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Introduction

General context

The last thirty years have been marked by what has been dubbed the "second quantum
revolution". Physicists have aimed at switching from the understanding of the foundations of
quantum mechanics to actually harnessing these laws in order to control quantum systems.
In this context, tremendous efforts have been made to develop platforms of controllable
ensembles of quantum particles: cold gases [2525; 2727; 8383], exciton polariton condensates [77; 99; 5151],
superconducting circuits [105105], dye-filled cavities [5555; 7979; 108108] or in our case hot atomic vapors
[3939].

Study of these systems brought experimental confirmation of many seminal effects of
the many-body quantum physics like Bose-Einstein condensation [1010; 5151; 108108], superfluidity
[2727], superconductivity [9898] or quantum entanglement [4949]. These effects were subsequently
harnessed to great success bringing considerable technological advancement for medical
imagery thanks to superconducting magnets [107107], guidance systems with the advance of
atomic clocks [6565] for the GPS and communications with fully optical links [104104].

In this effervescence, quantum fluids of light have emerged as a competitive option due to
their relative simplicity and excellent imaging capabilities comparatively to cold gases for
instance, where non destructive measurement of the system is difficult. In fluids of light,
the quantum particles are directly photons whose control has been perfected by hundreds of
years of optics, both classical, and more recently quantum. This grants near unlimited access
to the full field, making fluids of light the only platform where the correlation functions of all
moments can be computed directly. However, photons do not interact in a vacuum. In order
to obtain a collective behavior in an ensemble of photons, one needs to engineer interactions
between them. In a medium, photons acquire an effective mass due to the index of refraction
of the medium. If in addition this medium has an intensity dependant nonlinear index, the
photons will acquire effective interactions. Under the right conditions, if the interactions are
repulsive, the photons will behave collectively, exhibiting fluid-like behavior.

Such a nonlinear medium can be found in hot atomic vapors that have several key
advantages to other nonlinear media:

• Compared to photorefractive crystals [7272; 7373], they are repeatable in the sense that two
cells containing the same element will behave in the same manner, while photorefractive
crystals are by nature flawed by large variations of their properties between samples.
Also, the non-linearity of atoms can be several orders of magnitude larger and this
non-linearity can be tuned over several orders of magnitude through the exponential
dependance of the atomic density on temperature.
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• Compared to exciton polaritons, hot atomic vapors do not require vacuum chambers and
cryostats in order to bring the samples to their working conditions. Furthermore these
samples require very advanced nanofabrication techniques that forbid fast iterations
between samples. While the coupling between light and excitons in polariton cavities is
exceptionnal, it can hardly be tuned. Furthermore, exciton polaritons fluids are driven
dissipative, meaning that there is a complex exchange between the exciton reservoir,
cavity photons and polaritons. This makes interpretation of the experiments more
challenging.

This platform has proven very successful allowing to probe hydrodynamical effects from
vortex dynamics [1212], dispersive shock waves [1818] up to large scale hydrodynamical phenomena
like turbulence [11]. Statistical properties of quantum fluids were also observed shedding light
on the response to interaction quenches [9797] as well as prethermalization [33].

These results and the fruitful collaboration between theory and experiments shows great
promise for the future of our community.

Motivations
The hydrodynamical properties of fluids of light in hot atomic vapors were first demonstrated
in [3535] where Quentin Fontaine laid the ground work of the experiments carried out in this
thesis: the first methods to measure the Bogoliubov dispersion were developped and the
interference of Bogoliubov particles was evidenced. In [22], Murad Abuzarli introduced new
methods to precisely characterize the nonlinear index of refraction, as well as observables
in order to probe the out-of-equilibrium nature of paraxial fluids of light presenting blast
wave dynamics as well as studies on the coherence properties of the fluid after a quench. The
motivation of this thesis is to build on these works and mature the experimental set up into a
fully controlled sandbox. In order to provide a credible alternative to the leading experimental
platforms like cold atoms, we build a theoretical, numerical and experimental framework in
order to be able to predict ab initio, simulate and put into practice the Hamiltonian we want
to study.

The goal of reaching this full control of the system is also to address important theoretical
questions of paraxial fluids of light: the system dimensionality (2D or 3D), the meaning of
the space-time mapping or the limits of the Bogoliubov theory. We can thus summarize the
motivation of this thesis as an attempt to from passive observation to active planning and
control of a specific physical effect.

Summary
This thesis manuscript contains five chapters, structured in increasing scale order: from the
lowest quantum level scale to the macroscopical large scale. The common thread across
chapters is the system Hamiltonian: in each chapter, we focus on the description and control
of one term. This corresponds to the degrees of freedom of the fluid (kinetic, interaction and
potential energy) and we ultimately link these to experimental tuning knobs. In each chapter,
we try to present the theoretical framework, numerical methods and experimental results in
order to try and paint a complete picture. The first chapter is devoted to introducing the
theoretical concepts and description of paraxial fluids of light. The second chapter explores
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the effects arising from quantum fluctuations of vacuum and interaction quenches. The
third chapter describes the atomic medium that generates the all important photon-photon
interactions. The fourth chapter presents a detailed study of superfluidity. Finally the fifth
chapter opens up new perspectives on energy transfer accross scales presenting results on
turbulence and quantum phase transitions.

Chapter 1 The theoretical framework used to describe paraxial fluids of light starting from
the description of light propagation in nonlinear media. After establishing the nonlinear
Schrödinger equation, the quantum formulation is introduced and the Bogoliubov theory
is presented. A detailed comparison with the Gross Pitaevskii equation of cold gases is
presented. The last section presents the numerical analysis tools used to solve the evolution
equation of the system.

Chapter 2 The impact of the interaction quenches on the statistical properties of the fluid
is presented. The evolution equation is solved analytically and we present an experimental
measurement of the predicted structure factor. We present a novel experimental technique
to measure the structure factor using a balanced homodyne detection. We conclude by
presenting the expected signatures of effects that highlight scattering processes between
Bogoliubov excitations, going beyond the theory presented in chap.11.

Chapter 3 The structure of the Rubidium atom is presented and the interaction with the
electric field is derived. A three-level model is presented, before extending it to four levels
and describing optical pumping. Transit effects due to the thermal motion of atoms are then
explored with Monte Carlo numerical simulations. Finally, we propose two new configurations
in order to tune the atomic response using electromagnetically induced transparency (EIT).

Chapter 4 In this chapter we explore the emergence and breakdown of superfluid flow in
fluids of light. We start by a comparison of the relevant observables to identify the superfluid
transition. We present the scattering experiment that we will use to probe the critical velocity
for superfluidity and detail the measurement methods used to characterize the defect induced
in the fluid. We then derive a more refined model in order to describe the back-reaction of the
fluid on the defect and use this back-reaction to obtain a time resolved measurement of the
drag force. We use this coupled model to numerically predict the critical velocity for various
defects and compare this to experimental results. We conclude by presenting measurements
of the Bogoliubov dispersion relation hinting at nonlocal behavior in the fluid.

Chapter 5 We conclude this thesis by presenting recent results on turbulent behavior in
fluids of light. We start by introducing the dynamical instability phenomenon giving rise
to the turbulent behavior. We then present experimental results of vortex clustering and
inverse energy cascade that are trademarks of turbulence. We then study more closely the
vortex dynamics as individual objects by deriving the Berezinskii-Kosterlitz-Thouless (BKT)
transition, extracting the vortex interaction potential and present experimental measurements
of this interaction potential. We finish by an experimental proposal to try and evidence the
BKT transition by monitoring the vortex correlations and clustering. Finally, we go back to
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the fluid of light and explore the thermodynamics of the fluid by using the beyond mean field
predictions of chap.22.
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Chapter 1

Quantum fluids of light

In this chapter, we will establish the theoritical basis for the concept of fluids of light. In
the last twenty years, there have been significant progress made in designing experiments
where light displays collective fluid-like behavior, with a wide range of experimental platforms
like micro-cavity exciton polaritons [77; 88], dye-filled cavities [5252] or photorefractive crystals
[7272; 7373]. These various platforms allowed to observe some of the most striking features of
quantum fluids such as superfluidity [77; 7272] or Bose-Einstein condensation [5151; 5252].

In order to understand these phenomena, we will first describe the propagation of light
in a non-linear medium. We will then look at how we can formulate a quantum theory of
light propagation, and how the collective behavior of light emerges from the photon-photon
interactions. Finally we will look at the numerical methods at our disposal to solve the
evolution of the field.

1.1 Propagation of light in non-linear media
1.1.1 Helmholtz equation

Let us consider the propagation equation of an electric field E(r, t) as it passes through a
medium. From the Maxwell equations, we can derive the starting point of the propagation,
the so-called Helmholtz equation, whose source term is the electric polarization P(r, t) in the
medium:

∇2E − 1
c2
∂2E
∂t2

= 1
ϵ0c2

∂2P
∂t2

(1.1)

with c being the speed of light and ϵ0 the electrical permittivity of vacuum.
The polarization field P describes the response of the medium to the illumination of the
incident field E. Since there is no reason for this polarization to be linked linearly with the
incident field, we expand this field in a power series in terms of E (provided the electric field
is weak enough):

P(r, t) = ϵ0

∞∑
n=1

χ(n) : En(r, t). (1.2)

1
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We define here the n+ 1 rank tensors χ(n) as the electric susceptibility of the medium. In
details, the susceptibility tensor χ(n) describes the temporal response function of the medium
to the electric field through the following convolution and tensor product:

Pα(r, t)(n) = ϵ0
∑
βi

∫ ∞

−∞

n∏
i=1

dridtiχ(n)
αβi

(r − r1, ..., r − rn; t1, ..., tn)×

n∏
i=1

Eβi
(r − ri; ti)

(1.3)

where the βi ∈ {x, y, z} for i ∈ [1, n] are the Cartesian indices for each dimension of the
tensor. The picture is much simpler in frequency domain where the convolution product
reduces to a simple product, and taking advantage of various symmetries, one can greatly
simplify this expression[2121].
In this thesis, we study the propagation of light through an atomic vapor which is thus
centrosymetric and isotropic. This eliminates all even order terms in the expansion of the
susceptibility χ as well as aligning the polarization over the direction of the electric field E.
Furthermore, we will assume for now that the mdeium is local meaning that the polarization
at a position r only depends on the electric field at this position. This assumption is in
practice not always relevant and will be discussed in chap.33 and 44. With this in mind, we will
limit our expansion to the first and third orders (i.e the first non-linear order), and keep only
non-linear processes that yield a polarization oscillating at ω in the degenerate four-wave
mixing configuration. The higher order terms will be taken into account phenomenologically
as an effective saturation intensity. Thus, the expression in frequency domain for the electric
polarization simply becomes:

P(r, ω) = ϵ0
[
χ(1)(r, ω)E(r, ω) + 3χ(3)(r, ω)|E(r, ω)|2E(r, ω)

]
. (1.4)

We note here that due to the dispersive nature of atoms, all suscpetibilities depend on the
frequency of the impinging light field. The details of the underlying atom-light interaction
mechanisms will be discsussed at length in chapter 33.
Armed with our simplified polarization, we can now recast it into eq.1.11.1 in frequency domain to
deal with the time derivatives. Furthermore, as the polarization is only along the electric field,
we can study only the amplitude E of the field. Assuming a monochromatic light field, we can
also simplify this amplitude by separating envelope and carrier wave E = 1

2(Eeiωt + E∗e−iωt).
Looking at the resulting equation for the envelope, we obtain :

∇2E(r, ω) + ω2

c2 [1 + χ(1)(ω)]E(r, ω) = −3
4
ω2

c2 χ
(3)(ω)|E(r, ω)|2E(r, ω). (1.5)

If we introduce the vaccum wavenumber k0 = ω/c of the impinging laser light, we recover
the familiar expression for the linear index of refraction : n(ω) =

√
1 + χ(1)(ω). We can thus

finally reformulate the previous equation as follows:

∇2E(r, ω) + k(ω)E(r, ω) + iαE(r, ω) = −3
4
ω2

c2 χ
(3)(ω)|E(r, ω)|2E(r, ω) (1.6)

where we have defined the the medium wavenumber k(ω) = k0n
′(ω) = k0Re(

√
1 + χ(1)) and

the linear absorption coefficient α = k0n
′′(ω) = k0Im(

√
1 + χ(1)).
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We would still like to simplify this equation further in order to extract meaningful physical
insight. For this, we rely on the two following approximations:

• The paraxial approximation : the beam will deviate only slightly from the optical axis
such that ∇2Ẽ/k2 ∼ ∂zẼ/k ≪ 1 if Ẽ is the normalized adimensional envelope E = ẼE0

• The slowly varying envelope approximation : the envelope E is a slowly varying
function of z relative to the carrier wavelength λ = 2π

k0
. This allows to decouple the

transverse dynamics of the envelope and the longitudinal dynamics of the carrier such
that E(r, z) = E(r⊥, z)eik(ω)z.

These two approximations are at the heart of the physics described in this thesis and highlight
the 2D+1 nature of our geometry. Their detailed interpretation in terms of the resulting
geometry will be discussed in section 1.21.2.
Now in the general case, considering that the laser beam has a certain spectral extension δω,
we should consider the effect of dispersion. As the wavenumber in the medium k(ω) depends
on the frequency of light due to the dispersive nature of the atoms, provided the spectral
width δω is small (which is experimentally always the case down to pulses of several ps), we
can expand the wavenumber k(ω):

∇2E(r, ω) + [k(ω0) + i
α

2 + ∂k

∂ω

∣∣∣∣∣ω0δω + ∂2k

∂ω2

∣∣∣∣∣
ω0

δω2]E(r, ω) = −3
4
ω2

c2 χ
(3)(ω)|E(r, ω)|2E(r, ω).

(1.7)

We have now introduced two physical quantities the group velocity 1
vg

= ∂k
∂ω and group

velocity dispersion D0 = ∂2k
∂ω2 (both evaluated at the carrier pulsation ω0). Physically, the

group velocity describes the speed of the wavepacket as it propagates through the vapor.
The group velocity dispersion (GVD) describes how the spectral extent of the wavepacket
will evolve with time: either shrink in the case of an anomalous GVD or broaden in the
case of the normal GVD (see fig.1.11.1). Looking at this evolution equation, we see that the
source term for the propagation is the non-linear polarization 3

4
ω2

c2 χ
(3)(ω)|E(r, ω)|2E(r, ω).

This non-linear polarization is thus the crucial non-trivial term that will drive the evolution
of the field.
Switching back to the time domain, we obtain finally the generic propagation equation
describing our system, including the effect of spectral width:

i
∂E
∂z

= − 1
2k(ω)∇2

⊥E + D0
2
∂2E
∂t2

− i

vg

∂E
∂t

− i
α

2 E + g(r⊥,t)|E|2E . (1.8)

Note that we have now introduced a non-linear interaction coefficient g(r,t) = −k0
3χ(3)

4n(ω0) to
reformulate the source term deriving from the non-linear polarization. We should also link
this to the classical non-linear index of refraction n2 = 3χ(3)

4ϵ0cRe(n(ω0)) that has the dimension
of m2/W . Having established this, one can then derive the non-linear index of refraction
variation ∆n = n2I where I is the field intensity. This allows to link experimental parameters
to the interaction strength governing the evolution equation through measurement of this
index of refraction change (see chap.33). If we also include a local variation of the index
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of refraction δn(r, z) as will be shown in chap.33, we end up with the final general classical
propagation equation, the so-called non-linear Schrödinger equation (NLSE):

i
∂E
∂z

= − 1
2k(ω)∇2

⊥E + D0
2
∂2E
∂t2

− i

vg

∂E
∂t

+ k(ω)δn(r, z)
n(ω0) E − i

α

2 E + g(r,t)|E|2E . (1.9)

We will now detail in the following subsection the physical insight that we can gain by
analyzing each term of this equation.

1.1.2 Non-linear Schrödinger equation
Having established the NLSE, let us now sit down and look at it for a bit. We first decompose
the equation between all of its constituents: kinetic, potential and interaction terms.

i
∂E
∂z

= − 1
2k(ω)∇2

⊥E + D0
2
∂2E
∂t2︸ ︷︷ ︸

Kinetic

− i

vg

∂E
∂t︸ ︷︷ ︸

Drift

+ k(ω)δn(r, z)
n(ω0)︸ ︷︷ ︸

P otential

− i
α

2︸ ︷︷ ︸
Losses

+ g(r,t)|E|2E︸ ︷︷ ︸
Interaction

(1.10)

Looking at eq.1.101.10, we identify five different terms depicted graphically in fig.1.11.1:

• Kinetic energy: This term describes kinetic effects induced by diffraction and GVD. In
the transverse direction, this term corresponds to the curvature of the field and thus
describes diffraction In the longitundinal dimension, GVD acts as a mass like term in a
very similar manner as the diffraction term in the transverse dimension.

• Potential energy: A localized index of refraction change acts as a potential for the
light field. Assuming a quadratic shape δn ∝ r2

⊥, a negative δn will act as a diverging
lens or repulsive potential, while a positive δn will lead to an converging phase profile
or attractive potential. In the same fashion a negative δn will lead to an attractive
potential. In the case of hot atomic vapors, we realize this potential using optical
pumping of the D1 line. This will be explained in details in chap.33.

• Interaction energy: This is the so-called Kerr term describing effects such as self
focusing (resp. defocusing). It is often expressed as the non-linear index of refraction
variation ∆n with ∆n = 2

cϵ0
n2I. In this context, n2 is the non-linear index of refraction

in m2/W and I the intensity in W/m2. In the case of a positive n2 non-linear coefficient,
with a gaussian intensity profile |E|2, this results in a negative phase accumulated (with
respect to a reference beam passing through air) at the high intensity center of the
beam thus focusing it. In the case of a positive n2, the opposite effect occurs, and a
positive phase is accumulated at the center of the beam resulting in self-defocusing. In
this thesis, we will not study the self-focusing case as it is not energetically stable : as
the beam collapses, the intensity increases drastically until modulational instability and
higher order terms split the beam. This is effect is called filamentation [2828].

• Losses: Linear absorption coefficient due to the imaginary part of the first order
susceptibility χ(1). In this thesis, this describes atomic absorption.

• Rigid drift: This term is due to the group velocity within the medium being different
than in the vacuum. This term can easily be eliminated by switching to the pulse
referential and is only relevant when considering pulsed scenarii.
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Rb cell

Fig. 1.1 Effect of the different terms of the NLSE. The color-code is the same as
in eq.1.101.10. The initial and final transverse profiles are circled by a dotted gray line:
as the beam traverses the cell, due to repulsive interactions, the output profile is
significantly larger. The transverse profiles represent the phase resulting of each
term, labeled ϕ. Here is represented the case of a negative non-linear coefficient n2
i.e a defocusing non-linearity thus expanding the beam. The kinetic energy term
hightlights the diffraction originating from the double gradient. The potential term
in orange depicts the case of a positive δn i.e an attractive potential. At the end of
the cell, we represent the pulsed case where the pulse traverses through the cell at
velocity vg, expanding due to the GVD D0.
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We will now reformulate the non-linear equation using a change of referential eliminating
the rigid drift term induced by the group velocity.

1.1.3 Comoving transform
As mentioned previously, the effect of group velocity vanishes trivially when changing to
the referential of the pulse [2828; 5959; 6060]. The situation that we have is the following: we
want to study the propagation of a pulse within a dispersive medium. Within the paraxial
approximation, the dynamics of the field is confined to transverse planes moving at the group
velocity. At the same time, the pulse elongates due to GVD, there is thus two different
dynamics at play here:

• A fast dynamics governed by the group velocity along the z dimension

• Slow dynamics of pulse broadening along the time dimension, and transverse evolution
of the field in the transverse (x, y) plane.

Thus, we would like to separate slow variables and fast variables in order to make the scale
separation more apparent. To this extent, we are tempted to exchange the role of the actual
time t and the third spatial coordinate z which is an effective time. We carry out this variable
change by defining the following two new coordinates: an effective time τ = z/vg and an
effective new dimension ζ = vgt − z. By defining a new field ψ depending from the new
variables such that:

E(x, y, z, t) = ψ(x, y, vgτ,
1
vg

(vgτ + ζ)). (1.11)

We thus retrieve a new evolution equation for the field ψ that reads:

i

vg

∂ψ

∂τ
= − 1

2k0
∇2

⊥ψ +
v2

gD0

2
∂2ψ

∂ζ2 + V (r, τ)ψ + g(r, τ)|ψ|2ψ (1.12)

where we have substituted the potential term k(ω) δn(r,z)
n(ω0) by V (r, τ) for clarity. Note that

for interaction and potential terms, the comoving transform merely contracts or shift the
dependence on (z, t)/(τ, ζ) [5959].

Now this is strongly reminiscent of the Gross-Pitaevskii equation (GPE) describing the
evolution of interacting bosons [8383] except that we here have different leading coefficients
between the transverse derivatives (∂2

x, ∂
2
y) and the longitudinal derivative ∂2

ζ . Reformulating
this as a tensor product, one can find a "mass" tensor that describes the kinetic term [5959] M
that will happen to be anisotropic contrary to the usual GPE case:

− 1
2k0

∇2
⊥ψ +

v2
gD0

2
∂2ψ

∂ζ2 = (∂2
x ∂

2
y ∂

2
ζ ) 1

2M

∂
2
x

∂2
y

∂2
ζ

 (1.13)

This highlights a peculiarity of our platform : the dynamics in the longitudinal dimension is
very different from the transverse dynamics, and we can essentially consider it frozen since
the typical values of the longitudinal mass term 1

v2
gD0

is between seven and nine orders of
magnitude larger than the transverse mass term k0 [5959; 9797]. Note here that we loosely use the
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expression "mass term" to designate the prefactor of the second derivatives of the evolution
equation in analogy with the GPE even if this term does not have the dimension of an actual
mass (they are homogeneous to a wavenumber).

Furthermore, for most of the experiments described in this thesis, we work with a
continuous wave (CW) laser, meaning that the spectral extent of our laser light δω is
completely negligible, thus our system can essentially be considered as 2D+1 through
translationnal invariance of the longitudinal dimension. A detailed physical discussion of the
question of dimensionality will be presented in section 1.21.2 by comparing our system to cold
gases.

1.1.4 Hydrodynamical formulation
The NLSE is at the heart of several of hydrodynamics effects like rogue waves, solitons[77; 3131;
5050; 9595; 102102] and vortices [6868; 8282]. It is then natural to recast the previous equation 1.101.10 to a
hydrodynamics formulation. The starting point for this is the Madelung transform [6767]. We
rewrite the complex field of the electric field envelope E as follows:

E(r⊥, z) =
√
ρ(r⊥, z)eiΦ(r⊥,z). (1.14)

Using this definition, the velocity of the field is v = c
k0

∇Φ(r⊥, z) where k0 = k(ω0) is the
wavenumber of the laser inside the cell. This is natural as this describes that the speed is
essentially the instantaneous wavevector of the field i.e the direction in which it will evolve:
locally the field can always be described by a plane wave of the form eik⊥·r⊥ .

We now have two hydrodynamical variables (ρ,v) to describe the phase and amplitude
degrees of freedom of the field. Plugging this relation into eq.1.101.10, we retrieve the celebrated
quantum Euler equations [6767]:

∂ρ

∂z
= −1

c
∇⊥(ρv) −αρ (1.15)

∂v
∂z

= − 1
2c∇⊥v2 − c

k0
∇⊥

(
gρ − 1

2k0

∇2
⊥

√
ρ

√
ρ︸ ︷︷ ︸

Quantum pressure

+ V
)

(1.16)

As done previously we now carry a detailed study of the different terms in presence, following
the same color code as in eq.1.101.10. This system presents two equations:

• A "mass" rate equation 1.151.15: usually this is a mass conservation term describing the
conservation of current. Here as we are in the presence of linear absorption, this
describes the rate of dissipation due to photon absorption.

• A "convection" like equation 1.161.16: this term describes the evolution of the velocity field
v(r⊥, z) with different source terms.

While the equation 1.151.15 is essential in order to faithfully model our system, it is trivial as it
describes the evolution of the density following the flow ρv. The "convection" term of eq.1.161.16
however gives valuable physical insight into the different effects at play here. The first term
is diffraction (in blue) whose kinetic energy interpretation is now transparent: the kinetic
energy of the field is proportional to ∝ v2. Obviously if this kinetic energy is uniform, it
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will mean that the energy is at equilibrium and thus there will not be any convection. We
then have the interaction term (in green). In this formulation, it becomes more apparent
that in order to have no evolution we also need to have a uniform density: because of the
interactions, if the density is not uniform the fluid will want to either equalize its density
(repulsive interactions), or on the contrary accumulate this density in a single point (attractive
interactions). Connecting to the optics point of view, this means that plane waves will not
experience geometrical effects like self-defocusing. The potential term (in orange) also only
acts if it is not uniform. Then again, under this form, we recover a classical mechanical
picture: the force felt by the fluid is the gradient of the potential field V . This allows to
consolidate the picture showed in fig.1.11.1.
Finally, the last term is the quantum pressure term [8383]. As opposed to the other terms, it
has no classical counterparts, but we can gain insight by checking the effective range of this
term. As a higher order derivative term, it will be effective on shorter scales. We will find in
the next subsection what this relevant scale is.

1.2 Quantum formulation

Having established the classical equations for the paraxial propagation of laser light within a
non-linear medium, we would like to now derive a quantum version of these equations. In
order to study in depth the implication of atom-light interaction (which will be presented in
chap.33), and the resulting photon-photon interactions, we need a quantum formulation of the
field evolution equations. For this section, I will rely heavily on seminal works by Pierre-Élie
Larré and Iacopo Carusotto who laid the theoritical foundations for the study of quantum
fluids of light [2323; 5959; 6060]. In the spirit of simplicity, we will only consider the 2D+1 case
where temporal effects are ignored.

1.2.1 Quantization of the evolution equation

It can be shown [5959] that it is possible to quantize the electric field envelope E , introducing a
field operator Ê(r, z) and the following "equal-time" commutation relations (in the Heisenberg
picture):

[Ê(r, z), Ê†(r′, z)] = ℏ
N
δ(r − r′)

[Ê(r, z), Ê(r′, z)] = 0
[Ê†(r, z), Ê†(r′, z)] = 0

(1.17)

where N = k0
µ0ω2

0
is a normalization coefficient depending on the medium, with µ0 is the

vacuum magnetic permeability and ω0 the central laser frequency. Now an important caveat:
even though we ignore the temporal dimension t as we discarded the GVD terms, it is
paramount to properly carry out the quantization procedure, especially the determination of
N . The details are not reproduced for clarity, but the interested reader can consult [5959; 6060]
for the full calculation. From this, we can introduce the following Hamiltonian operator using
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the usual color code:

Ĥ(z) = N
∫

dr
[ 1

2k0
∇⊥Ê† · ∇⊥Ê + V (x⊥, z)Ê†Ê + g(x⊥, z)

2 Ê†Ê†Ê Ê + i
α

2 Ê†Ê
]
.

(1.18)

While the interpretation of the kinetic, potential and losses terms is straightforward, the
interaction term carries much physical meaning: it is exactly the four-wave mixing Hamilto-
nian, or the so-called contact interaction term present in the quantum version of the Gross
Pitaevskii equation. This comparison will be deepened in the next subsections, and the
atomic physical origin of this term will be shown in chap.33.
In order to retrieve a propagation equation for our field operator Ê , we need only to compute
its commutator with the Hamiltonian eq.1.181.18:

iℏ∂zÊ = −[Ĥ(z),Ê ]. (1.19)

Expanding this yields finally the operator version of eq.1.101.10:

i
∂Ê
∂z

= − 1
2k0

∇2
⊥Ê + V (r, z)Ê + g(r, z)Ê†Ê Ê − i

α

2 Ê . (1.20)

Now, we notice that we end up with exactly the same equation as the classical propagation
equation. While this should not come as a surprise, proving this is slightly more involved
than simply converting E to Ê .
In order to solve this equation, we start with a mean field treatment by expanding to first
order in fluctuations around a mean field E0 described by the classical NLSE. This is the core
of the Bogoliubov theory [1919] that I will now present.

1.2.2 Bogoliubov theory
The obvious issue in the eq.1.201.20, is the non linear interaction term that prevents simple
integration of this equation. In order to deal with this, we want to establish first a free field
theory that studies the behavior of small amplitude quantum fluctuations on top of a classical
mean field (background). We thus look simply for solutions in the form of:

Ê = E0︸︷︷︸
Mean field

+ δÊ︸︷︷︸
F luctuations

. (1.21)

The flucutations operator obeys the commutation relations defined in eq.1.171.17. The evolution
of the mean field is simply described by eq.1.101.10. For practical purposes, the shape of this
background is usually a wide gaussian profile whose size is much larger than the scale of the
fluctuations. Thus, even in the presence of non-linearity, we can (most of the time) ignore its
evolution without sacrificing physical content. Absorption however cannot be ignored and
its effects will be discussed in details in chap.22. For the sake of generality and simplicity,
we’ll ignore the potential term for now. The effect of the potential term will be discussed in
chap.44.
Let us also express the field fluctuations operator in momentum space since it will greatly
help us down the line when solving the evolution equation:
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δÊ(r⊥, z) =
∫

dk⊥âk⊥(z)eik⊥·r⊥

δÊ†(r⊥, z) =
∫

dk⊥â
†
−k⊥

(z)eik⊥·r⊥ .
(1.22)

Here the â operators obeying standard bosonic commutation relations:[
âk⊥(z), â†

k′
⊥

(z)
]

= δ(k⊥ − k′
⊥)[

âk⊥(z), âk′
⊥

(z)
]

= 0[
â†

k⊥
(z), â†

k′
⊥

(z)
]

= 0.

(1.23)

Plugging this into the previously established propagation equation eq.1.201.20 yields:

i∂z(E0 + δÊ) = − 1
2k0

∇2
⊥(E0 + δÊ) − i

α

2 (E0 + δÊ)+

g(r, z)(E∗
0 + δÊ†)(E0 + δÊ)(E0 + δÊ).

(1.24)

Assuming that E0 follows the eq.1.101.10, this allows to retrieve an equation for δÊ only:

i
∂δÊ
∂z

= − 1
2k0

∇2
⊥δÊ − iαδÊ+

g(r, z)

2|E0|2δÊ + E2
0 δÊ†︸ ︷︷ ︸

1st order

+ E∗
0 δÊ2 + 2E0δÊ†δÊ︸ ︷︷ ︸

2nd order

+ δÊ†δÊ2︸ ︷︷ ︸
3rd order

 . (1.25)

We can distinguish the different orders of the expansion in fluctuations. The first order
describes the ballistic evolution of the fluctuation modes. The second order describes
interaction between quasi-particles and lead to the celebrated Lee-Huan-Yang corrections [6262]
and quantum depletion [2424]: the 2E0δÊ†δÊ describes the process of creating two excitations
from the condensate. The third order describes more complex processes involving 3 quasi-
particles. As we want a free field theory, we will truncate to first order, killing the higher
order terms. We are thus left with a linearized propagation for the fluctuations [5959]:

i
∂δÊ
∂z

= − 1
2k0

∇2
⊥δÊ + g(r, z)

[
2|E0|2δÊ + E2

0 δÊ†
]

− iαδÊ . (1.26)

Note that we have highlighted the physical meaning of each term using the usual color code.
It is important to notice the coupling induced by the interaction term between pairs of
quasi-particles: the evolution for a mode is coupled to its conjugate through the E2

0 δÊ† term.
Now we can recast this equation in momentum space to a matrix form in order to hopefully
integrate it. Recalling the definition of the fluctuations modes δÊ eq.1.221.22 we obtain:

i∂z

(
âk⊥

â†
−k⊥

)
=

− k2
⊥

2k0
+ 2g|E0|2 − iα

2 gE2
0

gE∗2
0 − k2

⊥
2k0

+ 2g|E0|2 − iα
2


︸ ︷︷ ︸

Ak⊥ − iα
2 I

(
âk⊥

â†
−k⊥

)
(1.27)
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a) Theoritical dispersion b) Experimental dispersion

Fig. 1.2 a) Analytical calculation of the Bogoliubov dispersion ΩB for typical
experimental parameters n2 = −5 × 10−9 m2/W , P0 = 1 W and w0 = 2.35 mm.
b) Experimental measurement of this dispersion from [8181]. The curves show the
non-interacting (∆=-2.5 GHz) and interacting (∆=-6.0 GHz) case. In the non-
interacting case, the dispersion is purely particle-like. In the interacting case, the
dispersion shows the characteristic linear part, particularly noticeable by the vertical
offset. Only the real part of the dispersion is shown here since the only imaginary
part of the function is absorption.

where the matrix Ak⊥ encodes the evolution of the modes and the losses term −iα
2 I describes

the damping due to losses. As it is, direct integration of this equation is impractical, we
would want a diagonalized form. This is precisely what the celebrated Bogoliubov transform
[8383] achieves.
We introduce new operators called the Bogoliubov quasi-particles (sometimes "Bogolons")
b̂k⊥ such that: (

âk⊥(z)
â†

−k⊥
(z)

)
=
(
uk⊥(z) vk⊥(z)
vk⊥(z) uk⊥(z)

)
︸ ︷︷ ︸

Bk⊥

(
b̂k⊥(z)
b̂†

−k⊥
(z)

)
(1.28)

where Bk⊥ is a hyperbolic rotation: det(Bk⊥) = u2
k⊥

− v2
k⊥

= 1. The b̂k⊥ operators are the
eigenmodes of the evolution and their eigenvalue is the Bogoliubov dispersion [3434]. The
spectrum of Bk⊥ yields:

ΩB(k⊥) =

√
k2

⊥
2k0

( k2
⊥

2k0
+ 2g|E0|2

)
− i

α

2 . (1.29)

This dispersion relation has several major features crucial to understand the dynamics of
quantum fluids.
Firstly, this dispersion relation has two regions separated by the typical scale kξ = k0

√
g|E0|2 =

2π
ξ where ξ is the healing length:
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a) Schematic view of the experiment [3535] b) Experimental results [3434]

Fig. 1.3 a) The perturbation (dark red beam) is superimposed to a large gaussian
background (in light red). Two localized excitations are generated propagating at
the speed of sound as long as k⊥ < kξ. The output position of both wavepackets is
recorded at the output of the cell. b) Numerical and experimental taken from [3434].
The initial angle of the perturbation beam is varied and the position of the phonons
is recorded. The profile is first flat until kξ before converging to a linear slope at
high k⊥

• A linear sonic region under kξ where ΩB(k⊥) ≈ csk⊥ with cs = c
√
g|E0|2 defining the

speed of sound

• A quadratic particle-like region above kξ where ΩB(k⊥) ≈ k2
⊥

2k0

The healing length ξ represents the scale under which we can no longer consider the fluid as a
collective ensemble. The corresponding momentum scale kξ is fundamental in the context of
superfluidity, where it represents the critical momentum at which superfluidity breaks down.
It is also has profound meaning in atomic Bose-Einstein condensates, where excitations under
the healing length kick atoms out of the condensate [8383].
There is however a big caveat to this description: the evolution of the mean field driven by
absorption needs to be slow with respect to the eigenvalues of Ak⊥ in eq.1.271.27 adiabatically
follow the evolution of Ak⊥ . This adiabaticity condition is fundamental when dealing with
quantum aspects and will be detailed in chap.22.
The existence of sound-like excitations in fluids of light has dramatic implications that cannot
be described well within the language of non-linear optics. Such a striking phenomenon is
for instance the splitting of a wavepacket into two localized excitations whose propagation
is independant of the initial wavepacket momentum as has been demonstrated by Quentin
Fontaine in [3434].

