑠𝑠 − 0.2 mocks,
eBOSS DR16 data, and DESI EDR data, with or without DLAs masking.

5.4 Summary and prospects

In this chapter, I measured the correlation functions for different mocks and data (eBOSS DR16
and DESI EDR) using the analysis pipeline described in Section 3.1.1 and fitted them with the
model introduced in Section 3.2.

The results of the auto-correlation functions of the simplest mocks, i.e., 𝑒𝑏𝑜𝑠𝑠 − 𝑟𝑎𝑤 and
𝑒𝑏𝑜𝑠𝑠 − 0.0 mocks, show a successful validation of the Ly𝛼 analysis pipeline, with good 𝜒2

and parameter constraints. However, taking into account astrophysical contaminants (HCDs and
metals) yields worse 𝜒2 and strong correlations between parameters. This motivates the search
for better models of HCDs (see the next chapter) and metals.

For the cross-correlation functions of mocks, I found a significant discrepancy comparing the
constraints on 𝑏�,Ly𝛼 and 𝛽Ly𝛼 with the values obtained using the auto-correlation functions.
This might be due to the unrealistic construction of small-scale Ly𝛼 fluctuations or the quasar
non-linear velocities. To minimize this impact, I tested several cuts on 𝑟min and suggested to fix
𝑟min = 40ℎ−1Mpc for future analysis.

I presented a preliminary comparison of DESI EDR and eBOSS DR16 Ly𝛼 analysis. Compa-
rable 𝜒2 and similar parameter correlations were found between their fits. The DESI EDR data
show encouraging data quality and the need for more systematic studies to prepare the upcoming
enormous DESI dataset.

In the next chapter, I will present an analysis of HCDs, one of the most important systematic
effects of Ly𝛼 BAO. I will introduce a new model, the so-called Voigt model, to better characte-
rize this effect, solve the current puzzles that we met using mocks, and prepare for future DESI
analysis.
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Chapitre 6

Detection and modeling of the High
Column Density systems

In this chapter, I will describe the most important contribution of this thesis to the DESI Ly𝛼 col-
laboration : the analysis of High Column Density systems (hereafter HCDs), one of the most im-
portant systematic effects for Ly𝛼 forests BAO (McDonald, Seljak, Cen, Bode et Ostriker
2005 ; Viel, Haehnelt, R. Carswell et T.-S. Kim 2004 ; Font-Ribera et Miralda-Escudé
2012 ; Rogers, Bird, Peiris, Pontzen, Font-Ribera et Leistedt 2018b). As described in
Section 1.2.4, HCDs are dense concentrated gas regions in IGM, with Neutral Hydrogen (hereafter
HI) column densities 𝑁HI > 1017.2cm−2. Large HCDs with 𝑁HI > 1020.3cm−2 are called Damped
Ly𝛼 systems (DLAs, see Section 3.2.2), which show strong absorption features in quasar spectra
with broad wings. These DLAs are thus detectable by visual inspection, model-driven fitting
(e.g., Voigt profile fitting (J. X. Prochaska, Herbert-Fort et Wolfe 2005 ; Noterdaeme,
Petitjean, Ledoux et Srianand 2009 ; Noterdaeme, Petitjean, Carithers et al. 2012)),
or data-driven machine-learning algorithms (Parks, J. X. Prochaska, Dong et Cai 2018 ;
Garnett, S. Ho, Bird et J. Schneider 2017 ; Fumagalli, Fotopoulou et Thomson 2020 ;
Chabanier, Etourneau et al. 2022 ; Wang et al. 2022 ; Jiaqi et al. in preparation). I describe
two machine learning DLA finders : the CNN DLA finder (Parks, J. X. Prochaska, Dong et
Cai 2018) and Gaussian Processes DLA finder (M.-F. Ho, Bird et Garnett 2021) and their
comparison in Section 6.1. A combination of these two finders is applied to construct the DESI
DLA catalog (Jiaqi et al. in preparation), and I will further compare this catalog with the eBOSS
DR16 DLA catalog (Chabanier, Etourneau et al. 2022).

The damping wings of the HCD absorption profile (see details in Section 1.2.4) will result in
a suppression on the Ly𝛼 forest power spectrum along the line-of-sight at 0.01 < 𝑘 | | < 1ℎMpc−1,
and a broadband impact on the correlation function. The modeling of this impact is essential,
in order to determine the correct Ly𝛼 biases and RSD parameters. Different phenomenological
models were used in the previous analyses, such as the Sinc model for DR14 (de Sainte Agathe
et al. 2019a) and the Exp model for DR16 (Des Bourboux, Rich et al. 2020) analyses. However,
these models failed to give a good fitting for Ly𝛼 forests with HCDs, and do not provide a clear
physical understanding of the HCD bias. [During my thesis, I have developed a three-
parameter empirical fitting function, the 𝐿𝛽𝛾 model, to characterize the damping
effect of HCDs on the Ly𝛼 correlation function and power spectrum.] This model
shows no difference with the Exp model when applied to eBOSS Saclay mocks with HCDs,
while showing encouraging improvement when applied to eBOSS DR16 data in the range of
20ℎ−1Mpc < 𝑟 < 80ℎ−1Mpc. This suggests that the 𝐿𝛽𝛾 model is probably modeling an effect
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beyond HCDs, which has a non-negligible impact on the Ly𝛼 correlations.
[I further developed a theoretical model, which I call the Voigt model, based

on the Voigt absorption profile that parametrizes the damping wings of HCDs, and
takes into account the HI column density probability distribution of HCDs.] It has no
additional free parameters, providing a physical measurement of the bias and RSD parameters
of HCDs, as well as a good constraint on the Ly𝛼 parameters. The simplified formula of this
model was inspired by Font-Ribera et Miralda-Escudé 2012 and was proposed in Rogers,
Bird, Peiris, Pontzen, Font-Ribera et Leistedt 2018a without analytical derivation and
normalization information of HCD halo bias. My contribution to this model allows the physi-
cal measurement of both Ly𝛼 and HCD parameters and further consideration of higher-order
correlations. The good performance of this model on both mocks and data suggests its further
implementation for future DESI analyses. Some extended studies could also be carried out with
this model, such as the HCD impact on the Alcock-Paczyński effect (see Section 1).

6.1 Detection of DLAs

With the enormous number of Ly𝛼 forests observed by current or future large cosmology surveys
(e.g., eBOSS/DESI), it is not possible to visually inspect all quasar spectra and construct DLA
catalogs artificially. Moreover, absorption profiles of small HCDs can hardly be distinguished
from Ly𝛼 absorptions. It is therefore essential to develop automatic and accurate algorithms to
construct DLA catalogs. In this section, I describe explicitly a traditional fitting algorithm (the
Voigt profile fitting), and two machine learning algorithms (CNN and Gaussian Processes), that
were used in the eBOSS DR16 analysis (Chabanier, Etourneau et al. 2022), and will be used
for future DESI data (Wang et al. 2022 ; Jiaqi et al. in preparation).

During my thesis, I contributed to the comparison of the eBOSS DR16 and DESI EDR
DLA catalogs (built using a combination of the CNN and Gaussian Processes algorithms, see
description below), and also worked on the development of a Bayesian-based CNN algorithm.
This new algorithm is still under study and a preliminary result was presented at the IAP
Colloquium 2021 (Ting Tan et Balland 2021). The progress of this study is not included in
this thesis.

6.1.1 Voigt profile fitting

In astrophysics and absorption spectroscopy, fitting observed spectral lines using Voigt profiles
was used as a common tool Sundius 1973, which determines the absorption lines as a product of
Gaussian profiles (for Doppler shift) and Lorentzian profiles (for collisions of atoms). The good
resolution of the SDSS/DESI spectra has made it possible to classify DLA systems and measure
their 𝑁HI using automatic algorithms such as the voigt profile fitting. The voigt profile fitting
algorithm for DLAs was developed in (J. X. Prochaska et Herbert-Fort 2004), and further
applied to SDSS data (J. X. Prochaska, Herbert-Fort et Wolfe 2005 ; Noterdaeme,
Petitjean, Ledoux et Srianand 2009 ; Noterdaeme, Petitjean, Carithers et al. 2012).
To find a DLA, it estimates the median signal-to-noise ratio (SNR) of the quasar spectrum
(SNRQSO) using a characteristic window of 150 pixels starting from 51-200 pixels blueward (to
get rid of the high SNR peak) of the Ly𝛼 peak. For quasars with lower redshifts where the Ly𝛼
peak lies at less than 200 pixels from the start of the spectrum, SNRQSO is calculated as the
median SNR of the 150 pixels starting from 50 pixels redward of the Ly𝛼 peak. A characteristic
quantity SNRDLA = SNRQSO/2.5 is then defined to set the threshold of absorption to find a DLA
(2.5 is an empirical choice). For each pixel 𝑗 in the quasar spectrum, a sliding window of 6(1+ 𝑧 𝑗)
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pixels is used to measure the relevant SNRQSO,𝑗 in this window range, where 𝑧 𝑗 = � 𝑗/𝑧Ly𝛼 − 1.
This redshift-dependant sliding window is chosen to match the width of the DLA central region,
where SNRQSO,𝑗 < SNRDLA. This algorithm was trained and tested on synthetic quasar spectra
with resolution and SNR similar to SDSS data, and reached a completeness of 100% for DLAs
with 𝑁HI > 1020.4cm−2. However, the purity of this method is limited by many false positive
classifications, with a lot of BAL quasars or HCDs blended with absorption lines from Ly𝛼
clouds.

To estimate the 𝑁HI of the found DLAs, a Voigt Profile (see Section 6.2.3) is used to fit
the absorptions. Figure 1.10 shows an example of the Voigt profile fitting for a DLA with an
estimated 𝑙𝑜𝑔𝑁HI = 22.0±0.1 (J. X. Prochaska et Herbert-Fort 2004), where the uncertainty
is obtained as the 95% confidence level interval.

This Voigt-profile fitting algorithm gives an accurate estimation of DLA redshift and column
densities. However, it is strongly affected and limited by the SNR of quasar spectra. Its comple-
teness and purity drop quickly for low SNR quasar spectra, thus not applicable for large datasets
such as eBOSS data and DESI data (that has a large number of low SNR quasar spectra).

6.1.2 Machine learning approaches

In this section I will describe the machine learning methods that have been applied as an alter-
native method to Voigt profile fitting for the classification of DLAs, as well as the investigation
of further potential methods.

Figure 6.1 : The upper plot shows the sliding window of the CNN that slashes the quasar
spectrum into pieces with equal length. The lower plot shows the multi-class labels, which define
the location of redshifts (location of each pixel in the range [-60,60] compared to the DLA center),
𝑁HI (0 or the value of logNHI), and the existence of DLAs (0 or 1 for classification), respectively
(Parks, J. X. Prochaska, Dong et Cai 2018).
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Figure 6.2 : Structure of the CNN used in (Parks, J. X. Prochaska, Dong et Cai 2018),
which treats the quasar spectra as one-dimensional images, and performs multi-classifications
including 𝑧, 𝑁HI, and the existence of DLAs.
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Convolutional neural networks

With the rapid increase of survey size and quasar catalog, visual inspection and Voigt profile
fitting can no longer fulfill the requirements of precise estimation of both 𝑧, 𝑁HI, and the exis-
tence of DLAs. The use of convolutional neural networks (CNN), was proposed to investigate
the detection of DLAs (Parks, J. X. Prochaska, Dong et Cai 2018). CNN has been widely
used in cognition and classification tasks in imaging processing and time series data (Albawi,
Mohammed et Al-Zawi 2017). Since quasar spectra can be seen as one-dimensional imaging
data and DLAs can be detected with regular shapes and lengths, CNN is an excellent candi-
date for the classification of DLAs and the estimation of their physical parameters, e.g., 𝑁HI
and 𝑧DLA. Moreover, CNN is also known as Shift Invariant or Space Invariant Artificial Neural
Networks (SIANN), where its convolution kernels capture equivalent information from each sub-
samples along the translation direction. This allows CNN to detect patterns with different space
translations, and thus is capable of estimating the redshifts of DLAs. However, CNN usually
requires the input spectra to have equal lengths, which is not the case for Ly𝛼 forests. Therefore,
each quasar spectrum is slashed into a series of spectra pieces with equal length. This slashing
is realized by using a sliding window of 400 pixels (to cover the wings of DLAs), and starting
from each pixel of the spectrum (see the top plot in Figure 6.1). Eventually, this preprocessing
step plays the same role as an additional convolutional layer, but with more precise labels of the
physical parameters (𝑧 and 𝑁HI) for each slashed spectrum piece.

Figure 6.1 shows the details of the sliding window and the label definition used in (Parks,
J. X. Prochaska, Dong et Cai 2018). A sliding window of 400 pixels is chosen to cover the
DLA range in the Ly𝛼 forest, and a label of 120 pixels ([−60, 60]) is used to find the center of
DLAs. Inside the DLA center pixel range, a 𝑁HI value and a boolean value are defined to estimate
the 𝑁HI and the existence of DLAs. For each line-of-sight, i.e. each quasar spectrum, the sliding
window analyzes the rest-frame wavelength range �rf ∈ [900, 1346]Å. In eBOSS DR16 data, this
yields 1748 pixels for each line-of-sight, and a 1348 × 400 data matrix for each spectrum (each
spectrum is sliced 1348 times, each with 400 pixels). The optimized structure of the CNN used in
(Parks, J. X. Prochaska, Dong et Cai 2018) is shown in Figure 6.2, with three convolutional
layers (convoluting the data vector into high-dimensional parameter space), three pooling layers
(down-sampling the high-dimensional parameters in order to capture the characteristic features),
and several connected layers (making decisions according to these parameters and characteristic
features).

In order to evaluate the performance for these multi-task classifications, a cross-entropy loss
function (a function to quantify the misclassification of an algorithm) is defined to optimize the
learning process. It consists of three sub loss functions relevant to classification (existence of
DLAs), localization (𝑧), and column density estimation (𝑁HI) as follows :

ℒTotal = ℒc + ℒz + ℒn. (6.1)

ℒc is defined as the standard cross-entropy loss function, used for the classification of DLAs,

ℒc = −𝑦𝑐 𝑙𝑜𝑔(�̂�𝑐) − (1 − 𝑦𝑐)𝑙𝑜𝑔(1 − �̂�𝑐). (6.2)

Here 𝑦𝑐 is the ground truth label : 𝑦𝑐 = 0 means no DLA and 𝑦𝑐 = 1 means the existence of a
DLA. �̂�𝑐 is the model prediction for the classification in the range of (0,1), which is also called
the confidence level. A critical value 𝐶min is used to determine the classification of DLAs, where
�̂�𝑐 < 𝐶min indicates a negative DLA classification, and �̂�𝑐 > 𝐶min yields a positive classification.
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The localization loss function is defined as a standard square error term :

ℒz = (𝑦𝑧 − �̂�𝑧)2 , (6.3)

where 𝑦𝑧 stands for the ground truth label with 𝑦𝑧 ∈ (−60, 60), and �̂�𝑧 is the model prediction.
The loss function for 𝑁HI is designed for 𝑙𝑜𝑔(𝑁HI), and in the form of a square error term :

ℒn = ( 𝑦𝑐

𝑦𝑐 + 𝜖
)(𝑦𝑛 − �̂�𝑛)2 , (6.4)

where 𝑦𝑛 stands for the ground truth label for 𝑙𝑜𝑔(𝑁HI) with 𝑦𝑛 ∈ (19.5, 22.5) when 𝑦𝑐 = 1,
and 𝑦𝑛 = 0 when 𝑦𝑐 = 0. 𝜖 is a small value to ensure that the ratio 𝑦𝑐

𝑦𝑐+𝜖 = 1 when 𝑦𝑐 → 1 and
𝑦𝑐
𝑦𝑐+𝜖 = 0 when 𝑦𝑐 → 0.

In practice, the classification loss function ℒc is not used since the localization task can
already provide a good result. Finally, a confusion matrix (see Table 2.1) is built based on model
prediction and ground truth labels to justify the classification results. The overall classification
efficiency is then defined by purity and completeness, as defined in Equation 2.1.

Figure 6.3 : The purity and completeness of the CNN classification for DLAs on DESI-Y1 mock
spectra (Wang et al. 2022). The critical value 𝐶min for the confidence level is chosen as 0.5.

The CNN DLA finder was developed in (Parks, J. X. Prochaska, Dong et Cai 2018) and
used to construct the eBOSS DR16 DLA calatog (Chabanier, Etourneau et al. 2022). It was
then re-trained and tested for the DESI collaboration using DESI-Y1 mock spectra (Wang et al.
2022). The results of classification using these mocks are presented in Figure 6.3. These results
are based on test samples with different HCD column densities (𝑙𝑜𝑔(𝑁HI)) and the signal-to-
noise-ratio S/N of quasar spectra. The estimation of 𝑁HI and 𝑧 are also shown in Figure 6.4. The
critical value 𝐶min for the confidence level is chosen as 0.5, in order to balance the purity and
completeness. The results show that the model works with desirable efficiency for most of the
DLAs with 20cm−2 < 𝑙𝑜𝑔(𝑁HI) < 22.5cm−2, and 3 < S/N. It also achieves good performance for
the estimation of 𝑁HI and 𝑧 with standard deviations of the estimated errors of 𝜎Δ𝑧 = 0.002 and
𝜎Δ𝑁HI = 0.17. However, for low S/N quasar spectra and HCDs with lower 𝑁HI, the absorption
due to HCDs are mixed with Ly𝛼 forests, thus are difficult to classify.
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Figure 6.4 : The estimation of 𝑁HI and 𝑧 of the CNN model for DLAs on DESI-Y1 mock
spectra, using test sample chosen with S/N > 3 and 𝑙𝑜𝑔(𝑁HI) > 20.0cm−2 (Wang et al. 2022).
The critical value 𝐶min for the confidence level is chosen as 0.5.

Gaussian processes

Another DLA finder based on Bayesian model selection with Gaussian processes (GP) was pro-
posed in (Garnett, S. Ho, Bird et J. Schneider 2017 ; M.-F. Ho, Bird et Garnett 2020)
and applied to the eBOSS DR16 data (M.-F. Ho, Bird et Garnett 2021). In this section,
I will describe briefly the revised version of this algorithm introduced in (M.-F. Ho, Bird et
Garnett 2021). The observation data for each quasar spectrum can be defined as 𝒟 = (�, y),
where � = �obs/(1 + 𝑧QSO) stands for the wavelength vector in the rest frame, and y refers to
the associated observed flux vector. Suppose that a set of models ℳ𝑖 can be applied to different
scenarios of the quasar spectra, e.g., no DLAs, one or more DLAs, etc. The posterior probability
of a model ℳ, can be evaluated as a fraction of the sum of the posterior probabilities of all
models, based on Bayesian theory :

Posterior(ℳ|𝒟) = 𝑝(𝒟|ℳ)Prior(ℳ)∑
𝑖 𝑝(𝒟|ℳ𝑖)Prior(ℳ𝑖)

, (6.5)

where 𝑝(𝒟|ℳ) is the model evidence of the observed data 𝒟 given model ℳ, Prior(ℳ) is the
prior probability of model ℳ, and subscripts 𝑖 denote the model evidence or prior for each
scenario. In practice, several models were developed for scenarios with null DLAs (ℳ0 DLA),
with 1-4 DLAs (ℳDLA(𝑖)

4
𝑖=1

), and the model with sub-DLAs (ℳsub, sub-DLAs have 19.5cm−2 ≤
log(𝑁HI) ≤ 20.0cm−2).

For each quasar spectrum, the observed data 𝒟′ with instrumental noise � and quasar redshift
𝑧QSO can be defined as 𝒟′ = (�, y, �, 𝑧QSO). A likelihood based on a Gaussian process can then
be introduced to describe the probability of this data given all observation quantities :

𝑝(y|�, �, 𝑧QSO ,ℳ𝑖) = 𝒩(y;�,Σ,ℳ𝑖), (6.6)

where � is the mean and Σ is the covariance matrix of the Gaussian process, which takes into
account the covariances of instrumental noise and correlations between different spectrum pixels,
etc. The probability for different models ℳ𝑖 can be further derived by integrating their different
associated nuisance parameters. The model evidence (probability) of the null model (only Ly𝛼
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forests and no DLAs) can be defined as

𝑝(𝒟|ℳ0 DLA , �, 𝑧QSO) ∝ 𝑝(y|�, �, 𝑧QSO ,ℳ0 DLA)

=

∫
𝑝(y|�, �, 𝑧QSO , �,ℳ0 DLA)𝑝(�)𝑑�,

(6.7)

where � refers to all the associated nuisance parameters such as the parameters related to the
redshift dependence of the Ly𝛼 forests (details see (M.-F. Ho, Bird et Garnett 2021)), and
𝑝(�) is the prior probability of these parameters.

