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Abstract

Reinforcement Learning (RL) encompasses a range of techniques employed to train
autonomous agents to interact with environments with the purpose of maximizing
their returns across various training tasks. To ensure successful deployment of RL
agents in real-world scenarios, achieving generalization and adaptation to unfamiliar
situations is crucial. Although neural networks have shown promise in facilitating
in-domain generalization by enabling agents to interpolate desired behaviors, their
limitations in generalizing beyond the training distribution often lead to suboptimal
performance on out-of-distribution data. These challenges are further amplified in
RL settings characterized by non-stationary environments and constant distribution
shifts during deployment.

This thesis presents novel strategies within the framework of Meta-Reinforcement
Learning, aiming to equip RL agents with the ability to adapt at test-time to out-
of-domain tasks. The first part of the thesis focuses on model-free techniques to
learn effective exploration strategies. We consider two scenarios: one where the
agent is provided with a set of training tasks, enabling it to explicitly model and
learn generalizable task representations; and another where the agent learns without
rewards to maximize its state coverage. In the second part, we investigate into the
application of symbolic regression, a powerful tool for developing predictive models
that offer interpretability and exhibit enhanced robustness against distribution shifts.
These models are subsequently integrated within model-based RL agents to improve
their performance. Furthermore, this research contributes to the field of symbolic
regression by introducing a collection of techniques that leverage Transformer models,
enhancing their accuracy and effectiveness.

In summary, by addressing the challenges of adaptation and generalization in
RL, this thesis focuses on the understanding and application of Meta-Reinforcement
Learning strategies. It provides insights and techniques for enablingRL agents to adapt
seamlessly to out-of-domain tasks, ultimately facilitating their successful deployment
in real-world scenarios.



Résumé

L’apprentissage par renforcement (RL) est un ensemble de techniques utilisées
pour former des agents autonomes à interagir avec des environnements de manière à
maximiser leur récompense. Pour déployer avec succès ces agents dans des scénarios
réels, il est crucial qu’ils puissent généraliser à des situations inconnues. Bien que
les réseaux de neurones aient montré des résultats prometteurs en permettant aux
agents d’interpoler des comportements souhaités, leurs limites en termes de générali-
sation au-delà de la distribution d’entraînement entraînent souvent des performances
sous-optimales sur des données issue d’une distribution différente. Ces défis sont
encore amplifiés dans les environnements de RL caractérisés par des situations non
stationnaires et des changements constants de la distribution lors du déploiement.

Cette thèse présente de nouvelles stratégies dans le cadre du meta-RL visant à
doter les agents RL de la capacité à s’adapter sur des tâches différentes du domaine
d’entraînement. La première partie de la thèse se concentre sur les techniques model-
free, c’est à dire qui ne modélisent pas explicitement l’environnement, pour apprendre
des stratégies d’exploration efficaces. Nous examinons deux scénarios : dans le
premier, l’agent dispose d’un ensemble de tâches d’entraînement, ce qui lui permet
de modéliser explicitement les tâches et d’apprendre des représentations de tâches
généralisables ; dans le second, l’agent apprend sans récompense à maximiser la
couverture de l’espace des états.

Dans la deuxième partie, nous explorons l’application de la régression symbolique,
un outil puissant pour développer des modèles prédictifs offrant une interprétabil-
ité et une meilleure robustesse face aux changements de distribution. Ces modèles
sont ensuite intégrés aux agents model-based pour améliorer la modélisation de la dy-
namique. De plus, cette recherche contribue au domaine de la régression symbolique
en introduisant une collection de techniques exploitant les modèles génératifs, en
particulier le Transformer, ce qui améliore leur précision et leur efficacité.

En résumé, cette thèse aborde abordant le défi de la généralisation et adaptation
dans le RL. Elle développe des techniques visant à permettre aux agents meta-RL
de s’adapter à des tâches hors domaine, facilitant ainsi leur déploiement dans des
scénarios du monde réel.
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Chapter 1

Introduction

1.1 Success of Deep Learning and RL

Machine learning. Machine learning (ML) is a branch of artificial intelligence that
utilizes data to improve computer performance by giving machines the ability to
"learn". ML algorithms construct models based on sample data, referred to as training
data, enabling them to make predictions or decisions without explicit programming.
ML finds application in diverse domains, e.g. healthcare, fraud detection, image and
speech recognition or recommendation systems, where developing algorithms for the
required tasks is challenging.

ML encompasses various learning paradigms, such as supervised, unsupervised,
self-supervised, meta, and reinforcement learning. In supervised learning (SL), al-
gorithms encounter labeled data, where each data point comprises features and an
associated label. The objective of supervised learning algorithms is to learn a function
that maps feature vectors to labels. On the other hand, unsupervised learning algo-
rithms do not have access to any labels; instead, they learn compact representations
of the input data, which can be employed for tasks like data analysis, generating new
data, or downstream applications. Both these techniques can be applied to one-step
prediction problems or sequential problems where the prediction at a given time-step
relies on previous predictions.

Reinforcement learning (RL) deals with multi-step prediction problems and occu-
pies an intermediate position between supervised and unsupervised learning in terms
of supervision. RL encompasses a range of techniques that model the learning process
as a decision-making problem, in interaction with an environment. RL algorithms
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Introduction

typically have access to utility feedback instead of expert labels (optimal decisions).
Agents are learned via a trial-and-error approach, where predictions (referred to
as actions within the Markov decision process framework) and observed rewards
serve as learning signals. The assumption of access to samples of the reward model is
often weaker than in supervised learning, involving a factorization based on human
knowledge of the problem, rather than human intervention for each example 1.

By optimizing an agent’s actions to achieve specific objectives, RL facilitates the
automation of intricate tasks that necessitate continuous adjustments. RL presents
several challenges, including credit assignment, sparse or deceptive reward signals,
and exploration. These difficulties have led to RL being described as the cherry on the
cake by Yann Le Cun at NeurIPS 2016.

Deep Learning. Deep learning (DL) encompasses a set of techniques that use neural
networks as function approximators across various learning paradigms mentioned
previously. While the concept of deep learning has existed since the 1940s and 1950s,
when researchers initially proposed neural networks as a means to emulate the human
brain, its impact on machine learning has significantly transformed the field of ML,
particularly in the early 2010s, resulting in a remarkable paradigm shift. Their appli-
cation to RL, also named Deep Reinforcement Learning (DRL), has revolutionized
problem-solving in complex scenarios. For instance, DRL enabled the achievement of
remarkable milestones, such as AlphaGo defeating the world Go champion [Sil+17].
RL also plays a significant role in controlling physical systems like robots [Lil+15;
Akk+19], vehicles [Boj+16], data center climate control [Laz+18], and even strato-
spheric balloons [Bel+20]. The recent architectural advancement of Transformer
models [Vas+17] has garnered substantial attention from academic research and
industry, presenting numerous applications.

The Generalization Problem. In a typical SL pipeline, ML algorithms minimize
errors on a set of training observations, hoping to capture the underlying structure of
the task being addressed. However, ML algorithms can encounter difficulties when
faced with data points that significantly differ from the distribution of the training
data, commonly known as out-of-distribution (OOD) samples. The ability of a learned
predictor or agent to extrapolate from the training data to OOD samples is crucial
and is referred to as generalization. When carefully tuned, NNs can obtain impressive
generalization performance, however generalization becomes particularly challenging

1However, defining a reward function can be a complex task.
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1.2 Motivation and challenges

when the training data is limited in its representation of the overall task, due to limited
data or a lack of diversity in the samples. The problem of generalization is also
important in RL in two cases: i) when learning a single task, the model (can be a
policy or a value-function) should be accurate on unvisited states, ii) when trained
on multiple training tasks, an agent should perform well on unseen but similar tasks.

Synergies between Learning Paradigms. When ML practitioners have access to
labeled datasets, they typically employ supervised learning (SL). However, SL oper-
ates on fixed datasets, meaning that once the training phase is completed, the model
lacks the capability to improve its performance on OOD samples during testing. This
limitation becomes apparent in cases such as GPT-3 [Bro+20], a conversational agent
trained on a large corpus of textual data, which may exhibit significant errors when
encountering OOD samples, including displaying toxic behavior or generating factu-
ally incorrect claims. In that case, RL can help improve generalization of SL models by
augmenting them with the ability to self-improve at test-time. RL addresses this issue
by providing tools to actively seek new information while leveraging existing knowl-
edge, in order to cope with the distribution-shift problem. This process assumes the
formulation or learning of a reward function, which can be derived, for example, from
human preferences. The combination of RL and SL has demonstrated its efficacy in
various applications. For instance, the enhancement of GPT-3 involved incorporating
feedback from humans using RL and preference models, leading to the development
of ChatGPT. As ChatGPT collects more conversational data across a broader range
of topics and engages in meaningful interactions with users, its performance can
improve over time.

The "cherry on the cake" is today widely recognized as an essential tool for improv-
ing the learning process. Jiang et al. [JRG23] manifesto concludes that solving general
intelligence necessitates RL exploration as an integral component of the learning
process. Relying solely on fixed datasets would limit our ability to achieve this goal,
and exploration is essential to augment datasets and gather as much information as
possible about the task at hand.

1.2 Motivation and challenges

As we aim to deploy intelligent agents in the physical world that seamlessly integrate
into our daily routines, it is essential for these agents to possess the ability to adapt to

3



Introduction

unfamiliar scenarios. Adaptability distinguishes genuinely intelligent systems from
mere executors of pre-programmed instructions. Adaptibability is all the more a
critical characteristic as existing research in the field of RL has primarily focused on
learning from simulated environments agents whose purpose is deployment in the
physical world ("sim2real" transfer [Ope+18]); this challenge is often referred to as
the reality gap. What defines adaptability? To meet these expectations, the agents must
possess the following attributes:

• General and Useful: Agents should demonstrate versatility and practicality
across a range of situations.

• Truly Autonomous: It is crucial that agents can rapidly acquire new skills and
knowledge without relying heavily on human supervision or intervention.

What defines efficiency in terms of adaptability? To be efficient, we want adap-
tation to happen as fast as possible, more precisely with the minimal number of
interactions possible, as these are generally responsible for larger running times or
human interventions.

"To achieve efficient adaptation, you must skillfully harmonize with life’s ceaseless currents."
ChatGPT as if it was Yoda

1.3 Approach

Meta-Reinforcement Learning (meta-RL) is a subfield of RL that aims at developing
agents that can learn to solve new tasks with minimal interactions. Taking aside
regret considerations, an intelligent agent should adapt to a new task by following the
two phases: i) task understanding, also called exploration, where the agent collects
information about the dynamics and rewards of the environment, ii) task solving, or
exploitation, where the agent tries to maximize the expected cumulative reward based
on the knowledge acquired during exploration. When the number of environmental
interactions is limited, agents must naturally trade-off exploration and exploitation.
There exists a large diversity of Meta-RL approach families, some consider learning
how to tackle both phases separately (also called decoupling) whereas some do not.
These choices can be largely influenced by the considered evaluation metric/setting
which defines what adaptation should look like; an agent can be evaluated in a zero-
shot manner, on a larger number of interactions or even being given a budget of
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1.4 Organisation of the manuscript

non-penalized exploration steps. In this manuscript, we will focus our attention on
Meta-RL methods that explicitly consider task understanding.

The present research explores two ways to learn adaptable agents:
1. model-free: prepare agents for a distribution of task arriving at test time, through

adaptation mechanisms that let agents learn at test-time.

2. model-based: build predictive dynamics models that are both robust, accurate
and learn from minimal environment interactions.

1.4 Organisation of the manuscript

The present manuscript is structured into two distinct parts.
The first part is dedicated to methods that focus on the learning of adaptability

mechanisms (i) by addressing the following challenges of meta-RL:
(a) When to switch exploration for exploitation?

(b) How to learn efficient exploration strategies that bring as much information as
possible?

(c) How can the exploitation phase best utilize the exploration information?
We explore various algorithmic approaches, evaluation settings, and the impact of
prior knowledge availability on the task distribution.

We start with a background chapter Chapter 2 to equip the reader with the nec-
essary knowledge to grasp the concepts and principles that underpin Meta-RL. In
particular, we examine variations between different meta-RL algorithms and aim to
provide insights into their respective strengths and limitations.

In Chapter 3, we address (a) and (c) in the setting of "online adaptation" where the
agent needs to adapt to unseen tasks in a single episode. It is given prior knowledge
on the test tasks under the form of a set of training tasks. This scenario requires the
agent to strike a balance between understanding the tasks and maximizing rewards.
We train a recurrent agent that embeds the rolling trajectory into a representation that
is well-prepared to generalize to test tasks.

In Chapter 4, we investigate (b) learning exploration strategies that maximize
coverage of the state space and prepare the agent to be readily fine-tunable on the test
tasks. The agent never observes extrinsic rewards during training and its adaptation is
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evaluated on a set of downstream tasks. In practice, we tackle (c) by first imitating the
behaviors that led to the highest rewards during exploration then fine-tuning using
RL.

In the second part of the manuscript, we explore learning better predictive mod-
els under a small data regime. Leveraging those with planning algorithms, as in
model-based reinforcement learning, limits the need for explicitly learning adaptation
strategies. As NNs are bad approximators in small data regimes, they do not lend
themselves to meta-RL. This part will explore the use of symbolic regression (SR) to
find accurate and interpretable (in the form of small symbolic expressions) predictive
models as they have been shown to be more robust to overfitting. Note that learning
better world models is a way to tackle the challenge of trajectory representation de-
scribed in (c). We will cover a set of methods that tackle the task of SR using recent
advances in Transformer architectures.

In Chapter 5, we start with a background section that introduces formally SR and
covers the related work. We introduce a class of SR algorithms called Deep Generative
Symbolic Regression (DGSR) and show how they fit in an englobing framework for
SR learning.

In Chapter 6, we explain how to train Transformers with SL to tackle SR on
procedurally-generated synthetic datasets and evaluate the model’s performance
on standard SR benchmarks. We show the model achieves competitive performance
for order of magnitudes less inference time.

In Chapter 7, we enable a pre-trained Transformer to learn from unsupervised
datasets by augmenting it with search (Monte-Carlo Tree Search) at train and/or test
time.

In Chapter 8, we propose to explicitly represent the dynamic and reward mod-
els (englobed under the name of world model) using SR and applying a planning
algorithm on the learned models. We show in toy environments that the symbolic
representation largely outperforms neural networks approaches.

Finally, we conclude in Chapter 9 by discussing potential future research directions
and areas that warrant further exploration, fostering ongoing advancements in the
field. Particularly, i) how to relax the asssumptions of human interventions inmethods
introduced in Part I, ii) the prospects of having interpretable symbolic world models,
particularly how they can help improve meta-RL and iii) avenues to improve deep
generative symbolic regression methods.
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Part I

Learning model-free exploration
strategies

The progress in the field of learning agents has been significantly propelled by the
rise and widespread adoption of Reinforcement Learning (RL) as a unifed framework,
accompanied by its own array of methodologies and algorithms. Meta-Reinforcement
Learning (meta-RL) is one such research direction that has emerged, focusing on
endowing agents with the ability to learn during their deployment.

In this part of the manuscript, we provide a comprehensive overview of the RL
formalism, followed by a detailed exploration of the distinctive characteristics and
nuances of meta-RL. We then focus on the development of model-free adaptation
mechanisms that enable learning at the time of testing. We particularly investigate
two settings: one where the agent has access to a set of training tasks, and the other
where it operates without observing any extrinsic rewards prior to test-time. In
both scenarios, this is realized differently: in Chapter 3, IMPORT devises implicit
exploration strategies that extract information about the task, and in Chapter 4 UPSIDE
employs explicit strategies aimed at maximizing state-space coverage.



Chapter 2

Background

2.1 The Reinforcement Learning problem

2.1.1 Definitions

Markov Decision Processes (MDP). The agent’s sequential decision-making pro-
cess is usually modeled by a MDP defined as a tuple (S,A, P, P0, r, γ). At every time
step t, the agent observes the state of the environment, st ∈ S and has too choose
an action at ∈ A. S and A are respectively the state and action spaces, i.e. the set
of possible values they can take, which can either be continuous or discrete. This
action has two effects: i) it changes the state of the environment from st to st+1 and ii)
it rewards the agent with a reward rt. This change can be stochastic and modelled
by the transition distribution P (st+1|st, at). As the state environment is considered
Markovian, the transition only conditions on the current state and not earlier states
s<t. The subscript < in x<t (resp. ≤) denote the tuple of all values of x before t (resp.
including the current). The reward rt : S × A × S → R can also be stochastic and
depends on (st, at, st+1). We denote trajectory τ≤t, the sequence of state-action-reward
tuples up to the step t, i.e. τ≤t = (s0, a0, r0, s1, . . . , st+1). In this manuscript, we will
always assume an episodic setting. The agent starts an episode in state s0 ∼ P0(s0) and
the interaction with the environment stops after a fixed horizon T or when the agent
reaches a terminal state. In what follows, if t is omitted from τ , it means the trajectory
express τ≤T , i.e. a full episode trajectory.
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2.1 The Reinforcement Learning problem

We call the return function R(τ) the discounted sum of rewards collected by the
environment on trajectory

R(τ) =
∑

t≤T−1
γtrt(st, at, st+1) (2.1)

The discount factor γ ∈ [0, 1] accounts for the fact the agent should care more about
immediate rewards than long-term ones. The smaller γ, the greedier the agent will
aspire to be.

We represent by a policy π(at|st) : S×A → [0, 1] the action probability distribution
in a given state st. We can describe the dynamics of the agent-environment interaction
as follows (omitting the stochasticity of rewards).

P (τ) = P0(s0)Π0≤t≤T−1π(at|st)P (st+1|at, st) (2.2)

In the manuscript, we will use the word task to qualify a MDP. Analogoulsy to
SL where tasks can be datasets from different distribution, i.e. different datasets in
computer vision or natural language processing, tasks will differ in what follows with
their transition and reward functions. Furthermore, transition and reward functions
are not known, so the agent gain information about them via trial and error through
environment interactions.

Partially Observable Markov Decision Processes. A POMDP relaxes the assump-
tion of MDPs that the full state st is observed by the agent. The agent observes ot ∈ O
from the observation distribution O(ot|st). To behave optimally, the agent must now
condition on the entire trajectory τ≤t = (o≤t, a<t, r<t). We will assume in what follows
that the environment is fully observable, however approaches to solve MDPs can be
extended to POMDPs by replacing the policy conditioning on the state st by τ≤t.

Value functions. The state value V π(s) of a policy π is the expected return of the
policy when starting in state s ∈ S, i.e.

V π(s) = E[R(τ)|s0 = s] (2.3)

where the expectation is with respect to the random trajectory generated by executing
π starting from s ∈ S. Similarly, the state-action value Qπ(s, a) of a policy is the
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expected return of the policy when starting in state s ∈ S and taking action a ∈ A

Qπ(s, a) = E[R(τ)|s0 = s, a0 = a] (2.4)

The advantage function A is modified version of Qwith lower variance obtained by
removing the state value as the baseline.

Aπ(s, a) = Qπ(s, a)− V π(s) (2.5)

The value functions at different states are connected with the Bellman equation:

V π(s) = Ea∼π(.|s),s′∼P (.|s,a)[R(s, a, s′) + V π(s′)]
Qπ(s, a) = Ea′∼π(.|s′),s′∼P (.|s,a)[R(s, a, s′) +Qπ(s′, a′)]

(2.6)

Goal. The objective of the agent is to find an optimal policy, i.e.

π∗ = arg max
π

J(π) where J(π) = EP (τ)[R(τ)] (2.7)

In terms of value functions, a policy π∗ is said to be optimal, if it exists, if it
maximizes the value functions V π(s) and Qπ(s, a) in every state and action, i.e.

∀s ∈ S, V ∗(s) = V π∗(s) = max
π

V π(s)

∀(s, a) ∈ S ×A, Q∗(s, a) = Qπ∗(s, a) = max
π

Qπ(s, a)
(2.8)

2.1.2 Challenges.

Exploration/Exploitation trade-off. The inherent RL challenge primarily arises from
the inherent uncertainty associated with the environment. In situations where the
environment is fully understood, the pursuit of optimal behavior essentially becomes a
task of dynamic programming or planning. However, in the absence of such complete
knowledge, the learner encounters a dilemma between the imperative to explore
the environment to unravel its underlying structure (e.g., reward distribution and
state transitions) and the necessity to exploit the information accumulated thus far.
This trade-off is further complicated by the interdependency between the agent’s
current actions and future information. Consequently, it becomes imperative to strike
an appropriate balance between exploration and exploitation to facilitate efficient
learning.
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2.2 Some algorithms

Learning from a bad reward signal. In its original formulation, agents perceive
upon executing actions within the environment in the MDP framework. The rewards,
commonly qualified as extrinsic or external, are generated by the environment itself. In
general, it means humans have carefully designed the reward function to capture the
desired behavioral patterns of an optimal agent across various states. However, the
process of designing these rewards can be impractical for some tasks. For instance,
consider goal-oriented tasks wherein the agent’s objective is to reach a specific state.
Using the L2-distance between states as a reward metric may lead to the emergence
of sub-optimal agents, particularly when obstacles such as walls impede the agent’s
progress towards the goal. Alternatively, a reward formulation can be established us-
ing an indicator function that determines whether the agent has successfully attained
the goal state. In this case, the reward design becomes trivial but relying on such sparse
rewards often poses challenges for agents to effectively learn solely from extrinsic
rewards alone [Sut84]. This issue is further exacerbated in long-horizon tasks, which
demand the agent to execute an increasingly protracted and flawless sequence of
actions before encountering a positive reward. The agent must then extract pertinent
information from this reward signal and utilize it in the most efficient manner.

Unsupervised RL. Unsupervised RL encompasses the utilization of an intrinsic
reward function, such as curiosity-driven exploration [Pat+17], to autonomously
generate training signals. This approach facilitates the acquisition of a diverse range
of behaviors that are not explicitly tied to specific tasks. Despite the recent surge in
research efforts towards various methodologies for unsupervised RL, the problem at
hand remains significantly under-constrained. The absence of extrinsic reward signals
poses a considerable challenge in acquiring behaviors that possess practical utility.

2.2 Some algorithms

RL algorithms can be cast in two classes: model-free and model-based. In short,
model-free algorithms learn a policy (directly or via value functions), whereas model-
based explicitlymodel transition and reward function of the environment and leverage
planning tools on the learnt environment model. In this section, we will mention
a few model-free approaches that were used in Chapters 3 and 4 and leave a small
introduction to the model-based approach in Chapter 8. Figure 2.1 showcases a
non-exhaustive list of algorithms in modern RL.
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Figure 2.1 – Non-exhaustive list of modern RL algorithms from [Ach18]

Policy gradient. A policy π can be parametrized by a parameter θp and learned
following the policy gradient ∇θpJ(πθp) with J defined in Equation (2.7). Using the
policy gradient theorem [Sut+99], the gradient can be computed using:

∇θpJ(πθp) = Eτ
[
R(τ)∇θp log πθp

]
(2.9)

REINFORCE [Wil92] estimate the objective by using a Monte-Carlo estimate by
rolling out the policy in the environment.

Actor-critic approaches. Actor-critic algorithms propose smaller variance estimates
of returns Equation (2.9) by relying on value functions introduced in Section 2.1. We
can learn a policy’s value function Vθv by minimizing the error between the current
value and a target value estimate.

LV = Eτ [Vθv(st)− V target(st)]2

LQ = Eτ [Qθq(st, at)−Qtarget
θq

(st, at)]2
(2.10)

For instance, Advantage Actor-Critic (A2C) [Mni+16] uses one-step Sarsa boot-
strap as the target state-action value Qtarget

θq
(st, at) = rt + (1− dt)γQ−(st+1, at+1) where

dt is a boolean that indicates where the episode is finished after timestep t, Q− is a
target network updated slowly, either periodically or smoothly using Polyak averaging.
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2.3 Meta-Reinforcement Learning

Proximal Policy Optimization (PPO) [Sch+17b] improves over A2C by adding a regu-
larization term that penalizes the policy for deviating too much in between iterations.
The overall objective is given by LPPO = Eτ

[
min(Aθq(st, at)ct(θp), Aθq(st, at)clip(ct, 1−

ε, 1 + ε)
]
, with ct = πθp (at|st)

πold
θp

(at|st) . The algorithms are on-policy algorithms which means
examples considered to compute losses were generated by the current policy. They
work for both discrete and continuous action spaces.

The following algorithms are off-policy and are designed for continuous action
spaces. They store accumulated experience into a replay buffer B a collection of
transition tuples (s, a, s′, r, d). Deep Deterministic Policy Gradient (DDPG) learns a
deterministic policy µθp(s) that maximizes the state-action value function by differen-
tiating through Q, i.e.:

max
θp

Es∈B
[
Qθq(s, µθp(s))

]
(2.11)

Exploration is encouraged in DDPG by adding a Gaussian noise to actions. Twin-
Delayed DDPG (TD3) [FHM18] improves DDPG by considering clipped Double-Q
learning [Has10], delayed policy updates and target policy smoothing. Soft Actor-
Critic (SAC) [Haa+18] uses stochastic policies where the variance is learnt. It places
a higher emphasis on exploration with a policy entropy regularization term as well as
a modified reward function that encourages to visit states with high policy-entropy.

2.3 Meta-Reinforcement Learning

2.3.1 Motivation

Within a standard supervised learning (SL) pipeline, the algorithm acquires knowl-
edge by learning a predictor from a collection of training observations. The key
challenge lies in the predictor’s ability to identify abstract patterns from the training
set and apply them effectively to new and unseen contexts. Given that the training
set is limited and cannot encompass all potential inputs the model may encounter
during deployment, the predictor must extrapolate from the available data in order to
generate meaningful predictions. Two distinct forms of generalization emerge in this
context: (a) in-distribution generalization and (b) out-of-distribution (OOD) general-
ization. These forms diverge in terms of their underlying assumptions regarding the
generation of data.
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In-distribution generalization pertains to evaluating the performance of the predic-
tor on test data generated from the same data distribution as the training set [BM02;
Vap06]. Conversely, out-of-distribution generalization focuses on evaluating the
predictor’s performance on test data generated from a different data distribution
[Koh+21]. The disparity between these two scenarios is commonly referred to as dis-
tribution shift. While in-domain assumptions can provide provable guarantees on the
generalization performance of specific classes of learning algorithms, these assump-
tions often do not align with the practical settings encountered in many real-world
applications, such as the ones encounted in RL.

Deep Reinforcement Learning has been used to successfully train agents on a
range of challenging environments such as Atari games [Mni+13; Bel+13; Hes+17]
or continuous control [Pen+18; Sch+17a]. Nonetheless, in these problems, RL agents
perform exploration strategies to discover the environment and implement algorithms
to learn a policy that is tailored to solving a single task. Whenever the task changes, RL
agents generalize poorly and the whole process of exploration and learning restarts
from scratch. On the other hand, we expect an intelligent agent to fullymaster a problem
when it is able to generalize from a few instances (tasks) and achieve the objective
of the problem under many variations of the environment. For instance, children
know how to ride a bike (i.e., the problem) when they can reach their destination
irrespective of the specific bike they are riding, which requires to adapt to the weight
of the bike, the friction of the brakes and tires, and the road conditions (i.e., the tasks).

The generalization problem is particularly apparent in the field of reinforcement
learning (RL) due to two primary factors:
(a) Large state and action spaces: In cases where the state and action spaces are sub-

stantial, simple look-up tables are inadequate. Most RL applications involving
real-world data necessitate in-domain generalization to account for the immense
scale of these spaces.

(b) Non-stationarities: Non-stationarities manifest as the state distribution evolves
during agent training, resulting in the agent encountering previously unseen
state-action pairs. These non-stationarities commonly occur in non-stationary or
multi-task environments characterized by changes in the underlying dynamics.
For instance, if a robot is subject to an additional force, such as wind, it is unlikely
to perform the desired task effectively unless it has been trained to be robust to
such environmental changes.
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2.3 Meta-Reinforcement Learning

Overcoming distribution shifts in generalization poses technical challenges that de-
pend on the nature and magnitude of the shifts themselves. Consequently, endeavors
focused on developing models resilient to distribution shifts typically necessitate
explicit assumptions regarding the specific type of shift under consideration. In the
following section, our investigation will concentrate on exploring out-of-domain gen-
eralization by examining the impact of changes in dynamics. Specifically, we will
center our attention on scenarios where the agent has access to multiple training tasks
and is evaluated on unseen but conceptually similar tasks.

In the context of SL, the assessment of generalization involves training the model
using a set of training observations and subsequently measuring the error on the test
data. Similarly, in reinforcement learning (RL), generalization can be evaluated by
quantifying the cumulative reward obtained when deploying an agent on test tasks.
However, this definition is limiting as it solely captures the correlation in behavior
across different tasks. It fails to consider the agent’s ability to learn and update its
behavior through interactions. If there exists a transfer of knowledge from training
tasks to test tasks, the agent should exhibit accelerated learning capabilities. In what
follows, we develop on the subfield of meta-RL; during evaluation, i.e. deployment
on test tasks, the agent can still update its behavior by considering the knowledge
acquired from interactions on the test task. We will explain the evaluation metric as
well as learning strategies in greater detail in Section 2.3.2.

2.3.2 Formalism

Definition The fundamental principle underlying this component is Meta-Learning,
alternatively referred to as "Learning to Learn". Its primary goal is to enhance the
efficiency of acquiring new tasks, a concept that can be traced back to 1987 [Sch87] and
that experienced renewed interest and extensive investigation thanks to the advance-
ments in NNs [HVP21; Hos+20]. Its application to RL, Meta-Reinforcement Learning
(meta-RL), are methods that learn how to reinforcement learn, i.e. prepare agents to
best adapt to unseen tasks. Meta-RL is closely related to Multi-task Reinforcement
Learning [Wil+07; Teh+17], Transfer Learning [TS11; Laz12]. During preparation, i.e.
learning on train tasks, sample efficiency is not important, however it is important
during testing.

Evaluation of Meta-RL agents We usually frame the evaluation of a meta-RL agent
in a single taskM in two phases:
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1. an exploration phase in which the agent can freely explore the environment
efficiently to gather information about the task. Since the exploration interactions
are not included in the return, the agent can focus on collecting information
about the task (dynamics and rewards) rather than strictly maximizing the
reward, including risk-taking actions.

2. an execution phase in which the agent needs to drive its behaviour to maximize
the return, using the knowledge acquired during exploration.

The length of the exploration phase is what we call the exploration budget (also
called burn-in in [Bec+23]). In what follows, we will consider the length of both
phases to be measures in number of episodes, Kexp and Kexec respectively for the
exploration and execution phases. The agent interacts with the same environment
during trials [Dua+16], defined by Kexp exploration episodes then Kexec execution
episodes.

Under this framing, the objective can be formulated as follows:

J(π,M, Kexp, Kexec) = E
τ

1:Kexp
exp ∼πEτ1:Kexecexec ∼π(.|τ1:Kexp

exp )RM(τ 1:Kexec
exec ) (2.12)

where RM(τ 1:Kexecexec ) = 1
Kexec

∑
1≤k≤Kexec RM(τ kexec). RM is the return function of envi-

ronmentM as defined in Section 2.1. The agent’s conditioning on the exploration
trajectories π(.|τ 1:Kexp

exp ) suggests that it needs to leverage the information acquired in
the exploration phase as well as possible to maximize its return.

One typically evaluated meta-RL agents on a distribution of tasks q(M) using the
per-task objective Equation (2.12):

J(π,Kexp, Kexec) = EM∼q(M)J(π,M, Kexp, Kexec) (2.13)

Example algorithms. The meta-RL algorithm typically has access to a set of Jtrain
training tasksMtrain = {Mj}1≤j≤Jtrain and is evaluated onMtest = {Mj}1≤j≤Jtest . Ap-
proaches to meta-RL differ with the way i) they model the policy π, ii) the policy
update rule and iii) the reward signal. We will summarize a non-exhaustive list of
recent meta-RL approaches that rely on NNs.

(i) During the exploration and execution phases, the behavior can be represented
by a single policy [Hau+18; Rak+19; Hum+19; Kam+20], usually parametrized by a
NN, or two policies that decouple explicitly theway the agent should act in exploration
πexp and execution πexec [Liu+21]. Though the agent is decoupled into two policies,
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πexp and πexec can share information, e.g. through parameters or experience. In the
latter, the execution policy πexec leverages the information acquired in the exploration
phase by conditioning on the exploration trajectories π(.|τ 1:Kexp

exp ). Decoupling behaviors
comes at the cost of learning when to switch in cases whenKexp exploration episodes
are not enough to fully grasp the task.

(ii) Two policy update rules have been considered. Model-AgnosticMeta-Learning
(MAML) [Nag+18; Al-+17; Rag+19] approaches pre-train the model to provide the
best weight initialization for test-time gradients. Recurrent approaches [Hum+19;
Kam+22; Liu+21] generally treat the adaptation problem as a POMDP problem, and
therefore accumulate knowledge on the task using recurrent NNs where the state of
the RNN encodes the experiences.

(iii) Strictly maximizing the meta-RL objective (Equation (2.12)), i.e. considering
the return on execution episodes only, has the drawback of introducing sparse rewards
during exploration. Different surrogate objectives have been developed to provide
more supervision to the exploration policy, for the purpose of better sample efficiency
and often at the cost of theoretical optimality. Considering extrinsic rewards during
the exploration phase as in RL2 [Dua+16] is suboptimal and privileges actions that
maximize rewards rather than information gathering actions. Other works have
considered using intrinsic rewards. They range curiosity-driven [Pat+17], novelty-
driven [Nai+18; Pon+20; CLS22], goal-driven [Suk+17], diversity-driven [Eys+19;
Kam+21] rewards. When the agent has access to a task descriptor at train time, it
can learn to infer it from interactions; for instance, [Liu+21] introduces an intrinsic
reward that quantify the information gain. [Hum+19; Kam+20] use auxiliary losses
to learn task representations usingMtrain.

Parametrized MDPs. In this manuscript, we will consider q(M) to be a distribution
over tasks (MDPs) in which the structure of the MDP is determined by a param-
eter with only a few degrees of freedom. We consider state and action spaces to
be the same. Formally, tasks are thus fully determined by their parameter µ and
induce variations in part of environments. We define in what follows a µ-MDP as
Mµ = (S,A, P µ, P µ

0 , r
µ, γ). As µ is not observed, solving the multi-task objective

Equation (2.13) accounts for solving a partially observable MDP (POMDP), where
the hidden variable is the descriptor µ of the µ-MDP.
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2.3.3 Opening to Chapter 3 and Chapter 4

In Chapter 3, we will consider the setting of online adaptation where a trial consists of
a single episode of execution, i.e. Kexec = 1 and Kexp = 0. The agent will have access
to a set of training tasks which it can clearly identify by {µj}j≤Jtrain . This setting has
been largely studied in the literature of task identification.

In Chapter 4, we learn exploration strategies that will be help the agent adapt to test-
time tasks. We study the setting where the task distribution q(M) consists of a single
dynamic function butmultiple reward functions. In that case,Mµ = (S,A, P, P0, r

µ, γ).
During training, no extrinsic reward will be observed and agents will be evaluated by
their adaptation to downstream tasks at test-time with a largeKexec and Kexp = 1.
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Chapter 3

Online adaptation with Informed
Policy Regularization

3.1 Introduction

Meta-reinforcement learning aims at finding a policy able to generalize to new tasks.
When facing a new task, the policy must then balance exploration (or probing), i.e.
identify its particular characteristics or alternatively reduce the uncertainty about the
current task, and exploitation to maximize the cumulative reward of the task.

We consider the online adaptation setting where the agent needs to trade-off be-
tween the two types of behaviour within a single episode of the same task. The
online adaptation setting is a special case of a partially observed markov decision
problem, where the unobserved variables are the descriptors of the current task. It is
thus possible to rely on recurrent neural networks (RNNs) [Bak01; Hee+15], since
they can theoretically represent optimal policies in POMDPs if given enough capacity.
Unfortunately, the training of RNN policies has often prohibitive sample complexity
and it may converge to suboptimal local minima. Even though policies based on
recurrent neural networks can be used in this setting by training them on multiple
environments, they often fail to model this trade-off, or solve it at a very high com-
putational cost. To overcome this drawback, efficient online adaptation methods can
leverage privileged knowledge in the form of a task descriptor at training time. The main
approach is to pair an exploration strategy with the training of informed policies, i.e.
policies taking the description of the current task as input.
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In this chapter, we introduce IMPORT (InforMed POlicy RegularizaTion), a novel
policy architecture for efficient online adaptation that combines the rich expressivity
of RNNs with the efficient learning of informed policies. At train time, a shared
policy head receives as input the current observation, together with either a (learned)
embedding of the current task, or the hidden state of an RNN such that the informed
policy and the RNN policy are learned simultaneously. At test time, the hidden state
of the RNN replaces the task embedding, and the agent acts without having access to
the current task. This leads to several advantages: 1) IMPORT benefits from informed
policy to speed up learning; 2) it avoids to reconstruct features of the task descriptor
that are irrelevant for learning; and as a consequence, 3) it adapts faster to unknown
environments, showing better generalization capabilities.

We evaluate IMPORT against the main approaches to online adaptation on envi-
ronments that require sophisticated exploration/exploitation strategies. We confirm
that Thompson-Sampling ?? (TS) suffers from its limited expressivity, and show that
the policy regularization of IMPORT significantly speeds up learning compared to
Task Inference (TI) [Hum+19]. Moreover, the learnt task embeddings of IMPORT
make it robust to irrelevant or minimally informative task descriptors, and able to
generalize when learning on few training tasks.

3.2 Setting

LetM be the space of possible tasks. Each µ ∈ M is associated to an episodic µ-
MDPMµ = (S,A, pµ, rµ, γ) whose dynamics pµ and rewards rµ are task dependent,
while state and action spaces are shared across tasks and γ is the discount factor. The
descriptor µ can be a simple id (µ ∈ N) or a set of parameters (µ ∈ Rd).

When the reward function and the transition probabilities are unknown, RL
agents need to devise a strategy that balances exploration to gather information
about the system and exploitation to maximize the cumulative reward. Such a
strategy can be defined as the solution of a partially observable MDP (POMDP),
where the hidden variable is the descriptor µ of the MDP. Given a trajectory τt =
(s1, a1, r1, . . . , st−1, at−1, rt−1, st), a POMDP policy π(at|τt) maps the trajectory to ac-
tions. In particular, the optimal policy in a POMDP is a history-dependent policy
that uses τt to construct a belief state bt, which describes the uncertainty about the
task at hand, and then maps it to the action that maximizes the expected sum of re-
wards [KLC98]. In this case, maximizing the rewards may require taking explorative
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Figure 3.1 – An environment with two tasks: the goal location (G1 or G2) changes at each
episode. The sign reveals the location of the goal. Optimal informed policies are shortest
paths from start to either G1 or G2, which never visit the sign. Thompson sampling cannot
represent the optimal exploration/exploitation policy (go to the sign first) since going to the
sign is not feasible by any informed policy.

actions that improve the belief state enough so that future actions are more effective
in collecting reward.

The task is sampled at the beginning of an episode from a distribution q(µ). After
training, the agent returns a policy π(at|τt) that aims at maximizing the average
performance across tasks generated from q, i.e.,

Eµ∼q(µ)

[ |τ |∑
t=1

γt−1rµt

∣∣∣∣∣ π
]

(3.1)

where the expectation is taken over a full-episode trajectory τ and task distribution q,
and |τ | is the length of the trajectory.

The objective is then to find an architecture for π that is able to express strategies
that perform the best according to Eq. 3.1 and, at the same time, can be efficiently
learned even for moderately short training phases.

At training time, we assume the agent has unrestricted access to the task descriptor
µ. Access to such a task descriptor during training is a common assumption in
the multi-task literature and captures a large variety of concrete problems. It can
be of two types: i) a vector of features corresponding to (physical) parameters of
the environment/agent (for instance, such features maybe available in robotics, or
when learning on a simulator) [YLT18; Meh+19; Tob+17]. ii) It can be a single task
identifier (i.e an integer) which is a less restrictive assumption [CYZ01; Hum+19]
and corresponds to different concrete problems: learning in a set ofM training levels
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in a video game, learning to controlM different robots or learning to interact withM
different users.

3.3 Related Work and Contributions

In this section, we review how the online adaptation setting has been tackled in
the literature. The main approaches are depicted in Fig. 3.2. We first compare the
different methods in terms of expressiveness, and whether they leverage the efficient
learning of informed policies. We then discuss learning task embeddings and how the
variousmethods deal with unknown or irrelevant task descriptors. The last subsection
summarizes our contributions.

Evaluation of RL agent inMeta-Reinforcement Learning. The online adaptation eval-
uation setting is standard in the Meta-RL literature [Yu+17; Hum+19] but is not the
only way to evaluate agents on unseen tasks in the meta-RL literature. Indeed, several
works have considered that given a new task, an agent is given an amount of "free" in-
teractions episodes or steps to perform system identification, then is evaluated on the
cumulative reward on one [BYM19; Rak+19] or several execution episodes [Liu+20].
This is different to what we study here where the agent has to identify the task to solve
and solved it within one episode, the reward of the agent being considered during all
these steps.

Online Adaptation with Deep RL. In the previous section we mentioned that
the optimal strategy corresponds to the solution of the associated POMDP. Given
a belief state bt as a sufficient statistic of the history τt, POMDP policies takes the
form π(at|τt) = π(at|st, bt). While it is impractical to compute the exact belief state
even for toy discrete problems, approximations can be learnt using Recurrent Neural
Networks (RNNs) [Bak01; Hee+15]. RNN-based policies are trained to maximize the
cumulative reward and do not leverage task descriptors at train time. While this class
of policies can represent rich exploratory strategies, their large training complexity
makes them impractical.

