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Modélisation prédictive des écoulements hypersoniques
hors-équilibre chimique: approches physiques et basées sur les

données

Résumé: Dans cette thèse, nous nous intéressons aux écoulements hypersoniques.
Ces derniers sont d’un grand intérêt pour de nombreuses applications aérospatiales
et constituent un élément essentiel des avancées technologiques dans ce domaine.
En première partie, nous étudions numériquement l’interaction complexe entre
la thermodynamique, la chimie et la mécanique des fluides dans les conditions
extrêmes rencontrées aux vitesses hypersoniques. La prise en compte des effets
thermochimiques hors-équilibre repose sur des modèles de gaz complexes. A
cet effet, les propriétés gazeuses sont donc initialement modélisées à l’aide du
logiciel Mutation++. Cependant, l’utilisation de ce type de modèle augmente
considérablement le coût des calculs. Dans la deuxième partie, nous présentons
donc une nouvelle technique d’apprentissage automatique pour extraire de manière
adaptative un modèle d’ordre réduit de la thermochimie d’un mélange de gaz.
Les états thermodynamiques sont projetés dans un espace à faible dimension
et regroupés pour identifier les régions présentant différents niveaux d’équilibre
thermochimique. Ensuite, un modèle de substitution est construit entre l’espace
de projection et l’espace de sortie à l’aide de réseaux de fonctions à base radiale.
La méthode est validée sur des simulations de couches limites hypersoniques et des
interactions onde de choc - couche limite avec des réactions chimiques hors-équilibre.
Remplacer Mutation++ par le modèle d’ordre réduit améliore les performances du
code de calcul jusqu’à 70% tout en maintenant la précision globale. Grâce aux
capacités d’apprentissage en ligne, la généralisation et la prédictibilité du modèle
sont démontrées lorsque les données d’apprentissage ne sont que partiellement
disponibles. La méthode peut être facilement portée à d’autres domaines reposant
sur des évaluations de fonctions coûteuses en haute dimension.

Mots-clés: Aérodynamique hypersonique, effets hors-équilibre thermochimique,
modèles d’ordre réduit, techniques d’apprentissage machine, apprentissage actif,
modèles de substitution



Predictive modeling of hypersonic flows in chemical
nonequilibrium: physics-based and data-driven approaches

Abstract: Hypersonic flows are of great interest in a wide range of aerospace
applications and are a critical component of many technological advances. In this
thesis, we first numerically study the complex interplay between thermodynamics,
chemistry and fluid mechanics in the extreme conditions encountered at hypersonic
speeds. Accurate simulations of these flows in thermochemical (non)-equilibrium
rely on detailed thermochemical gas models. Thus, the gas properties of the
reactive mixture are initially modeled using the open-source Mutation++ library.
While accurately capturing the underlying aerothermochemistry, the library
dramatically increases the cost of such calculations. In the second part, a novel
model-agnostic machine-learning technique is presented which allows an adaptive
extraction of a reduced-order thermochemical model of a gas mixture from the
library. The states are embedded in a low-dimensional space and clustered to
identify regions with different levels of thermochemical (non)-equilibrium. Then, a
surrogate surface from the reduced cluster-space to the output space is generated
using radial-basis-function networks. The method is validated and benchmarked
on simulations of hypersonic flat-plate boundary layers and shock-wave boundary
layer interaction with finite-rate chemistry. Substituting Mutation++ with the
light-weight, machine-learned alternative improves the performance of the solver
by up to 70% while maintaining overall accuracy. Thanks to the online learning
capabilities of the technique, generalization and predictivity of the model are
demonstrated when training data is only partially available. The method can be
readily ported to other domains relying on expensive, high-dimensional function
evaluations.

Keywords: Hypersonic aerodynamics, thermochemical nonequilbrium effects,
reduced-order models, machine learning, active learning, surrogate modeling
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Introduction

The revival of interest in complex orbital and interplanetary missions, as well as
the pursuit of commercial hypersonic flight have pushed the boundaries of vehicle
design to unprecedented speeds and extreme conditions. Consequently, there is a
pressing requirement for accurate and reliable design of atmospheric re-entry and
hypersonic cruise vehicles. In this context, hypersonic boundary layers have emerged
as a significant research and engineering challenge. As a result, there is an increasing
necessity for in-depth investigations in the field of hypersonic aerothermochemistry
to tackle these challenges effectively [Bertin & Cummings 2003, Schmisseur 2015,
Leyva 2017, Theofilis et al. 2022].

In fact, an object flying at hypersonic speed is surrounded by an extremely
complex flow environment. In addition to the classical compressible flow features,
the dissipation of massive amount of kinetic energy within the boundary layer
introduces highly energetic gas states. These high temperatures induce chemical
reactions and vibrational relaxation phenomena, which evolve in a flow dominated
by extremely short time scales. At the molecular level, there is no guarantee
that the collisions are sufficiently frequent for the energy exchange and chemical
process to reach equilibrium. Thus, the composition and properties of the gas
can vary in space and time, and the flow departs from thermal and/or chemical
equilibrium (TCNEQ). These nonequilibrium effects can significantly influence
the flow behavior, heat transfer, turbulence and chemical kinetics in hypersonic
environments [Holden 1986, Leyva 2017]. A schematic of various thermochemical
nonequilibrium effects within a generic hypersonic flows over a re-entry vehicle is
presented in Figure 1.

It is notoriously difficult and expensive to collect reliable experimental and
in-flight data for hypersonic flows [Schneider 2008]. In ground facilities, most
experimental studies are carried out at low temperatures to achieve hypersonic
speeds, thereby eliminating potential high-enthalpy effects [Lu 2002]. Hence, the
need for precise and dependable numerical simulations to accurately characterize
and predict the flow environment becomes increasingly crucial. Conventional
computational fluid dynamics (CFD) codes and tools often fall short in capturing
the intricate and complex nature of hypersonic flows in nonequilibrium, mostly
due to the absence of models capable of handling the multiphysics phenomena
involved. In fact, computational work on hypersonic boundary layers focuses
mainly on calorically or thermally perfect gases [Martin 2007, Duan et al. 2010,
Duan et al. 2011, Franko & Lele 2013, Hildebrand et al. 2018, Fu et al. 2021].