Based on the GP null model, the likelihood of other DLA models can be derived by applying
Voigt profiles (see Section 6.2.3) in addition to the null model probability. According to Equa-
tion 6.7, the model evidence of GP DLA models can be built with an extra integration of the DLA
nuisance parameters (�DLA={𝑧DLA, NHI}) and Voigt profile parameters �Voigt (see Section 6.2.3
and details in M.-F. Ho, Bird et Garnett 2021), i.e.,

𝑝(y|�, �, 𝑧QSO ,ℳDLA) =
∫

𝑝(y|�, �, 𝑧QSO , �DLA ,ℳ0 DLA)𝑝(�DLA |𝑧QSO ,ℳDLA)𝑑�DLA , (6.8)

where

𝑝(�DLA |𝑧QSO ,ℳDLA) =
∫

𝑝(𝑧DLA |𝑧QSO , �Voigt ,ℳDLA)𝑝(NHI |�Voigt ,ℳDLA)𝑑�Voigt. (6.9)

These probability functions (note that these posterior probabilities are different from the confi-
dence level of the CNN finder) can then be applied to quasar spectra and associated DLA
catalogs can be constructed. This GP DLA finder was applied for the DR12 and DR16 DLA
catalogs (Garnett, S. Ho, Bird et J. Schneider 2017 ; M.-F. Ho, Bird et Garnett 2020 ;
M.-F. Ho, Bird et Garnett 2021). It was also tested using DESI-Y1 mock spectra (Wang
et al. 2022) and implemented for future DESI data. The results of classification are presented in
Figure 6.5, with the same test sample used for the CNN finder, and with 𝑙𝑜𝑔(𝑁HI) > 20.0cm−2

since the GP model is trained only on these DLAs. It shows an overall good performance of both
purity and completeness on most DLA samples. However, the performance drops significantly
for DLAs with lower 𝑁HI and lower S/N, the same as the CNN DLA finder. The estimation of
𝑁HI and 𝑧 are shown in Figure 6.6. It achieves good performance for the estimation of 𝑁HI and
𝑧 with standard deviations of the estimation errors of 𝜎Δ𝑧 = 0.0016 and 𝜎Δ𝑁HI = 0.1284.

The comparison between these two models suggests that for a range of 20.0cm−2 < 𝑙𝑜𝑔(𝑁HI) <
22.5cm−2, the CNN finder yields a better purity and completeness, while the GP finder gives a
better estimation of 𝑁HI and 𝑧. However, the GP finder gives better purity on low S/N samples
with S/N < 3. A combination of both models is then implemented for the construction of the
DESI DLA catalog (see Section 6.1.3). A more direct comparison of these two finders using the
eBOSS DR16 data was also performed in (M.-F. Ho, Bird et Garnett 2021) as shown in
Table 6.1. It turns out that these two models have a significant disagreement in the classification
of DLAs, which needs to be improved in the future.

6.1.3 DLA catalogs

In this section I describe the DLA catalogs built with the above algorithms, using the eBOSS
DR16 data and the DESI data.
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Figure 6.5 : The purity and completeness of the GP model classification for DLAs on DESI-Y1
mock spectra (Wang et al. 2022). The test sample is chosen with 𝑙𝑜𝑔(𝑁HI) > 20.0cm−2 since the
GP model is trained only on these DLAs.

Figure 6.6 : The estimation of 𝑁HI and 𝑧 from the GP model for DLAs on DESI-Y1 mock
spectra (Wang et al. 2022). The test sample is chosen with S/N > 3 and 𝑙𝑜𝑔(𝑁HI) > 20.0cm−2.
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GP finder
CNN finder 0 DLA 1 DLA 2 DLA 3 DLA

0 DLA 142759 5686 93 2
1 DLA 2397 8007 208 1
2 DLA 117 234 333 5
3 DLA 8 6 11 4

Tableau 6.1 : Confusion Matrix of the comparison between the CNN DLA finder and the GP
DLA finder, using the eBOSS DR16 dataset with 20.3cm−2 < 𝑙𝑜𝑔(𝑁HI). The number 0, 1, 2, 3
denotes the number of DLAs detected for one Ly𝛼 forest. The confidence level of the CNN and
posterior probability of GP are both chosen > 0.98. Credits : M.-F. Ho, Bird et Garnett 2021.

The eBOSS DR16 DLA catalog

The standard DLA catalog used in the eBOSS DR16 Ly𝛼 analysis was built with the CNN
algorithm described in Section 6.1.2 (Chabanier, Etourneau et al. 2022). A total number of
176, 807 HCDs absorbers were found with 𝑧DLA ⩾ 2 within 112, 155 sightlines collected from
263, 201 DR16 quasar spectra, described in Section 5.2.1. This number was reduced to 117, 458
HCDs if BAL quasars (introduced in Section 3.2.2) were rejected with BAL_PROB > 0, and a
number of 57, 136 DLAs with log(𝑁HI) ⩾ 20.3cm−2 were discovered in this dataset.

Figure 6.7 shows the histogram of 𝑁HI (x-axis in log scale, y-axis shows the number of HCDs)
and 𝑧DLA of the eBOSS DR16 DLA catalog, with DLA confidence level 𝐶min > 0.9 (the purity
increases with a larger 𝐶min). The probability distribution of 𝑁HI for these DLAs is also shown
in the middle. The black curve gives the input distribution into the mocks given by the IGM
physics package pyigm at redshift 𝑧 = 2.5 (Described in Section 4.1.1). These plots reveal that
the CNN algorithm missed a lot of high 𝑁HI DLAs (due to the limited number of high 𝑁HI
DLAs in the data sample). It successfully detects a certain amount of high redshift DLAs, which
exceeds the conservative choice in the eBOSS DR16 mocks.

The DESI DLA catalog

The DESI DLA catalogs are built using a combination of the CNN DLA finder and the GP DLA
finder. As was described in the previous section, the CNN DLA finder shows higher purity and
completeness, while the GP DLA finder provides a better estimation of 𝑧DLA and 𝑁HI. The CNN
DLA finder also provides better classifications for higher redshift (𝑧 > 4) DLAs (Jiaqi et al. in
preparation). The final DLA catalog collects the DLAs that are detected by both finders. This is
declared to be the case if a DLA found by the GP finder is within 800 kms−1 of the DLA center
detected by the CNN finder. For DLAs with 𝑧DLA > 4, only DLAs found by the CNN finder are
collected. The critical value of confidence level for CNN finder is chosen as 𝐶min = 0.2 for spectra
with S/N > 3, and 𝐶min = 0.3 for 0 < S/N < 3 to maximize both purity and completeness. For
GP finder, 𝐶min is chosen as 0.9 (note that this 𝐶min is the posterior probability, not the same
confidence level as the CNN model), the same as M.-F. Ho, Bird et Garnett 2021.

The final DESI EDR DLA catalog contains 9,240 DLAs with 𝑙𝑜𝑔(𝑁HI) > 20.3 cm−2, out of
134,626 Ly𝛼 quasars with 𝑧QSO > 1.8. This is smaller than the number of DLAs discovered in
the eBOSS DR16 DLA catalog, where > 15% quasars were found hosting DLAs. This could be
a consequence of the high purity of the DESI DLA finder.
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Figure 6.7 : The upper plot and the lower plot show the histogram of 𝑁HI and 𝑧DLA of the
eBOSS DR16 DLA catalog, with DLA confidence level 𝐶min > 0.9. The 𝑁HI distribution is wi-
thout normalization while the 𝑧DLA distribution is normalized to 1. The plot in the middle shows
the probability distribution of 𝑁HI for these DLAs. The black curve gives the input distribution
into the mocks given by the IGM physics package pyigm (see Section 4.1.1).
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The comparison of DLA catalogs

I hereby present a comparison of the 𝑧DLA distribution and 𝑁HI distribution 𝑓 (𝑛) (see Equa-
tion 6.29) of these two DLA catalogs in Figure 6.8. The two plots show that these two catalogs
agree well for the 𝑧DLA distribution. However, they show a significant difference in the 𝑓 (𝑛)
distribution, while DESI EDR data agree well with the pyigm theoretical prediction (see Sec-
tion 4.1.1). Since the CNN DLA finder is retrained using DESI mocks, that have more high NHI
DLAs, it is as expected to see the eBOSS DR16 DLA catalog missed some high NHI DLAs.
On the other hand, the CNN finder is trained to achieve higher purity and completeness when
applying to DESI data, so the eBOSS DR16 catalog will contain more false classified DLAs.
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Figure 6.8 : The upper plot shows the probability distribution of HCD column densities 𝑓 (𝑛)
(see Equation 6.29) of the eBOSS DR16 DLA catalog and DESI EDR DLA catalog. The black
curve gives the theoretical prediction from the IGM physics package pyigm (see Section 4.1.1).
The vertical error bars show the Poisson uncertainty at 1 sigma. The lower plot shows a norma-
lized comparison of the histogram of 𝑧DLA.
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6.2 Modeling of HCDs

Large DLAs detected using the above algorithms can be masked following the method intro-
duced in Section 5.3. However, there remains a much larger number of small HCDs, that are
undetectable and contribute to the total Ly𝛼 correlation function. In this Section, I will present
the models that were used in the previous analyses (J. E. Bautista et al. 2017 ; de Sainte
Agathe et al. 2019a ; Des Bourboux, Rich et al. 2020) to characterize this effect, and the
new model that I developed, the so-called Voigt model.

6.2.1 Modeling of Ly𝛼 and HCD correlation functions

In this section, I describe the state-of-the-art modeling of the Ly𝛼 correlation function, including
the damping effect caused by unmasked HCDs. The model is built following the approach propo-
sed by (Font-Ribera et Miralda-Escudé 2012). As introduced in Section 3.2 in Equation 3.1,
the flux transmission field of Ly𝛼 forests can be expressed in the form of its fluctuation,

𝐹(𝑥) = �̄�[1 + 𝛿𝐹(𝑥)], (6.10)

where 𝑥 is a point in configuration space, �̄� is the mean of 𝐹 at a certain redshift, and 𝛿𝐹 is the
fluctuation. In a simple case where the metal absorption lines are neglected, we can consider the
total flux transmission as a combination of the Ly𝛼 absorption by low-density Hydrogen atoms
𝐹𝛼 and HCD absorption 𝐹H : thus 𝐹(𝑥) = 𝐹H(𝑥)𝐹𝛼(𝑥). These two components can be expressed
as a function of their fluctuations in a similar way :

𝐹𝛼(𝑥) = �̄�𝛼(𝑥)[1 + 𝛿𝛼(𝑥)]
𝐹H(𝑥) = �̄�H(𝑥)[1 + 𝛿H(𝑥)].

(6.11)

We therefore have :
𝐹(𝑥) = �̄�𝛼[1 + 𝛿𝛼(𝑥)]�̄�H[1 + 𝛿H(𝑥)], (6.12)

and
1 + 𝛿𝐹(𝑥) =

𝐹(𝑥)
�̄�

=
[1 + 𝛿𝛼(𝑥)][1 + 𝛿H(𝑥)]

1 + 𝐶 , (6.13)

where �̄� is derived as
�̄� = ⟨𝐹(𝑥)⟩𝑥 = �̄�𝛼 �̄�H(1 + 𝐶). (6.14)

Here 𝐶 = ⟨𝛿𝛼(𝑥)𝛿H(𝑥)⟩ is a non-zero constant that refers to the cross-correlation of Ly𝛼 forests
and HCDs, at zero distance separation, which is not computable through practical numerical
computation. However, according to the numerical estimation shown in Figure 6.9, 𝐶 (blue
curve) could be relatively small, and thus be neglected compared to the Ly𝛼 total correlations
(red curve).
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Ly𝛼 auto-correlation function

Averaging over all the two-point correlation pairs of two 𝛿𝐹(𝑥) at a separation r12 = x1 − x2, the
auto-correlation of Ly𝛼 forests can be derived as

1 + �𝐹(r12) = ⟨[1 + 𝛿𝐹(x1)][1 + 𝛿𝐹(x2)]⟩

=
1 + 2𝐶 + �𝛼(r12) + 2�𝛼H(r12) + �H(r12) + 2�𝛼𝛼H(r12) + 2�𝛼HH(r12) + �𝛼𝛼HH(r12)

(1 + 𝐶)2 ,

(6.15)
where

�𝛼(r12) = ⟨𝛿𝛼(x1)𝛿𝛼(x2)⟩
�𝛼H(r12) = ⟨𝛿𝛼(x1)𝛿H(x2)⟩
�H(r12) = ⟨𝛿H(x1)𝛿H(x2)⟩

�𝛼𝛼H(r12) = ⟨𝛿𝛼(x1)𝛿H(x1)𝛿𝛼(x2)⟩
�𝛼HH(r12) = ⟨𝛿𝛼(x1)𝛿H(x1)𝛿H(x2)⟩
�𝛼𝛼HH(r12) = ⟨𝛿𝛼(x1)𝛿H(x1)𝛿𝛼(x2)𝛿H(x2)⟩.

(6.16)

Figure 6.9 shows the measurement of the above correlation function (note that �𝛼H is multiplied
by 5, �𝛼𝛼H and �H are multiplied by 10 in order to better visualize the comparison, �𝛼HH and
�𝛼𝛼HH are not presented since they are too small to compare) using Ly𝛼 forests and HCDs in
Ly𝛼 mocks (see Section 4.1.2). It turns out that the HCD correlations contribute to ∼ 20% of the
total correlations, mainly on small scales where 𝑟 < 80ℎ−1Mpc. The three-point and four-point
correlations are relatively small so they can be neglected in the first-order approximation. In

Figure 6.9 : The measurement of the auto(cross)-correlation function of Ly𝛼 forests and
HCDs in London mocks (introduced in Section 4.1.2). Credits of this figure : (Font-Ribera
et Miralda-Escudé 2012).

the following sections we only consider the two-point correlation contributions to the total Ly𝛼
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correlation function, which yields

�𝐹Ly𝛼(r12) =
�𝛼(r12) + 2�𝛼H(r12) + �H(r12) − 𝐶2

(1 + 𝐶)2 (6.17)

For each correlation function, we take the Fourier transform to get their associated flux power
spectra

𝑃𝐹×𝐹(®𝑘) =
𝑃Ly𝛼 ×Ly𝛼 + 2𝑃Ly𝛼×HCD + 𝑃HCD×HCD − 𝐶2

(1 + 𝐶)2
= 𝑃Ly𝛼 ×Ly𝛼 + 2𝑃Ly𝛼×HCD + 𝑃HCD×HCD ,

(6.18)

where we neglect the constant 𝐶. As introduced in Equation 3.31, the Ly𝛼 auto-power spectrum
is (neglecting the binning effect)

𝑃𝐹Ly𝛼×Ly𝛼 (®𝑘) = 𝑏2Ly𝛼(1 + 𝛽Ly𝛼�
2
𝑘)

2𝑃L(®𝑘)𝐷NL,Ly𝛼(®𝑘). (6.19)

We can also consider HCDs as biased tracers of the matter density field, treating them as point-
like objects as quasars, while with additional absorption profiles. These absorption profiles in
the flux wavelength space, parameterized by Voigt profiles (see Section 6.2.3), will result in a
suppression of the flux power spectrum after the Fourier Transform. This suppression is seen at
high 𝑘 | |, and can be modeled by a non-linear function 𝐹HCD(𝑘 | |). We can then derive the HCD
flux power spectrum as :

𝑃HCD×HCD(®𝑘) = 𝑏𝐹HCD
2(1 + 𝛽HCD�

2
𝑘)

2𝑃L(®𝑘)𝐷NL,HCD(®𝑘)𝐹2HCD(𝑘 | |), (6.20)

taking into account the non-linear effects 𝐷NL,HCD at small scales. However, these non-linear
effects of HCDs are negligible as they produce a suppression at smaller scales than 𝐹HCD(𝑘 | |),
as explained in Section 6.5. For simplicity, we do not consider them in the following sections
(𝐷NL,HCD(®𝑘) = 1). Different phenomenological models have been applied to characterize 𝐹HCD
in previous Ly𝛼 analyses, e.g., a Sinc function was used in the BOSS DR12 analysis (J. E.
Bautista et al. 2017) :

𝐹HCD(𝑘 | |) = sinc(𝑘 | |𝐿HCD), (6.21)

and a Exp model was used in the eBOSS DR16 analysis (Des Bourboux, Rich et al. 2020) as :

𝐹HCD(𝑘 | |) = exp (−𝑘 | |𝐿HCD). (6.22)

Both models have one free parameter 𝐿HCD that characterizes the suppression scale of HCDs.
This parameter has a minimal impact on the BAO peak parameters (Cuceu, Font-Ribera et
Joachimi 2020), thus was fixed to 𝐿HCD = 10ℎ−1Mpc in the eBOSS DR16 analysis. The physical
meaning of the Exp model is explored in the next section.

The Ly𝛼 × HCD flux cross-power spectrum is

𝑃𝐹Ly𝛼×HCD(®𝑘) = 𝑏Ly𝛼𝑏
𝐹
HCD(1 + 𝛽Ly𝛼�

2
𝑘)(1 + 𝛽HCD�

2
𝑘)𝑃L(®𝑘)

√
𝐷NL,Ly𝛼(®𝑘)𝐹HCD(𝑘 | |). (6.23)

We can then derive the first-order total flux power spectrum as (Font-Ribera et Miralda-
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Escudé 2012 ; Des Bourboux, Rich et al. 2020) :

𝑃F×F(®𝑘) = 𝑃Ly𝛼 ×Ly𝛼 + 2𝑃Ly𝛼×HCD + 𝑃HCD×HCD

=

(
𝑏Ly𝛼(1 + 𝛽Ly𝛼�

2
𝑘)
√
𝐷NL,Ly𝛼(®𝑘) + 𝑏𝐹HCD(1 + 𝛽HCD�

2
𝑘)𝐹HCD(𝑘 | |)

)2
𝑃L(®𝑘)

=

(
𝑏Ly𝛼

√
𝐷NL,Ly𝛼(®𝑘) + 𝑏𝐹HCD𝐹HCD(𝑘 | |)

)2
(
1 +

𝑏Ly𝛼𝛽Ly𝛼�2
𝑘

√
𝐷NL,Ly𝛼(®𝑘) + 𝑏𝐹HCD𝛽HCD�2

𝑘
𝐹HCD(𝑘 | |)

𝑏Ly𝛼
√
𝐷NL,Ly𝛼(®𝑘) + 𝑏𝐹HCD𝐹HCD(𝑘 | |)

)2
𝑃L(®𝑘)

≈ 𝑏′2(1 + 𝛽′�2
𝑘)

2𝑃L(®𝑘)𝐷NL,Ly𝛼(®𝑘),

(6.24)

with (considering 𝑏𝐹HCD𝐹HCD(𝑘 | |) ≈ 𝑏𝐹HCD𝐹HCD(𝑘 | |)
√
𝐷NL,Ly𝛼(®𝑘))

𝑏′Ly𝛼 = 𝑏Ly𝛼 + 𝑏𝐹HCD𝐹HCD(𝑘 | |),

𝛽′Ly𝛼 =
𝑏Ly𝛼𝛽Ly𝛼 + 𝑏𝐹HCD𝛽HCD𝐹HCD(𝑘 | |)

𝑏Ly𝛼 + 𝑏𝐹HCD𝐹HCD(𝑘 | |)
.

(6.25)

We therefore recover the model described in Equation 3.34 and 3.31. One can figure out that
the correlations contributed by HCDs are characterized by the product of 𝑏𝐹HCD×𝐹HCD(𝑘 | |). Note
that here I call the bias of HCDs 𝑏𝐹HCD for the Exp model since I will introduce a new model,
the Voigt model, and use 𝑏HCD as it accounts for the halo bias of HCDs. We then have an
equivalence of these two models at 𝑘 | | = 0 :

𝑏HCD𝐹
Voigt
HCD (𝑘 | | = 0) = 𝑏𝐹HCD𝐹

Exp
HCD(𝑘 | | = 0), (6.26)

with
𝐹

Voigt
HCD (𝑘 | |) = 𝐴

∫
𝑓 (𝑛)�̃�(𝑘 | | , 𝑛)𝑑𝑛. (6.27)

Here �̃�(𝑘 | |) is the Fourier transform of a Voigt profile, 𝑏HCD is the bias of HCDs where they
are considered as discrete matter tracers, and is therefore positive. 𝐴 is the mean number of
HCDs per Ly𝛼 forest, and weighted over the whole wavelength range (we refer readers to the
next section for more details), defined as :

𝐴 =

∑
HCDs

𝑤�∑
Forests

𝑤�
. (6.28)

Here the nominator sums over all the HCDs in the sample, and 𝑤� is the pixel weight (see
Equation 3.9) at the center wavelength of each HCD. The denominator sums over all the Ly𝛼
forests. In our mocks where the mean number of HCDs (𝑛 > 17.2) per Ly𝛼 forest is around 0.3,
the weighted 𝐴 ∼ 0.12 for the optical wavelength range � ∈ [3600, 5500] Å with Δ� = 10 Å. In
Equation 6.27, 𝑓 (𝑛) gives the normalized HI column density probability distribution of HCDs :

𝑓 (𝑛) = 1

𝒩HCD

𝑑𝒩HCD

𝑑𝑛
, (6.29)

where 𝑑𝒩HCD is the number of HCDs with HI column densities in the range [𝑛, 𝑛 + 𝑑𝑛], 𝒩HCD
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is the total number of HCDs.
Note that this formula in Equation 6.27) was inspired by Font-Ribera et Miralda-Escudé

2012 and was firstly proposed in Rogers, Bird, Peiris, Pontzen, Font-Ribera et Leistedt
2018a. Simulations are performed in this work to measure the shape of the function. However, a
detailed analytical derivation was not provided, and the formula missed the normalization factor
𝐴. The related HCD bias is the negative flux bias, not the halo bias of HCDs.

Ly𝛼-QSO cross-correlation function

Considering the same first-order approximation of bias expansion as above, the cross-power
spectrum between quasars and the transmitted flux fraction field can be computed with only
two-point correlations : 𝑃𝐹×QSO = 𝑃Ly𝛼×QSO + 𝑃HCD×QSO (see (Font-Ribera et Miralda-
Escudé 2012) for the discussion of three- and four-point correlations). As was used in previous
Ly𝛼 analysis (Des Bourboux, Rich et al. 2020), the modeling of the Ly𝛼×QSO flux cross-power
spectrum 𝑃Ly𝛼×QSO is defined as

𝑃Ly𝛼×QSO(®𝑘) = 𝑏Ly𝛼𝑏QSO(1 + 𝛽Ly𝛼�
2
𝑘)(1 + 𝛽QSO�

2
𝑘)𝑃L(®𝑘)𝐷NL,QSO(®𝑘), (6.30)

where 𝑃L is the linear matter power spectrum, 𝐷NL,QSO(®𝑘) = 1
1+(𝑘 | |𝜎�)2 accounts for non-linear

quasar peculiar velocities (W. J. Percival et White 2009), with a free parameter 𝜎� characte-
rizing the quasar velocity dispersion, 𝑏Ly𝛼 (𝑏QSO) is the bias of Ly𝛼 forests (quasars), and 𝛽Ly𝛼
(𝛽QSO) characterises the redshift space distortion effect of Ly𝛼 forests (quasars).