In order to reduce the training complexity of RNN policies, existing strategies have
constrained the set of possible exploratory behaviors by leveraging privileged informa-
tion about the task. Probe-Then-Exploit (PTE) [ZPG19] works in two phases. First, it
executes a pure exploratory policy with the objective of identifying the underlying task
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µ, i.e maximizing the likelihood of the task, then runs the optimal policy associated
to the estimated task. Both the probing and the informed policies are learned using
task descriptors, leading to a much more efficient training process. PTE has two main
limitations. First, similarly to explore-then-commit approaches in bandits [GLK16],
the exploration can be suboptimal because it is not reward-driven: valuable time is
wasted to estimate unnecessary information. Second, the switch between probing and
exploiting is hard to tune and problem-dependent.

Thompson Sampling (TS) [Tho33] leverages randomization tomix exploration and
exploitation. Similarly to the belief state of an RNN policy, TS maintains a distribution
over task descriptors that represents the uncertainty on the current task given τt. The
policy samples a task from the posterior and executes the corresponding informed
policy for several steps. Training is limited to learning informed policies together
with a maximum likelihood estimator to map trajectories to distributions over tasks.
This strategy proved successful in a variety of problems [CL11; OR17]. However, TS
cannot represent certain probing policies such as the one of Figure 3.1, because it is
constrained to executing informed policies; indeed informed policies behave optimally
with respect to the assumed current, whichmight be too different from the exploration
strategy needed to understand the task. Another drawback of TS approaches is that
the re-sampling frequency needs to be carefully tuned.

The Task Inference (TaskInference) approach [Hum+19] is a RNN trained to
simultaneously learn a good policy and predict the task descriptor µ. Denoting by
m : H → Z the mapping from histories to a latent representation of the belief state
(Z ⊆ Rd), the policy π(at|zt) selects the action based on the representation zt = m(τt)
constructed by the RNN. During training, zt is also used to predict the task descriptor
µ, using the task-identificationmodule g : Z →M. The overall objective is:

E
[ |τ |∑
t=1

γt−1rµt

∣∣∣∣π]+ βE
[ |τ |∑
t=1

ℓ(µ, g(zt))
∣∣∣∣π] (3.2)

where ℓ(µ, g(zt)) is the log-likelihood of µ under distribution g(zt). The auxiliary loss
is meant to structure the memory of the RNNm rather than be an additional reward
for the policy, so training is done by ignoring the effect ofm on π when computing the
gradient of the auxiliary loss with respect tom. [Hum+19] proposed two variants,
AuxTask and TI, described in Fig. 3.2 (b) and (c). In TI (contrary to AuxTask), the
gradient of the policy sub-network is not backpropagated through the RNN (the
dashed green arrow in Fig. 3.2 (c), and the policy subnetwork receives the original
state features as additional input; the main objective of stopping gradients is to make
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Online adaptation with Informed Policy Regularization

training more stable with TI. For both AuxTask and TI, the training of π is purely
reward-driven, so they do not suffer from the suboptimality of PTE/TS. However, in
contrast to PTE/TS, they do not leverage the smaller sample complexity of training
informed policies, and the auxiliary loss is defined over the whole value of µwhile
only some dimensions may be relevant to solve the task.

In the non-stationary setting, only a fewmodels have been proposed, mainly based
on theMAML algorithm. For instance, [Nag+18] combinesMAMLwith model-based
RL by meta-learning a transition model that helps an MPC controller predicting the
action sequence to take. The method does not make use of the value of µ at train time
and is specific to MPC controllers.

Learning Task Embeddings While in principle the minimal requirement for the
approaches above is access to task identifiers, i.e. one-hot encodings of the task, these
approaches are sensitive to the encoding on task descriptions, and prior knowledge on
them. In particular, irrelevant variables have a significant impact on PTE approaches
since the probing policy aims at identifying the task. For instance, an agent might
waste time reconstructing the full µ when only part of µ is needed to act optimally
w.r.t the reward. Moreover, TS, TI and AuxTask are guided by a prior distribution over
µ that has to be chosen by hand to fit the ground-truth distribution of tasks. [Rak+19]
proposed to use a factored Gaussian distribution over transitions as a task embedding
architecture rather than a RNN.

Several approaches have been proposed to learn task embeddings [Gup+18;
Rak+19; Zin+19; Hau+18]. The usual approach is to train embeddings of task identi-
fiers jointlywith the policies. [Hum+19]mentions using TIwith task embeddings, but
the embeddings are pre-trained separately, which requires either additional interac-
tions with the environment or expert traces. Nonetheless, we show in our experiments
that TI can be used with task descriptors, considering task prediction as a multiclass
classification problem.

Summary of the contributions As for RNN/TI, IMPORT learns an RNN policy to
maximize cumulative reward, with no decoupling between probing and exploitation.
As such, our approach does not suffer from scheduling difficulties instrinsic to PTE/TS
approaches. On the other hand, similarly to PTE/TS and contrarily to RNN/TI,
IMPORT leverages the fast training of informed policies through a joint training of
an RNN and an informed policy. In addition, IMPORT does not rely on probabilistic
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3.4 Method

Figure 3.2 – Representation of the different architectures. IMPORT is composed of two models
sharing parameters: The (black+blue) architecture is the informed policy πµ optimized
through (B)while the (black+red) architecture is the history-based policy πH (used at test
time) trained through (A)+(C).

models of task descriptors. Learning task embeddings makes the approach robust to
irrelevant task descriptors contrary to TaskInference, makes IMPORT applicable when
only task identifiers are available and able to better generalize when few training tasks
are available.

3.4 Method

In this section, we describe the main components of the IMPORT model (described
in Fig. 3.2), as well as the online optimization procedure and an additional auxiliary
loss to further speed-up learning.

Our approach leverages the knowledge of the task descriptor µ and informed
policies to construct a latent representation of the task that is purely reward driven.
Since µ is unknown at testing time, we use this informed representation to train a
predictor based on a recurrent neural network. To leverage the efficiency of informed
policies even in this phase, we propose an architecture sharing parameters between
the informed policy and the final policy such that the final policy will benefit from
parameters learned with privileged information. The idea is to constrain the final
policy to stay close to the informed policy while allowing it to perform probing actions
when needed to effectively reduce the uncertainty about the task. We call this approach
InforMed POlicy RegularizaTion (IMPORT).
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Algorithm 3.1: IMPORT Training
1 Initialize σ, ω, θ randomly
2 for k = 1, . . . , K do
3 if k is odd then
4 CollectM transitions following πH
5 Update σ, ω and the parameters of the value function of (A) based on

objective (A) + (C)
6 else
7 CollectM transitions following πµ
8 Update σ, θ, ω and the parameters of the value function of (B) based on

objective (B) + (C)

Formally, we denote by πµ(at|st, µ) and πH(at|τt) the informed policy and the
history-dependent (RNN) policy that is used at test time. The informed policy πµ =
ϕ ◦ fµ is the functional composition of fµ and ϕ, where fµ : M → Z projects µ in
a latent space Z ⊆ Rk and ϕ : S × Z → A selects the action based on the latent
representation. The idea is that fµ(µ) captures the relevant information contained
in µwhile ignoring dimensions that are not relevant for learning the optimal policy.
This behavior is obtained by training πµ directly to maximize the task reward rµ.

While πµ leverages the knowledge of µ at training time, πH acts based on the sole
history. To encourage πH to behave like the informed policy while preserving the
ability to probe, πH and πµ share ϕ, the mapping from latent representations to actions.
We thus define as πH = ϕ ◦ fH where fH : H → Z encodes the history into the latent
space. By sharing the policy head ϕ, the approximate belief state constructed by the
RNN is mapped to the same latent space as µ. When the uncertainty about the task is
small, πH then benefits from the joint training with πµ.

More precisely, let θ, ω, σ the parameters of ϕ, fH and fµ respectively, so that
πσθµ (at|st, µ) = ϕθ ◦ fσµ = ϕθ(at|st, fσµ (µ)) and πωθH (at|τt) = ϕθ ◦ fωH = ϕθ(at|st, fωH(τt)).
The goal of IMPORT is to maximize over θ, ω, σ the objective function defined in Eq.
3.3.

E

 |τ |∑
t=1

γt−1rµt

∣∣∣∣∣ πω,θH

]
︸ ︷︷ ︸

(A)

+E
[ |τ |∑
t=1

γt−1rµt

∣∣∣∣∣ πσ,θµ
]

︸ ︷︷ ︸
(B)

−βE

 |τ |∑
t=1

D
(
fµ(µ), fH(τt)

) 
︸ ︷︷ ︸

(C)

(3.3)
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3.5 Experiments

Figure 3.3 – Maze 3D. The goal is either located at the blue or the red box. When the back
wall (i.e. not observed in the leftmost image) has a wooden texture, the correct goal is the
blue box, whereas if the texture is green, the red box is the goal.

Speeding Up the Learning. The optimization of (B) in Eq. 3.3 produces a reward-
driven latent representation of the task through fµ. In order to encourage the history-
based policy to predict a task embedding close to the one predicted by the informed
policy, we augment the objectivewith an auxiliary loss (C)weighted by β > 0. D is the
squared 2-norm in our experiments. Note that because we treat the objective (C) as
an auxiliary loss, only the average gradient ofD with respect to fH is backpropagated,
ignoring the effect of fH on πµ, in order to avoid fH to influence the informed policy
behavior. The expectation of (C) is optimized over trajectories generated using πω,θH

and πσ,θµ , respectively used to compute (A) and (B).

Optimization. IMPORT is trained using Advantage Actor Critic (A2C) [Mni+16]
with generalized advantage estimation (GAE) [Sch+15]. There are two value func-
tions1, one for each objective (A) and (B). The algorithm is summarized in Alg. 3.1.
Each iteration collects a batch of M transitions using either πH or πµ.2 If the batch
is sampled according to πH , we update with A2C-GAE the parameters of the policy
ω and θ according to both objectives (A) and (C), as well as the parameters of the
value function associated to objective (A). If the batch is sampled according to πµ,
we update with A2C-GAE the parameters of the policy σ and θ according to both
objectives (B) and (C), as well as the parameters of the value function associated to
objective (B).
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N = 10 N = 20 N = 100 N = 10 N = 20 N = 100

RNN 73.4(4.8) 92.9(1.3) 87.5(0.2)
Using µ at train time Using task identifier at train time

IMPORT 94.4(0.7) 94.8(0.8) 95.3(0.4) 92.8(0.8) 95.5(0.4) 95.1(1.0)
AuxTask 91.0(0.7) 92.0(1.9) 92.6(0.7) 90.5(1.8) 91.2(1.7) 94.3(0.7)
TI 91.5(0.6) 94.4(0.4) 94.6(0.3) 90.8(0.5) 90.7(1.2) 97.0(0.2)
TS 88.7(4.2) 87.3(2.5) 91.3(1.7) 85.9(2.4) 90.1(1.3) 91.0(0.5)

Table 3.1 – CartPole with different number N of training tasks. Note that RNN does not µ at
train time.

S = 1 S = 3 S = 5 S = 1 S = 3 S = 5
Size of µ: 5 60 150 5 60 150

RNN 74.0(5.8) 77.0(1.1) 66.9(0.7)
Using µ Using task identifier

IMPORT 89.2(0.1) 79.4(0.6) 72.7(0.1) 89.1(0.1) 79.7(0.1) 74.0(0.3)
AuxTask 84.7(1.1) 76.2(2.0) 66.9(1.2) 87.7(0.8) 78.0(0.4) 72.4(0.5)
TI 78.7(0.9) 76.5(0.3) 68.3(0.8) 85.3(0.8) 77.5(1.1) 70.9(0.2)
TS 85.9(0.5) 64.1(0.6) 60.7(0.1) 84.1(2.5) 65.7(0.3) 60.2(1.0)

Table 3.2 – Result over Tabular-MDP with S states and A = 5 actions, trained over N = 100
tasks.

3.5 Experiments

We first present the environments.

CartPole & Acrobot [Bro+16b] The task descriptor µ represents parameters of the
physical system, e.g., the weight of the cart, the size of the pole, etc. The dimension of
µ is 5 for Cartpole and 7 for Acrobot. The entries of µ are normalized in [−1, 1] and
sampled uniformly.

The environments that follow provide basic comparison points where the optimal
exploration-exploitation trade-off is relatively straightforward, since the dynamics
can be inferred from a few actions.

1In our implementation, the value network is shared and takes as an input either fµ(µ) or fH(τt).
2In practice, data collection is multithreaded. We collect 20 transitions per thread with 24 to 64

threads depending on the environment, based on available GPU memory
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Bandit. We consider a standard Bernoulli multi-armed bandit problemwithK arms.
The vector µ ∈ RK denotes the probability of success of the independent Bernoulli
distributions. Each dimension of µ is sampled uniformly between 0 and 0.5, the best
arm is randomly selected and associated to a probability of 0.9. An episode is 100 arm
pulls. At every timestep the agent is allowed to pull an arm in [[1, K]] and observes the
resulting reward. Although relatively simple, this environment assesses the ability of
algorithms to learn nontrivial probing/exploitation strategies.

Tabular MDP. We consider a finite MDP with |S| states andA| actions such that the
transition matrix is sampled from a flat Dirichlet distribution, and the reward function
is sampled from a uniform distribution in [0, 1] as in [Dua+16]. In that case, µ is the
concatenation of the transition and the reward functions, resulting in a vector of size
S2A+SA. This environment is muchmore challenging as µ is high-dimensional, there
is nearly complete uncertainty on the task at hand and each task is a reinforcement
learning problem. .

Maze 3D. We consider a 3D version of the toy problem depicted in Fig. 3.1, im-
plemented using gym-miniworld [Che18]. It has three discrete actions (forward, left,
right) and the objective is to reach one of the two possible goals (see Figure 3.3 in
appendix), resulting in a reward of 1 (resp. −1) when the correct (resp. wrong)
goal is reached. The episode terminates when the agent touches a box or after 100
steps. The agent always starts at a random position, with a random orientation. The
information about which goal to reach at each episode is encoded by the use of two
different textures on the wall located at the opposite side of the maze w.r.t. the goals.
This domain allows to evaluate the models when observations are high dimensional
(3× 60× 60 RGB images). The maximum episode length is 100 on CartPole, Bandit,
Tabular-MDP and Maze3D, and 500 on Acrobot. To evaluate the ability of IMPORT
and the baselines to deal with different types of task descriptors µ, we also perform
experiments on CartPole and Tabular-MDP in the setting where µ is only a task iden-
tifier (i.e., a one-hot vector representing the index of the training task) which is a very
weak supervision available at train time.

We compare to previously discussed baselines. First, a vanilla RNNpolicy [Hee+15]
using GRUs that never uses µ. Second, we compare to TS, TI and AuxTask, with µ
only observed at train time, similarly to IMPORT. For TS, at train time, the policy
conditions on the true µ, whereas at test time, the policy conditions on an estimated µ̂
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resampled from the posterior every k steps where k ∈ {1, 5, 10, 20}. On bandits, UCB
[Aue02] with tuned exploration parameters is our topline.

Implementation details Contrarily to IMPORT, TS, TI and AuxTask are based
on maximizing the log-likelihood of µ. When using informative task descriptors
(i.e. a vector of real values), the log-likelihood uses a Gaussian distribution with
learnt mean and diagonal covariance matrix. For the bandit setting, we have also
performed experiments using a beta distribution which may be more relevant for this
type of problem. When using task identifiers, a multinomial distribution is used. All
approaches are trained using A2C with Generalized Advantage Estimation [Mni+16;
Sch+15]. The precise values of the hyper-parameters and architectures are given in
Appendix A.2.2.

All approaches use similar network architectures with the same number of hidden
layers and units.

Evaluation The meta-learning scenario is implemented by sampling N training
tasks, N validation tasks and 10, 000 test tasks with no overlap between task sets
(except in Maze3D where there is only two possible tasks). Each sampled training
task is given a unique identifier. Each model is trained on the training tasks, and
the best model is selected on the validation tasks. We report the performance on
the test tasks, averaged over three trials with different random seeds, corresponding
to different sets of train/validation/test tasks. Training uses a discount factor, but
for validation and test, we compute the undiscounted cumulative reward on the
validation/test tasks. The learning curves show test reward as a function of the
environment steps. They are the average of the three curves associated to the best
validation model of each of the three seeds used to generate different tasks sets.

Overall performances. IMPORT performs better than its competitors in almost
all the settings. For instance, on CartPole with 10 tasks (see Table 3.1), our model
reaches 94.4 reward while TI reaches only 91.5. Qualitatively similar results are found
on Acrobot (Table A.2 in Chapter A), as well as on Bandit with 20 arms (Table 3.3),
even though AuxTask performs best with only 10 arms. IMPORT particularly shines
when µ encodes complex information, as on Tabular-MDP (see Table 3.2) where it
outperforms all baselines in all settings. By varying the number of training tasks on
CartPole and Acrobot, we also show that IMPORT’s advantage over the baselines is
larger with fewer training tasks. In all our experiments, as expected, the vanilla RNN
performs worse than the other algorithms.
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3.5 Experiments

(a) Bandits withK = 10, N = 100 (b) CartPole with N = 10

Figure 3.4 – Test performance of IMPORT for different values of β from Eq. 3.3

(a) CartPole N = 10 (b) CartPole N = 100

(c) Effect of transforming µ (CartPole, N = 20). (d)Maze 3D.

Figure 3.5 – Learning curves on CartPole (a and b) and Maze3D (d) test tasks. Figure (c)
studies the impact of the structure of the task descriptor on the performances of TI and
IMPORT in CartPole.

Sample Efficiency. Figure 3.5 shows the convergence curves on CartPole with 10
and 100 training tasks and are representative of what we obtain on other environments
(see Appendix). IMPORT tends to converge faster than the baselines. We also observe
a positive effect of using the auxiliary loss (β > 0) on sample efficiency, in particular
with few training tasks. Note that using the auxiliary loss is particularly efficient in
environments where the final policy tends to behave like the informed on.

Influence of µ. The experiments with uninformative µ (i.e., task identifiers)
reported in Table 3.1 and 3.2 for CartPole and Tabular-MDP respectively show that
the methods are effective even when the task descriptors do not include any prior
knowledge. In the two cases, IMPORT can use these tasks descriptors to generalize
well. Moreover, experimental results on CartPole (Fig. 3.5) and Tabular MDP (Fig.
A.10) suggest that when µ is a vector of features (and not a task identifier only) ,
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K = 10 K = 20

IMPORT 77.5(0.2) 56.6(0.1)
AuxTask (Gaussian) 78.7(0.4) 50.5(1.6)
AuxTask (Beta) 78.2(0.7) 37.1(0.6)
RNN 73.6(0.7) 32.1(1.2)
TI (Gaussian) 73.7(1.6) 41.4(2.4)
TI (Beta) 79.5(0.1) 53.3(2.4)
TS (Gaussian) 50.4(0.4) 38.8(2.0)
TS (Beta) 41.3(1.5) 36.3(1.1)

UCB 78.5(0.3) 68.2(0.4)

Table 3.3 – Bandits performance forK = 10 andK = 20 arms, with N = 100 training tasks.

Figure 3.6 – Task embeddings learnt on Bandit (10 arms). Colors indicate the best arm.

it improves sample efficiency but does not change the final performance. This can
be explained by the fact that informed policies are faster to learn with features in µ
since, in that case, µ is capturing similarities between tasks. Equivalent performance
of IMPORT on both types of task descriptors is observed and shows that our method
can deal with different (rich and weak) task descriptors.

We further analyze the impact of the encoding of µ on the models, by using non-
linear projections of the informative µ to change the shape of the prior knowledge.
Figure 3.5c shows the learning curves of TI and IMPORT on CartPole with task identi-
fiers, the original µ and polynomial expansions of µ of order 2 and 3, resulting in 21 and
56 features. IMPORT’s task embedding approach is robust to the encoding of µ, while
TI’s log-likelihood approach underperforms with the polynomial transformation.
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3.6 Conclusion

Task embeddings. To have a qualitative assessment of the task embedding learnt
by IMPORT, we consider a bandit problem with 10 arms and embedding dimension
16. Figure 3.6 shows the clusters of task embeddings obtained with t-SNE [MH08b].
Each cluster maps to an optimal arm, showing that IMPORT structures the embedding
space based on the relevant information. In addition, we have studied the influence
of the β hyperparameter from Eq. 3.3 (in Fig. 3.4 and Section A.4). It shows that the
auxiliary loss helps to speed-up the learning process, but is not necessary to achieve
great performance.

High dimensional input space. We show the learning curves on the Maze3D
environment in Figure 3.5d. IMPORT is succeeding in 90% of cases (reward ≈ 0.8),
while TI succeeds only in 70% of cases. This shows that IMPORT is evenmore effective
with high-dimensional observations (here, pixels). IMPORT and TI benefit from
knowing µ at train time, which allows them to rapidly identify that the wall texture
behind the agent is informative, while the vanilla RNN struggles and reaches random
goals. TS is not reported since this environment is a typical failure case as discussed
in Fig.3.1.

Additional results. In Appendix A.3.1, we show that IMPORT outperforms TI
by a larger margin when the task embedding dimension is small. We also show that
IMPORT outperforms its competitors in dynamic environments, i.e., when the task
changes during the episode.

3.6 Conclusion

Weproposed a newpolicy architecture formeta reinforcement learrning. The IMPORT
model is trained only on the reward objective, and leverages the informed policy to
discover effective trade-offs between exploration and exploitation. It is thus able to
learn better strategies than Thompson Sampling approaches, and faster than recurrent
neural network policies and Task Inference approaches.

This work assumes access to a set of training tasks (including extrinsic rewards)
as well as the ability to clearly identify which task the agent is facing at every episode.
It assumes that the training tasks come from the same distribution q(M) than the test
tasks. In the next chapter, we will remove this assumption; the agent does not observe
extrinsic rewards during training and will be evaluated on a set of test tasks that share
the same dynamics. We use this unsupervised training phase to learn exploration
strategies that cover efficiently the state-space.
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Chapter 4

Learning exploration strategies without
rewards

4.1 Introduction

In Unsupervised RL (URL), the agent first interacts with the environment without any
extrinsic reward signal. Afterward, the agent leverages the experience accumulated
during the unsupervised learning phase to efficiently solve a variety of downstream
tasks defined on the same environment. This approach is particularly effective in
problems such as navigation [see e.g., BSK21] and robotics [see e.g., Pon+20] where
the agent is required to readily solve a wide range of tasks (determined by new test
reward functions) while the dynamics of environment remains fixed.

In this chapter, we focus on the unsupervised objective of discovering a set of skills
that can be used to efficiently solve sparse-reward downstream tasks. In particular, we
build on the insight that mutual information (MI) between the skills’ latent variables
and the states reached by them can formalize the dual objective of learning policies
that both cover and navigate the environment efficiently. Indeed, maximizing MI has
been shown to be a powerful approach for encouraging exploration in RL [Hou+16;
MR15] and for unsupervised skill discovery [e.g., GRW16; Eys+19; Ach+18; Sha+20;
Cam+20]. Nonetheless, learning policies that maximize MI is a challenging optimiza-
tion problem. Several approximations have been proposed to simplify it at the cost
of possibly deviating from the original objective of coverage and directedness (see
Sect. 4.3 for a review of related work).
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4.1 Introduction

Figure 4.1 – Overview of UPSIDE. The black dot corresponds to the initial state. (A) A set
of random policies is initialized, each policy being composed of a directed part called skill
(illustrated as a black arrow) and a diffusing part (red arrows) which induces a local coverage
(colored circles). (B) The skills are then updated to maximize the discriminability of the states
reached by their corresponding diffusing part (Sect. 4.4.1). (C) The least discriminable policies
are iteratively removed while the remaining policies are re-optimized. This is executed until
the discriminability of each policy satisfies a given constraint (Sect. 4.4.2). In this example
two policies are consolidated. (D) One of these policies is used as basis to add new policies,
which are then optimized following the same procedure. For the “red” and “purple” policy,
UPSIDE is not able to find sub-policies of sufficient quality and thus they are not expanded
any further. (E) At the end of the process, UPSIDE has created a tree of policies covering the
state space, with skills as edges and diffusing parts as nodes (Sect. 4.4.3).

We propose UPSIDE (UnsuPervised Skills that dIrect then DiffusE) to learn a set of
policies that can be effectively used to cover the environment and solve goal-reaching
downstream tasks. Our solution builds on the following components (Fig. 4.1):
• Policy structure (Sect. 4.4.1, see Fig. 4.1 (A)).We consider policies composed of two
parts: 1) a directed part, referred to as the skill, that is trained to reach a specific
region of the environment, and 2) a diffusing part that induces a local coverage
around the region attained by the first part. This structure favors coverage and
directedness at the level of a single policy.

• New constrained objective (Sect. 4.4.2, see Fig. 4.1 (B) & (C)). We then introduce a
constrained optimization problem designed to maximize the number of policies
under the constraint that the states reached by each of the diffusing parts are distinct
enough (i.e., they satisfy a minimum level of discriminability). We prove that this
problem can be cast as a lower bound to the original MI objective, thus preserving its
coverage-directedness trade-off. UPSIDE solves it by adaptively adding or removing
policies to a given initial set, without requiring any prior knowledge on a sensible
number of policies.

• Tree structure (Sect. 4.4.3, see Fig. 4.1 (D) & (E)). Leveraging the directed nature of
the skills, UPSIDE effectively composes them to build longer and longer policies
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organized in a tree structure. This overcomes the need of defining a suitable policy
length in advance. Thus in UPSIDE we can consider short policies to make the
optimization easier, while composing their skills along a growing tree structure to
ensure an adaptive and thorough coverage of the environment.

The combination of these components allows UPSIDE to effectively adapt the number
and the length of policies to the specific structure of the environment, while learning
policies that ensure coverage and directedness. We study the effectiveness of UPSIDE
and the impact of its components in hard-to-explore continuous navigation and con-
trol environments, where UPSIDE improves over existing baselines both in terms of
exploration and learning performance.

4.2 Setting

We consider the URL setting where the agent interacts with a Markov decision process
(MDP)M with state space S , action space A, dynamics p(s′|s, a), and no reward. The
agent starts each episode from a designated initial state s0 ∈ S .1 Upon termination of
the chosen policy, the agent is then reset to s0. This setting is particularly challenging
from an exploration point of view since the agent cannot rely on the initial distribution
to cover the state space.

We recall the MI-based unsupervised skill discovery approach [see e.g., GRW16].
Denote by Z some (latent) variables on which the policies of length T are conditioned
(we assume that Z is categorical for simplicity and because it is the most common case
in practice). There are three optimization variables: (i) the cardinality ofZ denoted by
NZ , i.e., the number of policies (wewriteZ = {1, . . . , NZ} = [NZ ]), (ii) the parameters
π(z) of the policy indexed by z ∈ Z, and (iii) the policy sampling distribution ρ (i.e.,
ρ(z) is the probability of sampling policy z at the beginning of the episode). Denote
policy z’s action distribution in state s by π(·|z, s) and the entropy function byH. Let
the variable ST be the random (final) state induced by sampling a policy z from ρ

and executing π(z) from s0 for an episode. Denote by pπ(z)(sT ) the distribution over
(final) states induced by executing policy z, by p(z|sT ) the probability of z being the
policy to induce (final) state sT , and let p(sT ) = ∑

z∈Z ρ(z)pπ(z)(sT ). Maximizing the
1More generally, s0 could be drawn from any distribution supported over a compact region.
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MI between Z and ST can be written as maxNZ , ρ, π I(ST ;Z), where

I(ST ;Z) = H(ST )−H(ST |Z) = −
∑
sT

p(sT ) log p(sT ) +
∑
z∈Z

ρ(z)EsT |z
[
log pπ(z)(sT )

]
= H(Z)−H(Z|ST ) = −

∑
z∈Z

ρ(z) log ρ(z) +
∑
z∈Z

ρ(z)EsT |z [log p(z|sT )]

(4.1)
where in the expectations sT |z ∼ pπ(z)(sT ). In the first formulation, the entropy

termover states captures the requirement that policies thoroughly cover the state space,
while the second term measures the entropy over the states reached by each policy
and thus promotes policies that have a directed behavior. Learning the optimal NZ , ρ,
and π to maximize eq. (4.1) is a challenging problem and several approximations have
been proposed, e.g. [GRW16; Eys+19; Ach+18; Cam+20], based on the optimization
of the following lower bound:

I(ST ;Z) ≥ Ez∼ρ(z),τ∼π(z) [log qϕ(z|sT )− log ρ(z)] (4.2)

where we denote by τ ∼ π(z) trajectories sampled from the policy indexed by z.
As a result, each policy π(z) can be trained with RL to maximize the intrinsic reward
rz(sT ) := log qϕ(z|sT )− log ρ(z).

4.3 Related work

URL methods can be broadly categorized depending on how the experience of the
unsupervised phase is summarized to solve downstream tasks in a zero- or few-shot
manner. This includes model-free [Pon+20], model-based [Sek+20] and representa-
tion learning [e.g., Yar+21] methods that build a representative replay buffer to learn
accurate estimates or low-dimensional representations. An alternative line of work
focuses on discovering a set of skills in an unsupervised way. Our approach falls in
this category, on which we now focus this section.

Skill discovery based on MI maximization was first proposed in VIC [GRW16],
where the trajectories’ final states are considered in the reverse form of eq. (4.1) and
the policy parameters π(z) and sampling distribution ρ are simultaneously learned
(with a fixed number of skills NZ). DIAYN [Eys+19] fixes a uniform ρ and weights
skills with an action-entropy coefficient (i.e., it additionally minimizes the MI be-
tween actions and skills given the state) to push the skills away from each other. DADS
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[Sha+20] learns skills that are not only diverse but also predictable by learned dy-
namics models, using a generative model over observations and optimizing a forward
form of MI I(s′; z|s) between the next state s′ and current skill z (with continuous
latent) conditioned on the current state s. EDL [Cam+20] shows that existing skill dis-
covery approaches can provide insufficient coverage and relies on a fixed distribution
over states that is either provided by an oracle or learned. SMM [Lee+19b] uses the
MI formalism to learn a policy whose state marginal distribution matches a target
state distribution (e.g., uniform). Other MI-based skill discovery methods include
Florensa et al. [FDA17], Hansen et al. [Han+19], Modhe et al. [Mod+20], and Xie
et al. [Xie+21], and extensions in non-episodic settings [Xu+20; Lu+20].

While most skill discovery approaches consider a fixed number of policies, a
curriculum with increasing NZ is studied in Achiam et al. [Ach+18] and Aubret et al.
[AMH20]. We consider a similar discriminability criterion in the constraint in (4.4)
and show that it enables to maintain skills that can be readily composed along a
tree structure, which can either increase or decrease the support of available skills
depending on the region of the state space. Recently, Zhang et al. [ZYX21] propose a
hierarchical RL method that discovers abstract skills while jointly learning a higher-
level policy to maximize extrinsic reward. Our approach builds on a similar promise
of composing skills instead of resetting to s0 after each execution, yet we articulate the
composition differently, by exploiting the direct-then-diffuse structure to ground skills
to the state space instead of being abstract. Our connection of the latent Z to the state
space S enables us to compose our skills so as to cover and navigate the state space in
the absence of extrinsic reward. Hartikainen et al. [Har+20] perform unsupervised
skill discovery by fitting a distance function; while their approach also includes a
directed part and a diffusive part for exploration, it learns only a single directed
policy and does not aim to cover the entire state space. Approaches such as DISCERN
[War+19] and Skew-Fit [Pon+20] learn a goal-conditioned policy in an unsupervised
way with an MI objective. As explained by Campos et al. [Cam+20], this can be
interpreted as a skill discovery approach with latent Z = S, i.e., where each goal state
can define a different skill. Conditioning on either goal states or abstract latent skills
forms two extremes of the spectrum of unsupervised RL. As argued in Sect. 4.4.1, we
target an intermediate approach of learning “cluster-conditioned” policies. Finally, an
alternative approach to skill discovery builds on “spectral” properties of the dynamics
of the MDP. This includes eigenoptions [MBB17; Mac+18] and covering options
[Jin+19; Jin+20b], and the algorithm of Bagaria et al. [BSK21] that builds a discrete
graph representation which learns and composes spectral skills.
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UPSIDE
directed
skill

UPSIDE
diffusing

part
VIC

policy
DIAYN
policy

state
variable

Sdiff Sdiff ST S

J {T, . . . ,
T +H}

{T, . . . ,
T +H} {T} {1, ..., T}

(α, β) (1, 0) (0, 1) (1, 0) (1, 1)

Table 4.1 – Instantiation of eq. (4.3) for each part of an UPSIDE policy, and for VIC [GRW16]
and DIAYN [Eys+19] policies.

4.4 Method

In this section we detail the three main components of UPSIDE, which is summarized
in Sect. 4.4.4.

4.4.1 Decoupled Policy Structure of Direct-then-Diffuse

While the trade-off between coverage and directedness is determined by the MI
objective, the amount of stochasticity of each policy (e.g., injected via a regularization
on the entropy over the actions) has also a major impact on the effectiveness of the
overall algorithm [Eys+19]. In fact, while randomness can promote broader coverage,
a highly stochastic policy tends to induce a distribution pπ(z)(sT ) over final states with
high entropy, thus increasing H(ST |Z) and losing in directedness. In UPSIDE, we
define policies with a decoupled structure (see Fig. 4.1 (A)) composed of a) a directed
part (of length T ) that we refer to as skill, with low stochasticity and trained to reach
a specific region of the environment and b) a diffusing part (of length H) with high
stochasticity to promote local coverage of the states around the region reached by the
skill.

Coherently with this structure, the state variable in the conditional entropy in
Equation (4.1) becomes any state reached during the diffusing part (denote by Sdiff
the random variable) and not just the skill’s terminal state. Following Section 4.2
we define an intrinsic reward rz(s) = log qϕ(z|s) − log ρ(z) and the skill of policy
z maximizes the cumulative reward over the states traversed by the diffusing part.
Formally, we can conveniently define the objective function:

max
π(z)

Eτ∼π(z)

[∑
t∈J

α · rz(st) + β · H(π(·|z, st))
]
, (4.3)
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where J = {T, . . . , T +H} and α = 1, β = 0 (resp.α = 0, β = 1) when optimizing
for the skill (resp. diffusing part). In words, the skill is incentivized to bring the
diffusing part to a discriminable region of the state space, while the diffusing part
is optimized by a simple random walk policy (i.e., a stochastic policy with uniform
distribution over actions) to promote local coverage around sT .

Table 4.1 illustrates how UPSIDE’s policies compare to other methods. Unlike VIC
and similar to DIAYN, the diffusing parts of the policies tend to “push” the skills
away so as to reach diverse regions of the environment. The combination of the
directedness of the skills and local coverage of the diffusing parts thus ensures that the
whole environment can be properly visited withNZ ≪ |S| policies.2 Furthermore, the
diffusing part can be seen as defining a cluster of states that represents the goal region
of the directed skill. This is in contrast with DIAYN policies whose stochasticity may
be spread over the whole trajectory. This allows us to “ground” the latent variable
representations of the policies Z to specific regions of the environment (i.e., the
clusters). As a result, maximizing the MI I(Sdiff;Z) can be seen as learning a set of
“cluster-conditioned” policies.

4.4.2 A Constrained Optimization Problem

In this section, we focus on how to optimize the number of policies NZ and the policy
sampling distribution ρ(z). The standard practice for eq. (4.1) is to preset a fixed
number of policies NZ and to fix the distribution ρ to be uniform (see e.g., [Eys+19;
Bau+21; Str+21]). However, using a uniform ρ over a fixed number of policies may
be highly suboptimal, in particular when NZ is not carefully tuned. In App. B.1.2 we
give a simple example and a theoretical argument on how the MI can be ensured to
increase by removing skills with low discriminability when ρ is uniform. Motivated
by this observation, in UPSIDE we focus on maximizing the number of policies that are
sufficiently discriminable. We fix the sampling distribution ρ to be uniform over N
policies and define the following constrained optimization problem

max
N≥1

N s.t. g(N) ≥ log η, where g(N) := max
π,ϕ

min
z∈[N ]

Esdiff [log qϕ(z|sdiff)] (Pη)
(4.4)

2eq. (4.1) is maximized by setting NZ = |S| (i.e., maxY I(X,Y ) = I(X,X) = H(X)), where each z
represents a goal-conditioned policy reaching a different state, which implies having as many policies
as states, thus making the learning particularly challenging.
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where qϕ(z|sdiff) denotes the probability of z being the policy traversing sdiff during
its diffusing part according to the discriminator and η ∈ (0, 1) defines a minimum
discriminability threshold. By optimizing for (Equation (4.4)), UPSIDE automatically
adapts the number of policies to promote coverage, while still guaranteeing that each
policy reaches a distinct region of the environment. Alternatively, we can interpret
Equation (4.4) under the lens of clustering: the aim is to find the largest number of
clusters (i.e., the region reached by the directed skill and covered by its associated
diffusing part) with a sufficient level of inter-cluster distance (i.e., discriminability)
(see Fig. 4.1). The following lemma (proof inApp. B.1.1) formally links the constrained
problem (Pη) back to the original MI objective.

Lemma 1. There exists a value η† ∈ (0, 1) such that solving (Pη†) is equivalent to maximizing
a lower bound on the mutual information objective maxNZ ,ρ,π,ϕ I(Sdiff;Z).

Since (Pη†) is a lower bound to the MI, optimizing it ensures that the algorithm
does not deviate too much from the dual covering and directed behavior targeted by
MI maximization. Interestingly, Lem. 1 provides a rigorous justification for using a
uniform sampling distribution restricted to the η-discriminable policies, which is in strik-
ing contrast with most of MI-based literature, where a uniform sampling distribution
ρ is defined over the predefined number of policies.

In addition, our alternative objective (Pη) has the benefit of providing a simple
greedy strategy to optimize the number of policies N . Indeed, the following lemma
(proof in App. B.1.1) ensures that startingwithN = 1 (where g(1) = 0) and increasing
it until the constraint g(N) ≥ log η is violated is guaranteed to terminate with the
optimal number of policies.

Lemma 2. The function g is non-increasing in N .

4.4.3 Composing Skills in a Growing Tree Structure

Both the original MI objective and our constrained formulation (4.4) depend on the
initial state s0 and on the length of each policy. Although these quantities are usually
predefined and only appear implicitly in the equations, they have a crucial impact
on the obtained behavior. In fact, resetting after each policy execution unavoidably
restricts the coverage to a radius of at most T +H steps around s0. This may suggest
to set T and H to large values. However, increasing T makes training the skills more
challenging, while increasing H may not be sufficient to improve coverage.
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Instead, we propose to “extend” the length of the policies through composition.
We rely on the key insight that the constraint in (4.4) guarantees that the directed skill of
each η-discriminable policy reliably reaches a specific (and distinct) region of the environment
and it is thus re-usable and amenable to composition. We thus propose to chain the skills
so as to reach further and further parts of the state space. Specifically, we build a
growing tree, where the root node is a diffusing part around s0, the edges represent the
skills, and the nodes represent the diffusing parts. When a policy z is selected, the directed
skills of its predecessor policies in the tree are executed first (see Fig. B.3 in App. B.2
for an illustration). Interestingly, this growing tree structure builds a curriculum
on the episode lengths which grow as the sequence (iT + H)i≥1, thus avoiding the
need of prior knowledge on an adequate horizon of the downstream tasks.3 Here
this knowledge is replaced by T and H which are more environment-agnostic and
task-agnostic choices as they rather have an impact on the size and shape of the learned
tree (e.g., the smaller T and H the bigger the tree).

4.4.4 Implementation

We are now ready to introduce the UPSIDE algorithm, which provides a specific
implementation of the components described before (see Fig. 4.1 for an illustration,
Alg. algorithm 4.1 for a short pseudo-code and Alg. B.1 in App. B.2 for the detailed
version). We first make approximations so that the constraint in eq. (4.4) is easier to
estimate. We remove the logarithm from the constraint to have an estimation range
of [0, 1] and thus lower variance. 4 We also replace the expectation over sdiff with an
empirical estimate q̂ B

ϕ (z) = 1
|Bz |

∑
s∈Bz

qϕ(z|s), where Bz denotes a small replay buffer,
which we call state buffer, that contains states collected during a few rollouts by the
diffusing part of πz. In our experiments, we take B = |Bz| = 10H . Integrating this in
eq. (4.4) leads to

max
N≥1

N s.t. max
π,ϕ

min
z∈[N ]

q̂ B
ϕ (z) ≥ η (4.5)

3See e.g., the discussion in [MPR21] on the importance of properly choosing the training horizon in
accordance with the downstream-task horizon the policy will eventually face.

4While Gregor et al. [GRW16] and Eysenbach et al. [Eys+19] employ rewards in the log domain,
we find that mapping rewards into [0, 1] works better in practice, as observed in [War+19; Bau+21].
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where η is an hyper-parameter.5 From Lem. 2, this optimization problem in N can
be solved using the incremental policy addition or removal in Alg. 4.1 (lines 8 & 14),
independently from the number of initial policies N .

