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Abstract

This thesis focuses on both theoretical and experimental aspects of generating and certify-
ing multimode quantum non-Gaussian states of light in continuous-variable optics. On the
generation side, we theoretically investigated conditions for single-mode and mode-selective
single-photon addition on a multimode field of light, showing in particular under which ex-
perimental conditions it is achievable. We also highlighted the unique challenges and benefits
of both subtraction and addition processes. The insights obtained from this work may pave
the way for experimental implementation of a single-photon addition on a multimode state
of light. In the experiment, we used a synchronously pumped optical parametric oscillator
(SPOPO) with an optical frequency comb to generate multimode squeezed vacuum states. We
then subtracted a single photon to produce a quantum non-Gaussian state. Arises the ques-
tion: How can we certify quantum non-Gaussianity? This question is particularly relevant in
the context of the rapidly growing field of quantum information and of the race for building
quantum computers. In collaboration with the LiP6 laboratory, we developed theoretical certi-
fication methods suitable for the states generated in our experiment. We derived an optimized
fidelity estimation protocol using the double homodyne detection, allowing for the certifica-
tion quantum non-Gaussianity features such as stellar rank and Wigner negativity. On the
experimental side, we constructed a double homodyne detector and we made improvements
to the setup, including better management of the intra-cavity dispersion of the SPOPO and
the creation of an optical phase lock. These advancements enhance the multimodeness of the
experiment, and allow for protocols otherwise out of reach. Bridging both theoretical and
experimental works, we obtained preliminary results suggesting that we are on the brink of
certifying stellar rank 1 single-mode single-photon subtracted states. The potential for future
work includes the realization of a multimode double homodyne detector, the implementation
of two-photon subtraction, and the certification of stellar rank 2 states.

Cette thèse se concentre sur les aspects théoriques et expérimentaux de la génération et de la
certification d’états quantiques non-Gaussiens multimodes de la lumière dans l’optique à vari-
ables continues. En ce qui concerne la génération, nous avons étudié théoriquement les conditions
pour une addition monomode et mode sélective de photon unique à un champ de lumière multi-
mode, montrant en particulier sous quelles conditions expérimentales une telle addition est réal-
isable. Nous soulignons également les défis et les avantages uniques des processus de soustraction
et d’addition de photon unique. Ce travail peut ouvrir la voie à la mise en œuvre expérimen-
tale d’une addition de photon unique sur un état multimode de la lumière. Dans l’expérience,
nous avons utilisé un oscillateur paramétrique optique pompé de manière synchrone (SPOPO)
avec un peigne de fréquences optiques pour générer des états multimodes de vide comprimé. Nous
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avons ensuite soustrait un photon unique pour produire un état quantique non-Gaussien. La
question qui se pose est la suivante : Comment pouvons-nous certifier la non-Gaussianité quan-
tique ? Cette question est particulièrement pertinente dans le contexte de la croissance rapide du
domaine de l’information quantique et de la course à la construction d’ordinateurs quantiques.
En collaboration avec le laboratoire LiP6, nous avons développé des méthodes de certification
théoriques adaptées aux états générés dans notre expérience. Nous avons dérivé un protocole opti-
misé d’estimation de la fidélité utilisant la détection double homodyne, permettant de certifier des
propriétés non-Gaussiennes quantiques telles que le rang stellaire et la négativité de la fonction
de Wigner. Sur le plan expérimental, nous avons construit un détecteur double homodyne et nous
avons amélioré l’expérience, notamment en améliorant la gestion de la dispersion intra-cavité
du SPOPO et l’implémentation d’un asservissement de phase optique. Ces avancées renforcent
le caractère multimodal de l’expérience et permettent de réaliser des protocoles autrement hors
de portée. Combinant ces travaux théoriques et expérimentaux, nous avons obtenu des résultats
préliminaires suggérant que nous sommes sur le point de certifier des états monomodes soustraits
d’un photon unique, des états de rang stellaire 1. Le potentiel des travaux futurs comprend la
réalisation d’un détecteur double homodyne multimode, la mise en œuvre d’une soustraction à
deux photons et la certification d’états de rang stellaire 2.
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Introduction

Light is an ubiquitous physical element of our world. Radiated from the Sun, it is our funda-
mental source of energy. Perceived by our eyes, it is our sense of sight enabler. Emitted from
lasers, it is one of our most useful modern tools. Transmitted through optical fibers, it is our
everyday mean for worldwide communication.

Light has fascinated among the most brilliant thinkers throughout history, since ancient
times. The ancient Greeks, including figures like Euclid and Aristotle, already proposed initial
theories on light, its properties, and how it interacts with matter. In the Islamic Golden Age,
scholars like Alhazen revolutionized our understanding of light and vision, using experimental
methods to refine the ideas inherited from the Greeks. This is the birth of the science of light:
optics.

In the 17th century, remarkable advancements in optics were made leading for instance to
the design of telescopes and microscopes used to probe the world at large and small scales.
Around the same time, Newton and Huygens proposed two (apparently) opposing theories
on the nature of light itself. Newton viewed light as an assembly of small particles, while
Huygens advocated the idea that light was a wave. Newton’s corpuscle theory of light was
widely accepted until the Young’s and Fresnel’s experiments the early 19th century. Young’s
experiment consists in diffracting light through two slits, leading to the observation of an
interference pattern, a wave-like behavior.

The nature of light as awavewas further understood in the late 19th century, whenMaxwell
united electricity, magnetism, and light into one theory of electromagnetism. GivenMaxwell’s
equations, light was then seen as a propagating excitation of both the electric and magnetic
fields. As these excitation can occur at any frequency, this finding led to the later study and
discovery of invisible light, such as radio waves, microwaves, X-rays and others.

Maxwell’s theory also set the stage for some groundbreaking experiments in the early 20th
century. In 1900, Planck successfully described the black-body radiation by assuming that
the exchange of energy between light an matter only occurred in discrete amounts he called
“quanta”. In 1905, Einstein, inspired by this idea, exhibited the photoelectric effect. In 1913,
Bohr showed that atoms can only emit discrete amounts of energy. These experiments clearly
demonstrated the particle nature of light. To reconcile with Young’s and Fresnel’s wave-like
experiments, the only possibility left was to consider light as neither a particle nor a wave. A
conclusion that led to the current understanding of the dual nature of light: light is a quantized
excitation of the electromagnetic field, in the sense that it consists of elementary excitations,
or photons, behaving as particules or waves depending on the context.

These three discoveries also led to the development of quantummechanics, and to quantum
optics, the science of light at the quantum level, with in particular the invention of lasers
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[Maiman 60]. The ability of the lasers to emit light that is coherent allows for a broad range
of applications from precise surgical operations to advanced manufacturing. More than a
technological breakthrough, lasers has become the main tool used in all modern quantum
optics laboratories, greatly enhancing our capability to understand better the fascinating and
often counter-intuitive quantum nature of light. In turn, this understanding has given rise to
flourishing quantum technologies, with numerous application.

A striking example is vacuum fluctuations. The quantum electromagnetic field of light is
null in mean, but exhibits fluctuations. These quantum fluctuations are present everywhere,
in particular in what we usually refer to as vacuum. In the case of a non-zero-mean field, it
is affected by the same vacuum fluctuations. This means that the physical quantities which
characterize the light field, its amplitude and its phase, or field quadratures, are intrinsically
noisy. The precision of their measurements are then limited by the vacuum fluctuations, a
limit called standard quantum limit [Caves 81]. However, it is possible to reduce the noise on
the amplitude quadrature at the expense of excess noise in the phase, or vice-versa, resulting
into a state of light we call squeezed vacuum states [Slusher 85]. This reduced noise allows for
enhancing the precision of measurements [Polzik 92]. For instance, this allowed for increasing
the sensitivity of the gravitational wave detectors [Tse 19].

An emerging branch of quantum physics is quantum information, which consists in taking
advantage of the intriguing quantum properties to convey, process, and manipulate informa-
tion, asking in particular the question whether a quantum computer is feasible. The idea is
then to encode information on quantum systems, resulting in quantum bits, called qubits, in-
stead of the usual classical bits 0 and 1. For instance, one may encode the information on the
absence of a photon (0) and the presence of a photon (1), relying on the discrete nature of light.
Alternatively, one can encode the information on the quadratures of the field of light, with 0
for a particular probability distribution of a quadrature, and 1 for another (orthogonal). Since
the field quadratures can take any real values, we refer to this domain as continuous variables
quantum information [Gottesman 99, Raussendorf 01, Menicucci 06, Furusawa 11].

One of the key difference between qubits and bits is superposition, which refers to the abil-
ity of a physical system to exist in multiple states simultaneously until observed or measured.
This was illustrated by the re-visited double-slit experiment, where single-photons were used
instead of bright light.Classical bits may only be either in the state 0 or in the state 1, while
the qubits may be in the superposition of the state 0 and the state 1. This property attains its
fullest potential for encoding information when used together with quantum entanglement,
another perplexing yet fascinating phenomenon. When two qubits are entangled, one cannot
fully describe the state of one qubit without the knowledge of the state of the other qubit. In
other words, the two qubits form an inseparable quantum state as whole. This means in partic-
ular that measuring one qubit may influence the state of the other qubit, whatever the distance
between them. This is best demonstrated by the EPR Paradox, proposed by Einstein, Podolsky,
and Rosen in 1935. Despite Einstein’s famous phrase calling it "spooky action at a distance,"
subsequent experiments have confirmed that quantum entanglement is a fundamental aspect
of the physical world [Freedman 72, Aspect 82, Weihs 98, Hensen 15, Aspect 15].

The information of all 2𝑁 possible combinations of 𝑁 classical bits can be encoded into the
quantum state of 𝑁 of maximally entangled qubits, in superposition on these 2𝑁 possibilities.
Then we can apply a quantum single operation on this superposition of 2𝑁 states. Still, there
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is a caveat: measuring the output state projects the result into a single result. Smarter algo-
rithms have been formulated, providing up to an exponential computational speed-up with
respect to their classical counterparts [Shor 94, Grover 96]. We refer to this computational
speed-up as quantum advantage. For this reason, a quantum computer with a large number
of entangled qubits and able to process arbitrarily long number of operations, i.e. an universal
quantum computer, could bring a technological revolution, allowing for achieving tasks other-
wise unfeasible in reasonable amounts of time. Although it was theoretically proven that such
quantum computer can physically exist and function [Shor 96, Knill 98], many technological
and conceptual challenges have to be overcome to build one [Temme 17].

Many efforts are undergoing in both the public and private research sectors tomake progress
towards building quantum computers, using a broad range of different physical support for
encoding information, from optical to superconducting platforms. Up to now, only imper-
fect quantum computers, without the ability to correct computational errors, were reported
[Arute 19, Zhong 20, Morvan 23], claiming a quantum advantage which raised heated debates
in the community [Kalai 23]. Although these devices did not perform useful computations,
some evidence for the utility of such noisy quantum computer was recently reported [Kim 23].

On the conceptual side, one of the main endeavor is to determine which resources facili-
tates the task of building a quantum computer. Some already identified resources are the en-
tanglement and the highly-dimensionality of the input states of qubits. In continuous-variable
(CV) quantum optics, both resources are readily available, due to the capability of on-demand
generation of ever larger entangled states relying on either the light spatial degrees of freedom
(spatial modes) [Su 07, Yukawa 08] or the time-frequency ones [Roslund 14, Chen 14, Cai 17,
Asavanant 19, Larsen 19, Yang 21].

However, the generated states in these experiments are Gaussian states. Gaussian quantum
states of light are defined as the states for whichmeasurement statistics of the field quadratures
is Gaussian. A good example is the aforementioned squeezed vacuum state. The issue with
Gaussian states is that all Gaussian operations (that preserves the Gaussian character of the
states) on such states can be efficiently simulated by classical computers [Bartlett 02], which
hinders any quantum advantage.

Non-Gaussian states are hard to generate experimentally [Wenger 04, Ourjoumtsev 06,
Parigi 07b, Takeda 13, Serikawa 18, Ra 20, Lvovsky 20, Bourassa 21] and hard to characterize
theoretically [Walschaers 21]. Notably, it has been shown that not all non-Gaussian states are
interesting for quantum computing, leaving us with a sub-set of non-Gaussian states, namely
the quantum non-Gaussian states. Some of these states feature properties which have been
shown to be necessary resources for quantum advantage [Mari 12, Chabaud 23].

Going one step further, assuming we have access to a useful quantum computer at hand, an
important question is: can we prove its quantum advantage? A relevant step in this direction,
owing to the above identified resources for quantum computing, consists in investigating the
following question: How can we certify the non-Gaussianity of quantum states of light? This
question is at the core of my PhD thesis.

The group of research I was part of during my PhD focuses on using optical frequency
combs to generate multimode quantum states. The optical frequency combs are ultra-short
pulses of light, which feature many degrees of freedom in the time-frequency domain. By syn-
chronously pumping an optical parametric oscillator (SPOPO) with an optical frequency comb,
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it is possible to generate a multimode entangled Gaussian state [de Valcárcel 06, Roslund 14].
The group also developed theoretically [Averchenko 14, Averchenko 16] and experimentally
[Ra 17, Ra 20] the subtraction of a single photon on such multimode Gaussian state of light,
resulting in a non-Gaussian state. To complement these advances, I took part in a project for
developing a similar theoretical framework for the addition of a single-photon to a multimode
field, a work published in [Roeland 22].

In collaboration with researchers from the Lip6 who developed a classification of the quan-
tum non-Gaussian states, namely the stellar hierarchy [Chabaud 20c, Chabaud 20b], I worked
on showing that certifying quantum non-Gaussianity was promisingly feasible using double
homodyne detectionwith the support of simulations. Thisworkwas published in [Chabaud 21d].
Following this motivating results, I worked on designing and building a double homodyne
detection on the existing experiment, and pushing towards the experimental certification of
non-Gaussianity. As a first step, this detection can only measure one mode at a time, restrict-
ing to the certification of single-mode state. The challenging extension of the certification to
the multimode case is planned, motivating the emphasis on the multimode aspect all along
this thesis, both theoretically and experimentally. Finally, I also worked on successfully lock-
ing the optical phase at detection, which proved non-trivial owing to the spectrally broadband
nature of our light.

This thesis is structured into four comprehensive chapters. In chapter 1, we focus on the
description and characterization of the light field, and the Gaussian and non-Gaussian quan-
tum states of light. In particular, we detail the notions of Wigner negativity and of stellar
rank in the context of quantum information, providing theoretical tools for witnessing these
properties.

Chapter 2 is dedicated to the description of the whole experiment. We focus on the de-
scription of the experimental generation of the multimode Gaussian states, and their detec-
tion using the (single) homodyne detection. In particular, the optical phase locking system is
detailed, and applied to measure squeezing.

Chapter 3 provides the tools and methods used to characterize both single-photon sub-
traction and single-photon addition to multimode fields, with an emphasis on the theory of
addition. We describe and characterize the experimental implementation of single-photon
subtraction.

Finally, chapter 4 tackles the topic of certification itself, introducing this notion in the
context of quantum information. We provide the working principle of the double homodyne
detection, along with its experimental implementation. We detail the simulation of the certi-
fication of quantum non-Gaussianity for states as realistic as possible, close to the ones gen-
erated by our experiment. Lastly, we present our preliminary results and the progress we’ve
achieved for implementing the certification experimentally.
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Chapter 1

Gaussian and non-Gaussian quantum
light
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1.1. MULTIMODE QUANTUM LIGHT

In this first chapter, we first introduce some fundamental concepts and tools of multimode
quantum optics. We then focus on the multimode Gaussian and non-Gaussian quantum states
of light along with their representations. In particular, we describe two quantities of interest
for quantum information, namely the Wigner negativity and the stellar rank, and show how
one can witness such quantum non-Gaussianity features. Presenting some results of our paper
[Chabaud 21d], we establish the theoretical framework for the main goal of this work, that is,
the certification of quantum non-Gaussianity.

This chapter does not contain a complete and thorough introduction to multimode quan-
tum optics. The reader is advised to consult the books [Grynberg 10, Vogel 06, Leonhardt 95]
for a full understanding of quantum optics basic concepts and beyond. Also, we recommend
[Fabre 20] for a helpful and complete review of “Modes and states in quantum optics”.

1.1 Multimode quantum light
This section gives a quantum description of the physical system this thesis is focused on —
namely light. We present a functional description allowing one to grasp the multi-dimensional
and quantized nature of light and what are the physical measurable quantities of interest.

1.1.1 Modal Hilbert space
Let us first consider how light is classically modeled. Light is an electromagnetic radiation
that is usually described through the classical electric field 𝐄(𝐫, 𝑡), which is a real vector field
function of both space 𝐫 and time 𝑡, where we use bold characters for vector fields as for the
rest of the manuscript. More practically, we will use the analytical field 𝐄(+)(𝐫, 𝑡), a complex
vector field which satisfies 𝐄(𝐫, 𝑡) equals 𝐄(+)(𝐫, 𝑡) + (𝐄(+)(𝐫, 𝑡))∗1. To take into account the high
dimensionality of light, stemming from its multiple independent degrees of freedom, one can
use the concept of modes of the electromagnetic field, 𝐟(𝐫, 𝑡). Any such mode 𝐟(𝐫, 𝑡) is defined
as a normalized solution of Maxwell’s equations in the vacuum, such that∇2𝐟(𝐫, 𝑡) − 1𝑐2 𝜕2𝐟(𝐫, 𝑡)𝜕𝑡2 = 0, (1.1)
and, at any time 𝑡,

1𝑉 ∫𝑉 d3𝐫 |𝐟(𝐫, 𝑡)|2 = 1 (1.2)

where 𝑉 is the large volume that contains all the physical system under consideration.
The set of all the vector fields {𝐟(𝐫, 𝑡)} that satisfy equation (1.1) forms a Hilbert space that

one can call the modal space [Fabre 20]. We will adopt the arrow notation 𝐟 for the modal
1More precisely, it is defined as the positive frequency part of the electric field 𝐄(+)(𝐫, 𝜔) = ∫ ∞0 �̃�(𝐫, 𝜔) d𝜔,

where �̃�(𝐫, 𝜔) (resp. 𝐄(+)(𝐫, 𝜔)) is the temporal Fourier transform of 𝐄(𝐫, 𝑡) (resp 𝐄(+)(𝐫, 𝑡)). 𝐄(+)(𝐫, 𝑡) may also be
referred to as complex representation.
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CHAPTER 1. GAUSSIAN AND NON-GAUSSIAN QUANTUM LIGHT

vectors in the modal space. The inner product (. || .) of any modal vectors �⃗� and �⃗� is defined as
the spatial overlap of their corresponding vector fields 𝐠(𝐫, 𝑡) and 𝐡(𝐫, 𝑡), at any time 𝑡

(�⃗� || �⃗�) = 1𝑉 ∫𝑉 d3𝐫 𝐠(𝐫, 𝑡)∗ 𝐡(𝐫, 𝑡) (1.3)

Let
{𝐟𝑚} be an orthonormal mode basis. We can label it by an integer 𝑚, since the modal

space has infinite but countable dimension. In practice, we restrict to a finite number 𝑁 of
modes

{𝐟1, 𝐟2,⋯ , 𝐟𝑁}, where 𝑁 can be set arbitrarily large to fulfill one’s application needs.
Any mode 𝐟𝑚 satisfies equation (1.1) and the orthonormal property, at any time 𝑡

(𝐟𝑚 || 𝐟𝑚′) = 1𝑉 ∫𝑉 d3𝐫 𝐟𝑚(𝐫, 𝑡)∗ 𝐟𝑚′(𝐫, 𝑡) = 𝛿𝑚𝑚′ (1.4)

with 𝛿𝑚𝑚′ the Kronecker symbol. Now, one can decompose any modal vector �⃗� as a column
vector of complex amplitudes (1,2,… ,𝑁 )⊤ ∈ C𝑁 over the mode basis

{𝐟𝑚}, where ⊤ stands
for the transposition in the modal space. Decomposing two modal vectors �⃗� and �⃗� this way,
one can then re-write their inner product defined in equation (1.3) as

(�⃗� || �⃗�) = 𝑁∑𝑚=1∗𝑚𝑚 (1.5)

with �⃗� = 𝑁∑𝑚=1𝑚𝐟𝑚 and �⃗� = 𝑁∑𝑚=1𝑚𝐟𝑚 (1.6)

One can change from one orthonormal basis
{𝐟𝑚} to another

{�⃗�𝑛} through a unitary
matrix 𝐔 that satisfies 𝐔⊤∗𝐔 = 1𝑁 , such that for all 𝑛𝐠𝑛(𝐫, 𝑡) = ∑𝑚 𝐔𝑛𝑚 𝐟𝑚(𝐫, 𝑡), �⃗�𝑛 = ∑𝑚 𝐔𝑛𝑚 𝐟𝑚 (1.7)

where we set aside the equivalent equations for the vector fields on the left and the modal
vectors on the right. In particular equation (1.7) means that the choice of a mode basis boils
down to the choice of a unitary matrix 𝐔.

We nowhave all themathematical tools to describe inmore details the electric field𝐄(+)(𝐫, 𝑡).
It is itself a non-normalized electromagneticmode, such that it verifiesMaxwell’s equations (1.1)
and can be decomposed on any mode basis similarly as equation (1.6). We choose the conve-
nient and most common basis of plane wave modes {𝐮𝓁(𝐫, 𝑡)}𝐄(+)(𝐫, 𝑡) = ∑𝓁 𝓁 𝐮𝓁(𝐫, 𝑡), �⃗�(+) = ∑𝓁 𝓁 �⃗�𝓁 (1.8)

with 𝐮𝓁(𝐫, 𝑡) = 𝝐𝓁ei(k𝓁 ⋅⋅⋅𝐫−𝜔𝓁𝑡)
with𝓁, 𝝐𝓁,k𝓁, 𝜔𝓁 respectively the complex amplitude, the polarization vector, wave vector and
frequency of the mode �⃗�𝓁. Note that the plane waves �⃗�𝓁 form an orthonormal basis and as such
satisfy equations (1.1) and (1.4).
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1.1. MULTIMODE QUANTUM LIGHT

1.1.2 Quantum electric field

Let us now introduce the quantum electric field operator in the Heisenberg picture1 �̂�(+)(𝐫, 𝑡)
as the quantum extension of the classical electric field 𝐄(+)(𝐫, 𝑡), defined in equation (1.8). One
can expand it on the plane wave mode basis as follows [Grynberg 10]�̂�(+)(𝐫, 𝑡) = ∑𝓁 𝓁�̂�𝓁𝐮𝓁(𝐫, 𝑡), ⃗̂𝐄(+) = ∑𝓁 𝓁�̂�𝓁�⃗�𝓁 (1.9)

with 𝐮𝓁(𝐫, 𝑡) = 𝝐𝓁ei(k𝓁 ⋅⋅⋅𝐫−𝜔𝓁𝑡) with 𝓁 = √
ℏ𝜔𝓁2𝜀0𝑉⃗̂𝐄(+) is the (analytical) quantum electric modal vector, �̂�𝓁 the quantum operator of annihilation

of a photon in the plane wavemode �⃗�𝓁, and the annihilation operators {�̂�𝓁} satisfy the following
commutation rules [�̂�𝓁, �̂�†𝓁′] = 𝛿𝓁𝓁′ (1.10)[�̂�𝓁, �̂�𝓁′] = 0 (1.11)

The idea behind equation (1.9) is the discretization of the electromagnetic energy, which
means that the energy in a given mode is not continuous, but an integer number of extremely
low amounts of energy, the energy of a photon. It consists in considering each plane wave
mode of frequency 𝜔𝓁 as a quantum harmonic oscillator. Then, its Hamiltonian operator 𝐇𝓁
is given by ℏ𝜔𝓁(�̂�†𝓁 �̂�𝓁 + h.c.), where h.c. stands for hermitian conjugate, and �̂�†𝓁 �̂�𝓁 counts the
number of photons in the mode �⃗�𝓁.

The amplitude coefficients 𝓁 of the quantum electric field defined in equation (1.9) are
frequency dependent in general. The fields we consider in the scope of this thesis satisfy the
conditions of the narrow-band approximation, for which the electric field is not vacuum only
for plane waves oscillating at nearby frequencies 𝜔 ≃ 𝜔0, or equivalently 𝜔0 ≫ Δ𝜔. Under
such approximation, the amplitude coefficients 𝓁 write

𝓁 = 0 with 0 = √
ℏ𝜔02𝜀0𝑉 (1.12)

and the quantum electric field writes in the plane wave basis�̂�(+)(𝐫, 𝑡) = 0 ∑𝓁 �̂�𝓁𝐮𝓁(𝐫, 𝑡), ⃗̂𝐄(+) = 0 ∑𝓁 �̂�𝓁�⃗�𝓁 (1.13)

The annihilation operators {�̂�𝓁} are tightly linked to the modes {�⃗�𝓁}, and contain by them-
selves both the world of quantum states through the Hilbert space of quantum states and the
world of electromagnetic modes through the modal Hilbert space. We steer the attention of
the reader on [Fabre 20] for deep understanding of this dual structure of light. In the following
we show this duality under a mode basis change.

1Meaning that the operators are time dependent, not the quantum states. Instead of applying the action of a
given operator �̂� on any state |𝜓⟩ as |𝜓⟩ ↦ �̂� |𝜓⟩, we equivalently apply its action on any operator �̂� as �̂� ↦ �̂�†�̂��̂�.

8



CHAPTER 1. GAUSSIAN AND NON-GAUSSIAN QUANTUM LIGHT

Let us consider the change of mode basis from {�⃗�𝓁} to a new orthonormal basis
{�⃗�𝑛} with

a unitary matrix𝐔 similarly as in equation (1.7). Let
{�̂�𝑛} be annihilation operators associated

with the modes
{�⃗�𝑛}, hence the action of �̂�𝑛 is defined as the removal of a photon in the mode𝐠𝐧. Their action in the plane-wave basis {�⃗�𝓁} is given through the action of 𝐔 as�̂�†𝑛 ↦ ∑𝓁 𝐔𝑛𝓁 �̂�†𝓁 , ⃗̂𝑏† ↦ 𝐔 ⃗̂𝑎† (1.14)

�̂�𝑛 ↦ ∑𝓁 (𝐔𝑛𝓁)∗ �̂�𝓁, ⃗̂𝑏 ↦ 𝐔∗ ⃗̂𝑎 (1.15)

wherewe introduced for practical reasons ⃗̂𝑎 and ⃗̂𝑏 as column vectors of the operators (�̂�1, �̂�2,… , �̂�𝑁 )⊤
and (�̂�1, �̂�2,… , �̂�𝑁)⊤. In other words, we can write �̂� † ⃗̂𝑏†�̂� = 𝐔 ⃗̂𝑎† and �̂� † ⃗̂𝑏 �̂� = 𝐔∗ ⃗̂𝑎, consis-
tently with the Heisenberg picture, see appendix B.1 for details1. Equations (1.14) and (1.15) are
consistent with equation (1.7) under the narrow-band approximation, see also appendix B.1.

In the new basis
{�⃗�𝑛}, the quantum electric field operator writes�̂�(+)(𝐫, 𝑡) = 0 ∑𝑛 �̂�𝑛𝐠𝑛(𝐫, 𝑡), ⃗̂𝐄(+) = 0 ∑𝑛 �̂�𝑛�⃗�𝑛 (1.16)

with �⃗�𝑛 = ∑𝑛 𝐔𝑛𝓁�⃗�𝓁
1.1.3 Electric field quadrature operators
The annihilation operators {�̂�𝓁} in equation (1.9) are not Hermitian2, which means they are not
physically measurable operators, called observables. They are useful to build a mathematical
functional framework as briefly depicted in the previous section, but from an experimental
point of view, the operators of interest beyond the Hamiltonian are the electric field quadrature
operators. We can define the Hermitian quadrature operators �̂�𝓁 and �̂�𝓁 in each mode �⃗�𝓁 as�̂�𝓁 = 𝜎0(�̂�†𝓁 + �̂�𝓁) and �̂�𝓁 = i𝜎0(�̂�†𝓁 − �̂�𝓁) (1.17)

with [�̂�𝓁, �̂�𝓁′] = 2i𝜎20𝛿𝓁𝓁′
where 𝜎0 is the standard deviation of the quantum fluctuations of the vacuum, such that 𝜎20 =⟨0|�̂�2𝓁 |0⟩ = ⟨0|�̂�2𝓁 |0⟩, with |0⟩ the vacuum quantum state. We choose the letter 𝜎, as a reference
to the usual symbol used in statistics for standard deviation to avoid confusion with the vari-
ance. Many conventions are used in the quantum optics community regarding the value of
the vacuum standard deviation 𝜎0, and none makes unanimity3. This unfortunately leads to

1Usually, in most of the literature using mode basis changes, equations (1.14) and (1.15) are written as ⃗̂𝑏† =𝐔 ⃗̂𝑎† and ⃗̂𝑏 = 𝐔∗ ⃗̂𝑎, considering the action of �̂� implicit in the notation of the operators {�̂�𝑛}. In this manuscript,
we use another formalism detailed in appendix B.1. Both approaches are equivalent, whereas they use different
notations.

2meaning �̂�𝓁 is not equal to its Hermitian conjugate �̂�†𝓁 .
3Often found conventions are 𝜎20 = 1, 𝜎20 = 1/2, 𝜎20 = 1/4 or even 𝜎20 = ℏ/2 with ℏ the Planck constant

divided by 2𝜋.
9



1.2. QUANTUM STATE REPRESENTATIONS

confusions. In this manuscript, we try to explicitly keep 𝜎0. If not, the reader should assume
that for the sake of simplicity, everything is defined with 𝜎0 = 1.

Note that the choice of the phase of reference may be viewed as the choice of the angle of
a rotation applied on the quadrature operators. We then conveniently define the quadrature
operator at angle 𝜃 for each mode 𝐮𝓁 as�̂�𝜃𝓁 = cos(𝜃)�̂�𝓁 + sin(𝜃)�̂�𝓁 (1.18)

verifying similarly [�̂�𝜃𝓁 , �̂�𝜃+𝜋/2𝓁′ ] = 2i𝜎20𝛿𝓁𝓁′ (1.19)

The quadrature operators are the operators that we can access andmeasure experimentally.
To clearly see to what physical entity these operators refer to, let us use them to re-write the
electric field real-valued operator �̂�(𝐫, 𝑡) (not the analytical one)�̂�(𝐫, 𝑡) =∑𝓁 𝓁𝝐𝓁(�̂�𝓁e−i(𝜔𝓁𝑡−k𝓁⋅⋅⋅𝐫) + �̂�†𝓁 ei(𝜔𝓁𝑡−k𝓁 ⋅⋅⋅𝐫))=∑𝓁 𝓁𝝐𝓁 1𝜎0 (�̂�𝓁 cos(𝜔𝓁𝑡 − k𝓁 ⋅⋅⋅ 𝐫) + �̂�𝓁 sin(𝜔𝓁𝑡 − k𝓁 ⋅⋅⋅ 𝐫)) (1.20)

One can see on equation (1.20) that the quadrature operators �̂�𝓁 and �̂�𝓁 are the cosine and
sine channels of the field amplitude inthe plane wave mode �⃗�𝓁. They are accessed experimen-
tally using the homodyne detection for example, see section 2.4 for more details.

1.2 Quantum state representations
In the previous section, we briefly introduced a multimode quantum description of light. We
focused our attention on deriving the relevant measurable physical operators

{�̂�𝓁} and
{�̂�𝓁}.

In this section, we focus on the Hilbert space of quantum states, and present different state
representations that contain each all the information on the state, which makes them in this
sense equivalent.

1.2.1 Quantum state Hilbert space
The set of all pure quantum states forms the unit sphere1 of a complexHilbert spaceH , that we
will call the state space. To take into account the multimode nature of the system, the Hilbert
space H is decomposed, for a given mode basis

{𝐟𝑚}, as a tensor product of underlying
Hilbert spaces H𝑚, each associated with the mode 𝐟𝑚

H = H1 ⊗H2 ⊗⋯ ⊗H𝑁 (1.21)

From the annihilation operator �̂�𝑚, we can define theHermitian number operator �̂�𝑚 = �̂�†𝑚�̂�𝑚
and its eigenstates {|𝑛𝑚⟩}𝑛𝑚∈N. The state |𝑛𝑚⟩, called a Fock state, is a pure quantum state with

1as they are normalized to 1.
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CHAPTER 1. GAUSSIAN AND NON-GAUSSIAN QUANTUM LIGHT

a fixed number of photons 𝑛𝑚 in mode 𝐟𝑚 and the vacuum state in the other modes. The full
set {|𝑛1⟩ ⊗ |𝑛2⟩ ⊗ ⋯ ⊗ |𝑛𝑁 ⟩} forms an orthonormal basis of the Hilbert space H such that
any pure multimode quantum state |𝜓⟩ can be written in the mode basis

{𝐟𝑚}, along with its
normalization |𝜓⟩ = ∑𝑛1 ∑𝑛2 ⋯∑𝑛𝑁 𝐶𝑛1,𝑛2,⋯,𝑛𝑁 |𝑛1⟩ ⊗ |𝑛2⟩ ⊗⋯ ⊗ |𝑛𝑁 ⟩ (1.22)

with ∑𝑛1 ∑𝑛2 ⋯∑𝑛𝑁 ||𝐶𝑛1,𝑛2,⋯,𝑛𝑁 ||2 = 1
The Fock states are further studied in subsection 1.4.1, as they display interesting features for
quantum information.

1.2.2 Density operator
A non-pure state can not be represented by a ket, contrary to pure states (e.g. the state |𝜓⟩ in
equation (1.22)). Consider the situation where pure quantum states |𝜓1⟩ , |𝜓2⟩ ,… are prepared
with respective probabilities 𝑝1, 𝑝2,… To obtain a meaningful representation of the quantum
state of this statistical ensemble, one can examine the outcomes of a measurement performed
on this ensemble using a detection apparatus. We briefly describe here the detection as a
projective measurement with outcome𝑚 by the application of a projector Π̂𝑚 on the ensemble,
such that the probability of obtaining measurement result 𝑚 is given by [Nielsen 00]

∑𝑗 𝑝𝑗 ⟨𝜓𝑗 ||Π̂𝑚||𝜓𝑗⟩ = Tr [Π̂𝑚(∑𝑗 𝑝𝑗 ||𝜓𝑗⟩⟨𝜓𝑗 ||)],
which naturally leads us to define the density operator, first introduced by [VonNeumann 32],
as �̂� = ∑𝑗 𝑝𝑗 ||𝜓𝑗⟩⟨𝜓𝑗 || with Tr(�̂�) = 1 (1.23)

The density operator �̂� is a positive semi-definite Hermitian operator. Its matrix represen-
tation in a given basis of the state space is referred to as the density matrix, a term often used
interchangeably with density operator. Moreover, for any Hermitian operator �̂�, its expecta-
tion value on state �̂� is given by⟨�̂�⟩ = ∑𝑗 𝑝𝑗 ⟨𝜓𝑗 |�̂�|𝜓𝑗⟩ = ∑𝑗 ∑𝑖 𝑝𝑗𝑐𝑖 | ⟨𝜙𝑖|𝜓𝑗⟩ |2 = Tr(�̂��̂�) (1.24)

with 𝑐𝑖 and |𝜙𝑖⟩ the eigenvalues and eigenstates of �̂�.
Equation (1.24) shows that the density operator representation contains all the information

on the quantum system, since any measurement of the system can be written in the form of
the expectation value.

Finally, a key quantity associated with the density operator is the purity 𝜇 of a given quan-
tum state �̂�, defined as 𝜇 = Tr(�̂�2) (1.25)

11



1.2. QUANTUM STATE REPRESENTATIONS

The purity represents the degree of non-mixedness of a quantum state. For a pure state,
the purity equals its maximal value of one. Conversely, a highly mixed state has a near-zero
purity. Moreover, the concept of purity is closely related to losses in a quantum system. For
example, the probabilistic loss of a photon applied on a quantum state results in the statistical
sum of the state without and with the removal of a photon, in particular a mixed state.

Another key concept here is that mixed states can always be viewed as the partial trace
of a pure state on a larger system, stemming from the very nature of quantum entangle-
ment [Bassi 03]. Consider a pure entangled state on a bipartite quantum system H1 ⊗ H2,
with subsystem H2 being inaccessible to observation. The measured state is obtained by trac-
ing over H2. As the state is entangled, part of the information regarding this state is only
accessible through H2. This lack of information results in the state measured being mixed.

1.2.3 Wigner function

While the introduction of the density operator is necessary for describing mixed states, it is
not always the most suitable representation depending on the application.

In quantum optics, the community of Discrete Variables (DV) usually characterizes quan-
tum state of light using photon-counting detection schemes. For this kind of measurement,
the density matrix expressed in the basis of Fock states is particularly appropriate, since trun-
cating the Fock state basis to some suitable maximum integer leaves the matrix representation
finite, yielding an easily handled representation of the full state.

On the other hand, the quantum optics community of Continuous Variables (CV) usually
characterizes quantum states of light using electric field quadrature detection schemes, as for
instance homodyne detection (detailed in section 2.4). The name “continuous variables” stems
from the fact that each measurement yields real numbers from the quadrature operators. The
density matrix may be infinite dimensional, making it not practical.

For a more suitable representation, one naturally consider the phase space, which is the
space built upon the coordinates of real numbers {𝑞} and {𝑝} (we consider for now only a single
mode space for simplicity). The probability of measuring 𝑞 (resp. 𝑝) is given by Tr(�̂� |𝑞⟩⟨𝑞|)
(resp. Tr(�̂� |𝑝⟩⟨𝑝|)) or equivalently ⟨𝑞|�̂�|𝑞⟩ (resp. ⟨𝑝|�̂�|𝑝⟩), where the eigenstates {|𝑞⟩} of �̂� form
an orthonormal and complete basis�̂� |𝑞⟩ = 𝑞 |𝑞⟩ (definition) (1.26)⟨𝑞||𝑞′⟩ = 𝛿(𝑞 − 𝑞′) (orthogonality) (1.27)∫ |𝑞⟩⟨𝑞| d𝑞 = 1̂ (completeness) (1.28)

with similar equations for {|𝑝⟩}. These equations can be naturally generalized to the quadrature
operator �̂�𝜃 at angle 𝜃 (defined in equation (1.18)), together with its eigenstates |𝑞𝜃⟩.

TheWigner function𝑊�̂�(𝑞, 𝑝) of the state �̂�, first introduced by [Wigner 32], is a real-valued
function of the phase space defined as

𝑊�̂�(𝑞, 𝑝) = 12𝜋𝜎20 ∫R ⟨𝑞 − 𝑦 |�̂�|𝑞 + 𝑦⟩ ei𝑝𝑦/𝜎20 d𝑦 (1.29)

12
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While the marginals of the Wigner function are the probability distribution of the quadra-
ture operators ⟨𝑞|�̂�|𝑞⟩ = ∫

R

𝑊�̂�(𝑞, 𝑝) d𝑝 (1.30)⟨𝑝|�̂�|𝑝⟩ = ∫
R

𝑊�̂�(𝑞, 𝑝) d𝑞 (1.31)

and it integrates to one ∫𝑅2 𝑊�̂�(𝑞, 𝑝) d𝑞 d𝑝 = Tr(�̂�) = 1, it is not the joint-probability of the
probabilities ⟨𝑞|�̂�|𝑞⟩ and ⟨𝑝|�̂�|𝑝⟩. Actually, it is not a probability at all, but instead a quasiprob-
ability, as it can exhibit negative values for some quantum states. This feature, known as
Wigner negativity, is one of the key concepts for quantum information, as explained in more
details in section 1.4. This feature stems from the fact that the quadrature operators �̂�, �̂� do
not commute and cannot be measured simultaneously.

More generally, the Wigner function can also be used to represent any operator �̂� as𝑊�̂�(𝑞, 𝑝) = 12𝜋𝜎20 ∫R ⟨𝑞 − 𝑦 |�̂�|𝑞 + 𝑦⟩ ei𝑝𝑦/𝜎20 d𝑦 (1.32)

If the operator �̂� is Hermitian, as the density matrix, then the Wigner function is real-
valued. For two Hermitian operators �̂�, �̂� one can write their overlap as [Leonhardt 95,
Wolfgang 01, Morin 13a]Tr(�̂��̂�) = 4𝜋𝜎20 ∫

R2 𝑊�̂�(𝑞, 𝑝)𝑊�̂�(𝑞, 𝑝) d𝑞 d𝑝 (1.33)

from which we can deduce the expectation value of an Hermitian operator �̂�Tr(�̂��̂�) = 4𝜋𝜎20 ∫
R2 𝑊�̂�(𝑞, 𝑝)𝑊�̂�(𝑞, 𝑝) d𝑞 d𝑝 (1.34)

From this property (1.34), we then deduce that theWigner function𝑊�̂�(𝑞, 𝑝) contains all infor-
mation on the state �̂�, similarly as its density matrix. The Wigner function is very convenient
as it allows for a real-valued complete state representation on the phase space, which can be
practically represented in 3D plots for single-mode states.

We can also deduce the purity 𝜇 (defined as Tr(�̂�2) from equation (1.25)) as𝜇 = 4𝜋𝜎20 ∫
R2 𝑊 2̂𝜌 (𝑞, 𝑝) d𝑞 d𝑝 (1.35)

Equation (1.29) is not the only formula that gives the Wigner function of a state �̂�. For
instance, one can express the Wigner function in terms of the parity operator Π̂P = (−1)�̂�†�̂�
[Royer 77] 𝑊�̂�(𝛼) = 2𝜋 Tr [�̂�(𝛼)Π̂P�̂�†(𝛼)�̂�] , (1.36)

where �̂�(𝛼) = e𝛼�̂�†−𝛼∗�̂� is the displacement operator, and 𝛼 = 12𝜎20 (𝑞 + i𝑝) is an equivalent
complex representation of the phase space point (𝑞, 𝑝). Using the variable 𝛼 instead of the
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1.2. QUANTUM STATE REPRESENTATIONS

variables (𝑞, 𝑝) is common in the literature1. Except for the convention 𝜎20 = 1/4, this adds
a global factor which may bring confusion. This factor can be obtained by ensuring their
normalization ∫

R2 𝑊�̂�(𝑞, 𝑝) d𝑞 d𝑝 = ∫
R2 𝑊�̂�(𝛼) d2𝛼 = 1, with d2𝛼 = dRe(𝛼) d Im(𝑎) and 𝛼 =12𝜎20 (𝑞 + i𝑝), so that 𝑊�̂�(𝛼) = 4𝜎20𝑊�̂�(𝑞, 𝑝). (1.37)

Depending on the application, one notation or the othermay drastically simplify the equations,
leading to a much better readability, which is probably why both are used in the literature.
Also, from equation (1.37) and equation (1.29), one can see that the notation 𝑊�̂�(𝛼) has the
advantage of being independent of the convention 𝜎0.

Let us consider the multimode case. The phase space sees its dimension increased by 𝑁 ,
the number of modes, such that it is now isomorphic to R2𝑁 . One can represent a point in the
phase space by (𝑞⊤, 𝑝⊤)⊤ = (𝑞1,⋯ , 𝑞𝑁 , 𝑝1,⋯ , 𝑝𝑁 )⊤ ∈ R2𝑁 corresponding to the eigenvalues of
operators ⃗̂𝑞 = (�̂�1,⋯ , �̂�𝑁 )⊤ and ⃗̂𝑝 = (�̂�1,⋯ , �̂�𝑁 )⊤, in the mode basis {�⃗�𝓁}, which is essentially a
convenient way to pack together the 2𝑁 variables in the fromulas, along with the ⋅⃗ notation to
be consistent with the modal notation of section 1.1. One can now re-write the equation (1.29)
as 𝑊�̂�(𝑞, 𝑝) = 1(2𝜋𝜎20)𝑁 ∫

R𝑁 ⟨𝑞 − 𝑦 ||�̂�||𝑞 + 𝑦⟩ ei𝑝⋅𝑦/𝜎20 d𝑁𝑦 (1.38)

with |𝑞⟩ = |𝑞1⟩ ⊗⋯ ⊗ |𝑞𝑁 ⟩ the multimode eigenstate of ⃗̂𝑞 with eigenvalues (𝑞1,⋯ , 𝑞𝑁 ) ∈ R𝑁 .
We will often use also the following equivalent and convenient notation of a point in the

phase space: 𝑥⇀ = (𝑞1,⋯ , 𝑞𝑁 , 𝑝1,⋯ , 𝑝𝑁 )⊤ ∈ R2𝑁 . Note the subtle different notations between ⋅⃗
for R𝑁 and ⋅⇀ for R2𝑁 vectors. We obtain for instance the generalization of equation (1.33)

Tr(�̂��̂�) = (4𝜋𝜎20)𝑁 ∫
R2𝑁 𝑊�̂�(𝑥⇀)𝑊�̂�(𝑥⇀) d2𝑁𝑥⇀ (1.39)

with d2𝑁𝑥⇀ = d𝑞1 ⋯ d𝑞𝑁 d𝑝1 ⋯ d𝑝𝑁 .
Beyond theWigner function, there exists a continuous family of 𝑠-parametrized quasiprob-

ability densities 𝑊 �̂�𝜌 (𝑥⇀) for −1 ⩽ 𝑢 ⩽ 1 [Cahill 69a], that each equivalently provides a com-
plete representation of a quantum state in the phase space. For more details, see textbooks,
e.g. [Leonhardt 95, Vogel 06]. The most commonly used quasiprobabilities are the Wigner
function with 𝑢 = 0, the Husimi function, also referred to as the Q function, with 𝑢 = −1, and
the Glauber-Sudarshan representation, or the P function, with 𝑢 = 1.

These quasiprobability densities are all interrelated through convolution by Gaussian func-
tions of the phase space. We can relate 𝑊 �̂�𝜌 (𝑥⇀) to 𝑊 𝑢′�̂� (𝑥⇀), for 𝑢 < 𝑢′ by [Leonhardt 95]

𝑊 �̂�𝜌 (𝑥⇀) = ( 12𝜋𝜎20(𝑢′ − 𝑢))𝑁 ∫ℝ2𝑁 𝑊 𝑢′�̂� (𝑥⇀′) e− 12𝜎20(𝑢′−𝑢) ‖𝑥⇀′−𝑥⇀‖2 d2𝑁𝑥⇀′ (1.40)

1The notation 𝑊�̂�(𝛼, 𝛼∗) may also be found. In either case, they represent the Wigner function as a function
of the real parameters (Re(𝛼), Im(𝛼)).
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Note that this equation is not valid for 𝑢 > 𝑢′. While we can use equation (1.40) to directly
deduce the Q function from the Wigner function for instance, the reverse is not true.

The Gaussian convolution in equation (1.40) may be interpreted as a smoothing operation
on the quasiprobability 𝑊 𝑢′�̂� (𝑥⇀), resulting in a “smoothed” version 𝑊 �̂�𝜌 (𝑥⇀), with 𝑢 < 𝑢′. One
could say that the lowest 𝑢 is, the smoother the representation is, such that globally the Q
function is a much “smoother” version of the Wigner function, while the P function is a much
“sharper” one. These qualitative assessments show through their properties, see sections 1.2.4
and 1.2.5.

We point out that the correspondence between quadrature phase space (𝑞, 𝑝) and complex
one (Re(𝛼), Im(𝛼)) in equation (1.37) is seamlessly generalized to the multimode case, for any
quasiprobability 𝑊 𝑢(𝑥⇀) as 𝑊 𝑢(�⃗�) = (4𝜎20)𝑁𝑊 𝑢(𝑥⇀) (1.41)

with 𝑥⇀ = (𝑞1,⋯ , 𝑞𝑁 , 𝑝1,⋯ , 𝑝𝑁 )⊤ ∈ R2𝑁 and �⃗� = (𝛼1,⋯ , 𝛼𝑁 )⊤ ∈ C𝑁 .
As a side note for the sake of completeness, the quasiprobabilities may be defined from

characteristic functions, and may be related to the ordering of annihilation and creation oper-
ators, though we choose not to follow these approaches, details can be found in [Cahill 69a,
Leonhardt 95, Adesso 14].

1.2.4 Glauber-Sudarshan representation or P function
The Glauber-Sudarshan representation is a quasiprobability first introduced by [Glauber 63,
Sudarshan 63]. It can be defined as the coefficients of the decomposition of the density oper-
ator over the overcomplete basis of coherent states {|𝛼⟩}𝛼∈C�̂� = ∫

R2 P�̂�(𝛼) |𝛼⟩⟨𝛼| d2𝛼 (1.42)

wherewe restrict ourselves to a singlemode of light for now, and d2𝛼 is defined as d Re(𝛼) d Im(𝛼).
See subsection 1.3.2 for details on coherent states. Similarly to the Wigner function, the P
function integrates to unity ∫

R2 P�̂�(𝛼) d2𝛼 = 1, and is real as �̂� is Hermitian. Furthermore,
corresponding to the parameter 𝑢 = 1, the P function is “less smooth” than the Wigner func-
tion. Not only it may display negative values, it may also be mathematically irregular, hence
again the term “quasiprobability”. To get a better understanding of the P function, it may be
expressed with the coefficients of the density operator �̂� in the Fock basis [Sudarshan 63]

P�̂�(𝛼) = ∑𝑛 ∑𝑘 ⟨𝑛|�̂�|𝑘⟩ √𝑛!𝑘!2𝜋𝑟(𝑛 + 𝑘)!e𝑟2−i(𝑛−𝑘)𝜃(− 𝜕𝜕𝑟)𝑛+𝑘 𝛿(𝑟) (1.43)

where 𝑟 and 𝜃 are the modulus and phase of the complex number 𝛼, and 𝛿 is the Dirac delta
function. In equation (1.43) appears many derivatives of Dirac delta functions, meaning that
in general the P function may be very ill-behaved, and it might not even exist as a tempered
distribution. No wonder why there is no known measurement apparatus that measures di-
rectly the P function of any states [Leonhardt 95]. In practice, this means that one needs to
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take great care when dealing with this representation, and may require to approximate the P
function with well defined functions, at the cost of precision.

Although it can be quite impractical, the Glauber-Sudarshan representation has a straight
physical interpretation [Mandel 95]. Basically if there exist a classical analog to the system,
then its P function is non-negative everywhere, as for instance the P function of a coherent
state of complex amplitude 𝛼0 is P|𝛼0⟩⟨𝛼0 |(𝛼) = 𝛿(𝛼 − 𝛼0) by construction (1.42). On the other
hand, if there is no classical analog to the system, then its P function is negative somewhere
or more singular than a Dirac delta function as illustrated in equation (1.43). For example, one
can easily apply equation (1.43) to a Fock state |1⟩ and obtain P|1⟩⟨1|(𝛼) = 14𝜋𝑟 e𝑟2 𝜕2𝛿(𝑟)𝜕𝑟2 . For these
reasons, it may be used for defining non-classicality of a quantum system, see for instance
[Usha Devi 13]. In practice, we will use other tools to define and study the quantumness of a
system, see section 1.4.

The density operator is not the only operator that can be decomposed on the coherent
state basis as in equation (1.42). More generally, any operator �̂� may be represented by its
Glauber-Sudarshan representation P�̂� as the coefficients of its decomposition on the coherent
state basis1 �̂� = ∫

R2𝑁 P�̂�(�⃗�) ||�⃗�⟩⟨�⃗�|| d2𝑁 �⃗� (1.44)

with |�⃗�⟩ = |𝛼1⟩ ⊗ ⋯ ⊗ |𝛼𝑁 ⟩ the coherent state on H of amplitude �⃗� = (𝛼1,⋯ , 𝛼𝑁 ) ∈ C𝑁 .
Note that equation (1.44) is formally always correct, but P�̂�(�⃗�) may not always mathemat-
ically “exist”, meaning that it has mathematical irregularities or infinities beyond the scope
of distributions. As we don’t elaborate on these technicalities2, the interested reader should
look at [Cahill 69b, Cahill 69a]. Equation (1.44) is in particular the multimode version of equa-
tion (1.42) for �̂� = �̂�.
1.2.5 Husimi function or Q function
The Husimi function, or Q function, was introduced by [Husimi 40]. It is defined in the multi-
mode mode scenario as Q�̂�(�⃗�) = 1𝜋𝑁 ⟨�⃗�||�̂�||�⃗�⟩ (1.45)

which is proportional to the projection of the density operator �̂� on the multimode coherent
state |�⃗�⟩, with �⃗� ∈ C𝑁 . Contrary to the previous quasiprobabilities, the Q function is always
positive everywhere on the phase space, stemming from its definition (1.45) and the Hermi-
tianity of the density operator. Also, the Q function integrates to unity:

∫
R2𝑁 Q�̂�(�⃗�) d2𝑁 �⃗� = 1 (1.46)

1Note that remarkably, if such decomposition on the coherent state basis exists, it is diagonal. This stems
from the overcompleteness of the coherent state basis (see subsection 1.3.2).

2A sufficient condition for P�̂�(�⃗�) to converge is that the operator �̂� is expressible as a power series in the
creation and annihilation operators in the anti-normal order, which is always the case for the density operator �̂�
for instance.
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owing to the overcompleteness of the coherent state basis ∫ |�⃗�⟩⟨�⃗�| d2𝑁 �⃗� = 𝜋𝑁 .
From the above properties, one might be tempted to call the Husimi function an actual

probability density rather than a quasiprobability density. However, it is not, as the Husimi
function does not satisfy the 𝜎-additivity of mutually exclusive states, owing to the non-
orthogonality of the coherent states (see subsection 1.3.2 for details on these states). This
means in practice that we cannot define proper marginal probability densities from which the
Husimi function would be the joint probability density [Mandel 95].

The Q function is directly measurable using a double homodyne detector1, as shown in
chapter 4 section 4.1. A primary focus of this manuscript is to explore this feature of the Q
function, and how it can help with certifying non-Gaussianity.

Resulting from its smoothness compared to the other quasiprobability densities as shown
by equation (1.40), the non-classical properties of a given state are harder to retrieve from
its Q function. One would need many more measurements to get the finer details of the Q
function than for sharper quasiprobabilities. In other words, the cost of its smoothness is a
lesser sensitivity to state details. This topic is further elaborated in chapter 4.

Although it may require many samples to measure, theQ function contains all information
on the represented quantum state. Simply put, the zeros of the Q function of a pure state
allow for distinguishing classical pure states, when it has no zero, from non-classical pure
states, when it has more than one zero [Lütkenhaus 95]. This property can be extended to
non-pure states. We will use this to distinguish between Gaussian and non-Gaussian states
(see section 1.4).

While the focus of this manuscript is on theQ function, theWigner function is morewidely
used and studied in the quantum optics community. Thankfully, one can derive the expression
of theQ function from theWigner function’s one from equation (1.40) with 𝑢 = −1 and 𝑢′ = 0,
along with equation (1.41)

Q�̂�(𝑥⇀) = ( 12𝜋𝜎20)𝑁 ∫ℝ2𝑁 𝑊�̂�(𝑥⇀′) e− 12𝜎20 ‖𝑥⇀′−𝑥⇀‖2 d2𝑁𝑥⇀′ (1.47)

with Q�̂�(�⃗�) = (4𝜎20)𝑁Q�̂�(𝑥⇀)
One may apply equation (1.40) with 𝑠 = −1 and 𝑠′ = 1 to derive the Q function from theP function, although this would prove less useful, as the P function is less studied than the

Wigner function, and it features mathematical irregularities, as detailed in subsection 1.2.4.
Instead, one can derive an interesting relation involving both Q and P functions. The

expectation value Tr(�̂��̂�) of a given operator �̂� on the state �̂� can be developed by replacing�̂� by its P representation (1.44). Using the linearity of the trace to exhibit Tr(�̂� |�⃗�⟩⟨�⃗�|) as part
of the integrand, which is by definition 𝜋𝑁Q�̂�(�⃗�), we find the following expressionTr(�̂��̂�) = 𝜋𝑁 ∫

R2𝑁 P�̂�(�⃗�)Q�̂�(�⃗�) d2𝑁 �⃗� (1.48)

For reference, this equation (1.48) may also be derived as a consequence of the optical equiv-
alence theorem in its anti-normal version [Cahill 69a].

1One can also use a heterodyne detector [Wai Leong 86] to measure the Q function. We won’t study such
detector in this manuscript.

17



1.3. GAUSSIAN STATES

We can obtain an expression for the fidelity of �̂� to a target state �̂�′, simply substituting �̂�
with �̂�′ in equation (1.48)

Tr(�̂��̂�′) = 𝜋𝑁 ∫
R2𝑁 P�̂�′(�⃗�)Q�̂�(�⃗�) d2𝑁 �⃗� (1.49)

This expression proves to be very useful as soon as one can measure the Q function of
the experimental state, as it allows us to compute the fidelity to a chosen target state, of
which we know the P function, or an approximation. The idea of fidelity estimation through
equation (1.49) is at the core of the non-Gaussianity certification protocol presented in this
manuscript, see chapter 4.

1.3 Gaussian states

Gaussian states play an important role in continuous-variable quantum optics, as they rep-
resent in particular nonclassical states produced deterministically through second order non-
linear optical processes. These states are also of practical significance, as they can be fully de-
scribed by the first and second moments of the quadrature operators. Furthermore, Gaussian
states show potential as fundamental components for quantum information [Weedbrook 12],
even though practical quantum information requires to go beyond Gaussianity, see next sec-
tion 1.4.

We introduce the basic notions about Gaussian states here, notably for a better understand-
ing of the Gaussian source of the experiment described in chapter 2. Still we won’t cover this
topic in-depth, and we suggest the reader to have a look at the thesis [Michel 21], the paper
[Adesso 14] or the book [Weedbrook 12].

1.3.1 Gaussian states and covariance matrix

A Gaussian state is by definition a state that is described by a Gaussian Wigner function. In
particular from equation (1.47), the Q function of a Gaussian state is Gaussian, as it is given by
the convolution of the Wigner function with a Gaussian function. Note that any state whoseQ function is Gaussian is a Gaussian state1, so that the Gaussianity of a quantum state may be
defined by the Gaussianity of its Q function.

Since the Wigner function of a Gaussian state is a Gaussian function of the phase space,
it is positive everywhere. Thus, it can be seen as an effective joint probability density of its
Gaussian marginals, the quadrature probability densities defined in equations (1.30) and (1.31).
Any Gaussian probability density is fully characterized by the statistics given by its first two
moments. This means that a Gaussian state is fully characterized by the first two moments of
both quadrature marginals, a few parameters only.

1Taking the Fourier transform of equation (1.47), the Fourier transform of the Wigner function is then given
by the ratio of two Gaussian functions, which is a Gaussian. We used that the Fourier transform of a convolution
becomes a product, and the Fourier transform of a Gaussian is Gaussian (see appendix A.3 for more on the Fourier
transform). This conclude the proof, with the Wigner function being Gaussian.
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The first quadraturemoments ⟨ ⃗̂𝑞⟩ and ⟨ ⃗̂𝑝⟩ are represented by ⟨�̂�⇀⟩ = ( ⟨𝑞1⟩ ,⋯ , ⟨ ̂𝑞𝑁 ⟩ , ⟨𝑝1⟩ ,⋯ , ⟨𝑝𝑁 ⟩)⊤ ∈
R2𝑁 , called the mean or displacement of the Gaussian state. The second quadrature moments
are represented by the covariance matrix 𝐕. These moments are defined as⟨�̂�⇀⟩ = Tr(�̂��̂�⇀) (1.50)𝐕𝑖𝑗 = ⟨ 12 {�̂�⇀𝑖, �̂�⇀𝑗 }⟩ − ⟨�̂�⇀𝑖⟩ ⟨�̂�⇀𝑗⟩ (1.51)

where we use the notations introduced in subsection 1.2.3, {⋅, ⋅} is the anticommutator, and the
covariance matrix 𝐕 is a real positive symmetric 2𝑁 × 2𝑁 matrix.

The Wigner function of a Gaussian state �̂�G is then simply given by [Weedbrook 12]𝑊�̂�G(𝑥⇀) = 1(2𝜋)𝑁√det𝐕 exp(− 12(𝑥⇀ − ⟨�̂�⇀⟩)⊤𝐕−1(𝑥⇀ − ⟨�̂�⇀⟩)) (1.52)

where we stress that 𝑥⇀ is the phase space coordinate vector, while ⟨�̂�⇀⟩ is the expectation value
of the quadrature operators on the Gaussian state �̂�G.

We can apply equation (1.35) in its multimode version to obtain the purity of a Gaussian
state 𝜇G 𝜇G = 𝜎2𝑁0√det𝐕 (1.53)

A fundamental example of a Gaussian state is the vacuum. The multimode vacuum �̂�0 is
characterized by a null mean and the identity for covariance matrix (up to the 𝜎2𝑁0 factor). Its
Gaussian Wigner function is given by

𝑊�̂�0(𝑥⇀) = e− 12𝜎20 ‖𝑥⇀‖2(2𝜋𝜎20)𝑁 (1.54)

In the following two subsections, we describe two other common Gaussian states, namely
the coherent states, and the squeezed vacuum states. We detail their main properties, and
show their phase space representations.

1.3.2 Coherent states
Coherent stateswere first introduced by [Schrödinger 26], and then further studied by [Glauber 63,
Sudarshan 63]. They are often used to model the output light of lasers with a well defined
phase and mean-field. This doesn’t take into account the classical noise stemming from the
laser imperfections. Still, this model is a very good approximation for lasers far above thresh-
old. For this reason, the coherent states are often considered as the most relevant quantum
states for describing classical light.

In the single-mode scenario, the coherent states |𝛼⟩ are often defined as the eigenvetors of
the annihilation operator �̂� �̂� |𝛼⟩ = 𝛼 |𝛼⟩ (1.55)
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with 𝛼 ∈ C the amplitude of the coherent state |𝛼⟩. It is common to decompose the amplitude𝛼 into 𝛼 = |𝛼|ei𝜃𝛼 (1.56)

with 𝜃𝛼 the optical phase of the coherent state, and |𝛼|2 the intensity of the coherent state, as
it is directly the number of photons |𝛼|2 = ⟨�̂�⟩|𝛼⟩ (1.57)

with �̂� = �̂�†�̂�, and ⟨⋅̂⟩|𝛼⟩ = ⟨𝛼|⋅̂|𝛼⟩.
The coherent states may also be defined from the vacuum |0⟩ by a displacement operation�̂�(𝛼) as [Leonhardt 95] �̂�(𝛼) |0⟩ = |𝛼⟩ (1.58)

with �̂�(𝛼) = e𝛼�̂�†−𝛼∗�̂� (1.59)

In particular, the vacuum is the coherent state of zero amplitude. From equation (1.58), we
deduce that the coherent states share the same quadrature variance with the vacuum⟨Δ2�̂�⟩|𝛼⟩ = ⟨Δ2�̂�⟩|𝛼⟩ = 𝜎20 (1.60)

with ⟨Δ2�̂�⟩|𝛼⟩ = ⟨𝛼|�̂�2|𝛼⟩ − ⟨𝛼|�̂�|𝛼⟩2, and similarly for �̂�.
The parametrization shown in equation (1.56) allows for an easy phase space 2D represen-

tation of the state, see figure 1.1, where we represent the state quantum fluctuations with a
disk of diameter given by its quadrature standard deviation 𝜎0.

Fig. 1.1 Phase space representation of a coherent state |𝛼⟩ of amplitude 𝛼 ∈ C. The
quantum fluctuations of the state are represented by a disk of diameter its quadrature
standard deviation equal to vacuum’s 𝜎0.
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Equation (1.58) allows us to infer the decomposition of the coherent states on the Fock
basis

|𝛼⟩ = e− |𝛼|22 ∞∑𝑛=0 𝛼𝑛√𝑛! |𝑛⟩ (1.61)

Furthermore, the coherent states form a non-orthogonal overcomplete basis, which can be
expressed as⟨𝛽|𝛼⟩ = e− 12 (|𝛽|2+|𝛼|2−2𝛽𝛼∗) ≠ 𝛿(𝛼 − 𝛽) (non-orthogonality) (1.62)1𝜋 ∫

R2 |𝛼⟩⟨𝛼| d2𝛼 = 1̂ (overcompleteness) (1.63)

with d2𝛼 = dRe(𝛼) d Im(𝛼).
Since a coherent state is a displaced vacuum, it shares the same covariance matrix as the

vacuum, i.e. 𝜎201. Using equation (1.52), we obtain its Wigner function

𝑊|𝛼⟩⟨𝛼|(𝑞, 𝑝) = 12𝜋𝜎20 e−
12𝜎20 (𝑞−⟨�̂�⟩)2− 12𝜎20 (𝑝−⟨�̂�⟩)2 (1.64)

with ⟨�̂�⟩ = 2𝜎0 Re(𝛼) and ⟨�̂�⟩ = 2𝜎0 Im(𝛼).
The Q function can be directly inferred from its definition (1.45) and equation (1.62)

Q|𝛼⟩⟨𝛼|(𝛽) = 1𝜋 e−|𝛽−𝛼|2 (1.65)

or equivalently with the correspondence (1.47)

Q|𝛼⟩⟨𝛼|(𝑞, 𝑝) = 14𝜋𝜎20 e−
14𝜎20 (𝑞−⟨�̂�⟩)2− 14𝜎20 (𝑝−⟨�̂�⟩)2 (1.66)

with 𝛽 = 12𝜎0 (𝑞+i𝑝). We point out that theQ function is a 2-dimensional Gaussian broader than
theWigner function, stemming from the Gaussian convolution relation (1.47). Both quasiprob-
ability representations (1.64) and (1.65) are pictured in figure 1.2. Note that the vacuum state
has the same representations, but centered at the phase-space origin.

Note that any puremultimode coherent state is singlemode in awell chosen basis [Treps 05].
In other words for any pure multimode coherent state of the form |𝜓⟩ = |𝛼1⟩⊗⋯⊗ |𝛼𝑁 ⟩, there
exists a basis change to a new mode basis where the state |𝜓⟩ is single mode|𝜓⟩ = |𝛽⟩ ⊗ |0⟩ ⊗⋯ ⊗ |0⟩ (1.67)

with 𝛽 = ∑𝑚 |𝛼𝑚|2
see [Fabre 20] for details. Note that while this is true for pure states, it is not true in general
for mixed coherent states.
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Fig. 1.2 TheWigner function (left) and the Q function (right) of a coherent state |𝛼⟩
of amplitude 𝛼 = 1, with 𝜎20 = 1.

1.3.3 Squeezed vacuum states
While a coherent state features quadrature variances equal to the ones of the vacuum, a
squeezed state, as the name suggests, features a lower variance on one of its quadrature at
the expense of a larger one on the other one. This allows beating the “shot-noise”, the quan-
tum fluctuation noise of the vacuum, and measuring finer details on one of the observables
in a metrology context. This is the reason why it is largely studied, after its introduction by
[Kennard 27]. Notably, it is used to enhance the sensitivity of gravitational wave detectors,
see [Tse 19].

The squeezed vacuum states ||𝜓𝜁⟩ are defined as the application of the squeezing operator𝑆(𝜁 ) on the vacuum ||𝜓𝜁⟩ = 𝑆(𝜁 ) |0⟩ (1.68)

with 𝑆(𝜁 ) = exp[𝜁2(�̂�2 − �̂�†2)] (1.69)

where 𝜁 ∈ R is called the squeezing parameter. One can derive some properties of the squeezing
operator [Leonhardt 95] 1𝑆(𝜁 )† �̂� 𝑆(𝜁 ) = �̂� cosh(𝜁 ) − �̂�† sinh(𝜁 ) (1.70)𝑆(𝜁 )† �̂� 𝑆(𝜁 ) = �̂�e−𝜁 and 𝑆(𝜁 )† �̂� 𝑆(𝜁 ) = �̂�e𝜁 (1.71)

from which we straightforwardly deduce the variances and the mean photon number of a
squeezed vacuum state ||𝜓𝜁⟩ ⟨Δ2�̂�⟩|𝜓𝜁 ⟩ = 𝜎20𝑠 (1.72)⟨Δ2�̂�⟩|𝜓𝜁 ⟩ = 𝜎20𝑠−1 (1.73)⟨�̂�⟩|𝜓𝜁 ⟩ = sinh2(𝜁 ) = 14(𝑠 + 𝑠−1 − 2) (1.74)

with 𝑠 = e−2𝜁 (1.75)
1To derive these forms of operator action, one can use the Hausdorff recursion formula, see appendix A.1.
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𝑠 is called the squeezing factor, and directly corresponds to the ratio between the quadrature
variances and the vacuum variance. This property is illustrated on the phase space represen-
tation of |𝜓𝜁 ⟩ in figure1 1.3. More pragmatically, the squeezing factor is often given in the
base-ten logarithmic absolute scale𝑠dB = 10||log10(𝑠)|| = 20ln 10 |𝜁 | (1.76)

Fig. 1.3 Phase space representation of a squeezed state |𝜓𝜁 ⟩ of squeezing parameter𝜁 , and squeezing factor 𝑠 = e−2𝜁 . The quantum fluctuations of the state are repre-
sented by an ellipse of dimensions its quadrature variances given by equations (1.72)
and (1.73). For reference, a dashed circle of diameter the vacuum quadrature variance𝜎20 is represented. The figure is to scale, with 𝜁 = ln(2)/2, 𝑠dB ≃ 3 dB.
For 𝜁 > 0, we will refer to �̂� as the squeezed quadrature, and to �̂� as the antisqueezed quadra-

ture, consistently with equation (1.72) and (1.73). We can also consider a complex squeezing
operator 𝜁 ∈ C, with 𝜁 = |𝜁 |ei𝜃𝜁 where 𝜃𝜁 defines the squeezing direction, and the squeezing
operator then writes

𝑆(𝜁 ) = exp[𝜁 ∗2 �̂�2 − 𝜁2 �̂�†] (1.77)

In this case, the squeezed quadrature is 𝑞𝜃𝜁 /2 and the antisqueezed quadrature is 𝑞𝜃𝜁 /2+𝜋/2, where
the quadrature operator 𝑞𝜃 at angle 𝜃 is defined by equation (1.18). The factor 1/2 in the phase
is consistent with the fact that the squeezed vacuum state is invariant under 𝜋-rotations, see
figure 1.32.

1We choose the variance to represent the quantum fluctuations instead of the standard deviation as squeezing
factors are conventionally referring to variances. Note that this common choice is fine as the state has a null mean,
and may be understood by replacing the axes (𝑞, 𝑝) by (𝑞2, 𝑝2).

2More precisely, the squeezing operator in (1.77) can be obtained by applying the phase-space rotation op-
eration �̂�(𝜃𝜁/2) of angle 𝜃𝜁/2 on the squeezing operator in (1.69) (see next subsection 1.3.4 for the definition of�̂�(𝜃)). Under its action, the squeezing operator maps as 𝑆(𝜁 ) ↦ 𝑆(𝜁ei𝜃𝜁 ), while the quadrature operators map as�̂� ↦ �̂�𝜃𝜁 /2, �̂� ↦ �̂�𝜃𝜁 /2+𝜋/2, see appendix A.1 for demonstrations.
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One can develop equation (1.68) (see [Ferraro 05])||𝜓𝜁⟩ = 𝑆(𝜁 ) |0⟩ = 1√cosh(𝜁 ) exp[− 12 tanh(𝜁 ) �̂�†2] |0⟩ (1.78)

to derive the expression of a vacuum squeezed state on the Fock basis {|𝑛⟩}
||𝜓𝜁⟩ = 1√cosh(𝜁 ) ∞∑𝑛=0

√(2𝑛𝑛 ) tanh𝑛(𝜁 )2𝑛 |2𝑛⟩ (1.79)

where one can see that all the odd number of photon terms are zero, resulting in a main
contribution in the vacuum followed by only even terms. Note that this property is extremely
sensitive to photon losses, since for any amount of losses odd terms appear in equation (1.79).

From equation (1.71), we deduce that the covariance matrix of a squeezed vacuum state
is simply given by diag(𝑠, 𝑠−1). Applying equation (1.52), we obtain the Wigner function of a
squeezed vacuum state

𝑊|𝜓𝜁 ⟩⟨𝜓𝜁 |(𝑞, 𝑝) = 12𝜋𝜎20 e−
12𝜎20 𝑠 𝑞2− 12𝜎20/𝑠 𝑝2 (1.80)

where one can clearly see the squeezed and anti-squeezed width of the Gaussian quadrature
marginals. For 𝑠 = 1, we recover the vacuum Wigner function given in equation (1.54).

One can derive the Q function from the Wigner function with equation (1.47) and obtain

Q|𝜓𝜁 ⟩⟨𝜓𝜁 |(𝑞, 𝑝) = 12𝜋𝜎20 1√(1 + 𝑠)(1 + 1/𝑠)e− 12𝜎20(1+𝑠) 𝑞2− 12𝜎20(1+1/𝑠)𝑝2 (1.81)

which is still a Gaussian as expected. We note that even though its marginals are not the
quadrature probability densities as discussed in subsection 1.2.5, they are “squeezed” in the
expected way, similarly as the Wigner function but both broader. This can be checked by
looking at the quasiprobability plots in figure 1.4.