The HCD × QSO flux cross-power spectrum is given by

𝑃HCD×QSO(®𝑘) = 𝑏𝐹HCD𝑏QSO(1 + 𝛽HCD�
2
𝑘)(1 + 𝛽QSO�

2
𝑘)

𝑃L(®𝑘)𝐹HCD(𝑘 | |𝑑)
√
𝐷NL,QSO(®𝑘)

√
𝐷NL,HCD(®𝑘),

(6.31)

where 𝑏𝐹HCD and 𝛽HCD are the bias and redshift space distortion parameters for HCDs, res-
pectively. 𝐹HCD(𝑘 | |𝑑) describes the non-local small-scale suppression due to HCDs. 𝐷NL,HCD(®𝑘)
accounts for the non-linear effects of HCDs at small scales and will be neglected in the following
equation.

Summing up Equation 6.30 and Equation 6.31, we can write the cross-power spectrum bet-
ween quasars and the transmitted flux fraction field as :

𝑃𝐹×QSO = 𝑏′Ly𝛼𝑏QSO(1 + 𝛽′Ly𝛼�
2
𝑘)(1 + 𝛽QSO�

2
𝑘)𝑃L(®𝑘)𝐷NL,QSO(®𝑘)𝐺(®𝑘). (6.32)

Here the function 𝐺(®𝑘) accounts for the binning effect introduced in Equation 3.30.

Total correlation function

If we take into account the binning effect on separation grids for both the auto- and cross-
correlation function, we obtain the formulas for the total flux power spectrum introduced in
Equation 3.31 :

𝑃Total(®𝑘) = 𝑏′𝑖𝑏
′
𝑗(1 + 𝛽′𝑖�

2
𝑘)(1 + 𝛽′𝑗�

2
𝑘)𝑃L(®𝑘)𝐺(®𝑘)𝐷NL(®𝑘), (6.33)

where the indices 𝑖 and 𝑗 refer to different tracers : 𝑖 = 𝑗 = Ly𝛼 for the Ly𝛼 auto-correlation and
𝑖 = Ly𝛼, 𝑗 = QSO for the Ly𝛼-quasar cross-correlation, 𝐷NL = 𝐷NL,Ly𝛼 for the auto-correlation
and 𝐷NL = 𝐷NL,QSO for the cross-correlation.
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6.2.2 The L𝛽𝛾 model

Since the Sinc model (see Equation 6.21) and the Exp model (see Equation 6.22) were built to
characterize the suppression of the damping effect of HCDs at high 𝑘 | |, a more general formula
can be further introduced to investigate the shape of the suppression. Therefore, in this thesis,
I define a new model, to the so-called L𝛽𝛾 model, to realize this exploration :

𝐹HCD(𝑘 | |) =
1

(1 + (𝑘 | |𝐿HCD)𝛽)𝛾
, (6.34)

where 𝐿HCD is used to determine the scale of the suppression, and 𝛽 and 𝛾 are two parameters
used to control the slope of the non-linear function. In this case, the shape of the slope is entirely
dominated by the product 𝛽×𝛾, thus making them strongly correlated with each other. A revised
version of the L𝛽𝛾 model can be used in order to break this degeneracy :

𝐹HCD(𝑘 | |) =
1

(1 + (𝑘 | |𝐿HCD)𝛽/𝛾)𝛾
. (6.35)

The L𝛽𝛾 model is used to better fit the Ly𝛼 correlation functions, and I will present these
analyses in the next section. However, the physical explanation of this model is still under study
and is not included in this thesis. In this regard, I developed another analytical model, the Voigt
model, to compare with the L𝛽𝛾 model. I will describe this model in the next section.

6.2.3 The Voigt model

As mentioned above, the physical understanding of the L𝛽𝛾 model is not clear, while giving a
good fit to the Ly𝛼 correlation function (see the next section). Then I studied this non-local HCD
effect from a theoretical point of view, and developed this analytical model, the Voigt model. In
this section, I will present the theoretical basis of this model, which starts by modeling the HCD
absorption profiles using Voigt profiles (an example of using this method is described in Garcıa
2006).

Voigt profile

The optical depth of HCDs can be parametrized by a Voigt profile :

𝜙(𝑣, 𝑏, 𝛾𝑙𝑢) =
∫

𝑑𝑣√
2𝜋𝜎𝑣

exp(−𝑣2/𝑏2) × 4𝛾𝑙𝑢
16𝜋2[𝑣 − (1 − 𝑣/𝑐)𝛾𝑙𝑢]2 + 𝛾2

𝑙𝑢

. (6.36)

It is a convolutional product of a Gaussian profile and a Lorenztian profile, corresponding to
the thermal Doppler effect and the collisional cross-section of Neutral Hydrogen in the IGM,
respectively (see Section 1.2.4). Here 𝑙 and 𝑢 represent the lower energy level and the upper
energy level of the relevant electron transition, respectively. 𝑣 stands for the one-dimensional
relative velocity of Neutral Hydrogen atoms :

𝑣 = 𝑐( �
�𝑙𝑢

1

1 + 𝑧DLA
− 1), (6.37)
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with � the observed wavelength. The broadening effect due to thermal motion is characterized
by a parameter 𝑏 =

√
2𝜎𝑣 , related to the standard deviation of the Gaussian profile :

𝜎𝑣 =

√
2𝑘𝑇

𝑚𝑝
, (6.38)

where 𝑘 is the Boltzmann constant and 𝑇 is the temperature of the Neutral hydrogen gas. The
width of the Lorenztian profile is described by the parameter 𝛾𝑙𝑢 :

𝛾𝑙𝑢 =
Γ�𝑙𝑢
4𝜋

, (6.39)

where the damping constant Γ = 6.265 × 108𝑠−1 for Lyman series transitions, �𝑙𝑢 is the charac-
teristic wavelength of Lyman series, e.g., �12 = 1215.6707Å for Ly𝛼. The relevant optical depth
for each Ly𝛼 transition is :

𝜏(�; 𝑧DLA , 𝑁HI) = 𝑁HI
𝜋𝑒2 𝑓𝑙𝑢�𝑙𝑢
𝑚𝑒 𝑐

𝜙(𝑣, 𝑏, 𝛾), (6.40)

where 𝑓𝑙𝑢 is the oscillator strength of each Lyman series transition, 𝑒 is the elementary charge
and 𝑚𝑒 is the electron mass.

HCD flux field

Figure 6.10 : The visualization of the quasar-HCD cross-correlation for two lines -of-sight
defined by two quasars 𝑞 and 𝑞′. The existence of an HCD centered at 𝑗HCD gives a non-local
effect for all the Ly𝛼 absorptions along this line-of-sight (the absorption wing is very vague and
does not become 0 within a limited pixel range, it affects all the pixels along this line-of-sight,
thus is called non-local). We compute the cross-correlation of quasar 𝑞′(𝑗QSO) with the HCD
absorptions with a separation pixel Δ𝑗.

The existence of HCDs in quasar spectra has a non-local effect for all the Ly𝛼 absorptions
along a certain line-of-sight (the absorption wing is very vague and does not become 0 within a
limited pixel range, it affects all the pixels along this line-of-sight, thus is called non-local), as pre-
sented in Figure 6.10. This non-local effect is modeled by considering the total flux transmission
field as a product of the Ly𝛼 absorption and HCD absorption, as introduced in Equation 6.11. I
will describe in this subsection the modeling of the HCD non-local effect by using Voigt profiles
to parametrize the HCD absorptions.



6.2. Modeling of HCDs 137

We start by considering that HCDs are distributed in three dimensions following a number
function 𝑁HCD(𝑗 , 𝑖), which represents the number of HCDs at pixel 𝑗 in the wavelength space,
along the 𝑖th line-of-sight. It is defined as

𝑁HCD(𝑗 , 𝑖) =
{

1 if HCD,
0 if no HCD.

(6.41)

Based on a few intuitive assumptions, we can then model the HCD flux field.

• The flux absorption in the quasar spectrum due to HCDs is characterized by a Voigt profile
in � space, which is a convolutional product of a Gaussian profile and a Lorentzian profile,
describing the thermal Doppler broadening effect and cross-section in the inter-galactic
medium (IGM), respectively.

• The amount of overlapping HCDs is negligible.

• The fluctuations of 𝑁HCD(𝑗 , 𝑖) along each line-of-sight can be expressed as

𝑁HCD(𝑗 , 𝑖) = ⟨𝑁⟩𝑗 ,𝑖(1 + 𝛿HCD(𝑗 , 𝑖)), (6.42)

where 𝛿HCD(𝑗) is a biased tracer of the over densities of the underlying dark matter density
field with a positive bias 𝑏HCD.

We then define the transmitted flux fraction field of HCDs, along the 𝑖th line-of-sight as :

FluxHCD(𝑗 , 𝑖 , 𝑛) =
∑
𝑗HCD

𝑉(𝑗 − 𝑗HCD , 𝑛)𝑁HCD(𝑗HCD , 𝑖). (6.43)

Here 𝑗 is the 𝑗th pixel in the wavelength space along the 𝑖th line-of-sight, 𝑉(𝑗− 𝑗HCD , 𝑛) represents
the Voigt absorption profile of an HCD with a given HI column density 𝑛 = log10 𝑁HI, and the
position centered at 𝑗HCD.

The expectation value of the first-order fluctuations of the HCD transmission field, summing
over all the HCDs along the same line-of-sight and taking into account the probability of HI
column densities, can be derived as :

𝛿𝐹HCD(𝑗 , 𝑖) =
∑
𝑛

(FluxHCD(𝑗 , 𝑖 , 𝑛)
⟨FluxHCD⟩𝑗 ,𝑖

− 1) 𝑓 (𝑛)

=
∑
𝑛

∑
𝑗HCD

(
𝑉(𝑗 − 𝑗HCD , 𝑛)⟨𝑁⟩𝑗HCD ,𝑖(1 + 𝛿HCD(𝑗HCD , 𝑖))

⟨𝑉 ⊛ 𝑁⟩𝑗 ⟨𝑁⟩𝑖
− 1) 𝑓 (𝑛)

=
∑
𝑛

∑
𝑗HCD

𝑊(𝑗 − 𝑗HCD , 𝑛)𝛿HCD(𝑗HCD , 𝑖) 𝑓 (𝑛),

(6.44)

where the superscript 𝐹 denotes the flux fluctuation,𝑊(𝑗− 𝑗HCD , 𝑛) = 𝑉(𝑗−𝑗HCD ,𝑛)
⟨𝑉⊛𝑁⟩𝑗 , and ⟨𝑉⊛𝑁⟩𝑗 ≈

1 in our assumption that HCDs only cover a limit range of pixels compared to the entire Ly𝛼
forests. The function 𝑓 (𝑛) is the HI column density probability distribution function of HCDs.

Ly𝛼-QSO cross-correlation function

In this section I describe the cross-correlation function corresponding to the cross-power spectrum
6.2.1 between quasars and the transmitted flux fraction field, which is visualized in Figure 6.10.
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For a total number of 𝒩QSO quasars (𝒩QSO parallel lines -of-sight), the cross-correlation function
between quasars and the transmitted flux fraction field with separation pixels (𝑟| | = Δ𝑗 , 𝑟⊥) can
be given by :

�𝐹×QSO(𝑟| | = Δ𝑗 , 𝑟⊥) = � Ly𝛼×QSO(Δ𝑗 , 𝑟⊥) + � HCD×QSO(Δ𝑗 , 𝑟⊥). (6.45)

Considering quasars located at pixel positions 𝑗QSO (quasar flux field is just 1), the first term
can be derived as :

� Ly𝛼×QSO(Δ𝑗 , 𝑟⊥) =
1

𝒩pairs

∑
pairs

𝛿𝐹Ly𝛼(𝑗QSO + Δ𝑗 , 𝑖), (6.46)

which is summed over all quasar-Ly𝛼 forest pairs with transverse separation 𝑟⊥, and parallel
pixel separation Δ𝑗. The second term in Equation 6.45, which is the cross-correlation of quasars
and the transmitted flux fraction field of HCDs, can be derived as :

� HCD×QSO(Δ𝑗 , 𝑟⊥) =
1

𝒩pairs

∑
pairs

𝛿𝐹HCD(𝑗QSO + Δ𝑗 , 𝑖)

=
1

𝒩pairs

∑
pairs

∑
𝑗HCD

∑
𝑛

𝛿 HCD(𝑗HCD , 𝑖)𝑊(𝑗QSO + Δ𝑗 − 𝑗HCD , 𝑛) 𝑓 (𝑛)

=
1

𝒩pairs

∑
pairs

∑
𝑗HCD

∑
𝑛

�Kaiser
HCD×QSO(𝑗HCD − 𝑗QSO , 𝑖)𝑊(Δ𝑗 + 𝑗QSO − 𝑗HCD , 𝑛) 𝑓 (𝑛)

=
1

𝒩pairs

∑
𝑛

∑
𝑗

�Kaiser
HCD×QSO(𝑗 , 𝑖)𝑊(Δ𝑗 − 𝑗 , 𝑛) 𝑓 (𝑛)

= 𝐴
∑
𝑛

(�Kaiser
HCD×QSO ⊛𝑊)(Δ𝑗 , 𝑖 , 𝑛) 𝑓 (𝑛).

(6.47)
Here we sum over all quasar-HCD pairs with transverse separation 𝑟⊥, and parallel pixel separa-
tion Δ𝑗. 𝑊 is a Voigt profile defined in Equation 6.44, 𝛿𝐹HCD(𝑗 , 𝑖) =

𝐹HCD(𝑗 ,𝑖)
⟨𝐹HCD⟩ − 1 is the fluctuation

of the HCD flux field (we refer readers to Equation 6.44 in for more details), and 𝛿HCD(𝑗 , 𝑖) is
the fluctuation of the number of HCDs at each pixel position.

We apply a Fourier transform for both sides of Equation 6.46 and Equation 6.47. The first
equation gives the Ly𝛼 × QSO flux cross-power spectrum, that can be modeled by the stan-
dard modelization of Kaiser (Kaiser 1987) with the nonlinear effects of Ly𝛼 forests 𝐷NL,Ly𝛼(®𝑘)
(Arinyo-i-Prats, Miralda-Escudé, Viel et Cen 2015) :

𝑃Ly𝛼×QSO(®𝑘) =
∑
®𝑟
𝑒−𝑖(𝑟⊥ ·𝑘⊥+𝑘 | | 𝑟| |)

1

𝒩pairs

∑
𝑝𝑎𝑖𝑟𝑠

𝛿𝐹Ly𝛼(𝑗QSO + Δ𝑗 , 𝑖)

= 𝑏Ly𝛼𝑏QSO(1 + 𝛽Ly𝛼�
2
𝑘)(1 + 𝛽QSO�

2
𝑘)𝑃L(®𝑘)

√
𝐷NL,Ly𝛼(®𝑘).

(6.48)

Here ®𝑘 = (𝑘⊥ , 𝑘 | |), ®𝑟 = (𝑟⊥ , 𝑟| |), 𝑟| | = 𝑑Δ𝑗 , 𝑑 is the bin width of the correlation function.
Equation 6.47 gives the HCD × QSO flux cross-power spectrum :

𝑃HCD×QSO(®𝑘) = 𝑃Kaiser
HCD×QSO(®𝑘)𝐹

Voigt
HCD (𝑘 | |). (6.49)

Here 𝐹Voigt
HCD (𝑘 | |) = 𝐴

∫
�̃�(𝑘 | | , 𝑛) 𝑓 (𝑛)𝑑𝑛, as defined in Equation 6.27, �̃�(𝑘 | |) is the Fourier trans-
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form of a Voigt profile, 𝐴 is defined in Equation 6.28 with 𝐴 = ⟨𝑁⟩𝑗HCD =
𝒩HCD
𝒩QSO

where 𝒩HCD

and 𝒩QSO represent the total number of HCDs, QSOs (Ly𝛼 forests), respectively. In practice, a

weighted 𝐴 =

∑
HCDs

𝑤�∑
Forests

𝑤�
≈ 0.12 (see Equation 6.28) is used to take into account the Ly𝛼 analysis

pipeline variances.
𝑃Kaiser

HCD×QSO(®𝑘) is the Fourier transform of the cross-correlation of quasars and the centers of

HCDs, modeled using the Kaiser formula with the nonlinear effects of HCDs 𝐷NL,HCD(®𝑘) :

𝑃Kaiser
HCD×QSO(®𝑘) =

∑
®𝑟
𝑒−𝑖(𝑟⊥ ·𝑘⊥+𝑘 | | 𝑟| |)

1

𝒩QSO

∑
𝑗QSO

𝛿 HCD(𝑗QSO + Δ𝑗)

=
∑
®𝑟
𝑒−𝑖(𝑟⊥ ·𝑘⊥+𝑘 | | 𝑟| |)�Kaiser

HCD×QSO(Δ𝑗)

= 𝑏HCD𝑏QSO(1 + 𝛽HCD�
2
𝑘)(1 + 𝛽QSO�

2
𝑘)𝑃L(®𝑘)

√
𝐷NL,HCD(®𝑘).

(6.50)

Flux-flux auto-correlation function

We present in this section the derivation of the flux-flux auto-correlation function. Inspired
by (Font-Ribera et Miralda-Escudé 2012), we consider a first-order approximation of bias
expansion to only take into account the two-point correlations. For a total number of 𝒩QSO
quasars (𝒩QSO parallel lines -of-sight), the auto-correlation function of the transmitted flux
fraction field, as a function of the separation pixel Δ𝑗 can be given by :

�𝐹×𝐹(Δ𝑗) = � Ly𝛼× Ly𝛼(Δ𝑗) + 2� Ly𝛼×HCD(Δ𝑗) + � HCD×HCD(Δ𝑗). (6.51)

The estimator for the first term is used as the same as the eBOSS DR16 analysis (Des Bourboux,
Rich et al. 2020) :

� Ly𝛼× Ly𝛼(Δ𝑗) =
1

𝒩pairs

∑
pairs

𝛿𝐹Ly𝛼(𝑗 Ly𝛼)𝛿𝐹Ly𝛼(𝑗 Ly𝛼 + Δ𝑗), (6.52)

with the weighted formula in Equation 3.12.
Following a similar derivation as Equation 6.47, we write the Ly𝛼-HCD cross-correlation

function as :

�Ly𝛼×HCD(Δ𝑗) =
1

𝒩pairs

∑
pairs

𝛿𝐹Ly𝛼(𝑗 Ly𝛼)𝛿𝐹HCD(𝑗 Ly𝛼 + Δ𝑗)

=
1

𝒩pairs

∑
pairs

∑
𝑗HCD

∑
𝑛

𝛿𝐹Ly𝛼(𝑗 Ly𝛼)𝛿 HCD(𝑗HCD)𝑊(𝑗 Ly𝛼 + Δ𝑗 − 𝑗HCD , 𝑛) 𝑓 (𝑛)

=
1

𝒩pairs

∑
pairs

∑
𝑗HCD

∑
𝑛

𝛿𝐹Ly𝛼(𝑗 Ly𝛼)�Kaiser
Ly𝛼× HCD(𝑗HCD − 𝑗 Ly𝛼)𝑊(𝑗 Ly𝛼 + Δ𝑗 − 𝑗HCD , 𝑛) 𝑓 (𝑛)

=
1

𝒩pairs

∑
𝑛

∑
𝑗′

𝛿𝐹Ly𝛼(𝑗 Ly𝛼) · (�Kaiser
Ly𝛼× HCD ⊛𝑊)(Δ𝑗 − 𝑗′, 𝑛) 𝑓 (𝑛)

= 𝐴
∑
𝑛

(𝛿𝐹Ly𝛼 ⊛ (�Kaiser
Ly𝛼× HCD ⊛𝑊))(Δ𝑗 , 𝑛) 𝑓 (𝑛),

(6.53)
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and the HCD-HCD auro-correlation function as :

�HCD×HCD(Δ𝑗) =
1

𝒩pairs

∑
pairs

𝛿𝐹HCD(𝑗HCD)𝛿𝐹HCD(𝑗HCD + Δ𝑗)

= 𝐴(
∑
𝑛

(�Kaiser
HCD× HCD ⊛𝑊)(Δ𝑗 , 𝑛) 𝑓 (𝑛))2 ,

(6.54)

The Fourier transform of Equation 6.52, 6.53 and 6.54 will give the formulas of the power spectra
defined in Equation 6.19, 6.23 and 6.20.

Physical understanding of the Exp model

Based on the Voigt model, we can understand the physical significance of the Exp model (see
Equation 6.22). In this model, the absorption profiles were assumed to be Lorentzian profiles,
and 𝑓 (𝑛) was not taken into account. This results in a simplified formula of Equation 6.27 :

𝐹
Exp
HCD(𝑘 | |) = | − ℒ̃(𝐿0 = 0, 𝛾 =

𝐿HCD

𝜋
)| = exp (−𝑘 | |𝐿HCD). (6.55)

Here ℒ̃ is the Fourier transform of a Lorentzian profile at a location 𝐿0 = 0, and a full width
at half maximum (FWHM) 𝛾 =

𝐿HCD
𝜋 . Since this simplified formula is an exponential function,

we call it the Exp model. Note that in this model we use the absolute value of ℒ, and do not
consider positions of HCDs, thus giving no normalization information to determine the HCD
bias. Therefore, this model determines a negative HCD bias 𝑏𝐹HCD.