However, in recent years, there has been increasing studies to understand
the nature and impact of thermochemical nonequilibrium in hypersonic flows.
The numerical simulation of the complex interplay between thermodynamics,
chemistry and fluid mechanics in these extreme conditions is a difficult modeling
challenge and relies on detailed thermochemical gas models. Early work
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Figure 1: Schematic of a generic re-entry vehicle flying at hypersonic speed with
a non-exhaustive list of various thermochemical nonequilibrium effects, adapted from
[Scanlon et al. 2015].

focused on extending the concepts from subsonic and supersonic flow to the
hypersonic regime for transition and instability evolution in laminar boundary
layers [Malik 1989, Malik et al. 1990, Malik & Anderson 1991, Chang et al. 1997,
Johnson et al. 1998, Johnson & Candler 2005]. These studies have demonstrated
that the incorporation of chemical heat absorption caused by dissociation within the
boundary layer noticeably retards the amplification of disturbances and postpones
the transition to turbulence. Direct numerical simulations (DNS) also supported
these findings by considering the early stage of transition [Marxen et al. 2011a,
Marxen et al. 2013, Marxen et al. 2014b, Duan & Martin 2011] and recently up to
fully turbulent boundary layers [Urzay & Di Renzo 2021, Di Renzo & Urzay 2021,
Passiatore et al. 2021, Passiatore et al. 2022, Passiatore et al. 2023]. Figure 2
illustrates the potential non-equilibrium effects occurring within a wall-cooled,
turbulent hypersonic boundary layer. These studies have identified these
effects as cause of order-one change in growth-rate, response behavior and
sensitivities even though the effect on the first-order statistics were modest.
The work performed at the Von Karman Institute (VKI) [Zanus et al. 2017,
Miró Miró & Pinna 2017, Miró Miró et al. 2018a, Wartemann et al. 2018,
Miró Miró et al. 2018b, Wartemann et al. 2019, Miró Miró & Pinna 2019] nuanced
these results. The authors concluded that the inadequate modeling of transport
phenomena could result in inaccuracies comparable to completely disregarding
chemical activity. This wide body of literature led to the comprehensive review of
Candler [Candler 2019] on the subject.
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Figure 2: Schematic of a flat-plate turbulent hypersonic boundary layer with potential
nonequilibrium effects. Adapted from [Urzay & Di Renzo 2021].

In the continuum regime, the Navier-Stokes equations still hold for hypersonic
reacting gases, with some necessary modifications for the gas properties and the
addition of extra equations to track a range of species in their inert or ionized
forms. Complementing the hydrodynamic state vector by chemical components is a
well-established technique, for example in combustion or atmospheric simulations.
However, the required modeling of the inter-species interactions, such as dissociation,
reaction and recombination for hypersonic applications poses great challenges
[Anderson 2019, Candler 2019]. In fact, the validation of these models is arduous
since the underlying processes are almost impossible to reproduce in ground
facilities. Much of this modeling is accomplished by lookup libraries, which
act as repositories of tabulated chemical reactions encountered for a given flow
state [Scoggins et al. 2020]. When passing state-vector components to the library,
amplitudes and time-scales for various forcing terms are returned, appearing as
exogeneous inputs to the momentum, energy and species transport equations.

Much effort has gone into these libraries such as Pegase [Bottin et al. 1999],
Eglib [Ern & Giovangigli 2004], Plato [Munafò et al. 2020] and CHEMKIN
[Kee et al. 2000]. For aerothermochemical nonequilibrium effects in hypersonic
flows, the Mutation++ library (MUlticomponent Thermodynamic And Transport
properties for IONized gases in C++), developed and maintained at the VKI, has
become the standard for high-fidelity simulations of high-speed and high-enthalpy
flows [Scoggins et al. 2020]. This library can be coupled to existing flow solvers
and is capable of modeling a range of partially ionized gas effects, together with
nonequilibrium features, energy exchange processes and gas-surface interactions.

Part 1: Thus, the first objective of this work is to develop a
high-fidelity computational tool coupled with Mutation++ to study
chemical nonequilibrium effects in canonical hypersonic flows.
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The flexibility and scope of the library comes at the expense of slowing
down a typical large-scale simulation by a large factor, as shown in Figure
3, where typical simulation times for calorically and thermally perfect gases
are juxtaposed with results for non-equilibrium chemical reactions. A wide
margin can be observed. For this reason, non-equilibrium computations
range among the most inefficient and laborious calculations in fundamental
hypersonic research. To increase performance, most CFD codes use hard-coded
chemistry [Di Renzo et al. 2020, Passiatore et al. 2021]. However, any change in
the gas mixture or the thermochemical model comes at a human cost in terms of
development, implementation and validation.

In the recent years, few studies have tried to make simulations in that flow regime
faster using various machine learning techniques. For example, [Mao et al. 2021]
and [Gkimisis et al. 2023] used respectively DeepONet and artificial neural network
to predict the coupled flow in chemical nonequilibrium past a normal shock.
[Zanardi et al. 2022] used physics-informed DeepONet to reduce the stiff master
equations (equivalent to the thermochemical model in a state-to-state kinetic
framework) into a ML-based surrogate. These authors reported up to 2 orders
of magnitude faster prediction time but these studies were restricted to simple 0D
or 1D configurations. Alternatively, other authors pursued the hybridization of the
CFD code by replacing only the expensive thermochemical library with a ML-based
surrogate model. [Novello et al. 2022] used deep neural networks to predict the
output of Mutation++ in realistic 2D reenty configuration in chemical equilibrium.
They observed speed up factors between 10 and 18.6.
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Figure 3: CPU time of a benchmark simulation, run with different aerothermochemical
models. Including non-equilibrium effects in the simulation causes a significant increase in
computational time.

More generally, many engineering applications need to evaluate an expensive
function f̃(x) many times. Therefore, it is of great interest to alleviate the CPU
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burden of these applications by finding an efficient approximation of such functional
forms, also known as a reduced-order model (ROM), instead of the full-order model
(FOM). We here stress that we focus on static ROMs in the sense that they represent
an input/output relation, as opposed to ROMs of dynamical systems that predict
the time evolution of the system with a reduced number of degrees of freedom
[Schmid 2010, Taira et al. 2017, Brunton et al. 2016, Cenedese et al. 2022].

One of the oldest and most common approach to approximate f̃ is to use
structured tabulation. In a pre-processing step, values of f̃ are tabulated for
a hypercube in the input space. Then, during the simulation, values of f̃

are linearly interpolated in the table. The Look-up Table method (LuT) was
proven successful in many applications, such as tabulated chemistry for spray
combustion [Franzelli et al. 2013], design of energy devices using organic Rankine
Cycles [Pini et al. 2015] or simulations of hypersonic boundary layers in chemical
equilibrium [Marxen et al. 2011b]. However, building and storing the table, together
with the look-up procedure during the simulation, becomes computationally more
intensive as the number of dimensions D of the input space increases. This
demonstrates the well-known curse of dimensionality, where the volume of sample
points needed to construct an accurate table increases exponentially with the number
of dimensions of the input space. Similarly, linear interpolation in high dimensions
is a tedious task. This latter point even prevents the application of this LuT-
methodology in the case considered in this study where the input space dimension
is D = 6. Pope developed the ISAT algorithm (In Situ Adaptive Tabulation) to
overcome this deficiency in high dimensions with a storage/retrieval approach and
demonstrate the concept on applications in the combustion field [Pope 1997].