Fig. 1.4 TheWigner function (left) and theQ function (right) of a vacuum squeezed
state ||𝜓𝜁⟩ of squeezing parameter 𝜁 = ln(2)/2 (i.e. 𝑠dB ≃ 3 dB), with 𝜎20 = 1.
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1.3.4 Gaussian operations
In the two previous examples, we saw that both coherent states and squeezed vacuum states
can be defined from the action of an operator on the vacuum. Let us now generalize this
remark, which will allows us to introduce powerful tools to further comprehend the Gaussian
states.

Gaussian operations are the transformations that preserve Gaussianity, i.e. a Gaussian state
is again a Gaussian state under such transformation. These transformations have been largely
investigated in the literature, such that one can define and characterize them completely. They
are useful for studying Gaussian states, seen as generated states from these operations, or non-
Gaussian states, defining the boundaries one has to cross to go beyond Gaussianity. We will
only give the main ideas as it is not the focus of this manuscript, referring to [Weedbrook 12,
Michel 21].

By definition, a Gaussian operation is reversible, i.e. it is a unitary transformation. As it is
unitary, a Gaussian transformation can not model losses1, or a measurement. We denote the
associated unitary operator �̂�2.

To characterize a Gaussian operation we would usually describe its action on the anni-
hilation and creation operators, as we did for the change of mode basis see equations (1.14)
and (1.15). This can be conveniently reduced to the determination of a 𝑁 × 𝑁 unitary matrix.

Often, it is convenient to describe the action of a Gaussian operation on the quadrature
operators, as we did for the squeezing operator, see equation (1.71). More generally, a Gaus-
sian transformation is fully characterized by a symplectic transformation along with a phase-
space displacement [Weedbrook 12]. The symplectic formalism is quite useful in the multi-
mode scenario, and allows for the expression of powerful theorems, as we will see in the next
subsection 1.3.5. For this reason, we focus on the symplectic representation of the Gaussian
operations in the following.

The symplectic transformations form a group, called the symplectic group. A symplectic
transformation is defined by a 2𝑁 × 2𝑁 real matrix 𝐒 which acts on the quadrature operators
as �̂�⇀ ↦ 𝐒�̂�⇀, and satisfies [Simon 88]

𝐒𝛀 𝐒⊤ = 𝛀, where 𝛀 = ( 𝟎 1𝑁−1𝑁 𝟎 ) (1.82)

with 1𝑁 the identity matrix of size 𝑁 ×𝑁 . In particular, their determinant is 1. Equation (1.82)
means in particular that symplectic transformations preserve the quadrature commutation
relations (1.17), which can be written in the multimode scenario as[𝑥⇀𝑖, 𝑥⇀𝑗] = 2i𝜎20𝛀𝑖𝑗 (1.83)

A displacement on themultimode phase space can be defined as the product of single-mode
displacement operators �̂�(𝛼) defined in equation (1.59). A single-mode displacement operator

1While losses are indeed non-unitary operations, one can still model them by introducing extra loss channels
or modes, which are not measured. Considering all implied modes, the operation is unitary. When the output
state is mixed, this relates to the concept introduced with the density operator, see subsection 1.2.2.

2A unitary operator �̂� satisfies �̂�†�̂� = �̂��̂�† = 1̂, with 1̂ the identity operator. Note also that for a Gaussian
operation, �̂� is generated from an Hamiltonian at most quadratic in the annihilation and creation operators.
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acts on the quadrature operators as [Leonhardt 95]�̂�(𝛼)†�̂��̂�(𝛼) = �̂� + 𝑞, �̂�(𝛼)†�̂��̂�(𝛼) = �̂� + 𝑝 (1.84)

with 𝛼 = (𝑞 + i𝑝)/(2𝜎0).
For theWigner function, the action of any Gaussian operator �̂� on the state �̂� is equivalent

to the action of the corresponding symplectic and displacements actions on the phase space
[Fabre 20] 𝑊�̂��̂� �̂�†(𝑥⇀′) = 𝑊�̂�(𝑥⇀) with 𝑥⇀′ = 𝐒𝑥⇀ + 𝑑⇀ (1.85)

where 𝑑⇀ is a 2𝑁 real vector in the quadrature phase space, corresponding to displacement
operations of the form (1.84) applied on each of the 𝑁 modes.

Since the Gaussian states are fully characterized by their first and second moments defined
in (1.50) and (1.51), the action of a Gaussian operation (𝐒, 𝑑⇀) is simply given by⟨�̂�⇀⟩ ↦ ⟨�̂�⇀⟩ + 𝑑⇀ (1.86)𝐕 ↦ 𝐒𝐕𝐒⊤ (1.87)

which can be obtained by applying the transformation (1.85) in equation (1.52).
Equation (1.85) illustrates the main interest of using the symplectic representation of Gaus-

sian transformations: a Gaussian operation may be simply viewed as a transformation of the2𝑁 dimensional phase space, applied on the phase space representation of the states - here
the Wigner function. These properties only partially transfer to the Q function, as we show
in details in chapter 4.

Any single-mode Gaussian operation may be decomposed into the product of three ele-
mentary single-mode Gaussian operations [Weedbrook 12]:

• The displacement operation �̂�(𝛼) defined in subsection 1.3.2, equation (1.59). Its action
on the quadrature operators �̂� and �̂� is given by equation (1.84). On the phase space,
it is a translation: 𝑞 ↦ 𝑞 + 2𝜎20 Re(𝛼) and 𝑝 ↦ 𝑝 + 2𝜎20 Im(𝛼). In the lab, it may be
implemented by combining the state to displace with a bright coherent field on a highly
transmitting beamsplitter. In the experiment presented in this manuscript, this opera-
tion is not needed.

• The phase-space rotation operation �̂�(𝜃) of angle 𝜃, defined as generated by the number
operator �̂�, i.e. �̂�(𝜃) = exp(−i𝜃�̂�) (1.88)

with 𝜃 ∈ R. Its action on the quadrature operators �̂�⇀ is described by the symplectic
matrix 𝐑 which writes 𝐑 = ( cos(𝜃) sin(𝜃)− sin(𝜃) cos(𝜃)) (1.89)

On the phase space, it is simply a 2D rotation: 𝑥⇀ ↦ 𝐑𝑥⇀, where 𝑥⇀ = (𝑞, 𝑝)⊤. Experimen-
tally, this operation is usually simply implemented by using piezoelectric stacks on a
mirror to shift the beams by less than a wavelength.
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• The squeezing operation 𝑆(𝜁 ) defined in subsection 1.3.3, equation (1.69). Its action on
the quadrature operators �̂�⇀ is given by equation (1.71), or is equivalently described by
the symplectic matrix 𝐊 which writes𝐊 = (e−𝜁 00 e𝜁) (1.90)

On the phase space, it is both a stretching (in the squeezed direction) and a contraction
(in the antisqueezed direction): 𝑥⇀ ↦ 𝐊𝑥⇀. In the laboratory, it’s the only Gaussian opera-
tion that requires non-linear crystals. A detailed example of implementation is given in
the description of our source of Gaussian states in chapter 2.

To complete the set of all Gaussian operations, multimode and single-mode, it is enough to
add 2-mode basis changes. The 𝑁 -mode basis change �̂� is characterized by its 𝑁 × 𝑁 unitary
matrix 𝐔 acting on the annihilation and creation operators in equation (1.14) and (1.15). Its
action on the quadrature operators �̂�⇀ is described by a real orthogonal symplectic 2𝑁 × 2𝑁
matrix 𝐎 which is obtained from 𝐔 as𝐎 = ( Re(𝐔) Im(𝐔)− Im(𝐔) Re(𝐔)) (1.91)

with 𝐔 = Re(𝐔) + i Im(𝐔)
1.3.5 Decompositions of Gaussian states and Gaussian operations
As is described in chapter 2, an important state preparation step is to generate multimode
squeezed vacuum states, using a synchronously pumped optical parametric oscillator (SPOPO).
This multimode operation, when considered lossless, can be modeled as a multimode Gaus-
sian operation applied on the vacuum. When accounting for losses which are non-unitary
operations, it is not true anymore. We then need to introduce a more advanced framework.
Let us use the symplectic formalism and consider only zero-displacement Gaussian opera-
tions to express two powerful decompositions, namely the Bloch-Messiah decomposition and
the Williamson decomposition. Let us first define both decompositions.

The Bloch-Messiah decomposition. First introduced by [Bloch 62], and then further ap-
plied in quantum optics by [Braunstein 05], it is stemming from the singular value decom-
position. It states that any symplectic matrix 𝐒 can be decomposed into the product of three
elementary symplectic matrices 𝐒 = 𝐎1𝐊𝐎2 (1.92)

where 𝐊 is the symplectic matrix of a multimode squeezing operation, and 𝐎1, 𝐎2 are the
symplectic matrices of mode-basis changes.

The symplectic matrix 𝐊 in equation (1.92) represents the action of a collection of indepen-
dent squeezing operators, which can be written 𝑆1(𝜁1)⊗⋯⊗𝑆𝑁 (𝜁𝑁 )with 𝜁𝑚 ∈ R the squeezing
parameter of mode 𝐮𝑚. It generalizes the single-mode squeezing operation represented by
equation (1.90), and consistently 𝐊 writes𝐊 = diag(e−𝜁1 ,⋯ , e−𝜁𝑁 , e𝜁1 ,⋯ , e𝜁𝑁 ) (1.93)
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TheWilliamson decomposition. TheWilliamson’s theorem [Williamson 36, Ikramov 18]
states that any real positive definite matrix 𝐕 can be decomposed as𝐕 = 𝐒𝐕W𝐒⊤ (1.94)

with 𝐒 a symplectic matrix, 𝐕W = 𝜎20 diag(𝜅1,⋯ , 𝜅𝑁 , 𝜅1,⋯ , 𝜅𝑁 ) , and 0 ⩽ 𝜅1 ⩽ ⋯ ⩽ 𝜅𝑁 the
Williamson eigenvalues. This theorem applied to the covariance matrix of a quantum state
requires 1 ⩽ 𝜅1 ⩽ ⋯ ⩽ 𝜅𝑁 to account for the Heisenberg inequality relations.

Interpretation and application. Let us consider a given experimental setup only consist-
ing of zero-displacement Gaussian operations, and a zero-mean Gaussian input state, e.g. the
SPOPO acting on the vacuum. To apply the two decompositions, we actually don’t need to
make any assumption on the input state purity, or on the losses caused by the setup. It just
requires to have a Gaussian output state, which is the case we consider. We note 𝐕out the co-
variance matrix of the output state. Let us now apply the Williamson decomposition (1.94) on𝐕out, followed by the Bloch-Messiah decomposition (1.92) applied on the symplectic matrix 𝐒
of (1.94). The result writes 𝐕out = 𝐎1𝐊𝐎2𝐕W𝐎⊤2𝐊𝐎⊤1 (1.95)

Let us first assume that the output state is pure. Since the unit-determinant transformation𝐎1𝐊𝐎2 does not change the purity (see equation (1.53)), then𝐕W represents a pure state, hence
the Williamson eigenvalues {𝜅𝑚} must all equal 1. Equation (1.95) gets simplified to𝐕pure

out = 𝜎20 𝐎1𝐊2𝐎⊤1 (1.96)

which is then a multimode squeezed vacuum state in the basis defined by 𝐎1, with squeezing
parameters 𝜁1,⋯ , 𝜁𝑁 . The assumption that the output state is pure implies that the input state
is pure (e.g. the vacuum) and that the setup do not introduce any losses on the state, which
never occurs experimentally.

In general, the output state is a Gaussian mixed state described by equation (1.95). The
covariance matrix 𝐕W defined in (1.94) can be interpreted as a collection of independent sym-
metric thermal states, or equivalently, independentmodes containing classical noise. The sym-
plectic transformation on 𝐕W is then a multiport beamsplitter 𝐎2, followed by an assembly of
individual squeezing operators in parallel 𝐊, and another multiport beamsplitter 𝐎1.
1.3.6 Two-mode squeezed vacuum states
As a final Gaussian state example, let us describe the two-mode squeezed vacuum states to
illustrate some key concepts that arise from stepping into the multimode world.

The two-mode squeezed vacuum states are defined from the action of the two-mode squeez-
ing operator 𝑆(2)(𝜁 ) on the vacuum||EPR 𝜁⟩ = 𝑆(2)(𝜁 ) |0⟩ ⊗ |0⟩ (1.97)

with 𝑆(2)(𝜁 ) = exp(𝜁 �̂�1�̂�2 − 𝜁 �̂�†1 �̂�†2) (1.98)
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where 𝜁 is a real parameter, andwe use the notation ||EPR 𝜁⟩ as it is also often called an Einstein-
Podolsky-Rosen (EPR) state or EPR pair to refer to the historical debate between the named
physicists [Einstein 35]. In particular, the EPR state is a maximally entangled state, and we
refer to [Nielsen 00] for more details on its entanglement properties.

The EPR state on the Fock state basis is given by [Leonhardt 95]||EPR 𝜁⟩ = 1cosh(𝜁 ) ∞∑𝑛=0 tanh𝑛(𝜁 ) |𝑛⟩ ⊗ |𝑛⟩ (1.99)

One can derive the action of the two-mode squeezing operator 𝑆(2)(𝜁 ) on the quadrature
operators [Ferraro 05] 𝑆(2)(𝜁 )† �̂�1 𝑆(2)(𝜁 ) = �̂�1 cosh(𝜁 ) − �̂�2 sinh(𝜁 ) (1.100)𝑆(2)(𝜁 )† �̂�1 𝑆(2)(𝜁 ) = �̂�1 cosh(𝜁 ) − �̂�2 sinh(𝜁 ) (1.101)

and similarly for �̂�2 and �̂�2 by symmetry of the index roles. One can use the formulas given
in appendix A.1 to derive these equations. From equations (1.100) and (1.101), we deduce the
corresponding symplectic matrix 𝐒(2)(𝜁 )

𝐒(2)(𝜁 ) = (𝐂 𝟎𝟎 𝐂) with 𝐂 = ( cosh(𝜁 ) − sinh(𝜁 )− sinh(𝜁 ) cosh(𝜁 ) ) (1.102)

Using equation (1.87), we deduce the covariancematrix𝐕EPR 𝜁 by the symplectic transformation𝐒(2)(𝜁 ) on the vacuum covariance matrix 𝐕0 = 𝜎2012𝑁𝐕EPR 𝜁 = 𝜎20(𝐂2 𝟎𝟎 𝐂2) with 𝐂2 = ( cosh(2𝜁 ) − sinh(2𝜁 )− sinh(2𝜁 ) cosh(2𝜁 ) ) (1.103)

From either equation (1.85) or equation (1.52), we deduce theWigner function of the EPR state𝑊|EPR 𝜁 ⟩⟨EPR 𝜁 |(𝑞1, 𝑞2, 𝑝1, 𝑝2) = 1(2𝜋𝜎20)2 exp[− cosh(2𝜁 )2𝜎20 (𝑞21 + 𝑞22 + 𝑝21 + 𝑝22 + 2 tanh(2𝜁 )(𝑞1𝑞2 + 𝑝1𝑝2))]
(1.104)

where the quadrature correlations of the EPR state appear in the quadrature cross terms, which
correspond to off-diagonal terms in the covariance matrix 𝐕EPR 𝜁 . As mentioned when intro-
ducing the density matrix in subsection 1.2.2, the entanglement of a two-mode system implies
that the partial trace over one mode yields a mixed state. We can check it with this example
by tracing the EPR Wigner function 𝑊|EPR 𝜁 ⟩⟨EPR 𝜁 | over mode 2 for instance (tracing over mode
1 yields the same Wigner function by symmetry)𝑊�̂�redEPR

(𝑞1, 𝑝1) = 12𝜋𝜎20 cosh(2𝜁 ) exp[− 12𝜎20 cosh(2𝜁 )(𝑞21 + 𝑝21)] (1.105)

with �̂�redEPR denoting the resulting state on the reduced 1-mode space. One can compute the
purity of this Gaussian state using equation (1.53). It yields 𝜇redEPR = 1/ cosh(2𝜁 ), which is
always smaller than one for 𝜁 ≠ 0. The Wigner function 𝑊�̂�redEPR

in (1.105) represents then a
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mixed state that is called thermal state. This comes in pair with quadrature variances both
larger than the vacuum variance⟨Δ2�̂�⟩�̂�redEPR

= ⟨Δ2�̂�⟩�̂�redEPR
= cosh(2𝜁 )𝜎20 > 𝜎20 (1.106)

A deeply insightful property of the EPR state is that upon a well chosen change of mode
basis, this state becomes a factorized state and as such “looses” all its entanglement properties.
This stems from the following identity [Ferraro 05]�̂� even†

BS 𝑆(2)(𝜁 ) �̂� even
BS = 𝑆(𝜁 ) ⊗ 𝑆(−𝜁 ) (1.107)

with �̂� even
BS = exp(𝜋4 (�̂�†1 �̂�2 − �̂�1�̂�†2 )) is a two-mode change basis that can be implemented with

an even beamsplitter. The action of �̂� even
BS on the annihilation operators writes�̂�1 ↦ (�̂�1 + �̂�2)/√2 (1.108)�̂�2 ↦ (−�̂�1 + �̂�2)/√2

Applying equation (1.107) on the vacuum yields the state(𝑆(𝜁 ) |0⟩) ⊗ (𝑆(−𝜁 ) |0⟩) (1.109)

which describes two separate single-mode squeezed vacuum states with squeezing in orthogo-
nal quadratures. This reversible transformation in equation (1.107) is illustrated by figure1 1.5.

This two-mode example illustrates the mode basis dependence of the separability, which
is in general the ability to write a state as a statistical ensemble of factorized states [Peres 96].
It actually leads to the question of intrinsic separability of a given multimode state, i.e. does a
mode basis in which the state is separable exist? For zero-mean pure Gaussian states, equa-
tion (1.96) shows that there always exists a mode basis in which the state is a multimode
squeezed state. This means that any zero-mean pure Gaussian state is intrinsically separable.
This result extends to any Gaussian states, mixed and displaced ones included, and we refer
to [Walschaers 17a, Fabre 20] for a complete demonstration, essentially stemming from the
Bloch-Messiah and Williamson decompositions introduced in subsection 1.3.5.

1.4 Non-Gaussian states
A non-Gaussian state is by definition a state described by a non-Gaussian Wigner function, or
equivalently a non-GaussianQ function2. The most straightforward example of non-Gaussian
states are the Fock states, which we introduce in the first subsection 1.4.1. As one can expect
from such a negative definition, it is hard to characterize non-Gaussian states. While numerous
works have been carried out to give a structure to the set of non-Gaussian states, there’s still
much left to uncover.

1As in subsection 1.3.3, we represent the quantum fluctuations with the quadrature variances as each implied
state has a null mean. Again, one can understand it by simply replacing the quadrature axes by their squares.

2As shown in section 1.3, a state is Gaussian if and only if its Q function is Gaussian.
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Fig. 1.5 Scheme of the change of mode basis transformation linking an EPR state||EPR 𝜁⟩ to two single-mode squeezed vacuum states (𝑆(𝜁 ) |0⟩) ⊗ (𝑆(−𝜁 ) |0⟩), with
squeezing parameter 𝜁 . On the left of the beamsplitter (BS), the EPR reductions on
mode 1 and 2 are represented in their respective phase space. They are thermal states,
see themain text. On the right of the BS, the two single-mode squeezed vacuum states
are represented with alternate squeezed quadrature. For reference, a dashed circle
of diameter the vacuum quadrature variance 𝜎20 is represented in each phase space.
The phase space representations are to scale, with 𝜁 = ln(2)/2, 𝑠dB ≃ 3 dB.
The negative formulation of the non-Gaussian state definition tends to naturally lead us

to characterize these states by quantifying how much they are not Gaussian. This approach
consists in using specific properties that only Gaussian states satisfy to assess how much a
non-Gaussian state differ from Gaussian ones, see [Genoni 07, Genoni 08, Genoni 10].

Another approach is to look for features which are specific to non-Gaussian states. For
instance, the presence of negative values in theWigner function (orWigner negativity in short)
of a quantum state is of particular relevance for quantum information, as we comment in the
subsection 1.4.2. More recently, numerous efforts to classify the set of non-Gaussian states
have been carried out, and we will focus on the stellar hierarchy, presenting some results of
our paper [Chabaud 21d] in particular in subsection 1.4.3. In the last subsection 1.4.4, we will
describe in some details the non-Gaussian states we aim at producing in the laboratory, namely
photon subtracted and added squeezed vacuum states1.

We will not cover the whole topic of non-Gaussianity, and we refer to “Non-Gaussian
States and Where to Find Them” [Walschaers 21] for an overview of current research on non-

1We don’t generate photon added squeezed vacuum states in the experiment, while we present some theo-
retical investigation on such practical addition in chapter 3.
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Gaussian states. In particular, we recommend this tutorial to readers interested in quantum
correlations in non-Gaussian states, which we do not cover here.

1.4.1 Fock states

In this subsection, we describe the first non-Gaussian states that comes to mind, namely the
Fock states. As seen before in subsection 1.2.1, Fock states are of particular theoretical interest
as they provide a basis for the state Hilbert space. In practice, they are produced using non-
linear optics. The simplest setup to produce them is using spontaneous parametric down-
conversion to generate probabilistically pairs of single photons [Hong 86]. Heralding on the
detection of one photon of the pair allows one to post-select on photon pair event, and recover
pure single photons.

In the single-mode scenario, a Fock state |𝑛⟩ is defined as the eigenstate of the number
operator �̂� with photon number 𝑛 ∈ N as�̂� |𝑛⟩ = 𝑛 |𝑛⟩ (1.110)

In particular, the vacuum is a Fock state with photon number 𝑛 = 0.
A Fock state |𝑛⟩ can be explicitely obtained from the vacuum |0⟩ by applying multiple times

the creation operator �̂�† on the vacuum |0⟩ as
|𝑛⟩ = (�̂�†)𝑛√𝑛! |0⟩ (1.111)

As mentioned in subsection 1.2.1, the set of Fock states {|𝑛⟩} forms a complete orthonormal
basis on any single-mode state Hilbert space, which writes⟨𝑛|𝑛′⟩ = 𝛿𝑛,𝑛′ (orthonormality) (1.112)∑𝑛 |𝑛⟩⟨𝑛| = 1̂ (completeness) (1.113)

where 𝛿𝑛,𝑛′ is the Kronecker symbol. We will refer to this basis as the Fock basis.
The Wigner function of a Fock state |𝑛⟩ is given by [Leonhardt 95]

𝑊|𝑛⟩⟨𝑛|(𝑞, 𝑝) = (−1)𝑛2𝜋𝜎20 𝐿𝑛(𝑞2 + 𝑝2𝜎20 )e− 12𝜎20 (𝑞+𝑝)2 (1.114)

where 𝐿𝑛(𝑥) = 𝑛∑𝑘=0 (𝑛𝑘)(−1)𝑘𝑘! 𝑥𝑘 (1.115)

with 𝐿𝑛 the 𝑛-th Laguerre polynomial and 𝑥 an arbitrary variable.
TheQ function of a Fock state |𝑛⟩ is straightforwardly derived from both the definition (1.45)

and the decomposition of coherent states on the Fock basis given in equation (1.61)

Q|𝑛⟩⟨𝑛|(𝛼) = 1𝜋𝑛! |𝛼|2𝑛e−|𝛼|2 (1.116)
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or equivalently with the correspondence (1.47)

Q|𝑛⟩⟨𝑛|(𝑞, 𝑝) = 14𝜋𝜎20𝑛!(𝑞2 + 𝑝2)𝑛 e− 14𝜎20 (𝑞2+𝑝2) (1.117)

Both the Wigner function (1.114) and the Q function (1.117) of Fock states |1⟩ and |2⟩ are
pictured in figure 1.6. We see that indeed, Wigner and Q functions of Fock states are not
Gaussian functions, which qualifies Fock states as non-Gaussian states (for 𝑛 > 0). Further-
more, their Wigner function features negative values and their Q function vanishes at zero,
two properties we elaborate on the next two subsections.

Fig. 1.6 The Wigner function (left) and Q function (right) of the Fock states |1⟩ (top
row) and |2⟩ (bottom row).

As remarkable on the plots and equations (1.114) and (1.117), the Wigner and Q functions
of any Fock state are invariant under a phase-space rotation. This property stems from their
completely defined number of photons, resulting in a completely undefined phase1.

1.4.2 Wigner negativity

Quantumadvantage. It has been known for some time now that entirely Gaussian systems,
i.e. for which initial states, operations and measurements are Gaussian, are easy to simulate
with classical computers [Bartlett 02]. An interesting question, for both academic research

1The fundamental reason of this relation between phase and photon number is the fact that the phase-space
operator �̂�(𝜃) = e−i𝜃�̂� is generated from the number operator �̂�.
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and private research, is then to know what are the conditions for a non-Gaussian system to be
hard to simulate with classical computers, or in other words, to reach the so-called quantum
advantage.

As advertised in the manuscript introduction, quantum advantage could lead to building
quantum simulators or quantum computers with expected large impact on both the industrial
and research worlds, with numerous applications.

As it turns out, reaching quantum advantage requires more than merely non-Gaussianity.
It has been shown that Wigner negativity, i.e. the presence of negative values in a state, an
operation or ameasurement, is a necessary requirement for implementing any type of protocol
that cannot be efficiently simulated by a classical computer [Mari 12, Veitch 13, Rahimi-Keshari 16].
In other words, Wigner negativity is necessary to reach quantum advantage. In particular, this
makes the search for Wigner negative states very attractive.

However, it is worth noting that Wigner negativity is not a sufficient condition. There
actually exist many quantum systems involving Wigner negativity that can be efficiently sim-
ulated [García-Álvarez 20].

An interesting approach is then to look for a system that is known to lead to a quantum ad-
vantage. A fundamental example in recent research is Gaussian Boson sampling [Hamilton 17],
where squeezed vacuum states are sent to amultiport interferometer and aremeasured by pho-
ton number resolving detectors at the output. Note that in such systems, the Wigner negativ-
ity manifests in the photon counting measurement. Despite ongoing debate in the community
about the practicality of this specific circuit, Gaussian Boson sampling can be used to produce
Wigner negative states when one output of the interferometer is not measured. This is actually
the key Wigner negativity resource in a recent blueprint for photonic quantum computation
presented in [Bourassa 21] and further improved in [Tzitrin 21].

Witnessing Wigner negativity Up to now, we presented the Fock states as examples of
pure non-Gaussian states (for 𝑛 > 0). As we have seen, they feature Wigner negativity. Hud-
son’s theorem actually generalizes this result for pure states: a pure state has a non-negative
Wigner function if and only if the state is Gaussian [Hudson 74]. In other words, all non-
Gaussian pure states exhibit Wigner negativity. While this result was shown for single-mode
states in [Hudson 74], it was generalized to multimode states in [Soto 83].

However, for non-pure states, there exist no such theorem, since there are many mixed
non-Gaussian states which are described by a positive Wigner function. Let us take for exam-
ple the mixed state (1 − 𝛾) |0⟩⟨0| + 𝛾 |1⟩⟨1| (1.118)

It is a non-Gaussian state for any 𝛾 > 0. However its Wigner function is negative only for𝛾 > 1/2, as one can easily show by adding the Wigner function of both the vacuum and the
Fock state |1⟩.

This example, besides shedding light on the complexity of identifying Wigner negative
states, also brings forth another idea: the construction of witnesses for Wigner negativity. For
this small class of non-Gaussian states parametrized by 𝛾 ∈ ]0, 1], the state in equation (1.118)
is Wigner negative if and only if its fidelity to Fock state |1⟩ is over 0.5. Let us show that
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we can derive a more general witness for Wigner negativity using the fidelity of any (mixed)
experimental state �̂� to the Fock state |1⟩ or to a sum of odd Fock states.

Let use reproduce here the alternative expression of the Wigner function (1.36)𝑊�̂�(𝛼) = 2𝜋 Tr [�̂�(𝛼)Π̂P�̂�†(𝛼)�̂�] (1.119)

where Π̂P = ∑𝑘≥0 (−1)𝑘 |𝑘⟩⟨𝑘| is the parity operator.
The parity operator may be re-written asΠ̂P = 1̂ − 2∑𝑘≥0 |2𝑘 + 1⟩⟨2𝑘 + 1| (1.120)

so that we can obtain the following inequality from equation (1.119) by truncating the series
of odd term in equation (1.120) to an arbitrary integer 𝑛 > 0

𝑊�̂�(𝛼) ≤ 2𝜋 [1 − 2 𝐿−1∑𝑘=0 ⟨2𝑘 + 1|�̂�†(𝛼)�̂��̂�(𝛼)|2𝑘 + 1⟩] (1.121)

where we used the positive semi-definite property of �̂�.
Let us then define the witnesses of Wigner negativity 𝜔�̂�(𝛼, 𝐿) as

𝜔�̂�(𝛼, 𝐿) = 𝐿−1∑𝑘=0 ⟨2𝑘 + 1|�̂�†(𝛼)�̂��̂�(𝛼)|2𝑘 + 1⟩ (1.122)

From equation (1.121), we deduce the following witness property of the quantities 𝜔�̂�(𝛼, 𝐿)𝜔�̂�(𝛼, 𝐿) > 0.5 ⟹ 𝑊�̂�(𝛼) < 0 (1.123)

holding true for any 𝐿 > 0 arbitrarily chosen. Textually, if 𝜔�̂�(𝛼, 𝐿) > 0.5 for any 𝐿 > 0 then
the Wigner function of the state �̂� is negative at 𝛼.

At any point 𝛼 ∈ C in the phase space, the Wigner negativity at this point can be probed
using the witnesses {𝜔�̂�(𝛼, 𝐿)}. Also, inequality (1.121) becomes an identity at large 𝐿. We
then deduce that for any (mixed) state described by a negative Wigner function, at least one of
the quantities 𝜔�̂�(𝛼, 𝐿) witnesses its negativity. In this sense, these witnesses go beyond other
Wigner negativity witnesses introduced in [Mari 11, Fiurášek 13].

These witnesses have been improved recently in [Chabaud 21a] to offer tighter bounds,
using semi-definite algorithms.

Let us now consider the witness at 𝐿 = 1 and 𝛼 = 0. This witness 𝜔�̂�(0, 1) is directly equal
to the fidelity to the Fock state |1⟩, i.e. ⟨1|�̂�|1⟩. Equation (1.123) then reads: if the fidelity of
any state �̂� to the Fock state |1⟩ is greater than 0.5, then the Wigner function of �̂� is negative
at the origin of the phase space. For instance, we find back that the states (1− 𝛾) |0⟩⟨0|+ 𝛾 |1⟩⟨1|
are Wigner negative for 𝛾 > 0.5.

Let us generalize this idea in the context of certification, which will be further introduced
in chapter 4. Consider we want to certify a specific property of the experimental state �̂�, and
we can estimate a quantity which witnesses this property when above a certain value. We then
refer to this value as witness threshold: certifying the witness is above its witness threshold
certifies the property of the state �̂�.
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Wigner negativity volume As a side note, there exists several measure of Wigner nega-
tivity. Using the lowest value of the Wigner function as a measure for Winger negativity is
inadequate to classify non-Gaussian states, as it yields counter-intuitive results. For instance,
the Fock state |1⟩ would be more Wigner negative than Fock state |2⟩, as can be seen on the
plots 1.6. A more appropriate measure is the negativity volume introduced in [Kenfack 04],
defined as

Nvol(�̂�) = ∫ d𝑥⇀ ||𝑊�̂�(𝑥⇀)|| − 1 (1.124)

Form the normalization of the Wigner function, the negativity volume Nvol(�̂�) is negative if
and only if the Wigner function is negative. From Liouville’s theorem, the negativity volume
is unchanged under any Gaussian unitary operation [Walschaers 21].

While the negativity volume is a theoretical interesting tool for classifying states, it has
proven hard to witness or measure experimentally. In the next section, we describe more
practical non-Gaussian hierarchies. In particular, we introduce the stellar rank which, with
the Wigner negativity, are the key features which we aim at certifying in this work.

1.4.3 Stellar rank and quantum non-Gaussianity
In this subsection, we focus on classifying the non-Gaussian states, which leads us to describ-
ing the stellar hierarchy introduced in [Chabaud 20c]. In particular, we present some results of
our paper [Chabaud 21d] in the subparts 1.4.3.5 and 1.4.3.6. For clarity purposes, most demon-
strations are not reported here.

Asmentioned before, when considering non-pure states, Hudson’s theorem does not apply,
leaving us with a large and wild set of non-Gaussian states. In addition to mixed non-Gaussian
states of the form of equation (1.118), another striking example is simply the sum of two Gaus-
sian states, which results in a non-Gaussian one. For instance the sum of two coherent states
of opposite amplitude 𝛼 ≠ 0 12(|𝛼⟩⟨𝛼| + |−𝛼⟩⟨−𝛼|) (1.125)

The Wigner function of the state (1.125) is simply the sum of the Wigner function of each
coherent states |𝛼⟩ and |−𝛼⟩, which is positive but not a Gaussian function.

Following [Walschaers 21], we generalize the example of equation (1.125) by considering
any convex combinations of Gaussian states, which form the set

G = {�̂� such that �̂� = ∑𝑖 𝑝𝑖 |𝜓G,𝑖⟩⟨𝜓G,𝑖|} (1.126)

where |𝜓G,𝑖⟩⟨𝜓G,𝑖| are pure Gaussian states labeled by 𝑖 and 𝑝𝑖 is a probability distribution on
these labels 𝑖.

Since any state in the set G has a positive Wigner function, these states are of limited
interest for quantum information. On the other hand, the states that lie outside the set G
are named quantum non-Gaussian states [Genoni 13]. However, there still exist quantum non-
Gaussian states which have a positive Wigner function, as we show below.
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Quantum non-Gaussianity has been studied using photon counting statistics [Filip 11,
Straka 14, Straka 18]. This research resulted in a complete hierarchy of “genuine 𝑛-photon
quantum non-Gaussian” states [Lachman 19].

Let us present a generalization and formalization of these ideas introducing the stellar
rank [Chabaud 20c]. Note that the resulting stellar hierarchy matches the genuine 𝑛-photon
hierarchy of [Lachman 19].

Our goal in this subsection is two-fold. We want to introduce the notion of stellar rank,
and shed light on its properties. We also want to lay out the framework for the certification
of this property. As we will see, the witnesses of stellar rank rely on well chosen target pure
states, which we will usually denote |𝜓⟩. Hence the relevance of spending time on the stellar
rank of pure states.

In the following, we first define the stellar rank for single-mode pure states and show that
the induced stellar hierarchy is robust. Then we define the stellar rank for single-mode non-
pure states, and show that the stellar robustness can be used as a tool for certification. Lastly,
we discuss the generalization of the stellar hierarchy tomultimode states, and the link between
stellar rank and quantum advantage.

1.4.3.1 Stellar hierarchy of single-mode pure states

Asmentioned before, a pure state is non-Gaussian if and only if itsWigner function is negative,
which is equivalent to its Q function having zeros.

Following this lead, it was shown that the zeros of theQ function form a discrete set. More-
over, the Q function of a single-mode pure state is completely determined by the distribution
of its zeros in the phase space [Chabaud 20c] up to Gaussian operations.

This motivates the definition of the stellar rank 𝑟⋆(|𝜓⟩) of a pure state |𝜓⟩ as the number
of zeros of its Q function counted with multiplicity, divided by two1. In particular, the stellar
rank is invariant under Gaussian operations.

Since any pure state is non-Gaussian if and only if its Q function has zeros, the pure Gaus-
sian states are the pure states with stellar rank 0. For instance, the coherent states have a null
stellar rank as can be checked with the expression (1.65) of their Q function.

Let us consider the Fock states described in subsection 1.4.1. From equation (1.116), the Q
function of a Fock state |𝑛⟩ has 2𝑛 zeros, leading to a stellar rank𝑟⋆(|𝑛⟩) = 𝑛 (1.127)

Note that the stellar rank may be infinite, as states may be described by a Q function
with an (discrete) infinite number of zeros. Notable examples are the Schrödinger cat states
[Yurke 86], and the Gottesman-Kitaev-Preskill (GKP) states [Gottesman 01]. While these non-
Gaussian states carry much attention in modern research, they are not the focus of this PhD
work.

More generally, as mentioned before the Q function of a single-mode pure state is com-
pletely determined by the distribution of its zeros in the phase space up to a Gaussian oper-

1We use the same notation as introduced in [Chabaud 20c] with the star ⋅⋆, which is not the same notation
as for the complex conjugation which writes ⋅∗.
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ation. For finite stellar rank pure states |𝜓⟩, this stems formally from the following unique1
decomposition [Chabaud 20c]

|𝜓⟩ = 1
 [𝑟⋆(|𝜓⟩)∏𝑖=1 �̂�(𝛼𝑖) �̂�† �̂�(𝛼𝑖)†] ||𝐺𝜓⟩ (1.128)

where {𝛼𝑖} are the zeros of the Q function counted with half multiplicity, {�̂�(𝛼𝑖)} are the corre-
sponding displacement operators, |𝐺𝜓⟩ is a Gaussian state, and is a normalization constant.

In particular, the decomposition (1.128) shows that the stellar rank can be interpreted as
the minimal number of photon additions (i.e. application of the creation operator �̂�†) needed
to engineer the state from the vacuum, together with Gaussian operations. In [Chabaud 21d],
we further show that a single-photon subtraction may only increase the stellar rank by at
most 1. Putting these results together, we can assert that any pure state of finite stellar rank 𝑛
cannot be engineered with less than 𝑛 single-photon additions and/or subtractions, together
with Gaussian operations.

Let us now classify the single-mode pure states using their stellar rank. We define the sets𝑅𝑛 of states with stellar rank equal to 𝑛, which writes𝑅𝑛 = {|𝜓⟩ ∈ H1 such that 𝑟⋆(|𝜓⟩) = 𝑛} (1.129)

where H1 is a single-mode state Hilbert space, and 𝑛 may be infinite.
The sets {𝑅𝑛} form then the stellar hierarchy. Note that the sets 𝑅𝑛 form a well defined

partition over the whole considered single-mode state Hilbert space. Figure 1.7 illustrates
the stellar hierarchy, showing at least one representative of each set 𝑅𝑛, using the provided
examples. The interpretation of the stellar rank as the minimal number of photon additions is
also pictured.

1.4.3.2 Stellar robustness

A key property of the stellar hierarchy is the stellar robustness. In simple words, any pure
states of finite stellar rank is robust in the sense that it is only surrounded by states of equal
or higher stellar rank.

To formalize this idea, [Chabaud 20c] defined the stellar robustness 𝑅⋆(|𝜓⟩) of a pure state|𝜓⟩ as the trace distance between this state and the nearest possible pure state of lower stellar
rank as 𝑅⋆(|𝜓⟩) = inf𝑟⋆(|𝜙⟩)<𝑟⋆(|𝜓⟩)𝐷(|𝜙⟩ , |𝜓⟩) (1.130)

with 𝐷(|𝜙⟩ , |𝜓⟩) = √1 − |⟨𝜙|𝜓⟩|2
where 𝐷(|𝜙⟩ , |𝜓⟩) is the trace distance between the states |𝜙⟩ and |𝜓⟩2.

1Up to reordering the factors in the product of over the zeros of the Q function.
2The name “trace distance” stems from the identity |⟨𝜙|𝜓⟩|2 = Tr[|𝜙⟩⟨𝜙| |𝜓⟩⟨𝜓|], and the fact that it defines a

proper distance over the state Hilbert space.
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Pure

Pure

Pure states

Fig. 1.7 Stellar hierarchy. The right column gives examples of pure states of each
stellar rank, which corresponds to the minimal number of photon additions �̂�† nec-
essary to obtain the state from the vacuum. All states of finite stellar rank are robust,
i.e., they only have states of equal or higher stellar rank in their close vicinity.

Formally, any state |𝜓⟩ of finite stellar rank is stellar robust, which writes 𝑅⋆(|𝜓⟩) > 0
[Chabaud 20c]. This means that the trace distance between |𝜓⟩ and any other state of lower
rank is non-zero. In other words, there exists a ball of non-zero radius around |𝜓⟩ in the state
Hilbert space which only contains states of equal or higher stellar rank.

Note that infinite stellar rank states are not stellar robust, i.e. their stellar robustness is
zero. More precisely, they are not isolated from lower stellar rank states. This means that any
state of infinite stellar rank can be approximated arbitrarily well by finite rank states. However
the required finite stellar rank has to go arbitrarily high as you get close. The finiteness of the
robustness of some pure states is given in figure 1.7.

1.4.3.3 Stellar hierarchy of single-mode non-pure states

We can naturally extend the definition of the stellar rank to a general mixed state �̂� via a
convex roof construction as 𝑟⋆(�̂�) = inf𝑝𝑖,|𝜓𝑖⟩ s.t.�̂�=∑𝑖 𝑝𝑖 |𝜓𝑖⟩⟨𝜓𝑖 | sup𝑖 𝑟⋆(|𝜓𝑖⟩) (1.131)

In other words, we minimize over all possible decompositions of �̂� in pure states, where we
take the highest stellar rank in each decomposition.

Previously, we saw that the pure Gaussian states are the pure states of stellar rank zero.
From equation (1.131), we deduce then that a mixed state has a zero stellar rank if and only if
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it can be expressed as a mixture of pure Gaussian states. This writes formally𝑟⋆(�̂�) = 0 ⟺ �̂� ∈ G (1.132)

where G is the set of convex combinations of Gaussian states defined in equation (1.126).
Equivalently, any state �̂� of non-zero stellar rank is a quantum non-Gaussian state.

We understand then that the stellar hierarchy provides a classification of the set of quantum
non-Gaussian states. The definition (1.131) seems formal, in the way that it seems unclear how
to rank experimental (mixed) states in practice. It turns out that it allows for certifying its their
stellar rank, using the stellar robustness of pure states.

1.4.3.4 Witnessing the stellar rank using the stellar robustness

As we saw in 1.4.3.2, the pure states of finite stellar rank are stellar robust, in the sense that if
another pure state is close enough, it shares the same stellar rank or higher. While not a priori
obvious, this is also true for another mixed state.

The stellar robustness 𝑅⋆(|𝜓⟩) of a pure state |𝜓⟩, defined in equation (1.130), can be shown
equal to the infinimum of

√1 − Tr[�̂� |𝜓⟩⟨𝜓|] over (mixed) states �̂� of stellar rank lower than𝑟⋆(|𝜓⟩), i.e. [Chabaud 20c] 𝑅⋆(|𝜓⟩) = inf𝑟⋆(�̂�)<𝑟⋆(|𝜓⟩)√1 − Tr[�̂� |𝜓⟩⟨𝜓|] (1.133)

where �̂� is a pure or mixed quantum state. This extension essentially stems from the convex
roof construction of the stellar rank 𝑟⋆(�̂�) of the state �̂� given by equation (1.131).

Let us re-write this result (1.133) by identifying the quantity Tr[�̂� |𝜓⟩⟨𝜓|] with the fidelity
of the state �̂� to the pure state |𝜓⟩. In general, for two arbitrary states �̂�1 and �̂�2 the fidelity𝐹(�̂�1, �̂�2) is defined as

𝐹(�̂�1, �̂�2) = (Tr[√√�̂�2�̂�1√�̂�2])2
(1.134)

where, for each semi-definite operator �̂�𝑖, √�̂�𝑖 is its unique positive square root which verifies√�̂�𝑖†√�̂�𝑖 = �̂�𝑖.
In our case, we consider the fidelity 𝐹(�̂�, |𝜓⟩) of the experimental (mixed) state �̂� to the

pure state |𝜓⟩, referred to as target state. In this case, �̂�2 = |𝜓⟩⟨𝜓| is pure in equation (1.134),
which implies �̂�22 = �̂�2, i.e. √�̂�2 = �̂�2. We then obtain𝐹(�̂�, |𝜓⟩) = (Tr[√|𝜓⟩⟨𝜓| �̂� |𝜓⟩⟨𝜓|])2

= ⟨𝜓|�̂�|𝜓⟩ (Tr[√|𝜓⟩⟨𝜓|])2
= ⟨𝜓|�̂�|𝜓⟩ (1.135)

where we used the linearity of the trace in the second line, and the purity of |𝜓⟩⟨𝜓| in the last
one. We deduce the simpler expression of the fidelity for a pure target state𝐹(�̂�, |𝜓⟩) = Tr[�̂� |𝜓⟩⟨𝜓|] (1.136)
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Using equation (1.136), we can re-write equation (1.133) as𝑅⋆(|𝜓⟩) = inf𝑟⋆(�̂�)<𝑟⋆(|𝜓⟩)√1 − 𝐹(�̂�, |𝜓⟩) (1.137)

The fidelity is a common tool to measure the closeness between two states. Similarly as
in 1.4.3.2, we can interpret equation (1.137) as an infinimum of a distance over (mixed) states�̂� of stellar rank lower than 𝑟⋆(|𝜓⟩), with |𝜓⟩ pure. We deduce that upon choosing a pure state|𝜓⟩ of finite stellar rank, if we can show that the state �̂� is close enough to |𝜓⟩ in fidelity, then
we show that the state �̂� has stellar rank 𝑟⋆(|𝜓⟩) or higher.

Let us interpret this result in the spirit of witnessing stellar rank. We re-write equa-
tion (1.137) as sup𝑟⋆(�̂�)<𝑟⋆(|𝜓⟩) 𝐹(�̂�, |𝜓⟩) = 1 − [𝑅⋆(|𝜓⟩)]2 (1.138)

In simple words, equation (1.138) means that the maximum fidelity 𝐹(�̂�, |𝜓⟩) achievable with
the states �̂� of stellar rank lower than 𝑟⋆(|𝜓⟩) is equal to 1 − [𝑅⋆(|𝜓⟩)]2.

We can interpret equation (1.138) as: given a pure target state |𝜓⟩, if the experimental
(mixed) state �̂� satisfies 𝐹(�̂�, |𝜓⟩) > 1 − [𝑅⋆(|𝜓⟩)]2 (1.139)

then it has a stellar rank greater or equal to the stellar rank of |𝜓⟩.
We deduce that the fidelity 𝐹(�̂�, |𝜓⟩) to a pure target state |𝜓⟩ is a witness for the stellar

rank 𝑟⋆(|𝜓⟩), with witness threshold equal to 1 − [𝑅⋆(|𝜓⟩)]21. In other words, certifying an
experimental state �̂� has a fidelity greater than 1−[𝑅⋆(|𝜓⟩)]2 to the pure target state |𝜓⟩ certifies
in turn that the state �̂� has a stellar rank greater or equal to 𝑟⋆(|𝜓⟩).

Note that for pure states of infinite stellar rank, the corresponding witness threshold is 1,
making infinite stellar rank certification impossible with such witnesses.

One question left unanswered if how can we obtain the value of these witness thresholds,
i.e. the value of the stellar robustness 𝑅⋆(|𝜓⟩). In our paper [Chabaud 21d], this question is
answered and the stellar rank witnesses extended, as we present in the following.

1.4.3.5 Extension to 𝑘-robustness and robustness computation

We generalize the notion of stellar robustness by defining the 𝑘-robustness 𝑅⋆𝑘(|𝜓⟩) of a pure
state |𝜓⟩ as 𝑅⋆𝑘(|𝜓⟩) = inf𝑟⋆(|𝜙⟩)<𝑘𝐷(|𝜙⟩ , |𝜓⟩) (1.140)

where the infimum is over all pure states of stellar rank lower than 𝑘, and 𝑘 may be infinite.
Note that from its definition, the 𝑘-robustness is invariant under any Gaussian operation on
the target state |𝜓⟩.

1For reference, since the witness threshold 1 − [𝑅⋆(|𝜓⟩)]2 is equal to the supremum of equation (1.138), it is
referred to in [Chabaud 21d] as “achievable fidelity”.
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The 𝑘-robustness 𝑅⋆𝑘(|𝜓⟩) quantifies howmuch one has to deviate in trace distance from |𝜓⟩
to find another quantum state, which has a stellar rank between 0 and 𝑘 − 1. For 𝑘 = 𝑟⋆(|𝜓⟩),
we recover the stellar robustness defined in equation (1.130).

Consistently, we also define the robustness profile of a pure state |𝜓⟩ as the set of its 𝑘-
robustnesses, i.e. the set {𝑅⋆𝑘(|𝜓⟩)}.

Similarly as before, the 𝑘-robustness also writes𝑅⋆𝑘(|𝜓⟩) = inf𝑟⋆(�̂�)<𝑘√1 − Tr[�̂� |𝜓⟩⟨𝜓|] (1.141)

from which we obtain sup𝑟⋆(�̂�)<𝑘 𝐹(�̂�, |𝜓⟩) = 1 − [𝑅⋆𝑘(|𝜓⟩)]2 (1.142)

We deduce that given a pure target state |𝜓⟩, if the experimental (mixed) state �̂� satisfies𝐹(�̂�, |𝜓⟩) > 1 − [𝑅⋆𝑘(|𝜓⟩)]2 (1.143)

where 𝑅⋆𝑘(|𝜓⟩) is the 𝑘-robustness of the state |𝜓⟩, then it has a stellar rank greater or equal
to 𝑘.

In other words, the fidelity 𝐹(�̂�, |𝜓⟩) to a pure target state |𝜓⟩ is a witness for the stellar
rank 𝑘, with witness threshold equal to 1−[𝑅⋆𝑘(|𝜓⟩)]2. We can then deduce a similar statement
as before: certifying that an experimental state �̂� has a fidelity greater than 1−[𝑅⋆𝑘(|𝜓⟩)]2 with
the pure target state |𝜓⟩ certifies in turn that the state �̂� has a stellar rank greater or equal to 𝑘.

An advantage of such extension is that the fidelity to a given target pure state |𝜓⟩ may
serve as a witness for any lower stellar ranks than its rank, i.e. all stellar ranks 0,… , 𝑟⋆(|𝜓⟩).
To benefit from this, we need to derive the value of the corresponding witness thresholds, i.e.
the robustness profile of |𝜓⟩: {𝑅⋆𝑘(|𝜓⟩)}.

In [Chabaud 21d], we show𝑅⋆𝑘(|𝜓⟩) = inf�̂� √1 − Tr[Π̂𝑘−1�̂� |𝜓⟩⟨𝜓| �̂�†] (1.144)

with Π̂𝑘 = 𝑘∑𝑛≥0 |𝑛⟩⟨𝑛|
where the supremum is over the Gaussian unitary operations �̂�, and Π̂𝑘 is the projector onto
the subspace spanned by the Fock states |0⟩ ,… , |𝑘⟩.

Briefly, the demonstration of equation (1.144) consists in noticing that the pure states |𝜙⟩
of stellar rank lower than 𝑘 may be decomposed in the form given by equation (1.128). These
states may be viewed as a Gaussian operation �̂� applied on a state |𝐶⟩ such that the decomposi-
tion of |𝐶⟩ over the Fock basis does not contain terms with higher photon number than 𝑘−1. In
other words, they are left unchanged under the action of the projector Π̂𝑘−1, i.e. |𝐶⟩ = Π̂𝑘−1 |𝐶⟩.
The fidelity of any pure state |𝜓⟩ to the state |𝜙⟩ is then bounded by Tr[Π̂𝑘−1�̂�† |𝜓⟩⟨𝜓| �̂�] us-
ing the Cauchy-Schwarz inequality. The proof is concluded using this result in the defini-
tion (1.140) of the 𝑘-robustness 𝑅⋆𝑘(|𝜓⟩). Details are given in appendix D of [Chabaud 21d].
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Since single-mode Gaussian operations can be decomposed as a squeezing and a displace-
ment operations1, the infinimum in equation (1.144) is equivalently run over only two complex
parameters. This allows for numerically computing the 𝑘-robustness 𝑅⋆𝑘(|𝜓⟩) upon minimizing
these two complex parameters.

In figure 1.8, we provide the witness thresholds 1− [𝑅⋆𝑘(|𝜓⟩)]2 along the axis of the fidelity
to the state |𝜓⟩, where |𝜓⟩ is the Fock states |1⟩ , |2⟩ , |3⟩ , and |4⟩. We can interpret these plots
using equation (1.143). For instance, if we show that an experimental state has a fidelity to the
target Fock state |2⟩ equal to 0.4, then it has a stellar rank greater or equal to 1. Still this fidelity
measurement is not enough to certify it has a stellar rank greater or equal to 2. It would as
soon as the fidelity is higher than 1 − [𝑅⋆2(|2⟩)]2 ≃ 0.557.
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<latexit sha1_base64="HYi+qGuWADJ/vOJt8E+CnN5z0G4=">AAAB8HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/ZA2lM120i7dbMLuRiixv8KLB0W8+nO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6mfqtR1Sax/LejBP0IzqQPOSMGis9PHldReVAYK9UdivuDGSZeDkpQ456r/TV7ccsjVAaJqjWHc9NjJ9RZTgTOCl2U40JZSM6wI6lkkao/Wx28IScWqVPwljZkobM1N8TGY20HkeB7YyoGepFbyr+53VSE175GZdJalCy+aIwFcTEZPo96XOFzIixJZQpbm8lbEgVZcZmVLQheIsvL5NmteKdV6p3F+XadR5HAY7hBM7Ag0uowS3UoQEMIniGV3hzlPPivDsf89YVJ585gj9wPn8AuAKQWg==</latexit>

|2i
<latexit sha1_base64="8/nFYxCVRIj2md53afG5rDJG5oA=">AAAB8HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/ZA2lM120i7dbMLuRiixv8KLB0W8+nO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6mfqtR1Sax/LejBP0IzqQPOSMGis9PFW7isqBwF6p7FbcGcgy8XJShhz1Xumr249ZGqE0TFCtO56bGD+jynAmcFLsphoTykZ0gB1LJY1Q+9ns4Ak5tUqfhLGyJQ2Zqb8nMhppPY4C2xlRM9SL3lT8z+ukJrzyMy6T1KBk80VhKoiJyfR70ucKmRFjSyhT3N5K2JAqyozNqGhD8BZfXibNasU7r1TvLsq16zyOAhzDCZyBB5dQg1uoQwMYRPAMr/DmKOfFeXc+5q0rTj5zBH/gfP4AuY2QWw==</latexit>

|3i
<latexit sha1_base64="aIEIpAL+fvL1YfyF8aP2U+C1VLQ=">AAAB8HicbVDLTgJBEOzFF+IL9ehlIzHxRHbBRI9ELx4xkYeBDZkdemHCzOxmZtaEIF/hxYPGePVzvPk3DrAHBSvppFLVne6uMOFMG8/7dnJr6xubW/ntws7u3v5B8fCoqeNUUWzQmMeqHRKNnElsGGY4thOFRIQcW+HoZua3HlFpFst7M04wEGQgWcQoMVZ6eKp2FZEDjr1iySt7c7irxM9ICTLUe8Wvbj+mqUBpKCdad3wvMcGEKMMox2mhm2pMCB2RAXYslUSgDibzg6fumVX6bhQrW9K4c/X3xIQIrccitJ2CmKFe9mbif14nNdFVMGEySQ1KulgUpdw1sTv73u0zhdTwsSWEKmZvdemQKEKNzahgQ/CXX14lzUrZr5Yrdxel2nUWRx5O4BTOwYdLqMEt1KEBFAQ8wyu8Ocp5cd6dj0VrzslmjuEPnM8fuxiQXA==</latexit>

|4i
<latexit sha1_base64="bC9RaRqlyc3R7s1+BMdPdo6qofI=">AAAB8HicbVDLTgJBEOzFF+IL9ehlIjHxRHaRRI9ELx4xkYeBDZkdGpgwO7uZmTUhK1/hxYPGePVzvPk3DrAHBSvppFLVne6uIBZcG9f9dnJr6xubW/ntws7u3v5B8fCoqaNEMWywSESqHVCNgktsGG4EtmOFNAwEtoLxzcxvPaLSPJL3ZhKjH9Kh5APOqLHSw1O1q6gcCuwVS27ZnYOsEi8jJchQ7xW/uv2IJSFKwwTVuuO5sfFTqgxnAqeFbqIxpmxMh9ixVNIQtZ/OD56SM6v0ySBStqQhc/X3REpDrSdhYDtDakZ62ZuJ/3mdxAyu/JTLODEo2WLRIBHERGT2PelzhcyIiSWUKW5vJWxEFWXGZlSwIXjLL6+SZqXsXZQrd9VS7TqLIw8ncArn4MEl1OAW6tAABiE8wyu8Ocp5cd6dj0VrzslmjuEPnM8fvKOQXQ==</latexit>

0+
<latexit sha1_base64="HE+nDdPB6k8kxwTT7Yuoyx4P0k0=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMgCGE3CnoMevEY0TwgWcPsZJIMmZ1dZnqFsOQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7glgKg6777eRWVtfWN/Kbha3tnd294v5Bw0SJZrzOIhnpVkANl0LxOgqUvBVrTsNA8mYwupn6zSeujYjUA45j7od0oERfMIpWuncfz7rFklt2ZyDLxMtICTLUusWvTi9iScgVMkmNaXtujH5KNQom+aTQSQyPKRvRAW9bqmjIjZ/OTp2QE6v0SD/SthSSmfp7IqWhMeMwsJ0hxaFZ9Kbif147wf6VnwoVJ8gVmy/qJ5JgRKZ/k57QnKEcW0KZFvZWwoZUU4Y2nYINwVt8eZk0KmXvvFy5uyhVr7M48nAEx3AKHlxCFW6hBnVgMIBneIU3RzovzrvzMW/NOdnMIfyB8/kDlKKNVQ==</latexit> 1+<latexit sha1_base64="Yez1j7a2XbYVvyTZLOnaRzsEZxY=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMgCGE3CnoMevEY0TwgWcPsZJIMmZ1dZnqFsOQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7glgKg6777eRWVtfWN/Kbha3tnd294v5Bw0SJZrzOIhnpVkANl0LxOgqUvBVrTsNA8mYwupn6zSeujYjUA45j7od0oERfMIpWuvcez7rFklt2ZyDLxMtICTLUusWvTi9iScgVMkmNaXtujH5KNQom+aTQSQyPKRvRAW9bqmjIjZ/OTp2QE6v0SD/SthSSmfp7IqWhMeMwsJ0hxaFZ9Kbif147wf6VnwoVJ8gVmy/qJ5JgRKZ/k57QnKEcW0KZFvZWwoZUU4Y2nYINwVt8eZk0KmXvvFy5uyhVr7M48nAEx3AKHlxCFW6hBnVgMIBneIU3RzovzrvzMW/NOdnMIfyB8/kDliiNVg==</latexit> 2+<latexit sha1_base64="GjhZdKKaYP6GweBx2EXuHqQffGg=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMgCGE3CnoMevEY0TwgWcPspJMMmZ1dZmaFsOQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7glhwbVz328mtrK6tb+Q3C1vbO7t7xf2Dho4SxbDOIhGpVkA1Ci6xbrgR2IoV0jAQ2AxGN1O/+YRK80g+mHGMfkgHkvc5o8ZK95XHs26x5JbdGcgy8TJSggy1bvGr04tYEqI0TFCt254bGz+lynAmcFLoJBpjykZ0gG1LJQ1R++ns1Ak5sUqP9CNlSxoyU39PpDTUehwGtjOkZqgXvan4n9dOTP/KT7mME4OSzRf1E0FMRKZ/kx5XyIwYW0KZ4vZWwoZUUWZsOgUbgrf48jJpVMreeblyd1GqXmdx5OEIjuEUPLiEKtxCDerAYADP8ApvjnBenHfnY96ac7KZQ/gD5/MHl66NVw==</latexit>

3+
<latexit sha1_base64="vbjB4CTT+ERgMMofQ75mJEdXIGo=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBAEIewmgh6DXjxGNA9I1jA76U2GzM4uM7NCCPkELx4U8eoXefNvnCR70MSChqKqm+6uIBFcG9f9dlZW19Y3NnNb+e2d3b39wsFhQ8epYlhnsYhVK6AaBZdYN9wIbCUKaRQIbAbDm6nffEKleSwfzChBP6J9yUPOqLHSfeXxvFsouiV3BrJMvIwUIUOtW/jq9GKWRigNE1Trtucmxh9TZTgTOMl3Uo0JZUPax7alkkao/fHs1Ak5tUqPhLGyJQ2Zqb8nxjTSehQFtjOiZqAXvan4n9dOTXjlj7lMUoOSzReFqSAmJtO/SY8rZEaMLKFMcXsrYQOqKDM2nbwNwVt8eZk0yiWvUirfXRSr11kcOTiGEzgDDy6hCrdQgzow6MMzvMKbI5wX5935mLeuONnMEfyB8/kDmTSNWA==</latexit> 4+<latexit sha1_base64="+acTS5+XhHSI/ZL2dSQsYHTGPv0=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBAEIezGgB6DXjxGNA9I1jA7mU2GzM4uM71CCPkELx4U8eoXefNvnCR70MSChqKqm+6uIJHCoOt+Oyura+sbm7mt/PbO7t5+4eCwYeJUM15nsYx1K6CGS6F4HQVK3ko0p1EgeTMY3kz95hPXRsTqAUcJ9yPaVyIUjKKV7iuP591C0S25M5Bl4mWkCBlq3cJXpxezNOIKmaTGtD03QX9MNQom+STfSQ1PKBvSPm9bqmjEjT+enTohp1bpkTDWthSSmfp7YkwjY0ZRYDsjigOz6E3F/7x2iuGVPxYqSZErNl8UppJgTKZ/k57QnKEcWUKZFvZWwgZUU4Y2nbwNwVt8eZk0yiXvolS+qxSr11kcOTiGEzgDDy6hCrdQgzow6MMzvMKbI50X5935mLeuONnMEfyB8/kDmrqNWQ==</latexit>

0+
<latexit sha1_base64="HE+nDdPB6k8kxwTT7Yuoyx4P0k0=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMgCGE3CnoMevEY0TwgWcPsZJIMmZ1dZnqFsOQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7glgKg6777eRWVtfWN/Kbha3tnd294v5Bw0SJZrzOIhnpVkANl0LxOgqUvBVrTsNA8mYwupn6zSeujYjUA45j7od0oERfMIpWuncfz7rFklt2ZyDLxMtICTLUusWvTi9iScgVMkmNaXtujH5KNQom+aTQSQyPKRvRAW9bqmjIjZ/OTp2QE6v0SD/SthSSmfp7IqWhMeMwsJ0hxaFZ9Kbif147wf6VnwoVJ8gVmy/qJ5JgRKZ/k57QnKEcW0KZFvZWwoZUU4Y2nYINwVt8eZk0KmXvvFy5uyhVr7M48nAEx3AKHlxCFW6hBnVgMIBneIU3RzovzrvzMW/NOdnMIfyB8/kDlKKNVQ==</latexit> 1+<latexit sha1_base64="Yez1j7a2XbYVvyTZLOnaRzsEZxY=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMgCGE3CnoMevEY0TwgWcPsZJIMmZ1dZnqFsOQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7glgKg6777eRWVtfWN/Kbha3tnd294v5Bw0SJZrzOIhnpVkANl0LxOgqUvBVrTsNA8mYwupn6zSeujYjUA45j7od0oERfMIpWuvcez7rFklt2ZyDLxMtICTLUusWvTi9iScgVMkmNaXtujH5KNQom+aTQSQyPKRvRAW9bqmjIjZ/OTp2QE6v0SD/SthSSmfp7IqWhMeMwsJ0hxaFZ9Kbif147wf6VnwoVJ8gVmy/qJ5JgRKZ/k57QnKEcW0KZFvZWwoZUU4Y2nYINwVt8eZk0KmXvvFy5uyhVr7M48nAEx3AKHlxCFW6hBnVgMIBneIU3RzovzrvzMW/NOdnMIfyB8/kDliiNVg==</latexit>

2+<latexit sha1_base64="GjhZdKKaYP6GweBx2EXuHqQffGg=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMgCGE3CnoMevEY0TwgWcPspJMMmZ1dZmaFsOQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7glhwbVz328mtrK6tb+Q3C1vbO7t7xf2Dho4SxbDOIhGpVkA1Ci6xbrgR2IoV0jAQ2AxGN1O/+YRK80g+mHGMfkgHkvc5o8ZK95XHs26x5JbdGcgy8TJSggy1bvGr04tYEqI0TFCt254bGz+lynAmcFLoJBpjykZ0gG1LJQ1R++ns1Ak5sUqP9CNlSxoyU39PpDTUehwGtjOkZqgXvan4n9dOTP/KT7mME4OSzRf1E0FMRKZ/kx5XyIwYW0KZ4vZWwoZUUWZsOgUbgrf48jJpVMreeblyd1GqXmdx5OEIjuEUPLiEKtxCDerAYADP8ApvjnBenHfnY96ac7KZQ/gD5/MHl66NVw==</latexit>

3+
<latexit sha1_base64="vbjB4CTT+ERgMMofQ75mJEdXIGo=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBAEIewmgh6DXjxGNA9I1jA76U2GzM4uM7NCCPkELx4U8eoXefNvnCR70MSChqKqm+6uIBFcG9f9dlZW19Y3NnNb+e2d3b39wsFhQ8epYlhnsYhVK6AaBZdYN9wIbCUKaRQIbAbDm6nffEKleSwfzChBP6J9yUPOqLHSfeXxvFsouiV3BrJMvIwUIUOtW/jq9GKWRigNE1Trtucmxh9TZTgTOMl3Uo0JZUPax7alkkao/fHs1Ak5tUqPhLGyJQ2Zqb8nxjTSehQFtjOiZqAXvan4n9dOTXjlj7lMUoOSzReFqSAmJtO/SY8rZEaMLKFMcXsrYQOqKDM2nbwNwVt8eZk0yiWvUirfXRSr11kcOTiGEzgDDy6hCrdQgzow6MMzvMKbI5wX5935mLeuONnMEfyB8/kDmTSNWA==</latexit>

0+
<latexit sha1_base64="HE+nDdPB6k8kxwTT7Yuoyx4P0k0=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMgCGE3CnoMevEY0TwgWcPsZJIMmZ1dZnqFsOQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7glgKg6777eRWVtfWN/Kbha3tnd294v5Bw0SJZrzOIhnpVkANl0LxOgqUvBVrTsNA8mYwupn6zSeujYjUA45j7od0oERfMIpWuncfz7rFklt2ZyDLxMtICTLUusWvTi9iScgVMkmNaXtujH5KNQom+aTQSQyPKRvRAW9bqmjIjZ/OTp2QE6v0SD/SthSSmfp7IqWhMeMwsJ0hxaFZ9Kbif147wf6VnwoVJ8gVmy/qJ5JgRKZ/k57QnKEcW0KZFvZWwoZUU4Y2nYINwVt8eZk0KmXvvFy5uyhVr7M48nAEx3AKHlxCFW6hBnVgMIBneIU3RzovzrvzMW/NOdnMIfyB8/kDlKKNVQ==</latexit>

1+<latexit sha1_base64="Yez1j7a2XbYVvyTZLOnaRzsEZxY=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMgCGE3CnoMevEY0TwgWcPsZJIMmZ1dZnqFsOQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7glgKg6777eRWVtfWN/Kbha3tnd294v5Bw0SJZrzOIhnpVkANl0LxOgqUvBVrTsNA8mYwupn6zSeujYjUA45j7od0oERfMIpWuvcez7rFklt2ZyDLxMtICTLUusWvTi9iScgVMkmNaXtujH5KNQom+aTQSQyPKRvRAW9bqmjIjZ/OTp2QE6v0SD/SthSSmfp7IqWhMeMwsJ0hxaFZ9Kbif147wf6VnwoVJ8gVmy/qJ5JgRKZ/k57QnKEcW0KZFvZWwoZUU4Y2nYINwVt8eZk0KmXvvFy5uyhVr7M48nAEx3AKHlxCFW6hBnVgMIBneIU3RzovzrvzMW/NOdnMIfyB8/kDliiNVg==</latexit> 2+<latexit sha1_base64="GjhZdKKaYP6GweBx2EXuHqQffGg=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMgCGE3CnoMevEY0TwgWcPspJMMmZ1dZmaFsOQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7glhwbVz328mtrK6tb+Q3C1vbO7t7xf2Dho4SxbDOIhGpVkA1Ci6xbrgR2IoV0jAQ2AxGN1O/+YRK80g+mHGMfkgHkvc5o8ZK95XHs26x5JbdGcgy8TJSggy1bvGr04tYEqI0TFCt254bGz+lynAmcFLoJBpjykZ0gG1LJQ1R++ns1Ak5sUqP9CNlSxoyU39PpDTUehwGtjOkZqgXvan4n9dOTP/KT7mME4OSzRf1E0FMRKZ/kx5XyIwYW0KZ4vZWwoZUUWZsOgUbgrf48jJpVMreeblyd1GqXmdx5OEIjuEUPLiEKtxCDerAYADP8ApvjnBenHfnY96ac7KZQ/gD5/MHl66NVw==</latexit>

0+
<latexit sha1_base64="HE+nDdPB6k8kxwTT7Yuoyx4P0k0=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMgCGE3CnoMevEY0TwgWcPsZJIMmZ1dZnqFsOQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7glgKg6777eRWVtfWN/Kbha3tnd294v5Bw0SJZrzOIhnpVkANl0LxOgqUvBVrTsNA8mYwupn6zSeujYjUA45j7od0oERfMIpWuncfz7rFklt2ZyDLxMtICTLUusWvTi9iScgVMkmNaXtujH5KNQom+aTQSQyPKRvRAW9bqmjIjZ/OTp2QE6v0SD/SthSSmfp7IqWhMeMwsJ0hxaFZ9Kbif147wf6VnwoVJ8gVmy/qJ5JgRKZ/k57QnKEcW0KZFvZWwoZUU4Y2nYINwVt8eZk0KmXvvFy5uyhVr7M48nAEx3AKHlxCFW6hBnVgMIBneIU3RzovzrvzMW/NOdnMIfyB8/kDlKKNVQ==</latexit> 1+<latexit sha1_base64="Yez1j7a2XbYVvyTZLOnaRzsEZxY=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMgCGE3CnoMevEY0TwgWcPsZJIMmZ1dZnqFsOQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7glgKg6777eRWVtfWN/Kbha3tnd294v5Bw0SJZrzOIhnpVkANl0LxOgqUvBVrTsNA8mYwupn6zSeujYjUA45j7od0oERfMIpWuvcez7rFklt2ZyDLxMtICTLUusWvTi9iScgVMkmNaXtujH5KNQom+aTQSQyPKRvRAW9bqmjIjZ/OTp2QE6v0SD/SthSSmfp7IqWhMeMwsJ0hxaFZ9Kbif147wf6VnwoVJ8gVmy/qJ5JgRKZ/k57QnKEcW0KZFvZWwoZUU4Y2nYINwVt8eZk0KmXvvFy5uyhVr7M48nAEx3AKHlxCFW6hBnVgMIBneIU3RzovzrvzMW/NOdnMIfyB8/kDliiNVg==</latexit>
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Fig. 1.8 Stellar-rank witness thresholds with target Fock states |1⟩, |2⟩, |3⟩ and |4⟩.
For each Fock state |𝑛⟩, the axis of fidelity 𝐹(�̂�, |𝑛⟩) is drawn along with ticks at the
different witness threshold values {1 − [𝑅⋆𝑘(|𝑛⟩)]2}, where �̂� is any state and 𝑘 ≤ 𝑛.
In each fidelity region, the number indicates the minimal stellar rank of the states �̂�
achieving these fidelities.

Let us pay a particular attention on the single-photon Fock state |1⟩. The witness threshold
of the Fock state |1⟩ for stellar rank 1 is 3√3/(4e) ≃ 0.478. This means in particular, coming
back to the family of states defined in equation (1.118), that the states (1 − 𝛾) |0⟩⟨0| + 𝛾 |1⟩⟨1|
are quantum non-Gaussian when 𝛾 > 0.478, while their Wigner function is still positive when𝛾 < 0.5. Thus this provides examples of quantum non-Gaussian states with positive Wigner
function.

It is worth noting that the single-photon Fock state |1⟩ is the most robust pure state among
all states of stellar rank 1 [Chabaud 21d]. In other words, it is the pure state of stellar rank 1

1Indeed in section 1.3, we mentioned that the elementary Gaussian operations are the displacement, squeez-
ing and phase-space rotation operations. Using a general squeezing operator with a complex squeezing parameter
allows to take directly into account the phase operation.

43



1.4. NON-GAUSSIAN STATES

with the biggest robustness ball with states of stellar rank 1 or higher. Equivalently, it is the
pure state of stellar rank 1 with the lowest witness threshold for certifying stellar rank 1 or
higher. This result is true for all the pure states of the form �̂� |1⟩ with �̂� a Gaussian operation,
since the robustness is invariant under Gaussian operations. In particular, it is true for pure
single-photon subtracted squeezed vacuum states �̂� 𝑆(𝜁 ) |0⟩, owing to the following identity�̂� 𝑆(𝜁 ) |0⟩ = − sinh(𝜁 ) 𝑆(𝜁 ) |1⟩ (1.145)

where we used the property (1.70) of the squeezing operator 𝑆(𝜁 ) defined in subsection 1.3.3.
In particular, the stellar rank of pure single-photon subtracted squeezed vacuum states

is 1. Experimentally generated (mixed) such states are the states we want to certify, and are
described in more details in subsection 1.4.4.