In this experiment, the dispersion relation is measured from the group velocity of the
Bogoliubov excitations. Experimentally, this is measured by sending a small perturbation on
top of a large gaussian background. Due to the interactions between photons, this wavepacket
will split into two wavepackets, both moving at a certain group velocity. As long as the
momentum of the impinging wavepacket is under kξ, this group velocity does not depend
on the initial momentum, and is equal to the speed of sound cs. This is easily understood
since the group velocity of the Bogoliubov excitations is defined as vg = ∂ΩB

∂k⊥
. Thus it will be
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constant and equal to cs at low k⊥, and linear at high k⊥ where vg(k⊥) = k⊥
k0

.
This behavior fails to follow either the geometrical optics, or the non-linear optics classical
intuitions. Indeed, at low k⊥, we expect the generation of a pair of conjugated momenta
beams due to degenerate four wave mixing in the non-linear medium [2121]. Within the
momentum conservation, we do not expect however this effect to be independant of the
incoming wavevector ! In the high k⊥ limit, we hopefully recover the traditional geometrical
optics limit where the beam follows a straight line that is given by the initial beam angle.
There remains however another spot that is created through the four-wave mixing process
(the "idler" beam in this configuration).

We have thus seen in this section that the photon-photon interactions that are mediated
by the atom-light interaction within the vapor introduces effects that go beyond classical
non-linear optics treatments, and rather fall in the phenomenology of cold atomic ensembles.
With this in mind, I will now detail this comparison with cold Bose gases in order to extract
meaningful insight from what has been a very successful experimental platform for quantum
physics these last twenty years.

1.2.3 Comparison with the atomic Gross-Pitaevskii equation of cold gases

In order to compare our system to cold Bose gases, we first need to define what cold Bose gases
are. Due to their bosonic nature, bosonic atoms are predicted to condense below a certain
critical temperature. As the thermal wavelength approaches the typical interparticular
distance, the atoms will start to behave collectively and share a single wavefunction Ψ
whose evolution will be described by the Gross-Pitaevskii equation [8383]. Experimentally
this phenomenon is realized by cooling down atoms in optical traps using a wide range of
cooling techniques pioneered by Claude Cohen-Tannoudji, Steven Chu and William Daniel
Phillips granting them the 1997 Nobel prize. The first experimental observation of Bose
Einstein condensation was carried out in 1995 at JILA [1010] using Rubidium 87 atoms. Since
this seminal work, many groups have carried out similar research using the long lifetimes
and controllability of atoms to study many effects such as superfluidity In order to gain
more understanding about the deep links between the physics that we have access to in our
experiments and the physics of BEC, let us have a look at the description of an interacting
gas of bosonic atoms. Similar to what I presented earlier in this thesis, there are three main
effects at play in this problem:

• Kinetic energy: each atom has some energy due to thermal energy (even if the temper-
ature is very low)

• Potential energy: the atoms are massive particles subjected to gravity. If we want to
observe them we will need to trap them to be able to keep them at a fixed position.

• Interaction energy: due to the atomic potential, the atoms will scatter.

One can show [8383] that the equation governing the wavefunction of the atoms in this case is
the Gross-Pitaevskii equation (GPE):

iℏ
∂Ψ

∂t
= − ℏ2

2m∇2Ψ + V Ψ + g|Ψ |2Ψ (1.30)
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where m is the atomic mass, V is the confining potential, g the interaction constant and ∇2

represents the kinetic term. Here, Ψ has the dimension of the square root of a density L−3/2.
Diving a bit deeper into this equation, we remark that the inter-atom interactions are
simplified to a contact interaction meaning that the Coulombic interaction potential has been
reduced to a point-like Dirac peak whose height depends on the effective s-wave scattering
length: g = 4πℏ2as

m . This scattering length describes the typical range of the interactions. Its
name is due to the dilute medium and weak interaction assumptions: we only consider the
lowest energy scattering processes. When atoms scatter, there exists a range of distance in
the interatomic potental within which a bound state can exist. At lowest energy, we look at
the s-state bounding state (alike electronic orbitals of an atom). The higher orders that can
then be considered are p-states, d-states etc . . .
Thus the interaction process of atoms in BEC is qualitatively very different from the effective
photon-photon interactions of fluids of light. In the case of atoms, the interaction results
directly of the scattering of the atoms within their Coulomb potential. In the case of
photons, the scattering between photons is mediated by the atoms due to complex atom-light
interaction processes.
Having established the GPE, we can then use the Bogoliubov formalism to treat the system
evolution to the first order. Without detailing the treatment (it has already been done in the
previous section), we recover the Bogoliubov dispersion with its sonic part where the energy
of the Bogoliubov excitations at momentum p is:

ℏω(p) =

√
p2

2m
( p2

2m + 2gρ0
)

(1.31)

assuming ρ0 is the condensate density. The physical meaning of the mean field in the case
of BEC is the condensate fraction i.e a macroscopical occupation of a 0 momentum state.
This is historically how condensation was observed for the first time [1010]. We can then look
at the small density fluctuations over this condensate. As shown in the previous section,
this dispersion relation introduces a critical scale between linear and quadratic regimes: the
healing length ξ = ℏ√

2mgρ0
. This length owes its name to the fact that it characterizes the

scale at which the collective behavior of atoms breaks down. Below this scale, a perturbation
will kick atoms out of the condensate state. This establishes an equivalent momentum scale
pξ = ℏ2π

ξ . In a similar fashion, the speed of sound is defined as cs =
√

gρ0
m . In order to

compare the platforms further, we will use these characteristic scales to adimensionalize both
evolution equations. In order to do this let us go back to eq.1.121.12. If we alter the change of
variables in the following manner, it is possible to recover an isotropic mass tensor:

τ = z

c

ζ = γ
(
vgt− z

) (1.32)

where γ = ξ
ξt

with ξ the healing length in the transverse plane (x, y) stemming from the
Kerr index n2, and ξt = vg

√
−D0n0
k0∆n is the healing length in the longitudinal dimension ζ (i.e

the "real time") due to group velocity dispersion. Using this new change of variable, we can
reformulate eq.1.121.12 as:

i

c

∂ψ

∂τ
= − 1

2k0
∇2

⊥ψ +
v2

gD0

2 γ2∂
2ψ

∂ζ2 + V (r, τ)ψ + g(r, τ)|ψ|2ψ (1.33)
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where we define the transverse gradient operator ∇⊥ = (∂2
x ∂

2
y). This reduces to :

i

c

∂ψ

∂τ
= − 1

2k0
∇2ψ + V (r, τ)ψ + g(r, τ)|ψ|2ψ. (1.34)

We have here regrouped all second order derivatives in the same operator ∇ = (∂2
x ∂

2
y ∂

2
ζ )

since v2
gD0
2 γ2 = 1

2k0
. This is actually the design of the change of variable 1.321.32 to make the

mass tensor M presented in eq.1.131.13 isotropic. Introducing the photon effective mass m = ℏk0
c ,

the propagation equation reads:

iℏ
∂ψ

∂τ
= − ℏ2

2m∇2ψ + ℏcV (r, τ)ψ + ℏcg(r, τ)|ψ|2ψ. (1.35)

We have recovered the full 3D+1 evolution equation of the fluid of light by introducing a
basis change substituting time and z dimensions. We can now already identify term by term
the equivalent terms in both GPE and NLSE. For clarity, we will go further with a final step
of adimensionalizing both propagation equations which will allow to compare each relevant
parameter quantitatively. A natural way to adimensionalize these equation is to renormalize
the time (resp. space) by some characteristic time (resp. spatial) scale. Two such obvious
scales are the following:

• The healing length ξ: the length up until which the collective Bogoliubov description is
valid.

• The non-linear length zNL = 1
g|E0|2 / non-linear time τNL = 1

cg|E0|2 : intuitively, the
higher the interactions are, the faster will the system will evolve since the collision rate
will be higher. In the fluids of light language, the non-linear length zNL wille be the
length after which non-linear effects will be noticeable. Note that in order to vary the
effective evolution time within the non-linear medium, we will often play with the laser
power in order to change zNL and such the total adimensional evolution time L/zNL

[11].

With these scales in mind, the NLSE recasts as follow:

∂ψ̃

∂τ̃
= i∇̃2ψ̃ + i

V (r̃, τ̃)
g(r̃, τ̃)|E0|2

ψ̃ − i|ψ̃|2ψ̃, with

ψ = E0ψ̃ , τ̃ = τ

τNL
, r̃ = r

ξ
.

(1.36)

In the case of the GPE, τNL = ℏ
gρ0

and ξ = ℏ√
2mgρ0

. Note that in this case, the meaning of
τNL and ξ is the same. The expression change as the link with the relevant experimental
units change since the definition and dimensionality of g changes. With this in mind, we
carry out the same procedure and obtain:

∂ψ̃

∂τ̃
= i∇̃2ψ̃ + i

U(r̃, τ̃)
g(r̃, τ̃)ρ0

ψ̃ − i|ψ̃|2ψ̃, with

ψ = √
ρ0ψ̃ , τ̃ = τ

τNL
, r̃ = r

ξ
.

(1.37)

We thus finally find that one adimensionalized the GPE and NLSE are mathematically equal,
and we can then easily compare the relevant characteristic scales quantitatively:



16 Chapter 1. Quantum fluids of light

• Interactions: the relevant parameter to characterize the strength of the interactions
accross different platforms is the non-linear time. In the case of BEC the interaction
parameter is the chemical potential µ = gρ0. From the comparison of eqs.1.361.36 and
1.371.37 we find that the equivalent parameter for fluids of light is ℏcg|E0|2 = ℏω0∆n. To
give numerical orders of magnitude, in typical BEC experiments such as [2727] gn0 = µ
is easily computed as it is equal to the trapping energy within the Thomas-Fermi
approximation [8383]. Typical trapping frequencies in 2D BEC experiments are in the
kHz range [2727] meaning a chemical potential in the range of 10−30 J. In our case, typical
values of the non-linear dephasing are ∆n ∼ 10−5, meaning an interaction energy of
10−24 J or a frequency in the 10 GHz range. This means that typical interactions in a
photon fluid are seven orders of magnitudes larger than in atomic BEC’s. In addition
to this, the effective mass is 12 orders of magnitude smaller. This explains why it is
possible to observe much of the same physics as Bose gases even though the interaction
times are much smaller. Travel time through the Rubidium cell is on the order of a few
100 ps compared to the millisecond to second time scale used in cold atoms experiments.
One might argue about the relevance of travel time in CW regime, however ultimately
the physical situation is that the image registered by a camera is the integration of
"slices" of light that all have traveled a time L/c inside the cell.

• Potential: Using the same analysis as previously, one can derive relevant comparisons
between the trapping of atoms and the potential engineering achievable in fluids of
light (see chap.44). As for the interaction parameter ℏω0∆n, the potential energy can
be written V = ℏω0δn. Typical experimental values in our system reach δn ∼ 10−4,
meaning frequencies in the 100 GHz range. Then again, these values are much higher
than in atomic condensates.

• Kinetic energy: Initial state of the BEC is the condensate. This means that a single
momentum state gets a macroscopical occupation number, above a thermalized distri-
bution. By its nature, the concept of BEC requires thermal equilibrium. Without a
trap, the equivalent description in the context of fluids of light is a plane wave with a
single k⊥ = 0 mode. Obviously, since plane waves require an infinite wavefront, the
real state is a coherent state whose extent in Fourier domain is negligible i.e a large
gaussian beam. The question of equilibrium and thermal population in the case of
photon fluids is a much harder question. The fluid due to the near-instantaneous onset
of interactions at the entrance of the cell is quenched far out of equilibrium, unless the
input state is specifically prepared to cancel this effect. The question of thermalization
and equilibrium will be detailed in the next chapter.

In order to summarize the comparison, we can build a "translation" table as follows:



1.2 Quantum formulation 17

BEC Expression Typical
value Fluids of light Expression Typical

value

Wavefuntion ψ
108

m−3/2 Electric field E 105 V/m

Spatial coordi-
nates (x,y,z) 100 µm Spatial coordi-

nates
(x,y,ζ) with
ζ comoving 1 mm

Temporal evo-
lution

physical
time t

ms to s
scale

Temporal evo-
lution

effective
time
τ = z/c

100 ps scale

Mass m 10−24 kg Effective mass m̄ = ℏk0
c

10−36 kg

Atomic density ρ 1017 m−3 Photon density
/ Intensity ρ = I

ℏω0c 1017 m−3

In plane mo-
mentum (x,y) kx, ky

0 to 106

m−1

In plane
wavevector ∝
angle

k⊥
102 to 105

m−1

Longitudinal
momentum z kz 102 m−1 Temporal fre-

quency
ω ∝ kz̃ =
2π
z̃

0.01 to 50
MHz

Speed of sound cs mm/s Speed of sound cs = c
√
∆n 107 m/s

Healing length
ξ =

ℏ√
2mgρ0

=
1√

8πasρ0

100 nm
scale Healing length ξ =

1
k0

√
n0

|∆n|

5 µm to 100
µm scale

Scattering
length as

nm to
µm scale

Scattering
length

as =
−ℏc2k3

0n2
4πn0

0.1 nm to
µm

Thermal en-
ergy kbT 100 nK k⊥ ̸= 0 popula-

tion

speckle →
kBT =
(ℏ/σ)2

2m

Adjustable
between 0
and 10µ

Another important question is the dimensionality of our system. As mentioned in the first
section 1.11.1 of this chapter, the dynamics in our fluids of light is confined to the transverse
plane due to the longitudinal mass being much larger than the transverse one due to GVD.
But what are the other physical mechanisms garanteeing this interpretation ? Taking this
into account, one important question arises: where does the 2D+1 geometry comes from ? Is
the two-dimensional nature due to translationnal invariance or some confinement mechanism
along the ζ direction ? This is particularly relevant as dimensionality plays a major role
in the manifestation of effects such as superfluidity or Bose-Einstein condensation: in 2D,
Bose-Einstein is not possible for instance, in opposition with the 3D case. Instead, a regime
of quasi-condensation appears and the system displays the celebrated Bresinski-Kosterlitz-
Thouless transition [4141].
In the case of Bose Einstein condensates, in the presence of strong in plane confinement, the
GPE can formally be reduced to two dimension with a renormalized interaction constant that
becomes adimensional g̃ =

√
8 as

az
[2525]. with as the 3d scattering length and az the scattering

length corresponding to the confinement along the z direction. As az =
√

ℏ
mωz

where ωz is
the trapping frequency, we easily see that g̃ increases with an increasing confinement.
In the typical regime of our experiments, the ζ dimension of our system is basically infinite.
One limitation that we could see to the spatial extent of the fluid along the ζ dimension could
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be the coherence length. As the coherence length describes the length difference after which
there could be no interferences between a beam and itself, it can be understood as the typical
length for which one can consider the light as belonging to the same fluid. This coherence
length is on the order of several tens of meters, which is seven orders of magnitude larger
than the lowest spatial scale of the system which is typically the healing length ξ. Thus, we
can safely assume that our system is infinite along the ζ dimension. Now, due to this infinite
dimension we can define an ansatz, very much like in the case of the 2D BEC, however in
this case, as the fluid is not confined, the ansatz function will be different: in this case we
factorize by a plane wave. If we include the plane wave factorizationn we can rewrite the
field envelope as follows:

Ẽ(r, τ) = Ẽ(r⊥, τ)ei(ωτ τ+qζ) (1.38)

where ωt and q are the conjugated variables in the comoving frame (frequency and wavenum-
ber). Let us go back to our original equation 1.121.12 for the electric field envelope E :

i

vg

∂E
∂τ

= − 1
2k0

∇2
⊥E +

v2
gD0

2
∂2E
∂ζ2 + V (r, τ)E + g(r, τ)|E|2E (1.39)

Now there is an important question: the one of the normalization of the "wavefunction" i.e
in this case the electric field envelope. Having established the plane wave ansatz, we want
to link each factor of the ansatz to the physical quantities of the system. One natural way
is to normalize such that |Ẽ |2 becomes an electric field density, closely related to the light
intensity:

Ẽ = E
N0

N 2
0 =

∫
d2r|E(r, τ)|2 = 2P0

cϵ0n0

(1.40)

where the integral carries over all of the system size and P0 is the optical power. Plugging
this into 1.121.12, we obtain the equation for the normalized field envelope density:

i

vg

∂Ẽ
∂τ

= − 1
2k0

∇2
⊥Ẽ(r⊥, τ) + V (r⊥, τ)Ẽ(r⊥, τ) + g(r⊥, τ)︸ ︷︷ ︸

gN 2
0

|Ẽ(r⊥, τ)|2Ẽ(r⊥, τ) (1.41)

We recover thus a 2D+1 propagation equation, with a normalized interaction strength
g ∝ n2P0. In this case, the optical power P0 is directly linked to the photon flux Φ:
P0 = ℏω0Φ. This is a major difference with the case of 2D BEC where the dimensionless
interaction parameter g̃ is obtained by normalizing by the interaction strength by the scatter-
ing length perpendicular to the confinement plane. Contrary to the case of 2D BEC, it is
meaningless to try and normalize the wavefunction in a "direct" manner since integrating a
plane wave on an infinite interval would only yield frustration. We overcome this by thinking
about the photon flux and normalize with the density (i.e light intensity) of the fluid [3535].

We conclude that the scenario in the paraxial fluids of light platform is quite different
that the case of 2D BEC. While the physics accessible is comparatively very similar, the
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mechanisms explaining a 2D behavior are different. In our case, the 2D+1 geometry comes
from translational invariance instead of the direct effect of confinement. This leads to the fact
that the relevant quantities in the case of the photon fluid must be the photon density in the
plane i.e the intensity and the photon flux i.e power. Thus, for the rest of the thesis, we will
always assume a 2D+1 geometry except in specific scenarios that will be explicitely stated.

1.3 Numerical analysis
Numerous physical effects that manifest in the experiments go beyond the perturbative
analytical treatment described before. This hinders a priori the tools at our disposal to
analyze experimental results. Hopefully, the recent progress in graphical processing units
(GPU) allow an easy and efficient implementation of the numerical schemes I will describe in
the following subsections.

1.3.1 Split-step spectral schemes
Looking back at the NLSE 1.101.10, we treat the following 2D+1 differential equation:

∂E
∂z

= − 1
2k0

∇2
⊥E︸ ︷︷ ︸

D

+ k0δnE + k0n2cϵ0
2 |E|2E − iαE︸ ︷︷ ︸

N

. (1.42)

If we want to solve this numerically, we discretize space and time and cast the field in the
memory as a 2D array. The field is thus represented as a matrix Aij = E(xi, yj) with xi, yj

are the positions in the discretized grid of spatial coordinates such that |xi+1 − xi| = δx and
|yi+1 − yi| = δy (assuming a constant sampling step). In the same fashion, we will discretize
the propagation coordinate z with a sampling step δz. The most natural way to solve the
equation is then to directly integrate it using a small enough discretization such that such an
approximation converges. Assuming a longitudinal discretization δz small enough, we can
write:

E(z + δz) = E(z)e
iδz

(
D[E(z)]+N [E(z)]

)
. (1.43)

We notice that we have two types of terms:

• A non-linear operator N whose application is trivial in real space i.e a simple array
element-wise multiplication

• A derivative operator D whose application is best carried out in the Fourier space as
∇2 simply becomes ×k2.

We are then tempted to simply apply the D term in the Fourier domain, and the N term
in the real space sequentially. However, we have to make sure that [D,N ] = 0 in order to
expand the exponential term as the product of each exponential. There is a priori no reason
for these operators to commute, but since we use a small δz, we can use the Baker-Hausdorff
formula [3030] to do approximate the exponential of the sum by the product of the exponentials
up to o(δz2). This expansion gives its name to the method presented in this subsection:
split-step because we apply sequentially the non-linear and derivative operators, and spectral
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because we switch to Fourier domain to apply the derivative operator.
Using this, we can define the following pseudo algorithm to solve the equation starting from
some known initial state:

• Fourier transform the field: E(r, z) → Ẽ(k, z)

• Apply kinetic term D: Ẽ(k, z) → Ẽ(k, z)e−iδz k2
2k0

Ẽ(k,z)

• Inverse Fourier transform the field: Ẽ(k, z) → E(r, z)

• Apply real space non-linear, potential and absorption terms:

E(r, z) → E(r, z)e
iδz

(
k0δnE(r,z)+ k0n2cϵ0

2 |E(r,z)|2E(r,z)−iαE(r,z)
)

• Loop over L
δz times to propagate until the end of the cell

It can be shown [44] that this method converges in O(δz) in time and O(δr2) spatially.
With this in mind, the discretization steps should be chosen adequately in order to ensure
a good tradeoff between performance and convergence. In order to accurately describe the
physics of our system, δr should be chosen such as to be much smaller thant the healing
length ξ. Modern FFT algorithms guarantee a O(N log(N)) complexity for all sizes. In the
same manner, element-wise matrix multiplication has a O(N2) complexity. Thus in general
it is generally more favorable to decrease the size of the spatial discretization δr rather than
increasing the number of steps i.e decreasing δz. Obviously this is highly dependant on
hardware. As by essence this method is vectorized and matricial, it is particularly well suited
to be implemented on GPU’s. The implementation details are discussed in the Appendix AA
of this thesis.

1.3.2 Modelling quantum fluctuations
The previous subsection described how to solve numerically the evolution of the mean field
of eq.1.361.36. If we wish to study effects arising from quantum fluctuations, we need to solve
the evolution equation of the fluctuation modes eq.1.251.25. For this it can be shown [9494] that
we can add a classical noise to the field E(r, z) → E(r, z) + δE(r, z) and by truncating the
operators product to finite orders, identify the quantum average to an statistical averaging
over realizations of this classical noise. Furthermore this can be implemented efficiently
within the previous split-step scheme using vectorization: we can simultaneously propagate
several realizations of the noise.

Conclusion
In this chapter we have provided an comprehensive introduction on the field of quantum
fluids of light. By starting from the propagation of light in non-linear media, we developped a
rigorous description of light as a novel quantum fluid and established the Bogoliubov theory
of the excitations in this fluid. We deepened the analogy by establishing a quantitative
comparison with cold atomic gases in order to extract meaningful experimental parameters,
also settling the question of dimensionality in propagating geometry. Finally we presented
numerical methods providing a simple framework to go beyond the analytical results given by



1.3 Numerical analysis 21

Bogoliubov theory. One of the main difference between quantum fluids of light in propagating
geometry and Bose Einstein condensates is their out-of-equilibrium nature: the input state is
not a thermal state and the interactions are quenched at the input and output of the cell.
This leads to strong non-classical signatures [9797] that will be explored in the next chapter.





Chapter 2

Interaction quenches and
out-of-equilibrium dynamics

2.1 Out-of-equilibrium nature of the system

Since our non-linear medium is finite, a fundamental characteristic of our system is that
the interactions are quenched at the input and output of the nonlinear medium. While
sounding like a limitation, we can actually take advantage of this to study the effect of
interaction quenches on the dynamics of fluids of light. This effect has been studied extensively
theoretically [5959; 6060; 7070] and it allows to explore the rich dynamics of out-of-equilibrium
systems. In this chapter, we will focus on the out-of-equilibrium characteristics of the system
rising from this discontinuity.

The physical situation of the problem is represented in fig.2.12.1. An initially non-interacting
state enters a non-linear medium, undergoing an interaction quench in the process. For a
spatially coherent plane wave at k⊥ = 0, the input state is concentrated in a k⊥ = 0 Dirac
delta peak. This means that for all other momenta, the input state is the vacuum. This
interaction quench generates pairs of phonons (Bogoliubov excitations) in the fluid of light that
will evolve and interfere within the medium [3636]. As the fluid exits the cell, the interactions
are quenched again back to 0 and pairs of phonons are converted back into pairs of photons.
This pair creation mechanism is fundamentally linked to the four wave mixing interaction
hamiltonian of the system described in eq.1.181.18. It is rigorously equivalent to the two-body
contact interaction hamiltonian of cold atomic gases. Thus, any pre-existing equilibrium
momentum distribution is perturbed by these quenches. An important point, is that there
is no obvious thermalization mechanisms in our system. At first order, the losses due to
atomic absorption only dampen the mean field, that the fluctuations follow adiabatically
(this question is detailled in subsection 2.2.72.2.7). Thus there is no physical processes that rid
the system of its most energetic excitations like for instance in the case of evaporative cooling.
The lack of thermalization processes will be discussed more in detail in chap.55, but this does
not prevent prethermalization effects as it has been evidenced in [33]. Having established this
preliminary argument about the system we will now present the analytical theory describing
these quenches.

23
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Fig. 2.1 The initial state of the fluid is represented on the right: the blue curve
represents the very narrow momentum distribution associated to a coherent state,
while the orange curve represents a broad thermal profile associated with a typical
temperature on the order of kBT ≈ µ. The cell is represented and the creation of pair
of phonons (resp. photons) is highlighted at the input and output of the cell with
the orange symbols. The strength of the interaction profile is represented in parallel
above the cell: within the cell the interaction strength decreases exponentially due
to absorption, and the interactions are abruptly switched on and off at the input
and output of the cell.
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2.2 Response to quenches
The starting point of the description of the quenches within the fluid of light is the second
quantized representation of the fluctuations in eq.1.221.22.

2.2.1 Evolution outside the medium
We first establish the evolution equation outside of the medium. Without interactions nor
potential field, the evolution of the photons is only guided by diffraction. This means that
the hamiltonian of the system reduces to:

Ĥ = N
∫

dr 1
2k0

∇⊥δÊ† · ∇⊥δÊ (2.1)

which rewrites in momentum space as:

Ĥ = N
∫

dk⊥
k2

⊥
2k0

â†
k⊥
âk⊥ (2.2)

The evolution equation for the photon modes âk⊥ thus writes for z ∈ [−∞, 0]
⋃

[L,+∞]:

∂âk⊥

∂z
= i

k2
⊥

2k0
âk⊥

∂â†
−k⊥

∂z
= −i k2

⊥
2k0

â†
−k⊥

.

(2.3)

We recognize the quadratic free-space dispersion relation κ(k⊥) = k2
⊥

2k0
. We can thus easily

integrate these equations such that the âk⊥ modes pick up a phase eiκ(k⊥)z for an evolution
over a distance z.

2.2.2 Evolution equation within the medium
Within the medium, we treat the evolution of the fluctuations to first order using the
Bogoliubov theory presented in eq.1.291.29 and 1.281.28 such that the new eigenmodes are the b̂k⊥

modes described by:

∂b̂k⊥

∂z
= iΩB(k⊥, z)b̂k⊥

∂b̂†
−k⊥

∂z
= −iΩ∗

B(k⊥, z)b̂†
−k⊥(

âk⊥(z)
â†

−k⊥
(z)

)
=
(
uk⊥(z) vk⊥(z)
vk⊥(z) uk⊥(z)

)(
b̂k⊥(z)
b̂†

−k⊥
(z)

) (2.4)

where the uk⊥ and vk⊥ are the Bogoliubov coefficients. We will assume for now that we know
how to solve the evolution equation of these coefficients given by eq.1.271.27. This means that
integration is again straightforward and we find that for an evolution over a length z, the
b̂k⊥ modes pick up the following phase eiθ with θ(k⊥, z) =

∫ z
0 ΩB(k⊥, z

′)dz′.
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2.2.3 Final state
Now, we will compare the two evolution equations in order to link an input photon mode
âk⊥(0) to the final mode âk⊥(z) for a certain z > L. In order to simplify the setting, we will
take the origin of the "time" axis z at the entrance of the cell. With this in mind, let us
assume assume a set of initial conditions:

Nk⊥(0) =
〈
â†

k⊥
(0)âk⊥(0)

〉
= N0δ(k⊥)

Ck⊥(0) = ⟨â−k⊥(0)âk⊥(0)⟩ = δ(k⊥)
(2.5)

These coefficients are the normal (N) and anomalous (C) correlators. The normal
correlator describes the population of excitations. The anomalous correlator describes the
correlations between modes. As our initial state is assumed to be a coherent plane wave
at k⊥ = 0, we have the vacuum as input state on all other wavevectors. This means an
uncorrelated shot noise [103103]. We will now rely on these two correlators to characterize the
state.
In order to describe the evolution of this initial state, we diagonalize the hamiltonian of its
evolution in each segment, meaning before the cell, in the cell and then finally after the cell
(which are symbolized with the blue and green colors in fig.2.32.3). As we have established that
within the cell, the Bogoliubov modes are the eigenmodes of the propagation, we merely have
to transform the state to a basis of Bogoliubov modes at both faces of the cell, corresponding
to the input and output quenches. Since the initial state is in a vacuum mode everywhere
except for k⊥ = 0, we will from now focus on the k⊥ ̸= 0 modes whose evolution is only
seeded by quantum fluctuations. We write the correlators in the bogolon basis:〈

â†
k⊥

(0)âk⊥(0)
〉

= uk⊥(0)vk⊥(0)
〈
b̂−k⊥(0)b̂k⊥(0)

〉
+ v2

k⊥
(0)
〈
b̂−k⊥(0)b̂†

−k⊥
(0)
〉

+

u2
k⊥

(0)
〈
b̂†

k⊥
(0)b̂k⊥(0)

〉
+ uk⊥vk⊥

〈
b̂†

k⊥
(0)b̂†

−k⊥
(0)
〉

⟨â−k⊥(0)âk⊥(0)⟩ = u2
k⊥

(0)
〈
b̂−k⊥(0)b̂k⊥(0)

〉
+ uk⊥(0)vk⊥(0)

〈
b̂−k⊥(0)b̂†

−k⊥
(0)
〉

+

uk⊥(0)vk⊥(0)
〈
b̂†

k⊥
(0)b̂k⊥(0)

〉
+ v2

k⊥
(0)
〈
b̂†

k⊥
(0)b̂†

−k⊥
(0)
〉
.

(2.6)

Using the initial populations and correlations, this readily simplifies to the following identities:〈
b̂−k⊥(0)b̂k⊥(0)

〉
=
〈
b̂†

k⊥
(0)b̂†

−k⊥
(0)
〉

= −uk⊥(0)vk⊥(0)〈
b̂−k⊥(0)b̂†

−k⊥
(0)
〉

= u2
k⊥

(0)〈
b̂†

k⊥
(0)b̂k⊥(0)

〉
= v2

k⊥
(0).

(2.7)

Let us pause and gain some physical insight of these expressions. Even starting with a
vacuum state, the bogolon population right after the first quench is non-zero. In the same
manner, the correlations between phonons are now also non-zero. As the photon gas enters
the cell, it suddenly acquires a large amount of energy due to the interactions. The only
way to dissipate this energy is to emit pairs of phonons in the photon fluid. Note that
this v2

k⊥
term is of particular significance in the context of quantum depletion of cold Bose

gases [2424]. There is a deep connection between the two phenomena as they both originate
from the properties of the Bogoliubov dispersion, as well as the vacuum fluctuations. The
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fact that we are able to recover a non-zero average number of bogolons directly originates
from the commutation relations of the âk⊥ and b̂k⊥ modes. The physical interpretation of
these commutation relations is that while the average photon number in the k⊥ ̸= 0 is zero,
the variance is strictly positive. This means that it is really the vaccum fluctuations that
seed the emission of phonons, very much like the quantum depletion process where vacuum
fluctuations seed the emission of phonon pairs of non zero momenta, depleting the k = 0
condensate mode.

We can then continue on with the evolution of the correlators, evolving the Bogolons
within the medium. As mentioned before, since the bogolons are the eigenmodes of the fluid
within the cell, they only pick up a phase θ as described in eq.2.42.4:〈

b̂−k⊥(L)b̂k⊥(L)
〉

=
〈
b̂†

k⊥
(L)b̂†

−k⊥
(L)

〉
= −uk⊥(L)vk⊥(L)ei2θ〈

b̂−k⊥(L)b̂†
−k⊥

(L)
〉

= u2
k⊥

(L)e−αL〈
b̂†

k⊥
(L)b̂k⊥(L)

〉
= v2

k⊥
(L)e−αL.

(2.8)

We can then finally use the inverse Bogoliubov transform in order to retrieve the correlators
in the photon basis:〈

â†
k⊥

(L)âk⊥(L)
〉

= −uk⊥(0)vk⊥(0)uk⊥(L)vk⊥(L)
[
e−i2θ + ei2θ

]
+

v2
k⊥

(L)u2
k⊥

(0) + v2
k⊥

(0)u2
k⊥

(L)

⟨â−k⊥(L)âk⊥(L)⟩ = −uk⊥(0)vk⊥(0)uk⊥(L)vk⊥(L)
[
u2

k⊥
(L)e−i2θ + v2

k⊥
(L)ei2θ

]
+

uk⊥(L)vk⊥(L)
[
u2

k⊥
(0) + v2

k⊥
(0)
]
.

(2.9)

If we include an extra propagation outside the cell up to a certain position z, we need to add
a simple dephasing term:〈

â†
k⊥

(z)âk⊥(z)
〉

=
〈
â†

k⊥
(L)âk⊥(L)

〉
⟨â−k⊥(z)âk⊥(z)⟩ = e−i2κ(k⊥)[z−L] ⟨â−k⊥(L)âk⊥(L)⟩

(2.10)

Let us comment this result. We find that there is a complex population and correlation
structure appearing from intially vacuum modes. This structure is oscillatory in nature and
stems from the interference between the two quenches or the interference between the two
types of eigenmodes of the system. These interferences stem from the beating between the
free-space quadratic dispersion relation κ(k⊥) in eq.2.92.9 and the Bogoliubov dispersion ΩB(k⊥)
in the θ term of eq.2.82.8. Within all this analysis however, we have overlooked two important
points: losses and external sources of noise. As mentioned previously, we are describing effects
that are seeded by vacuum fluctuations. By nature, these effects are extremely sensitive to
any external noise, and one can rightfully question the robustness of such a complex structure
to experimental conditions. Furthermore, up until now, we have conveniently hidden away
losses as a mean-field term that dampens populations and coherences with the absorption
rate α. This is why I will now detail methods to take into account these noises.

2.2.4 Modeling of noise and losses
Depending on the strength of the losses relative to the other processes during the evolution
of the fluid, one may have to treat the losses as an actual stochastic process probabilistically
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destroying photons. If the rate of losses is comparable to the energy of the Bogoliubov
excitations, one cannot describe the losses as only affecting the mean-field, and the Bogoliubov
dispersion will not follow the evolution of the mean-field adiabatically. This argument of
adiabaticity will be detailed in the subsection 2.2.72.2.7. This is due to the fluctuation-dissipation
relations through the Green-Kubo formulae [8585]. More precisely, due to the duality of the
Bogoliubov transform, destroying pairs of photons equates to creating a pairs of bogolons,
and this process might give rise to significant additional contributions in the correlators of
eq.2.82.8. This is especially relevant when going back to the physical process of absorption
within the atomic vapor, that is by its very nature, stochastic since the field is quantized.
This spontaneous emission process should also be included as an additional contribution to
the populations within the vapor of eq.2.82.8.