Algorithm 4.1: UPSIDE

1 Parameters: Discriminability threshold η ∈ (0, 1), branching factor N start, Nmax.
2 Initialize: Tree T initialized as a root node 0, policies candidates Q = {0}.
3 while Q ≠ ∅ do // tree expansion
4 Dequeue a policy z ∈ Q and create N = N start policies C(z).
5 PolicyLearning(T , C(z)).
6 if minz′∈C(z) q̂

B
ϕ (z′) > η then // Node addition

7 while minz′∈C(z) q̂
B
ϕ (z′) > η and N < Nmax do

8 Increment N = N + 1 and add one policy to C(z).
9 PolicyLearning(T , C(z)).

10 end
11 end
12 else // Node removal
13 while minz′∈C(z) q̂

B
ϕ (z′) < η and N > 1 do

14 Reduce N = N − 1 and remove least discriminable policy from C(z).
15 PolicyLearning(T , C(z)).
16 end
17 end
18 Add η-discriminable policies C(z) to Q, and to T as nodes rooted at z.
19 end

We then integrate the optimization of Equation (4.5) into an adaptive tree expan-
sion strategy that incrementally composes skills (Sect. 4.4.3). The tree is initialized
with a root node corresponding to a policy only composed of the diffusing part
around s0. Then UPSIDE iteratively proceeds through the following phases: (Expan-
sion) While policies/nodes can be expanded according to different ordering rules
(e.g., a FIFO strategy), we rank them in descending order by their discriminability
(i.e., q̂ B

ϕ (z)), thus favoring the expansion of policies that reach regions of the state
space that are not too saturated. Given a candidate leaf z to expand from the tree,
we introduce new policies by adding a set C(z) of N = N start nodes rooted at node z
(line 5, see also steps (A) and (D) in Fig. 4.1). (Policy learning) The new policies are

5Ideally, we would set η = η† from Lem. 1, however η† is non-trivial to compute. A strategy may
be to solve (Pη′) for different values of η′ and select the one that maximizes the MI lower bound
E [log qϕ(z|sdiff)− log ρ(z)]. In our experiments we rather use the same predefined parameter of η = 0.8
which avoids computational overhead and performs well across all environments.
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optimized in three steps (see App. B.2 for details on the PolicyLearning subroutine):
i) sample states from the diffusing parts of the new policies sampled uniformly from
C(z) (state buffers of consolidated policies in T are kept in memory), ii) update the
discriminator and compute the discriminability q̂ B

ϕ (z′) of new policies z′ ∈ C(z), iii)
update the skills to optimize the reward (Sect. 4.4.1) computed using the discrim-
inator (see step (B) in Fig. 4.1). (Node adaptation) Once the policies are trained,
UPSIDE proceeds with optimizingN in a greedy fashion. If all the policies in C(z) have
an (estimated) discriminability larger than η (lines 6-8), a new policy is tentatively
added to C(z), the policy counterN is incremented, the policy learning step is restarted,
and the algorithm keeps adding policies until the constraint is not met anymore or a
maximum number of policies is attained. Conversely, if every policy in C(z) does not
meet the discriminability constraint (lines 12-14), the one with lowest discriminability
is removed from C(z), the policy learning step is restarted, and the algorithm keeps
removing policies until all policies satisfy the constraint or no policy is left (see step
(C) in Fig. 4.1). The resulting C(z) is added to the set of consolidated policies (line 18)
and UPSIDE iteratively proceeds by selecting another node to expand until no node
can be expanded (i.e., the node adaptation step terminates with N = 0 for all nodes) or
a maximum number of environment iterations is met.

4.5 Experiments

Our experiments investigate the following questions: i) Can UPSIDE incrementally
cover an unknown environment while preserving the directedness of its skills? ii) Fol-
lowing the unsupervised phase, how can UPSIDE be leveraged to solve sparse-reward
goal-reaching downstream tasks? iii) What is the impact of the different components
of UPSIDE on its performance?

We report results on navigation problems in continuous 2D mazes6 and on con-
tinuous control problems [Bro+16a; TET12]: Ant, Half-Cheetah and Walker2d. We
evaluate performance with the following tasks: 1) “coverage” which evaluates the
extent to which the state space has been covered during the unsupervised phase, and
2) “unknown goal-reaching” whose objective is to find and reliably reach an unknown

6The agent observes its current position and its actions (in [−1,+1]) control its shift in x and y
coordinates. We consider two topologies of mazes illustrated in Fig. 4.2 with size 50 × 50 such that
exploration is non-trivial. The Bottleneck maze is a harder version of the one in Campos et al. [Cam+20,
Fig. 1] whose size is only 10× 10.
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Bottleneck
Maze U-Maze

RANDOM 29.17 (±0.57) 23.33 (±0.57)

DIAYN-10 17.67 (±0.57) 14.67 (±0.42)

DIAYN-20 23.00 (±1.09) 16.67 (±1.10)

DIAYN-50 30.00 (±0.72) 25.33 (±1.03)

DIAYN-curr 18.00 (±0.82) 15.67 (±0.87)

DIAYN-hier 38.33 (±0.68) 49.67 (±0.57)

EDL-10 27.00 (±1.41) 32.00 (±1.19)

EDL-20 31.00 (±0.47) 46.00 (±0.82)

EDL-50 33.33 (±0.42) 52.33 (±1.23)

SMM-10 19.00 (±0.47) 14.00 (±0.54)

SMM-20 23.67 (±1.29) 14.00 (±0.27)

SMM-50 28.00 (±0.82) 25.00 (±1.52)

Flat UPSIDE-10 40.67 (±1.50) 43.33 (±2.57)

Flat UPSIDE-20 47.67 (±0.31) 55.67 (±1.03)

Flat UPSIDE-50 51.33 (±1.64) 57.33 (±0.31)

UPSIDE 85.67 (±1.93) 71.33 (±0.42)

Table 4.2 – Coverage on Bottleneck Maze and U-Maze:
UPSIDE covers significantly more regions of the discretized
state space than the other methods. The values represent
the number of buckets that are reached, where the 50× 50
space is discretized into 10 buckets per axis. To compare
the global coverage of methods (and to be fair w.r.t. the
amount of injected noise that may vary across methods),
we roll-out for each model its associated deterministic poli-
cies.

UP
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N-

50
ED

L-
50

Figure 4.2 – Policies learned on
the Bottleneck Maze (see Fig. B.8
in App. B.3 for the other meth-
ods): contrary to the baselines,
UPSIDE successfully escapes the
bottleneck region.
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goal location through fine-tuning of the policy. We perform our experiments based
on the SaLinA framework [Den+21].

We compare UPSIDE to different baselines. First we consider DIAYN-NZ [Eys+19],
where NZ denotes a fixed number of skills. We introduce two new baselines derived
from DIAYN: a) DIAYN-curr is a curriculum variant where the number of skills is au-
tomatically tuned following the same procedure as in UPSIDE, similar to [Ach+18],
to ensure sufficient discriminability, and b) DIAYN-hier is a hierarchical extension
of DIAYN where the skills are composed in a tree as in UPSIDE but without the diffus-
ing part. We also compare to SMM [Lee+19b], which is similar to DIAYN but includes
an exploration bonus encouraging the policies to visit rarely encountered states. In
addition, we consider EDL [Cam+20] with the assumption of the available state distri-
bution oracle (since replacing it by SMM does not lead to satisfying results in presence
of bottleneck states as shown in [Cam+20]). Finally, we consider the RANDOM pol-
icy, which samples actions uniformly in the action space. We use TD3 as the policy
optimizer [FHM18] though we also tried SAC [Haa+18] which showed equivalent
results than TD3 with harder tuning. Similar to e.g., Eysenbach et al. [Eys+19] and
Bagaria and Konidaris [BK20], we restrict the observation space of the discriminator
to the cartesian coordinates (x, y) for Ant and x for Half-Cheetah and Walker2d. All
algorithmswere ran on Tmax = 1e7 unsupervised environment interactions in episodes
of size Hmax = 200 (resp. 250) for mazes (resp. for control). For baselines, models are
selected according to the cumulated intrinsic reward (as done in e.g., [Str+21]), while
UPSIDE, DIAYN-hier and DIAYN-curr are selected according to the highest number of
η-discriminable policies. On the downstream tasks, we consider ICM [Pat+17] as an
additional baseline. See Section B.3 for the full experimental details.

Coverage. We analyze the coverage achieved by the various methods following an
unsupervised phase of at most Tmax = 1e7 environment interactions. For UPSIDE, we
report coverage for the skill and diffusing part lengths T = H = 10 in the continuous
mazes (see App. B.4.4 for an ablation on the values of T,H) and T = H = 50 in control
environments. Fig. 4.2 shows that UPSIDE manages to cover the near-entirety of the
state space of the bottleneck maze (including the top-left room) by creating a tree
of directed skills, while the other methods struggle to escape from the bottleneck re-
gion. This translates quantitatively in the coverage measure of Table 4.2 where UPSIDE
achieves the best results. As shown in Fig. 4.3 and 4.4, UPSIDE clearly outperforms
DIAYN and RANDOM in state-coverage of control environments, for the same number
of environment interactions. In the Ant domain, traces from DIAYN (Fig. 4.4b) and
discriminator curves in App. B.4.3 demonstrate that even though DIAYN successfully
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Figure 4.3 – Coverage on control environments: UPSIDE covers the state
space significantly more than DIAYN and RANDOM. The curve represents
the number of buckets reached by the policies extracted from the un-
supervised phase of UPSIDE and DIAYN as a function of the number of
environment interactions. DIAYN and UPSIDE have the same amount of
injected noise. Each axis is discretized into 50 buckets.
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(a) UPSIDE policies on
Ant

(b) DIAYN policies on Ant
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(c) Fine-tuning on Ant

Figure 4.4 – (a) & (b) Unsupervised phase on Ant: visualization of the policies learned by
UPSIDE and DIAYN-20. We display only the final skill and the diffusing part of the UPSIDE
policies. (c) Downstream tasks on Ant: we plot the average success rate over 48 unknown
goals (with sparse reward) that are sampled uniformly in the [−8, 8]2 square (using stochastic
roll-outs) during the fine-tuning phase. UPSIDE achieves higher success rate than DIAYN-20
and TD3.
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fits 20 policies by learning to take a few steps then hover, it fails to explore the environ-
ment. In Half-Cheetah and Walker2d, while DIAYN policies learn to fall on the agent’s
back, UPSIDE learns to move forward/backward on its back through skill composition.

(a) UPSIDE: before and after fine-
tuning

(b) DIAYN (c) EDL (d) ICM

Figure 4.5 – Downstream task performance on Bottleneck Maze: UPSIDE achieves higher
discounted cumulative reward on various unknown goals (See Fig. B.9 in App. B.3 for SMM and
TD3 performance). From each of the 16 discretized regions, we randomly sample 3 unknown
goals. For every method and goal seed, we roll-out each policy (learned in the unsupervised
phase) during 10 episodes and select the one with largest cumulative reward to fine-tune
(with sparse reward r(s) = I[∥s− g∥2 ≤ 1]). Formally, for a given goal g the reported value
is γτI[τ ≤ Hmax] with τ := inf{t ≥ 1 : ∥st − g∥2 ≤ 1}, γ = 0.99 and horizon Hmax = 200.

Unknown goal-reaching tasks. We investigate how the tree of policies learned by
UPSIDE in the unsupervised phase can be used to tackle goal-reaching downstream
tasks. All unsupervised methods follow the same protocol: given an unknown7 goal g,
i) we sample rollouts over

Figure 4.6 – For an
unknown goal loca-
tion, UPSIDE identifies a
promising policy in its
tree and fine-tunes it.

the different learned policies, ii) then we select the best pol-
icy based on the maximum discounted cumulative reward
collected, and iii) we fine-tune this policy (i.e., its sequence
of directed skills and its final diffusing part) to maximize
the sparse reward r(s) = I[∥s− g∥2 ≤ 1]. Fig. 4.5 reports the
discounted cumulative reward on various goals after the
fine-tuning phase. We see that UPSIDE accumulates more
reward than the other methods, in particular in regions
far from s0, where performing fine-tuning over the entire
skill path is especially challenging. In Fig. 4.6 we see that
UPSIDE’s fine-tuning can slightly deviate from the original
tree structure to improve the goal-reaching behavior of its
candidate policy. We also perform fine-tuning on the Ant
domain under the same setting. In Fig. 4.4c, we show that
UPSIDE clearly outperforms DIAYN-20 and TD3 when we evaluate the average success

7Notice that if the goal was known, the learned discriminator could be directly used to identify the
most promising skill to fine-tune.
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rate of reaching 48 goals sampled uniformly in [−8, 8]2. Note that DIAYN particularly
fails as its policies learned during the unsupervised phase all stay close to the origin
s0.

Ablative study of the UPSIDE components. The main components of UPSIDE that
differ from existing skill discovery approaches such as DIAYN are: the decoupled policy
structure, the constrained optimization problem and the skill chaining via the growing
tree. We perform ablations to show that all components are simultaneously required
for good performance. First, we compare UPSIDE to flat UPSIDE, i.e., UPSIDE with the
tree depth of 1 (T = 150, H = 50). Table 4.2 reveals that the tree structuring is key to
improve exploration and escape bottlenecks; it makes the agent learn on smaller and
easier problems (i.e., short-horizonMDPs) andmitigates the optimization issues (e.g.,
non-stationary rewards). However, the diffusing part of flat UPSIDE largely improves
the coverage performance over the DIAYN baseline, suggesting that the diffusing part
is an interesting structural bias on the entropy regularization that pushes the policies
away from each other. This is particularly useful on the Ant environment as shown
in Fig. 4.4. A challenging aspect is to make the skill composition work. As shown
in Table 4.1, DIAYN-hier (a hierarchical version of DIAYN) does not perform as well
as UPSIDE by a clear margin. In fact, UPSIDE’s direct-then-diffuse decoupling enables
both policy re-usability for the chaining (via the directed skills) and local coverage
(via the diffusing part). Moreover, as shown by the results of DIAYN-hier on the
bottleneck maze, the constrained optimization problem (Equation (4.4)) combined
with the diffusing part is crucial to prevent consolidating too many policies, thus
allowing a sample efficient growth of the tree structure.

4.6 Conclusion and Limitations

We introduced UPSIDE, a novel algorithm for unsupervised skill discovery designed
to trade off between coverage and directedness and develop a tree of skills that can be
used to perform efficient exploration and solve sparse-reward goal-reaching down-
stream tasks. Limitations of our approach that constitute natural venues for future
investigation are: 1) The diffusing part of each policy could be explicitly trained to
maximize local coverage around the skill’s terminal state; 2) UPSIDE assumes a good
state representation is provided as input to the discriminator, it would be interesting to
pair UPSIDE with effective representation learning techniques to tackle problems with
high-dimensional input; 3) As UPSIDE relies on the ability to reset to establish a root
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node for its growing tree, it could be relevant to extend the approach in non-episodic
environments.



Part II

Transformer-based Symbolic World
Models

Regression plays a crucial role in the modeling of systems. Model-based RL
(MBRL) is an agent learning approach, known for its superior sample efficiency, that
relies on learned predictive worldmodels. However, recent studies predominantly em-
ploy neural networks for this purpose, which often suffer from limited generalization
performance in scenarios with limited data availability. Consequently, model-based
algorithms generally underperform compared to their model-free counterparts due
to inaccurate world modeling. In this study, we investigate the application of sym-
bolic regression as an alternative method for acquiring predictive equation-like models
that offer interpretability and demonstrate superior generalization capabilities. We
hypothesize and show that the latter helps mitigating the need to augment agents
with adaptations modules such as the ones presented in Part I.

We propose and demonstrate that these models help alleviate the necessity of
augmenting agents with adaptation modules, as presented in Part I. Moreover, we
formally introduce the problem of symbolic regression, which involves discovering
analytical expressions from data, and explore a collection of techniques collectively
referred to as Deep Generative Symbolic Regression. These techniques approach the
task as a natural language processing problem utilizing generative models. Finally,
we conduct experiments to evaluate the effectiveness of symbolic regression within
the context of MBRL.



Chapter 5

Symbolic Regression

5.1 Motivation

Regression is a central problem in machine learning that involves predicting con-
tinuous outcomes based on input variables; given a set of n observations, i.e. fea-
tures {xi}i≤N and target variable {yi}i≤N , it implies finding a function f such that
yi ≈ f(xi),∀i ≤ N . As mentioned in the introductory paragraph of the present part, it
is a core component of MBRL for learning predictive dynamics models. The ultimate
goal of achieving generalization as explained in Section 2.3.1; to achieve this, careful
attentionmust be paid to the selection of the hypothesis spaceF fromwhich f belongs
to, as it directly affects the model’s ability to generalize to unseen data. Some methods,
e.g. linear or polynomial regression, heavily restrict the class of functions allowed;
they are easy to fit, provide interpretable models but may underfit the data by over-
simplifying relationships and limiting flexibility. In contrast, approaches with high
capacity, irrespective of their parametric and non-parametric properties, offer greater
flexibility and can capture complex relationships and patterns. However, they run
the risk of overfitting, where the model becomes too sensitive to noise and struggles
to generalize to new, unseen data. Regularization techniques have been developed
to address this issue by constraining the model’s complexity, reducing the risk of
overfitting to the training data. As suggested by the No Free Lunch theorem [WM97],
the optimal choice of algorithm depends on the specific problem, available data, and
the desired trade-off between model complexity, interpretability, and generalization.

Symbolic regression (SR) attempts at discovering f from the class F of inter-
pretable analytical expressions with low-complexity. Human-readable models have
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shown to be particularly useful to gain a deeper understanding of the underlying
mechanisms of physical systems, e.g., materials sciences [WWR19; Kab+21; Ma+22]
or physics [SL09; Vad+20; Sun+22; Cra+20; Her+19; UT20]. SR is a challenging task,
which implies composing inherently discrete objects (operators and variables) tomake
the resulting expression fit well the given data. It involves simultaneously finding
the structure, i.e. the "shape" of the expression, its operators (from a set of allowed
operators e.g. ?? in chapter 6), variables, and the numerical parameters – constants – of
an expression. [VP22] showed that SR is NP-Hard, therefore typical approaches are
based on heuristics. The recent benchmarking effort SRBench [La +21a] has shown
that SR algorithms have superior generalization on a set of real-world and synthetic
datasets than classical regression algorithms, e.g. decision-tree ensembles or neural
networks.

5.2 Problem formalization

Let us denote by F the family of symbolic expressions1 that form the search space
of the SR problem. Generally speaking, F is defined by the set of building blocks
from which expressions can be composed [VP22]. These usually include constants
(possibly sampled from a distribution, e.g., N (0, 1)), variables, and basic operators as
well as trigonometric or transcendental ones (e.g., +,−,×,÷, sin, cos, exp, log).

These expressions can be encoded as computation trees as shown in fig. 5.1. In an
analytical expression, the tree structure, associated operators and variables are usually
grouped under the name of expression form, skeleton or structure, and numerical
constants are degrees of freedom – for a fixed structure – on which one can apply
continuous optimization techniques.

A common formulation of SR poses to seek a well-fitting expression for the dataset
D = {(xi, yi)}i≤N where (∀i ≤ Nxi, yi) ∈ Rd × R by finding f ∈ F that minimizes
prediction errors:

f ∗ = arg min
f∈F

L(f,D) (5.1)

where commonly used risk functions can be the expected absolute error, expected
squared error or the coefficient of determination R2. In this work, we will consider

1Note that even though different expressions may be functionally equivalent, this is normally not
taken into account in existing approaches, as determining functional equivalence can be undecid-
able [BL82].
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Figure 5.1 – (Left) An illustration of the SR problem (from [TID23]): the algorithm observes
the black dots and tries to discover the x(t) = exp (−αt) sin (ft+ ϕ). (Right) Description of
x(t) as a tree where constants are represented by constant placeholders θ.

L = −R2 where:

R2(f,D) = 1− MSE(y, f(x))
VAR(y) = 1−

∑
i (yi − f(xi))2∑
i(yi − yi)2 . (5.2)

R2 is classically used in statistics, but it is unbounded, hence a single bad prediction
can cause the average R2 over a set of examples to be extremely bad. To circumvent
this, we setR2 = 0 upon pathological examples as in [La +21a], which can be obtained
by finding the expression f = ȳ.

Certain works include regularization terms in the loss function, i.e. λC(f), where
λ ∈ R controls the regularization strength andC : F 7→ R is a function of the complexity
of f . Its purpose is to reduce overfitting (equivalently improve generalization), as
well as improving the interpretability of f . In SRBench, complexity is defined as the
expression size (i.e., the number of operators, variables and constants in the expression,
each counted with the same weight). There exists different definition of complexity,
e.g. considering the structure of the expression tree and using different weights for
operators, constants and variables [Kom+15b].

Evaluation setting. Recently, [La +21a] proposed SRBench, a benchmark to evaluate
SRmethods in a rigorousways, with a set of design choices. Its repository contains a set
of 252 regression datasets from the PennMachine Learning Benchmark (PMLB)[Fri01]
in addition to 14 open-source SR and 7 ML baselines. The datasets consist in "ground-
truth" problems where the true underlying function is known, as well as "black-
box" problems which are more general regression datasets without an underlying
ground truth. Each dataset is split into 75% training data and 25% test data, on which
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performance is evaluated. The performance of algorithms is measured in terms of
trade-off between accuracy represented by the R2 on the test set and expression size.

In the following sections, we first review main families of SR approaches then
propose a general formulation of the SR problem, which allows to include every
approach into a unifying framework.

5.3 Algorithms

Two main families to SR are Genetic Programming (GP) and neural approaches. GP
approaches have been dominanting the SR literature and the latter have only emerged
a few years ago thanks to the increasing attention to deep learning. By no means
exhaustive, the following review aims at showcasing the main ideas behind those for
the reader to grasp the main differences between GP and neural approaches.

5.3.1 Genetic Programming

Genetic Programming (GP) is a meta-heuristic inspired by natural evolution and
is a popular approach for many combinatorial optimization problems, including
discovering computer programs [Koz94; PLM08]. GP lends particularly well to SR
as expressions are tree structures. As illustrated in fig. 5.2, they operate by initially
sampling a population of random trees then modifying the candidate population
using the following following steps in an iterative fashion.

1. mutation and cross-overs (illustrated respectively in Figure 5.3a and fig. 5.3b)

2. evaluation of L by executing the trees (potentially constant optimization)

3. selection, i.e. stochastic survival of the fittest.
GP-based SR algorithms are a form of hill-climbing where search is poorly guided,

i.e. actions are generally randomly picked irrespective of the the dataset and current
expression, thus leading to dramatically changing functions (in terms of outputs),
invalid or bad expressions; finding an accurate expression can sometimes appear to
be explained by sheer-luck. The GP community has developed over the years a set of
heuristics to improve search as described non-exhaustively below for the interested
reader (not required to understand the manuscript).
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Figure 5.2 – Illustration borrowed from [Cra23] of the high-level population evolution in GP
algorithms, notably the PySR [Cra20] algorithm.

Special mutations that leverage program semantics by using the candidate’s func-
tions intermediate outputs over training samples. For instance, SBP-GP [VAB19]
considers sub-problems by computing the intermediate objective at a given node.
Special treatment is granted to constants optimization as they are responsible for large
variations in the outputs. [Kom+20; Cra20] incorporates non-linear squares constants
optimization, respectively with Levenberg-Marquadt and BFGS.

Another line of work has reduced the size of search space at the cost of expres-
siveness by using structural constraints on the program representation. For instance,
[McC11; La +18; AKO14] uses linear combinations of evolved expressions, the lat-
ter optimizing constants with Lasso regularization for sparse models. [FA21] (resp.
[Fra22]) manually defines expressions to be composition of a unary function and
a polynomial function (resp. invertible unary function and rationale of polynomial
expressions).

During selection, the sub-population that survives trades off between multiple
competing objectives, e.g. accuracy, complexity, model age [SL09; SL11]. Objectives
specific to SR have also been introduced, e.g. [La +19] keeps models that performwell
in specific regions of the training data, or shape-constrained SR [Kro+22; Hai+22]
keeps models that satisfy a set of hypotheses, e.g. monotonically increasing functions.
The trade-off between the multiple objectives is usually dealt with Pareto optimization
methods [SK05].

Being a greedy search approach, GP algorithms are prone to falling into local
minima, and extensive exploration leads to relatively large run times. In practice
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(a) Mutation (b) Cross-over
Figure 5.3 – Illustrations of evolution operators borrowed from [Cra23]; a mutation (a) and a
cross-over (b) is a component recombination between parent expressions.

with time constraints, such as the 24 hours-limit in [La +21a], the most accurate
GP methods provide expressions with overly large complexity thus preventing the
derivation of meaningful physical insights; on the Feynman datasets [UT20], whose
ground-truth expressions have averaged complexity 20 as defined in [La +21b], the
current state-of-the-art [BKK20b] predicts expressions with averaged size ≈ 100.

5.3.2 Neural approaches

Lately, there has been a growing interest in the SR community for neural network-
based approaches. Firstly, with approaches including neural predictors as a subroutine
within a GP algorithm. For instance, [UT20] use NNs to explicitly detect data proper-
ties (e.g., symmetries in the data) which are then used to prune the search space of
SR.

More recent works, we will group under the name Deep Generative Symbolic Regres-
sion (DGSR), directly act upon generating expression candidates. They tackle the SR
problem as a natural language problem by representing expressions (equivalently
trees) as a sentence, i.e. f is represented by a sequence of tokens [e0, . . . , eT ]. For
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instance, x(t) from fig. 5.1 can be represented in a prefixed form as

[×, exp,×, θ1, t, sin,+, θ2,×, θ3, t]

Expression candidates are generated using auto-regressive sampling following the
distribution g. The probability distribution of sample f , or equivalently [e0, . . . , eT ] is:

Pf (f) = g(e0)Π1≤t≤Tg(et|e<t) (5.3)

As the first work in generative models for SR, DSR [Pet+19] proposed an approach
where g is a recurrent NN, whose parameters are updated using policy gradients with
the accuracy of sampled expressions as rewards. Subsequent work have built on top
of DSR, e.g. by adding GP sampling [Mun+21] or variable units considerations to
restrict generations to be homogeneous [TID23].

Another line of work learn conditional generativemodels that generate expressions
by "looking" at the data at hand, which means that Equation (5.3) becomes:

Pf (f |D) = g(e0|D)Π1≤t≤Tg(et|e<t,D) (5.4)

Several works [Big+20; Big+21; Val+21; Kam+22] have considered a fixed g distribu-
tion but trained on synthetic examples and augmented by the considered dataset D
as an input. During training, the learning problem becomes a supervised learning
problem as the ground-truth expression is known and used as a target in a multi-step
prediction problem. Rather than focusing on the accuracy of the sampled expressions
regarding some criteria such as Equation (5.2) as in DSR, they train on the next-token
prediction objective. We will give further details on extensions in Section 5.4 and on
synthetic training Chapter 6.

5.4 Meta-learning view of symbolic regression

We now generalize the SR problem described in section 5.2 to the case where good
performance is sought across multiple datasets (as one usually seeks a generally-
competent search algorithm rather than a dataset-specific one). In SRBench, this is
evaluated by considering the ranking of methods by their average or median perfor-
mance over the different datasets that compose the benchmark.
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Algorithm Pre-train of P 0
f P t

f conditioned by Update of P t
f

GP [PLM08] No Population & Genetic operators Selection operators
EDA [Kim+14] No Explicit Factorization Selection operators
E2E [Kam+22] SSL on synthetic data D & θ0 No
DSR [Pet+19] No θt Update θt with policy gradients
uDSR [Lan+22] SSL on synthetic data D & θt Update θt with policy gradients

DGSR+MCTS [Kam+23] SSL and MCTS MCTS Update θt & ψt

on synthetic data using D & θt & ψt via Selection & Imitation

Table 5.1 – Unifying view of SR. θ represents weights of a probabilistic neural network that
embodies Pf . ψ is parameters of a critic network (as explained in chapter 7). We dive into the
details of [Kam+22] in chapter 6 and [Kam+23] in chapter 7.

Given Ω a distribution over datasets D, and a limited budget for the exploration
process T , the general objective of SR is to define an algorithm that produce distri-
butions of expressions f ∈ F , that minimize the following theoretical risk at step
T :

RΩ,F = ED∼Ω(D)Ef∼PT
f

(D)[L(f,D)] (5.5)

with P T
f (D) the final distribution over expressions provided by the considered algo-

rithm. The typical loss function L considered in the SR literature is the negative R2 as
explained in section 5.2.

Considering algorithms that start from P 0
f (D) to incrementally build P T

f (D), the
problem can be decomposed into two main steps: 1) define an accurate starting
point P 0

f (D) for the search process; 2) specify the exploration process that allows
to update P 0

f (D) to form P T
f (D) in a maximum of T iterations (search trials). Some

approaches in the literature only consider the first step (i.e., P T
f (D) = P 0

f (D) —no
search process). Others only investigate step 2 (i.e., P 0

f (D) = P 0
f (∅) —no inductive

context), as described in the following. Note the algorithm only observe datasets from
Ω at search time.

5.4.1 Pre-training: How to define P 0
f

The formulation of Equation (5.5) is reminiscent of meta-learning or few-shot learning
where the goal is to train a model on a set of training tasks such that it can solve new
ones more efficiently [Sch87; TP12; FAL17]. In that vein, many approaches focus
on learning a generative model to induce an implicit form of P 0

f . However, since Ω
is unknown before search/test time, P 0

f is obtained in different ways. For example,
traditionally in GP, the dataset does not play a role (i.e., it is P 0

f (∅)), but there exist
different strategies to randomly initialize the population [Loo07; PK16; AH18].
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As explained in Section 5.3.2, generative models [Big+21; Val+21; Kam+22] are
trained on large synthetic datasets built from randomly generated expressions [LC19]
built without knowing expressions underlying datasets in Ω; we denote this process
pre-training in what follows Although these methods tend to produce expressions
similar to the synthetic ones seen during pre-training, they have the advantage of
explicitly considering the dataset as an input: Pf is conditioned on D. Consequently,
pre-training approaches to DGSR can produce expressions by the simple action of
sampling. Different decoding strategies can be considered, for instance Beam Search
[WR16]. However, sampling from P 0

f is limited as the accuracy improvement stops
after a small number of samples (50 in [Kam+22]), and can perform badly on out-of-
domain datasets given at test-time.

Unlike pre-trained approaches, GP and DSR [Pet+19] do not leverage past experi-
ence: every new problem is learned from scratch.

5.4.2 Search Process: How to build P T
f

Given a dataset D, the aim of any process at search time is to define a procedure
to build an accurate distribution P T

f (D) from the starting one P 0
f (D), via a mix of

exploration and exploitation (maximization of Equation (5.5)).
In that aim, the learning process of different SR algorithms can be unified into a

general, iterative framework: until the termination condition is not met (e.g., runtime
budged exceeded or satisfactory accuracy reached),
(i) sample one or more symbolic expressions f ∈ F using the current probability

distribution P t
f at step t;

(ii) update P t
f using statistics of the sample, such as the accuracy of the expression.

Steps (i) and (ii) constitute an iteration of the framework.
Different SR algorithms have considered various definitions of P t

f and strategies
to update it. Its definition can be implicit, explicit, or learned, and be biased towards
certain expression structures. Table 5.1 provides a non-exhaustive summary of popular
algorithms, which we elaborate upon in the following paragraphs.

GP implements step (i) by maintaining a population of expressions which under-
goes stochastic modifications (via crossover and mutation), and step (ii) by selection,
i.e., stochastic survival of the fittest, where better expressions are duplicated and
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worse ones are removed. In other words, sampling and updating P t
f is implicitly

defined by the heuristics that are chosen to realize the evolution.
Estimation of Distribution Algorithms (EDAs) attempt to be more principled than

GP by explicitly defining the form of P t
f [SS97; Hem+12; Kim+14]. Normally, P t

f

is factorized according to the preference of the practitioner, e.g., expression terms
can be modelled and sampled independently or jointly in tuples, or chosen among
multiple options as the search progresses, using, e.g., the minimum description length
principle [Har+99]. EDAs use methods similar to those of GP to realize step (ii).

In DSR [Pet+19], P t
f is modelled by the action of auto-regressive sampling from gϕ

and improvement of P t
f is realized by policy gradients using the accuracy of sampled

expressions as rewards. Though being very general and only biased by the model
parametrization θ, this approach was found to generate very short expressions with
low accuracy on SRBench. This is likely due to sparse reward and credit assignment
issues typical of RL [Sut84]. [Mun+21] addsGP search samples on top of DSR. Very re-
cently, the work by [Pet+19] was integrated with a pre-training component [Lan+22],
albeit in a large pipeline that also includes GP, NNs for search space reduction [UT20],
and linear regression. In [Kam+23], present in chapter 7, pre-training and search are
also combined using Monte-Carlo Tree Search.

In the recent benchmarking effort SRBench by [La +21a], modern GP algorithms
have shown to be the most successful. An interesting property that distinguishes GP
from other DGSR approaches is that its crossover and mutation operators tend to edit
existing expressions (thus preserving substantial parts of them), rather than sampling
them from scratch [Koz94; PLM08]. The algorithm we develop in Chapter 7 expands
expressions over time, similarly to GP.

5.5 Outline of the part

The following chapters will be dedicated to our contributions to the field of SR with
methods that were developed under this unifying view (section 5.4) of the learning
process of SR algorithms. Chapter 6 will describe our pre-training strategy (Sec-
tion 5.4.1) to define P 0

f (D) in [Kam+22] as well as place this work within its specific
related work. In Chapter F, we present [dAs+22] where we address the particular
problem of recurrence prediction, i.e. inferring the recurrence expression that gener-
ated a sequence of integer or float numbers. In Chapter G, we present [BBK23] where
we augment the model with additional context of prior knowledge on the problem.
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Finally, Chapter 7 will focus on [Kam+23] where we enable pre-training approaches
to be amenable to search (Section 5.4.2).

Lastly, Chapter 8 will explore the application of SR to model-based reinforcement
learning.
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Chapter 6

Pre-training deep generative symbolic
regression models

6.1 Introduction

Supervised training neural networks built for language modelling on large datasets of
synthetic examples has recently been proposed for SR [Val+21; Big+21]. They train
Transformer models [Vas+17] on expert examples, i.e. tuples (D, f) where the model
takes as input D and decodes auto-regressively the tokenized f .

As explained in section 5.2, analytical expressions are composed of both:
• skeleton, a parametric expression using variables and a pre-defined list of opera-

tors, e.g. +,×,÷, sqrt, exp, sin, which determines the general shape of the law
up to a choice of constants, e.g. f(x) = cos(ax+ b).

• numerical constants; they are estimated using optimization techniques, typically
the Broyden–Fletcher–Goldfarb–Shanno algorithm (BFGS).

Given a trained model, the inference of [Val+21; Big+21] follow a two-step pro-
cedure inspired from GP-based algorithms: first predict a candidate skeleton then
fit its constants. The skeleton is predicted via a simple forward pass, and a single
call to BFGS is needed, thus resulting in a significant speed-up compared to GP. In
these works, the language model is thus trained on the task of skeleton prediction.
These work are considerably less accurate as state-of-the-art GP, and have so far been
limited to low-dimensional functions (din ≤ 3). We argue that two reasons underlie
their shortcomings.
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Figure 6.1 – E2E outperforms previous DL-based methods and offers at least an order of
magnitude inference speedup compared to SOTAGP-basedmethods. Pareto plot comparing
the average test performance and inference time of our models with baselines provided by
the SRbench benchmark [La +21a], both on Feynman SR problems [UT20] and black-box
regression problems. We use colors to distinguish three families of models: deep-learning
based SR, genetic programming-based SR and classic machine learning methods (which do
not provide symbolic solutions). A similar Pareto plot against formula complexity is provided
in Fig. C.6.

First, skeleton prediction is an ill-posed problem that does not provide sufficient
supervision: different instances of the same skeleton can have very different shapes,
and instances of very different skeletons can be very close. Second, the loss function
minimized by BFGS can be highly non-convex: even when the skeleton is perfectly
predicted, the correct constants are not guaranteed to be found. For these reasons, we
believe, and will show, that removing the skeleton estimation as an intermediary step,
can greatly improve the SR capacities of language models.

Contributions In this chapter, we introduce E2E, a Transformer model trained on
synthetic datasets to perform end-to-end (E2E) symbolic regression: solutions are
predicted directly, without resorting to skeletons. To this effect, we leverage a hybrid
symbolic-numeric vocabulary, that uses both symbolic tokens for the operators and
variables and numeric tokens for the constants. One can then perform a refinement of
the predicted constants by feeding them as informed guess to BFGS, mitigating non-
linear optimization issues. Finally, we introduce generation and inference techniques
that allow our models to scale to larger problems: up to 10 input features against 3 in
concurrent works.

Evaluated over the SRBench benchmark [La +21a], our model significantly nar-
rows the accuracy gap with state-of-the-art GP techniques, while providing several
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orders of magnitude of inference time speedup (see Fig. 6.1). We are the first work
that considers inference time, i.e. time required to output a satisfactory expression, to
be an important property to tackle practical applications with time constraints, e.g.
control or reinforcement learning [Kub+21; Der+19]. We also demonstrate strong
robustness to noise and extrapolation capabilities.

6.2 Data generation

Our approach consists in training language models on vast synthetic datasets. Each
synthetic training example is a pair: a set of N points (x, y) ∈ RD × R as the input,
and an expression f such that y = f(x) as the target1 In what follows, we will explain
the process of constructure synthetic samples. We first show how we sample random
expressions f , then a set of N features (xi)i∈NN

in RD. Finally, we compute yi = f(xi).

6.2.1 Generating expressions

To sample functions f , we follow the seminal approach of Lample and Charton [LC19],
and generate random trees with mathematical operators as internal nodes and vari-
ables or constants as leaves. The procedure is detailed below (see Table C.1 in the
Appendix for the values of parameters):

1. Sample the desired input dimension din of the function f from U{1, Dmax}.
2. Sample the number of binary operators b from U{D − 1, D + bmax} then sample
b operators from U{+,−,×}2.

3. Build a binary tree with those b nodes, using the sampling procedure of [LC19].
4. For each leaf in the tree, sample one of the variables xd, d ∈ [[1, din]].
5. Sample the number of unary operators u from U{0, umax} then sample u oper-

ators from the list Ou in Table C.1, and insert them at random positions in the
tree.

6. For each variable xd and unary operator u, apply a random affine transformation,
i.e. replace xd by axd + b, and u by au+ b, with (a, b) sampled from Daff.

1We only consider functions from RD into R; the general case f : RD → RP can be handled as P
independent subproblems.

2Note that although the division operation is technically a binary operator, it appears much less
frequently than additions and multiplications in typical expressions [Gui+20], hence we replace it by
the unary operator inv:x→ 1/x.
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Figure 6.2 – Sketch of our model. During training, the inputs are all whitened. At inference,
we whiten them as a pre-processing step; the predicted function must then be unscaled to
account for the whitening.

As discussed quantitatively in App. C.3, the number of possible skeletons as well
as the random sampling of numerical constants guarantees that our model almost
never sees the same function twice, and cannot simply perform memorization. See
App. C.2 for examples of the skeleton of generated expressions.

6.2.2 Generating D

For each expression f : Rd
in → R, we sampleN ∈ U{10din, Nmax} input values xi ∈ Rd

in
from the distribution Dx described below, and compute the corresponding output
values yi = f(xi). If any xi is outside the domain of definition of f or if any yi is
larger 10100, the process is aborted, and we start again by generating a new expression.
Note when rejecting and resampling out-of-domain values of xi, the obvious and
cheaper alternative, we observed themodel used this additional information to predict
expressions with a restricted domain of definition.

To maximize the diversity of input distributions seen during training, we sample
our inputs from a mixture of distributions (uniform or gaussian), centered around k
random centroids3, see App. C.1 for some illustrations at din = 2. Input samples are
generated as follows:

1. Sample a number of clusters k ∼ U{1, kmax} and k weights wi ∼ U(0, 1), which
are then normalized so that∑iwi = 1.

2. For each cluster i ∈ Nk, sample a centroid µi ∼ N (0, 1)din, a vector of variances
σi ∼ U(0, 1)D and a distribution shape (gaussian or uniform) Di ∈ {N ,U}.

3For k →∞, such a mixture could in principe approximate any input distribution.
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3. For each cluster i ∈ Nk, sample ⌊wiN⌋ input points from Di(µi, σi) then apply a
random rotation sampled from the Haar distribution, thus allowing to obtain
correlated features.

4. Finally, concatenate all the points obtained and whiten them by substracting
the mean and dividing by the standard deviation along each dimension. We
observed experimentally that having "standardized" features helped the model
to get better performance.

6.3 Method

Below we describe our approach for end-to-end symbolic regression; please refer to
Fig. 6.2 for an illustration.

6.3.1 Model

Transformer We use a sequence to sequence Transformer architecture [Vas+17]
with 16 attention heads and an embedding dimension of 512, containing a total of
86M parameters. Like [Cha21], we observe that the best architecture for this problem
is asymmetric, with a deeper decoder: we use 4 layers in the encoder and 16 in the
decoder. A notable property of this task is the permutation invariance of the N input
points. To account for this invariance, we remove positional embeddings from the
encoder.

As shown in Fig. 6.3 and detailed in App. C.4, the encoder captures the most
distinctive features of the functions considered, such as critical points and periodicity,
and blends a mix of short-ranged heads focusing on local details with long-ranged
heads which capture the global shape of the function.

Tokenization We discretize the input and output of the model as follows. To repre-
sent mathematical functions as sequences, we enumerate the trees in prefix order, i.e.
direct Polish notation, as in [LC19]. Following [Cha21], we represent numbers in base
10 floating-point notation, round them to four significant digits, and encode them
as sequences of 3 tokens: their sign, mantissa (between 0 and 9999), and exponent
(from E-100 to E100). The precision of the mantissa can be either increased by either
representing as several tokens (which increases the sequence length) or using a larger
float vocabulary. This configuration yielded the best performance according to pre-
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Pre-training deep generative symbolic regression models

Figure 6.3 – Attention heads reveal intricate mathematical analysis. We considered the
expression f(x) = sin(x)/x, with N = 100 input points sampled between −20 and 20 (red
dots; the y-axis is arbitrary). We plotted the attention maps of a few heads of the encoder,
which are N ×N matrices where the element (i, j) represents the attention between point i
and point j. Notice that heads 2, 3 and 4 of the second layer analyze the periodicity of the
function in a Fourier-like manner.

liminary experiments. For example, the expression f(x) = cos(2.4242x) is tokenized
as [cos,mul,+,2424,E-3,x]. Note that the vocabulary of the decoder contains a mix
of symbolic tokens (operators and variables) and numeric tokens, whereas that of the
encoder contains only numeric tokens4.

Embedder Our model is provided N input points (x, y) ∈ Rdin+1, each of which is
represented as 3(din + 1) tokens of dimension demb. As D and N become large, this
results in long input sequences (e.g. 6600 tokens for din = 10 and N = 200), which
challenge the quadratic complexity of Transformers. To mitigate this, we introduce an
embedder to map each input point to a single embedding. The embedder pads the
empty input dimensions to Dmax, then feeds the 3(Dmax + 1)demb-dimensional vector
into a 2-layer fully-connected feedforward network (FFN) with ReLU activations,
which projects down to dimension demb5 The resulting N embeddings of dimension
demb are then fed to the Transformer.