In chapter 4, we explicit a fidelity estimation protocol using the double homodyne detec-
tion, which allows for the certification of both stellar rank and Wigner negativity of single-
mode states using the witnesses we provided above.

1.4.3.6 Towards witnessing the stellar-rank of multimode states

In order to give the theoretical foundations for multimode certification, we extend some of the
previous results in this part.

Let us first point out that the notion of stellar rank can not be naturally generalized to the
multimode states. Indeed, the multimodeQ function admits either no zeros, or an uncountable
infinite number of zeros [Chabaud 21b, Soto 83]. In particular, this means that some results
cannot be generalized, such as decomposition (1.128) [Chabaud 21b].

Still, [Chabaud 21b] generalizes the stellar rank to multimode states as follows. Let us
consider the states of the form �̂� |𝐶⟩ (1.146)

where �̂� is a Gaussian operation and |𝐶⟩ is a pure state with bounded support over the multi-
mode Fock basis1.

Any pure state which admits the decomposition (1.146) has a finite stellar rank, defined as
the highest sum of the Fock numbers of the decomposition of |𝐶⟩ in the Fock basis. In other
words, the stellar rank of the state �̂� |𝐶⟩ is the highest possible photon number of |𝐶⟩.

On the other hand, any state that does not admit the decomposition (1.146) has an infinite
stellar rank.

For instance, the multimode state1√2(|1⟩ ⊗ |2⟩ ⊗ |3⟩ ⊗ |0⟩ + |0⟩ ⊗ |0⟩ ⊗ |0⟩ ⊗ |4⟩) (1.147)

has two terms in its decomposition, for which the sum of Fock numbers are 6 and 4. Also,
the highest possible photon number is 6. Thus the stellar rank of this state is equal to 6. This
multimode generalization of the stellar rank is consistent, as it matches with the single-mode
stellar rank for single-mode states.

1This means that its decomposition over the Fock basis, given generally by equation (1.22), contains a finite
number of terms.

44



CHAPTER 1. GAUSSIAN AND NON-GAUSSIAN QUANTUM LIGHT

Note that the set of states which admit the decomposition (1.146) is dense in the Hilbert
space of pure states, and that the multimode stellar rank is still invariant under Gaussian
operations [Chabaud 21b]. As shown in the same reference, the induced multimode stellar
hierarchy is robust with respect to the trace distance.

In [Chabaud 21d], we extended the definition of the multimode stellar rank to non-pure
states, naturally with the same convex roof construction as in equation (1.131). We also show
that the identity (1.144) naturally generalizes to the multimode case, considering general mul-
timode Gaussian operations and projectors on the subspace of multimode states with less than𝑘 photons. We refer to our paper for a thorough demonstration. This result allows one to nu-
merically compute the robustness profile of the 𝑁 -mode target pure states.

For example, we computed the 1 and 2-robustness for the two-mode Fock state |1⟩ ⊗ |1⟩.
We can then deduce two thresholds for the stellar-rank witness 𝐹(�̂�, |1⟩⊗ |1⟩): 0.250 for stellar
rank 1 or higher, and 0.478 for stellar rank 2 and higher1.

In other words, certifying that a two-mode experimental (mixed) state �̂� has a fidelity to
the target state |1⟩⊗ |1⟩ higher than 0.250 allows us to assert that the state �̂� is at least of stellar
rank 1, and at least stellar rank 2 with a fidelity higher than 0.478.

As is mentioned in chapter 4, [Chabaud 21c] naturally extends the fidelity estimation pro-
tocol to multimode states using a multimode version of the double homodyne detection. This
opens the path to the stellar-rank certification of multimode states.

1.4.3.7 Stellar rank and quantum advantage

We saw in subsection 1.4.2 that Wigner negativity is a necessary resource in a given quantum
system for reaching quantum advantage, i.e. such that the quantum system is hard to simulate
with classical computers.

While the stellar rank allows for an insightful classification of the quantum non-Gaussian
states, is it also a necessary resource for quantum advantage?

We saw that the stellar rank matches the minimal number of photon additions needed
to engineer single-mode pure states of this rank from the vacuum, together with Gaussian
unitary operations. Intuitively, the complexity of the generated states should play a role in the
hardness to classically simulate a quantum system, and thus the stellar rank too.

[Chabaud 23] answers the previous question by providing an algorithm to classically sim-
ulate any quantum system, with a complexity in time which scales exponentially with the
stellar rank of the input state and of the measurement. The latter is defined from the stellar
rank of the eigenstates of the measurement observables, see the paper for details. More pre-
cisely, the scaling is in 𝑟32𝑟 in the stellar rank 𝑟 of the system and polynomial in the other
parameters.

This result is then two fold. First, if the stellar rank of a quantum system is null, then
this algorithm can efficiently (polynomially) simulate the system. In other words, the stellar
rank of a quantum system is a necessary resource for achieving quantum advantage. Second,
the exponential scaling of time complexity of the algorithm with the stellar rank shows that
the higher the stellar rank, the harder it is for this algorithm to simulate the system. In other
words, “the more the merrier”. Although, there may be more efficient classical algorithms for

1Note that in our paper [Chabaud 21d], the displayed bounds are incorrect in appendix F.3.
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specific tasks, this praises for viewing the stellar rank as a potential measure of the hardness
to classically simulate a quantum system.

1.4.4 Single-photon subtracted and added squeezed vacuum states
As final examples of non-Gaussian states, we describe here the single-photon subtracted and
added squeezed vacuum states. As shown in the next chapter 2, we generate single-photon
subtracted squeezed vacuum states in the experiment. In chapter 3, we detail how the sub-
traction is controlled to subtract a single-photon in an arbitrarily chosen single-mode from a
multimode source of light. We also report a theoretical investigation to show similar results
for single-photon addition. This motivates the description of such states, and the discussion
of their properties in the light of the aforementioned developed tools, namely the Wigner
negativity and the stellar rank.

Considering single-mode and pure states, we define single-photon subtracted (resp. added)
squeezed state |||𝜓−𝜁 ⟩ (resp. |||𝜓+𝜁 ⟩) as⎧⎪⎪⎪⎨⎪⎪⎪⎩

|||𝜓−𝜁 ⟩ = 1sinh(𝜁 ) �̂� 𝑆(𝜁 ) |0⟩|||𝜓+𝜁 ⟩ = 1cosh(𝜁 ) �̂�†𝑆(𝜁 ) |0⟩ (1.148)

where �̂� is the annihilation operator in the consideredmode, and 𝑆(𝜁 ) is the squeezing operator
as defined in subsection 1.3.3, with 𝜁 ∈ R.

Using the property (1.70) of the squeezing operator 𝑆(𝜁 ), one can straightforwardly show
that both |||𝜓−𝜁 ⟩ and |||𝜓+𝜁 ⟩ are proportional to the pure squeezed single-photon state 𝑆(𝜁 ) �̂�† |0⟩.
Since they are normalized states, we then deduce that|||𝜓−𝜁 ⟩ = |||𝜓+𝜁 ⟩ (1.149)

We can then assert that both single-mode single-photon subtraction and addition opera-
tions result in the same state when applied on a single-mode pure squeezed vacuum state. To
observe a difference between the two operations, it is necessary to consider non-pure states or
non-single-mode subtraction/addition processes with multimode states. The last of those two
cases is developed in depth in chapter 3. In the following, we thus only consider single-mode
subtraction/addition operations.

Let us consider experimental (mixed) a multimode null-mean Gaussian state �̂�G on which
we apply a single-photon subtraction or addition in a specific single-mode �⃗�. The density
operator of the resulting subtracted state �̂�− (resp. added state �̂�+) writes⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

�̂�− = �̂��⃗��̂�G�̂�†⃗𝐠Tr[�̂��⃗��̂�G�̂�†⃗𝐠]�̂�+ = �̂�†⃗𝐠 �̂�G�̂��⃗�Tr[�̂�†⃗𝐠 �̂�G�̂��⃗�]
(1.150)
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�̂��⃗� is the annihilation operator associated with the subtraction/addition mode �⃗�. Note that the
denominators ensure both density operators �̂�± trace to unity, and correspond to the proba-
bility of the subtraction/addition.

Since the state �̂�G is a null-mean Gaussian state, it is completely characterized by its co-
variance matrix 𝐕, or equivalently by its Gaussian Wigner function given by equation (1.52)
which we reproduce here

𝑊�̂�G(𝑥⇀) = e− 12 𝑥⇀⊤𝐕−1𝑥⇀(2𝜋𝜎20)𝑁√det𝐕 (1.151)

While we keep this state �̂�G general here, we have in mind a multimode squeezed vacuum
state which underwent losses, which models well the Gaussian source of our experiment (see
next chapter 2).

During the 5 last years, the group developed a general multimode framework for com-
puting the Wigner function of the states �̂�± given by equation (1.150). In particular, we will
us the following expression to compute the Q functions that suit our needs in the rest of the
manuscript. We refer to [Walschaers 17a, Walschaers 17b] for the demonstration. TheWigner
function of the states �̂�± is given by𝑊�̂�±(𝑥⇀) = 12 [𝑥⇀⊤𝐕−1𝐀±(𝐕, �⃗�)𝐕−1𝑥⇀ − Tr[𝐕−1𝐀±(𝐕, �⃗�)] + 2]𝑊�̂�G(𝑥⇀) (1.152)

and 𝐀±(𝐕, �⃗�) = 2(𝐕 ± 𝜎201)𝚷�⃗�(𝐕 ± 𝜎201)Tr [(𝐕 ± 𝜎201)𝚷�⃗�] (1.153)

where the Gaussian Wigner function 𝑊�̂�G(𝑥⇀) is given in equation (1.151), 𝚷�⃗� is the matrix of
the projector on the two-dimensional phase space associated with the mode �⃗� in which the
photon was subtracted/added.

While equation (1.152) seems complex at first glance, it mainly is a convenient way of
writing the Wigner function in terms of the covariance matrix 𝐕 of the initial state �̂�G. In the
single-mode scenario, the Wigner function 𝑊�̂�±(𝑥⇀) in equation (1.152) can be simply written
as the product of a second-order polynomial with a Gaussian function

𝑊�̂�±(𝑞, 𝑝) = (𝑑±1 𝑞2𝜎20 + 𝑑±2 𝑝2𝜎20 + 𝑑±3 ) exp[𝑑±4 𝑞2𝜎20 + 𝑑±5 𝑝2𝜎20 ] (1.154)

where {𝑑±𝑖 } are real coefficients which depend on the matrix elements of the 2 × 2 covariance
matrix 𝐕. Similarly, in the multimode scenario, the Wigner function is then the product of a
second-order 2𝑁 -variable polynomial with a 2𝑁 -variable Gaussian function.

Note that the single-mode subtraction/addition assumption shows itself in the expres-
sion of the matrix 𝐀±(𝐕, �⃗�). For general multimode subtraction/addition processes which
we describe in more details in later chapter 3, the projector matrix 𝚷�⃗� is replaced with a
weighted sum over all the modes in which the single-photon subtraction/addition may oc-
cur (see [Walschaers 17b] for details). In particular, the coefficients {𝑑±𝑖 } in equation (1.154)
would then depend on the probabilities to subtract in the different modes.

The Wigner negativity of the states �̂�± was studied in [Walschaers 17a, Walschaers 17b].
They concluded that the Wigner function of a single-photon added state is always negative,
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while for single-photon subtracted state it is true if and only ifTr[𝐕−1𝚷�⃗�] > 2 (1.155)

which is convenient as it only depends on the covariance matrix 𝐕 of the initial state �̂�G.
Using the convolution (1.47), we can derive the Q function of the states �̂�± from their

Wigner function given in equation (1.152). The derivation is provided in appendix B.2. We
findQ�̂�±(𝑥⇀) = 12 [𝑥⇀⊤(𝐕 + 𝜎201)−1𝐀±(𝐕, �⃗�)(𝐕 + 𝜎201)−1𝑥⇀ − Tr[(𝐕 + 𝜎201)−1𝐀±(𝐕, �⃗�)] + 2]Q�̂�(𝑥⇀)

(1.156)

with Q�̂�G(𝑥⇀) = e− 12 𝑥⇀⊤(𝐕+𝜎201)−1𝑥⇀(2𝜋𝜎20)𝑁√det(𝐕 + 𝜎201) (1.157)

One can see that expression equation (1.156) is very analogue to equation (1.152), replacing𝐕 by (𝐕 + 𝜎201), except in 𝐀±(𝐕, �⃗�). This can be understood considering the Q function is the
convolution of the Wigner function of the subtracted state (1.152) with the Wigner function
of the vacuum of covariance matrix 𝜎201, according to equation (1.47).

Note that the expression of Q�̂�G(𝑥⇀) in equation (1.157) in particular provides the general
expression of the Q function of any Gaussian state �̂�G.

Similarly as for the Wigner function, in the single-mode scenario, the Q function Q�̂�±(𝑥⇀)
in equation (1.156) can be simply written as the product of a second-order polynomial with a
Gaussian function Q�̂�±(𝑞, 𝑝) = (𝑐±1 𝑞2𝜎20 + 𝑐±2 𝑝2𝜎20 + 𝑐±3) exp[𝑐±4 𝑞2𝜎20 + 𝑐±5 𝑝2𝜎20 ] (1.158)

where {𝑐±𝑖 } are real coefficients which depend on the matrix elements of the 2 × 2 covariance
matrix 𝐕. In the multimode scenario, the Q function is then the product of a second-order2𝑁 -variable polynomial with a 2𝑁 -variable Gaussian function.

In appendix B.2.2, we verify that the derived Q functions Q�̂�±(𝑥⇀) are positive everywhere
on the phase space, as they should. In particular, we showTr[(𝐕 + 𝜎201)−1𝐀±(𝐕, �⃗�)] ≤ 2 (1.159)

This inequality (1.159) is always saturated for any single-photon added states, pure or
non-pure. From equation (1.156), we deduce that the Q function Q�̂�+(𝑥⇀) is zero at 𝑥⇀ = 0 with
multiplicity 2. In other words, the single-mode addition of a photon to a (mixed) experimental
Gaussian state �̂� always lead to a stellar rank 1 state1.

For single-photon subtracted states, a similar statement applies only for pure states. For
any non-pure initial state �̂�G, the resulting Q function Q�̂�−(𝑥⇀) does not vanish. Determining
the resulting stellar rank of such non-pure state is then non-trivial, as it requires to look at all

1For multimode states, the stellar rank can be derived as the sum-degree of the polynomial multiplying the
exponential in the explicit expression of the Q function in equation (1.156). This definition is equivalent to the
one introduced in subsection 1.4.3, see [Chabaud 21b].
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possible pure-state decomposition of the density operator �̂�, as required by equation (1.131)
(which naturally generalizes to multimode states).

Thanks to the general form of the Q function given in equation (1.156), we are able in
chapter 4 to precisely describe the states generated in our experiment. Together with the
certification tools developed in the previous subsection, this allows for the simulating the
fidelity estimation of our experimental states, and simulate a certification of their stellar rank 1.

For illustration purposes, we compute theWigner andQ functions of the pure single-mode
photon subtracted/added squeezed vacuum state |||𝜓±𝜁 ⟩, using equations (1.152) and (1.156) sim-
plified to the single-mode pure case, yielding

𝑊|𝜓±𝜁 ⟩(𝑞, 𝑝) = ( 1𝜎20𝑠 𝑞2 + 𝑠𝜎20 𝑝2 − 1)𝑊|𝜓𝜁 ⟩(𝑞, 𝑝) (1.160)Q|𝜓±𝜁 ⟩(𝑞, 𝑝) = 1(1 + 𝑠)(1 + 1/𝑠)𝜎20 (𝑞2 + 𝑝2)Q|𝜓𝜁 ⟩(𝑞, 𝑝) (1.161)

where the Wigner function 𝑊|𝜓𝜁 ⟩(𝑞, 𝑝) and Q function Q|𝜓𝜁 ⟩(𝑞, 𝑝) of a pure squeezed vacuum
state is given in equations (1.80) and (1.81), and 𝑠 = e−2𝜁 .

The functions 𝑊|𝜓±𝜁 ⟩(𝑞, 𝑝) and Q|𝜓±𝜁 ⟩(𝑞, 𝑝) are given in figure 1.9. One can see that the
Wigner function corresponds to the Wigner function of the Fock state |1⟩ given in figure 1.6
upon which is applied stretching and contraction. This is in agreement with the fact that
the state |||𝜓±𝜁 ⟩ is proportional to the squeezed single-photon state 𝑆(𝜁 ) |1⟩, and that the fact
that applying a squeezing operation on the state or on the phase space is equivalent for the
Wigner function. This last property is not in general true for the Q function. The shape of the
Q function in figure 1.9 is in particular not the Q function of the Fock state |1⟩ upon which a
squeezing operation is applied. As we will see in chapter 4, the squeezing operation is the only
Gaussian operation which does not translate to an equivalent phase-space transformation of
the Q function.

Fig. 1.9 The Wigner function (left) and Q function (right) of the subtracted/added
squeezed vacuum state |||𝜓±𝜁 ⟩, with squeezing parameter 𝜁 = ln(2)/2 (i.e. 𝑠dB ≃ 3 dB)
and 𝜎20 = 1.
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In this chapter, we describe the experiment used in this work. In the first section, we
explain concisely yet completely how the experiment sub-parts work all together, allowing
the reader to acquire a clear and global understanding of how the experiment works. Most
sub-parts are then described in the subsequent sections. As part of the main results of this
thesis, the non-Gaussian operation and the detection sub-parts are detailed in-depth in the
later chapters 3 and 4 respectively.

As a consequence of this structure, the reader who seeks only a global understanding of
the experiment may only read the first section. Note yet that sections 2.3 and 2.5 describe two
significant improvements of the current experiment, as part of this thesis’ work.

A note on the multimode aspect of the experiment design. This PhD thesis is part of an am-
bitious experimental project, which goes beyond this thesis’ work. It aims at both generating
and certifyingmultimode non-Gaussian states of light. While the generation of non-Gaussian
multimode states was done prior to this PhD work as highlighted in the manuscript intro-
duction, the single-mode non-Gaussian certification is the central goal of this work, with the
ambition of implementing multimode non-Gaussian certification in the future. Consistently
the experiment is designed to be fully multimode (where only the newly developed double
homodyne detector remains currently single-mode).

2.1 Experiment design
In this section, we take the reader for a “virtual lab tour”, and explain the whole experiment
design, see figure 2.1. The experiment is decomposed into numbered modules, each having
a specific role. The section is organized according to figure 2.1, describing each main experi-
ment parts defined as the ultrafast pulsed laser 0) (subsection 2.1.0), the multimode Gaussian
state generation 1) (subsection 2.1.1), the non-Gaussian operation 2) (subsection 2.1.2), and the
detection 3) (subsection 2.1.3). The extra modules 1.b) and 3.a), delimited by dashed lines in
figure 2.1, are described in section 2.6. While these extra modules were not used in the scope
of this thesis’ work, they show potential for the multimode extension of this work.

2.1.0 Ultrafast pulsed laser
The mode-locked ultrafast pulsed laser 0) in figure 2.1 is the light source for the whole exper-
iment. As described with more details in subsection 2.2.1, it is a titanium-sapphire laser that
relies on a passive Kerr-lens mode-locking operation to generate pulsed light at its output, at
a repetition rate of 76MHz.

As described in the subsection 2.2.2, the successive output pulses form what is called an
optical frequency comb (OFC). In a nutshell, an optical frequency comb is the product of an
evenly frequency spaced array of Dirac functions with a Gaussian envelope.

In the time domain, the output pulses are ultrashort with a time bandwidth of 90 fs. In the
frequency domain, the Gaussian envelope is characterized by 10.3 nm full width half maximum
(in intensity) and a central wavelength of 795 nm. Featuring a large spectrum, this light can
be viewed as multimode in its frequency-time dimension, in the sense that different parts (or
modes) of its spectrum are separately measurable by a detector with a resolution given by
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Fig. 2.1 Experiment scheme. The laser source 0) produces a beam made of a train
of femtosecond pulses, which splits into three beams. One beam is up-converted
via second-harmonic generation in a BiBO non-linear crystal. The resulting beam
is fed to the pulse shaper 1.b) which shapes its time-frequency mode, and then
used as a pump for the parametric down-conversion process that occurs in 1.c).
A synchronously pumped optical parametric oscillator (SPOPO) 1.c) amplifies the
process, which generates squeezed vacuum states (dashed beam) in well-defined
time-frequency modes called “supermodes”. The Q functions of the first modes are
pictured. Another beam sees its time-frequency mode engineered by another pulse
shaper 2.a), and is used as a gate for the photon subtraction in 2.b) applied on the
supermodes. A possible outcome is pictured, when the gate mode matches the sec-
ond supermode. The last beam is time-frequency-engineered with both the photonic
crystal fiber 3.a) and the pulse shaper 3.b). It is used as the local oscillator for the
double homodyne detector 3.c). The measurement in 3.c) is post-selected on the
single-photon detector (SPD) counts of the photon subtractor 2.b). The dashed mod-
ules 1.b) and 3.a) are available but not used in this thesis’ work. BS: beamsplitter;
PBS: polarizing beamsplitter; 𝜆/2: half-wave plate; 𝜆/4: quarter-wave plate. See the
main text for details.
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current technology. This is where resides the multimode resource used in the experiment.
Note that in the spatial domain, we will only consider Gaussian profiles, so that we will often
dismiss any spatial field dependency in the remaining of the manuscript.

2.1.1 Multimode Gaussian state generation

The first beam from the laser source 0) is used to produce Gaussian multimode light through
the use of the modules 1.a), 1.b) and 1.c), see figure 2.1. In module 1.a), the beam is first up-
converted in a BiBO crystal via second-harmonic generation, as described in subsection 2.3.1.
The resulting 397.5 nm centered spectrum beam is called the pump beam. It is then down-
converted back to 795 nm via parametric down-conversion in the BiBO crystal in module 1.c).
In module 1.c), a cavity encloses the non-linear BiBO crystal to amplify the process. Its length
matches the distance between two pulses, so that each pulse completes one round trip before
the next comes in, resulting in a synchronous amplification. The ensemble formed by this
cavity and the crystal it houses is then called a synchronously pumped optical parametric
oscillator (SPOPO), see subsection 2.3.2.

The second order non-linear process occurring in the BiBO crystal in the SPOPO 1.c) gen-
erates squeezed vacuum states in time-frequency eigenmodes, which we refer to as super-
modes. The supermode basis is well approximated by the Hermite-Gaussian mode basis. The
Hermite-Gaussian mode 𝑛 is a mode (as defined in section 1.1), denoted HG𝑛, whose spectrum
is the 𝑛-th-order Hermite-Gaussian function of the frequency space, defined in appendix A.2.
Note that the index 𝑛 starts at 0, with the first Hermite-Gaussian mode HG0 being a Gaussian
function.

As our pulsed light is broadband, the pulses in the cavity experience losses which are
not uniform over their whole spectrum. A phenomenon we try to minimize using negative-
dispersion mirrors, see subsection 2.3.6. Assuming the intra-cavity losses are spectrally uni-
form, the output state of the SPOPO, which we refer to as the signal state, is a factorized
multimode vacuum squeezed state in the supermode basis. In figure 2.1, the Q function of
each squeezed vacuum state in the three first supermodes is pictured, at the output of module
1.c).

The pulse shaper 1.b) is not used in the scope of this thesis’ work. Its potential role in the
multimode certification future project along with the works of [Michel 21] and [Arzani 18]
are briefly described in subsection 2.6.1. In short, it can be used to engineer the squeezing
distribution of the SPOPO output supermodes.

2.1.2 Non-Gaussian operation

The second beam from the laser source 0), called the gate beam, is used to perform a non-
Gaussian operation on the signal multimode squeezed state in the photon subtractor 2.b), see
figure 2.1. This operation, named photon subtraction, is the topic of chapter 3, along with
the photon addition. In particular, details on the experimental realization can be found in
section 3.4. In a nutshell, the photon subtraction relies on a non-linear process in another
BiBO crystal where the gate beam interacts with the signal beam. As a result two photons,
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one from each input beam, are up-converted to a photon which is detected on a single-photon
detector. Upon detection, a photon is effectively removed from the signal state.

As explained in chapter 3, the mode in which the photon subtraction occurs is directly
given by the time-frequency mode of the gate. For this reason, we use the pulse shaper 2.a)
to engineer the gate time-frequency mode. The ultrafast pulse shaping concept is described in
the section 2.2.4. In a nutshell, both amplitude and phase of each frequency band of the gate
spectrum can be engineered using the pulse shaper. For example, one can choose the second
supermode for the gate mode, which yields a subtracted state in the second supermode. To
illustrate this example, the resulting Q functions of the first three supermodes are displayed
on the figure 2.1 after 2.b). The Q function of the second supermode is not Gaussian anymore,
and represents a single-photon subtracted squeezed vacuum state as described in more detail
in section 1.4.

2.1.3 Detection

The last and third beam from the laser source 0), called the local oscillator beam, is used as a
reference beam for the double homodyne detector 3.c), see figure 2.1. The double homodyne
detection is detailed in-depth in chapter 4 section 4.1. In a nutshell, the signal beam is split and
measured on two different homodyne detections, whose principle is described in section 2.4.
As a result, the double homodyne detection is effectively sampling theQ function of the signal
state, which then gives access to all the information on the signal state.

While an ongoing project aims at building a multimode double homodyne detector, the
detector 3.c) is currently designed to measure one mode at a time. This mode is given by the
local oscillator time-frequency mode, property which is naturally inherited from the working
principle of the homodyne detection, as described in subsection 2.4.2. The mode of the local
oscillator can be chosen using another pulse shaper 3.b), allowing us to choose the mode on
which the measurement is performed.

In the experiment, the double homodyne detection is used to certify the non-Gaussianity
of the signal state in the measured mode. Taking for example the pictured state at the output
of the photon subtractor 2.b) in figure 2.1 as the signal state, the goal would be to certify that
the signal state is indeed non-Gaussian in the second supermode. Instead of performing a full
tomography of the signal state, we use an optimized protocol for this specific task, protocol
which is detailed in chapter 4.

The photonic crystal fiber 3.a) is not used in the scope of this thesis’ work. Its potential role
in the multimode certification future project along with the work of [Renault 22] are briefly
described in subsection 2.6.2. In short, it can be used to broaden the spectrum of the local
oscillator beam before its pulse shaper 3.b) so as to cope with a limitation of the experiment
design, inhibiting the efficient measurement of high order modes.

Note that another part of the experiment, the optical phase locking system, is not shown
in figure 2.1. The optical relative phase between the signal field and the local oscillator field is
locked using a feedback system. The working principle is described in detail in section 2.5. It
was implemented during this thesis’ work to improve the overall stability, and to significantly
simplify the measurement protocol. This improvement is illustrated in subsection 2.5.3, where
we show both squeezing measurement protocols, with and without the optical phase lock.
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2.2 Ultrafast light

In this section, we first detail the characteristics of our femtosecond laser. We then describe the
frequency-temporal structure of the laser output, namely an optical frequency comb. Finally,
we explain the working principle of a pulse shaper, used to engineer the time-frequency mode
of multiple beams as presented in section 2.1.

2.2.1 Our laser source

The laser used in the experiment belongs to the class of ultrafast pulsed lasers, character-
ized by the coherent excitation of a substantial number of longitudinal modes within the laser
cavity. This broadband excitation, in conjunction with a high degree of coherence, facilitates
the generation of ultra-short pulses, reaching temporal durations as brief as the picosecond,
femtosecond regimes. The pulsed lasers industry has continuously improved over the years.
In recent developments, attosecond pulses (with durations of 10−18 seconds) have been suc-
cessfully measured, providing valuable insight into the dynamics of atomic and molecular in
chemical reactions [Krausz 09, Duris 20]. The term “ultrafast" is used to denote the necessity
for an exceedingly fast response from a detector in order to temporally resolve such ultra-short
pulses.

Our femtosecond laser is a titanium-sapphire (Ti:Al2O3) MIRA-900-F laser pumped by a
continuous-wave beam at 532 nm produced by a VERDI G-15 laser. The gain of the Ti:Sapph
crystal is broadband, enabling numerous longitudinal modes within the cavity to see higher
gain than losses and oscillate (see figure 2.2, graph (a)). TheMIRA laser cavity of approximately3.92 meters in length, houses a pulse compressor [Fork 84] and a Lyot filter [Lyot 33]. The
pulse compressor serves to compensate intra-cavity dispersion, while the Lyot filter facilitates
tuning of the pulse central frequency. Passive mode-locking, or the coherent oscillation of all
longitudinal modes exceeding the laser threshold, is achieved thanks to the Kerr lensing effect
within the crystal. This uses a non-linear optical process, the optical Kerr effect, which results
in high-intensity light being more focused than low-intensity light (see [Kerr 75b, Kerr 75a,
Brabec 92]). A slit tweaking the aperture at the output allows us to add losses to the less
focused continuous wave mode, at the advantage of the pulsed modes, which then oscillate.

As a result the laser outputs a 76MHz repetition rate train of pulses centered at 795 nm,
with a 10.3 nm full width half maximum (FWHM)1 envelope well approximated by a Gaussian
function, see graph 2.2 (b). The available average power is around 2.1W (with ∼ MW peak
power), while the Verdi pump power is at 13W. The output pulse is close to be Fourier-
transform-limited, with a bandwidth of 90 fs. For a more detailed description of the laser
source and beam preparation in our setup see the theses [Pinel 10, de Araujo 12] (in French)
or [Cai 15] (in English but less thorough).

1In this manuscript, we always consider the full width half maximum in intensity, and should be considered
as is if not mentioned.
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Fig. 2.2 (a): Principle of mode-locking for ultrafast lasers. The large bandwidth of
the crystal gain covers many cavity longitudinal modes (represented by the dotted
line). Consequently, numerous longitudinal modes have the ability to lase (oscil-
late). When these modes function collectively and in phase, the laser produces a
train of extremely brief pulses, which is known as mode-locked operation. Figure
from [Thiel 15]. (b): Measured intensity spectrum of the normalized envelope of the
laser output. A Gaussian fit yields a FWHM of 10.3 nm.

2.2.2 Optical frequency combs

The output train of pulses forms what is called an optical frequency comb (OFC). Optical
frequency combs were initially developed as tools for measuring the cycles of atomic opti-
cal clocks. The remarkable phase stability between the "teeth" of the comb allows for the
achievement of unparalleled precision in time and frequency measurements. Subsequently,
OFC have been employed in a diverse range of applications, as well as fundamental research
in metrology, spectroscopy, and studies of optical, atomic, molecular, and solid-state sys-
tems [Hall 00, Udem 02, Diddams 10, Fortier 19]. In recognition to their lifelong contributions
to the field of precision optical frequency metrology, as well as their technical vision and ex-
pertise that culminated in the realization of the OFC, John Hall and Theodor Hänsch were
awarded the Nobel Prize in 2005 [Hall 06, Hänsch 06].

Let us now model an OFC. For a detailed description of ultrafast light, we recommend the
book [Weiner 11a]. Since our focus is on the modes of light, we can restrict ourselves to the
modal description of the classical electric field 𝐄(+)(𝐫, 𝑡) of equation (1.8), leaving the quantum
operator aspect of equation (1.9) apart. Within this thesis, our interest lies solely in the time-
frequency modes of light, hence we drop any spatial dependency of the fields and their spatial
mode is considered Gaussian. We write 𝐄(+)(𝐫, 𝑡) as 𝐄(+)(𝑡).

The laser output can be described in the time domain as a succession of pulses at regular
repetition interval 𝑇r, as represented in figure 2.3. This ensemble of pulses is called a train of
pulses. A single pulse can be simply modeled under the narrow-band approximation (see sub-
section 1.1.2) as the product of a plane wave e−i𝜔0𝑡 at frequency 𝜔0, called the carrier frequency,
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with a Gaussian envelope, denoted 𝐡(𝑡)𝐄(+)
pulse(𝑡) =  𝐡(𝑡) e−i𝜔0𝑡 (2.1)

with  the amplitude of the field.
To describe the train of pulses, we would then simply sum the pulses of the form given

by equation (2.1) at different times 𝑘𝑇r, with 𝑘 ∈ Z (as the train is spread on an infinite time
dimension). However, from one pulse to the next one, the carrier plane wave and envelope
are dephased by the quantity Δ𝜙CEP, called the carrier to envelope phase (CEP), as shown in
figure 2.3. The electric field at the output of the laser is then𝐄(+)(𝑡) = ∑𝑘∈Z 𝐡(𝑡 − 𝑘𝑇r) e−i𝜔0(𝑡−𝑘𝑇r)e−i𝑘Δ𝜙CEP (2.2)

This accumulating dephasing Δ𝜙CEP from pulse to pulse is due to the linear dispersion in
the cavity of the laser. Let us deriveΔ𝜙CEP using the phase 𝜙 accumulated in a cavity round-trip
by a single pulse, which is given by 𝜙(𝜔) = 𝐿𝑐 𝜔 𝑛(𝜔) (2.3)

where 𝑛(𝜔) is the effective refractive index1 inside the cavity of length 𝐿. Assuming the intra-
cavity dispersion is at most linear2, we can develop 𝜙 to the first order around 𝜔0𝜙(𝜔) = 𝜙(0) + (𝜔 − 𝜔0)𝜙(1) (2.4)

with 𝜙(0) = 𝐿𝑐 𝜔0𝑛(𝜔0)
and 𝜙(1) = 𝐿𝑐(𝑛(𝜔0) + 𝜔0 𝜕𝑛𝜕𝜔 ||||𝜔0)

which allows us to re-write equation (2.3) as

𝜙(𝜔) = 𝜔𝐿𝑣𝑔 + 𝜔0𝐿( 1𝑣𝜑 − 1𝑣𝑔) (2.5)

with 𝑣𝜑 = 𝑐𝑛0 and 𝑣𝑔 = 𝑐(𝑛0 + 𝜔0 𝜕𝑛𝜕𝜔 ||||𝜔0)−1
where the phase velocity 𝑣𝜑 corresponds to the speed of the plane wave e−i𝜔0𝑡 whereas the
group velocity 𝑣𝑔 corresponds to the speed of the envelope 𝐡(𝑡). In equation (2.5), we then
understand that at each round trip, the pulse phase accumulates a constant term, which we
recognize as the carrier to envelope phase Δ𝜙CEPΔ𝜙CEP = 𝜔0𝐿( 1𝑣𝜑 − 1𝑣𝑔) (2.6)

1When the cavity contains media of different index (air and cavity crystal), 𝑛(𝜔) is the mean index over the
cavity length.

2In practice femtosecond lasers are so broadband that non-linear dispersion needs to be compensated.
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Fig. 2.3 An optical frequency comb (OFC), in the temporal (top) and spectral (bot-
tom) domains. (top): The real electric field 𝐄(𝑡) = 𝐄(+)(𝑡) + 𝐄(−)(𝑡) is a train of single
pulses, with accumulating phase Δ𝜙CEP from pulse to pulse. (bottom): The spectral
intensity 𝐼 (𝜔) = |||F[𝐄(+)] (𝜔)|||2 is an evenly-spaced series of Dirac function peaks,
modulated by a Gaussian envelope. Figures from [Thiel 15], with adapted notations.
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which then arises from the difference of speed between the carrier plane wave and the enve-
lope.

Let us consider the frequency representation of the pulse of train 𝐄(+)(𝑡). As we show in
appendix A.3, taking the Fourier transform of equation (2.2) yields

F[𝐄(+)] (𝜔) = 𝜔r �̃�(𝜔 − 𝜔0)∑𝑘∈Z 𝛿(𝜔 − 𝑘𝜔r − 𝜔CEO) (2.7)

where 𝜔CEO = Δ𝜙CEP𝑇r , 𝜔r = 2𝜋𝑇r
and both F [⋅] and ⋅̃ represent the Fourier transform defined in appendix A.3.

The time-frequency representation of the laser output is then an optical frequency comb
(OFC) described by equation (2.7). An OFC is the product of the Gaussian function1 �̃�(𝜔−𝜔0)
with a series of delta Dirac functions evenly spaced by 𝜔r with an offset 𝜔CEO called the carrier
to envelope offset (CEO), illustrated by figure 2.3.

Each “tooth” of the OFC is a resonant longitudinal mode of the cavity, with frequency𝜔𝑘 = 𝑘𝜔r + 𝜔CEO (2.8)

By resonance in the cavity, each longitudinal mode 𝑘 has a spectral phase satisfying 𝜙(𝜔𝑘) =2𝜋𝑘. In particular, this resonance condition straightforwardly yields 𝑇r = 𝐿/𝑣𝑔 , using the
expression (2.5) of 𝜙(𝜔).

With a repetition rate of 𝑓r = 76MHz, with 𝑓r = 1/𝑇r, the total number of “teeth” is
estimated to 105 within the envelope FWHM of 10.3 nm2. Most optics then see a continuous
spectrum profile given by the Gaussian envelope �̃�(𝜔 − 𝜔0). In the following, we will refer
specifically to the comb structure of our light when necessary.

2.2.3 Group delay dispersion
After the laser cavity, an output pulse may encounter dispersive media with a refractive index
that varies with frequency. The larger its spectrum, the most sensitive it will be to these index
variations. These effects are then important to consider when working with ultrafast lasers.
Let us go one step further than in equation (2.4) in the development of the spectral phase
around 𝜔0 and write𝜙(𝜔) = 𝜙(0) + (𝜔 − 𝜔0)𝜙(1) + 12(𝜔 − 𝜔0)2𝜙(2) + ((𝜔 − 𝜔0)3) (2.9)

The zero-order 𝜙(0) and first-order 𝜙(1) terms represents respectively a relative phase and
a temporal delay with respect to the original pulse as detailed for the laser output in subsec-
tion 2.2.2. The second-order term 𝜙(2) is called group delay dispersion (GDD), group velocity
dispersion (GVD), or simply chirp. The GDD of a material leads to the time broadening of any
incoming pulse. We write the normalized Gaussian envelope of a pulse with zero GDD as𝐡(𝑡) = 1(2𝜋Δ𝑡2)1/4 e− 𝑡24Δ𝑡2 (2.10)

1The Fourier transform of a Gaussian function is again a Gaussian function.
2The estimation is equal to 𝑐𝑇rFWHM/𝜆20, with 𝜆0 = 795 nm and 𝑐 the speed of light.
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The broadening due to the GDD 𝜙(2) leads then to a new Gaussian envelope given, up to a
phase factor, by [Michel 21] 𝐡′(𝑡) = 1(2𝜋Δ𝑡′2)1/4 e− 𝑡24Δ𝑡′2 ei 𝑡2𝜙(2)8Δ𝑡′4 (2.11)

with Δ𝑡′ = Δ𝑡√1 +( 𝜙(2)2Δ𝑡2)2
(2.12)

When there is no GDD, Δ𝑡′ reachs its minimum value Δ𝑡 and we say the pulse is Fourier-
limited, and its envelope is given by equation (2.10). Equation (2.12) shows that the shorter the
initial pulse is, the broader the resulting pulse will be when going through dispersive media.
To give some insights to the reader, a Gaussian Fourier-limited pulse of duration Δ𝑡 = 90 fs (as
our laser outputs) will see its duration increased to Δ𝑡′ = 143 fs with a 𝜙(2) = 20 000 fs2 GDD,
while a Fourier-limited pulse of duration Δ𝑡 = 180 fs will see its duration increased to onlyΔ𝑡′ = 189 fs with the same GDD.

Another effect of the GDD stems from the quadratic temporal phase 𝑡2𝜙(2)/(8Δ𝑡′4) in equa-
tion (2.11). This term represents a linear change in the frequency of the carrier from the
beginning to the end of the pulse1.

In the laboratory, we need to avoid or compensate such broadening of the pulses, as it
may be detrimental to, for instance, the efficiency of the interference between two beams of
different GDD. Any common optical elements in the lab induce more or less positive group
delay dispersion 𝜙(2), such as lenses, beamsplitters, mirrors, etc... To cope with this, we usu-
ally use low GDD materials, such as N-BK7. However, this is often not enough to limit the
GDD, and another solution is to opt for compensation tools which features negative GDD.
For instance, we use a prism compressor at the output of the laser to compensate most of the
dispersion induced by the laser cavity, see the thesis [Pinel 10]. A less cumbersome and more
local solution consists in using mirrors with negative GDD coatings, a solution we adopt for
compensating the dispersion in the SPOPO cavity as described in later subsection 2.3.6. Yet
another possibility is to use a pulse shaper, and engineer a negative quadratic phase on the
light. See next subsection 2.2.4 for details on pulse shaping.

Another practical matter is the distance between two pulses. Each pair of pulses is spatially
separated by the length of the laser cavity, i.e. about 3.92m. Any time we need to make two
beams interfere, we then need to match the path of the two beams by a multiple of 3.92m,
with a precision given by a fraction of the spatial spread of the pulse, of the order of 10 µm.
This is achieved using µm precision delay lines, which translates mirrors.

2.2.4 Ultrafast pulse shaping
Aswe saw in section 2.1, we need to be able to choose the time-frequency mode of our light for
the generation of multimode states and its detection, so as to exploit in a controlled manner
the large spectrum resource of our pulsed light (see subsection 2.2.1). Femtosecond pulses
are extremely short, so that there exist no acousto-optic or electro-optic devices to directly
engineer the temporal properties of light. Instead, we can rely on using a pulse shaper, which

1The instantaneous frequency can be defined as the time derivative of the phase.
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is a device that can manipulate the temporal amplitude and phase of a pulse of light. Pulse
shaping techniques were originally proposed for pico-second pulses [Heritage 85] and applied
later to femto-second pulses [Weiner 88]. The technique we use was further elaborated in
[Monmayrant 05, Monmayrant 10, Weiner 11b].

Fig. 2.4 Scheme of a pulse shaper. The spectral components of the incoming pulse
are spatially separated with a grating and imaged onto an spatial light modulator
(SLM) which imprints a tunable phase shift on each of them. The spectral com-
ponents are then recombined in a symmetric way. The amplitude of each spectral
component is also engineered, see the main text.

Working principle. Figure 2.4 shows the general principle of a pulse shaper. It is composed
of two gratings, two lenses and one spatial light modulator (SLM), arranged in a 4-f line, with
f the focal length of the lenses. The incoming pulse sees its frequency components spatially
spread by the first grating. The result can then be thought as multiple beams, each associated
to a frequency, with a propagation direction angle which depends on the frequency. These
beams are then imaged onto the SLM by a lens positioned such that the grating and the SLM
are at the Fourier plans. Each frequency beam is then focused onto a spatial region of the SLM
“screen”. In other words, the frequency components of the input light are mapped to spatial
coordinates on the SLM screen.

The SLM screen is a 2D array of liquid crystals, called pixels, which apply a voltage-
controlled phase shift on the incident light. Up to the resolution of the SLM, the phase of
each frequency beam may then be chosen, after what the light undergoes the same transfor-
mations to recombine into a pulse with an altered spectral phase.

Shaping the spectral amplitude. More than just the phase, we can engineer the amplitude
of each frequency beam impinging the SLM screen. Since we can apply any spectral phase
pattern on the SLM, called SLMmask, we can in particular apply a pattern that mimics the one
of a grating. A grating relies on a repetitive phase pattern which results in a diffracted beam
due to interference patterns.
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We use the second dimension of the 2D SLM mask to imprint such grating (this spatial
dimension is then orthogonal to the figure 2.4 plan). The diffractive SLMmaskwe use is a “saw-
tooth” mask, pictured in figure 2.5 (left). The diffracted intensity at the output of such mask
depends on its optical depth 𝑑opt, as shown in figure 2.5 (right). For details on the properties
of this mask, see [Vaughan 05] or [Jacquard 17].

reflexion

diffrac�on

Fig. 2.5 Left: Cut of the SLM in the orthogonal direction with respect to figure 2.4.
The saw-tooth mask is pictured, and the optical depth 𝑑opt is defined. The mask
diffracts partially any incoming beam with an angle that depends on the saw-tooth
mask period. Right: Measured intensity of the diffracted beam as a function of the
saw-tooth mask optical depth 𝑑opt.
A saw-tooth mask is applied on each pixel column. Engineering the optical depth of each

column saw-tooth mask allows us to control the amplitude of each frequency beam impinging
the SLM. In figure 2.4, the different degrees of gray on the SLM screen illustrate the optical
depth applied on each local pixel column, resulting in different amplitude frequency beams at
the output.

Note that the output diffracted and non-diffracted beams come out with a different angle
(which depends on the common period of the saw-tooth masks), as pictured on figure 2.5. This
is used to dump the non-diffracted beam at the output of the pulse shaper by using a pinhole.

Pulse shaper resolution. To resume, a pulse shaper allows one to engineer the time-frequency
amplitude and phase of ultrafast light, up to its resolution. To characterize the resolution of
a pulse shaper, we use the complexity, which can be interpreted as the number of degrees of
freedom available to manipulate the input spectrum. We consider two complexities, the pixel
complexity and the optical complexity, such that the actual complexity of the pulse shaper is
equal to the minimum between those two complexities. While we won’t get into the details
and refer to [Michel 21] for a detailed complexity analysis, we will give some insights.

The pixel complexity is defined as the number of accessible frequency components taking
into account the number of pixels on the SLM screen and the spread of the spectral components
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on the screen. Given an SLM with a fixed number of pixel, the pixel complexity is maximized
when one manages to spread the input spectrum on the whole screen, choosing wisely the
focal length of the lens and the number of grooves of the grating.

Due to the optics of spatial Gaussian beams, the larger the input waist the smaller each
frequency beam is focused onto the SLM, as depicted in figure 2.4. A single frequency compo-
nent beam may then spread on several pixels on the SLM and smear the shaping, regardless of
the pixel complexity. We refer to this resolution limit as the optical complexity. A larger beam
then allows for a higher complexity, while being limited by the size of the optic elements or
the size of the SLM screen.

Setup technical details. In our setup the SLM is reflective, so that the 4-f line is folded onto
itself. This allows the use of the same lens and the same grating twice. Instead of a lens, we
use a cylindrical mirror, which acts as a reflective lens on the relevant plane. For insights on
how to properly align a pulse shaper, see the theses [Michel 21, Renault 22].

As shown in the section 2.1, three pulse shapers are used in the experiment. Table 2.1
shows the estimated complexity of each pulse shapers. During this PhD, the former gate SLM
broke. We replaced it with the former local oscillator (LO) SLM. A new SLM was installed on
the LO pulse shaper setup, with upgraded number of pixels, hence the higher pixel complexity.
Note though that the optical complexity remains the limiting factor, meaning that we should
be able to imprint up to 60 “features” in the LO spectrum.

Pixel complexity Optical complexity SLM reference
LO pulse shaper 218 60 LCOS-SLM X15213-02
Gate pulse shaper 136 60 LCOS-SLM X10468-02
Pump pulse shaper 44 42 LCOS-SLM X10468-05

Table 2.1: Complexities and reference of each pulse shaper used in the experiment pictured in
figure 2.1. All the SLM are from Hamamatsu. LO: local oscillator.

2.3 Generation of spectrallymultimode squeezed vacuum
states

In this section, we describe the source of Gaussian multimode states of the experiment, whose
design is represented in figure 2.1. The key concept of our source is the fact that parametric
down-conversion (PDC) process acts as a vacuum squeezer. To pump the crystal in which
occurs the PDC, we need a new field of carrier frequency 2𝜔0 where 𝜔0 is the carrier frequency
of our laser source. In our experiment, we do not use a second laser to generate such pump
field, as it would add the challenge of stabilizing it to a common reference with our main laser.
Instead, we use another non-linear process, namely second-harmonic generation (SHG), which
is described in subsection 2.3.1. In the subsection 2.3.2, we describe how we enhance the PDC
process using a cavity surrounding it, forming a synchronously pumped optical parametric
oscillator (SPOPO).
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While we detail the non-linear process used for the photon subtraction and addition op-
erations in later chapter 3, in this section we won’t get into the details of the SHG and PDC
processes that both occur in the BiBO crystal and refer the reader to [Ghotbi 04] for a complete
analysis of the BiBO optical properties, along with [Ghotbi 05] for SHG and [Ghotbi 06] for
PDC.

2.3.1 Pump generation
In order to bring energy to the squeezing process of our SPOPO, we generate the pump beam
by second-harmonic generation (SHG) of our laser source in the BiBO crystal of module 1.a)
in figure 2.1. See [Ghotbi 05] for technical details on the phase-matching conditions of SHG
in BiBO.

As we saw in section 2.2, our laser output is an optical frequency comb which contains
many frequency components𝜔𝑘 = 𝜔CEO+𝑘 𝜔r. In the SHG process, each frequency component𝜔𝑘 of the input comb interacts with any other 𝜔𝑘′ of the same input comb, generating the sum
frequency component 𝜔𝑘 + 𝜔𝑘′ in the output comb . We deduce from the regular structure of
the comb that the frequency components of the newly generated comb are 𝜔𝑘 = 2𝜔CEO + 𝑘 𝜔r
with 𝑘 ∈ Z, while the new carrier frequency is 2𝜔0. In particular, the generated frequency
comb has the same repetition rate as the input comb.

Let us now consider the envelope of the generated pump field in the frequency domain�̃�p(𝜔). The expected spectral profile of the pump envelope is given by�̃�p(𝜔) ∝ ∫ ∞
0 d𝜔′ �̃�(𝜔′) �̃�(𝜔 − 𝜔′)ΦSHG(𝜔, 𝜔′) (2.13)

where �̃�(𝜔) is the envelope of the laser field, and ΦSHG(𝜔, 𝜔′) is the phase-matching func-
tion of the SHG process. In our experiment, the input spectrum has a 10.3 nm full width half
maximum (FWHM), and we use a 0.3mm long BiBO crystal. A Gaussian fit of the measured
pump spectrum shown on figure 2.6 yields a FWHM of 3.0 nm. If the phase-matching functionΦSHG(𝜔, 𝜔′)was sufficiently broad, the pump envelope �̃�p(𝜔)would be then proportional to the
self-convolution of the input envelope ∫ ∞0 d𝜔′ �̃�(𝜔′) �̃�(𝜔 − 𝜔′). The resulting Gaussian would
have a FWHM given by the one of the input divided by 2√2, hence 3.64 nm. The discrepancy
with the measured FWHM indicates that the phase-matching function is too narrow and acts
as a spectral filter. While the bandwidth of the phase-matching function ΦSHG(𝜔, 𝜔′) may be
increased by reducing the crystal’s length, it would decrease the output power. The crystal
length of 0.3mm is a good trade-off between power and bandwidth [Michel 21, de Araujo 12].

2.3.2 Synchronously pumped optical parametric oscillator
We now describe the generation of a spectrally multimode Gaussian state in the module 1.c) in
figure 2.1. A photo of the actual setup is given in figure 2.7 (a), along with a principle scheme
in figure 2.7 (b). In this subsection, we give first a brief description of the setup, while in the
subsequent subsections we characterizing the output states.

In figure 2.7 (b), the cavity along with the non-linear crystal forms an ensemble called
an optical parametric oscillator (OPO). In the BiBO crystal, the pump at carrier frequency 2𝜔0
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Fig. 2.6 The measured intensity spectrum of the normalized pump envelope|||�̃�p(𝜔)|||2, with respect to the wavelength 𝜆 = 2𝜋𝑐/𝜔. A Gaussian fit yields a FWHM
of 3.0 nm.

Fig. 2.7 (a) Photo of the synchronously pumped optical parametric oscillator
(SPOPO) of the experiment. The mirrors are labeled from M1 to M13, see the text for
a description of their roles. (b) Principle scheme of the SPOPO with an input coupler,
an output coupler and a BiBO non-linear crystal. The pump beam (in blue) powers
the crystal, generating resonant squeezed vacuum (in dashed red) in the cavity. The
annihilation operators of the electric field at different positions are represented. The
subscripts i, o, L, and vac stand respectively for input, output, losses, and vacuum.
The subscripts 1, 2, 3 denote useful other positions in the cavity for the computation
in subsection 2.3.4. Note that the pump beam is going through the mirror M2 in the
real setup (a).
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and the input vacuum at𝜔0 interact through parametric down-conversion (PDC), resulting in a
squeezed vacuum state at𝜔0. The OPO is chosen to enhance the squeezed vacuum in the cavity
by matching the mirrors’ broadband operating frequency range around 𝜔0. As the squeezed
vacuum inherits the spectral comb structure from the pump, we set the cavity length to match
the train of pulses repetition rate 𝑓r = 1/𝑇r. It then takes one cavity round-trip to a newly
generated squeezed vacuum pulse before another one is generated by the next pump pulse.
All generated pulses are then temporally overlapping, resulting in enhancing the squeezing
strength. For this timely reason, the resulting system is called synchronously pumped optical
parametric oscillator (SPOPO).

Matching the cavity length to the repetition rate 𝑓r = 76MHz means building a cavity of3.92m length, the length of the MIRA laser cavity. In practice, we fold the cavity on itself
for better compaction of the available optical table space, resulting in using 13 mirrors, see
figure 2.7 (a). Some of these mirrors have other roles than simply reflecting the resonant
beam:

• M1 is the input coupler with a reflectivity of 𝑟2i = 99.85%.
• M10 is the output coupler, with available reflectivity 𝑟2o = 80%, 70%, or 50%, depending
on the optics we want to use.

• M2 and M13 are concave spherical mirrors with a curvature radius of 250mm. M4 and
M11 are also concave spherical mirrors but with a larger curvature radius of 6m. They
are used to focus the resonant beam in the 2mm long BiBO crystal to enhance the non-
linear effect. The pump is also focused with a matching waist using lenses before the
cavity, not shown in the figure.

• M3 and M7 compensate 150 fs2 group delay dispersion thanks to their coating. For more
on intra-cavity dispersion compensation, see 2.3.6.

To guarantee that the SPOPO cavity is resonant with the central wavelength of the Mira
laser, a counter-propagating beam, not depicted in figure 2.7, is measured to supply feedback
to a locking system based on the Pound-Drever-Hall (PDH) technique [Drever 83]. The piezo-
electric mirror M7 allows then to lock the cavity length in real time. For more details on the
PDH technique applied on the SPOPO, see [Renault 22]. For details on the effect of cavity
length mismatch on the output intensity, taking into account the comb structure of the light,
see [Michel 21].

The general description of the SPOPO provided above does not shed light on the features
of the output states. In the subsequent subsections, we start from a simple model without
cavity nor losses. Then, we refine the model to take into account the cavity, the losses and
finally intra-cavity dispersion (defined in subsection 2.2.3), progressively delving deeper into
the physics that shape the SPOPO output states.

2.3.3 Parametric down-conversion as a multimode squeezing opera-
tion

We describe here the single-pass parametric down-conversion (PDC) process, without a cavity
surrounding it. The PDC occurs in a non-linear BiBO crystal (see [Ghotbi 06] for non-linear
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optical properties of BiBO for PDC). The crystal is pumped by an optical frequency comb with
“teeth” at frequencies 𝜔p,𝑘 = 2𝜔CEO+ 𝑘 𝜔r and carrier frequency 2𝜔0 (see the description of the
pump generation in subsection 2.3.1).

At the photon level, each pump photon of frequency 𝜔p,𝑘 may convert into two correlated
photons at lower frequencies 𝜔s,𝑛 and 𝜔s,𝑚 such that 𝜔p,𝑘 = 𝜔s,𝑛+𝜔s,𝑚. Taking into account the
comb structure of the pump 𝜔p,𝑘 = 2𝜔CEO + 𝑘 𝜔r, the down-converted frequencies also follow
a comb structure with 𝜔s,𝑛 = 𝜔CEO + 𝑛𝜔r and 𝜔s,𝑚 = 𝜔CEO + 𝑚𝜔r. The energy conservation
equation 𝜔p,𝑘 = 𝜔s,𝑛+𝜔s,𝑚 can then be re-written 𝑘 = 𝑛+𝑚. The comb conversion is illustrated
in figure 2.8. The generated pulsed light is referred to as the signal.

Fig. 2.8 Principle scheme of the parametric down conversion of a frequency comb
with carrier frequency 2𝜔0. A photon from a given “tooth” of the comb proba-
bilistically down-converts to a pair of entangled photons, conserving energy. The
teeth of the resulting down-converted comb are then highly entangled. Figure from
[Dufour 18] with suitable notations.

Let us write the Hamiltonian �̂�PDC of the PDC process. We describe the pump field in the
classical form of equation (2.7), denoting �̃�p(𝜔) its spectral envelope. We assume that there
are no losses for both the pump and the signal. Assuming that the depletion of the pump is
negligible, the Hamiltonian writes�̂�PDC ∝ i∑𝑛,𝑚 𝐽𝑛𝑚(𝜔s,𝑛, 𝜔s,𝑚) �̂�†𝑛 �̂�†𝑚 + h.c. (2.14)

with 𝐽𝑛𝑚(𝜔s,𝑛, 𝜔s,𝑚) = �̃�p(𝜔s,𝑛 + 𝜔s,𝑚) ΦPDC(𝜔s,𝑛, 𝜔s,𝑚)
where ΦPDC is the PDC phase-matching function, �̂�†𝑛 and �̂�†𝑛 are the creation operators associ-
ated to the signal frequencies 𝜔s,𝑛 and 𝜔s,𝑚, and h.c. stands for Hermitian conjugate. The func-
tion 𝐽𝑛𝑚(𝜔s,𝑛, 𝜔s,𝑚) is called the joint spectral amplitude (JSA) [Grice 01, Mosley 08]. It is pos-
sible to perform an eigendecomposition of the JSA using Mercer’s theorem (see [Eckstein 12,
de Araujo 12]), as 𝐽𝑛𝑚(𝜔s,𝑛, 𝜔s,𝑚) is real and symmetric. LetΛ𝑛 be the 𝑛-th eigenvalue associated
with the eigenmode �⃗�𝑛 and the annihilation operator 𝑠𝑛. The eigendecomposition of the JSA
allows us to write the Hamiltonian as�̂�PDC ∝ i∑𝑛 Λ𝑛 𝑠†2𝑛 + h.c. (2.15)
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The eigenmodes {�⃗�𝑛} are called the supermodes [de Araujo 12]. From equation (2.15), we can
deduce the evolution operator of the PDC process using �̂�PDC = exp(−i�̂�PDC/(2𝜎20))1. Since
the Hamiltonian is written as a sum of operators that commute between each other, we can
write �̂�PDC = 𝑆1(𝜅Λ1) ⊗⋯ ⊗ 𝑆𝑁 (𝜅Λ𝑁 ) with 𝑆𝑛(𝜅Λ𝑛) = e𝜅Λ𝑛(𝑠2𝑛−𝑠†2𝑛 )/2 (2.16)

where 𝜅 is a quantity which depends on the crystal length and non-linearity and on the pump
power (see [Michel 21] for an explicit expression of 𝜅), and we recognize each 𝑆𝑛(𝜅Λ𝑛) as
a squeezing operator with squeezing parameter 𝜅Λ𝑛 as defined in subsection 1.3.3. Equa-
tion (2.16) shows that the PDC process is equivalent to the action of independent squeezing
operators in the supermode basis. Since the input state at the signal frequencies is the vacuum
state, the output state is then a multimode squeezed vacuum state in the supermode basis.

In subsection 1.3.6, we studied in detail the two-mode squeezed vacuum states. In partic-
ular, it was shown that a two-mode squeezed vacuum state becomes a two-mode entangled
state upon well chosen change of mode basis. Similarly, the change of mode basis from the su-
permode basis to the plane wave mode basis allows us to see this state as a highly multipartite
entangled state, as shown in [Patera 08]. This stems from the PDC process itself, as described
in figure 2.8. Other changes of mode basis can be engineered to partially transfer squeezing
resources to entanglement resources, resulting in an engineered graph structure with custom
entanglement links between the modes, as shown in [Cai 17]. In this manuscript, we won’t
get into the details of the multimode entanglement properties of our Gaussian source.

Consistently the associated covariance matrix is given by the pure version of the Bloch-
Messiah-Williamson decomposition, see equation (1.96). The change of mode basis 𝐎1 then
defines the supermode basis, such that the covariance matrix is simply given in the supermode
basis by 𝐕PDC = 𝜎20 𝐊2

PDC (2.17)

with 𝐊PDC the symplectic matrix representing �̂�PDC, defined by𝐊PDC = exp[diag(−𝜅Λ1,⋯ ,−𝜅Λ𝑁 , 𝜅Λ1,⋯ , 𝜅Λ𝑁 )] (2.18)

The eigenvalues and first supermodes of the decomposition of the JSA corresponding to our
experimental parameters are shown in figure 2.9. On the graph (b), the sign of the eigenvalues
alternates between positive-valued and negative-valued, meaning that each operator 𝑆𝑛(𝜅Λ𝑛)
associated to an even-numbered (resp. odd-numbered) supermode �⃗�𝑛 squeezes the quadrature�̂�𝑛 (resp. �̂�𝑛). The distribution of the eigenvalues {Λ𝑛} is very broad, meaning that the process
is very multimode. A convenient quantity to compute is the Schmidt number 𝐾 , which yields
the effective number of modes of the process [Ekert 95]. 𝐾 is defined as

𝐾 = (∑𝑛 Λ𝑛)2∑𝑛 Λ2𝑛 (2.19)

1The Hamiltonian �̂�PDC is a dimensionless effective Hamiltonian which takes into account the physical prop-
erties of the crystal such as its length.
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The Schmidt number of the PDC process is equal to 95 in our experiment. This makes it
a significantly large multimode resource. However, using this process as a single pass, i.e.
without cavity, would yield low squeezing values. An estimation the constant 𝜅 allows us to
estimate the squeezing factors to values lower than 0.3 dB. Such squeezing factors are too low
for our desired application, as shown in later chapter 4.

On the graph 2.9 (b), the shape of each supermode �⃗�𝑛 is close to the shape of the Hermite-
Gaussian mode HG𝑛 defined in appendix A.2. A Gaussian fit of the first supermode yields a
FWHM of 4.14 nm.
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Fig. 2.9 Simulation of the PDC process in a a 2mm long BiBO crystal, with a pump
envelope of 3.0 nm FWHM. (a): Eigenvalues Λ𝑛 for the first 200 supermodes. (b):
Amplitude of the first four normalized supermodes �̃�𝑛(𝜔) against 𝜆 = 2𝜋𝑐/𝜔. The
first supermode features a FWHM of 4.14 nm.

2.3.4 Single-mode optical parametric oscillator
We now consider the crystal and the cavity around it, i.e. the SPOPO, taking into account
intra-cavity losses but assuming no intra-cavity dispersion. This model was thoroughly stud-
ied in [Jiang 12, de Araujo 12, Patera 10], in particular using the symplectic formalism. Here
we adopt a pragmatic approach which allows us to study the effect of intra-cavity losses, and
discuss the purity of the output state. For a more detailed analysis, we thus refer to the men-
tioned article and theses.

Assuming no intra-cavity dispersion means frequency independent intra-cavity losses,
which apply equally on every parts of the spectrum of the resonant light. In particular, this
means that the supermodes are still the eigenmodes of the Hamiltonian of this SPOPO model,
while the eigenvalues do change, or equivalently the squeezing factors do change (see equa-
tion (2.16)).

As we expect an equivalent effect on each supermode, let us consider a single-mode opti-
cal parametric oscillator (OPO). We then model the PDC process as a single-mode squeezing
operation 𝑆(𝜁 ). We derive the input-output relations for the annihilation operators of the field
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at play in figure 2.7 (b), using the beamsplitter and squeezing operations in the Heisenberg
picture. We have the following (using in particular equation (1.70)):⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

�̂�1 = 𝑡i�̂�i + 𝑟i�̂�3�̂�L = 𝑡i�̂�3 − 𝑟i�̂�i�̂�2 = cosh(𝜁 ) �̂�1 − sinh(𝜁 ) �̂�†1�̂�o = 𝑡o�̂�2 − 𝑟o�̂�vac�̂�3 = 𝑡o�̂�vac + 𝑟o�̂�2
(2.20)

We then deduce the expressions of the output quadrature operators �̂�o and �̂�o as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
�̂�o = 𝑡i𝑡oe−𝜁 �̂�i + (𝑟ie−𝜁 − 𝑟o)�̂�vac1 − 𝑟i𝑟oe−𝜁�̂�o = 𝑡i𝑡oe𝜁 �̂�i + (𝑟ie𝜁 − 𝑟o)�̂�vac1 − 𝑟i𝑟oe𝜁 (2.21)

Considering the input fields �̂�i and �̂�vac to be in the vacuum state, the quadrature means ⟨�̂�o⟩
and ⟨�̂�o⟩ are then null from equation (2.21). Since there are no correlations between the two
vacuum inputs, we obtain the output quadrature variances:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⟨Δ2�̂�o⟩ = 𝜎20 𝑡2i 𝑡2oe−2𝜁 + (𝑟ie−𝜁 − 𝑟o)2(1 − 𝑟i𝑟oe−𝜁 )2⟨Δ2�̂�o⟩ = 𝜎20 𝑡2i 𝑡2oe2𝜁 + (𝑟ie𝜁 − 𝑟o)2(1 − 𝑟i𝑟oe𝜁 )2
(2.22)

We define the cavity threshold 𝜁th as the squeezing parameter for which the variance ⟨Δ2�̂�o⟩
diverges in equation (2.22). This yields 𝜁th = ln( 1𝑟i𝑟o) (2.23)

Physically, the gain of the non-linear medium equals the losses when the threshold 𝜁th is
reached, meaning that the OPO oscillates and lases. In this work, we are only interested in the
below-threshold regime 𝜁 < 𝜁th, where the OPO acts as an enhanced squeezer1. The squared
squeezing parameter 𝜁 2 is proportional to the pump power p = ||p||2 (see e.g. [Michel 21]).
We can then conveniently express the ratio 𝜁 2/𝜁 2th as𝜁 2𝜁 2th = pp,th

(2.24)

In practice, the squeezing parameter of the OPO is then experimentally controlled by setting
the pump power.

1Strictly speaking, since the cavity operates below-threshold and does not oscillate, the cavity is then called
optical parametric amplifier (OPA) in the literature. To avoid confusion with previous works, we will maintain
the wording optical parametric oscillator (OPO) in this manuscript.
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In equations (2.21), a small amount of losses is already part of the model, from the non-
unity input reflectivity 𝑟2i = 99.85%, leading to a non-vacuum loss field �̂�L. We can further add
losses to the model by taking a value of 𝑟2i smaller than 99.85%. Using the notation 𝜈 for the
additional intra-cavity losses, we write the input reflectivity 𝑟2i = 0.9985 − 𝜈.

The output of the single-mode OPO is a lossy squeezed vacuum state, with asymmetric
squeezing of the quadrature distributions as shown in the result (2.22). We define the effective
squeezing factor 𝑠− and antisqueezing factor 𝑠+, along with their decibel version, as𝑠− = ⟨Δ2�̂�o⟩ /𝜎20 and 𝑠+ = ⟨Δ2�̂�o⟩ /𝜎20 (2.25)𝑠±dB = 10 log10(𝑠±)
Since the output lossy squeezed state is a Gaussian state, we can also directly deduce the output
purity from equation (1.53): 𝜇o = 1√𝑠−𝑠+ (2.26)

In figure 2.10, we show the squeezing factors in (a) and the output purity in (b) against the
power ratio p/p,th, for the output coupler of reflectivity 𝑟2o = 80%. We chose the intra-cavity
loss 𝜈 values 0%, 3%, 10% as the usual measured losses in our cavity are around 3%.
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Fig. 2.10 Simulation of a single-mode OPO, at 𝑟2o = 80%, for three intra-cavity ad-
ditional loss 𝜈 values: 0% (black), 3% (black), and 10% (red). The total intra-cavity
losses are 0.0015 + 𝜈. (a): the squeezing factor 𝑠−dB (solid lines) and the antisqueezing
factor 𝑠+dB (dashed lines) against the normalized to threshold pump power p/p,th.
The three dashed lines diverge at the threshold, while the solid black curve converges
to −22 dB. (b): the output purity 𝜇o against p/p,th. The purple bold curves corre-
sponds to the purple curves in figure 2.11.

In graph 2.10 (a), abovep/p,th = 0.5, there is not much to gain, as the squeezing factor 𝑠−dB
saturates. At 𝜈 = 3%, we can see that this saturation is almost −10 dB, which is high, consider-
ing the record is −15 dB [Vahlbruch 16]. However, we can see on graph 2.10 (b) that the purity
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drops quickly with the pump power, which is coherent with the fact that the antisqueezing
is diverging while the squeezing is saturating on graph (a). As we will see in chapter 4, high
output purity plays a major role in the success of non-Gaussian certification.

Let us study the model at fixed pump power p. Fixing the pump power allows us to
better understand the influence of the other parameters in the model. We measured p,th =156mW for a reflectivity of 𝑟2o = 80% and a measured intra-cavity loss of 3%. Let us choose
a reasonable pump power of p = 40.0mW. We can then use these measurements to deduce
the corresponding squeezing parameter 𝜁 . Using equations (2.23) and (2.24), we obtain 𝜁 ≃6.46 × 10−2. Using the model (2.22), we can then compute the purity 𝜇o and squeezing factors𝑠±dB for different losses 𝜈 at fixed pump power.

Let us come back to figure 2.10. The pump ratio is then p/p,th = 0.256 at 𝜈 = 3%, for
which we can read an expected squeezing factor 𝑠−dB of about −7 dB on graph 2.10 (a), and a
purity 𝜇o of about 0.76, on graph 2.10 (b). Now, if we change the loss parameter 𝜈, the pump
threshold power p,th is modified accordingly to equation (2.23). At fixed pump power p,
the ratio p/p,th is then varying with the loss parameter 𝜈. The resulting curve is plotted in
purple on both graphs in figure 2.10. For comparison, we performed the same simulation for
reflecitvities 𝑟2o = 70% and 𝑟2o = 50%, see respectively figure D.1 and figure D.2 in appendix D.1.
For an easier graph reading, we reproduce the curves of fixed pump power against the losses
in figure 2.11 for all considered reflectivities.
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Fig. 2.11 Simulation of a single-mode OPO at fixed pump power p = 40mW, with
three available output reflectivities 𝑟2o : 80% (purple), 70% (blue), and 50% (green). (a):
the squeezing factor 𝑠−dB (solid lines) and the antisqueezing factor 𝑠+dB (dashed lines)
against the additional losses 𝜈. (b): the output purity 𝜇o against the additional losses𝜈. Note that the total intra-cavity losses are 0.0015 + 𝜈.
In graph 2.11 (b), the output purity curves are always higher than 0.74, and feature a non-

trivial shape, owing to the aforementioned dependency of the pump threshold with losses1. In
1For losses higher than 6% at 𝑟2o = 80% for example, the decrease in purity due to losses is lower than the

increase of purity due to the pump threshold increasing with losses. The purity goes indeed to 1 for a pump
threshold going to zero, see graph 2.10 (a).
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graph 2.11 (a), the absolute squeezing ||𝑠±dB|| remains lower than 12 dB. Increasing the reflectivity𝑟2o reduces the squeezing ||𝑠−dB|| but improves the purity 𝜇o and its resilience to intra-cavity ad-
ditional losses 𝜈. As we prioritize purity for this thesis’ experiment, we will therefore choose
the 𝑟2o = 50% output coupler1. Reading the green curve at 𝜈 = 3%, we can remember from this
analysis that we can theoretically expect at the output of our single-mode OPO a squeezing
factor of about −3 dB with a purity above 0.99, in our experimental conditions.

2.3.5 Spectrally multimode optical parametric oscillator
Let us briefly summarize the previous results. The lossless PDC process is by itself a multi-
mode squeezing operation in the supermode basis. Modeling the SPOPO without intra-cavity
dispersion allows us to describe the addition of a cavity around the PDC crystal as a squeezing
factor enhancement for each supermode independently. We refined the model by adding intra-
cavity losses, so that the output state is then understood as a lossy multimode squeezed state.
In other words, the SPOPO is a collection of single-mode lossy OPO (studied in the previous
subsection) each acting on a different supermode, or equivalently a spectrally multimode OPO.

The output state is nowwell described by the non-pure Bloch-Messiah-Williamson decom-
position (1.95) of its covariance matrix. Representing the output covariance matrix 𝐕SPOPO in
the supermode basis yields 𝐕SPOPO = 𝐊PDC𝐎2𝐕W𝐎⊤2𝐊PDC (2.27)

where𝐊PDC is defined in equation (2.17),𝐎2 is a change of mode basis and𝐕W is theWilliamson
covariance matrix. The losses modeled in the previous section can be seen as independent
lossy channels, resulting in the collection of independent thermal states represented by 𝐕W.
These channels are not necessarily independent from one mode to another as we assumed. Up
to now, we then only considered the trivial change of basis 𝐎2 = 12𝑁 , assuming frequency-
independent losses, so that equation (2.27) writes𝐕nodisp

SPOPO = 𝐊PDC 𝐕W𝐊PDC (2.28)

where the superscript nodisp means no dispersion. Equation (2.28) provides the output state of
the SPOPO when considered as a lossy spectrally multimode OPO.