Let us start with a modified evolution equation taking spontaneous emission into account.
For this we use a Heisenberg-Langevin equation [6060] and model our noise by some white
quantum noise operator γ̂k⊥(z) describing spontaneous photon emission such that:

[
γ̂k⊥(z),γ̂k′

⊥
(z′)

]
= N ℏω0

ϵ0
αδ(k⊥ − k′

⊥)δ(z − z′). (2.11)

Furthermore, we assume that this noise is completely uncorrelated with the photon or bogolon
modes i.e the âk⊥/b̂k⊥ modes commute with the γ̂k⊥ modes. Assuming this, we will neglect
stimulated emission. We then add this noise in the bogolon evolution equation as follows:

∂b̂k⊥

∂z
= iΩB(k⊥, z)b̂k⊥(z)︸ ︷︷ ︸

Bogoliubov evolution

+uk⊥(z)γ̂k⊥(z) − vk⊥(z)γ̂†
−k⊥

(z)︸ ︷︷ ︸
Spontaneous emission

. (2.12)

We see that this equation exactly describes the process where a bogolon is destroyed (the
b̂k⊥ operator) creating two photons (the γ̂k⊥ and γ̂†

−k⊥
operators). Now we try to integrate

this evolution equation:

b̂k⊥(z) = e−iθ b̂k⊥(0) + Γ̂k⊥(L)

Γ̂k⊥(L) =
∫ L

0
dz′e−i

∫ L

z′ dz′′ΩB(k⊥,z′′)e−α(L−z′)/2
[
uk⊥ γ̂k⊥(z′) − vk⊥ γ̂

†
k⊥

(z′)
] (2.13)

Injecting this into the expressions for the commutators of the b̂k⊥ modes of eq.2.82.8:

〈
b̂†

k⊥
(L)b̂k⊥(L)

〉
=
〈
b̂†

k⊥
(0)b̂k⊥(0)

〉
+ eiθ

〈
b̂k⊥(0)Γ̂k⊥(L)

〉
+

e−iθ
〈
Γ̂ †

k⊥
(L)b̂k⊥(0)

〉
+
〈
Γ̂ †

k⊥
(L)Γ̂k⊥(L)

〉
〈
b̂−k⊥(L)b̂k⊥(L)

〉
= e−2iθ

〈
b̂−k⊥(0)b̂k⊥(0)

〉
+ e−iθ

〈
b̂−k⊥(0)Γ̂k⊥(L)

〉
+

e−iθ
〈
Γ̂−k⊥(L)b̂k⊥(0)

〉
+
〈
Γ̂−k⊥(L)Γ̂k⊥(L)

〉
(2.14)

Due to the commutation rules, all the cross terms vanish. We are thus left with the
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computation of the correlators of the Γ̂k⊥ modes:〈
b̂†

k⊥
(L)b̂k⊥(L)

〉
=
〈
b̂†

k⊥
(0)b̂k⊥(0)

〉
+
〈
Γ̂ †

k⊥
(L)Γ̂k⊥(L)

〉
〈
b̂−k⊥(L)b̂k⊥(L)

〉
= e−2iθ

〈
b̂−k⊥(0)b̂k⊥(0)

〉
+
〈
Γ̂−k⊥(L)Γ̂k⊥(L)

〉
〈
Γ̂ †

k⊥
(L)Γ̂k⊥(L)

〉
=
∫ L

0
dz′e−α(L−z′)v2

k⊥
(z′)N ℏω0

ϵ0
α〈

Γ̂−k⊥(L)Γ̂k⊥(L)
〉

=
∫ L

0
dz′e−2i

∫ L

z′ dz′′ΩB(k⊥,z′′)e−α(L−z′) − uk⊥(z′)vk⊥(z′)N ℏω0
ϵ0

α.

(2.15)

Physically, these extra contributions express that at each slice dz′ of the medium, losses
will create v2

k⊥
(z′)N ℏω0

ϵ0
α bogolons on average. Due to this correlated emission, the bogolons

correlations will be modified by a factor proportional to −uk⊥(z)vk⊥(z). Obviously, analytical
calculation of these corrections is impossible and we have to resort to numerical integration
to solve these integrals. Solving the evolution equation for the Bogoliubov coefficients as well
as the correlators is detailed in subsection 2.2.82.2.8.

Looking at other sources of noise, we assume that experimental noise can be modeled
with uncorrelated white noises in space. In momentum space, this will lead to a gaussian
noise since we convolve with the point spread function of the system which is assumed to
be a gaussian whose width is the optical resolution. Going back at the expressions for the
correlators between each quench, we have to modify the calculation by adding additional
populations before each quench. This models for instance the noise from the laser, or the
spontaneous emission process inside the cell as described earlier. While these noises are not
white noises in reality, there actual structure can be straightforwardly included by using
the adequate commutators in eq.2.112.11. It is also the way to take into account an arbitrary
initial state before the cell having some spatial noise distribution B(k⊥). Assuming an extra
population B(k⊥) before the first quench, the populations and correlations after the first
quench read:〈

b̂−k⊥(0)b̂k⊥(0)
〉

=
〈
b̂†

k⊥
(0)b̂†

−k⊥
(0)
〉

= −uk⊥(0)vk⊥(0)(1 + 2B(k⊥))〈
b̂−k⊥(0)b̂†

−k⊥
(0)
〉

= u2
k⊥

(0)(1 +B(k⊥)) + v2
k⊥

(0)B(k⊥)〈
b̂†

k⊥
(0)b̂k⊥(0)

〉
= v2

k⊥
(0)(1 +B(k⊥)) + u2

k⊥
(0)B(k⊥).

(2.16)

In the same manner, at the end of the cell, we can add a momentum-dependent population
D(k⊥) and rewrite the population and coherences at z = L in the bogolon basis:〈

b̂−k⊥(L)b̂k⊥(L)
〉

= ei2θ
〈
b̂−k⊥(0)b̂k⊥(0)

〉
〈
b̂†

k⊥
(L)b̂k⊥(L)

〉
= e−αL

〈
b̂†

k⊥
(0)b̂k⊥(0)

〉
+D(k⊥)

(2.17)

In the next section we will see what experimental observables can be used in order to
probe this complex correlation structure.

2.2.5 Structure factor
An typical observable in order to characterize the density response function [8383] of the
system is the static structure factor. It describes the density fluctuations [3232] distribution
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in momentum space and gives deep insight into the correlation properties of the system. It
has been used in cold atomic system to study the effect of interaction quenches in multiple
experiments [4444; 4545; 5858; 9191]. In cold atomic systems, looking directly at first order field
correlation functions is challenging even though some form of interferometry is possible
[4141; 8484], giving access to integrated g(1) functions.

In order to describe the density fluctuations of the system, we recall the Madelung
transform of eq.1.141.14 and express the âk⊥ fluctuation modes of the field in terms of density
fluctuations. Since Ê =

√
ρ̂eiϕ̂, within these definitions, we define the density fluctuation

operator as:

δρ̂k⊥(z) =
∫

dqâ†
k⊥+qâk⊥ . (2.18)

Note that we have expanded here only in density fluctuations since phase fluctuations can be
large. This is detailed in section 2.52.5. For a density fluctuation operator δρ̂, the definition of
the static structure factor is the following:

S(k⊥) = 1
N

〈
δρ̂2

k⊥
− | ⟨δρ̂k⊥⟩ |2

〉
, (2.19)

where N is the total particle number. In our case the total particle number will be the photon
flux depending on laser power, beam cross-section and integration time. The static structure
factor is thus simply the variance of density fluctuations in momentum space. Furthermore
given that the fluctuations are zero-mean, we can recast this into the expression for the static
structure factor [106106]:

S(k⊥) = 1
N0

⟨δρ̂k⊥δρ̂−k⊥⟩

= 1
N0

∫
dqdq′

〈
â†

q−k⊥
âqâ

†
q′+k⊥

âq′

〉
.

(2.20)

This formula is strongly reminiscent of the four-wave mixing hamiltonian of eq.1.181.18. This is
of course not fortuitous and it is of particular relevance for the physical interpretation of this
quantity: the structure factor is a measure of how many momentum preserving scattering
events occur between modes at momenta q and q′ going towards momenta q − k⊥ and
q′ + k⊥.
Looking at this expression, it seems that this integral is not analytical, however we can
make a few approximations when by taking into account the initial state of the fluid. If we
assume that the k = 0 mode is a coherent classical state populated with â†

0â0 = N0 photons,
and that all of the other modes are in vacuum modes, then we can consider that to lowest
order in perturbation (i.e within Bogoliubov theory), the only relevant scattering processes
are between the zero momentum "condensate" and pairs of opposite momenta (in order to
preserve total momentum). This scattering phenomena is exactly the degenerate four-wave
mixing mechanism from which the photon-photon interactions originate, thus we can interpret
the static structure factor as a fingerprint of the interactions within the fluid. This means
that in the four momenta integral of eq.2.202.20, only one momentum remains. We set q and q′

to 0, thus the integral collapses and we retrieve the following simplified expression:

S(k⊥) =
〈
â†

k⊥
âk⊥

〉
+
〈
âk⊥ â

†
k⊥

〉
+ ⟨â−k⊥ âk⊥⟩ +

〈
â†

k⊥
â†

−k⊥

〉
, (2.21)
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which can reduce further using the commutation rule:

S(k⊥) = 1 + 2N(k⊥) + 2Re
(
C(k⊥)

)
, (2.22)

with the populations N(k⊥) and coherences C(k⊥) as defined in eqs.2.52.5 and 2.172.17. Let us
first stop and think about what is happening if we only consider the first quench:

• Initial state z = 0−: since all populations and correlations are null aside from the
k⊥ = 0 mode, the static structure factor describes a uniform white noise and is equal
to 1.

• Right after the quench z = 0+: the populations in the b̂k⊥ modes becomes non-zero due
to the emission of pairs of bogolons. In this case the structure factor takes the shape
1 + 2N0 + 2Re(C0). N0 and C0 are the corresponding photon populations / correlations.

• At length z < L: the coherences have picked up a phase θ as defined in eq.2.42.4.
Ignoring absorption, it becomes simply θ = ΩB(k⊥)z, thus the structure factor is
S(k⊥) = 1 + 2N0 + 2C0cos(2ΩB(k⊥)z).

This means that the structure factor will develop oscillations around unity driven by the
Bogoliubov frequency. Since the Bogoliubov frequency is lower at low k⊥, the low frequency
peaks will take longer to appear in the structure factor in Fourier space: the oscillations
are proportional to cos(ΩB(k⊥)z) so as z advances, signal at low k⊥ will evolve slowly since
ΩB(k⊥) is small. On the contrary, at the high k⊥ end of the spectrum, the frequency ΩB(k⊥)
is high, thus cos(ΩB(k⊥)z) will evolve quickly. Furthermore, if we follow a peak of S(k⊥) = 1,
it will move at the group velocity, that is equal to cs for all modes at low k⊥ .

In order to get some physical insight in the more general case of two quenches of this
formula, one can look at a plot of this quantity for typical quench scenarii:

• Constant interactions: the first scenario to consider is the ideal case of two quenches
separated by a constant interaction region. In this scenario, the first quench creates
a population of bogolons and correlates them due to the interaction structure. These
bogolons evolve harmonically at the Bogoliubov frequency within the medium. A second
set of excitations is generated by the second quench, and these excitations will also
evolve harmonically but this time in air (vacuum). The beatnote between these two
frequencies leads to the blue pattern in fig.2.22.2.

• Decreasing interactions: Due to absorption, in practice the interactions will diminish
as the fluid propagates along the cell. Provided the losses are slow enough, it will be
shown in subsection 2.2.72.2.7 that the Bogoliubov frequency will slowly ramp down until
some negligible value thus suppressing the output quench. As this reduction of the
Bogoliubov frequency is homogeneous in k⊥ in virtue of eq.1.271.27, this will not modify
the quench correlation pattern. Essentially the initial distribution is slowly "frozen" by
absorption.

• Increasing interactions: While this situation cannot be realized with our experimental
setup, it is still relevant as it is the canonical situation considered when quenches.
Assuming some non-interacting system, it is often desirable to slowly ramp up the
interactions to avoid exciting the system in an uncontrolled manner. In this scenario,
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Fig. 2.2 S(k⊥) for different scenarii. In the case of constant interactions, there is
a strong beating between the signals of both quenches. In the case of exponentially
dampened interactions (which is the case with absorption), the signature of the
second quench is strongly suppressed. Finally in the case of increasing interactions
(which cannot be realized experimentally for the moment), only the second quench
is visible. In all cases, the structure factor oscillates around 1 which is the value
vacuum shot noise.

the Bogoliubov frequency slowly ramps up keeping the system in its vacuum state until
the quench at the output face of the cell. In the end we are left with a single set of
fringes as there has been only a single quench.

It is thus clear that the evolution of the interaction strengh due to absorption is a critical
element in order to accurately describe our fluid of light. In the next subsections, we will
detail how we can take this into account using either analytical approximations or numerical
methods.

2.2.6 Local density approximation
As explained in the last subsection, the signal in the static structure factor at the output
of the cell results from the interference between created bogolons. Because we measure the
fluid at the output of the cell with a camera, the system we consider is always the integrated
structure factor during the exposure time. Furthermore, we’ll see in the experimental results
section 2.32.3 that we’ll use a pulsed laser during the experiment. As these bogolons evolve
adiabatically within the cell, it is tempting to describe the final signal as being the sum of each
infinitesimal slice dζ of the pulse. Formally this means doing a local density approximation
and equate the following integral to a sum:∫ L′

0
dζS(k⊥, ζ, τ) ≈ 1

L′

∑
ζ

S(k⊥, ζ, τ)δζ, (2.23)

where L′ is the length of the pulse in the ζ direction. Formally, since the equal-time commu-
tators of the field modes defined in eq.1.171.17 are delta correlated, there is no "communication"
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Fig. 2.3 The physical situation of the two quenches. As the fluid traverses the cell,
it undergoes a fist quench that creates a set of Bogoliubov modes b̂k⊥ highlighted
with the pink cone. These modes will evolve and interfere generating an oscillary
noise spectrum represented on the side of the cell. Highlighted in red is the fact
that the equal-k⊥ peaks will shrink inwards with time driven by the Bogoliubov
frequency. The final image represents the experimental spectrum obtained after the
second quench and some additional free space propagation, similar to time of flight
imaging [9797]
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between infinitesimal slices. What happens at a position ζ only depends on the state within
this plane.
Now, we would like to solve accurately the evolution of each slice δζ along the cell. For this
we need to question the adiabaticity hypothesis i.e the fact that the Bogoliubov dispersion
follows the evolution of the mean field within eq.1.271.27

2.2.7 Adiabaticity criterion
In order to be quantitative on the adiabaticity approximation, one would like to derive
some numerical criterion in order to quantify how much a state follows the instantaneous
eigenvalues of the operator or if we need to do something more involved. To do this we follow
an "Ehrenfest theorem" approach [5959; 8383]. Assuming some time-like evolution of a state |ψ⟩
driven by some hamiltonian Ĥ:

i
∂

∂z
|ψ⟩ = Ĥ(z) |ψ(z)⟩ , (2.24)

where Ĥ is assumed to be hermitian. We can then naturally expand our state |ψ⟩ over some
basis {|ϕn⟩}n∈N of eigenvectors having a matching set of eigenvalues {λn}n∈N:

|ψ(z)⟩ =
∑
n∈N

αn(z)eiθn(z) |ϕn(z)⟩

θn(z) =
∫ z

0
dz′λn(z′),

(2.25)

where the θn(z) is the integrated phase. We can then plug this into the evolution equation
2.242.24 in order to find the expression of the decomposition coefficients αn(z):

∂αn(z)
∂z

= −
〈
ϕn(z)

∣∣∣∣∂ϕn(z)
∂z

〉
αn(z) + Rn(z)

Rn(z) = −
∑

m̸=n

⟨ϕn(z)| ∂zĤ(z) |ϕm(z)⟩
λm(z) − λn(z) ei[θm(z)−θn(z)]αm(z).

(2.26)

Rn(z) is the remainder of the projection of ∂zĤ the Hamiltonian derivative, between eigen-
vectors ϕm and ϕn. Let us precise that this remainder would be the forgotten terms during an
uncareful derivation of the evolution equation. Thus, one wonders in which case this remainder
could be neglected ? If this remainder is negligible, the evolution of the decomposition coeffi-
cients αn is given by

〈
ϕn(z)

∣∣∣∂ϕn(z)
∂z

〉
, which is diagonal in the {|ϕn⟩}n∈N basis. It is natural

since this remainder quantifies the off-diagonal terms of the derivative of the Hamiltonian. In
simpler terms, a non-adiabatic evolution will couple the instantaneous eigenvectors together.
If these off-diagonal terms are zero, the Hamiltonian remains diagonal and the evolution is
trivial in the eigenbasis {ϕn}n∈N. Thus we have to compare these off-diagonal terms to the
smallest eigenvalue spacing yielding the following criterion for adiabaticity:

max
z∈[0,L]

∣∣∣⟨ϕn(z)| ∂zĤ(z) |ϕm(z)⟩
λm(z) − λn(z)

∣∣∣ ≪ min
z∈[0,L]

|λm(z) − λn(z)|

∀ (m,n), m ̸= n.

(2.27)
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As we know the evolution equation for the Bogoliubov coefficients, we can compute
numerically this criterion and get quantitative information about the type of evolution by
mode.

Finally, we will see how we can numerically bring everything together to solve the evolution
equation for the Bogoliubov coefficients in order to get the most faithful solution in the
general case where, for some modes, the evolution is not adiabatic anymore.

2.2.8 Integration of the evolution equation

In order to link experimental results and analytical calculation, a convenient numerical
integration procedure needs to be developped. One goal is to isolate all contributions,
enabling easy identification of the most relevant approximations.

In practice, a convenient formalism in order to do the calculations in the most general
way is to introduce a particular choice of gauge. Earlier, I described the evolution of the
structure factor within the adiabatic approximation assuming that the b̂k⊥ modes evolve
at the Bogoliubov frequency ΩB(k⊥). In order to consider also the non-adiabatic case, it
is more convenient to deal directly with the evolution of the uk⊥ and vk⊥ coefficients, and
choose a gauge where they vary, much like the change between Heisenberg and Schrödinger
picture. In the end, it only means that the Bogoliubov coefficients will pick up the phases
instead of the operators. To this end, we introduce the following new Bogoliubov coefficients
ũk⊥ and ṽk⊥ defined as follows:

i
∂

∂z

(
ũk⊥(z)
ṽk⊥(z)

)
=

 iα
2 + k2

⊥
2k0

+ k0∆n(z) k0∆n(z)
−k0∆n(z) iα

2 − k2
⊥

2k0
− k0∆n(z)


︸ ︷︷ ︸

Ak⊥(z) − iα
2 I

(
ũk⊥(z)
ṽk⊥(z)

)
(2.28)

with ∆n(z) = n2cϵ0|E0|2. We note that it is the same equation as eq.1.271.27, except that the
phases are now carried on the Bogoliubov coefficients themselves. The formal solution to the
differential system can then be written :

(
ũk⊥(z)
ṽk⊥(z)

)
= Z

[
e−i

∫ z

0 dz′Ak⊥ (z′)−iα/2
](ũk⊥(0)

ṽk⊥(0)

)
(2.29)

where Z represents the chronological ordering. This ordering means that we should recall
that this exponential should be computed in an order preserving causality. This final integral
can then be evaluated by choosing a sufficiently fine discretization i.e δz ≪ zNL. Assuming a
discretization scale δz, the integral becomes simply a product of exponentials:

(
ũk⊥(z)
ṽk⊥(z)

)
=
∏
j

e−δz(iAk⊥ (jδz)−α/2)
(
ũk⊥(0)
ṽk⊥(0)

)
(2.30)

Taking this into account in the expression of the field correlators, this yields the following
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final expression, in its most general form:〈
â†

k⊥
(L)âk⊥(L)

〉
= −uk⊥(0)vk⊥(0)(1 + 2B(k⊥))ũk⊥(L)ṽk⊥(L)+

|ṽk⊥(L)|2
[
1 + v2

k⊥
(0)(1 +B(k⊥)) + u2

k⊥
(0)B(k⊥) +D(k⊥)

]
+

|ũk⊥(L)|2
[
v2

k⊥
(0)(1 +B(k⊥)) + u2

k⊥
(0)B(k⊥) +D(k⊥)

]
− uk⊥(0)vk⊥(0)(1 + 2B(k⊥))ũ∗

k⊥
(L)ṽ∗

k⊥
(L)

(2.31)

⟨â−k⊥(L)âk⊥(L)⟩ = −uk⊥(0)vk⊥(0)(1 + 2B(k⊥))ũ∗2
k⊥

(L)+

ũ∗
k⊥

(L)ṽk⊥(L)
[
1 + v2(k⊥,0)(1 +B(k⊥)) + u2(k⊥,0)B(k⊥) +D(k⊥)

]
+

ũk⊥(L)ṽ∗
k⊥

(L)
[
v2(k⊥,0)(1 +B(k⊥)) + u2(k⊥,0)B(k⊥) +D(k⊥)

]
+

− uk⊥(0)vk⊥(0)(1 + 2B(k⊥))ṽ2
k⊥

(L).

(2.32)

The next section will show how we can measure these correlators experimentally through
the measurement of the static structure factor.

2.3 Experimental measurement of the static structure factor
In order to probe the static structure factor experimentally, we aim at measuring the effect
of vacuum fluctuations on the noise spectrum of the fluid of light. To this extent, we want
the setup to stay as simple as possible in order to limit losses. The general scheme will be to:

• send light through the cell

• integrate the intensity on a camera over time

• measure the shot to shot fluctuations and compute the variance.

In order to limit losses, there should be as little optical elements between the output of the
cell and the camera sensor, whose quantum efficiency is already limited. To this extent, we
have to send short pulses of light in order to avoid camera saturation.

We start our experiment with a 1 cm long glass cell of 85Rb heated to approximately
150°C. The experimental setup is described in fig.2.42.4. The laser source is a Toptica DL PROToptica DL PRO
extended cavity diode laser which allows easy laser frequency tuning and stabilization. In
order to have an absolute frequency reference, we monitor the laser frequency using a Doppler
free spectroscopy scheme: the saturated absorption spectroscopy or SAS highlighted in blue.
In order to generate pulses of light, the beam passes in an acousto-optic modulator (AOM) in
double pass configuration. This AOM is gated using an arbitrary function generator (AFG)
modulating the radio frequency drive of the crystal. Pulses between 10 ms and 30 ns are
generated using this method. The pulse generation part of the setup is highlighted in orange
in fig.2.52.5. There remains the "experiment" part of the setup highlighted in green with both
the cell and the imaging setup. Temperature of the cell is monitored by scanning the laser
frequency over the D2 line of Rubidium, and acquiring transmission data. A reference arm is
built in Mach-Zehnder configuration (as described in chap.33) to measure the non-linear index

https://www.toptica.com/products/tunable-diode-lasers/ecdl-dfb-lasers/dl-pro
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Fig. 2.4 The different parts of the experimental setup are highlighted with the
three colors. In blue, the saturated absorption spectroscopy (SAS) setup allows to
monitor the laser frequency using a reference cell of naturally abundent Rubidium.
In orange, the laser is pulsed using an acousto-optic modulator (AOM) in double
pass configuration. In green, there is the heart of the setup with the pure 85Rb cell
and the imaging setup. The translation stage on the first lens of the imaging system
allows to shift the imaging plane

of refraction n2. To avoid losses, the beam-splitter at the output of the cell is placed on a
flipped mount such as to remove it when measuring S(k⊥). Data acquisition is triggered
by pulse generation, and a typical measurement shot will acquire 500 images. Planes at a
position z after the cell between 0 and 50 mm are imaged on the camera using a 4f imaging
system with a translation stage to shift the imaging plane.

Data processing is then as follows:

• Compute the average density ⟨ρ(r⊥)⟩N

• Compute the fluctuations δρ(r⊥) = ρ(r⊥) − ⟨ρ(r⊥)⟩N

• Compute the fluctuations spectrum δρ(k⊥) = F (ρ(r⊥) − ⟨ρ(r⊥)⟩N )

• Compute the variance S(k⊥) = 1
N VarN [δρ(k⊥)]

where the N subscript represents the averaging over the experiment realizations.
Due to the cylindrical symmetry of the system, we can improve the signal further by

calculating an azimuthal average of the signal. The results are presented in fig.2.52.5. On
the top row, we present the processed signal on a set of 500 images taken at a detuning
∆ = −1.4 GHz for pulses of length τ = 100 ns. The temperature of Rubidium vapor is 147°C.
The measured non-linear index of refraction change ∆n is 8.6 × 10−6. The optical power is
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100 mW for a beam of waist w0 of 4 mm. We observe sets of concentric rings whose contrast
grows with time, and whose radii shrink with time. As explained earlier, since low k⊥ modes
(long wavelengths) have lower energy, large scale features take longer to develop. This is why
we observe the spectra after some trivial free space evolution that allows for these low energy
modes to develop. We see also two bright symetrical spots that are due to set of parasitic
fringes on the imaging system. Looking at the azimuthal averages on the bottom line, we see
the beating of the two quenches whose cusps allow to reconstruct the Bogoliubov frequency
[9797].

Another way to look at this is to convert the static structure factor into a real space
density-density correlation function g(2)(r, r′, z):

g(2)(r, r′, z) = 1 +
∫

dkeik·r [S(k⊥, z) − 1]

g(2)(r, r′, z) = ⟨δρ̂(r)δρ̂(r′)⟩
ρ2

0

(2.33)

Using this identity, we can convert the curves from the second panel into the third panel
of fig.2.52.5. In this picture, the oscillatory pattern is seen to expand with time, starting
with high frequency oscillations near ∆r⊥ = 0, the pattern, that slowly goes further and
further inducing larger scale correlations. The frequency of the oscillations decreases, as lower
frequencies take longer to appear. This is the exact reciprocal argument as the one made
in the wavenumber picture. In order to model the experimental curves, we use eqs.2.212.21 and
2.172.17, and solve numerically the integral.
Starting with a pure vacuum model, we see that while the period of the oscillations matches
convincingly the experimental curves, there remains a significant offset. The agreement
becomes excellent however when fitting a uniform population of 1.34 particle per mode within
the cell, in order to model at incoherent noise sources inside the cell such as spontaneous
emission. This noise should originate from within the cell since the structure factor is
measured to be 1 in the non-interacting case, thus confirming that the input state is indeed
vacuum for all k⊥ ≠ 0. When comparing this to the expression found in eq.2.152.15, this uniform
population is six times higher than the one predicted by the analytical model when plugging
in the experimental parameters from [9797]. Furthermore, the noise spectrum from eq.2.152.15 is
peaked at around k⊥ = 0 from its dependence in the Bogoliubov coefficients. Comparing the
1.34 particles per mode to the typical interaction energy of the system, we can attribute an
effective temperature (in terms of modes occupation) of around 2mc2

s ∼ 30mK [9797], which is
comparable to temperatures found in cold atomic gases experiments.

We have seen that with a clean setup, it is possible to measure the fluctuations and
correlations seeded by vacuum shot noise. However, in this experiment we only look at
correlations on a "macroscopic" level. Indeed, we are not able to compute the noise in a
single k⊥ mode, and within this we are only able to measure intensity-intensity correlations.
An interesting extension to get a complete picture of our experiments would be to use a
homodyne detection in order to reconstruct precisely each âk⊥ mode, allowing to measure
independently each correlator.
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Fig. 2.5 Experimental signal of the static structure factor for different evolution
lengths after the cell. Here the z axis has its origin at the output of the cell. The
laser detuning is -1.4 GHz, cell temperature is 147°C and the pulse length is 100
ns. On the bottom panel, we have azimuthal averages of the top pictures. The blue
curves are the experimental signal, in blue are the analytical model described in the
previous section without any added noise (pure vacuum state), and in orange with
with a fitted noise value D(k⊥) of 1.34 particles per mode inside the cell. The green
curves are the experimental signal. On the last row, intensity correlation function
extracted from the structure factor using eq.2.332.33
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Spectrum analyzer

Piezo mirror

Fig. 2.6 Canonical setup of a homodyne detection. A strong local oscillator mode
âL interferes with a weak signal mode âS on a beam splitter. Two detectors are
placed at each port of the beam splitter to record the outcoming modes d̂1 and d̂2.
The detectors are coupled with a difference signal circuit. The difference is then
finally sent to a spectrum analyzer that allows to measure the variance of the input
signal.

2.4 Homodyne detection
In order to measure the weak vacuum fluctuations, one would want a way to non perturbatively
amplify the signal such as to bring the noise spectrum to a measurable level. This problem
is a classical problem of signal processing and can be achieved using the general technique
of heterodyne or homodyne detection. Let us compute the result of the aforementioned
interfererence process on the field modes.

2.4.1 Balanced homodyne detection
The classical homodyne detection scheme considers the following two modes: the signal âS

and local oscillator (LO) âL are sent on a perfect beam-splitter. Two detector, whose input
modes are written d̂1 and d̂2, are placed at the outputs of the beam-splitter. Using classical
input-output relations [1313]: (

d̂1(r, t)
d̂2(r, t)

)
=
(
t r
r t

)(
âS(r, t)
âL(r, t)

)
(2.34)

where t,r are the transmission and reflection coefficients from the beam-splitter. In the case
of the balanced (meaning a 50/50 splitting ratio) homodyne detection (r = i/

√
2 t = 1/

√
2),

one can readily obtain the modes on each of the two detectors:

d̂1(r, t) = 1√
2

[
âS(r, t) + iâL(r, t)

]
d̂2(r, t) = 1√

2

[
iâS(r, t) + âL(r, t)

]
.

(2.35)
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Note that we have assumed here a "perfect" beam splitter whose reflection and transmission
coefficients r and t do not depend on position or time. In real life, this is obviously false
since the splitting ratio of an ordinary glass beam-splitter cube strongly depends on the
polarization and on the incident angle. Since the detector is actually measuring the intensity
of the field, we are interested in the the averages

〈
d̂†

1d̂1
〉

and
〈
d̂†

2d̂2
〉
:

d̂†
1d̂1 = 1

2
[
â†

S(r, t)âS(r, t) + â†
L(r, t)âL(r, t) + i

(
â†

S(r, t)âL(r, t) − â†
L(r, t)âS(r, t)

)]
d̂†

2d̂2 = 1
2
[
â†

S(r, t)âS(r, t) + â†
L(r, t)âL(r, t) + i

(
â†

L(r, t)âS(r, t) − â†
S(r, t)âL(r, t)

)] (2.36)

we then model the detection process on the photodiode as follows:

d1 = η

∫ T

0
dt
∫

S
d2r

∣∣∣〈d̂†
1(r, t)d̂1(r, t)

〉∣∣∣ , (2.37)

where η is some detection efficiency parameter, S is the detector surface and T is the
integration time. Looking at eq.2.362.36, we recognize the familiar form of an interference signal
where the first two terms correspond to the intensity in the signal and local oscillator fields,
and the last term is the interference term. In all generality, this interference term will be
proportional to eik·r−iωt if k is the wavevector of the LO relative to the signal and ω is the
difference in frequency between the signal and LO fields. It becomes then clear that the only
spatial and temporal mode that is not averaged out in the crossed interference term is the one
that have the same frequency ω and wavevector k between the signal and the local oscillator.
This means that the measurement projects the mode of the signal onto the local oscillator
mode. We can thus identify equivalently the signal modes with the variables k and ω. It
then follows that the LO spatial mode should be tailored to match the desired signal mode,
and that the norm of this projection will be limited by this mode matching. We can then
anticipate that the information will be carried in the interference term. In order to extract
the interference term, we simply take the difference of the two detectors signal:

D̂(k, ω) = d̂†
1(k, ω)d̂1(k, ω) − d̂†

2(k, ω)d̂2(k, ω) = i
[
â†

S(k, ω)âL(k, ω) − â†
L(k, ω)âS(k, ω)

]
.

(2.38)

The scheme is powerful in the case where the local oscillator is much stronger than the
signal. In the strong local oscillator approximation, we can express âL as a classical field.
Assumuing a plane wave local oscillator, we can write αL = |αL|eiϕL . ϕL is the local oscillator
phase with respect to the signal, an important parameter that is varied in the experiment.
The difference signal then reads:

D̂(k, ω) = i|αL|
[
eiϕL â†

S(k, ω) − e−iϕL âS(k, ω)
]
. (2.39)

Changing this phase will change the quadrature on which the signal is projected [1313; 4040].
Now this term admits two limiting cases: in the case where ϕL = 0, and in the case where
ϕL = π/2. In these two limits we can identify the two conjugated quadratures of the difference
signal [1313; 4040]:

D̂0 = i|αL|
[
â†

S(k, ω) − âS(k, ω)
]

D̂π/2 = −|αL|
[
â†

S(k, ω) + âS(k, ω)
]
.

(2.40)
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These conjugated quadratures allow to decompose any state of the field on this basis. Their
expression can be interpreted as the density and phase of the field as is presented further in
eq.2.472.47. Measuring this difference signal with a spectrum analyzer [1313] will give access to the
variance of this difference signal for frequencies within the bandwidth of the analyzer. We
can the directly deduce that the variance of the difference signal operator will read:

Var(D̂) =
〈

|D̂|2 −
〈
D̂
〉2
〉

= |αL|2
〈
(e−iϕL âS(k, ω) − eiϕL â†

S(k, ω))(eiϕL â†
S(k, ω) − e−iϕL âS(k, ω))

〉
= |αL|2

〈
1 + 2â†

S(k, ω)âS(k, ω) + 2Im(ei2ϕL âS(k, ω)âS(k, ω))
〉 (2.41)

We find that we can directly recover the population in each (k, ω) signal mode by taking the
sum of the variance between the two quadratures:

Var(Dπ/2) + Var(D0) = 2|αL|2 (1 + 2N(k, ω)) , (2.42)

where N(k, ω) =
〈
â†

S(k, ω)âS(k, ω)
〉

is the population of the (k, ω) signal mode as defined in
eq.2.492.49.

An advantage is that this measurement technique is based on photodiodes, which can
have bandwidth reaching several GHz. This technique gives a direct access to the population
of Bogoliubov excitations with both a spatial and temporal resolution. Furthermore, looking
at the difference signal allows to reject any common mode noise. For this rejection to work
at its full potential however, we obviously need the photodiodes to be calibrated accurately
in order to have matched responsivity and electronic noise. Another crucial point is that by
changing the frequency of the local oscillator and going to a heterodyne detection scheme, one
can probe the population of excitations in the longitudinal dimension. Finally, compared to
the previous measurement method that rely on camera images, this alleviates the limitation
in resolution at low wavevectors k⊥: the resolution in k⊥ here is limited by the smallest
possible increment achievable in angle between the LO and signal arms. This is detailed in
the experimental setup section.

2.4.2 Comparison to the static structure factor
Following the derivations made in the previous section in eq.2.312.31, the state of the field at a
position z > L after the cell (L is the length of the cell, and the origin of z is taken at the
front face of the cell) [3636; 5959; 9797] is:

âS(k,z) =
[
UkâS(k,0) + V ∗

k â
†
S(−k,0)

]
e

−i k2
2k0

(z−L)

Uk = ũk(L)uk(0) − ṽ∗
k(L)vk(0)

V ∗
k = ṽ∗

k(L)uk(0) − ũk(L)vk(0),

(2.43)

where the uk(z) and vk(z) coefficients are the Bogoliubov amplitudes defined in eq.1.281.28 that
contain a dephasing term due to the cell, and absorption. From this we can then easily
deduce the final population from the initial populations:

N(k, z) = |Uk|2N(k, 0) + |Vk|2(1 +N(−k, 0)). (2.44)
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Fig. 2.7 Static structure factor in both the spatial and temporal dimensions. The
quenches produce a pattern in both dimensions whose frequency depend on the
interaction strength or the GVD. The dashed line in red represents the vacuum
level of the static structure factor S(k⊥, ω, z) = 1. The simulated signal is plotted
for a 10 cm long cell, with typical values of ∆n = 10−5, vg = 0.5c and the GVD
D0 = −109 fs2/cm.
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As explained previously, this means that the quench will produce a non-trivial distribution of
excitations [9191] even when starting from pure vacuum where N(k, 0) = 0.