Training We train the model to maximize the log-likelihood of the next token when
it conditions on previous tokens. We use the cross-entropy loss with the Adam
optimizer, warming up the learning rate from 10−7 to 2.10−4 over the first 10,000 steps,
then decaying it as the inverse square root of the number of steps, following [Vas+17].
We hold out a validation set of 104 examples from the same generator, and train our
models until the accuracy on the validation set saturates (around 50 epochs of 3M

4The embeddings of numeric tokens are not shared between the encoder and decoder.
5We explored various architectures for the embedder, but did not obtain any improvement; this

does not appear to be a critical part of the model.
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examples). Input sequence lengths vary significantly with the number of points N ; to
avoid wasteful padding, we batch together examples of similar lengths, ensuring that
a full batch contains a minimum of 10,000 tokens. On 32 GPU with 32GB memory
each, one epoch is processed in about half an hour.

6.3.2 Inference tricks

In this section, we describe three tricks to improve the performance of our model at
inference.

Table 6.1 – The importance of an end-to-end model with refinement.

Model Function f(x, y)

Target sin(10x) exp(0.1y)
Skeleton + BFGS − sin(1.7x)(0.059y + 0.19)

E2E no BFGS sin(9.9x) exp(0.1y)
E2E + BFGS random init − sin(0.095x) exp(0.27y)
E2E + BFGS model init sin(10x) exp(0.1y)

The skeleton approach recovers an incorrect skeleton. The E2E approach predicts the
right skeleton. Refinement worsens original prediction when randomly initialized,
and yields the correct result when initialized with predicted constants.

Refinement Previous language models for SR, such as [Big+21], follow a skeleton
approach: they first predict equation skeletons, then fit the constants with a non-linear
optimisation solver such as BFGS. In this work, we follow an mixed vocabulary (E2E)
approach: predicting simultaneously the function and the values of the constants.
However, we improve our results by adding a refinement step: fine-tuning the constants
a posteriori with BFGS, initialized with our model predictions6.

This results in a large improvement over the skeleton approach, as we show by
training a Transformer to predict skeletons in the same experimental setting. The
improvement comes from two reasons: first, prediction of the full formula provides
better supervision, and helps the model predict the skeleton; second, the BFGS routine
strongly benefits from the informed initial guess, which helps the model predict the
constants. This is illustrated qualitatively in Table 6.1, and quantitatively in Table 6.2.

6To avoid BFGS having to approximate gradients via finite differences, we provide the analytical
expression of the gradient using sympytorch [Kid21] and functorch [Hor21].
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Scaling As described in Section 6.2.2, all input points presented to the model during
training are whitened: their distribution is centered around the origin and has unit
variance. To allow accurate prediction for input points with a different mean and
variance, we introduce a scaling procedure during inference. Let f the function to
be inferred, x be the input points, and µ = mean(x), σ = std(x). As illustrated in
Fig. 6.2 we pre-process the input data by replacing x by x̃ = x−µ

σ
. The model then

predicts f̂(x̃), and we can recover an approximation of f by unscaling the variables
using x̃ = x−µ

σ
in f̂ .

This gives our model the desirable property to be insensitive to the scale of the
input points: DL-based approaches to SR are known to fail when the inputs are
outside the range of values seen during training [dAs+22; Cha21]. Note that here,
the scale of the inputs applies to the scale of the constants in the function f ; although
these coefficients are sampled in Daff during training, coefficients outside Daff can be
expressed by multiplication of constants in Daff.

Feature selection. Our method still remains improvable in scaling to datasets with
din > 10. The reason we restricted our model to dimension ≤ 10 is that the in-
put sequence length becomes prohibitively long beyond, and that generating high-
dimensional functions in an unbiased way becomes increasingly tricky. Nonetheless,
since the objective of SR is to output interpretable formulas, we argue that SR is most
useful for moderately low dimensional problems. For example, 1− 10 dimensional
problems already cover a large class of physical systems : for instance, point objects
can be represented by their position, speed and mass, 7 parameters. Additionally,
in many real world problems where more than 10 features are available, some of
the features are often irrelevant or heavily correlated. To mitigate this, one typically
carries out feature selection before modeling the data. We only keep the 10 features
most linearly correlated with the output.

Bagging and decoding Since our model was trained on N ≤ 200 input points, it
does not perform satisfactorily at inference when presented with more than 200 input
points. To take advantage of large datasets while accommodating memory constraints,
we perform bagging: whenever N is larger than 200 at inference, we randomly split
the dataset into B bags of 200 input points7.

7Smarter splits, e.g. diversity-preserving, could be envisioned, but were not considered here.
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For each bag, we apply a forward pass and generate C function candidates via
random sampling or beam search using the next token distribution. As shown in
App. C.6 (Fig. C.11), the more commonly used beam search [WR16] strategy leads
to much less good results than sampling due to the lack of diversity induced by
constant prediction (typical beams will look like sin(x), sin(1.1x), sin(0.9x), . . .). This
provides us with a set ofBC candidate solutions. SinceBC can become large, we rank
candidate functions (according to their error on all input points), get rid of redundant
skeleton functions and keep the best K candidates for the refinement step8. To speed
up the refinement, we use a subset of at most 1024 input points for the optimization.
The parameters B, C and K can be used as cursors in the speed-accuracy tradeoff: in
the experiments presented in Fig. 6.1, we selected B = 100, C = 10, K = 10.

Our model inference speed has two sources: the forward passes described above
on one hand (which can be parallelized up to memory limits of the GPU), and the
refinements of candidate expressions on the other (which are CPU-based and could
also be parallelized, although we did not consider this option here). Please note that
both can be parallelized.

6.4 Experiments

In this section, we present the results of our model. We begin by studying in-domain
accuracy, then present results on out-of-domain datasets.

6.4.1 In-domain performance

We report the in-domain performance of our models by evaluating them on a fixed
validation set of 100,000 examples, generated as per Section 6.2. Validation functions
are uniformly spread out over three difficulty factors: number of unary operators,
binary operators, and input dimension. For each function, we evaluate the perfor-
mance of the model when presented N = [50, 100, 150, 200] input points (x, y), and
prediction accuracy is evaluated on Ntest = 200 points sampled from a fresh instance
of the multimodal distribution described in Section 6.2.2.

8Though these candidates are the best functions without refinement, there are no guarantees that
these would be the best after refinement, especially as optimization is particularly prone to spurious
local optimas.
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Table 6.2 – Our approach outperforms the skeleton approach.

Model R2 Acc0.1 Acc0.01 Acc0.001

Skeleton + BFGS 0.43 0.40 0.27 0.17
E2E no BFGS 0.62 0.51 0.27 0.09

E2E + BFGS random init 0.44 0.44 0.30 0.19
E2E + BFGS model init 0.68 0.61 0.44 0.29

Metrics are computed over the 10, 000 examples of the evaluation set.

We assess the performance of our model using two popular metrics: R2-score [La
+21a] already presented in Chapter 5 and accuracy to tolerance τ [Big+21; dAs+22]:

R2 = 1−
∑Ntest
i (yi − ŷi)2∑Ntest
i (yi − ȳ)2 , Accτ = 1

(
max

1≤i≤Ntest

∣∣∣∣∣ ŷi − yiyi

∣∣∣∣∣ ≤ τ

)
, (6.1)

where 1 is the indicator function.
The accuracy metric provides an idea of the precision of the predicted expression

as it depends on a desired tolerance threshold. However, due to the presence of the
max operator, it is sensitive to outliers, and hence to the number of points considered
at test time (more points entails a higher risk of outlier). To circumvent this, we
discard the 5% worst predictions, following [Big+21].

End-to-end outperforms skeleton In Table 6.2, we report the average in-domain
results of our models. Without refinement, our E2E model outperforms the skeleton
model trained under the same protocol in terms of low precision prediction (R2 and
Acc0.1 metrics), but small errors in the prediction of the constants lead to lower per-
formance at high precision (Acc0.001 metric). The refinement procedure alleviates this
issue significantly, inducing a three-fold increase in Acc0.001 while also boosting other
metrics. Initializing BFGSwith the constants estimated in the E2E phase plays a crucial
role: with random initialization, the BFGS step actually degrades E2E performance.
However, refinement with random initialization still achieves better results than the
skeleton model: this suggests that the E2E model predicts skeletons better that the
skeleton model.

Ablation Fig. 6.4 (A,B,C) presents an ablation over three indicators of formula diffi-
culty (from left to right): number of unary operators, number of binary operators and
input dimension. In all cases, increasing the factor of difficulty degrades performance,
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Figure 6.4 – Ablation over the function difficulty (top row) and input difficulty (bottom
row). We plot the accuracy at τ = 0.1 (Eq. 6.1), see App. C.5 for the R2 score. We distinguish
four models: skeleton, E2E without refinement, E2E with refinement from random guess
and E2E with refinement. A: number of unary operators. B: number of binary operators. C:
input dimension. D: Low-resource performance, evaluated by varying the number of input
points. E: Extrapolation performance, evaluated by varying the variance of the inputs. F:
Robustness to noise, evaluated by varying the multiplicative noise added to the labels.

as one could expect. This may give the impression that our model does not scale
well with the input dimension, but we show that our model scales in fact very well
on out-of-domain datasets compared to concurrent methods (see Fig. C.10 of the
Appendix). We include a qualitative analysis on the improvement induced by the use
of mixture of distributions in App. C.5.

Fig. 6.4 (D) shows how performance depends on the number of input points fed
to the model, N . In all cases, performance increases, but much more signicantly for
the E2E models than for the skeleton model, demonstrating the importance of having
a lot of data to accurately predict the constants in the expression.
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Extrapolation and robustness In fig. 6.4 (E), we examine the ability of our models to
interpolate/extrapolate by varying the scale of the test points: instead of normalizing
the test points to unit variance, we normalize them to a scale σ. As expected, perfor-
mance degrades as we increase σ, however the extrapolation performance remains
decent even very far away from the inputs (σ = 32).

Finally, in fig. 6.4 (F), we examine the effect of corrupting the targets y with a
multiplicative noise of variance σ: y → y(1 + ξ), ξ ∼ N (0, ε). The results reveal
something interesting: without refinement, the E2E model is not robust to noise, and
actually performs worse than the skeleton model at high noise. This shows how
sensitive the Transformer is to the inputs when predicting constants. Refinement
improves robustness significantly, but the initialization of constants to estimated
values has less impact, since the prediction of constants is corrupted by the noise.

6.4.2 Out-of-domain generalization

We evaluate our method on the recently released benchmark SRBench [La +21a].
The overall performance of our models is illustrated in the Pareto plot of Fig. 6.1,

where we see that on both types of problems, our model achieves performance close
to state-of-the-art GP models such as Operon with a fraction of the inference time9.
Impressively, our model outperforms all classic ML methods (e.g. XGBoost and
Random Forests) on real-world problems with a lower inference time, and while
outputting an interpretable formula.

We provide more detailed results on Feynman problems in Fig. 6.5, where we
additionally plot the formula complexity, i.e. the number of nodes in the mathematical
tree (see App. C.6 for similar results on black-box and Strogatz problems). Varying the
noise applied to the targets noise, we see that our model displays similar robustness
to state-of-the-art GP models. We additionally include ablation on the use of scaling
during inference in App. C.5.

While the average accuracy or our model is only ranked fourth, it outputs formulas
with lower complexity than the top 2 models (Operon and SBP-GP), which is an
important criteria for SR problems: see App. C.6 for complexity-accuracy Pareto plots.
To the best of our knowledge, our model is the first non-GP approach to achieve such
competitive results for SR.

9Inference uses a single GPU for the forward pass of the Transformer.
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Figure 6.5 – Our model presents strong accuracy-speed-complexity tradeoffs, even in pres-
ence of noise. Results are averaged over all 119 Feynman problems, for 10 random seeds and
three target noises each as shown in the legend. The accuracy is computed as the fraction of
problems for which the R2 score on test examples is above 0.99. Models are ranked according
to the accuracy averaged over all target noise.

6.5 Conclusion

In this work, we introduced a competitive deep learning model for SR by using a novel
numeric-symbolic approach. Through rigorous ablations, we showed that predicting
the constants in an expression not only improves performance compared to predicting
a skeleton, but can also serve as an informed initial condition for a solver to refine the
value of the constants.

Our model outperforms previous deep learning approaches by a margin on SR
benchmarks, and scales to larger dimensions. Yet, the dimensions considered here
remain moderate (din < 10): adapting to the truly high-dimensional setup is an
interesting future direction, and will likely require qualitative changes in the data
generation protocol. While our model narrows the gap between GP and DL based SR,
closing the gap also remains a challenge for future work. We propose new directions
for filling this gap in the next chapter by including a search component and enabling
the method to improve at test time.

We were the first to apply SR to the task of recurrence prediction, i.e. predicting
a recurrence un+1 = f(un, · · · , un−k, n) when observing u0, . . . , uk−1. We build on a
similar model than E2E. The interested reader can find details in Chapter F.
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Chapter 7

Augmenting deep generative symbolic
regression methods with search

7.1 Introduction

Even though they all have in common their ability to search, GP-based methods as
well as DSR [Pet+19], ϕ-SO [TID23] and DSR+GP [Mun+21] face a tabula rasa setup
of the problem for each new dataset. On the other hand, DGSR approaches [Big+21;
Val+21] or E2E [Kam+22], presented in the chapter 6, are purely inductive: they are
pre-trained to predict an expression in a single forward pass for any new dataset,
by feeding the dataset as input tokens [Big+21; Val+21; Kam+22]. As such, these
approaches have the appeal of generating expressions extremely quickly. However,
their lack of a search component (i.e. P t

f = P 0
f under the unifying view of Section 5.4)

makes them unable to improve for the specific dataset at hand. This aspect can be
particularly problematic when the given data is out-of-distribution compared to the
synthetic data the NN was pre-trained upon.

A promising direction to cope with the limitations of inductive DGSR is therefore
to include a suitable search strategy. The use of neural policies in Monte-Carlo Tree
Search (MCTS) has led to improved exploration via long-term planning in the context
of automated theorem proving with formal systems [PS20; Lam+22], algorithm dis-
covery [Faw+22], and also games [Sil+16; Sil+18]. In the context of SR, search tree
nodes are expressions (e.g., x1 + x2), and edges between them represent mutations
(e.g., x2 → (7× x3), leading to the expression x1+7×x3). [WYS15; Sun+22] proposed
a classic formulation of MCTS for SR, where possible mutations are pre-defined along
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with prioritization rules to decide which nodes to mutate in priority. [Li+19] use a re-
current neural network to produce possible mutations, which is conditioned on shape
constraints for the expressions, but not on the dataset. Most similar to our approach
is the study of [Lu+21], that uses a pre-trained model to sample promising but rather
simple mutations (up to one expression term). However, the model is not fine-tuned
on the specific dataset at hand as the search progresses. In our proposal, MCTS is
augmented with neural policies that are both pre-trained and fine-tuned. Existing
works have only showed good performance on simple benchmark problems (e.g., no
observed competitive performance on SRBench real-world problems). Furthermore,
we found in preliminary experiments that the combination of NN within MCTS with
pre-training is key to achieve good performance.

Contributions In this chapter, we seek to overcome the limitations of DGSR, by
proposing a synergistic combination, which we call DGSR+MCTS [Kam+23], where
MCTS is seeded with pre-trained DGSR, and DGSR is fine-tuned over time on multiple
datasets simultanously as the search progresses. A mutation policy is responsible
for producing mutations that expand expressions from the tree search. A selection
policy prioritizes which expression to mutate next, by trading-off between exploration
(low number of visits) and exploitation (most promising expressions) using a critic
network. The mutation policy first undergoes a pre-training phase. Then, both the
mutation policy and the critic network are updated in online fashion, by leveraging
results from search trials on new provided datasets.

7.2 Method

Following the unified framework of SR detailed in section 5.4, we derive DGSR+MCTS,
as an expert-iteration algorithm [ATB17], which iteratively 1) samples expressions
from P t

f and 2) updates P t
f by improving the distribution via imitation learning (i.e.,

log-likelihood maximization of solution expressions).
Recall that in DGSR methods, sampling expressions from P t

f involve producing
tokens step-by-step by sampling from a next-token distribution with techniques such
as Monte-Carlo sampling or Beam-search. Turning pre-trained DGSR methods into
ones that can update P t

f with expert-iteration is a challenging task as 1) reward signal
can be very sparse (i.e., very few sequences may correspond to accurate expressions
for the given dataset); 2) such left-to-right blind way of decoding does not allow
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for accurate planning; 3) using accuracy objectives to guide the decoding would be
difficult with such auto-regressive approaches, since intermediate sequences of tokens
are not valid expressions in that setting.

Rather, we propose to derive P t
f as the distribution induced by a Monte-Carlo

Tree Search (MTCS) process [Bro+12], which we iteratively refine via imitation
learning on samples it produces that solve the problem. Our MCTS process also
considers expression mutations, following a mutation policyM t

θ which deals with
transformations of existing expressions, rather than a greedy concatenation of tokens
from a given vocabulary, allowing a more systematic evaluation of intermediate
solutions for a more guided exploration. This section first explains our MCTS search
process then the way we pre-train the mutation policy from synthetic data.

Figure 7.1 – Example of data generation to train the mutation model. Given a starting ground-
truth expression (e.g., f∗(x0, x1, x2) = 6.67x1x2/x

2
0 as a tree, we procedurally dismantle the

tree until no node is left. This is done by, at each step (red arrows), a) picking a node (dashed
contour), b) removing the picked node and, if the operator is binary, additionally remove
the subtree rooted in one of the two child nodes B, c) adding an edge (black dotted line)
between the parent node and the remaining child node A to obtain a well-formed expression.
When the picked node is the root node, the entire tree is removed, and the dismantling stops.
Then, we train the mutation model to assemble the tree back via subsequent mutations (green
arrows), which revert the dismantling process. The mutation model is conditioned on the
current tree (initially empty) as well as the dataset D.

7.2.1 MCTS Sampling

Our sampling process of new expressions is derived from an MCTS process, where
each node of the search tree1 corresponds to an expression f ∈ F . Following a similar
process as in [Lam+22], our MCTS process is made of three steps: 1) Selection, 2)
Expansion, 3) Back-propagation, that we detail below. In our MCTS, Mθ is used

1Not to be confused with tree-based representations of expressions, which we discussed in the
previous section.
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to sample promising mutations that populate the MCTS search tree via expansions
(described below). BesidesMθ, we additionally leverage a critic network Cψ to assess
how likely an expression can lead to a solution. We use the same NN (weights are
shared) to realize Mθ and Cψ, with the exception that Cψ includes an additional
head that is trained during the process to output a value in R. These three steps are
iteratively repeated 1000 times, a period2 that we call search trial, beforeMθ and Cψ is
updated.

Selection The selection step of MCTS aims at following a path in the search tree,
from its root, i.e. the empty expression, to a leaf in the search tree, that trades off
between exploration and exploitation. Following PUCT [Sil+16], at each new node f ,
we select its child f ′ that maximizes:

V (f ′) + puctE(f ′)Mθ(f ′|f,D, θ) (7.1)

with E(f ′) =

√∑
f ′∈child(f) N(f ′)

1+N(f ′) . puct ∈ R+ is the exploration coefficient, N(f) is the
number of times f was selected so far during the search, and V (f) is an estimate of
the expected value of the expression, expressed as v(f)/N(f), with v(f) accumulating
values of all the nodes depending on f in the tree search. This selection criteria
balances exploration and exploitation, controlled by hyper-parameter puct.

Expansion Once the selection step reaches a leaf f of the tree, this leaf is expanded
to produce new child nodes by applying K mutations to f , sampled fromMθ(D, f, θ).
This leads to modified expressions {f ′

k}k≤K . In our case, the distribution Pf (f ′|f,D, θ)
is induced by the application ofm ∼Mθ on f , resulting in f ′ = m(f). For each k ≤ K,
we add a node f ′

k to the search tree, as well as an edge between f ′
k and f , labeledmk.

Each expression resulting froman expansion is evaluated (with orwithout constant
optimization as discussed in Section 7.3.1) to check whether it solves the SR problem.
Here, we assesswhether a relatively high accuracy is reached to determinewhether the
expression is a solution for the given dataset (we use R2 ≥ 0.99 in our experiments).
Nodes that solve the problem obtain a value v(f) = 1. Others obtain an estimate from
the critic network: v(f) = Cψ(D, f). We remark that a simpler strategy is to define
v(f) as the accuracy of f , i.e. v(f) = R2(f,D). However, this strategy usually induces
deceptive rewards, because a fewmutations that lead to less accurate expressions (e.g.,

2This corresponds to a single step i) in the unifying framework of section 5.4.
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akin to sacrificing pieces in chess) may be needed before a very accurate expression
is found (resp., we obtain a winning position). We confirmed that our strategy
outperforms the naive use of accuracy in preliminary experiments

Back-Propagation After each expansion, the value of every ancestor f ′ of any new
node f is updated as V (f ′)← V (f ′) + v(f). Note that this form of back-propagation
regards weighing the nodes of the MCTS search tree, and should not be confused
with the algorithm used to train NNs.

As mentioned before, selection, expansion, and back-propagation are repeated
1000 times, after which the search trial is completed. At completion, the parameters
ofMθ and Cψ are updated as described in section 7.2.2. Finally, the MCTS search tree
is reset, and built anew using updatedMθ and Cψ during the next trial.

7.2.2 Learning critic Cψ andMθ

After each search trial, we update the two parametrized components Cψ andMθ. To
that end, training samples from the previous search trials are stored in two separate
first-in-first-out queues: a buffer stores mutation sequences (f (τ),mt) that produced a
solution expression f ∗ to updateMθ

3, the other contains V values of nodes. For the
latter, nodes that lead to a solution expression f ∗ are assigned a score of 1.0. Others
are considered for training only if their visit count is higher than a given threshold
Nmin

visits, in order to focus training on sufficiently reliable estimates. At each training step,
batches containing an equal proportion of mutation and critic data points are sampled
from the queues to trainMθ and Cψ respectively. Both training objectives are weighted
equally. To prevent any mode collapse, we continue sampling training examples
from the supervised data used to pre-train the mutation modelMθ, as described in
section 7.2.3.

Note that even though the pre-training data generation is biased in different ways,
stochasticity ofMθ enables its adaptation over search trials thanks to its updates; for
instance, even ifMθ was trained to output mutations with arguments of size B ≈ 10
can learn mutations of size 1, and vice-versa. As a result,Mθ can automatically learn
the appropriate (and dataset-dependent) size of mutations through MCTS search.

We set up our MCTS search to simultaneously operate on multiple datasets at the
same time, so thatMθ and Cψ can leverage potential information that is shared across

3If multiple such sequences exist, we select the one with the smallest number of mutations.
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different SR instances (transfer learning). Given a set of datasets, a controller schedules
a queue of datasets that includes a proportion of unsupervised (i.e. the ground-truth
expression is not known) datasets to send toworkers in charge of handling search trials.
To avoid catastrophic forgetting, we also continue training on pre-training examples
from synthetic datasets i.e. with example mutations as described in section 7.2.3, in
the spirit of AlphaStar [Vin+19] or HTPS [Lam+22] with human annotated data. Mθ

and Cψ updates are tackled by trainers.

7.2.3 Mutation Policy

Our search process relies on a mutation policy M t
θ, a distribution over promising

mutations of a given expression f ∈ F . In what follows, we drop the t index from
Mθ for clarity. Expressions are represented as a tree structure and mutations act by
modifying it.

Definition ofMθ. We define mutations as transformations that can be applied on
any node of a given expression tree. Table 7.1 contains the list of considered trans-
formations, where A stands for an existing node of the expression tree and B stands
for a new (sub-)expression to be included in the tree. The −→ symbol represents the
replacement operation, e.g., A −→ A + B means that node A from f is replaced by
a new addition node with A as its left child and B its the right one. Thus, a valid
mutation fromMθ is a triplet < A, op,B >, where A is a node from the expression
tree, op is an operation from table 7.1 and B is a new expression whose generation
is described below. A constant optimization step, detailed in Section D.5.2, can be
performed after the mutation to better fit the data; we explore in Section 7.3 whether
including constant optimization improves the performance. We call mutation size the
size of the expression B.

The mutation policyMθ provides a distribution over possible mutations. Rather
than having B be generated completely at random, we parameterize Mθ so that it
is Mθ : Ω × F , i.e. the mutations conditions on the dataset D and on the current
expression f . The dependance fromD is akin to the approach in inductive DGSR works,
while the dependence on f is novel. Both are passed as inputs toMθ as a sequence
of tokens, f by its prefix notation and D as in [Kam+22]. We use the transformer-
based NN architecture from [Kam+22] but task the model to decode token-by-token
a sequence ω (flattened version of < A, op,B >) until a EOS token is reached. A is
represented in ω as the index of that node (i.e., ∈ [[1, n]] for an expression that contains

83



Augmenting deep generative symbolic regression methods with search

Table 7.1 – Set of operators that can be applied on a sub-expression A of a function, with
optional argument B as a new sub-expression to include in the tree structure. 0 refers to the
root node of the function.

Unary A −→ cos(A), A −→ sin(A), A −→ tan(A)
A −→ exp(A), A −→ log(A)

A −→ A0.5, A −→ A−1, A −→ A2, 0 −→ B

Binary A −→ A+B,A −→ A−B
A −→ A ∗B,A −→ A/B

A −→ B +A,A −→ B −A
A −→ B ∗A,A −→ B/A

n nodes). While this may allow to output an invalidmutation expression, this happens
very rarely in practice as shown in Section D.4, thanks to an efficient pre-training of
the policy (described below).

We remark that our mutation distribution is different from those that are com-
monly used in GP, in that the latter are not conditioned on D nor parameters (i.e.,
they are not updated via learning), and they can also shrink the size of an expression
or keep it as is, whereas our mutations strictly increase the expression. Note that it
is possible to consider mutations that remove and/or replace parts of the expression,
but we left exploring this to future work. We also restrict our mutation process to
only generate expressions with less than 60 operators and without nesting operations
other than the basic arithmetic ones (+,−,×,÷).

Pre-training ofMθ. Since our mutation policyMθ is expected to produce mutations
for a given expression, and not the final expression directly (as it is the case in the
majority of DGSR approaches), it requires a specifically designed pre-training process.
To that end, pre-training labeled examples (dataset & ground-truth expression with
up to 10 features) are first sampled from a hand-crafted generator [LC19] as done
in most pre-training NSR approaches (c.f. section D.1). Next, given a ground-truth
expression f ∗, we extract a sequence of mutations [ml]≤L that iteratively map the
empty expression f (0) to the final expression f ∗. As illustrated in Figure 7.1, starting
from the ground-truth expressions f ∗, we deconstruct f ∗ by procedurally removing a
node (and if the node is binary also one of its child subtreeB) from the current f until
we get to the empty expression f (0). After reversing this sequence, we obtain a training
sequence of expressions and mutations f (0) m1−→ f (1) m2−→ f (2) m3−→ . . .

mL−−→ f (L) = f ∗

(more details in section D.1). After tokenization, everymutationml serves as target for
the pre-training process: Mθ is classically trained as a sequence-to-sequence encoder-
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decoder, using a cross-entropy loss, to sequentially output each token wel from ml,
given the considered dataset D, the previous expression f (l−1), and the sequence of
previous tokens w(<e)

l from the target operatorml.

7.3 Experiments

In this section, we present the results of DGSR+MCTS. We begin by studying the perfor-
mance on test synthetic datasets. Then, we present results on the SRBench datasets.

7.3.1 Analysis on synthetic datasets

In this sub-section, we consider a set of 1000 unseen synthetic expressions of which
half are in-domain (exactly same generator described in section 7.2 and section D.1)
and half are out-of-domain (bigger expressions with up-to 40 operators instead of 25).
We provide a set of explorative experiments to bring insights on how different hyper-
parameters contribute to the performance, as well as to select a good configuration of
hyper-parameters for evaluation on SRBench. In what follows, we always select the
best expression on a given dataset by evaluating the accuracy of each expression on the
training set; as mentioned before, we consider a dataset to be solved if the R2 achieved
by the best expression is greater than 0.99. Pre-training was performed on 8 GPUs for
a total time of 12 days. We controlled overfitting on the training set of expressions
by i) using a sufficiently large training dataset, ii) controlling the cross-entropy loss
and prediction accuracy on a held-out validation set of expressions. Each run in this
subsection was obtained by MTCS search trials (which fine-tuneMθ and Cψ) with
a time limit of 24 hours, using 4 trainers (1 GPU/CPU each), 4 MCTS workers (1
GPU/CPU each).

Breadth or depth? First, we analyze whether, given a pre-trained Mθ, it is more
desirable to explore in breadth or in depth the search tree. The number of samples
implicitly influences the breadth/depth trade-off; the larger the number of samples,
the more it will be encouraged to explore, whereas when there is little number of
samples K, it is forced to go deep. We run a single search trial of 2000 iterations for
different values of K ∈ {1, 2, 8, 16, 32}.

To compare these different configurations in a fair manner, we make a few de-
sign choices that we justify here. First, as shown in earlier work [DOW20; Kom+20;
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Kam+22] and later in this section, optimization of constants contained in the expres-
sion can be important to reach high accuracy levels in SR. The deeper in the search
tree an expression is, the bigger the expression is, as well as the larger the number of
constants it includes, which can add degrees of freedom to the optimization. Because
of this, depth can be expected to outperform breadth. For this reason and also because
we consider constant optimization in a following ablation, we choose not to optimize
constants in this experiment. Secondly, we impose that each configuration considers
the same number of expressions. We realize this by allowing only a subset of K
expressions to be visited out of the 32 that are sampled during expansion. As shown
in table 7.2, a choice ofK that is between 8 and 16 seems to be the best compromise
in both in-domain and out-of-domain datasets, therefore we will sample K ∈ [[8, 16]]
before each expansion in what follows.

Table 7.2 – Percentage of solved datasets for differentK

K In-Domain Out-of-domain
1 (greedy) 9.6 0.8

2 10.8 2.4
8 44.6 19.6
16 54.0 18.4
32 42.8 10.2

Big or small mutation sizes? Secondly, we do ablations on threeMθ models pre-
trained onmutation examples generated via different strategies with varyingmutation
sizes (as defined in section 7.2.3); the higher in the expression tree a node is picked
(as described in step a) of the caption of Figure 7.1), the bigger the mutation tends
to be. We consider DGSR+MCTS @1 (respectively DGSR+MCTS @10), a model pre-trained
on mutation sizes 1 (respectively approximately4 10), and finally DGSR+MCTS @∞, a
model trained to output the target expression in a single iteration. Note that DGSR+MCTS
@∞ is essentially reduces to approaches like those in [Big+21; Kam+22], asMθ is
tasked to predict the entire expression f ∗ from scratch f (0), while updatingMθ with
expert-iteration as described in section 7.2.

Interestingly, table 7.3 shows mutation size of 10 performs better than size 1 both
in-domain and out-of-domain and that the DGSR+MCTS @∞ does not generalize to
ouf-of-domain datasets, confirming the importance of search.

4Exact mutation size cannot be guaranteed without special expression tree structures.
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Figure 7.2 – Performance on test splits of SRBench, respectively the median R2 over black
box datasets and the proportion of Feynman datasets where the R2 is larger than 0.99. To
nicely visualize the trade-off between accuracy and expression size, we use a linear scale for
expression size values up to 100 then a logarithm scale. Note that AI-Feynman [UT20] was
removed from the black-box plot for readability (scores R2 = −0.6 and expression size 744).

Table 7.3 – % of solved datasets for different mutation sizes.

Model In-Domain Out-of-domain
DGSR+MCTS @1 52.2 26.8
DGSR+MCTS @10 74.8 44.0
DGSR+MCTS @∞ 72.4 16.8

How important is constant optimization? As shown in [Kam+22], optimizing
constants predicted by a NN model with an optimizer like BFGS greatly improves
performance on SRBench. Similarly, we study whether including constants optimiza-
tion is important for DGSR+MCTS in the context of search. We remark that while we use
constant optimization to compute accuracy, we store the non-optimized expression
in the MCTS search tree. We make this choice because optimized constants may be
out-of-distribution w.r.t. the pre-trainedMθ, which can lower its performance. As
shown in Table 7.4, optimizing expression constants improves performance substan-
tially. However, constant optimization comes at the price of speed, especially if done
after every mutation.

7.3.2 SRBench results

We evaluate DGSR+MCTS on the regression datasets of the SRBench benchmark [La
+21a], in particular the “black-box” datasets (no ground-truth expression is given)
and the “Feynman” datasets (conversely, the underlying physics’ equation is given).
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Table 7.4 – % of solved datasets for different constant optimization strategies. We compare
constant optimization done: never, only on the best expression of each trial and after each
mutation.

Constant optimization In-Domain Out-of-domain
Never 74.8 44.0

Only best expression 77.2 59.4
All expressions 79.6 66.2

As our approach is trained on datasets with up to 10 features, its use on higher-
dimensional datasets requires feature selection. Following [Kam+22], we consider
only datasets with at most 10 features so that our results are independent of the quality
of a feature selection algorithm. This leads to 57 black-box datasets and 119 Feynman
datasets. Each dataset is split into 75% training data and 25% test data using sampling
with a random seed (we use 3 seeds per dataset, giving a total of 528 datasets). We
consider all baselines provided as part of SRBench, which includes GP algorithms,
e.g GP-GOMEA [Vir+21], Operon [BKK20b], ITEA [FA20], DGSR algorithms, DSR
[Pet+19] and E2E [Kam+22] as well as classic machine learning regression models,
e.g., multi-layer perceptron [Hay94] and XGBoost [CG16].

For each dataset from SRBench, algorithms are allowed a maximum number of
expression evaluations (as well as a running time limit). Fixing the number of evalua-
tions allow to avoid algorithms to be compared by their implementation efficiency,
e.g. C++ vs Python. 5 We run DGSR+MCTS with a budget of 500, 000 evaluations
(equivalently mutations) and a maximum time limit of 24 hours. SRBench imposes to
use at most 500000 evaluations per hyper-parameter configuration, and allows for six
configurations, yet we provide a single configuration (resulting from Section 7.3.1);
we use the pre-trainedMθ with mutation size 10, withK ∈ [[8, 16]] and alternate search
trials with and without constants optimization.

The performance of all SR algorithms is illustrated in fig. 7.2 along two metrics,
accuracy on the test data (as measured by R2) and expression size computed by
counting all operators, variables and constants in an expression, after simplification by
SymPy [Meu+17a]. Results are aggregated by taking the average over seeds for each
dataset, then the median for black-box datasets and mean for Feynman as done in
[La +21a]. We visualize the trade-off between accuracy and simplicity of expressions

5This is particularly motivated in cases where expression evaluations are the time bottleneck, as it is
the case in GP algorithms. In DGSR approaches, the main bottleneck is candidates generation by the
action of auto-regressive sampling, therefore the field could benefit from comparison rules updates.
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Figure 7.3 – Mean ± confidence interval performance on the black-box datasets over the
number of evaluated expressions for DGSR+MCTS and its closest competitor, GP-GOMEA, on
the black-box datasets. Thanks to pre-training, DGSR+MCTS achieves high-levels of R2 (and
larger expressions) much more quickly than GP-GOMEA. On the training set, DGSR+MCTS is
consistently superior across the entire search process. On the test set and towards the end of
the search, DGSR+MCTS and GP-GOMEA achieve similar results, due to a larger generalization
gap for larger expressions.

obtained by the different algorithms; the lower and righter the better. We compute
front ranks by Pareto-dominance. An algorithm Pareto-dominates another if it is not
worse in all metrics and it is strictly better in at least one of them. The definition of
ranks is then recursive: an algorithm is at rank 0 if there exists no algorithm that
Pareto-dominates it; for successive ranks, an algorithm is at rank i if, when excluding
the algorithms up to rank i − 1, there exist no algorithm that Pareto-dominates it.
DGSR+MCTS is placed on the rank 0-front on both black-box and Feynman datasets.
GP-GOMEA and DGSR+MCTS seem to be the best approaches for achieving simple-yet-
accurate models, and interestingly switch place in their trade-off between the two
metrics on the black-box and Feynman datasets. We additionally plot the performance
over time on the black-box datasets against this baseline in Figure 7.3. Another
interesting point is the difference between DGSR+MCTS and E2E; DGSR+MCTS achieve
better test accuracy (0.846 and 0.797 respectively) with less complex expressions (41
and 61 respectively) on the black-box datasets. On 80% (resp. 87% for E2E) of Feynman
datasets, we achieve R2 ≥ 0.99 with expression sizes of 33 (resp. 121).

Ablations. Finally, we present several ablations in Table 7.5. Namely, we observe
whether using synthetic datasets for training Cψ and fine-tuningMθ is better than not
doing so, and whether our strategy of training DGSR+MCTS simultaneously on multiple

89



Augmenting deep generative symbolic regression methods with search

datasets is better than training iteratively, i.e., one dataset at the time. Our findings
suggest that utilizing synthetic datasets has a positive effect on the performance of
our model, particularly on the Feynman datasets, which may be attributed to the
similarities between the synthetic and Feynman datasets (similar expression sizes,
non-noisy observations...) On the black-box dataset (real-world scenarios), training
on all datasets simultaneously appears to result in better performance than using
synthetic datasets alone, likely due to the sharing of gradients across multiple datasets.
Overall, our results indicate that both components play a significant role in the strong
performance of DGSR+MCTS.

Table 7.5 – Ablations for different training configurations. We report the same performance
metrics used in fig. 7.2. Respective expression sizes (not shown here) remain similar.

Use synthetic
datasets

Simultaneous
training Black-box Feynman

no no 0.801 0.655
yes no 0.812 0.748
no yes 0.823 0.689
yes yes 0.846 0.796

7.4 Limitations

Our approach is subject to the known limitations of the Transformer models as in
[Kam+22]. For instance, learning on large context lengths is challenging and necessi-
tates significant GPU memory resources. This limitation could be circumvented by
the use of Transformers specifically designed for large inputs, such as LongFormer
[BPC20]. Themain source of latency in our algorithm comes from samplingmutations
(i.e. forwarding the Transformer model), an aspect shared by other DGSR methods
that use large pre-trained transformers. In our case, better sample efficiency is at the
cost of latency. While GP approaches can run on CPU only, GPUs can be useful to
batch computations (to generate mutations in our case) for DGSR methods.

7.5 Conclusion

In this work, we introduced a competitive SR algorithm that address the limits of
DGSR by incorporating search as a tool to further improve performance of inductive
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DGSR approaches. We showed DGSR+MCTS performs on par with state-of-the-art SR
algorithms such as GP-GOMEA in terms of accuracy-complexity trade-off, while being
more efficient in terms of number of expression evaluations.

Future work may concern the extension of the proposed approach in a meta-
learning framework [Sch87; TP12; FAL17], where pre-training is performed, either via
self-supervised or reinforcement learning, with the objective to reduce the required
search budget on a broad family of target datasets.
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Chapter 8

Symbolic Model-Based Reinforcement
Learning

We investigate using symbolic regression (SR) to model dynamics with mathemati-
cal expressions in model-based reinforcement learning (MBRL). While the primary
promise of MBRL is to enable sample-efficient learning, most popular MBRL algo-
rithms rely, in order to learn their approximate world model, on black-box over-
parametrized neural networks, which are known to be data-hungry and are prone
to overfitting in low-data regime. We leverage the fact that a large collection of envi-
ronments considered in RL is governed by physical laws that compose elementary
operators e.g sin ,

√
, exp , d

dt , and we propose to search a world model in the space of
interpretable mathematical expressions with SR. We show empirically on simple do-
mains that MBRL can benefit from the extrapolation capabilities and sample efficiency
of SR compared to neural models.

8.1 Introduction

Most control systems, irrespective of the task to solve (i.e. rewards maximization)
have in common the fact that their dynamics are governed by physical laws. They are
usually expressed with mathematical equations connecting the next state with the
system’s past states and controller’s actions with operators such as time-derivatives,
trigonometric operators, power functions. Solving a task usually involves implicitly a
good understanding of the dynamics, e.g. goal reaching.
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Figure 8.1 – Illustration of Symbolic-MBRL

For instance, in the classic CartPole environment [BSA83; Ope+21], the system’s
state is described by (x, ẋ, θ, θ̇) where x (resp. ẋ) denotes the position (resp. speed)
of the cart along the x-axis and θ (resp. θ̇) is the angle (resp. rotation) of the pole
w.r.t the cart. The agent’s action a affects the system’s state according to the following
equations [Ope+21; Flo07]:

θ̈ =
g sin θ + cos θ

(
−Kmaga−mplθ̇2 sin θ

mc+mp

)
l
(

4
3 −

mp cos2 θ
mc+mp

) ẍ =
Kmaga+mpl

(
θ̇2 sin θ − θ̈ cos θ

)
mc +mp

(8.1)

where g,Kmag,mp,mc, l are all constants. Systems with impossible states, safety
or physical constraints, e.g. the joint of a robotic arm cannot exceed a certain an-
gle [TET12], can be expressed via piece-wise expressions. When the environment
is stochastic, probabilistic distributions appear. Note that the parametrization of the
state and action spaces has an impact on the symbols that are necessary to describe the
system dynamics; for instance, if ẋ and θ̇ were not in the CartPole agent’s observation,
derivative operators would have to appear in the equation. Generally, the larger the
state-space parametrization, the "shorter" equation is.1

Model-Based Reinforcement Learning (MBRL) involves a two-step procedure re-
peated until task termination; a) learn from data a forward dynamics model (possibly
stochastic) function f that maps current state st and action at to next state st+1 and
b) derive a policy from this model. Though they have been shown to learn faster

1The best parametrization to decrease the complexity of predicting an equation from data is an
open problem.
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than model-free algorithms theoretically [Efr+19] and in certain applications [DFR13;
LA14], MBRL algorithms are often hard to train in practice [Pin+21]. In this work,
we challenge the go-to approach of using over-parametrized feed-forward neural
networks to approximate f as they are prone to overfitting when collected data does
not have enough coverage of state and action spaces. We propose to leverage prior
knowledge on operators that could appear in the environment dynamics equations,
e.g. sin ,

√
, exp , d

dt .
Manipulating expressions to fit data is exactly the objective of SR algorithms

that select f within a large family of expressions through composition of operators,
constants and variables, as opposed to gradient-descent of over-parametrized models,
e.g. neural networks (NNs). The latter have more degrees of freedom and are easier
to optimize, but prone to overfitting in low-data regimes, whereas SR has recently
shown excellent extrapolation capabilities [La +21a; Kam+22; Kro+22]. Furthermore,
SR provides an interpretable and differential model, interesting properties for RL,
which we develop in Chapter 9.