It is worth noting that 𝐕W is not proportional to the identity matrix in equation (2.28).
First, each supermode associated squeezing factor is 𝜅Λ𝑛 from equation (2.16). This squeezing
factor is then proportional to the pump power, and can be related to the normalized pump
power in figure 2.10 (b). We deduce that two different supermodes with eigenvalues Λ𝑛 ≠ Λ𝑚
have then different output purities, and thus different Williamson eigenvalues in 𝐕W for the
same intra-cavity losses.

When taking into account the intra-cavity dispersion, the SPOPO covariance matrix is
in general given by equation (2.27), and more work needs to be done to get more insight
on the effects of the dispersion. Simulations were run taking into account the dispersion in
[Michel 21], see figure 2.12. These simulations rely on the symplecticmodel of the SPOPO from
[Jiang 12], taking the general symplectic transformation including dispersion and performing

1Since the cavity alignment is easier at 𝑟o = 80%, most of our calibration measurements are done at 𝑟o = 80%.
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its Bloch-Messiah decomposition, which we don’t reproduce here. Interestingly, one can see
in figure 2.12 that the dominant effects of intra-cavity dispersion is spectrally filtering the
supermodes, and lowering the associated squeezing factors.

Fig. 2.12 Simulation of the SPOPO output squeezing factors (a) and the absolute
amplitude of the first supermodes (b-d) with intra-cavity dispersion for 𝑟2o = 80%, a2.8 nm FWHMGaussian pump, and a 2mm long BiBO crystal. The displayed FWHM
values are in intensity. Figure from [Michel 21].

In our setup, a resonant pulse goes through about 417 fs2 group delay dispersion (GDD)
in one cavity round-trip: 83 fs2 from the air, 334 fs2 from the 2mm long BiBO crystal, while
all the mirrors of the cavity induce negligible dispersion. As one can see from figure 2.12, the417 fs2 intra-cavity dispersion is expected to drastically reduce the number of supermodes the
SPOPO which can be generated with squeezing factors significantly higher than zero. There
is then a high motivation to try and compensate this intra-cavity dispersion. In practice, we
use negative GDD mirrors to compensate the dispersion as mentioned in subsection 2.2.3. In
the next subsection, we model the compensation of negative GDD mirrors, and show how we
can improve the SPOPO output eigenvalue distribution using well-suited compensation.
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2.3.6 Intra-cavity dispersion compensation

At the beginning of my PhD, the dispersion was compensated using a negative group delay
dispersion (GDD) coating on both mirrors M3 and M7, see figure 2.7. We refer to this coating
115065 from Layertech by the name “C80”, as it features a mean compensation of about −80 fs2
GDD over our bandwidth. With three cumulative reflections per round-trip (one on M3 and
two onM7), the total mean GDD compensation is about −320 fs2. For limitations that we show
below, we turned to another coating of the same constructor (but not referenced online1),
which we refer to as “C200” (with similar meaning). With two reflections, we show that the
coating C200 further improves the GDD compensation of the SPOPO.

Using the mean GDD value of the coatings would be a poor approximation, since the coat-
ings induce non-negligible higher order spectral phase terms than 𝜙(2) in equation (2.9). In
figure 2.13 (a), the second derivative of the spectral phase 𝜕2𝜙𝜕𝜔2 of the mirrors is plotted. The
data was measured by the constructor on our batch for coating C200, while for C50 we used
the typical GDD also provided by the constructor. For reference, we plot the constant −417 fs2
GDD that would be required for ideal compensation. Note that we used a larger wavelength
range than in the plot 2.9 where the first four supermodes are displayed. We indeed aim for a
compensation bandwidth of around 30 nm to host tens of supermodes (whose width increases
with the mode number 𝑛, see appendix A.2).
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Fig. 2.13 (a) Group delay dispersion (GDD) of both coatings C80 (green) and C200
(blue) with respectively three reflections and two reflections. The second derivative
of the spectral phase 𝜕2𝜙𝜕𝜔2 is plotted against the wavelength 𝜆 = 2𝜋𝑐/𝜔. The horizontal
lines represent the ideal dispersion case (purple) at −417 fs2 and the no-dispersion
case (brown) at 0 fs2. (b) Eigenvalues from the simulation of the SPOPO taking into
account intra-cavity dispersion, with a reflectivity of 𝑟2o = 50% and no losses. The
dispersion is compensated using the different profiles given in graph (a).

To compare the compensation of these coatings, we perform the simulation of the SPOPO

1For reference, it’s the batch numbered “C116I009”.
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with a dispersion given by:𝜕2𝜙𝜕𝜔2 = 𝜙(2)air + 𝜙(2)crystal + 𝜕2𝜙CX𝜕𝜔2 (2.29)

with 𝜙(2)air = 83.3 fs2 and 𝜙(2)crystal = 333.8 fs2
and 𝜙CX(𝜔) the spectral phase of either coating C80 or C200, containing also the negligible
spectral phase induced by the low-GDD mirrors of the cavity. In the simulation, we integrate
twice equation (2.29), arbitrarily choosing the integration constants. The results are shown in
figure 2.13 (b). Note that we chose an output coupler reflectivity of 𝑟2o = 50%, which differs
from the simulation in figure 2.12. For comparison purposes, we added two simulations: one
without compensating coating, and another with ideal compensation. One can see that the
eigenvalue distribution using coating C200 is significantly broader than the one using C80.
A more quantitative assessment is done computing the Schmidt number 𝐾 (defined in equa-
tion (2.19)) for each compensation case, with results displayed in table 2.2. From both the graph
and the table, we see a clear improvement in the Schmidt number from using the coating C200
instead of the coating C80.

GDD compensation None 3× C80 2× C200 Ideal
Schmidt number 𝐾 27 31 40 72

Table 2.2: Schmidt number for different compensation scenarios pictured in figure 2.13.

The coating C80 doesn’t perform much better than the no-compensation case. We de-
duce that the improvement from compensation is quite sensitive to the closeness of the GDD
compensation to the ideal constant compensation in figure 2.13 (a).

One might argue that we could have simply stacked more reflections of the coating C80,
so as to reach a mean value close to the target −417 fs2. Indeed with 5 reflections of C80, the
mean GDD is then of about −383 fs2. A simulation with such compensation yields a Schmidt
number of 41, similar to the case of C200. However, stacking more reflections increases the
intra-cavity losses, as compensating coatings are slightly less reflective than standard ones,
further optimized for high reflectivity. For this reason, using two reflections on coating C200
is our best option.

It is worth noting that one can deduce from the eigenvalue distribution in graph 2.13 (b)
the expected squeezing using figure 2.10. The expected squeezing factor of the first eigen-
mode reads with the measured pump power ratio p/p,th as the abscissa, while the expected
squeezing factor of subsequent supermodes reads with the abscissa Λ𝑛 × p/p,th with Λ𝑛 the𝑛-th eigenvalue, where we use the fact that the eigenvalues are proportional to the squeezing
parameters from equation (2.16) and the pump power ratio equal to the squeezing parameter
ratio from equation (2.24).

Note, however, that one needs to take into account any subsequent losses on the path to
detection to infer the actual measured value in the lab (see subsection 2.5.3 for a measurement
example). Also, measuring higher order mode than the first mode is challenging as the modes
increase in width with the mode number: see subsection 2.6.2 for more on how to cope with
this limitation.

76



CHAPTER 2. EXPERIMENTAL GENERATION AND DETECTION OF SPECTRALLY MULTIMODE QUANTUM
STATES

As of writing this thesis, we replaced the mirrorM3 by a non-compensatingmirror, and the
mirror M7 by a C200 coated mirror, resulting in total in two C200 reflections. Wemeasured the
output spectrum of the SPOPO just after threshold before and after the change, see figure 2.14.
From theory, only the first SPOPO mode oscillates above threshold [Chalopin 10]. Gaussian
fits of the spectrums in figure 2.14 yield 8.5 nm FWHM before the change and 15 nm after. We
deduce then that the FWHM of the first supermode increased indeed significantly.
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Fig. 2.14 Measured spectrums of the output light of the SPOPO, right above thresh-
old, for compensation from coatings C80 (green) and C200 (blue) with respectively
three reflections and two reflections. The spectral intensity is plotted against the
wavelength 𝜆 = 2𝜋𝑐/𝜔. The output coupler reflectivity is 80%.
Note the discrepancy between the measured 15 nm FWHM of the first supermode above

threshold in figure 2.14 compared with the expected 4.2 nm FWHM from the simulations, in
either graph 2.9 (b) or graph 2.12 (b). A more advanced model may result in a better match
between theory and observations. Potential improvements include taking into account a spa-
tial mismatch between the cavity mode and the mode of the squeezed vacuum, and the effect
of walk-off angle in the PDC process. The larger effective FWHM is expected to result in
an effective significantly reduced Schmidt number, since larger modes are more sensible to
dispersion.

For further prospects on the intra-cavity dispersion compensation, we would suggest for
example to model more precisely the dispersion induced by the air and the crystal, to take into
account higher order dispersion terms than only 𝜙(2). Note that another potential improvement
of the SPOPO is to enclose it under vacuum, removing the air induced dispersion along with a
better overall stability. It is indeed easier to find commercial compensating coatings at lower
values of GDD than the current 417 fs2, or requires less reflections. However, going to vacuum
requires many efforts at start, and again for any subsequent change of the cavity.

2.4 Homodyne detection
In figure 2.1, the double homodyne detector 3.c) is composed of two homodyne detectors.
Each homodyne detector measures one of the two beams the input signal is split into. For
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this reason, the double homodyne detection inherits most of the properties of the homodyne
detection. As shown in later chapter 4, the double homodyne detector can be configured to
act as a single homodyne detector, property that we use for the measurements shown in later
subsection 2.5.3.

In this section, we describe the homodyne detection. We additionally show that the signal
mode measured by the homodyne detection is given by the local oscillator mode, which we
can engineer with its pulse shaper 3.b). Lastly, we investigate the various sources of losses in
the homodyne detection scheme.

2.4.1 Working principle

The homodyne detection is a common technique used to measure the quantum fluctuations of a
field of light which wewill refer to as the signal. It was first introduced by [Yuen 83, Abbas 83].
It consists in interfering on a balanced beamsplitter the signal field with a bright field called
the local oscillator (LO), see figure 2.15.

Fig. 2.15 Scheme of the homodyne detection. The annihilation operator of the
different fields at play are represented. The local oscillator (subscript LO) and the
signal (s) interfere on a balanced beamsplitter (BS), resulting in fields 1 and 2. There
fields are measured on photodiodes (PD), resulting in currents 1 and 2 (see the text).

We first consider that the time-frequency modes of the input fields are matched. It is then
enough to only consider the transformation of the annihilation operator of the input fields,
defined in figure 2.15, in the Heisenberg picture. The beamsplitter transformation writes{�̂�1 = 1√2(�̂�LO + �̂�s)�̂�2 = 1√2(�̂�LO − �̂�s) (2.30)

The two output beams are then each measured on a photodiode. The photodiodes produce
the currents 𝑖1 and 𝑖2 which are proportional to the light intensity, or more pragmatically to

78



CHAPTER 2. EXPERIMENTAL GENERATION AND DETECTION OF SPECTRALLY MULTIMODE QUANTUM
STATES

the photon numbers �̂�1 and �̂�2. We can then write{𝑖1 ∝ �̂�1 = 12(�̂�†LO�̂�LO + �̂�†LO�̂�s + �̂�†s �̂�LO + �̂�†s �̂�s)𝑖2 ∝ �̂�2 = 12(�̂�†LO�̂�LO − �̂�†LO�̂�s − �̂�†s �̂�LO + �̂�†s �̂�s) (2.31)

from which we deduce the difference of currents 𝑖d = 𝑖1 − 𝑖2𝑖d ∝ �̂�†LO�̂�s + �̂�†s �̂�LO (2.32)

Since the local oscillator is a bright field (i.e. ⟨�̂�LO⟩ ≫ ⟨�̂�s⟩), we can write �̂�LO = 𝛼LO + 𝛿�̂�LO
where ⟨𝛿�̂�LO⟩ = 0. Keeping the dominant term in the LO amplitude 𝛼LO = |𝛼LO|ei𝜃 we obtain
from equation (2.32) 𝑖d ∝ |𝛼LO| �̂�𝜃s (2.33)

with �̂�𝜃s = 𝜎0�̂�†ei𝜃 + 𝜎0�̂�e−i𝜃
where 𝜃 ∈ R is understood as the optical phase between the signal and the local oscillator, and�̂�𝜃s is the signal quadrature operator at angle 𝜃 defined in equation (1.18). Note that this phase
can be changed experimentally by using a piezoelectric mirror.

Equation (2.33) shows that the homodyne detection allows us to directly measure the dis-
tribution of the quadrature �̂�𝜃s of the signal. In particular, we can directly access the variance⟨Δ2�̂�𝜃s ⟩ of the signal, by first measuring the current variance of vacuum ⟨0|Δ2𝑖d|0⟩, and then
deduce

⟨Δ2�̂�𝜃s ⟩ = 𝜎20 ⟨Δ2𝑖d⟩⟨0|Δ2𝑖d|0⟩ (2.34)

This can then be directly applied for example to measure the squeezing factor of a squeezed
vacuum state (see section 1.3.3 for details on these states).

Up to now, we derived an operational description of the homodyne detection. Let us now
use the Positive Operator-Valued Measure (POVM) formalism to describe the homodyne de-
tection. For homodyne detection, only orthogonal projectors are necessary, but this formalism
is useful for the rest of the manuscript. We briefly introduce this formalism (see [Nielsen 00]
for more details). A POVM is a set of positive Hermitian operators {Π̂𝑚} defined asΠ̂𝑚 = �̂�†𝑚�̂�𝑚 (2.35)

with ∑𝑚 Π̂𝑚 = 1̂ (2.36)

where the measurement operators {�̂�𝑚} are not assumed neither Hermitian, nor orthogonal.
This allows for a more general description of a measurement scheme.

The probability of measuring the signal state �̂�s with outcome 𝑚 is given byTr[�̂�sΠ̂𝑚] (2.37)
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and the state after the measurement �̂�outs is given by

�̂�outs = �̂�𝑚 �̂�s �̂�†𝑚Tr[�̂�sΠ̂𝑚] (2.38)

The POVM of the homodyne detection is given by the eigenstates of the quadrature �̂�𝜃s (see
[Tyc 04] for a thorough demonstration). At fixed phase 𝜃, the homodyne POVM then writesΠ̂HD(𝑞𝜃s ) = |𝑞𝜃s ⟩⟨𝑞𝜃s | (2.39)

where the projectors |𝑞𝜃s ⟩⟨𝑞𝜃s | indeed satisfy the aforementioned properties, see equation (1.28).
Applying equation (2.37), we consistently find that the probability of measuring outcome 𝑞𝜃s
is given by ⟨𝑞𝜃s |�̂�s|𝑞𝜃s ⟩ the marginal of the quadrature �̂�𝜃s . From equation (2.38), the homodyne
detection projects the signal onto an infinitely squeezed state �̂�outs = |𝑞𝜃s ⟩⟨𝑞𝜃s |, even though this
state is not physical.

2.4.2 A modal projective measurement
In the previous subsection, we assumed that the signal and local oscillator (LO) fields were
mode-matched in time-frequency. Let us now consider multimode fields and show that the
homodyne detection projects the signal on the LO mode. We decompose the LO field over an
arbitrary mode basis in the form of equation (1.16) with LO-specific notations, and the signal
field over the supermode basis (introduced in section 2.3.2)⎧⎪⎪⎪⎨⎪⎪⎪⎩

�̂�(+)
LO (𝑡) = 0 ∑𝑚 �̂�LO,𝑚𝐟LO,𝑚(𝑡)�̂�(+)
s (𝑡) = 0 ∑𝑛 𝑠𝑛𝐯𝑛(𝑡) (2.40)

where the signal and LO modes 𝐟LO,𝑚(𝑡) and 𝐯𝑛(𝑡) are single-pulse envelopes as defined in
equation (2.1). The extension of the following derivation to a train of pulses is immediate by
linearity.

Let us choose the LO mode basis such that the mean value of the field is non-zero only in
the first mode, a mode basis we call mean-field mode basis. In this basis,

0 ⟨�̂�LO,𝑚⟩ = 𝛼LO𝛿𝑚,1 (2.41)

so that the LO field writes�̂�(+)
LO (𝑡) = 𝛼LO𝐟LO(𝑡) + 0∑𝑚 𝛿�̂�LO,𝑚𝐟LO,𝑚(𝑡) (2.42)

with 𝛿�̂�LO,𝑚 = �̂�LO,𝑚 − ⟨�̂�LO,𝑚⟩ and 𝐟LO(𝑡) = 𝐟LO,1(𝑡)
Since the operators 𝛿�̂�LO,𝑚 are zero-mean, we can write the LO field in the dominant term in𝛼LO as simply �̂�(+)

LO (𝑡) = 𝛼LO𝐟LO(𝑡) (2.43)
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where we keep the hat notation for the field operator �̂�(+)
LO (𝑡) with the meaning that the right

hand expression is a development in 𝛼LO with implicit terms containing the null-mean opera-
tors 𝛿�̂�LO,𝑚.

The current operator must now take into account the time dependency of the fields. We
thus introduce the (real) temporal response function 𝑟(𝑡) of the detector. The time dependent
current operator 𝑖(𝑡) is then given by the temporal convolution of the detector response with
the incoming light intensity as [Loudon 00]

𝑖(𝑡) ∝ ∫ d𝜏 𝑟(𝜏)�̂�(+)(𝑡 − 𝜏)�̂�(−)(𝑡 − 𝜏) + h.c. (2.44)

with �̂�(−)(𝑡 − 𝜏) = (�̂�(+)(𝑡 − 𝜏))†
where h.c. means Hermitian conjugate.

We assume that the response of the detector is given by a “gate” function, such that

𝑟(𝜏) = {1 for 𝜏 ∈ [− 𝑇d2 , 𝑇d2 ]0 elsewhere
(2.45)

where 𝑇d is the time response of the detector. This response time 𝑇d is typically larger than10 ns, which is much larger than the temporal duration of our ultrasfast pulses, i.e. 100 fs. We
can then re-write equation (2.44) as

𝑖 ∝ ∫ d𝑡 �̂�(+)(𝑡)�̂�(−)(𝑡) + h.c. (2.46)

where the integral bounds are sent to ±∞.
Applying equation (2.46) with �̂�(+)(𝑡) = �̂�(+)

LO (𝑡) + �̂�(+)
s (𝑡), the difference of currents 𝑖d writes𝑖d ∝ ∫ d𝑡 �̂�(+)

s (𝑡)�̂�(−)
LO (𝑡) + h.c. (2.47)

Using the fields expression in equations (2.40) and (2.43), we obtain

𝑖d ∝ 𝛼∗
LO ∑𝑛 𝑠𝑛 ∫ d𝑡 𝐟∗LO(𝑡)𝐯𝑛(𝑡) + h.c. (2.48)

Assuming that each mode overlap ∫ d𝑡 𝐟∗LO(𝑡)𝐯𝑛(𝑡) is real valued, which is always possible by
multiplying 𝐯𝑛(𝑡) by a constant phase, we find the elegant expression

𝑖d ∝ |𝛼LO| ∑𝑛 �̂�𝜃𝑛 ∫ d𝑡 𝐟∗LO(𝑡)𝐯𝑛(𝑡) (2.49)

with �̂�𝜃𝑛 = 𝜎0𝑠†𝑛 ei𝜃 + 𝜎0𝑠𝑛e−i𝜃 = cos(𝜃)�̂�𝑛 + sin(𝜃)�̂�𝑛
where �̂�𝑛 and �̂�𝑛 are the supermode quadratures.

Equation (2.49) shows that the quadratures �̂�𝜃𝑛 which do not contribute to the current are
the ones for which the LO mode is orthogonal with the corresponding supermode, in the
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sense that their temporal overlap ∫ d𝑡 𝐟∗LO(𝑡)𝐯𝑛(𝑡) is zero. For instance, if the LO mode 𝐟LO(𝑡)
is equal to the first supermode 𝐯1(𝑡), then the homodyne detector measures the quadrature �̂�𝜃0
as all the other contributions vanish in equation (2.49). For a general LO mode 𝐟LO(𝑡) seen as
a combinations of supermodes, the homodyne detector measures the corresponding weighted
sum of quadratures given in equation (2.49). Consistently, this combination of quadratures is
the quadrature of the signal in the LO mode. In other words, decomposing the signal field in
a mode basis with first mode 𝐟LO(𝑡) and subsequently completed, one can write𝑖d ∝ |𝛼LO| �̂�𝜃s,𝐟LO (2.50)

where �̂�𝜃s,𝐟LO is the signal quadrature operator of angle 𝜃 associated with the mode 𝐟LO(𝑡).
We refer to this feature as the homodyne detection acting as amodal projection: it projects

the signal field on the LO mode and measures the signal quadrature in this mode. Since we
can engineer the time-frequency mode 𝐟LO(𝑡) of the LO using our LO pulse shaper (up to the
limitations discussed in subsection 2.2.4), we can therefore fully exploit this projective feature,
and choose the mode in which we want to measure the signal to be measured.

It is worth noting that we can obtain similar results in the frequency domain, by simply
pointing out that the temporal integral of the fields in equation (2.46) may be written

∫ d𝑡 �̂�(+)(𝑡)�̂�(−)(𝑡) = ∫ d𝜔√2𝜋 d𝜔′√2𝜋F [�̂�(+)](𝜔)F [�̂�(−)](𝜔′)∫ d𝑡 ei(𝜔′−𝜔)𝑡⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟2𝜋𝛿(𝜔′−𝜔)
(2.51)

from which we deduce 𝑖 ∝ ∫ d𝜔F [�̂�(+)](𝜔)F [�̂�(−)](𝜔) + h.c. (2.52)

where we used the definition of the Fourier transform F , see appendix A.3.
Applying equation (2.52) in the previous derivation, we obtain a similar expression as equa-

tion (2.49) with overlaps of the Fourier transformed signal and LO modes instead of their
temporal ones. Similarly, deriving the analysis considering spatial modes yields an analogue
equation, with overlaps of spatial modes.

2.4.3 Experimental imperfections in a homodyne detection scheme
Equation (2.33) models an ideal homodyne detection. In practice, many experimental imper-
fections introduce losses to the measured state. These imperfections can be modeled using a
fictitious beamsplitter of transmission 𝜂HD equal to one minus the losses. 𝜂HD is the efficiency
of the homodyne detection. A non ideal homodyne detection is then equivalent to such beam-
splitter followed by an ideal homodyne detection. The beamsplitter operation on the signal
operator field �̂�(+)

s can be expressed as�̂�(+)
s ↦ √𝜂HD �̂�(+)

s +√1 − 𝜂HD �̂�(+)
vac (2.53)

where �̂�(+)
vac is the vacuum field.
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Let us list the different sources of loss that may occur between the experimental part that
generates the signal field (from module 2.b) in figure 2.1) and the ideal detection. For each
source of loss, we estimate the corresponding efficiency, which results in the total detection
losses. Note that we consider module 3.c) as a single homodyne detection as mentioned before.

Optical elements. Any optical element in the path of the signal beam is imperfect and ab-
sorbs part of the light, e.g. lenses, mirrors, etc... We denote by 𝜂optical the total optical efficiency.
We can assess these losses by measuring the light intensity before 𝐼in and after 𝐼out the optical
element. The optical efficiency then writes𝜂optical = 𝐼out𝐼in (2.54)

and we measured 𝜂optical ≃ 96% (2.55)

LOmodemismatch. In the previous subsection 2.4.2, we showed that the homodyne detec-
tion is a measurement of a weighted sum of signal quadratures with weights given by overlaps
between the LO mode and the signal modes. See equation (2.49) for the time-frequency ver-
sion.

Let us consider the spatial overlaps. The signal spatial mode is defined by the cavity of the
SPOPO, which is spatially single-mode. This means that any non-zero overlap between the LO
mode and any other mode than the cavity mode contributes as a quadrature measurement of
the vacuum. This results then in effective losses, which can be modeled with equation (2.53),
denoting 𝜂overlap the spatial mode matching efficiency. Note that such model of the losses
induced by a mode mismatch was shown in [Grosshans 01] for time-frequency modes.

To estimate the spatial overlap in practice, we measure the visibility 𝑉interf of the inter-
ference between the LO beam and a classical beam which went through the SPOPO cavity,
inheriting the spatial mode of the signal. The visibility 𝑉interf is given by the spatial overlap
of the two fields. As mentioned before, the difference of current is proportional to the spatial
overlap. Since it is also linear in the signal field �̂�(+)

s , we can then model the effect of the spatial
mode mismatch as in equation (2.53), with an efficiency given by𝜂overlap = 𝑉 2

interf (2.56)

where 𝑉interf is the visibility of the mentioned interferences.
We usually measure a spatial visibility of about 95%, resulting in𝜂overlap ≃ 90% (2.57)

Concerning time-frequency overlaps, since we can engineer the LO pusle shaper mode, we
can then match the LO mode to the mode we want to measure, up to the precision of the pulse
shaping discussed in subsection 2.2.4. A mode mismatch with the target mode, e.g. the first
supermode 𝐯1(𝑡), may result in a non-zero overlapwith othermodes in which the signal state is
not vacuum, e.g. other squeezed supermode with non-zero squeezing parameter. Technically,
this can not be modeled by equation (2.53). For these reasons, we won’t take into account any
time-frequency mode mismatch in the loss estimation.
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Photodiode imperfections. The photodiodes are not unit-efficient contrary to what we
assumed up to now. This means that for 𝑁ph photon number impeding a photodiode, only a
fraction of this number𝑁e− < 𝑁ph is converted to electrons, such that the photodiode efficiency𝜂PD simply writes

𝜂PD = 𝑁e−𝑁ph
(2.58)

The manufacturer (Hamamatsu) provides us with photodiodes (S3883-02) operating at our
wavelength range with an efficiency 𝜂PD ≃ 95.5% (2.59)

Imperfect electronic response. From equation (2.44), any imperfection in the detector
response 𝑟(𝜏) results in a non-ideal detection. This stems from imperfections of the electronic
circuit that treat the electronic signals of the photodiodes. First, the response may be too loose,
i.e. its bandwidth is too narrow to resolve the light we are measuring. In our case, the cavity
acts as an optical low-pass filter of bandwidth 8MHz. Our detection bandwidth of 40MHz is
large enough so that this is not a limitation. Second, over its bandwidth, the detector efficiency
may not be one due to electronic noise. Electronic noise stems from photodiodes dark currents
and the intrinsic noise of the amplifiers on the electronic circuit. The effect of this noise is to
add a random quantity 𝑖elec to the measured current 𝑖d. The equivalent efficiency 𝜂elec is given
by [Appel 07]

𝜂elec = 1 − ⟨0|Δ2𝑖elec|0⟩⟨0|Δ2𝑖d|0⟩ (2.60)

In practice, we use a spectrum analyzerwhich gives access to the electronic spectral density
of the homodyne detection output current. Let us introduce here this quantity. First, the auto-
correlation function 𝐶d(𝑡, 𝑡′) of the output current of the homodyne detection 𝑖d is defined as𝐶d(𝑡, 𝑡′) = ⟨𝑖d(𝑡)𝑖d(𝑡′)⟩ − ⟨𝑖d(𝑡)⟩ ⟨𝑖d(𝑡′)⟩ (2.61)

In the stationary regime, 𝐶d(𝑡, 𝑡′) depends only on the variable 𝜏 = 𝑡 − 𝑡′ [Reynaud 97], and
may be written 𝐶d(𝜏) = ⟨𝑖d(𝜏)𝑖d(0)⟩ − ⟨𝑖d(𝜏)⟩ ⟨𝑖d(0)⟩ (2.62)

The spectral density 𝑆d(𝑓 ) associated to the current 𝑖d is then defined as the Fourier trans-
form of the auto-correlation function 𝐶d(𝜏)𝑆d(𝑓 ) = 1√2𝜋 ∫ d𝜏 𝐶d(𝜏)e2i𝜋𝑓 𝜏 (2.63)

where 𝑓 is the frequency (in Hz) at which the noise is measured. We similarly define also the
spectral density 𝑆elec(𝑓 ) associated to the current 𝑖elec.
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From equation (2.62), ⟨Δ2𝑖d⟩ = 𝐶d(𝜏 = 0)
which allows us to write ⟨Δ2𝑖d⟩ = 1√2𝜋 ∫ d𝑓 𝑆d(𝑓 ) (2.64)

and similarly for 𝑖elec. Equation (2.64) allows then to express equation (2.60) in terms of the
spectral densities 𝑆d(𝑓 ) and 𝑆elec(𝑓 ), accessible to the measurement1. In other words, the elec-
tronic losses 1 − 𝜂elec is then given by the ratio of the electronic and signal integrated spectral
densities, considering vacuum as input. A result shown in [Kumar 12].

It is common to use the clearance dB = −10 log10(1− 𝜂elec) expressed in dB to quantify the
electronic efficiency. We characterized our newest homodyne detectors and obtained a clear-
ance of dB = 17 dB over a large bandwidth of 40MHz, see appendix C.1 where we included
their electronic scheme. We then deduce the electronic efficiency𝜂elec ≃ 98% (2.65)

Homodyne detection efficiency. The total efficiency of the homodyne detection 𝜂HD is
then given by the product of the above efficiencies𝜂HD = 𝜂optical 𝜂overlap 𝜂PD 𝜂elec (2.66)

and yields 𝜂HD ≃ 81% (2.67)

In later subsection 2.5.3, we illustrate the effect of such losses on the measurement of
squeezing factors of squeezed vacuum states.

2.5 Optical phase locking
As shown in the section 2.4, the homodyne detection directly measures the quadrature of the
signal in the local oscillator (LO) mode 𝐟LO�̂�𝜃s,𝐟LO = cos(𝜃)�̂�s,𝐟LO + sin(𝜃)�̂�s,𝐟LO (2.68)

which corresponds to the signal quadrature in the LO mode �̂�s,𝐟LO upon which is applied a
rotation of angle given by the relative optical phase 𝜃 between the LO and the signal. While it
is a great advantage to have access to different quadratures with the same device, it also adds
the parameter 𝜃 to be controlled experimentally.

1We actually make the ergodic assumption here, assuming that the state averages ⟨⋅⟩ are equal to the temporal
averages ∫ d𝜏, allowing us to measure them.
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In this section, we describe the optical phase locking system, which allows us to lock the
relative phase between the LO and the signal, while still allowing the measurement of the
quantum signal field. Conceiving and building this system is part of this thesis’ work. This
improvement, while usually common in optical setups, proved to be challenging in our setup,
as we observe significant pointing noise in our beams up to about a few kHz and we need
to manage the dispersion effects on our broadband optical pulses. This noise is likely to stem
from the long distances the beams propagate over on our setup. As our ultrafast light takes the
form of trains of pulses, it is indeed required to match the trains anywhere in the experiment
where we make the beams interact or interfere. As the pulses are separated by about 4m, the
total optical path length tends to quickly increase.

As an initial step, we demonstrate the ability to lock the phase 𝜃 in the first subsection.
In the subsequent subsection, we show the ability to measure while still maintaining a con-
stant phase 𝜃. In the final subsection, we show measurements of a squeezed vacuum state to
illustrate the advantages of the locking system.

2.5.1 Double optical phase locking

To build the locking system, we need a detection which is sensible to the LO-signal phase 𝜃.
For reasons that are illustrated in the later subsection 2.5.3, we want to avoid using the LO-
signal homodyne detection for both the measurement and the lock. Instead, we use a classical
control beam, which we refer to as the seed beam, produced by partially splitting our laser
source. The general idea is that the seed beam takes the role of the signal beam, allowing us
to make this bright beam interact with both the pump beam (defined in subsection 2.3.1) and
the LO beam. The relative phase of each pair of bright beams (seed-pump and LO-seed) can
then be locked using a control scheme. Since the signal itself is generated from the pump,
their phases are intrinsically related. Under locking operation, the three relative phases (seed-
pump, LO-seed, and pump-signal) are then fixed, so that the LO-signal phase 𝜃 is constant
over time. Let us show it in detail.

We use the scheme of the locking system in figure 2.16 as a graphical support. Figure 2.16
contains the modules SPOPO 1.c), photon subtraction 2.b) and detection 3.c) from figure 2.1,
with some technical changeswe detail below. We consider that the double homodyne detection
3.c) is used as a single homodyne detection, in the whole section.

Seed-pump lock. Let us first focus on the non-linear interaction between the seed beam and
the pump beam, which occurs in the BiBO crystal of the SPOPO, see figure 2.16 (b). With a non-
zero-mean field as input, the parametric down-conversion process acts as a phase-sensitive
amplifier, see e.g. [Loudon 00]. For these two classical beams, it can be seen as a phase-
sensitive energy exchange between the pump and the seed, and we will refer to this process as
seed amplification-deamplification. The intensity of the pump field, measured on a photodiode,
is then sensitive to the seed-pump relative phase. Following standard loop control schemes, an
electronic device called the “seed-pump lock” uses this electronic signal to lock the seed-pump
relative phase using the piezoelectric mirror pictured in figure 2.16 (b).

Let us derive the electronic signal used in the control scheme. Assuming that the pump
variations remain small, the seed intensity 𝐼seed at the output of the crystal is given by [Collett 87,
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Fig. 2.16 Scheme of the optical phase locking system. (a): The bright seed beam is
modulated at 𝑓mod = 60 kHz and chopped at 8 kHz. (b): The seed and pump beams
undergo parametric down-conversion through the BiBO crystal of the SPOPO. The
seed-pump phase 𝜃1 is locked by measuring the intensity of the pump. Following
the chopping cycle, the SPOPO outputs either the signal multimode squeezed vac-
uum beam (not represented) or the amplified seed beam. (c): The seed (resp. signal)
and gate beams undergo sum-frequency generation through the BiBO crystal, and
produce a bright (resp. few-photon) beam which is dumped (resp. diffracted by an
acousto-optic modulator (AOM) to a single photon detector (SPD)). (d): The LO-seed
phase 𝜃2 is locked by measuring the intensity of the interfering seed and LO fields.
Alternatively, the signal field is measured in a homodyne detection configuration,
using a spectrum analyzer. BS: beamsplitter; PD: photodiode; LO: local oscillator.
See the main text for details.
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Loudon 00] 𝐼seed = 𝐼 𝑖𝑛seed[cosh(2𝑟) − sinh(2𝑟) cos(2𝜃inseed − 𝜃pump)] (2.69)

where 𝐼 𝑖𝑛seed is the input intensity of the seed, 𝑟 is the gain parameter of the (single-pass) PDC
process, and we define generically the optical phase of a non-zero-mean field along with its
intensity as (taking the pump field as example)⟨�̂�(+)

pump⟩ = ||| ⟨�̂�(+)
pump⟩|||ei𝜃pump (2.70)𝐼pump = ||| ⟨�̂�(+)
pump⟩|||2 (2.71)

In equation (2.69), the pump phase 𝜃pump is defined at the output of the crystal, and the seed
phase 𝜃inseed is defined at the input of the crystal. The seed phase 𝜃seed, defined at the output of
the crystal, is given by 𝜃seed − 12𝜃pump = arctan(e2𝑟 tan(𝜃inseed − 12𝜃pump)) (2.72)

By energy conservation, any variation in the seed intensity results in the opposite variation
in the pump intensity, which we write as𝐼pump − 𝐼 𝑖𝑛pump = −(𝐼seed − 𝐼 𝑖𝑛seed) (2.73)

where 𝐼 𝑖𝑛pump is the input pump intensity and 𝐼pump the output pump intensity. The photodiode
outputs a current 𝑖PD proportional to the pump intensity. Using equations (2.69) and equa-
tion (2.73), we deduce the expression𝑖PD ∝ 𝑐0 + cos(2𝜃inseed − 𝜃pump) (2.74)

where 𝑐0 is a constant.
Before describing how the “seed-pump lock” processes the current 𝑖PD, note that a phase

modulation is applied on the seed beam using a piezoelectric mirror, see figure 2.16 (a) where
we consider not using the pictured chopper for now. This modulation is used to effectively
filter the electronic signal at 𝑓mod = 60 kHz with a bandwidth of 15 kHz, using a demodulation
scheme. Formore technical details on the electronic scheme, see the appendix C.21. This allows
us to isolate the electronic signal from any source of low frequency noise, such as mechanical
vibrations, air fluctuations, laser power fluctuations, etc... With amodulation frequency 𝑓mod =60 kHz, we are far from these low frequency noises, typically occurring below the kHz range.

The modulation of the seed phase writes𝜃inseed ↦ 𝜃inseed + 𝐴 sin(2𝜋𝑓mod𝑡) (2.75)

where 𝐴 is the amplitude of the modulation. Taking 𝐴 very small compared to 𝜋, we develop
equation (2.74) to the first order which yields𝑖PD(𝑡) ∝ 𝑐0 + cos(2𝜃inseed − 𝜃pump) − 2𝐴 sin(2𝜃inseed − 𝜃pump) sin(2𝜋𝑓mod𝑡) + (𝐴) (2.76)

1We recommend the reader to first read subsections 2.5.1 and 2.5.2 before reading the appendix.
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In practice, the demodulation is the multiplication of the current 𝑖PD(𝑡) by an electronic lo-
cal oscillator (eLO) oscillating of the form cos(2𝜋𝑓mod𝑡 + 𝜙1), with 𝜙1 the phase of the eLO (rel-
ative to the modulation phase). The resulting signal is then filtered by a 15 kHz low pass-filter
(LPF), which we can model as an integration over the inverse of the LPF frequency. Assuming
the phase noises occur at much lower frequency than the modulation frequency 𝑓mod, we find
the resulting electronic signal 𝑢err1 by performing such integration on equation (2.76)𝑢err1 ∝ sin(𝜃1) sin(𝜙1) (2.77)

with 𝜃1 = 2𝜃inseed − 𝜃pump

The electronic signal 𝑢err1 , referred to as the error signal, is then fed to a Red Pitaya used as a
proportional–integral–derivative (PID) controller. In a nutshell, the PID controller makes the
error signal 𝑢err1 go to zero by correcting the seed-pump phase 𝜃1 in a feedback loop scheme.
The parameter 𝜙1 is set to maximize the amplitude of the error signal, at 𝜙1 = ±𝜋/2.

From equation (2.77), locking the error signal 𝑢err1 to zero implies then that 𝜃1 is locked at
zero modulo 𝜋. This means𝜃inseed = 12𝜃pump or 𝜃inseed = 12𝜃pump + 𝜋2 (2.78)

As we will see below, the relevant optical phase for our problem is the output seed phase𝜃seed, which is related to the input seed phase 𝜃inseed by equation (2.72). Note that for this equation
only, the gain to consider is the single-pass gain of the crystal, not the gain enhanced by the
SPOPO cavity. Reasoning in the stationary regime, the (single-pass) operation of the crystal
applies on the stationary field in the cavity, relating the phases at its input and output by
equation (2.72) with the single-pass gain. By resonance, the cavity only adds multiples of 2𝜋
on the phase of the field.

In our configuration, we expect the single-pass gain to be small, as we rely on the SPOPO
cavity for obtain significant squeezing factors. In the thesis [Thiel 15], the single-pass gain is
estimated at 1 dB in our usual configuration, i.e. e2𝑟 ≃ 1.3. To see the effect of equation (2.72),
the output seed intensity and phase are plotted in figure 2.17.

The blue curve corresponds to our 1 dB single-pass gain, the red curve corresponds to
a 3 dB gain and the black one serves as reference. On the graph 2.17 (a), at relative phase𝜃inseed − 12𝜃pump = 0 the seed intensity is maximally deamplified, while at 𝜃inseed − 12𝜃pump = 𝜋/2
the seed intensity is maximally amplified. We will consistently refer to these two situations
as respectively seed deamplification and seed amplification. Note that for the blue curve shows
the seed intensity after a single pass through the crystal. The expected intensity at the output
of the cavity follows the cavity gain, estimated at about 4 dB, i.e. e2𝑟cav = 2.51.

On the graph 2.17 (b), we notice that at both seed amplification and deamplification, the
abscissas and ordinates coincide, i.e. 𝜃seed = 𝜃inseed. Whatever the gain, we can then re-write the
seed-pump phase locking relation of equation (2.78) as𝜃seed = 12𝜃pump or 𝜃seed = 12𝜃pump + 𝜋2 (2.79)

1For reference, this gain correspond to a contrast 𝐶amp-deamp of 75%, where the contrast is defined as𝐶amp-deamp = (𝐼max
seed − 𝐼min

seed)/(𝐼max
seed + 𝐼min

seed), measured at the output of the SPOPO, and is related to the gain pa-
rameter by 𝐶amp-deamp = tanh(2𝑟).
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Fig. 2.17 Seed amplification-deamplification effects on (a) the output relative phase𝜃seed − 12𝜃pump and (b) the output seed intensity 𝐼seed versus the input relative phase𝜃inseed − 12𝜃pump for different values of the gain e2𝑟 .
It is worth noting that these two locking points are not equivalent in terms of sensitivity

to locking error. In graph 2.17 (b), the derivative is significantly higher at seed deamplifica-
tion than at seed amplification. Using equation (2.72), we find that the ratio between the two
derivatives equals e4𝑟 , hence 1.7 for a gain of e2𝑟 = 1.3. In other words, a locking error on the
input seed phase yields an error on the output seed phase 1.7 times higher in deamplification
than in amplification, an qualitative effect experimentally observed. Although our single-pass
gain is small, this effect is not negligible and allows for some improvement of the lock stability.
Note that for other configurations, which rely more on the single-pass gain of the PDC, this
effect may play a significant role in the locking success.

Experimentally, we can switch between the two seed-pump locking points defined in equa-
tion (2.79) by switching the sign of the parameter 𝜙1 = ±𝜋/2. Looking at the seed intensity
while locking, we can then deduce whether the seed is amplified or deamplified. Depending
on the application, we need either both locking points or only one. In the latter case, we thus
preferentially set ourselves at seed amplification, to benefit from a decreased locking error.

Up to now, we showed that the seed-pump lock relates the output seed phase 𝜃seed (which
we now refer to as simply the seed phase) and the pump phase 𝜃pump by equation (2.79). Let
us now relate the pump phase with the signal phase.

Signal-pump phase relation. We cannot define the signal phase 𝜃s the same way we de-
fined the pump phase 𝜃pump in equation (2.70): for quantum states that feature a null-mean
field, there is no generic way of defining an optical phase. For example, a thermal state (or the
vacuum) is perfectly symmetric in the phase space, so that its phase is non-definite. The phase
of squeezed vacuum states is commonly defined such that the corresponding quadrature is the
squeezed quadrature (defined in subsection 1.3.3).

Since the signal is generated from the parametric down-conversion (PDC) of the pump
beam, we can define 𝜃s following the same idea. Assuming first that the signal state is a
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single-mode squeezed vacuum state, the PDC operation writes when taking into account the
phase of the pump [Loudon 00]𝑆(𝜁 ) = exp[ 12(−𝑟e−i𝜃pump �̂�2 + 𝑟ei𝜃pump �̂�†2)] (2.80)

where 𝑆(𝜁 ) is the squeezing operator defined in equation (1.77) subsection 1.3.3 with complex
squeezing parameter 𝜁 = −𝑟ei𝜃pump1, with 𝑟 > 0.

The corresponding squeezed quadrature is the quadrature operator �̂�𝜃pump/2 at angle 𝜃pump/2.
We then define the signal phase 𝜃s as 𝜃s = 12𝜃pump (2.81)

Note that with such definition, the phase 𝜃s is defined modulo 𝜋 since the pump phase is
defined modulo 2𝜋. For a general multimode signal state, we keep defining the optical phase
of the signal 𝜃s from the optical phase of the pump as in equation (2.81).

Using both equations (2.78) and (2.81), we can relate the seed phase with the signal phase
at the output of the BiBO crystal (under locking operation) as𝜃seed = 𝜃s or 𝜃seed = 𝜃s + 𝜋2 (2.82)

LO-seed lock. Since the seed beam takes the role of the vacuum in the parametric down-
conversion process in the SPOPO, the signal and seed optical paths coincide exactly. Since
they also share the same polarization, spatial mode and central wavelength, any phase shift
experienced by the seed beam is equally experienced by the signal beam. The relation between
the seed and signal phases at the output of the crystal in equation (2.82) holds then true at any
point in the common path of the beams, in particular up to the homodyne detection. We thus
keep the notations 𝜃seed and 𝜃s for the seed and signal phases at the homodyne detection.

We can now define the LO-signal relative phase 𝜃 at the homodyne detection as𝜃 = 𝜃LO − 𝜃s (2.83)

where 𝜃LO is defined similarly as 𝜃pump in equation (2.70). Let us now relate the LO phase 𝜃LO
and the seed phase 𝜃seed at the homodyne detection.

As mentioned, the seed beam follows the same optical path as the signal pictured in fig-
ure 2.1 of the complete experience. After going through the photon subtraction setup (which
we discuss later), the seed beam reaches the homodyne detection where it can interfere with
the LO beam, see figure 2.16 (d) (where we ignore the spectrum analyzer for now). The clas-
sical interference of the two fields results then in a phase-sensitive electronic signal. Using a
similar setup as before, the “LO-seed lock” locks the LO-seed relative phase through demod-
ulation, filtering and another (Red Pitaya) PID controller (see appendix C.2 for the detailed
electronic circuit).

1We chose 𝜁 = −𝑟ei𝜃pump instead of 𝜁 = −𝑟ei𝜃pump for better readability in the following. Note that this choice
is a matter of convention or more generally a matter of pump phase reference.
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From equation (2.47) applied for the seed and LO fields assumed mode-matched, the ho-
modyne detection output current 𝑖d = ⟨𝑖d⟩ writes𝑖d = 2Re ( ⟨�̂�(+)

LO ⟩ ⟨�̂�(−)
seed⟩) (2.84)

which yields 𝑖d ∝ cos(𝜃LO − 𝜃seed) (2.85)

Experimentally, we expect to measure a null difference of current on the homodyne detec-
tion when the intensity on each arm of the homodyne detection (defined as arms 1 and 2 on
figure 2.15) are equal. This happens when the LO and seed fields are in phase quadrature, i.e.
at 𝜃LO − 𝜃seed = 𝜋/2. At this relative phase value, the current 𝑖d vanishes in expression (2.85),
as expected.

Taking into account the modulation of the seed beam and the demodulation in the “LO-
seed lock” device, we derive the LO-seed error signal 𝑢err2 following the same steps as before.
We find 𝑢err2 ∝ sin(𝜃2) sin(𝜙2) (2.86)

with 𝜃2 = 𝜃LO − 𝜃seed
with 𝜙2 the phase of the demodulating eLO. The parameter 𝜙2 is set to maximize the error
signal amplitude, at ±𝜋/2, and do not play any role on the locked phase this time. Minimizing
equation (2.86) results in 𝜃2 equaling zero modulo 𝜋. Together with equation (2.82) which
relates 𝜃seed and 𝜃s, we can write under locking operation𝜃LO = 𝜃s or 𝜃LO = 𝜃s + 𝜋2 (2.87)

which rewrites using equation (2.83) as𝜃 = 0 or 𝜃 = 𝜋2 (2.88)

We can thus lock the LO-signal phase 𝜃 to either zero or 𝜋/2 through the interaction of
the seed beam with both the LO and pump beam.

Note that, according to our phase definitions, the case 𝜃 = 0 corresponds to both locking
on the deamplification of the seed and on the squeezed quadrature of the signal, when the LO
mode is the first supermode (or any odd-numbered supermode). We then expect to measure a
variance below the vacuum variance at 𝜃 = 0, and above at 𝜃 = 𝜋/2.
Choosing the value of the locked phase 𝜃. For numerous applications, such as to perform
the tomography of a quantum state with a single homodyne detection, it is interesting to be
able to arbitrarily control the value of the phase 𝜃. Up to now, we showed that we can lock on
two locking points, 𝜃 = 0 and 𝜃 = 𝜋/2.

In general, one can change the value at which a PID locks, moving from 0 to a desired
value, which we refer to as setting point. Changing the setpoint of a lock comes at the cost
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of increased error and instability. Considering the non-linear relation between the input seed
phase and the output seed phase plotted in graph 2.17 (b), we expect the seed-pump lock to be
less stable than the LO-seed lock.

Note yet that we can switch easily between 𝜃 = 0 and 𝜃 = 𝜋/2 with the seed-pump lock.
To cover a complete 𝜋 range 𝜃 phases, it is then enough to change the setting point of the
LO-seed lock such that the phase 𝜃 varies in the range [−𝜋/4, 𝜋/4]. This is half the maximal
range of the seed-LO setting point range. As I am writing these lines, the lock has not been
tested yet outside of the two locking phases 𝜃 = 0 and 𝜃 = 𝜋/2, and the question whether the
LO-seed lock remain stable enough to cover this range is open to investigation.

2.5.2 Measuring while locking

In practice, we need the phase 𝜃 to be locked while we are measuring the signal quadrature�̂�𝜃s in the homodyne detection. Since the seed beam is taking the exact same path as the signal
beam, with the same spatial mode, the same polarization, and the same central wavelength
at 795 nm, there is no way to physically distinguish them (especially without adding losses to
the signal). Even worse, we measure them both on the same device, the homodyne detection.
Thus, we can not measure them both at the same time.

We therefore use a common trick which consists in blocking periodically the seed beam.
The resulting periodic cycle allows us to alternatively lock the phase 𝜃 or measure the signal
beam.

Chopping the seed beam. To periodically block the seed beam, we use a MC2000B Thor-
labs optical chopper, pictured in the figure 2.16 (a). We chose a mechanical chopper as the
light is completely absorbed in the blocking configuration. If it was not the case, even if a few
photons were going through, the measurement would be not reliable anymore. The signal
beam indeed only contains in average about 1 photon per supermode.

Running the motor at 80% of its maximal speed, i.e. turning at 80Hz, allows for low am-
plitude induced vibrations and a chopping rate of 8 kHz using a blade of 100 slots. Measuring
the seed intensity after the chopper yields a 135 us period cycle, shown in figure 2.18. The
chopping rate is then effectively smaller, at about 7.3 kHz. When the seed beam is completely
going through, both seed-pump and LO-seed lock devices are enabled, corresponding to the
“Lock” time slots in figure 2.18. For the rest of the time, the lock devices are deactivated yet
maintain a constant control signal, which corresponds to the final value of the locking control
signal. The corresponding time slot is “Hold” in figure 2.18. When the seed beam is com-
pletely blocked by the chopper, we can measure the signal beam on the homodyne detection,
corresponding to the “Measure” time slot in figure 2.18. The rising and lowering times of the
chopper only partially absorbs the light, and cannot be used for neither the measurement nor
the lock. Furthermore, we need some additional dead time before and after measurement in
order to safely protect the single-photon detector of the experiment, as we explain below. As
a result, in the configuration of figure 2.18, we can measure on 35 us over each cycle of 135 us,
corresponding to a duty cycle of 26%.

One of the critical parameters for a functional lock is a high chopping rate with respect
to the typical LO-signal phase 𝜃 fluctuations. A high chopping rate indeed allows for short
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Fig. 2.18 Intensity of the seed beam measured after the optical chopper, whose the
blades regularly absorb the light. The resulting pattern is partitioned in “Lock” and
“Hold” times slots, referring to the operation of the locking devices. The actual mea-
surement is done during the “Measure” time slot. The synchronization between the
optical chopper, the lock devices and the AOM is done using a TTL generator.

“Hold” time slots, during which the phase may drift. If the drift is too large during this time
slot, then the lock devices cannot follow and fail to properly lock. As mentioned, we observe
phase noise up to a few kHz. The chopping rate of 7.3 kHz proved to be high enough for the
lock devices to function properly. This is among the highest rates available in the commercial
market for mechanical choppers.

It is worth noting that our second-best choice is using an acousto-optic modulator in a
double path configuration, see for instance [Donley 05]. While it permits an equivalent me-
chanical chopping atMHz range rates, it adds the challenge of introducing significant amounts
of dispersion to the seed beam, leading to a decreased interaction efficiency with the LO and
pump beams.

Setup constraints. Let us focus on the details of the setup pictured in figure 2.16 (a). To fit
the space constraints on our optical table, we chose to implement both the beam chopping and
the phase modulation in a folded 2-f configuration. The seed beam is focused on a zero-degree
piezoelectric mirror positioned at the Fourier plan of the lens, and goes through the same lens
on its way back. This compact setup allows us to

• set the blades of the optical chopper close to the minimal waist of the focused beam.
This decreases the rising and lowering times shown in figure 2.18.

• use a zero-degree mirror for a lower induced misalignment of the focused beam com-
pared to a 90◦ configuration1.

Note that if we had more space, the optical chopper could be built on a non-folded 2-f configu-
ration. This would result in further decreased rising and lowering times as the chopper could

1In principle, this effect is negligible for typical small piezoelectric translation of about 1 µm.
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be precisely positioned at the minimal waist. It would also avoid the seed beam to pass twice
the chopper, which may result in an effective larger beam. This effect was minimized in our
setup by aligning the back and forth beams with the motor axis on the same plane.

Preventing killing the single photon detector. When not absorbed by the chopper blade,
the seed beam follows the optical path taken by the signal, and in particular goes through the
photon subtraction, see figure 2.16 (c). As mentioned in section 2.1, the signal beam interacts
with a classical beam, called the gate beam, in the BiBO crystal through sum-frequency gen-
eration. This non-linear process generates single photons centered at 397.5 nm. These single
photons are collected by a fiber and detected by a single photon detector.

This detector can not sustain bright fields, due to its single-photon sensitivity. Its power
threshold before damage can be estimated at a few millions of photons per second at this
wavelength. When the bright seed beam goes through the crystal, it generates a bright beam
at more than 100 nW power, which is very large compared to the detector power threshold, as
it corresponds to about 1011 photons per second. This forbids then any solution with partial
power deflection, such as Pockel’s cells which feature an extinction ratio of up to 103.

Instead, we use an acousto-optic modulator (AOM) to protect the single photon detector. It
is an AOMMQ110-A3-UV fromAAOpto-Electronic. The AOM uses a piezoelectric transducer
to produce standing sound waves in a transparent material, in which the incoming light sees
a periodic modulation of the index of refraction. The incoming light is then mostly diffracted
with a small angle of a few degrees. For our AOM, about 90% of the light is diffracted.

The AOM is set such that the transmitted light is dumped, while the diffracted light is
detected on the single photon detector as pictured in figure 2.16 (c). Consistently, it is only
enabled when the seed is completely blocked by the chopper blade, during the “Measure” time
slots pictured in the figure 2.18. Only the signal beam is sent by the AOM to the detector,
protecting the precious detector from any damage.

Note that the diffracted light sees its frequency shifted by about 100MHz, which is negligi-
ble compared to the carrier frequency of the light, around 1016 Hz. It then has no consequence
in the measurement.

Induced square signal. By cutting the seed beam, the wheel is modulating the intensity,
resulting in a seed intensity of the form of a square function with respect to time as shown
in figure 2.18. Since both lock systems described in subsection 2.5.1 rely on measuring seed-
intensity dependent signals, we have to cope with a square electronic signal. In appendix C.2,
we explain how we cope with it using filters to avoid saturating the electronics. Furthermore,
as we alternatively measure the seed and signal fields at the detection, the measurement signal
also features extremely sharp behavior at transitions between “Lock” times and “Hold” times.
Simply filtering does not solve this issue and amore elaborate solution is required, as explained
in later chapter 4, section 4.4.

2.5.3 Application: measuring squeezing
In the previous subsections, we showed that using an optical chopper and an acousto-optic
modulator, we can lock the LO-signal phase 𝜃 in a periodic cycle given by figure 2.18. During
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the “Measure” time slots, the signal beam is then measured by the homodyne detection (d) in
figure 2.16. In this subsection, we show how we use the homodyne detection to characterize
the signal squeezed vacuum, and then discuss the advantage of locking the optical phase 𝜃.
Measuring squeezed vacuum states. To characterize squeezed vacuum states, we only
need to measure their squeezing and antisqueezing quadrature variances, as they are zero-
mean Gaussian states, see subsection 1.3.3 for details on these states.

While we could directly gather the measurement outcomes of the homodyne detection,
which follow the probability distribution of the quadrature �̂�𝜃s , we use an alternative mea-
surement method to avoid the low frequency noise in the measurements. We feed the output
homodyne detection current to aMXAN9020A spectrum analyzer (20Hz- 2.6GHz) as pictured
in figure 2.16 (d). As explained in details in subsection 2.4.3, a spectrum analyzer measures the
spectral density 𝑆d(𝑓 ) of the output current of the homodyne detection. From equation (2.64),
the spectral density 𝑆d(𝑓 ) integrated over the bandwidth of the detector yields the variance of
the output current ⟨Δ2𝑖d⟩. Normalizing to the measured variance of the vacuum as in equa-
tion (2.34), we can deduce the variance ⟨Δ2�̂�𝜃s ⟩ /𝜎20 of the signal quadrature.

To avoid low frequency noise, we usually choose to integrate the spectral density 𝑆d(𝑓 )
over a limited bandwidth of 100 kHz at central frequency 𝑓0 = 1MHz. Technically, we are
then measuring the variance of the quadrature associated to the signal side-band modes at
this frequency 𝑓0. We won’t enter into the details, and refer to [Michel 21] for more on the
side-band modes. Note that the squeezing factors in the side-band modes are expected to be
close to constant over the cavity bandwidth of the SPOPO, which is of the order of a fewMHz.
We are then correctly estimating the signal variance when measuring the side-band mode at1MHz. We will keep denoting by ⟨Δ2�̂�𝜃s ⟩ /𝜎20 the measured quantity on the spectrum analyzer.
Let us now discuss the measurement methods, both prior and after the implementation of the
optical phase locking system.

Measuring while scanning the LO phase. When the locking system was not set up yet,
the optical LO-signal phase 𝜃 was freely drifting while measuring squeezed signal field in the
homodyne detection. To retrieve a phase reference, the phase of the LO beam was scanned
by feeding a periodic signal to a piezoelectric mirror on the LO optical path. An example of
such measurement is shown in figure 2.19. The measured variance of the signal quadrature⟨Δ2�̂�𝜃s ⟩ /𝜎20 is then varying with 𝜃 from the variance of the squeezed quadrature (low) to the
variance of the antisqueezed quadrature (high). By convention, we assign the phase 𝜃 = 0 to
the most squeezed quadrature, hence �̂�s. The antisqueezed quadrature is then �̂�s at 𝜃 = 𝜋/2.
Fitting the resulting curve with a cosine allows to retrieve the phase 𝜃 and therefore infer the
measured quadrature �̂�𝜃s at any time. In the provided example, the measured mean variance
of the squeezed quadrature ⟨Δ2�̂�s⟩ /𝜎20 is estimated to about −2 dB, while for the antisqueezed
quadrature, its variance ⟨Δ2�̂�s⟩ /𝜎20 is estimated to about 3.5 dB, for a pump power of p =20mW.

96

https://www.keysight.com/us/en/product/N9020A/mxa-signal-analyzer-10hz-26-5ghz.html?&cc=FR&lc=fre


CHAPTER 2. EXPERIMENTAL GENERATION AND DETECTION OF SPECTRALLY MULTIMODE QUANTUM
STATES

0 20 40
Time (ms)

−3−2
−10
12
34
5

Va
ria

nc
e
⟨ Δ2 q̂� s⟩ /�2 0(dB)

(a)

0 5 10 15 20
Time (ms)

−3−2
−10
12
34
5

Va
ria

nc
e
⟨ Δ2 q̂� s⟩ /�2 0(dB)

(b)

p = 10 mW, � = 0
p = 10 mW, � = �/2
p = 33 mW, � = 0
p = 33 mW, � = �/2

Fig. 2.19 Squeezing measurement on a spectrum analyzer. The measured variance
of the signal quadrature ⟨Δ2�̂�𝜃s ⟩ /𝜎20 (normalized to the vacuum variance) against the
time is plotted for different phases 𝜃 depending on the method. (a): The phase 𝜃
is scanned over time at pump power p = 20mW. (b): The phase 𝜃 is locked at
either 0 (solid lines) or 𝜋/2 (dashed lines), for different pump powers p. The output
reflectivity is 𝑟2o = 80%.

Measuring while locking the LO-signal phase. Using the optical phase locking system,
the LO-signal phase 𝜃 is locked at either 𝜃 = 0 or 𝜃 = 𝜋/21. We give for example some
measurements in figure 2.19 (b). We concatenate the measurements of each locking cycle by
suitably triggering the spectrum analyzer (using its “gate” function). The traces are averaged
10 times over.

Let us denote the signal squeezing factors as 𝑠− = ⟨Δ2�̂�s⟩ /𝜎20 and 𝑠+ = ⟨Δ2�̂�s⟩ /𝜎20 (with
their dB versions 𝑠±dB), and the resulting signal purity 𝜇s = 1/√𝑠+𝑠−. Their averaged values are
displayed in the table 2.3. As expected, the squeezing factors increase with the pump power,
at the cost of a lower purity.

p 𝑠−dB 𝑠+dB 𝜇s10mW −1.43 dB 2.21 dB 0.91433mW −2.47 dB 4.54 dB 0.788
Table 2.3: Averaged signal squeezing factors 𝑠±dB and purity 𝜇s for different pump power p
values.

We can estimate the squeezing factors at the output of the SPOPO by correcting the losses
of the homodyne detection. The homodyne efficiency 𝜂HD was estimated to 81% in subsec-
tion 2.4.3. We can then apply the model described by equation (2.53) to infer the corrected

1For this set of measurements, the double homodyne was used, locking at 𝜃 = 0 on one homodyne detection,
which implies measuring at 𝜃 = 𝜋/2 on the other homodyne detection. The measurements were rescaled to take
into account the inherent mixing with the vacuum, due to the double homodyne configuration. See chapter 4 for
more details on the double homodyne.
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squeezing factors as

𝑠±dB ↦ 𝑠±dB𝜂HD + 1 − 𝜂HD𝜂HD (2.89)

The corrected values are shown in table 2.4. We can see that the change on the signal purity𝜇s is lower for already highly pure states. Comparing with the figure 2.10, we measure lower
squeezing factors than expected. The discrepancy may stem from inaccuracy in the SPOPO
model, an underestimation of the losses, an inaccurate phase locking, or other non-considered
errors in the measurement.

p 𝑠−dB 𝑠+dB 𝜇s10mW −1.85 dB 2.60 dB 0.91733mW −3.33 dB 5.15 dB 0.811
Table 2.4: Loss-corrected averaged signal squeezing factors 𝑠±dB and purity 𝜇s for different pump
power p values.

One of the main advantage of locking the phase 𝜃 is to drastically simplify the data analy-
sis, as we directly measure the quantity of interest. A simple averaging is enough. Previously,
fitting the traces to recover the phase often proved to be hard for technical reasons. For in-
stance, the number of accurate enough oscillations in one trace is limited to a few, and it is
not possible to average over multiple traces before recovering the phase 𝜃. Such reduction
of data analysis complexity opens the path to more complex measurements than squeezing
measurements, otherwise considered unfeasible. In particular, locking (or knowing) the phase𝜃 is necessary for the certification protocol presented in chapter 4.

Towards multimode optical phase locking. Up to now, the LO-signal phase 𝜃 was suc-
cessfully locked only when the LO time-frequency mode is the first supermode, i.e. when the
LO spectrum is Gaussian. As the seed inherits the laser source properties, it also has a Gaus-
sian spectrum, which allows for the aforementioned LO-seed interference. If we choose to
shape the LO time-frequency in another supermode, then the seed and LO modes would be
orthogonal, resulting in a null-interference term. The LO-seed locking would then be impos-
sible.

As the LO-seed feedback signal is not required to have a high amplitude for the lock to
function properly, a possible solution would be to slightly shift the central frequency of either
spectrums in order to recover non-orthogonal time-frequency modes.

2.6 Extra experimental tools for a multimode extension
In this section, we briefly describe the additional experimental modules displayed in figure 2.1
in section 2.1, namely the pump blue pulse shaper (module 1.b)) and the photonic cristal fiber
(module 3.a)). These additional modules, while not used in the context of this thesis, offer
potential for the multimode development of this work.
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2.6.1 Engineering the supermodes squeezing

Introduced in section 2.3, the Hamiltonian of the parametric down-conversion occurring in the
SPOPO is given by the joint spectral amplitude which is the product of the pump spectrum�̃�p and the phase-matching function ΦPDC, see equation (2.14). The phase-matching function
depends on the crystal attributes that are fixed upon choosing and engineering the crystal.
However, the pump spectrum may be engineered using the pump pulse shaper 1.b), see fig-
ure 2.1. As detailed in subsection 2.2.4, the pulse shaper allows us to engineer the amplitude
and phase of the pump spectrum �̃�p.

By engineering the time-frequency mode of the pump, we can thus engineer the Hamilto-
nian of the process. This in turn results in a new eigenvalue distribution, or equivalently to
new squeezing factors in the supermodes.

Fig. 2.20 Pump spectrum which optimized the squeezing factor in the first super-
mode, resulting from the neural network algorithm. Figure from [Michel 21].

This potential re-distribution of the squeezing at the output of the SPOPO has been stud-
ied by F. Arzani and T. Michel. F. Arzani studied how to improve output states by using a
genetic algorithm which mimics Darwinian evolution to explore the different input parame-
ters [Arzani 18]. To extend these results T. Michel used a reinforcement algorithm based on
projective simulation method and a deep learning one based on neural network [Michel 21].
These algorithms searched for the pump spectrum that best optimize a chosen squeezing dis-
tribution. For instance, the resulting pump spectrum which optimize the squeezing in the first
supermode (at the expanse of the squeezing in the other supermodes) is shown in figure 2.20.
Another example is to flatten the squeezing factor distribution, which may prove useful for
measurement based quantum computing, as the output state can be used to construct a good
approximation of a cluster state [Michel 21].

The pump pulse shaper definitely holds interest for a future extension of the current work,
as a tool to engineer the source of multimode Gaussian states of the experiment.
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2.6.2 Broadening the local oscillator spectrum
The global experiment design pictured in figure 2.1 has a flaw, which stems from using the
same laser source 0) for both the multimode squeezing generation 1) and the detection 2)1.
Since the local oscillator pulse shaper 3.b) is composed of only passive elements, it may only
carve in the spectrum, as it can not add energy. The input spectrum from 0) is thus the given
available spectral energy distribution used to shape the modes. However, the supermodes
are approximately Hermite-Gaussian modes whose spectral full width half maximums grow
with 𝑛 the mode number, see appendix A.2. These modes may then be much larger than the
Gaussian spectrum of the laser source. Measuring such modes demands for shaping spectral
regions with near-zero energy, which is physically inhibited.

To cope with this pulse shaper limitation, we can further engineer the time-frequency
mode of the local oscillator using the photonic crystal fiber 3.a) before the pulse shaper 3.b).
This device broadens the input spectrum by about twice its full width half maximum, as shown
in figure 2.21. The broadening of the spectrum is due to a non-linear phase self-modulation
effect, stemming from the third order non-linear Kerr effect [Dudley 10, Hammer 16]. The
photonic crystal fiber has been designed and fabricated by Nicolas Joly and his team from the
Max Planck Institute based in Erlangen for our purpose [Joly 12, Hammer 16]. The fiber was
shown to increase the efficiency to measure an increased number of supermodes in our setup
without adding additional noise, see [Renault 22].

Fig. 2.21 Output spectrum of the photonic crystal fiber (in purple), for an input
power of 110mW and Gaussian input spectrum (in red). Figure from [Renault 22].

In the scope of this thesis’ experimental project, we used the local oscillator pulse shaper
3.b) to shape a mode that didn’t require a large spectral distribution, and as such we did not
use the photonic crystal fiber. We expect it to prove useful to extend the current work to
multimode certification in this setup.

1Note that using just one laser offers benefits over multiple lasers in terms of cost, space requirements, and
the need for mode matching between lasers.
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The states of light whose quantum non-Gaussianity we aim at certifying in this thesis are
the single-photon subtracted and added squeezed vacuum states described in subsection 1.4.4.
These states are generically produced by heralding on the subtraction or addition of a sin-
gle photon from a squeezed vacuum state. In chapter 2, we elaborated in particular on the
experimental generation of multimode squeezed vacuum states. In this chapter, we focus on
the non-Gaussian single-photon addition or subtraction applied on such Gaussian multimode
states.
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Both operations have been largely investigated acting on single-mode fields [Lvovsky 20],
where photon-subtraction can be implemented via a low-reflectivity beam-splitter [Ourjoumtsev 06]
and single-photon addition on coherent states via a parametric amplifier with a strongly fil-
tered heralding field [?]. These operations are not suitable in the context of a spectrally multi-
mode light, since the spectral mode in which the single photon is added or subtracted cannot
be controlled in these setups. Such operation may then result in a statistical mixture of single-
photon subtracted or added states.

To circumvent this issue, a general theoretical framework for the mode-selective single-
photon subtraction and the investigation on its application via sum-frequency generation in
non-linear crystals were developed in [Averchenko 14, Averchenko 16]. Differently from the
low-reflectivity beam-splitter, the non-linear process allows for the subtraction of a single pho-
ton from a selected time-frequency mode of a multimode input field. Single-photon addition
has been recently implemented in delocalized temporal modes [Biagi 21] but spectral mode
selectivity was still missing.

In the first three sections of this chapter, we report on the development of a complete the-
oretical framework to generate non-Gaussian quantum states of light by performing the ad-
dition of a single photon to multimode light fields, following our work [Roeland 22]. We both
analytically and numerically investigate under which conditions and experimental configu-
rations it is possible to achieve single-mode and mode-selective single-photon addition. We
analyze configurations of parametric down-conversion processes in non-linear bulk crystals
both at near infrared and telecommunication wavelength, and discuss the effect of filtering.

While this recent theoretical investigation opens the way to an experimental implemen-
tation of single-photon addition for spectrally multimode sates, in the experimental work of
this thesis we use a single-photon subtraction setup. In our group, the mode-selective single-
photon subtraction theoretically developed in [Averchenko 14, Averchenko 16] was experi-
mentally demonstrated via sum-frequency generation in non-linear crystals in [Ra 17, Ra 20].
In a subsequent section, we describe how we implement such subtraction in the laboratory,
and report on the current performance.

In the last section of this chapter, we open the discussion to potential developments to-
wards experimental multiple-photon subtraction.

3.1 Theoretical framework for multimode single-photon
addition

In this section, we study general models, abstracted from a specific physical implementation,
for the single-mode and multimode single-photon addition. The single-mode model is an ideal
approach, requiring the underlying physical implementation to perfectly add a single-photon
in only one mode. We show in particular that an imperfect addition process, in the sense that
it is multimode, results necessarily in a non-pure output state.
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3.1.1 Single-mode single-photon addition
Let us consider a general single-mode single-photon addition process. We consider a general
heralding addition process illustrated in figure 3.1, similarly to parametric down-conversion
occurring in a non-linear crystal. At the input, we consider two modes, the signal mode con-
taining the quantum state �̂�ins to be photon-added, and the idler mode, which is in the vacuum
state initially. The process itself is modeled by the evolution operator �̂� , which generates one
photon in both the signal and idler modes. We note �̂�+s the signal single-photon added state
conditioned by the detection of a photon in the idler output.

"click"

idler
vacuum

Idler 
output

Fig. 3.1 Scheme of conditional single-photon addition. The state �̂�ins in the signal
mode and the vacuum in the idler mode undergo the process operation �̂� . At the
output, the single-photon added state �̂�+s is conditioned on the detection of a single
photon at the idler output.

The unitary evolution operator �̂� may be modeled as�̂� = exp(i𝑔(�̂�s�̂�i + �̂�†s �̂�†i )) (3.1)

where 𝑔 > 0 is the strength of the parametric generation taking into account the power of the
non-depleted classical gate, �̂�s is the annihilation operator associated to the signal mode, and�̂�i is the annihilation operator associated to the idler mode.

The detection on the idler mode after the evolution �̂� is not assumed to be photon-number
resolving. Such detection may be efficiently implemented with avalanche photodiodes for
instance. This detection may be modeled by the positive operator-valued measure (POVM){|0⟩⟨0|i , Π̂i} with Π̂i = 1̂i − |0⟩⟨0|i (see section 2.4 for details on POVMs).