Now, thanks to the temporal resolution of the homodyne detection, one can access the
three components of the wave vector: the paraxial wave vector (kx, ky) by changing the angle
of the local oscillator, and the longitudinal wave vector kz by changing the LO frequency ω.
To study the expected signal, it is convenient to stay in the uncompressed retarded frame
moving at the group velocity. In this frame, we recall that the evolution of the Bogoliubov
coefficients is given by the following equation:

i
∂

∂z

(
uk(z)
vk(z)

)
=

 iα
2 + k2

⊥
2k0

+ D0
2 ω

2 + k0∆n k0∆n

−k0∆n
iα
2 − k2

⊥
2k0

+ D0
2 ω

2 − k0∆n


︸ ︷︷ ︸

K(z)

(
uk(z)
vk(z)

)
. (2.45)

We have split here explicitly the paraxial and temporal dependences. In this frame of
reference, we recover the anisotropy of the mass term through two quadratic terms, one in
k⊥, and another one in ω. As the light enters the cell, it does not only induce a quench of the
non-linear index difference ∆n but also a quench of the GVD. While this leads to the same
phenomenology of oscillatory patterns of correlations, the physical interpretation of the origin
of these patterns is quite different. In the transverse plane, we have an interaction strength
quench, which is a classical scenario. In the temporal dimension, we have an effective mass
quench. Exploring this as a testbed for field theories in the context of analogue gravity has
been proposed and looks to be an exciting future for these measurements [4444; 4848]. We can
compute the expected signal using the numerical integration eq.2.302.30 presented in the last
section and obtain the fig.2.72.7. In the panels, we find the familiar oscillatory pattern in the
spatial frequencies, as highlighted by the right insets. More surprising however is to find
the exact same structure in the longitudinal dimension. We see that the total pattern in
both dimension is the complex interference of the correlation patterns in both time and space
induced by the quenches. The complementary pattern can be found in the populations. If
we study the evolution of the |U |2 and |V |2 coefficients defined in eq.2.432.43, we find a similar
oscillary pattern in both time and space, as shown in fig.2.82.8. Since after the cell the evolution
is in vacuum, these populations are frozen after z = L. We thus expect the homodyne
signal to reflect this evolution: when scanning the frequency of the local oscillator with
respect to the fluid (i.e sweeping δω in figs.2.72.7,2.82.8), we scan the different corresponding ω
modes of the dispersion. Since the popultations of excitation are created from vacuum, this
corresponds to observing a signal of anti-squeezing following the pattern of the top insets of
fig.2.82.8. Interestingly, we can convert the typical pulsations at which this population is visible
in the time domain (≈ 50 2π× GHz) back to longitudinal wavenumbers and realize that this
corresponds to density fluctuations whose wavenumber is at the largest 3.3 m−1. This is three
orders of magnitude smaller than the typical wavenumbers k⊥ in the paraxial plane. This
corresponds to a wavelength of 30 cm, which is much larger than the cell length, furthermore,
the typical value of GVD attainable in hot Rubidium vapors used in this example is 4 orders
of magnitude larger than typical values for silica fibers at the wavelength where the GVD is
the most anomalous. This means that even for large values of the GVD, the dynamics in the
longitudinal dimension is almost negligible if we assume an initial plane wave state. This
is consistent with the assumption that we consider the system as having a two-dimensional
dynamics. The advantage of the homodyne detection is that the sensitivity allows to still
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Fig. 2.8 |U |2 and |V |2 coefficients of eq.2.432.43 in both the spatial and temporal
dimensions. The quenches produce a pattern in both dimensions whose frequency
depend on the interaction strength or the GVD. In the case of an initial plane wave
state at k = 0, |V |2(k, ω) = N(k, ω), giving a prediction of the expected homodyne
signal. The simulated signal is plotted for a 10 cm long cell, with typical values
of ∆n = 10−5, vg = 0.5c and the GVD D0 = −109 fs2/cm. In the top insets, the
longitudinal wavenumber kz corresponding to the frequency ω is plotted.
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Fig. 2.9 Experimental setup for the homodyne detection measurement. The
different main parts are highlighted in color. In green, the main fluid beam, that
is later split between signal and local oscillator in blue. The local oscillator can
be swept in phase and angle using a piezo mounted mirror, and piezo stepping
screws. This allows to select the k⊥ mode that is probed, and the quadrature that
is measured. Finally in orange, an additional low noise Ti-Sa laser is used to seed
fluctuations to make alignment easier and probe specific modes. This probe laser is
frequency shifted with an AOM in order to be able to modulate the probe in both
amplitude and frequency.

observe this dynamics. We will now see how we can devise an experimental arrangement in
order to put this homodyne detection to the test.

2.4.3 Experimental setup
In order to set up a homodyne detection, we build around the canonical interference setup
around a non polarizing beam-splitter. We add λ

2 waveplates to ensure a 50/50 splitting ratio:
even though the non-polarizing beam splitters are supposed to be polarization insensitive, they
actually are, even though this dependence is weak. The experimental setup is represented in
fig.2.62.6. In order to achieve a spatially resolved operation, we want to scan the local oscillator
angle relative to the signal arm. This means that the signal and local oscillator beams need
to be imaged at the inside of the beam splitter. Obviously, they will need to also be imaged
on the photodiodes. Thus, we build the setup "in reverse" and start with the photodiodes
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and mount the whole setup starting with the detection. Because we want to build a balanced
detection, as mentioned before, we need fast balanced diodes whose electronic wiring cancels
common mode. For this we use a Thorlabs PDB450A-ACPDB450A-AC balanced diode with switchable gain.
As its ports are fibered, we use two wide numerical aperture fiber coupler, with multimode
fibers to guide the light to the diodes. We use this unconventional setup as traditionnaly,
homodyne detections are not spatially resolved. Because mode-matching between the signal
and the local oscillator is paramount, this part of the detection is crucial (and will actually
be its eventual downfall).
This then leads us to the LO arm. We want to both scan the phase, and scan the angle of
the beam. To scan the phase, we use a piezo mounted mirror that will be driven at around
1kHz in order to scan the phase faster than typical experimental noise, but still low enough
that we do not risk damaging the epoxy resin holding the mirror to the piezo. The angle of
the LO is scanned thanks to Thorlabs piezo actuator screws PIA13PIA13. This provides virtually
continuous adjustment range of k⊥, and allows to reach low values of k⊥ below 10 m−1.
This is 50 times lower than the minimal resolution allowed by a typical camera with a 1×
magnification whose minimal wavenumber resolvable is limited by the sensor size: one cannot
resolve a wavelength larger than the sensor. As we do not want the position of the LO beam
to change when sweeping the angle, we need to image the surface of the mirror onto the
center of the beam splitter. We can then take care of the actual 87Rb cell. We use a 10 cm
long pure 87Rb cell, and image the output of the cell on the same beam splitter. In order to
monitor ∆n, we use the LO arm, and a camera imaging the beam-splitter, using a flip mirror
in order to minimize losses when running measurements. This camera is also used to monitor
the angle between LO and signal, as well as the fringes contrast, a critical observable to asses
mode-matching between signal and local oscillator.

Before measuring vacuum fluctuations, it is safe to start with weak classical signals. To
this end, we also add a third beam: the probe beam. This beam is used to induce controlled
fluctuations in the fluid, modulated in time in order to easily identify the fluctuations at
the output of the cell. As we want to ultimately measure noise that is seeded by the purest
possible fluctuation (a single k⊥ and ω), we want a low-noise laser. For this we use a M2 Ti:Sa
SolstisSolstis laser. Both lasers frequencies are controlled using saturated absorption spectroscopy
(SAS). In order to be able to modulate the probe laser in intensity, we use a single-pass AOM
setup allowing modulation frequencies up to several MHz (far away from any technical noise
of the laser).

Finally analysis of the diode signal is carried out using the three outputs of the diode:
each individual DC coupled diode outputs is sent to a Rigol MSO7024Rigol MSO7024 oscilloscope, while the
AC difference signal is sent to an Agilent E4411BAgilent E4411B spectrum analyzer. We chose this spectrum
analyzer because of its bandwidth (1.5 GHz) and high sensitivity (-166 dBm). We want high
sensitivity in order to measure the weak signal from the diodes, and high bandwidth because
the temporal pattern in the S(k⊥, ω) / N(k⊥, ω) signal typically ranges over several tens of
GHz as shown in figs.2.72.7, 2.82.8.

https://www.thorlabs.com/thorproduct.cfm?partnumber=PDB450A-AC
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=9776
https://www.m2lasers.com/solstis.html
https://www.rigolna.com/products/digital-oscilloscopes/7000/
https://www.keysight.com/us/en/product/E4411B/esa-l-basic-spectrum-analyzer-9khz-1-5ghz.html
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2.4.4 Results
Realization of this spatially resolved homodyne detection proved to be extremely challenging.
I will detail in this section the different pitfalls that prevented me to measure anything more
than shot noise:

• Mode matching: the critical parameter of the homodyne detection in order for the
common mode rejection to work (at the optical level) is mode matching. This means
that contrast of at least 98% should be reached before attempting any measurement
[1313]. For this, both LO and signal beam should have the exact same profile. While
this requirement can be satisfied (albeit tediously) if the beams are fixed, this becomes
difficult when attempting this while scanning one of the arms angle. Furthermmore,
in order to keep maximal noise rejection, both arms should have as little distance
difference as possible. This is why the setup comprised of equal length arms after the
beam splitter where the signal and LO interfere, thus making it quite challenging to
bring light to the photodiodes. Finally, due to the non-linearity, the signal beam will
undergo nonlinear dephasing. In order to maintain good contrast, this dephasing needs
to be applied on the LO as well, as well as any possible beam enlargment due to self
defocusing.

• Bandwidth: From the previous calculations we have seen that the oscillations in time
domain span over tens of GHz for typical nonlinear index variation ∆n values. This
means that in order to resolve these oscillations, we both need very high bandwidth
photodiodes, as well as a high bandwidth spectrum analyzer. Even if the beatnote
between LO and signal can be brought back to lower frequencies using an additional
amplitude modulation, these bandwidth constrains are paramount.

Having established these shortcomings, I will now present an updated detection setup
that could allow (at least partially) to resolve them.

The proposed modifications are presented in the fig.2.102.10. In order to reach better mode
matching, we propose to simplify the detection in order to reduce the path length between
the recombination cube and the photodiodes. To make alignment easier, we switch out the
Thorlabs balanced diodes with a custom set of balanced diodes mounted at the corner of
a right angle housing. We image the beams directly on the diodes, using high numerical
aperture aspheric lenses (like fiber coupling lenses for instance). This allows to reach much
tighter spot sizes, and thus ensuring that the spots fit within the active area of the diodes. In
addition to this, removing the multimode fibers allows to remove the angular dependance of
the coupling. The LO arm is fitted with a spatial light modulator (SLM) in order to correct
the phase of the beam.

Now, this future setup could prove essential to measure beyond mean-field effects thanks
to the low-k resolution. I will now present some recent theoretical results providing clear
indications of where to look for signs of quantum effects that lie beyon the Bogoliubov theory
presented in the first chapter.

2.5 Outlook : beyond mean-field effects
Up until this point, the attentive reader will note that the Bogoliubov theory presented in
chap.11 and the calculations presented in this chapter only include effects due to the mean-field
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2

f=100mm f=100mm Rb cell

Spectrum analyzer

LO

SLM

Fig. 2.10 An updated setup in order to solve the issues encountered in the experi-
mental realization of a spatially resolved homodyne detection. The LO arm phase
can be tuned with a SLM. The detection arms after the beam-splitter are shortened
and simplified by removing the fiber couplers. The diode arrangement is changed to
a right angle corner to facilitate alignment.
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E0 of the fluid. Most of these effects can be well understood with a classical field theory.
We did not describe any effect linked to the interactions between excitations or between
vacuum fluctuations. In this section, I will now present an outlook towards quantum effects
that manifest when considering higher order terms of the mean-field theory i.e beyond the
Bogoliubov theory.

2.5.1 Kinetic equation
Recently, a more detailed picture going beyond a free particle theory describing the quench
experiments has been developped by Clément Duval and Nicolas Cherroret in [2929]. As we
have already seen previously, the study of the kinetic equations for the correlators is of
particular interest in the context of thermalization and response to quenches as it describes
the structure of the system as time goes. We need these equations in order to describe
the asymptotic behavior of the system as it relaxes towards equilibrium after a quench.
The main idea is the following: within the Bogoliubov approximation presented in chap.11,
the correlators of the bogolons in eq.2.82.8 evolve harmonically within the medium, and more
specifically the populations do not evolve a part from an exponential damping due to the
exponential damping of the mean field. However, if we consider inter-excitations interactions
i.e the higher order terms in eq. 1.251.25, the kinetic equations for the correlators will change.

Let us go back to the Hamiltonian of a 2D Bose gas in density-phase representation. If
the field operator for the gas is ψ̂, we can use the Madelung transform to represent it as a
density and phase fields: ψ̂ = ρ̂eiϕ̂. We can then write the Hamiltonian as follows:

Ĥ = ℏ
∫

r
dr
[
ρ0
2m(∇ϕ̂)2 + g

2(δρ̂)2 + 1
8mρ0

(∇δρ̂)2 + 1
2m(∇ϕ̂)δρ̂(∇ϕ̂)

]
. (2.46)

Here we have already expanded the density operator in mean field ρ0 and fluctuations δρ̂.
The phase operator cannot be expanded this way since phase fluctuations can be very large
especially close to phase transitions [8383]. We can then introduce the familiar Bogoliubov
operators in order to diagonalize the quadratic part of the Hamiltonian. In the "atomic"
language within the hydrodynamic formulation, the Bogoliubov operators write:

δρ̂q = −
√
ΩB(q)
κ(q)

(
b̂†

q + b̂−q
)

ϕ̂q = i

2

√
κ(q)
ΩB(q)

(
b̂†

q − b̂−q
)
.

(2.47)

We have written directly the operators in momentum space where q is the quasi-momentum
of the mode, ΩB(q) is the Bogoliubov dispersion defined in eq.1.311.31. and κ(q) = q2

2m is the
kinetic dispersion. Having defined these operators, one can rewrite the Hamiltonian in
momentum space in the bogolon basis under the following form:

Ĥ = ℏ
∫ dq

(2π)2ρ0
ΩB(q)

(
b̂†

q b̂q + 1
2

)
︸ ︷︷ ︸

Ĥ0

+ ℏ
∫ dpdq

(2π)4ρ2
0
Λp,q

(
b̂pb̂qb̂

†
p+q + H.c

)
.︸ ︷︷ ︸

Ĥint

(2.48)
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Here, the Hamiltonian consists of two parts: the quadratic Hamiltonian Ĥ0 which is
diagonalized by the Bogoliubov transform (by design), and the cubic interaction term Ĥint

which contains three phonon scattering processes, with momentum conservation. At low
energy i.e q ≪ 1

ξ , the vertex function writes Λp,q = 3
4m

√
gρ0
2cs

√
|p||q||p + q|. Let us comment

a bit the interaction term. In two dimensions, there is a range of momenta p and q for which
ΩB(p+ q) = ΩB(p) +ΩB(q) i.e the scattering process is resonant. It can be shown that these
resonant processes are dominant at low energy [2929]. We can then define the correlators we
want to study:

Nq(τ) =
〈
b̂(τ)†

qb̂(τ)q
〉

Cq(τ) =
∣∣∣〈b̂(τ)qb̂(τ)−q

〉∣∣∣ (2.49)

where we have explicited the time dependance τ . As mentioned before, we see again that
ignoring the interaction term Ĥint, these correlators evolve only harmonically driven by the
Bogoliubov dispersion ΩB. Obtaining analytical equations of motion for these correlators is
a priori not possible without approximations, however if we remain in the low-momentum
approximation of a dilute Bose gas, it is possible to obtain the following equations of motion
for the two correlators:

∂Nq(τ)
∂τ

= 2
∫ ∞

0
dpKL

p,q [Np+q(Np +Nq + 1) −NpNq] +

2
∫ q

0
dpKB

p,q [NpNq−p −Nq(Np +Nq−p + 1)]

∂Cq(τ)
∂τ

= 2
∫ ∞

0
dpKL

p,q [Np+qCp + CpCp+q −NpCq] +

2
∫ q

0
dpKB

p,q [CpCq−p − Cq(Np +Nq−p + 1)] .

(2.50)

The "Landau" (resp. "Belaiev") collision kernels KL
p,q and KB

p,q are defined as follows:

KL
p,q = 3

√
3cs

8πρ0
p(p+ q)

KB
p,q = 3

√
3cs

816πρ0
p(q − p).

(2.51)

There is obviously no closed form solution for these functions, however it carries great
physical meaning. The evolution is driven by two processes:

• The Landau process where one phonon of momentum q splits into two phonons of
momenta p and q − p

• The Belaiev process where two phonons of momenta q and p recombine into a phonon
of momentum q + p

Studying at the limiting cases of this equation, we can look at the long time behavior
equation following a quench where the system has reached a state close to thermal equilibrium
at a finite temperature (since we injected energy with the quench) and look at the evolution
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of the density fluctuations on top of this thermal background. We thus linearize the evolution
to first order in perturbation around a thermal state:

Nq(τ) → N th
q + δNq(τ)

N th
q = 1

e
ΩB(q)
kBT − 1

.
(2.52)

Linearizing then yiels two damping rates for the density fluctuations δNq depending on the
collision integrals that are kept:

∂δNq
∂τ

= −2γL
q δNq

γL
q =

√
3π

8ρ0cs
qT 2

(2.53)

∂δNq
∂τ

= −2γB
q δNq

γB
q =

√
3cs

32πρ0
q3.

(2.54)

The coherences Cq(τ) follow the same damping. From eqs.2.532.53 and 2.542.54, we see that the
Belaiev damping is predominant as the temperature vanishes. On the other hand, Landau
damping dominates for non-zero temperatures, which should be the more relevant case after
a quench.

The take away message from this treatment is that beyond-mean field effects manifest
as an evolution of the Bogoliubov excitations population. The question is then: how can
we experimentally measure this evolution in our fluids of light platform ? Do these effects
survive in the presence of absorption ?

2.5.2 Experimental observables
In [2929], a direct study of the populations is presented, as well as the dynamical static structure
factor to which we can access as demonstrated in the two previous sections. We can also
access directly to the population of excitations since we can measure the density fluctuations
δρ as well as the phase ϕ. In this case, we can devise a simple experiment where we produce
an initial state corresponding to a thermal state for the Bogoliubov particles. We can
then slightly perturb this state and observe the relaxation of this perturbed state towards
equilibrium, measuring the damping rates. This proposal is detailed in chap.55.

Conclusion
In this chapter, we have explored the quantum effects arising from the photon-photon
interactions. We have described the effect of the interactions quenches on the correlation
properties of the fluid of light as it enters and leaves the cell. We have presented a novel
experimental arrangement allowing to reach much lower wavenumbers, and granting a direct
acess to the fluid’s noise spectrum with both spatial and temporal resolution. Using recent
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theoritical deveopments, we discuss potential new experiments in order to probe the limits of
the current description of our platform. However, we have not yet detailed how the crucial
photon-photon interactions arise, nor how to control them. To this extent, we will now devote
a chapter to study the atomic structure of Rubidium.





Chapter 3

Atomic medium characterization

So far we have explored the effects of photon-photon interactions in the collective behavior of
photon fluids, however we never got into the specifics of the atomic structure explaining this
interactions. In this chapter, we study why alkali vapors are of such interest in the context
of quantum optics, starting by answering the question "is the Rubidium atom a two-level
system ?" (to paraphrase William D. Philips). We will then look at how we can control the
state of the atoms by considering a 4-level system. Finally, we will take a detour in the land
of numerical simulation to explore transit effects.

3.1 Rubidium fine structure
One of the strengths of alkali atoms is their fine structure giving access to rich manifolds of
hyperfine levels allowing for laser trapping and cooling. Alkali atoms are the atoms of the
first column of the periodic table, they include Lithium (Li), Sodium (Na), Potassium (K),
Rubidium (Rb), Cesium (Cs) and Francium (Fr). They are sometimes called Hydrogen like
since their electronic structure ressembles the one of Hydrogen with one valence electron on
the outermost S-shell, explaining their weak metallic bonding and thus why all of the alkali
are soft metal, and highly reactive. The spin-orbit coupling of this outer-shell electron will
lead to a fine structure, and the coupling between electronic angular momentum and nuclear
spin will split this structure further into the so-called hyperfine structure [9393]. In this thesis
we will always adress only the two D line of Rubidium which are detailed in the fig.3.13.1:

• The D1 line from the ground state manifold 52S
1
2 to the 52P

1
2 manifold and with a

corresponding optical wavelength near 795 nm.

• The D2 line going from the ground state manifold 52S
1
2 to the 52S

3
2 manifold and with

a corresponding optical wavelength near 780 nm.

3.2 Electromagnetic response
We now describe the atom-light interaction process undergone by the atoms within the cell.
The quantity we want to extract is the atomic coherences induced by the laser interaction
that will drive the electric susceptibility of the medium.

55
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Fig. 3.1 Rubidium D line structure from [9696]. The Zeeman sublevels are not
represented and each F level is split into 2F + 1 mF Zeeman sublevels degenerate
in energy (in absence of magnetic fields).
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3.2.1 Dipole operator
Light matter interaction in the case of the atom will be described by the dipole operator
d̂ = er̂, since the energy associated to the dipole in a classical electric field E is Ŵ = −d̂·E[4040].
The physical scenario here is simply that a dipole will tend to align with the electric field in
order to minimize the total energy. In order to describe this dipole operator in more detail,
we study the internal structure of the atom, especially reduce it by computing the transition
moments. For this procedure [9393], we compute the dipole line stengths of the transitions
between a ground state

∣∣Fg,mFg

〉
and an excited state |Fe,mFe⟩. Here F and mF are the two

quantum numbers describing the total angular momentum of the valence electron stemming
from the coupling between orbital angular momentum, electron spin and nuclear spin. It can
be shown calculating Clebsch-Gordan coefficients [3535; 9393; 9696] that the dipole matrix element
reads: 〈

Fg,mFg

∣∣ er̂q |Fe,mFe⟩ = cmF d (3.1)

where r̂q is the projection of the position operator on the direction of the electric field
polarization, and d =

√
9ϵ0ℏΓ λ3

8π2 is the dipole constant for each D-line. In the end, since each
F level is degenerate 2F + 1 times, we should add the cmF coefficients in order to retrieve
the total line strength fFe

Fg
:

fFe
Fg

=
∑

mF
c2

mF
d2

2Fg + 1 . (3.2)

Let us go back to the actual dipole operator. For a simple two-level system comprising of
two levels |1⟩ (ground state) and |2⟩ (excited state), it reads:

d̂ = d∗ |2⟩⟨1| + d |1⟩⟨2|
= d∗ρ21 + dρ12,

(3.3)

where ρij = |i⟩⟨j| are the density matrix element ρ̂ = |ψ⟩⟨ψ| of the atom. We consider some
electric field E(t) = Ecos(ωt)p where ω is the field’s pulsation, E the field envelope and p the
polarization vector. Thus the final interaction term is:

Ŵ (t) = −ℏ
2 (Ω∗

12 |2⟩⟨1| +Ω12 |1⟩⟨2|) ×
(
eiωt + e−iωt

)
(3.4)

where Ω12 = µ12E
ℏ is the Rabi frequency and µ12 = ⟨1| d̂ · p |2⟩ the dipole moment. If we

consider that |1⟩ and |2⟩ are single F levels, it is simply the square root of the line strength
fF2

F1
. If we consider that the excited state is actually a manifold of several F levels (which will

be described in the next subsection), then we should add the all the relevant line strenghts.
We notice directly that the interaction between the electric field and the atom will induce a
coherence between the ground state and excited state. The oscillating terms can be eliminated
by switching to the interaction picture and using the rotating wave approximation [4040].
Having defined the dipole moments of each transition, we can define the electric susceptibility
χ from the medium polarization P(r, t):

P(r, t) = ϵ0χ(E(r, t))E(r, t). (3.5)
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a) 3-level scheme

b) 4-level scheme

Fig. 3.2 Detail of the Rubidium level structure considered in the atom-light in-
teractions. We consider the ground state manifold in gray, and an excited state
manifold in orange or blue. Wavy lines represent the various decay rates involved
in the system. Each ground states receive an additional influx rate due to transit
effects. In orange, we have the manifold addressed by the "fluid" beam, and in blue
we have the manifold addressed by the "defect" beam.

This susceptibility can then be expressed from the dipole moment as follows:

χ(E(r, t)) = 2N
ϵ0E0(r, t)µ12ρ21(r, t) (3.6)

where E0 is the electric field amplitude, and N is the atomic density. In general, this
susceptibility will depend on the field’s strength, and what will be of particular interest for
us are the two first order of the power expansion of the susceptibility χ(1) and χ(3).

3.2.2 Three level model
In this subsection, we first describe the scenario where a single linearly polarized beam
E(r⊥, t)x couples the two ground states to an excited state. We focus on this structure as it
is common among all alkali. From now on, we will consider only Rubidium since it is the
atom we use in our experiment. We chose Rubidium because of the history of our research
team, as well as the fact that it has been extensively studied in the laboratory. Rubidium is
still at the heart of many cold and hot atoms experiments within our laboratory.

In the context of hot vapors, due to the high temperature of the vapor, we will ignore
the hyperfine structure of the excited state manifold since they span over 496 MHz, which is
comparable with the Doppler broadened linewidth ΓD = k0

√
2kBT

m where kB is the Boltzmann
constant, T the temperature and m the mass of a Rubidium atom. In the case of 87Rb at
typical temperatures of 140°C (413 K), ΓD=360 MHz. We thus consider the following system
of levels within the D2 line as depicted in fig.3.23.2 a):
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• Two ground states: F = 1 and F = 2

• One excited state manifold: F ′ = {0,1,2,3}

This structure is called a lambda level scheme and is typical of alkali atoms. In this case, we
consider a bundle of excited states. We will thus take into account the effect of the driving
field on both transition. Furthermore, due to the high temperature of the vapor, even at
large detunings some atoms might end up interacting resonantly with the laser field. From
this, it follows that we should consider two Rabi frequencies Ω13 = µ13E

ℏ and Ω23 = µ23E
ℏ . The

dipole moment of each transitions reads:

|µ13|2 =
F ′=3∑
F ′=0

fF ′
1

|µ23|2 =
F ′=3∑
F ′=0

fF ′
2 .

(3.7)

In practice, these values are tabulated and allow quick identification of the relevant transitions
[9696]. We can then write the Hamiltonian of our system, consisting of a bare Hamiltonian Ĥ0
describing the atom at rest and the interaction Hamiltonian Ŵ (t) describing the light-matter
coupling:

Ĥ = Ĥ0 + Ŵ

Ĥ0 = ℏδ0 |2⟩⟨2| − ℏ(∆− δ0) |3⟩⟨3|

Ŵ = −ℏ
2(Ω∗

23 |3⟩⟨2| +Ω23 |2⟩⟨3|) − ℏ
2(Ω∗

13 |3⟩⟨1| +Ω13 |1⟩⟨3|).

(3.8)

Here we have directly made the generic assumptions of switching to the interaction picture
and making the rotating wave approximation in order to eliminate fast terms at 2ω. In this
picture, we thus introduce ∆ = ω − ω0 the laser detuning to the central frequency of the
transition ω0, and δ0 is the hyperfine splitting between the two ground states (2π×6.835 GHz
for 87Rb).
In order to establish the optical Bloch equations of the system, we then use the Lindblad
master equation for the density matrix of the system ρ̂:

∂ρ̂

∂t
= − i

ℏ

[
Ĥ, ρ̂

]
+
∑

ν

[
L̂ν ρ̂L̂

†
ν − 1

2{L̂†
νL̂ν , ρ̂}

]
(3.9)

where ρ̂ = |ψ⟩⟨ψ| =
∑

i,j∈[1,3] ρij |i⟩⟨j| is the density matrix of the system. The set of operators
L̂ν are called jump operators and describe relaxation with the exterior of the system. Finally,
{., .} is the Poisson bracket or anti-commutator. In order to solve, we now need to detail the
expression of the jump operators. We can define two types of relaxation:

• Spontaneous emission: this will affect the populations i.e the diagonal terms of the
density matrix ρ̂. These terms will be modelled with a rate Γmn such that L̂mn =√
Γmn |m⟩⟨n|.

• Dephasing noise: this will induce random dephasing for each state leading to a loss of
coherence i.e affecting the off-diagonal terms of ρ̂. Such terms will be modelled with a
rate γmn such that L̂m = √

γm |m⟩⟨m|.
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Applying this to the lambda scheme considered of the D2 line, we should take the following
rates into account: the relaxation rate Γ from the excited state towards the ground states
with equal rates Γ/2 and a dephasing rate between states γ21. This implies the following
jump operators in the {|1⟩ , |2⟩ , |3⟩} basis:

L̂31 =

√
Γ

2 |1⟩⟨3| =

√
Γ

2

0 0 1
0 0 0
0 0 0

 (3.10)

L̂32 =

√
Γ

2 |2⟩⟨3| =

√
Γ

2

0 0 0
0 0 1
0 0 0

 (3.11)

L̂21 = √
γ21(|2⟩⟨2| − |1⟩⟨1|) = √

γ21

−1 0 0
0 1 0
0 0 0

 (3.12)

In the same way we express the Hamiltonian into matrix form in order to gain some
graphical insight:

Ĥ = ℏ

 0 0 −Ω13
2

0 δ0 −Ω23
2

−Ω∗
13
2 −Ω∗

23
2 − (∆− δ0)

 (3.13)

we find the familiar shape where the off-diagonal terms represent the couplings and the
diagonal terms represent the bare energies. Using the closure relation Tr(ρ̂) = 1, we can then
compute the evolution equation using eq.3.93.9 under matrix form:

∂ρ̂

∂t
= Aρ̂+ b (3.14)

where ρ̂ is represented here as a vector:

ρ̂ =



ρ11
ρ22
ρ21
ρ12
ρ31
ρ13
ρ32
ρ23


(3.15)
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and thus yielding the following matrix A:

A =



−Γ
2 −Γ

2 0 0 iΩ13
2 − iΩ∗

13
2 0 0

−Γ
2 −Γ

2 0 0 0 0 iΩ23
2 − iΩ∗

23
2

0 0 −γ̃∗
21 0 iΩ23

2 0 0 − iΩ∗
13

2
0 0 0 −γ̃21 0 − iΩ∗

23
2

iΩ13
2 0

iΩ∗
13

iΩ∗
13

2
iΩ∗

23
2 0 −γ̃∗

31 0 0 0
−iΩ13 − iΩ13

2 0 − iΩ23
2 0 −γ̃31 0 0

iΩ∗
23

2 iΩ∗
23 0 iΩ∗

13
2 0 0 −γ̃∗

32 0
− iΩ23

2 −iΩ23 − iΩ13
2 0 0 0 0 −γ̃32


(3.16)

where γ̃21 = 2γ21 + iδ0, γ̃31 = 1
2 (Γ + γ21) + i (∆− δ0) and γ̃32 = 1

2 (Γ + γ21) + i∆. And an
additional vector b:

b =



−Γ
2

Γ
2
0
0

iΩ∗
13

2
− iΩ13

2
iΩ∗

23
2

− iΩ23
2


. (3.17)

Under this form, there is little physical insight that we can extract from this, at least
analytically. However, it makes it convenient to solve numerically. There are now two ways
to extract some solutions of this equation:

• set the left-hand side to zero and solve the steady-state

• plug the full equation into a numerical differential equation solver [55] in order to get a
full numerical solution at the cost of computation time.

The generic treatment presented in this subsection can readily be extended to arbitrary
level structures, especially using modern formal calculation tools like Sympy [7171] allowing
for fast obtention of the A and b matrices. An example of this workflow is presented in the
Appendices of this thesis.

3.2.3 Four level model
In general, there are cases where we want to drive both D-lines at the same time in order
to modulate the response of the medium with a control field, while having a fluid field on
the other line (see Chap.44). In this case we need to include two excited states manifolds,
in addition to the aforementioned two ground states. This scenario is presented in panel
b) of fig.3.23.2. We consider in this case a double lambda scheme where the ground state pair
is coupled to each excited state manifold. To describe the problem we take the following
convention: the D2 line is driven by the fluid beam, and the D1 line is driven by the defect
beam. The excited states manifold of the D2 line is level |4⟩ and the one of the D1 line is |3⟩,
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numbering the states in increasing order of energy. We thus consider four Rabi frequencies
Ω13, Ω23, Ω14 and Ω24 and define two detunings ∆f and ∆d representing the detuning to
the D2 (resp D1) line. This yield the following Hamiltonian in the {|1⟩ , |2⟩ , |3⟩ , |4⟩} basis:

Ĥ = ℏ


0 0 −Ω13

2 −Ω14
2

0 δ0 −Ω23
2 −Ω24

2
−Ω∗

13
2 −Ω∗

23
2 − (∆d − δ0) 0

−Ω∗
14
2 −Ω∗

24
2 0 − (∆f − δ0)

 . (3.18)

The jump operators are in this case very similar to the three level case, except that we need
to distinguish between the two excited states decay rates. Introducing the rates Γ3 and Γ4,
we now have four relaxation operators:

L̂31 =

√
Γ3
2 |1⟩⟨3|

L̂32 =

√
Γ3
2 |2⟩⟨3|

L̂41 =

√
Γ4
2 |1⟩⟨4|

L̂42 =

√
Γ4
2 |2⟩⟨4|

(3.19)

In this case, following the same procedure as above, we can extract the evolution equation
for the density matrix (having included the closure relation):

A =



−Γ4
2 −Γ4

2
Γ3
2 − Γ4

2 0 0 iΩ13
2 − iΩ∗

13
2

iΩ14
2 − iΩ14∗

2 0 0 0 0 0 0
−Γ4

2 −Γ4
2

Γ3
2 − Γ4

2 0 0 0 0 0 0 iΩ23
2 − iΩ∗

23
2

iΩ24
2 − iΩ∗

24
2 0 0

0 0 −Γ3 0 0 − iΩ13
2

iΩ∗
13

2 0 0 − iΩ23
2

iΩ∗
23

2 0 0 0 0
0 0 0 −γ̃∗

21 0 iΩ23
2 0 iΩ24

2 0 0 − iΩ∗
13

2 0 − iΩ∗
14

2 0 0
0 0 0 0 −γ̃21 0 − iΩ∗

23
2 0 − iΩ∗

24
2

iΩ13
2 0 iΩ14

2 0 0 0
iΩ∗

13
2 0 − iΩ∗

13
2

iΩ∗
23

2 0 −γ̃∗
31 0 0 0 0 0 0 0 0 − iΩ∗

14
2

− iΩ13
2 0 iΩ13

2 0 − iΩ23
2 0 −γ̃31 0 0 0 0 0 0 iΩ14

2 0
iΩ∗

14
iΩ∗

14
2

iΩ∗
14

2
iΩ∗

24
2 0 0 0 −γ̃∗

41 0 0 0 0 0 − iΩ∗
13

2 0
−iΩ14 − iΩ14

2 − iΩ14
2 0 − iΩ24

2 0 0 0 −γ̃41 0 0 0 0 0 iΩ13
2

0 iΩ∗
23

2 − iΩ∗
23

2 0 iΩ∗
13

2 0 0 0 0 −γ̃∗
32 0 0 0 0 − iΩ∗

24
2

0 − iΩ23
2

iΩ23
2 − iΩ13

2 0 0 0 0 0 0 −γ̃32 0 0 iΩ24
2 0

iΩ∗
24

2 iΩ∗
24

iΩ∗
24

2 0 iΩ∗
14

2 0 0 0 0 0 0 −γ̃∗
42 0 − iΩ∗

23
2 0

− iΩ24
2 −iΩ24 − iΩ24

2 − iΩ14
2 0 0 0 0 0 0 0 0 −γ̃42 0 iΩ23

2
0 0 0 0 0 0 iΩ∗

14
2 − iΩ13

2 0 0 iΩ∗
24

2 − iΩ23
2 0 −γ̃∗

43 0
0 0 0 0 0 − iΩ14

2 0 0 iΩ∗
13

2 − iΩ24
2 0 0 iΩ∗

23
2 0 −γ̃43


(3.20)

in the (ρ11, ρ22, ρ33, ρ21, ρ12, ρ31, ρ13, ρ41, ρ14, ρ32, ρ23, ρ42, ρ24, ρ43, ρ34) basis.
The dephasing rates are defined as follows: γ̃21 = 2γ21 +iδ0, γ̃31 = Γ3

2 − γ21
2 +i (∆d − δ0), γ̃41 =

Γ4
2 − γ21

2 +i (∆f − δ0), γ̃32 = Γ3
2 − γ21

2 +i∆d, γ̃42 = Γ4
2 − γ21

2 +i∆f and γ̃43 = Γ3
2 − Γ4

2 +i (∆d −∆f ).
Of course, one might lose hope when looking at this matrix. However, this is more to highlight
the usefulness of developping an easily extendable analytical framework, and the corresponding
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numerical methods. When building the two hand in hand from the beginning, it becomes
tractable to include the more realistic picture of considering individual transitions, which will
hopefully yield to better results. This is mandatory when considering effects like non-linear
birefringence, crucial to go towards mixtures of fluids of light [6969].