In this regard, my theoretical development on the Voigt model gives a physical ground to
understand the phenomenological model used in previous Ly𝛼 analyses.

Three- and four-point correlations

Similar derivations as the ones in Section 6.2.3 can also be performed for the three-point and
four-point correlations introduced in Equation 6.15, yielding :

�𝛼𝛼H(r12) = �Ly𝛼× Ly𝛼×HCD(Δ𝑗)

=
1

𝒩pairs

∑
pairs

(𝛿𝐹Ly𝛼(𝑗 Ly𝛼))2𝛿𝐹HCD(𝑗 Ly𝛼 + Δ𝑗)

=
1

𝒩pairs

∑
pairs

∑
𝑗HCD

∑
𝑛

(𝛿𝐹Ly𝛼(𝑗 Ly𝛼))2𝛿 HCD(𝑗HCD)𝑊(𝑗 Ly𝛼 + Δ𝑗 − 𝑗HCD , 𝑛) 𝑓 (𝑛)

=
1

𝒩pairs

∑
pairs

∑
𝑗HCD

∑
𝑛

(𝛿𝐹Ly𝛼(𝑗 Ly𝛼))2�Kaiser
Ly𝛼× HCD(𝑗HCD − 𝑗 Ly𝛼)𝑊(𝑗 Ly𝛼 + Δ𝑗 − 𝑗HCD , 𝑛) 𝑓 (𝑛)

=
1

𝒩pairs

∑
𝑛

∑
𝑗′

((𝛿𝐹Ly𝛼(𝑗 Ly𝛼))2 · (�Kaiser
Ly𝛼× HCD ⊛𝑊)(Δ𝑗 − 𝑗′, 𝑛) 𝑓 (𝑛)

= 𝐴
∑
𝑛

((𝛿𝐹Ly𝛼)2 ⊛ (�Kaiser
Ly𝛼× HCD ⊛𝑊))(Δ𝑗 , 𝑛) 𝑓 (𝑛).

(6.56)
The Fourier Transform of Equation 6.56 gives the associated bispectrum as :

𝐵𝛼𝛼H(®𝑘) = 𝑏2Ly𝛼𝑏HCD(1 + 𝛽Ly𝛼�
2
𝑘)

2(1 + 𝛽HCD�
2
𝑘)𝐵L(®𝑘)𝐷NL,Ly𝛼(®𝑘)𝐹HCD(𝑘 | |), (6.57)
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where 𝐹HCD(𝑘 | |) is defined in Equation 6.27, and 𝐵L(®𝑘) is the linear bispectrum of the dark matter
density field.

Furthermore, we derive the other three- and four-point correlations as

𝐵𝛼HH(®𝑘) = 𝑏Ly𝛼𝑏
2
HCD(1 + 𝛽Ly𝛼�

2
𝑘)(1 + 𝛽HCD�

2
𝑘)

2𝐵L(®𝑘)
√
𝐷NL,Ly𝛼(®𝑘)𝐹2HCD(𝑘 | |),

𝑇𝛼𝛼HH(®𝑘) = 𝑏2Ly𝛼𝑏
2
HCD(1 + 𝛽Ly𝛼�

2
𝑘)

2(1 + 𝛽HCD�
2
𝑘)

2𝑇L(®𝑘)𝐷NL,Ly𝛼(®𝑘)𝐹2HCD(𝑘 | |),
(6.58)

where 𝑇L(®𝑘) is the linear trispectrum of the dark matter density field.
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Mocks with DLAs masked Mocks without DLAs masked
LY𝛼 × LY𝛼 LY𝛼 × LY𝛼 LY𝛼 ×QSO LY𝛼 ×QSO LY𝛼 × LY𝛼 LY𝛼 × LY𝛼 LY𝛼 ×QSO LY𝛼 ×QSO

Model Exp model 𝐿𝛽𝛾 model Exp model 𝐿𝛽𝛾 model Exp model 𝐿𝛽𝛾 model Exp model 𝐿𝛽𝛾 model
𝜒2 1523.56 1522.01 3279.49 3279.05 1533.46 1533.46 3267.73 3471.22

𝑁data 1574 1574 3148 3148 1574 1574 3148 3148
𝑁par 7 9 8 10 7 9 8 10
𝑃 0.78 0.78 0.04 0.04 0.72 0.71 0.05 0.0
𝛼 | | 1.01±0.009 1.01±0.009 1.0±0.009 1.0±0.009 1.0±0.009 1.0±0.009 1.0±0.01 1.0±0.009
𝛼⊥ 0.98±0.014 0.98±0.014 1.0±0.011 1.0±0.011 0.984±0.015 0.984±0.015 0.997±0.012 0.999±0.012

𝑏�,LY𝛼 -0.204±0.002 -0.21±0.001 -0.179±0.021 -0.166±0.011 -0.208±0.002 -0.208±0.003 -0.192±0.003 -0.119±0.011
𝛽LY𝛼 1.67±0.02 1.55±0.03 2.54±1.3 3.49±0.99 1.58±0.05 1.57±0.06 1.66±0.04 8.0±4.18
𝑏𝐹
HCD

-0.019±0.001 -0.005±0.003 -0.066±0.041 -0.091±0.017 -0.026±0.004 -0.025±0.007 -0.043±0.003 -0.129±0.009
𝛽HCD 0.47±0.09 0.49±0.09 0.5±0.09 0.52±0.06 0.48±0.09 0.48±0.09 0.63±0.08 0.51±0.07
𝐿HCD 2.29±0.75 2.37±3.62 3.86±3.02 1.07±0.38 9.48±2.57 2.19±1.73 13.02±2.18 1.36±0.15

𝛽 1.79±1.24 0.87±0.21 6.95±5.82 3.80±0.38
𝛾 11.62±20.21 2.16±0.73 5.97±4.68 -5.22±0.94

Tableau 6.2 : Best fit parameters for eBOSS Saclay mocks with or without masking DLAs,
using the 𝐿𝛽𝛾 model and the Exp model, for Ly𝛼 auto-correlation function and Ly𝛼-quasar
cross-correlation, respectively.

6.3 Fitting results : The 𝐿𝛽𝛾 model and the Exp model

In this section, we present the fitting results of the Ly𝛼 correlation function from eBOSS Saclay
mocks with HCDs (see Section 4.1.1) and eBOSS DR16 data, using the 𝐿𝛽𝛾 model.

6.3.1 Fitting results to eBOSS Saclay mocks
We summarize in Figure 6.11 and Table 6.2 the fits of the Ly𝛼 auto-correlation function and
Ly𝛼-quasar cross-correlation to a stack of 10 eBOSS Saclay mocks with HCDs, using the 𝐿𝛽𝛾
model. These results indicate that the 𝐿𝛽𝛾 model gives a comparable 𝜒2 to the Exp model
with a free 𝐿HCD. Moreover, they show small discrepancies between the constraints for Ly𝛼
parameters, e.g., 𝑏�,Ly𝛼 and 𝛽Ly𝛼. They both suggest a small 𝑏𝐹HCD, which is 5-10 times smaller
than 𝑏Ly𝛼 = 𝑏�,Ly𝛼/𝛽Ly𝛼. This validates our assumption that HCDs contribute a small correction
to the total Ly𝛼 correlations. Moreover, for mocks without DLAs masked, these two models show
no difference in the constraints of Ly𝛼 parameters.

6.3.2 Fitting results to eBOSS DR16 data
Figure 6.12 shows the fits of the Ly𝛼 auto-correlation function and Ly𝛼-quasar cross-correlation
to the eBOSS DR16 data, using the 𝐿𝛽𝛾 model and the Exp model. Unlike the very similar
fitting results of these two models on eBOSS Saclay mocks, the results on DR16 data show that
the 𝐿𝛽𝛾 model gives a slightly better fitting in the range of 20ℎ−1Mpc < 𝑟 < 80ℎ−1Mpc, than
the Exp model with a free 𝐿HCD or a fixed 𝐿HCD = 10ℎ−1Mpc. The curves of the 𝐿𝛽𝛾 model go
through the points very well for 0.8 < � < 1, where the HCDs effect has an important impact.
The numerical fits are summarized in Table 6.3, from which we can conclude that :

• The 𝐿𝛽𝛾 model gives better constraints on 𝑏�,LY𝛼 and 𝛽LY𝛼, while giving smaller 𝜒2 for the
fitting. If we compare to the eBOSS DR16 analysis (Des Bourboux, Rich et al. 2020)
where 𝐿HCD was fixed to 10ℎ−1Mpc, this improvement is obvious.

• Different HCD models show no influence on the constraints on BAO parameters, i.e., 𝛼 | |
and 𝛼⊥. This matches our expectations since the BAO scale (∼ 100ℎ−1Mpc) is beyond the
HCD scale.
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Figure 6.11 : eBOSS Saclay mocks : Ly𝛼 auto-correlation function (top four panels) and Ly𝛼-
quasar cross-correlation (bottom four panels), for pixels in the Ly𝛼 region. The correlations are
multiplied by 𝑟2 to better see the BAO peak. The black curves (fully overlapped with red curves)
show the best-fit models using the Exp model. The red curves give the best-fit models using the
𝐿𝛽𝛾 model, in four wedges of |�| = | 𝑟| |𝑟 |. The fitted range is chosen as 𝑟 ∈ [20, 180]ℎ−1Mpc.
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Figure 6.12 : eBOSS DR16 data : Ly𝛼 auto-correlation function (top four panels) and Ly𝛼-
quasar cross-correlation (bottom four panels), for pixels in the Ly𝛼 region. The correlations are
multiplied by 𝑟2 to better see the BAO scale. The black curves show the best-fit models using
the Exp model, with a free 𝐿HCD (solid) or a fixed 𝐿HCD = 10ℎ−1Mpc (dashed). The red curves
give the best-fit models using the 𝐿𝛽𝛾 model, in four wedges of |�| = | 𝑟| |𝑟 |. The fitted range is
chosen as 𝑟 ∈ [10, 180]ℎ−1Mpc.
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Data with DLAs masked Data without DLAs masked
LY𝛼 × LY𝛼 LY𝛼 × LY𝛼 LY𝛼 ×QSO LY𝛼 ×QSO LY𝛼 × LY𝛼 LY𝛼 × LY𝛼 LY𝛼 ×QSO LY𝛼 ×QSO

Model Exp model 𝐿𝛽𝛾 model Exp model 𝐿𝛽𝛾 model Exp model 𝐿𝛽𝛾 model Exp model 𝐿𝛽𝛾 model
𝜒2 1576.22 1557.3 3220.27 3220.41 1594.96 1576.2 3219.44 3213.87

𝑁data 1590 1590 3180 3180 1590 1590 3180 3180
𝑁par 14 16 13 13 14 16 13 15
𝑃 0.49 0.61 0.25 0.25 0.36 0.48 0.25 0.27
𝛼 | | 1.05±0.034 1.04±0.034 1.06±0.032 1.05±0.032 1.04±0.034 1.03±0.034 1.05±0.034 1.05±0.035
𝛼⊥ 0.981±0.042 0.99±0.042 0.932±0.039 0.935±0.039 0.974±0.044 0.984±0.044 0.948±0.042 0.946±0.043

𝑏�,LY𝛼 -0.175±0.013 -0.175±0.008 -0.228±0.016 -0.208±0.01 -0.173±0.013 -0.167±0.01 -0.231±0.019 -0.25±0.014
𝛽LY𝛼 3.23±1.26 2.87±0.4 1.91±0.33 2.13±0.16 5.25±3.29 6.05±2.26 1.92±0.34 1.77±0.16
𝑏𝐹
HCD

-0.105±0.022 -0.088±0.009 -0.034±0.024 -0.05±0.0 -0.139±0.02 -0.13±0.01 -0.047±0.027 -0.02±0.009
𝛽HCD 0.53±0.08 0.54±0.07 0.52±0.09 0.7±0.0 0.51±0.08 0.52±0.07 0.51±0.09 0.51±0.09
𝐿HCD 2.28±0.63 13.47±1.11 0.95±2.87 12.33±2.10 2.59±0.52 14.52±0.99 -0.01±1.66 7.33±0.98

𝛽 138.24±71.03 60.59±165.80 114.74±44.51 108.67±93.42
𝛾 0.003±0.001 0.011±0.032 0.003±0.001 0.151±0.288

Tableau 6.3 : Best fit parameters for eBOSS DR16 data, using the 𝐿𝛽𝛾 model and the Exp
model, for the Ly𝛼 auto-correlation function and the Ly𝛼-quasar cross-correlation, respectively.

• The two parameters determining the shape of the slope in the 𝐿𝛽𝛾 model, 𝛽 and 𝛾, are very
badly constrained and show a very strong correlation. This could be further investigated,
and tested with other extensions of the model as, for example, suggested by Equation 6.35.
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6.4 Fitting results : The Voigt model

In this section we summarize the fittings of the Ly𝛼 correlations using the Voigt model, and
compare them with the Exp model used in the eBOSS DR16 analysis. The fittings are performed
on eBOSS DR16 data and different types of Saclay mocks described in section 4.4, each with a
stack of 10 mocks.

6.4.1 Fitting results of eBOSS Saclay mocks
We present the fitting of the auto- and cross-correlation functions for Ly𝛼 mocks in Figure 6.13
and the prediction of the parameters, {𝑏HCD, 𝑏HCD∗𝛽HCD}, in Figure 6.14. Table 6.4 and Table 6.5
show the results for all the fitted parameters. The fitted range is chosen as 𝑟 ∈ [20, 180]ℎ−1Mpc.
The figures and tables show that :

• The Voigt model gives good fitting for different types of Saclay mocks, going well through
the data points, except in the case where the mocks have HCDs with 𝑛 = 21.0. This may
be due to the distortions of the quasar continuum fitting in the Ly𝛼 analysis pipeline, as
HCDs with such wide damping absorption wings will have a significant distortion on the
continuum fitting, and then on the Ly𝛼 correlation function.

• Regarding the Ly𝛼 auto-correlation function, the Voigt model gives good constraints on
the predicted parameters 𝑏HCD and 𝛽HCD (input 𝑏HCD = 2 and 𝛽HCD = 0.5, these values are
used to match the measured DLA bias in Pérez-Ràfols, Miralda-Escudé, Arinyo-i-
Prats, Font-Ribera et Mas-Ribas 2018), within 2𝜎s for all the cases except the 𝑛 = 21
case.

• Regarding the Ly𝛼 auto-correlation function, the Voigt model provides good predictions
for the Ly𝛼 bias and redshift distortion parameter, with a 𝛽Ly𝛼 around 1.6, comparable
with the results from Ly𝛼 simulations. Besides, looking at the constraints on 𝑏�,LY𝛼 and
𝛽Ly𝛼 from auto- and cross-correlation functions, the results obtained using Voigt model
are also in much better agreement compared to other two models.

• The modeling of HCDs does not affect the BAO peak position. This is as expected, as the
HCDs mostly affect the scales below the BAO scale.

Comparison with the Exp model

We make a comparison between the voigt model and the Exp model, in the mocks generated
with a distribution 𝑓 (𝑛) of HCDs (eboss-0.2 mocks, see Section 4.4). As the large DLAs are
detectable and maskable, we mask out the DLAs with 𝑛 > 20.3 as a further comparison with the
no masking case. Numerical fits are shown in Table 6.5, and the comparison of the constraints on
𝑏′𝛽′ = 𝑏Ly𝛼𝛽Ly𝛼 + 𝑏HCD𝛽HCD𝐹HCD(𝑘 | |) fitted from Ly𝛼 auto-correlations and Ly𝛼-quasar cross-
correlation function are shown in Figure 6.15 and Figure 6.16, respectively. For the Exp model,
we take into account the constraints of one more free parameter, 𝐿HCD. These results indicate
that :

• The voigt model and the Exp model present comparable fitting results, i.e., similar 𝜒2, and
parameter values {𝛼 | | , 𝛼⊥ , 𝑏�,Ly𝛼 , 𝛽Ly𝛼 , 𝛽HCD}. However, the voigt model gives a physical
measurement of 𝑏HCD, that can not be constrained from the Exp model. The auto- and
cross-correlation functions results for 𝑏�,Ly𝛼 and 𝛽Ly𝛼 are also more consistent with the
Voigt model.
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Mocks with HCDs with same n=log𝑁HI
LY𝛼 × LY𝛼 LY𝛼 × LY𝛼 LY𝛼 × LY𝛼 LY𝛼 × LY𝛼 LY𝛼 ×QSO LY𝛼 ×QSO LY𝛼 ×QSO LY𝛼 ×QSO

𝑛 19.5 20.0 20.5 21.0 19.5 20.0 20.5 21.0
Model Voigt model Voigt model Voigt model Voigt model Voigt model Voigt model Voigt model Voigt model
𝑁mocks 10 10 10 10 10 10 10 10

𝜒2 1583.58 1584.23 1583.63 1682.56 3204.53 3236.97 3261.56 3286.47
𝑁data 1574 1574 1574 1574 3148 3148 3148 3148
𝑁par 6 6 6 6 7 7 7 7
𝑃 0.39 0.38 0.39 0.02 0.21 0.11 0.07 0.03
𝛼 | | 1.01±0.009 1.01±0.009 1.01±0.01 1.0±0.01 1.0±0.009 1.0±0.01 1.0±0.01 0.998±0.01
𝛼⊥ 0.998±0.013 1.0±0.015 1.0±0.017 1.01±0.019 1.0±0.011 1.0±0.012 1.01±0.013 1.01±0.014

𝑏�,LY𝛼 -0.206±0.002 -0.204±0.003 -0.201±0.003 -0.187±0.003 -0.193±0.001 -0.192±0.001 -0.192±0.001 -0.192±0.001
𝛽LY𝛼 1.61±0.04 1.6±0.05 1.57±0.06 1.33±0.05 1.66±0.02 1.68±0.02 1.69±0.02 1.68±0.02
𝑏HCD 1.95±0.292 2.13±0.157 2.2±0.092 1.92±0.052 2.15±0.15 2.24±0.094 2.25±0.064 2.16±0.048
𝛽HCD 0.48±0.09 0.48±0.08 0.5±0.07 0.75±0.05 0.37±0.07 0.4±0.06 0.46±0.05 0.59±0.05

Tableau 6.4 : Best fit parameters for stack of Ly𝛼 mocks (eboss-0.2+ mocks, see Section 4.4)
created with HCDs with the same column densities 𝑛 = 19.5, 20.0, 20.5, 21.0, using the Voigt
model, for Ly𝛼 auto-correlation function and Ly𝛼-quasar cross-correlation, respectively.

Mocks with DLAs masked Mocks without DLAs masked
LY𝛼 × LY𝛼 LY𝛼 × LY𝛼 LY𝛼 ×QSO LY𝛼 ×QSO LY𝛼 × LY𝛼 LY𝛼 × LY𝛼 LY𝛼 ×QSO LY𝛼 ×QSO

Model Exp model Voigt model Exp model Voigt model Exp model Voigt model Exp model Voigt model
𝑁mocks 10 10 10 10 10 10 10 10

𝜒2 1523.56 1523.22 3279.49 3378.02 1533.46 1534.1 3267.73 3331.4
𝑁data 1574 1574 3148 3148 1574 1574 3148 3148
𝑁par 7 6 8 7 7 6 8 7
𝑃 0.78 0.79 0.04 0.0 0.72 0.73 0.05 0.01
𝛼 | | 1.01±0.009 1.01±0.009 1.0±0.009 1.0±0.009 1.0±0.009 1.0±0.009 1.0±0.01 1.0±0.009
𝛼⊥ 0.98±0.014 0.98±0.013 1.0±0.011 1.0±0.011 0.984±0.015 0.984±0.015 0.997±0.012 0.998±0.012

𝑏�,LY𝛼 -0.204±0.002 -0.206±0.001 -0.179±0.021 -0.192±0.001 -0.208±0.002 -0.205±0.002 -0.192±0.003 -0.191±0.001
𝛽LY𝛼 1.67±0.02 1.64±0.04 2.54±1.3 1.66±0.02 1.58±0.05 1.64±0.04 1.66±0.04 1.68±0.02
𝑏𝐹
HCD

-0.019±0.001 -0.066±0.041 -0.026±0.004 -0.043±0.003
𝑏HCD 1.93±0.347 2.21±0.215 1.82±0.146 2.06±0.114
𝛽HCD 0.47±0.09 0.48±0.09 0.5±0.09 0.38±0.08 0.48±0.09 0.48±0.08 0.63±0.08 0.41±0.07
𝐿HCD 2.29±0.75 3.86±3.02 9.48±2.57 13.02±2.18

Tableau 6.5 : Best fit parameters for stack of Ly𝛼 mocks (eboss-0.2 mocks, see Section 4.4),
using the Voigt model and the Exp model, for Ly𝛼 auto-correlation function and Ly𝛼-quasar
cross-correlation, respectively.
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Figure 6.13 : Ly𝛼 mocks : Ly𝛼 auto-correlation function (top four panels) and Ly𝛼-quasar cross-
correlation (bottom four panels), for pixels in the Ly𝛼 region. The correlations are multiplied by
𝑟2 to better see the BAO peak. The points of different colors give the measured correlation for
mocks with HCDs with different column densities 𝑛 = 19.5, 20, 20.5, 21, and the curves give the
best fit models using the Voigt model, in four wedges of |�| = | 𝑟| |𝑟 |. The fitted range is chosen as
𝑟 ∈ [20, 180]ℎ−1Mpc.
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Figure 6.14 : Theoretical prediction and experimental constraints for 𝑏HCD and 𝑏HCD ∗ 𝛽HCD
using the Voigt model. The black points show the true value of 𝑏HCD = 2.0 and 𝑏HCD∗𝛽HCD = 1.0.
The red points and blue points are fitted from auto- and cross-correlations respectively, for mocks
with HCDs with different column densities. The bottom four experiments use mocks with the
same column density HCDs, and the top two experiments use a distribution of HCDs, described
in 4.4.
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• The comparison of constraints on 𝑏′𝛽′ = 𝑏Ly𝛼𝛽Ly𝛼 + 𝑏HCD𝛽HCD𝐹HCD(𝑘 | |) shows that the
voigt model gives tighter constraints, while the worse constraint for 𝑛 ∈ [17.2, 20.3] may
be due to the smaller number of HCDs and tinier effect on Ly𝛼 correlation function.