Contributions. We propose a novel approach to dynamics modelling in control
problems, which we call Symbolic-Model-Based RL, that uses mathematical expres-
sions to model dynamics. To our knowledge, this is the first work that proposes to
leverage SR to find an interpretable function f that best maps state-action pairs (st, at)
to the next state st+1. We provide empirical evidences in simple domains, where our
method largely outperforms the over-parametrized approaches, that SR provides
faster better dynamics models that generalize to unseen states-action pairs.

8.2 Background

MBRL. MBRL algorithms ground control policies on a model of the dynamics of
environment. Most of approaches alternate two steps repeatedly: i) collect dataDwith
the current policy and learn an approximate model f of the environment’s dynamics,
fitting D as in supervised learning (SL), i.e.:

f ∗ = arg max
f∈F

E(st,at,st+1)∼D L(st+1, f(st, at)) (8.2)

where F is a family of functions, e.g. neural networks or Gaussian processes, and L
a loss function that depends on the nature of f ; ii) then, simulate transitions with
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the model f and optimize the policy accordingly. Note that in this work we consider
reward and termination functions learned in the same way as dynamics, even though
MBRL algorithms [Chu+18; CBK20] often consider them provided to the agent.

We refer the reader to an exhaustive MBRL review [MBJ20]. Step i) usually faces
classic under/over-fitting issues of SL (w.r.t the state and action space), causing sub-
optimal task performance. The design of predictive model has proven to be very
challenging; Gaussian Processes (GPs) can under-fit on complex dynamical systems
[Cal+16], whereas over-parametrized functions, i.e. neural networks, can express
complex (and high-dimensional) dynamics, but are prone to overfitting. To avoid
overfitting, one can a) acquire more data, but this often comes with exploration
challenges, b) use regularization, i.e. making the model simpler, in the form of
priors, e.g. GPs’ kernel function or Bayesian neural networks [Blu+15; GHK17], or
c) use ensembles [ET93; Osb16; Kur+18]. [Chu+18] uses probabilistic NNs (b) in
combination with ensembles (c) to make MBRL agents uncertainty-aware for better
planning.

SR in RL. SR has been applied to model-free RL to learn interpretable policies
explicitly [Lan+21; Pet+21; Vid+22] or via the associated value function [Kub+21],
but to our knowledge we are the first to consider SR for MBRL. In addition to the
immediate interpretability benefit, considering the dynamics model search space F
in Eq. 8.2 to be the family of short mathematical expressions that contain constants,
variables and operators from a given dictionary has the advantages of injecting prior
knowledge, smoothness properties, as well as to significantly reduce the size of the
search space.

8.3 Experiments

Description of the algorithm. We propose to use an expression optimized via SR,
instead of the usual NN dynamics model, to fit data in a MBRL’s algorithm (step i));
though all SR algorithms are applicable to most MBRL algorithm, we use:

• Probabilistic Ensembles with Trajectory Sampling (PETS) [Chu+18] imple-
mented with MBRL-lib [Pin+21] as our base MBRL algorithm. PETS learns an
ensemble of probabilistic world models; pratically NNs that condition on state
and action pairs and predict the mean and variance of a distribution over the
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next state and reward. At any given timestep, it selects the sequence of actions
that maximize rewards using the cross-entropy method [Bot+13] and trajectory
sampling on the learned dynamic models. As in the original PETS paper, we
maintain an ensemble of 7 dynamics models. We call this model Symbolic-PETS
and compare it toMLP-PETS, the original version of PETS.

• This work was done prior to previous contributions explained in Chapters 6
and 7, therefore we used Operon [BKK20a], the state-of-the-art GP algorithm,
as our base SR algorithm. Preliminary experiments on the considered environ-
ments, showed that Operon had better performance that numerous SR algo-
rithms, e.g. gplearn [Ste16], PS-Tree [Zha+22] and AI-Feynman [UT20]; they
either had inaccurate predictions, overly complex expressions or inference was
too long.

Our experiments investigate the following questions: i) Can SR algorithms help
learn predictive models with less samples, ii) Do the obtained dynamics equations
have interesting properties? iii) How is this manifesting in terms of performance
(task solving)? We consider deterministic environments, which already represent a
substantial part of environments in the RL literature [TET12; Tas+18; Fre+21].
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Figure 8.2 – We train the dynamics models on 500 transitions collected by a random (uniform
[−1, 1]). The top row is the immediate reward function predicted by learnedmodels (evaluated
with at = 0 for clarity) and dots correspond to training data. Elite is the best dynamics model
w.r.t to an evaluation set. The bottom row represents 3 evaluation roll-outs after the predictive
model was updated:we observe that Symbolic-PETS allows agents to reach better rewarded
states.
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Figure 8.3 – Symbolic-PETS solves CartPole very fast. Agents are evaluated on 3 episodes
with 3 random seeds every 10 transitions. MLP-PETS solves CartPole despite significant
model error, suggesting that solving CartPole does not require a perfect understanding of the
environment.

An illustrating example. For illustrative purposes, we consider a simple one-dimensional
state MDP where an agent moves on the horizontal axis xwhile observing its position,
with episode length 10 and the following dynamics:

st+1 = st + at, rt = cos(2πst+1) exp(|st+1|/3) (8.3)

As illustrated on Fig. 8.2, solving this MDP is challenging as it requires sufficient
exploration to learn the reward function and avoid falling into local minimas, i.e.
staying in x ∈ N. As shown in Fig. 8.2, MLP-PETS’ dynamics models over-fits on
the training distribution. Even using an ensemble of 7 models, the uncertainty of the
ensemble is not good enough to be leveraged for efficient exploration, leading to a
sub-optimal policy. On the other hand, Symbolic-PETS’ dynamics models extrapolate
really well on unseen states, thus achieving optimal behavior in just one update.
Symbolic-PETS’s predicted reward function is:

(1.0 exp (|0.333st + 0.333at|+ 2.14e−4) sin (6.283xt + 6.283at − |0| − 4.712)

We present, in Figure 8.4, the evolution of Symbolic-PETS every episodes after just
20 observed random transitions.

CartPole. We consider the continuous CartPole [Ope+21], where the agent state is
st = (xt, θt, ẋt, θ̇t). As in [Chu+18; Pin+21], the termination and reward function are
made available to the agent, therefore control is restricted to be a problem of dynamics
modelling. We define the model error L in Equation (8.2) as the MSE averaged over
output dimensions.
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(a) 20 environments steps
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(b) 30 environments steps
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(c) 40 environments steps

101

100
0

100

101

R
ew

ar
d Truth

Symbolic-PETS
Symbolic-PETS(elite)

2.5

5.0

7.5

10.0

E
va

lu
at

io
n 

Ti
m

es
te

ps

10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10
x-axis

0

5

10

15

R
ep

la
y 

bu
ff

er
 

st
at

e 
di

st
ri

bu
tio

n

(d) 50 environments steps
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(e) 60 environments steps
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(f) 70 environments steps

Figure 8.4 – Top row is the reward function evaluated with at = 0 for clarity learned by the
Symbolic-PETS agents (elite is the best dynamics model w.r.t to an evaluation set). Middle
rows represents 3 evaluation roll-outs after a predictive model update. Bottom row is the
training replay buffer state distribution.
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8.4 Conclusion

In a first experiment, we explore the capabilities of both symbolic and MLP regres-
sors on the data generated by a random policy on CartPole. We collect an evaluation
dataset of 5e4 transitions, enough to have good state-action coverage. We then train
the two dynamics models on training datasets of growing sizes and plot the model
error in Fig. E.1). The symbolic model predicts the following equations with the
accuracy reached by the MLP in two order of magnitude less interactions:

xt+1 = xt + 0.02ẋt
θt+1 = θt + (0.02θ̇t + 0.015)/ cos(0.035 ∗ θ̇t)− 0.015
ẋt+1 = (0.002θt + 2.34e−4θ̇tat + 1.0)× (ẋt + 0.195at − sin(0.015θt) + 3.23e−5)

θ̇t+1 = cos(0.195θt)(0.314θt + θ̇t − 8.97e−1at × (−0.031θ̇t − 2.014)(0.016θ̇t − cos(1.053θt))
(6.173− 0.002θt)

)
(8.4)

Interestingly, predicted equations are a bit different than in Equation (8.1), though
we can notice constants such as the time-discretization interval 0.02. What could be as
missing terms can be explained by limited development as θ and x have small values
because of CartPole’s constraints. In Fig 8.3, we demonstrate that Symbolic-PETS is
able to solve CartPole in just 20 interactions with the environment, a state-of-the-art
performance to our knowledge.

8.4 Conclusion

We demonstrated on simple environments that SR can learn better predictive mod-
els with many less samples than neural network and that they extrapolate well to
unseen state-action pairs much better. Though [La +21a] showed promising results
on real-world regression datasets with input dimensions up to 124 (with a single
output dimension), SR still remains to be scaled to higher output dimensions, with
challenges including parallelizing regressor training of each output dimension or
pixel observations. Note that it yet remains to try DGSR techniques including those
introduced in previous chapters in the control setting. We will discuss in greater
details in Chapter 9 interesting research directions that leverage interpretable world
models.

99



Chapter 9

General Conclusion and Perspectives

9.1 Conclusions on our Contributions

This doctoral thesis addresses the distribution-shift problem encountered by RL agents
within the meta-RL framework, aiming to equip them with the ability to adapt to
unseen scenarios, whether they arise within the same environment or in different
but similar ones. The research investigates two primary approaches for developing
adaptable agents. In Part I, the focus lies on developping model-free adaptation
mechanisms that facilitate learning at the time of testing. Chapter 3 leverages training
tasks to establish an inductive bias on trajectory representations, enabling efficient
expression of the encountered task. Chapter 4, on the other hand, concentrates on
devising exploration strategies to achieve comprehensive coverage of the state-space,
especially in situationswhere no extrinsic reward is accessible before test-time. Moving
on to Part II, the study delves into the utilization of SR to develop predictive dynamics
models that exhibit robustness, accuracy, and the capacity to learn from minimal
interactions with the environment. This aspect is particularly applied to model-based
agents and enrich the field of SR with a collection of novel generative models.

9.2 Perspectives

We conclude the present manuscript by trying answering a set of questions and raising
new ones.

What are the underlying assumptions behind algorithms in Part I?
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9.2 Perspectives

Episodic setting. Both chapters in Part I operate under the assumption that the
environment is episodic, wherein the agent engages in a series of interactions before
the state is reset to an initial state sampled from the distribution P 0. Notably, this
assumption carries particular significance in the context of learning in the physical
world, as it necessitates human supervision to intervene and return the agent to its
initial state.

Access to a simulator. They also enable agents to undergo online training facilitated
by access to a simulator and a set of training tasks, which may employ the same or
different dynamics compared to the test environments. It is essential to highlight
that the prevailing focus in meta-reinforcement learning research has been on the
utilization of online data. Consequently, certain scenarios may restrict agents from
engaging in unrestricted exploration.

How can we directly improve algorithms from Part I?

Intrinsic rewards for IMPORT. In Chapter 3, the IMPORT algorithm learns task
embeddings by mapping the history to an embedding which is then used by the policy
as an input. The mapping is implemented by a recurrent NN, thus making the
overall policy a POMDP policy. The embedding is learned by minimizing the distance
w.r.t a privileged embedding learned from an informed policy that conditions on
a task identifier; being primarily learned with an inductive bias via an auxiliary
loss, the recurrent policy lacks the incentive to explore to reconstruct the privileged
embedding. To address this limitation, one approach is to introduce intrinsic rewards
to encourage reconstruction. At test time, the agent does not have access to the
privileged embedding, so it uses the policy that maximised the sum of intrinsic and
extrinsic rewards at train time. The problem is informed policies can learn privileged
embeddings (therefore intrinsic rewards) that collapsed, i.e. whose lost precious
information that distinguishes training tasks. For instance, if the goal information
is only available in the last state of a sequence, all the information on how to reach
that state will not be adequately captured in the intrinsic reward signal. Therefore,
one could construct privileged embeddings that capture the sequence of subgoals
required to clearly identify each task.

Non-stationarities. As mentioned in the preceding question, IMPORT is trained
with prior knowledge of the environment changes. Consequently, the model is not
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General Conclusion and Perspectives

explicitly trained to identify changes in tasks within an episode, assuming the task
remains constant throughout the entire episode. To accommodate non-stationary
environmentswithin episodes, one could extend IMPORT’s training process to include
such scenarios.

Symbolic representations. Similarly to task inference approacheswho explictlymodel
reconstruction of the task identifier, it is worth exploring the utilization of symbolic
representations of trajectories using SR. This entails learning model-free policies that
condition their decisions on symbolic information extracted from the trajectory.

Offline training of UPSIDE. To relax the assumption of a simulator to learn online,
one could leverage offline training in cases where agents may be granted access to
offline data collected prior to the task. Effectively leveraging such data could be a
valuable approach in mitigating the demand for costly online data collection during
test-time.

Better local coverage. In UPSIDE (Chapter 4), a random policy is employed for
the diffusing part, which is effective in locally covering the state-space for certain
environments like 2D mazes but proves inadequate for more challenging control tasks
like Hopper or Ant. An alternative approach would be to learn per-task local coverage
policies specifically tailored for the diffusing phase.

Graph-based exploration strategies. To address the issue of resets discussed in the
previous question, an extension of UPSIDE could involve the adoption of graph-based
policies rather than tree-based policies. Graph-based policies would enable the agent
not only to reach a specific goal from the initial state but also to reverse the process,
allowing for more comprehensive problem-solving capabilities.

How can symbolic regression contribute to the field of Meta-Reinforcement Learning?

In Chapter 8, we have explored the application of symbolic world models in
toy control problems and demonstrated that using SR to derive interpretable world
models can significantly improve the sample efficiency of model-based RL agents.
Additionally, the use of SR helps avoid suboptimal performance by leveraging its
extrapolation capabilities.
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9.2 Perspectives

However, the full potential of analytical expressions in Meta-RL is yet to be fully
uncovered.

Agents Acquiring differentiable analytical expressions facilitates policy optimiza-
tion by enabling gradient backpropagation through the world model. Moreover, in
scenarios such as system identification of dynamical systems, i.e. where a world
model structure is given, learning primarily comes down to identifying numerical
parameters. SR removes the need for prior knowledge of the system dynamics, but
once an accurate analytical expression has been found, improving the world model
can reduce to system identification by reducing search to numerical parameters. Non-
stationarities are a common phenomenon in real-world settings, such as robotics;
various factors like wear and tear of actuators, temperature variations, sensor noise,
and failures can occur. In such situations, parameter identification can further enhance
the sample efficiency of SR compared to the efficiency of updating neural network
weights when the structure of the expression is correct. This is particularly applicable
to parametrized MDPs (as introduced in Chapter 2), where tasks differ based on
factorizing parameters.

Acquiring dymamic simulators. Learning a world model from data offers signif-
icant advantages, even when an associated reward function is absent. Assuming
that symbolic regression (SR) produces an accurate expression, from interactions,
with strong generalization, one can exploit this interpretable expression in various
ways, thereby contributing to the field of environment design [Par+22]. Firstly, a
comparative analysis can be conducted between the predicted expression derived
from SR and the ground-truth expression to identify unknown physics parameters.
Secondly, by establishing a simulator that aligns with the learned world model, it
becomes feasible to generate novel environments with diverse dynamics, incorpo-
rating different numerical parameters and additional factors such as friction. These
varied environments, originating from the initial expression, play a pivotal role in the
pursuit of developing agents with broad generalization abilities, excelling across a
wide spectrum of tasks; we think a curriculum or adversarial learning could be useful
in training agents on increasingly harder tasks. Notably, the field of sim2real has
embraced this approach, employing domain randomization techniques [Tob+17] on
learned neural network weights to bridge the gap between simulation and real-world
performance. Lastly, the derived expression can serve as a foundation for establishing
safety constraints within the system, ensuring secure and reliable operation.
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General Conclusion and Perspectives

What are the missing pieces for symbolic regression to be successfully applied to meta-RL?

Representation capacity. In chapter 8, the control environments were limited to
a maximum of 4 features. Consequently, it is essential to investigate how SR can
perform with higher-dimensional inputs, particularly when dealing with pixel-based
observations, which are prevalent in the RL literature. There preliminary results were
obtained using a GP-based algorithm, therefore one should evaluate how DGSR meth-
ods perform in these domains. Moreover, it is worth noting that SR has not undergone
testing more complex dynamics with e.g. piece-wise definitions, matrix multiplica-
tion, or cross-products, which are commonly encountered in robotics. Expanding
the set of operators to handle these complexities is necessary, though no tests have
been conducted on this aspect so far. Many control environments of interest entail
stochastic dynamic functions, and therefore, SR must address the inherent stochastic-
ity of these environments to achieve robust performance. Additionally, when dealing
with partially observable environments, where certain elements like velocity remain
unobserved, augmenting the operator set with derivatives could prove beneficial.

Compute desirements. In MBRL, updating a world model parametrized by a NN
consists of simple gradient steps on the newly acquired data. However, fitting a SR
algorithm on a new dataset is order of magnitudes longer (especially as the dynamics
is complex and required accuracy threshold is high). DGSR goes into this direction
by leveraging inductive bias to restrict the search space, therefore reducing the fitting
time, however this needs to be even made faster. We need efficient implementation for
SR to parallelize search over the different output dimensions, as well as to improve
SR search to let the model improve from the previous model when newly sampled
transitions are collected. This approach allows themodel to build upon the knowledge
gained from the previous model, leading to meaningful improvements instead of
starting the learning process from scratch each time.

How to improve deep generative symbolic regression?

We have identified several potential avenues for enhancing DGSR, warranting further
exploration. Regarding the improvement of the base Transformer model, several
strategies can be pursued:

1. Considering the adoption of more advanced and contemporary Transformer
architectures [BPC20; Ain+23] which could enable the model to condition on
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larger contexts. This can potentially enhance the model’s capacity to capture
complex patterns and dependencies in the data.

2. Exploring alternative tokenization strategies for real numbers and expressions
which could lead to more efficient representations, thereby improving the
model’s ability to interpret numerical and symbolic information effectively.

3. Investigating the application of curriculum learning to put more emphasizis on
examples that yield inaccurate predictions, by strategically introducing more
challenging examples as training progresses.

4. Addressing the enhancement of test-time predictions. While MCTS was con-
sidered in Chapter 7, other RL techniques could be explored to update the
expression sampling distribution, similarly to RLHF.

Regarding data improvements, we propose two avenues for consideration:
1. Devoting more effort to construct improved synthetic datasets. A well-designed

and diverse synthetic dataset can be a valuable asset in training the model
effectively, capturing a wide range of expression structures and improving gen-
eralization.

2. Tailoring synthetic datasets to specific problem domains of interest. For instance,
in cases where the structure of expressions is roughly known, generating a more
specialized synthetic dataset predominantly consisting of expressions with this
structure can be beneficial. This approach can limit the search space, providing
a performance boost compared to training on a highly diverse set of expressions.

These improvements hold promising directions in advancing DGSR and expand-
ing its applicability to real-world problem-solving tasks. Specialists, in particular,
may find the constrained search space approach to be highly valuable, contributing
to more efficient and targeted model performance. Further research and experimen-
tation in these areas are expected to enrich the potential of DGSR and foster the
advancement of symbolic model-based Reinforcement Learning (RL) techniques,
while simultaneously yielding interpretable world models as valuable by-products.
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Appendix A

Complements on Chapter 3

A.1 The IMPORT algorithm

The algorithm is described in details in Algorithm A.1. In our implementation, the
value function network used for (A) and (B) is the same, i.e. shared. We specialize
the input, i.e. for (A) the input will be (st, fH(τt)) and (st, fµ(µt)) for (B).

A.2 Implementation details

A.2.1 Data collection and optimization

We focus on on-policy training forwhichwe use the actor-critic methodA2C [Mni+16]
algorithm with generalized advantage estimation. We use a distributed execution
to accelerate experience collection. Several worker processes independently collect
trajectories. As workers progress, a shared replay buffer is filled with trajectories and
an optimization step happens when the buffer’s capacity bs is reached. After model
updates, replay buffer is emptied and the parameters of all workers are updated to
guarantee synchronisation.

A.2.2 Network architectures

The architecture of the different methods remains the same in all our experiments,
except that the number of hidden units changes across considered environments
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Complements on Chapter 3

Algorithm A.1: Details of IMPORT Training
1 Initialize σ, ω, θ, ν arbitrarily
2 Hyperparameters: Number of iterationsK, Number of transitions per update

stepsM , discount factor γ, GAE parameter γGAE , Adam learning rate η,
weighting of the (C) objective β, weighting of the entropy objective λh,
weighting of the critic objective λc

3 Optim = Adam(η)
4 for k = 1, . . . , K do
5 if k is odd then
6 CollectM transitions according to πH in buffer BH .
7 else
8 CollectM transitions according to πµ in buffer Bµ.
9 δσ, δω, δθ = 0, 0, 0
10 Rµ ← compute_gae_returns(Bµ, γGAE)
11 RH ← compute_gae_returns(BH , γGAE)
12 δθ,ω += 1

|BH |
∑
b∈BH

∑T
t=1[R

µ,b
t − Vν(sbt , zbt )]∇θ,ω log πH(abt |sbt , zbt )

13 δθ,ω += λh

|BH |
∑
b∈BH

∑T
t=1∇θ,ωH

(
πH(abt |sbt , zbt )

)
14 δω −= 2β

|BH |
∑
b∈BH

∑T
t=1[fωH(sbt , zbt )− fµ(sbt , µbt)]∇ωf

ω
H(sbt , zbt )

15 δν −= 2λc

|BH |
∑
b∈BH

∑T
t=1[R

H,b
t − Vν(sbt , zbt )]∇νVν(sbt , zbt )

16 δθ,σ += 1
|Bµ|

∑
b∈Bµ

∑T
t=1[R

H,b
t − Vν(sbt , µbt)]∇θ,σ log πµ(abt |sbt , µbt)

17 δθ,σ += λh

|Bµ|
∑
b∈Bµ

∑T
t=1∇θ,σH

(
πµ(abt |sbt , µbt)

)
18 δν −= 2λc

|Bµ|
∑
b∈Bµ

∑T
t=1[R

µ,b
t − Vν(sbt , µbt)]∇νVν(sbt , µbt)

19 θ ← Optim(θ, δθ)
20 ω ← Optim(ω, δω)
21 σ ← Optim(σ, δσ)
22 ν ← Optim(ν, δν)

and we consider convolutional neural networks for the Maze3d environment. A
description of the architectures of each method is given in Fig. 3.2.
Unless otherwise specified, MLP blocks represent single linear layers activated with a
tanh function and their output size is hs. All methods aggregate the trajectory into
an embedding zt using a GRU with hidden size hs. Its input is the concatenation of
representations of the last action at−1 and current state st obtained separately. Actions
are encoded as one-hot vectors. When episodes begin, we initialize the last action
with a vector of zeros. For bandits environments, the current state corresponds to the
previous reward. TS uses the same GRU architecture to aggregate the history into zt.
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A.3 Experiments

All methods use a softmax activation to obtain a probability distribution over
actions.
The use of the hidden-state zt differs across methods. While RNNs only use zt as an
input to the policy and critic, both TS and TI map zt to a belief distribution that is
problem-specific, e.g. Gaussian for control problems, Beta distribution for bandits,
and a multinomial distribution for Maze and CartPole-task environments. For in-
stance, zt is mapped to a Gaussian distribution by using two MLPs whose outputs
of size |µ| correspond to the mean and variance. The variance values are mapped to
[0, 1] using a sigmoid activation.

IMPORTmaps zt to an embedding fH , whereas the task embedding fµ is obtained
by using a tanh-activated linear mapping of µt. Both embeddings have size hsµ, tuned
by cross-validation onto a set of validation tasks. The input of the shared policy head
ϕ is the embedding associated with the policy to use, i.e. either fH when using πH or
fµ when using fµ.

For the Maze3d experiment and in all methods, we pre-process the pixel input st
with three convolutional layers (with output channels 32, stride is 2 and respective
kernel sizes are 5, 5 and 4) and LeakyReLU activation. We also use a batch-norm after
each convolutional layer. The output is flattened, linearly mapped to a vector of size
hs and tanh-activated.

A.3 Experiments

In this section, we explain in deeper details the environments and the set of hyper-
parameters we considered. We add learning curves of all experiments to supplement
results from Table 3.1, 3.2, 3.3 and A.2 in order to study sample efficiency.

Task descriptor. Note that for CartPole and Acrobot µ is normalized to be in [−1, 1]D

whereD is the task descriptor dimension. The task distribution q is always uniform, see
the description of the environments for details. For experiments with task identifiers,
we associate to each sampled task an integer value corresponding to the order of
generation, and encode it usong a one-hot vector.
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Complements on Chapter 3

HPs CartPole Acrobot Bandits TMDP Maze3d
E 16 128 16 16 32
Tr 20 20 20 20 20
hs 16 32 16 64 32
hsµ {2, 4, 8, 16}{2, 4, 8, 16}16 {16, 32} {2, 16, 32}
γ 0.95 0.95 0.90 0.90 0.90
λh {1., 1e−1} {1e−1, 1e−2, 1e−3}

γGAE {0.0, 1.0}
clip gradient 40

η {1e−3, 3e−4}
λc {1., 1e−1, 1e−2}
β {1e−1, 1e−2, 0.}

Table A.1 – Hyperparameters tested per environments. At each training epoch, we run our
agent on E environments in parallel collecting Tr transitions on each of them resulting in
batches ofM = E ∗ Tr transitions.

Hyperparameters. Hyperparameter ranges are specified in Table A.1. For TS, we
consider sampling µ from the posterior dynamics distribution every k steps with
k ∈ {1, 5, 10, 20}.

A.3.1 CartPole.

We consider the classic CartPole control environment where the environment dynam-
ics change within a setM (|µ| = 5) described by the following physical variables:
gravity, cart mass, pole mass, pole length, magnetic force. Their respective pre-
normalized domains are [4.8, 14.8], [0.5, 1.5], [0.01, 0.19], [0.2, 0.8], and [−10, 10]. The
value of µ are uniformly sampled. Knowing some components of µ might not be
required to behave optimally. The discrete action space is {−1, 1}.

Episode length is T = 100.

Final performance and sample efficiency. Table 3.1 shows IMPORT’s performance
is marginally superior to other methods in most settings. Learning curves in Figure
A.1 allow analyzing the sample efficiency of the different methods. Overall, IMPORT
is more sample efficient than other methods in the privileged information µ setting.
Moreover, the use of the auxiliary loss (β > 0) usually speed-up the learning conver-
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gence by enforcing the RNN to quickly produce a coherent embedding. We can see
that only sharing parameters (β = 0) already helps improving over RNNs.

(a) CartPole with µ and N = 10 (b) CartPole with with TID and N = 10

(c) CartPole with µ and N = 20 (d) CartPole with TID and N = 20

(e) CartPole with µ and N = 50 (f) CartPole with TID and N = 50

(g) CartPole with µ and N = 100 (h) CartPole with TID and N = 100

Figure A.1 – Evaluation on CartPole where the agent has access to µ or task descriptors (TID
stands for task identifier)

Non-stationary environments. We consider the non-stationary version of CarPole
environment where at each timestep, there is a probability ρ = 0.05 to sample a new
dynamic µ. Table A.2 shows that the performance of IMPORT, AuxTask and TI are
comparable in these settings.
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Method N = 10 N = 100

AuxTask 86.4(1.0) 93.0(0.3)
IMPORT 91.7(0.5) 92.7(0.8)
RNN 65.5(4.3) 89.5(0.6)
TI 88.2(3.9) 95.5(0.8)
TS 86.7(1.6) 92.2(0.7)

Figure A.2 – CartPole (non-stationary). Figure A.3 – Non-stationary CartPole with N = 10

Figure A.4 – IMPORT and TI with different task embedding representation size on CartPole
with N = 20

Size of built embeddings. We now study the impact of the task embedding rep-
resentation size. As can be seen from Figure A.4, IMPORT’s performance remains
stable for different representation sizes in {2, 4, 8, 16} whereas TI’s sample efficiency
decreases with this dimension.

Trajectory and task embeddings. In Figure A.5, we plot both the evolution of fH(τt)
during an episode of the final model obtained training IMPORTwith two-dimensional
task embeddings on CartPole with task identifiers (left) and task embedding fµ(µ)
learnt by the informed policy (right). As expected, the history embedding gets close
to the task embedding after just a few timesteps (left). Interestingly, task embeddings
fµ(µ) are able to capture relevant information from the task. For instance, they are
highly correlated with the magnetic force which is a very strong factor to “understand”
from each new environment to control the system correctly. At the opposite, gravity is
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(a)Value of fH(τt) among episodes steps
on CartPole with task identifiers. The
green circle is the value of fµ(µ). The
image shows that IMPORT starts with a
random embedding, and is able to dis-
cover the task embedding with a reason-
able performance in a few steps.

(b) Task embeddings fµ(µ) for Cartpole with task
identifiers. The color of the point corresponds to
the value of one of the ’real’ physics component of
the environment (unknown to the model).

Figure A.5 – Visualization of task embeddings upon Cartpole

less correlated since it does not influence the optimal policy – whatever the gravity is,
if the pole is on the left, then you have to go right and vice-versa.

A.3.2 Acrobot

Acrobot consists of two joints and two links, where the joint between the two links
is actuated. Initially, the links are hanging downwards, and the goal is to swing the
end of the lower link up to a given height. Environment dynamics are determined by
the length of the two links, their masses, their maximum velocity. Their respective
pre-normalized domains are [0.5, 1.5], [0.5, 1.5], [0.5, 1.5], [0.5, 1.5], [3π, 5π] and [7π, 11π].
Unlike CartPole, the environment is stochastic because the simulator applies noise
to the applied force. The action space is {−1, 0, 1}. We also add an extra dynamics
parameter which controls whether the action order is inverted, i.e. {1, 0,−1}, thus
|µ| = 7.

Episode length is 500.
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N = 10 N = 20 N = 50 N = 100

AuxTask −189.0(54.8) −98.3(1.8) −103.0(8.0) −93.6(1.3)
IMPORT −87.2(0.9) −92.5(1.3) −88.9(1.1) −88.9(1.6)
RNN −483.6(1.6) −482.7(4.0) −480.7(3.5) −485.0(3.7)
TaskInference −89.7(1.2) −94.6(0.7) −87.8(0.8) −87.3(1.2)
TS −101.4(2.0) −102.1(6.0) −102.4(2.0) −102.3(0.8)

Table A.2 – Acrobot

(a) N = 10 (b) N = 20

(c) N = 50 (d) N = 100

Figure A.6 – Performance on Acrobot

IMPORT outperforms all baselines in settings with small training task sets (Figure
A.6 and Table A.2) and perform similarly to TI on larger training task sets.

A.3.3 Bandits

The Bandit environment is a standard Bernoulli multi-armed bandit problem with
K arms. The vector µ ∈ RK denotes the probability of success of the independent
Bernoulli distributions. Each dimension of µ is sampled uniformly between 0 and 0.5,
the best arm is randomly selected and associated to a probability of 0.9. Although
relatively simple, this environment assesses the ability of algorithms to learn nontrivial
exploration/exploitation strategies.

Note that it is not surprising that UCB outperforms the other algorithms in this
setting. UCB is an optimal algorithm for MAB and we have optimized it for achieving
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the best empirical performance. Moreover, IMPORT cannot leverage correlations
between tasks since, due to the generation process, tasks are independent.

We visualize the task embeddings learnt by the informed policy in A.7.

Figure A.7 – t-SNE of the task embeddings on the bandit problem withK = 10.

(a) Bandits withK = 10 arms (b) Bandits withK = 20 arms

Figure A.8 – Learning curves on the bandit problem.

A.3.4 Maze3d environment

TheMaze 3D environment (Figure 3.3) is a continuous maze problem implemented
using gym-miniworld [Che18], with 3 discrete actions (forward, left, right) where the
objective is to reach one of the two possible goals, resulting in a reward of +1 (resp.
−1) when the correct (resp. wrong) goal is reached. If a box is touched, the episode
ends. The maze’s axis range from -40 to 40, the two turn actions (left, right) modify
the angle by 45 degrees, and the forward action is a 5 length move. The agent starts
in a random position with a random orientation. The information about which goal
to reach at each episode is encoded by the use of two different textures on the wall
located on the opposite side of the boxes. In this way, the agent cannot simultaneously
observe both boxes and the “informative” wall.
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This environment allows to evaluate the models in a setting where the observation
is a high dimensional space (3x60x60 RGB image). The mapping between the RGB
image and the task target in {−1, 1} is challenging and the informed policy should
provide better auxiliary task targets than TI thanks to the “easy” training of the
informed policy.

IMPORT outperformsTI on this environment (Figure A.9) in both final perfor-
mance and sample efficiency.

Figure A.9 – Learning curves on the Maze 3D environment

A.3.5 Tabular MDPs

Tabular MDP [Dua+16] is a MDP with S discrete states and A actions such that the
transition matrix is sampled from a flat Dirichlet distribution, and the reward function
is sampled from a uniform distribution in [0, 1]. The task identifier µ is a concatenation
of the transition and reward functions resulting in a vector of size S2A+SA, allowing
to test the models with high-dimensional µ.

IMPORT outperforms all baselines in all settings (Figure A.10 and Table 3.2).

A.4 Impact of the β hyperparameter

We study the sensibility of the β parameter on IMPORT. Figure A.11 clearly shows the
benefits of using the auxiliary objective. On all but the Tabular-MDP environments,
the recurrent policy successfully leverages the auxiliary objective to improve both
sample efficiency and final performance for Acrobot.
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(a) TMDP with µ and |S| = 1 (b) TMDP with µ and |S| = 1

(c) TMDP with µ and |S| = 3 (d) TMDP with µ and |S| = 3

(e) TMDP with µ and |S| = 5 (f) TMDP with µ and |S| = 5

Figure A.10 – Evaluation on Tabular-MDP with different parameters and task descriptors
(TID stands for task identifier).
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(a) Bandits. K = 10, N = 100 (b) Bandits. K = 20, N = 100

(c) CartPole with N = 10 (d) CartPole with N = 100

(e) Acrobot with N = 10 (f) Acrobot with N = 100

(g) TMDP with |S| = 1, |A| = 5, N = 100 (h) TMDP with |S| = 3, |A| = 5, N = 100

Figure A.11 – Test performance of IMPORT for different β parameters (auxiliary supervised
objective). We only report performance on informative µ task descriptors.
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B.1 Theoretical Details on Section 4.4

B.1.1 Proofs of Lemmas 1 and 2

Restatement of Lemma 1. There exists a value η† ∈ (0, 1) such that solving (Pη†)
is equivalent to maximizing a lower bound on the mutual information objective
maxNZ ,ρ,π,ϕ I(Sdiff;Z).

Proof. We assume that the number of available skills is upper bounded, i.e., 1 ≤ NZ ≤
Nmax. We begin by lower bounding the negative conditional entropy by using the well
known lower bound of Barber and Agakov [BA04] on the mutual information

−H(Z|Sdiff) =
∑
z∈Z

ρ(z)Esdiff [log p(z|sdiff)]

≥
∑
z∈Z

ρ(z)Esdiff [log qϕ(z|sdiff)] .

We now use that any weighted average is lower bounded by its minimum compo-
nent, which yields

−H(Z|Sdiff) ≥ min
z∈Z

Esdiff [log qϕ(z|sdiff)] .

119



Complements on Chapter 4

Thus the following objective is a lower bound on the original objective of maximiz-
ing I(Sdiff;Z)

max
NZ=N,ρ,π,ϕ

{
H(Z) + min

z∈[N ]
Esdiff [log qϕ(z|sdiff)]

}
. (B.1)

Interestingly, the second term in eq. (B.1) no longer depends on the skill distri-
bution ρ, while the first entropy termH(Z) is maximized by setting ρ to the uniform
distribution over N skills (i.e., maxρH(Z) = log(N)). This enables to simplify the
optimization which now only depends on N . Thus eq. (B.1) is equivalent to

max
NZ=N

{
log(N) + max

π,ϕ
min
z∈[N ]

Esdiff [log qϕ(z|sdiff)]
}
. (B.2)

We define the functions

f(N) := log(N), g(N) := max
π,ϕ

min
z∈[N ]

Esdiff [log qϕ(z|sdiff)] .

Let N † ∈ arg maxN f(N) + g(N) and η† := exp g(N †) ∈ (0, 1). We now show that
any solution of (Pη†) is a solution of eq. (B.2). Indeed, denote by N⋆ the value that
optimizes (Pη†). First, by validity of the constraint, it holds that g(N⋆) ≥ log η† = g(N †).
Second, since N † meets the constraint and N⋆ is the maximal number of skills that
satisfies the constraint of (Pη†), by optimality we have that N⋆ ≥ N † and therefore
f(N⋆) ≥ f(N †) since f is non-decreasing. We thus have

 g(N
⋆) ≥ g(N †)

f(N⋆) ≥ f(N †)
=⇒ f(N⋆) + g(N⋆) ≥ f(N †) + g(N †).

Putting everything together, an optimal solution for (Pη†) is an optimal solution for
eq. (B.2), which is equivalent to eq. (B.1), which is a lower bound of the MI objective,
thus concluding the proof.

Restatement of Lemma 2. The function g is non-increasing in N .

Proof. We have that g(N) := maxπ,q minz∈[N ] Es∼π(z)[log(q(z|s)], where throughout the
proof we write s instead of sdiff for ease of notation. Here the optimization variables
are π ∈ (Π)N (i.e., a set of N policies) and q : S → ∆(N), i.e., a classifier of states to N
possible classes, where ∆(N) denotes the N -simplex. For z ∈ [N ], let

hN(π, q, z) := Es∼π(z)[log(q(z|s)], fN(π, q) := min
z∈[N ]

hN(π, q, z).
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Let (π′, q′) ∈ arg maxπ,q fN+1(π, q). We define π̃ := (π′(1), . . . , π′(N)) ∈ (Π)N and
q̃ : S → ∆(N) such that q̃(i|s) := q′(i|s) for any i ∈ [N − 1] and q̃(N |s) := q′(N |s) +
q′(N + 1|s). Intuitively, we are “discarding” policy N + 1 and “merging” class N + 1
with class N .

Then it holds that

g(N + 1) = fN+1(π′, q′) = min
z∈[N+1]

hN+1(π′, q′, z) ≤ min
z∈[N ]

hN+1(π′, q′, z).

Now, by construction of π̃, q̃, we have for any i ∈ [N−1] that hN+1(π′, q′, i) = hN(π̃, q̃, i).
As for class N , since π̃(N) = π′(N), by definition of q̃(N |·) and from monotonicity of
the log function, it holds that hN+1(π′, q′, N) = Es∼π′(N)[log(q′(N |s)] satisfies

hN+1(π′, q′, N) ≤ Es∼π̃(N)[log(q̃(N |s)] = hN(π̃, q̃, N).

Hence, we get that

min
z∈[N ]

hN+1(π′, q′, z) ≤ min
z∈[N ]

hN(π̃, q̃, z) = fN(π̃, q̃) ≤ g(N).

Putting everything together gives g(N+1) ≤ g(N), which yields the desired result.

B.1.2 Simple Illustration of the Issue with Uniform-ρMIMaximiza-
tion

This section complements Sect. 4.4.2: we show a simple scenario where 1) considering
both a uniform ρ prior and a fixed skill number NZ provably leads to suboptimal MI
maximization, and where 2) the UPSIDE strategy of considering a uniform ρ restricted
to the η-discriminable skills can provably increase the MI for small enough η.

Consider the simple scenario (illustrated on Fig. B.1) where the agent has N skills
indexed by n and must assign them toM states indexed bym. We assume that the
execution of each skill deterministically brings it to the assigned state, yet the agentmay
assign stochastically (i.e., more than one state per skill). (A non-RL way to interpret
this is that we want to allocate N balls into M boxes.) Denote by pn,m ∈ [0, 1] the
probability that skill n is assigned to statem. It must hold that ∀n ∈ [N ],∑m pn,m = 1.
Denote by I the MI between the skill variable and the assigned state variable, and
by I the MI under the prior that the skill sampling distribution ρ is uniform, i.e.,
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Figure B.1 – The agent must assign (possibly stochastically) N skills toM states: under the
prior of uniform skill distribution, can the MI be increased by varying the number of skills N?

ρ(n) = 1/N . It holds that

I(N,M) = −
∑
n

1
N

log 1
N

+
∑
n,m

1
N
pn,m log

1
N
pn,m∑

n
1
N
pn,m

= logN + 1
N

∑
n,m

pn,m log pn,m∑
n pn,m

.

Let I⋆(N,M) := max{pn,m} I(N,M) and {p⋆n,m} ∈ arg max{pn,m} I(N,M). We also
define the discriminability of skill n in statem as

qn,m := pn,m∑
n pn,m

,

as well as the minimum discriminability of the optimal assignment as

η := min
n

max
m

q⋆n,m.

Lemma 3. There exist values of N andM such that the uniform-ρMI can be improved by
removing a skill (i.e., by decreasing N).

Proof. The following example shows that with M = 2 states, it is beneficial for the
uniform-ρ MI maximization to go from N = 3 to N = 2 skills. Indeed, we can
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numerically compute the optimal solutions and we obtain for N = 3 andM = 2 that

I⋆(N = 3,M = 2) ≈ 0.918, p⋆n,m =


0 1
0 1
1 0

 , q⋆n,m =


0 0.5
0 0.5
1 0

 , η = 0.5,

whereas for N = 2 andM = 2,

I⋆(N = 2,M = 2) = 1, p⋆n,m =
0 1

1 0

 , q⋆n,m =
0 1

1 0

 , η = 1.