3.2.4 Optical pumping
The critical phenomenon to describe the physics of controlling the response of the atoms with
the "defect" beam is optical pumping. It is possible to simplify greatly the previous situation
if we consider the following particular case: if we drive resonantly the |2⟩ → |3⟩ transition,
we will strongly modulate the populations in the ground states |1⟩ and |2⟩. Essentially, this
means that we can increase or decrease the number of atoms available for the fluid transition.
This in turn creates a difference of refractive index between the regions where the defect
beam is on, and where it is not. Let us study the two limit cases [3535]:

• If ∆d = 0, we pump atoms from |2⟩ to |1⟩ thus reducing the number of atoms seen by
the fluid beam in |2⟩. This means the index seen by the fluid beam will be reduced
thus δn < 0, meaning an repulsive defect.

• If ∆d = δ0, we pump atoms from |1⟩ to |2⟩ thus increasing the number of atoms seen
by the fluid beam in |2⟩. This means the index seen by the fluid beam will be increased
thus δn > 0, meaning an attractive defect.

Furthermore, the index of refraction change δn will not depend on the fluid power in this
case. Of course since we drive the defect on resonance, this is at the expanse of self-effects
for the defect beam: self-focusing (resp. defocusing) and absorption. We will see how we can
mitigate these in chap.44.

3.3 Transit effects
A crucial aspect of hot atomic vapors is that they are hot. The high temperature of our
typical experiments (between 130°C and 150°C) leads to Doppler effect, and transit effects.
The average speed of the atoms is on the order of several hundreds meters per second leading
to Doppler shifts of up to the GHz range. This means that the dynamics of the interaction
will be drastically different between two atoms from one side to the other of the velocity
distribution. On the other hand, this will also lead to very different interaction times within
the beam. These are the so-called transit effects refering to the transit of the atoms across
the beam. In this section we will consider the 3-level model.

3.3.1 Kinetic model
The first step is to simply model the atoms using classical thermodynamics. We consider
a Boltzmann distribution of atoms velocity. The vapor density can be computed from the
vapor pressure using the Eldèn [66] and perfect gases formulae:

log10(Pv) = 15.88253 − 4529.635
T

+ 0.00058663 × T − 2.99138 × log10(T )

N(T ) = 133.23 × Pv

kBT

(3.21)
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2

1

Fig. 3.3 Visualization of the beam cross section over the population in the excited
state |3⟩. Two atoms highlighted in pink will have different trajectories (dashed
lines) through the beam, and their different initial velocities (v⃗1, v⃗2) will lead to
different detunings. In inset, there is a depiction of the evolution of the populations
of one atom when interacting with the beam. On the right, non-linear index of
refraction variation is represented as a function of the beam waist. In green, the
stationary solution of the one coupling 3-level model including transit rates, in
orange the experimental results, and in blue the Monte-Carlo model. The shaded
areas represent the experimental error or the statistical error of the Monte Carlo
method. The solid lines represent a fit by a power law. The model computes the
response ab initio, without any fitting parameter.
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We can then infer the velocity distribution of the atoms at thermal equilibrium using the
Maxwell-Boltzmann distribution:

f(v)d3v =
(2kBT

m

) 3
2
e

− mv2
2kBT (3.22)

In first approximation, one might introduce a rate that describes atoms coming in and
out of the beam due to thermal motion. This rate describes the atoms leaving the beam
thus depopulating each level, but also adding contributions to the ground states: atoms from
outside the beam will "refresh" the populations of the ground states. A simple way to take
this into accound is to compute the average rate at which atoms come in and out of the beam.
This is given by the average time spent in the beam meaning the beam waist divided by the
average atom velocity [3535]:

Γt = ⟨v⟩
w0

=
√

8kBT

πmw2
0

(3.23)

Modelling influx rates is a much more delicate subject, since we quickly need to take into
account collisions between atoms, in order to describe atoms that leave the beam for some
time before diffusing back to the beam without having lost their "memory" of the interaction
[2020; 6363]. A detailed discussion of these mechanisms can be found in [3535]. For simplicity, we
will assume here that the atoms quickly lose their coherence outside the beam such that the
influx rates repopulate the states with the ground state equilibrium populations in |1⟩ and
|2⟩:

Γ
(1)
t = G1Γt

Γ
(2)
t = G2Γt

(3.24)

where G1 = g1
2g1+1 (resp. G2 = g2

2g2+1) is the degeneracy factors of each ground states. For
87Rb they are respectively G1 = 3

8 and G2 = 5
8 . In order to include this into the optical Bloch

equations previously defined, we need to modify eqs.3.103.10,3.113.11, 3.123.12 and define additional
relaxation operators:

L̂31 =

√
Γ + Γt

2 |1⟩⟨3| =

√
Γ + Γt

2

0 0 1
0 0 0
0 0 0

 (3.25)

L̂32 =

√
Γ + Γt

2 |2⟩⟨3| =

√
Γ + Γt

2

0 0 0
0 0 1
0 0 0

 (3.26)

L̂21 =
√
Γt(|2⟩⟨2| − |1⟩⟨1|) =

√
Γt

−1 0 0
0 1 0
0 0 0

 (3.27)
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We explicit here that the dephasing mechanism between the two ground states is effectively
the transit rate meaning γ21 = Γt. We add influx rates phenomenologically as an additional
operator Γ̂t:

∂ρ̂

∂t
= − i

ℏ

[
Ĥ, ρ̂

]
+
∑

ν

L̂ν ρ̂L̂
†
ν − 1

2{L̂†
νL̂ν , ρ̂} + Γ̂t. (3.28)

Where Γ̂t in matrix form in the {ρij |(i, j) ∈ [1, 3]2} basis is written:

Γ̂t =

Γ
(1)
t 0 0
0 Γ

(2)
t 0

0 0 −Γt

 . (3.29)

Note that we might worry at first that adding these terms is unphysical. However one can
readily check that the evolution equation remains symplectic (i.e the total density is conserved
/ the trace is preserved) since we "lose" atoms at a rate Γt/2 towards each ground state from
|3⟩, but "recover" a total rate of Γt with the influx rates Γ (1)

t and Γ (2)
t . Retrieving the A and b

matrices for numerical solving can be obtained with the Jupyter notebook in the Appendices.
We will now check how we have developped an easily extendable numerical framework to
complement the analytical results we have presented so far. From the moment we establish
the evolution equation, we are tempted to explore transit and other stochastic effects using
numerical methods like Monte-Carlo type modelling.

3.3.2 Numerics : Monte-Carlo modelling
I will now present the numerical side of the models I have exposed so far. In the same
manner as before, the goal of these methods is to make a modular model in order to extract
the relevant physical ingredients for each experimental scenario. The generic spirit of the
following subsection will be simple: since we have many different atoms with many different
velocities and trajectories, we will solve the evolution equation for each simulated atom. We
will thus have the following workflow for each atom:

• Generate a random initial velocity norm from the 3D Maxwell-Boltzmann distribution
|v|.

• Generate a random velocity vector (vx, vy, vz) respecting the total velocity vector. This
will also set the Doppler shift through the longitudinal velocity vz.

• Choose a random starting position (x0, y0) at the edge of the computational window.

• Choose a random end position (x1, y1) at the edge of the computational window.

• Solve the evolution of the atom over this trajectory for a high intensity and low intensity
to extract both linear and non-linear susceptibilities: χ(3) ≈ χhigh−χlow

|Ehigh|2 , χ(1) ≈ χlow.

This workflow is summarized in the left pannel of fig.3.33.3. The initial positions of the atoms
are highlighted in pink, with their velocity vector v⃗1 and v⃗2. The trajectory across the beam
is in dashed lines. We then extract the overall response of the medium by averaging over the
velocity classes and the atoms.
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Fig. 3.4 Evolution of the non-linear coefficient n2 and saturation intensity IS as
a function of beam waist size. The points in blue represent the numerical model,
and in orange we have the experimental points. The area in the corresponding color
represent the 1σ confidence interval. Both sets of data are fitted using a power law
model to extract trends in the variation of these quantities.

The choice of the trajectories is crucial since a proper choice of probability has a great
impact on convergence speed of stochastic methods. With this in mind one might question
then the relevance of starting all atoms on the edge of the computational window, and not
with atoms at random positions in the window. We choose this distribution in order to cover
all available trajectories across the beam, and because only at the edge of the computational
window can we safely assume that the atoms are in their ground state: if we were to pick
an atom’s initial position within the beam, defining the initial state of the atom would be
challenging. Finally during the averaging process, we will average the response at different
times and for different initial positions. In this sum, it will be as if we had solved for different
realizations with random initial positions within the computational window.

While this approach might seem infeasible in practice due to its "brutal" computational
complexity, recent advances in modern high performance languages like Julia [8787] and hardware
make it tractable in a reasonable time [55].
The technical implementation details will be discussed in Appendix AA. We will now have
a look at the results of this study concerning the two critical quantities in our context of
fluids of light: the non-linear index and the saturation intensity that describe the strengh of
photon-photon interactions.

3.3.3 Non linear index n2 and saturation intensity Isat

In order to study the effect of transit on the critical quantities of our experimental platform, we
test our models with respect to a measurement of the non-linear coefficient n2 and saturation
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AOM
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Delay Reference

Time

Reference

Signal

Fig. 3.5 Time resolved off-axis interferometry setup. The signal and reference
beams can be gated using either the blue (resp. orange) Acousto Optic Modulators
(AOM). The interference signal is imaged at the output of the cell using a camera. In
inset, the sequence of the experiment in time-domain is represented: if the reference
is gated much faster than the signal beam, one can sample the dynamics of the
system.

intensity IS for different beam waist sizes. We chose this tuning knob since this is the one of
the most accessible (and controllable) parameters that allow to change the transit rate. We
are interested in these quantities since the total interaction term is guided by the non-linear
index of refraction ∆n = n2

I
1+ I

IS

.

To this extent we devise a simple experimental setup as represented in fig.3.53.5. Since
we want to characterize the response of the medium, we only need a Rubidium cell, and a
reference arm in Mach-Zehnder configuration. Using the off-axis interferometry technique
(described in details in Appendix AA), we measure the non-linear dephasing ∆ϕ, and from
there, extract both the non-linear index n2 and saturation intensity. Thanks to the time
gating of the beams, we are also able to describe the time response of the medium. This time
resolved measurement will be described in the next subsection. The Rubidium cell is a pure
87Rb cell of length L=10 mm. The short cell allows to not worry about geometrical effects
such as self-defocusing when measuring n2 (we fall within the thin medium approximation
[2121]). The temperature is controlled with heating Kapton tapes, and monitored fitting the
low power transmission spectrum when scanning the laser frequency across the D2 line (see
Appendix AA for the details). The temperature is set at 150 ± 2°C. The laser detuning is
set to -2.2 GHz with respect to the crossover resonance between the F = 3 → F ′ = 2 and
F = 3 → F ′ = 3 of 85Rb, on the D2 line. The usual reference point for laser detuning on
the D lines of Rubidium is the line center, however it is experimentally more accurate to
measure the detunings from a crossover resonance in the saturated absorption spectrum as it
is a spectrally narrow feature. The optical power is scanned between 0 and 560 mW. Looking
at the results presented in fig.3.43.4, we find excellent agreement between our ab-initio model
and the experimental results. By fitting the waist dependence of the non-linear coefficient n2
and the saturation intensity IS with a power law n2 ∝ wp

0, we can compare the qualitative
behavriors of these quantities. When choosing the frequency of the laser to optimize the
losses to interaction ratio, it is challenging to get an intuition in which scenario we want to
be in:

• Large detuning → high saturation intensity, low n2, low losses and high intensity /
small beam waists.
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Fig. 3.6 Left: temporal onset of the non-linear index variation ∆n for different
delays between pulse and reference. The curve in blue represents the response
at a detuning of -5.5 GHz, in orange is the response at -9.6 GHz. Each curve is
fitted with an exponential response function with characteristic time τ such that
∆n ∝ 1 − e−δt/τ . Right: fitted response time τ for different detunings. The shaded
area represents the 1σ confidence interval.

• Small detuning → low saturation intensity, high n2, high losses and low intensity /
large beam waists.

We find that the non-linear coefficient has a linear dependence on waist size with a fitted
power-law exponent p = 1.03 ± 0.08. Conversely, the saturation intensity IS displays an
inverse dependence with a fitted exponent of p = −1.10 ± 0.15. We find thus that the product
n2IS is a constant. This represents the intrinsic maximal non-linear index variation that
can be generated by the atoms, and it is ultimately the figure of merit of the interaction
strengh. Taking this equality into account allows to drastically reduce the parameter space
thus allowing for easier working point identification. Furthermore, these results highlight that
the ballistic transit of atoms across the beam is the dominant effect to describe the interaction
parameter. Essentially, as the beam size increases, the atoms will spend a longer time inside
the beam, and will be more saturated. The counterpart being that they accumulate more
coherence thus increasing n2. This is quite intuitive when we think that the total linewidth of
the transition is γ = Γ +Γt

2 . The center line saturation field is proportional to ℏγ
µ23

[3535] thus as
Γt ∝ 1

w0
, we expect this inverse dependence. More surprising maybe is the fact that transit

alone describes well this dependence, even when Γt ≪ Γ which is generally the case: for a 1
mm beam at 150°C, Γt/Γ = 8 × 10−3, and the ballistic mean free path is on the order of 8
µm at 400K [3535], so one could expect some effect of the collisions (which so far have been
completely ignored).
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3.3.4 Time-resolved response of the atomic medium

Another application of the off-axis interferometry setup is the time resolved operation of the
setup. This allows to measure the characteristic time of the medium response. To this order,
we measure the non-linear index of refraction ∆n at different times by adjusting the delay δt
between the signal pulse and reference pulse as shown in the inset of fig.3.53.5. We chose a 100
ns wide pulse for the reference in order to maintain sufficient exposure on the camera: we
want the fringes pattern to be above the noise floor of the camera. We find that the response
of the medium follows an exponential onset, which can readily be fitted in order to extract
the characteristic response time of the medium τ which can also be interpreted as the time
needed to reach the atomic steady state. We find that the typical atomic response times are
in the µs range, giving a limit bandwidth for the atomic medium steady state in the MHz
range. Since we operate most often in the continuous regime, the response time of the vapor
is not as relevant as a interpreting it as low-pass filter: effects whose frequency are lower than
1/τ will have known a medium that can be assumed to be constant.

It is also useful as it allows to measure the characteristic "memory time" of the medium
which is of particular interest in the context of the transit broadening of optically induced
defects (see chap.44).

3.4 Going beyond: electromagnetically induced transparency

We have described in the previous subsections, ways to modulate the atomic response using
optical pumping. However, this is done in an incoherent way, and is limited practically since
we can only modify the linear response reliably with this technique. There is however means
to achieve much stronger non-linear response using Electromagnetically Induced transparency
(EIT) [4242], even at the few photons level [4343]. In this case, we use interferences between the
different transition probabilities in order to strongly enhance the coherence of the atoms
using a probe and control field.

3.4.1 EIT in the lambda scheme

Let us start with the typical level schemes considered in Rubidium vapors, the Λ (lambda)
and N type schemes. These are the schemes already presented in fig.3.23.2, except that in
this case we will work much closer to resonance. The typical detunings presented before
were in the GHz range, here we will work at a few Γ from the transitions or detunings in
the 10 MHz range. We thus need to modify a bit our treatment and adapt our definitions.
This is represented in fig.3.73.7. The advantage of these near-resonant drives, is that we can
greatly simplify the tedious treatment presented in the previous sections and obtain analytical
expressions for the response of any lambda and N level schemes. The response of such systems
has been researched extensively, especially in Rubidium vapors in previous works as it is
of peculiar interest in the context of quantum memories (store light as collective atomic
excitations i.e polaritons) [6666].
I will thus directly give the relevant results for the atomic susceptibilities. For the Λ type
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a) Lambda-level scheme

b) N-level scheme

Fig. 3.7 The different definitions in the context of EIT. In the lambda scheme,
there is a strong control field (as indicated by the thickness of the arrow), and a
weaker probe beam. The detuning ∆ is called the one-photon detuning, while the
detuning δ is the two-photon detuning. For the N-level scheme, we have two control
field. A strong field drives the |2⟩ → |3⟩ transition, and another very weak control
field drives the |1⟩ → |3⟩ transition. The remaining definitions are the same as in
fig.3.23.2.

system, the steady state (at first order in probe power) atomic coherence reads:

ρ
(1)
31 = Ω13

∆− δ − iΓ
2 + |Ω23|2

δ+iγ21

. (3.30)

We notice directly the two familiar resonances involved in the EIT profile:

• A wide resonence corresponding to the |1⟩ → |3⟩ transition highlighted in blue. Its
width is controlled by the bare linewidth of the transition Γ/2.

• A narrow transparency window highlighted in red whose width is controlled by the
total dephasing rate between the two ground states |1⟩ and |2⟩.

3.4.2 EIT in the N scheme
For the N-type, we get from [9292]:

ρ
(1)
31 = iΩ13 (|Ω24| + 4γ̃21γ̃41)

2 (γ̃31|Ω24|2 + γ̃41|Ω23|2 + 4γ̃21γ̃31γ̃41) (3.31)
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where γ̃21 = γ21 − i(∆31 −∆32), γ̃31 = γ31 − i∆31 and γ̃41 = γ41 − i(∆31 −∆32 +∆42). In the
context of hot vapors, the decoherence rates γij are including a pure dephasing rate taken to
be the transit rate of the beam driving the |i⟩ → |j⟩ transition:

γ31 = Γ3 + 2√
π

max( u

w23
0
,
u

w13
0

)︸ ︷︷ ︸
γϕ

3

γ32 = Γ3 + 2√
π

max( u

w23
0
,
u

w13
0

)︸ ︷︷ ︸
γϕ

3

+ 2√
π

u

w23
0︸ ︷︷ ︸

γϕ
2

γ21 = γϕ
2

γ42 = Γ4
2 + 2√

π

u

w24
0︸ ︷︷ ︸

γϕ
4

+γϕ
2

γ41 = γ42

(3.32)

where u is the most probable speed and wij
0 is the waist of the beams driving each transition.

Note that we consider here a situation where all of the beams overlap spatially.
Now we already see the interest of the EIT setup since the different coupling fields

will allow to spatially or temporally pattern the response of the medium. However, we
are especially interested in the non-linear response of the atoms, thus we need to look at
further powers of the expansion. More specifically, we need to look at the third power
since we want to be able to recover the third order non-linear susceptibility. We recall the
expression of the electric susceptibility χ = 2Nµ13

ϵ0E13
ρ31, and the expansion of the susceptibility

χ = χ(1) + 3χ(3)|E13|2 as defined in eqs.1.41.4 and 3.63.6. Note here that we consider the electric
field amplitude E31 driving the |1⟩ → |3⟩ transition (i.e as the "fluid" / probe beam). Going
back to the lambda scheme, we get the following expression for the non-linear susceptibility:

χ(3)(∆, δ) = 2µ2
23µ

2
13N

3ϵ0ℏ3
2
∆

1
|Ω23|2 + (γ31 + i2∆) (γ21 − i2δ) . (3.33)

Finally, in the N scheme, the non-linear susceptibility reads:

χ(3)(∆31, ∆32, ∆42) = − iN |µ13|4

12ϵ0ℏ3
2γ21 + Γ3

2
γ21Γ3

1
F

( 1
F

+ 1
F ∗

)
. (3.34)

Where F is defined as follows:

F = γ̃31 + |Ω23|2

4
(
γ̃21 + |Ω24|2/4

γ̃41

) (3.35)

In the case of the N-level scheme, it is challenging to form an intuition, and we anticipate
that the susceptibility will have a complex structure, however we make some reasonable
assumptions that will reduce the parameter space. We want to keep the two-photon detuning
close to zero in order to maximize the interference between the two-lambda level schemes.
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Ideally, we would like to find the regime where the sign of the interactions can be switched
by varying the Rabi frequencies (i.e intensity) of the various beams to allow for both spatial
and temporal patterning of the interactions and potentials. For this purpose we draw sets
of "maps" for different combinations of the parameters near resonance. We choose typical
experimental values for the temperature of the cell T=140°C, leading to an atomic density of
N ≈ 5 × 1019 atoms/m3. We first explore the detuning dependance of the indices by plotting
eq.3.343.34 for three values of the fluid detuning ∆13 ranging from -10 MHz to 10 MHz. We then
vary continuously the detunings from the two control and signal fields ∆23 and ∆24 between
-50 MHz and 50 MHz. The results are presented in figs.3.83.8, 3.93.9 and 3.103.10. Let us first look at
the limiting cases:

• ∆24 ≫ Γ3: a transparency window is opened at the the fluid detuning ∆13 = ∆23. This
is the typical EIT scheme where the two-photon detuning is brought to zero on the
lambda level scheme of the D1 line. When scanning the control beam frequency, we
clearly see the transparency window highlighted in red in figs.3.83.8, 3.103.10 and 3.93.9 shift
following ∆23.

• ∆24 ≈ 0: when the signal beam is brought closer to resonance, the |2⟩ → |4⟩ transition
on the D2 dresses the lambda scheme of the D1 line [3535]. This dressing is strongly
indicated by the avoided crossing between the red line ∆13 = ∆23 and the ∆24 = 0 line.
One can interpret the disappearance of the transparency window at the ∆24 = 0 as a
consequence of the AC Stark shift induced that shifts the energy of the ground state
|2⟩ thus destroying the constructive interference between the |1⟩ → |3⟩ and |2⟩ → |3⟩
transitions.

Looking at what happens when changing the signal field detuning ∆24, one might think
that its interest is limited since it kills EIT on resonance, however looking at what happens
when we vary the intensities of the beams i.e the different Rabi frequencies, we see that it
provides a useful tuning knob. The Rabi frequencies map is presented in fig.3.113.11.

The same observables are presented as previously, as a function of the Rabi frequencies
the two control and signal beams Ω24 and Ω23. We see that one can switch the sign of both
the linear and non-linear indices n1 and n2 by changing Ω24 or Ω23.

More quantitatively, one can note that the resulting non-linear index n2 is one order of
magnitude larger than the typical highest values of 10−8 m2/W reached in our experiments.
Furthermore, within the transparency window, it is possible to virtually eliminate losses. It
is not trivial to be able to find a region of the parameter space allowing some decoupling
of the control of n1 and n2, however more careful exploration and a finer treatment of the
atomic susceptibility should allow to identify relevant working points.

Another critical point is the dephasing rate. Because EIT effects are an interference effect
between transitions, dephasing rates will hinder the contrast of these interferences. For this
we carry on the same analysis by plotting eq.3.343.34. We place ourselves in the most favorable
regime of fig.3.83.8 i.e at large signal beam detuning ∆24 = 40 MHz.

We can extract great physical insight from the study of the variation of the susceptibilities
with the decoherence rates γ21 and γ31. Since the total decoherence rate γ31 is limited by
the the natural linewidth of the transition Γ3, we want to study the influence of the pure
dephasing rate γϕ

3 . On the other hand, γ21 is already a pure dephasing rate so we will carry
on our study over γ21 and γϕ

3 . The behavior between the linear (top rows of figs.3.83.8, 3.93.9, 3.103.10
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Fig. 3.8 Susceptibilities as a function of the signal and probe detuning ∆24 and
∆13. On the top panel, the linear index at the probe frequency n1(ωp) is represented
with the real part of the index on the left, and the imaginary part on the right.
On the bottom panel, we have the same representation for the non-linear index
of refraction n2(ωp). The susceptibilities are here represented with a control field
detuning ∆23 = 0 MHz. In red, we hightlight the transparency window opened by
the control field at the probe detuning ∆13 = ∆23. Below the pannels, the slider
bar indicates the control detuning ∆23.
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Fig. 3.9 Susceptibilities as a function of the signal and probe detuning ∆24 and
∆13. On the top panel, the linear index at the probe frequency n1(ωp) is represented
with the real part of the index on the left, and the imaginary part on the right.
On the bottom panel, we have the same representation for the non-linear index
of refraction n2(ωp). The susceptibilities are here represented with a control field
detuning ∆23 = 10 MHz. In red, we hightlight the transparency window opened by
the control field at the probe detuning ∆13 = ∆23. Below the pannels, the slider
bar indicates the control detuning ∆23.
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Fig. 3.10 Susceptibilities as a function of the signal and probe detuning ∆24 and
∆13. On the top panel, the linear index at the probe frequency n1(ωp) is represented
with the real part of the index on the left, and the imaginary part on the right.
On the bottom panel, we have the same representation for the non-linear index
of refraction n2(ωp). The susceptibilities are here represented with a control field
detuning ∆23 = −10 MHz. In red, we hightlight the transparency window opened
by the control field at the probe detuning ∆13 = ∆23. Below the pannels, the slider
bar indicates the control detuning ∆23.
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Fig. 3.11 The susceptibilities are represented for a resonant probe / fluid ∆13 = 0
MHz, control field ∆23 = 0 MHz and a ∆24 = −20 MHz detuned signal beam.
Variation of the indices of refraction (linear and non-linear) with the control and
signal Rabi frequencies. Playing with the balance of these two Rabi frequencies
allows to change signs of the interactions.



78 Chapter 3. Atomic medium characterization

Fig. 3.12 Effect of the decoherence rates on the different components of the
susceptibility. On the top line, the linear susceptibility is depicted as a function
of γϕ

2 the pure dephasing rate between the two ground states, and γϕ
3 the pure

dephasing rate of the excited state of the probe (fluid) beam. On the bottom panel,
the non-linear index is represented (in log scale).
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and 3.113.11) and non-linear (bottom row of figs.3.83.8, 3.93.9, 3.103.10 and 3.113.11) indices is quantitatively
different: the linear index only varies with γ31 while the non-linear index depends on both
γ31 and γ21 with a strong dependence on the latter. The lower the decoherence rate γ31
between ground and excited states, the higher the linear index, both real and imaginary
parts. The linear index of refraction originates from the "main" lambda scheme of the atomic
structure considered i.e the |1⟩, |2⟩ and |3⟩ levels. Since the decoherence rate γ31 will govern
the lifetime of the atomic coherence ρ31, it is no surprise that low decoherence rates will
lead to stronger atomic response. Since the linear index describes the leading order of the
atomic response, it is not surprising that the decoherence between the two ground states γ21
does not play a role. For the non-linear index however, the most impacting parameter is the
decoherence rate γ21 between the two ground states. Since EIT is a direct consequence of the
interferences between the transitions within the D1 and D2 lines [3333], the dephasing induced
between the two ground states quickly destroy these interferences. This effect is strong since
an order of magnitude change in γ21 yields three orders of magnitude change in Re(n2).

In hot atomic vapors, these decoherence terms are dominated by transit rate, thus going
towards a cold atoms setup could potentially yield significant improvements in terms of
non-linearity and tunability, at the expanse of experimental simplicity. One can also enhance
further the response by going to the Rydberg regime using the giant electronic moment
provided by Rydberg atoms [8686] in a ladder scheme.

Conclusion
In this chapter, we have detailed how the atomic structure of Rubidium induces photon-
photon interactions. We have presented both analytical and numerical methods in order to
understand, predict and measure the atomic response within our medium, enabling control of
both the linear and nonlinear indices of refraction. Finally, we presented a possible extension
to electromagnetically induced transparency in order to reach stronger interactions and finer
control of the atomic response. Using this control on the atomic response, we will now probe
the superfluid behavior of a fluid of light in a scattering experiment on a defect beam.





Chapter 4

Superfluidity of light

One of the most striking feature arising from the effective photon-photon interactions induced
by the atomic medium is the emergence of a superfluid behavior for light, consequence of
the existence of a spectrum of phononic collective excitations called Bogoliubov excitations
[3535; 3636; 7272; 7373] (see chap.11). However, a complete description of superfluidity in the context
of quantum fluids of light remains elusive. Over the last ten years, there have been several
seminal works investigating superfluidity in experiments or from a theoretical point.

4.1 Superfluid transition and critical velocity study

One of the main questions is the characterization of the critical velocity for superfluidity
above which the fluid of light will behave as a classical fluid. It has been known for decades
that the upper bound fixed by the Landau criterion greatly overestimates this critical velocity.
There have been theoretical efforts in order to yield analytical forms, however limited to
special geometries, or special types of nonlinearities. Recently, a series of two papers by
J.Huynh et al. [4646; 4747] presents a set of general analytical formulae yielding critical velocities
in 1D and 2D for arbitrary defect geometries and several generic types of nonlinearities. This
lead to an intense and stimulating exchange between our groups the goal of this chapter is to
present the experimental realization probing the superfluid transition in order to compare
our experimental platform to this theoretical framework.

4.1.1 Starting point : the Landau criterion

I will first present the canonical approach to superfluidity developed by Landau in his
historical work of 1941 [5757]. Let us consider the physical situation of a fluid obeying the
Gross-Pitaevskii equation 1.301.30. We have shown how we can obtain a dispersion relation 1.311.31
for the small amplitude fluctuations on top of some static background. Now let us depict
some scattering process between the fluid and a defect. For convenience, we will consider
that the fluid is moving at a velocity v, and that the defect is immobile. Assuming the defect
is small enough to remain within the realm of the Bogoliubov approximation, if there is
some scattering between the defect and the fluid, then we this will nucleate some excitations
within the fluid. For the sake of simplicity, let us assume that we emit a single excitation
of momentum p. It will have energy ε(p) = ℏω(p) with ω(p) following 1.311.31. In the fluid
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reference frame, the total energy will thus be Doppler shifted as follows [8383]:

ε′(p) = ε(p) + p · v. (4.1)

Now, in order for this process to happen, it needs to be energetically favorable for the fluid
thus ε′(p) < 0. This straightforwardly put a lower bound on the velocity norm vc for this
condition to be realized as follows:

vc = min
p
ε(p)
∥p∥

(4.2)

Now, in the case of the Bogoliubov dispersion, we readily see that this minimum is realized
at low wave-vector where ε(p)

∥p∥ ≈ cs. Thus in first approximation we may say that the critical
velocity under which no excitations might be nucleated is cs. This is precisely the so-called
Landau criterion for superfluidity. Since no excitations can be nucleated under the critical
velocity, the fluid will not display any viscosity since it cannot dissipate energy. Thus a
superfluid will not interact with small defects. We anticipate that this Gedankenexperiment
might be far from the reality in an actual Bose-Einstein condensate or light superfluid since
a lot of other mechanisms might induce dissipation and reduce this critical velocity, however
it is a good concepetual starting point to understand why excitations are forbidden. Note
that in this argument, the "size" of the defect is critical and has so far only be very loosely
defined. I will come back to this in the following sections in order to rigorously quantify the
defects in terms of relative energy scales.

4.1.2 Scattering on a gaussian defect
The simplest experiment one might want to do is to look at the scattering on a gaussian defect.
In this experiment represented in fig.4.14.1, we devise a defect using a small gaussian beam to
optically pump the vapor on the D1 line of 87Rb according to the scheme presented in the last
chapter 33. The defect beam is a small gaussian beam of variable size but the typical waist wd

0
is around 200µm. The laser source is an amplified Toptica TA ProToptica TA Pro ECDL. The optical power
of the defect can be adjusted up to 1.2 W. The fluid is a wide gaussian beam of waist wf

0 =
2.23 mm on the D2 line generated by a MuQuans SML780MuQuans SML780. This diode laser is amplified with
an Erbium doped fibered amplifier that delivers up to 1.3 W of optical power. This setup is
almost identical to the experiment of [7272]. We use a 10cm long isotopically pure 87Rb, heated
to approximately 140°C. We use detunings of between -5GHz and -3GHz (relative to the D2
line center), corresponding to transmissions between 50% and 10%. The velocity of the fluid
is controlled via a mirror whose plane is imaged in the middle of the cell in order to be able
to change the angle of the beam without changing its position. This mirror is actuated using
piezo stepper screws (Thorlabs PIA13Thorlabs PIA13). We can image both the fluid and defect beams at
the input and output of the cell in order to control the experiment. Finally, as usual we have
a reference arm allowing to retrieve the phase of the fluid beam. We set up the detuning
of the defect beam such as to create a repulsive defect, and stabilize its size by being in a
slightly self-focusing regime. For this we place ourselves at around ∆d = -500 MHz of the D1
line center. A typical measurement is to scan the velocity of the fluid beam to try and cross
the superfluid transition. We anticipate naively that under the critical velocity, "nothing will
happen", and over the critical velocity "something will happen". Of course the definition of
these terms will be crucial, and thus I will detail them in the next subsection.

https://www.toptica.com/products/tunable-diode-lasers/amplified-lasers/ta-pro
https://www.muquans.com/product/sml-and-usml-laser-series-high-power-narrow-linewidth-laser-system/
https://www.thorlabs.com/thorproduct.cfm?partnumber=PIA13
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Fig. 4.1 Simplified experimental setup of the defect scattering experiments. Each
laser adresses one of the D lines: the Toptica defect beam adresses the D1 line at
795 nm and the MuQuans adresses the D2 line for the fluid at 780nm. The velocity
of the fluid is controlled using a piezo actuated screw on the rightmost mirror. A
reference arm allows to monitor the phase, and two cameras allow to monitor the
fluid at the output of the cell, and the defect after it has passed through the cell
(in the counter propagating geometry here). The defect beam is imaged at the
output of the cell (entrance of the cell for the defect) using a mirror in the image
plane of the fluid imaging 4f system. Power of the defect beam is controlled with a
motorized λ

2 waveplate. On the inset, we display a sample image showing the fluid
beam waist (in red) relative to the defect beam waist (in blue).