Recently, more general data-driven methods that can tackle higher dimensional
problems have also been proposed and saw considerable success in a variety of
applications, particularly in the active research field known as surrogate modeling.
Underlying this effort is the universal approximation theorem [Cybenko 1989]
which proves that deep neural networks, with at least one hidden layer and
non-linear activation functions, formally proposed by LeCun [LeCun 1985], can
approximate any non-linear function of any dimension. In the fluid dynamics
community, neural networks and other machine learning techniques have been
used to improve the longstanding turbulence closure modeling problem, see the
recent review by Duraisamy et al. [Duraisamy et al. 2019]. For instance, Lapeyre
et al. [Lapeyre et al. 2019] used convolutionnal neural networks to estimate the
turbulent sub-grid scale reaction rates in combustion applications. Liu et al.
[Liu & Batill 2000] used neural-networks for surrogate-model-based optimization
in aeronautics. However, the training cost of the network by back propagation
becomes prohibitive as the number of neurons and layers increase – a necessity which
might arise in complex high-dimensional problems. Radial basis functions networks
(RBF), a special case of three layers neural networks [Broomhead & Lowe 1988,
Buhmann 2000], can also be used for nonlinear function approximation in any
dimension. Their training is easier and cheaper than classical neural networks
as the optimal weights can be found by solving a linear system of equations.
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RBFs have been widely used for surrogate modeling in many fields such as
aerodynamic shape optimization [Jin et al. 2001, Peter et al. 2007] and meteorology
[Chang et al. 2001], to name but two. Statistical surrogate modeling techniques have
also found great success as they directly include an estimation of the error in the
model. The method of kriging, originally developed for two-dimensional geostatistics
problems [Krige 1951], has been extended to approximate input/ouput problems of
any dimension by Sacks et al. [Sacks et al. 1989]; see the review by Kleijnen on the
use of kriging for surrogate modeling [Kleijnen 2009]. Finally, Polynomial Chaos
Expansion (PCE) is another technique that can generate surrogate models well
suited for uncertainty quantification [Soize & Ghanem 2004].

Despite some success, the often brute-force nature of these algorithms may not
always yield a satisfactory surrogate model in terms of accuracy and computational
cost. Bouhlel et al. [Bouhlel et al. 2016] pointed out several performance issues
when performing kriging in high dimensions (D = 100). This number of dimensions
is common in reactive flow simulations where hundreds of species are tracked,
even with reduced chemical mechanisms [Attili et al. 2014, Bansal et al. 2015,
Bhagatwala et al. 2014]. Moreover, one common assumption in surrogate modeling
relates to the smoothness of the approximated relation. This is not always true,
especially in hypersonic applications where shocks and temperature discontinuities
are amongst the typical features of such flows. Therefore, clever pre-processing
steps can greatly improve the model’s performance in these cases. For example,
Bouhlel et al. [Bouhlel et al. 2016] coupled kriging with partial least-squares
(PLS) methods to reduce the high-dimensional (D = 100) input space. In
[Hawchar et al. 2017], principal component analysis (PCA) has been used as a pre-
processing step before applying polynomial chaos expansions on the PCA basis
[Hawchar et al. 2017]. When dealing with discontinuous functions, Bettebghor et al.
[Bettebghor et al. 2011] proposed to cluster the input basis into different regions (to
avoid a discontinuity within a cluster) and build a surrogate model on each of these
regions. All models are then combined together and form a mixture of experts, as
described in the literature [Hastie et al. 2009]. Yang [Yang 2003], however, pointed
out that combining surrogate surfaces does not necessarily outperform a single model
fitted over the entire input space. Hence, special care has to be taken in combining
these steps.

Finally, even with thorough training, ROMs typically face limitations when it
comes to extrapolation beyond their training range. This issue is widely recognized
as a common challenge for data-driven techniques. Consequently, ROMs cannot
be considered truly predictive or highly generalizable since their outputs may
deviate significantly and yield incorrect results when confronted with inputs that
fall outside the range of observed data. In [Mao et al. 2021, Zanardi et al. 2022,
Gkimisis et al. 2023], the authors used inexpensive 0D and 1D simulations to
extend the training range of their models. In the work of [Novello et al. 2022],
the chemical equilibrium assumption led the authors to use less expensive perfect
gas simulations to approximate the training range. In fact, the perfect gas and
chemical equilibrium thermochemical models use the same input features. This
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strategy is, however, not applicable to a nonequilibrium setting since the additional
inputs (the local chemical composition) are impossible to predict beforehand. In
this case, expanding the training range with additional realizations is too expensive,
particularly when it involves a cost-intensive multi-dimensional nonequilbrium CFD
simulation. This would also counteract the purpose of the ROM. To mitigate this
issue, additional techniques and approaches have been proposed to enhance the
ROMs’ extrapolation capabilities. To that end, adaptive reduced-order models are
a promising solution. Rather than being confined to a specific operating window
or application, they have the capacity to learn dynamically and refine the model
on-the-fly, enabling broader applicability and superior results in a wide range of
applications. In the dynamical systems community, recent research focused on
building adaptive ROMs that can learn new dynamics in situ [Peherstorfer 2020,
Yano et al. 2021, Ramezanian et al. 2021, Huang & Duraisamy 2023]. For static
ROMs, the ISAT algorithm [Pope 1997] is an adaptive LuT that can learn in
situ new inputs/outputs relation if an error metric is satisfied. However, the
algorithm relies on linear interpolation only. RBFs capable of on-the-fly learning
have also seen some development [Platt 1991, Kadirkamanathan & Niranjan 1993,
Karayiannis & Mi 1997, Huang et al. 2005, Bortman & Aladjem 2009].

Part 2: The second objective of this work is therefore to develop
adaptive reduced-order thermochemical gas model capable of replacing
the computationally expensive library and the memory-intensive look-
up tables when modeling inter-species interactions and transport
phenomena in the simulations of hypersonic flows in chemical
nonequilibrium.

Original contributions in this work The first contribution of this work is the
development of a high-fidelity computational tool to study chemical nonequilibrium
effects in hypersonic flows. In Chapter 3, we present notably the first DNS of a
jet in a hypersonic crossflow at high-enthalpy conditions. These findings reinforce
the significance of accurate thermochemical modeling in order to achieve accurate
predictions of hypersonic flows.