The output density operator in the signal mode �̂�+s conditioned to the measurement of a
photon in the idler mode is then formally given by�̂�+s = 1𝑃+ Tri [Π̂i �̂� �̂�in �̂� †] (3.2)

with 𝑃+ = Tr[Π̂i �̂� �̂�in �̂� †]
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where �̂�in = �̂�ins ⊗ |0⟩⟨0|i is the complete two-mode input state, the normalization constant 𝑃+ is
the probability to successfully detect a photon in the idler mode. This result was already shown
in [Zavatta 07]. We point out that the probability 𝑃+ to detect a photon depends linearly on1+ �̄�s, which corresponds to the fact that parametric down-conversion behaves as an amplifier.
Indeed, for an amplifier the output power is proportional to the input one, and thus the number
of generated photons in both idler and signal modes increases with the signal input power. In
other words, the more photons are in the input state, the more likely it is to add a photon to
the signal.

Sincewe look for single-photon addition, we restrict ourselves to theweak-coupling regime,
i.e. 𝑔 ≪ 1. In this regime, we can develop equation (3.1) to the second order in 𝑔 as

�̂� = 1̂ + i𝑔(�̂�s�̂�i + �̂�†s �̂�†i ) − 𝑔22 (�̂�2s �̂�2i + �̂�†2s �̂�†2i + �̂�s�̂�†s �̂�i�̂�†i + �̂�†s �̂�s�̂�†i �̂�i) + (𝑔3) (3.3)

In equation (3.2), the only relevant terms to keep in �̂� �̂�in�̂� † are the terms of the form |𝑛⟩⟨𝑛|i
in the idler mode with 𝑛 ≥ 1, considering the partial trace Tri[⋅] = ∑𝑛 ⟨𝑛|⋅|𝑛⟩i and the projectorΠ̂i = 1̂i − |0⟩⟨0|i . Computing Tri[Π̂i �̂� �̂�in �̂� †], the only non-zero term at second order in 𝑔 is
the term 𝑔2�̂�†s �̂�†i �̂�in�̂�s�̂�i. We deduce that the signal single-photon added state �̂�+s writes

�̂�+s = �̂�†s �̂�ins �̂�s1 + �̄�s (3.4)

and that the success probability 𝑃+ defined in equation (3.2) is given by𝑃+ = 𝑔2(1 + �̄�s) (3.5)
with �̄�s = Tr(�̂�†s �̂�s�̂�ins )

where �̄�s is the mean number of photons in the input state.
The output signal state in equation (3.4) is of the form one would expect, i.e. equal to the

input state on which is added a single photon by applying �̂�†s .
3.1.2 Multimode single-photon addition
In this section, we extend the simple previous theory to the multimode case. We consider
that the signal and idler lights are multimode, keeping the modes nature abstract (e.g. time-
frequency modes, spatial modes, etc...). figure 3.1 still describes the general setting of the
process, considering the density operators �̂�ins and �̂�+s multimode.

We thus consider the multimode version of the evolution operator in equation (3.1), which
writes

�̂� = exp(i∑𝑛,𝑚 𝑔𝑛,𝑚�̂�†s,𝑛�̂�†i,𝑚 + h.c.) (3.6)

where the annihilation operators {�̂�s,𝑛} are associated to the signal modes {𝐟s,𝑛}, the annihilation
operators {�̂�i,𝑚} are associated to the idler modes {𝐟i,𝑚} , each coefficient 𝑔𝑛,𝑚 > 0 is the strength
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of the process for the modes (𝐟s,𝑛, 𝐟i,𝑚), and h.c. stands for Hermitian conjugate. Note that
the expression (3.6) of the unitary operator �̂� can be derived from a Hamiltonian approach
[Grynberg 10, Parigi 07a].

Following a similar approach as in the previous subsection, we compute the output signal
state �̂�+s conditioned on the detection of a photon in the idler mode. Its expression takes again
the general form of equation (3.2).

In general, the efficiency of the detector on the idlermodes is not uniform in time-frequency,
polarization, and space. One can model a detector with a set of eigenmodes {�⃗�𝑑} with 𝑑 ∈ N,
with associated detection efficiencies {𝛾𝑑} and associated annihilation operators {�̂�i,�⃗�𝑑 }. In this
case, the projector Π̂i in the POVM {|0⟩⟨0|i , Π̂i} is defined as1Π̂i = ∑𝑑 𝛾𝑑Π̂i,�⃗�𝑑 (3.7)

with Π̂i,�⃗�𝑑 = 1̂i,�⃗�𝑑 − |0⟩⟨0|i,�⃗�𝑑
where each Π̂i,�⃗�𝑑 is the measure operator for the idler detection mode �⃗�𝑑 , and where the oper-
ators act as the identity on any mode unreferenced in their expression.

In the following, we assume for simplicity that the detector efficiencies {𝛾𝑑} are one over
the idler modes where the idler output state is not vacuum. For time-frequency modes, this as-
sumption requires that the detector is broadband in frequency with respect to the non-vacuum
frequency output idler modes. Under this assumption, we write can simply writeΠ̂i = 1̂i − |0⟩⟨0|i (3.8)

In equation (3.2), the combined effect of the detection operator Π̂i in the simplified form (3.8)
together with the partial trace Tri[⋅] can be viewed again as taking the trace over the idler sub-
space of more than one photon, which writesTri [Π̂i�̂� �̂�in �̂� †] = ∑𝑘≥1 ∑𝓁 ⟨𝑘|i,𝓁 (�̂� �̂�ins ⊗ |0⟩⟨0|i �̂� †) |𝑘⟩i,𝓁 (3.9)

where |𝑘⟩i,𝓁 is the Fock state of 𝑘 photons in the idler mode 𝐟i,𝓁. Similarly as before, in the weak
coupling regime 𝑔𝑛,𝑚 ≪ 1 the only relevant dominant term in �̂� �̂�in �̂� † contains at most a single
photon in the idler modes. In particular, the terms for 𝑘 > 1 in equation (3.9) are negligible.
We then find �̂�+s = 1𝑃+ ∑𝓁 ∑𝑛,𝑚 ∑𝑛′,𝑚′ 𝑔𝑛,𝑚𝑔𝑛′,𝑚′ ⟨1|i,𝓁 �̂�†s,𝑛�̂�†i,𝑚 �̂�ins ⊗ |0⟩⟨0|i �̂�s,𝑛′ �̂�i,𝑚′ |1⟩i,𝓁 (3.10)

In equation (3.10), we can compute separately in the idlermodes the scalar products ⟨0|i,𝓁 �̂�i,𝑚′ |1⟩i,𝓁
and ⟨1|i,𝓁 �̂�†i,𝑚 |0⟩i,𝓁 which evaluate to 𝛿𝓁,𝑚𝛿𝓁,𝑚′ , so that we obtain�̂�+s = 1𝑃+ ∑𝑛,𝑛′ 𝐀+𝑛𝑛′ �̂�†s,𝑛�̂�ins �̂�s,𝑛′ (3.11)𝐀+𝑛𝑛′ = ∑𝑚 𝑔𝑛,𝑚𝑔𝑛′,𝑚 (3.12)

1We assume that the efficiency is the same whatever the input quantum state, which is not true in general.
In our case, it’s valid as we are in the low-photon number regime.
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where the coefficients 𝐀+𝑛𝑛′ form the matrix 𝐀+ referred to as the addition matrix. The be-
haviour of the multimode single-photon addition process is completely governed by the ma-
trix 𝐀+. Note that the addition matrix is Hermitian and semi-positive by definition (3.12). The
diagonalization of the addition matrix gives access to the eigenvalues 𝜆1 ≥ ⋯ ≥ 𝜆𝑛 ≥ 0 and
the eigenmodes {�⃗�𝑛} associated to the annihilation operators {𝑒𝑛}. We obtain

�̂�+s = 1𝑃+ ∑𝑛 𝜆𝑛𝑒†𝑛 �̂�ins 𝑒𝑛 (3.13)

where 𝑃+ = ∑𝑛 𝜆𝑛(1 + �̄�𝑛) (3.14)

and �̄�𝑛 = Tr[𝑒†𝑛 𝑒𝑛�̂�ins ] is the photon number of the input signal in the addition eigenmode �⃗�𝑛. The
single-photon added state �̂�+s in equation (3.13) is understood as the mixed state resulting from
a probabilistic single-photon addition on the eigenmodes {�⃗�𝑛}, each corresponding addition
occurring with the probability 𝜆𝑛(1 + �̄�𝑛)/𝑃+.

In the general case, the single-photon addition process is multimode, i.e. more than one
eigenvalue 𝜆𝑛 is non-zero. To quantify the number of effective number of modes of the pro-
cess, we can use the Schmidt number 𝐾 introduced in chapter 2, equation (2.19). With the
eigendecomposition (3.13), the Schmidt number 𝐾 writes

𝐾 = (∑𝑛 𝜆𝑛)2∑𝑛 𝜆2𝑛 (3.15)

The single-photon addition process is single-mode when 𝐾 = 1.
We will now discuss in detail both the single-mode and multimode cases, and look for

their link with the purity of the single-photon added state. Intuitively, the purity of the output
state decreases as the total number of modes involved in the process increases, since the single
photon can be added into more eigenmodes, following equation (3.13).

3.1.3 Single-photon added state purity

In this section, we assume that the (multimode) input signal is pure, i.e. �̂�ins = |𝜙⟩⟨𝜙|s, and we
study the purity of the single-photon added state �̂�+s .
Single-mode case. If both the single-photon addition process and the input state |𝜙⟩⟨𝜙|s are
in the same single-mode, then equation (3.13) simply re-writes as�̂�+s ∝ 𝑒†1 �̂�ins 𝑒1 (3.16)

We deduce that the signal output state is pure: �̂�+s = |𝜓⟩⟨𝜓|s, with |𝜓⟩s ∝ 𝑒†1 |𝜙⟩s. A photon has
been properly added to the eigenmode. This is the ideal single-mode single-photon addition
process, at 𝐾 = 1.
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Multimode case. For multimode single-photon addition process, i.e. 𝐾 > 1, we show that
the single-photon added state is always mixed once the addition process is multimode.

For simplicity, we first assume that only two eigenvalues are non-zero. Then, equations (3.13) and (3.14)
rewrite �̂�+s = 1𝑃+ (𝜆1𝑒†1 �̂�ins 𝑒1 + 𝜆2𝑒†2 �̂�ins 𝑒2) (3.17)

with 𝜆1(1 + �̄�1) + 𝜆2(1 + �̄�2) = 𝑃+ (3.18)

As �̂�ins is pure, we find, using trace properties, that the purity of the single-photon added
state writes Tr[(�̂�+s )2] = 1𝑃+2 (𝜆21(1 + �̄�1)2 + 𝜆22(1 + �̄�2)2 + 2𝜆1𝜆2| ⟨𝜙| 𝑒1𝑒†2 |𝜙⟩s |2) (3.19)

We apply the Cauchy-Schwarz inequality| ⟨𝜙| 𝑒1𝑒†2 |𝜙⟩𝑠 |2 ≤ ⟨𝜙| 𝑒1𝑒†1 |𝜙⟩s ⟨𝜙| 𝑒2𝑒†2 |𝜙⟩s = (1 + �̄�1)(1 + �̄�2) (3.20)

which allows us to writeTr[(�̂�+s )2] ≤ 1𝑃+2 (𝜆1(1 + �̄�1) + 𝜆2(1 + �̄�2))2 = 1 (3.21)

where we used the normalization equation (3.18). The Cauchy-Schwarz inequality (3.21) is
saturated if and only if 𝑒†1 |𝜙⟩s ∝ 𝑒†2 |𝜙⟩s, which is not possible (see formal proof in appendix B.3).
So the purity of the signal single-photon added state is strictly lower than 1, meaning that the
single-photon added state is mixed.

This result can be generalized to more than two non-zero eigenvalues, without any ad-
ditional steps, as we show in appendix B.4. Therefore, we have shown that for a multimode
addition process (𝐾 ≠ 1), for any input signal state, the signal single-photon added state is not
pure.

Purity of the single-photon added state for a single-mode input. Let us quantitatively
study the dependence of the purity of the single-photon added state on some relevant input
states.

In this section, to simplify the discussion, we consider that the process is mainly deter-
mined by two eigenmodes, so that the single-photon added state is given by equation (3.17).

We consider the situation where the input signal is a pure single-mode state:�̂�ins = |𝜙⟩⟨𝜙|s , |𝜙⟩s = |𝜒 ⟩1 ⊗ |0⟩2 (3.22)

where in the eigenmode �⃗�1, the state |𝜒 ⟩1 has �̄�1 mean number of photons, and in the eigenmode�⃗�2 the state is the vacuum. Using the fact that the scalar product ⟨𝜙| 𝑒1𝑒†2 |𝜙⟩s vanishes and �̄�2 = 0
in equations (3.18) and (3.19), we obtain

Tr[(�̂�+s )2] = 1 + (𝜆1/𝜆2)2(1 + �̄�1)2[1 + (𝜆1/𝜆2)(1 + �̄�1)]2 (3.23)
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We show in figure 3.2 the purity of the single-photon added state as a function of the
Schmidt number 𝐾 = (1 + 𝜆1/𝜆2)2/(1 + (𝜆1/𝜆2)2), and mean number of photons �̄�1. The
figure illustrates the competition between themultimodality and the amplification effect of the
process. We point out that for a Schmidt number smaller or equal to 1.1, the purity is always
above about 0.90. The usual candidate for single-photon addition are coherent, thermal and
squeezed vacuum states. We show on a secondary axis the squeezing parameter 𝜁 , related to
the mean number of photons by �̄�1 = sinh2(𝜁 ) for single-mode squeezed vacuum states (see
subsection 1.3.3).

Fig. 3.2 Purity of the single-photon added state for a single-mode input state. At𝐾 = 1, the process is single-mode, which leads to a purity equal to 1. Below, the
purity drops with 𝐾 , and increases with �̄�1. The squeezing factor axis is non linear,
and is derived from �̄�1 = sinh2(𝜁 ), with 𝑠dB = 20 𝜁/ ln(10).
The fact that a non-pure state can emerge from single-photon addition on a pure single-

mode state essentially comes from the non-zero probability of adding a photon to the vacuum.
In comparison, in the photon subtraction process [Averchenko 16], the single-photon added
state is always pure if the input signal is pure and single-mode, as subtracting from the vacuum
is impossible.

Purity of the single-photon added state for a two-mode input. We now consider the
input state as a two-mode squeezed vacuum state, separable over the two eigenmodes of the
addition process, which writes |𝜙⟩s = 𝑆(𝜁1) |0⟩ ⊗ 𝑆(𝜁2) |0⟩ (3.24)

where 𝜁1 (resp. 𝜁2) is the squeezing parameter in mode �⃗�1 (resp. �⃗�2), and 𝑆(𝜁1), 𝑆(𝜁2) are the
corresponding squeezing operators. We define �̄�1 = sinh2(𝜁1) and �̄�2 = sinh2(𝜁2) the mean
number of photon in each mode. Note that since we chose the ordering 𝜆1 ≥ 𝜆2, the addition
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process favors onemode over the other and the probability to add a photon inmode 1 is higher.
So for clarity purposes, the eigenmode �⃗�1 is called dominant mode while the eigenmode �⃗�2 is
called the weak mode.

The purity of the single-photon added state re-writes

Tr[(�̂�+s )2] = (1 + �̄�2)2 + (𝜆1/𝜆2)2(1 + �̄�1)2[(1 + �̄�2) + (𝜆1/𝜆2)(1 + �̄�1)]2 (3.25)

We represent the purity of the single-photon added state from equation (3.25) in figure 3.3,
fixing the Schmidt number at𝐾 = 1.2. First, we can see that the presence of a squeezed vacuum
state in the weak mode 2 with a small squeezing parameter 𝜁2, results in a decreased purity
with respect to a null squeezing parameter 𝜁2, i.e. when the mode 2 is vacuum.

Fig. 3.3 Purity of the single-photon added state for a two-mode squeezed vacuum
input state, at fixed Schmidt number 𝐾 = 1.2. For more details, see the text.

We chose to look at squeezing up to 40 dB in order to show the competition between the
three parameters: both squeezing parameters 𝜁1 and 𝜁2 (which directly affects the number of
photon in each mode) and the Schmidt number 𝐾 of the process. Each of these parameters
affects the probability to add a single photon in one or the other mode. Since the Schmidt
number is fixed at 𝐾 = 1.2, the addition process favor the mode 1 with an eigenvalue 𝜆1
10 times larger than the eigenvalue 𝜆2. The parametric amplifier effect is visible at larger
squeezing, since the probability to add a photon in mode 𝑛 scales with 1 + sinh2(𝜁𝑛). At a
given squeezing in the dominant mode, the state purity first decreases with the squeezing in
the weak mode. When the squeezing in the weak mode is large enough to compensate the
unbalanced addition process than in the dominant mode (e.g. at (1,40) dB in figure 3.3), we can
see that the single-photon added state is almost pure, with a single-photon addition almost
certainly in the weak mode.
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3.2 Mode-selective single-photon addition in collinear type-
II parametric down-conversion

In this section, we develop an experimental model of the addition matrix𝐀+𝑛,𝑛′ , and diagonalize
it both analytically and numerically. The goal is to find:

• under which conditions the process can be single-mode, meaning that the effective num-
ber of modes in which it adds a single photon is reduced to one (i.e. 𝐾 = 1).

• under which conditions the process can bemode-selective, meaning that one can choose
in which mode the single photon is added1.

While the general principle of the process remains the same as described in figure 3.1, we
now consider parametric down-conversion (PDC) in a non-linear crystal and the light to be in
the pulsed regime. The modes at play are frequency modes of the large spectrum pulses. We
refer to the gate beam as the classical beam that feeds the non-linear crystal at the input, and
is part of the process described by �̂� .

In this section, we focus on collinear type-II parametric down-conversion, see figure 3.4.
Collinear means that input and output fields are all propagating in the same direction (on fig-
ure 3.4 they are not collinear for clarity purposes). Being type-II means that the signal and
idler output fields have orthogonal polarizations. This allows for separating the output beams
in practice. In section 3.3, we will investigate non-collinear parametric down-conversion con-
figurations.

For non-linear processes, the Hamiltonian operator is given by the interaction of the in-
put electric field �̂�𝑖𝑛 with the induced non-linear polarization �̂�NL(𝐫, 𝑡) and generally writes
[Loudon 00]

�̂�(𝑡) = ∫𝑉 d𝐫 �̂�NL(𝐫, 𝑡)�̂�g(𝐫, 𝑡) (3.26)

where 𝑉 is the volume of the non-linear crystal, �̂�g(𝐫, 𝑡) is the gate quantum electric field oper-
ator. Keeping only the second order non-linear polarization effect, the non-linear polarization�̂�NL(𝐫, 𝑡) writes �̂�NL(𝐫, 𝑡) = 𝜀0𝜒 (2)(�̂�s(𝐫, 𝑡) + �̂�i(𝐫, 𝑡))(�̂�s(𝐫, 𝑡) + �̂�i(𝐫, 𝑡)) (3.27)

where 𝜒 (2) is the effective second order non-linear susceptibility2, and �̂�s(𝐫, 𝑡) (resp. �̂�i(𝐫, 𝑡))) is
the signal (resp. idler) quantum electric field operator. The signal and idler fields are the two
fields induced by the polarization of the non-linear medium through the interaction with the
gate field.

1Note that the mode in which the single photon is added may be an eigenmode of the addition process or
any combination of eigenmodes.

2Note that in general 𝜒 (2) is a tensor to take into account all the possible polarization. We consider using the
relevant tensor element for simplicity.
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Fig. 3.4 Scheme of mode-selective single-photon addition through collinear para-
metric down-conversion in a non-linear crystal (for clarity, the beams are pictured
not collinear). Each gate photon is probabilistically down-converted into one pho-
ton added to the signal field and one idler photon detected for heralding purposes.
Single-photon addition occurs in the spectral mode �̃�g of the gate. SPD: single-photon
detector.

Developing equation (3.26) yields many terms, which correspond to second-harmonic gen-
eration (SHG), sum-frequency generation (SFG), parametric down-conversion (PDC), and op-
tical rectification (see e.g. [Boyd 13]). Here, we consider that only the PDC process is phase-
matched, and as such, dominant. Assuming the transverse spatial modes of the fields are
matched, equation (3.26) then re-writes

�̂�(𝑡) = ∫ 𝐿/2
−𝐿/2 d𝑧 𝜀0𝜒 (2)�̂�(−)

s (𝑧, 𝑡)�̂�(−)
i (𝑧, 𝑡)�̂�(+)

g (𝑧, 𝑡) + h.c. (3.28)

where we have taken the origin at the middle of the crystal of total length 𝐿.
We write the quantum electric field operators in the plane wave basis under the narrow-

band approximation 𝜔0 >> Δ𝜔 (1.13). Let us describe this decomposition in a continuous
format, whose correspondence generically writes∑𝓁 Δ𝜔 ↦ ∫ d𝜔 (3.29)�̂�𝓁Δ𝜔 ↦ �̂�(𝜔)𝐮𝓁 ↦ ei𝑘(𝜔)𝑧−i𝜔𝑡
where the operators {�̂�(𝜔)} obey the commutation relations[�̂�(𝜔), �̂�†(𝜔′)] = 𝛿(𝜔 − 𝜔′) (3.30)
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Using equation (1.13) and the correspondence (3.29), we can write the signal and idler field
operators as �̂�(−)

s (𝑧, 𝑡) = 0 ∫ d𝜔s �̂�†s (𝜔s) exp(−𝑖𝑘s(𝜔s)𝑧 + 𝑖𝜔s𝑡) (3.31)�̂�(−)
i (𝑧, 𝑡) = 0 ∫ d𝜔i �̂�†i (𝜔i) exp(−𝑖𝑘i(𝜔i)𝑧 + 𝑖𝜔i𝑡) (3.32)

Since the gate beam is an intense pulsed classical beam, its field �̂�(+)
g (𝑧, 𝑡) can be approxi-

mated1 as �̂�(+)
g (𝑧, 𝑡) = 0 ∫ d𝜔g �̃�g(𝜔g) exp(𝑖𝑘g(𝜔g)𝑧 − 𝑖𝜔g𝑡) (3.33)

where �̃�g(𝜔g) is the spectral envelope profile of the gate field, normalized as ∫ 𝑑𝜔g|�̃�g(𝜔g)|2 = 1.
Injecting the field decompositions (3.31), (3.32) and (3.33) into equation (3.28), we perform

the integration over the length of the crystal, and obtain�̂� (𝑡) ∝ ∫ d𝜔s d𝜔i d𝜔g �̃�g(𝜔g) �̂�†s (𝜔s) �̂�†i (𝜔i)𝜙PM(𝜔s, 𝜔i, 𝜔g) e−𝑖(𝜔g−𝜔s−𝜔i)𝑡 + h.c. (3.34)

with 𝜙PM(𝜔s, 𝜔i, 𝜔g) = sinc(Δ𝑘(𝜔s, 𝜔i, 𝜔g) 𝐿2 )
and Δ𝑘(𝜔s, 𝜔i, 𝜔g) = 𝑘g(𝜔g) − 𝑘s(𝜔s) − 𝑘i(𝜔i)

where 𝜙PM(𝜔s, 𝜔i, 𝜔g) is called the phase-matching function, and Δ𝑘 the phase mismatch. Tak-
ing into account the temporal dependency of the Hamiltonian, the evolution operator �̂� (𝑡)
generally writes �̂� (𝑡) = ̂ exp [− 𝑖

ℏ ∫ 𝑡
0 d𝑡′ �̂� (𝑡′)] (3.35)

where ̂ is the time ordering operator. In usual experimental conditions, the time ordering
operator may be neglected, in agreement with [Christ 13, Brecht 14]. As the gate temporal
mode has a finite temporal length and that we do not consider any other interaction, we can
extend both temporal integral boundaries to infinity. Performing the temporal integration in
equation (3.35) consists in computing ∫ +∞−∞ 𝑑𝑡e−𝑖(𝜔g−𝜔s−𝜔i)𝑡 = 2𝜋𝛿(𝜔g−𝜔s−𝜔i). Integrating over𝜔g reduces then to the energy conservation equation𝜔g = 𝜔s + 𝜔i (3.36)

The evolution operator �̂� then writes�̂� = exp [i∫ d𝜔s d𝜔i 𝐽 (𝜔s, 𝜔i) �̂�†s (𝜔s)�̂�†i (𝜔i) + h.c.] (3.37)

with 𝐽 (𝜔s, 𝜔i) ∝ �̃�g(𝜔s + 𝜔i)𝜙PM(𝜔s, 𝜔i) (3.38)
1Similarly as in section 2.4, we keep the operator notation for the field, in the sense that this is implicitly a

development at first order, where in the higher order the quantum fluctuations appear with null-mean operators.

112



CHAPTER 3. NON-GAUSSIAN OPERATIONS USING NON-LINEAR OPTICS

where 𝐽 (𝜔s, 𝜔i), referred to as the joint spectral amplitude (JSA) function, is the product of the
spectral profile of the gate with the phase-matching function. Since the evolution operator
has a similar form as in equation (3.6), we follow similar steps and find�̂�+s = 1𝑃+ ∫ d𝜔s d𝜔s

′ 𝐴(𝜔s, 𝜔′
s)�̂�†s (𝜔s)�̂�ins �̂�s(𝜔′

s) (3.39)

with 𝐴(𝜔s, 𝜔′
s) = ∫ d𝜔i 𝐽 (𝜔s, 𝜔i)𝐽 (𝜔′

s, 𝜔i)∗ (3.40)

where 𝑃+ is the probability that a single-photon addition occurs, and that ensures the normal-
ization Tr[�̂�+s ] = 1. Again, we can diagonalize 𝐴(𝜔s, 𝜔′

s), as it is an Hermitian function. Its
eigendecomposition yields ⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝐴(𝜔s, 𝜔′
s) = ∑𝑛≥1 𝜆𝑛�̃�s,𝑛(𝜔s)�̃�∗s,𝑛(𝜔′

s)
𝑒†𝑛 = ∫ 𝑑𝜔s�̃�s,𝑛(𝜔s)�̂�†s (𝜔s) (3.41)

where ⋅̃ is the Fourier transform. The eigenmodes {𝐞𝑛(𝑡)} form a time-frequency mode basis
for the signal electric field, and the operators 𝑒𝑛 are their associated annihilation operators.

Combining equations (3.39) and (3.41), we obtain back the expression (3.13) of the signal
single-photon added state �̂�+s = 1𝑃+ ∑𝑛 𝜆𝑛𝑒†𝑛 �̂�ins 𝑒𝑛 (3.42)

with 𝑃+ given by equation (3.14). In particular, the results of the discussion on the purity of
the single-photon added state in subsection 3.1.3 apply.

3.2.1 Mode selectivity
Let us now show that under some approximation we can analytically compute the Schmidt
number 𝐾 , defined in equation (3.15). This computation allows us to derive conditions for the
addition process to be single mode (i.e. 𝐾 = 1). We also show that under such conditions, the
process is mode selective.

We first assume that both the phase-matching function and the gate spectral profile are
Gaussian functions, which we write

𝜙PM(𝜔s, 𝜔i) ≈ exp [−𝛾 (Δ𝑘(𝜔s, 𝜔i)𝐿2 )2] (3.43)

�̃�g(𝜔s + 𝜔i) ∝ exp [−(𝜔s + 𝜔i)22Δ𝜔2
g ] (3.44)

where 𝛾 ≃ 0.193 is defined such that the functions sinc(𝑥) and e−𝛾𝑥2 have the same full width at
half maximum (FWHM),Δ𝜔g is the gate spectral width, andwe define the centered frequencies𝜔j = 𝜔j − 𝜔j,0 with the central frequency 𝜔j,0 for both signal (j = s) and idler (j = i) fields.
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Developing the phase mismatch Δ𝑘(𝜔s, 𝜔i), we keep up to the first order in 𝜔s and 𝜔i,
allowing us to write Δ𝑘(𝜔s, 𝜔i) = (𝑘′g − 𝑘′s)𝜔s + (𝑘′g − 𝑘′i )𝜔i (3.45)

where 𝑘′j ≡ 𝜕𝑘j𝜕𝜔j
|𝜔j,0 are the inverse of the field group velocities and where we have assumed

perfect phase matching at the central frequencies, i.e. Δ𝑘(𝜔s,0, 𝜔i,0) = 0.
Substituting equations (3.43), (3.44) and (3.45) into the JSA function (3.38) leads to:

𝐽 (𝜔s, 𝜔i) ∝ exp(−(𝜔s + 𝜔i)22Δ𝜔2
g

− 𝛾𝐿24 ((𝑘′g − 𝑘′s)𝜔s + (𝑘′g − 𝑘′i )𝜔i)2) (3.46)

Under these Gaussian approximations, 𝐾 has an explicit analytical form (see Appendix B.5 for
a detailed proof)

𝐾 = √(1 + 𝑟2s )(1 + 𝑟2i )(𝑟s − 𝑟i)2 (3.47)

with 𝑟j = Δ𝜔g𝐿√𝛾2 |||𝑘′g − 𝑘′j ||| for j = i, s
where the adimensional 𝑟j coefficients contain all the key parameters of the problem. Expres-
sion (3.47) allows for quantifying the number of effective modes of the addition process. In
particular, the process is single-mode when 𝐾 = 1. To obtain 𝐾 = 1 from equation (3.47),
one of the 𝑟j coefficients must vanish. Since we are interested in the selectivity over the signal
mode, we choose 𝑟s = 0 similarly to [Mosley 08]. This leads to the group velocity matching
condition (GVM condition) which writes 𝑘′g = 𝑘′s (3.48)

This condition can be achieved in some common crystals, as discussed in the next subsec-
tion 3.2.2. Under this condition, 𝐾 goes to one for large 𝑟i , i.e.

𝐾 = √1 + 1𝑟2i ≈ 1 if 𝑟2i ≫ 1 (3.49)

The condition 𝑟2i ≫ 1 writes
Δ𝜔2

g ≫ 1𝛾𝐿2(𝑘′g − 𝑘′i )2/2 (3.50)

This condition (3.50) can be physically seen as a long enough crystal condition or equivalently
as a broad enough gate spectrum. We have shown that the single-photon addition process is
single-mode under conditions (3.50) and (3.48).

For the process to be mode-selective, the output signal mode should be controllable by
an experimental parameter. Let us show that under the same conditions this parameter is
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the gate spectral profile �̃�g(𝜔g), which is then not assumed to be Gaussian anymore. Under
condition (3.48), we can rewrite equation (3.46) as

𝐽 (𝜔s, 𝜔i) ∝ �̃�g(𝜔s + 𝜔i) exp(−𝛾𝐿24 (𝑘′g − 𝑘′i )2𝜔2
i) (3.51)

Under condition (3.50), the spectral width of the gate is large compared to the one of the phase-
matching function, and it can thus be considered constant with respect to the variable 𝜔i. We
can then write �̃�g(𝜔s + 𝜔i) ≈ �̃�g(𝜔s + 𝜔i,0) in equation (3.51). Now, the JSA function can be
written in a factorized from, in the sense that the variables𝜔s and𝜔i are separable as a product,
as 𝐽 (𝜔s, 𝜔i) ∝ �̃�g(𝜔s + 𝜔i,0) exp(−𝛾𝐿24 (𝑘′g − 𝑘′i )2𝜔2

i) (3.52)

Replacing the JSA function 𝐽 (𝜔s, 𝜔i) in the expression (3.39) of the single-photon added
state with its factorized form (3.52), the resulting function 𝐴(𝜔s, 𝜔′

s) writes directly in the
diagonal form of equation (3.41) with only one term in the sum𝐴(𝜔s, 𝜔′

s) ∝ �̃�g(𝜔s + 𝜔i,0)�̃�g(𝜔′
s + 𝜔i,0)∗ (3.53)

We then deduce that the single-photon addition process is single-mode and the signal
eigenmode �̃�s(𝜔s) is given by the spectral shape �̃�g(𝜔g) of the gate, i.e. �̃�s = �̃�g. In other
words, the photon is added to the mode of the signal that has the same spectral shape as the
gate. The mode selectivity of the addition process is pictured in figure 3.4. In practice, the
mode of the gate can then be tailored via ultra-fast shaping in order to choose the addition
mode for the signal, see section 2.2.4 for detail on pulse shaping techniques.

We conclude from these analytical considerations that the collinear PDC addition process
is single-mode and mode-selective under Gaussian phase-matching approximation, group ve-
locity matching condition (3.48) and broad enough gate spectrum or equivalently long enough
crystal condition (3.50). Note that this model neglects the additional oscillations around the
main peak of the phase-matching function, that may have a small contribution to the Schmidt
number. Illustrations of this effect are shown in the simulations of the next section.

3.2.2 Simulations
In this subsection, we consider collinear type-II PDC in non-linear bulk crystals and show that
the single-mode and mode-selective conditions derived in subsection 3.2.1 can be achieved
with realistic parameters with the support of simulations.

In type-II PDC, for uniaxial bulk crystals, phase matching at signal and idler’s central
frequencies (i.e. Δ𝑘(𝜔s,0, 𝜔i,0) = 0) is achieved when2𝑛e(𝜆g,0, 𝜃c) = 𝑛e(𝜆i,0, 𝜃c) + 𝑛𝑜(𝜆s,0) (3.54)

where 𝜃c is the crystal cut angle defined as the angle between the gate propagation direction
and the optical axis of the crystal, 𝑛o is the ordinary refractive index and 𝑛e the extraordinary
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Fig. 3.5 Group velocity curves of the gate and signal fields for degenerate type-II
PDC in KDP. The gate is extraordinarily polarized in both graphs. The signal is (a)
extraordinarily polarized, or (b) ordinarily polarized.
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Fig. 3.6 Group velocity matching and phase-matching curves for different gate cen-
tral wavelengths 𝜆g,0, for (a) KDP and (b) LN crystals. For LN, there is no solution to
Eqs. (3.55).

one, associated to their respective field polarizations. At given wavelengths, this condition is
satisfied if the crystal is cut at a specific angle called the phase-matching angle, 𝜃c = 𝜃PM.

As discussed earlier, the GVM condition (3.48) is satisfied if 𝑘′g = 𝑘′s. For uniaxial crystals,
the signal field can be chosen as ordinary or extraordinarily polarized. For KDP crystal, it is
not possible to achieve the GVM condition for an extraordinarily polarized signal field, see
figure 3.5. When the signal field is ordinarily polarized, however, the group velocities of the
gate and the signal match for a particular cut angle 𝜃c = 𝜃GVM, which we refer to as the group
velocity matching angle (GVM angle).

For a given central gatewavelength 𝜆g,0, to achieve both the phase-matching condition (3.54)
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and the GVM condition (3.48), it requires that{𝜃c = 𝜃PM𝜃c = 𝜃GVM (3.55)

This condition cannot be achieved for an arbitrary gate central wavelength, which constitutes
a limitation for single-photon addition in bulk crystals. We call this particular gate central
wavelength the GVM wavelength, 𝜆GVM, satisfying equations (3.55), at which in particular𝜃PM = 𝜃GVM.

As shown in figure 3.6, for the KDP crystal, the GVM and phase-matching conditions are
achieved for 𝜆g,0 = 415 nm and 𝜃GVM = 𝜃PM = 67.74◦, while for LN, no gate central wavelength
satisfies Eqs. (3.55). Table 3.1 shows the different combinations of 𝜆GVM and 𝜃GVM for four
non-linear crystals typically used in quantum optics experiments.

Crystal 𝜆GVM (nm) 𝜃GVM (◦)
KDP 415 67.74
BBO 585 30.96
LN - -
BiBO 647 24.12
KTP 711 46.84

Table 3.1: Group velocity matching wavelengths 𝜆GVM and angles 𝜃GVM for different non-linear
crystals in collinear degenerate type-II PDC.

As seen in the previous section, the GVM condition is necessary but not sufficient for
achieving 𝐾 = 1, as we should also have a phase-matching bandwidth much smaller than the
gate bandwidth, see condition (3.50). This condition can be satisfied by setting appropriately
the crystal length 𝐿 or the gate width Δ𝜔g.

For the KDP crystal, the results are displayed on figure 3.7, with a Gaussian gate envelope.
The crystal length is set to 𝐿 = 5 mm, the gate bandwidth is Δ𝜔g = 3 nm, the gate central
wavelength is 𝜆g,0 = 415 nm, and 𝜃GVM = 67.74◦ in this simulation.

The singular value decomposition of the JSA is numerically performed, yielding a Schmidt
number 𝐾 = 1.08. For this set of parameters, the analytical expression (3.47) obtained under
Gaussian approximations estimates 𝐾 = 1.02. The quantity Δ𝜔2

g𝛾𝐿2(𝑘′g− 𝑘′i )2/2 is computed to
be around 10, which makes the condition on the gate and phase-matching function of equa-
tion (3.50) valid.

From the previous discussion, since those conditions are satisfied, we expect to have a
nearly single-mode single-photon added state (𝐾 ≈ 1), and to be able to select the signal
output mode. On figure 3.7 (b), the signal spectral dominant eigenmode is a Gaussian like the
gate spectral mode.

To further check the modes selectivity, we also compute the JSA function for a first or-
der Hermite-Gaussian function as gate spectral envelope, see figure 3.8 (a). Again, the domi-
nant signal eigenmode has approximately the same spectral shape as the gate in figure 3.8 (b).
Hence, shaping the gate allows for selecting the signal mode to which the photon is added.
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Fig. 3.7 Simulations for collinear type-II PDC in KDP with a Gaussian gate spectral
envelope. (a) JSA as the product of the phase-matching function and the gate spectral
envelope. (b) In blue: first normalized signal (left) and idler (right) eigenmodes of the
JSA. In magenta: the second idler eigenmode. The orange dashed area represents a4 nm wide spectral filtering applied on the idler field. For more details, see the main
text.

Here we obtain 𝐾 = 1.17, meaning that changing the gate spectrum comes at a cost on the
Schmidt number of the process, which affects the purity of the single-photon added state.

To summarize, the numerical simulations show a realistic configuration for mode-selective
single-photon addition in a KDP crystal through collinear type-II PDC. Similar results are
obtained for BBO, BiBO, and KTP crystals, in which the GVM condition of equation (3.55) can
also be satisfied.

3.2.3 Filtering

In order to obtain a Schmidt number 𝐾 closer to 1, one may filter the idler field spectrally
just before its detection. Detecting a single photon in a given idler eigenmode heralds the
single-photon addition in the corresponding signal eigenmode. When two idler eigenmodes
are spectrally easily separable with a small spectral overlap, filtering allows then to drastically
reduce the detection probability of one with respect to the other. We investigate the effect of

118



CHAPTER 3. NON-GAUSSIAN OPERATIONS USING NON-LINEAR OPTICS

800 850
Signal wavelength (nm)

800820840860

Id
le
rw

av
el
en
gt
h
(n
m
)

Phasematching

800 850
Signal wavelength (nm)

Gate

800 850
Signal wavelength (nm)

JSA

−1

0

1(a)

800 825 850
Signal wavelength (nm)

0.0
0.5
1.0

In
te
ns
ity

(n
or
m
al
ise

d)

Signal

800 825 850
Idler wavelength (nm)

Idler(b)

Fig. 3.8 Simulations for collinear type-II PDC in KDP with a first order Hermite-
Gaussian gate spectral envelope. (a) JSA as the product of the phase-matching func-
tion and the gate spectral envelope. (b) In blue: first normalized signal (left) and idler
(right) eigenmodes of the JSA. In magenta: the second idler eigenmode. The orange
dashed area represents a 4 nm wide spectral filtering applied on the idler field.
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filtering in the previous simulation, and show where it is easily implementable for reducing
the Schmidt number closer to 1.

The idler spectral filtering with transmission 𝐹(𝜔i) can be implemented by multiplying it
with the JSA in equation (3.37), i.e. 𝐽 (𝜔s, 𝜔i) ↦ 𝐽 (𝜔s, 𝜔i)𝐹(𝜔i). Such substitution is not unitary.
Since we only consider the situation where the output state is conditioned upon the successful
idler photon detection, we do not need the substitution to be unitary. In the simulations, we
use a “gate” filtering function 𝐹(𝜔i) which writes

𝐹(𝜔i) = {1 for 𝜔i ∈ [𝜔i,0 − Δ𝜔𝐹/2, 𝜔i,0 + Δ𝜔𝐹/2]0 elsewhere
(3.56)

where Δ𝜔𝐹 is the spectral width of the filter. In the following, we use the related wavelength
version Δ𝜆𝐹 , with Δ𝜔𝐹 = Δ𝜆𝐹2𝜋𝑐/𝜆2i,0.

We apply the idler spectral filter in the simulation for collinear type-II PDC in KDP for both
a HG0 gate (figure 3.7) and a HG1 gate (figure 3.8). The effect of the filter translates into making
the corresponding JSA part vanish, as represented by the dashed regions on JSA graphs 3.7 (a)
and 3.8 (a) (with Δ𝜆𝐹 = 4 nm). This effect is also represented with a dashed region on the idler
eigenmodes in graphs 3.7 (b) and 3.8 (b), where one can see that most of the second eigenmode
is filtered. This means that the probability of adding a photon to the first eigenmode is rela-
tively increased, increasing the single-mode character of the addition process. The simulation
results are given in table 3.2 for Δ𝜆𝐹 = 4 nm and Δ𝜆𝐹 = 2 nm wide filters. One can see that
filtering can indeed significantly reduce the Schmidt number towards 1.

K filter losses
HG0, Δ𝜆𝐹 = ∞ 1.08 0%

HG0, Δ𝜆𝐹 = 4 nm 1.01 17%
HG0, Δ𝜆𝐹 = 2 nm 1.00 45%
HG1, Δ𝜆𝐹 = ∞ 1.17 0%

HG1, Δ𝜆𝐹 = 4 nm 1.04 15%
HG1, Δ𝜆𝐹 = 2 nm 1.01 44%

Table 3.2: Schmidt numbers 𝐾 and idler first eigenmode filtering losses for idler Δ𝜆𝐹 wide
filters applied for collinear type-II PDC in KDP with both HG0 and HG1 gate spectral profiles.Δ𝜆𝐹 = ∞ corresponds to applying no filter. (For HG0, Δ𝜆𝐹 = 2 nm, 𝐾 = 1.004).

On the other hand, filtering induces the downside to reduce the idler detection probability.
For 𝐾 close to 1, most of the idler energy is contained in the first eigenmode. For this reason,
we estimate the losses by computing the overlap of this mode before and after filtering. The
assessed losses are given in table 3.2.

Spectrally filtering the idler beam prior detection is then a significantly helpful tool for
improving the single-mode character of the addition process in collinear type-II PDC in KDP,
as soon as one allows for a certain decrease of single-photon detection events rate. In particu-
lar, the detrimental increase of the Schmidt number when changing the gate envelope spectral
shape may be limited using idler spectral filtering, improving of the mode selectivity of the
addition process.
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3.3 Single-mode single-photon addition via non-collinear
parametric down-conversion

Up to now, we discussed collinear configurations for which it is often hard to separate the
signal and idler beams experimentally. As we show numerically in this section, single-mode
single-photon addition can be also achieved in non-collinear configurations, for which the
difficulty of separating the signal and idler beams is directly solved. However, we don’t have
an analytical derivation as for the collinear case. In particular, we don’t find configurations
where practical mode selectivity is similarly feasible.

On the other hand, in the non-collinear case, the non-collinear angle is a new degree of
freedom that can be exploited to achieve the GVM condition at an arbitrary gate central wave-
length. This removes the unpractical condition of restricting to a particular gate central wave-
length for any given crystal as shown in the previous section.

3.3.1 Type-II
The phase-matching conditions for type-II non-collinear PDC are [Boeuf 00]{ 2𝑛e(𝜆g,0, 𝜃𝑐) = 𝑛𝑜(𝜆s,0) cos(𝜃s) + 𝑛e(𝜆i,0, 𝜃𝑐, 𝜃s, 𝜙s) cos(𝜃i)𝑛𝑜(𝜆s,0) sin(𝜃s) = 𝑛e(𝜆i,0, 𝜃𝑐, 𝜃s, 𝜑s) sin(𝜃i) (3.57)

where 𝜃s (resp. 𝜃i) is the (non-collinear) angle of the signal (resp. idler) field with respect
to the gate field with in particular 𝜃i = −𝜃s, and where 𝜑s is the azimuthal angle of the sig-
nal propagation direction with respect to the optical axis. The introduction of the angle 𝜑s
is necessary to take into account the eventual biaxial nature of the crystals. Note that equa-
tions (3.57) generalize the collinear case given by equation (3.54), which is consistently deduced
with 𝜃s = 𝜃i = 𝜑s = 0. Solving the system (3.57) yields the phase-matching angle 𝜃c = 𝜃PM.

For a given non-collinear angle 𝜃s, the refractive index matching curve and the group ve-
locity matching curve intersect exactly at an unique gate central wavelength 𝜆GVM, similarly
as in the collinear case. Figure 3.9 shows for each non-collinear angle 𝜃s the corresponding
GVM gate central wavelength 𝜆GVM and GVM cut angle 𝜃GVM for KDP, for which both phase-
matching conditions (3.57) and group velocity matching (3.48) are achieved. As one can see, a
non negligible range of gate central wavelengths is available for small non-collinear angle 𝜃s.
Similar results are obtained for BBO, BiBO and KTP.

In this non-collinear configuration, the longitudinal wave vector mismatch Δ𝑘𝑧(𝜔s, 𝜔i) and
transverse wave vector mismatch Δ𝑘⟂(𝜔s, 𝜔i) are given by{Δ𝑘𝑧(𝜔s, 𝜔i) = 𝑘g(𝜔s + 𝜔i) − (𝑘s(𝜔s) + 𝑘i(𝜔i)) cos 𝜃sΔ𝑘⟂(𝜔s, 𝜔i) = (𝑘i(𝜔i) − 𝑘s(𝜔s)) sin 𝜃s (3.58)

The first order Taylor expansion of the wave vector mismatch around the central frequen-
cies yields {Δ𝑘𝑧(𝜔s, 𝜔i) = Δ𝑘𝑧(𝜔s,0, 𝜔i,0) + (𝑘′g − 𝑘′s cos 𝜃s)𝜔s + (𝑘′g − 𝑘′i cos 𝜃s)𝜔iΔ𝑘⟂(𝜔s, 𝜔i) = Δ𝑘⟂(𝜔s,0, 𝜔i,0) − (𝑘′s𝜔s − 𝑘′i𝜔i) sin 𝜃s (3.59)
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Fig. 3.9 Group velocity matching wavelengths 𝜆GVM, and angles 𝜃GVM, computed for
different non-collinear angles 𝜃s, for KDP in degenerate type-II PDC.

where the wave vector derivatives 𝑘′j , the centered frequencies 𝜔j and the central frequencies𝜔s,0 for j = i, s are defined in equation (3.45).
At central frequencies and for a given 𝜃s, both the transversewave vectormismatchΔ𝑘𝑧(𝜔s,0, 𝜔i,0)

and the longitudinal wave vector mismatch Δ𝑘⟂(𝜔s,0, 𝜔i,0) are expected to vanish for perfect
phase matching, i.e. when equations (3.57) are satisfied. In type-II PDC, the signal and idler
fields have orthogonal polarizations, therefore in practice their refractive indices are not equal.
This makes it impossible to have bothΔ𝑘⟂(𝜔s,0, 𝜔i,0) andΔ𝑘𝑧(𝜔s,0, 𝜔i,0) equal to zero. Thus, only
approximate phase-matching may be achieved.

In order to have a full description of the phase-matching function in the non-collinear case,
we should take into account the spatial dependency of the gate beam. From [U’Ren 03], the
phase-matching function is given by𝜙PM(𝜔s, 𝜔i) ∝ exp(−(Δ𝑘⟂(𝜔s, 𝜔i))2𝑤204 ) sinc [((Δ𝑘⟂(𝜔s, 𝜔i))24𝑘g(𝜔s + 𝜔i) − Δ𝑘𝑧(𝜔s, 𝜔i)2 )𝐿] (3.60)

where 𝑤0 is the beam diameter at the beam waist of the gate Gaussian beam. Following
[U’Ren 03], for large enough gate waist 𝑤0 the phase-matching function can be factorized
into a product of its longitudinal and transverse parts as𝜙PM(𝜔s, 𝜔i) ∝ 𝜙𝑧(𝜔s, 𝜔i)𝜙⟂(𝜔s, 𝜔i) (3.61)

with

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝜙𝑧(𝜔s, 𝜔i) = sinc(Δ𝑘𝑧(𝜔s, 𝜔i)2 𝐿)𝜙⟂(𝜔s, 𝜔i) = exp(−(Δ𝑘⟂(𝜔s, 𝜔i))2𝑤204 ) (3.62)

The condition writes more precisely 𝑤0/𝐿 ≫ sin2(𝜃s). In the simulations, we make sure to
always remain in these conditions.

In the frequency space (𝜔s, 𝜔i), the longitudinal phase-matching function depends on the
sum of signal and idler frequencies 𝜔s+𝜔i and its width depends on the length of the crystal 𝐿.
Similarly, the transverse phase-matching function depends on the frequency difference 𝜔s−𝜔i
and its width depends on the gate waist 𝑤0.
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Fig. 3.10 Simulations for non-collinear type-II PDC in BBO. (a) Phase-matching
function as the product of the longitudinal and transverse phase-matching functions.
(b) JSA as the product of the phase-matching function with the Gaussian gate psec-
tral envelope. (c) First normalized signal (left) and idler (right) eigenmodes of the
JSA. PM: phase-matching function.
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After fixing the gate central wavelength and the cut angle to best satisfy the phase match-
ing, the remaining experimentally tunable parameters are the gate spectral width Δ𝜔g, the
crystal length 𝐿 and the beam waist 𝑤0.

The results are shown in figure 3.10 for BBO in the type-II non-collinear configuration. The
gate spectral envelope is set as a Gaussian of width Δ𝜆g = 5 nm1. For a non-collinear angle
of 𝜃s = 5.325◦, we obtain 𝜆GVM = 398 nm and 𝜃GVM = 49.1◦. The crystal length of 𝐿 = 0.3 mm
and a beam waist of 𝑤0 = 85 𝜇m ensures the condition 𝑤0/𝐿 ≫ sin2(𝜃s) is valid. The first
signal and idler eigenmodes are given in the bottom of figure 3.10. We obtain the Schmidt
number 𝐾 = 1.04. Applying a 15 mn wide filter, the Schmidt number can be further reduced
to 𝐾 = 1.02, at the cost of 15% losses on the idler first eigenmode.

In figure 3.10, one can see that the transverse phase-matching function is not centered
around the desired central frequencies. As mentioned earlier in this section, this effect is due
to the non-vanishing component of the transverse wave vector mismatch, which results in
shifting the total phase-matching function. As a result, the idler and signal fields do not have
the same central frequency, which can be a limitation depending on the application.

3.3.2 Type-I

Finally, we treat the case of single-photon addition in degenerate type-I non-collinear PDC.
In this case, we can have perfect phasetmatching (Δ𝑘⟂(𝜔s,0, 𝜔i,0) = Δ𝑘𝑧(𝜔s,0, 𝜔i,0) = 0 in equa-
tion (3.59)).

The phase-matching condition for the degenerate type-I PDC process is given by𝑛𝑒(𝜔g, 𝜃𝑐) = 𝑛𝑜(𝜔s) cos 𝜃s (3.63)

where all the quantities involved have been defined before. Table 3.3 shows 𝜆GVM and 𝜃GVM for
different non-linear crystals for degenerate type-I PDC at 𝜃s = 0◦.

Crystal 𝜆GVM (nm) 𝜃GVM (◦)
KDP 517 41.15
BBO 771 19.83
LN 1012 44.95
KTP 919 24.98

Table 3.3: Group velocity matching wavelengths 𝜆GVM and angles 𝜃GVM for different non-linear
crystals for degenerate type-I PDC at 𝜃s = 0◦.

In the case of the BBO crystal, we show in figure 3.11 the variation of 𝜆GVM and 𝜃GVM with
respect to non-collinear angles 𝜃s. In the case of the BiBO, the BiBO crystal only fulfills the
conditions from 𝜃s = 5◦. In other words, there are no group velocitymatching for non-collinear
angles 𝜃s below 5◦ for the BiBo crystal.

1The gate spectral width Δ𝜔g is related to Δ𝜆g to Δ𝜆g by Δ𝜔g = Δ𝜆g2𝜋𝑐/𝜆2g,0
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Fig. 3.11 Group velocity matching wavelengths 𝜆GVM, and angles 𝜃GVM, computed
for different non-collinear angles 𝜃s, for type-I PDC in BBO.

In type-I, 𝑘′s = 𝑘′i and therefore equation (3.59) re-writes as (withΔ𝑘⟂(𝜔s,0, 𝜔i,0) = Δ𝑘𝑧(𝜔s,0, 𝜔i,0) =0) {Δ𝑘𝑧 = (𝑘′g − 𝑘′s cos 𝜃)(𝜔s + 𝜔i)Δ𝑘⟂ = −𝑘′s sin 𝜃(𝜔s − 𝜔i) (3.64)

Numerical simulations are carried out for the uniaxial crystals KDP, BBO and LN as well
as for biaxial crystals BiBO and KTP. We choose to present the simulation of the BiBO crystal,
as it is notably the crystal we have at hand in the laboratory. Figure 3.12 shows the phase-
matching function and JSA for the BiBO crystal in the type-I non-collinear configuration.
The gate spectral envelope is set as a Gaussian of width Δ𝜆g = 6 nm1. For a non-collinear
angle of 𝜃s = 5◦, we obtain 𝜆GVM = 708 nm and 𝜃GVM = 8.02◦. The central wavelengths are𝜆s,0 = 𝜆i,0 = 1416 nm. The crystal length of 𝐿 = 1mm and a beam waist of 𝑤0 = 225 µm
ensures the condition 𝑤0/𝐿 ≫ sin2(𝜃s) is valid. The first signal and idler eigenmodes are
displayed on figure 3.12. As expected, the shift of the phase-matching function observed in
type-II non-collinear PDC is not present here in figure 3.12 for type-I non-collinear PDC.

We obtain the Schmidt number𝐾 = 1.00 (𝐾 = 1.0005). As the Schmidt number is very close
to 1, spectrally filtering the idler eigenmodes was not investigated. This result shows that there
are non-collinear configurations which allow for a highly single-mode single-photon addition
process.

For both type-I and type-II non-collinear PDC,mode selectivity does not seem to be achiev-
able from our studies. Indeed, increasing the order of the gate Hermite-Gauss mode by 1
increases the Schmidt number to more than 2, resulting in non single-mode single-photon
addition.

Although filtering helps improving the single-mode character of the process, it does not
clearly improve its mode selectivity in the non-collinear configurations. Indeed, the success
of filtering relies on the spectral distinguishability between the first idler eigenmode and the
higher order ones. For non-collinear type-I PDC in BiBO, with a first order Hermite-Gauss

1The gate spectral width Δ𝜔g is related to Δ𝜆g by Δ𝜔g = Δ𝜆g2𝜋𝑐/𝜆2g,0
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Fig. 3.12 Simulations for non-collinear type-I PDC in BiBO. (a) Phase-matching
function as the product of the longitudinal and transverse phase-matching functions.
(b) JSA as the product of the phase-matching function with the Gaussian gate spec-
tral envelope. (c) First normalized signal (left) and idler (right) eigenmodes of the
JSA. PM: phase-matching function.
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gate, 𝐾 = 2 and the first idler eigenmode highly overlaps with the second, which means
spectral filtering is not helpful.

3.3.3 Conclusion of the single-photon addition investigation

In the current and two previous sections, we developed a theoretical framework for the addi-
tion of a single photon to multimode light fields in order to generate non-Gaussian quantum
states [Roeland 22]. We showed that multimode single-photon added states cannot be pure,
although numerical simulations show that very high purity states are achievable in realis-
tic experimental conditions. We have investigated different PDC configurations that support
single-photon addition, with uniaxial and biaxial crystals (KDP, BBO, LN, BiBO, KTP).

For collinear type-II PDC, mode-selective photon addition is shown to be achievable both
analytically and numerically under group velocity matching and long enough crystal condi-
tions. We prove that one can arbitrarily choose the unique mode in which the single photon
is added. Moreover, spectrally filtering the idler field can be used to improve both the single-
mode and the mode-selectivity characters of the addition process.

For non-collinear PDC, we extended the group velocity matching condition for both type-
I and type-II processes, and shown numerically that single-mode single-photon addition is
achievable.

As a possible future development of this work, other materials than raw bulk crystals may
be considered in order to achieve better results exploiting extra degrees of freedom, such as
periodically or aperiodically poled crystals.

3.4 Experimental single-photon subtraction via sum-frequency
generation

From the previous sections, single-photon addition is a promising operation to generate non-
Gaussian multimode states. Practically implementing single-photon addition may be thought
a priori more challenging than single-photon subtraction, because it is always possible to add
a photon to the vacuum. If a gate non-vacuum mode have a non-zero overlap with a signal
vacuum mode, photons are added to an irrelevant mode with a non-zero probability. For
instance, a spatial mode mismatch due to a broader gate beam than the signal beam results in
photon addition in vacuum modes1. Subtraction processes are free from such effects, since a
photon can not be removed from the vacuum. This big picture observation does not tell the
whole story. In the first subsection, we describe the single-photon subtraction process we use
in this thesis, and further discuss the pros and cons of both addition and subtraction processes.

For the experimental project of this thesis, we use the single-photon subtraction imple-
mentation developed in the theses [Jacquard 17] (English) [Dufour 18] (French, though more
advanced). In a subsequent subsection, we describe the technical aspects and challenges of
the setup, and assess the current performance of the subtractor. The single-photon subtractor

1In this example, this effect can in particular be coped with the homodyne or double homodyne detection,
using the LO mode as a spatial filter with a beam waist matching the signal beam waist.
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corresponds to the module 2.b) in figure 2.1, briefly presented in chapter 2 among the rest of
the complete experiment.

3.4.1 Mode-selective single-photon subtraction via type-I non-collinear
sum-frequency generation

In this subsection, we briefly give the framework of multimode single-photon subtraction, for
which the main concepts already elaborated in the previous sections are applied here to the
subtraction case. We then specify the physical system to type-I non-collinear sum-frequency
generation for which mode selectivity is achievable. We also discuss some applications of such
non-Gaussian mode-selective subtraction operation. We compare the properties of single-
photon subtraction with the ones of single-photon addition when relevant.

The principle scheme of the single-photon subtraction is pictured by figure 3.13.

sum-frequency

generationSignal
input state

output state
Gate

SPD

converted

single-photon

Fig. 3.13 Scheme of single-photon subtraction through non-collinear sum-
frequency generation in a non-linear crystal. Each gate photon and signal photon
are probabilistically up-converted into a single photon detected for heralding pur-
poses. SPD: single-photon detector.

Multimode single-photon subtraction. The theoretical framework for multimode single-
photon subtraction was developed in [Averchenko 16]. This framework is similar as in the
addition case developed in section 3.1. It boils down to replace �̂�†s,𝑛 by �̂�s,𝑛 in expression (3.6)
of the evolution operator �̂� .

Following the same steps, we obtain the output subtracted state �̂�−s conditioned to the
detection of an up-converted photon�̂�−s = 1𝑃− ∑𝑛,𝑛′ 𝐀−𝑛𝑛′ �̂�s,𝑛�̂�ins �̂�†s,𝑛′ (3.65)
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where the coefficients 𝐀−𝑛𝑛′ form the matrix 𝐀− referred to as the subtraction matrix and 𝑃− is
the detection success probability.

Upon diagonalizing the subtraction matrix 𝐀−, we find similarly�̂�−s = 1𝑃− ∑𝑛 𝜆𝑛𝑒𝑛�̂�ins 𝑒†𝑛 (3.66)

where 𝑃− = ∑𝑛 𝜆𝑛�̄�𝑛 (3.67)

where we kept the notations for the eigenvalues {𝜆𝑛} and eigenmodes {�⃗�𝑛} associated to the
annihilation operators {𝑒𝑛}, and �̄�𝑛 = Tr[𝑒†𝑛 𝑒𝑛�̂�ins ] is the photon number of the input signal in
the eigenmode �⃗�𝑛.

Note that for �̄�𝑛 < 1, the subtraction probability 𝜆𝑛�̄�𝑛/𝑃− in a given eigenmode is a priori
significantly smaller than the analogue addition probability 𝜆𝑛(1 + �̄�𝑛)/𝑃+ assuming equal
eigenvalues, and similar gate power.

With respect to subsection 3.1.3, the results on the output state purity differ for subtraction
because the probability to subtract in a vacuum mode is zero. Indeed, the probability 𝜆𝑛�̄�𝑛/𝑃−
to subtract in eigenmode �⃗�𝑛 goes to zero when the quantum state in �⃗�𝑛 is the vacuum (i.e.�̄�𝑛 = 0)1.

In particular, the subtracted state purity is always equal to 1 for any Schmidt number 𝐾 ,
provided the input state is a pure single-mode state. For this reason, the subtracted state purity
is always higher in a subtraction process compare to an addition process, provided the input
state is a pure approximately single-mode state.

Let us consider a two-mode squeezed vacuum input state, similarly as in subsection 3.1.3.
Contrary to the addition case (see equation (3.25)), the subtraction purity for a two-mode input
state writes Tr[(�̂�−s )2] = �̄�22 + (𝜆1/𝜆2)2�̄�21[�̄�2 + (𝜆1/𝜆2)�̄�1]2 (3.68)

Note that for equation (3.68) to be valid, we do not require the subtraction process to be limited
to the two first eigenmodes, only the input state, contrary to the addition case.

The subtracted state purity is shown in figure 3.14, to be compared with the added state
purity in figure 3.3. There are parameter regions where the added state purity is higher than
the subtracted state purity, and vice-versa. This depends on the relative squeezing between the
two modes. In particular, the subtracted state purity goes to 1 when the number of photons, or
equivalently the squeezing factor, in one of the two modes goes to zero. This behavior differs
in the addition case, for which the purity in this case is given by the lines of abscissa 0 dB and
of ordinate 0 dB in figure 3.3.

Mode selectivity in type-I non-collinear sum-frequency generation. As shown in [Averchenko 14],
single-photon subtraction can be implemented in type-I non-collinear sum-frequency genera-
tion. In particular they show that mode selectivity, i.e. the ability to control the mode in which
the single-photon is subtracted, can be achieved in such physical system.

1This property generalizes naturally to any vacuum mode and is not specific to the eigenmodes.
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Fig. 3.14 Output subtracted state purity for a two mode squeezed vacuum input
state, at fixed Schmidt number 𝐾 = 1.2.
For sum-frequency generation (SFG), the corresponding phasematched term in the Hamil-

tonain integral equation (3.26) is 2𝜀0𝜒 (2)�̂�(+)
s (𝑧, 𝑡)�̂�(−)

c (𝑧, 𝑡)�̂�(+)
g (𝑧, 𝑡) + h.c. [Boyd 13], using the

subscript c for the up-converted field. We consider the type-I process with both signal and gate
field in the ordinary polarization and the up-converted field in the extraordinary polarization1.
With this term in the Hamiltonian, a single-photon is removed from both the gate field and
the signal field, down-converting them into an up-converted single-photon. The single-photon
subtraction is illustrated in figure 3.15. In terms of energy conservation, it writes𝜔g = 𝜔c − 𝜔s (3.69)

We refer the reader to [Averchenko 14] for the demonstration that such subtraction pro-
cess becomes single-mode under group velocity matching condition 𝑘′g = 𝑘′s and long enough
crystal conditions. Similarly, it is also shown that under such conditions, the signal mode
in which occurs the subtraction is given by the gate spectral mode �̃�g. In other words, the
subtraction process is then mode selective.

As explained in chapter 2, this mode-selectivity property can be exploited using the gate
pulse shaper 2.a) in figure 2.1, which engineer the gate time-frequency mode �̃�g (see subsec-
tion 2.2.4 on pulse shaping techniques).

The single-mode property and mode selectivity of this single-photon subtractor allows for
the investigation of non-Gaussianity in both the single-mode case and the multimode entan-
gled case. We briefly describe two applications of the single-photon subtractor in the follow-
ing.

1Technically, this set of polarizations is referred to type-VI in the literature, while the type-I is usually re-
stricted to the case where the gate field is extraordinarily polarized and the signal and up-converted fields are
ordinarily polarized.
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Fig. 3.15 Scheme of mode-selective single-photon subtraction via sum-frequency
generation (SFG) in a BiBO crystal. A single photon form both gate and signal
fields are probabilistically converted into an up-converted single photon detected
for heralding purposes. Single-photon subtraction occurs in the gate spectral mode�̃�g. SPD: single-photon detector.

Wigner negativity induced by single-photon subtraction. As shown in subsection 1.4.4,
the single-photon subtraction operation applied to a squeezed vacuum input state may result
in a quantum state which has a negativeWigner function. The condition forWigner negativity
upon subtraction is given by inequality (1.155), which writes Tr[𝐕−1𝚷�⃗�] > 2with𝐕 the covari-
ance matrix of the squeezed vacuum input state and 𝚷�⃗� the projector on the two-dimensional
phase space associated with subtraction mode �⃗�. This result is valid for a single-mode sub-
traction process, with Schmidt number 𝐾 = 1. For a multimode subtraction process described
by equation (3.66), the results of subsection 1.4.4 are directly generalized upon replacing the
projector 𝚷�⃗� with 𝚷�⃗� ↦ 1𝑃− ∑𝑛 𝜆𝑛�̄�𝑛𝚷�⃗�𝑛 (3.70)

where 𝑃− is defined by equation (3.67), 𝚷�⃗�𝑛 is the projector on the two-dimensional phase
space associated with subtraction eigenmode �⃗�𝑛, and �̄�𝑛 the number of input photons in this
eigenmode. In particular, this generalizes inequality (1.155), which is expected to be harder to
beat when the Schmidt number 𝐾 is higher than 1.

For comparison, single-photon added states always satisfy their analogue inequalityTr[𝐕−1𝚷�⃗�] >−2 and yield a negative Wigner function. This last statement holds true for non-pure input
states and multimode single-photon addition [Walschaers 17b], for which the projector 𝚷�⃗� is
replaced according to 𝚷�⃗� ↦ 1𝑃+ ∑𝑛 𝜆𝑛(1 + �̄�𝑛)𝚷�⃗�𝑛 (3.71)

with similar notation as for equation (3.70).
In [Walschaers 17a, Walschaers 17b], they study of output state purity versus input state

purity for both single-photon subtraction and addition processes. In the simulations, at a given
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purity of the input state and for single-mode processes, the purity of the single-photon added
state is always higher than the purity of the subtracted state. This suggests that the purity
of the added state is more robust to the input state purity, with respect to the purity of the
subtracted state.

The two above remarks show a clear advantage of addition over subtraction. Considering
also the previous discussions on the subtraction/addition success probabilities (where addition
may win) and on the output state purity with respect to the Schmidt number of the process
(where subtraction wins over addition for some interesting cases), it is unclear theoretically
which one of the two operations is the most suitable for generating non-Gaussian multimode
states. A choice between them depends on the application in terms of input state purity, output
state purity requirements, output non-Gaussianity “amount” requirements1, along with the
experiment constraints.

Generating a subtracted squeezed vacuum state pure enough to be Wigner negative may
then be challenging experimentally. [Ra 20] demonstrates such successful application by per-
forming a tomography of the subtracted state using an homodyne detection. As explained in
section 2.4, the homodyne detection measures the quadrature of the signal �̂�𝜃s at a controllable
angle 𝜃 given by the optical phase between the local oscillator field and the signal field. All
the information on the experimental state is contained in the set of all the quadrature distri-
butions {Tr[�̂��̂�𝜃s ]} for all angles 𝜃. Since these distributions are all the marginals of the Wigner
function, measuring their set allows one to rebuild the Wigner function of the measured state,
i.e. performing its tomography. Since 𝜃 is a real parameter, one can only measure a discrete
subset in practice. To cope with this lack of information, one can use the maximum likeli-
hood algorithm [Lvovsky 04]. The iterative algorithm yields the most likely quantum state
to correspond to the measurements, provided some assumptions on the measured state such
as finite density matrix, and reasonable amount of losses2. Using these methods and the sub-
tractor aforementioned, [Ra 20] obtained the Wigner function of experimental single-photon
subtracted squeezed vacuum states with sufficiently high purity to demonstrate their Wigner
negativity.

Wigner negativity induced by single-photon subtraction in a multimode entangled
state. Along with these results, the group studied the effect of the entanglement structure
between different modes when subtracting in one of the modes in [Ra 20].

In the supermode basis, the output state of the SPOPO is a separable multimode squeezed
vacuum state (see section 2.3). It was shown in subsection 1.3.6 that a two-mode squeezed vac-
uum state becomes a two-mode entangled state upon a change of mode basis. The subtraction
mode may be chosen as a supermode, as well as a mode of a mode basis in which the SPOPO
output state is entangled. The effect of subtraction on this resulting state has been studied
in [Walschaers 19], where it is in particular shown that the resulting state may not feature
non-Gaussianity in modes distant from the subtraction mode by more than two entanglement
links. In [Ra 20], they experimentally show that subtracting in a mode form a square-like en-
tanglement structured state yields a Wigner function with maximal negativity in the furthest

1See section 1.4 for more details on non-Gaussianity properties, Wigner negativity and stellar rank, and how
to witness them.

2These assumptions allows one to search the state in a subset of the very large state Hilbert space.
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mode, two steps away. This particular result was predicted in [Walschaers 18].
The two aforementioned applications demonstrate the capabilities of the single-photon

subtractor for the study of non-Gaussianity in multimode fields.

3.4.2 Experimental realization

The single-photon subtractor used in [Ra 20] and developed in the theses [Jacquard 17, Dufour 18]
is the same one we use in this thesis work. Due to a recent replacement of the optical table
for a bigger one, the subtraction setup has been rebuilt with minor changes. After describing
the subtractor, we show that we recover similar performances as before, using the method
developed in [Ra 17].

3.4.2.1 Technical description and challenges

Description. A photo of the single-photon subtraction setup is given in figure 3.16. The
type-I sum-frequency generation occurs in a 2.5mm long BiBO crystal. Both the gate and
signal beams are vertically polarized, with spectrums centered at 795 nm. With a beam di-
ameter of 1.6mm, both beams are collimated and parallel prior entering a 200mm focal lens.
Symmetrically with respect to the lens optical axis, the distance between both beams is hori-
zontally 10mm and vertically 7.5mm, where the horizontal plan is the optical table. From this
geometry, we deduce that the non-collinear angle1 𝜃𝑠 is equal to 3.58◦.

After the lens, the beams focus at the same position in the lens focal plan, where the crystal
is then placed. After the crystal both gate and signal beams encounter a lens with the same
focal length, such that they have the same spatial properties as at the entrance of the subtractor,
with switched positions. The signal is later sent to the homodyne or double homodyne setup,
while the gate beam is dumped.

SFG beam and SFG counts. The sum-frequency generated (SFG) beam (i.e. up-converted
beam), whose spectrum is centered at 397.5 nm, outputs the second lens before being coupled
to a monomode fiber, with 65% coupling efficiency. The up-converted photons are then mea-
sured by a Hamamatsu C13001-01 single-photon detector (SPD), with 40% efficiency at this
wavelength. We estimated the optical losses from the crystal to the SPD to 70%, resulting in
a total loss of 90% (taking into account a spectral filter whose role we explain later). We de-
note the corresponding efficiency 𝜂c (10%). With coherent bright signal and gate beams, we
can estimate the proportion of power which is up-converted with respect to the input signal
power, at a given gate power. We usually use 1mW gate power for both alignment and mea-
surements. At this gate power, the up-conversion efficiency 𝜂SFG is about 0.16%. We can then
deduce a simple estimation of the expected number of detector counts per second due to SFG𝑐SFG as

𝑐SFG = �̄�s,�⃗�𝑇cav 𝜂SFG𝜂c (3.72)

1We keep the same definition given for equation (3.57), i.e. 𝜃𝑠 is the angle between the signal and gate beams.
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gate beam

signal beam

Lens LensBiBO crystal

AOM Iris Fiber to SPD

Fig. 3.16 Photo of the current single-photon subtraction setup on the optical table.
After the subtraction, the signal beam is sent to the detection (not shown) and the
gate beam is later dumped. The up-converted beam is diffracted by an acousto-optic
modulator (AOM) when single photons are generated (dashed-blue beam), which are
sent to a single-photon detector (SPD) via a fiber.

where �̄�s,�⃗� is the number of signal photons in the subtraction mode �⃗�, 𝑇cav is the SPOPO cavity
mode temporal duration. Since the signal pulses make several round trips in the SPOPO cavity
prior significantly loose energy, the relevant signal temporal duration is the inverse of the
SPOPO cavity bandwidth. The cavity bandwidth can be estimated as the product of the pulse
repetition rate 76MHz divided by the cavity finesse, 28 for an output coupler of reflectivity𝑟2o = 80%. From these estimations, we can expect 𝑐SFG = 55 counts per second on the SPD from
the SFG, assuming the signal state is a 3 dB squeezed state in the mode �⃗�. For a lower squeezing
factor 𝑠dB of 2 dB, we obtain 𝑐SFG = 24 counts per second. For higher reflectivity of the output
coupler, the finesse decreases, and we expect higher count rates. For instance, at 𝑟2o = 50%, the
finesse is about 9 and we obtain higher count rates of 𝑐SFG = 170 for 𝑠dB = 3 dB, and 𝑐SFG = 74
for 𝑠dB = 2 dB. We refer to these detector counts as SFG counts. Note that equation (3.72) is valid
under the assumption that the probability of having SFG double-photon events is negligible.