4.1.3 Relevant observables
Several observables have been used in the previous works to try and characterize the breakdown
of superfluidity in quantum fluids: thermometry [2727], nucleation of vortices, drag force
measurements [7272] or scattering measurements [88]. Since thermometry is poorly defined in
our system (as has been explained in chap.11), we are left with the remaining techniques.
We can divide these measurements in two big categories: in situ observables like drag force
or nucleation of vortices, and indirect observables like scattering measurements. I will now
detail our experimental implementations of these techniques.

Drag force measurement Let us assume a local index of refraction change U(r). I use this
notation as in the context of fluids of lights, a local index of refraction change will equate
to some local potential U . We can formally derive the force felt by an electromagnetic field
across this index of refraction change [1515; 6161]. If the electric field is denoted as E(r), then
the drag force is:

FD ∝ −
∫

∇U(r)|E(r)|2 (4.3)

Assuming we have some way to measure the potential field imprinted with the defect beam
(which we have through phase measurement, and that will be detailed in the next section),
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Fig. 4.2 Sample examples of the different observables. Each observable is labeled,
the drag force is calculated using the potential profile V and the formula in the
white frame. The access to the phase allows to spot the vortices. Vortex charge l is
highlighted with the circles color. Scattering is computed by Fourier transforming
the density fluctuations δρ and the phase ϕ. The two scattering rings of forward
and backwards scattering are represented in dashed white lines. After Helmholtz
decomposing the √

ρ∇ϕ field, one can extract the compressible and incompressible
energy spectra, as well as the total energies.
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we can then numerically compute this quantity.

Vortices Using the phase measurement made possible by off-axis interferometry, one can
compute the circulation of the phase in order to detect vortices. For a vortex field φ(r) of
charge l ∈ Z, we have:

C =
∮

A
dr⊥φ(r⊥) = 2lπ (4.4)

where A is any closed contour enclosing the vortex singularity. The exact numerical procedure
allowing a fast computation of this quantity is detailed in Appendix AA.

Scattering In order to study the scattering mechanisms at play when the fluid interacts
with the defect, we need to look at the Fourier transform of the field in order to gain access
to the spatial spectral density which is ρ(k⊥) = |F(√ρeiϕ)|2. Note here that we use the
fluctuations field δρ retrieved from taking the difference between the fluid with and without
the defect beam on. We could also directly image the Fourier plane of some lens, however as
the signal has an extremely broad dynamic range (10 to 14 order of magnitudes) in the Fourier
domain, reconstruction through this method usually yields much better results as it allows to
circumvent the limited dynamic range of a typical camera. In the Fourier domain, we expect
symetrical structures like a Rayleigh ring [3838] reflecting the momentum conservation during
the scattering properties.

Hydrodynamics observables: compressible and incompressible flows From the phase field
ϕ(r⊥) and the density field ρ(r⊥) ∝ |E(r⊥)|2, one can define the density weighted velocity
field u(r⊥) =

√
ρ(r⊥)∇ϕ(r⊥) = √

ρv(r⊥). One can then decompose this field in rotational
and irrotational parts using a Helmholtz decomposition [11]:

u(r⊥) = ∇φ(r⊥)︸ ︷︷ ︸
ucomp

+ ∇ × A(r⊥)︸ ︷︷ ︸
uinc

(4.5)

where φ(r⊥) is a scalar field and ∇φ(r⊥) thus constitutes the irrotational part of u(r⊥).
Similarly, A(r⊥) is some vector potential and ∇ × A(r⊥) constitutes the solenoidal or
rotational part. We can then identify the compressible part to the irrotational part, and
the incompressible part to the solenoidal part. From the classical vector analysis theorems,
one can prove that for any sufficiently fast decaying field (which is assured through the
regularization of the veclocity field ∇ϕ(r⊥) by the density), we have the following expressions
for φ and A:

φ(r⊥) = 1
4π

∫
dr′

⊥
∇u · (r′

⊥)
|r⊥ − r′

⊥|

A(r⊥) = 1
4π

∫
dr′

⊥
∇ × u(r′

⊥)
|r⊥ − r′

⊥|

(4.6)

These are familiar formulae from classical electromagnetism textbooks. At first, it might
be surprising to look for an incompressible rotational flow within the normalized velocity field
since u(r⊥) ∝ ∇ϕ(r⊥). However, this decomposition will on the contrary allow to extract all
the singularities of the field as for example vortices.
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Compressible and incompressible kinetic energies From the hamiltonian in density-phase
representation (see eq.2.462.46) we can decompose the energy of the system in the following
components [2222]:

EK ∝
∫

dr⊥ρ(r⊥)|v(r⊥)|2

EP ∝
∫

dr⊥ρ(r⊥)V (r⊥)

EI ∝ g

2

∫
dr⊥ρ(r⊥)2

EQ ∝
∫

dr⊥

∣∣∣∣∇√ρ(r⊥)
∣∣∣∣2

(4.7)

where EK is the kinetic term, EP is the potential energy, EI is the interaction energy and EQ

is the energy deriving from the quantum pressure term (eq.1.141.14). From this, we can define
trivially the compressible and incompressible kinetic energies as follows:

Einc =
∫

dr⊥|uinc|2

Ecomp =
∫

dr⊥|ucomp|2.
(4.8)

It means that the incompressible energy will start to be non-zero as soon as there are
singularities i.e vortices. On the other hand, the compressible energy will quantify the
phononic excitation of the fluid.

There is now the question of the relevance of each observable in the physical processes
we want to look at namely: which is the observable which will display the most dramatic
change across the superfluid transition ? On paper, we anticipate that emergence of vortices
in the wake of the defect is a definite proof of the loss of superfluidity. However, we look
at our fluid of light at a finite time, and thus precisely identifying the transition velocity
might prove challenging since close to the transition, vortices take longer and longer to
detach from the defect. Furthermore, close to a strong repulsive defect, the fluid density
is zero, thus complicating further the identification of vortices. In the same fashion, the
scattering signal has been used in a lot of studies, but the very strong zeroth order often
makes quantitative exploitation of these spectra difficult in the experimental setting. We will
thus present a comparison of these different observables in numerical simulations in order to
try and distinguish in a controlled environment where to focus our attention.

4.1.4 Numerical analysis
In order to simulate the scattering of the fluid on a gaussian defect we use the split- step
spectral scheme presented in chap.11. We develop a numerical framework in Python NLSE
whose implementation is detailed in Appendix AA.
We set up beams, defect and fluid which have waists wd

0 and wf
0 . The fluid beam has a gaussian

profile and the defect beam has a Lorentzian profile. This is in order to take broadening effects
due to the temperature of the vapor (see next section). The interaction strength for the fluid
is controlled by the non-linear index n2 and the fluid power Pf . The strength of the defect is
controlled by the local index of refraction change δn(r⊥). In first approach, the backreaction
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Fig. 4.3 Typical realization of a simulation run for the parameters described in
the main text. The Mach number is 0.78. The phase is displayed renormalized
by the phase without the defect. Vortices are represented with red and blue dots
(with resp. charge 1 and -1). The density of the fluid shows characteristic dips
indicating the vortices position, as well as a bunching of density in front of the
defect. Finally, in the bottom panel, the scattering spectrum is represented in the
fluid’s referential. The scattering occurs in a ring-like structure, indicative of the
Rayleigh type scattering.

of the fluid on the defect is not modelled. We also take into account linear absorption through
the parameter α. The goal is to remain as close as possible to the experimental parameters in
order to easily compare experimental results to the numerics. We solve the evolution of the
fluid through the cell for different initial fluid velocity by changing the fluid’s initial phase.
For each realization, we compute all of the aforementioned observables. We find the results
of a typical run presented in figs.4.34.3 and 4.44.4.

The simulated setup is the following:
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Fig. 4.4 Comparison of the different observables for different Mach numbers. In
the drag force pannel, the drag force and total scattering signals are displayed,
normalized to their maximal value. In the energies panel, the total compressible
and incompressible energies are displayed. We note that the compressible energy
can be almost perfectly superposed with the drag force. The incompressible energy
on the other hand displays a dependance that is very Similar to the vortex number
(bottom panel).
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• Beam waists wd
0 = 110 µm, wf

0 = 2.3 mm

• Non-linear index n2 = −4.4 × 10−9 m2/W

• Fluid power Pf = 1.0 W

• Defect height δn = −10−4

• Cell length L = 10 cm

• Linear absorption coefficient α = 20 m−1

• Saturation intensity Is = 3.28 W/cm2

As mentioned before, these parameters replicate the parameters measured in the experiment.
These parameters can be abreviated by defining the following relevant adimensional quantities:

• δn
⟨∆n⟩ the ratio of the defect’s height to the interaction strength. For the previous
parameters, this is 1.7.

• z
zNL

the total evolution time with zNL = 1
k0⟨∆n⟩ . For the previous parameters, this is

47.

• wd
0

⟨ξ⟩ and wf
0

⟨ξ⟩ designating the sizes of the beam in units of the average healing length over
the cell ⟨ξ⟩ =

〈
1

k0
√

∆n

〉
. For the previous parameters, they are respectively 6.8 and 142.

• β = v
cs

with cs =
√

⟨∆n⟩ the sound velocity is the Mach number.

Essentially, we express all relevant quantities in the natural units of the system. From this,
what can we extract ? A value of the defect height δn

⟨∆n⟩ = 1.7 tells us that the defect
will be on the order of the interaction energy. This means that while the defect is not
perturbative, it is not so strong that its mere presence might break superfluidity around
it through a quench process. The adimensional time is z

zNL
= 47, meaning that while we

study the transition at a finite time, and not at infinite time, the evolution time is still
significant. The typical maximum evolution times that we can reach for a 10 cm cell are on
the order of z

zNL
= 200. Finally, we still want to work within the Bogoliubov theory, thus

the spatial scales need to be (much) bigger than the healing length ξ. With wf
0

ξ = 142 we

can safely ignore finite size effects. In the same fashion wd
0

ξ ≈ 7 ensures that the defect is
not too small while remaining much smaller than the fluid, allowing to ignore boundary effects.

The results are presented in figs.4.34.3 and 4.44.4. Let us start with the phenomenology of
a single realization presented in fig.4.34.3. From the density plot, we can clearly see the pair
of opposite signed vortices being nucleated at the poles of the defect. To conserve angular
momentum, only pairs of opposite signed vortices can be emitted. In the phase plot, their
presence can be checked by computing the circulation of the phase. Note here that we consider
the phase renormalized by the phase of the fluid without the defect (ϕ0). This allows to
remove the constant phase linked to the velocity field imprinted on the fluid, as well as the
gaussian phase due to the defocusing of the beam. Essentially, it simply means going in the
fluid’s reference frame. Similarly, we look at the fourier transform of the fluctuation field
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δρeiϕ, with the phase in the reference frame of the fluid. This allows to get the excitation
spectrum of the fluctuations. As the vortices appear, a complex scattering structure emerges
with the appearance of a typical ring-like structure in the forward scattering direction: the
Rayleigh ring [2323] originating of the scattering of the long wavelength phononic modes on the
comparatively small defect. By definition, there are no phononic modes under a wavelength
of ξ, thus most of the Bogolons have a wavelength on the order of or larger than the defect.
This typical symmetrical structure is especially visible at high velocities.

To go beyond phenomenology, we compare several realizations for various Mach numbers.
This is the subject of fig.4.44.4. Computing the drag force, we see that the drag force displays
an inflexion point at around β ≈ 0.5. We do not expect a very sharp transition as we look
at finite time, and two main factors limit the cancellation of the drag force: losses as well
as the fact that the defect in our case is turned on violently. As the fluid enters the cell, it
undergoes an interaction quench, but it also undergoes a potential energy quench with the
sudden appearance of the defect beam. Furthermore, experimentally, we see that as the defect
gets dragged by the fluid after the transition, this complicates further the measurement of the
drag force when measuring it at the output plane of the cell. This is discussed further into
this chapter in section 4.34.3. The drag force correlates very well with the total compressible
energy on the top right. Looking at the incompressible energy however, we see a sharp
transition that correlates near exactly to the emergence of vortices. This is the strength of
the Helmholtz decomposition as it allows to discriminate between the regular irrotational
part, and the singularities. Now on to the scattering signal. Integrating the scattering signal
yields two important informations: since we are in the fluid’s reference frame, any population
outside the k⊥ = 0 mode will indicate scattering due to the defect. If we integrate over the
whole k-space, we will recover the amount of the fluid that has been scattered by the defect.ial
scattering displays a sharp cusp at the same Mach number as the other observables. From
this preliminary study, we can conclude that while drag force displays a "softer" transition,
the incompressible energy, total scattering and the vortex number all display very sharp
changes at the same Mach number strongly indicating the loss of superfluidity. We will thus
focus on these observables to try and extract some predictions for the critical velocity in our
system, especially the dependance in terms of the adimensional parameters described above:
height of the defect, and size. This will also allow easier comparisons to the analytical results
presented in [4646; 4747].

Looking at several realizations varying only the defect strength, we can extract several
important physical features. The different observables are presented in fig.4.54.5. We can
distinguish two qualitatively different regimes:

• When δn
⟨∆n⟩ < 1: in this case, the defect is "penetrable" meaning that the fluid enters

the defect. No observable display a sharp transition. While the incompressible energy
displays a marked increase at roughly β ≈ 0.8 for small defects, no vortices are emitted
suggesting that in this case, the loss of superfluidity is caused through other mechanisms.

• When δn
⟨∆n⟩ > 1: in this case, the defect goes towards the "impenetrable" limit where

the region inside the defect is forbidden to the fluid for all velocities. In this case, the
picture is quite different and all observables show a coinciding sharp transition. This
transition either corresponds to the emission of the first vortex pair, the sudden increase
of the incompressible energy, or the onset of scattering outside the k⊥ = 0 mode. The
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Fig. 4.5 Behaviour of the different observables for different defect heights. Top left:
incompressible energy. Top right: drag force. Bottom left: vortex number. Bottom
right: scattered signal. The defect height δn

⟨∆n⟩ is varied between 0.01 and 5.
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transition is the clearest in the vortex number, however actual experimental detection
might be challenging in noisy environment.

We can carry the same analysis when varying the defect size wd
0

⟨ξ⟩ . Keeping all other
parameters fixed, for a defect height of δn

⟨∆n⟩ = 1.7, we vary the defect size between 0.5ξ and
15ξ. We present the same observables in fig.4.64.6. As the defect size increases, the different
observables show a more and more marked transition, up until a certain point where the
fluid does not seem to display a sharp transition anymore. We can interpret that as the
defect becomes large (meaning wd

0 ≫ ξ), the fluid sees as smooth slope when approaching the
defect. Thus it would seem the fluid actually adiabatically follows the potential landscape
thus suppressing the sharp nucleation of vortices. While we might deduce from the vortex
number and incompressible energy that the superfluidity is not broken anymore, when we look
at the scattering signal, the evolution is continuous and follows the expected path [4646; 4747]:
the larger the defect waist, the sooner the superfluidity is broken. It goes to show that in
the same way as in the case of low defects ( δn

⟨∆n⟩ < 1), the superfluidity is broken by other
processes than vortex nucleation.

One can then try to estimate the critical velocity for superfluidity from these different
observables. Using the vortex number is straightforward since we can readily take the first
velocity where the vortex number is not zero. In the same fashion, detecting the first non-zero
point of drag force allows to retrieve the threshold velocity. The case of the incompressible
energy and scattering signal, it is more challenging since the transition is softer for low defects.
In this case we try to detect a cusp in the energy or scattering signal, corresponding to a
maximum of the second derivative of this signal. The results of this criteria are presented in
fig.4.74.7

We confirm in fig.4.74.7 that the higher / larger the defect the lower the critical velocity. All
criteria however do not predict the same critical velocity. In the case of the potential height,
the vortex number cannot be used below a certain height since it superfluidity in this case in
not broken by emitting vortices anymore. The incompressible energy and drag force are seen
to coincide nicely up to high defects where it seems that the discrete number of velocities
might trump calculation of the second derivative. Interestingly, the critical velocity infered
from the drag force displays a dip at around δn

⟨∆n⟩ as predicted in [4747]. The same remarks
apply to the critical velocity infered from the scattering signal in red, where it seems that the
discretization in velocity is more visible, as can be seen also in figs.4.54.5 and 4.64.6. The picture is
very similar for the defect size, where there exists regions where multiple observables coincide.

As a conclusion, we have identified four observables that indicate the superfluid transition,
and explored their behavior with respect to the defect parameters. Furthermore, these
observables do not make asumptions on the system geometry. This is especially important in
the case of the scattering signal where usually this signal is integrated on a carefully chosen
contour such as to improve signal to noise ratio [99]. We will now present the experimental
techniques used to measure the induced potential by the defect beam, something that is
critical to compute the drag force.

4.2 Measurement of the induced potential
A critical measurement in order to control our experiment is to measure the potential we
are able to produce with the defect beam. Recalling that the effect of the optical pumping
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Fig. 4.6 Behaviour of the different observables for different defect sizes. Top left:
incompressible energy. Top right: drag force. Bottom left: vortex number. Bottom
right: scattered signal. The defect height wd

0
⟨ξ⟩ is varied between 0.5 and 15.
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Fig. 4.7 Left: Variation of the estimated critical Mach number βc = vc
⟨cs⟩ with

defect height. Right: Variation of the estimated critical Mach number with defect
waist. The inset describes the observables from which this critical velocity was
infered. In blue, the velocity is infered from the zero of the drag force. In orange,
the maximum of the second derivative of the incompressible energy. In green, the
first velocity where the vortex number is non-zero. In red, the maximum of the
second derivative of the incompressible energy.
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induced by the defect beam is to locally modulate the index of refraction, we are naturally
tempted to use our phase imaging capability to measure directly the defect induced dephasing.

4.2.1 Defect dephasing
In order to measure the dephasing undergone by the fluid when interacting with the defect,
we use the now usual off-axis interferometry technique. Taking the difference between the
fluid’s phase without defect ϕ0(r⊥) and the fluid’s phase with defect ϕ(r⊥), we recover a
dephasing map δϕ(r⊥). One can then recover the index variation (assuming it is constant
along the cell) after unwrapping the phase:

δn(r⊥) = δϕ(r⊥)
k0L

. (4.9)

We anticipate that losses on the defect beam will induce a variation of δn(r⊥) with the
position along the cell z. However, this formula still yields the average index of refraction
variation which is ultimately the relevant quantity. Fitting the index of variation map δn(r⊥)
allows to recover the effective defect size. This procedure is presented in fig.4.84.8

As for sufficiently strong defects, the fluid is repelled out of the defect area, the contrast
becomes null in a small region at the core of the defect. This induces aliasing at the center of
the recovered phase. However, we found that this aliasing was easily erased when azimuthally
averaging and did not affect the fitting.

4.2.2 Transit : broadening and geometrical effects
Starting from a gaussian defect beam, one might expect that the resulting index of variation
change δn(r⊥) should also follow a gaussian profile. However, we found that experimentally
the defect profile was best fitted by a Lorentzian profile. This means that the low value
wings of the defect extend further than a gaussian would. The physical explanation for this
broadening of the generated index of refraction variation is transit. We can understand this
by thinking about what happens to a single atom being optically pumped by the defect beam:
as the atom interacts with the defect beam, it will move within the vapor, and then will leave
the defect beam still being in the pumped state (|2⟩ in our case). As this induced population
increase (resp. decrease) exponentially decays back to its equilibrium level, it will have time
to diffuse away from the beam, thus broadening the effective size of the defect. In order to
be a bit more quantitative, we should try and consider the convolution of the gaussian beam
profile with the exponential time decay of the optical pumping and averaged over the velocity
distribution. Let us assume to first order that the population in |2⟩ ρ22 depends linearly on
the defect beam power, then one can write the instantaneous population for a velocity class
v as follows:

ρ22(r, t,v) ∝ Ed(r − vt)e−γtf(v) (4.10)

where f(v) is the Maxwell-Boltzmann distribution and Ed is the normalized amplitude of the
defect. Now, if we want to obtain some steady state value, we need to average. Assuming a
gaussian defect of waist wd and a temperature of the vapor T , this writes:

⟨ρ22⟩ (r) ∝
∫∫

d3vdtEde
− 2(r−vt)2

w2
d e−γte

− mv2
2kBT . (4.11)
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Fig. 4.8 Defect characterization procedure. The phase is first unwrapped, then
divided by k0L in order to retrieve the index. This index is then azimuthally
averaged in order to cancel phase aberrations and ease the fit by a Lorentzian profile.
From the fit we can extract the maximum index variation and defect size wd

0
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Fig. 4.9 Effect of the lifetime of optical pumping and the temperature on the
effective induced index profile. Left, the effective lifetime of the pumped state γ
is varied for a constant temperature of T=152 ◦C. Lower lifetime lead to a more
local response, and thus a smaller effective defect. Right, temperature is varied for
a constant effective linewidth of γ=1 kHz: as the temperature rises, the average
speed increases thus transporting pumped atoms further from the defect beam.

Now unfortunately this expression has no closed form, however one can easily compute it
numerically. The results are presented in fig.4.94.9.

We see that the longer-lived the pumped state is, the larger the effective defect will be.
This is quite intuitive in the sense that if we think about a single atom being pumped when
traversing the beam, it will be able to reach a further point if the lifetime is longer. Similarly
a higher temperature will also mean a larger defect, even though in our toy-model, it has
less influence as the lifetime for realistic temperature values between 50 and 160 ◦C. The
two parameters actually merge into a single temperature dependance if we go back to the
mechanism explaining the lifetime of the pumped state: the phenomenological rate γ used
for the calculation is actually γ21 = Γt the effective decay rate between the two ground states
|1⟩ and |2⟩ that is dominated by the transit rate through the beam. This effect is strongly
reminiscent of the profiles reported in [101101] that report the broadening effects induced by
thermal nonlocality in a thermo optic medium. This convolution with the exponential decay
explains the final Lorentzian profile and yields excellent agreement with experimental profiles
as examplified in fig.4.84.8.

4.2.3 Experimental setup for arbitrary potentials

In order to be able to study the effect of the defect geometry, we must be able to get full
control of the defect’s intensity as well as its phase. While the optical pumping mechanism
is phase insensitive, controlling the phase allows to have some control over the evolution of
the defect profile evolution along the propagation axis z. In order to get this simultaneous
control, we use a combination of two optical paths:
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Fig. 4.10 Experimental setup of the defect shaping arm of the experiment. The
two possible paths are highlighted in orange (simple optics path) and blue (SLM
shaping path). Both of these paths can either be copropagating with the fluid or
counterpropagating. For simplicity the different optics in the orange path are not
represented but we can add cylindrical or regular plano-convex lenses in order to
reach the desired transverse and longitudinal intensity profile.

• The "normal" path: this is the path where we will place lenses (regular plano-convex or
cylindrical lenses) in order to shape the beam.

• The "SLM" path where we use a modulated diffraction grating [2626] to control separately
intensity and phase at the expanse of limited power efficiency.

Furthermore, we also want to be able to have a copropagating or countrapropagating beam
in order to use absorption of the defect beam to our advantage to modulate the strength of
the potential field as the fluid evolves along the cell. The experimental arrangement allowing
this is presented in 4.104.10.

The defect beam is first separated in two with a polarizing beam splitter. One transmitted
output is sent to the SLM (as it is aligned with the polarization axis of the SLM). The SLM
plane is imaged with a 4f telescope, and the first order of the SLM reflected light is selected
with a filter in the Fourier plane of the telescope. A half waveplate and a PBS is used to
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switch between copropagation and counterpropagation. The same scheme is used for the path
that does not reflect on the SLM. Examples of the achievable defect shapes are presented
in fig.4.114.11: using a vertically arranged cylindrical lens, one can devise a one dimensional
defect. We test the limits of this configuration by trying to achieve the narrowest defect beam
possible. In order to keep the defect size as constant as possible along the cell, we set the
lower bound of the beam waist such that the Rayleigh length is no shorter than the cell i.e 10
cm. This gives a lower bound of wd

0 = 160 µm. Smaller defects can be achieved in transient
self-focusing regimes where the interactions compensate diffraction as will be presented in
the next section. We also check that we can achieve both attractive and repulsive defects as
presented in fig.4.114.11. Furthermore, the achieved defects can be strong enough to either totally
repell the fluid (top pane of fig.4.114.11) or attractive in a "waveguide" configuration (bottom
pane of fig.4.114.11). This will allow to build confinement into our system. The implications of
this are discussed in chap.55.

For the SLM path, we use the modulated grating approach as presented in [2626] in order
to achieve both amplitude and phase control of the defect beam. In this case however, we
are limited in resolution since by its nature, the modulated grating technique allows phase
and intensity modulation at the expense of a tradeoff in resolution since we cannot produce
details that are close to the grating’s spatial frequency. Since we use the grating to steer the
beam: modulating the height of the grating for intensity and its phase to shift the phase, one
needs at least one period of the grating in order to achieve this. Another way to think about
this is that the grating spacing will command the spacing between diffractions orders in the
Fourier plane. The achieved resolution is inversely proportional to the radius of the aperture
used to select the relevant diffraction order. The maximum radius is half the spacing between
orders, leading to a corresponding pitch in the real plane of twice the grating spacing dG.
From this, we also understand that it is best to impose a diagonal grating such as to balance
the impact on resolution on both axis. The produced phase map is exemplified in fig.4.124.12.

From these sampling considerations, this leads to a maximal theoretical resolution of 2dG

if dG is the grating pitch. For the SLM model that we use, a Holoeye Pluto-2.1-NIR-113Holoeye Pluto-2.1-NIR-113,
the pixel pitch is dSLM is 8 µm. Due to pixel crosstalks effects, peak diffraction efficiency is
obtained at a grating pitch of dG = 8 pixels or 64 µm. After elimination of the zeroth order
(as displayed in the blue arm of fig.4.104.10), we reach 76% light utilization efficiency. Note that
contrary to the specifications provided by SLM manufacturers that often quote diffraction
efficiencies above 90%, but these are total diffraction efficiency of all the diffraction orders.
Taking this into account, one can thus realistically replicate details only up to two times the
pixel pitch 2dG = 128 µm (assuming an optical magnification factor of unity).

Having established the relevant observables, characterized the defect evolution due to the
atomic medium and see how we can experimentally tailor it as we wish, I will now present
the experimental results putting it all together.

4.3 Defect displacement

In this section, we will focus on the simple scattering experiment presented in the first section.
A large gaussian fluid is sent into the cell, and we punch a small hole into it by generating a
spatially small defect using optical pumping with a gaussian beam. We will then vary the
velocity of the fluid with respect to the defect by changing the relative angle between the two

https://holoeye.com/slm-pluto-phase-only/


100 Chapter 4. Superfluidity of light

Fig. 4.11 Example of a 1D defect in repulsive (top) or attractive configuration
(bottom). The white line displays the scale of the healing length for this experimental
realization. The defect is shaped with a vertical cylindrical lens. The achieved defect
waist is wd

0 ≈ 160 µm along the x direction. The corresponding Rayleigh length is
10cm.
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Fig. 4.12 Example of arbitrary intensity modulation using the modulated grating
technique. For readability, only the intensity is modulated here. On the left, the
intensity pattern target is Harambe the gorilla. On the right, the resulting phase
modulation displayed on the SLM with a diagonal grating. From the modulated
phase, the sampling requirements appear clearly: the spatial details reproduced
must not lie at a scale comparable to the grating. On the bottom image, we
see an experimental realization with a gaussian input beam and a 2.5× optical
magnification. The experimental signal is superimposed on the input to facilitate
the identification of Harambe’s features.
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beams using an actuated mirror.

4.3.1 Coupled model
Up until now, we have considered a static defect beam i.e we have ignored the back reaction
of the fluid onto the defect beam. To take this into account, we need to introduce a coupled
non-linear Schrödinger equation (CNLSE). Each beam is propagating through a non-linear
medium, and the resulting system of equation is thus two time eq.1.411.41 with a coupling term:

i
∂Ef

∂z
= − 1

2kf
∇2Ef − 1

2n
f
2kfcϵ0|Ef |2Ef + kfn

fd
2 cϵ0|Ed|2Ef − iαf

2 Ef

i
∂Ed

∂z
= − 1

2kd
∇2Ed − 1

2n
d
2kdcϵ0|Ed|2Ed + kdn

fd
2 cϵ0|Ef |2Ed − iαd

2 Ed

(4.12)

where kf (resp. kd) is the wavenumber at the frequency at the fluid beam, nf
2 is the non-linear

index of the fluid (resp. defect), αf and αd are the linear absorption coefficients and finally
nfd

2 is the coupling term between the two beam. In this case, this coupling term originates
from the four-wave mixing process between fluid and defect beams rather than from the
degenerate four-wave mixing between the fluid beam and itself (resp. the defect beam and
itself). We represent the physical situation of this displacement in fig.4.134.13. Due to absorption,
as the intensity of the fluid decreases, the critical Mach number βc will decrease up until the
point where βc ≈ 0. After this point, it means that superfluidity will be lost at all velocities.
This means that the defect will always be displaced by the fluid due to the low intensity
region at the end of the cell (in orange in fig.4.134.13). However, past the critical velocity at
the begining of the cell (in blue in fig.4.134.13) the defect will be displaced from the begining
of the cell, leading to an amplified defect displacement. From these simple geometrical
considerations, we thus anticipate that if we monitor the displacement of the defect δr at the
output of the cell when varying the fluid velocity, there should be two regimes between the
part where the defect displacement is only due to the "normal" fluid, and a regime where the
defect displacement is due both the "normal" and superfluid parts of the cell.

In order to check this, we can first solve the coupled equation numerically following the
same split-step scheme presented in chap.11. In order to ignore geometrical effects that might
be due to the fluid’s profile that will be discussed in the last paragraph of this subsection, we
simulate a flat fluid density profile (unless stated otherwise). We will also study the effect of
fluid and defect absorption.

Effect of the defect non adiabaticity A first preliminary step that is needed is to study
whether or not the brutal onset of the defect potential can induce some defect instability. In
[2727; 4646; 4747], the defect is ramped adiabatically in order to not excite the fluid. This is not
the case in our setup since the potential is turned on abruptly upon entering the cell. We
start without losses in order to isolate the effect of this defect "quench". For this experiment,
we compare the behavior of the defect displacement at low velocities for a flat fluid density
profile, as well as for a Thomas-Fermi like profile [8383] corresponding to the defect profile. This
profile is obtained by propagating the equation without losses, and extracting the equilibrium
density profile around the defect. We vary the velocity between β = 0 and β = 0.25. We
measure both the defect displacement along the propagation within the cell. The results
are plotted in fig.4.144.14. The displacement difference between the uniform density (left) and
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Fig. 4.13 Physical situation of the defect displacement measurement. Using side-
access through the cell, we can reconstruct z-evolution of the drag force. At some
point through the cell, the interaction strength ∆n drops enough such that the
critical velocity for superfluidity is lower than the initial fluid velocity. The drag
force can then be measured at each point of the cell by measuring the slope of the
defect displacement.

the "Thomas-Fermi" (right) if less than 20% and the qualitative behavior is very similar.
Adding absorption yields surprising results, strongly enhancing this effect: with absorption,
the "Thomas-Fermi" profile halves the defect displacement as displayed in fig.4.154.15

The physical interpretation of this is that the initial "shock" of the potential suddenly
being turned on will tend to get "frozen" by absorption, leading to initial motion to be
amplified instead of dissipating away from the defect.

Effect of fluid density profile Due to the |Ef |2Ed term in eq.4.124.12, the defect will feel an index
of refraction change induced by the fluid density profile. Since the fluid beam is given an
angle, its relative position with respect to the defect will change along the cell. The situation
is represented in fig.4.134.13: the fluid beam starts at z = 0 below the defect and passes above
the defect after the cell midpoint. We check this effect by scanning the initial position of the
fluid beam waist relative to the defect between −0.5 mm and 0.5 mm. We find that the effect
is significant for gaussian beams, is almost not affected by absorption. We also check that
it is indeed cause by the beam profile by testing several hypergaussian profiles ∝ e−ra/(wf

0 )a

(with a ∈ N): the higher a is, the more uniform the beam profile, and the effect is almost
completely resorbed for a = 14. I present the results in fig.4.164.16 For the regular gaussian
profile a = 2, the defect displacement induced by a shift of 0.5 mm is 8 µm, adding, losses,
this displacement is almost identical just below 8 µm. This means that the uniformity of the
beam is a crucial element to take into account in order to discriminate the causes of defect
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Fig. 4.14 Left: defect displacement at low Mach number between 0 and 0.25 with
a flat density profile. Right: defect displacement at low Mach number between 0
and 0.25 with a "Thomas-Fermi" density profile.

Fig. 4.15 Left: defect displacement at low Mach number between 0 and 0.25 with
a flat density profile, with absorption of the fluid. Right: defect displacement at low
Mach number between 0 and 0.25 with a "Thomas-Fermi" density profile.
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Fig. 4.16 Displacement of the defect beam δr for different initial positions of the
fluid beam center. The exponent a of the beam profile represents the exponent of
the hypergaussian distribution i.e a = 2 is a regular gaussian beam.

displacement.

Infered drag force: time resolved measurement The advantage of gaining access to a time
resolved measurement of the defect displacement is that we can infer an estimation of the
drag force from the defect curvature. Since the defect displacement is proportional to the
drag force, the second derivative of the defect position with the propagation length will be
proportional to the drag force:

F infered
D ∝ ∂2

zδr (4.13)

We thus test this estimation by comparing the direct measurement of the drag force done using
eq.4.34.3 with the two beam profiles, to the infered measurement. For this we treat a realization
of the experiment by simulating the propagation through the cell as done previously in fig.4.174.17
.

Fig. 4.17 Comparison of the drag force measured with the two beam profiles and
the infered drag force from the defect displacement. The infered drag force is
computed by calculating the curvature of the defect displacement.
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Fig. 4.18 Figurative representation of the two possible views on the defect. Either
the defect is a 3D object like a "rod" that is plunged in the stream and that bends as
the fluid flows around, or the defect can be seen as a 2D object that evolved with the
flow and that is dragged by the flow. The final defect displacement is represented
with δr.

We find that provided there is a sufficiently fine sampling of the evolution through the
cell in order to estimate accurately the second derivative, there is an excellent agreement
between the infered drag force in green, and the actual drag force in blue. Thus, we can
safely use this estimation in the experiment.

Interpretation of the defect displacement Looking at the evolution of the defect displacement
when increasing the fluid velocity β, an important question arises in order to properly interpret
the results of our experiments (both numerical and physical). We recall the physical situation
of the experiment represented in fig.4.134.13. The question is whether we should consider the
defect as a 3D object in a stream or rather a 2D object moving with the stream. In simpler
terms, we can think about this Gedankenexperiment: we identify the fluid of light with a
stream of water whose velocity we can vary, of a certain depth. The depth will represent the
z dimension where we monitor the evolution. We represent this in fig.4.184.18.

Does the defect behave more like a "rod" that we stick in the fluid of light that gets bent
by the drag force, or rather like a "rock" that sinks in the fluid with a friction coefficient
depending on its size (defect beam waist and height). If we think about the limiting cases of
each possible interpretation, we can identify two scenarios:

• In the "rod" case, there should be a limit velocity at which it will not bend anymore
when increasing the flow velocity due to its intrinsic "stiffness". This maximum velocity
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will depend on the size of the defect and height of the defect. Past a certain velocity,
the fluid has enough kinetic energy and does not "see" the obstacle created by the defect
anymore, thus the drag force saturates as does the defect displacement, that should
then decrease since the drag force gets lower and lower with increasing velocity.