The major contributions of our work is the derivation of adaptive reduced-order
model to improve the efficiency of simulation using such models. By employing a
novel combination of pre-processing techniques from machine learning, efficient and
accurate reduced-order models are achieved. These models are further enhanced
through the integration of active learning procedures, ensuring their generalizability
and predictive capabilities. We believe that the technique can be readily ported and
benefit other fields relying on expensive high-dimensional functions evaluation.

Outline The first part of this work will be focused on physics-based simulation of
hypersonic flows in chemical nonequilibrium. In Chapter 1, the equations governing
the flow regimes discussed in this work are recalled. Then, the various terms and
modeling choices to close the governing equations are discussed (i.e. thermochemical
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modeling). Chapter 2 presents the numerical framework used to solve the governing
equations. A study of the impact of each thermochemical model on the cost of a
benchmark simulation is also carried out. In Chapter 3, the newly developed flow
solver is first validated with a set of two Ma = 10 boundary layers with different wall
boundary conditions and a Ma = 2 shock-wave boundary layer interaction (SBLI).
Then, more complex configurations are studied, such as roughness, SBLI at higher
Mach number and jet in crossflow. An analysis of the impact of the thermochemical
model on such flows will also be carried out. Finally, Chapter 4 is pivotal. It presents
the self-similar solutions used as reference solution in the sponge. These solutions
will also be used as a low-cost way to generate training data in the second part of
this work.

In the second part, focus will be set on data-driven techniques and particularly
the derivation of reduced-order thermochemical gas models to speed up the
simulation of hypersonic flows in chemical nonequilibrium. In Chapter 5, the
strategy and training steps of the reduced-order models are presented. The data-
driven models are then tested in the steady simulation of three benchmark cases
as a proof of concept. Chapter 6 discusses the generalization of the technique
to unsteady flows or when training data is not or only partially available. This
introduces Chapter 7, where a procedure for ’on-the-fly’ active learning is presented,
making the reduced-order thermochemical models generalizable and predictive.
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In the following, we describe the general equations governing the flow regimes
discussed in this work. Our starting point is an overview of the conservation
equations, followed by a detailed discussion of the various terms and modeling
choices.

1.1 Governing equations

The nondimensional Navier-Stokes equations for fluids that consist of a mixture of
ns species, S, are presented in Eqs. (1.1-1.4). The derivation of these equations
is present in many classical text, see for instance [Anderson 2019]. Eq. (1.1) is
the continuity equation, which ensures global mass conservation in the system.
Eqs. (1.2) represent the set of mass conservation equations for each species, where
the right-hand side contains the net production rate terms, ω̇s. For non-reacting
gas mixtures, where the mixture composition is constant or a direct function of
the thermodynamic state, only the global mass conservation equation, Eq. (1.1), is
required, and the species mass conservation equations, Eqs. (1.2), can be omitted.
However, for finite-rate reacting mixtures with varying composition, Eq. (1.1) must
be solved together with Eqs. (1.2). In order to ensure mass conservation, the set
of equations presented in Eqs. (1.2) is commonly solved for all but one species.
The excluded species is typically chosen based on numerical considerations, where
the species with the smallest concentrations is often avoided. Alternatively, all the
species mass conservation equations can be solved while Eq. (1.1) is relaxed. In
this work, the former procedure is adopted and ns − 1 equations are solved for the
species. Finally, Eqs. (1.3) and (1.4) represent the conservation of momentum and
total energy in the system, respectively. In total, there are ns + 4 conservation
equations.

∂ρ

∂t
+∇ · (ρu) = 0, (1.1)

∂ρs
∂t

+∇ · (ρs(u+Vs)) = ω̇s, s ∈ S, (1.2)
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∂ρu

∂t
+∇ · (ρu⊗ u) = −∇p+∇τ, (1.3)

∂ρe0
∂t

+∇ · (ρ(e0 + P )u) = ∇ · (τ · u)−∇ · q, (1.4)

The corresponding nondimensional quantities are the velocity components u =

[u, v, w]T , t denotes time, ρ denotes the mixture density, and ρs = ρYs and Ys are
the partial density and mass fraction of species s ∈ S, respectively. Alternatively,
the mole fraction Xs can be computed from the mass fraction as

Xs = Ys
W

Ws
, (1.5)

where Ws and W−1
=
∑

s∈S Ys/Ws are species-specific and mixture-averaged molar
mass, respectively. In the momentum equation, Eq. (1.3), p stands for pressure, and
τ is the viscous stress tensor, defined for a Newtonian fluid as

τ =
µ

Re∞

(
∇u+∇uT − 2

3
(∇ · u)I

)
+

(
λ+

2

3
µ

)
(∇ · u)I (1.6)

where µ is the dynamic viscosity, β = λ + 2µ/3 is the bulk viscosity and I is the
identity tensor. Stoke’s hypothesis is used and β = 0. In the energy equation,
Eq. (1.4), e0 = e + |u|2/2 is the stagnation (or total) energy, with e denoting the
specific internal energy. Additionally, the specific internal and total enthalpies are
defined as h = e+ p/ρ and h0 = e0 + p/ρ, respectively. The heat flux vector takes
the form

q = − κ

Re∞Pr∞Ec∞
∇T +

∑
s∈S

ρshsVs, (1.7)

where T denotes the temperature. The second term on the right-hand side of
Eq. (1.7) is included only in the case of finite-rate chemistry (see §1.2.1.3). In this
case, the term Vs, appearing in Eqs. (1.2) and (1.7), denotes the diffusion velocity
vector of species s, while hs represents the species specific partial enthalpy.

The set of equations are non-dimensionalized using the reference parameters
in Eq. (1.8), where T̃ref = (γ∞ − 1)T̃∞ and c̃∞ represents the speed of sound.
Dimensional quantities are denoted with the superscript tilde.

ρ =
ρ̃

ρ̃∞
, p =

p̃
˜ρ∞c2∞

, T =
T̃
˜Tref
, u =

ũ

˜c∞
, ρs =

ρ̃s
ρ̃∞

, Vs =
Ṽs

c∞

κ =
κ̃

κ̃∞
, µ =

µ̃

µ̃∞
, e0 =

ẽ0
c̃2∞

, h0 =
h̃0
c̃2∞

, ω̇s =
˜̇ωs

ρ̃∞c̃∞/L̃ref

(1.8)

The Reynolds number, Re∞, and Prandtl number, Pr∞, are defined in the free
stream at the domain inlet. The Eckert number, Ec∞, is also computed at the free
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stream and is set to one. These numbers are defined using reference values as

Re∞ =
ρ̃∞c̃∞L̃ref

µ̃∞
, P r∞ =

µ̃∞c̃p,∞
κ̃∞

, Ec∞ =
c̃2∞

c̃p,∞T̃ref
. (1.9)

The thermodynamic properties and equation of state, as well as the transport
properties and the chemical kinetics terms, depend on the modeling choices and are
discussed in detail in the following §1.2.