Dark counts. Imperfections of both the SPD and the setup leads to other sources of recorded
counts on the detector. These counts are not coming from actual signal photon subtractions,
and lead to a loss of purity of the signal output state conditioned on all the detector counts.
The imperfection the SPD itself produces dark counts, i.e. counts that occur in the absence
of input light. The detector is an avalanche photodiode (APD) working at room temperature,
with usually very low dark counts. We measured a typical dark count rate of 12 counts per
second. To further reduce this rate, we use a taggering electronic device. Taking advantage
from the pulsed nature of our light, this device allows for selecting a 1 ns time windows when
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light actually impinge the detector. As a result, we obtain a dark count rate 𝑐dark of less than 1
count per second.

Gate SHG counts. On top of the dark counts, we observe a significant amount of detector
counts from a side effect of the physics of our subtractor. Even though it is not phasematched
for this process, the 1mW bright gate beam produces a second-harmonic generated (SHG)
beam of about 1 uW, corresponding to about 1012 photons per second. The gate SHG photons
are diffracted by the crystal defects, so that a fraction get coupled into the fiber, up to the
detector. We observe typically thousands of counts per second. We refer to these counts as
gate SHG counts.

Note that it was observed in [Dufour 18] that such defects are produced when the gate
power reaches 10mWwhen used alone, or when both signal and gate beams are used as 1mW
bright beams for alignment purposes.

To cope with this limitation, [Dufour 18] increased the non-collinear angle 𝜃𝑠 to the cur-
rent 3.58◦ so as to reduce the gate diffusion coupling into the fiber, and thus the gate SHG
counts. Since the subtraction mode selectivity is conditioned to small non-collinear angles𝜃𝑠 [Averchenko 14], further increasing 𝜃𝑠 may risk the loss of this essential property. To fur-
ther reduce the gate SHG counts, we use a 0.35 nm wide spectral filter on the path to the
detector to get rid of the gate SHG photons that lie outside this range. The remaining gate
SHG photons can not be distinguished from the SFG photons, with the same spatial modes,
time-frequency modes and polarizations. Yet, the crystal is rotated in order to minimize the
SHG phase matching, while maintaining a good SFG phase matching. We also scan the crystal
transverse position to find seldom spots where the crystal diffracts significantly less. For in-
stance, we measured a gate SHG count rate 𝑐SHG of 2 counts per second for which we recorded𝑐SFG = 23 counts per second for an estimated 2 dB squeezed state and a reflectivity 𝑟2o = 80%,
with the usual dark rate 𝑐dark = 1 count per second. This measurement is consistent with the
estimation given in equation (3.72).

3.4.2.2 Single-photon subtraction tomography

In this subsection, we follow themethod used in [Jacquard 17] and further developed in [Ra 17]
to assess the performance of our subtractor. The method is based on quantum process tomog-
raphy using coherent states [Lobino 08, Fedorov 15]. The subtraction process, as any quantum
process, can be completely characterized sending only coherent states as input, and measuring
both the output states and corresponding success probabilities. In the case of single-photon
subtraction, the tomography is drastically simplified as a single-photon subtracted coherent
state is again a coherent state (as �̂� |𝛼⟩ = 𝛼 |𝛼⟩ ∝ |𝛼⟩). It is then only required to measure the
success probabilities.

Let us consider a multimode coherent state |�⃗�⟩ which we write in the eigenmode basis of
the subtraction process {𝐟𝑛} |�⃗�⟩ = |𝛼1⟩ ⊗⋯ ⊗ |𝛼𝑁 ⟩ (3.73)

with total number of photons ‖‖�⃗�‖‖2 = ∑𝑛 |𝛼𝑛|2.
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From equation (3.65), the output subtracted state is again |�⃗�⟩, with subtraction success
probability 𝑃−|�⃗�⟩⟨�⃗�| 𝑃−|�⃗�⟩⟨�⃗�| = ∑𝑛,𝑛′ 𝐀−𝑛,𝑛′𝛼𝑛𝛼∗𝑛′ (3.74)

Measuring the success probability of equation (3.74) with a finite number of well chosen
coherent states allows one to retrieve the subtraction matrix 𝐀−. The diagonal term 𝐀−𝑛,𝑛 is
obtained using a coherent state with an arbitrary amplitude 𝛽 in mode 𝐟𝑛, and vacuum in the
other modes. The off-diagonal term𝐀−𝑛,𝑛′ is obtained using two coherent states with amplitudes( 1√2𝛽, 1√2𝛽) and ( 1√2𝛽, −i√2𝛽) in the modes (𝐟𝑛, 𝐟𝑛′), and vacuum in the other modes. The mean
number of photons |𝛽|2 is arbitrary and is not required to be varied since the subtractionmatrix
is independent of the input state.

This subtraction tomography was performed in [Ra 17] for the subtractor prior the optical
table replacement. To check the current performance, we perform the tomography of our sub-
tractor using bright coherent input fields in the Hermite-Gaussian mode basis (whose modes
are defined in appendix A.2), restricting to the first six HG modes. We use the local oscilla-
tor (LO) beam for this task, as we can set its time-frequency mode using the LO pulse shaper
(module 3.b) in figure 2.1). The temporary additional optical path used to feed the crystal with
the LO beam is not shown.

We use alignment power levels, around 1mW. It has been checked in [Ra 17] that probing
with 1 photon per pulse fields or bright fields yield the same results, as expected by theory. The
gate spectral mode is set to the HG0 mode1, corresponding to the mode in which we expect the
highest squeezing (see section 2.3). The measured subtraction matrix is given in figure 3.17.

Fig. 3.17 Measured subtraction matrix 𝐀− in the Hermite-Gaussian mode basis, re-
stricted to the first six modes. The mode of local oscillator field used to probe the
subtraction process is engineered as combinations of the Hermite-Gaussian modes,
as described in the text. Themode of the gate field is set to the first Hermite-Gaussian
mode. The subtraction matrix is normalized to satisfy Tr[𝐀−] = 1.

1We used HG modes of 11 nm FWHM.
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Diagonalizing the measured subtraction matrix gives us access to the Schmidt number 𝐾
of the single-photon subtraction process, which is equal to 1.03. The probability to subtract
in the gate spectral mode, the HG0 mode, is equal to 0.98. Form the previous discussions, we
expect highly pure output subtracted states, provided the input states are highly pure. Note
that these subtraction tomography results are very similar to the ones shown in [Ra 17], which
confirms that the performance of the subtractor has been restored.

3.5 Towards multiple-photon subtraction

In the future, extending our subtraction setup to multiple-photon subtraction would allow us
to generate and measure a broader class of non-Gaussian states, in particular states of stellar
rank 2 or higher1.

A potential approach to achieving this goal involves substituting the existing single-photon
detector with an efficient photon number resolving detector, such as a transition-edge sensors
(TES). The idea is then to post-select data on the specific multiple-photon events of interest.
This post-selection eliminates the purity cost associated with blindly taking into account other
photon events. This could also bring the advantage to pumping the subtraction harder with
a higher gate power, boosting the subtraction event rate without other-photon-event purity
loss. However, pumping harder would increase the gate SHG counts. Given that the number
of gate SHG counts is already almost maximal before significantly reducing the output state
purity, the subtraction rate can not be increased with the current scheme. Since the two-
photon subtraction probability is approximately the square of the single-photon one, practical
measurements with this approach may require better coping with the gate SHG counts.

Another potential approach would be to purposely set the current single-photon subtrac-
tor in a spectrally multimode configuration instead of the current single-mode one (to 𝐾 > 2
for instance). The subtractor would then statistically subtract in several modes. Pumping it
harder again (with the same to-be-addressed limitations) would give raise to multiple-photon
events with a reasonable success probability. Among these subtraction events, some occur
for instance in two photons, one from each of two different modes. We then need to post-
select on these events, or in other words, we need a detection that can distinguish between
these two modes. For instance, one could use a grating on the path of SFG beam to spread its
spectrum prior coupling it into an array of single-photon detectors, such as avalanche pho-
todiodes (APDs). Taking the modes HG0 and HG1 as examples, distinguishing between them
would be done by detecting a single photon on the edge of the spectrum or in the middle. Tak-
ing into account any overlapping regions between the modes adds the challenge to decrease
the output purity, as we don’t know in which mode the subtraction occurred in these regions.
Spectrally selecting small regions can lower this effect, at the expense to even lower efficiency.
This scheme has the advantage to use APDs which offer high quantum efficiency, speed, and
work at ambient temperature, avoiding the hassle of cooling down the detector at cryogenic
temperatures, compared to TESs.

Yet another approach is to chain single-photon subtractors. Already limiting to two sub-
1For instance a state of stellar rank 2 may indeed not be engineered with less than 2 single-photon subtrac-

tions, see subsection 1.4.3
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tractors has the large drawback to potentially double the cost in space and setup complexity.
While using two gate pulse shapers provides the great advantage to subtract in two controlled
modes, it would be challenging to build another one. One could relieve such cost by using
the same gate pulse shaper for both subtractors, limiting us to subtracting two photons in
the same mode. Another possibility is to split the gate SLM screen into two parts (a priori
vertically to keep the number of spectral degrees of freedom), independently engineering the
time-frequency mode of both gate beams. This trick was implemented previously to shape
both the local oscillator (LO) and the gate beam in [Jacquard 17], using a 512 × 512 resolu-
tion SLM screen. With the recent upgrade of the gate SLM to a 792 × 600 screen mentioned
in subsection 2.2.4, we can expect such implementation to be less of a challenge. While still
costy, this approach has the advantage not to require additional care for the gate SHG pho-
tons. Such double-subtractor setup allows then for two-photon success probabilities as high as
current probabilities for single-photon events with one single-photon subtractor, with similar
expected output state purity. Yet, it suffers from poor scalability.

138



Chapter 4

Certifying quantum non-Gaussianity
using double homodyne detection
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In this final chapter, we tackle the main topic of this PhD work, namely certification. We
aim at certifying the quantum non-Gaussianity of single-photon subtracted squeezed vacuum
states, both property and states which are described theoretically in chapter 1. In chapter 2, we
described how to experimentally generate such non-Gaussian states using continous-variable
optics. In chapter 3, we elaborated in particular on the single-photon subtraction operation,
shedding more light on the experimentally generated states.

To certify the quantum non-Gaussianity of these states, an appropriate resource-efficient
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detection scheme is required. In the first section 4.1, we describe the double homodyne de-
tection, its properties and its experimental implementation. Owing to its ability to directly
retrieve all information on the input state, the double homodyne detection allows for a reli-
able certification protocol, which was introduced by [Chabaud 20b, Chabaud 21c].

In section 4.2, we introduce and motivate certification in the context of quantum informa-
tion. We argue in particular that current methods using homodyne detection are not suitable
for state certification, making the choice of the double homodyne detection relevant. We then
discuss the potential of the aforementioned certification protocol for state tomography and
state certification. In particular for the latter, the protocol relies on the estimation of the fidelity
of the experimental state to a chosen target state. In the subsequent section 4.3, we specify
this fidelity estimation protocol to certify the stellar rank and Wigner negativity of single-
photon subtracted squeezed vacuum states, a work we published in [Chabaud 21d]. Modeling
the states and detection in realistic experimental conditions, we show simulation of certifica-
tion results we expect. In particular, we extend the simulation performed in [Chabaud 21d] by
accounting for detection losses. We also show one can enhance the certifiability of our states
using an unbalanced double homodyne detection.

In the last section 4.4, we elaborate on the experimental challenges measuring with the
double homodyne detection, and report on our most recent experimental results.

4.1 Double homodyne detection

In this section, we describe the working principle, properties and experimental setup of the
double homodyne detection [Ferraro 05] (sometimes referred to as eight-port homodyne de-
tection). Its principle scheme is given in figure 4.1.

As its name suggests, the double homodyne detection consists in measuring the input sig-
nal state using two homodyne detections. As shown in section 2.4, each homodyne detection
outputs a difference current proportional to the signal quadrature �̂�𝜃s = cos(𝜃)�̂�s + sin(𝜃)�̂�s at
angle 𝜃 given by the optical relative phase between the signal beam and a local oscillator (LO)
beam. The idea of double homodyne detection is to simultaneously measure one quadrature�̂�𝜃s on one homodyne and the orthogonal quadrature �̂�𝜃+𝜋/2s on the second homodyne.

As pictured in figure 4.1, this is achieved by splitting the signal beam on a beamsplitter
into two arms, both sent to one homodyne detection fed with a common LO beam. It is then
enough to ensure that the relative phases between the signal and both LO are 𝜃 and 𝜃+𝜋/2 at
the homodynes. This is pictured with a 𝜋/2-phase-shifter prism in the scheme 4.1 where we
took 𝜃 = 0 for simplicity. Both orthogonal quadratures are then simultaneously sampled.

Note that simultaneously measuring two orthogonal quadratures can not be achieved with
arbitrary precision, owing to the Heisenberg relations for non-commutative observables. In
the given scheme 4.1, the precision on both signal quadratures is indeed limited to the vacuum
noise, due to the vacuum injection into the signal at the first beamsplitter BS*.

As we show in the first subsection 4.1.1, this simultaneous sampling is equivalent to the
direct sampling of the Q function of the signal state �̂�s, independently of the value of 𝜃. As
explained in section 1.2.5, the Q function contains all the information on the quantum state,
similarly as the Wigner function. The Q function is positive everywhere in the phase space,
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Fig. 4.1 Principle scheme of the double homodyne detection. The signal beam is first
split into two beams, mixing the signal with the vacuum on beamsplitter BS* which
may be unbalanced. The two beams are measured using homodyne detections (HDs),
which are fed with two local oscillator (LO) beams with relative phase of 𝜋/2. The
two homodyne detections HD1 and HD2 then sample orthogonal signal quadratures�̂�1 and �̂�2 from the signal state �̂�s.
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which is then consistent with the existence of a detection which directly samples the Q func-
tion, hence considered as a probability distribution. The double homodyne detection then
allows for the direct retrieval of all information on the input state. A result we also show for
multimode input states, using several double homodyne detections in parallel.

For comparison, the (single) homodyne detection only samples the quadrature �̂�𝜃s or equiv-
alently a marginal of the Wigner function, which by itself (at a given 𝜃) does not contain all
information on the signal state. Still sampling the marginals for many different measurement
settings, one for each value of 𝜃, allows for the reconstruction of the Wigner function using
maximum-likelihood algorithms [Lvovsky 04, Lvovsky 09]1. For a two-mode state, for each
mode 1 sampling at angle 𝜃1, the quadratures of mode 2 should be sampled for all angles 𝜃2.
This means that for multimode states the number of required quadrature-sampling measure-
ments grows exponentially with the number of modes.

While being experimentally slightly more complex to build, the double homodyne detec-
tion thus only requires one same measurement setting to retrieve all information on the signal
state. This means that for multimode states the required number of measurement settings does
not grow exponentially with the number of modes. Note that the total number of measure-
ments may still grow exponentially, which is the case in the double homodyne tomography
protocol developed in the later section 4.2. Interestingly, the certification protocol we use in
this thesis can be generalized to the multimode case, for which the number of measurements
only grows polynomially with the number of modes, see section 4.3.

The double homodyne detection features some striking properties which prove useful in a
certification scenario. In the first subsection 4.1.1, we show that unbalancing the first beam-
splitter (BS* in figure 4.1) is equivalent to applying a squeezing operation on the input state
prior to a balancedmeasurement. In the subsequent subsection 4.1.2, we show that both single-
mode displacements and mode basis changes prior measurement may be engineered by ap-
plying simple transformations on the measurement outcomes in post-processing.

While these properties can be extended to the multimode scenario, the current experimen-
tal implementation, described in subsection 4.1.3, is a single-mode double homodyne detection.
In the last subsection 4.1.4, we discuss the challenges to build a spectrally multimode double
homodyne detection.

4.1.1 A Q function sampler
In this subsection, we prove that the double homodyne detection directly samples the Q func-
tion of the input state. More precisely, we show that the POVM of this detection is the set of
projectors on squeezed displaced states, following the demonstration given in the appendix of
[Chabaud 17] which we extend later to the multimode scenario. In other words, we want to
show that the double homodyne detection projects the single-mode input signal state �̂�s onto
states of the form ||𝜓𝜁 ,𝛼⟩ = 𝑆(𝜁 )�̂�(𝛼) |0⟩ (4.1)

where 𝑆(𝜁 ) is the squeezing operator (defined in subsection 1.3.3) with squeezing parameter𝜁 ∈ R, and �̂�(𝛼) is the displacement operator (defined in subsection 1.3.2) with 𝛼 ∈ C.
1An application example of such homodyne tomography is given in subsection 3.4.1.
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POVM proof. To describe the detection scheme given in figure 4.1, the projectors must
model the action of the (unbalanced) beamsplitter BS* on both the signal and the vacuum, along
with the action of both homodyne detections at the output. The beamsplitter operation �̂�BS is
generally speaking a spatial two-mode basis change. It describes the transformation from the
signal and vacuum input modes (𝐟s, 𝐟vac) to the output modes (�⃗�1, �⃗�2) following equation (1.7).
The corresponding unitary matrix 𝐔BS writes1

𝐔BS = (𝑡 −𝑟𝑟 𝑡 ) (4.2)

where 𝑟2 (resp. 𝑡2) is the reflectivity (resp. transmissivity) of the beamsplitter.
As shown in section 2.4, the POVM of the homodyne detection is the set of projectors on

the eigenstates of the quadrature operator. The measurement of both homodyne detections
on the output modes (�⃗�1, �⃗�2) with outcomes (𝑞1, 𝑝2) is then the projection on the eigenstates|𝑞1⟩1 ⊗ |𝑝2⟩2 satisfying �̂�1 |𝑞1⟩1 ⊗ |𝑝2⟩2 = 𝑞1 |𝑞1⟩1 ⊗ |𝑝2⟩2 (4.3)�̂�2 |𝑞1⟩1 ⊗ |𝑝2⟩2 = 𝑝2 |𝑞1⟩1 ⊗ |𝑝2⟩2 (4.4)

where �̂�1 (resp. �̂�2) is the amplitude (resp. phase) quadrature associated with mode �⃗�1 (resp.�⃗�2).
The measurement with outcome (𝑞1, 𝑝2) can thus be described by the projection onto the

single-mode state2 |𝜓𝑞1,𝑝2⟩s = 1
 ⟨0|vac �̂� †

BS |𝑞1⟩1 ⊗ |𝑝2⟩2 (4.5)

where  is a normalization constant, and where we explicitly indicate the modes for each
state with the corresponding subscripts, e.g. state |𝜓𝑞1,𝑝2⟩s is in mode 𝐟s.

The POVM elements {Π̂DHD(𝑞1, 𝑝2)} of the double homodyne detection are then of the formΠ̂DHD(𝑞1, 𝑝2) = 1𝑐 |𝜓𝑞1,𝑝2⟩⟨𝜓𝑞1,𝑝2 |s (4.6)

with 𝑐 a constant such that the POVM sums up to the identity operator (see the end of sub-
section 2.4.1 for the definition of POVMs).

Let us show that each state |𝜓𝑞1,𝑝2⟩s is a squeezed displaced state of the form |𝜓𝜁 ,𝛼⟩s given
by equation (4.1).

We first write |𝑞1⟩1 ⊗ |𝑝2⟩2 = 14𝜋𝜎20 ∫ d𝑞2 exp( i𝑝2𝑞22𝜎20 ) |𝑞1⟩1 ⊗ |𝑞2⟩2 (4.7)

1We choose a unusual sign convention for this unitary matrix so as to obtain more natural equations. Note
that the inverse transformation �̂� †

BS swaps the sign in front of 𝑟 .
2The state |𝑞1⟩1⊗ |𝑝2⟩2 is written in the mode basis (�⃗�1, �⃗�2), so we want the action of the inverse beasmplitter

operation on it, i.e. the action of �̂� †
BS on the state |𝑞1⟩1 ⊗ |𝑝2⟩2, which writes �̂� †

BS |𝑞1⟩1 ⊗ |𝑝2⟩2.
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which is the Fourier transformation of the ket |𝑝2⟩2, and can be shown using the completness
identity (1.28).

The action of the beamsplitter �̂�BS on the quadrature operator column vector (�̂�1, �̂�2, �̂�1, �̂�2)⊤
is given by its symplectic matrix 𝐎BS, which is derived from equation (1.91) as

𝐎BS = (𝐔BS 𝟎𝟎 𝐔BS) (4.8)

with 𝐔BS is the real matrix given in equation (4.2), and the action of the inverse transformation�̂� †
BS is given by 𝐎⊤

BS
1.

The state �̂� †
BS |𝑞1⟩1 ⊗ |𝑞2⟩2 is an eigenstate of �̂�s (resp. �̂�vac) with eigenvalue 𝑡𝑞1 + 𝑟𝑞2 (resp.−𝑟𝑞1 + 𝑡𝑞2)2 �̂� †

BS |𝑞1⟩1 ⊗ |𝑞2⟩2 = |𝑡𝑞1 + 𝑟𝑞2⟩s ⊗ |−𝑟𝑞1 + 𝑡𝑞2⟩vac (4.9)

Projecting equation (4.9) onto the vacuum ⟨0|vac yields⟨0|vac �̂� †
BS |𝑞1⟩1 ⊗ |𝑞2⟩2 = 1(2𝜋𝜎20)1/4 exp(− 14𝜎20 (−𝑟𝑞1 + 𝑡𝑞2)2) |𝑡𝑞1 + 𝑟𝑞2⟩s (4.10)

where we used ⟨𝑞|0⟩ = 1(2𝜋𝜎20)1/4 exp(− 14𝜎20 𝑞2) (4.11)

which can be shown by computing the 𝑝-marginal of the vacuum Wigner function given in
equation (1.54).

Using both equations (4.7) and (4.10), the state |𝜓𝑞1,𝑝2⟩s defined by (4.5) rewrites

|𝜓𝑞1,𝑝2⟩s = 1
 ∫ d𝑞2 exp(− 14𝜎20 (−𝑟𝑞1 + 𝑡𝑞2)2) exp(i 12𝜎20 𝑝2𝑞2) |𝑡𝑞1 + 𝑟𝑞2⟩s (4.12)

where we absorbed the constant 2(2𝜋𝜎20)5/4 into .
We change variables in equation (4.12) with𝑡𝑟 𝑞 = −𝑟𝑞1 + 𝑡𝑞2 (4.13)

which implies 𝑡𝑞1 + 𝑟𝑞2 = 𝑞 + 𝑞1/𝑡 (from 𝑟2 + 𝑡2 = 1), and i𝑝2𝑞2 = +i 𝑟𝑡 𝑝2𝑞1 + i𝑝2𝑟 𝑞. We obtain

|𝜓𝑞1,𝑝2⟩s = ei
𝑟2𝑡𝜎20 𝑝2𝑞1
 ∫ d𝑞 exp(− 14𝜎20( 𝑡𝑟 )2𝑞2) exp(i 𝑝22𝑟𝜎20 𝑞) |𝑞 + 𝑞1/𝑡⟩s (4.14)

1Nota bene: The operator �̂�BS maps the operators �̂�⇀1,2 = (�̂�1, �̂�2, �̂�1, �̂�2)⊤ to the operators �̂�⇀s,vac =(�̂�s, �̂�vac, �̂�s, �̂�vac)⊤ through �̂� †
BS�̂�⇀1,2�̂�BS = 𝐎BS�̂�⇀s,vac. This is consistent with the mode basis change from (𝐟s, 𝐟vac) to(�⃗�1, �⃗�2) in the Heisenberg picture, see appendix B.1 for details.

2For instance, we have �̂�s(�̂� †
BS |𝑞1⟩1 ⊗ |𝑞2⟩2) = �̂� †

BS(�̂�BS�̂�s�̂� †
BS) |𝑞1⟩1 ⊗ |𝑞2⟩2 = �̂� †

BS(𝑡�̂�1 + 𝑟 �̂�2) |𝑞1⟩1 ⊗ |𝑞2⟩2 =(𝑡𝑞1 + 𝑟𝑞2)(�̂� †
BS |𝑞1⟩1 ⊗ |𝑞2⟩2), using the inverse beamsplitter transformation on �̂�s via 𝐎⊤

BS.
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In equation (4.14), let us exhibit a displacement operation. The displacement operator �̂�(𝛼)
writes with the quadrature operators �̂�s and �̂�s in the signal mode 𝐟s�̂�(𝛼) = exp[ 12𝜎20 (i𝑝𝛼 �̂�s − i𝑞𝛼�̂�s)] (4.15)

�̂�(𝛼) = exp(− 12𝜎20 i𝑝𝛼𝑞𝛼) exp( 12𝜎20 i𝑝𝛼 �̂�s) exp(− 12𝜎20 i𝑞𝛼�̂�s) (4.16)

with 𝛼 = 12𝜎0 (𝑞𝛼 + i𝑝𝛼)
where we used the Baker-Hausdorff formula [Leonhardt 95] for the second line.

We can use the eigenstate property to exhibit a displacement operation (with 𝑞𝛼 = 0) in
equation (4.14)exp(i 𝑝22𝑟𝜎20 𝑞) |𝑞 + 𝑞1/𝑡⟩s = exp(−i 𝑝2𝑞12𝑟𝑡𝜎20) exp(i 𝑝22𝑟𝜎20 �̂�s) |𝑞 + 𝑞1/𝑡⟩s (4.17)

Using equation (1.84) and a similar reasoning on the eigenstates of �̂�s as for showing equa-
tion (4.9), we can find the action of a displacement operation (with 𝑝𝛼 = 0) on the state |𝑞⟩s|𝑞 + 𝑞1/𝑡⟩s = exp(−i 𝑞12𝑡𝜎20 �̂�s) |𝑞⟩s (4.18)

Combining both equations (4.17) and (4.18), we recognize the displacement operation form
equation (4.16), and deduce up to a constant phase factorexp(i 𝑝22𝑟𝜎20 𝑞) |𝑞 + 𝑞1/𝑡⟩s ∝ �̂�(𝛼) |𝑞⟩s (4.19)

with 𝛼 = 12𝜎0(𝑞1𝑡 + i𝑝2𝑟 )
Since 𝛼 is independent of the integration variable 𝑞, we can re-write equation (4.14) up to

a multiplicative constant|𝜓𝑞1,𝑝2⟩s ∝ �̂�(𝛼)∫ d𝑞 exp(− 14𝜎20( 𝑡𝑟 )2𝑞2) |𝑞⟩s (4.20)

The right hand side integral can be intuitively viewed as a squeezed vacuum state, as it
exhibits a Gaussian quadrature distribution with variance which depends on 𝑡 and 𝑟 . Let us
show this using first the completness of the quadrature eigenstates (1.28) to write𝑆(𝜁 ) |0⟩s = ∫ d𝑞 𝑆(𝜁 ) |𝑞⟩s ⟨𝑞|0⟩s (4.21)

From the squeezing operator action (1.71) on the quadrature operator �̂�s and a reasoning
on eigenstates, we find 𝑆(𝜁 ) |𝑞⟩s = ||e−𝜁 𝑞⟩s. Combining this result with the expression (4.11) of⟨𝑞|0⟩, equation (4.21) writes𝑆(𝜁 ) |0⟩s = 1(2𝜋𝜎20)1/4 ∫ d𝑞 exp(− 14𝜎20 𝑞2) |e−𝜁 𝑞⟩s (4.22)
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Using the change of variables e−𝜁 𝑞 ↦ 𝑞 in equation (4.22), we identify in equation (4.20)
e−2𝜁 = (𝑡/𝑟)2, and obtain |𝜓𝑞1,𝑝2⟩s ∝ �̂�(𝛼)𝑆(𝜁 ) |0⟩s (4.23)

with 𝛼 = 12𝜎0 (𝑞1/𝑡 + i𝑝2/𝑟) and 𝜁 = ln(𝑟/𝑡).
Inverting the displacement and squeezing operations in equation (4.23) would result in the

wanted state form of equation (4.1). While these operators do not commute, they are linked
by a simple formula [Nieto 97]�̂�(𝛼)𝑆(𝜁 ) = 𝑆(𝜁 )�̂�(𝛼′) (4.24)

with 𝛼′ = 𝛼 cosh(𝜁 ) + 𝛼∗ sinh(𝜁 )
Applying equation (4.24) to equation (4.23) concludes the proof, i.e. |𝜓𝑞1,𝑝2⟩s is a squeezed

coherent state |𝜓𝜁 ,𝛼′⟩s. In other words, we have shown that the double homodyne detection
withmeasurement outcomes 𝑞 and 𝑝 from the two homodynes can bemodeledwith the POVM
elements which write (renaming the variable 𝛼′ by 𝛼 for convenience purposes)Π̂DHD𝜁 (𝛼) = 1𝜋 𝑆(𝜁 )�̂�(𝛼) |0⟩⟨0| �̂�(𝛼)†𝑆(𝜁 )† (4.25)

where 𝛼 = 12𝜎0(𝑞𝑟 + i𝑝𝑡 ) (4.26)

and 𝜁 = ln(𝑟/𝑡) (4.27)

Q function sampling. In particular, we deduce from this result (4.25) and equation (2.37)
that the probability 𝑃DHD𝜁 (𝛼) of measuring the signal state �̂�s with outcome 𝛼 is given by𝑃DHD𝜁 (𝛼) = Tr[�̂�sΠ̂DHD𝜁 (𝛼)]𝑃DHD𝜁 (𝛼) = 1𝜋 ⟨0| �̂�(𝛼)†𝑆(𝜁 )†�̂�s 𝑆(𝜁 )�̂�(𝛼) |0⟩𝑃DHD𝜁 (𝛼) = Q𝑆(−𝜁 )�̂�s 𝑆(−𝜁 )†(𝛼) (4.28)

where we recognize the Q function of the state �̂�s on which is applied the squeezing operation𝑆(−𝜁 ) = 𝑆(𝜁 )†, with 𝜁 given in equations (4.27).
In practice, collecting the samples {𝑞𝑖} and {𝑝𝑖} from the two homodyne detections, the Q

function of the state 𝑆(ln(𝑡/𝑟))�̂�s𝑆(ln(𝑡/𝑟))† is obtained by building the histogram in the phase
space from the complex samples {𝛼𝑖}, with 𝛼𝑖 = (𝑞𝑖/𝑟+ i𝑝𝑖/𝑡)/(2𝜎0). These samples are referred
to as double homodyne samples.

Note that with a balanced beamsplitter (𝑟 = 𝑡), the squeezing operation reduces to the
identity, i.e. 𝜁 = 0. In other words, the balanced double homodyne detection is directly sam-
pling the Q function of the input state. The unbalanced (𝑟 ≠ 𝑡) double homodyne detection is
formally equivalent to a squeezing operation followed by a balanced double homodyne detec-
tion.

The squeezing factor in decibels 𝑠dB of the equivalent squeezing operation 𝑆(−𝜁 ) is𝑠dB = 10 log10( 𝑡2𝑟2) (4.29)
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Around the balanced configuration at transmissivity 𝑡2 = 0.5, 𝑠dB is approximately linear
around 0 dB, with an increase of 1.7 dB for an increase of 0.1 in 𝑡2. When 𝑟 or 𝑡 tends to 1,
the squeezing parameter |𝜁 | becomes infinite. In particular, if one can experimentally set any
value of the beamsplitter transmissivity 𝑡2, then any squeezing factor value may be reached.
Taking the limit 𝑟 → 1 in equation (4.25), we deduce that the double homodyne detection
POVM reduces to the POVM of a single homodyne detection, i.e. a set of projectors on in-
finitely squeezed states.

LO-signal relative phase. In the proof, we considered for simplicity that the quadratures�̂�1 and �̂�2 were measured instead of the more general quadratures �̂�𝜃1 and �̂�𝜃+𝜋/22 , with 𝜃 the
signal-LO relative phase. We can take into account this phase by applying a global phase-
space rotation �̂�(𝜃) = exp(−i𝜃�̂�s) on the POVMelements of equation (4.25), with �̂�s the number
operator on the signal mode. Inserting 1̂ = �̂�(𝜃)�̂�(𝜃)† between each operators allows us to
apply the phase-space rotation to each operator in order to compute the action of �̂�(𝜃) on the
POVM element Π̂DHD𝜁 (𝛼) (in the Heisenberg picture). The action of the phase-space rotation
on the involved operators is |0⟩⟨0| ↦ |0⟩⟨0| (4.30)�̂�(𝛼) ↦�̂�(𝛼ei𝜃) (4.31)𝑆(𝜁 ) ↦𝑆(𝜁e2i𝜃) (4.32)

where we used the fact that the vacuum is invariant under phase-space rotations, and we used
appendix A.1. Since the POVM is the same set under 𝛼 ↦ 𝛼ei𝜃, equation (4.31) is transparent.
In equation (4.32), we use the definition equation (1.77) of the squeezing operator for a complex
parameter. Thus, the action of �̂�(𝜃) on the POVM element Π̂DHD𝜁 (𝛼) is simply mapping the
squeezing parameter 𝜁 to 𝜁e2i𝜃.

In other words, the complete POVM of the double homodyne detection Π̂DHD𝜁 (𝛼) is given
by equation (4.25), when considering 𝜁 ∈ C with modulus |𝜁 | = ln(𝑟/𝑡) and with phase con-
trolled by the LO-signal phase. As states are determined up to a global phase factor, the phase
of the squeezing parameter is irrelevant in the single-mode scenario.

Multimode double homodyne detection. Let us now consider 𝑁 parallel double homo-
dyne detections each measuring one of the orthogonal modes {𝐟𝑚}. In this case, taking into ac-
count the signal-LO phase of each double homodyne detection becomes relevant. The POVM
of such 𝑁 -mode double homodyne detection writes

Π̂DHD𝜁 (�⃗�) = 𝑁⨂𝑚=1 Π̂DHD𝜁𝑚 (𝛼𝑚) (4.33)

where Π̂DHD𝜁𝑚 (𝛼𝑚) is given by equation (4.25) with 𝜁𝑚 ∈ C and 𝛼𝑚 ∈ C.
Following the same steps as before and using the multimode definition (1.45) of the Q

function, the probability 𝑃DHD𝜁 (�⃗�) of measuring the signal multimode state �̂�s with outcome �⃗�
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is given by 𝑃DHD𝜁 (�⃗�) = Q𝑆⊗𝑁 (−𝜁 )�̂�s 𝑆⊗𝑁 (−𝜁 )†(�⃗�) (4.34)

where 𝑆⊗𝑁 (𝜁 ) = 𝑁⨂𝑚=1 𝑆(𝜁𝑚)
Using 𝑁 parallel double homodyne detections allows one then to sample the Q function

of any experimental 𝑁 -mode quantum state �̂�s, upon which is optionally applied single-mode
squeezing operations, in a single measurement setting. Each squeezing parameter 𝜁𝑚 is exper-
imentally controlled in absolute value by unbalancing the 𝑚-th double homodyne detection,
and in phase by setting the LO-signal relative phase.

4.1.2 Post-processing single-mode displacements andmode-basis changes
In the previous subsection, we have shown in particular that the double homodyne detection
is a Q function sampler, and that an equivalent squeezing operation prior Q function sampling
can be implemented by experimentally controlling the beamsplitter (BS*) reflectivity. In this
subsection, we show that if one has access to the Q function of a state, then one also has
access to the Q function of this state on which is applied single-mode displacements or mode
basis changes, upon applying simple transformations on the double homodyne samples in
post-processing.

Single-mode displacements. The displacement operator �̂�(𝛼) defined in equation (1.59)
satisfy the simple product following formula�̂�(𝛼)�̂�(𝛽) = e(𝛼𝛽∗−𝛼∗𝛽)/2�̂�(𝛼 + 𝛽) (4.35)

which can be shown using the Baker-Campbell-Hausdorff formula.
Let us consider that we have access to the Q function of the state �̂� using the double

homodyne detection (considered single-mode). From the definition (1.45), the Q function of
the displaced state �̂�(𝛽)�̂� �̂�(𝛽)† is given byQ�̂�(𝛽)�̂� �̂�(𝛽)†(𝛼) = 1𝜋 ⟨𝛼|�̂�(𝛽)�̂� �̂�(𝛽)†|𝛼⟩ (4.36)

From equation (4.35), the displaced coherent state �̂�(𝛽)† |𝛼⟩ = �̂�(−𝛽)�̂�(𝛼) |0⟩ writes�̂�(𝛽)† |𝛼⟩ = e(𝛽∗𝛼−𝛽𝛼∗)/2 |𝛼 − 𝛽⟩ (4.37)

where the global phase factor is irrelevant, and is in particular exactly compensated by its
dagger in equation (4.36).

We deduce that the Q function of a displaced state is given by the displaced Q function of
the initial state, i.e. Q�̂�(𝛽)�̂� �̂�(𝛽)†(𝛼) = Q�̂�(𝛼 − 𝛽) (4.38)
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Once one sampled the Q function Q�̂�(𝛼) using the double homodyne detection, one can
easily translate the histogram by translating the samples after measurement, and obtain the Q
function given in equation (4.38). In other words, applying the translation 𝛼 ↦ 𝛼 − 𝛽 on the
double homodyne samples in post-processing gives access to the Q function of the displaced
state �̂�(𝛽)�̂� �̂�(𝛽)†, for any 𝛽 ∈ C.

Equation (4.38) can be generalized to the multimode scenario. We consider measuring the𝑁 -mode state �̂� using 𝑁 double homodyne detections. We are then sampling the multimode Q
functionQ�̂�(�⃗�)with �⃗� ∈ C𝑁 . We consider the product of single-mode displacement operations�̂�⊗𝑁 (�⃗�) defined as �̂�⊗𝑁(�⃗�) = 𝑁⨂𝑚=1 �̂�(𝛼𝑚) (4.39)

where �⃗� = (𝛼1,⋯ , 𝛼𝑁 )⊤.
Following the same steps, we straightforwardly obtainQ�̂�⊗𝑁 (𝛽)�̂� �̂�⊗𝑁 (𝛽)†(�⃗�) = Q�̂�(�⃗� − 𝛽) (4.40)

since the multimode Q function is defined (1.45) as the projection of �̂� on the separable coher-
ent states ||�⃗�⟩ = |𝛼1⟩ ⊗⋯ ⊗ |𝛼𝑁 ⟩.

We conclude that sampling the Q function of a 𝑁 -mode state �̂� using 𝑁 double homodyne
detections gives access to the Q function of the state �̂�⊗𝑁 (𝛽)�̂� �̂�⊗𝑁 (𝛽)† upon applying the
translation �⃗� ↦ �⃗� − 𝛽 on the samples in post-processing.

Mode basis changes. We consider sampling the Q function of a multimode state �̂� by mea-
suring𝑁 modes simultaneously using𝑁 double homodyne detections. Denoting {𝐟𝑚} themode
basis in which is written the state �̂�, we want to compute the Q function of the same state in
the mode basis {�⃗�𝑚} defined by the change of mode basis (1.7). We note 𝐔 the unitary matrix
of the corresponding change of mode basis operator �̂� . The Q function in the new basis writesQ�̂� �̂� �̂�†(�⃗�) = 1𝜋𝑁 ⟨�⃗�||�̂� �̂� �̂� †||�⃗�⟩{�⃗�𝑚} (4.41)

where we explicitly write in subscript the mode basis for the multimode coherent state, i.e.||�⃗�⟩{�⃗�𝑚} = |𝛼1⟩�⃗�1 ⊗⋯ ⊗ |𝛼𝑁 ⟩�⃗�𝑁 .
A multimode coherent state is again a coherent state under a change of mode basis. Let

us show in the following this property which then allows us to obtain a similar statement as
before from equation (4.41).

We show that �̂� † ||�⃗�⟩{�⃗�𝑚} is an eigenstate of each annihilation operator �̂�𝑖 associated with
the mode 𝐟𝑖, i.e. a coherent state in the mode basis {𝐟𝑚} with amplitudes we compute. We have�̂�𝑖(�̂� † ||�⃗�⟩{�⃗�𝑚}) = �̂� †(�̂� �̂�𝑖�̂� †) ||�⃗�⟩{�⃗�𝑚} (4.42)= �̂� †(∑𝓁 (𝐔−1𝑖𝓁 )∗ �̂�𝓁) ||�⃗�⟩{�⃗�𝑚} (4.43)

= (∑𝓁 𝐔⊤𝑖𝓁𝛼𝓁)(�̂� † ||�⃗�⟩{�⃗�𝑚}) (4.44)

149



4.1. DOUBLE HOMODYNE DETECTION

where {�̂�𝑚} are the annihilation operators associated with the modes {𝐠𝐦}, in the second line
we use the inverse action mode basis change on the operator �̂�𝑖 (cf. equation (1.15)), and in the
last line we used the unitary relation 𝐔−1 = 𝐔⊤∗. Since ∑𝓁 𝐔⊤𝑖𝓁𝛼𝓁 is the 𝑖-th component of the
amplitude vector 𝐔⊤�⃗�, we deduce �̂� † ||�⃗�⟩{�⃗�𝑚} = ||𝐔⊤�⃗�⟩{𝐟𝑚} (4.45)

From equations (4.41) and (4.45) We then obtainQ�̂� �̂� �̂�†(�⃗�) = Q�̂�(𝐔⊤�⃗�) (4.46)

We conclude that sampling the Q function of a 𝑁 -mode state �̂� using 𝑁 double homo-
dyne detections gives access to the Q function of the state �̂� �̂� �̂� † upon applying the unitary
transformation �⃗� ↦ 𝐔⊤�⃗� on the samples in post-processing.

Post-processing and unbalancing equivalent operations. Here we consider sampling
the Q function of a 𝑁 -mode state with 𝑁 parallel double homodyne detections. From the
previous results, unbalancing the double homodyne detections, setting the LO-signal relative
phases (see subsection 4.1.1), and translating the output samples is equivalent to applying any
single-mode Gaussian operation on the input state on any measured mode. A single-mode
Gaussian operation can indeed be decomposed as the product of a displacement operation, a
squeezing operation and a rotation operation (see subsection 1.3.4). One can also apply a mode
basis change on top by applying it on the samples as in equation (4.46).

Putting these pieces together, controlling experimental parameters (prior measurement)
and applying transformations on samples (in post-processing), one can equivalently apply on
the input state any Gaussian operation of the following form

�̂�( 𝑁⨂𝑖=1 �̂�𝑖) (4.47)

where �̂� is a 𝑁 -mode basis change, and �̂�𝑖 are single-mode Gaussian operations.
Note that while a squeezing operation can be “swapped” with a displacement operation

using equation (4.24), there is no general analogue relation for swapping it with a mode basis
change1. For this reason, we cannot swap the two factors in equation (4.47) in general.

Note that the single-mode phase-space rotations may not only be controlled experimen-
tally but also via post-processing. Indeed, the action of the phase-space rotation operation�̂�(𝜃)† on a coherent state |𝛼⟩ yields the coherent state |𝛼e−i𝜃⟩. We deduce, similarly as be-
fore, that the Q function of the state �̂�(𝜃)�̂� �̂�(𝜃)† at 𝛼 is the Q function of the state �̂� at𝛼e−i𝜃. The transformation 𝛼 ↦ 𝛼e−i𝜃 should be performed on each mode prior applying �̂�
in equation (4.47). Such lessening of experimental parameter control requirements is always
welcomed.

1In the particular case where the squeezing parameters all have the same phase and the mode basis change�̂� is orthogonal, then it is possible to swap them.
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4.1.3 Polarization based double homodyne detection setup
In this subsection, we focus on the experimental implementation of the double homodyne
detection.

Implementing the fixed 𝜋/2 phase shift between the two homodyne detections in the
scheme 4.1 may be a challenging task, as it would require us to lock the optical phase be-
tween the two LO beams. It would cost space on the table, and may introduce errors in the Q
function sampling if the lock is not stable or efficient enough. Moreover, as we already imple-
ment a lock for the relative phase between the LO and the signal (see section 2.5), this would
increase the complexity of the global locking system, which may lead to additional locking
error or decreased stability.

It turns out that we can avoid such optical lock implementation by relying on the polariza-
tion degrees of freedom of the fields at play, as we show in the following. For this reason, we
chose to replace the beamsplitters with waveplates and polarizing beamsplitters (PBS). The
experimental setup is pictured in figure 4.2.

Fig. 4.2 Scheme of the experimental double homodyne detection setup. Corre-
sponds to module 3.c) of figure 2.1. Polarization-based scheme equivalent to the
non-polarization-based scheme 4.1: the 𝜋/2 phase is implemented using a circularly
polarized local oscillator (LO) beam and the unbalancing is implemented by turning
the linear polarization of the signal beam. �̂�(+)1 (resp. �̂�(+)2 ) denotes the field in the arm
1(resp. 2) measured by the homodyne detection 1 (resp. 2). HD: homodyne detection.
PBS: polarizing beamsplitter; 𝜆/2: half-wave plate; 𝜆/4: quarter-wave plate.

Schemes equivalence. In the scheme 4.2, the first PBS together with the waveplates that
precedes it play the role of the beamsplitters “BS*” and “BS” in the scheme 4.1, and the role
of the 𝜋/2 phase shifter. Each of the two spatial outputs of the PBS, referred to as arms,
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encounter a half-wave plate and a second PBS which play the role of the even beamsplitter of
the corresponding homodyne detection. Let us give more details, considering lossless optical
elements.

The LO field �̂�(+)
LO is prepared before the first PBS as a circularly polarized field using the

combination of a half-wave plate, quarter-wave plate and half-wave plate1 as�̂�(+)
LO = (�̂�(+)

LO,H + i�̂�(+)
LO,V)/√2 (4.48)

where the �̂�(+)
LO,H (resp. �̂�(+)

LO,V) is the horizontally (resp. vertically) polarized component of the
LO field, considering the PBS transmits/reflects in the horizontal/vertical polarization mode
basis.

The initially linearly polarized signal field �̂�(+)
s is prepared in the following polarization

before the second input of the first PBS using a half-wave plate�̂�(+)
s = 𝑡�̂�(+)

s,H + 𝑟�̂�(+)
s,V (4.49)

Since the PBS action is a four-port unitary operation, we need to consider the orthogonally
polarized vacuum field for both inputs. The only vacuum field which plays a role is the one in
the spatial mode of the signal, which we denote �̂�(+)

vac. It is in the orthogonal polarization2 to
the signal field before the PBS �̂�(+)

vac = −𝑟�̂�(+)
vac,H + 𝑡�̂�(+)

vac,V (4.50)

The PBS transmits horizontally polarized light, and reflects vertically polarized light. De-
noting by �̂�(+)1 and �̂�(+)2 the output fields in each of the output spatial modes (or arms) that lead
to the respective homodyne detections, we can write

�̂�(+)1 = i√2 �̂�(+)
LO,V + 𝑡�̂�(+)

s,H − 𝑟�̂�(+)
vac,H (4.51)�̂�(+)2 = 1√2 �̂�(+)

LO,H + 𝑟�̂�(+)
s,V + 𝑡�̂�(+)

vac,V (4.52)

In each of the arms 1 and 2, the two orthogonal polarization modes H and V can be thought
as independent channels. For the LO beam, the PBS effectively splits in half its power, with a𝜋/2 phase shift between the two arms. Independently, the PBS acts exactly as the beamsplitter
transformation given by thematrix𝐔BS in equation (4.2), on the signal and vacuum input fields.

Finally, for the arm 1 (resp. arm 2), the corresponding second PBS acts as an even beam-
splitter for both the horizontal and vertical polarization modes of the field �̂�(+)1 (resp. �̂�(+)2 ),
when the half-wave plate turns their polarization by 45◦ before entering the PBS. Note that
the second spatial input of this PBS plays no role, as it leads at the output to vacuum fields
which are orthogonally polarized to the non-vacuum fields.

This concludes the equivalence between the schemes 4.1 and 4.2. The main advantage of
the chosen scheme is the fact that the 𝜋/2 relative phase between the arms is implemented via

1This combination allows one to transform any polarization to any other polarization.
2This orthogonal polarization is unique up to a global phase factor.
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waveplates. Since the waveplates are mechanically fixed, this parameter is then very stable
over time and do not require regular alignment in practice.

Another advantage is the ability to change the coefficient 𝑟 and 𝑡 by simply turning the half-
wave plate on the signal path before the first PBS. In particular, we can then switch efficiently
from a single homodyne setup (𝑟 = 1 or 𝑡 = 1) to a double homodyne setup. Also, since any
value of 𝑟 and 𝑡 can be easily chosen, any equivalent squeezing operation prior measurement
may be engineered (see subsection 4.1.1).

Optical phase lock and arms phase noise. In chapter 2, we mostly considered the double
homodyne detection as a single homodyne detection. In particular, we described the optical
phase lock in this configuration in section 2.5. In practice, we can lock the phase between
the LO and the signal fields for both homodynes by applying the lock on only one homodyne
detection, without any additional locking error.

This result stems from yet another advantage of using the scheme 4.2. For each arm after
the first PBS, both the LO and the signal fields are together in the same spatial mode. In
particular, any phase noise in each arm is then equally experienced for both LO and signal
beams. In other words, the angle 𝜃 of the measured quadrature �̂�𝜃 at the homodyne detection
is independent of the phase noise after the first PBS. In particular, the 𝜋/2 relative phase
between the two homodyne detections is preserved under such noise.

The signal-LO phase lock relies on the interference between the LO and signal fields when
the latter is replaced by a bright field (the seed field). Since the LO-seed interference depends
also directly on 𝜃, it is also independent on the phase noise after the first PBS on both homo-
dyne detection. Thus, locking the relative signal-LO phase on only one homodyne detection
using a piezoelectric mirror on the common LO beam prior the first PBS allows us to lock both
homodyne detection on the quadratures �̂�𝜃1 and �̂�𝜃+𝜋/22 .

Amodal projectivemeasurement. The double homodyne detection naturally inherits the
modal projective measurement property of the homodyne detection shown in section 2.4. The
mode in which the Q function of the signal is measured is then given by the mode of the LO
field. The spectral LO mode is engineered using the LO pulse shaper, module 3.b) in figure 2.1.
Note that the current scheme can only measure one time-frequency mode at a time. To probe
a multimode Q function, it requires to change the setup, see next subsection 4.1.4.

Double homodyne detection losses. In section 2.4, we assessed the losses of the detec-
tion in the whole experiment 2.1, considering a single homodyne detection. In practice, the
losses were effectively estimated with the double homodyne detection scheme 4.2 in the single
homodyne detection configuration.

Since we used the same high quality optical elements and detectors on both arms of the
double homodyne detection, we obtain similar losses for both configurations 𝑟 = 1 or 𝑡 =1. The losses for the whole double homodyne detection are then the same as for one arm.
The double homodyne detection features the same optical, overlap, photodiode and electronic
efficiencies as the ones defined and estimated in details in subsection 2.4.3. We deduce the
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double homodyne detection efficiency 𝜂DHD𝜂DHD = 𝜂HD (4.53)

where 𝜂HD is given in equation (2.66). From the estimation (2.67), we deduce 𝜂DHD ≃ 81%.
As wewill show using simulations in section 4.3, the detection losses are detrimental to the

success of certification. For this reason, we take particular care in choosing very high quality
optical elements prior building the double homodyne detection.

The optical losses to take into account in the scheme 4.2, which are part of the losses in1 − 𝜂DHD, are the ones induced by the optics on the signal path. The signal field encounters
two half-wave plates and two PBSs:

• For the PBSs, we chose the 780 nm Laser Line Polarizing Cube Beamsplitter #47-048 from
Edmund Optics. They feature a very broadband high transmission (higher than 99%)
with very low transmission of the wrong polarization, see figure C.8 in appendix C.3.1.
Such low-loss PBS are hard to find in the current optics market. It is common to find10%-loss PBS, which would be prohibitive. We experimentally checked that the chosen
PBS features less than 1% losses.

• We chose the CVI Laser Optics QWPO-800-05-2-R10 half-wave plates. With 0.2% losses
per surface and two surfaces, they are among the best commercially available half-wave
plates in terms of losses. As zero-order waveplates, their retardance is not as flat as
achromatic waveplates. In appendix C.3.2, we compare with the Edmund Optics 700-1000 nm 𝜆/2 Achromatic Waveplate #46-561. We expect the retardance lack of flatness
to have a negligible effect, allowing us to avoid the heavy 2.4% loss cost of the achromatic
waveplates.

• Finally, the choice of the waveplates mounts is also of particular relevance as a poor
control on the rotation of the waveplates may lead to losses. Indeed, to ensure that the
homodyne detections work properly, the LO mean-field contribution to the difference
of currents should vanish. Since the LO power is orders of magnitude higher than the
quantum noise level we aim at measuring, a precise control over the beamsplitter trans-
mission is required. Since the second PBS of each arm and the corresponding half-wave
plate play the role of the homodyne detection beamsplitter, we use a high precision
Thorlabs mount PRM1/M. Such precision mount proved useful for setting the 𝜋/2 rela-
tive phase between the two arms, using it with the quarter-wave plate on the LO path.
In appendix C.3.3, a simple estimation allows us to dismiss the need for such precision
on the reflectivity 𝑟 experienced by the signal field at the first PBS.

Note that as losses are less relevant for the LO beam, we use an achromatic quarter-wave
plate for its very broadband retardance. This allows for minimizing the spectral deformation
of the LO mode, along with the LO-signal overlap induced losses (see section 2.4).

Note also that we use lenses before the second PBS in each arm to focus the light onto
the photodiodes, see scheme 4.2. Due to the high sensitivity of the homodyne detections, we
observed that a tight focus is required to increase the stability over time.
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4.1.4 Towards spectrally multimode double homodyne detection

The current double homodyne detection setup is limited to single-mode measurements. While
we may measure any mode of a given multimode input state1, we can not yet measure two
modes simultaneously. This means in particular that we can not sample the Q function of
a multimode state, nor certify the non-Gaussianity of a multimode state. Even more, going
multimode may open the path to entanglement certification, another valuable resource for
quantum information.

In practice, aswe are dealingwith spectrallymultimode fields, we can extend the scheme 4.2
by replacing the two homodyne detections with multipixel homodyne detections. The latter
consists in using gratings to open the spectrum of the output fields of the beamsplitter where
the LO and signal fields interfere. 𝑁frex portions of the spectrum, called frexels, are focused to
an array of 𝑁frex photodiodes using an array of micro-lenses. Collecting the 𝑁frex difference
of currents results in the simultaneous homodyne detection of the 𝑁frex frexel modes of the
signal. See [Michel 21] for a detailed description.

Building such multipixel double homodyne detection would allow us then to measure the
Q function of the multimode signal state in the frexel mode basis. Applying a change of mode
basis on the data would then allow us to get access to its Q function in any other mode basis,
from the results in subsection 4.1.2.

Although we expect the number of samples which are required for a decent precision to
increase with the number of modes 𝑁frex, a 𝑁frex-pixel double homodyne detection is sampling
with a 𝑁frex-fold increase in speed. We saw that the scaling of the sample number with respect
to the number of modes is not expected to be exponential. In section 4.3, we show a polynomial
scaling for the certification protocol we will use.

A drawback of such implementation is the inability to unbalance the beamsplitter BS* for
each frexel mode individually and independently. The setup only allows for a global unbal-
ancing for all frexel modes. Improving this setup to permit such individual control seems chal-
lenging as it would require somehow a wavelength-dependent beamsplitter, or a wavelength-
dependent half-wave plate when using a PBS. As we will see, we use the unbalancing in the
protocol to revert the squeezing of the experimentally generated squeezed vacuum states. In
the frexel mode basis, we expect the output of the SPOPO to be highly entangled (see sec-
tion 2.3), which implies low or no squeezing in each frexel mode (see subsection 1.3.6). For
this reason, such challenging extension do not seem to be a priority.

Building an efficient multipixel homodyne detection has been a long term project in the
team since [Cai 15]. Several challenges impede its development. The first prototype has a low
efficiency, with a photodiode efficiency of 80% and a low clearance between 10 dB and 5 dB
[Michel 21]. Several attempts to build a more efficient version encountered challenges in the
electronic implementation of the detector [Dufour 18, Michel 21], in particular managing the
crosstalks at high frequency (> 10 − 100MHz).

Out-sourcing the electronic conceptualization and fabrication to specialized private com-
panies is one of our best path to obtain efficient multipixel homodyne detections. A promising
design is currently under development.

1As for now, we didn’t try to measure another mode than the first supermode. Measuring another mode
would first require to make the optical lock work with other than a Gaussian LO mode, see section 2.5
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4.2 Certification via double homodyne detection

In the previous section, we have seen in particular that double homodyne detection gives ac-
cess to the Q function of the input state. However in practice, we can not retrieve the exact
Q function, as we are sampling with a finite number of points, from which arises naturally
statistical errors. This rises the following questions. Can we guarantee that the state repre-
sented by the sampled Q function is the actual measured state? If not, how close is it? Can we
ascertain the quantum non-Gaussian nature of the measured state from its sampled Q function
with limited number of samples? If so, can we provide the probability that the statement is
true?

These questions lie in the more general topic of certification. We first briefly introduce
certification in the context of quantum information and provide insights on its relevance in
the field in the first subsection 4.2.1.

In the subsequent subsection 4.2.2, we argue the non-suitability of homodyne detection for
state certification with current available methods. On the other hand, we show that double
homodyne detection allows for a reliable state certification.

4.2.1 Certification concept and motivation

Let me first quote an expert colleague on the topic: “Quantum certification denotes the meth-
ods seeking to verify the correct functioning of a quantum machine”, Ulysse Chabaud, from
[Chabaud 20a].

This is in essence the main topic we tackle in this thesis work. Let us first take a step back
to better comprehend certification in the blooming context of quantum information. Dele-
gated quantum computing refers to relying on an hybrid quantum network where classical
computers (clients) are sending requests to centralized quantum computers. Viewed as the
most likely emerging platform, delegated quantum computing requires a way for the clients
to be ensured of the correct functioning of the quantum computers and that the network is
secure. In particular, the former is a priori not trivial, since the clients can not directly check
the received results using their classical computer at hand. By definition, a quantum computer
may perform tasks which are not simulable using a classical computer.

In this context, verification is needed. A verification task aims at ensuring the proper be-
havior of the quantum machine, or that the quantum computation aborts securely in case of
an adversarial attack, without trusting the quantum computer node.

For instance, a recent startup (VeriQloud) launched on the idea of sending many requests
whose answers are already known, together with few actual queries [Fitzsimons 17]. Based
on the randomness of this request distribution, this verification protocol manages to ensure
security over the network relying on the matching rate of the received results with the known
answers.

In the context of verifying the correct functioning of an experiment in a lab or of an in-
dustrial quantum device, we refer to certification. In this sense, certification may be viewed as
both an essential development towards delegate quantum computing and a method to guar-
antee the quantum advantage of a given quantum device. Given the rapid development of
quantum technologies recently, increasing demands for a reliable certification for quantum
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advantage arise, along with concomitant efforts in this field see e.g. the review [Eisert 20]. In
the following, we focus on certification1.

4.2.2 State tomography and expectation-value estimation protocol

Given an experimental source of quantum states, the purpose of state certification protocols
is then to check whether its output state is close to a given target state or far from it2. To
implement such certification, quantum state tomography [D’Ariano 03] is a relevant candidate
method. It aims at reconstructing a good approximation of the output state of a quantum
device by performing the measurement of many copies of said output state. A natural question
which arises is: can we perform a sufficiently reliable state tomography so as to certify a given
quantum machine?

Themost used continuous variable state tomographymethod relies on using the homodyne
detection. Such homodyne tomography is typically based on maximum-likelihood algorithm
which we briefly presented in page 132. In a nutshell, homodyne detection samples the distri-
bution of the signal quadrature �̂�𝜃s at angle 𝜃. Repeating many measurement for many angles𝜃 yields a set of sampled quadrature distributions, which allows for the reconstruction of the
Wigner function of the maximum-likely state.

Homodyne tomography is not reliable in the sense of [Christandl 12], because errors com-
ing from the reconstruction procedure itself are indistinguishable from errors coming from
the data. In other words, error bars are hard to extract from maximum-likelihood tomography
[Blume-Kohout 10, Faist 16, Silva 17]. Without reliable error bars, one can not claim a legiti-
mate Wigner negativity of the experimental state from the reconstruction of the tomography.
Consequently, current methods using homodyne detection do not allow for state certification,
as one cannot reliably provide a precision or a confidence degree on the certification claim.

The double homodyne detectionwas shown to be a promising tomographic tool in [Paris 96].
[Chabaud 20b] recently extended these results, and shown double homodyne tomography with
reliable error bars is achievable, allowing for state certification. This state tomography is based
on the double homodyne expectation-value estimation protocol, which was later improved in
[Chabaud 21c]. Let us give some insights on this protocol for single-mode states here, before
specifying it for our goals in the next section 4.3.

Double homodyne expectation-value estimation protocol. The idea of the protocol is
to estimate the expectation value Tr(�̂��̂�) of the state �̂� with any operator �̂� with a bounded
support over the Fock basis3. Since the double homodyne detection allows for sampling the
Q function, we naturally want to compute Tr(�̂��̂�) using equation (1.48), which we reproduce

1For verification protocols using double homodyne detection based on the same principles described later in
this section, we refer to [Chabaud 20b, Chabaud 20a]

2In this context, the question whether we assume that the states are independently and identically distributed
(i.i.d.) arises. While we will restrict to this assumption, we refer to [Chabaud 20b, Chabaud 20a] for a version of
the certification protocol presented in this section without the i.i.d. assumption (requiring much larger number
of state copies).

3This means that its decomposition on the Fock basis �̂� = ∑𝑘,𝑘′ 𝐀𝑘𝑘′ |𝑘⟩⟨𝑘′| only contains a finite number of
non-zero terms.
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here in the single-mode version

Tr(�̂��̂�) = 𝜋 ∫
R2 P�̂�(𝛼)Q�̂�(𝛼) d2𝛼 (4.54)

where P�̂�(𝛼) is the P function of the operator �̂�.
As explained in subsection 1.2.4, the P function is often an ill-behavedmathematical object,

which makes the direct computation of Tr(�̂��̂�) in equation (4.54) impractical. To circumvent
this issue, [Chabaud 20b, Chabaud 21c] introduced a set of parametrized functions which ap-
proximate P�̂�(𝛼) efficiently enough to provide a certification statement.

Let us define here these functions. If one wonders how one could guess such ansatz, some
inspiration can be retrieved from the Wigner function of Fock states, see equation (1.114). Let
us introduce the polynomials

𝑘,𝑘′(𝛼) = min (𝑘,𝑘′)∑𝓁=0 √𝑘!√𝑘′!(−1)𝓁𝓁!(𝑘 − 𝓁)!(𝑘′ − 𝓁)!𝛼𝑘′−𝓁𝛼∗𝑘−𝓁 (4.55)

for 𝛼 ∈ C, which are the 2D Laguerre polynomials up to a normalization factor. For all 𝑘, 𝑘′ ∈
N, we define with these polynomials the functions

𝑓 (𝛾)𝑘,𝑘′(𝛼) = 1𝛾1+ 𝑘+𝑘′2 𝑒(1− 1𝛾 )𝛼𝛼∗𝑘′,𝑘 ( 𝛼√𝛾) (4.56)

where 𝛾 is a parameter satisfying 0 < 𝛾 < 1.
The functions 𝑓 (𝛾)𝑘,𝑘′(𝛼) are meant to approximate P|𝑘⟩⟨𝑘′ |(𝛼). To approximate P�̂�(𝛼), we use

instead 𝑓 (𝛾)�̂� (𝛼) defined as 𝑓 (𝛾)�̂� (𝛼) = ∑𝑘,𝑘′ 𝐀𝑘𝑘′ 𝑓 (𝛾)𝑘,𝑘′(𝛼) (4.57)

where𝐀𝑘𝑘′ are thematrix coefficients of the operator �̂� in the Fock basis, with �̂� = ∑𝑘,𝑘′ 𝐀𝑘𝑘′ |𝑘⟩⟨𝑘′|
where only a finite number of terms are non-zero.

[Chabaud 21c] improved these functions by defining

𝑔 (𝑚,𝛾)𝑘,𝑘′ (𝛼) = 𝑚−1∑𝑗=0 (−1)𝑗𝑓 (𝛾)𝑘+𝑗 ,𝑘′+𝑗(𝛼) 𝛾 𝑗√(𝑘 + 𝑗𝑘 )(𝑘′ + 𝑗𝑘′ ) (4.58)𝑔 (𝑚,𝛾)�̂� (𝛼) = ∑𝑘,𝑘′ 𝐀𝑘𝑘′ 𝑔 (𝑚,𝛾)𝑘,𝑘′ (𝛼) (4.59)

where 𝑚 is a non-zero natural integer parameter. Note that at 𝑚 = 1, 𝑔 (1,𝛾)𝑘,𝑘′ (𝛼) = 𝑓 (𝛾)𝑘,𝑘′(𝛼).
Comparedwith the 𝑓 (𝛾)𝑘,𝑘′(𝛼) functions, the 𝑔 (𝑚,𝛾)𝑘,𝑘′ (𝛼) ones are more efficient at estimating Tr(�̂��̂�).

Let us consider that we obtained the double homodyne samples 𝛼1,⋯ , 𝛼𝑀 . From section 4.1,
these samples follow the probability distribution Q�̂�(𝛼). The expression (4.54) of Tr(�̂��̂�) can
then be seen as the expectation value of the P function P�̂�(𝛼) for the probability distribution
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Q�̂�(𝛼), when P�̂�(𝛼) is a well-defined function. The mean value of P�̂�(𝛼) over the detection
samples {𝛼𝑖} then tends to Tr(�̂��̂�) when the number of samples 𝑀 tends to ∞, which writes𝜋𝑀 𝑀∑𝑖=1 P�̂�(𝛼𝑖) −−−−→𝑀→∞ Tr(�̂��̂�) (4.60)

When the P function is ill-behaved, we then recourse to the approximations {𝑔 (𝑚,𝛾)�̂� (𝛼)}. We
then define the expectation-value estimator 𝐸(𝑚,𝛾)�̂� , meant to estimate Tr(�̂��̂�), as

𝐸(𝑚,𝛾)�̂� (𝛼1,… , 𝛼𝑀) = 1𝑀 𝑀∑𝑖=1 𝑔 (𝑚,𝛾)�̂� (𝛼𝑖) (4.61)

Without getting into the details, [Chabaud 21c] showed that the expectation-value esti-
mator in equation (4.61) can be chosen as close to Tr(�̂��̂�) as one asks with sufficiently high
number of samples 𝑀 which depends on the choice of parameters 𝛾 and 𝑚. More precisely,
one can ask for any precision 𝜖 > 0 together with any certification degree of confidence 1 − 𝛿
with 𝛿 > 0. This means asking for|||𝐸(𝑚,𝛾)�̂� (𝛼1,… , 𝛼𝑀) − Tr(�̂��̂�)||| ≤ 𝜖 (4.62)

with a probability greater than 1 − 𝛿. They proved that such statement is achievable with a
number of samples 𝑀 which scales as

𝑀 = ( 1𝜖2+𝑡 log(1𝛿)) (4.63)

where 𝑡 > 0 is a free parameterwhich depends on the choice of 𝛾 and𝑚. Note that this scaling is
at most polynomial in (𝜖, 𝛿). We don’t give here the explicit rates of convergence with respect
to the parameters 𝛾 and 𝑚 and the choice of the operator �̂�, and refer to [Chabaud 21c] for
details. In the next subsection, we explicit them for the protocol we use in this work.

Double homodyne tomography. Continuous variable quantum state tomography meth-
ods usually assume that themeasured state has a bounded support over the Fock basis [Lvovsky 09].
Under this assumption and noting 𝐵 this bound, we can then simply apply the result (4.62) with�̂� = |𝑘⟩⟨𝑘′| for all 𝑘, 𝑘′ smaller than 𝐵 and with the samples {𝛼𝑖}. This yields the estimates of
each density matrix non-zero element, along with their precisions and degrees of confidence.
Contrary to homodyne tomography, no additional reconstruction procedure is required, and
the samples are acquired with a single measurement setting, and the number of required mea-
surement settings does not grow exponentially with the number of the input state modes (as
argued in section 4.1, page 142). In other words, this protocol provides a reliable quantum state
tomography using the double homodyne detection with the advantage of providing analytical
error bars together with a confidence degree.

However, requiring the state to have a bounded support on the Fock basis, quantum state
tomography may be inappropriate for state certification in continuous variables. Indeed, trun-
cating the Fock decomposition of the Gaussian coherent state |𝛼⟩with 𝛼 ≠ 0 for instance yields
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the non-Gaussian state ∝ ∑𝐵𝑛=0 𝛼𝑛/√𝑛! |𝑛⟩ for any truncating integer 𝐵 ≠ 0. How to quantify
in general the error made by the truncation? This may be hard to estimate, and is an essential
question in the context of certification.

Moreover, while the number of measurement settings does not grow exponentially with
the number of modes of the input state, the number of measurements does scale exponentially
using the expectation-value protocol for double homodyne tomography. We will see in the
following that considering certification from another perspective allows us to circumvent both
the bounded support assumption and exponential scaling caveats.

4.2.3 State certification via fidelity estimation

As argued before, quantum state tomography may not be suitable for state certification. If the
goal of the certification task is to guarantee the quantum advantage of a given state, we may
better rephrase the problem and answer it with another tool. Instead of trying to reconstruct
completely the state, we may want to guarantee that the experimental state is close to a target
state. This target state can be arbitrarily chosen. In particular, choosing a target state which
has a bounded support on the Fock basis allows us to remove this assumption on the experi-
mental state. Note that the closeness of the experimental state with the target state depends
then on the choice of the target state, while the certification precision may be arbitrarily high
independently of this choice.

We need a tool to estimate the closeness of the experimental state to the target state. We
can apply the double homodyne expectation-value protocol given in subsection 4.2.2 with
operator �̂� = �̂�target, where �̂�target is the density operator of the target state. The protocol
yields then an estimation of Tr(�̂��̂�target). However, this quantity is not a good measure of the
closeness of �̂� to �̂�target, since when �̂� = �̂�target, Tr(�̂��̂�target) = Tr(�̂�2) which is smaller than 1 for
a mixed state.

A more suitable quantity is the fidelity 𝐹(�̂�, �̂�target) of the state �̂� to the target state �̂�target
defined in equation (1.134). In subsection 1.4.3, we showed that the fidelity 𝐹(�̂�, �̂�target) reduces
to Tr(�̂��̂�target) when �̂�target is pure.

We can then apply the expectation-value protocol with �̂� = |𝜓⟩⟨𝜓| to estimate 𝐹(�̂�, |𝜓⟩),
with a precision 𝜖 and a confidence degree 1 − 𝛿. This more specific protocol, referred to as
double homodyne fidelity estimation protocol, provides then a reliable method for state certifica-
tion by assessing the closeness of the states via a fidelity estimation, without any assumption
on the input state1.

Choice of the target state. Since the fidelity estimation protocol relies on approximating
the P function of the target state |𝜓⟩, we expect the simpler the target state the easier the
approximation of its P function. In other words, the efficiency of the certification in terms of
the number of required samples depends on the complexity of the target state |𝜓⟩. Note that
due to the usually singular nature of the P function (cf. subsection 1.2.4), one can expect this
criterion to be critical for the feasibility of the protocol.

1Except the independently and identically distributed assumption, which can be removed at the cost of ad-
ditional samples, unpractical for current implementations.
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Choosing the target state should then result from a trade-off between the closeness to
the experimental state �̂� and the simplicity of the target state. A good a priori knowledge of
the state �̂� helps for making this choice. Note that this is not strictly speaking necessary, as
in practice one can try multiple target states on the same data to improve the results. This
however is quickly limited resource-wise by the infinite dimension of the state space.

We can use the properties of the double homodyne detection shown in section 4.1 at our
advantage in the search for a suitable target state. Upon unbalancing and post-processing, we
can equivalently sample the Q function of �̂��̂� �̂�† instead of the one of �̂�, with �̂� a Gaussian
operation given by equation (4.47). Noting |𝜓⟩ the target state we initially have in mind for �̂�,
we now consider applying the protocol with the Q function Q�̂��̂� �̂�† with a new target state |𝜓′⟩
equal to �̂� |𝜓⟩⟨𝜓| �̂�†. Interestingly, the estimated fidelity 𝐹(�̂��̂� �̂�†, |𝜓′⟩) re-writesTr(�̂��̂� �̂�† ||𝜓′⟩⟨𝜓′||) = Tr(�̂� �̂�† ||𝜓′⟩⟨𝜓′|| �̂�) = 𝐹(�̂�, |𝜓⟩) (4.64)

Equation (4.64) means that certifying the closeness of state �̂��̂� �̂�† with �̂� |𝜓⟩⟨𝜓| �̂�† yields
the same certification statement for the closeness of state �̂� with |𝜓⟩, as one could expect. We
deduce that instead of looking for a target state |𝜓⟩ close to the state �̂�, we can look for a target
state |𝜓′⟩ close to the state �̂��̂� �̂�†. In particular, if we know that the initial target state |𝜓⟩ is
built from Gaussian operations applied on a simple state, i.e. |𝜓⟩⟨𝜓| = �̂�† |𝜓′⟩⟨𝜓′| �̂�, we may
use this trick to choose instead this simple state |𝜓′⟩ as target state, providing the Gaussian
operations �̂� are of the form given by equation (4.47).