Correlation between parameters

In order to understand the parameter constraints of different models and their correlations, we
compute the Gaussian likelihood with Gaussian distributed parameters, as described in Sec-
tion 5.2.4. We only use mocks with realistic HCD distributions (with/without masking) and the
Ly𝛼 auto-correlation function. We fix 𝛽HCD since it is mainly determined by priors. The effective
Ly𝛼 bias is used, which is less correlated with 𝛽Ly𝛼. It is defined as :

𝑏eff,Ly𝛼 = 𝑏Ly𝛼

√
1 + 2

3
𝛽Ly𝛼 + 1

5
𝛽2Ly𝛼 . (6.59)

Moreover, it gives the amplitude of the monopole of the correlation function. The combination
(𝑏eff,Ly𝛼,𝛽Ly𝛼) then separates clearly the isotropic part (𝑏eff,Ly𝛼) from the anisotropic part (𝛽Ly𝛼).
Figure 6.17 shows the triangle plot of the Ly𝛼 parameters of interest {|𝑏eff,Ly𝛼|,𝛽Ly𝛼,|𝑏𝐹HCD |,𝐿HCD}
for the Exp model, and Figure 6.18 shows the constraints on {|𝑏eff,Ly𝛼|,𝛽Ly𝛼,|𝑏HCD |} for the Voigt
model. A comparison of these two models is summarized in Figure 6.19 and Figure 6.20, showing
the constraints on {|𝑏eff,Ly𝛼|,𝛽Ly𝛼} and {|𝑏eff,LY𝛼|,|𝑏�,LY𝛼 |}. We can infer from these results that :

• The Voigt model gives tighter constraints on both 𝑏eff,Ly𝛼, 𝑏�,LY𝛼 and 𝛽Ly𝛼. The correlation
between 𝑏eff,Ly𝛼 and 𝑏�,LY𝛼 is much weaker compared to the Exp model.

• 𝑏𝐹HCD and 𝐿HCD are strongly anti-correlated in the Exp model, indicating that the important
factor is the product of these two parameters. We get rid of this issue in the Voigt model
since the amplitude information of the HCD power spectrum is analytically computed.

6.4.2 Fitting of eBOSS DR16 data

I present in Figure 6.21 the fitting of the auto- and cross-correlation functions to the eBOSS
DR16 data, using the voigt model and the Exp model. Table 6.6 show the results for all the
fitted parameters, and the masking of large DLAs is also taken into account as a control group.

• The voigt model measures 𝑏�Ly𝛼 and 𝛽Ly𝛼 with a smaller uncertainty than the Exp model,
for both the Ly𝛼 auto-correlation and the Ly𝛼-quasar cross-correlation functions. There
is good consistency between auto- and cross-correlation functions for 𝛽Ly𝛼, while not for
𝑏�Ly𝛼.

• The two models of HCDs do not affect the measurement of BAO significantly.

• Using the Ly𝛼 auto-correlation function from eBOSS DR16 data, we measure a much larger
𝑏HCD than what we have in the mocks. This could be due to the fact that the input HI
column density distribution in the Voigt model is not realistic enough, since it is fitted
from a limited number of DLAs with a wide range of HI column densities. However, it
also suggests that the model could potentially be used to constrain the HI column density
distribution of HCDs in the range of 17 < 𝑛 < 20, which is technically hard to measure
from direct observation.
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Figure 6.15 : The comparison between the voigt model and the Exp model for Saclay mocks
with different types of HCDs. The upper four plots show the comparison in mocks with HCDs
with the same column densities, from 19.5 to 21. The lower two plots show the mocks with
a distribution of HCDs. The blue curves and red curves show the 1𝜎 constraints on 𝑏′𝛽′ =

𝑏Ly𝛼𝛽Ly𝛼+𝑏HCD𝛽HCD𝐹HCD(𝑘 | |), of the Exp model and the Voigt model, respectively, fitted using
the Ly𝛼 auto-correlations.
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Figure 6.16 : The comparison between the voigt model and the Exp model for Saclay mocks
with different types of HCDs. The upper four plots show the comparison in mocks with HCDs
with the same column densities, from 19.5 to 21. The lower two plots show the mocks with
a distribution of HCDs. The blue curves and red curves show the 1𝜎 constraints on 𝑏′𝛽′ =

𝑏Ly𝛼𝛽Ly𝛼+𝑏HCD𝛽HCD𝐹HCD(𝑘 | |), of the Exp model and the Voigt model, respectively, fitted using
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Figure 6.21 : eBOSS DR16 data : Ly𝛼 auto-correlation function (top four panels) and Ly𝛼-
quasar cross-correlation (bottom four panels), for pixels in the Ly𝛼 region. The correlations are
multiplied by 𝑟2 to better see the BAO scale. The black curves show the best-fit models using
the Exp model, with and without a fixed 𝐿HCD = 10ℎ−1Mpc. The red curves give the best-
fit models using the Voigt model, in four wedges of |�| = | 𝑟| |𝑟 |. The fitted range is chosen as
𝑟 ∈ [10, 180]ℎ−1Mpc.
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Data with DLAs masked Data without DLAs masked
LY𝛼 × LY𝛼 LY𝛼 × LY𝛼 LY𝛼 ×QSO LY𝛼 ×QSO LY𝛼 × LY𝛼 LY𝛼 × LY𝛼 LY𝛼 ×QSO LY𝛼 ×QSO

Model Exp model Voigt model Exp model Voigt model Exp model Voigt model Exp model Voigt model
𝜒2 1576.22 1624.34 3220.27 3221.4 1594.96 1630.65 3219.44 3224.94

𝑁data 1590 1590 3180 3180 1590 1590 3180 3180
𝑁par 14 13 13 12 14 13 13 12
𝑃 0.49 0.2 0.25 0.25 0.36 0.17 0.25 0.24
𝛼 | | 1.05±0.034 1.04±0.033 1.06±0.032 1.06±0.032 1.04±0.034 1.04±0.033 1.05±0.034 1.05±0.034
𝛼⊥ 0.981±0.042 0.985±0.041 0.932±0.039 0.933±0.039 0.974±0.044 0.973±0.044 0.948±0.042 0.947±0.042

𝑏�,LY𝛼 -0.175±0.013 -0.179±0.004 -0.228±0.016 -0.237±0.014 -0.173±0.013 -0.189±0.005 -0.231±0.019 -0.27±0.018
𝛽LY𝛼 3.23±1.26 1.71±0.11 1.91±0.33 1.91±0.21 5.25±3.29 1.84±0.14 1.92±0.34 1.56±0.16
𝑏𝐹
HCD

-0.105±0.022 -0.034±0.024 -0.139±0.02 -0.047±0.027
𝑏HCD 7.3±0.611 3.78±1.92 4.79±0.326 -0.424±1.4
𝛽HCD 0.53±0.08 0.67±0.08 0.52±0.09 0.51±0.09 0.51±0.08 0.67±0.08 0.51±0.09 0.5±0.09
𝐿HCD 2.28±0.63 0.95±2.87 2.59±0.52 -0.01±1.66

Tableau 6.6 : Best fit parameters for eBOSS DR16 data, using the Voigt model and the Exp
model, for Ly𝛼 auto-correlation function and Ly𝛼-quasar cross-correlation, respectively.

6.5 Non-linear effects of HCDs

I present in Figure 6.22 a comparison of all the non-linear effects on the Ly𝛼 power spectrum,
i.e., the Voigt model showing the non-linear effect due to the Voigt-profile HCD absorption, the
non-linear effect of Ly𝛼 forests at small scales (hereafter the Arinyo effect (Arinyo-i-Prats,
Miralda-Escudé, Viel et Cen 2015)), the binning effect due to the correlation function bins,
and the quasar nonlinear velocities that affect the Ly𝛼-quasar cross-correlation. Note that the
non-linear effect of HCDs at small scales (𝐷NL,HCD in Equation 6.20) produce a suppression at
higher 𝑘 | | than that of the Ly𝛼 forests, and thus are ignored in this comparison. It turns out that
for the Ly𝛼 auto-correlation function, the Voigt model predicts a suppression at smaller 𝑘 | | than
the Arinyo effect and the binning effect. However, the binning effect drops down quickly, thus
covering the tail of the HCD effect. Therefore, in order to get rid of the impact of the binning
effect, we should make a further study on the Ly𝛼 correlation function with smaller binsize,
e.g., = 2 or 1ℎ−1Mpc. For Ly𝛼-quasar cross-correlations, the quasar nonlinear velocities give a
non-negligible suppression, comparable to the HCD effect. This could be one of the explanations
of our worse constraints of 𝑏HCD from the cross correlations.



6.6. Summary and Prospects 159

10 3 10 2 10 1 100 101

k||[h Mpc 1]

0.2

0.0

0.2

0.4

0.6

0.8

1.0

No
n-

lin
ea

r e
ffe

ct
s

Voigt model, n [17.2, 20.3]
Voigt model, n [17.2, 22.5]
Arinyo effect, = 1.0
Binning effect, 4Mpc/h
Binning effect, 2Mpc/h
Quasar nonlinear velocities, = 7.7
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6.6 Summary and Prospects

The damping wings of the HCD absorption profile result in a suppression on the Ly𝛼 forest
power spectrum, and a broadband impact on the correlation function. I have developed a three-
parameter empirical fitting function, the 𝐿𝛽𝛾 model, to characterize this non-local damping
effect of HCDs on the Ly𝛼 correlation function and power spectrum. In this model, the 𝐿HCD
parameter determines the scale of the suppression, which is physically related to the size of HCDs.
The combination of 𝛽 and 𝛾 determines the shape of the slope of the damping function 𝐹HCD(𝑘 | |).
The 𝐿𝛽𝛾 model shows no difference with the Exp model when applied to eBOSS Saclay mocks
with HCDs, while showing encouraging improvement when applied to eBOSS DR16 data in the
range of 20ℎ−1Mpc < 𝑟 < 80ℎ−1Mpc. This suggests that the 𝐿𝛽𝛾 model is probably modeling
something else than HCDs, which has a non-negligible impact on the Ly𝛼 correlations.

I further developed a theoretical model, i.e., the Voigt model, based on the Voigt absorption
profile that parametrizes the damping wings of HCDs, and takes into account the HI column
density probability distribution of HCDs. It has no additional free parameters, providing a phy-
sical measurement of the bias and RSD parameters of HCDs, and a good constraint on the Ly𝛼
parameters. My theoretical development on this model also gives a physical ground to unders-
tand the phenomenological models used in previous Ly𝛼 analyses. Based on the Voigt model, we
understand clearly the physical meaning of the Exp model, where all the absorption profiles are
assumed to be Lorentzian with the same width, and their localization information is not taken
into account. We perform a suite of verification of the model, based on the fitting of Ly𝛼 forest
correlations, computed from mocks with different HI column density probability distributions
of HCDs. It turns out that the model works well for HCDs with small 𝑛, while giving small
discrepancies for mocks with large HCDs with 𝑛 ⩾ 20.5. These could possibly be affected by
the continuum fitting distortions due to the large DLA absorption in the Ly𝛼 analysis pipeline
(could be checked with the true transmission mocks in the future). Compared with the previous
Exp model used in the eBOSS DR16 analysis, the Voigt model gives comparable 𝜒2, with tighter
constraints on 𝑏eff,Ly𝛼, 𝑏�,LY𝛼 and 𝛽Ly𝛼. The correlation between 𝑏eff,Ly𝛼 and 𝑏�,LY𝛼 is much wea-
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ker compared to the Exp model. The auto- and cross-correlation functions results for 𝑏�,Ly𝛼 and
𝛽Ly𝛼 are also more consistent with the Voigt model. Moreover, the fitting from the eBOSS DR16
data confirms that the modeling of HCDs does not affect the measurement of BAO significantly.
However, we measure a much larger 𝑏HCD in eBOSS DR16 data than what we have in the mocks,
which could possibly be explained that the input HI column density probability distribution of
HCDs (obtained using limited DLAs in the literature) is not accurate enough to constrain 𝑏HCD
of eBOSS or DESI data. Moreover, a future study can be explored, taking into account a more
realistic HI column density distribution, regarding the dependence of the hosting halo mass. The
HI column density distribution in the range of 17 < 𝑛 < 20, could also potentially be constrained
with this model, which is technically hard to measure from direct observation.
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Conclusion (English version)

In this manuscript, I presented the work carried out during my Ph.D. study in the cosmology
group of the LPNHE (Sorbonne University), which is supported by CNRS and Centre Pierre
Binetruy (CPB). I make use of the Ly𝛼 mocks developed at CEA Saclay, and collaborated with
their cosmology group in the Ly𝛼 analysis.

This thesis benefits from spectroscopic observation data from two large cosmological surveys,
eBOSS and DESI. The survey validation program of DESI was started almost at the same time
as this thesis, thus enabling me to get involved in the data quality checking, target selection
pipeline test, collection of the main survey data, and scientific analysis of DESI.

I presented a comparison of DESI EDR and eBOSS DR16 Ly𝛼 analysis. Comparable 𝜒2

and similar parameter correlations were found between their fits. The DESI EDR data show
encouraging data quality and the need for more systematic studies to prepare the upcoming
enormous DESI dataset.

I work as a core member for the test of Saclay mocks and am responsible for the insertion
of HCDs and BALs into DESI mocks. The analysis on Ly𝛼 mocks shows that the Ly𝛼 analysis
pipeline performs well and motivates further development of the model for HCDs and metals.

The presence of HCDs in quasar spectra has a broadband impact on the Ly𝛼 correlation
functions. The damping wings of HCDs extend out to all scales in the Ly𝛼 forest, resulting in a
suppression (at the scale of HCD widths) on the Ly𝛼 power spectrum. It is therefore essential to
have a physical understanding of the non-local effect of HCDs on the Ly𝛼 correlation functions,
which will be useful for the Ly𝛼 full shape analysis, P1D measurements, etc.

I have developed a three-parameter empirical fitting function, the 𝐿𝛽𝛾 model, to characterize
this non-local damping effect of HCDs on the Ly𝛼 correlation function and power spectrum.
In this model, the 𝐿HCD parameter determines the scale of the suppression, which is physically
related to the size of HCDs. The combination of 𝛽 and 𝛾 determines the shape of the slope of
the damping function 𝐹HCD(𝑘 | |). The 𝐿𝛽𝛾 model shows encouraging improvement when applied
to eBOSS DR16 data in the range of 20ℎ−1Mpc < 𝑟 < 80ℎ−1Mpc. However, this is probably
modeling something else than HCDs, which has a non-negligible impact on the Ly𝛼 correlations.

I further developed a theoretical model, i.e., the Voigt model, based on the Voigt absorption
profile that parametrizes the damping wings of HCDs, and takes into account the HI column
density probability distribution of HCDs. It provides a physical measurement of the bias and RSD
parameters of HCDs, and a good constraint on the Ly𝛼 parameters. My theoretical development
on this model also gives a physical ground to understand the phenomenological models used in
previous Ly𝛼 analyses. Based on the Voigt model, we understand clearly the physical meaning
of the Exp model, where all the absorption profiles are assumed to be Lorentzian with the
same width, and their localization information is not taken into account. I perform a suite of
verification of the model, based on the fitting of Ly𝛼 forest correlations, computed from mocks
with different HI column density probability distributions of HCDs.

Compared with the previous Exp model used in the eBOSS DR16 analysis, the Voigt model
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gives comparable 𝜒2, with tighter constraints on 𝑏eff,Ly𝛼, 𝑏�,LY𝛼 and 𝛽Ly𝛼. The correlation
between 𝑏eff,Ly𝛼 and 𝑏�,LY𝛼 is much weaker compared to the Exp model. The auto- and cross-
correlation functions results for 𝑏�,Ly𝛼 and 𝛽Ly𝛼 are also more consistent with the Voigt model.
Moreover, the fitting from the eBOSS DR16 data confirms that the modeling of HCDs does not
affect the measurement of BAO significantly.

My work provides an important theoretical tool for future Ly𝛼 analyses and could potentially
be useful for the study of dark energy models.



Conclusion (French version)

Dans ce manuscrit, j’ai présenté les travaux menés lors de ma thèse dans le groupe de cosmologie
du LPNHE (Sorbonne Université), soutenu par le CNRS et le Centre Pierre Binetruy (CPB).
J’utilise les simulations Ly𝛼 développées au CEA Saclay et j’ai collaboré avec leur groupe de
cosmologie à l’analyse Ly𝛼.

Cette thèse bénéficie des données d’observation spectroscopiques de deux grandes campagnes
cosmologiques, eBOSS et DESI. Le programme de validation d’enquête de DESI a démarré
presque en même temps que cette thèse, me permettant ainsi de m’impliquer dans la vérification
de la qualité des données, le test du pipeline de sélection des cibles, la collecte des principales
données d’enquête et l’analyse scientifique de DESI.

J’ai présenté une comparaison des analyses DESI EDR et eBOSS DR16 Ly𝛼. Des 𝜒2 compa-
rables et des corrélations de paramètres similaires ont été trouvées entre leurs ajustements. Les
données DESI EDR montrent une qualité de données encourageante et la nécessité d’études plus
systématiques pour préparer l’énorme ensemble de données DESI à venir.

Je travaille en tant que membre principal pour le test des simulations Saclay et suis respon-
sable de l’insertion des HCD et BAL dans les simulations DESI. L’analyse des simulations Ly𝛼
montre que le pipeline d’analyse Ly𝛼 fonctionne bien et motive le développement ultérieur du
modèle pour les HCD et les métaux.

La présence de HCD dans les spectres des quasars a un impact à large bande sur les fonctions
de corrélation Ly𝛼. Les ailes amortissantes des HCD s’étendent à toutes les échelles de la forêt
Ly𝛼, ce qui entraîne une coupure (à l’échelle des largeurs des HCD) sur le spectre de puissance
Ly𝛼. Il est donc essentiel d’avoir une compréhension physique de l’effet non local des HCD sur les
fonctions de corrélation Ly𝛼, ce qui sera utile pour l’analyse de forme complète Ly𝛼, les mesures
P1D, etc.

J’ai développé une fonction d’ajustement empirique à trois paramètres, le modèle 𝐿𝛽𝛾, pour
caractériser cet effet d’amortissement non local des HCD sur la fonction de corrélation Ly𝛼 et
le spectre de puissance. Dans ce modèle, le paramètre 𝐿HCD détermine l’échelle du seuil, qui est
physiquement liée à la taille des HCD. La combinaison de 𝛽 et 𝛾 détermine la forme de la pente
de la fonction d’amortissement 𝐹HCD(𝑘 | |). Le modèle 𝐿𝛽𝛾 montre une amélioration encourageante
lorsqu’il est appliqué aux données eBOSS DR16 dans la plage de 20ℎ−1Mpc < 𝑟 < 80ℎ−1Mpc.
Cependant, il s’agit probablement d’une modélisation autre que les HCD, ce qui a un impact
non négligeable sur les corrélations Ly𝛼.

J’ai ensuite développé un modèle théorique, à savoir le modèle Voigt, basé sur le profil
d’absorption Voigt qui paramétrise les ailes d’amortissement des HCD et prend en compte la
distribution de probabilité de densité de colonne HI des HCD. Il fournit une mesure physique
des paramètres de biais et de RSD des HCD, ainsi qu’une bonne contrainte sur les paramètres
Ly𝛼. Mon développement théorique sur ce modèle donne également une base physique pour
comprendre les modèles phénoménologiques utilisés dans les analyses Ly𝛼 précédentes. Sur la
base du modèle Voigt, nous comprenons clairement la signification physique du modèle Exp, où
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tous les profils d’absorption sont supposés lorentziens de même largeur, et leurs informations de
localisation ne sont pas prises en compte. compte. J’effectue une suite de vérifications du modèle,
basée sur l’ajustement des corrélations forestières Ly𝛼, calculées à partir de simulations avec
différentes distributions de probabilité de densité de colonnes HI des HCD.

Par rapport au modèle Exp précédent utilisé dans l’analyse eBOSS DR16, le modèle Voigt
donne des 𝜒2 comparables, avec des contraintes plus strictes sur 𝑏eff,Ly𝛼, 𝑏�,LY𝛼 et 𝛽Ly𝛼. La cor-
rélation entre 𝑏eff,Ly𝛼 et 𝑏�,LY𝛼 est beaucoup plus faible par rapport au Exp modèle. Les résultats
des fonctions d’auto-corrélation et de corrélation croisée pour 𝑏�,Ly𝛼 et 𝛽Ly𝛼 sont également plus
cohérents avec le Voigt modèle. De plus, l’ajustement des données eBOSS DR16 confirme que
la modélisation des HCD n’affecte pas de manière significative la mesure du BAO.