1.2 Thermodynamic and chemical models

The solver employed in this study utilizes several thermochemical models that vary
in complexity. In the subsequent sections, we elaborate on the specifics of each
modeling approach and analyze the consequences of the underlying assumptions on
the closure of the governing equations.

1.2.1 Multi-component gas mixtures with variable composition

In general, a reacting gas in a high-enthalpy flow is perceived as a multi-component
mixture comprising a specific set of species, denoted as S, which interact through
a predetermined network of reactions, as described in §1.2.1.3. Each component of
the mixture is assumed to behave as a perfect gas where each particle has negligible
interactions with the surrounding particles. This assumption is valid for weakly
ionized and unmagnetized gases considered in this work.

1.2.1.1 Thermodynamics

Under this assumption, the classical equation of state for perfect gas for the mixture
reads,

p̃ = ρ̃RuT̃ /W, (1.10)

where Ru is the universal gas constant. The global thermodynamic properties of
the mixture can be inferred from the properties of the individual species as,

ρ =
∑
s∈S

ρs , e =
∑
s∈S

Yses , h =
∑
s∈S

Yshs . (1.11)

The species specific heats are defined as,

cp,s =

(
∂hs
∂T

)
p

, cv,s =

(
∂es
∂T

)
V

. (1.12)

Therefore, the closure of the governing equations requires the modeling of
individual species thermodynamic properties es, hs, and cp,s for s ∈ S. Different
approaches are available in the literature and are implemented in the Mutation++
library [Scoggins et al. 2020]. Mutation++ offers a flexible high-level application
programming interface to model the physico-chemical properties of mixtures in
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different levels of non-equilibrium. For this reason, it was coupled with our flow
solver (see chapter 2) for the thermochemical modeling of hypersonic flows in
chemical nonequilbrium.

In this work, the Rigid-Rotor Harmonic oscillator (RRHO) formulation of
Mutation++ is used. This model is valid for the simple molecules considered
and provide analytical expression for species individual thermodynamic properties.
These expressions are derived using the partition function of statistical mechanics
[Scoggins & Magin 2014, Scoggins 2017]. Mutation++ also provides the evaluation
of the species specific heats, cp,s for s ∈ S as a function of temperature T and a
pressure of 1 bar through the NASA-9 or NASA-7 polynomial databases of McBride
et al. [McBride et al. 2002]. Finally, temperature T can be recovered by solving the
following nonlinear equation for temperature through a Newton-Raphson procedure,

h =
∑
s∈S

h0s +

� T

T 0

cp,s(T
′)dT ′, (1.13)

where, h0s is a reference value of the specific enthalpy taken at the reference
temperature T 0 = 298.15 K.

1.2.1.2 Transport coefficients

Based on the kinetic theory of dilute gases, the mixture transport properties, i.e
dynamic viscosity µ, thermal conductivity κ, and the species diffusion velocities Vs,
are complex functions of the local thermodynamic state and composition through
binary collision integrals [Hirschfelder et al. 1964].

A binary collision integral represents integrated collision cross-sections for
binary species pairs which interact with one another over the whole range of
thermal speed. Their appearence is a direct consequence of the solution of
the Boltzmann equation. Indeed, the thorough derivation of the transport
fluxes is based on the Chapman-Enskog perturbative solution of the Boltzmann
equation [Mitchner & Kruger Jr 1973]. Through a spectral Galerkin projection
using Laguerre-Sonine polynomials, transport system can be obtained. Solving
the system then provides the transport coefficient. Using the first and second
order approximation for dynamic viscosity and thermal conductivity respectively,
the transport system reads,{∑

i∈S
Gη

s,iα
η
i = Xs

}
, ∀s ∈ S

η =
∑
i∈S

αη
iXi. (1.14)

η = {µ, κ} and Gη is the respective transport matrix depending on the species mole
fractions and binary collision integrals. The derivation of these transport matrices
is presented in [Magin & Degrez 2004].
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For efficiency reason, the binary collision integrals as function of temperature
are stored in Mutation++ through curve-fitted fourth order exponential polynomial
[Scoggins & Magin 2014]. Nonetheless, the inversion of the transport system
remains computationally expensive, especially as the number of species in the
mixture increases. Therefore, a more efficient method to solve this system, using
the iterative Conjugate-Gradient (CG) is implemented in Mutation++. This
formulation for the evaluation of dynamic viscosity and thermal conductivity is
retained in this work.

Alternatively, simplified mixture rules are found in the literature and widely used
in CFD of hypersonic flows in chemical nonequilibrium [Di Renzo & Urzay 2021,
Passiatore et al. 2022], such as those of Gupta and Yos [Gupta et al. 1990] and
Wilke [Wilke 1950]. These mixture rules combine the weighted individual species
transport properties through algebraic equations, thus reducing the computational
time of the evaluation of the mixture transport coefficient. However, these mixture
rules where shown to have high error in the ionization range [Magin & Degrez 2004].

Hence, the mixture’s thermodynamic and transport properties depend,
in general, on any two thermodynamic properties and on its composition.
The composition is generally considered an independent variable in chemical
nonequilibrium, except where it then depends on other thermodynamic quantities
for specific cases, as discussed in §1.2.1.4.

1.2.1.3 Finite-rate chemistry and chemical nonequilibrium – CNEQ

In cases where finite-rate chemistry cannot be neglected, the composition is treated
as an independent variable. It becomes essential to model the mass production rate
of species, denoted as ω̇s in Eq. (1.2), as well as the diffusion velocities of species,
denoted as Vs. This section provides a description of these terms.