4.3 Quantumnon-Gaussianity certification andfidelity es-
timation protocol

In this section, we simplify the double homodyne fidelity protocol by specifying it for our goal.
First, we want to certify the quantum non-Gaussian nature of the experimental state, instead
of trying to certify the state is as close as possible to a target state. This allows for simplifying
the target state as we show in the first subsection 4.3.1. In particular, we explain the reasons
for which we choose the Fock state |1⟩ as target state.

This choice brings us naturally to specify and optimize the fidelity estimation protocol
to the case of target Fock states in subsection 4.3.2. In the next subsection 4.3.3, we show
that this protocol allows for the efficient quantum non-Gaussianity certification of simulated
single-photon subtracted squeezed vacuum states. The protocol optimization together with
the simulation are part of the main results of our paper [Chabaud 21d].

In the remaining of the section, we extend the simulation by accounting for detection
losses, and show we can enhance the certifiability of our states using an unbalanced double
homodyne detection. We also provide some perspectives as extension of the simulation.

4.3.1 Quantumnon-Gaussianity certification and choice of target state
Instead of choosing a target state |𝜓⟩ as close as possible to the state �̂�, one may choose a
simpler target state close enough to certify a specific property on the experimental state, for
instance the necessary resources for reaching quantum computational advantage.
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Afirst step towards certifying a quantum advantage is to certify the quantumnon-Gaussianity
of the output states. As we discussed in section 1.4, Wigner negativity is a necessary resource
for quantum advantage. In particular, if a proclaimed quantum computer does not generate
Wigner negative states, then it can be simulated classically, provided all claimed quantum
advantage resources are in the generated states (not at the measurement stage1).

In subsection 1.4.2, we showed that if the state �̂� satisfies𝜔�̂�(𝛼, 𝐿) > 0.5 (4.65)

then its Wigner function 𝑊�̂� is negative at 𝛼, for any 𝐿 ∈ N∗ and any 𝛼 ∈ C, where the
witnesses 𝜔�̂�(𝛼, 𝐿) are defined in equation (1.122) which we reproduce here

𝜔�̂�(𝛼, 𝐿) = 𝐿−1∑𝑘=0 ⟨2𝑘 + 1|�̂�†(𝛼)�̂��̂�(𝛼)|2𝑘 + 1⟩ (4.66)

The witnesses 𝜔�̂�(𝛼, 𝐿) in equation (4.66) may be viewed as Tr(�̂� �̂�†(𝛼)�̂��̂�(𝛼)) with
�̂� = 𝐿−1∑𝑘=0 |2𝑘 + 1⟩⟨2𝑘 + 1| (4.67)

which has a bounded support on the Fock basis.
From subsection 4.1.2, sampling the Q function of the state �̂� with the double homodyne

detection is equivalent to sampling the displaced state �̂�†(𝛼)�̂��̂�(𝛼) upon applying a translation
on the data in post-processing. We may thus apply the expectation-value protocol described
in subsection 4.2.2 with the operator �̂� given by equation (4.67).

Let us consider the case 𝐿 = 1. From equation (4.66), the witnesses 𝜔�̂�(𝛼, 1)may be viewed
as the fidelities 𝜔�̂�(𝛼, 1) = 𝐹(�̂�†(𝛼)�̂��̂�(𝛼), |1⟩) (4.68)

for 𝛼 ∈ C.
Using the same trick as before, we can then sample states �̂�†(𝛼)�̂��̂�(𝛼) upon data trans-

lation, and apply the fidelity estimation protocol with target state |1⟩. Taking into account
the precision in the protocol, we can then certify the negativity of the Wigner function of the
probed state �̂� at 𝛼 up to a given degree of confidence, upon beating the threshold 𝜔�̂�(𝛼, 1) >0.5.2

On the other hand, the stellar rank is another feature of interest, which classifies the quan-
tum non-Gaussian states. We recall from section 1.4 that the stellar rank of a single-mode pure
state corresponds to the minimal number of photon additions/subtractions necessary to engi-
neer the state from the vacuum, together with Gaussian unitary operations. Furthermore, we

1Else, one would need to proceed to another type of certification than state certification, which goes beyond
the scope of this thesis.

2One could apply the same idea, noticing 𝜔�̂�(𝛼, 𝐿) = ∑𝐿−1𝑘=0 𝐹(�̂�†(𝛼)�̂��̂�(𝛼), |2𝑘 + 1⟩). One could then try and
certify Wigner negativity with the witness 𝜔�̂�(𝛼, 𝐿) with 𝐿 > 1 using the fidelity estimation protocol several
times to estimates the fidelities 𝐹(�̂�†(𝛼)�̂��̂�(𝛼), |2𝑘 + 1⟩) separately with precision 𝜖 each and deduce a statement
on the witness 𝜔�̂�(𝛼, 𝐿) with worsen precision 𝐿𝜖.
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saw in 1.4.3.7 that the stellar rank is a necessary resource for achieving quantum advantage
[Chabaud 23], hence the interest to certify stellar rank in this context.

In subsection 1.4.3, we showed that given a pure target state |𝜓⟩, if the experimental (mixed)
state �̂� satisfies

𝐹(�̂�, |𝜓⟩) > 1 − [𝑅⋆𝑘(|𝜓⟩)]2 (4.69)

where 𝑅⋆𝑘(|𝜓⟩) is the 𝑘-robustness of the state |𝜓⟩, then it has a stellar rank greater or equal to𝑘. We also showed that the robustness profile {𝑅⋆𝑘(|𝜓⟩)}, or equivalently the fidelity thresholds{1 − [𝑅⋆𝑘(|𝜓⟩)]2}, can be computed using an explicit optimization method.
Similarly as above, we can then apply the fidelity estimation protocol to obtain the fidelity𝐹(�̂�, |𝜓⟩) of the experimental state �̂� to the target state |𝜓⟩. Upon beating the 𝑘-th fidelity

threshold 𝐹(�̂�, |𝜓⟩) > 1 − [𝑅⋆𝑘(|𝜓⟩)]2, this allows us to certify that the state �̂� has stellar rank 𝑘
or higher, taking into account the precision and degree of confidence of the protocol.

To summarize, theWigner negativity and stellar rank witnesses both rely on the fidelity to
target pure states. As such, they are then suitable tools for certifying their related properties
using the double homodyne fidelity estimation protocol.

Choice of the target state for our experiment. As argued before, the required number
of samples to perform the certification strongly depends on the complexity of the target state.
It is then critical to choose the target state wisely.

The states we generate in the lab are squeezed single-photon subtracted states. A natural
pure target state to choose is then a pure squeezed single-photon subtracted state |𝜓−𝜁 ⟩. From
section 1.4, this state is also a squeezed Fock state 1, i.e. |𝜓−𝜁 ⟩ ∝ 𝑆(𝜁 ) |1⟩ with 𝜁 a squeezing
parameter.

As we explained in subsection 4.2.3, any Gaussian operation of the form �̂�† in the expres-
sion of the target state may be reverted upon unbalancing and post-processing, provided �̂�
is of the form of equation (4.47). We can then apply this property on the target state 𝑆(𝜁 ) |1⟩,
reverting the squeezing operation 𝑆(𝜁 ) by unbalancing the double homodyne detection, while
allowing for the same certification claim. Relying on this trick, we then choose the target
state |1⟩. Since the P function of the Fock state |1⟩ is much simpler than the one of 𝑆(𝜁 ) |1⟩, the
fidelity estimation protocol is expected to feature a higher efficiency.

4.3.2 Fidelity estimation protocol for target Fock states

For the aforementioned reasons, we optimized the fidelity estimation protocol in our paper
[Chabaud 21d] for Fock states |𝑛⟩ as target states. We give in the following the main results,
and refer to the appendix A.2 of the paper for details1.

1For better clarity, we changed the notations with respect to the paper. The correspondence, from the nota-
tions used here to the notations used in the paper are 𝑀 ↦ 𝑁 , 𝑚 ↦ 𝑝, 𝛾 ↦ 𝜂, 𝑝(𝑚,𝛾)𝑛 ↦ 𝑝𝑛, 𝜖′ ↦ 𝜆, 𝛿 ↦ 𝑃 IID𝑛,CLT,𝑓 (𝛾)𝑘,𝑙 (𝛼) ↦ 𝑓𝑘,𝑙(𝛼, 𝜂), 𝑔 (𝑚,𝛾)𝑘,𝑙 (𝛼) ↦ 𝑔 (𝑝)𝑘,𝑙 (𝛼, 𝜂), ℎ(𝑚,𝛾)𝑛 (𝛼) ↦ ℎ(𝑝)𝑛 (𝛼, 𝜂), 𝐸(𝑚,𝛾)𝑛 ↦ 𝐹𝑛
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Double homodyne fidelity estimation protocol applied to target Fock states. From
the expectation-value protocol, see subsection 4.2.2, the appropriate estimator for the target
state |𝑛⟩ (i.e. �̂� = |𝑛⟩⟨𝑛|) writes

𝐸(𝑚,𝛾)|𝑛⟩⟨𝑛| (𝛼1,… , 𝛼𝑀) = 1𝑀 𝑀∑𝑖=1 𝑔 (𝑚,𝛾)𝑛,𝑛 (𝛼𝑖) (4.70)

where {𝛼𝑖} are the double homodyne samples, 𝑚 ≥ 1 and 0 < 𝛾 < 1 are parameters, and the
functions 𝑔 (𝑚,𝛾)𝑛,𝑛 (𝛼) is defined in equation (4.58)1.

Note that for Fock states, their P function is singular: P|𝑛⟩⟨𝑛|(𝛼) is the sum of even derivatives
of the Dirac delta function, see subsection 1.2.4, equation (1.43) applied to �̂� = |𝑛⟩⟨𝑛|.

While we didn’t elaborate this detail in subsection 4.2.2, the fact that the functions 𝑔 (𝑚,𝛾)𝑛,𝑛 (𝛼)
are approximations of the P function P|𝑛⟩⟨𝑛|(𝛼) comes naturally with an approximation error, and
can be seen as the non-zero bias of the estimator given in equation (4.70). A biased estimator
does not converge to the true value of the quantity it estimates. In our case, considering the
number of samples 𝑀 following the Q function distribution goes to infinity, the limit of the
estimator, written 𝐸(𝑚,𝛾)|𝑛⟩⟨𝑛| (𝛼∞), satisfies|||𝐸(𝑚,𝛾)|𝑛⟩⟨𝑛| (𝛼∞) − 𝐹(�̂�, |𝑛⟩)||| ≤ 𝐸(𝑚,𝛾)|𝑛⟩⟨𝑛|,bias (4.72)

with 𝐸(𝑚,𝛾)|𝑛⟩⟨𝑛|,bias = 𝛾𝑝(𝑚,𝛾)𝑛 (𝑝(𝑚,𝛾)𝑛 − 1𝑚 − 1 )(𝑛 + 𝑝(𝑚,𝛾)𝑛𝑛 ) (4.73)

where 𝑝(𝑚,𝛾)𝑛 is the integer defined as

𝑝(𝑚,𝛾)𝑛 = min𝓁∈N∗
{𝓁 ≥ 𝑚, such that (1 − 𝑚 − 1𝓁 )(1 − 𝑛𝑛 + 𝓁 + 1) ≥ 𝛾} (4.74)

Note that the integer 𝑝(𝑚,𝛾)𝑛 and the bias 𝐸(𝑚,𝛾)|𝑛⟩⟨𝑛|,bias are fully determined by the parameters 𝑛, 𝑚,
and 𝛾 .

In particular for this Fock state estimator, we observed that for 𝑚 odd,𝐸(𝑚,𝛾)|𝑛⟩⟨𝑛| (𝛼∞) ≥ 𝐹(�̂�, |𝑛⟩) (4.75)

i.e., 𝑔 (𝑚,𝛾)𝑛,𝑛 (𝛼) overestimates 𝐹(�̂�, |𝑛⟩), while for 𝑚 even,𝐸(𝑚,𝛾)|𝑛⟩⟨𝑛| (𝛼∞) ≤ 𝐹(�̂�, |𝑛⟩) (4.76)

1For pragmatic purposes, we write here the explicit simplified form of the {𝑔 (𝑚,𝛾)𝑛,𝑛 (𝛼)} functions
𝛾𝑛+1𝑔 (𝑚,𝛾)𝑛,𝑛 (𝛼) = (−1)𝑛e−(1−𝛾) |𝛼|2𝛾 𝑚−1∑𝑗=0 (𝑛 + 𝑗𝑛 ) L𝑛+𝑗( |𝛼|2𝛾 ) (4.71)

with L𝑛(𝑥) = 𝑛∑𝑖=0 (𝑛𝑖) (−1)𝑖 𝑥 𝑖𝑖! , for 𝑥 ∈ R
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i.e., 𝑔 (𝑚,𝛾)𝑛,𝑛 (𝛼) underestimates 𝐹(�̂�, |𝑛⟩).
This observation allowed us to reduce the bias of the estimator by introducing the approx-

imation functions ℎ(𝑚,𝛾)𝑛 (𝛼) defined as

ℎ(𝑚,𝛾)𝑛 (𝛼) = 𝑔 (𝑚,𝛾)𝑛,𝑛 (𝛼) + 12(−1)𝑚𝛾𝑝(𝑚,𝛾)𝑛 (𝑝(𝑚,𝛾)𝑛 − 1𝑚 − 1 )(𝑛 + 𝑝(𝑚,𝛾)𝑛𝑛 ) (4.77)

Note that the functions ℎ(𝑚,𝛾)𝑛 (𝛼) and 𝑔 (𝑚,𝛾)𝑛,𝑛 (𝛼) differ only by the constant 12(−1)𝑚 𝐸(𝑚,𝛾)|𝑛⟩⟨𝑛|,bias. The
associated fidelity estimator 𝐸(𝑚,𝛾)𝑛 is consistently defined as the mean of the estimates ℎ(𝑚,𝛾)𝑛 (𝛼)
as

𝐸(𝑚,𝛾)𝑛 (𝛼1,… , 𝛼𝑀) = 1𝑀 𝑀∑𝑖=1 ℎ(𝑚,𝛾)𝑛 (𝛼𝑖) (4.78)

and statisfies [Chabaud 21d] ||𝐸(𝑚,𝛾)𝑛 (𝛼∞) − 𝐹(�̂�, |𝑛⟩)|| ≤ 𝐸(𝑚,𝛾)𝑛,bias (4.79)

with 𝐸(𝑚,𝛾)𝑛,bias = 12𝛾𝑝(𝑚,𝛾)𝑛 (𝑝(𝑚,𝛾)𝑛 − 1𝑚 − 1 )(𝑛 + 𝑝(𝑚,𝛾)𝑛𝑛 ) (4.80)

𝑟𝑚,𝑛 is defined in equation (4.74). This remark and redefinition saves us a factor of 1/2 on the
estimation bias, since 𝐸(𝑚,𝛾)𝑛,bias = 12𝐸(𝑚,𝛾)|𝑛⟩⟨𝑛|,bias.

We nowgive the fidelity estimation statement using the estimator defined in equation (4.78),
taking into account its bias, resulting from optimizing the parameters for its particular shape.
Given the samples 𝛼1,… , 𝛼𝑀 from the double homodyne detection, for arbitrary precision𝜖 > 0, ||𝐸(𝑚,𝛾)𝑛 (𝛼1,… , 𝛼𝑀) − 𝐹(�̂�, |𝑛⟩)|| ≤ 𝜖 (4.81)

with probability higher than 1 − 𝛿, where
1 − 𝛿 = erf(𝜖′√ 𝑀2𝜎2) (4.82)

𝜖′ = max{𝜖 − 𝐸(𝑚,𝛾)𝑛,bias, 0} (4.83)𝐸(𝑚,𝛾)𝑛,bias is defined in equation (4.80), 𝜎 is the standard deviation of the sampled estimationsℎ(𝑚,𝛾)𝑛 (𝛼𝑖), and erf is the error function defined aserf(𝑥) = 2√𝜋 ∫ 𝑥
0 e−𝑦2 d𝑦 (4.84)

Equation (4.82) derives the confidence degree 1−𝛿 from the application of the central limit
theorem on the distribution of the {ℎ(𝑚,𝛾)𝑛 (𝛼𝑖)}1. The central limit theorem ensures that the

1We also derived analytical bounds independent of the state to probe using the Hoeffding inequality
[Hoeffding 63], cf. [Chabaud 21d] for details.
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distribution of the means converges towards a Gaussian distribution, provided the variance of
the distribution is finite, which is the case for physical states.

For a Gaussian distribution of mean �̄�G and deviation 𝜎G, the probability to draw within
the interval [�̄�G − 𝑑; �̄�G + 𝑑] is equal to

erf( 𝑑√2𝜎G) (4.85)

We can apply equation (4.85) to the Gaussian distribution of the means provided by the
central limit theorem, with mean �̄�G = 𝐸(𝑚,𝛾)𝑛 (𝛼1,… , 𝛼𝑀) and standard deviation 𝜎G = 𝜎/√𝑀 .
We recover then equation (4.82), where the width 𝑑 = 𝜖′ of the interval is given by equa-
tion (4.83). Note that 𝜖′ takes into account the estimator bias (4.79), and allows us to give the
statement in any case (when 𝜖′ = 0, the confidence degree is then 01).

To apply the protocol, one fixes the precision 𝜖, the target state number 𝑛 and the number
of samples 𝑀 . Then, the failure probability 𝛿 depends on the remaining free parameters 𝑚
and 𝛾 . The procedure for optimizing the efficiency of the protocol consists then in minimizing𝛿 over the choice of 𝑚, 𝛾 : for increasing values of the integer 𝑚, starting from 𝑚 = 1, the
minimum failure probability 𝛿 is computed by optimizing over the value of 𝛾 ; then, we pick
the value of 𝑚 which minimizes 𝛿. This conclude the optimization of the fidelity estimation
protocol.

Note that this optimization can not be easily simplified, as it results from a trade off be-
tween the statistical error and the approximation error (coming from the estimator bias). De-
creasing the systematic error at fixed number of samples may indeed induce an increase of the
statistical error. This can be understood as it implies using better P-function approximations{ℎ(𝑚,𝛾)𝑛 (𝛼𝑖)}, making their distribution further ill-behaved.

The number of samples required for a precision 𝜖 and confidence 1 − 𝛿 scales as
𝑀 = ( 1𝜖2+ 2𝑛𝑚 log(1𝛿)) (4.86)

where the constant pre-factor (which may be large) depends on the choice of the free parame-
ters 𝑚 and 𝛾 . One can immediately see that the scaling is better when 𝑚 ≥ 2, an enhancement
due to the introduction of the functions {𝑔 (𝑚,𝛾)𝑛,𝑛 (𝛼)} (the previous functions {𝑓 (𝛾)𝑛,𝑛 (𝛼)} correspond
to the new function for 𝑚 = 1).
Application of the fidelity estimation protocol to quantum non-Gaussianity certifi-
cation. Let us consider now the target state we use for our experiment, i.e. the Fock state |1⟩.
From equations (4.66) and (4.69), the fidelity 𝐹(�̂�, |1⟩) is a witness for both Wigner negativity
at the origin and stellar rank 1 or higher for the state �̂�. The associated fidelity thresholds are
respectively 0.478 (see subsection 1.4.3) and 0.5.

Let us assume we perform the fidelity estimation protocol on the experimental state �̂�
with target state |1⟩, asking for a precision 𝜖. Stating |||𝐸(𝑚,𝛾)1 (𝛼1,… , 𝛼𝑀) − 𝐹(�̂�, |1⟩)||| ≤ 𝜖 is

1Note that from equation (4.83), it is always possible to obtain 𝜖′ not equal to zero with the free parameters𝛾 and 𝑚, with potential heavy cost in samples.
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true with probability higher than 1 − 𝛿 is equivalent to provide the interval of confidence[𝐸(𝑚,𝛾)1 (𝛼1,… , 𝛼𝑀) − 𝜖; 𝐸(𝑚,𝛾)1 (𝛼1,… , 𝛼𝑀) + 𝜖] with confidence 1− 𝛿 for the estimation of 𝐹(�̂�, |1⟩).
The latter means that the true fidelity 𝐹(�̂�, |1⟩) lies within the interval of confidence with the
associated confidence degree. Provided the lower bound of the interval of confidence is higher
than one of the two mentioned fidelity thresholds, we then have certified that the state �̂� has
the corresponding property (Wigner negativity at the origin or stellar rank 1 or higher) with1 − 𝛿2 confidence1.

In figure 4.3, we illustrate and summarize the protocol, drawing the resulting interval of
confidence on the right. To illustrate the central limit theorem, the histogram of the Gaussian
distribution of the means is given, whereas it is not computed in practice. On the plot, we also
draw a red line at 0.5, the fidelity threshold for the Wigner negativity witness at the origin.
Graphically, when the whole interval of confidence is above the threshold, the property is
certified with the confidence 1 − 𝛿2 .

In subsection 4.3.3, we will apply this protocol to certify the stellar rank and Wigner neg-
ativity of states close to the experimentally generated ones, using simulated Q-function sam-
ples.

Fig. 4.3 Certification protocol using fidelity estimations and the double homodyne
detection. The input parameters the 𝑀 samples, the Fock number 𝑛, and the confi-
dence interval 𝛿 are colored for clarity purposes.

Note on using homodyne detection for certification. We argued before that homodyne
detection is not suitable for certification, because of intractable errors in the tomography re-
construction procedure of the Wigner function. To complete this discussion, let us consider
other methods than tomography using homodyne detection to infer Wigner negativity.

1The factor 1/2 applied on the failure probability 𝛿 comes from the fact that the true fidelity is above the top
bound of the interval with probability 𝛿/2. The probability that the true fidelity is above the threshold is then
given by (1 − 𝛿) + 𝛿2 = 1 − 𝛿2 .
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Machine learning methods have successfully been applied to benchmark the Wigner neg-
ativity of highly multimode states [Cimini 20], but these methods are most fruitful when good
training data are available. In other words, a machine learning algorithm can only recognize
the features of a state when it has seen many similar states before. Also, it is unclear how to
extract error bars, preventing from yielding certification statements on the claimed Wigner
negativity.

Another method was proposed in [Mari 11], and estimates the Fourier transform of the
Wigner function1 on arbitrary points in the phase space. Relying on Bolchner’s theorems
[Bochner 33], they can certify the Wigner negativity of a state �̂� using the sampled distri-
butions of at least two orthogonal quadrature operators. The main difference between their
method and the protocols we presented is that their algorithm doesn’t ensure the ability to
find a witness which can certify the Wigner negativity, given a state with a negative Wigner
function. This is because their algorithm relies on points in the phase space which should be
chosen arbitrarily, without an algorithm to determine which ones to pick to find negativity.
Therefore, to provide such a guarantee with their method, it would be necessary to run the
algorithm on the entire phase space.

On the other hand, the double homodyne fidelity estimation protocol provides such guar-
antee using the Wigner negativity witness 𝜔�̂�(𝛼,𝑀) given in equation (4.66). Indeed, for any
state �̂� described by a negative Wigner function, at least one of them witnesses the Wigner
negativity of �̂�. Picking 𝛼 where one expects to see negativity allows one to efficiently pick the
correct witness. [Chabaud 21a] elaborates this idea and provides witnesses optimized to the
target states, and compatible with our protocols. That being said, it is unclear which method
is the most efficient for certifying Wigner negativity, in particular in the multimode scenario
for which the authors didn’t provide insight on the scaling of their method.

All in all, the double homodyne protocols are promising in the generality they provide,
allowing for state certification in particular.

Certification of multimode states. As we saw in section 4.1, the double homodyne detec-
tion is a promising tool to directly sample the Q function of 𝑁 -mode states. For this purpose,𝑁 parallel double homodyne detections are required.

Applying the above fidelity estimation protocol on each double homodyne detectionwould
then yield 𝑁 fidelity estimates. As we optimized the efficiency of the protocol for target Fock
states, a natural choice for the 𝑁 -mode target state |𝜓⟩target would then be a 𝑁 -mode separable
state, with a Fock state in each mode|𝜓⟩target = |𝑛1⟩ ⊗⋯ ⊗ |𝑛𝑁 ⟩ (4.87)

with {𝑛𝑖} the Fock numbers. Using the 𝑁 fidelity estimates, one can then use their mean as
a measure of the closeness between the measured state and the target state. Unfortunately,
only a limited class of states �̂� would be close to the state |𝜓⟩target in equation (4.87), which
in particular doesn’t allow for much entanglement in �̂�. Still, to enlarge this limited class of
certifiable states �̂�, we can use the properties of the double homodyne detection.

1It corresponds to the characteristic function associated to the Wigner function, see e.g. [Leonhardt 95].

168



CHAPTER 4. CERTIFYING QUANTUM NON-GAUSSIANITY USING DOUBLE HOMODYNE DETECTION

The closeness of the experimental state �̂� to the states of the form

( 𝑁⨂𝑖=1 �̂�𝑖)�̂� |𝑛1⟩ ⊗⋯ ⊗ |𝑛𝑁 ⟩ (4.88)

can be certified using the 𝑁 -fidelity estimation protocol with target states given by equa-
tion (4.87), where �̂� is a 𝑁 mode basis change, and {�̂�𝑖} are single-mode Gaussian operations.

Indeed, using the unbalancing and post-processing properties of the double homodyne
detection from subsection 4.1.2, one can apply operations that undo the singlemode operations�̂�𝑖 and the mode basis change �̂� 1. As a result, the double homodyne detection is equivalently
sampling the Q function of the state |𝑛1⟩ ⊗ ⋯ ⊗ |𝑛𝑁 ⟩, allowing the certification of the states
of equation (4.88). One can also apply the discussion of subsection 4.2.3 to obtain this same
result.

[Chabaud 21c] formally proved the certifiability of this class of 𝑁 -mode states, showing
that the closeness of �̂� to the target state (4.87) can be derived from the single-mode fidelities𝐹(�̂�𝑖, |𝑛𝑖⟩), which in turn can be estimated with the fidelity estimation protocol applied on the
samples of each of the 𝑁 double homodyne detections. For this protocol, the number 𝑀 of
measured copies of the 𝑁 -mode state �̂� scales in particular as 𝑁 to the power 2 + 2𝑛𝑖0/𝑚𝑖0 ,
where the Fock number 𝑛𝑖0 and parameter 𝑚𝑖0 correspond to one of the 𝑁 applied fidelity
protocols2. This additional scaling factor makes it quickly harder to certify multimode states,
while it still remains polynomial. For comparison, all other existing methods with Gaussian
measurements scale exponentially with the number of modes.

Note that picking a larger class of states (as we mentioned in 1.4.3.6) implies choosing a
more complex state than a Fock state on each of the 𝑁 modes of the target states, for which
the fidelity protocol has not been optimized up to now.

4.3.3 Simulation for the certification of single-photon subtracted squeezed
vacuum states

In this subsection, we simulate the fidelity estimation protocol derived in the previous sub-
section 4.3.2. We show Wigner negativity and stellar rank certification of single-photon sub-
tracted squeezed vacuum states �̂�− can be achieved efficiently in terms of the required number
of samples. These results were published in [Chabaud 21d].

From the previous discussions, we choose the Fock state |1⟩ as a target state for the proto-
col. To simulate the double homodyne detection of the state �̂�−, we numerically sample its Q
function, and thus compute its analytical expression.

We consider the single-photon subtraction to be single-mode in mode �⃗�. The double ho-
modyne detection is assumed to measure in this same mode (engineering the correct local
oscillator mode). Under these considerations, the other modes than mode �⃗� do not intervene,
so we consider only the states in this mode. The Q function of the Gaussian state �̂�G (in mode

1The reversion is done by the operator �̂� †(⨂𝑁𝑖=1 �̂�†𝑖 ) which is indeed of the form of the operators (4.47).
2More precisely, the scaling is the maximum scaling spanning over all 𝑁 fidelity protocol parameters, see

[Chabaud 21c] for details.
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�⃗�) at the output of the SPOPO writes generally

Q�̂�G(𝑥⇀) = e− 12 𝑥⇀⊤(𝐕+𝜎201)−1𝑥⇀2𝜋𝜎20√det(𝐕 + 𝜎201) (4.89)

where 𝐕 is the 2 × 2 covariance matrix of state �̂�G, and 𝑥⇀ = (𝑞, 𝑝)⊤ (linked to 𝛼 by 𝛼 = (𝑞 +
i𝑝)/(2𝜎0)).

Without loss of generality1, the state �̂�G is a single-mode mixed vacuum squeezed state,
which we can model with the covariance matrix2

𝐕 = 𝜎20𝜇G(𝑠 00 𝑠−1) (4.90)

where 𝜇G is the purity of �̂�G, and 𝑠 is the squeezing factor.
Upon successful single-mode single-photon subtraction, the resulting state �̂�− is repre-

sented by the Q function (from equation (1.156))Q�̂�−(𝑥⇀) = 12 [𝑥⇀⊤(𝐕 + 𝜎201)−1𝐀−(𝐕)(𝐕 + 𝜎201)−1𝑥⇀ − Tr[(𝐕 + 𝜎201)−1𝐀−(𝐕)] + 2]Q�̂�G(𝑥⇀) (4.91)

with 𝐀−(𝐕) = 2 (𝐕 − 𝜎201)2Tr [𝐕 − 𝜎201] (4.92)

where Q�̂�G(𝑥⇀) is given in equation (4.89), or equivalently from equation (1.158)

Q�̂�−(𝑞, 𝑝) = (𝑐1 𝑞2𝜎20 + 𝑐2𝑝2𝜎20 + 𝑐3) exp[−𝑐4 𝑞2𝜎20 − 𝑐5𝑝2𝜎20 ] (4.93)

where the {𝑐𝑖} only depends on the fixed parameters 𝑠 and 𝜇G.
In this subsection, we choose a non-unit purity 𝜇G to take into account the losses expe-

rienced by the squeezed vacuum state before the single-photon subtraction. Note that even
though the subtraction is single-mode, the output subtracted state �̂�− has a lower purity than𝜇G3. The detection is considered ideal. In the next subsection, we will consider a non-ideal
detection.

In the simulation, in order to efficiently retrieve samples drawn from the 2D probability
distribution given by Q�̂�−(𝑥⇀), we use a rejection sampling algorithm. This algorithm consists
in performing a uniformly random sampling of a 3D box containing most of the Q function
graph, and keep only the points in the 3D region under the graph of the Q function.

1We indeed only generate zero-mean states in the experiment, so a squeezing operation at an arbitrary angle
(not relevant) is enough to model a Gaussian pure state.

2This model is equivalent to the one we used in e.g. equation (2.25): with the covariance matrix 𝐕 =diag(𝑠−, 𝑠+), with two different squeezing and antisqueezing factors. At a given purity 𝜇G, knowing 𝑠− deter-
mines 𝑠+ = 𝜎40𝜇2G 1𝑠− from 𝜇G = 𝜎20/√det(𝐕). Setting 𝑠+ = 𝑐𝑠 and 𝑠− = 𝑐/𝑠 yields 𝑐 = 𝜎20/𝜇G.

3While we didn’t study this particular case in chapter 3, the behavior of the output subtracted state purity
against the input state purity is analyzed in [Walschaers 17a, Walschaers 17b].
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Simulation technical details. Let us summarize the algorithm of the fidelity estimation
protocol, for target state |1⟩ and a precision 𝜖. First, we obtain 𝑀 samples 𝛼1,⋯ , 𝛼𝑀 from the
rejection sampling of Q�̂�− . The failure probability 𝛿 is deduced from the standard deviation
of the distribution {ℎ(𝑚,𝛾)1 (𝛼𝑖)} with equation (4.82). For each increasing integers 𝑚 ≥ 1, we
minimize 𝛿 over 0 < 𝛾 < 1. Then we choose the minimal 𝛿 with respect to the integers 𝑚.
Note that the certification statement is valid for any parameters 𝑚, 𝛾 . This means that if we
don’t manage to find the exact minimal 𝛿, the certification remains safely true for a larger than
optimal confidence degree.

Fortunately, 𝛿 quickly reaches its minimum with respect to 𝑚 before drastically soaring,
allowing us to only probe a few steps in 𝑚 ≥ 1. The brute-force optimization over 0 < 𝛾 < 1 is
efficient enough, up to the precision where we don’t gain much on the minimization of 𝛿. In
practice, for efficiency reasons, the expression of the failure probability 𝛿 used in theminimiza-
tion is derived from the Hoeffding inequality (see appendix A.2 of our paper [Chabaud 21d]
for such expression of 𝛿). It overestimates 𝛿 with the advantage to be independent of the
standard deviation of the distributions {ℎ(𝑚,𝛾)1 (𝛼𝑖)}, by computing the range of the functions{𝛼 ↦ ℎ(𝑚,𝛾)1 (𝛼)} instead. Upon minimizing this overestimation of 𝛿, the actual 𝛿 is finally
computed with the minimization parameters 𝑚 and 𝛾 . This procedure relies on the fact that
minimizing 𝛿 using the overestimating expression or equation (4.82) yields the same optimized
parameters, which was consistently checked.

To drastically reduce the computation time, the precise approximation of the functions{ℎ(𝑚,𝛾)𝑛 (𝛼)} is pre-computed for large spans of parameters 𝑚 and 𝛾 . The approximations are lin-
ear interpolations, following an algorithm which ensures the interpolation error remains bel-
low a customized value (the lowest this value the largest the memory cost). As the {ℎ(𝑚,𝛾)𝑛 (𝛼)}
may have extremely sharp behaviors in certain regions, this enhancement proved not to be
straightforward and required a good analysis of this behavior to minimize the number of in-
terpolation points.

As it is written, the simulation algorithmminimizes over 𝛿 for a given number𝑀 of samples
and 𝜖 precision. In practice, we don’t have prior knowledge on the precisionwe can reasonably
ask for a given number of samples 𝑀 (which we can expect to be up to 1 × 106 from the
experiment), but we do know the degree of confidence we want (for instance 1 − 𝛿 = 95%). To
circumvent this caveat, we can use the fact that 𝜖 scales as a power of𝑀 (see equation (4.86)),
which is verified empirically. In particular, this implies ln(𝜖) ∝ ln(𝑀). Running the complete
optimization algorithm for two reasonably chosen precisions, one can then use a linear fit
of ln(𝜖) and deduce the approximate 𝜖 for which the optimized protocol yields a confidence
degree 1 − 𝛿 for 𝑀 samples.

Certifying the Wigner negativity of state �̂�−. From previous discussions, upon translat-
ing the samples by 𝛼 ∈ C, the protocol estimates the fidelity 𝐹(�̂�†(𝛼)�̂�−�̂�(𝛼), |1⟩), which is
equal to the witness 𝜔�̂�−(𝛼, 1), see equation (4.68). If 𝜔�̂�−(𝛼, 1) > 0.5, then the Wigner function
of the state �̂�− is negative at 𝛼.

For each 𝛼, applying the protocol yields then a fidelity estimate, at fixed precision 𝜖 = 0.1,
at fixed number of samples 𝑀 = 5.5 × 105. We made sure that for all 𝛼, the confidence degree1 − 𝛿 is 95% or higher. If the fidelity estimate for a given 𝛼 is greater than 12 + 𝜖, we can assert
that the Wigner function of the state �̂�− is negative at 𝛼, i.e. 𝑊�̂�−(𝛼) < 0, with probability
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greater than 1 − 𝛿2 = 97.5%.
In figure 4.4, we report such simulatedWigner negativity certification, translating the data

for many 𝛼 ∈ C. The red region shows all the 𝛼 at which the Wigner negativity is certified
with 97.5% confidence.

Fig. 4.4 Negativity witness estimates for a single-photon subtracted squeezed vac-
uum state with squeezing factor 𝑠dB = 3 dB and purity before subtraction 𝜇G = 0.95.
Using simulated samples from double homodyne detection, the witnesses 𝜔�̂�−(𝛼, 1)
have been estimated for a thousand values of the displacement amplitude 𝛼, which
have been interpolated for clarity, with a fixed precision 𝜖 = 0.1 and a fixed number
of samples 𝑀 = 5.5 × 105. The curve has been shifted upwards by the value of 𝜖, and
the red points witness the negativity of the state with at least 97.5% confidence.

Certifying the stellar rank 1 or higher of state �̂�−. As discussed before, if the fidelity𝐹(�̂�−, |1⟩) of �̂�− to the target state |1⟩ is higher than the threshold 0.478, then the state �̂�− has a
stellar rank greater or equal to 1. As 𝐹(�̂�−, |1⟩) is equal to 𝜔�̂�−(0, 1), estimating 𝐹(�̂�−, |1⟩) may
allow us to certify both stellar rank 1 or higher and Wigner negativity at the origin.

Using the protocol, we estimate 𝐹(�̂�−, |1⟩) for 𝑠dB = 3 dB and different values of 𝜇G, for𝑀 = 1 × 106 samples and 1 − 𝛿 = 95%. The resulting interval of confidence are displayed on
graph 4.5 (a)1, and can be interpreted similarly as in figure 4.3 (right). In particular, we see that
at 𝜇G = 0.90, the lower bound of the interval of confidence is higher than the stellar rank 1
threshold and lower than the Wigner negativity threshold. The corresponding state is then
certified to have a stellar rank greater or equal to 1 with confidence 1 − 𝛿2 = 97.5%, while no

1Statistical fluctuations are expected from one run to another, as the interval of confidence are centered
around the fidelity mean estimations.

172



CHAPTER 4. CERTIFYING QUANTUM NON-GAUSSIANITY USING DOUBLE HOMODYNE DETECTION

statement is made on its negativity at the origin. If this was a measurement result, we would
require more samples to improve the precision 𝜖 of the estimation, or allow for reducing the
confidence degree, to eventually obtain a Wigner negativity certification1.

Fig. 4.5 Estimates of the fidelity to Fock state |1⟩ for various states using 𝑀 = 106
simulated samples from double homodyne detection. We display the stellar rank 1
threshold (red horizontal line) and the Wigner negativity (at origin) witness thresh-
old (cyan horizontal line). When the lowest point of an interval of confidence is
higher than a threshold value, the property corresponding to this threshold value
is certified with more than 97.5% confidence. (a) Single-photon subtracted squeezed
vacuum states with 𝑠dB = 3 dB of squeezing, for several values of the purity before
subtraction 𝜇G. (b) A photon subtracted two-mode EPR state with experimental co-
variance matrix taken from [Ra 20]. Simulated photon subtraction is done on the
first mode and double homodyne measurement on the second mode of the EPR state.

These results show that stellar rank and Wigner negativity certification are expected to be
achievable in realistic experimental conditions, close to the ones we expect to achieve in the
laboratory. Note yet that for figure 4.5, the detection is supposed ideal. Taking into account
the detection losses in the next subsection, bring us closer to our experimental conditions, we
discuss there experimental implications.

Certifying a single-photon subtracted EPR state. Let us consider a 2-mode EPR state
now, prior to single-photon subtraction. To build this Gaussian state whose Q function is

1Note that wemay never be able to achieve better if the true fidelity is actually in between the two thresholds,
for which case the state is of stellar rank 1 (or higher) but not Wigner negative (at zero), see subsection 1.4.2 for
discussion of such states.
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described by equation (4.89) with a 4 × 4 covariance matrix this time, we choose to use experi-
mental data from the Extended Data Figure 4 of [Ra 20]. This is a 4-mode covariance matrix of
separable squeezed state. We select modes 0 and 2 to obtain a 2-mode squeezed state covari-
ance matrix. We then numerically apply a beamsplitter on this covariance matrix to obtain a
2-mode EPR state covariance matrix 𝐕EPR (see subsection 1.3.6 for details on these maximally
entangled states). We denote (𝐟1, 𝐟2) the EPR modes.

We consider a single-mode single-photon subtraction applied on the mode 𝐟1, and mea-
suring on mode 𝐟2. The Q function of the state �̂�−EPR after subtraction on mode 𝐟1 is given by
equation (1.156), with the covariance matrix 𝐕EPR, the subtraction mode �⃗� = 𝐟1. The measured
state �̂�−EPR,2 is obtained upon tracing the Q function over mode 𝐟2 (i.e. integrating over 𝑞2, 𝑝2).

From this single-mode Q function, we can then apply the same fidelity estimation protocol
as before, with the result on graph 4.5 (b). The simulation certifies Wigner negativity with𝑀 = 1 × 106 samples with 97.5% confidence. Note that this is not an actual certification of an
experimental state. It is a simulation conditionedwith experimental data for realistic purposes.
Note that in [Ra 20], they experimentally exhibit Wigner negativity of such a state, using
homodyne tomography techniques (which do not allow for a certification statement as argued
before).

4.3.4 Simulation extension: accounting for detection losses
Since the publication of [Chabaud 21d], we improved the simulation by taking into account
the losses experienced by the state from the subtraction to the ideal detection. These losses
were estimated in section 2.4, with equivalent efficiency 𝜂𝐷𝐻𝐷 = 𝜂𝐻𝐷 ≃ 81%.

A 𝑁 -mode quantum state �̂� which experiences the losses 1 − 𝜂 sees its Q function 𝑄�̂�(𝑥⇀)
smoothed by a Gaussian function, such that the Q function of the resulting lossy state �̂�𝜂 writes
[Leonhardt 95] 𝑄�̂�𝜂(𝑥⇀) = 1𝜂𝑁𝑊 �̂�𝜌 (𝑥⇀/√𝜂) (4.94)

where 𝑊 �̂�𝜌 (𝑥⇀) is given in equation (1.40) and 𝑢 = 1 − 2𝜂 (e.g. 𝑢 = −1 for 𝜂 = 1 and 𝑢 < −1 for𝜂 < 1).
We can then derive the Q function of the single-photon subtracted state �̂�−𝜂 which under-

went 1 − 𝜂 losses after subtraction by applying equation (4.94) to the Q function of the state�̂�− which is given generally by equation (1.156). We perform the computation in appendix B.2
in the multimode scenario, and obtain in particular for a single-mode state

Q�̂�−𝜂 (𝑥⇀) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
[1𝜂𝑥⇀⊤(𝐕 − 𝑢𝜎201)−1𝐀−(𝐕)(𝐕 − 𝑢𝜎201)−1𝑥⇀ − Tr[(𝐕 − 𝑢𝜎201)−1𝐀−(𝐕)] + 2]× e− 12𝜂 𝑥⇀⊤(𝐕−𝑢𝜎201)−1𝑥⇀4𝜂𝜋𝜎20√det(𝐕 − 𝑢𝜎201) (4.95)

where 𝐀−(𝐕) is the matrix defined in equation (4.92), 𝐕 is again the 2 × 2 covariance matrix of
equation (4.90), and 𝑢 = 1 − 2𝜂 . Remarkably, one can see that equation (4.95) can be obtained
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from equation (4.91) upon transforming 𝐕 + 𝜎201 ↦ 𝐕 − 𝑢𝜎201 (except in 𝐀−(𝐕)) and 𝑥⇀ ↦𝑥⇀/√𝜂 (up to a normalization factor). Again, the Q function Q�̂�−𝜂 (𝑞, 𝑝) may be viewed in the
simple form given by equation (4.91), with other coefficients {𝑐𝑖} which depends on the fixed
parameters 𝑢, 𝜇G, and 𝜂.

We run the same simulation as before, except we sample now the Q function Q�̂�−𝜂 of the
lossy single-photon subtracted squeezed vacuum state �̂�−𝜂 for 𝜂 equal to 1, 0.9 and 0.8, with the
results in figure 4.6.

Fig. 4.6 Estimates of the fidelity to Fock state |1⟩ for various lossy single-photon
subtracted squeezed vacuum states �̂�−𝜂 using 𝑀 = 106 simulated samples from dou-
ble homodyne detection. For the efficiency 𝜂 = 1.0 (blue), the plot is the same as
graph 4.5 (a). For lower efficiencies 𝜂 = 0.9 (green) and 𝜂 = 0.8 (brown), the esti-
mations drop. For visibility, the blue and brown intervals were right and left shifted
while still corresponding to the same purity 𝜇G as the central green interval of con-
fidence.

As we estimated 𝜂DHD ≃ 81%, we expect the brown interval of confidence (for 𝜂 = 0.8) to
accurately simulate the result of the protocol on actual experimental data from our experiment.
The drop in fidelity compared to the case 𝜂 = 1.0 is reasonable and is more significative for
states with a high purity 𝜇G before subtraction.

At 𝜇G = 1 and 𝜂 = 1, the state �̂�−𝜂 is a pure single-photon subtracted state, and writes|𝜓−𝜁 ⟩ = sinh(𝜁 )−1�̂�𝑆(𝜁 ) |0⟩ with 𝜁 = 𝑠dB ln(10)/20. In this case, we can deduce the fidelity𝐹( |𝜓−𝜁 ⟩ , |1⟩) = | ⟨1|𝜓−𝜁 ⟩ |2 from the decomposition of a squeezed state 𝑆(𝜁 ) |0⟩ on the Fock basis,
see equation (1.79). We obtain 𝐹( |𝜓−𝜁 ⟩ , |1⟩) = cosh(𝜁 )−3. At 𝑠dB = 3 dB, 𝐹( |𝜓−𝜁 ⟩ , |1⟩) ≃ 0.84%,
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which is coherent with figure 4.6.
We chose 𝑠dB = 3 dB for best results. At high squeezing, we expect poor fidelity estimations,

as the pure subtracted state |𝜓−𝜁 ⟩ gets further away from the Fock state |1⟩ as 𝑠dB increases (and
similarly for mixed states). At low squeezing, the fidelity is expected to increase for the pure
subtracted state. For mixed states though, it is expected to drop, because the purity of the state
after subtraction drops with the squeezing factor, an observation made in [Walschaers 17a,
Walschaers 17b]. We give in the appendix D.2.1 the results of the simulation for other values
of the squeezing factor 𝑠dB, confirming these expectations.

We can see that at 𝜂 = 0.8, we may not expect anymore to certify our states if the purity
before subtraction 𝜇G is lower or equal to 0.9, with 106 samples. At 𝜇G = 0.95 and above,
certification is achievable although it puts significative constraints on the experiment. The
main concern is about the number of samples. From chapter 3, the expected number of single-
photon events per second is about 55. This means that it would require to steadily acquire
for about 5 hours to gather 106 samples. While achievable, this long acquisition can induce
challenges of experience stability for instance. It is then a priority to reduce the number of
required samples, or to improve the efficiency of the single-photon detection. However, reduc-
ing the number of samples from 106 to 105 may come approximately to the cost of a three-fold1
increase in the size of the interval of confidence in figure 4.6. There is not enough room left on
the other parameters to compensate such an increase. In the next subsection, we show how
to partially relieve these constraints.

4.3.5 Certifiabilty enhancement using unbalancing

As shown in section 4.1, the double homodyne detection allows us to equivalently apply a
squeezing operation on the state prior measurement via unbalancing a beamsplitter, achieving
arbitrary squeezing operation 𝑆(𝜁 ′)with squeezing parameter 𝜁 ′. Wewant to use this property
to improve the fidelity estimation simulation presented before.

We expect the unbalancing to improve the sensitivity of the certification protocol for our
states. Consider a pure single-photon subtracted state |𝜓−𝜁 ⟩. It may be viewed as a squeezed
Fock state 1 as |𝜓−𝜁 ⟩ ∝ 𝑆(𝜁 ) |1⟩. Applying the squeezing operation 𝑆(𝜁 ′) with 𝜁 ′ = 𝜁 on |𝜓−𝜁 ⟩
via unbalancing results then in sampling the Q function of the Fock state |1⟩ with the double
homodyne detection. This mean that we expect to estimate 𝐹(𝑆(𝜁 ′)�̂�−𝑆(𝜁 ′)†, |1⟩) = 1 in the
case where �̂�− is pure with the appropriate unbalancing.

To simulate the certification protocol including the equivalent squeezing operation, we
compute the Q function of the resulting state �̂�−𝜁 ′,𝜂. The derivation is given in the appendix B.2

1This is an approximation taking into account only the statistical error (
√10 ≃ 3.16). The behavior of the

bias contribution in the precision 𝜖 is not predictable, while other simulation run shows it behaves approximately
similarly.
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in the multimode scenario, and we obtain in the single-mode scenario

Q�̂�−𝜁 ′ ,𝜂(𝑥⇀) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
[1𝜂𝑥⇀⊤(𝐕′ − 𝑢𝜎201)−1𝐀−′(𝐕)(𝐕′ − 𝑢𝜎201)−1𝑥⇀ − Tr[(𝐕′ − 𝑢𝜎201)−1𝐀−′(𝐕)] + 2]× e− 12𝜂 𝑥⇀⊤(𝐕′−𝑢𝜎201)−1𝑥⇀4𝜂𝜋𝜎20√det(𝐕′ − 𝑢𝜎201)

(4.96)
with 𝐀−′(𝐕) = 𝐊𝐀−(𝐕)𝐊 and 𝐕′ = 𝐊𝐕𝐊

where 𝐊 is the symplectic matrix representing the action of the operator 𝑆(𝜁 ′), 𝐀−(𝐕) is the
matrix defined in equation (4.92), 𝐕 is the 2 × 2 covariance matrix of equation (4.90), and𝑢 = 1 − 2𝜂 . One can see that equation (4.96) can be obtained from equation (4.95) upon the
transformations 𝐀−(𝐕) ↦ 𝐊𝐀−(𝐕)𝐊 and 𝐕 ↦ 𝐊𝐕𝐊 (except in 𝐀−(𝐕)). Again, the Q functionQ�̂�−𝜁 ′ ,𝜂(𝑞, 𝑝) may be viewed in the form given by equation (4.91), with other coefficients {𝑐𝑖}
which depends on the fixed parameters 𝑠dB, 𝜇G, 𝜂, and 𝜁 ′.

We run the same simulation as above, except we sample now the Q function of the state�̂�−𝜁 ′,𝜂 for an unbalancing parameter 𝜁 ′ which exactly compensates for the preparation squeezing
factor 𝑠dB, i.e. 𝜁 ′ = 𝑠dB ln(10)/20. The simulation results are given in figure 4.7.

This time, at 𝜇G = 1, we can see on figure 4.7 that the fidelity estimate is indeed around 1
for 𝜂 = 1, as expected from the above discussion. Similarly, all other interval of confidence on
figure 4.7 got lift up compared to figure 4.6, by about 5% to 15%. In particular at 𝜇G = 0.9, the
quantum non-Gaussianity properties are certified for 𝜂 ≥ 0.8 which was not the case without
unbalancing.

We still have the same limitation as before at low squeezing because of how subtraction
behaves. On the other hand, at high squeezing, the effect of squeezing is compensated by the
unbalancing, removing any limit. We then expect the fidelities to increase with the squeezing
(always matched by the unbalancing). This behavior can be checked on the additional sim-
ulation results with different squeezing factors 𝑠dB in the appendix D.2.2. We also estimated
the sensibility of the estimated fidelity with respect to the unbalancing parameter, and found
that it is quite robust for an unbalancing in the range [2 dB, 4 dB] for a 3 dB squeezed state, see
appendix D.2.3.

While it might be appealing to look for preparing highly squeezed states, it remains an
experimental challenge. From chapter 2 discussions, we expect 𝑠dB = 3 dB squeezing factor to
be a good prediction for the first supermode of the SPOPO, with high purity. Assuming we
can produce such state at purity 𝜇G = 0.95, then the estimated fidelity would be largely above
certification thresholds, allowing for a significative decrease in terms of required number of
samples. We thus expect from figure 4.7 to achieve quantum non-Gaussianity certification of
our experimentally generated states in realistic conditions.

4.3.6 Simulation: perspectives

In the previous two subsections, we were considering that any detection imperfection were
mapped to optical losses applied on the input state, prior measurement with an ideal detection.
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Fig. 4.7 Estimates of the fidelity to Fock state |1⟩ for various lossy single-photon
subtracted squeezed vacuum states with 𝑠dB = 3 dB using 𝑀 = 106 simulated sam-
ples from an unbalanced double homodyne detection. The unbalancing applies a
squeezing operation with squeezing parameter exactly opposite to the squeezing pa-
rameter necessary to produce the initial squeezed vacuum states in the preparation.
Same plot as figure 4.6, except for the unbalancing.
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This means that the certification is not trusting the detection, as it does not correct for the
losses, which allows for stronger certification claims in the opposite scenario.

A possible alternative approach consists then in taking into account the losses in the fi-
delity estimation protocol itself, at the cost of trusting the detection (still not the state gener-
ation). This means that the protocol would rely on the knowledge of these detection losses.
It also means that we would then certify the state before the detection losses, or corrected by
these losses. Some progress has been done into this direction, extending the double homo-
dyne fidelity estimation protocol considering a noisy detector. The simulations were still not
conclusive. In particular, the cost in number of samples is expected to be higher than in the
previous protocol with equivalent losses, as the assumed sampled probability distributions
is now a smoothed version of the Q function. From the first trials, the number of required
samples seems not realistic.

Another possible extension of the simulation consist in taking into account the multimod-
eness of the single-photon subtraction (i.e. the fact that the Schmidt number of the subtraction
process is not equal to 1). We do not expect significant changes in the simulation results since
the measured Schmidt number 𝐾 = 1.03 of our subtractor is very close to 1, see the subtraction
tomography in 3.4.2.2.

To implement this extension, one would consider a multimode Gaussain squeezed state,
before subtraction, with a realistic squeezing distribution. One could either use the theoreti-
cally derived distribution of the SPOPO given in chapter 2, or use actual experimentally mea-
sured squeezing distribution in the supermode basis. The Q function of the multimode state
after subtraction is then given by equation (1.156), with the subtraction projector 𝚷�⃗� given by
equation (3.70) with a subtraction probability distribution given by the diagonal form of the
measured subtraction matrix given in figure 3.17. The subtraction mode �⃗� is chosen as the
mode of the gate in the subtraction tomography, i.e. the Hermite-Gaussian 0 mode. Finally,
the mode of the LO is also chosen as the Hermite-Gaussian 0 mode, i.e. the measurement at
the double homodyne detection is performed in this mode. In the simulation, we would then
trace out the Q function on all other modes prior sampling and applying the fidelity estimation
protocol. While it constitutes an interesting extension, we don’t expect major changes.

4.4 Experimental quantum non-Gaussianity certification

In the previous section, we explained in particular how to apply the fidelity estimation protocol
on simulated data from double homodyne detection to certify stellar rank or Wigner negativ-
ity. In this section, we present the experimental advances made for measuring the generated
single-photon squeezed vacuum states using the double homodyne detection described in sec-
tion 4.1.

In subsection 4.4.1, we detail the protocol for acquiring the experimental data from the
double homodyne detection, notably post-selecting on the single-photon subtraction events.
We also elaborate on the challenges we faced to properly isolate the data signal from the noise
and from the square-like signal induced by the optical locking system.

In subsection 4.4.2, we report and discuss preliminary results.
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4.4.1 Measurement technical details and challenges

Experimental protocol and cavity temporalmode. Let us describe the experimental pro-
tocol devised for sampling the Q function of the generated single-photon squeezed vacuum
states. The double homodyne detection allows for measuring the two orthogonal quadratures�̂�𝜃 and �̂�𝜃+𝜋/2, where 𝜃 is the LO-signal optical phase which is locked over time. The output
voltage of both homodyne detections is acquired over time using a scope. To save memory and
time, the scope is triggered to measure only on relevant time periods. To determine them, two
main aspects have to be considered: the locking of the LO-signal phase, and the single-photon
subtraction events.

As explained in section 2.5, the measurement time over a locking cycle is limited by the
action of the accousto-optic modulator (AOM) which only sends the light to the single-photon
detector (SPD) when safe. The first trigger on the scope is then set to match the one of the
AOM. An AND gate is then applied on this trigger together with the trigger built from the
clicks of the SPD, each signaling a detection occurred. In other words, the scope is only mea-
suring data when the AOM diffracts light to the SPD and when the SPD clicks.

Yet, it is not enough to simply retrieve the couple of homodyne quadrature measurements𝑞(𝑡𝑖) and 𝑝(𝑡𝑖) when the scope is triggered at time 𝑡𝑖, because the single-photon subtraction
mode is given by the SPOPO cavity [Morin 13b, Ra 20]. The typical length in time of this mode
is given by the inverse of the cavity bandwidth, hence of the order of a few 100 ns, which is
much longer than the integrating time of the detectors. Thus, when the scope is triggered at
time 𝑡𝑖, one has to weight the homodyne signals 𝑞(𝑡) and 𝑝(𝑡) by a temporal mode 𝐟(𝑡) such
that the retrieved quadrature measurements 𝑞𝐟(𝑡𝑖) and 𝑝𝐟(𝑡𝑖) are given by⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑞𝐟(𝑡𝑖) = ∫ 𝐟(𝑡 − 𝑡𝑖)𝑞(𝑡) d𝑡𝑝𝐟(𝑡𝑖) = ∫ 𝐟(𝑡 − 𝑡𝑖)𝑝(𝑡) d𝑡 (4.97)

where 𝐟(𝑡− 𝑡𝑖) is centered at time 𝑡𝑖. The amount of data kept around time 𝑡𝑖 is determined from
the temporal width of the mode 𝐟(𝑡).

It was shown that the temporal mode associated to a state generated from a cavity has the-
oretically the shape of a decreasing exponential exp(−|𝑡 |) in first order [Nielsen 07, Morin 13a].
To experimentally retrieve the actual temporal mode 𝐟(𝑡), one can compute the temporal auto-
correlation of an homodyne signal, and retrieve its main eigenmode. This analysis of the tem-
poral mode of the SPOPO cavity was performed in [Dufour 18], with the results shown in
figure 4.8. The non-trivial shape of the temporal eigenmode stems from the electronic re-
sponse of the detectors. In practice, an approximation (red in the figure) is used as 𝐟(𝑡) and
applied on the data following equations (4.97).

Finally, after having collected enough data points {𝑞𝐟(𝑡𝑖)} and {𝑝𝐟(𝑡𝑖)}, the double homodyne
samples are deduced as 𝛼𝑖 = (𝑞𝐟(𝑡𝑖)/𝑟 + i𝑝𝐟(𝑡𝑖)/𝑡)/(2𝜎0), with 𝑟2 and 𝑡2 the reflectivity and
transmissivity of the beamsplitter of the double homodyne detection. Building the histogram
from the samples {𝛼𝑖} results in the sampled Q function of the state 𝑆(ln(𝑡/𝑟))�̂�𝑆(ln(𝑡/𝑟))†,
where �̂� is the experimental state. One can then apply the fidelity estimation protocol on
the samples {𝛼𝑖} with target state |1⟩ to obtain a certification statement on the stellar rank 1
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Fig. 4.8 Measured temporal eigenmode of the SPOPO cavity (in blue), and approxi-
mated mode 𝐟(𝑡) used in practice (in red). The samples indices in the horizontal axis
are multiples of 2 ns. From [Dufour 18].

and Wigner negativity of the state �̂�. The unbalancing of the double homodyne detection is
experimentally chosen to maximize this fidelity.

Dependency on the optical phase lock. Is the lock necessary to perform the protocol
described above? It depends on the application. If one wants to reconstruct the histogram of
the Q function of the state 𝑆(ln(𝑡/𝑟))�̂�𝑆(ln(𝑡/𝑟))†, then knowing the phase is necessary (except
if the state 𝑆(ln(𝑡/𝑟))�̂�𝑆(ln(𝑡/𝑟))† is invariant under phase-space rotations).

If one only seeks to certify the fidelity to the target Fock state |1⟩, one can notice that the
Fock state |1⟩ is invariant under phase space rotation. We then expect that it is the case of
its P function also, along with the approximation of the P function of the protocol. One can
indeed check that the functions {ℎ(𝑚,𝛾)𝑛 (𝛼)} do not depend on the phase of the sample 𝛼, see
equation (4.77) and equation (4.71). Since the fidelity estimator is given by their sum, it does
not depend on the phase of the measurement samples 𝛼1,⋯ , 𝛼𝑀 .

However, this property can only be applied for a balanced homodyne detection. Indeed,
for an unbalanced homodyne detection, the phase of the squeezing parameter 𝜁 of the POVM
is 2𝜃 with 𝜃 the LO-signal phase. This means that for each different value of 𝜃, the double ho-
modyne detection is sampling the Q function of the state 𝑆(ln(𝑡/𝑟)ei2𝜃)�̂�𝑆(ln(𝑡/𝑟)ei2𝜃)†. Taking
a squeezed vacuum state for �̂�, one can see that the states 𝑆(ln(𝑡/𝑟)ei2𝜃)�̂�𝑆(ln(𝑡/𝑟)ei2𝜃)† do not
have the same fidelity to Fock state |1⟩. For instance, assuming the squeezed quadrature of �̂�
is �̂� (i.e. 𝜃s = 0), the sampled state at 𝜃 = 0 is a squeezed state with squeezing factor enhanced
by ln(𝑡/𝑟) (with 𝑡 > 𝑟), while the sampled state at 𝜃 = 𝜋/2 is a squeezed state with squeezing
factor reduced by ln(𝑡/𝑟). As the fidelity to Fock state |1⟩ for these squeezed states is given bycosh(𝜁 ′)−3 with 𝜁 ′ the new squeezing parameter, they indeed do not yield the same fidelity,
which is also true for the intermediate states. A similar reasoning apply for a subtracted state
as input.

To summarize, locking the LO-signal phase (or knowing it) is necessary when using an
unbalanced double homodyne detection. As we saw in the previous section, unbalancing the
double homodyne detection facilitates significantly the certification protocol.

In the following, we describe some challenges (among others) related to the measurement
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using the double homodyne detection, and the methods used to cope with them.

Challenge: noise from the electric installation. We characterized the homodyne detec-
tors, with results given in appendix C.1. We noticed that the clearance of the homodyne de-
tectors at frequencies below 10MHzwas low, which can be spotted on the figures C.2 and C.4.
Investigatingmore closely, we observedmultiple peaks on the dark noise of the detectors, with
an amplitude of up to 10 dB.

After a thorough search of the noise source in the lab, we understood that the electric
installation of the building itself was causing this noise, spreading it in the electric ground
to all devices of the experiment. Locally isolating the homodyne detectors was not enough
to circumvent this issue, since there is an electric path connecting any two devices of the
experiment. We then opted for a complete isolation of all devices by setting up power-inverters
between the building power source (wall plugs) and the devices. These power-inverters are
said on-line, in the sense that they convert the input AC power to a DC power, using batteries,
and then convert it back to AC power to feed the devices. This process ensures that any
noise from the building’s electrical installation is effectively filtered out, providing clean and
stable power to all experimental devices. The previously observed peaks were indeed removed,
resulting in a flat clearance at low frequency.

Challenge: locking induced square-like signal. We faced another challenge at the mea-
surement stage stemming from the phase optical lock working principle. During the measure-
ment, the seed bright beam is alternatively blocked and not blocked. When it is not blocked,
it interferes with the LO beam at homodyne detection, resulting into a signal with mean value
proportional to both the LO and the seed field amplitudes. The measured electric signal is then
alternatively a high voltage signal, and a zero-mean signal: a square signal. On figure 4.9, blue
curve, we show the raw acquisition of the output of an homodyne detector without applying
any filter or amplifier. Note that for simplicity, here the LO beam is blocked, and we measure
the seed beam intensity on one homodyne photodiode, with the chopper on. The discussed
effects are similar in the measurement configuration.

The signal of interest is the zero-mean signal, whose fluctuations are quadrature measure-
ments of the input state. The variance of this signal is so low that we need to amplify them by
at about 60 dB in power to correctly measure them on the scope. The issue is that an amplifier
would also greatly increase the non-zero-mean part of the signal, which would saturate the
amplifier. For this reason, we need to filter this part of the signal prior amplification using an
high-pass filter (HPF), which is actually what commercial amplifiers inherently do.

As we want to keep most of the detection bandwidth, we are limited to low cut-off fre-
quencies, of the order of 100 kHz. When fed with a sharp square signal, filters need a certain
duration to react, leading to a step response with few oscillations at the period of the inverse
cut-off frequency of the filter. This is what we observed in our setup, see figure 4.9 curves
orange and green. We use third order butterworth 90 kHz HPFs. The higher the order of the
filter, the higher its suppressing power, but the longer its step response. A similar effect oc-
curs whenmultiple filters are arranged in a series, see figure 4.9. Due to the large amplification
needed, we would require the strength of two of these HPFs. As one can see, the oscillations
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Fig. 4.9 Raw acquisition of the output signal of one homodyne detection over a
complete locking cycle (of 135 µs), for 0, 1 and 2 high-pass filters (HPF) of 90 kHz
cut-off frequency. The blue curve serves as a reference to distinguish when the seed
beam is measured (high voltage) from when it is blocked (low voltage). The curves
have been rescaled arbitrarily and individually to exhibit their step-responses.

spread over a consequent portion of the measurement time window at each locking cycle,
significantly reducing the duty cycle.

To cope with this issue, we built an electronic device, called clipper-amplifier, whose elec-
tronic scheme is given in appendix C.4. The idea is to use diodes to clip both the bottom and
the top of the signal1, such that the amplitude of the signal is low enough not to saturate the
following amplifier. These two operations, clipping and amplifying, are repeated four times to
reach the required amplification level, which can be manually modified. Using diodes instead
of HPFs, no step-response were observed, solving the above mentioned issue.

We also investigated another alternative design, which consists in using (commercial) fast
electronic switches, synchronized with the locking cycles, prior amplifying the relevant signal
at one of the output of the switch. We observed large peaks appearing at switch events, which
also triggers a step response of the filters of the (commercial) amplifiers. For this reason, we
opted for using two clipper-amplifiers, one for each homodyne detection.

Invisible in figure 4.9, there is a comparatively low amplitude step response induced by the
internal HPF at the AC output in the homodyne detectors themselves (see electronic scheme
in appendix C.1). The low order of this HPF filter (a first order RC filter) results in a lower
amplitude and smaller spread than the ones shown in figure 4.9, while still deteriorating the
signal. To mitigate this effect, we changed the capacitance of the filter from 33 nF to 10 nF, re-
sulting in a cut-off frequency of 160 kHz. This higher cut-off frequency reduces the oscillation
period of the step response, and its effect on the signal.

Lastly, we initially splitted the AC signal of one of the homodyne to feed the LO-seed

1In locking configuration contrary to figure 4.9, the seed interferes with the LO beam and is phase-modulated
at 60 kHz for the lock to function. Thus, the signal (at locking times) is then large oscillations that still trigger
the step response of filters as in figure 4.9. They need to be clipped at negative and positive voltages.
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locking device, for higher efficiency. However, we observed noise of very-low frequency on
the measurement channel of the splitter, which was likely due to electronic reflections. We
then removed the splitter, and are now locking on the DC channel, removing the fluctuations.

Challenge: subtraction counts. As we have seen in the last sections, the number of sub-
traction counts per second is a critical parameter, as it increases the required acquisition length
to measure relevant number of samples for the certification. In chapter 3, we estimated the
subtraction counts to about 55 counts per second, without taking into account the locking
cycle. With a duty cycle of 26% at a chopping rate of 8 kHz, the estimation drops down to 14
counts per second.

To mitigate this issue, we decreased the chopping frequency to 5 kHz, corresponding to a
cycle length of 235 µs effectively. We then have been able to increase the duty cycle to 41%,
resulting in an estimation of 22 subtraction counts per second.

However, this estimation assumes that the quantum state before subtraction is a pure
squeezed vacuum state of 3 dB. From recent measurement, we are currently estimating a
squeezing factor 𝑠−dB of −1.85 dB for a high purity of 0.917 at the output of the SPOPO (see
squeezing measurements in subsection 2.5.3). As the state is not pure, with an excess of an-
tisqueezing, the effective number of photons in this state is slightly higher, such that we can
round the estimation to 2 dB1. At this level of squeezing, we estimate 10 subtraction counts per
second, taking into account the 41% duty cycle. This number is consistent with the 23 counts
per second that we measured without the lock. Note that up to now, we used the 𝑟2o = 80%
output coupler of the SPOPO cavity. Switching to 𝑟2o = 50% may allows us to reach a more
relevant regime of purity and squeezing level for certification.

Generally speaking, a trade-off between high purity with low squeezing and low purity
with high squeezing becomes relevant for the certification. To summarize, at high purity and
relatively low squeezing (2 dB), the number of subtraction counts per second is lower but the
fidelity to Fock state |1⟩ is higher, so that the certification require less samples to beat the
stellar rank threshold. Inversely, at lower purity and higher squeezing (e.g. 3 dB), the number
of subtraction counts per second is higher but the number of required samples is a priori
higher.

4.4.2 Preliminary results

After implementing the aforementioned changes, the output signal of the double homodyne
detection is “cleaner” and sufficiently amplified to adequately retrieve the quadrature mea-
surements from each homodyne. We give few locking cycles of raw acquisition in figure 4.10,
for one homodyne detection (the output of the second one is similar). One can see that the
locking cycle is clearly recognizable with a bipartite pattern: scattered points, the quadrature
measurements, and oscillations of the LO-seed interference at the frequency of 60 kHz which
corresponds to the modulation frequency of the seed beam.

1Writing the state as a mixture of a pure squeezed vacuum with vacuum, 𝑎 |𝜓𝜁 ⟩⟨𝜓𝜁 | + 𝑏 |0⟩⟨0|, the quadrature
variances write 𝑠+dB = 𝑎𝑠 + 𝑏 and 𝑠−dB = 𝑎/𝑠 + 𝑏, with 𝑎 + 𝑏 = 1 and 𝑠 = e−2𝜁 . We then deduce that the number of
photons in this state is 0.5, close to the number of photons 0.54 in a 2 dB squeezed state.
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Fig. 4.10 Raw acquisition of the output signal of one homodyne detection for a
squeezed vacuum state, during lock operation and using the clipper-amplifiers de-
scribed in subsection 4.4.1.

Note that the trace given in figure 4.10 was taken without single-photon subtractions. In
fact, we wouldn’t be able to see the difference on the raw trace considering the low probability
of the subtraction events (0.1%) and the non-trivial shape of the cavity temporal mode.

To retrieve a relevant Q function sampling from the completed set of data of figure 4.10,
we first remove the data corresponding to the time slots where the LO-seed interference is
measured. We are left with parts of data which we refer to as data chunks. Then, as we acquire
over time, it contains all possible time-frequency modes within the detector bandwidth. As we
saw in the previous subsection, the relevant temporal mode for a subtracted state is the cavity
mode 𝐟 given by figure 4.8. We expect it to be also true for a squeezed vacuum state, as they
both are generated initially from the SPOPO cavity. We then used the same idea to retrieve
the cavity temporal mode: we compute the auto-correlation of the quadrature measurements𝑞(𝑡𝑖)𝑞(𝑡𝑗) for each pair 𝑡𝑖, 𝑡𝑗 in the same data chunk, where ⋅̄ denote the statistical average over
all data chunks1. We then diagonalize the resulting auto-correlation matrix.

We also compute the auto-correlation matrix of using shot-noise measurements (with vac-
uum as input state). In the diagonal basis of the signal auto-correlation matrix, the diagonal of
the vacuum auto-correlation matrix are then the vacuum variances in this basis, or shot-noise
levels. We then rescale the diagonal signal matrix by these shot-noise levels. Finally, we de-
termine the eigenmode of the signal matrix with the lowest eigenvalue (corresponding to the
highest absolute squeezing factor).

We apply this temporal eigenmode on the initial data chunks, resulting in one quadrature
measurement per chunk. Note that as we measure squeezed vacuum states, we do not have
the constraint to select data at subtraction events, allowing for acquiring 1.6 × 106 quadrature
measurements in about 3 seconds. Following the protocol given above in subsection 4.4.1, we
can then build the histogram of the corresponding Q function. Preliminary results are given
in figure 4.11, where we built the histogram of the sampled Q function of squeezed vacuum,

1In practice, we compute the auto-correlation over smaller chunks, with a temporal size (∼ 1 µs) closer to
the one of the expected temporal mode
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using a balanced double homodyne detection.

Fig. 4.11 2D histograms of the sampled Q function for squeezed vacuum (left) and
vacuum (right) as input states, with 𝑀 = 1.6 × 106 samples. The pump power p is
set at 30mW, and the SPOPO output reflectivity is 𝑟2o = 80%. The inferred squeezing
factor is 1.2 dB. These are preliminary results.