Mon travail fournit un outil théorique important pour les futures analyses Ly𝛼 et pourrait
potentiellement être utile pour l’étude des modèles d’énergie noire.
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A B S T R A C T 

Weak gravitational lensing is a powerful probe, which is used to constrain the standard cosmological model and its extensions. 
With the enhanced statistical precision of current and upcoming surv e ys, high-accurac y predictions for weak lensing statistics 
are needed to limit the impact of theoretical uncertainties on cosmological parameter constraints. For this purpose, we present 
a comparison of the theoretical predictions for the non-linear matter and weak lensing power spectra, based on the widely used 

fitting functions ( mead and rev-halofit ), emulators ( EuclidEmulator , EuclidEmulator2 , BaccoEmulator 

, and CosmicEmulator ), and N -body simulations ( PKDGRAV3 ). We consider the forecasted constraints on the � CDM and 

wCDM models from weak lensing for stage III and stage IV surv e ys. We study the relative bias on the constraints and their 
dependence on the assumed prescriptions. Assuming a � CDM cosmology, we find that the relative agreement on the S 8 parameter 
is between 0.2 and 0.3 σ for a stage III-like surv e y between the abo v e predictors. F or a stage IV-like surv e y the agreement 
becomes 1.4–3.0 σ . In the wCDM scenario, we find broader S 8 constraints, and agreements of 0.18–0.26 σ and 0.7–1.7 σ for stage 
III and stage IV surv e ys, respectiv ely. The accuracies of the abo v e predictors therefore appear adequate for stage III surv e ys, 
whereas the fitting functions would need impro v ements for future stage IV surv e ys. Furthermore, we find that, of the fitting 

functions, mead provides the best agreement with the emulators. We discuss the implication of these findings for the preparation 

of future weak lensing surv e ys, and the relative impact of theoretical uncertainties to other systematics. 

Key words: gravitational lensing: weak – large-scale structure of Universe – Cosmological parameters. 

1  I N T RO D U C T I O N  

The next generation of wide field cosmological surveys, such as 
the Vera Rubin Observatory Le gac y Surv e y of Space and Time 
(LSST 

1 ; Abell et al. 2009 ), Euclid , 2 and the Nancy Grace Roman 
Space Telescope ( NGRST 

3 ; Akeson et al. 2019 ) will map the matter 
distribution of the local Universe with an unprecedented accuracy. 
These high-precision measurements present a challenge for the 
theoretical modelling of cosmological observables. Cosmic shear 
is a cosmological observable that relies on the distortions of galaxy 
shapes caused by weak gravitational lensing (e.g. Bartelmann & 

Schneider 2001 ). This effect is due to the gravitational deflection of 
photons by the matter density field along the line of sight. Cosmic 
shear measures the inhomogeneities in the cosmic density field with 
high precision and can be used as an unbiased tracer of the matter 
distribution. It is sensitive to both, the matter distribution of the 
Universe and the growth of cosmic structure, which is important 

� E-mail: ting.tan@lpnhe.in2p3.fr 
1 ht tps://www.lsst .org . 
2 ht tps://www.cosmos.esa.int /web/euclid/home . 
3 https:// roman.gsfc.nasa.gov/ . 

for the understanding of the expansion history of the Universe. A 

commonly used cosmic shear summary statistic is the cosmic shear 
angular power spectrum, which can be predicted from the matter 
power spectrum. The modelling of the matter power spectrum on 
large scales can be derived using perturbation theory (Bernardeau 
et al. 2002 ; Crocce & Scoccimarro 2006 ; Baumann et al. 2012 ; 
Crocce, Scoccimarro & Bernardeau 2012 ; Blas, Garny & Konstandin 
2014 ; Blas et al. 2016 ; Foreman & Senatore 2016 ; Nishimichi, 
Bernardeau & Taruya 2016 ; Beutler et al. 2017 ; Cataneo et al. 2019 ; 
d’Amico et al. 2020 ), where the structure formation of the Universe 
is linear. Some extended perturbation theories (e.g. Chudaykin et al. 
2020 ; D’Amico, Senatore & Zhang 2021 ) can provide an accurate 
model up to k ∼ 0.3 h Mpc −1 . Ho we ver , at non-linear , smaller scales, 
non-linear processes have a strong impact on the matter power 
spectrum, and perturbation theory is no longer valid. 

In this work, we compare the theoretical predictions of the non- 
linear matter power spectrum, and the associated theoretical uncer- 
tainties on cosmological parameters from measurements of the cos- 
mic shear angular power spectrum. The comparison includes some 
widely used models fitted from N -body simulations using analytical 
halo models: halofit (Smith et al. 2003 ) is fitted to low resolution, 
gravity-only N -body simulations, which is known to exhibit a non- 

© The Author(s) 2023. 
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negligible mismatch with current state-of-the-art hydrodynamic N - 
body simulations; rev-halofit (Takahashi et al. 2012 ), devel- 
oped as the revisited version of halofit is used in the analysis 
of the Dark Energy Surv e y (DES; Amon et al. 2022 ); and mead 
(Mead et al. 2015 ), which is used in the analysis of the Kilo-Degree 
Surv e y combined with the VISTA Kilo-Degree Infrared Galaxy 
Surv e y (Giblin et al. 2021 ). Apart from the halo model fitting method, 
emulators are generated from the interpolation of a suite of N -body 
simulations, e.g. CosmicEmulator (Heitmann et al. 2009 , 2013 ; 
Lawrence et al. 2017 ), BaccoEmulator (Angulo et al. 2020 ; Aric ̀o 
et al. 2021 ), EuclidEmulator (Knabenhans et al. 2019 ) and its 
updated version EuclidEmulator2 (Collaboration et al. 2020 ), 
COSMOPOWER (Mancini et al. 2022 ), and GP emulator (Giblin 
et al. 2019 ). In this study, CosmicEmulator , BaccoEmulator , 
EuclidEmulator , and EuclidEmulator2 are representa- 
tively selected in the comparison at the level of the matter power 
spectrum, and a comparison between rev-halofit , mead and 
EuclidEmulator is also shown in Knabenhans et al. ( 2021 ). 
In order to estimate the theoretical uncertainties, we look at the 
weak lensing cosmological parameter constraints, by generating a 
forecast for a stage III, DES-like surv e y and a stage IV, Euclid -like 
surv e y. We take into account the parameters described by the standard 
� CDM cosmological model and the extended wCDM model. As a 
further investigation, we also discuss the relative impact of theoretical 
uncertainties compared to other systematics, such as baryonic effects, 
photometric redshift uncertainty (e.g. Huterer et al. 2006 ), shear bias 
(e.g. Bernstein & Jarvis 2002 ; Hirata et al. 2004 ), and galaxy intrinsic 
alignment (e.g. Heavens, Refregier & Heymans 2000 ). 

This paper is organized as follows. In Section 2, we de- 
scribe the theoretical framework, including three halo-model based 
fitting functions, mead , halofit , and rev-halofit ; four 
power spectrum emulators extracted from N -body simulations: 
CosmicEmulator , BaccoEmulator , EuclidEmulator and 
EuclidEmulator2 , and one N -body simulation code PKDGRAV3 
(Potter, Stadel & Teyssier 2017 ). In Section 3 , we present the method 
and the rele v ant codes used in this study. We summarize our results 
in Section 4 and our conclusions in Section 5 . 

2  T H E O RY  

In this section, we describe the theoretical background of the matter 
power spectrum, weak lensing, and its angular power spectrum, as 
well as the different predictors of the matter power spectrum that we 
include in the comparisons. 

2.1 Weak lensing 

Considering the cosmic density field ρ( � r ) at the position � r , the density 
contrast δ( � r ) is defined as the relative difference of ρ( � r ) to the average 
density ρ̄

δ( � r ) = 

ρ( � r ) − ρ̄

ρ̄
. (1) 

In Fourier space, the density contrast takes the following form: 

δ( � k ) = 

∫ 

δ( � r ) exp ( i � k · � r ) d 3 r. (2) 

Furthermore, the matter power spectrum P ( � k ) is defined as the 
correlation of the density contrast in Fourier space (Peebles 2020 ): 

〈 δ( � k ) δ( � k ′ ) 〉 = (2 π ) 3 δ(3) 
D ( � k + 

� k ′ ) P ( � k ) , (3) 

where δD is the three-dimensional Dirac delta function. For full-sky 
surv e ys, the cosmic shear angular power spectrum is approximately 
identical to the convergence power spectrum (Bartelmann & Maturi 
2016 ), which can be defined as a weighted integration along the line- 
of-sight o v er the matter power spectrum (Bartelmann & Schneider 
2001 ), and simplified using the Kaiser–Limber approximation (Lim- 
ber 1953 ; Kaiser 1992 , 1998 ; LoVerde & Afshordi 2008 ). We follow 

the formalism of LoVerde & Afshordi ( 2008 ), Giannantonio et al. 
( 2012 ), Kilbinger et al. (2017) , Kitching et al. (2017 ), and Tarsitano 
et al. (2021 ) to compute the cross-correlated shear power spectrum 

with tomographic redshift bins i and j : 

C 

ij 
γ ( 	 ) = 

9 

16 

(
H 0 

c 

)4 


2 
m 

∫ χh 

0 
d χP NL 

(
	 

r 
, χ

)
g i ( χ )g j ( χ ) 

(ar( χ )) 2 
. (4) 

Here P NL is the non-linear matter power spectrum, χ is the comoving 
distance, χh is the comoving horizon distance, r is the comoving 
angular diameter distance, 
m 

is the total matter density, a = (1 + 

z) ( − 1) is the scale factor, and g ( χ ) is the lensing efficiency function 
defined as: 

g i ( χ ) = 2 
∫ χh 

χ

d χ ′ n i ( χ ) 
r ( χ )r ( χ ′ − χ ) 

r( χ ′ ) 
, (5) 

with n i ( χ ) being the normalized number density of the observed 
galaxies at a comoving distance χ . 

2.2 Matter power spectrum 

The matter power spectrum is a fundamental statistics to study 
the large-scale structure of the Universe. As seen above, it is, in 
particular, useful to predict the cosmic shear angular power spectrum. 
Therefore, it is necessary to have an accurate theoretical model for 
the matter power spectrum on all scales. On large scales and mildly 
non-linear scales, the matter power spectrum can be modelled using 
perturbation theory and some extended theories. On small scales, 
which are in the non-linear regime, these approaches are not suited to 
predict the power spectrum with the necessary precision, while other 
methods are developed with the use of a halo model or simulations. 

2.2.1 Analytical predictions 

A common way to model the matter power spectrum on these 
small scales is to empirically fit physically moti v ated formulas to 
measurements from N -body simulations, e.g. as done in Hamilton 
et al. ( 1991 ). Furthermore, modelling the density field as a collection 
of virialized haloes, the matter power spectrum can be approximated 
analytically using the statistics of haloes, and fitted to simulations or 
emulators (Ma & Fry 2000 ; Seljak 2000 ; Cooray & Sheth 2002 ). 

In this study, we compare three halo-model based fitting functions: 
mead , halofit , and rev-halofit . halofit was built using 
a series of N -body simulations with a total of N = 256 3 particles 
and the box size from 84 to 240 Mpc h −1 . Using the halo model, 
the matter power spectrum is constructed with two terms, the one- 
halo term proposed by Ma & Fry ( 2000 ), Peacock & Smith ( 2000 ), 
Seljak ( 2000 ), Scoccimarro et al. ( 2001 ) and a two-halo term (Ma 
& Fry 2000 ; Seljak 2000 ; Scoccimarro et al. 2001 ) to describe the 
exclusion effects between dark matter haloes. The one-halo term 

indicates the correlation of the matter field of one single halo, which 
dominates on small scales, whereas the two-halo term describes 
the cross-correlation between different haloes, which has a strong 
impact on larger scales. Assuming that the haloes are distributed 
according to the halo mass function (Press & Schechter 1974 ; Sheth 
& Tormen 1999 ), the matter power spectrum modelled with this 
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approach can achieve a high precision on large scales. However, 
due to the lack of baryons and the relatively low resolution of 
the N -body simulations used in their study, halofit does not 
match high-resolution N -body simulations, giving an accuracy at 
the 5 per cent level at k = 1 h Mpc −1 (Heitmann et al. 2010 ), 
and larger differences for k > 1 h Mpc −1 , which is insufficient for 
the non-linear regime. rev-halofit is a revised prescription 
of halofit , which provides a more accurate prediction of the 
matter power spectrum for k < 30 h Mpc −1 and z < 10, with a 
5 per cent level accuracy at k = 1 h Mpc −1 and 10 per cent level 
accuracy at k = 10 h Mpc −1 . rev-halofit uses high-resolution N - 
body simulations for 16 cosmological models around the Wilkinson 
Microw ave Anisotrop y Probe (WMAP) best-fitting cosmological 
parameters. The N -body simulations were run with the Gadget-2 
N -body code (Springel, Yoshida & White 2001 ; Springel 2005a ), 
1024 3 particles in total, and the box size from 320 to 2000 Mpc h −1 . 
The power spectrum is fitted using an impro v ed fitting formula with 
five more model parameters as compared to halofit . Several 
extended methods have been proposed to improve the halo model 
(Bird, Viel & Haehnelt 2012 ; Mohammed & Seljak 2014 ; Seljak & 

Vlah 2015 ). Here we only consider mead (Mead et al. 2015 ), which 
reaches an accuracy at the 5 per cent level for k = 10 h Mpc −1 and 
z < 2. mead introduces more physical parameters in addition to the 
halo model, and is fitted to the ‘Coyote Universe’(Heitmann et al. 
2013 ) suite of high-resolution simulations, the same simulations used 
for the generation of CosmicEmulator . It also includes massive 
neutrinos (Mead et al. 2016 ) and baryonic effects e.g. active galactic 
nuclei (AGNs) feedback, superno vae e xplosions, and gas cooling. 
Ho we ver, we only consider the dark-matter-only case in this study. 

2.2.2 Emulators 

The fitting functions based on halo models described in Section 2.2.1 
can provide accurate non-linear power spectrum predictions for large 
k -modes and a wide redshift range, which can be used to predict 
cosmological observ ables. Ho we v er, the y also hav e limitations as 
the precision is not uniform for different cosmological parameters, 
and it is difficult for fitting functions to give a high precision below 

the 1 per cent level compared to high-resolution simulations. Power 
spectrum emulators are constructed following a different approach 
in which one interpolates the power spectrum from a set of N -body 
simulations within a certain range of rele v ant parameters, using 
interpolation methods, e.g. Gaussian processes regression (Heitmann 
et al. 2010 , 2013 ; Angulo et al. 2020 ) or polynomial chaos expansion 
(Knabenhans et al. 2019 ; Collaboration et al. 2020 ). Compared to 
fitting functions, emulators usually provide consistent precision of 
the predictions for dif ferent k -modes. Ho we v er, emulators also hav e 
limitations: First, the co v ered parameter space is limited, thus making 
it difficult to perform a likelihood analysis, for which one needs to 
explore a wide range of parameter values. Secondly, the ranges of 
k and redshift are also limited, making it difficult to compute the 
weak lensing cosmic shear observables for high 	 s, which require an 
inte gration o v er a large k range. 

In this study, we compare four emulators: CosmicEmulator 
(Heitmann et al. 2016 ), BaccoEmulator (Angulo et al. 
2020 ), EuclidEmulator (Knabenhans et al. 2019 ), and 
EuclidEmulator2 (Collaboration et al. 2020 ), which are selected 
as representatives for different interpolation methods, i.e. Cos- 
micEmulator using Gaussian processes regression, EuclidEmulator 
using polynomial chaos expansion, and BaccoEmulator using Neural 
network, and Gaussian processes regression. CosmicEmulator 

is fitted using a set of the ‘Coyote Universe’ simulations and the 
‘Mira-Titan Univ erse’(La wrence et al. 2017 ) simulations. We use the 
latest version of the emulator (Heitmann et al. 2016 ), for which the 
‘Mira-Titan Universe’ simulations were run with 3200 3 particles and 
a simulation volume of (2100 h −1 Mpc) 3 . The CosmicEmulator 
successfully achieves high-precision predictions of the power spec- 
trum within the 4 per cent level for k max = 5 h Mpc −1 and z < 2. It 
allows for the variation of various parameters, including the matter 
density 
m 

, the amplitude of density fluctuations σ 8 , the baryon 
density 
b , the scalar spectral index n s , the dark energy equation of 
state parameters w 0 , and w a , the dimensionless Hubble parameter h , 
the neutrino density 
ν , and the redshift z. EuclidEmulator uses 
a different emulation method using N -body simulations generated 
with the PKDGRAV3 code (Potter et al. 2017 ). It uses 100 simulations 
with 2048 3 particles in a (1250 h −1 Mpc) 3 simulation volume. The 
non-linear correction is encoded as a boost factor adding up to the 
input linear po wer spectrum, achie ving a precision at the 1 per cent 
level for predictions within the ranges k < 1 h Mpc −1 and z < 1. 
Knabenhans et al. ( 2019 ) demonstrated that EuclidEmulator 
agrees with rev-halofit at the 8 per cent level. As an updated 
version of EuclidEmulator , EuclidEmulator2 is extended 
with dynamical dark energy and massive neutrinos, created with 
a larger parameter space and a modified version of the PKDGRAV3 
N -body code. EuclidEmulator2 provides a consistent accuracy 
with simulations at the 2 per cent level up to k max = 10 h Mpc −1 for z 
< 2, and slightly lower accuracy for higher redshift z ∼ 3. Ho we ver, 
as EuclidEmulator2 uses the amplitude of the primordial power 
spectrum A s instead of σ 8 as input parameter, we use the following 
formula to transfer σ 8 into A s (Hand et al. 2018 ): 

A s = 

(
σ8 

σ8 , 0 

)2 

× A s , 0 (6) 

in our comparison, where σ 8, 0 = 0.826 and A s, 0 = 2.184 × 10 −9 . 
BaccoEmulator is another state-of-the-art emulator using an 

updated version of the L-Gadget3 code (Springel 2005b ; Angulo 
et al. 2012 ) with 4320 3 particles in a (1440 h −1 Mpc) 3 simulation 
volume. It has a 2 per cent level accuracy over the redshift range 0 
< z < 1.5 and k < 5 h Mpc −1 . 

2.2.3 N-body simulations 

We also include in this study a comparison with a dark-matter-only 
N -body simulation run with PKDGRAV3 , which is based on a binary 
tree algorithm. This code uses fifth order multipole expansions of 
the gravitational potential between particles and can achieve fast 
computational speeds with hardware acceleration. A comparison 
between PKDGRAV3 and the N -body codes, Gadget-3 , Gadget-4 , 
and Ramses is presented in Schneider et al. ( 2016 ) and Springel et al. 
( 2021 ). The PKDGRAV3 simulations are the same as the ones used for 
EuclidEmulator , with 2048 3 particles in total and the box size 
of L = 1250 h −1 Mpc. The details are presented in Knabenhans et al. 
( 2019 ). 

3  M E T H O D  

In this work, we perform a comparison of predictors of the non- 
linear matter power spectrum, i.e. halo-model based fitting functions 
and emulators. We estimate the theoretical uncertainties of these 
predictors on the parameter constraint level by looking at the weak 
lensing cosmological parameter constraints from a stage III and a 
stage IV surv e ys. F or each surv e y, we perform a comparison using 
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Table 1. Parameter settings for mock surv e ys: The stage IV surv e y is created 
using a four times larger surv e y area and galaxy density compared to the stage 
III surv e y. A deeper Smail redshift distribution is also used in the stage IV 

surv e y. 

Surv e y Stage III Stage IV 

Surv e y area [deg 2 ] 5000 20 000 
Galaxy density [arcmin −2 ] 5 20 
Redshift distribution Smail Smail 
Redshift bins 4 4 
Redshift range 4 0.025 ∼ 3.0 0.025 ∼ 3.0 

4 The presented redshift range refers to the considered range used in the 
generation process of the covariance matrix for the mock surv e ys. The range 
differs from the redshift range used for the predictors of the weak lensing 
power spectrum in Section 4.2 , where we use [0.08,2] for the stage III surv e y 
and [0.08,3.0] for the stage IV surv e y. 

the standard � CDM cosmological model and the extended wCDM 

model. 

3.1 Sur v ey parameters 

The estimate of the theoretical uncertainties for cosmological pa- 
rameters is realized by forecasting the constraints for a stage III 
and a stage IV surv e ys. The co variance matrix is estimated from 

simulations, as described in Section 3.2 below. Table 1 shows the 
parameter settings used for the generation of the mock galaxy 
surv e ys. Martinelli et al. ( 2021 ) suggests using 	 max = 5000 for 
stage IV-like surv e ys to probe deep into non-linear regime. Ho we ver, 
in this study we use a more conserv ati ve limit of 	 max = 1000, and 
do not take into account baryonic effects. 

We use Smail et al. ( 1995 ) distributions to model the global redshift 
distribution of the source galaxies for both the stage III and the stage 
IV surv e ys. The corresponding formulas and parameter settings for 
these two distributions are as follows: 

n ( z ) stageIII = z α exp 

[ 

−
(

z 

z 0 

)β
] 

, (7) 

with α = 1.5, β = 1.1, and z 0 = 0.31 and 

n ( z) stageIV = 

(
z 

z 0 

)α

exp 

[ 

−
(

z 

z 0 

)β
] 

, (8) 

with α = 2.0, β = 1.5, and z 0 = 0.64 (Martinelli et al. 2021 ). In both 
cases the source galaxies are randomly divided into four tomographic 
bins with equal number of galaxies in each bin, and a Gaussian 
convolution is performed so that they follow the schema in Amara & 

R ́efr ́egier ( 2007 ). The four tomographic bins are chosen to reduce the 
computation time and for simplicity. This is a conserv ati ve choice for 
the estimation of theoretical uncertainty, but could be enough for a 
forecast comparison. As a result of the auto- and cross-combinations 
of these four redshift bins, we have 10 combinations of auto- and 
cross-correlations for the cosmic shear measurements (four auto- 
correlations and six cross-correlations). Fig. 1 shows the global and 
tomographic redshift distributions used in this study. 