In a general case, a set of reactions, R, is considered depending on the mixture in
question. Each reaction, r, is characterized by a reaction rate, Rr, which is computed
by the forward rate, kf , and the backward rate, kb. These, in turn, are obtained
according to experimentally or theoretically calibrated Arrhenius formulas kf =

CrT
nr exp (Tar/T ), and kb = kf/Keq,r(T ), where Keq,r is the reaction equilibrium

constant at specific conditions. A generic chemical reaction can be represented by

Reaction(r) :
∑
s∈S

ν ′r,sSs
kf−⇀↽−
kb

∑
s∈S

ν ′′r,sSs, (1.15)

where ν ′r,s and ν ′′r,s are the stoichiometric coefficients for reactants and products in
reaction r for species s. The net reaction rate is then given by

Rr =

[
kfΠs

(
ρs
Ws

)ν′r,s

− kbΠs

(
ρs
Ws

)ν′′r,s
]
·
∑
s∈S

(
Zr,s

ρs
Ws

)
, (1.16)

where Ws is the molar mass of species s and its efficiency as a third-body M in
reaction r is denoted by Zr,s. The net mass production rates for species s from all
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reactions are then computed as

ω̇s =Ws

∑
r∈R

(
ν ′′r,s − ν ′r,s

)
Rr. (1.17)

Throughout this work, Park’s five reactions chemical mechanism for dissociated
air [Park 1989] was used. The species set is S = [N2,O2,N,O,NO], and the five
reactions are, with the third-body M being any of the five species considered:

R1 : N2 + M −⇀↽− 2N + M

R2 : O2 + M −⇀↽− 2O + M

R3 : NO + M −⇀↽− N + O + M

R4 : N2 + O −⇀↽− NO + M

R5 : NO + O −⇀↽− N + O2 (1.18)

Local variations of species mass fraction trigger diffusion within the flow,
represented in the governing equation by the diffusion flux, Js = ρsVs appearing
in Eq. (1.2). Following the description in [Marxen et al. 2013], and under the same
assumptions, neglecting thermal and barodiffusion, the diffusion driving force for
each species, ds, reduces to its molar fraction gradient,

ds = ∇Xs. (1.19)

Analogous to the transport coefficients (Eq. 1.14), the diffusion velocity for each
species s, Vs, is the solution of the Stefan-Maxwell linear system of equations for a
multi-component mixture,{∑

i∈S
GV

s,iVi = −ds

}
, ∀ s ∈ S (1.20)

where GV is the diffusion transport matrix of the system, which is itself a complex
function of binary collision integrals and mole fractions [Magin & Degrez 2004].

While solving the system in Eq. (1.20) is the most accurate way to calculate the
diffusion fluxes in a multi-component gas mixture, simpler formulations are found in
the literature under the same assumptions [Hirschfelder et al. 1964, Ramshaw 1990,
Ern & Giovangigli 1994]. A simpler expression based on Fick’s diffusion model
(applicable to binary mixtures) with a mass correction is given below in Eq. (1.21),

Js = −cWsDs∇Ys + cYs
∑
i∈S

WiDi∇Yi. (1.21)

c =
∑

s∈S(ρs/Ws) and Ds is the averaged diffusion coefficient for species s, defined
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as
Ds =

1−Xs∑
r ̸=sXr/Ds,r

, (1.22)

where Ds,r is the binary diffusion coefficient of species s within species r. The binary
diffusion coefficient, Ds,r, is a function of the respective binary collision integral.

Instead of solving a linear system of equations of size Ns, using this model, the
diffusion flux is computed from an algebraic equation, at a significantly reduced
computational cost. Both implementations are available in the solver presented
here, and the accuracy of the simplified approach is verified for practical cases in
§3.1.

The constraints seen in Eq. (1.23) have to be respected for the kinetic and
diffusive terms, hence ∑

s∈S
ω̇s = 0 ,

∑
s∈S

ρsVs = 0. (1.23)

The heat flux takes the original form shown in Eq. (1.7), where the thermal
conductivity is replaced by its frozen composition value. The diffusive heat
flux is then taken into account explicitly through the second term in Eq. (1.7).
The thermochemical library Mutation++ [Scoggins et al. 2020] also implement the
computation of the chemical reaction and diffusion terms.

1.2.1.4 Special cases – frozen and equilibrium flows

There exist two extreme cases for a multi-component mixture, where its composition
becomes irrelevant.

• Frozen composition, when the reaction time scale is much longer than the
flow time scale (typically quantified by the Damköhler number, Da ≪ 1.0),
hence the composition of the flow is generally constant in time.

• Local thermodynamic equilibrium - LTE, when the reaction time
scale is short enough for the reactions to bring the mixture to a state
of local equilibrium (Da ≫ 1.0), where the composition approaches its
equilibrium composition that can be computed from thermodynamic relations
by maximizing the system entropy or, equivalently, minimizing the Gibbs free
energy.

In both cases of frozen composition and LTE, the mixture composition becomes a
dependent variable, directly computed for a given thermodynamic state. Therefore,
the species mass conservation equations, Eq. (1.2), and the corresponding reaction
and diffusion terms are not needed. The heat flux takes the simplified form shown
in Eq. (1.24),

q = − κ

Re∞Pr∞Ec∞
∇T, (1.24)

where the thermal conductivity is computed at either frozen or LTE conditions.
In the latter case, the equilibrium value of thermal conductivity is used κ = κeq.
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In situations between these extremes, finite-rate chemistry needs to be tracked as
described in §1.2.1.3 and the mixture composition changes in space and time.

1.2.2 Calorically and thermally perfect gases

When the gas is assumed to be calorically (CPG) or thermally perfect (TPG),
the composition becomes irrelevant. The chemical diffusion and reaction terms in
the governing equations vanish, and the thermodynamics and transport properties
become simple functions of the thermodynamic state of the gas, resulting in a
nondimensional equation of state given by

p = ρ
γ − 1

γEc∞
T. (1.25)

It should be noted that this formulation is valid in this form only for the CPG and
TPG models.

In the case of a CPG, the thermodynamic properties, such as the specific heat,
are considered constant. The internal energy and enthalpy thus become linear
functions of temperature, in the nondimensional form γ∞e = T , which is derived
from a dimensional expression h̃ = c̃p,∞T̃ .

In the case of a TPG, the thermodynamic properties are generally functions of
temperature. Since the specific heat is now itself a function of temperature, the
internal energy and enthalpy become nonlinear functions of temperature. In the
solver, T is therefore computed at the end of an iteration from the conservative
variable h through an iterative Newton-Raphson procedure. The relations used are
based on the work presented in [Malik & Anderson 1991, Marxen et al. 2011b]. The
specific heat is given as

c̃p

(
T̃
)
= c̃0p

1 +
γ∞ − 1

γ∞

(
Θ̃

T̃

)2
eΘ̃/T̃

eΘ̃/T̃ − 1

 , (1.26)

where Θ̃ = 3055K and c̃p0 such that c̃p
(
T̃∞

)
= c̃p,∞.