• In the "rock" case, when the drag force cancels, following the same reasoning on energy,
when the drag force cancels, we interpret this as the defect being displaced at the fluid
velocity. There is a critical velocity at which the defect will end up at the same velocity
of the fluid and get carried away in the flow, thus cancelling the drag force. In this case
however, if the defect moves at the flow velocity, we do not expect the fluid displacement
to saturate, but rather follow the velocity of the fluid meaning δr ∝ βL.

Looking at the results highlighted in fig.4.174.17, we see that the defect displacement increases
with β before saturating and decreasing. This tends to indicate that we should rather
interpret the defect experiment as a "rod" being placed in the stream.

We have seen in this section the different subtleties induced when considering a more
realistic coupled model where the defect is not considered as immobile anymore. We will now
study how the critical velocity is affected by the back-reaction on the defect of the fluid. This
interplay between fluid and defect will induce energy exchange that will reduce the critical
velocity for superfluidity. The next section presents a detailed numerical and experimental
study of this critical velocity for the two defect parameters: defect size wd

0
⟨ξ⟩ and height δn

⟨∆n⟩ .

4.4 Critical velocity measurement
In this section, I will present measurements of the critical velocity in the realistic coupled
model, harnessing the measurement of the defect displacement to get allow for time resolution,
unprecedented so far in our experiments.

4.4.1 Comparison with the uncoupled model
We first compare numerically the critical velocity infered from the observables presented in
section 4.14.1. We study a single canonical realization: computing the drag force at z = L for
different Mach numbers β in fig.4.194.19. We compare the two models with the same parameters,
adjusting the coupling term nfd

2 to reproduce the same δn.
Looking at the drag force, it displays a clear transition which can be fitted using a bimodal

fit FD(β) = aβH(β − βc) with (a, βc) ∈ R× [0, 1] and H is the Heaviside function. We find
that the critical velocity βc reported by the coupled model is 0.31 and 0.36 for the uncoupled
model, confirming that taking into account the defect displacement will lead to lower critical
velocities.

We then repeat this study for different defect heights in fig.4.204.20 We confirm the same
behavior of a reduced critical velocity. More interestingly in the coupled case, we recover
very good agreement between all of the observables. This allows us to pick and choose the
easiest observable to measure and ensures a reliable prediction of the critical velocity. Finally,
the loss of superfluidity at all velocities is predicted for sufficiently high defects of δn

∆n ≈ 8 in
good agreement with the predictions of [4646]. More quantitatively, the critical velocity in the
typical regimes of our experiment in the center of the range i.e δn

⟨∆n⟩ ≈ 5 hovers between 0.3
and 0.2 and is predicted to be rather around 0.37 in [4747]. We attribute this to the losses.
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Fig. 4.19 Drag force calculated for the uncoupled model (in blue) and for the
coupled model (in orange). The solid lines represent a bimodal fit by a linear slope
after some critical Mach number βc. The shaded area indicates the 2σ confidence
interval of the fit.

Fig. 4.20 Comparison of the critical velocities for the uncoupled model (right) and
coupled model (right). The critical velocities are extracted from the vortex number
(orange), the incompressible energy (green) and the drag force (red).
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Having confirmed the sanity of the estimation of the critical velocity with different
observables, wa can now comment on the experimental results.

4.4.2 Experimental setup
The complete experimental setup is depicted in fig.4.214.21. The fluid beam is a wf

0 = 2.3 mm
waist beam red-detuned from the D2 line of 87Rb by ∆f ≈ −3 GHz. The cell used in this
experiment is an isotopically pure 87Rb cell of length L = 10 cm and of diameter D = 25.4 mm.
The cell temperature is maintained at around T ≈ 140oC using Kapton heating tapes. The
fluid laser is a MuQuans SML780 and the defect laser is a Toptica TA pro on the D1 line.
The defect beam waist is wd

0 = 120 µm. Both beams can be structured with an SLM using
the modulated contrast technique. The fluid beam is imaged at the output face of the cell,
with a band-pass interferential filter to selectively block the defect beam in co-propagating
geometries. Using the reference arm in off-axis interferometry configuration, we retrieve
both phase and amplitude of the phase. The defect is imaged at the output of the cell on
the same camera in co-propagating geometry, and using another camera at the entrance
of the cell in counter-propagating geometry. Finally, the defect can be imaged inside the
cell by collecting the fluorescence from the side of the cell using a high numerical aperture
microscope objective. The microscope objective is an infinitely conjugated objective with a
×5 magnification when paired with a 200 mm focal length lens. Using a motorized translation
stage, we can reconstruct the evolution of the defect beam inside the cell.

In order to probe the fluid-defect scattering, the first experiment we carry out is to vary
the fluid velocity for a given defect. The velocity is varied with piezo stepped actuated screws
on a mirror that is imaged at the middle of the cell to be able to change the angle of the beam
with minimal change on the beam’s position. Using the phase imaging provided by off-axis
interferometry one can devise a servo loop in order to reach any desired angle, and more
importantly, zero the mirror back to its resting position. The angle can be swept between
paraxial wavenumbers such that k⊥

k0
∈ [0, 0.1]. This means that the highest angle that we can

reach is at the limit of the validity of the paraxial approximation and corresponds to typical
Mach numbers of several tenths. For each velocity, we measure:

• the fluid field (density and phase, with and without the defect beam)

• the defect density

• the fluid transmission

• the defect transmission.

With these measurements, we can recover all of the observables presented in the first section,
as well as monitor the stability of the experiment.

I will now present the results of these measurements obtained in the co-propagating
geometry.

4.4.3 Experimental results
We first attempted the experiments in the counterpropagating geometry because it was easier
to extract the defect displacement for technical reasons. We subsequently switched to the
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Fig. 4.21 The full experimental setup of the defect scattering experiment. The
defect beam color conventions are defined in fig.4.104.10. The fluid beam can be
modulated with an SLM to control phase and amplitude. The evolution of the defect
beam inside the cell is monitored by imaging the fluorescence of the vapor with a
high numerical aperture microscope objective mounted on a translation stage.

copropagating geometry as it yielded better results as well as being possible to simulate
numerically. We start by ramping the fluid velocity and try to observe the transition at the
cell output. At each velocity, cameras record both the fluid phase and amplitudes, with and
without defect beam, as well as the defect beam output position. Capturing the fluid with
and without the defect allows to compute the density variation δρ induced by the defect, as
well as cancelling the phase induced by defocusing thereby allowing to carry out calculations
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Fig. 4.22 Fluctuation field δρ for a Mach number of β = 0.65. In the phase field,
one can identify four vortices arranged in two dipoles that are emitted in the wake
of the defect. The corresponding momentum distribution Aei(ϕ−ϕ0) is represented
in the bottom panel. The characteristic Rayleigh rings are clearly visible.

in the referential of the fluid. If the field obtained with the defect is denoted Aeiϕ, and the
reference field is A0e

iϕ0 , we define the field
√
δρei(ϕ−ϕ0) and thus δρ = |A|2 − |A0|2. From

this we can then compute the different observables in section 4.14.1 as a function of the Mach
number β. The resulting fluctuation field is presented in fig.4.224.22.

The defect height is δn = −4.0 × 10−6, and the average non-linear index variation is
⟨∆n⟩ = −5.5 × 10−5 measured from the dephasing of the field, leading to a relative defect
height of δn

∆n ≈ 10−1. While this is in agreement with the simulation yielding similar results,
this is enough to totally deplete the center of the fluid in fig.4.224.22, where one could assume
that we would need δn

⟨∆n⟩ in order to achieve this. This might be caused by non local effects
reducing the effective interaction energy and will be discussed in the next subsection. Looking
at the phase, we find the expected [7272] pairs of vortices in the wake of the defect. The
momentum distribution displays the familiar Rayleigh ring [3838] indicative of the scattering
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between defect and fluid. We can then infer the following observables from these fields:

• Drag force from the measured defect profile

• Compressible and incompressible energies using the density and phase

• Total scattered amplitude from the momentum distribution

We can finally plot the defect displacement as a function of the Mach number and obtain
fig.4.234.23.

Fig. 4.23 Top left: drag force along both axes (velocity is along y) infered from
the fitted potential. In green, along x, in red along y. In violet, the total scattered
amplitude is represented. Top right: the defect displacement measured at the
output of the cell. The dashed line is a linear fit to highlight the deviation at low
Mach numbers. Bottom: The total compressible (orange) and incompressible (blue)
energies as a function of the Mach number.
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Fig. 4.24 Left: Defect displacement as measured from the side, normalized by the
zero velocity profile. Right: defect beam waist wd

0 measured from the side. The
fluid input momenta are indicated in the inset.

Looking at the results of fig.4.234.23, we find an excellent agreement with the numerical
results: both the scattered amplitude and incompressible energies show a sharp transition at
around β = 0.2 indicative of the superfluid transition. The defect displacement and drag
force however do not display a measurable transition, which is surprising. For the drag force,
this is not exceedingly surprising since we compute the drag force on the potential that was
infered at zero velocity. If this potential changes due to the fluid back-reaction, not only in
position (that we can correct since we measure the output position) but also in shape, then
we do not actually compute the drag force when using the zero velocity profile. Attempts
were made to use the output profile of the defect beam, however this yielded unsatisfactory
results due to the broadening effects desribed in section 4.24.2.

On the other hand, concerning the ouptut defect beam position, this is most probably
due to geometrical effects, and the input quench of the potential in the fluid. However, the
defect displacement saturates at β = 0.35, before going down, confirming the "rod" point of
view discussed in section 4.34.3. In order to explore these hypothesis, we can try to solve these
short comings by looking at the beam profile from the side of the cell, in order to both try to
estimate the "instantaneous" drag force, as well as distinguish geometrical effects.

For this, we set the fluid velocity using the phase of the beam in a servo loop to achieve
a repeatable operation of the piezo actuated screws. We then scan the position of the
microscope objective along the cell. The velocity is set along the vertical axis y such that the
defect displacement occurs on this axis since the optical access is on the side of the Rubidium
cell (see fig.4.214.21). From each beam profile, we can extract the beam position in y using
a gaussian fit as well as recovering the defect beam waist wd

0. The method is detailed in
Appendix AA. We present the results of this scan in 4.244.24.

The velocity of the fluid beam is scanned between 0 and 20 mm−1, the objective is scanned
over 50 mm in two phases using a motorized stage of 25 mm travel, as well as a manual 25
mm stage. Each velocity and position is repeated three times. The beam displacement is
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seen to be increasing with the velocity as expected, however the mechanical stability of the
translation stage is very poor. This instability is lower for positions after 30 mm where the
manual stage is at its lowest extension, indicating that this is certainly the limiting component.
This prevents any definitive conclusions to be reached from this data, especially infering
the drag force as presented in eq.4.134.13. Estimation of the beam waist is on the contrary
substantially more robust, and shows a rapid expansion of the beam before a contraction.
This is consistant with the fact that the defect beam is in a slightly self-focusing regime, and
we can use this information in order to tune the size of the defect temporally. Interestingly,
it also shows that we can reach beams that propagate well under the limitations imposed by
their Rayleigh length in vacuum: the defect beam is seen to have expanded of 15mm after
50mm, whereas the corresponding Rayleigh length for a 35 µm beam is 3.6 mm.

As a conclusion, the experimental results allow to measure the critical velocity for several
coinciding observables, in good agreement with the values of the litterature [4646; 4747] as well as
the numerical simulations. Further developments of the defect beam imaging should allow to
reconstruct more reliably beam profiles, allowing to distinguish displacements induced by
geometrical effects from the displacements induced by the drag force, as well as estimaging
the drag force all along the fluid evolution. Another important fact is that we find that in
order to replicate the experimental defect displacements in our simulations, we need to lower
substantially the nonlinear index of refraction. To reconcile the numerical and experimental
results, we now present a direct measurement of the dispersion relation to extract the effective
interaction strength ∆n.

4.5 Dispersion relation measurements
In order to probe the discrepancy between the measured values of n2 and the observed
phenomenology during the experiments, we want to directly measure the Bogoliubov dispersion
relation. Measuring this dispersion relation allows to probe the actual interactions between
photons instead of relying on a global phase shift. Let us first present the measurement
technique.

4.5.1 Bragg spectroscopy
In order to measure the Bogoliubov dispersion relation, we could employ the group velocity
measurement presented in [3434]. However, a more direct measurement technique inspired
from the cold gases has been since developped in [8181]. The principle of this technique is to
probe the dispersion by directly seeding a density fluctuation at a single k⊥ momentum, and
observing the evolution of the structure factor S(k⊥) defined in eq.2.192.19 as k⊥ is varied. It
can be shown [8181] that the contrast of the obtained fringes on our camera C = Imax−Imin

Imax+Imin
is:

C(k⊥) = |US(k⊥)sin [ΩB(k⊥)L] |, (4.14)

where L is the cell length, and U is the maximum of the contrast fixed by the imagery
and that can be calibrated by scanning k⊥ without a cell in the non-interacting case (since
S(k⊥) = 1 in this case). By retrieving the minima of contrast, we find the points at which
ΩB(k⊥) = p π

L with p ∈ N. If we want to get the best resolution at low k⊥ where the effects
of the interactions are the most visible, it is paramount to have a large uniform beam along
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Fig. 4.25 Bragg spectroscopy measurement. The density profile is elliptical to
increase the uniformity along x. The fluid is modulated by a sinusoidal phase pattern
in order to generate a density modulation. Contrast is recovered through Fourier
analysis. By fitting the local maxima of the contrast, we recover the Bogoliubov
dispersion. The dispersion is plotted for different values of the laser detuning ∆, as
well as in the non-interacting case. The dashed line represent the fit of the non-linear
dephasing ∆n by a local model of eq.1.291.29.

the direction of modulation. In [8181], the beam is an elongated elliptical beam along x and
the modulation is applied along this direction in order to have a nearly uniform fluid at the
center. The perturbation is imposed in the fluid by using an SLM which allows to measure
the dispersion of the fluid using the SLM arm of the fluid in fig.4.214.21, without changing the
configuration of the experiment. Furthermore, we can also use the SLM flatten the density
profile of the beam in order to get better results.

In fig.4.254.25, we present a typical experiment run. The modulation imposed on the fluid is a
sinusoidal phase modulation applied with the SLM. This generates a density modulation. By
Fourier transforming the density, we can monitor the intensity of the satellite peak appearing,
and thus extract the contrast. We then fit the local minima of the contrast in order to extract
the Bogoliubov dispersion. The orange and green curves represent the dispersion for a laser
detuning (with respect to the F = 2 → F ′ F = 3 → F ′ crossover resonance of 87Rb) of -1
and -1.5 GHz respectively. The blue curve was taken without cell, and we notice the typical
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shift of the orange and green curves with respect to the blue curve: this is due to the linear
part of the dispersion, indicative of the photon-photon interactions. We see in fig.4.254.25 the
limitation of this technique: with the current setup, the low k⊥ values are not accessible since
for large wavelengths, it becomes challenging to measure the contrast, since the satellite peak
becomes to close to the zeroth order. Furthermore, since the structure factor is expected to
go to zero at low k⊥ [8181], the low k⊥ region is by definition less accessible, and limited by the
length of the cell.

However, these measurements still allow for a quantitative assessment of the interaction
strength. When fitting the dispersions, we find that the recovered ∆n values are quite low
compared to the values extracted from the non-linear dephasing. This can be explained when
taking into accound nonlocality that will modify the Bogoliubov dispersion.

4.5.2 Effect of non-locality on the Bogoliubov dispersion
One obvious phenomenon in the context of hot atomic vapors that can reduce the effective
non-linearity is non-locality. Due to the atomic motion, the response at one point of the fluid
will not only depend on the density at this point, but rather the density within a certain
radius σ:

∆n(r) = G ∗∆n(r) =
∫

dr′G(r − r′)∆n(r′), (4.15)

where G(r) is the Green function representing the nonlocal response of the medium, and
∆n ∝ n2|E|2 is the nonlinear index of refraction change. This nonlocal response has already
been observed in [101101] and has been proven to be a crucial stabilizing phenomenon in the
study of collapse instabilities [1111]. It can be shown [3535; 101101] in this case that the Bogoliubov
dispersion relation is modified as follows:

ΩB(k⊥) =

√√√√ k2
⊥

2k0

(
k2

⊥
2k0

+∆nG(k⊥)
)
. (4.16)

In our case, this nonlocality can be modeled either by taking into account the diffusive motion
of the atom through the vapor or the ballistic motion of the atoms. This leads to the following
nonlocal kernels:

GB(k⊥) =
√
π

1
k⊥σb

e
1

(k⊥σb)2 Erfc( 1
k⊥σb

)

GD(k⊥) = 1
1 + σ2

Dk
2
⊥
,

(4.17)

where GD and GB are the diffusive and ballistic kernels. The ballistic kernel is obtained
when solving the evolution equation of the excited state population taking into account the
atomic velocity distribution [3535]. In this sense it is the crudest model. A more refined model
is the diffusive kernel that is obtained when solving the diffusion of the Rubidium atoms
within the vapor. However quantitative predictions of the associated nonlocal lengths are
very challenging since they need to simultaneously predict the internal state of the atoms
in order to obtain their diffusion cross-section, and solve the atomic motion with this given
cross-section. It however allows to link measurements to an effective diffusion length. We can
then try to fit these nonlocal kernels to the experimental dispersions.
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Fig. 4.26 Effect of non-locality on the Bogoliubov dispersion. The experimental
dispersions (dots) are fitted with either local or nonlocal models with the dashed
lines. The extracted values of both ∆n and σb or σd are displayed in the inset.
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We present the results of this comparison in fig.4.264.26. The same experimental results
(dots) are fitted with either a local (top left), diffusive nonlocal model (top right) or ballistic
nonlocal model (bottom). The fitted values of the nonlinear index of refraction variation
∆n and nonlocal lengths σd or σb are indicated in the inset, as well as the laser detuning.
The local model yields values of ∆n significantly lower than the two nonlocal models. The
diffusive model reports the highest value of ∆n but the fitting procedure of the two nonlocal
models yields the same nonlocal lengths. This is certainly due to the limited number of points
that are available at low k⊥ since this is where the deviation between the models is the most
visible. In the case of a high non-locality, we expect the Bogoliubov dispersion to display an
inflexion point at low k as reported in [100100]. The first point of the orange curve does seem to
indicate such an inflexion point, but the resolution is too limited to be able to conclude.

As a conclusion, future implementations of this measurement will include a flat top beam,
a large beam size in order to achieve better better low-k resolution. This will allow to
accurately characterize the nonlocal response of the medium and allow us to conclude on
which model most accurately describes the non-locality in our medium.

Conclusion
In this chapter, we have carried out an extensive study of the superfluid behavior of light,
focusing on reconciling the different observables that had been used in previous works [99; 7272] in
order to extract definite criteria for the superfluid transition. We have presented a scattering
experiment as a testbed for the critical velocity for superfluidity, recovering theoretical results
[4646; 4747] for the behavior of the critical velocity as a function of defect size and height. With
a novel experimental technique, we presented preliminary time-resolved measurements of
the defect beam evolution inside of the cell, allowing for time-resolved measurements of
the drag force. This experiment also highlighted the important role of non-locality, and
future developments of the experiment will aim at increasing the fluid uniformity using
beam shaping techniques in order to improve the spatial resolution of dispersion relation
measurements, as well as mitigating the geometrical effects polluting the defect displacement.
We will now conclude this manuscript by presenting recent results employing these beam
shaping techniques to study ensembles of vortices and turbulence.



Chapter 5

From turbulence to quantum phase
transitions
What can we simulate with our platform ?

Throughout this thesis, we have progressively presented how we can measure, predict and
control the different degrees of freedom of the system. These degrees of freedom are the
colored terms of eq.1.101.10 that have accompanied us all along this manuscript. In this chapter,
I will now present several on-going or future experiments that address these tuning knobs
simultaneously in order to explore new physics like turbulence or quantum phase transitions.

5.1 Hydrodynamics and quantum turbulence
Having demonstrated the striking superfluid behavior of light in the previous chapter 44, and
particularly the appearance of quantized vortices, a natural question then arises: what about
turbulent behavior ? What happens when we inject more kinetic energy into the system such
that a large number of vortices are nucleated ? Can we describe their trajectories and extract
relevant hydrodynamical quantities from this study ?

5.1.1 From dynamical instabilities to turbulence
It is predicted [9090] that when two components of a quantum fluid collide, the Doppler shift
due to the velocity difference between the two components shifts the Bogoliubov dispersion
such that an imaginary branch appears, seeding a dynamical instability leading to turbulent
behavior. In the case of a fluid with two counter streaming components colliding each other
at a relative velocity v, the dispersion relation ΩB for a momentum q is modified as follows
[9090]:

ΩB(q)ξ2 = 1
2qξ

[
β ±

√
2 + β2 + (qξ)2 ± 2

√
1 + 2β2 + β2(qξ)2

]
, (5.1)

where β = v
cs

is the Mach number or in this context the stream parameter and ξ is the healing
length. In this dispersion relation, the ± sign distinguishes the two components. This is what
explains the emergence of the imaginary branch of the dispersion. Depending on the value
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Fig. 5.1 Bogoliubov dispersion of the fluids in the counter-streaming configuration
from [9090]. The top row is the real part of the dispersion of eq.5.15.1, the bottom row
is the imaginary part. The shaded area represents the region in momentum space
where the imaginary part is non-zero. The red dashed line represents the asymptotic
quadratic particle-like regime, and the gray dashed line represents the asymptotic
linear sonic-like regime.

of β, there will be different roots to this dispersion relation, shifting the momentum region
where the imaginary part is non-zero. A positive imaginary part will mean an amplification
of the Bogoliubov excitations, i.e initial fluctuations will grow larger with time: this is a
dynamical instability. This dispersion is plotted for different stream parameters in fig.5.15.1
taken from [9090]. There are two cases:

• "Slow" flows β < 2: the imaginary branch spans over the momenta q satisfying 0 < qξ <
β, meaning for all momenta q below the forcing momentum qf corresponding to the
stream velocity v.

• "Fast" flows β > 2: the imaginary branch is limited to a region
√
β2 − 4 < qξ < β. In

this case the dispersion displays an inflexion point at qξ =
√
β2 − 4, with an "anomalous"

region at low momenta where the linear part of the dispersion indicated by the grey
dashed line is above the quadratic part in red.

It is natural that the "critical" stream parameter should be 2 since it corresponds to a
velocity of each component equal to the speed of sound cs, speed of sound that delimitates
the two regions of the Bogoliubov dispersion, and that is the upper bound for superfluid
behavior in the Landau criterion (see chap.44).

We thus devise an experiment where two counter-streaming components are generated
with the help of an SLM [11]. The experimental setup is represented in fig.5.25.2.

We use a 7.5 cm long cell of isotopically pure 87Rb. In order to reach long evolution times
i.e high values of z

zNL
, the cell is heated to 150°C, and a small beam waist wf

0 of 500µm is
employed to reach a high intensity. The pattern used on the SLM is two linear ramps of
phase, in order to send the two halves of the beam at an opposite angle. A grating is added
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Fig. 5.2 Experimental setup for the counter-streaming configuration. The phase
profile is represented in the blue box: a grating is used to separate the 1st order
of the SLM, and is modulated with two opposite linear phase ramps. These ramps
act like a biprism and send two components in "collision", generating fringes in the
initial state. The blue dashed lines highlight the two components generated by the
SLM.



122 Chapter 5. From turbulence to quantum phase transitions

Fig. 5.3 Emergence of turbulent behavior and isotropy. On the top row, the density
of the fluid for different times z

zNL
indicated on top of the images. The middle row

displays the corresponding phase. The bottom row represents the fluid momentum
space density ρ(k⊥) along x in blue (direction of the forcing) and y in red. The
forcing spatial frequency is indicated by the gray line.

in order to separate the SLM first order (see Appendix AA). The resulting input state displays
fringes at the center, indicative of the interference between the two components. To recover
temporal evolution, we study the adimensional system of eq.1.361.36 presented in chap.11: in
order to reach different evolution times z

zNL
, the power of the fluid is ramped between 1 and

500 mW.
Looking at the time evolution in fig.5.35.3, we see the fringes snaking and then splitting into

a large number of vortices. One strong condition for observing turbulence is the emergence of
isotropy [7575]. While the real space density already indicates a process of uniformization of the
system from an initially highly anisotropic state, one can get more quantitative information
by analyzing the momentum density distribution. This is allowed by the fact that we recover
the whole field, thus we can access not only to F(ρ) ∝ F(|ψ|2) but ρ(k⊥) ∝ |F(ψ)|2.

We see that the initial momentum distribution depicted in the bottom pane of fig.5.35.3
is strongly anisotropic: the blue curve representing ρ(kx) is one order of magnitude larger
than the red curve representing ρ(ky). This means that the fluid initially populates modes
mostly along x. It is peaked at the forcing frequency (indicated by the gray line). As the
fluid evolves, the two curves collapse and the initial peak disappears meaning that the system
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Fig. 5.4 Example of a vortex configuration detected from the phase field (center)
and the extracted incompressible flow (right). The density is also represented on
the left panel. The vortices are clustered according to the algorithm from [8989] and
we see dipoles as well as clusters of several same sign vortices.

"lost" the memory of its initial state. This is indicative of energy transport allowed by the
dynamical instability supporting this turbulent behavior. This energy transport seeds vortices
that redistribute the momenta. I will now present how we can characteristize the vortex
distribution and extract meaningful physical insight.

5.1.2 Vortex statistics : clustering
The starting point of the vortex detection is the phase field. Access to this field is done by
off-axis interferometry [6464] (see Appendix AA for implementation). The vortex detection is
then carried out by computing the circulation of the phase on four-pixel plaquettes. This
computation is done through a convolution. The details of the implementation is in the
Appendix AA of this thesis. Once the vortex distribution is obtained, one can decompose it
according to a simple algorithm presented in [8989]:

• Each vortex pair of opposite sign that are mutual closest neighbors are considered as
dipoles

• Each vortex pair of same sign that are closer to each other than any opposite sign
vortex are put in the same cluster

We first apply the first rule to isolate dipoles and we then apply the second rule recursively
to cluster the remaining vortices. While these rules are very simple, their practical imple-
mentation was challenging even with existing snippets of code made available by Ashton
Bradley [2222], especially in order to obtain a fast enough implementation that could deal with
the comparatively large vortex numbers that our experiments produce (several thousands)
compared to the litterature [7575; 8080; 8989]. The details can be found in the Appendices. An
example of this clustering algorithm is presented in fig.5.45.4.

We find that the vortex distribution contains mostly dipoles, but clusters of same sign
vortices can also be found. The change of composition of these clusters and their sizes gives
insight into the energy transfers within the fluid as the turbulent flow develops. As the
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Fig. 5.5 Left: evolution of the average vortex cluster size in units of the healing
length ξ with propagation time τ = z

zNL
. Right: evolution of the average vortex

count within the clusters with propagation time. The error bars represent two
standard deviations over 20 realizations of the experiment. As the fluid evolves, the
clusters grow larger, and their vortex count grows as well.

adimensional time τ = z
zNL

grows, we can plot the typical size of these clusters, as well as
the number of vortices they contain. This is represented in fig.5.55.5.

The clusters are seen to start with a typical size close to the healing length for τ = 90,
which grows nearly five fold at τ = 200. Coincidently, the average number of vortices within
the clusters starts from below 2, meaning a majority of free vortices. At later times for
τ = 200, the average number of vortices increases to 6. This shows a significant reconfiguration
of the vortex distribution, driven by an energy transfer: the energy is redistributed from
small scales by the vortices and their interactions, to large scales as the clusters grow in size
and vortex numbers forming larger and larger structures within the fluid.

This behavior is predicted in classical turbulence [2222; 8989], where the energy is predicted to
cascade accross scales in a system, with a universal power law exponent in the incompressible
energy distribution. I will now present how these cascades are observed in this experiment.

5.1.3 Kolmogorov cascades and power law scaling

The possibility of inverse energy cascade in 2D quantum fluids has been debated [7777] and
several seminal works have explored these ideas in the context of cold gases [7474; 7575]. The key
observable of an isotropic energy cascade is the emergence of a power law dependance of the
incompressible energy distribution with momentum. This power law dependance will depend
on dimensionality and is indicative of the turbulence regime of the system [5454; 7676].

In our experiment, we study the evolution of the incompressible energy spectrum as the
adimensional time τ = z

zNL
is ramped. The experimental results are presented in the fig.5.65.6.

Analyzing the results of fig.5.65.6, we find that at low momentum, the incompressible energy
follows a k⊥ scaling linked to the fact that at large scales, the vortex configuration is neutral
and thus the velocity fields cancel [2222]. At high momenta a k−3

⊥ scaling indicative of the
vortices internal structure [2222]. More interestingly, we find that around the forcing frequency
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Fig. 5.6 Emergence of an energy cascade in the incompressible energy spectrum
[11]. Left: incompressible energy spectrum for β = 1.6 and τ = 200. The different
dashed line display the power laws for different exponents. The inertial range is
delimited by the two solid orange and grey lines. They are located at the inverse
of the mean cluster size (here 35 µm) and the inverse of the vortex core size i.e
k⊥ξ = 1. Right: Time evolution of the incompressible energy spectrum, rescaled by
the power law k

− 5
3

⊥ . A plateau is seen to be developping in the inertial range as time
progresses. This plateau is highlighted by the red dashed line and the grey dashed
line, hinting at an inverse cascade: the plateau develops from high to low momenta.

kf , there exists a region where the incompressible spectrum follows a k
− 5

3
⊥ scaling. This

exponent is predicted in the case of the 2D inverse energy cascade within the Kolmogorov
theory. Further insight on the inverse energy transfer is obtained when looking at the time
evolution of the energy spectrum. In the right panel of fig.5.65.6, the incompressible energy
is seen to grow as vortices develop, and a plateau appears starting from k⊥ξ = 1 towards
lower momenta (as indicated by the gray dashed line). This confirms that energy is indeed
transported from small to large scales.

In conclusion we have seen in this section how dynamical instabilities inherited from the
Doppler shifted Bogoliubov dispersion lead to a rich turbulent dynamics, in accordance with
the classical 2D wave turbulence. These results open exciting perspectives on turbulence,
especially at low momenta i.e large scales and longer times in order to study the dissipation
effects of the vortex interactions [7474].

5.2 BKT transition
In the previous section 5.15.1, we evidenced the significance of vortices as indicators of the energy
transport through the system. However we did not adress the vortices themselves, especially
their thermodynamics properties as an ensemble of interacting "particles". The clustering
dynamics described in the last section is strongly reminiscent of the transition between a
regime of free vortices and vortex pairs that is the marker of the superfluid transition [8383].
This is the celebrated Berezinskii-Kosterlitz-Thouless transition [1717; 5353] (BKT).

5.2.1 The canonical Berezinskii-Kosterlitz-Thouless transition
I will now present the XY spin model in which the BKT transition was initially evidenced. I
follow a classical field theory approach (as what can be found in [9999]). Let us assume the
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a) b) c)

Fig. 5.7 Physical situation of the XY spin model. a) Visualization of the XY model
Hamiltonian with the coupling constant J and the lattice spacing a. b) Clockwise
rotating vortex (charge l = 1). c) Anti-clockwise rotating vortex (charge l = −1).

following Hamiltonian for a 2D lattice of interacting spins Si of spacing a:

H = −J
∑
⟨i,j⟩

Si · Sj = −J
∑
⟨i,j⟩

cos (θi − θj) (5.2)

where the ⟨i, j⟩ sum represents the sum on the first nearest neighbors, and θi represents the
angle of one spin. The physical meaning of this field in the context of Bose gases (or quantum
fluids of light) is the phase of the matter field (light). It is more clearly understood when
looking at a graphical representation of the physical situation of the XY model in fig.5.75.7. In
the context of the Ising model, the phase of the field is the angle of each spin (with respect
to the vertical in fig.5.75.7). It is clear that formulated in this manner, the system will minimize
its energy by aligning the spins. In the context of fluids of light, since the kinetic energy is
∝ v2 = (∇ϕ)2, it translates to minimizing the phase gradient. As we are interested in the
low-energy behavior of the system, we will expand around the low angle differences:

H ≈ −J

2
∑
⟨i,j⟩

(θi − θj)2 (5.3)

where we have here absorbed the zeroth order term as it is an energy constant. From there,
we can switch to a classical field theory representing the system by taking the continuous
limit of the angle difference θi − θj and identifying it with the derivative of some scalar field
ϕ(r) such that eq.5.35.3 becomes:

H =
∫

dr∇ϕ(r) · ∇ϕ(r) (5.4)

where the derivative is ∇ = (∂x, ∂y). If we identify the field gradient to a velocity as done
in the hydrodynamical representation of eq.2.462.46, we notice that under this form, eq.5.45.4 is
strongly reminiscent of the kinetic term of eq.2.462.46. In order to retrieve the state of the field
ϕ(r) around its minimum energy to continue the expansion, we first identify the local minima
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of the Hamiltonian (5.45.4). These minima are reached for a cancellation of the functionnal
differentiation:

δH

δϕ
= 0 ⇒ ∇2ϕ = 0. (5.5)

This condition is readily satisfied for constant fields, however it is also realized for vortices.
These configurations are depicted in panels b) and c) of fig.5.75.7. For these solutions, we get
the following boundary condition: assuming a vortex at position r0, for all closed contours
encircling r0,

∮
∇ϕ(r) ·dl = 2πl (with l the vortex winding number) and for the other contours

not enclosing r0,
∮

∇ϕ(r) · dl = 0. We can then solve the circulation integral in order to
retrieve the shape of the vortex field:

2πl =
∮

∇ϕ(r) · dl = 2πr|∇ϕ| ⇒ |∇ϕ| = l

r
. (5.6)

Substituting this into eq.5.45.4 allows to retrieve the energy of a vortex configuration:

Evortex = J

2

∫
dr (∇ϕ(r))2

= Jl2

2

∫ 2π

0

∫ L

a
rdr 1

r2

= πl2J ln(L
a

).

(5.7)

Let us pause for a moment and discuss this result.
In order to regularize the logarithmically diverging integral, we have introduced 2 cutoff
scales:

• The system size L at large scale. This is obvious in the experimental setting.

• The lattice spacing a at small scale. It is not immediately apparent where this scale
comes from physically when we try to make the parallel with quantum fluids. In the case
of quantum fluids, this short scale cutoff is assured by the healing length ξ. It is again
natural since ξ is the distance below which we cannot consider anymore the system
as some macroscopic ensemble sharing the same wavefunction, but rather individual
particles.

Another important point is that the vortex energy scales quadratically with the vortex charge
l [8383]. This means that it is not energetically favorable to nucleate higher charged vortices.

From now on we can thus focus on the singly charged configurations. I will now present
some energy scaling argument on the free energy introducing a critical temperature separating
two regimes. Let us assume that the system is at thermal equilibrium at a low temperature T .
Low temperature in this setting means low enough that the expansion realized in eq.5.35.3 is still
valid. We can define the free energy of the system F = E − TS where E is the total energy,
T the temperature and S the entropy. The energy is given by the hamiltonian 5.45.4. For the
entropy, we can make the following argument if we consider a single vortex: the number of
positions we can place the vortex is L2

a2 , thus the entropy is S = 2kBln(L
a ) [9999]. Combining

all the terms we have the following expression for the free energy of a single vortex:

F = (πJ − 2kBT ) ln
(
L

a

)
. (5.8)



128 Chapter 5. From turbulence to quantum phase transitions

If we consider Nvort singly charged vortices instead of one, the free energy is simply multiplied
by Nvort. It is clear that the stability of the system is conditioned by the sign of the prefactor
(πJ − 2kBT ):

• If T < πJ
2kB

: the free energy will diverge to +∞ as L → ∞. It means that the system
cannot have any vortex.