3.2 Co v ariance matrix 

An accurate estimate of the surv e y co variance matrix is crucial for 
the correct calculation of the likelihood function. We estimate the 
covariance matrices for the stage III and stage IV survey setups 
described in Table 1 from numerical simulations, using the NGSF 

Figure 1. The redshift distributions of the source galaxies. One can see the 
four tomographic distributions for the stage III and the stage IV surv e ys. The 
global distributions, which follows the Smail et al. ( 1995 ) model, are shown 
by the dashed lines. 

code described in Z ̈urcher et al. ( 2021 ) and Dominiket et al. ( 2022 ). 
We generate a large number ( N = 2000) of realization of the angular 
power spectra for each surv e y setup following the methodology 
outlined in Z ̈urcher et al. ( 2021 ). In the following, we introduce the 
used N -body simulations, briefly summarize the forward modelling 
procedure used to generate the angular power spectra and describe the 
estimation of the covariance matrix. We refer the reader to Z ̈urcher 
et al. ( 2021 ) for a more detailed description of the methodology. 

We utilize the 50 independent PKDGRAV3 (Potter et al. 2017 ) N - 
body simulations at the fiducial cosmology that were previously 
used in Dominiket et al. ( 2022 ); Z ̈urcher et al. ( 2021 ) and generated 
using the state-of-the-art dark-matter-only N -body code PKDGRAV3 . 
The cosmological parameters in the used simulations are fixed 
to the ( � CDM,TT,TE,EE + lowE + lensing) results of Planck 2018 
(Aghanim et al. 2020 ), except for 
m 

and σ 8 which are set to the 
values found in Troxel et al. ( 2018 ). This setup results in 
cdm 

= 

0.26, σ 8 = 0.84, 
b = 0.0493, n s = 0.9649, w = −1, and h = 

0.6736. We include three massive neutrino species in all simulations. 
The neutrinos are modelled as a relativistic fluid (Tram et al. 2019 ) 
and a degenerate mass hierarchy with a minimal neutrino mass of 
m ν = 0.02 eV per species was chosen. The dark energy density 
� 

is adapted for each cosmology to achieve a flat geometry. 
Each simulation was run using a unit box with a side-length of 

900 Mpc h −1 and 768 3 simulated particles. In order to achieve a 
simulation volume large enough to co v er the redshift range up to 
z = 3.0 the unit box was replicated up to 14 times per dimension 
depending on the cosmology. While such a replication scheme is 
known to underpredict the variance of very large, superbox modes 
(Fluri et al. 2019 ), it has been demonstrated by Dominiket et al. 
( 2022 ) that the simulations accurately reco v er the angular power 
spectra predicted by the theory code CLASS (Lesgourgues 2011 ) for 
	 ∈ [30, 2048]. 

The particle shells from each PKDGRAV3 simulation are combined 
into tomographic full-sky mass maps using the UFALCON software 
(Sgier et al. 2019 ). The particle shells are weighted according to 
the tomographic redshift distributions shown in Fig. 1 . The UFALCON 

software uses the HEALPIX (Gorski et al. 2005 ) pixelization scheme 
to pixelize the sphere. A resolution of NSIDE = 1024 was chosen. 
UFALCON also makes use of the Born approximation, which is known 
to deteriorate the accuracy of the produced mass maps. Ho we ver, 
Petri, Haiman & May ( 2017 ) have demonstrated that the introduced 
bias is negligible for stage III-like and stage IV-like surv e ys. 
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Figure 2. Correlation matrices for the stage III surv e y (left-hand panel) and the stage IV surv e y (right-hand panel). The ordering of the redshift tomographic 
bin combinations for the angular power spectra is 1 × 1, 1 × 2, 1 × 3, 1 × 4, 2 × 2, 2 × 3, 2 × 4, 3 × 3, 3 × 4, and 4 × 4, from left to right. For each angular 
power spectrum, all 20 bins ranging from 	 = 100 to 	 = 1000 are shown. 

The spherical Kaiser–Squires mass mapping technique (Kaiser & 

Squires 1993 ; Wallis et al. 2022 ) is used to obtain the cosmic shear 
signal from the simulated mass maps. To forward-model a realistic 
weak lensing surv e y a shape noise signal must then be added to the 
cosmic shear signal and an appropriate surv e y mask must be applied. 
The surv e y masks are re gularly chosen such that we obtain eight 
stage III surv e ys and two stage IV surv e ys from each full-sky map. 

The shape noise signal is obtained in the same way as described 
in Z ̈urcher et al. ( 2021 ). We randomly sample galaxy positions 
within the surv e y re gion until the target source density is reached. 
The intrinsic ellipticities of the galaxies are then drawn from a 
probability distribution that was fit to the observed galaxy ellipticities 
in Troxel et al. ( 2018 ) (see Z ̈urcher et al. 2021 ). The ellipticity of 
each individual galaxy is rotated by a random phase. Using 5 and 
20 shape noise realization per surv e y patch, we achieve the desired 
number of N = 2000 surv e y realization for the stage III and stage IV 

surv e y setup, respectively. 
The tomographic angular power spectra realization C 	 , i are then 

measured from the forward-modelled surv e ys using the anafast 
routine of the HEALPY software (Zonca et al. 2019 ) using 20 bins 
from 	 min = 100 to 	 max = 1000, the same as Sgier et al. ( 2019 ), 
where the index i runs over the number of survey realization N . The 
covariance matrix � is estimated according to 

ˆ � = 

1 

N − 1 

N ∑ 

i = 1 

( C 	, i − C̄ 	 )( C 	, i − C̄ 	 ) 
T , (9) 

where C̄ 	 indicates the mean of the angular power spectra realization 
C 	 , i . The estimated correlation matrices C n , m 

≡ � n , m 

/ 
√ 

� n , n � m , m 

are presented in Fig. 2 . 

3.3 Likelihood analysis 

We use a Bayesian likelihood approach to e v aluate the cosmological 
parameter constraints of different predictors. We assume a Gaussian 
error model and the likelihood is realized by: 

log L = −1 

2 

∑ 

ij 

(
C 

i 
	, truth − C 

i 
	, compare 

)T 

� 

−1 
(
C 

j 

	, truth − C 

j 

	, compare 

)

(10) 

Table 2. The fiducial values for the cosmological parameters and the flat 
priors for the cosmological parameters that are varied in the analysis. 

Parameters Fiducial Priors Priors 
values (stage III surv e y) (stage IV surv e y) 


m 

0 .291 [0, 0.6] [0.2, 0.4] 
n s 0 .969 [0.3, 2.0] [0.7, 1.2] 
h 0 .69 [0.1, 2.5] [0.4, 0.9] 
σ 8 0 .826 [0.3, 1.4] [0.7, 0.95] 
w 0 − 1 .0 [ −3.5, 0.5] [ −2.5, 0.5] 

b 0 .0473 

Here C 	, truth stands for the value of the observable, computed using 
PyCosmo (Refregier et al. 2018 ; Tarsitano et al. 2021 ; Moser 
et al. 2022 ) with a chosen predictor and the fiducial cosmological 
parameters, measured by the Wilkinson Microwave Anisotropy 
Probe satellite (WMAP) 9 (Hinshaw et al. 2013 ), presented in Table 2 . 
C 	, compare is predicted using another predictor for comparison. The 
cosmology for the observable is different from what is used for 
the covariance matrix. However, this effect is neglected assuming 
the covariance matrix parameter independent (Kodwani, Alonso & 

Ferreira 2018 ). � 

−1 is the unbiased estimate of the inverse covariance 
matrix (Hartlap Simon & Schneider 2007 ; Perci v al et al. 2014 ) 
represented as: 

� 

−1 = 

N − N 

′ − 2 

N − 1 
ˆ � 

−1 , (11) 

N is the number of realization generated from the simulations and 
N 

′ 
is the total number of data bins, which is given by 

N 

′ = N redshift × N 	 . (12) 

Here, we have N = 2000, N 	 = 20, and N redshift = 10. 

3.4 Parameter inference 

The posterior is sampled efficiently using the Markov Chain Monte 
Carlo (MCMC) ensemble sampler, emcee (F oreman-Macke y et al. 
2013 ). We vary four cosmological parameters { 
m 

, σ 8 , n s , and h } 
for the � CDM cosmological model and an additional parameter w 0 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/522/3/3766/7129024 by guest on 12 Septem
ber 2023



Theoretical uncertainties for weak lensing 3771 

MNRAS 522, 3766–3783 (2023) 

Figure 3. Comparison of dark-matter-only, non-linear P ( k ) predictions for different predictors at redshift z = 0, subtracted and divided by rev-halofit as 
reference. 

for the extended wCDM model, where we fix w a ≡ 0. Table 2 shows 
the priors used for these parameters. We run the MCMC chains with 
100 w alk ers per parameter and cut the burn in phase for each run as 
one- third of the chain length. Each individual chain has more than 
100 000 samples. For the visualization of the marginalized posteriors, 
we use the public Getdist (Lewis 2019 ). 

4  R ESULTS  

We present the results of our comparison of different predictors in 
this section, including the analysis of the matter power spectrum, 
the weak lensing power spectrum, and the cosmological parameter 
constraints based on the stage III and stage IV weak lensing surv e ys. 

4.1 Power spectrum 

We use the linear power spectrum predicted by PyCosmo and 
generated the following Eisenstein & Hu ( 1999 ) as the input for 
all predictors. Fig. 3 shows the comparison of dark-matter-only non- 
linear P ( k ) predictions from different predictors at redshift z = 0, 
and the comparison for different redshifts ranging from z = 0 to 
z = 5 in Appendix A . The results are shown for k ranging from 

k = 0.01 to 9 h Mpc −1 using 10 000 bins. BaccoEmulator and 
CosmicEmulator are not valid for z > 3, so we do not present 
their comparison for the higher redshift at z = 5. Figs 3 and A1 
indicate that: 

(i) All the predictors except for halofit are within the 5 per cent 
lev el of accurac y compared to rev-halofit for z < 2 and k 
< 7 h Mpc −1 ( BaccoEmulator is valid for z < 1.5 and k < 

5 h Mpc −1 , see the details in Fig. A1 ). Note that this is consistent 
with the comparison of mead , rev-halofit and halofit in 
Mead et al. ( 2015 ). 

(ii) halofit shows stronger discrepancies compared with the 
other predictors at small scales for k > 0.1 h Mpc −1 and this 
discrepancy can reach 20 per cent for k ∼ 10 h Mpc −1 . 

(iii) mead and rev-halofit show close agreement with the 
emulators at the 5 per cent level for k < 9 h Mpc −1 and z < 0.5. 
Ho we ver, at higher redshifts 1 < z < 5, the discrepancies between 
mead and the emulators can reach 10 per cent for k > 3 h Mpc −1 , 
whereas rev-halofit provides a more consistent precision within 
5 per cent. 

(iv) All the emulators yield an agreement within the 2 −
3 per cent level compared with the PKDGRAV3 simulation for k 
< 9 h Mpc −1 and z < 1.5. Ho we ver, this is not valid at higher 
redshifts. The disagreement at higher redshifts between emulators 
and PKDGRAV3 might be due to the fact that emulators were built by 
interpolation within a certain parameter range, thus the accuracies 
could not be ensured beyond this range. 

(v) For large scales with k < 0.5 h Mpc −1 , the different predictors 
show a better agreement at higher redshifts. 

4.2 Weak lensing power spectrum 

We compute the weak lensing shear power spectrum C 	 for the 
stage III and the stage IV surv e y with different predictors. Limited 
by the range of k max of the emulators, the C 	 s are computed using 
20 	 -bins spaced linearly between 	 min = 100 and 	 max = 1000 
(A further investigation on the impact of varying 	 max is presented 
in Appendix B2 ). The integrated redshift range is [0.08, 2.0] for 
the stage III surv e y and [0.08, 3.0] for the stage IV surv e y. This 
setting was chosen in order to a v oid the instability of emulators 
for low redshifts, where we found that EuclidEmulator and 
EuclidEmulator2 predict the C 	 s with a discrepancy larger than 
10 per cent at z < 0.08. This choice differs from the setting used 
for the generation of the cov ariance matrix. Ho we ver, we find that 
this only changes the discrepancies between different predictors for 
C 	 s by 0.1 per cent, since only 1 per cent of the low-redshift 
galaxies are missed for the stage III surv e y and 0.1 per cent of 
the galaxies for the stage IV surv e y. Using this redshift range, we 
hav e to e xclude CosmicEmulator from the comparison for the 
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Figure 4. The comparison of weak lensing shear C 	 s for different predictors. Each C 	 is multiplied by 	 ( 	 + 1)/2 π . The upper two panels in each column show 

the auto-correlated C 	 s for the first, and the fourth redshift bin and the bottom ones show the cross correlated C 	 s between these two bins. The left-hand panels 
show the plots for the stage III surv e y and the right-hand side shows the stage IV surv e y results. 

stage IV surv e y as it allows only up to z = 2.0 ( BaccoEmulator 
is also excluded due to the redshift range up to z = 1.5). The 
comparison is shown in Fig. 4 , with the left-hand panels showing 
the results for the stage III surv e y and the right-hand side showing 
the stage IV surv e y results. In the individual panels, we present 
C 	 	 ( 	 + 1) / 2 π for each predictor and illustrate the comparison by 
subtracting and dividing rev-halofit as the reference. In Fig. 4 
the first row shows the comparison of the auto-correlated C 	 s for the 
redshift bins 1 × 1, the second row for 4 × 4, and the bottom row 

shows the cross correlated C 	 s for 1 × 4. From Fig. 4 , one can infer 
that: 

(i) All the predictors, except for halofit , yield an agreement at 
the 5 per cent level, both for the auto and cross C 	 . This is consistent 
with our results for P ( k ). 

(ii) mead shows a good agreement with CosmicEmulator , 
EuclidEmulator2 , and EuclidEmulator , whereas 
rev-halofit exhibits a larger discrepancy. 

(iii) The comparison of C 	 for different predictors does not show 

a significant difference between the stage III and the stage IV surv e y. 

4.3 Cosmological parameters constraints 

The comparison of the weak lensing cosmological parameter con- 
straints for different predictors is present in this section. As indicated 
in Section 3 , we consider a stage III and a stage IV surv e ys. F or 
each surv e y, we perform a comparison using the standard � CDM 

cosmological model and the extended wCDM model. A summary 
of the constraints on { S 8 , 
m 

, w 0 } is presented in Table 3 , and the 
constraints on { S 8 , 
m 

, n s , h , w 0 } in Table B1 . 

4.3.1 � CDM cosmology constraints 

We present the two-dimensional 68 per cent and 95 per cent confi- 
dence level contours of the posterior distributions for the � CDM 

model in Figs 5 and 6 for the stage III and stage IV surv e y setup, 
respectively. The parameters { 
m 

, σ 8 , n s , h } are varied in the 
MCMC analysis. We additionally compute the constraints on S 8 , 
and summarize the shifts in S 8 in Fig. 9 , presenting the median 
values of the posteriors and the error bars indicating the 68 per cent 
confidence limits of the constraints. For two different predictors, the 
significance of disagreement is computed by dividing the difference 
of their means by their combined uncertainties. One can infer from 

the posterior distributions in Fig. 9 and Table B1 that the agreement 
on S 8 between different predictors is less than 0.6 σ for the stage III 
surv e y (0.2 − 0.3 σ if halofit excluded), while being much larger 
for the stage IV surv e y. This is caused by the higher constraining 
power of the stage IV surv e y . More specifically , the agreements 
are generally on the 1.4 − 6.1 σ level (1.4 − 3.0 σ if halofit 
excluded). mead shows good agreement with CosmicEmulator , 
EuclidEmulator , and EuclidEmulator2 for the stage III 
surv e y while it only agrees well with EuclidEmulator2 for 
the stage IV surv e y. The constraints on h do not show significant 
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Table 3. Numerical constraints on the cosmological parameters corresponding to the contours in Figs 5 , 6 , 7 , and 8 . For each predictor, 
the σ s show the theoretical discrepancies for each parameter, compared to the reference one. 

Surv e y Predictor S 8 ( σ ) 
m 

( σ ) w 0 ( σ ) 
cosmology ref: rev-halofit 

Stage III rev-halofit 0 . 8147 + 0 . 0241 
−0 . 0203 0 . 288 + 0 . 0817 

−0 . 0662 

mead 0 . 8035 + 0 . 0269 
−0 . 0202 0 .33 0 . 2996 + 0 . 0848 

−0 . 0698 0 .11 

� CDM halofit 0 . 7946 + 0 . 0292 
−0 . 0201 0 .57 0 . 2884 + 0 . 0783 

−0 . 074 0 .0 

euclid 0 . 8083 + 0 . 0256 
−0 . 0201 0 .2 0 . 2987 + 0 . 0831 

−0 . 0709 0 .1 

cosmicemu 0 . 8047 + 0 . 0285 
−0 . 018 0 .29 0 . 2916 + 0 . 0789 

−0 . 0741 0 .03 

euclid2 0 . 8031 + 0 . 0269 
−0 . 0177 0 .34 0 . 2887 + 0 . 0835 

−0 . 0679 0 .01 

Stage III rev-halofit 0 . 8165 + 0 . 0433 
−0 . 0661 0 . 2846 + 0 . 092 

−0 . 09 −0 . 9242 + 0 . 4704 
−2 . 294 

mead 0 . 7947 + 0 . 0497 
−0 . 0588 0 .26 0 . 31 + 0 . 0824 

−0 . 1022 0 .18 −1 . 139 + 0 . 647 
−2 . 2626 0.09 

w CDM halofit 0 . 7879 + 0 . 0517 
−0 . 0612 0 .34 0 . 2968 + 0 . 0787 

−0 . 1011 0 .09 −1 . 1333 + 0 . 6581 
−2 . 3122 0.09 

euclid 0 . 7977 + 0 . 0545 
−0 . 0542 0 .22 0 . 3049 + 0 . 085 

−0 . 1017 0 .15 −1 . 1886 + 0 . 7187 
−2 . 1508 0.11 

cosmicemu 0 . 7982 + 0 . 0504 
−0 . 0572 0 .22 0 . 2931 + 0 . 0921 

−0 . 0969 0 .06 −1 . 1408 + 0 . 6926 
−2 . 3046 0.09 

euclid2 0 . 8018 + 0 . 0461 
−0 . 0627 0 .18 0 . 2896 + 0 . 0928 

−0 . 0877 0 .04 −1 . 0254 + 0 . 5498 
−2 . 2745 0.04 

Stage IV rev-halofit 0 . 8135 + 0 . 0023 
−0 . 0024 0 . 2915 + 0 . 0077 

−0 . 0084 

mead 0 . 8028 + 0 . 0027 
−0 . 0026 2 .96 0 . 3008 + 0 . 0094 

−0 . 0074 0 .87 

� CDM halofit 0 . 7944 + 0 . 002 
−0 . 0029 6 .11 0 . 2856 + 0 . 0097 

−0 . 0064 0 .46 

euclid 0 . 8094 + 0 . 0018 
−0 . 003 1 .37 0 . 2917 + 0 . 0079 

−0 . 0084 0 .02 

euclid2 0 . 8058 + 0 . 0017 
−0 . 0032 2 .62 0 . 2926 + 0 . 0079 

−0 . 0084 0 .1 

Stage IV rev-halofit 0 . 8127 + 0 . 0079 
−0 . 0063 0 . 2909 + 0 . 0095 

−0 . 0086 −1 . 0127 + 0 . 1171 
−0 . 1046 

mead 0 . 7968 + 0 . 0067 
−0 . 0069 1 .73 0 . 2979 + 0 . 0106 

−0 . 0092 0 .53 −1 . 106 + 0 . 1107 
−0 . 1163 0.61 

w CDM halofit 0 . 7902 + 0 . 007 
−0 . 0073 2 .39 0 . 2856 + 0 . 0093 

−0 . 0096 0 .42 −1 . 0646 + 0 . 1069 
−0 . 1197 0.35 

euclid 0 . 8061 + 0 . 0073 
−0 . 0072 0 .68 0 . 2908 + 0 . 0088 

−0 . 0094 0 .01 −1 . 046 + 0 . 1142 
−0 . 1288 0.22 

euclid2 0 . 7996 + 0 . 0078 
−0 . 0069 1 .31 0 . 2901 + 0 . 0099 

−0 . 0094 0 .06 −1 . 0965 + 0 . 1288 
−0 . 1255 0.51 

discrepancies for both surv e ys, while n s rev eals discrepancies of 
several σ s for different predictors for the stage IV surv e y. 

4.3.2 wCDM cosmology constraints 

We consider the constraining power of weak lensing surv e ys on 
dark energy parameters by adopting a time-dependent dynamical 
dark energy equation of state, the CPT-parametrization (Che v allier 
& Polarski 2001 ; Linder 2003 ), as an extension to the � CDM model. 
The equation-of-state parameter is given by 

w( a) = w 0 + w a (1 − a) , (13) 

where we use a fixed w a = 0 and a free w 0 . We present the 
two-dimensional marginal posterior distributions for the w CDM 
cosmology parameters in Figs 7 and 8 , for the stage III and the stage 
IV surv e ys, respectiv ely. Taking into account the dark energy model 
changes the shape and the contour size of the posterior distributions, 
decreasing the constraining power on the cosmological parameters. 
The discrepancies in S 8 between predictors are generally smaller 
compared with the � CDM model due to the decrease in constraining 
power: 0.18 − 0.34 σ for the stage III surv e y and 0.7 − 2.4 σ for 
the stage IV surv e y (0.18 − 0.26 σ and 0.7 − 1.7 σ if halofit 
is e xcluded, respectiv ely). mead shows relativ ely good agreement 
with EuclidEmulator and EuclidEmulator2 for both the 
stage III and the stage IV surv e ys. rev-halofit agrees with 
all the predictors within 0.3 σ for the stage III surv e y, and shows 
discrepancies at the 0.7 − 2.4 σ level for the stage IV surv e y. 
Furthermore, we also consider the case with both free w 0 and w a 

(With a flat prior [ −2,1]). Compared with the case with a fixed w a , 
this setting gives a tiny impact on the discrepancies between different 
predictors for { S 8 , n s , h } . Ho we ver, it obtains weaker constraints 
on { 
m 

, w 0 } , resulting in the good agreements between different 
predictors. The discrepancies on w a are within 0.5 σ . 