The transport properties (viscosity and thermal conductivity) can be constant
or follow analytical expressions as functions of temperature. In both the CPG and
TPG assumptions, the viscosity is computed using Sutherland’s law,

µ̃
(
T̃
)
= C̃1

T̃ 3/2

T̃ + T̃S
, (1.27)

where C̃1 = 1.458× 10−6 kgm−1s−1K−1/2 and T̃S = 110.4 K.
In addition, in both cases, the heat flux takes the simplified form seen in

Eq. (1.24) as the diffusive heat flux vanishes. In CPG, the equilibrium conductivity
is assumed constant, κ̃ = κ̃∞, while κ can be computed as in Eq. (1.8). Whereas,
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in TPG, the equilibrium thermal conductivity is approximated by Keyes’ law,

κ̃
(
T̃
)
= C̃2

T̃ 1/2

1 +
(
C̃3/T̃

)
10−C̃4/T̃

, (1.28)

with C̃2 = 2.646× 10−3 Wm−1K−3/2, C̃3 = 245.4 K, C̃4 = 12 K.
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The following section outlines the numerical framework of the Navier-Stokes
solver and the implementation of the models described thus far. The governing
equations (Eqs.(1.1-1.4)) are written in vector form as

∂Q

∂t
= F (Q) = −∇ · FC +∇ · FD + S, (2.1)

where the state vector Q contains the conservative variable and F (Q) is the flux
vector:

Q =



ρ

ρs
1

...
ρsns

ρu

ρe0


, FC =



ρu

ρs
1
u

...
ρsns

u

ρu⊗ u+ p

ρh0u


, FD =



0

−ρs1Vs1
...

−ρsns
Vsns

τ

τ · u− q


, S =



0

ω̇s1
...

ω̇sns

0

0


(2.2)

2.1 Computational domain and boundary conditions

The equations are integrated numerically (direct numerical simulation - DNS) in a
three-dimensional Cartesian coordinate system {x, y, z} with the origin placed at the
leading edge of the flat plate, and x, y, and z point in the streamwise, wall-normal,
and spanwise directions, respectively. A general sketch of the domain of interest is
presented in Figure 2.1.

A reference solution is prescribed in the sponge regions, where typically a self-
similar boundary layer is used. Please refer to chapter 4 for a complete description
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Sponge regions

x

y

Wall

Inflow

Unperturbed free-stream

OutflowBoundary-layer edge

Figure 2.1: Schematic of a generic computational domain. Inflow and outflow can be
enforced with reference solutions. The same approach is used at the free stream. The wall
is non-catalytic, either isothermal or adiabatic. A variety of forced boundary conditions
can be applied locally on the wall.

of the self-similar solutions, using the various gas models defined in §1.2. The
solution is forced towards the reference by incorporating damping source terms in
the right-hand side of the equations, as seen in Eq. (2.3).

∂Q

∂t
= F (Q)− σ(x)(Q−Qref ) (2.3)

The sponge parameter σ(x) is a smooth third-order polynomial function in space,
vanishing inside the domain and reaching a high value near the boundaries which
is selected empirically, such that it damps any reflected waves. The sponge can
be completely omitted at the inflow when it is unnecessary, such as in supersonic
configurations where upstream-traveling disturbances are minimal. In such cases,
a Dirichlet type inflow boundary condition is used. The wall boundary conditions
(y = 0) is either adiabatic or isothermal, while no slip and no catalysis are permitted
for the reacting cases:

u = 0,
∂Ys
∂y

= 0, T = Tw or
∂T

∂y
= 0. (2.4)

Other boundary conditions, such as blowing and suction at the wall, isolated
roughness geometries, or jet injections, are also implemented and available. Finally,
periodicity is assumed in the spanwise direction.

2.2 Discretization in space and time

The computational tools developed are based on the original Navier-Stokes solver
developed by Nagarajan [Nagarajan et al. 2003, Nagarajan 2004]. The code has
been applied to DNS and LES studies of flat-plate boundary layers in the subsonic
[Sayadi et al. 2013] and the supersonic [Marxen et al. 2011b, Marxen et al. 2013,
Marxen et al. 2014b, Marxen et al. 2014a] regime.
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x
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τ -node

ρ-node

ρu-node
ρv-node

Figure 2.2: Schematic of a staggered grid in two dimensions. The cell-centered ρ nodes
are where scalar variables are stored and computed, while the interface nodes ρu and ρv
are where the streamwise and wall-normal velocities, fluxes, and gradients are stored and
computed. The τ nodes are the grid nodes where the grid is generated, and where the
solution is interpolated for post-processing and presentation. Extension to three dimensions
is trivial, with an additional ρw node at the interface in the page-normal direction, for the
spanwise velocities, fluxes, and gradients.

2.2.1 Spatial discretization

Spatial discretization is done using fourth-order central or sixth-order compact
finite differences schemes [Lele 1992] described below. The governing equations
are formulated in curvilinear coordinates and solved on a staggered grid, as seen
in Figure 2.2. A detailed discussion of the curvilinear transformation is found in
[Nagarajan 2004]. This transformation allows to use higher order schemes, derived
for uniform cartesian grids, in more complex geometries and non-uniform grids, see
§3.1.

2.2.1.1 Sixth order compact finite difference scheme

A family of high order schemes for approximating the first derivative on a uniform
staggered grid where the functional value at half a mesh spacing ∆x are used is
given by [Lele 1992, Nagarajan 2004]

αf
′
j−1 + f

′
j + αf

′
j+1 = b

fj+3/2 − fj−3/2

4∆x
+ a

fj+1/2 − fj−1/2

2∆x
, (2.5)

where f ′ are the approximate first derivative values. The three free parameters α,
a and b are determined by matching the coefficients of the Taylor series to obtain
highest order of accuracy, resulting in a one-parameter family of fourth order schemes
with

a =
3

8
(3− 2α),

b =
1

8
(1 + 22α). (2.6)

Finally, choosing α = 9/62 leads to sixth-order accuracy.
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The staggered grid arrangement implies the use of a midpoint interpolation. The
fourth-order family of interpolation schemes is given by:

αf Ij−1 + f Ij + αf Ij+1 =
b

2
(fj+3/2 − fj−3/2) +

a

2
(fj+1/2 − fj−1/2) (2.7)

where f I are the interpolated values. The coefficients are,

a =
1

8
(9 + 10α),

b =
1

8
(6α− 1), (2.8)

and α = 3/10 leads to a sixth-order interpolation scheme.

In practice, derivation (or interpolation) with a compact sixth-order schemes
involves the resolution of a tridiagonal linear system, defined as follows for a periodic
direction: 

1 α α

α
. . . . . .
. . . . . . . . .

. . . . . . α

α α 1





f
′
1
...
f

′
j
...
f

′
n

 =
b

4∆x
f3∆ +

a

2∆x
f1∆ (2.9)

where f1∆ and f3∆ are centered finite difference vectors of the form

fd∆ =


f1+d/2 − f1−d/2

...
fj+d/2 − fj−d/2

...
fn+d/2 − fn−d/2

 . (2.10)

2.2.1.2 Boundary schemes

Physical problems of interest commonly involve non-periodic boundaries. To handle
this, the system of Eq. (2.9) need to be modified to account for the boundary and
near boundary nodes while maintaining a high order of accuracy. Figure 2.3 shows
a one-dimensional staggered grid with a boundary condition at the left end (j = 0).
Due to the staggered arrangement, different boundary schemes have to be used
for the boundary ρ or ρu nodes, for instance. These boundary schemes have been
derived by [Nagarajan 2004] and involve one-sided finite difference. They are briefly
summarized in that section.
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Figure 2.3: Schematic of a one-dimensional staggered grid with a physical boundary at
the left end.