As a result, I⋆(N = 2,M = 2) > I⋆(N = 3,M = 2), which concludes the proof. The
intuition why I⋆ is increased by decreasing N is that for N = 2 there is one skill per
state whereas for N = 3 the skills must necessarily overlap. Note that this contrasts
with the original MI (that also optimizes ρ) where decreasing N cannot improve the
optimal MI.

The previous simple example hints to the fact that the value of the minimum
discriminability of the optimal assignment η may be a good indicator to determine
whether to remove a skill. The following more general lemma indeed shows that a
sufficient condition for the uniform-ρMI to be increased by removing a skill is that η
is small enough.

Lemma 4. Assume without loss of generality that the skill indexed by N has the minimum
discriminability η, i.e., N ∈ arg minn maxm q⋆n,m. Define

∆(N, η) := logN − N − 1
N

log(N − 1) + 1
N

log η.

If ∆(N, η) ≤ 0 —which holds for small enough η— then removing skill N results in a larger
uniform-ρ optimal MI, i.e., I⋆(N,M) < I⋆(N − 1,M).

Proof. It holds that

I⋆(N,M) = logN + 1
N

 ∑
n∈[N−1]

∑
m∈[M ]

p⋆n,m log q⋆n,m +
∑

m∈[M ]
p⋆n,m log η


= logN − N − 1

N
log(N − 1)

+ N − 1
N

log(N − 1) + 1
N − 1

∑
n∈[N−1]

∑
m∈[M ]

p⋆n,m log q⋆n,m

+ 1
N

log η
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= ∆(N, η) + N − 1
N
I⋆(N − 1,M).

As a result, if ∆(N, η) ≤ 0 then I⋆(N,M) < I⋆(N − 1,M).

B.2 UPSIDE Algorithm

B.2.1 Visual illustrations of UPSIDE’s Design Mentioned in Section
4.4

Figure B.2 – Decoupled struc-
ture of an UPSIDE policy: a di-
rected skill followed by a diffus-
ing part. Figure B.3 – In the above UPSIDE tree example, executing

policy z = 7 means sequentially composing the skills of
policies z ∈ {2, 5, 7} and then deploying the diffusing part
of policy z = 7.

B.2.2 High-Level Approach of UPSIDE

B.2.3 Details of Algorithm algorithm B.1

We give in algorithm B.1 a more detailed version of ,algorithm 4.1 and we list some
additional explanations below.

• When optimizing the discriminator, rather than sampling (state, policy) pairs
with equal probability for all nodes from the tree T , we put more weight (e.g.
3×) on already consolidated policies, which seeks to avoid the new policies
from invading the territory of the older policies that were previously correctly
learned.
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Algorithm B.1: Detailed UPSIDE
1 Parameters: Discriminability threshold η ∈ (0, 1), branching factor N start, Nmax

2 Initialize: Tree T initialized as a root node index by 0, policy candidates
Q = {0}, state buffers BZ = {0 : [ ]}

3 while Q ≠ ∅ do // tree expansion
4 Dequeue a policy z ∈ Q and create N = N start nodes C(z) rooted at z and

add new key z to BZ

5 Instantiate new replay buffer BRL
6 PolicyLearning(BRL, BZ , T , C(z))
7 if minz′∈C(z) d(z′) > η then // Node addition
8 while minz′∈C(z) d(z′) > η and N < Nmax do
9 Increment N = N + 1 and add one policy to C(z)

10 PolicyLearning(BRL, BZ , T , C(z))
11 end
12 end
13 else // Node removal
14 while minz′∈C(z) d(z′) < η and N > 1 do
15 Reduce N = N − 1 and remove least discriminable policy from C(z)
16 PolicyLearning(BRL, BZ , T , C(z))
17 end
18 end
19 Enqueue in Q the η-discriminable nodes C(z)
20 end

21 PolicyLearning(Replay buffer BRL, State buffers BZ , Tree T , policies to update
ZU)

22 Optimization parameters: patience K, policy-to-discriminator update ratio J ,
Kdiscr discriminator update epochs, Kpol policy update epochs

23 Initialize: Discriminator qϕ with |T | classes
24 for K iterations do // Training loop
25 For all z′ ∈ ZU , clear BZ [z′] then collect and add B states from the diffusing

part of π(z′) to it
26 Train the discriminator qϕ for Kdiscr steps with dataset ⋃z′∈T BZ [z′].
27 Compute discriminability d(z′) = q̂ B

ϕ (z′) = 1
|Bz′ |

∑
s∈Bz′ qϕ(z′|s) for all

z′ ∈ ZU
28 if minz′∈ZU

d(z′) > η then // Early stopping
29 Break
30 end
31 for J iterations do
32 For all z′ ∈ ZU , sample a trajectory from π(z′) and add to replay buffer

BRL
33 For all z′ ∈ ZU , update policy π′

z for Kpol steps on replay buffer BRL to
optimize the discriminator reward as in Sect. 4.4.1 keeping skills from
parent policies fixed

34 end
35 end
36 Compute discriminability d(z′) for all z′ ∈ ZU
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Figure B.4 – High-level approach of UPSIDE.

• A replay buffer BRL is instantiated at every new expansion (line 5), thus avoiding
the need to start collecting data from scratch with the new policies at every
PolicyLearning call.

• J (line 31) corresponds to the number of policy updates ratio w.r.t. discriminator
updates, i.e. for how long the discriminator reward is kept fixed, in order to add
stationarity to the reward signal.

• Instead of using a number of iterationsK to stop the training loop of the Pol-
icyLearning function (line 24), we use a maximum number of environment
interactionsKsteps for node expansion. Note that this is the same for DIAYN-hier
and DIAYN-curr.

• The state buffer size B needs to be sufficiently large compared to H so that the
state buffers of each policy represent well the distribution of the states generated
by the policy’s diffusing part. In practice we set B = 10H .

• In PolicyLearning, we addKinitial random (uniform) transitions to the replay
buffer for each newly instantiated policies.

• Moreover, in PolicyLearning, instead of sampling uniformly the new policies
we sample them in a round robin fashion (i.e., one after the other), which can
be simply seen as a variance-reduced version of uniform sampling.
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A B C

D E F

G H I

Figure B.5 – Fine-grained evolution of the tree structure on a wall-free maze withN start = 4
and Nmax = 8. The environment is a wall-free continuous maze with initial state s0 located at
the center of the maze. Image A represents the diffusing part around s0. In image B,N start = 4
policies are trained, yet one of them (in lime yellow) is not sufficiently discriminable, thus
it is pruned, resulting in image C. A small number of interactions is enough to ensure that
the three policies are η-discriminable (image C). In image D, a fourth policy (in green) is
able to become η-discriminable. New policies are added, trained and η-discriminated from 5
policies (image E) toNmax = 8 policies (image F). Then a policy (in yellow) is expanded with
N start = 4 policies (image G). They are all η-discriminable so additional policies are added
(images H, I, . . . ). The process continues until convergence or until time-out (as done here).
On the left, we plot the number of active policies (which represents the number of policies
that are being trained at the current level of the tree) as well as the average discriminator
accuracy over the active policies.

B.2.4 Illustration of the Evolution of UPSIDE’s Tree on a Wall-Free
Maze

See fig. B.5.

B.2.5 Illustration of Evolution of UPSIDE’s Tree on the Bottleneck
Maze

See Fig. B.6.
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Figure B.6 – Incremental expansion of the tree learned by UPSIDE towards unexplored regions
of the state space in the Bottleneck Maze.

B.3 Experimental Details

B.3.1 Baselines

DIAYN-NZ . This corresponds to the original DIAYN algorithm [Eys+19] where NZ

is the number of skills to be learned. In order to make the architecture more similar
to UPSIDE, we use distinct policies for each skill, i.e. they do not share weights as
opposed to [Eys+19]. While this may come at the price of sample efficiency, it may
also help put lesser constraint on the model (e.g. gradient interference).

DIAYN-curr. We augment DIAYN with a curriculum that enables to be less dependent
on an adequate tuning of the number of skills of DIAYN. We consider the curriculum
of UPSIDE where we start learning withN start policies during a period of time/number
of interactions. If the configuration satisfies the discriminablity threshold η, a skill is
added, otherwise a skill is removed or learning stopped (as in Alg. B.1, lines 5-12).
Note that the increasing version of this curriculum is similar to the one proposed in
VALOR [Ach+18]. In our experiments, we use N start = 1.

DIAYN-hier. We extend DIAYN through the use of a hierarchy of directed skills, built
following the UPSIDE principles. The difference between DIAYN-hier and UPSIDE is
that the discriminator reward is computed over the entire directed skill trajectory,
while it is guided by the diffusing part for UPSIDE. This introduced baseline can be
interpreted as an ablation of UPSIDE without the decoupled structure of policies.

SMM. We consider SMM [Lee+19b] as it is state-of-art in terms of coverage, at least on
long-horizon control problems, although [Cam+20] reported its poor performance
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in hard-to-explore bottleneck mazes. We tested the regular SMM version, i.e., learn-
ing a state density model with a VAE, yet we failed to make it work on the maze
domains that we consider. As we use the cartesian (x, y) positions in maze domains,
learning the identity function on two-dimensional input data is too easy with a VAE,
thus preventing the benefits of using a density model to drive exploration. In our
implementation, the exploration bonus is obtained by maintaining a multinomial
distribution over “buckets of states” obtained by discretization (as in our coverage
computation), resulting in a computation-efficient implementation that is more stable
than the original VAE-based method. Note that the state distribution is computed
using states from past-but-recent policies as suggested in the original paper.

EDL. We consider EDL [Cam+20] with the strong assumption of an available state
distribution oracle (since replacing it by SMM does not lead to satisfying results in pres-
ence of bottleneck states as shown in [Cam+20, page 7]: “We were unable to explore
this type of maze effectively with SMM”). In our implementation, the oracle samples
states uniformly in the mazes avoiding the need to handle a complex exploration, but
this setting is not realistic when facing unknown environments.

B.3.2 Architecture and Hyperparameters

The architecture of the different methods remains the same in all our experiments,
except that the number of hidden units changes across considered environments.
For UPSIDE, flat UPSIDE (i.e., UPSIDE with a tree depth of 1), DIAYN, DIAYN-curr,
DIAYN-hier and SMM the multiple policies do not share weights, however EDL policies
all share the same network because of the constraint that the policy embedding z is
learnt in a supervised fashion with the VQ-VAE rather than the unsupervised RL
objective. We consider decoupled actor and critic optimized with the TD3 algorithm
[FHM18] though we also tried SAC [Haa+18] which showed equivalent results than
TD3 with harder tuning.1 The actor and the critic have the same architecture that
processes observations with a two-hidden layers (of size 64 for maze environments
and 256 for control environments) neural networks. The discriminator is a two-hidden
(of size 64) layer model with output size the number of skills in the tree.

1For completeness, we report here the performance of DIAYN-SAC in the continuous mazes: DIAYN-
SAC with NZ = 10 on Bottleneck maze: 21.0 (± 0.50); on U-maze: 17.5 (± 0.75), to compare with
DIAYN-TD3 with NZ = 10 on Bottleneck maze: 17.67 (± 0.57); on U-maze: 14.67 (± 0.42). We thus see
that DIAYN-SAC fails to cover the state space, performing similarly to DIAYN-TD3 (albeit over a larger
range of hyperparameter search, possibly explaining the slight improvement).
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Common (for all methods and environments) optimization hyper-parameters:

• Discount factor: γ = 0.99
• σTD3 = {0.1, 0.15, 0.2}
• Q-functions soft updates temperature τ = 0.005
• Policy Adam optimizer with learning rate lrpol = {1e−3, 1e−4}
• policy inner epochs Kpol = {10, 100}
• policy batch size Bpol = {64}
• Discriminator delay: J = {1, 10}
• Replay buffer maximum size: 1e6
• Kinitial = 1e3

We consider the same range of hyper-parameters in the downstream tasks.

UPSIDE, DIAYN and SMM variants (common for all environments) optimization hyper-
parameters:

• Discriminator batch size Bdiscr = 64
• Discriminator Adam optimizer with learning rate lrdiscr = {1e−3, 1e−4}
• discriminator inner epochs Kdiscr = {10, 100}
• Discriminator delay: J = {1, 10}
• State buffer sizeB = 10H where the diffusing part lengthH is environment-specific.

EDL optimization hyper-parameters: Wekept the same as [Cam+20]. The VQ-VAE’s
architecture consists of an encoder that takes states as an input and maps them to
a code with 2 hidden layers with 128 hidden units and a final linear layer, and the
decoder takes the code and maps it back to states also with 2 hidden layers with 128
hidden units. It is trained on the oracle state distribution, then kept fixed during
policy learning. Contrary to UPSIDE, DIAYN and SMM variants, the reward is stationary.
• βcommitment = {0.25, 0.5}
• VQ-VAE’s code size 16
• VQ-VAE batch size Bvq-vae = {64, 256}
• total number of epochs: 5000 (trained until convergence)
• VQ-VAE Adam optimizer with learning rate lrvq-vae = {1e−3, 1e−4}

Maze specific hyper-parameters:

• Ksteps = 5e4 (and in time 10 minutes)
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• T = H = 10
• Max episode length Hmax = 200
• Max number of interactions Tmax = 1e7 during unsupervised pre-training and

downstream tasks.

Control specific optimization hyper-parameters:

• Ksteps = 1e5 (and in time 1 hour)
• T = H = 50
• Max episode length Hmax = 250
• Max number of interactions Tmax = 1e7 during unsupervised pre-training and

downstream tasks.
Note that hyperparameters are kept fixed for the downstream tasks too.

B.3.3 Experimental protocol

We now detail the experimental protocol that we followed, which is common for both
UPSIDE and baselines, on all environments. It consists in the following three stages:

Unsupervised pre-training phase. Given an environment, each algorithm is trained
without any extrinsic reward on Nunsup = 3 seeds which we call unsupervised seeds
(to account for the randomness in the model weights’ initialization and environment
stochasticity if present). Each training lasts for a maximum number of Tmax envi-
ronment steps (split in episodes of length Hmax). This protocol actually favors the
baselines since by its design, UPSIDE may decide to have fewer environment inter-
actions than Tmax thanks to its termination criterion (triggered if it cannot fit any
more policies); for instance, all baselines where allowed Tmax = 1e7 on the maze
environments, but UPSIDE finished at most in 1e6 environment steps fitting in average
57 and 51 policies respectively for the Bottleneck Maze and U-Maze.

Model selection. For each unsupervised seed, we tune the hyper-parameters of each
algorithm according to a certain performance metric. For the baselines, we consider
the cumulated intrinsic reward (as done in e.g., [Str+21]) averaged over stochastic
roll-outs. For UPSIDE, DIAYN-hier and DIAYN-curr, the model selection criterion is
the number of consolidated policies, i.e., how many policies were η-discriminated
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during their training stage. For each method, we thus have as many models as seeds,
i.e. Nunsup.

Downstream tasks. For each algorithm, we evaluate theNunsup selected models on a
set of tasks. All results on downstream tasks will show a performance averaged over
the Nunsup seeds.
• Coverage. We evaluate towhich extent the state space has been covered by discretiz-

ing the state space into buckets (10 per axis on the continuous maze domains) and
counting how many buckets have been reached. To compare the global coverage
of methods (and also to be fair w.r.t. the amount of injected noise that may vary
across methods), we roll-out for each model its associated deterministic policies.

• Fine-tuning on goal-reaching task. We consider goal-oriented tasks in the dis-
counted episodic setting where the agent needs to reach some unknown goal
position within a certain radius (i.e., the goal location is unknown until it is reached
once) and with sparse reward signal (i.e., reward of 1 in the goal location, 0 oth-
erwise). The environment terminates when goal is reached or if the number of
timesteps is larger than Hmax. The combination of unknown goal location and sparse
reward makes the exploration problem very challenging, and calls upon the ability
to first cover (for goal finding) and then navigate (for reliable goal reaching) the
environment efficiently. To evaluate performance in an exhaustive manner, we
discretize the state space intoBgoal = 14 buckets and we randomly sampleNgoal = 3
from each of these buckets according to what we call goal seeds (thus there are
Bgoal ×Ngoal = 10 different goals in total). For every goal seed, we initialize each
algorithm with the set of policies learned during the unsupervised pre-training.
We then roll-out each policy during Nexplo episodes to compute the cumulative
reward of the policy, and select the best one to fine-tune. On UPSIDE, we complete
the selected policy (of length denoted by L) by replacing the diffusing skill with a
skill whose length is the remaining number of interactions left, i.e. Hmax − L. The
ability of selecting a good policy is intrinsically linked to the coverage performance
of the model, but also to few-shot adaptation. Learning curves and performance
are averaged over unsupervised seeds, goal seeds, and over roll-outs of the stochastic
policy. Since we are in the discounted episodic setting, fine-tuning makes sense, to
reach as fast as possible the goal. This is particularly important as UPSIDE, because
of its tree policy structure, can reach the goal sub-optimally w.r.t the discount. On
the maze environments, we consider all unsupervised pre-training baselines as
well as “vanilla” baselines trained from scratch during the downstream tasks: TD3
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[FHM18] and ICM [Pat+17]. In the Ant environment, we also consider Ngoal = 3
and Bgoal = 14 in the [−8, 8]2 square.
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(a) UPSIDE discriminator (b) DIAYN discriminator (c) EDL VQ-VAE

Figure B.7 – Environment divided in colors according to the most likely latent variable Z, ac-
cording to (from left to right) the discriminator learned by UPSIDE, the discriminator learned by
DIAYN and the VQ-VAE learned by EDL. Contrary to DIAYN, UPSIDE’s optimization enables the
discriminator training and the policy training to catch up to each other, thus nicely clustering
the discriminator predictions across the state space. EDL’s VQ-VAE also manages to output
good predictions (recall that we consider the EDL version with the strong assumption of the
available state distribution oracle, see [Cam+20]), yet the skill learning is unable to cover the
entire state space due to exploration issues and sparse rewards.

(a) SMM (b) DIAYN-curr (c) DIAYN-hier (d) Flat UPSIDE

Figure B.8 – Complement to Figure 4.2: Visualization of the policies learned on the Bottleneck
Maze for the remaining methods.

(a) SMM (b) TD3

Figure B.9 – Complement of Fig. 4.5: Heatmaps of downstream task performance after fine-
tuning for the remaining methods.
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(a) UPSIDE (b) DIAYN (c) EDL

(d) SMM (e) DIAYN-curr (f) DIAYN-hier (g) Flat UPSIDE

Figure B.10 – Visualization of the policies learned on U-Maze. This is the equivalent of Fig. 4.2
for U-Maze.

B.4 Additional Experiments

B.4.1 Additional results on Bottleneck Maze

Here we include 1) Fig. B.7 for an analysis of the predictions of the discriminator (see
caption for details); 2) Fig. B.8 for the policy visualizations for the remaining methods
(i.e., those not reported in Fig. 4.2; 3) Fig. B.9 for the downstream task performance
for the remaining methods (i.e., those not reported in Fig. 4.5).

B.4.2 Additional Results on U-Maze

Fig. B.10 visualizes the policies learned during the unsupervised phase (i.e., the equiv-
alent of Fig. 4.2 for the U-Maze), and Fig. B.11 reports the heatmaps of downstream
task performance (i.e., the equivalent of Fig. 4.5 for the U-Maze). The conclusion is the
same as on the Bottleneck Maze described in Sect. 4.5: UPSIDE clearly outperforms all
the baselines, both in coverage (Fig. B.10) and in unknown goal-reaching performance
(Fig. B.11) in the downstream task phase.
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(a) UPSIDE before
fine-tuning

(b) UPSIDE (c) DIAYN (d) EDL

(e) ICM (f) SMM (g) TD3

Figure B.11 – Heat maps of downstream task performance on U-Maze. This is the equivalent
of Fig. 4.5 for U-Maze.

B.4.3 Analysis of the discriminability

In Fig. B.12 (see caption) we investigate the average discriminability of DIAYN depend-
ing on the number of policies NZ .
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(a) Bottleneck Maze
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(c) Half-Cheetah
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Figure B.12 – Average discriminability of the DIAYN-NZ policies. The smaller NZ is, the easier
it is to obtain a close-to-perfect discriminability. However, even for quite large NZ (50 for
mazes and 20 in control environments), DIAYN is able to achieve a good discriminator accuracy,
most often because policies learn how to “stop” in some state.

B.4.4 Ablation on the lengths T and H of the UPSIDE policies

Our ablation on the mazes in Fig. B.13 investigates the sensitiveness of UPSIDE w.r.t.T
andH , the lengths of the directed skills and diffusing parts of the policies. For the sake
of simplicity, we kept T = H . It shows that the method is quite robust to reasonable
choices of T andH , i.e., equal to 10 (as done in all other experiments) but also 20 or 30.
Naturally, the performance degrades if T,H are chosen too largew.r.t. the environment
size, in particular in the bottleneck maze which requires “narrow” exploration, thus
composing disproportionately long skills hinders the coverage. For T = H = 50, we
recover the performance of flat UPSIDE.
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(a) T = H = 10 (b) T = H = 20 (c) T = H = 30 (d) T = H = 40 (e) T = H = 50

(f) T = H = 10 (g) T = H = 20 (h) T = H = 30 (i) T = H = 40 (j) T = H = 50

Figure B.13 – Ablation on the length of
UPSIDE policies (T,H): Visualization of
the policies learned on the Bottleneck
Maze (top) and the U-Maze (bottom) for
different values of T,H . (Right table) Cov-
erage values (according to the same pro-
cedure as in Table 4.2). Recall that T and
H denote respectively the lengths of the
directed skill and of the diffusing part of
an UPSIDE policy.

UPSIDE Bottleneck Maze U-Maze
T = H = 10 85.67 (±1.93) 71.33 (±0.42)

T = H = 20 87.33 (±0.42) 67.67 (±1.50)

T = H = 30 77.33 (±3.06) 68.33 (±0.83)

T = H = 40 59.67 (±1.81) 57.33 (±0.96)

T = H = 50 51.67 (±0.63) 58.67 (±1.26)

B.4.5 Fine-tuning Results on Half-Cheetah and Walker2d

In Sect. 4.5, we reported the fine-tuning results on Ant. We now focus on Half-Cheetah
and Walker2d, and similarly observe that UPSIDE largely outperforms the baselines:

UPSIDE TD3 DIAYN

Half-Cheetah 174.93 (±1.45) 108.67 (±25.61) 0.0 (±0.0)

Walker2d 46.29 (±3.09) 14.33 (±1.00) 2.13 (±0.74)

We note that the fine-tuning experiment on Half-Cheetah exactly corresponds to
the standard Sparse-Half-Cheetah task, by rewarding states where the x-coordinate
is larger than 15. Meanwhile, Sparse-Walker2d provides a reward as long as the
x-coordinate is larger than 1 and the agent is standing up. Our fine-tuning task on
Walker2d is more challenging as we require the x-coordinate to be larger than 4. Yet
the agent can be rewarded even if it is not standing up, since our downstream task
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is purely goal-reaching. We indeed interestingly noticed that UPSIDE may reach the
desired goal location yet not be standing up (e.g., by crawling), which may occur as
there is no incentive in UPSIDE to remain standing up, only to be discriminable.
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C.1 Details on the training data

In Tab. C.1 we provide the detailed set of parameters used in our data generator. The
probabilities of the unary operators were selected to match the natural frequencies
appearing in the Feynman dataset.

In Fig. C.1, we show the statistics of the data generation.The number of expressions
diminishes with the input dimension and number of unary operators because of the
higher likelihood of generating out-of-domain inputs. One could easily make the
distribution uniform by enforcing to retry as long as a valid example is not found,
however we find empirically that having more easy examples than hard ones eases
learning and provides better out-of-domain generalization, which is our ultimate
goal.

In Fig. C.2, we show some examples of the input distributions generated by our
multimodal approach. Notice the diversity of shapes obtained by this procedure.

Figure C.1 – Statistics of the synthetic data. We calculated the latter on 10, 000 generated
examples.
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Table C.1 – Parameters of our generator.

Parameter Description Value
Dmax Max input dim 10

Daff Distrib of (a,b)
sign ∼ U{−1, 1},

mantissa ∼ U(0, 1),
exponent ∼ U(−2, 2)

bmax Max binary ops 5 +D

Ob Binary operators add:1, sub:1, mul:1
umax Max unary ops 5

Ou Unary operators
inv:5, abs:1, sqr:3, sqrt:3,

sin:1, cos:1, tan:0.2, atan:0.2,
log:0.2, exp:1

Nmin Min number of points 10din
Nmax Max number of points 200
kmax Max num clusters 10

C.2 Examples of expressions generated

Below, we give some typical examples of the expressions generated by our random
generator for dimensions between 1 and 3 (Tab. C.2), as well as some examples of
equations from the Feynman dataset (Tab. C.3).

Figure C.2 –Diversity of the input distributions generated by the multimodal approach.
Here we show distributions obtained for D = 2.
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Cx0 − Cx0
Cx0+C − C

(
Cx0 (Cx0 + C)3 + C

)3
+ C

Cx0 + C |Cx0 + C|+ C

Cx0x1 (Cx0 + C log (Cx0 + C)) + C

C + x0 (−Cx1 + Cx2)2

C + x0x2 (Cx0 + Cx1 − C sin (Cx0 − C sin (Cx1x2 + C)))
Cx0 + Cx2 + C + C

Cx1
√
Cx0+C+Ce

Cx0− C
Cx2+C

Cx0 + Cx1 + C

C (Cx0 + C)3 + C − C
Cx1

Cx2+C
+C

C sin (Cx0 + C) + C + C
Cx1+C

−Cx1
(

Cx2
Cx0+C + C

)2
+ Cx2 + C sin (Cx1 + C) + C tan (Cx0 + C) + C

C + x0 (Cx0 − Cx1 + C |Cx1 + C|)
C + x2 (Cx0 + Cx1)

(
Cx0 + C

Cx0+C

)
C − x2 sin

(
Cx0 + Cx1 − Cx2

Cx2+C

)
−Cx0 + C

(
Cx0

Cx0+C + C
)2

+ C

Cx0
(
Cx0x1x2 + C

Cx2+C

)
+ Cx1 + C (Cx1 + C)2 + C

Table C.2 – A few examples of equations from our random generator.

C.3 Does memorization occur?

It is natural to ask the following question: due to the large amount of data seen during
training, is our model simply memorizing the training set ? Answering this question
involves computing the number of possible functions which can be generated. To
estimate this number, calculating the number of possible skeleton Ns is insufficient,
since a given skeleton can give rise to very different functions according to the sampling
of the constants, and even for a given choice of the constants, the input points {x} can
be sampled in many different ways.

Nonetheless, we provide the lower bound Ns as a function of the number of nodes
in Fig. C.3, using the equations provided in [LC19]. For small expressions (up to
four operators), the number of possible expressions is lower or similar to than the
number of expressions encountered during training, hence one cannot exclude the
possibility that some expressions were seen several times during training, but with
different realizations due to the initial conditions. However, for larger expressions, the
number of possibilities is much larger, and one can safely assume that the expressions
encountered at test time have not been seen during training.
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Table C.3 – A few examples of equations from the Feynman dataset.

C.4 Attention maps

A natural question is whether self-attention based architectures are optimally suited
for symbolic regression tasks. In Fig. C.4, we show the attention maps produced by
the encoder of our Transformer model, which contains 4 layers avec 16 attention heads
(we only keep the first 8 for the sake of space). In order to make the maps readable,
we consider one-dimensional inputs and sort them in ascending order.

The attention plots demonstrate the complementarity of the attention heads. Some
focus on specific regions of the input, whereas others are more spread out. Some are
concentrated along the diagonal (focusing on neighboring points), whereas others
are concentrated along the anti-diagonal (focusing on far-away points.

Most strikingly, the particular features of the functions studied clearly stand out in
the attention plots. Focus, for example, on the 7th head of layer 2. For the exponential
function, it focuses on the extreme points (near -1 and 1); for the inverse function, it
focuses on the singularity around the origin; for the sine function, it reflects the peri-
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Figure C.3 – Our models only see a small fraction of the possible expressions during
training. We report the number of possible skeletons for each number of operators. Even after
a hundred epochs, our models have only seen a fraction of the possible expressions with more
than 4 operators.

odicity, with evenly spaces vertical lines. The same phenomenology can be acrossed
is several other heads.

C.5 Additional in-domain results

Fig. C.5, we present a similar ablation as Fig. 6.4 of the main text but using the R2

score as metric rather than accuracy.

C.6 Additional out-of-domain results

Complexity-accuracy In Fig. C.6, we display a Pareto plot comparing accuracy and
formula complexity on SRBench datasets.

Jin benchmark In Fig. C.7, we show the predictions of our model on the functions
provided in [Jin+20a]. Our model gets all of them correct except for one.

Black-box datasets In Fig. C.8, we display the results of our model on the black-box
problems of SRBench.
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Strogatz datasets Each of the 14 datasets from the ODE-Strogatz benchmark is the
trajectory of a 2-state system following a first-order ordinary differential equation
(ODE). Therefore, the input data has a very particular, time-ordered distribution,
which differs significantly from that seen at train time. Unsurprisingly, Fig. C.9 shows
that our model performs somewhat less well to this kind of data in comparison with
GP-based methods.

Ablation on input dimension In Fig. C.10, we show how the performance of our
model depends on the dimensionality of the inputs on Feynamn and black-box
datasets.

Ablation on decoding strategy In Fig. C.11, we display the difference in performance
using two decoding strategies.

Ablation on the use of i) mixture of distributions during training, ii) scaling during
inference It is generally observed that Transformers struggle to generalize out-of-
distribution, especially in mathematical tasks [Wel+22]. We demonstrate that both
i) and ii) are necessary to handle datasets involving input distributions that are (i)
neither gaussian nor uniform, and (ii) vary across wide ranges of scales.

For (i), we provide in Fig. C.12 a qualitative example on a model trained with
Gaussian and uniform distributions that a distribution-shift at test time can cause
failure. Consider the function y = x1 cos(x0 + x1). Recall the model was trained on
datapoints sampled from distributions either N(0, 1) or U([−1, 1]). As we sample 100
datapoints from U([0, 6]), we see the E2E model makes good predictions, whereas,
adding 100 datapoints, sampled uniformly between U([−7, 5]), degrades the model
prediction.

For (ii), we also provide in Fig. C.13 a qualitative example of failure on the same
function y = x1 cos(x0 + x1) and datapoints when scaling is not used. We additionally
report results on SRBench evaluation for our E2E model without scaling in Table
C.4 and show that changes in scales during inference put transformers outside their
comfort zone.
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Table C.4 – The importance of scaling at inference for transformer-based approaches.

Refinement Scaler Feynman [mean R2>0.99] Black-box [median R2]
With With 0.84 0.87

Without With 0.78 0.70
With Without 0.53 0.64

Without Without 0.06 0.46
Results on SRBench show that scaling is necessary to achieve competitive results.
Note that refinement of constants can improve the performance of the unscaled
prediction, however it is not enough to even catch up with the E2E without
refinement model.

C.7 Extended comparison with prior work.

SymbolicGPT [Val+21] and NSRS [Big+21] both train Transformers to predict func-
tion skeletons with other tokenization strategies. SymbolicGPT is prone to training
instabilities when considering functions with high value variations and NSRS’ archi-
tecture is not able to scale to high dimensions because the tokenized input grows
linearly with the input dimension. [dAs+22] also predicts skeletons but focus on the
problem of inferring one-dimensional recurrence relations from small sets of points
in case only, while we estimate functions of many variables over larger sets of points.

Only NSRS [Big+21] provides a pre-trained model, but it was only trained on
problems with dimensions ≤ 3, corresponding to a very small subset of SRBench.
Note however that even at these low dimensions, NSRS seems to perform less well
than our model: the authors report an accuracy (defined at R2> 0.95) on the Feynman
datasets of ≈ 0.75 in their appendix (Fig. 9), whereas we get ≈ 0.84 on R2> 0.99 on
all dimensions.

The benchmark we used for our comparison, SRBench, is currently the most
extensive and up-to-date benchmark for SR, and provides comparisons with other
DL-based methods such as DSR [Pet+19]. Note also that the ablation of Tables 6.1
and 6.2 and Fig. 6.4 (in-domain), as well as Figures 6.5 and C.8 (out-of-domain) are
provided to show the benefit of the E2E approach over skeleton approaches.

Note that an other end-to-end approach[Vas+22b], very similar to ours, was
released two months after us.
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C.8 Extension of our model to dimension > 10.

Our method still remains improvable in scaling to larger dimensions. The reason we
restricted our model to dimension ≤ 10 is that the input sequence length becomes
prohibitively long beyond, and that generating high-dimensional functions in an
unbiased way becomes increasingly tricky. Nonetheless, since the objective of SR is to
output interpretable formulas, we argue that SR is most useful for moderately low
dimensional problems. For example, 1− 10 dimensional problems already cover a
large class of physical systems : for instance, point objects can be represented by their
position, speed and mass, 7 parameters. Additionally, in many real world problems
where more than 10 features are available, some of the features are often irrelevant or
heavily correlated. To mitigate this, one typically carries out feature selection before
modeling the data.

We tested our model on the high-dimensional problems of SRBench (up to 1000
input dimensions), by feeding to our model only the 10 features most correlated with
the output. This naive strategy already obtained encouraging results (with a median
R2 score of 0.72, to compare with 0.58 for DSR and 0.55 for gplearn, but still well below
Operon which stands at 0.91).
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(a) f(x) = x2

(b) f(x) = 1/x

(c) f(x) = sin(10x)

Figure C.4 – Attention maps reveal distinctive features of the functions considered. We
presented the model 1-dimensional functions with 100 input points sorted in ascending order,
in order to better visualize the attention. We plotted the self-attention maps of the first 8 (out
of 16) heads of the Transformer encoder, across all four layers. We see very distinctive patterns
appears: exploding areas for the exponential, the singularity at zero for the inverse function,
and the periodicity of the sine function.
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Figure C.5 – Ablation over the function difficulty (top row) and input difficulty (bottom
row). We plot the R2 score (Eq. 6.1). A: number of unary operators. B: number of binary
operators. C: input dimension. D: Low-resource performance, evaluated by varying the
number of input points. E: Extrapolation performance, evaluated by varying the variance of
the inputs. F: Robustness to noise, evaluated by varying the multiplicative noise added to the
labels.
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Figure C.6 – Complexity-accuracy pareto plot. Pareto plot comparing the average test per-
formance and formula complexity of our models with baselines provided by the SRbench
benchmark [La +21a], both on Feynman SR problems [UT20] and black-box regression prob-
lems. We use colors to distinguish three families of models: deep-learning based SR, genetic
programming-based SR and classic machine learning methods (which do not provide an
interpretable solution).

(a) Jin-1 (b) Jin-2

(c) Jin-3 (d) Jin-4

(e) Jin-5 (f) Jin-6

Figure C.7 – Illustration of our model on a few benchmark datasets from the litterature. We
show the prediction of our model on six 2-dimensional datasets presented in [Jin+20a] and
used as a comparison point in a few recent works [Mun+21]. The input points are marked as
black crosses. Our model retrieves the correct expression in all but one of the cases: in Jin5,
the prediction matches the input points correctly, but extrapolates badly.
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Figure C.8 – Performance metrics on black-box datasets.

Figure C.9 – Performance metrics on Strogatz datasets.
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(a) Black-box

(b) Feynman

Figure C.10 – Performance metrics on SRBench, separated by input dimension.

Figure C.11 –Median R2 of our method without refinement on black-box datasets when
B = 1, varying the number of decoded function samples. The beam search [WR16] used in
[Big+21] leads to low-diversity candidates in our setup due to expressions differing only by
small modifications of the coefficients.
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Figure C.12 – Transformers do not generalize well to distribution-shift.

Figure C.13 – Transformers do not generalize well to scale-shift.
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D.1 Data generation

Ground-truth expressions. To generate a large synthetic dataset with examples
(D, f ∗), we first sample N observations/features X ∈ RN×D where D is uniformly
sampled between 1 and 10 with a mixture of Gaussians as in [Kam+22], then consider
sampling: a) an empty unary-binary tree from [LC19] generator with between 5 and
25 internal nodes, b) assign a random operator on nodes and either a variable {xd}d≤D

or float constant drawn from a normal distribution on leaves. We then simplify the
ground-truth expression with SymPy.

The only difference with [Kam+22] lies in the fact that the generated expressions
are much smaller by not enforcing all variables to appear sampled expressions, there-
fore letting the model learn the ability to do feature selection, as well as to having
much less constants (they apply linear transformations with probability 0.5 on all
nodes/leaves), therefore providing more interpretable expressions (model size is
divided by 2).

Example mutations. From a ground-truth expression f ∗, we generate a sequence of
example mutations that go from the empty expression to f ∗ by iteratively removing
parts of the expression tree. To do so, at any given step, we randomly pick an internal
node such that the size of the subtree argument B is large enough, and apply the
backward mutation, i.e. adding an edge between the parent node and the remaining
child node A. When the remaining expression is too small, the mutation’s operator
becomes 0 −→ B where B is the remaining expression.
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D.2 Data representation

As done in most [Kam+22], floats are represented in base 10 foating-point notation,
rounded to four significant digits, and encoded as sequences of 3 tokens: their sign,
mantissa (between 0 and 9999), and exponent (from E-100 to E100). Expressions
are represented by their Polish notations, i.e. the breadth-first search walk, with
numerical constants are represented as explained above. A dataset is represented
by the concatenation of all tokenized (xi, yi) pairs where vectors representation is
just the flattenized tokens of each dimension value. The combination of both the
expression and dataset yields the representation of states by concatenating both
representations and using special separators between the expression f and dataset D.
Actions are represented by the concatenation (with special separators) of i) the node
index (integer in base 10) on which to apply the mutation, ii) the operator token, iii)
the tokenized expression B if the operator is binary.

D.3 Model details

Since the number of tokens transformers can use as context is limited by memory
considerations and possible learnable long-range dependencies, we restrict to 100
the number of input data points used as input to M , the subset being sampled at
each expansion. We also train our model on datasets with at most 10 variables, as in
[Kam+22].

D.4 Exceptions detected ablations

Earlier DGSR work has showed that Transformer models [Vas+17] were able to learn
almost perfect semantics of symbolic expressions, resulting in 99% of valid expressions
in [Kam+22]. In this work, we noticed that our policy model was also able to manipu-
late the expression structure quite well as around 90% of sampled mutations resulted
in valid expressions. Similarly we noticed that malformed mutations, e.g., invalid
index on which expression node to apply an operation, argument B that cannot be
parsed or or absent B when operator is binary, represent less than 1% of errors.

As mentioned in section 7.2.3, we constrain our model to discard expressions
that are too complex (more than 60 operators/variables/constants) or have nested
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complicated operators (e.g. cos(cos(X)), log(log(X))), in order to promote simpler ex-
pressions as explained, resulting in a great trade-off between accuracy and complexity
as shown in section 7.3.2. Note that it would be possible to enforce a greater trade-off
between accuracy and complexity, e.g. using strategies mentioned in [La +21a]. This
results in 9% of expressions being discarded because these constraints are violated.

D.5 Search details

D.5.1 Definition of satisfactory expressions

We concluded from preliminary experiments that considering f ∗ to be satisfactory
if R2 ≥ 0.99 performed best as it provided high-quality samples while dramatically
reducing search times compared to perfect fitting. Systematically estimating what
accuracy can be achieved with a given complexity is not possible without, e.g., resort-
ing to another algorithm that operates under the same complexity constraints and
can act as an oracle. We also tried estimating accuracy on validation set of points by
running XGBoost on a train set, however for SRBench datasets, accuracy can greatly
vary according to the way the dataset is split.

D.5.2 Constant optimization

We use Broyden–Fletcher–Goldfarb–Shanno algorithm (BFGS) with batch size 256,
early stopping if accuracy does not improve after 10 iterations and a timeout of 1
second.

D.5.3 Search hyper-parameters

In this work, we employ a distributed learning architecture, similar to that proposed
in [Lam+22]. Since the optimal hyper-parameters of search are not necessarily the
same for all datasets, the controller samples these hyper-parameters from pre-defined
ranges for each different search trial:

The proposed model depends on many of hyper-parameters, specifically those
pertaining to the decoding of themutationmodel and the search process. Determining
the optimal values for these hyper-parameters poses a significant challenge in practice
for several reasons. Firstly, the model is in a state of continual evolution, and thus
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the optimal hyper-parameter values may also change over time. For instance, if the
model exhibits an excessive level of confidence in its predictions, it may be necessary
to increase the decoding temperature to promote diversity in mutations. Secondly, the
optimal values of the hyper-parameters may be specific to the dataset under consider-
ation. Finally, the sheer number of hyper-parameters to be tuned, coupled with the
high computational cost of each experiment, renders the task of determining optimal
values infeasible. To circumvent these issues, rather than fixing the hyper-parameters
to a specific value, they are sampled from predefined ranges at the beginning of each
search trial. The specific decoding parameters and the distribution utilized are as
follows:

• Number of samples K per expansion. Distribution: uniform on range [8,16].

• Temperature used for decoding. Distribution: uniform on range [0.5, 1.0].

• Length penalty: length penalty used for decoding. Distribution: uniform on
range [0, 1.2].

• Depth penalty: an exponential value decay during the backup-phase, decaying
with depth to favor breadth or depth. Distribution: uniform on discrete values
[0.8, 0.9, 0.95, 1].

• Exploration: the exploration constant puct. 1
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Complements on Chapter 8

E.1 Operon

WeusedOperon [BKK20b]with the following allowed operators add,sub,mul,div,sin,cos,
pow for nodes. Leaves are either variables, i.e. a state feature or a numerical constant.
We use the following hyper-parameters: 5 local iterations, a population of size 5000, a
total of 10000 generations and 10 threads.

E.2 Experiment details

We perform our experiments with 1 GPU and 1 CPU.

E.2.1 Toy example

Model hyper-parameters.