4.4 Systematic effects 

In this study, we include dark-matter-only predictions, without any 
consideration of baryonic effects, which can have a strong impact on 
small scales (Jing et al. 2006 ; Rudd, Zentner & Kravtsov 2008 ), 
and the computation of the matter power spectrum (van Daalen 
et al. 2011 ; Casarini et al. 2012 ; Castro et al. 2018 ; Debackere, 
Schaye & Hoekstra 2020 ). Current studies of halo-model based 
fitting functions already include other systematics, i.e. massive 
neutrino and baryonic effects like AGN feedback and gas cooling. 
The inclusion of these systematics will significantly reduce the 
constraining power, and might alleviate the discrepancies between 
the predictors. The impact of taking into account the baryonic 
effects on cosmic shear can be found in Semboloni et al. ( 2011 ) 
and Martinelli et al. ( 2021 ), which indicates that including different 
baryonic models leads to discrepancies with < 0.5 σ on cosmological 
parameter constraints for 	 max = 1500, and more significant biases 
(A few σ s) for higher 	 max ∼ 5000. However, it does not broaden 
significantly the constraints in both cases. In our scenario where 
	 max is fixed to 1000, it can be foreseen that including baryons will 
involv e a non-ne gligible impact on the agreements between different 
predictors. 
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Figure 5. Cosmological parameter constraints for the stage III surv e y in the � CDM model. For each constraint, C 	, truth is predicted using the first predictor 
shown in the legend, and C 	, compare computed using the second predictor, as indicated in Section 3.3 . For the stage III survey, we set C 	, truth with the halo-model 
based fitting functions ( rev-halofit , mead , and halofit ) and three emulators ( EuclidEmulator , EuclidEmulator2 , and CosmicEmulator ), 
and compare with predictions from only the fitting functions (in this figure only rev-halofit ). 

In practice, there are also other sources of uncertainties in 
weak lensing experiments, such as photometric redshift uncertainty 
(Huterer et al. 2006 ; Choi et al. 2016 ; Hildebrandt et al. 2020 ), 
shear bias (Bernstein & Jarvis 2002 ; Hirata et al. 2004 ; Bernstein 
2010 ; Melchior & Viola 2012 ; Refregier et al. 2012 ), and galaxy 
intrinsic alignment (Heavens et al. 2000 ; Hirata & Seljak 2004 ; 
Bridle & King 2007 ; Joachimi et al. 2011 ; Fluri et al. 2019 ). These 
systematics effects will contribute to the total error budget and 
broaden the constraints on cosmological parameters. In our analysis, 
we computed the impact of theoretical uncertainties and compared 
them to statistical errors. This is useful to allocate a given budget 
to this source of error, independently of the choices in the treatment 

of the other systematics. Ho we ver, it is also useful to estimate the 
fraction of the theoretical statistical errors compared with these 
systematic errors, in order to study their contribution to the total 
error budget. 

For this purpose, we estimate the impact of these systematics by 
considering other works which have carried out measurements and 
forecasts for stage III and stage IV surv e ys. F or DES-like stage-III 
surv e ys, we can infer from Secco et al. ( 2022 ) and Amon et al. 
( 2022 ), that the constraining power on S 8 will be decreased by 
∼ 20 per cent when considering the intrinsic alignment models, and 
less than ∼ 5 per cent when considering the photometric redshift 
uncertainties and shear bias. For LSST-like stage-IV surveys, Krause, 
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Figure 6. Cosmological parameter constraints of the stage IV surv e y in the � CDM model. Only two emulators, i.e. EuclidEmulator and 
EuclidEmulator2 , are chosen for C 	, truth , as CosmicEmulator does not provide a sufficient redshift range for the stage IV survey. 

Eifler & Blazek ( 2016 ) shows that the constraints for 
m 

and σ 8 

could be broadened when considering different systematics by: 
∼ 40 per cent (pessimistic LSST photo-z errors), ∼ 50 per cent 
(optimistic LSST photo-z errors & non-linear intrinsic alignment 
(IA NLA) model), and ∼ 100 per cent (pessimistic LSST photo- 
z errors & IA NLA model). In this case, the significance of 
the discrepancies between different predictors will be reduced by 
25 per cent − 50 per cent , while still significant with the smallest 
between mead and EuclidEmulator larger than 0.6 σ . In prac- 
tice, the inclusion of all these systematics, as well as theoretical 
uncertainties will be needed to estimate the total error budget of 
specific weak lensing measurements. 

5  C O N C L U S I O N S  

The different halo-model based fitting functions and emulators have 
been widely used for the prediction of non-linear power spectrum 

to study the large-scale structure of the Universe. It is essential to 
understand their advantages, limitations, and theoretical uncertainties 
for different surv e ys and cosmologies. From our results, we conclude 
that: 

(i) Compared with PKDGRAV3 simulations, the halo-model based 
fitting functions, except halofit , yield a 5 − 10 per cent level 
accuracy for the matter power spectrum P ( k ) for k < 9 h Mpc −1 and 
z < 2, while emulators show better precision at the 2 per cent level. 
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Figure 7. Cosmological parameter constraints of the stage III surv e y in the wCDM cosmological model. Including w 0 reduces significantly the constraining 
power, yielding much broader contours than the � CDM model. 

For the weak lensing shear power spectrum C 	 , all the predictors, 
except for halofit , show a 5 per cent level mutual agreement. 

(ii) For the stage III survey with a � CDM cosmology, the agree- 
ment on S 8 between different predictors are within 0.6 σ , and within 
0.2 σ for other cosmological parameters (0.3 σ and 0.2 σ if we exclude 
halofit , respectively). This indicates the applicability of the 
studied predictors for the stage III surv e ys. 

(iii) For the stage IV survey using a � CDM cosmology, the 
disagreements on S 8 are increased to several σ s, with the largest 
discrepancy of 6.1 σ between rev-halofit and halofit , and 
the best agreement between mead and EuclidEmulator2 . 

(iv) If w 0 is taken into account for the w CDM cosmology, we get 
weaker constraints on S 8 , and the discrepancies between different 

predictors are reduced to 0.2 − 0.3 σ and 0.7 − 2.4 σ for the stage III 
and the stage IV surv e ys, respectiv ely (0.18 − 0.26 σ and 0.7 − 1.7 σ
if we exclude halofit , respectively). If w a is taken into account, 
we get very similar constraints on S 8 compared to the w 0 -only 
case. 

(v) The accuracy of the current fitting function models and 
emulators therefore appear sufficient for stage III surv e ys. Howev er, 
for the future IV surv e ys, our results suggest that the fitting function 
models are currently not sufficiently accurate, and would need further 
impro v ements in the future. For emulators, it is required to explore 
wider ranges of cosmological parameters, k -modes, and redshifts, 
while pursuing consistent precision with reliable hydrodynamic N - 
body simulations. 
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Figure 8. Cosmological parameter constraints of the stage IV surv e y in the w CDM cosmological model. The discrepancies between the predictors are alleviated, 
taking into account a simple w CDM cosmological model with a varying w 0 . 
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Figure 9. Deviations of the parameter constraints on S 8 . The upper plot shows the result for the stage III surv e y, for the � CDM model (black) and the w CDM 
model (green), respectively. The lower plot shows the stage IV surv e y, for the � CDM (red) and w CDM (blue), respectively. 
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(vi) Taking into account other systematic effects such as baryonic 
effects, photometric redshift uncertainty, shear bias, and galaxy 
intrinsic alignment will broaden the parameters constraints by 
40 per cent − 100 per cent from stage IV weak lensing surv e ys. 
This will tend to reduce the significance of the discrepancies between 
the different predictor. The theoretical uncertainties ho we ver remain 
non-negliglible and need to be included in the total error budget for 
future surv e ys. 
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DATA  AVA ILABI L ITY  

Most of the analysis in this work is down on the Euler cluster 5 

operated by ETH Zurich. Here follows the computational codes used 
in this study: PyCosmo (Refregier et al. 2018 ; Tarsitano et al. 2021 ; 
Moser et al. 2022 ) is used as the main tool where all the non- 
linear codes are implemented for the computation of auto (cross) 
power spectra, galaxy redshift distribution counts, and observable 
of cosmic shear. It is also extended to include interfaces with the 
emulators. Anafast is used for computation of power spectra 
from simulations, and all the the maps (masks, weight, shear, and 
mass) in pipeline are in HealPix format. We use Emcee-3.0.2 
(F oreman-Macke y et al. 2013 ) for the sampling of parameter space 
and Getdist (Lewis 2019 ) for the plotting of likelihood contours 
and Uhammer for the simplification of Emcee running. Some 
of the results in this paper have been derived using the healpy 
and HEALPix packages (Gorski et al. 1999 ). In this study, we 
made use of the functionalities provided by numpy (van der Walt, 
Colbert & Varoquaux 2011 ), scipy (Virtanen et al. 2020 ), and 
matplotlib (Hunter 2007 ). 
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APPENDI X  A :  POWER  SPECTRUM  

C O M PA R I S O N  

In this section, we present the comparison of the non-linear power 
spectrum for all redshifts, as shown in Fig. A1 . 
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Figure A1. The comparison of the dark-matter-only non-linear P ( k ) of different predictors at different redshifts ( z = 0, 0.5, 1, 1.5, 2, and 5), subtracted and 
divided by rev-halofit as reference. BaccoEmulator and CosmicEmulator are not valid for z > 3, so we do not take them into comparison for z = 

5. 

APPEN D IX  B:  C O S M O L O G I C A L  PA R AM ETER  

C O N S T R A I N T S  

B1 Summary of constraints 

The summary of constraints on { S 8 , 
m 

, n s , h , w 0 } is concluded in 
this section, shown in Table B1 . 

B2 Different � max 

We investigate the variation of constraints on S 8 with different 
	 max (800 or 1000) and the results are summarized in Fig. B1 . 
We only consider the stage IV surv e y with the � CDM model, 
since it gives the largest discrepancies between different predictors. 
When 	 max is reduced from 1000 to 800 where we have less non- 

linear effect information, the marginalized 1D constraints on S 8 
are broadened by 5 per cent. With this change, rev-halofit 
shows better agreements with mead , and larger discrepancies with 
EuclidEmulator and EuclidEmulator2 . 

B3 w CDM with free w a 

We present in Fig. B2 the cosmological parameter constraints of the 
stage IV surv e y in the wCDM cosmological model, with both varying 
w 0 and w a . Compared with the case with a fixed w a , this setting 
giv es a tin y impact on the discrepancies between different predictors 
for { S 8 , n s , h } . Ho we ver, it obtains weaker constraints on { 
m 

, w 0 } , 
resulting in the good agreements between different predictors. The 
discrepancies on w a are within 0.5 σ . 
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Table B1. Complete numerical constraints on the cosmological parameters corresponding to the contours in Figs 5 , 6 , 7 , and 8 . For each predictor, the σ s show 

the theoretical discrepancies for each parameter, compared to the reference one. 

Surv e y Predictor S 8 ( σ ) 
m ( σ ) n s ( σ ) h ( σ ) w 0 ( σ ) 
cosmology ref: rev-halofit 

Stage III rev-halofit 0 . 8147 + 0 . 0241 
−0 . 0203 0 . 288 + 0 . 0817 

−0 . 0662 0 . 9741 + 0 . 2489 
−0 . 1475 0 . 6736 + 0 . 5642 

−0 . 4172 

mead 0 . 8035 + 0 . 0269 
−0 . 0202 0.33 0 . 2996 + 0 . 0848 

−0 . 0698 0.11 0 . 9144 + 0 . 2425 
−0 . 1562 0.21 0 . 6859 + 0 . 5779 

−0 . 4358 0.02 

� CDM halofit 0 . 7946 + 0 . 0292 
−0 . 0201 0.57 0 . 2884 + 0 . 0783 

−0 . 074 0.0 0 . 9196 + 0 . 2566 
−0 . 1662 0.18 0 . 6777 + 0 . 6198 

−0 . 4339 0.01 

euclid 0 . 8083 + 0 . 0256 
−0 . 0201 0.2 0 . 2987 + 0 . 0831 

−0 . 0709 0.1 0 . 9547 + 0 . 2428 
−0 . 1562 0.07 0 . 6644 + 0 . 5612 

−0 . 4159 0.01 

cosmicemu 0 . 8047 + 0 . 0285 
−0 . 018 0.29 0 . 2916 + 0 . 0789 

−0 . 0741 0.03 0 . 9332 + 0 . 2613 
−0 . 1399 0.14 0 . 7452 + 0 . 5542 

−0 . 486 0.1 

euclid2 0 . 8031 + 0 . 0269 
−0 . 0177 0.34 0 . 2887 + 0 . 0835 

−0 . 0679 0.01 0 . 9184 + 0 . 2496 
−0 . 1316 0.19 0 . 7467 + 0 . 5503 

−0 . 4853 0.1 

Stage III rev-halofit 0 . 8165 + 0 . 0433 
−0 . 0661 0 . 2846 + 0 . 092 

−0 . 09 0 . 9164 + 0 . 5799 
−0 . 3511 0 . 7868 + 0 . 9823 

−0 . 5347 −0 . 9242 + 0 . 4704 
−2 . 294 

mead 0 . 7947 + 0 . 0497 
−0 . 0588 0.26 0 . 31 + 0 . 0824 

−0 . 1022 0.18 0 . 9768 + 0 . 5012 
−0 . 4514 0.08 0 . 6527 + 1 . 0402 

−0 . 4233 0.11 −1 . 139 + 0 . 647 
−2 . 2626 0.09 

w CDM halofit 0 . 7879 + 0 . 0517 
−0 . 0612 0.34 0 . 2968 + 0 . 0787 

−0 . 1011 0.09 0 . 9919 + 0 . 4913 
−0 . 4914 0.1 0 . 6192 + 1 . 1863 

−0 . 3779 0.13 −1 . 1333 + 0 . 6581 
−2 . 3122 0.09 

euclid 0 . 7977 + 0 . 0545 
−0 . 0542 0.22 0 . 3049 + 0 . 085 

−0 . 1017 0.15 1 . 032 + 0 . 4723 
−0 . 4813 0.15 0 . 6209 + 1 . 1393 

−0 . 3873 0.13 −1 . 1886 + 0 . 7187 
−2 . 1508 0.11 

cosmicemu 0 . 7982 + 0 . 0504 
−0 . 0572 0.22 0 . 2931 + 0 . 0921 

−0 . 0969 0.06 1 . 0031 + 0 . 5093 
−0 . 4918 0.11 0 . 6688 + 1 . 2915 

−0 . 4301 0.08 −1 . 1408 + 0 . 6926 
−2 . 3046 0.09 

euclid2 0 . 8018 + 0 . 0461 
−0 . 0627 0.18 0 . 2896 + 0 . 0928 

−0 . 0877 0.04 0 . 9272 + 0 . 5729 
−0 . 3921 0.02 0 . 7461 + 1 . 0126 

−0 . 5134 0.04 −1 . 0254 + 0 . 5498 
−2 . 2745 0.04 

Stage IV rev-halofit 0 . 8135 + 0 . 0023 
−0 . 0024 0 . 2915 + 0 . 0077 

−0 . 0084 0 . 9696 + 0 . 0178 
−0 . 0192 0 . 6889 + 0 . 0481 

−0 . 0433 

mead 0 . 8028 + 0 . 0027 
−0 . 0026 2.96 0 . 3008 + 0 . 0094 

−0 . 0074 0.87 0 . 9021 + 0 . 0193 
−0 . 0189 2.48 0 . 7181 + 0 . 0495 

−0 . 0441 0.45 

� CDM halofit 0 . 7944 + 0 . 002 
−0 . 0029 6.11 0 . 2856 + 0 . 0097 

−0 . 0064 0.46 0 . 9054 + 0 . 0203 
−0 . 0197 2.3 0 . 7134 + 0 . 0494 

−0 . 05 0.35 

euclid 0 . 8094 + 0 . 0018 
−0 . 003 1.37 0 . 2917 + 0 . 0079 

−0 . 0084 0.02 0 . 9497 + 0 . 0198 
−0 . 0193 0.72 0 . 7058 + 0 . 0505 

−0 . 0479 0.25 

euclid2 0 . 8058 + 0 . 0017 
−0 . 0032 2.62 0 . 2926 + 0 . 0079 

−0 . 0084 0.1 0 . 9402 + 0 . 0195 
−0 . 0206 1.07 0 . 6958 + 0 . 0519 

−0 . 0475 0.1 

Stage IV rev-halofit 0 . 8127 + 0 . 0079 
−0 . 0063 0 . 2909 + 0 . 0095 

−0 . 0086 0 . 9741 + 0 . 045 
−0 . 0555 0 . 6884 + 0 . 0599 

−0 . 052 −1 . 0127 + 0 . 1171 
−0 . 1046 

mead 0 . 7968 + 0 . 0067 
−0 . 0069 1.73 0 . 2979 + 0 . 0106 

−0 . 0092 0.53 0 . 9426 + 0 . 0431 
−0 . 0466 0.45 0 . 698 + 0 . 0563 

−0 . 0449 0.13 −1 . 106 + 0 . 1107 
−0 . 1163 0.61 

w CDM halofit 0 . 7902 + 0 . 007 
−0 . 0073 2.39 0 . 2856 + 0 . 0093 

−0 . 0096 0.42 0 . 9306 + 0 . 047 
−0 . 0479 0.6 0 . 6986 + 0 . 0606 

−0 . 0507 0.13 −1 . 0646 + 0 . 1069 
−0 . 1197 0.35 

euclid 0 . 8061 + 0 . 0073 
−0 . 0072 0.68 0 . 2908 + 0 . 0088 

−0 . 0094 0.01 0 . 9671 + 0 . 0574 
−0 . 053 0.09 0 . 6968 + 0 . 0609 

−0 . 0604 0.1 −1 . 046 + 0 . 1142 
−0 . 1288 0.22 

euclid2 0 . 7996 + 0 . 0078 
−0 . 0069 1.31 0 . 2901 + 0 . 0099 

−0 . 0094 0.06 0 . 9791 + 0 . 0515 
−0 . 0588 0.07 0 . 6711 + 0 . 0657 

−0 . 0548 0.21 −1 . 0965 + 0 . 1288 
−0 . 1255 0.51 

Figure B1. Deviations of the parameter constraints on S 8 , for the stage IV surv e y, with the � CDM model, and different 	 max [ 	 max = 1000 (red) and 	 max = 

800 (green)]. 
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Figure B2. Cosmological parameter constraints of the stage IV surv e y in the w CDM cosmological model. The discrepancies between the predictors are alleviated, 
taking into account a simple w CDM cosmological model with both varying w 0 and w a . 

This paper has been typeset from a T E 

X/L 

A T E 

X file prepared by the author. 

© The Author(s) 2023. 
Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative Commons Attribution License 
( http://cr eativecommons.or g/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/522/3/3766/7129024 by guest on 12 Septem
ber 2023



196 Publication





Résumé

Les oscillations acoustiques baryoniques (BAO) sont une sonde puissante permettant de mesurer
l’expansion accélérée de l’univers et de fournir des contraintes sur les modèles d’énergie noire. Il peut
être mesuré à l’aide de la fonction de corrélation à deux points des traceurs de matière, et le but de cette
thèse est de mesurer le BAO à des redshifts 𝑧 > 2, 1 élevés en utilisant les forêts Lyman-𝛼 (Ly𝛼). Cette
thèse utilise des données d’observation spectroscopiques et des catalogues simulés (simulations) de deux
grandes enquêtes cosmologiques, eBOSS (DR16) et DESI (EDR). Je présente l’analyse comparative Ly𝛼
de ces deux enquêtes et je les trouve cohérentes en termes de qualité et d’ajustement des données. J’ai
étudié à la fois sur des simulations et sur des données, l’un des effets systématiques les plus importants
de l’analyse Ly𝛼, la présence de systèmes à haute densité de colonnes (HCD). J’ai proposé un modèle
empirique et développé un modèle analytique, le modèle Voigt, pour caractériser leur impact sur les
fonctions de corrélation Ly𝛼. Le modèle Voigt est bien vérifié sur des simulations et fournit une mesure
physique des paramètres de biais et RSD des HCD, ainsi qu’une bonne contrainte sur les paramètres
Ly𝛼.

Mots clés : cosmology, large-scale structure, bao

Résumé

The Baryon Acoustic Oscillations (BAO) is a powerful probe to measure the accelerated expansion of
the universe and provide constraints on dark energy models. It can be measured using the two-point
correlation function of matter tracers, and the goal of this thesis is to measure the BAO at high redshifts
𝑧 > 2.1 using Lyman-𝛼 (Ly𝛼) forests. This thesis makes use of spectroscopic observation data and
simulated catalogs (mocks) from two large cosmological surveys, eBOSS (DR16) and DESI (EDR). I
present the comparison Ly𝛼 analysis of these two surveys and found them consistent in terms of data
quality and fits. I studied on both mocks and data, one of the most important systematic effects of Ly𝛼
analysis, the presence of High Column Density Systems (HCDs). I proposed an empirical model and
further developed an analytical model, the Voigt model, to characterize their impact on Ly𝛼 correlation
functions. The Voigt model is well verified on mocks and provides a physical measurement of the bias
and RSD parameters of HCDs, and a good constraint on the Ly𝛼 parameters.

Mots clés : cosmology, large-scale structure, bao
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