As I am writing these lines, we are still making progress for harnessing the double homo-
dyne detection, coping with some random burst of electronic noise we observe in the data,
and improving the stability of the optical lock. We estimate a squeezing factor of about 1.2 dB.
This value is lower than what we would expect, at least 2 dB, from the measurements per-
formed in subsection 2.5.3 while locking. This discrepancy suggests some noise is present in
the electronic devices used for the measurement of figure 4.11 (in subsection 2.5.3, we were
using a spectrum analyzer measuring at 1MHz).

As soon as the issues left at hand are solved, we will be able to reliably sample the Q
function of the generated states at subtraction events. We are then confident that certifying
the quantum non-Gaussianity of the generated single-photon subtracted states is reachable in
the short term.
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Conclusion and outlook

Throughout the course of my doctorate, I worked with my research team on both theoretical
and experimental fronts, each complementing the other, deepening our collective understand-
ing of the central themes of our research.

In the purely theoretical side, we investigated the conditions for single-mode and mode-
selective single-photon addition on a multimode field of light. This brought to light the nu-
ances between photon addition and subtraction, further building upon the theoretical work
already done within our group on both operations. Our findings suggest that the choice be-
tween subtraction or addition hinges significantly on the application at hand, given that each
approach presents advantages and challenges. This relates to aspects like the Wigner neg-
ativity of the output state, or the purity of the output state with respect to the input state
structure, number of photons, and purity. Our work opens up avenues for the experimental
implementation of a single-photon addition on amultimode squeezed vacuum state. A promis-
ing extension of this work involves probing the conditions for single-mode andmode-selective
addition inwaveguides, such as lithiumniobate (LiNbO3) or potassium titanyl phosphate (KTP)
waveguides.

I also had the opportunity to collaborate with researchers from the LiP6 laboratory, bridg-
ing their theoretical expertise with the experimental expertise of my group at LKB. Starting
with the theoretical developments derived by Ulysse Chabaud on the stellar rank, the stel-
lar hierarchy, and on continuous variable certification, we developed methods for certifying
the generated states in our experiment. We derived an optimized fidelity estimation protocol
with Fock target states, and exhibited the multiple benefits of using the double homodyne de-
tection as a Q function sampler. This allowed us to bring the theory closer to experimental
conditions, showing its feasibility in modern quantum optics laboratories with the support of
realistic simulations.

Developing certification tools in our experimental group is interesting for two reasons.
Firstly, it allows for reliable and legitimate claims on the properties of interest of the states we
generate. Secondly, it positions our group more firmly within the quantum information field,
equipping us better to respond to the burgeoning demand for certification in the context of
the international race for building quantum computers.

Much of my doctoral journey was spent honing our experimental setup. For instance,
we improved the multimode Gaussian state generation by better coping with the intra-cavity
dispersion of the SPOPO, minimizing frequency-dependent losses in the cavity. We expect
that this improvement will yield a broader distribution of supermodes with notable squeezing,
thereby enhancing the overall multimodeness of the experiment.

We also built an optical phase lock and a double homodyne detection. The optical phase
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lock fixes the phase between the reference beam and the signal beam at the detection, simplify-
ing experimental protocols and facilitating data analysis. Furthermore, it opens up possibilities
for new experimental protocols otherwise inaccessible, such as sampling the Q function of an
asymmetric quantum state using double homodyne detection or applying the estimation pro-
tocol using an unbalanced double homodyne detection. To this end, we developed a double
homodyne detection based on polarizing beam splitters, which guarantees the orthogonality
of the two measured quadratures with high temporal stability. Preliminary results suggest
that we are on the brink of certifying single-mode single-photon subtracted states.

Looking ahead, there are exciting opportunities to further extend this work. For instance,
extending the functionality of the lock to arbitrary time-frequency modes could allow us to
assess the squeezing distribution of the SPOPO under locking operation and prepare us for
the certification of multimode states. This necessitates the evolution of our current single-
mode double homodyne detector to a multimode variant. A promising candidate for initial
multimode state certification could be a two-mode squeezed vacuum state conditioned on
single-photon subtraction on one mode. When measured in a different mode basis than the
one of the subtractionmode, this state transforms into a non-trivial entangled state with stellar
rank 1. Lastly, promoting the single-photon subtraction to a two-photon subtraction would
open up possibilities for the certification of stellar rank 2 states. If the two subtractions occur
in the same mode for instance, then one would apply the estimation fidelity protocol with a
Fock state |2⟩. Else, if the two subtractions occur in different modes, the relevant target state
is |1⟩ ⊗ |1⟩. In both cases, the protocol can certify the stellar rank 2 of the generated states,
provided a high enough fidelity. This represents a significant milestone, whose achievement
will further enrich our exploration and understanding of this fascinating field.
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Appendix A

Some mathematical tools

A.1 Hausdorff formula
In the manuscript, we often encounter operators �̂� which writes in an exponential form as�̂� = exp(−𝑐�̂�) (A.1)

Its action on another operator �̂� in the Heisenberg picture writes as�̂�†�̂��̂� = e𝑐�̂��̂�e−𝑐�̂� (A.2)

We can derive such action using the Hausdorff recursion formula [Fröhlich 77]

e𝑐�̂��̂�e−𝑐�̂� = �̂� + 𝑐[�̂�, �̂�] + 𝑐22![�̂�, [�̂�, �̂�]] + 𝑐33![�̂�, [�̂�, [�̂�, �̂�]]] +⋯ (A.3)= ∞∑𝑘=0 𝑐𝑘𝑘! {{�̂�𝑘, �̂�} } (A.4)= �̂�𝑐 (A.5)

where {{�̂�, �̂�} } = [�̂�, �̂�] and {{�̂�𝑘, �̂�} } = [�̂�, {{�̂�𝑘−1, �̂�} }], and where we defined �̂�𝑐 the operator
resulting from the action of e−𝑐�̂� on �̂�.

Computing �̂�𝑐 allows directly to infer the action on �̂�𝑘 with 𝑘 ∈ N as

e𝑐�̂��̂�𝑘e−𝑐�̂� = �̂�𝑘𝑐 (A.6)

from which we deduce the action on the operator exp(�̂�)
e𝑐�̂�e�̂�e−𝑐�̂� = e�̂�𝑐 (A.7)

Interesting particular cases:

• If [�̂�, �̂�] = 𝐾1�̂� with 𝐾1 a scalar constant, then {{�̂�𝑘, �̂�} } = 𝐾 𝑘1 �̂� and

e𝑐�̂��̂�e−𝑐�̂� = e𝑐𝐾1�̂� (A.8)

e𝑐�̂�e�̂�e−𝑐�̂� = ee𝑐𝐾1 �̂� (A.9)
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• If [�̂�, �̂�] = 𝐾21̂ with 𝐾2 a scalar constant, then {{�̂�𝑘, �̂�} } = 0 for 𝑘 ≥ 2 and
e𝑐�̂��̂�e−𝑐�̂� = �̂� + 𝑐𝐾21̂ (A.10)

e𝑐�̂�e�̂�e−𝑐�̂� = e𝑐𝐾21̂e�̂� (A.11)

In particular, for 𝐾2 = 0 and 𝑐 = 1, we have that if [�̂�, �̂�] = 0
e�̂�e�̂� = e�̂�e�̂� = e�̂�+�̂� (A.12)

Example: Let us consider the phase-space rotation operator �̂�(𝜃) = exp(−i𝜃�̂�†�̂�) defined in
subsection 1.3.4.

Using [�̂�†�̂�, �̂�] = −�̂� and equation (A.8), we deduce�̂�(𝜃)†�̂��̂�(𝜃) = e−i𝜃�̂� (A.13)�̂�(𝜃)†�̂�†�̂�(𝜃) = ei𝜃�̂�† (A.14)

from which we obtain �̂�(𝜃)†�̂�𝜃0�̂�(𝜃) = �̂�𝜃0+𝜃 (A.15)
with �̂�𝜃0 = 𝜎0�̂�†ei𝜃 + 𝜎0�̂�e−i𝜃 (A.16)

We can also straightforwardly obtain the action of �̂�(𝜃) on the displacement operator�̂�(𝛼) = exp(𝛼�̂�† − 𝛼∗�̂�) as �̂�(𝜃)†�̂�(𝛼)�̂�(𝜃) = �̂�(𝛼ei𝜃) (A.17)

and on the squeezing operator 𝑆(𝜁 ) = exp[𝜁 ∗�̂�2/2 − 𝜁 �̂�†2/2] with 𝜁 ∈ C as�̂�(𝜃)†𝑆(𝜁 )�̂�(𝜃) = 𝑆(𝜁e2i𝜃) (A.18)

A.2 Hermite-Gaussian functions
In themanuscript, we often encounter the “Hermite-Gaussian” functions. Let us give here their
definition, and some interesting properties which makes them a well-defined time-frequency
mode basis

First, we use the “physicist’s” definition of the Hermite polynomial 𝑛, denoted 𝐻𝑛(𝑡), as𝐻𝑛(𝑡) = (−1)𝑛𝑒𝑡2 𝑑𝑛𝑑𝑡𝑛 𝑒−𝑡2 (A.19)

for 𝑛 ∈ N.
In particular, the Hermite polynomial 𝑛 is a polynomial of degree 𝑛, with leading coefficient2𝑛, for 𝑛 ≥ 0.
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The Hermite-Gaussian function 𝑛, denoted HG𝑛(𝑡), is defined as the product of a Gaussian
with the Hermite polynomial 𝑛, i.e.

HG𝑛(𝑡) = (2𝑛𝑛!√𝜋)− 12 𝑒− 𝑡22 𝐻𝑛(𝑡) (A.20)

for 𝑛 ∈ N.
The Hermite-Gaussian functions form an orthonormal basis of the square-integrable real

functions, satisfying

∫ ∞
−∞ HG𝑛(𝑡)HG𝑚(𝑡) = 𝛿𝑛𝑚 (A.21)

Furthermore, they are a set of eigenfunctions of the continuous Fourier transform F , de-
fined in the next appendix A.3, which writes

F [HG𝑛(𝑡)](𝜔) = (−i)𝑛HG𝑛(𝜔) (A.22)

When we consider the Hermite-Gaussian functions HG𝑛(𝑡) as time modes, the eigenvalue(−i)𝑛 doesn’t play any role. In other words, the Fourier transform of the Hermite-Gaussian 𝑛
time mode is the Hermite-Gaussian 𝑛 frequency mode.

A.3 Fourier transform definition and properties
In the scope of this manuscript, we define the Fourier transform F with the following conven-
tions

F [𝑓 ](𝜔) = ∫
R

d𝑡√2𝜋 𝑓 (𝑡)ei𝜔𝑡 (A.23)

F −1[𝑓 ](𝑡) = ∫
R

d𝜔√2𝜋 𝑓 (𝜔)e−i𝜔𝑡 (A.24)

with 𝑓 (𝜔) = F [𝑓 ](𝜔) and 𝑓 (𝑡) = F −1[𝑓 ](𝑡)
Note the sign in the exponential is opposite to the most standard convention, this is to be con-
sistent with the definition of the analytical field of chapter 1 in which the positive frequency
components oscillate with a e−i𝜔𝑡 factor.

Useful properties of the Fourier transform are given in table A.1, where ⋅ ⊗ ⋅ denotes the
convolution, defined for any two functions 𝑓 and 𝑔 as𝑓 ⊗ 𝑔(𝑥) = ∫

R

𝑓 (𝑥′ − 𝑥)𝑔(𝑥) d𝑥′ = ∫
R

𝑓 (𝑥′)𝑔(𝑥 − 𝑥′) d𝑥′ (A.25)

Some typical example of Fourier transform results are given in table A.2,
with the following definition of the Dirac combX

X𝑋 (𝑥) = +∞∑𝑘=−∞ 𝛿(𝑥 − 𝑘𝑋 ) (A.26)
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F [𝑓 ∗](𝜔) = (F [𝑓 ](−𝜔))∗
F [𝑓 (𝑡 − 𝑡0)](𝜔) = ei𝜔𝑡0𝑓 (𝜔)

F −1[𝑓 (𝜔 − 𝜔0)](𝑡) = e−i𝜔0𝑡𝑓 (𝑡)
F [𝑓 (𝑡)e−i𝜔0𝑡](𝜔) = 𝑓 (𝜔 − 𝜔0)
F −1[𝑓 (𝜔)e−i𝜔𝑡0](𝑡) = 𝑓 (𝑡 + 𝑡0)
F [𝑓 × 𝑔] = 1√2𝜋F [𝑓 ] ⊗F [𝑔]
F [𝑓 ⊗ 𝑔] = √2𝜋F [𝑓 ] × F [𝑔]

Table A.1: Fourier transform properties.

F [1](𝜔) = √2𝜋𝛿(𝜔)
F [e−i𝜔0𝑡](𝜔) = √2𝜋𝛿(𝜔 − 𝜔0)
F [X𝑇 (𝑡)](𝜔) = √2𝜋𝑇 X 2𝜋𝑇 (𝜔)

Table A.2: Fourier transform examples.

or equivalently

X𝑋 (𝑥) = 1𝑋 +∞∑𝑘=−∞ ei2𝜋𝑘𝑥/𝑋 (A.27)

As an illustrative application, we prove that the Fourier transform of the train of pulses
given in equation (2.2) yields the frequency comb given in equation (2.7).

F[𝐄(+)(𝑡)] (𝜔) = F[∑𝑘∈Z 𝐡(𝑡 − 𝑘𝑇r) e−i𝜔0(𝑡−𝑘𝑇r)e−i𝑘Δ𝜙CEP] (𝜔) (A.28)

= √2𝜋 ∑𝑘 e−i𝑘Δ𝜙CEP⎛⎜⎜⎜⎝F [𝐡(𝑡 − 𝑘𝑇r)]⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟�̃�(𝜔)ei𝜔𝑘𝑇r
⎞⎟⎟⎟⎠ ⊗

⎛⎜⎜⎜⎝F [e−i𝜔0(𝑡−𝑘𝑇r)]⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟√2𝜋𝛿(𝜔−𝜔0)ei𝜔𝑘𝑇r
⎞⎟⎟⎟⎠(𝜔) (A.29)

= ∑𝑘 e−i𝑘Δ𝜙CEP ∫ d𝜔′ �̃�(𝜔 − 𝜔′)ei(𝜔−𝜔′)𝑘𝑇r𝛿(𝜔′ − 𝜔0)ei𝜔′𝑘𝑇r (A.30)=  �̃�(𝜔 − 𝜔0)∑𝑘 e−i𝑘Δ𝜙CEPei𝜔′𝑘𝑇r (A.31)

where we used the linearity ofF and tables A.1 and A.2 in the second line, and formula (A.25)
in the third line.

Writing 𝜔CEO = Δ𝜙CEP/𝑇r, we re-write equation (A.31) as

F[𝐄(+)] (𝜔) = �̃�(𝜔 − 𝜔0)∑𝑘 ei𝑘𝑇r(𝜔−𝜔CEO) (A.32)

where we recognize up to a factor the Dirac comb formula (A.27) with parameter 𝑋 = 2𝜋𝑇r and
argument 𝑥 = 𝜔 − 𝜔CEO.
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We then obtain

F[𝐄(+)] (𝜔) = 2𝜋𝑇r �̃�(𝜔 − 𝜔0)X 2𝜋𝑇r (𝜔 − 𝜔CEO) (A.33)

which equivalently writes, using equation (A.26), as

F[𝐄(+)] (𝜔) = 𝜔r �̃�(𝜔 − 𝜔0)∑𝑘∈Z 𝛿(𝜔 − 𝑘𝜔r − 𝜔CEO) (A.34)

with 𝜔r = 2𝜋𝑇r , which concludes the proof.
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Appendix B

Proofs

B.1 Basis change operation consistency

In this appendix, we show the consistency of the definition (1.7) of the mode basis change with
its action (1.14) on the operators, together with the Heisenberg picture.

In the plane wave basis, the quantum electric field operator writes

⃗̂𝐄(+) = 0 ∑𝓁 �̂�𝓁�⃗�𝓁 (B.1)

where {�̂�𝓁} are the annihilation operators associated to the modes {�⃗�𝓁}.
We consider the change of mode basis �̂� from {�⃗�𝓁} to {�⃗�𝑛}, defined as

�⃗�𝑛 = ∑𝑛 𝐔𝑛𝓁�⃗�𝓁 (B.2)

with 𝐔 the unitary matrix associated to �̂� .
We want to find the unitary operator �̂� whose action maps any operator from the mode

basis {�⃗�𝓁} to the new mode basis {�⃗�𝑛}. In the Heisenberg picture, the action of �̂� maps the
operators {�̂�𝓁} to the operators {�̂�𝑛} associated to the modes {�⃗�𝑛} as

�̂�† ⃗̂𝑎†�̂� = 𝐀 ⃗̂𝑏† (B.3)�̂�† ⃗̂𝑎�̂� = 𝐀∗ ⃗̂𝑏
where 𝐀 is the unitary matrix representing �̂�. The left-hand side of equation (B.3) is a column
vector of 𝑖-th component �̂�†�̂�†𝑖 �̂�.
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We compute the quantum electric field operator in the new basis as�̂�† ⃗̂𝐄(+)�̂� = 0 ∑𝓁 �̂�†�̂�𝓁�̂��⃗�𝓁 (B.4)

= 0 ∑𝓁 (∑𝑛 𝐀∗𝓁𝑛�̂�𝑛)�⃗�𝓁 (B.5)

= 0 ∑𝑛 �̂�𝑛(∑𝓁 𝐀∗𝓁𝑛�⃗�𝓁) (B.6){∑𝓁𝐀∗𝓁𝑛�⃗�𝓁} defines an orthonormal mode basis. To be consistent with the definition of
the operators {�̂�𝑛} as associated to the modes {�⃗�𝑛}, we deduce that for all 𝑛∑𝓁 𝐀∗𝓁𝑛�⃗�𝓁 = �⃗�𝑛 (B.7)

From equation (B.2), this implies∑𝓁 𝐀∗𝓁𝑛�⃗�𝓁 = ∑𝑛 𝐔𝑛𝓁�⃗�𝓁 (B.8)

i.e. 𝐀 = 𝐔−1 (= 𝐔∗⊤).
We deduce that the operator �̂� † maps the operators from the mode basis {�⃗�𝓁} to the mode

basis {�⃗�𝑛}, while the operator �̂� maps the quantum states from {�⃗�𝓁} to {�⃗�𝑛}.
We then have �̂� ⃗̂𝑎†�̂� † = 𝐔−1 ⃗̂𝑏† (B.9)�̂� † ⃗̂𝑏†�̂� = 𝐔 ⃗̂𝑎† (B.10)

and for any multimode quantum state |𝜓⟩ (see section 1.2 for their definition)�̂� |𝜓⟩{�⃗�𝓁} = |𝜓′⟩{�⃗�𝑛} (B.11)

where we explicitly write in which basis the states are written.
From equation (B.6), we obtain the quantum electric field written in the new mode basis1⃗̂𝐄(+) = 0 ∑𝑛 �̂�𝑛�⃗�𝑛 (B.12)

Note that are consistent with the Heisenberg picture. In the Heisenberg picture, the action
of an operator �̂� on the state |𝜓(0)⟩ as �̂� |𝜓(0)⟩ = |𝜓(𝑡)⟩ (B.13)

1For simplicity, we keep the same symbol ⃗̂𝐄(+) to represent the quantum electric field in the new basis, as we
always specify in which basis it is written.
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is mapped on the action of �̂� on any operator �̂� as�̂�(𝑡) = �̂� †�̂� �̂� (B.14)

since both actions conserves any expectation-value⟨𝜓(𝑡)| �̂�(𝑡) |𝜓(𝑡)⟩ = ⟨𝜓(0)| �̂� †�̂� �̂� |𝜓(0)⟩ (B.15)

For the mode basis change �̂� from {�⃗�𝓁} to {�⃗�𝑛}|𝜓(0)⟩ = |𝜓⟩{�⃗�𝓁} (B.16)|𝜓(𝑡)⟩ = |𝜓′⟩{�⃗�𝑛} (B.17)

consistently with equation (B.11). As the operators {�̂�†𝑛 } are associated to the modes {�⃗�𝑛}, they
act on the states |𝜓⟩{�⃗�𝑛}. So we have

⟨𝜓(𝑡)| ⃗̂𝑏† |𝜓(𝑡)⟩ = ⟨𝜓(0)| �̂� † ⃗̂𝑏†�̂� |𝜓(0)⟩ (B.18)

using equation (B.13). From the action (B.10) of �̂� on ⃗̂𝑏†, we find
⟨𝜓(𝑡)| ⃗̂𝑏† |𝜓(𝑡)⟩ = ⟨𝜓(0)|𝐔 ⃗̂𝑎† |𝜓(0)⟩ (B.19)

which is consistent with the operators {�̂�†𝓁 } being associated to the modes {�⃗�𝓁}, as they act on
the state |𝜓(0)⟩ = |𝜓⟩{�⃗�𝓁}.

To conclude, we then have shown the consistency of the above defined mode basis change�̂� between its action on the states, its action on the operators, and its action on the modes
themselves.

B.2 Single-photon subtracted and added squeezed vacuum
states Q function

In this appendix, we derive the Q function of a single-photon subtracted and added squeezed
vacuum state in the multimode and potentially mixed state, see appendix B.2.1. We then gen-
eralize this derivation to model additional losses (such as detection losses) and a squeezing
operation applied on a single-photon subtracted and added squeezed vacuum state. These
generalized Q functions are used in the simulation of chapter 4, section 4.3. Finally, we check
they are positive in appendix B.2.2, showing in particular some relevant inequalities used in
subsection 1.4.4 to discuss the zeros of the Q functions.

B.2.1 Derivation
We derive the Q function of a single-photon subtracted and added squeezed vacuum state in
the multimode and potentially mixed state, from the Wigner function of these states given in
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equation (1.152), and reproduce here𝑊�̂�±(𝑥⇀) = 12 [𝑥⇀⊤𝐕−1𝐀±(𝐕, �⃗�)𝐕−1𝑥⇀ − Tr[𝐕−1𝐀±(𝐕, �⃗�)] + 2] e− 12 𝑥⇀⊤𝐕−1𝑥⇀(2𝜋𝜎20)𝑁√det𝐕 (B.20)

and 𝐀±(𝐕, �⃗�) = 2(𝐕 ± 𝜎201)𝚷�⃗�(𝐕 ± 𝜎201)Tr [(𝐕 ± 𝜎201)𝚷�⃗�] (B.21)

where �̂� is a zero-mean Gaussian state and 𝚷�⃗� is the matrix of the projector on the two-
dimensional phase space associatedwith themode �⃗� inwhich the photonwas subtracted/added.

Note that when the single-photon subtraction/addition is not single mode, then the projec-
tor 𝚷�⃗� is replaced by a sum of projector on the possible subtraction/addition modes, weighted
by their respective probability, see chapter 3, equations (3.70) and (3.71).

We use equation (1.47) to deduce the corresponding Q function Q�̂�±(𝑥⇀), which then writesQ�̂�±(𝑥⇀) = 1(2𝜋𝜎20)𝑁 ∫ℝ2𝑁 𝑊�̂�±(𝑥⇀′) e− 12𝜎20 ‖𝑥⇀′−𝑥⇀‖2 d2𝑁𝑥⇀′ (B.22)

= 1𝑐 ∫ℝ2𝑁 [𝑥⇀⊤′𝐕−1𝐀±(𝐕, �⃗�)𝐕−1𝑥⇀′ − Tr[𝐕−1𝐀±(𝐕, �⃗�)] + 2] e− 12 𝑥⇀⊤′𝐕−1𝑥⇀′− 12𝜎20 ‖𝑥⇀′−𝑥⇀‖2 d2𝑁𝑥⇀′
(B.23)

where the constant 𝑐 is equal to 2(2𝜋𝜎20)2𝑁√det𝐕.
Computing equation (B.23) boils down to integrate a second order polynomial multiplied

by a 2𝑁 -variable Gaussian function. Generally speaking, the integration of a 2𝑁 -variable
Gaussian function alone writes∫

R2𝑁 e− 12 (𝑥⇀′−𝛿⇀)⊤𝚺−1(𝑥⇀′−𝛿⇀) d2𝑁𝑥⇀′ = (2𝜋)𝑁√det(𝚺) (B.24)

where 𝛿⇀ is a constant 2𝑁 -real vector, and 𝚺 is a 2𝑁 × 2𝑁 real matrix.
More generally, the integration of the product of a squared term (𝑥⇀⊤𝐌𝑥⇀) with a 2𝑁 -variable

Gaussian function, where𝐌 is a general 2𝑁 × 2𝑁 real matrix, writes∫
R2𝑁 𝑥⇀′⊤𝐌 𝑥⇀′ e− 12 (𝑥⇀′−𝛿⇀)⊤𝚺−1(𝑥⇀′−𝛿⇀) d2𝑁𝑥⇀′ = (2𝜋)𝑁√det(𝚺)(Tr[𝐌𝚺] + 𝛿⇀⊤𝐌 𝛿⇀) (B.25)

We then re-write the argument of the 2𝑁 -variable Gaussian so as to accommodate both
equations as−12 {[𝑥⇀′ − 1𝜎20 (𝐕−1 + 1𝜎201)−1𝑥⇀]⊤ (𝐕−1 + 1𝜎201) [𝑥⇀′ − 1𝜎20 (𝐕−1 + 1𝜎201)−1𝑥⇀] + 𝑥⇀⊤(𝐕 + 𝜎201)−1𝑥⇀}

(B.26)

where in particular we computed 1𝜎201 − 1𝜎40 (𝐕−1 + 1𝜎201)−1 = (𝐕 + 𝜎201)−1.
First, the right-most term in the argument (B.26) is independent of the integration variable𝑥⇀′, allowing us to put its exponential outside of the integral. Then the remaining term in

equation (B.26) is of the form− 12(𝑥⇀′ − 𝛿⇀)⊤𝚺−1(𝑥⇀′ − 𝛿⇀) (B.27)

with 𝛿⇀ = 1𝜎20 (𝐕−1 + 1𝜎201)−1𝑥⇀ and 𝚺 = (𝐕−1 + 1𝜎201)−1
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With this expression, we can already deduce the integral of the 2𝑁 -variable Gaussian func-
tion which multiplies a constant in equation (B.23), using equation (B.24). Finally, identifying
the squared term 𝑥⇀⊤𝐌𝑥⇀ with 𝐌 = 𝐕−1𝐀±(𝐕, �⃗�)𝐕−1, we can also apply equation (B.25). After
some calculus, I obtain

Q�̂�±(𝑥⇀) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
[𝑥⇀⊤(𝐕 + 𝜎201)−1𝐀±(𝐕, �⃗�)(𝐕 + 𝜎201)−1𝑥⇀ − Tr[(𝐕 + 𝜎201)−1𝐀±(𝐕, �⃗�)] + 2]× e− 12 𝑥⇀⊤(𝐕+𝜎201)−1𝑥⇀2(2𝜋𝜎20)𝑁√det(𝐕 + 𝜎201) (B.28)

Noting that equation (B.20) gives the Wigner function of the Gaussian state �̂� when re-
placing 𝐀±(𝐕, �⃗�) by the null matrix 𝟎, we deduce that we can straightforwardly obtain the Q
function of a general Gaussian state following the same steps. We then rewrite equation (B.28)
as Q�̂�±(𝑥⇀) = 12 [𝑥⇀⊤(𝐕 + 𝜎201)−1𝐀±(𝐕, �⃗�)(𝐕 + 𝜎201)−1𝑥⇀ − Tr[(𝐕 + 𝜎201)−1𝐀±(𝐕, �⃗�)] + 2]Q�̂�(𝑥⇀)

(B.29)

with Q�̂�(𝑥⇀) = e− 12 𝑥⇀⊤(𝐕+𝜎201)−1𝑥⇀(2𝜋𝜎20)𝑁√det(𝐕 + 𝜎201) (B.30)

where equation (B.30) provides with the general formula for the Q function of a Gaussian state.

Extension to additional losses. In chapter 4, section 4.3, the Q function Q�̂�±(𝑥⇀) of equa-
tion (B.29) models the generated state just after single-photon subtraction. In order to model
a lossy double homodyne detector, we take into account the detection losses 1 − 𝜂 that occur
after subtraction. We use equation (4.94), which we reproduce here

𝑄�̂�±𝜂 (𝑥⇀) = 1𝜂𝑁𝑊 �̂�𝜌±(𝑥⇀/√𝜂) (B.31)

where 𝑢 = 1 − 2𝜂 ≤ 1, and 𝑊 �̂�𝜌±(𝑥⇀) is given by

𝑊 �̂�𝜌±(𝑥⇀) = ( −12𝜋𝜎20𝑢)𝑁 ∫ℝ2𝑁 𝑊�̂�±(𝑥⇀′) e 12𝜎20𝑢 ‖𝑥⇀′−𝑥⇀‖2 d2𝑁𝑥⇀′ (B.32)

which is equation (1.40) applied for 𝑢′ = 0, which satisfies 𝑢 ≤ 𝑢′. Wemade this choice to make
the Wigner function 𝑊�̂�±(𝑥⇀′) appear, and to quickly resume to the same calculus as before.

Injecting the expression of 𝑊�̂�±(𝑥⇀′) in equation (B.32) results in a similar expression as
in equation (B.23), i.e. the integral of the product of second order 2𝑁 -variable polynomial
with a 2𝑁 -variable Gaussian function. We can then apply the same methodology1, and, upon

1Note to the reader who would like to check the computation, I re-named the variables as 𝑟 = −1/𝑢 (𝑟 > 0∀𝜂),𝑦⇀ = √𝑟𝑥⇀, 𝐕′ = 𝑟𝐕, and made the change of variable 𝑦⇀′ = √𝑟𝑥⇀′. The derivation is then very similar as before,
using equations (B.24) and (B.25).
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applying the rescaling of equation (B.31), I obtain

Q�̂�±𝜂 (𝑥⇀) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
[1𝜂𝑥⇀⊤(𝐕 − 𝑢𝜎201)−1𝐀±(𝐕, �⃗�)(𝐕 − 𝑢𝜎201)−1𝑥⇀ − Tr[(𝐕 − 𝑢𝜎201)−1𝐀±(𝐕, �⃗�)] + 2]× e− 12𝜂 𝑥⇀⊤(𝐕−𝑢𝜎201)−1𝑥⇀4𝜂𝜋𝜎20√det(𝐕 − 𝑢𝜎201)

(B.33)

Extension to squeezing operation. In chapter 4, section 4.3, we also want to model the
effect of unbalancing in the double homodyne detection. This unbalancing is equivalent to
apply a action of the squeezing operator 𝑆⊗𝑁 (𝜁 ) on the state �̂�± before sampling its Q function
with a lossy double homodyne detector, where

𝑆⊗𝑁 (𝜁 ) = 𝑁⨂𝑖=1 𝑆(𝜁𝑖) (B.34)

We denote by �̂�±⃗𝜁 ,𝜂 the resulting state. Taking into account the losses 1 − 𝜂 similarly as
before, the Q function we want to compute here is then given byQ�̂�±⃗𝜁 ,𝜂(𝑥⇀) = 1𝜂𝑁𝑊 �̂�𝑆⊗𝑁 (𝜁 )�̂�±𝑆⊗𝑁 (𝜁 )(𝑥⇀/√𝜂) (B.35)

𝑊 �̂�𝑆⊗𝑁 (𝜁 )�̂�±𝑆⊗𝑁 (𝜁 )(𝑥⇀) = ( −12𝜋𝜎20𝑢)𝑁 ∫ℝ2𝑁 𝑊𝑆⊗𝑁 (𝜁 )�̂�±𝑆⊗𝑁 (𝜁 )(𝑥⇀′) e 12𝜎20𝑢 ‖𝑥⇀′−𝑥⇀‖2 d2𝑁𝑥⇀′ (B.36)

where 𝑢 = 1 − 2𝜂 ≤ 1.
To compute the Wigner function 𝑊𝑆⊗𝑁 (𝜁 )�̂�±𝑆⊗𝑁 (𝜁 )(𝑥⇀′), we use at our advantage the fact that

in general for the Wigner function, the action of the Gaussian operator 𝑆⊗𝑁 (𝜁 ) on the state�̂�± is equivalent to the symplectic stretching/contraction on the 2𝑁 phase space, stemming
from equation (1.85). Denoting 𝐊 the symplectic matrix of 𝑆⊗𝑁 (𝜁 ) (given in equation (1.93)),
we obtain 𝑊𝑆⊗𝑁 (𝜁 )�̂�±𝑆⊗𝑁 (𝜁 )†(𝑥⇀′) = 𝑊�̂�±(𝐊−1𝑥⇀′) (B.37)

Using the expression (B.37) in equation (B.36), we then proceed to the same derivation as
before. To make it straightforward, one can notice that the terms that changed compared to
before can be written as follow(𝐊−1𝑥⇀′)⊤𝐕−1𝐀±(𝐕, �⃗�)𝐕−1𝐊−1𝑥⇀′ = 𝑥⇀⊤′𝐕′−1𝐀±′(𝐕, �⃗�)𝐕′−1𝑥⇀′ (B.38)exp(−12(𝐊−1𝑥⇀′)⊤𝐕−1𝐊−1𝑥⇀′) = exp(−12𝑥⇀⊤′𝐕′−1𝑥⇀′) (B.39)Tr[𝐕−1𝐀±(𝐕, �⃗�)] = Tr[𝐕′−1𝐀±′(𝐕, �⃗�)] (B.40)

with 𝐀±′(𝐕, �⃗�) = 𝐊𝐀±(𝐕, �⃗�)𝐊 and 𝐕′ = 𝐊𝐕𝐊
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This means in particular that the calculus is exactly upon replacing the covariance matrix 𝐕
by 𝐕′ = 𝐊𝐕𝐊 and the matrix 𝐀±(𝐕, �⃗�) by 𝐀±′(𝐕, �⃗�) = 𝐊𝐀±(𝐕, �⃗�)𝐊. We then directly deduce

Q�̂�±⃗𝜁 ,𝜂(𝑥⇀) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
[1𝜂𝑥⇀⊤(𝐕′ − 𝑢𝜎201)−1𝐀±′(𝐕, �⃗�)(𝐕′ − 𝑢𝜎201)−1𝑥⇀ − Tr[(𝐕′ − 𝑢𝜎201)−1𝐀±′(𝐕, �⃗�)] + 2]× e− 12𝜂 𝑥⇀⊤(𝐕′−𝑢𝜎201)−1𝑥⇀4𝜂𝜋𝜎20√det(𝐕′ − 𝑢𝜎201)

(B.41)
with 𝐀±′(𝐕, �⃗�) = 𝐊𝐀±(𝐕, �⃗�)𝐊 and 𝐕′ = 𝐊𝐕𝐊
B.2.2 Positivity
In this appendix, we prove that theQ function of single-photon subtracted and added squeezed
vacuum states introduced in subsection 1.4.4 is positive.

By definition from equation (1.45), the Q function is positive over the phase space, as �̂� is
semi-positive. We check that Q±̂𝜌 in equation (1.156) is indeed positive, deriving in particular
an interesting inequality for the discussion of the zeros of Q±̂𝜌 .

A necessary and sufficient condition isTr[(𝐕 + 𝜎201)−1𝐀±(𝐕, �⃗�)] ≤ 2 + 𝑥⇀⊤(𝐕 + 𝜎201)−1𝐀±(𝐕, �⃗�)(𝐕 + 𝜎201)−1𝑥⇀ (B.42)

where 𝐀±(𝐕, �⃗�) is given by equation (1.153).
Let us investigate first the right-most term and show that it is positive. We develop(𝐕 + 𝜎201)−1𝐀±(𝐕, �⃗�)(𝐕 + 𝜎201)−1 = 2(𝐕 + 𝜎201)−1(𝐕 ± 𝜎201)𝚷�⃗�(𝐕 ± 𝜎201)(𝐕 + 𝜎201)−1Tr[(𝐕 ± 𝜎201)𝚷�⃗�] (B.43)

For photon addition (+ case), this matrix is obviously semi-positive, as 𝐕 is. For photon
subtraction (− case), only the denominator may be negative. Let us show that it is positive.

From the Wiliamson decomposition (see subsection 1.3.5), one can write𝐕 = 𝐒𝐕W𝐒⊤ (B.44)

with 𝐒 a symplectic matrix, 𝐕W = 𝜎20 diag(𝜅1,⋯ , 𝜅𝑁 , 𝜅−11 ,⋯ , 𝜅−1𝑁 ) with 1 ⩽ 𝜅1 ⩽ ⋯ ⩽ 𝜅𝑁 , and𝑁 is the number of modes.
So Tr[𝐕𝚷�⃗�] ≥ Tr[𝜎20𝐒𝐒⊤𝚷�⃗�] = Tr[𝐕pure𝚷�⃗�] where 𝐕pure = 𝜎20𝐒𝐒⊤ may be viewed as the co-

variance matrix of a pure state1. The projector𝚷�⃗� projects on the two phase space dimensions
associated to the mode �⃗�. Using the matrix 𝛀 defined in subsection 1.3.4, we can then writeTr[𝐕pure𝚷�⃗�] = 𝑔⇀⊤𝐕pure𝑔⇀ + (𝛀𝑔⇀)⊤𝐕pure(𝛀𝑔⇀) = 𝑔⇀⊤[𝐕pure + 𝛀⊤𝐕pure𝛀]𝑔⇀ = 𝑔⇀⊤[𝐕pure + 𝐕−1

pure]𝑔⇀
(B.45)

where 𝑔⇀ is the 2𝑁 modal vector of the form (�⃗�, 0,⋯ , 0)⊤ so that 𝛀𝑔⇀ = (0,⋯ , 0, �⃗�)⊤, and where
in the last equality we applied the property (1.82) of the matrix 𝛀, since 𝐒𝐒⊤ is the product of
two symplectic matrices, hence symplectic.

1Indeed, 𝜅1,… , 𝜅𝑁 = 1 implies that the purity is 1, using its expression 𝜎20/√det(𝑉 ) for Gaussian states.
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B.2. SINGLE-PHOTON SUBTRACTED AND ADDED SQUEEZED VACUUM STATES Q FUNCTION

One can see that 𝐒𝐒⊤ + (𝐒𝐒⊤)−1 − 21 is semi-positive. Indeed, its eigenvalues 𝜆 + 1/𝜆 − 2 =(1 − 𝜆)2/𝜆 are positive because 𝐒𝐒⊤ is semi-positive (i.e. 𝜆 > 0). This result combined with
equation (B.45), allows us to write Tr[𝐕𝚷�⃗�]−2𝜎20 ≥ Tr[𝐕pure𝚷�⃗�]−2𝜎20 ≥ 0. Using Tr[𝚷�⃗�] = 2,
we then deduce that Tr[(𝐕 − 𝜎201)𝚷�⃗�] ≥ 0 and that the quantity in equation (B.43) is positive.

So far we have shown that equation (B.42) reduces toTr[(𝐕 + 𝜎201)−1𝐀±(𝐕, �⃗�)] ≤ 2 (B.46)

For photon addition, this inequality is always satisfied and saturated as one can directly
compute Tr[(𝐕 + 𝜎201)−1𝐀+(𝐕, �⃗�)] = 2 (B.47)

For photon subtraction:Tr[(𝐕 + 𝜎201)−1𝐀−(𝐕, �⃗�)] ≤ 2⟺ Tr[(𝐕 + 𝜎201)−1(𝐕 (+𝜎201 − 𝜎201) − 𝜎201)𝚷�⃗�(𝐕 − 𝜎201)] ≤ Tr[(𝐕 − 𝜎201)𝚷�⃗�]⟺ Tr[(𝐕 + 𝜎201)−1𝚷�⃗�(𝐕 (+𝜎201 − 𝜎201) − 𝜎201)] ≥ 0⟺ Tr[(𝐕 + 𝜎201)−1𝚷�⃗�] ≤ 1
where we used for the last line Tr[𝚷�⃗�] = 2.

Now we proceed the same way as before, using (𝐕+𝜎201)−1 ≤ (𝐕pure+𝜎201)−1, with 𝐕pure =𝜎20𝐒⊤𝐒. Indeed, for 𝐀,𝐁 positive matrices, 𝐀 ≥ 𝐁 ⇒ 𝐀−1 ≤ 𝐁−1. One also have 𝛀⊤(𝐕pure +𝜎201)−1𝛀 = (𝛀⊤𝐕pure𝛀 + 𝜎201)−1 = (𝐕−1
pure + 𝜎201)−1, since 𝛀−1 = 𝛀⊤ = −𝛀. Similarly as in

equation (B.45), we obtainTr[(𝐕−1
pure + 𝜎201)−1𝚷�⃗�] = 𝑔⇀⊤ [(𝐕pure + 𝜎201)−1 + (𝐕−1

pure + 𝜎201)−1] 𝑔⇀ (B.48)

Finally,(𝐕pure + 𝜎201)−1 + (𝐕−1
pure + 𝜎201)−1 = (𝐕pure + 𝜎201)−1 + 𝐕pure(𝜎201 + 𝐕pure)−1= (𝐕pure + 𝜎201)(𝐕pure + 𝜎201)−1= 1

allows us to write Tr[(𝐕 + 𝜎201)−1𝚷�⃗�] ≤ Tr[(𝐕pure + 𝜎201)−1𝚷�⃗�] = 1 (B.49)

We then conclude that Q±̂𝜌 ≥ 0.
In particular, we have shown that inequality (B.46) is saturated for any photon added state

(equation (B.47)) and any pure photon subtracted state (equation (B.49) for 𝐕 = 𝐕pure). For
non-pure photon subtracted states, equation (B.46) remains an inequality, as shown by equa-
tion (B.49). We use these results to discuss the zeros of Q±̂𝜌 in subsection 1.4.4.
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APPENDIX B. PROOFS

B.3 The Cauchy Schwarz inequality (3.20) cannot be satu-
rated

In subsection 3.1.3, we obtained from Cauchy Schwarz inequality equation (3.20):| ⟨𝜙| 𝑒1𝑒†2 |𝜙⟩ |2 ≤ ⟨𝜙| 𝑒1𝑒†1 |𝜙⟩ ⟨𝜙| 𝑒2𝑒†2 |𝜙⟩ = (1 + �̄�1)(1 + �̄�2) (B.50)

where |𝜙⟩ = |𝜙⟩s is the signal pure input state. This inequality is saturated if and only if𝑒†1 |𝜙⟩ ∝ 𝑒†2 |𝜙⟩.
Let us write |𝜙⟩ over the Fock basis of the two addition eigenmodes1:|𝜙⟩ = ∑𝑛1≥0 ∑𝑛2≥0𝐶𝑛1,𝑛2 |𝑛1⟩ ⊗ |𝑛2⟩ (B.51)

where the complex coefficients 𝐶𝑛1,𝑛2 ensure the normalization.
So, the saturation condition 𝑒†1 |𝜙⟩ ∝ 𝑒†2 |𝜙⟩ re-writes:⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝐶𝑛1−1,𝑛2√𝑛1 ∝ 𝐶𝑛1,𝑛2−1√𝑛2 ∀ 𝑛1 ≥ 1, 𝑛2 ≥ 1𝐶𝑛1−1,0 = 0 ∀ 𝑛1 ≥ 1𝐶0,𝑛2−1 = 0 ∀ 𝑛2 ≥ 1 (B.52)

From this set of equations, it is easy to show recursively that:∀𝑝 ≥ 0, { 𝐶𝑛1−1,𝑝 = 0 ∀ 𝑛1 ≥ 1𝐶𝑝,𝑛2−1 = 0 ∀ 𝑛2 ≥ 1 (B.53)

This means that all coefficients 𝐶𝑛1,𝑛2 must be zero, which is incompatible with the normaliza-
tion of |𝜙⟩. We conclude that equation (B.50) cannot be saturated.

B.4 Output state purity of multimode addition processes
(general case)

Following our developments in subsection 3.1.3, let us show that the output is not pure for
multimode addition processes (i.e. 𝐾 ≠ 1) generally, when one do not assume that only two
eigenvalues are non-zero.
In this case, we have: �̂�+s = ∑𝑛 𝜆𝑛𝑒†𝑛 �̂�ins 𝑒𝑛 (B.54)

where 𝜆𝑛 = 𝜆𝑛/𝑃+
The input �̂�ins = |𝜙⟩ ⟨𝜙| is still assumed pure. We find, using trace properties, that the output
state purity writes: Tr[(�̂�+s )2] = ∑𝑘 𝜆2𝑘(1 + �̄�𝑘)2 + 2∑𝑘>𝑙 𝜆𝑘𝜆𝑙 |||⟨𝜙| 𝑒𝑘𝑒†𝑙 |𝜙⟩|||2 (B.55)

1The other modes do not intervene in the computation.
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B.5. DERIVATION OF THE ANALYTICAL FORM OF THE SCHMIDT NUMBER 𝐾 FOR COLLINEAR TYPE-II
PARAMETRIC DOWN-CONVERSION ADDITION PROCESS

Weapply the Cauchy-Schwarz inequality on the vector states 𝑒†𝑘 |𝜙⟩ and 𝑒†𝑙 |𝜙⟩, as |||⟨𝜙| 𝑒𝑘𝑒†𝑙 |𝜙⟩|||2 ≤(1 + �̄�𝑘)(1 + �̄�𝑙).
We obtain:Tr[(�̂�+s )2] ≤ ∑𝑘 𝜆2𝑘(1 + �̄�𝑘)2 + 2∑𝑘>𝓁 𝜆𝑘𝜆𝓁(1 + �̄�𝑘)(1 + �̄�𝓁) = (∑𝑘 𝜆𝑘(1 + �̄�𝑘))2 = 1 (B.56)

where we used the fact that taking the trace of equation (B.54) yields 1.
Again, looking at the saturation of the Cauchy-Schwarz inequality leads to a similar set of
equations as in equation (B.52) for 𝑘 and 𝓁 fixed (except that the state |𝜙⟩ is decomposed over
the full Fock space). Solving the recurrence equations for a given 𝑘, 𝓁, shows that the saturation
condition can’t be satisfied. Thus, the purity of the output density matrix is strictly lower than1, meaning that the output state is not pure.

B.5 Derivation of the analytical formof the Schmidt num-
ber𝐾 for collinear type-II parametric down-conversion
addition process

In this section, we show the analytical expression (3.47) of the Schmidt number 𝐾 .
The definition of the Schmidt number 𝐾 is recalled𝐾 = (∑𝑛 𝜆𝑛)2∑𝑛 𝜆2𝑛 (B.57)

From equation (3.46), the JSA function can conveniently expressed in the Gaussian form𝐽 (𝜔s, 𝜔i) = 𝐷 exp [−12 �⃗�⊤𝐗�⃗�] (B.58)

where �⃗�⊤ = (𝜔s, 𝜔i), 𝐗 is a real 2x2 matrix, and 𝐷 is a proportionality coefficient.
The eigendecomposition of the JSA function into signal and idler frequency eigenmodes

is expressed as [Eckstein 12] 𝐽 (𝜔s, 𝜔i) = ∑𝑛≥1 √𝜆𝑛�̃�s,𝑛(𝜔s)�̃�i,𝑛(𝜔i) (B.59)

where {𝐞s,𝑛(𝑡)} (resp. {𝐞i,𝑛}) form the signal (resp. idler) eigenmode basis.
Using equations (B.58) and (B.59), we obtain two expressions of the integral of the JSA∑𝑛 𝜆𝑛 = ∫ 𝑑𝜔s𝑑𝜔i|𝐽 (𝜔s, 𝜔i)|2 = 𝐷2 2𝜋√det(2𝐗) (B.60)

where we used the orthonormal properties of the eigenmodes for the left-most member, and
we performed the integrals using the following general expression for Gaussian integrals to
get the right-most member

∫ ⋯∫ exp [−12𝑦⊤𝐌𝑦] d𝑦1…d𝑦𝑛 = (2𝜋)𝑛/2√det(𝐌) (B.61)
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for 𝐌 a general 𝑛 × 𝑛 real matrix, and 𝑦⊤ = (𝑦1,⋯ , 𝑦𝑛) a general 𝑛-real vector.
We find similar equations for the function 𝐴(𝜔s, 𝜔′

s) defined in equation (3.40) from the
JSA. We have

∑𝑛 𝜆2𝑛 = ∫ 𝑑𝜔s𝑑𝜔′
s|𝐴(𝜔s, 𝜔′

s)|2 = 𝐷4 (2𝜋)2√det(𝐖) (B.62)

where 𝐖 is defined as a real 4 × 4 matrix such that𝐽 (𝜔s, 𝜔i)𝐽 ∗(𝜔′
s, 𝜔i)𝐽 ∗(𝜔s, 𝜔′

i)𝐽 (𝜔′
s, 𝜔′

i) = 𝐷4 exp [−12(�⃗�⊤, �⃗�′⊤)⊤𝐖(�⃗�⊤, �⃗�′⊤)] (B.63)

with (�⃗�⊤, �⃗�′⊤)⊤ = (𝜔s, 𝜔i, 𝜔′
s, 𝜔′

i).
Now, substituting equations (B.60) and (B.62) into the definition (B.57), we obtain the ex-

pression of the Schmidt number 𝐾 through the matrices defined above as

𝐾 = √det(𝐖)4 det(𝐗) (B.64)

Let us now specify the expression of 𝐾 to this problem. 𝐗 can be deduced from the JSA
expression (3.46)

𝐗 = 1Δ𝜔2
g ( 1 + 𝑟2s 1 + 𝑟s𝑟i1 + 𝑟s𝑟i 1 + 𝑟2i ) (B.65)

(B.66)

with 𝑟j = Δ𝜔g𝐿√𝛾2 |||𝑘′g − 𝑘′j ||| for j = i, s
where the 𝑟j coefficients are the adimensional parameters of the problem. The definition (B.63)
of𝐖 leads to

𝐖 = 1Δ𝜔2
g

⎛⎜⎜⎜⎜⎝
2(1 + 𝑟2s ) 1 + 𝑟s𝑟i 0 1 + 𝑟s𝑟i1 + 𝑟s𝑟i 2(1 + 𝑟2i ) 1 + 𝑟s𝑟i 00 1 + 𝑟s𝑟i 2(1 + 𝑟2s ) 1 + 𝑟s𝑟i1 + 𝑟s𝑟i 0 1 + 𝑟s𝑟i 2(1 + 𝑟2i )

⎞⎟⎟⎟⎟⎠ (B.67)

Computing the determinant of matrices (B.65) and (B.67), and substituting them into equa-
tion (B.64), we end up with an analytical expression for 𝐾 under Gaussian approximations

𝐾 = √(1 + 𝑟2s )(1 + 𝑟2i )(𝑟s − 𝑟i)2 (B.68)

with 𝑟j = Δ𝜔g𝐿√𝛾2 |||𝑘′g − 𝑘′j ||| for j = i, s
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Appendix C

Experimental additional technical
details

C.1 Homodyne detectors characterization and electroni-
cal scheme

In this appendix, we explain and show the characterization of the homodyne detectors used
in the experiment, to complement their analysis given in subsection 2.4.3. Note that we use
two of these homodyne detectors in the double homodyne detector experimental scheme, see
section 4.1.

These detectors were developed recently in our group to host faster photodiodes (S38883-
02) compared to before. With these photodiodes, [Kouadou 21] built homodyne detections
fast enough to resolve pulse by pulse squeezed light (with a 150MHz-repetition-rate laser
source). For our use case, we aimed at 40MHz of detection bandwidth, much larger than the
cavity bandwidth, below 10MHz. The electronic scheme of our homodyne detectors is given
in figure C.1, and described in the figure caption.

After proper alignmentwith a local oscillator beam, we characterize the response of a given
detector using a spectrum analyzer. As explained in subsection 2.4.3, the measured spectral
densities gives us access to both the bandwidth and the clearance of the detector. The raw
measurements and the inferred clearances are given in figure C.2 for different LO powers, for
the detector referenced “ OPA856_C2_05”.

In the raw measurements, the spectrum analyzer noise trace shows that its contribution
to the measurements is negligible. Noting 𝑆dark,BW (resp. 𝑆LO,BW) the spectral density measured
when the LO beam is blocked (resp. not blocked), integrated over the bandwidth BW, the
clearance dB, BW at the bandwidth BW then writes

dB, BW = 10 log10 ( 𝑆LO,BW𝑆dark,BW) (C.1)

The detector bandwidth refers to the region where the clearance is mostly flat. And the
detector clearance dB is the clearance integrated over the detector bandwidth.

As these two properties depends on the local oscillator optical power, we perform multi-
ple measurements, doubling the LO power at each new measurement until saturation of the
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Fig. C.1 Electronic scheme of our homodyne detectors. The photodiodes S3883
(left) difference of currents is amplified with an OPA856 amplifier whose output is
splitted into AC and DC outputs using passive filters. This amplifier requires ±2.5V
of input power which is provided by transforming and filtering an external power
source of±5V (see U1 and U2). Another external power source feeds the photodiodes
to provide the bias V± (usually ±15V to ±30V). Note that since then, the capacity
C10 was replaced by a capacity of 10 nF, near the AC output.
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C.1. HOMODYNE DETECTORS CHARACTERIZATION AND ELECTRONICAL SCHEME

Fig. C.2 Characterization curves of the homodyne detector OPA856_C2_05 using
a spectrum analyzer. The resolution bandwidth of the spectrum analyzer is set at100 kHz. (Top): Rawmeasurements for different LO power values given in the legend
(and for the noise of the spectrum analyzer itself). (Bottom): Deduced clearance for
different LO power values given in the legend.
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detector (above 4.8mW, the saturation was clear and is not recorded). To check we are indeed
below saturation, the clearance should increase by additive steps of 3 dB before saturation.
The data satisfies this law as shown in figure C.3.

Fig. C.3 Measured spectral density integrated over a bandwidth BW of 36MHz at
central frequency 20MHz, for each curve of figure C.2 (top) with a non-zero LO
power.

The same characterizationwas performed for the second detector used in the double homo-
dyne detection, referenced as “OPA856_C2_06”, see figure C.4 and figure C.5. We deduce the
detector bandwidth and detector clearance before saturation, estimated at about BW = 40MHz
and dB > 17 dB for both detectors OPA856_C2_05 and OPA856_C2_06. Note that the noise at
frequencies below 10MHz was coming from the lack of isolation of the detectors from large
noise in the electric installation of the building. This problem was solved by plugging all de-
vices on filtering power inverters, resulting in a flat clearance at low frequency.
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C.1. HOMODYNE DETECTORS CHARACTERIZATION AND ELECTRONICAL SCHEME

Fig. C.4 Characterization curves of the homodyne detector OPA856_C2_06 using
a spectrum analyzer. The resolution bandwidth of the spectrum analyzer is set at100 kHz. (Top): Rawmeasurements for different LO power values given in the legend
(and for the noise of the spectrum analyzer itself). (Bottom): Deduced clearance for
different LO power values given in the legend.
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Fig. C.5 Measured spectral density integrated over a bandwidth BW of 36MHz at
central frequency 20MHz, for each curve of figure C.4 (top) with a non-zero LO
power.

C.2 Optical phase lock electronics

In this appendix, we complement the description of the optical phase lock of section 2.5 by
providing the electronic schemes of the seed-pump lock and the LO-seed lock, respectively in
figure C.6 and in figure C.7.

For both schemes, we demodulate the signal by mixing it with an electronic local oscillator
(eLO) of frequency 60 kHz, i.e. summing the signal with a electronic signal of the shape ∝cos(2𝜋𝑓mod𝑡). Each frequency 𝑓 of the signal (which is centered around 60 kHz) are then sent
to the frequencies 𝑓 +𝑓mod and |𝑓 − 𝑓mod|. The following low-pass filter (LPF) at 15 kHz removes
the 𝑓 + 𝑓mod component, selecting the frequency |𝑓 − 𝑓mod| with a bandwidth of 15 kHz: the
bandwidth of the demodulation. The mixer is a ZAD-8+ mixer, allowing for all frequencies 𝑓
in the range [0.0005, 10] MHz.

The signal from the photodiode in figure C.6 is first filtered by a high-pass filter (HPF)
of cut-off frequency 31.5 kHz to avoid saturating the filter. Indeed, as discussed in subsec-
tion 2.5.2, the measured signal is multiplied by a square-like signal at the frequency of the
chopper 8 kHz. The amplitude of the frequency components of a square signal is only de-
creasing in 1/𝑛 for 𝑛 a multiple of the fundamental frequency 8 kHz. If left unfiltered, these
components saturate the mixer. With the 31.5 kHz HPF, the mixer functions normally. A sec-
ond reason for using this HPF is to suppress the pump power fluctuations, which occur at very
low frequencies (≤ 1 kHz).

On the other hand, the signal from the homodyne detection in figure C.7 is first filtered
by two low-pass filters (LPF). Since the homodyne detection is very sensitive, a very high-
amplitude peak is measured at 76MHz, which corresponds to the repetition rate of the pulsed
light. The amplitude is so high (≃ 60 dB) that the internal filter of the mixer is not sufficient,
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hence the mixer saturated. This is the purpose of both filters at cut-off frequencies 22MHz
and 100 kHz. Also note that for this lock, we used two different configurations, one using
the AC channel of the homodyne detection, and another using the DC channel. For the AC
configuration, a 15 dB attenuator is used to suppress electronic reflections from the amplifiers,
which were introducing unwanted fluctuations in the signal measured on the scope.

Fig. C.6 Electronic scheme of the seed-pump lock. The photodiode (PD) measure
the intensity of the pump beam which depends on the seed-pump phase, due to the
amplification-deamplification process occurring in the SPOPO. The electronic signal
is filtered by a high-pass filter (HPF) of cut-off frequency 31.5 kHz. Then, it is de-
modulated, amplified and send to a PID (a redpitaya). The feedback loop is closed by
driving the pump piezo with the amplified error signal from the PID. LPF: low-pass
filter. eLO: electronic local oscillator.

212



APPENDIX C. EXPERIMENTAL ADDITIONAL TECHNICAL DETAILS

Fig. C.7 Electronic scheme of the LO-seed lock. The difference of currents from
the homodyne measurement is sensible to the LO-seed phase. The electronic signal
is filtered by two low-pass filters (LPF) of cut-off frequencies 22MHz and 100 kHz.
Then, it is demodulated, amplified and send to a PID (a redpitaya). The feedback loop
is closed by driving the LO piezo with the amplified error signal from the PID. PD:
photodiode. BS: beamsplitter. eLO: electronic local oscillator.

C.3 Double homodyne detection optical elements
In this appendix, we give some technical details on the key optical elements of our double
homodyne detector. The main concern is the losses induced by the optics, which we aim at
minimize for reasons explained in subsection 4.1.3.

C.3.1 Edmund Optics 780 nm Laser Line Polarizing Cube Beamsplit-
ter #47-048

The transmission curve of the Edmund Optics 780 nm Laser Line Polarizing Cube Beamsplitter
#47-048 is given in figure C.8. The curve is produced from publicly available reference data
form EdmundOptics. There are no data for the reflectivity, while still featuring experimentally
similar performances in terms of losses and contamination.

C.3.2 Waveplates choice and retardance flatness
In this appendix, we explicit the reasons for the choice of zero-order half-wave plates instead
of achromatic ones in the double homdyne detection, see subsection 4.1.3. We compare among
the best half-wave plates in each categories: the CVI Laser Optics QWPO-800-05-2-R10 one
and the Edmund Optics 700-1000 nm #46-561 achromatic one.

The discussion resolves around two figures, the losses and the retardance. For the loses, the
CVI plates winwith 0.4% total losses (from 0.2% losses at each surfaces and two surfaces), while
the Edmund ones exhibit 2.4% total losses (from 0.6% losses at each surfaces and four surfaces).
As losses are critical for the experiment, we would vouch for the CVI plates, however their
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Fig. C.8 Transmission curve of a typical Edmund Optics 780 nm Laser Line Polar-
izing Cube Beamsplitter #47-048 . The blue curve is the transmission of horizontally
polarized fields, and the red curve is the transmission of vertically polarized fields.

retardance is significanlty less flat than the Edmund ones, which is expected when comparing
a zero-order half-wave plate with an achromatic one.

The retardance of both half-wave plates is given in figure C.9, graph (a). These curves are
produced from publicly available reference data form CVI and Edmund Optics. One can see
that while the achromatic ones feature a flat retardance around 0.505𝜆, the CVI ones span form0.515𝜆 to 0.492𝜆 in the range [780, 810] nm.

To estimate the effect of the imperfection of the retardance of these wave-plates, compared
to the perfect flat 0.5𝜆 retardance, we consider the following setup. The half-wave plate we
consider is placed between two parallel polarizers, and we measure the transmittance of this
ensemble at different wavelength using a linearly polarized light. After the first polarizer,
the light is linearly polarized in the polarizer axis. A perfect half-wave plate with perfect
retardance would then rotate this polariztion by 90◦, whichwould then be completely absorbed
by the next polarizer, as it has the same axis as the first one. Formally, one can write generally
write the transimission 𝑇 of this setup as

𝑇 = 1 − cos2(𝜃pol) sin2(𝜙ret2 ) (C.2)

where 𝜃pol is the angle that defines the direction of the polarizers with respect to polarization
direction of the input light, and 𝜙ret is the optical phase induced by the retardance of the half-
wave plate, i.e. 𝜙ret = 2𝜋𝑥ret where 𝑥ret is the retardance over lambda (i.e. 0.5 for a retardance
of 0.5𝜆).

In practice, one would turn the polarizer until 𝜃pol = 0, maximizing the transimittance. In
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Fig. C.9 (a) Retardance (over lambda) against wavelength of a typical CVI Laser
Optics QWPO-800-05-2-R10 half-wave plate (orange) and a typical Edmund Optics
700-1000 nm 𝜆/2 #46-561 achromatic half-wave plate (blue). (b) Transmission against
wavelength for the setup composed of two parallel polarizers and a half-wave plate
placed between them, with the CVI one (orange) and Edmund one (blue). The dashed-
dark curve represents the intensity spectral profile of the LO field, typically in a
Hermite-Gaussian 0 mode with 10 nm FWHM. The unit and scale of the intensity is
arbitrary, and not represented on the vertical axis.

our case we directly write 𝑇 = 1 − sin2(𝜋𝑥ret) (C.3)

where the transmission is zero for a perfect retardance 𝑥ret = 0.5, as expected.
Using the retardance of graph C.9 (a), we compute the transmission from equation (C.3)

for both wave plates, and represent them in graph C.9 (b). As expected, the transmission is
zero for the CVI wave plate when its retardance crosses 0.5𝜆.

One can see that the transmission values are extremely low. The uniform transmission of
the acrhomatic plate can be understood as losses, hence completely negligible. For the CVI
one, the transmission is quadratic, hence frequency dependent. This can have a detrimental
effect on the measurement, since it would deform the time-frequency mode of the LO, leading
to a poorer overlap at the detection, hence losses. In graph C.9 (b), we also plot the spectral
intensity of the LO in the HG0 mode. Due to the very low transmission values, the overlap
of this mode before and after is very close to 1, hence negligible losses are expected. We then
deduce that the retardance of the CVI half-wave plates can be considered flat in our use cases.
Since they feature also low losses, we conclude this analysis by choosing the CVI half-wave
plates for our experiment.

C.3.3 Choice of the mount of the half-wave plates
In this appendix, we explicit the choice of the mount for the half-wave plates we use in the
double homodyne detection setup, see subsection 4.1.3.
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We compare two mounts from Thorlabs, the standard RSP1D/M mount and the high-
precisionPRM1/M mount. The graduations on the RSP1D/M are marked every 2◦, while the
graduation of the PRM1/M on its micrometer translation are marked every 0.04◦, hence a factor
of 50 in precision.

To estimate how this precision on the angle 𝜃plate of the wave-plate mount affects the preci-
sion on the intensity of the fields in the double homodyne detection, we consider the following
setup. The half-wave plate we consider is placed before an ideal polarizing beam splitter. The
PBS transmits the horizontal polarization of the linearly polarized input light. The transmis-
sion 𝑇H of the setup then writes 𝑇H = cos2(2𝜃plate) (C.4)

from which we deduce the transmission change per degree around 𝜃plate = 22.5◦𝜕𝑇H𝜕𝜃plate ||||𝜃plate=22.5◦ = −3.5%/◦ (C.5)

In other words, we loose 3.5% of the incoming light intensity for each degree off from𝜃plate = 22.5◦, which corresponds to using the half-wave plate to split the input intensity evenly,
with 50% of power in each arm. This configuration is used in the double homodyne detection
scheme at the first PBS, to evenly split the signal field, and at the second PBSs which are used
as 50:50 beamsplitters for the two homodyne detections.

We experimentally verify that the maximal accuracy we can obtain on the output power
is 1% using the standard RSP1D/M mounts, using a power measurement as guide and some
careful alignment time. This corresponds to a precision of 0.3◦ from equation (C.5), i.e. a 7th of
the graduation precision of 2◦. Considering the same maximal precision ratio using the high-
precision PRM1/M mounts with graduation precision of 0.04◦, we expect a maximal precision
of 0.006◦, hence a precision of 0.02% on the power.

As argued in subsection 4.1.3, for the half-wave plates used for balancing the two homo-
dyne detections, the highest power precision the best, hence we choose the high-precision
PRM1/M mounts for them.

For the half-wave plate used to evenly split the signal field, the effect of imprecision on
the squeezing factor 𝑠dB of the equivalent squeezing operation due to unbalancing the double
homodyne detection can be computed from equation (4.29) around 𝑇H = 50%. We obtain𝜕𝑠dB𝜕𝑇H ||||𝑇H=50% = 0.17 dB/% (C.6)

which means that the squeezing factor increases by 0.17 dB for each percent off in the trans-
mission. From the previous discussion, a percent off corresponds to 0.3◦ off from the position𝜃plate = 22.5◦.

In section 4.3, we produce simulations which suggest that such precision is enough for
our use case, see in particular appendix D.2.3 for a quantitative estimation of the sensibility of
the certification to the unbalancing squeezing factor. Thus, we choose the standard RSP1D/M
mount. Still, in the future, we might get to regimes were finer unbalancing is required, for
which choosing the the high-precision PRM1/Mmount would be interesting, leading to a max-
imal precision of 0.004 dB on the squeezing factor.
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C.4 Clipper-amplifier electronic scheme
For reference, the electronic scheme of the clipper-amplifiers used at the measurement is given
in figure C.10. It basically consists in 4 stages of one amplifier and one clipper. Each clipper is
a couple of parallel diodes.
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Fig. C.10 Electronic scheme of a clipper-amplifier.
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Appendix D

Simulations: supplementary figures

D.1 Simulation of a single-mode OPO with output reflec-
tivities 70% and 50%

In this appendix, we provide the results of the same simulation which produced figure 2.10 in
subsection 2.3.4, changing a single parameter, the output reflectivity 𝑟2o . The results are given
in figure D.1 for 𝑟2o = 70% and in figure D.2 for 𝑟2o = 50%.
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Fig. D.1 Simulation of a single-mode OPO, at 𝑟2o = 70%, for three intra-cavity ad-
ditional loss 𝜈 values: 0% (black), 3% (black), and 10% (red). The total intra-cavity
losses are 0.0015 + 𝜈. (a): the squeezing factor 𝑠−dB (solid lines) and the antisqueezing
factor 𝑠+dB (dashed lines) against the normalized to threshold pump power p/p,th.
(b): the output purity 𝜇o against p/p,th. The blue bold curves corresponds to the
blue curves in figure 2.11.
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Fig. D.2 Simulation of a single-mode OPO, at 𝑟2o = 50%, for three intra-cavity addi-
tional loss 𝜈 values: 0% (black), 3% (black), and 10% (red). The total intra-cavity losses
are 0.0015 + 𝜈. (a): the squeezing factor 𝑠−dB (solid lines) and the antisqueezing factor𝑠+dB (dashed lines) against the normalized to threshold pump power p/p,th. (b): the
output purity 𝜇o against p/p,th. The green bold curves corresponds to the green
curves in figure 2.11.

D.2 Additional simulation results for the certification of
single-photon subtracted squeezed vacuum states

In this appendix, we provide additional results of the simulation described in section 4.3. Ap-
pendix D.2.1 extends the simulation considering a balanced double homodyne detection, while
appendix D.2.2 consider it unbalanced.

D.2.1 Using a balanced double homodyne detection

We provide the results of the same simulation which produced figure 4.6 in subsection 4.3.4,
changing a single parameter, the squeezing factor 𝑠dB of the squeezed vacuum state before
single-photon subtraction and detection loss. The results are given in figure D.3 for 𝑠dB = 2 dB,
in figure D.4 for 𝑠dB = 3 dB, in figure D.5 for 𝑠dB = 4 dB, and in figure D.6 for 𝑠dB = 5 dB. For each
of these figures, we display the stellar rank 1 threshold (red horizontal line) and the Wigner
negativity (at origin) witness threshold (cyan horizontal line). When the lowest point of an
interval of confidence is higher than a threshold value, the property corresponding to this
threshold value is certified with more than 97.5% confidence. For each purity of preparation
(of the squeezed vacuum state prior to the subtraction), the simulation is performed for three
values of detection losses 𝜂 = 1, 0.9 and 0.8.
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SQUEEZED VACUUM STATES

Fig. D.3 Estimates of the fidelity to Fock state |1⟩ for lossy single-photon subtracted
squeezed vacuum states for a squeezing factor of 𝑠dB = 2 dB.

Fig. D.4 Estimates of the fidelity to Fock state |1⟩ for lossy single-photon subtracted
squeezed vacuum states for a squeezing factor of 𝑠dB = 3 dB.
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Fig. D.5 Estimates of the fidelity to Fock state |1⟩ for lossy single-photon subtracted
squeezed vacuum states for a squeezing factor of 𝑠dB = 4 dB.

Fig. D.6 Estimates of the fidelity to Fock state |1⟩ for lossy single-photon subtracted
squeezed vacuum states for a squeezing factor of 𝑠dB = 5 dB.
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D.2.2 Using an unbalanced double homodyne detection
We provide the results of the same simulation which produced figure 4.7 in subsection 4.3.4,
changing a single parameter, the squeezing factor 𝑠dB of the squeezed vacuum state before
single-photon subtraction. Compared to the additional results given above in this appendix,
the double homodyne detection is unbalanced, with an unbalancing which compensates ex-
actly the squeezing factor 𝑠dB. The results are given in figure D.7 for 𝑠dB = 2 dB, in figure D.8
for 𝑠dB = 3 dB, in figure D.9 for 𝑠dB = 4 dB, in figure D.10 for 𝑠dB = 5 dB. For each of these
figures, we display the stellar rank 1 threshold (red horizontal line) and the Wigner negativ-
ity (at origin) witness threshold (cyan horizontal line). When the lowest point of an interval
of confidence is higher than a threshold value, the property corresponding to this threshold
value is certified with more than 97.5% confidence. For each purity of preparation (of the
squeezed vacuum state prior to the subtraction), the simulation is performed for three values
of detection losses 𝜂 = 1, 0.9 and 0.8.

Fig. D.7 Estimates of the fidelity to Fock state |1⟩ for lossy single-photon subtracted
squeezed vacuum states for a squeezing factor of 𝑠dB = 2 dB, using unbalancing.
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Fig. D.8 Estimates of the fidelity to Fock state |1⟩ for lossy single-photon subtracted
squeezed vacuum states for a squeezing factor of 𝑠dB = 3 dB, using unbalancing.

Fig. D.9 Estimates of the fidelity to Fock state |1⟩ for lossy single-photon subtracted
squeezed vacuum states for a squeezing factor of 𝑠dB = 4 dB, using unbalancing.
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SQUEEZED VACUUM STATES

Fig. D.10 Estimates of the fidelity to Fock state |1⟩ for lossy single-photon subtracted
squeezed vacuum states for a squeezing factor of 𝑠dB = 5 dB, using unbalancing.

D.2.3 Unbalancing sensibility
We run the simulation for a single-photon subtracted squeezed vacuum state of initial squeez-
ing factor 𝑠dB = 3 dB, various purity 𝜇G before subtraction, and no detection losses. Consid-
ering the double homodyne detection is balanced, this corresponds to the simulation result of
figure 4.5, graph (a), which we reproduce with blue intervals of confidence in figure D.11. We
then consider the double homodyne detection unbalanced for different values of unbalancing-
squeezing factor 𝑢, i.e. 𝑢 = 2 dB, 3 dB (perfect unbalancing) and 4 dB, with simulation results
shown in figure D.11. As one can see, the fidelity estimates are quite similar in this large range
of unbalancing.
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Fig. D.11 Estimates of the fidelity to Fock state |1⟩ against preparation (before sub-
traction) purity 𝜇G for single-photon subtracted squeezed vacuum states for a squeez-
ing factor of 𝑠dB = 3 dB. The double homodyne detection is either considered bal-
anced (blue), or unbalanced with unbalancing squeezing factors 𝑢 = 2 dB (green),3 dB (brown, perfect unbalancing) and 4 dB (magenta). We display the stellar rank 1
threshold (red horizontal line) and the Wigner negativity (at origin) witness thresh-
old (cyan horizontal line) which, when beaten, certify the corresponding property
with 97.5% confidence.
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