MLP-specific hyper-parameters. We consider a deterministic neural network with 4
hidden layers of size 200 with SiLU activation, trained with Adam optimizer during
a maximum of 2000 epochs with batch size 256 and patience epochs 25 (meaning
training stopswhen loss/ evaluation score does not progressmore than 0.01 relatively),
learning rate 7.5e− 4 and weight decay 3e− 5. Inputs are normalized.
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Symbolic-specific hyper-parameters. We use Operon with 5 local iterations, 10000
generations, 10 threads, population size 5000 and allowed symbols are

add,sub,mul,div,constant,variable,sin,exp,abs

.

Action optimizer. We use CEM with planning horizon 3, 10 iterations, elite ratio
0.1, population size 1000, alpha 0.1 and clipped normal action distribution. Out of the
ensemble of 7 predictive models, only the 3 elite (w.r.t evaluation set) ones are used.

E.3 Additional results

E.3.1 CartPole

Model hyper-parameters.

MLP-specific hyper-parameters. Same as for the toy example.

Symbolic-specific hyper-parameters. We use Operon with 5 local iterations, 10000
generations, 10 threads, population size 5000 and allowed symbols are

add,sub,mul,div,constant,variable,sin,cos,pow

.

Action optimizer. We use CEM with planning horizon 15, 5 iterations, elite ratio
0.1, population size 350, alpha 0.1. Out of the ensemble of 7 predictive models, only
the 3 elite (w.r.t evaluation set) ones are used.

Analysis of results

Interestingly, one can notice in Fig. 8.3 the performance (in terms of reward and
model error) fluctuate a bit as the number of interactions grows (contrary to Fig.
E.1). This can be explained by the fact that random samples are the most informative
transitions in terms on environment understanding, whereas on-policy transitions
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Figure E.1 – Model error of the MLP and symbolic regressors (averaged over different seeds)
on data generated by a random policy.

(whose proportion grows during learning) are all located in a very narrow part of
the state-space (pole standing still)
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Appendix F

Predicting recurrences

F.1 Introduction

Given the sequence [1,2,4,7,11,16], what is the next term? Humans usually solve
such riddles by noticing patterns in the sequence. In the easiest cases, one can spot
a function: [1,4,9,16,25] are the first five squares, so the n-th term in the series is
un = n2, and the next one is 36. Most often however, we look for relations between
successive terms: in the sequence [1,2,4,7,11,16], the differences between successive
values are 1, 2, 3, 4, and 5, which makes it likely that the next term will be 16 + 6 = 22.
Mathematically, we are inferring the recurrence relation un = un−1 + n, with u0 = 1.

In all cases, we handle such problems as symbolic regressions: starting from a
sequence of numbers, we try to discover a function or a recurrence relation that they
satisfy, and use it to predict the next terms. This can lead to very challenging problems
as the complexity of the unknown recurrence relation un = f(n, {ui}i<n) increases,
e.g. un = tan−1(un−3) exp(cos(n2)).

In this work, we train neural networks to infer the recurrence relation f from the
observation of the first terms of the sequence. The majority of studies in machine
learning for symbolic regression have focused on non-recurrent functions, i.e. ex-
pressions of the form y = f(x). Recurrence relations provide a more general setting,
which gives a deeper account of the underlying process: if the sequence corresponds
to successive time steps, the recurrence relation is a discrete time differential equation
for the system considered.
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OEIS Description First terms Predicted recurrence
A000792 a(n) = max{(n− i)a(i), i < n} 1, 1, 2, 3, 4, 6, 9, 12, 18, 27 un = un−1 + un−3 − un−1%un−3
A000855 Final two digits of 2n 1, 2, 4, 8, 16, 32, 64, 28, 56, 12 un = (2un−1)%100
A006257 Josephus sequence 0, 1, 1, 3, 1, 3, 5, 7, 1, 3 un = (un−1 + n)%(n− 1)− 1
A008954 Final digit of n(n+ 1)/2 0, 1, 3, 6, 0, 5, 1, 8, 6, 5 un = (un−1 + n)%10
A026741 a(n) = n if n odd, n/2 if n even 0, 1, 1, 3, 2, 5, 3, 7, 4, 9 un = un−2 + n//(un−1 + 1)
A035327 n binary, switch 0’s and 1’s, then decimal 1, 0, 1, 0, 3, 2, 1, 0, 7, 6 un = (un−1 − n)%(n− 1)
A062050 n-th chunk contains numbers 1, ..., 2n 1, 1, 2, 1, 2, 3, 4, 1, 2, 3 un = (n%(n− un−1)) + 1
A074062 Reflected Pentanacci numbers 5, -1, -1, -1, -1, 9, -7, -1, -1, -1 un = 2un−5 − un−6

Table F.1 –Our integer model yields exact recurrence relations on a variety of interesting
OEIS sequences. Predictions are based on observing the first 25 terms of each sequence.

Constant Approximation Rel. error
0.3333 (3 + exp(−6))−1 10−5

0.33333 1/3 10−5

3.1415 2 arctan(exp(10)) 10−7

3.14159 π 10−7

1.6449 1/ arctan(exp(4)) 10−7

1.64493 π2/6 10−7

0.123456789 10/92 10−9

0.987654321 1− (1/9)2 10−11

Table F.2 –Our float model learns to approximate out-of-vocabulary constants with its own
vocabulary. We obtain the approximation of each constant C by feeding our model the 25
first terms of un = Cn.

F.1.1 Contributions

We show that transformers can learn to infer a recurrence relation from the observation
of the first terms of a sequence. We consider both sequences of integers and floats,
and train our models on a large set of synthetic examples.

We first demonstrate that our symbolic regression model can predict complex
recurrence relations that were not seen during training. We also show that those
recurrence relations can be used to extrapolate the next terms of the sequence with
better precision than a “numeric” model of similar architecture, trained specifically
for extrapolation.

We then test the out-of-domain generalization of our models. On a subset of the
Online Encyclopedia of Integer Sequences, our integer models outperform built-in
Mathematica functions, both for sequence extrapolation and recurrence prediction,
see Table F.1 for some examples. We also show that our symbolic float model is
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Expression un Approximation ûn Comment
arcsinh(n) log(n+

√
n2 + 1) Exact

arccosh(n) log(n+
√
n2 − 1) Exact

arctanh(1/n) 1
2 log(1 + 2/n) Asymptotic

catalan(n) un−1(4− 6/n) Asymptotic
dawson(n) n

2n2−un−1−1 Asymptotic
j0(n) (Bessel) sin(n)+cos(n)√

πn
Asymptotic

i0(n) (mod. Bessel) en
√

2πn Asymptotic

Table F.3 – Our float model learns to approximate out-of-vocabulary functions with its
own vocabulary. For simple functions, our model predicts an exact expression in terms of its
operators; for complex functions which cannot be expressed, our model manages to predict
the first order of the asymptotic expansion.

capable of predicting approximate expressions for out-of-vocabulary functions and
constants (e.g. bessel0(x) ≈ sin(x)+cos(x)√

πx
and 1.644934 ≈ π2/6), see Tables F.2, F.3 for

more examples.
We conclude by discussing potential limitations of our models and future direc-

tions.

Demonstration We provide an interactive demonstration of our models at https:
//symbolicregression.metademolab.com.

Code An open-source implementation of our code will be released publicly at https:
//github.com/facebookresearch/recur.

F.1.2 Related work

AI for maths The use of neural networks for mathematics has recently gained atten-
tion: several works have demonstrated their surprising reasoning abilities [Sax+19;
Cob+21], and have even sparked some interestingmathematical discoveries [Dav+21].
In particular, four types of tasks have recently been tackled in the deep learning litera-
ture.

First, converting a symbolic expression to another symbolic expression. Direct ex-
amples are integration and differentation [LC19], expression simplification [All+17]
or equation solving [ASA18]. Second, converting a symbolic expression to numerical
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data. This includes predicting quantitative properties of a mathematical structure,
for example the local stability of a differential system [CHL20]. Third, converting
numerical data to numerical data using mathematical rules. Examples range from
learning basic arithmetics [KS15; Tra+18] to linear algebra [Cha21]. Fourth, con-
verting numerical data to a symbolic expression: this is the framework of symbolic
regression, which we will be focusing on.

Symbolic regression Two types of approaches exist for symbolic regression, which
one could name selection-based and pretraining-based.

In selection-based approaches, we only have access to one set of observations:
the values of the function we are trying to infer. Typical examples of this approach
are evolutionnary programs, which have long been the de facto standard for sym-
bolic regression [AB00; SL09; Mur+14; MWB95], despite their computational cost
and limited performance. More recently, neural networks were used following this
approach [SLM18; Kim+20; Pet+19].

In pretraining-based approaches, we train neural networks on a large dataset con-
taining observations from many different function [Big+21; Val+21], hoping that the
model can generalize to new expressions. Although the pretraining is computationally
expensive, inference is much quicker as one simply needs to perform a forward pass,
rather than search through a set of functions. In this work, we choose this approach.

Recurrent sequences All studies on symbolic regression cited above consider the
task of learning non-recurrent functions from their values at a set of points. Our
contribution is, to the best of our knowledge, the first to tackle the setup of recurrent
expressions. Although this includes non-recurrent expressions as a special case, one
slight restriction is that the inputs need to be sampled uniformly. Hence, instead
of feeding the model with input-output pairs {(xi, yi)}, we only need to feed it the
terms of the sequence {ui}. Another important difference is that order of these terms
matters, hence permutation invariant representations [Val+21] cannot be used.

Integer sequences, in particular those from the Online Encyclopedia of Integer
Sequences (OEIS) [Slo07], have been studied using machine learning methods in a
few recent papers. Wu [Wu18] trains various classifiers to predict the label of OEIS
sequences, such as “interesting”, “easy”, or “multiplicative”. Ryskina and Knight
[RK21] use embeddings trained on OEIS to investigate the mathematical properties
of integers. Ragni and Klein [RK11] use fully connected networks to predict the next
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term of OEIS sequences (a numeric rather than symbolic regression task). Nam et al.
[NKJ18] investigate different architectures (most of them recurrent networks) for
digit-level numeric regression on sequences such as Fibonacci, demonstrating the
difficulty of the task.

F.2 Methods

Broadly speaking, we want to solve the following problem: given a sequence of n
points {u0, . . . , un−1}, find a function f such that for any i ∈ N, ui = f(i, ui−1, . . . , ui−d),
where d is the recursion degree. Since we cannot evaluate at an infinite number of
points, we declare that a function f is a solution of the problem if, given the first ninput
terms in the sequence, it can predict the next npred following ones.

Under this form, the problem is underdetermined: given a finite number of input
terms, an infinite number of recurrence relations exist. However in practice, one
would like the model to give us the simplest solution possible, following Occam’s
principle. This is generally ensured by the fact that simple expressions are more likely
to be generated during training.

Integer vs. float We consider two settings for the numbers in the sequences: integers
and floats. For integer sequences, the recurrence formula only uses operators which
are closed in Z (e.g. +,×, abs, modulo and integer division). For float sequences,
additional operators and functions are allowed, such as real division, exp and cos (see
table F.4for the list of all used operators). These two setups are interesting for different
reasons. Integer sequences are an area of strong interest in mathematics, particular for
their relation with arithmetics. The float setup is interesting to see how our model can
generalize to a larger set of operators, which provides more challenging problems.

Symbolic vs. numeric We consider two tasks: symbolic regression and numeric
regression. In symbolic regression, the model is tasked to predict the recurrence
relation the sequence was generated from. At test time, this recurrence relation is
evaluated by how well it approximates the npred following terms in the sequence.

In numeric regression, is tasked to directly predict the values of the npred follow-
ing terms, rather than the underlying recurrence relation. At test time, the model
predictions are compared with the true values of the sequence.
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Integer Float

Unary abs, sqr,
sign, relu

abs, sqr, sqrt,
inv, log, exp,

sin, cos, tan, atan

Binary add, sub, mul,
intdiv, mod

add, sub, mul, div

Table F.4 – Operators used in our generators.

F.2.1 Data generation

All training examples are created by randomly generating a recurrence relation, ran-
domly sampling its initial terms, then computing the next terms using the recurrence
relation. More specifically, we use the steps below:

1. Sample the number of operators o between 1 and omax, and build a unary-binary
tree with o nodes, as described in [LC19]. The number of operators determines
the difficulty of the expression.

2. Sample the nodes of the tree from the list of operators in table F.4. Note that the
float case uses more operators than the integer case, which makes the task more
challenging by expanding the problem space.

3. Sample the recurrence degree d between 1 and dmax, which defines the recur-
rence depth: for example, a degree of 2 means that un+1 depends on un and
un−1.

4. Sample the leaves of the tree: either a constant, with probability pconst, or the
current index n, with probability pn, or one of the previous terms of the sequence
un−i, with i ∈ [1, d], with probability pvar.

5. Recalculate the true recurrence degree d considering the deepest leaf un−i sam-
pled during the previous step, then sample d initial terms from a random
distribution P .

6. Sample l between lmin and lmax and compute the next l terms of the sequence
using the initial conditions. The total sequence length is hence ninput = deff + l.

We provide the values of the parameters of the generator in Table F.5. Note that in
the last step, we interrupt the computation if we encounter a term larger than 10100,
or outside the range of one of the operators: for example, a division by zero, or a
negative square root.
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Parameter Description Value
dmax Max degree 6
omax Max number of operators 10
lmin Min length 5
lmax Max length 30
pconst Prob of constant leaf 1/3
pindex Prob of index leaf 1/3
pvar Prob of variable leaf 1/3
P Distrib of first terms U(−10, 10)

Table F.5 – Hyperparameters of our generator.

Limitations One drawback of our approach is poor out-of-distribution generaliza-
tion of deep neural networks, demonstrated in a similar context to ours by [CHL20]:
when shown an example which is impossible to be generated by the procedure de-
scribed above, the model will inevitably fail. For example, as shown in App. F.6, our
model performs poorly when the initial terms of the sequence are sampled outside
their usual range, which is chosen to be [−10, 10] in these experiments. One easy fix is
to increase this range; are more involved one is to use a normalization procedure as
described in our follow-up work [Kam+22].

F.2.2 Encodings

Model inputs are sequences of integers or floats. The outputs are recurrence relations
for the symbolic task, and sequences of numbers for the numeric task. To be processed
by transformers, inputs and outputs must be represented as sequences of tokens from
a fixed vocabulary. To this effect, we use the encodings presented below.

Integers We encode integers using their base b representation, as a sequence of
1 + ⌈logb |x|⌉ tokens: a sign (which also serves as a sequence delimiter) followed by
⌈logb |x|⌉ digits from 0 to b − 1, for a total vocabulary of b + 2 tokens. For instance,
x = −325 is represented in base b = 10 as the sequence [-, 3, 2, 5], and in base
b = 30 as [-, 10, 25]. Choosing b involves a tradeoff between the length of the
sequences fed to the Transformer and the vocabulary size of the embedding layer. We
choose b = 10, 000 and limit integers in our sequences to absolute values below 10100,
for a maximum of 26 tokens per integer, and a vocabulary of order 104 words.
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Floats Following Charton [Cha21], we represent float numbers in base 10 floating-
point notation, round them to four significant digits, and encode them as sequences
of 3 tokens: their sign, mantissa (between 0 and 9999), and exponent (from E-100 to
E100). For instance, 1/3 is encoded as [+, 3333, E-4]. Again, the vocabulary is of
order 104 words.

For all operations in floating-point representation, precision is limited to the length
of themantissa. In particular, when summing elementswith differentmagnitudes, sub-
dominant terms may be rounded away. Partly due to this effect, when approximating
complex functions, our symbolic model typically only predicts the largest terms in its
asymptotic expansion, as shown in Table F.3. We discuss two methods for increasing
precision when needed in Section F.9 of the Appendix.

Recurrence relations To represent mathematical trees as sequences, we enumerate
the trees in prefix order, i.e. direct Polish notation, and encode each node as a single
autonomous token. For instance, the expression cos(3x) is encoded as [cos,mul,3,x].

Note that the generation procedure implies that the recurrence relation is not
simplified (i.e. expressions like 1 + un−1 − 1 can be generated). We tried simplifying
them using Sympy before the encoding step (see Appendix F.7), but this slows down
generation without any benefit on the performance of our models, which turn out to
be surprisingly insensitive to the syntax of the formulas.

F.2.3 Experimental details

Similarly to Lample and Charton [LC19], we use a simple Transformer architec-
ture [Vas+17] with 8 hidden layers, 8 attention heads and an embedding dimension
of 512 both for the encoder and decoder.

Training and evaluation The tokens generated by the model are supervised via a
cross-entropy loss. We use the Adam optimizer, warming up the learning rate from
10−7 to 2.10−4 over the first 10,000 steps, then decaying it as the inverse square root of
the number of steps, following [Vas+17]. We train each model for a minimum of 250
epochs, each epoch containing 5M equations in batches of 512. On 16 GPU with Volta
architecture and 32GB memory, one epoch is processed in about an hour.

After each epoch, we evaluate the in-distribution performance of our models on a
held-out dataset of 10,000 equations. Unless specified otherwise, we generate expres-
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sions using greedy decoding. Note that nothing prevents the symbolic model from
generating an invalid expression such as [add,1,mul,2]. These mistakes, counted
as invalid predictions, tend to be very rare: in models trained for more than a few
epochs, they occur in less than 0.1% of the test cases.

Hypothesis ranking Topredict recurrence relations forOEIS sequences (Section F.4.1),
or the examples displayed in Tables F.1,F.2,F.3, we used a beam size of 10. Usually,
hypotheses in the beam are ranked according to their log-likelihood, normalized by
the sequence length. For our symbolic model, we can do much better, by ranking
beam hypotheses according to how well they approximate the initial terms of the
original sequence. Specifically, given a recurrence relation of degree d, we recompute
for each hypothesis the ninput first terms in the sequence (using the first d terms of
the original sequence as initial conditions), and rank the candidates according to
how well they approximate these terms. This ranking procedure is impossible for the
numerical model, which can only perform extrapolation.

In some sense, this relates our method to evolutionary algorithms, which use the
input terms for candidate selection. Yet, as shown by the failure modes presented in
Section F.11 of theAppendix, ourmodel is less prone to overfitting since the candidates
are not directly chosen by minimizing a loss on the input terms.

F.3 In-domain generalization

We begin by probing the in-domain accuracy of our model, i.e. its ability to generalize
to unseen sequences generated with the same procedure as the training data. As
discussed in Section F.8 of the Appendix, the diversity of mathematical expressions
and the random sampling of the initial terms ensures that almost all the examples
presented at test time have not been seen during training: one cannot attribute the
generalization to mere memorization.

Prediction accuracy Due to the large number of equivalent ways one can represent
a mathematical expression, one cannot directly evaluate the accuracy by comparing
(token by token) the predicted recurrence relation to the ground truth. Instead, we
use the predicted expression to compute the next npred terms of the sequence {ûi},
and compare them with those computed from the ground truth, {ui}. The prediction
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Model Integer Float
nop≤5 nop≤10 nop≤5 nop≤10

Symbolic 92.7 78.4 74.2 43.3
Numeric 83.6 70.3 45.6 29.0

Table F.6 – Average in-distribution accuracies of our models. We set τ = 10−10 and npred =
10.
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Figure F.1 – The symbolic model extrapolates further and with higher precision than the
numeric model. From left to right, we vary the tolerance τ , the number of predictions npred,
the number of operators o, the recurrence degree d and the number of input terms l. In each
plot, we use the following defaults for quantities which are not varied: τ = 10−10, npred = 10,
o ∈ [[1, 10]], d ∈ [[1, 6]], l ∈ [[5, 30]].

accuracy is then defined as:

acc(npred, τ) = P
(

max
1≤i≤npred

∣∣∣∣∣ ûi − uiui

∣∣∣∣∣ ≤ τ

)
(F.1)

By choosing a small enough τ ≥ 0 and a large enough npred, one can ensure that
the predicted formula matches the true formula. In the float setup, τ = 0 must be
avoided for two reasons: (i) equivalent solutions represented by different expressions
may evaluate differently because due to finite machine precision, (ii) setting τ = 0
would penalize the model for ignoring sub-dominant terms which are indetectable
due to the finite precision encodings. Hence, we select τ = 10−10 and npred = 10 unless
specified otherwise1. Occasionally, we will consider larger values of τ , to assess the
ability of our model to provide approximate expressions.

1For the float numeric model, which can only predict values up to finite precision ε, we round the
values of target function to the same precision. This explains the plateau of the accuracy at τ < ε in
Figure F.1.
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Results The average in-distribution accuracies of ourmodels are reported in Table F.6
with τ = 10−10 and npred = 10. Although the float setup is significantly harder
that the integer setup, our symbolic model reaches good accuracies in both cases.
In comparison, the numeric model obtains worse results, particularly in the float
setup. The interested reader may find additional training curves, attention maps and
visualizations of the model predictions in Appendix F.11.

Ablation over the evaluation metric The two first panels of Figure F.1 illustrate how
the accuracy changes as we vary the tolerance level τ and the number of predictions
npred. The first important observation is that the symbolic model performsmuch better
than the numeric model at low tolerance. At high tolerance, it still keeps an advantage
in the integer setup, and performs similarly in the float setup. This demonstrates the
advantage of a symbolic approach for high-precision predictions.

Second, we see that the accuracy of both models degrades as we increase the
number of predictions npred, as one could expect. However, the decrease is less
important for the symbolic model, especially in the float setup where the curve is
essentially flat. This demonstrates another strong advantage of the symbolic approach:
once it has found the correct formula, it can predict the whole sequence, whereas the
precision of the numeric model deteriorates as it extrapolates further.

Ablation over the example difficulty The three last panels of Figure F.1 decom-
pose the accuracy of our two models along three factors of difficulty: the number of
operators o2, the recurrence degree d and the sequence length ninput (see Section F.2.1).

Unsurprisingly, accuracy degrades rapidly as the number of operators increases,
particularly in the float setting where the operators are more diverse: the accuracy
of the symbolic model drops from 100% for o= 1 to 10% for o= 10. We attempted
a curriculum learning strategy to alleviate the drop, by giving higher probabilities
to expressions with many operators as training advances, but this did not bring any
improvement. Increasing the recurrence degree has a similar but more moderate
effect: the accuracy decreases from 70% for d=0 (non-recurrent expressions) to 20%
for d=6 in the float setup. Finally, we observe that shorter sequences are harder to
predict as they give less information on the underlying recurrence; however, even
when fed with less than 10 terms, our models achieve surprisingly high accuracies.

2Since expressions are not simplified, omay be overestimated.
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Figure F.2 – Accuracy of our models on various in-domain and out-of-domain groups. We
set τ = 10−10, npred = 10.

Ablation over operator families To understand what kind of operators are the
hardest for our float model, we bunch them into 5 groups:

• base: {add, sub, mul}.
• division: base + {div, inv}.
• sqrt: base + {sqrt}.
• exponential: base + {exp, log}.
• trigonometric: base + {sin, cos, tan, arcsin, arccos, arctan}.
Results are displayed in Figure F.2a. We see that the main difficulties lie in division

and trigonometric operators, but the performance of both models stays rather good in
all categories.

Visualizing the embeddings To give more intuition on the inner workings of our
symbolic models, we display a t-SNE [MH08a] projection of the embeddings of
the integer model in Figure F.3a and of exponent embeddings of the float model in
Figure F.3b.
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Both reveal a sequential structure, with the embeddings organized in a clear order,
as highlighted by the color scheme. In Appendix F.10, we study in detail the pairwise
distances between embeddings, unveiling interesting features such as the fact that the
integer model naturally learns a base-6 representation.
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Figure F.3 – The number embeddings reveal intriguing mathematical structure. We repre-
sented the t-SNE of the embeddings of the integer model and the exponent embeddings of
the float model. We depicted the first 100 integer embeddings (10,000 in the model), and the
exponent embeddings -40 to 40 (-100 to 100 in the model).

F.4 Out-of-domain generalization

In this section, we evaluate the ability of our model to generalize out-of-domain.
Recurrence prediction being a previously unexplored branch of symbolic regression,
there are no official benchmarks we can compare our models to. For integer sequences,
we use a subset of OEIS as our out-of-domain benchmark; for float sequences, we use
a generator with out-of-vocabulary constants and operators. In Appendix F.5, we also
show that our models can and can be made robust noise in the inputs.

F.4.1 Integer sequences: OEIS dataset

The Online Encyclopedia of Integer Sequences (OEIS) is an online database containing
over 300,000 integer sequences. It is tempting to directly use OEIS as a testbed for
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prediction; however, many sequences in OEIS do not have a closed-form recurrence
relation, such as the stops on the New York City Broadway line subway (A000053).
These will naturally cause our model to fail.

Preprocessing Luckily, OEIS comes with keywords, and 22% of the sequences are
labelled as “easy”, meaning that there is a logic to find the next terms (although
this logic is by no means easy in most cases). Note that this logic cannot always be
formulated as a recurrence relation: for example, the sequence of primes or decimals of
π are included in this category, but intractable for our models. We keep the first 10,000
of these sequences as our testbed. Evaluation consists in in showing our models the
first ninput ∈ {15, 25} terms of each sequence and asking it to predict the npred ∈ {1, 10}
following terms.

Results Results are reported in Table F.7. With only ninput = 15 terms, the numeric
model reaches an impressive accuracy of 53% at next term prediction, and 27% for
predicting the next ten terms. The symbolic model achieves lower results, with 33%
and 19% respectively; we attribute this to the large number of non-analytic sequences
in the testbed. Nonetheless, this means that our model can retrieve a valid recurrence
relation for almost a fifth of the sequences, which is rather impressive: we give a few
interesting examples in Table F.1. Increasing ninput to 25 increases our performances
rather marginally.

As a comparison, we ran two built-in Mathematica functions for the task at hand:
FindSequenceFunction, which finds non-recurrent expressions, and FindLinearRecur-
rence, which finds linear recurrence relations. These functions aremuchmore sensitive
to the number of terms given as input: they obtain similar accuracies at ninput = 15,
but FindLinearRecurrence performs significantly better at ninput = 25, while FindSe-
quenceFunction performs pathologically worse. Both these functions perform less
well than our symbolic model in all cases.

F.4.2 Float sequences: robustness to out-of-vocabulary tokens

One major difficulty in symbolic mathematics is dealing with out-of-vocabulary con-
stants and operators: the model is forced to approximate them using its own vocabu-
lary. We investigate these two scenarios separately for the float model.
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Model ninput = 15 ninput = 25
npred = 1 npred = 10 npred = 1 npred = 10

Symbolic (ours) 33.4 19.2 34.5 21.3
Numeric (ours) 53.1 27.4 54.9 29.5

FindSequenceFunction 17.1 12.0 8.1 7.2
FindLinearRecurrence 17.4 14.8 21.2 19.5

Table F.7 – Accuracy of our integer models and Mathematica functions on OEIS sequences.
We use as input the first ninput = {15, 25} first terms of OEIS sequences and ask each model to
predict the next npred = {1, 10} terms. We set the tolerance τ = 10−10.

Model [[−10, 10]] ∪ {e, π, γ} U(−10, 10)
nop≤5 nop≤10 nop≤5 nop≤10

Symbolic 81.9 60.7 60.1 42.1
Numeric 72.4 60.4 72.2 60.2

Table F.8 –Our symbolic model can approximate out-of-vocabulary prefactors. We report
the accuracies achieved when sampling the constants uniformly from [[−10, 10]] ∪ {e, π, γ},
as during training, versus sampling uniformly in [−10, 10]. We set τ = 0.01 (note the higher
tolerance threshold as we are considering approximation) and npred = 10.

Out-of-vocabulary constants The first possible source of out-of-vocabulary tokens
are prefactors. For example, a formula as simple as un = 0.33n is hard to predict
perfectly, because our decoder only has access to integers between−10 and 10 and a few
mathematical constants, and needs to write 0.33 as [div,add,mul,3,10,3,mul,10,10].
To circumvent this issue, Biggio et al. [Big+21] use a separate optimizer to fit the
prefactors, once the skeleton of the equation is predicted.

In contrast, our model is end-to-end, and is surprisingly good at approximating
out-of-vocabulary prefactors with its own vocabulary. For un = 0.33n, one could
expect the model to predict un = n/3, which would be a decent approximation.
Yet, our model goes much further, and outputs un = − cos(3)n/3, which is a better
approximation. We give a few other spectacular examples in Table F.2. Our model is
remarkably capable of using the values of operators such as exp and arctan, as if it
were able to perform computations internally.

To investigate the approximation capabilities of our model systematically, we
evaluate the its performance when sampling the prefactors uniformly in [−10, 10],
rather than in {−10,−9, ...9, 10} ∪ {e, π, γ} as done usually. It is impossible for the
symbolic model to perfectly represent the correct formulas, but since we are interested
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in its approximation capabilities, we set the tolerance to 0.01. Results are shown in
Table F.8. Unsurprisingly, the performance of the numeric model is unaffected as
it does not suffer from any out-of-vocabulary issues, and becomes better than the
symbolic model. However, the symbolic model maintains very decent performances,
with its approximation accuracy dropping from 60% to 42%.

This approximation ability in itself an impressive feat, as the model was not explic-
itly trained to achieve it. It can potentially have strong applications for mathematics,
exploited by the recently proposed Ramanujan Machine [Raa+21]: for example, if
a sequence converges to a numerical value such as 1.64493, it can be useful to ask
the model to approximate it, yielding π2/6. In fact, one could further improve this
approximation ability by training the model only on degree-0 sequences with constant
leaves ; we leave this for future work.

Out-of-vocabulary functions A similar difficulty arises when dealing with out-of-
vocabulary operators, yet again, our model is able to express or approximate them
with its own vocabulary. We show this by evaluating our model on various families
of functions from scipy.special:

• polynomials: base + orthogonal polynomials of degree 1 to 5 (Legendre, Cheby-
shev, Jacobi, Laguerre, Hermite, Gegenbauer)

• hyperbolic: base + {sinh, cosh, tanh, arccosh, arcsinh, arctanh}
• bessel: base + {Bessel and modified Bessel of first and second kinds}
• fresnel: base + {erf, Faddeeva, Dawson and Fresnel integrals}.
The results in Figure F.2b show that both the numeric and symbolic models cope

surprisingly well with these functions. The symbolic model has more contrasted
results than the numeric model, and excels particularly on functions which it can
easily build with its own vocabulary such as polynomials. Surprisingly however, it
also outperforms the numeric model on the other groups.

In Table F.3, we show a few examples of the remarkable ability of our model to
yield high-quality asymptotic approximations, either using a recurrence relation as for
the Catalan numbers and the Dawson function, either with a non-recurrent expression
as for the Bessel functions.
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F.5 Robustness to noise

One particularity of our model is that it is entirely trained and evaluated on synthetic
data which is completely noise-free. Can our model also predict recurrence relations
when the inputs are corrupted ? In this section, we show that the answer is yes,
provided the model is trained with noisy inputs. For simplicity, we restrict ourselves
here to the setup of float sequences, but the setup of integer sequences can be dealt
with in a similar manner, trading continuous random variables for discrete ones.

Setup Considering thewide range of values that are observed in recurrent sequences,
corruption via additive noise with constant variance, i.e. un = f(n, {ui}i<n) + ξn, ξn ∼
N (0, σ) is a poormodel of stochasticity. Indeed, the noisewill become totally negligible
when un ≫ 1, and conversely, totally dominate when un ≪ 1. To circumvent this, we
scale the variance of the noise with the magnitude of the sequence, i.e. ξn ∼ N (0, σun),
allowing to define a signal-to-noise ratio SNR = 1/σ. This can also be viewed as a
multiplicative noise un = f(n, {ui}i<n)ξ, ξ ∼ N (1, σ).

Results To make our models robust to corruption in the sequences, we use stochas-
tic training. This involves picking a maximal noise level σtrain, then for each input
sequence encountered during training, sample σ ∼ U(0, σtrain), and corrupt the terms
with a multiplicative noise of variance σ. At test time, we corrupt the input sequences
with a noise of fixed variance σtest, but remove the stochasticity for next term pre-
diction, to check whether our model correctly inferred the deterministic part of the
formula.

Results are presented in Table F.9. We see that without the stochastic training,
the accuracy of our model plummets from 43% to 1% as soon as noise is injected at
test time. However, with stochastic training, we are able to keep decent performance
even at very strong noise levels: at σtest = 0.5, we are able to achieve an accuracy of
17%, which is remarkable given that the signal-to-noise ratio is only of two. However,
this robustness comes at a cost: performance on the clean dataset is degraded, falling
down to 30%.
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σtrain/test σtest = 0 σtest = 0.1 σtest = 0.5

σtrain = 0 43.3 0.9 0.0
σtrain = 0.1 38.4 31.9 0.2
σtrain = 0.5 35.6 31.8 11.1

Table F.9 –Our symbolic model can be made robust to noise in the inputs, with a moderate
drop in performance on clean inputs. We report the accuracy on expressions with up to
10 operators, for npred = 10, τ = 10−10, varying the noise level during training σtrain and
evaluation σtest.

F.6 Robustness to distribution shifts

Note that in all our training examples, the initial terms of the sequences are sampled
in the range [−10, 10]. This naturally begs the question: can our model handle cases
where the first terms lie outside this range?

Results, shown in Tab. F.10, show that our symbolic models displays poor robust-
ness to this distribution shift: their accuracy plummets by more than a factor of two.
In comparison, the numeric model is significantly less affected.

Note that an easy fix to this issue would be to train with a larger range for the
scale of the initial terms; nonetheless, this confirms the lack of out-of-distribution
robustness of numeric-to-symbolic models, previously demonstrated by [Cha21].

Model Integer Float
[[−10, 10]] [[−100, 100]] [−10, 10] [−100, 100]

Symbolic 80.3 30.5 60.7 27.9
Numeric 75.5 67.4 60.4 60.2

Table F.10 – The symbolic models suffer from distribution shifts. We report the in-domain
accuracies obtained when sampling the first terms of the sequences uniformly in [[−100, 100]]
(integer) and [−100, 100] (float) instead of [[−10, 10]] and [−10, 10] seen during training. We
set τ = 0.01 and npred = 10.

F.7 The effect of expression simplification

One issue with symbolic regression is the fact that a mathematical expression such
as mul, 2, cos, n can be written in many different ways. Hence, cross-entropy
supervision to the tokens of the expression can potentially penalize the model for
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generating the same formula written in a different way (e.g. mul, cos, n, 2 or
mul, cos, n, add, 1, 1). To circumvent this issue, [Pet+19] first predict the for-
mula, then evaluate it and supervise the evaluations to those of the target function. Yet,
since the evaluation step is non-differentiable, they are forced to use a Reinforcement
Learning loop to provide reward signals. In our framework, we noticed that such an
approach is actually unnecessary.

Instead, one could simply preprocess the mathematical formula to simplify it with
SymPy [Meu+17a] before feeding it to the model. This not only simplifies redun-
dant parts such as add, 1, 1 → 2, but also gets rid of the permutation invariance
mul, x, 2 = mul, 2, x by following deterministic rules for the order of the expres-
sions. However, and rather surprisingly, we noticed that this simplification does
not bring any benefit to the predictive power of our model : although it lowers the
training loss (by getting rid of permutation invariance, it lowers cross-entropy), it
does not improve the test accuracy, as shown in Fig. F.4. This suggests that expression
syntax is not an issue for our model: the hard part of the problem indeed lies in the
mathematics.

Aside from predictive power, SymPy comes with several advantages and draw-
backs. On the plus side, it enables the generated expressions to be written in a cleaner
way, and improves the diversity of the beam. On the negative side, it slows down
training, both because it is slow to parse complex expressions, and because it often
lengthens expression since it does not handle division (SymPy rewrites div,a,b as
mul,a,pow,b,-1). Additionally, simplification actually turns out to be detrimental to
the out-of-domain generalization of the float model. Indeed, to generate approxima-
tions of out-of-vocabulary prefactors, the latter benefits from non-simplified numerical
expressions. Hence, we chose to not use SymPy in our experiments.
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Figure F.4 – Simplification reduces the training loss, but does not bring any improvement
in test accuracy. We displayed the first 40 epochs of training of our symbolic models.
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F.8 Does memorization occur?

It is natural to ask the following question: due to the large amount of data seen during
training, is our model simply memorizing the training set ? Answering this ques-
tion involves computing the number of possible inputs sequences Nseq which can be
generated. To estimate this number, calculating the number of possible mathemati-
cal expressions Nexpr is insufficient, since a given expression can give very different
sequences depending on the random sampling of the initial terms. Hence, one can
expect that Nexpr is only a very loose lower bound for Nseq.

Nonetheless, we provide the lower bound Nexpr as a function of the number of
nodes in Fig. F.5, using the equations provided in [LC19]. For small expressions (up
to four operators), the number of possible expressions is lower or similar to than the
number of expressions encountered during training, hence one cannot exclude the
possibility that some expressions were seen several times during training, but with
different realizations due to the initial conditions. However, for larger expressions, the
number of possibilities is much larger, and one can safely assume that the expressions
encountered at test time have not been seen during training.
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Figure F.5 –Ourmodels only see a small fraction of the possible expressions during training.
We report the number of possible expressions for each number of operators (skeleton refers
to an expression with the choice of leaves factored out). Even after a hundred epochs, our
models have only seen a fraction of the possible expressions with more than 4 operators.

F.9 The issue of finite precision

As explained in the main text, our model tends to ignore subdominant terms in
expressions with terms of vastly different magnitudes, partly due to finite precision.
For example, when using a float precision of p = 4 digits, we obtain a discretization
error of 105 for numbers of magnitude 109. However, there exists two methods to
circumvent this issue.
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Increasing the precision Naively increase the precision pwould cause the vocab-
ulary size of the encoder to rapidly explode, as it scales as 10p. However, one can
instead encode the mantissa on multiple tokens, as performed for integers. For exam-
ple, using two tokens instead of one, e.g. encoding π as + 3141, 5926, E-11, doubles
the precision while increasing the sequence length only by 33%.

This approach works well for recurrence prediction, but slightly hampers the
ability of the model to approximate prefactors as shown in Tab. F.2, hence we did not
use it in the runs presented in this paper.

Iterative refinement Another method to improve the precision of the model is to
use an iterative refinement of the predicted expression, akin to perturbation theory in
physics.

Consider, for example, the polynomial f(x) = ∑d
k=0 akx

k, for which our model
generally predicts f̂(x) = ∑d

k=0 âkx
k, with the first coefficient correct (âd = ad) but

potentially the next coefficients incorrect (âk ̸= ak for k < d). One can correct these
subdominant coefficients iteratively, order by order. To obtain the term ad−1, fit the
values of g(x) = f(x)− f̂(x) = ∑d−1

k=1(ak− âk). Then fit the values of h(x) = g(x)− ĝ(x),
etc. By iterating this procedure k times, one can obtain the k highest coefficients ak.

We checked that this method allows us to approximate any polynomial function.
One could in fact use iterative refinement to predict the Taylor approximation of
any function, or use a similar approach to catch multiplicative corrections, by fitting
g(x) = f(x)/f̂(x); we leave these investigations for future work.
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Figure F.6 – The similarity matrices reveal more details on the structure of the embeddings.
The element (i, j) is the cosine similarity between embeddings i and j.
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F.10 Structure of the embeddings

To gain better understanding on the number embeddings of our models, we depict
similarity matrices whose element (i, j) is the cosine similarity between embeddings i
and j in Fig. F.6.

Integer sequences The numeric and symbolic similarity matrices look rather similar,
with a bright region appearing around the line y = x, reflecting the sequential nature
of the embeddings. In both cases, we see diagonal lines appear : these correspond
to lines of common divisors between integers. Strikingly, these lines appear most
clearly along multiples of 6 and 12, especially in the symbolic model, suggesting that
6 is a natural base for reasoning. These results are reminiscent of the much earlier
explorations of Paccanaro and Hinton [PH01].

Float sequences Both for the numeric and symbolic setups, the brightest regions
appear along the diagonal lines y = x and y = −x, reflecting respectively the sequen-
tial nature of the embeddings and their symmetry around 0. The darkest regions
appears around the vertical line x = 0 and the horizontal line y = 0, corresponding to
exponents close to zero: these exponents strongly overlap with each other, but weakly
overlap with the rest of the exponents. Interestingly, dimmer lines appear in both
setups, but follow a very different structure. In the symbolic setup, the lines appear
along lines y = ±x/k, reminiscent of the effect of polynomials of degree k. In the
numeric setup, the lines are more numerous, all diagonal but offset vertically.

F.11 Visualizations

Success and failure modes In Fig. F.7, we show a few examples of success and
failure modes of our symbolic models. The failure modes are particularly interesting,
as they reflect the strong behavioral difference between our symbolic models and
models usually used for regression tasks.

The latter generally try to interpolate the values of the function they are given,
whereas our symbolic model tries to predict the expression of the function. Hence,
our model cannot simply "overfit" the inputs. A striking consequence of this is that
in case of failure, the predicted expression is wrong both on the input points (green
area) and the extrapolation points (blue area).
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F.12 Conclusion

In some cases, the incorrectly predicted formula provides a decent approximation
of the true function (e.g. when the model gets a prefactor wrong). In others, the
predicted formula is catastrophically wrong (e.g. when the model makes a mistake
on an operator or a leaf).

Training curves In Fig. F.8, we show the training curves of ourmodels, presenting an
ablation over the tolerance τ , the number of predictions npred, the number of operators
o, the recurrence degree d and the number of input points l, as explained in the main
text.

Attention maps In Fig. F.9, we provide attention maps for the 8 attention heads and
4 layers of our Transformer encoders. Clearly, different heads play very different roles,
some focusing on local interactions and others on long-range interactions. However,
the role of different layers is hard to interpret.

F.12 Conclusion

In this work, we have shown that Transformermodels can successfully infer recurrence
relations from observations. We applied our model to challenging out-of-distribution
tasks, showing that it outperforms Mathematica functions on integer sequences and
yields informative approximations of complex functions as well as numerical con-
stants.

Scope of our approach One may ask to what extent our model can be used for
real-world applications, such as time-series forecasting. Although robustness to noise
is an encouraging step in this direction, we believe our model is not directly adapted
to such applications, for two reasons.