• If T > πJ
2kB

: the free energy will tend to −∞ as L → ∞, and thus the free energy will
decrease further when nucleating vortices.

This means that there is a qualitatively very different behavior above and below TBKT = πJ
2kB

.
This behavior is due to the logarithmic dependance of energy on system size, which in two
dimensions coincides with the logarithmic dependance of entropy. This really highlights the
crucial role of dimensionality in this transition. In practice, the system will switch between a
regime of tightly bound vortex pairs, and a gas of free vortices. The full derivation of the
BKT temperature is beyond the scope of this manuscript, however most of the power of the
scaling argument induced by dimensionality remains in this simple heuristic treatment. I will
now propose experimental procedures to measure the vortex interactions in a fluid of light
and ascertain the energy calculations we have made up until now.

5.2.2 Vortices collisions and sound emission
The first experiment we have carried is to study the behavior of energy within the fluid
of light as we inject pairs of vortices. We want to check what happens when we tune the
initial distance between the vortices that are injected, and ultimately studying the vortex
recombination mechanisms. This dynamics has already been explored in the context of Bose
gases [5656], or exciton polaritons [8080], but the lack of access to the field or the dissipative
nature of the fluid are obstacles to get a complete picture.

We start our experiment with wide gaussian beam, on which we imprint two vortices at a
distance ∆r of one another. We use a 10 cm long cell of isotopically pure 87Rb heated to 140°C.
We use the experimental configuration presented in fig.5.165.16 with an SLM to imprint vortices.
The non-linear index is n2 = −4.0 × 10−9 m2/W, the linear losses coefficient α = 20.1 m−1

and the saturation intensity is Isat = 4.0 W/cm2. Unless stated otherwise, we will compare
distances to the average healing length along the cell ⟨ξ⟩ =

〈
1

k0
√

∆n

〉
: due to absorption the

healing length of the fluid will grow as it propagates through the cell. We take the average
value in order to get a good figure of merit. We have two scenarii: the "opposite signs" and
"same signs" configurations i.e where the two vortices have charge (l1, l2) equal to (1,−1) or
(1, 1) respectively.

Opposite signs An experimental realization of the "opposite signs" or dipole configuration
is represented in fig.5.85.8. The phase discontinuity is clearly visible in the top right panel,
connecting the vortex pair. When scanning the initial distance between vortices, there is a
critical distance at which, after evolution through the cell, the vortices merge together. When
recombining, the vortices emit a sound wave dissipating their core energy as defined in eq.5.75.7.
In the phase field, the discontinuity has resorbed. There is also an upwards displacement
of the vortex pair. Using the Helmholtz decomposition presented in eq.4.54.5, it is possible to
highlight this behavior more clearly still. This decomposition allows to decouple the sound-like
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Fig. 5.8 Experimental realization of the interaction between a singly charged vortex
and an opposite signed vortex. The density variation δρ is represented (density
with, and without vortices). The phase is the corresponding phase of the fluid i.e
the relative phase where the defocusing phase is substracted. In the top panel, the
initial distance between vortices is 54.4ξ, in the bottom panel it is 9.3ξ. In the
bottom panel, the vortex are seen to merge dissipating energy by emitting a sound
wave whose direction is highlighted by the black arrow. The sound front is indicated
by the green dashed line.
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behavior of the compressible part of the density weighted velocity, from the singular (in the
mathematical sense) behavior of vortices that appear in the incompressible part.

Fig. 5.9 Compressible and incompressible kinetic energies corresponding to fig.5.85.8.
The two peaks in the incompressible energy on the top panel correspond to the two
vortices. In the bottom panel, the vortices have disappeared in the incompressible
energy and there is a strong crescent shape emission of compressible kinetic energy
propagating upwards. The wavefront shape is reproduced from fig.5.85.8.

From the Helmholtz decomposition, one can also extract the corresponding kinetic energies
from the density weighted velocity u = √

ρv = √
ρ∇ϕ as follows:

Einc ∝ |uinc|2

Ecomp ∝ |ucomp|2.
(5.9)
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The resulting energy maps are represented in fig.5.95.9, that correspond to the experimental
realization of fig.5.85.8. In these energy maps, the vortices appear very clearly as peaks of
incompressible energy. The sound emission also appears visibly in the bottom left panel,
showing a wave of compressible kinetic energy being emitted upwards. We can then integrate
this energy in order to extract the total kinetic energy for both compressible and incompressible
components and analyze the evolution of the total kinetic energies as a function of initial vortex
separation: we anticipate that the incompressible energy containing the singular behavior
of the field should encapsulate the vortex interaction energy. This curve is represented in
fig.5.105.10.

Fig. 5.10 Total kinetic energy for the compressible and incompressible components.
Left: the opposite signs scenario. Right: the same sign scenario. The compressible
energy is represented in blue, and the incompressible energy in orange. The dashed
line indicates a logarithmic trend that the incompressible energy follows (incompress-
ible energy is represented in logarithmic scale). For the dipole case, the compressible
energy displays a sharp peak corresponding to the sound mode emission following
the vortex recombination at ∆r = 9.3ξ. The incompressible energy is seen to follow
closely a logarithmic scale. In the same sign scenario, the both energies incease as
the vortices initial position grow closer. The logarithmic trend is also indicated with
the dashed line.

Looking at the left panel of fig.5.105.10 seems to confirm the physical scenario of the two
vortices anihilating each other: as the starting distance between vortices grows smaller and
smaller, there will be a point within the cell where the vortices will cancel out each other.
While it is challenging to capture this exact moment without adimensionalizing our system
like in the turbulence experiment of section 5.15.1, varying the initial separation will still allow
some form of "temporal" resolution by changing the position at which this cancellation occurs.
This means that while our observation position is fixed by imaging the cell output at z = L,
we change the propagation distance between the anihilation position za and the cell output
face. We wee in fig.5.105.10 that there is a sharp peak in compressible energy, and a sudden drop
of the incompressible energy around ∆r = 9.3ξ. The drop of incompressible energy is due
to the loss of vortices as they cancel out, and the peak in compressible energy corresponds
to the emission of this energy in the form of a sound wave. With the dashed line, we check
that the incompressible energy displays a logarithmic dependance with the vortex separation,
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with a decreasing trend as the distance reduces which is in agreement with eq.5.105.10. Echoing
to the dimensionality discussion of chap.11, this logarithmic dependance is a strong indication
of the 2D behavior of the fluid of light in our propagating geometry. We check that this
cancellation is not due to the limited imaging resolution of the SLM imposed phase since
without interactions (cell), the vortices reamain clearly visible even when their intervortex
separation is minimal i.e 2 SLM pixels. In order to get a better insight, we solve numerically
this situation and study the adimensionalized evolution of the fluid i.e varying z/zNL as well
as replicating the variation of the initial position of the vortices.
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Fig. 5.11 Numerical simulation of the time evolution of the system. The field is
propagated using the NLSE library developed during this thesis (see Appendix A
AA). Samples of the field are taken during the propagation through the cell and the
density fluctuations, phase, compressible and incompressible kinetic energies are
computed. We start with an initial intervortex distance of 2 ⟨ξ⟩. At each snapshot,
the window is adjusted such as to follow the "instantaneous" healing length in order
to remain in the adimensional units. The vortices anihilate each other emitting a
sound wave that propagates upwards, in excellent agreement with the experimental
data.
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We record the time evolution of the fluid and follow the density fluctuations, the phase,
compressible and incompressible energies in fig.5.115.11. As time passes, the vortices grow closer
then merge emitting a sound wave propagating upwards in a nearly identical scenario as
the experimental scan of the inter-vortex distance. This confirms that changing the initial
distribution of vortices leads to an almost identical dynamics as varying z

zNL
. Replicating

the experimental sequence, we then vary the initial distance and compute the total kinetic
energies. In the left panel of fig.5.125.12, we find very good agreement with the experimental
curve of fig.5.105.10. There is however a discrepency of the critical separation at which the
two vortices anihilate each other. In the experiment, the two vortices seem to anihilate
when starting closer than 10 ⟨ξ⟩, while in the simulation, the anihilation occurs just before
a separation of 2 ⟨ξ⟩. This could be explained by uncertainties in the measurement of the
non-linear index or non-local effects increasing the healing length (as demonstrated in chap.44).
Another intriguing fact is that the interaction energy does not seem to follow as well a
logarithmic dependance. This deviation is is common to both the same signs, and different
signs configurations. Further testing will be carried out in order to check whether or not the
interaction energy is totally described by the incompressible energy.

Fig. 5.12 Numerical simulation for different initial inter-vortex distances. Left:
Opposite sign / dipole configuration. The incompressible energy decreases in accor-
dance to the experiment. Below an inter-vortex distance of 2.1⟨ξ⟩, the vortices merge
within the cell and we record the sharp peak in compressible energy corresponding
to the emission of the sound wave. Right: Same sign configuration. The dashed
lines indicate a logarithmic dependance.

Same signs In the same signs configuration, we do not expect the vortex to anihilate.
However, we anticipate that the repulsive force between same sign vortices should lead to
interesting dynamics like and orbital movement around each other [5656]. Following the same
procedure as the previous paragraph, we are interested in the field dynamics, as well as the
behavior of the compressible and incompressible energies.
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Fig. 5.13 Experimental realization of the interaction between a singly charged
vortex and an same signed vortex. The density variation δρ is represented (density
with, and without vortices). The phase is the corresponding phase of the fluid i.e the
relative phase where the defocusing phase is substracted. In the top panel, the initial
distance between vortices is 54.0ξ, in the bottom panel it is 1.6ξ. In the bottom
panel, the vortex are seen to show a displacement with respect to the horizontal
line due to the repulsive interaction between same charge vortices.

In the case of the same signs experiment, the vortices remain visible for all initial distances
and they deviate from their initial positions as can be seen in fig.5.135.13. This is more visible
in the incompressible energy in fig.5.145.14 where the peak in incompressible energy precisely
locates the vortex cores: as the vortices grow closer, they initiate a rotating movement around
one another.
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Fig. 5.14 Compressible and incompressible kinetic energies corresponding to fig.5.135.13.
The two peaks in the incompressible energy on the top panel correspond to the two
vortices. In the bottom panel, the vortices remain but have tilted from their initial
horizontal axis. The compressible energy does not produce distinguishable patterns.

We confirm this behavior in the numerical simulations: the two vortices initially emit a
sound wave propagating outwards and then orbit each other still forming "ripples" in the
phase. This picture is very similar to the dynamics of the gravitational field around a binary
system. Looking at the kinetic energies in fig.5.125.12 confirms that there seems to be a repulsive
force between same sign vortices, however the time dynamics displays an orbiting motion of
the vortices that indicates some form of stiction between vortices.
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Fig. 5.15 Numerical simulation of the time evolution of the system. The field
is propagated using the NLSE library. Samples of the field are taken during the
propagation through the cell and the density fluctuations, phase, compressible and
incompressible kinetic energies are computed. We start with an initial intervortex
distance of 2 ⟨ξ⟩. At each snapshot, the window is adjusted such as to follow
the "instantaneous" healing length in order to remain in the adimensional units.
The vortices orbit each other and radiate a sound wave outwards in a dynamics
reminiscent of ring down oscillations of binary star systems.
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Importantly, we have seen that this experiment evidences the potential of our platform
to probe precisely the vortex-vortex dynamics. In this sense it is similar to [5656] and future
experiments will allow to replicate this work by taking advantage of our signal-to-noise ratio
in order to get a more detailed look at the interplay between vortices and sound modes
emission. Having presented elements towards a full characterization of the vortex-vortex
interaction, we would like to scale these measurements to a higher and higher number of
vortices, towards a thermodynamics setting. I will now present a proposal to continue this
experiment to probe the transition to a macroscopic number of vortices.

5.2.3 From microscopic vortex dynamics to macroscopic properties
After having explored the few vortex dynamics, we would like now to look at a large ensemble
of vortics as a thermodynamics system in order to potentially observe some form of analogue
of the BKT transition in our system. To this extent, we first need to design initial states
that are at a thermal equilibrium since we saw in chap.22 that our fluid of light is far from the
thermodynamics equilibrium.

In order to probe the dynamics of the vortex binding and unbinding characteristic of the
BKT transition, we want to send controlled initial states of vortices at thermal equilibrium,
and study their evolution with respect to the different system parameter: evolution time,
interaction strength or simulated temperature. For this, we can utilize a SLM in order to
inject vortices into the fluid as we presented in the previous section 5.15.1. However, we still
have to properly define what is a thermal state of vortices. Assuming a flat fluid i.e flat phase
and flat intensity, there is no initial kinetic energy nor interaction energy a part from the one
injected by the vortices since the only phase gradients and intensity gradients are due to the
vortices. It can be shown [1717; 5353] that the energy of a vortex pair of charge (l1, l2) is:

Epair = πJl21ln
(
L

a

)
+ πJl22ln

(
L

a

)
+ 2πJl1l2ln

(
R

a

)
= πJ(l1 + l2)2ln

(
L

a

)
− 2πJl1l2ln

(
R

a

)
.

(5.10)

Under factorized form, it becomes clear that same charge vortices repell and opposite charge
vortices will attract each other:

• if l1 = 1 and l2 = 1, Epair = 4πJ ln
(

L
R

)
, so the energy will be minimized for R → L

• if l1 = 1 and l2 = −1, Epair = 2πJ ln
(

R
a

)
, so the energy will be minimized for R → a

Because we know that there should be no net charge for a thermal state with no net angular
momentum, we can generate a state vortex by vortex alternating positively and negatively
charged vortices (i.e l1 = 1 and l2 = −1), and sorting the relative position R at random with
probability such that:

p(R) = 1
N
e

−
Epair(R)

kBT

N =
∫ L

ξ
dRe

−
Epair(R)

kBT .

(5.11)
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Fig. 5.16 Experimental setup of the experiment. The input state of the fluid is
controlled with the SLM. The distance statistics of the vortex pairs is highlighted in
the light blue box (reminiscing of the color code of chapters 11 and 22.) Arbitrary
distributions of vortices can be injected into the system in order to study their
evolution. Using the off-axis technique, the full field is recovered.
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A vizualization of this type of state is represented in fig.5.165.16. In the blue panel, the distribution
of eq.5.115.11 is depicted. Note that we do not consider here the effect of the quench at the input
face of the cell. Ways to mitigate this quench are presented in the last section 5.35.3, but in the
context where we are interested in the vortices themselves, it seems safe to ignore this in first
approach.

Having designed such a state, we can probe the behavior of the vortex ensemble and
check the time evolution of this system for different effective temperatures. In order to get
information about the thermodynamics state of the system, we could rely on the following
observables:

• Vortex cluster size

• Cluster vortex count

• Pairwise correlation function

• Kinetic energies (compressible and incompressible)

Since the BKT transition is a change of the pairing regime between vortices, there should be a
change in the average number of vortex in a cluster, from tightly bound pairs to free vortices.
This experiment would also be well suited to a numerical exploration, particularly as our
setup currently limits us to values of the evolution time of z

zNL
≈ 200. Recent developments

of our experiments will adress this with higher interactions using the results of chap.33.
I will now conclude this chapter by another proposal that is the subject of ongoing

investigations jointly with Clément Duval to probe relaxation and thermalization effects in
fluids of light [2929].

5.3 Thermalization and condensation
A fundamental question for our system is whether or not the fluid of light will go towards an
equilibrium state as time passes. I already explained in chap.11 that in our experiments, the
initial state is not an equilibrium state in any sense: it does not follow a thermal distribution,
nor some Thomas-Fermi profile as can be found in cold gases [8383]. I will now present ways to
probe the long time equilibration dynamics of our fluid of light.

5.3.1 Thermalization in fluids of light
In the context of cold atomic gases, inter atomic collisions thermalize very quickly the
condensate since only a few number of collisions on average are needed for a condensate to
reach thermal equilibrium [8383]. In the thermal gas, the Bogoliubov excitations b̂k⊥ distributed
as defined in eq.2.522.52. The corresponding distribution defined for the fluid of light is then:〈

b̂†
k⊥
b̂k⊥

〉
= 1
eΩB(k⊥)/T − 1

(5.12)

note that in this case the temperature will be defined in terms of the energy scale of the
system. In the propagating geometry, since ΩB has the dimension of a wavenumber, it will
also have the dimension of a wavenumber.
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In the case of fluids of light however, while there are scattering processes between bogolons
as we saw in section 2.52.5, the time to reach full thermalization is thought to be much larger
[6060]. Several theoretical works have investigated the preliminary prethermalization dynamics
following the input quench [6060; 7070], and their prediction was confirmed experimentally in
[33]. I will thus briefly comment on [33] before presenting how we can build on the current
experimental setup to overcome the some of this work’s limitations.

In [33], the experimental setup before the cell is identical to the one presented in fig.5.165.16.
A SLM is used to superimpose a random speckle to a gaussian background. The induced
fluctuations spectrum by this speckle has the following correlation properties (in the photon
basis): 〈

â†
k⊥
âk⊥

〉
∝ 1
σ2 , (5.13)

where σ is the speckle "grain" in real space. The narrower the speckle "grain" i.e a small
sigma, will mean a larger speckle extent in the Fourier domain. The ratio of these fluctuations
to the gaussian background is ϵ2. The observable use to characterize the fluid after evolution
through the cell is the first order coherence function g(1)(r) = ⟨ψ(0)ψ(r)⟩. It is predicted (and
observed) that in this case this correlation function should follow an algebraic dependance:

g(1)(r) ∝
(
r

ξ

)γ

γ ∝ ϵ2ΦNLσ
2,

(5.14)

where ΦNL ∝ z
zNL

is the total accumulated non-linear phase. In the case of an initial thermal
state, this exponent is predicted to scale as ϵ2

σ2 . In order to ascertain this scaling, we impose
a thermal state at the input of the cell and then vary the effective temperature in order to
check the scaling. However the input state is imposed in the photon basis by the SLM. Due
to the quench at the input of the cell, if we devise a thermal state, it will be thrown out of
equilibrium by this quench. This means we need to compensate this effect. Since the quench
can be completely described by the Bogoliubov transform of eq.1.281.28, we can apply the inverse
of this transform to the âk⊥ modes in order to match the state at z = 0− (just before the
quench) to a thermal state for the b̂k⊥ modes at z = 0+ (just after the quench).

Let us detail a bit the experimental procedure to generate such thermal states: since we
impose a classical field with the SLM, we will denote the âk⊥ and b̂k⊥ modes as classical
Fourier amplitudes ak⊥ / bk⊥ .

• Define the thermal state in terms of the bk⊥ amplitudes: each bk⊥ is chosen as a random
complex variable with zero mean and variance

〈
|bk⊥ |2

〉
= T

ΩB(k⊥) .

• Transform back to the photon basis: ak⊥ = uk⊥bk⊥ + vk⊥b
∗
−k⊥

where the uk⊥ and vk⊥

are the Bogoliubov coefficients defined in eq.1.281.28.

• Fourier transform the ak⊥ amplitudes back to the real space: a(r⊥) =
∫

dk⊥ak⊥e
−ik⊥·r⊥

Now that we have detailed the state of the art, theoretical expectations and the experimental
procedure to prepare a thermal state, I will now propose a new experiment and new observables
in order to probe the relaxation dynamics in fluids of light.
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5.3.2 Perturbations from equilibrium states
The experimental setup remains the same as previous proposals, with the setup presented
in fig.5.165.16. In practice the full setup is depicted in fig.4.214.21, meaning that we have access
to the potential engineering presented in chap.44. One first experiment would be to see if
a thermal state of phonons is indeed an equilibrium state. One question in the context of
thermalization is if the fluid of light thermalizes towards a Bose-Einstein distribution of
eq.2.522.52 or a Rayleigh-Jeans distribution originating from the classical condensation of waves
[1616]. This could be ascertained by directly measuring the normal and anomalous correlators
of the field of eq.2.492.49. From the field retrieved at the output face of the cell, by applying the
Bogoliubov transform, we can extract the bogolon field at z = L− and then directly compute
the correlators. Observing the evolution of these correlators (or lack there of) should confirm
or infirm that the thermal state is preserved after evolving inside of the cell.

If the thermal state is indeed shown to be stable, we could slightly perturb the thermal
state and measure the relaxation rates of eq.2.532.53 and 2.542.54 towards a new thermal equilibrium.
Essentially, the goal would be to put ourselves in the assumptions of eqs.2.532.53 and 2.542.54. The
perturbation would be an additional random speckled added to the thermal state very much
like in [33]. By measuring the evolution of the correlators, we could evidence the Landau or
Belaiev interaction processes between Bogoliubov particles, which would be the first indication
of effects beyond the Bogoliubov theory.

Conclusion
I have presented in this chapter the most recent developments of the fluids of light platform.
Aided by the system control developed in this thesis, I presented several ongoing or future
experiments to evidence effects that go beyond the current modeling of light fluids. Critically,
the subject of thermalization and relaxation towards equilibrium has been presented, and the
future experiments should be able to go towards controlling thermodynamics properties of the
system, designing heating or cooling of the fluid of light. The observation of Bose-Einstein
condensation as has been evidenced in polaritons [1414] or dye-filled cavities [5252], and one could
envision that if we are able to build an evaporative trap, it could be within our reach.
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Appendix A

Numerical tools

A.1 Motivation : why should I learn to code better ?
Modern physics cannot be imagined without computers. Whether it is to run experiments
or calculation, coding is ubiquitous and we should strive as a community to develop good
practices. This is not only a "pedagogical" issue and making sure that your code is human
readable but rather a question of scientific integrity since without repeatability, any study
is worthless. This is why I spent vast amounts of time developping libraries in order to
streamline many of the generic tools that we use everyday in the team, but more importantly
advocate for the sharing of these tools, and trying to unify efforts rather than endlessly
redevelopping everything from scratch.

There is a big ethical challenge in making science open source, and much improvements can
be made into making our results more transparent by sharing our source codes. Furthermore,
many recent controversies around data manipulation could have been avoided if publishing
code was mandatory.

Another point is that proper programming techniques might allow experiments that were
thought impossible before. The first version of the vortex classification algorithm took several
hours just to classify a fews hundred vortices. With some clever tricks it now runs in a few
ms for several thousand vortices. Too often is there a certain laziness around programming,
and many promising ideas are abandoned due to this lack of effort, or knowledge.

Finally, if we should keep only one very cynical reason to mutualize efforts for coding, and
publishing our code: cost. Of course academia is maybe less inclined to consider this aspect
than the private sector, but according to SlocCountSlocCount, the 45195 lines of codes developped
during my thesis would cost a company 1 477 361 $ to develop, employing 8.23 developpers
for 1.33 years. If this work was to go down the drain due to a lack of knowledge transmission,
most of this cost would have to be spent again.

A.2 Numerical measurement tools
A.2.1 Temperature measurement
The temperature is measured by fitting the transmission through the the cell at low intensity
with the excellent RubidiumRubidium code from Andrew Dawes. The laser scans the D2 line, and we
record the transmission through the cell. In order to fit the absolute frequency of the laser, we
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https://dwheeler.com/sloccount/
https://github.com/DawesLab/rubidium
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Fig. A.1 Top left: the raw oscilloscope signal acquired during one frequency scan
of the laser. The transmission through the cell is in blue, the saturated absorption
(SAS) in orange, the laser power in green and the red signal is from a Fabry-Pérot
cavity. Top right: the fitted transmission and temperature. Bottom: the fit of the
saturated absorption spectrum used for frequency calibration.
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need a relative measurement of the scan width in frequency, as well as an absolute reference
in order to fix the scan offset. The relative reference is given by a Fabry-Pérot cavity. This
allows to calibrate the frequency ramp since a linear ramp of the diode current will not lead
to a linear ramp in frequency. The offset is then fixed by fitting the SAS spectrum. Note
that the detuning use here is defined from the line barycenter, as it is the definition used in
the tabulated values of [9696]. Finally we use the recivered frequency axis in order to fit the
transmission of the cell. The free parameters of the fit are the isotopic fraction, cell length
and cell temperature. Since both the length and isotopic fractions are known from the cell
manufacturer, this leaves only the temperature as free parameter.

A.2.2 Off-axis interferometry : phase measurements
The experimental setup is presented in fig.3.53.5.

Interference field Considering a signal beam Es with a reference beam Er, we can write the
intensity field on a camera:

Icam(r⊥) ∝ |Es(r⊥)eiϕ(r,z) + Er(r⊥)eikrr⊥ |2 =

Is(r) + Ir(r)︸ ︷︷ ︸
DC part

+ 2
√
Is(r⊥)Ir(r⊥)cos (krr⊥ + ϕ(r⊥) + ϕ0)︸ ︷︷ ︸

modulated part

(A.1)

where kr is the angle of the reference beam. Now we anticipate without too much thinking that
in order to demodulate the signal in the cos, we’ll need to Fourier transform this expression:

Ĩcam(k⊥) = Ĩs(k⊥) + Ĩr(k⊥)︸ ︷︷ ︸
0th order

+

F
[
Ese

iϕ(r)
]

(k⊥) ∗
{
Ẽr(k⊥ − kr) + Ẽr(k⊥ + kr)

}
︸ ︷︷ ︸

1st order

(A.2)

Now we see that the relevant terms are in the first order. The issue is that the convolution
term is bothersome. However provided the reference beam is much larger spatially than the
signal, its Fourier transform will be much narrower, and thus the convolution will just shift
the Fourier transform of the signal since f(x) ∗ δ(x− x0) = f(x− x0) if δ(x− x0) is the Dirac
delta peaked at x0. We thus see that the signal in Fourier domain becomes:

Ĩcam(k⊥) ≈ Ĩs(k⊥) + Ĩr(k⊥)︸ ︷︷ ︸
0th order

+

F
[
Ese

iϕ(r)
]

(k⊥ + kr) + F
[
Ese

iϕ(r)
]

(k⊥ − kr)︸ ︷︷ ︸
1st order

.
(A.3)

We then have to filter in order to to recover the first order.

Fourier filtering If we filter one of the first order terms, and shift the signal in Fourier
domain from −kr to get rid of the off-axis term, by back transforming we simply recover:

Ese
iϕ(r⊥) ∗ F−1

[
T̃
]

(r⊥) (A.4)
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Where T̃ (k⊥) is the function we used to filter the first order in the Fourier domain. If T̃ (k⊥)
is a circle, F−1

[
T̃
]

(r⊥) will be an Airy function. The meaning of this is that the recovery
process is not ideal: it will deteriorate the spatial resolution of the recovered field.

The goal is thus to try and chose the largest selection region possible, while still rejecting
the zeroth order. This leaves only one possibility for the choice of the relative angle between
signal and reference: it should be chosen as kr = 1√

2
(

π
d ,

π
d

)
if d is the pixel pitch of the sensor.

This corresponds to half the maximum frequency which locates the sattelite peaks at the
center of each quadran.

Efficient FFT implementations The previous process involves two Fourier transforms. Since
we have to compute them numerically, and that our images will often be quite large, it is
critical to have an efficient implementation of this deconvolution algorithm. Furthermore,
since we use this in a real time display, speed is critical. There are two aspects in this case:

• Maximize the speed of the actual transform: this is satisfied using the best FFT
libraries like FFTW [3737] (for CPU computing) or switching to better hardware like
GPU (graphics cards) and using CUDA [7878] CUFFT. for instance. Also take care to
use fast implementations of the arctangent function since when recovering the phase it
can be the leading contribution in terms of time. Since the signal is real, we should
also use real FFT (i.e discrete cosine transforms).

• Minimize the memory consumption: this is done by using the proper data types i.e the
smallest precision possible, by defining the plans in advance and caching in order to
speed up subsequent executions. Also since we crop to a single quadran of the FFT,
we can recast the selected satellite peak into a smaller array before back transforming.
This means that starting from an initially (N,N) interferogram, we end up with a
(N/2, N/2) recovered field.

Actual Python implementation of this routine can be found on the group’s GitHubGitHub, in
the PhaseUtilsPhaseUtils repository.

A.2.3 Non-linear index n2 measurement
Several methods to measure the non-linear index of refraction have been presented in
[55]. However, much work has been devoted in this thesis to develop a reliable single-shot
measurement. The latest technique we use is to fit the output phase and intensity profiles of
the beam that we can extract in a single interferogram. In order to fit the dephasing and
intensity, we still need to know the initial beam profile (beam waist) and beam power. We
then fit the profile with the solution of the following coupled differential equations involving
the absorption α, saturation intensity Isat and non-linear index n2:

∂ϕ

∂z
= k0n2

I

1 + I
Isat

∂I

∂z
= −α I

1 + I
Isat

(A.5)

where the I and ϕ profiles are the azimuthal averages of the intensity and phase in the case
where the beam is gaussian to benefit from the cylindrical symmetry to average noise. The

https://github.com/Quantum-Optics-LKB
https://github.com/Quantum-Optics-LKB/PhaseUtils
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Fig. A.2 From left to right and top to bottom, the intensity of the beam, unwrapped
phase, wrapped phase, azimuthally averaged phase (orange) and fit (blue) and output
intensity as a function of the input intensity.



150 Appendix A. Numerical tools

fitted data is presented in fig.A.2A.2. The fit works well to extract n2 and α for large beams.
However it fails completely to measure Isat. The problem is that even if the beam is large,
the fit fails to include self-defocusing. This is why we would like to implement either a fit by
the NLSE model or use a Physically Informed Neural Network (PINN) as explored in [8888].

A.2.4 Vortex clustering algorithm
I will now detail the implementation of the vortex clustering algorithm i.e the cluster_vorticescluster_vortices
function of the velocity library that can be found in the PhaseUtilsPhaseUtils repository. The algo-
rithm takes in an array of vortices as [xi, yi, li] where x / y is are the position of the vortex,
and l its charge. We will need two data structures for the algorithm that allow efficient
computation: a R-tree to represent the spatial distribution of vortices (one for each type of
vortices) and a graph to represent the hierarchical structure of the clustering. The algorithm
is based on the following steps:

• Find mutual nearest neighbors using a global R-tree for all vortices

• Build pairs of mutual nearest neighbors separating between dipoles, pairs of l = 1 and
l = −1

• Initialize clusters with these pairs

• Generate a R-tree for each signs

• Grow clusters by applying rule 2 using the R-tree structure for fast calculation of the
nth nearest neighbor. We compute the distance up to the N/2 nearest neighbor, where
N is the number of vortices (either plus or minus), updating a list of graph edges to
connect.

• Extract the minimum spanning tree of the cluster graph

• Extract the clusters as connected components of this tree

A.2.5 Instruments interfacing
A lot of time was spent interfacing with instruments in order to fully automatize the
experiments.

PyVisa PyVisa is a Python libary that allows to communicate with instruments using the
VISA protocol. I used it to design a generic library that allows it to communicate with any
instrument and that should be easily extendable: ScopeInterfaceScopeInterface.

Thorlabs Kinesis I wrapped many instruments of the Kinesis library. This can be found
in the PiezoPiezo repository, along with a detailed programming guide.

A.3 Numerical simulations
Many results of this thesis were obtained with the help of numerical simulations. I will briefly
present the important components that were used to design efficient codes.

https://github.com/Quantum-Optics-LKB/PhaseUtils/blob/main/velocity.py#L703
https://github.com/Quantum-Optics-LKB/PhaseUtils
https://github.com/Quantum-Optics-LKB/ScopeInterface
https://github.com/Quantum-Optics-LKB/Piezo
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A.3.1 Non-linear Schrödinger equation solver
The NLSE library is based on the split-step spectral scheme described in chap.11 eq.1.421.42. It
relies heavily on the GPU computing library CuPy and Numba for just-in-time compilation. It
contains three classes that allow simulations of the NLSE in 1D, 2D as well as the couled
NLSE in 2D in a vectorized manner (meaning an easy parallelization over many realizations).
The code is available on the repository NLSENLSE along with extensive documentation.

A.3.2 Monte-Carlo transit simulations
For the simulations of [55], I decided to use the programming language Julia for its speed
and ease of use. Julia is a relatively new language that is designed to be as fast as C while
being as easy to use as Python thanks to just-in-time compilation. It also allows easy access
to low-level handling of the memory which is critical for performance. The backbone of this
code is the DifferentialEquations.jlDifferentialEquations.jl library that provides a native framework to solve
differential equations with parallelized realizations. The code is available on the repository
TransitTransit.

https://github.com/Quantum-Optics-LKB/NLSE
https://docs.sciml.ai/DiffEqDocs/stable/
https://github.com/Quantum-Optics-LKB/Transit
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Sujet : Contrôle tout optique de fluides quantiques de lumière en vapeur
atomique chaude

Résumé : Les fluides quantiques de lumière présentent une plateform nouvelle et prometteuse
dans l’exploration de la physique des particules quantiques en interaction. Ici, nous étudions des
fluides constitués de photons dont les interactions sont induites par une vapeur chaude de Rubidium.
Pour décrire ces fluides, nous recourrons à un hamiltonien comprenant énergie cinétique, énergie
potentielle et énergie d’interaction. Nous présentons dans cette thèse un contrôle tout optique de
ces fluides où nous agissons sur chaque terme de ce hamiltonien. Nous avons mis en évidence la
générations de corrélations non-classiques induites par le saut des interactions aux interfaces de notre
milieu non-linéaire. Le contrôle de la réponse du milieu atomique est ensuite exploré en présentant
un cadre numérique extensible qui permet de décrire des structures atomiques arbitraires, que nous
utilisons ensuite pour décrire l’effet du pompage optique mis en oeuvre afin de graver optiquement
des potentiels dans le fluide de lumière. Nous caractérisons ensuite les propriétés de superfluidité
des fluides de lumière et mesurons la vitesse critique autour d’un défaut créé grâce au contrôle du
potentiel induit par pompage optique. Nous concluons en étudiant les interactions entre vortex
optiques à travers une expérience mettant en lumière un comportement turbulent du fluide, et une
expérience de collision de vortex optiques ouvrant la voie à la thermodynamique induite par des
effets quantiques au-delà du champ moyen.

Mots clés : Optique quantique, fluides quantiques de lumière, superfluidité, Aladjidi, contrôle tout
optique

Subject : Full optical control of quantum fluids of light in hot atomic
vapors

Abstract: Quantum fluids of light are a novel and promising platform in the exploration of many-
body quantum physics. We study here fluids whose constituants are photons. Their interactions are
induced by a hot vapor of Rubidium atoms. In order to describe these fluids, we use a Hamiltonian
comprising of three terms: kinetic energy, potential energy and interaction energy. In this thesis,
we showcase an all-optical control of each of these terms. We evidenced non-classical correlations
induced by the interaction quenches at the interfaces of our non-linear medium. We then explore the
control of the atomic response of the vapor, using an easily extendable numerical framework. We
then use this framework to study optical pumping, that allows us to realize arbitrary potentials inside
the fluid of light. The critical velocity for superfluidity is then mesured, in a scattering experiment
against an optical defect using the potential engineering developped in this thesis. Finally, we study
vortex-vortex interactions in an experiment showcasing turbulent behavior in a fluid of light as well
as a collision experiment between vortices. This paves the way to thermodynamics processes seeded
by interactions effects beyond the mean field.

Keywords : Quantum optics, quantum fluids of light, quantum fluids, superfluidity, Aladjidi full
optical control
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