First, real-world time-series often cannot be described by a simple mathemati-
cal formula, in which case numeric approaches will generally outperform symbolic
approaches. Second, even when they can be expressed by a formula, the latter will
contain complex prefactors and non-deterministic terms which will make the task
extremely challenging.
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Figure F.7 – Success and failure modes of our models. The models are fed the first 15 terms
of the sequence (green area) and predict the next 15 terms (blue area). We randomly selected
expressions with 4 operators from our generator, and picked the first successes and failures.
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Figure F.8 – Training curves of our models. We plot the accuracy of our models at every
epoch, evaluated of 10,000 sequences generated from the same distribution as during trianing.
From left to right, we vary the tolerance τ , the number of predictions npred, the number of
operators o, the recurrence degree d and the number of input terms l. In each plot, we use
the following defaults for quantities which are not varied: τ = 10−10, npred = 10, o ∈ [[1, 10]],
d ∈ [[1, 6]], l ∈ [[5, 30]].
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Figure F.9 – Attention maps of our integer model and float models. We evaluated the integer
model on the first 25 terms of the sequence un = −(6 + un−2) modn and the float model on
the first 25 terms of the sequence un = exp(cos(un−2)).
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Future directions To bring our model closer to real-world problems, we need
our model to be able to handle arbitrary prefactors. We introduce a method to
solve this problem in our follow-up work by introducing numeric tokens in the de-
coder [Kam+22].

Another important extension of our work is the setting of multi-dimensional
sequences. With two dimensions, one could study complex sequences, which are a
well-studied branch of mathematics given their relationship with fractals.

Finally, recurrence relations being a discrete version of differential equations, the
most natural extension to this work is to infer differential equations from trajectories;
this will be an important direction for future work.
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Appendix G

Leveraging prior knowledge in DGSR

In SR, the goal is to find an analytical expression that accurately fits experimental
data with the minimal use of mathematical symbols such as operators, variables, and
constants. However, the combinatorial space E of possible expressions can make it
challenging for traditional evolutionary algorithms to find the correct expression in a
reasonable amount of time. To address this issue, Neural Symbolic Regression (NSR)
algorithms have been developed that can quickly identify patterns in the data and
generate analytical expressions. However, these methods, in their current form, lack
the capability to incorporate user-defined prior knowledge, which is often required in
natural sciences and engineering fields. To overcome this limitation, we propose a
novel neural symbolic regression method, named Neural Symbolic Regression with
Hypothesis (NSRwH) that enables the explicit incorporation of assumptions about
the expected structure of the ground-truth expression into the prediction process.
Our experiments demonstrate that the proposed conditioned deep learning model
outperforms its unconditioned counterparts in terms of accuracy while also providing
control over the predicted expression structure.

G.1 Introduction

Researchers in natural sciences frequently rely on prior knowledge and analogies
to comprehend novel systems and predict their behavior. When studying specific
physical phenomena, scientists might anticipate particular constants or symmetries to
appear in the mathematical laws describing the data. For instance, in astrophysics, the
gravitational constant has a significant impact on determining the scale of interactions

188



G.1 Introduction

between celestial bodies, while in fluid dynamics, the Reynolds number denotes the
relative significance of inertial and viscous forces. Thus, it is crucial to prioritize
expressions that contain such constants while employing symbolic regression tech-
niques, as they conform better to the physics laws governing the data. Access to a part
of the underlying ground-truth system equation is also a common assumption made
in the system identification literature where the physical laws are known up to a few
parameters [BPK16; KKB20]. In our work, we will refer to the assumptions made by
the SR practitioner about the underlying symbolic expression as hypotheses. These
hypotheses may be incomplete or partially incorrect and can be used in any form to
restrict the search space. If a hypothesis is true, we will name it privileged information.

Related work and background

Genetic Programming. Up to our knowledge, injection of prior information in GP
methods can only be accomplished by filtering during selection, e.g. using properties
like function positivity or convexity [Kro+22; Hai+22]. This strategy is inherently
greedy and can result in the selection of suboptimal expressions due to early con-
vergence to local minima. Other forms of high-level prior information available to
the user, e.g. complexity of the expected expression, can hardly be incorporated
into GP algorithms. Recently [Mun+21], a combination of neural networks and ge-
netic programming (GP) has been proposed to improve the performance of symbolic
regression. The neural network is used to generate the initial population for a GP
algorithm, resulting in a hybrid approach that combines the strengths of bothmethods.
This combination allows for the ability to learn patterns and explore a large solution
space, resulting in remarkable performances. However, these systems are not easily
controllable, meaning that it can be difficult for the user to constrain the predictions to
conform to high-level properties that are known from prior knowledge of the problem.

AI-Feynman. Recent studies [UT20; Udr+20] have investigated the idea of con-
straining the search to expressions that exhibit particular properties, such as compo-
sitionality, additivity, and generalized symmetry. By utilizing these properties, the
task of SR becomes significantly less complex as it leverages the modular nature of
the resulting expression trees. However, these approaches necessitate fitting a new
neural network for every new input dataset and then examining the trained network
to identify the desired properties, leading to an inevitably time-consuming process.
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DGSR Inspired by recent advances in language models, a line of work named Neural
Symbolic Regression (NSR), tackles SR as a natural language processing task [Big+20;
Big+21; Val+21; dAs+22; Kam+22; Vas+22a; LYS22; Bec+22]. NSR consists of two
primary steps: firstly, large synthetic datasets are generated by i) sampling expressions
from a prior distribution pθ(E) where θ is a parametrization induced by an off-the-shelf
expression generator [LC19], ii) evaluating these expressions on a set of points x ∈ Rd

where d is the feature dimension, e.g. sampled from a uniform distribution. Secondly,
a generative model gϕ(E|D), practically a Transformer [Vas+17] parametrized by
weights ϕ, that is conditioned on input points D = (x,y), is trained on the task of
next-token prediction with target the Polish notation of the expression. NSR predicts
expressions that share properties of their implicitly biased synthetic generator pθ(E).
Control over the shape of the predicted expressions, e.g complexity or sub-expression
terms, boils down to a sound design of the generator and the pipeline introduced in
[LC19] allows only limited degrees of freedom such as operators, variables, constants
probability, and tree depth.
Similarly to querying a text-to-image generative model [Ram+22; Sah+22] with a
prompt, the SR practitioner might want to restrict the class of predicted expressions
to be in a subclass h(E) ⊂ E by using privileged information. Examples of h(E) can be
the class of expressions with low complexity, or that include a specific sub-expression
like e−

√
x2

1+x2
2 . However, a trained NSR model gϕ(E|D) can only be adapted to h(E) in

one of two ways: i) by using rejection sampling, which is time-inefficient and does
not guarantee to find candidate expressions with the expected inductive biases, or ii)
by designing a new generator with the desired properties and fine-tuning the model
on the new dataset, which is a tedious and time-consuming task.

Contributions

In this work, we propose a new method called Neural Symbolic Regression with Hypothe-
ses (NSRwH) to address the aforementioned limitations of NSR algorithms. NSRwH
efficiently restricts the class of predicted expressions of NSR models during inference,
if provided privileged information DPI, with a simple modification to both the model
architecture and the training data generation: with the training set of expressions from
pθ(E), we produce descriptions DPI, e.g. appearing operators or complexity, and feed
this meta-data into the Transformer model as an extra input, i.e. gϕ(S|D,DPI). During
training, we use a masking strategy to avoid our model considering sub-classes of
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expressions when no privileged information is provided. We show that our model
exhibits the following desirable characteristics:

1. In a similar vein to the recent literature on expression derivation and integration
[LC19] and mathematical understanding capabilities of Transformers [Cha22], our
results demonstrate that Transformer models can succeed in capturing complex,
high-level symbolic expression properties, such as complexity and symmetry.

2. The proposed model is able to output expressions that closely align with user-
determined privileged information and/or hypotheses on the sought-for expres-
sion when it is conditioned on such information. This makes the model effectively
controllable as its output reflects the user’s expectations of specific high-level proper-
ties. This stands in contrast to previous work in the NSR and GP literature, where
steering symbolic regressors toward specific properties required either retraining
from scratch or using inefficient post hoc greedy search routines.

3. The injection of privileged information provides significant improvements in terms
of recovery rate. Such an improvement is, as expected, proportional to the amount
of conditioning signal provided to the model. This effect is even more apparent
in the case where numerical data are corrupted by noise and in the small data
regime, where standard NSR approaches witness a more marked performance
deterioration.

4. We empirically demonstrate that incorporating conditioning hypotheses not only
enhances the controllability of NSRwH but also improves its exploration capabili-
ties, in contrast to standard NSR approaches that rely solely on increasing the beam
size. In particular, we show that injecting a large number of hypotheses randomly
chosen from a large pool of candidates results in better exploration performance
compared to a standard NSR approach operating with a large beam size.

In essence, our approach provides an additional degree of freedom to standard
NSR algorithms by allowing the user to quickly steer the prediction of the model
in the direction of their prior knowledge at inference time. This is accomplished by
leveraging established techniques from language modeling and prompt engineering.
The paper is structured as follows: in Section 7.2, we describe our data generation
pipeline and the model architecture; in Section G.3 we detail our experimental setup
and report our empirical results and in Section G.4 we discuss promising future
directions and the current limitations of our approach. Code is available at https:
//github.com/SymposiumOrganization/ControllableNeuralSymbolicRegression.
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G.2 Method
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Figure G.1 – Neural Symbolic Regression with Hypotheses. 1) A dataset of numerical
observations is obtained; 2) the user formulates a set of hypotheses based on some properties
they believe the final expression should possess. After being tokenized independently, the
properties tensors are concatenated to form a unique conditioning tensor; 3) numerical data as
well as the formulated hypotheses are given as input to two different encoders. Their outputs
are then summed and the resulting tensor is processed by a decoder which outputs a set of
candidate equations. For NSRwH to be effective and controllable, the candidate expressions
should respect the input hypotheses.

G.2.1 Notation and framework

A symbolic regressor is an algorithm that takes as input a dataset D of n features-
value pairs (xi, yi) ∼ Rd×R, where d is the feature dimension, and returns a symbolic
expression e ∼ E such that ∀(xi, yi) ∈ D, e(xi) = ỹi ≈ yi. NSR is a class of SR
algorithms that learns a distribution model gϕ(E | D), parametrized by a neural
network with weights ϕ, over symbolic expressions conditioned on an input datasetD.
In this work, we introduce NSRwH, a new subclass of neural symbolic regressors, that
allows for conditioning their predictions with user-specified prior knowledge about
the output expression. More concretely, given a set of privileged information DPI,
NSRwH approaches are trained to model the conditional distribution gϕ(E | D,DPI).
An illustration of the proposed approach is shown in Fig. G.1.
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G.2.2 Dataset generation

In our framework, a synthetic training sample is defined as a tuple (e,D,DPI) where
each element is produced as explained below.

Generating e andD. As in other NSR works [Big+21; Kam+22; Val+21], we sample
analytical expressions e from E using the strategy introduced by Lample and Charton
[LC19]: random unary-binary trees with depth between 1 and 6 are generated, then
internal nodes are assigned either unary or binary operators as described in Table G.2
in Appendix G.5.1 according to their arity, and leaves are assigned variables {xd}d≤5

and constants. In order to generate D, for each expression e, we sample a support of n
points xi ∈ Rd. The values for each coordinate are drawn independently from one
another using a uniform distribution U , with the bounds randomly selected from the
interval [−10, 10]. Next, the expression value yi is obtained via the evaluation of the
expression e on the previously sampled support. More details on the generation of
numerical data can be found in Appendix G.5.1

Generating DPI. Privileged information DPI is composed of hypotheses. From an
expression e, we extract the following properties:

• Complexity. We use the definition of complexity provided by [La +21b], i.e. the
number of mathematical operators, features, and constants in the output prediction.

• Symmetry. We use the definition of generalized symmetry proposed in [Udr+20]:
f has generalized symmetry if the d components of the vector x ∈ Rd can be split
into groups of k and d−k components (which we denote by the vectors x′ ∈ Rk and
x′′ ∈ Rd−k ) such that f(x) = f (x′,x′′) = g [h (x′) ,x′′] for some unknown function
g.

• Appearing branches. We consider the set of all the branches that appear in the
prefix tree of the generating expression. For instance, for x1 + sin x2 this set would
be

[+, x1,+x1, sin, sin(x2), x2,+ sin,+ sin(x2)]

For each expression, in the training set, we sample a subset of this list, ensuring
that each element of the subset is sampled with a probability inversely proportional
to its length squared and that the full expression tree is never given to the model.
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• Appearing constants. We also enable the inclusion of a-priori-known constants at
test time. We implement this conditioning by drawing inspiration from the concept
of pointers in computer programming: we give as input to the model the numerical
constant and a pointer, and the model has to place the input pointer in the correct
location in the output prediction. This approach does not require representing
each constant with a different token, hence preventing the explosion of the output
vocabulary size.

• Absent branches. We condition our model with the information about subtrees not
appearing in true expression. The procedure for extracting this property follows
the same logic as the extraction of appearing subtrees.

In the rest of the paper, we refer to these properties as Complexity, Symmetry,
Positive, Constants, and Negative. It is important to note that the set of properties
used in this work is not exhaustive and can easily be expanded based on the user’s
prior knowledge. We provide more details on their exact computation along with a
practical example of their extraction in Appendix G.5.2.

G.2.3 Model

Architecture. We use NeSymReS [Big+21] as our base neural symbolic regressor for
its simplicity and in the following, we explain how to incorporate the description DPI

as an input to the model gϕ(e|D,DPI). Note that the very same conditioning strategy
can easily be applied to alternative more advanced NSR architectures, such as those
introduced in [Val+21; Kam+22]. NSRwH consists of three architectural components:
a numerical encoder encnum, a symbolic encoder encsym, and a decoder dec (see Fig.
G.1). Numerical dataD, represented by a tensor of size (B, n,D), whereB is the batch
size, n is the number of points and D is the sum of dependent/independent variables
(D = 5 + 1), is converted into a higher dimensional tensor D′ of size (B, n,H) using a
multi-hot bit representation according to the half-precision IEEE-754 standard and
an embedding layer, where H is the hidden dimension (512 for our experiments). D′

is then processed by a set-transformer encoder [Lee+19a], a variation of [Vas+17]
with better inference time and less memory requirement, to produce a new tensor
znum = encnum(D′) of size (B, S,H), where S (50 for our experiments) is the sequence
length after the encoder processing. DPI, represented by a tensor of size (B,M)
whereM is the number of tokens composing the conditioning hypotheses string, is
converted into a higher dimensional tensor D′

PI of size (B,M,H) via an embedding
layer. This new tensor is then input into an additional set-transformer to produce a
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tensor zsym = encsym(D′
PI) of size (B, S,H). znum and zsym are summed together to

produce a new tensor zfused = znum + zsym of size (B, S,H). Finally, zfused is fed into a
standard transformer decoder network, dec, that autoregressively predicts token by
token the corresponding expressions using beam search for the best candidates. We
resorted to the element-wise summation of znum and zsym instead of concatenation in
order to reduce memory usage in the decoder, which increases quadratically with the
sequence length due to cross attention.

Training and testing. As done in all NSR approaches, we use the cross-entropy loss
on next-tokenprediction using teacher-forcing [SVL14], i.e. conditioning gϕ(ẽt+1|e1:t,D,DPI)
on the first t tokens of the ground-truth e. As for NeSymReS, we “skeletonize” target
expressions by replacing constants by a constant token ⋄ or, in the case the position of
the constant is known a priori, a pointer symbol is used. To prevent our model from
being dependent on privileged information at test time, we include training examples
with partial privileged information. This means we only provide the model with a
subset of all the possible conditionings. For example, only Positive and Symmetry are
given, while Negative, Complexity and Constants are masked out. This is a useful
feature of our model as, depending on the use case, some information might not be
available and we want the model to still be usable in those cases. At test time, as
for NeSymReS, we use beam search to produce a set of predicted expressions, then
we apply Broyden–Fletcher–Goldfarb–Shanno algorithm (BFGS) [Fle87] to recover
the values of the constants by minimizing the squared loss between the original out-
puts and the output from the predicted expressions. More details on the model and
training hyperparameters can be found in Appendix G.5.3.

G.3 Experiments

In this section, we first introduce the datasets and metrics used to evaluate the model
and then we present our experiments aimed to assess different properties of NSRwH,
including its controllability, and its performance when DPI is available, and when it is
not. Over the experimental section, we use the standard NeSymReS as a reference
baseline, which is referred to as standard_nesy in the plots. While our approach could
be used with other NSR methods, we have chosen to solely focus on NeSymReS as a
baseline model. This allows us to better comprehend the advantages that come from
conditioning, instead of assessing various NSR models with distinct numerical input
architectures and expression generators. As mentioned in Section 8.1, GP methods
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can be hardly conditioned on our set of properties, and as such a comparison with
them would be unfair.

G.3.1 Experimental setup

To generate training data, we follow the pipeline introduced in Section G.2.2 resulting
in a training set comprising 200 million symbolic expressions with up to 5 variables.
The datasets and metrics used to test NSRwH are described below.

Datasets. We use five different databases in our experiments, each characterized
by different degrees of complexity: 1) train_nc: this dataset comprises 300 symbolic
expressions, not including numerical constants. The number of independent variables
varies from 1 to 5. The equations are sampled from the same distribution of the
training set; 2) train_wc: it comprises the same equations of train_nc but with
numerical constants randomly included in each expression. As such, it represents
a more challenging framework than the previous one as the model has the output
constant placeholders in the correct positions and BFGS has to find their numerical
value; 3) only_five_variables_nc: it consists of 300 expressions without constants,
strictly selected to have 5 independent variables each. The dataset has been chosen
to assess the performance of our algorithm in a higher-dimensional scenario; 4) AIF:
it comprises all the equations with up to 5 independent variables extracted from
the publicly available AIFeynman database [UT20]. It includes equations from the
Feynman Lectures on Physics series and serves to test the performance of NSRwH on
mathematical expressions stemming from several physics domains; 5) black_box: it
is extracted from the ODE-Strogatz [Str18] databases and serves to evaluate NSRwH
in the case where no prior information is available. As also noted by Kamienny et al.
[Kam+22], these datasets are particularly challenging as they include non-uniformly
distributed points and have different input support bounds than those used by our
dataset generation pipeline.

Metrics. We use three different metrics to evaluate our models: 1) is_satisfied:
this metric measures the percentage of output predictions that agree with a certain
property. For all the properties this metric is calculated as follows: given a known
equation, we calculate the mean over the total number of times the predictions of
the model across the beam size matches the property under consideration. The final
metric value is given by the average of the above quantity across all the equations in

196



G.3 Experiments

the test set; 2) is_correct: given a test equation, for each point (x, y) and prediction
ŷ, we calculate numpy.is_close(y,ŷ). Then, we take the mean over all the support
points and obtain a real number. If this number is larger than 0.99, we deem our
prediction to match the true one and we assign a score of 1, otherwise 0. The final
metric value is obtained by calculating the percentage of correctly predicted equations
over the entire test set. Importantly, the support points are chosen to be different from
those fed into the model at test time; 3) R2

mean: given a test equation, and n points
{xi, yi}ni=1, and the corresponding predictions {ŷi}ni=1, we calculate the coefficient of
determination, also known as R2 score, as defined below:

R2 = 1−
∑n
i=1 (yi − ŷi)2∑n
i=1 (yi − ȳi)2 where ȳ = 1

n

n∑
i=1

yi

The final metric is calculated by taking the mean of the R2 scores obtained for each
equation in the test set. More details on the test datasets and metrics can be found in
Appendix G.5.4.
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Figure G.2 – Controllability and property matching: The panels show the level of agreement
with various types of input conditioning signals – in terms of the is_satisfied metric – of
our model and the unconditioned baseline (standard_nesy), both in the noiseless case (full
line) and when noise is injected in the input data (dashed line), as a function of the beam size.
The reported results are averaged across all datasets apart from black_box.

G.3.2 Can transformers efficiently restrict the inference space using
descriptions?

Arguably, the main challenge in symbolic regression is represented by the extremely
large search space over mathematical expressions. Methods based on brute force
search techniques are doomed to fail or to fall into spurious local minima. The goal of
this section is to show that neural symbolic regression algorithms can be controlled
in such a way that their output adheres with a set of pre-specified inductive biases –
meant to narrow the search space – on the nature of the sought expression.
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Each panel in Fig. G.2 shows the evolution of the is_satisfied metric for various
types of conditioning properties as the beam size increases, with and without noise
injected in the input data. Noise perturbations are injected in the output of the input
data, y, according to the following formula:

ỹ = y + ρε where ε ∼ N (0, |y|) and ρ = 0.01. (G.1)

The goal of the experiment is twofold: first, we want to assess whether NSRwH is
able to capture the meaning of the input conditing, and second, we want to verify
how consistent such an agreement is as we increase the beam size and inject noise.
From the results in Fig. G.2, we can observe that the predictions of NSRwH attain
a very high is_satisfied score for all the evaluated properties. This is in contrast
with the unconditioned model which does not consistently capture the underlying
properties. This is particularly evident when noise is added to the data, as our model
shows robustness to such perturbations, while the standard NSR method experiences
greater variations. This is explained by the fact that the standard method grounds
its predictions solely on numerical data. As such, when these are severely corrupted,
results deteriorate accordingly. We also note that when all possible conditioning
properties are given to the model (see all), NSRwH tends to underperform with
respect to the case when a single property is provided, in particular as the beam
size increases. This is likely due to interference effects between different hypotheses,
which causes the model, at large beam sizes, to select the subset of them that is more
consistent with the numerical data.

G.3.3 Can NSRwH leverage privileged information?

In this section, we investigate whether the ability of NSRwH to capture the meaning
of the input properties can be leveraged to improve performance.

To perform these experiments wemake use of is_correctmetric introduced above
and we study how performance changes under the effect of noise, number of input
data, and amount of conditioning. The beam size for both NSRwH and NeSymReS is
set to 5. We start our evaluation from the noiseless case, i.e. no noise is injected in the
expressions’ evaluation at test time. As such, the mapping between input covariates
and the output value is exactly represented by the ground truth symbolic expression.
Fig. G.3, shows the performance of NSRwH and the unconditioned model in terms of
the is_correct metric described above and the different properties provided at test
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with different types of hypotheses and the unconditioned baseline (standard_nesy) in terms
of the is_correct metric, as a function of the noise level in the input data, for the train_nc,
train_wc, only_five_variables_nc and AIF datasets from left to right.

10 25 50 100 200 400
# Input points

30

40

50

60

70

80

Is_
Co

rre
ct

 (%
)

10 25 50 100 200 400
# Input points

10

15

20

25

30

35

Is_
Co

rre
ct

 (%
)

10 25 50 100 200 400
# Input points

0

10

20

30

40

50

Is_
Co

rre
ct

 (%
)

10 25 50 100 200 400
# Input points

30

35

40

45

50

55

60

Is_
Co

rre
ct

 (%
)

all complexity constants negative positive standard_nesy symmetry

Figure G.5 –Dependence on the number of input points. Comparison between NSRwH con-
ditioned with different types of hypotheses and the unconditioned baseline (standard_nesy)
in terms of the is_correctmetric, as a function of the number of input points, for the train_nc,
train_wc, only_five_variables_nc and AIF datasets from left to right.
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time.
Generally, NSRwH efficiently leverages the prompted information to improve its
performance. Among the considered individual properties, Positive is the most
effective one. However, it is interesting to note that Symmetry is particularly effective
on the only_five_variables_nc (ofv_nc) dataset. This is due to the high-dimensional
nature of the dataset and the fact the symmetry information is more useful in such
cases. Providing information about the ground-truth constants leads to significant
performance improvements on the train_wc dataset, showcasing the effectiveness
of our strategy of providing numerical constants to the model. Finally, all, the
combination of all the considered properties, is by far themost impacting conditioning.
It is noteworthy that, while in some cases the performance of individual properties
may not be significantly better than the baseline, their combination (all) proves
to be highly successful, indicating that the model is able to combine them together
effectively.

Case with noise

In this paragraph, we explore the more challenging scenario where noise is injected
into the output value y at test time. In particular, we use Eq. G.1 with six different
noise levels ρ ∈ {0, 0.0001, 0.001, 0.01, 0.1, 1}. The beam size for both NSRwH and
NeSymReS is set to 5 in this experiment. As shown in Fig. G.4, the performance
improvements are even more pronounced than in the noiseless case shown in Fig.
G.3. This illustrates that the incorporation of meaningful inductive biases in our
model enables it to effectively manage the impact of noise and, as a result, improves
generalization.

Dependence on the number of input points.

In a similar manner as the previous paragraph, this investigation examines whether
NSRwH can utilize input conditioning to enhance its performance in the challenging,
yet common scenario where small datasets are used as input. As before, the beam size
for both NSRwH and NeSymReS is set to 5. As illustrated in Fig. G.5, as the number of
input points decreases, the performance of both the conditioned and unconditioned
models also declines. However, in NSRwH this effect is significantly reduced, keeping
relatively high levels of accuracy even when working in the small data regime.
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Figure G.6 –Dependence on the amount of conditioning. The heatmap shows how changing
the probability of appearing subtrees and constants affects NSRwH’s performance on the
train_wc dataset, measured by the is_correct metric. The y-axis shows the probability
of constants appearing, with 100% meaning all constants are inputted. The x-axis shows
the normalized conditioning length, with 1.0 meaning the model sees positive sub-branches
whose length adds up to the prefix ground truth.

Dependence on the amount of conditioning

In this section, we investigate how the performance changes as we increase the amount
of conditioning. We conduct this experiment using both Positive and Constants
as we can easily control the degree of conditioning by adjusting the probability of
the number of subtrees and constants that appear, respectively. As before, the beam
size for both NSRwH and NeSymReS is set to 5. Fig G.6 shows how the value of
the is_correct metric changes as we vary the amount of Positive and Constants
information. As expected, a monotonic trend can be observed for both properties as
the amount of conditioning is increased. The peak in performance is reached when
the two properties are provided in the largest amounts, suggesting that the model
can combine the two prompts to maximize its prediction accuracy.

G.3.4 What if no assumptions can be made?

This section investigates the scenario where no prior knowledge is available to con-
dition the model. The objective of the experiment is to determine if using NSRwH
with randomly sampled hypotheses can outperform a standard NSR model, which
can only improve its predictions by increasing the beam size. According to prior
work, conventional search techniques of NSR, such as beam search and random sam-
pling, quickly reach a saturation point in exploring the search space, making larger
beam sizes ineffective for exploration (see Fig. 16 in [Kam+22]). The experiment
is conducted on the black_box dataset. The standard model uses a large beam size
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Model Type is_correct R2
mean

Random Positive Conditions 0.35 ± 0.06 0.86 ± 0.05
Standard Model [5K] 0.23 ± 0.00 0.74 ± 0.05
Standard Model [10] 0.12 ± 0.04 0.32 ± 0.03

Table G.1 –No privileged information available. Comparison between NSRwH with ran-
domly sampled hypotheses, a standard NSR approach (NeSymReS) with beam size 5000, and
a standard NSR approach with beam size 10 (same as NSRwH). Results are averaged over 5
runs.

of M = 5000, which is within the saturation regime, and NSRwH uses N = 500
diverse, randomly sampled Positive conditionings with a beam size ofM/N = 10 for
each. As such, both methods utilize the same computational budget. Table G.1 shows
that NSRwH outperforms the standard NSR model on the black_box dataset. We
highlight that the policy used to randomly sample positive operators is very sparse
and highly suboptimal. As such, the design of more effective search routines over the
space of properties represents an interesting avenue for future research.

G.4 Discussion

Conclusive remarks. This work presents a novel approach for symbolic regression
that enables the explicit incorporation of inductive biases reflecting prior knowledge of
the problem at hand. In contrast to previous works, this can be effectively done at test
time, drastically reducing the computational overhead. Thanks to this property, our
model better lends itself to online and interactive applications of symbolic regression,
thus enabling fast hypothesis testing, a highly desirable feature for scientific discovery
applications. We demonstrate the value of this approach with a number of examples
and ablation studies where numerical data is scarce or affected by noise.

Limitations and future work The main limitation of the proposed approach is
realized in the scenario where no prior knowledge is available. In this case, the per-
formance gains obtained in Section G.3.3 are not guaranteed. However, in Section
G.3.4, our final experiment suggests an intriguing opportunity for future research
- leveraging NSRwH’s extra degree of freedom to explore the equation space more
efficiently. In addition, the properties investigated in this work are not exhaustive
and it is conceivable to include additional forms of prior knowledge, such as alter-
native definitions of the complexity of mathematical expressions based on syntax or
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semantics [Kom+15a; VSH09]. Finally, we remark that thanks to its simplicity, the
same idea at the basis of NSRwH can be applied to more advanced NSR algorithms,
like the one recently proposed by [Kam+22], likely resulting in further performance
improvements. We intend to investigate the above questions in future work.
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G.5 Appendix

G.5.1 Generating D

We build our training dataset first by generating symbolic expressions skeletons
(i.e. mathematical expressions where the values of the constants are replaced by
placeholder tokens) using the framework introduced by [LC19]. Our vocabulary
consists of the unary and binary operators shown in Table G.2. We considered scalar
(output dimension equal to 1) expressions with up to 5 independent variables with a
maximum prefix length and depth of 20 and 6 respectively.

To obtain the mathematical expression and corresponding numerical evaluation
during training for each equation we adopt the following procedure:

• An equation skeleton is randomly sampled from the pool of symbolic expression
skeletons

• The sampled expression is simplified using the simplify function from Sympy
[Meu+17b] in order to remove any redundant term.

• Constants of the skeleton are sampled from U(−10,−10) if they are additive,
and logarithmically from U(0.05, 10) if multiplicative.

• The extrema of the support for each independent variable is sampled indepen-
dently from a uniform distribution U(−10, 10) with the distance between the
left and right extrema of at least 1.

• For each independent variable, n input points are sampled from the previously
sampled support, where n is sampled between U(1, 1000). Support points that
lead to absolute values bigger than 65504 or NANs are discarded and re-sampled.

• We evaluate the sampled expression on the previously obtained support points
by using the lambdify function from Sympy [Meu+17b].

As the input evaluations can lead to large values, we follow [Big+21] and we
convert them fromfloat to amulti-hot bit representation according to the half-precision
IEEE-754 standard before feeding them into the model.
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Arity Operators
Unary sqrt, pow2, pow3, pow4

inv, log, exp
sin, cos, asin

Binary add, sub, mul, div

Table G.2 – Operators used in our data generation pipeline.

G.5.2 Generating DPI

Complexity

The complexity of a sentence is determined by the sum of the number of nodes
and leaves in the expression, as outlined in [La +21b]. Each complexity value is
represented by a unique token, ranging from 1 (i.e. x1) to 20.

Symmetry

We use the definition of generalized symmetry proposed by [Udr+20]: f has general-
ized symmetry if the d components of the vector x ∈ Rd can be split into groups of
k and d − k components (which we denote by the vectors x′ ∈ Rk and x′′ ∈ Rd−k )
such that f(x) = f (x′,x′′) = g [h (x′) ,x′′] for some unknown function g. As explained
in [Udr+20], in order to check the presence of generalized symmetry in the set of
variables x′, it is sufficient to check whether the normalized gradient of f with respect
to x′ is independent on x′′, i.e. ∇x′f(x′,x′′)

|∇x′f(x′,x′′)| is x′′-independent. We have created two
tokens for each symmetry combination, one to represent the presence of symmetry
and one to represent its absence. The total number of tokens is 50, as there are 32
possible symmetry combinations when there are five variables, but some of them are
not informative and are excluded, leaving 25 useful combinations. When the number
of variables is less than five, only the tokens related to the actual variables are passed
to the model (see example in Section G.5.2).

Appearing / absent branches

To sample both appearing and absent branches for an expression, we create two
candidate pools: a positive and a negative one. The positive pool is created by using
the Depth-First-Search (DFS) algorithm to list all the subtrees within the current prefix
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expression and then by removing the subtree corresponding to the entire expression
and other non-informative subtrees like xi. The negative pool is created by filtering out
the branches that are already present in the current prefix tree from a pre-computed
set of branches, obtained from a large pool of expression trees within the training
distribution. We sample subtrees from these pools with a probability proportional to
the inverse of their length squared, both during training and evaluation. To regulate
the total information given to the model, two parameters, pp for the positive subtrees
and pn for the negative subtrees, are used. The product of pp (pn) and the ground
truth length determines the total number of tokens provided to the model, denoted
as sp (sn). Positive (Negative) subtrees are sampled until the aggregate sum of their
lengths, ∑N

i=1 len(sampled subtreesi), reaches the sp (sn) value. Sub-branches are
separated by special separator tokens.

Constants

Each a-priori-known constant is assigned to a specific symbol, such as pointer_0 for
the first constant, pointer_1 for the second, and so on. We then give the symbolic
encoder the corresponding pointer and a numerical embedding obtained by first
converting the known constant in its equivalent 16-bit representation and then passing
it through a learnable linear layer that makes its dimension match that of the symbolic
embedding. In the target expression, we replace the standard constant placeholder
with the pointer_i token in the expression. At training and evaluation stages, we
regulate the probability of a constant being a-priori-known with a parameter pc.

Example of extraction and processing of conditioning information

This section provides a concrete example of how different conditionings are extracted
and processed to be fed into our model. Consider the expression x3 sin (x1 + x2).
To determine the Positive conditioning, we must first convert it into prefix notation.
This is achieved by first rewriting it as [’mul’, ’x3’, ’sin’, ’add’, ’x1’, ’x2’] and then
enumerating all the possible subtrees of the expression, excluding trivial subtrees
such as ’x2’ alone. These are: [[’add’], [’mul’], [’sin’], [’add’, ’x1’], [’add’, ’x2’], [’mul’,
’x3’], [’add’, ’x1’, ’x2’], [’sin’, ’add’, ’x1’, ’x2’], [’mul’, ’sin’, ’add’, ’x1’, ’x2’]]. Positive
conditionings are then sampled from this pool with a probability inversely propor-
tional to the length squared of the subtree. So a positive conditioning such as [’mul’,
’x3’] is less likely to be sampled than [’sin’] but more likely than [’mul’, ’sin’, ’add’,
’x1’, ’x2’].
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To obtain the Negative conditionings, we generate subtrees at random that are ab-
sent from the positive pool. This is achieved by randomly selecting an expression,
enumerating the subtrees within it, and then randomly choosing subtrees from the
expression that are not present in the positive pool. For example, for the expression
above, a negative conditioning could be [’mul’, ’x1’], or [’exp’] since none of these
are present in the positive pool. The number of sub-trees supplied to the model is
determined by the values of pp and pn, and the total length of the expression. For
example, if pp is 0.5, then the total length of the sampled sub-trees will be 3, since the
overall length of the ground truth is 6.
Constant conditioning would be empty since no constants can be obtained.
Complexity conditioning is simply the sum of total nodes and leaves of the prefix
expression tree, so in this case, it is equal to 6.
For the Symmetry conditioning, we followed the definition givenprovided by [Udr+20].
For our example expression, we will have symmetry between x1 and x2 but not be-
tween x1, x3 or x2, x3.
Once computed, the conditionings are wrapped into a string, tokenized, and then fed
into the model. The string will have the following form:

[<Positive>, ’sin’, </Positive>, <Positive>, ’mul’, ’x3’, </Positive>, <Negative>,
’exp’, </Negative>, <Negative>, ’mul’, ’x1’, </Negative>, ’Complexity=6’, ’TrueSym-
metryX1X2’, ’FalseSymmetryX2X3’, ’FalseSymmetryX1X3’].

If some conditionings should be masked, they are simply excluded from the list;
for instance, if we only want to provide symmetry conditioning, the string would have
the following form:

[’TrueSymmetryX1X2’, ’FalseSymmetryX2X3’, ’FalseSymmetryX1X3’]

G.5.3 Training and testing details

We trained the model with 200 million equations using three NVIDIA GeForce RTX
3090 for a total of five days with a batch size of 400. As in [Big+21], we used a 5-layer
set encoder as our numerical encoder and a five-layer standard Transformer decoder
as our expression generator. The conditioning and numerical embedding are summed
before the expression generator.
In the training process, the Adam optimizer is employed to optimize the cross-entropy
loss, utilizing an initial learning rate of 10−4, which is subsequently adjusted in pro-
portion to the inverse square root of the number of steps taken.
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To ensure a fair comparison, the standard model, standard_nesy, was trained using
the same number of equations and the same numerical encoder and expression gener-
ator architecture. In addition, both models have been trained for an equal number of
iterations.

Amount of conditioning during training

During training, we give the model a varying amount of conditioning signals to avoid
excessive dependence on them. We adopt the following approach:

• Positive: pp, as defined in the sub-section G.5.2, is 0 with probability 0.7. Oth-
erwise, it is sampled from U(0, 1)

• Negative: pn, as defined in the sub-section G.5.2 is 0 with probability 0.7. Other-
wise, it is sampled from U(0, 1)

• Complexity: We provide the complexity token to the network with a probability
of 0.3

• Symmetry: We provide the symmetry tokens to the network with a probability
of 0.2.

• Constants: pc as defined in the sub-section G.5.2 is equal to 0.15.

Amount of conditioning during testing

We use a variety of conditioning signals, with each combination of signals referred to
by a specific term.

• Positive: pp as defined in the sub-section G.5.2 is equal to 0.5. The other condi-
tioning signals are disabled.

• Negative: pn as defined in the sub-section G.5.2 is equal to 0.5. The other
conditioning signals are disabled.

• Complexity: We provide the complexity token to the network. The other condi-
tioning signals are disabled.

• Symmetry: We provide the symmetry token to the network. The other condition-
ing signals are disabled.
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• Constants: We provide the value of each constant with a probability of 0.8. The
other conditioning signals are disabled.

• Vanilla: No conditioning is given (all conditionings are masked). The model
sees only the numerical inputs. This is equivalent to the standard model.

• All: combines Positive, Negative, Complexity, Symmetry and Constants con-
ditioning. Each conditioning signal is enabled, with parameters equal to the
values mentioned for each individual setting with the sole exception of constants
where the probability of providing a constant is set to 0.3.

G.5.4 Test datasets and metrics

Evaluation datasets

We created three datasets, train_nc, train_wc and only_five_variables_nc using
the same generator configuration as the training set, butwith different initial seeds. For
train_nc and train_wc datasets, we selected 300 equations, removing all constants
from the first and selecting random constants for the second. These equations have
different levels of complexity. In contrast, for only_five_variables_nc, we restricted
our dataset to equations with five variables, discarding the others. We also removed
any constants from these equations. In addition, we evaluate our model on two
open-source datasets, namely AIF, consisting of the equation in the AI Feynman
database [UT20] and black_box comprising of 14 datasets from the ODE-Strogatz
database [Str18]. For all experiments except G.3.4, the training points were used to
both fit constants with BFGS and to select the predicted expression among the beam
candidates. Specifically, once the constants were fitted, the expression with the lowest
BFGS loss was chosen as the predicted expression. However, since in Section G.3.4 a
much larger beam size (5000 compared to 5 of the other experiments) was used, we
followed a different approach: 60% of the points were used for fitting constants, and
the remaining 40% to select the best expression. The expression with the highest R2

scores on this 40% support was chosen as the predicted expression.

Evaluation Procedure

For train_nc, train_wc and only_five_variables_nc we sample the support points
following the same procedure as in the training pipeline. For AI Feynman equations,
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we use the support defined in the dataset. For the ODE-Strogatz dataset we followed
the approach from [La +21b] and used 75% of the points from the function call
fetch_data from the PMLB repository for training [Ols+17] and the remaining for
testing.
For the other datasets, to test the quality of our prediction, we sampled 500 points
from the OOD support U(−25, 25). Our criterion for identifying equations as sym-
bolically equivalent to the ground truth was a 99% or higher average output of the
numpy.is_close(y,ŷ) function across the support points. This threshold accounted
for numerical inaccuracies, such as those caused by numerical instability near support
points close to zero, so that equations symbolically equivalent were not misclassified
due to these errors.

G.5.5 Additional results

In this section, we report some additional results obtained by evaluating the model
on the R2 metric. We conclude with a subsection comparing the model obtained
by completely masking the symbolic encoder of NSRwH (vanilla model) and a
standard NSR model without any symbolic encoder (standard_nesy).

R2 metric

Figure G.7, Figure G.8 and Figure G.9 repeat the analysis performed in the main body
but with the R2 metric instead of the is_correct metric. The scores in this section
are calculated by extracting the R2 value for each expression. If such a value is above
0.99, a score of 1 is assigned, otherwise zero. Finally, the so obtained boolean scores
are averaged across the entire test set. We refer to this metric as R2

0.99.

Comparison between masked NSRwH and standard model

In this section, we compare the fully masked model – referred to as vanilla – to the
standard NSR method (without a symbolic encoder) – referred to as standard_nesy.
The goal is to show that their performance is aligned, indicating that NSRwH repre-
sents an enhanced version of standard NSR.
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Figure G.8 –Dependence on the input noise. Comparison betweenNSRwH conditionedwith
different types of hypotheses and the unconditioned baseline (standard_nesy) in terms of
the R2

0.99 metric, as a function of the noise level in the input data, for the train_nc, train_wc,
only_five_variables_nc and AIF datasets from left to right.
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Figure G.9 –Dependence on the number of input points. Comparison between NSRwH con-
ditioned with different types of hypotheses and the unconditioned baseline (standard_nesy)
in terms of the R2

0.99 metric, as a function of the number of input points, for the train_nc,
train_wc, only_five_variables_nc and AIF datasets from left to right.
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Figure G.10 – Masked NSRwH vs. NeSymReS. Comparison between fully masked NSRwH
(vanilla) and standard NeSymReS (standard_nesy) for different noise levels for the
train_nc, train_wc, only_five_variables_nc and AIF datasets from left to right.
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Figure G.11 – Masked NSRwH vs. NeSymReS. Comparison between fully masked NSRwH
(vanilla) and standard NeSymReS (standard_nesy) for a different number of input points
for the train_nc, train_wc, only_five_variables_nc and AIF datasets from left to right.
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