Boundary scheme for derivation: The scheme for the first derivative at the
boundary ρu-node (j = 0) is written as

f
′
0 + αf

′
1 =

1

∆x
(af1/2 + bf3/2 + cf5/2 + df7/2). (2.11)

Third order accuracy requires the following relationships to be satisfied:

a = − 1

24
(23α+ 71),

b =
1

8
(7α+ 47),

c =
1

8
(α− 31),

d =
1

24
(−α+ 23), (2.12)

where α = 0 is chosen for simplicity. The interior scheme is not applicable to the
next ρu node (j = 1). The most compact fourth-order scheme is used instead by
setting α = 1/22, leading to b = 0 in Eq. (2.5).

The scheme for the first derivative at the boundary ρ-node (j = 1/2) is similarly
written as

f
′

1/2 + αf
′

3/2 =
1

∆x
(af0 + bf1 + cf2 + df3). (2.13)

A third order family of schemes is obtained with the following coefficients

a =
1

24
(α− 23),

b =
1

8
(−9α+ 7),

c =
1

8
(9α+ 1),

d = − 1

24
(α+ 1). (2.14)
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Boundary scheme for interpolation: Interpolation at the boundary ρu-node
uses the following scheme,

f I0 + αf I1 = af1/2 + bf3/2 + cf5/2. (2.15)

A one-parameter, third-order family of schemes is obtained with the following
coefficients

a =
1

8
(3α+ 15),

b =
1

4
(3α− 5),

c =
1

8
(3− α). (2.16)

A stable scheme is obtained with α = 0. For the ρu-node at j = 1, the most
compact fourth order interpolation scheme is used by imposing b = 0 and α = 1/6

in Eq. (2.7). The interpolation scheme for the boundary ρ-node (j = 1/2) reads

f I1/2 + αf
3/2
1 = af0 + bf1 + cf2 + df3. (2.17)

A fourth-order scheme is obtained by setting

a =
1

16
(5− α),

b =
1

16
(9α+ 15),

c =
1

16
(9α− 5),

d = − 1

16
(1− α), (2.18)

with α = 0 for simplicity. Finally, the interpolation scheme for the ρ-node at j = 3/2

is chosen to be a fourth order compact scheme with α = 1/4 in Eq. (2.7).

2.2.1.3 Fourth order central finite difference scheme

As shown in 2.5.1, the parallel scalability of the sixth order scheme fails after
4096 cores. Indeed, derivation and interpolation of the sixth-order compact
scheme requires solving the tridiagonal system in Eq. (2.9), which in turn involves
communication to all the processors to build and solve the system. This results in an
overhead communication cost, preventing ideal scalability after 4096 cores. Hence,
in cases where ideal scalability is needed for greater number of processors (i.e. for
3D simulation), a fourth order central difference schemes can be used instead of the
sixth-order compact by setting α = 0 in Eqs. (2.5) and (2.6). The resulting scheme
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for the first derivative is,

f
′
j = b

fj+3/2 − fj−3/2

4∆x
+ a

fj+1/2 − fj−1/2

2∆x
, (2.19)

and for interpolation,

f Ij =
b

2
(fj+3/2 − fj−3/2) +

a

2
(fj+1/2 − fj−1/2). (2.20)

These relations are explicit functions of the functional value of f for the interior
points. Accordingly, the boundary schemes are made explicit. Thus, no linear
system is solved. This allows for an ideal scalability of the fourth order scheme
up to a higher number of computation cores compared to the sixth-order compact
scheme, as seen in 2.5.1, Figure 2.5.

2.2.2 Time integration

Time marching is done using explicit Runge-Kutta schemes. To integrate a general
equation of the form

dy

dt
= f(y, t) (2.21)

from discrete time tn to tn+1 = tn +∆t, with time step ∆t, a general Runge-Kutta
scheme can be written as,

y(tn+1) = y(tn) + ∆t

Nrk∑
i=1

biki, (2.22)

where

k1 = f(yn, tn),

k2 = f(yn + (a21k1)∆t, tn + c2∆t),

k3 = f(yn + (a31k1 + a32k2)∆t, tn + c3∆t),
...

kNrk
= f(yn + (aNrk1k1 + · · ·+ aNrk,Nrk−1

kNrk−1
)∆t, tn + cNrk

∆t).

(2.23)

The number of Runge-Kutta substeps Nrk, the coefficients aij for 1 ≤ j <

i ≤ Nrk, the weights bi for i ∈ [1, 2, 3 . . . Nrk] and nodes ci for i ∈ [2, 3 . . . Nrk]

define uniquely the scheme. They are usually stored in a Butcher tableau. In the
solver, the low-memory two-register RK3 [Nagarajan 2004], the three-register total
variation diminishing RK3-TVD [Gottlieb & Shu 1998], and the four-register RK4
schemes [Carpenter & Kennedy 1994, Kennedy et al. 2000] are implemented. Their
butcher tableau is given in Table 2.1.

The choice of the timestep is limited by the convective stability limit of the
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Table 2.1: Butcher tableau of (left) the low-memory, two-register RK3 scheme, (middle)
the RK3-TVD scheme and, (right) the classical RK4 scheme.

scheme, known as the Courant-Friedrichs–Lewy (CFL) condition:

∆t <
CO∆x

|u|+ cs
. (2.24)

Where CO is the Courant number. The CFL limit of each scheme is given in the
following table:

Scheme CO

RK3 0.551
RK3-TVD 1

RK4 2
√
2

Table 2.2: CFL limit of each Runge-Kutta scheme implemented in the solver.

2.3 Shock-capturing scheme

In the presence of shocks and discontinuities, special treatment is necessary.
Indeed, compact finite difference schemes are known to generate spurious
numerical oscillations around discontinuities. In this work, we opted for a
numerical shock-capturing scheme based on local artificial diffusivity (LAD) in
curvilinear coordinates. The scheme, originally developed by Cook and Cabot
[Cook & Cabot 2004], adds artificial diffusion near the discontinuities. The method
was extended to curvilinear coordinates by Kawai and Lele [Kawai & Lele 2008]
and verified for shock capturing in supersonic flow simulations [Kawai & Lele 2008,
Kawai & Shankar 2010, Mani et al. 2009].

Grid-dependent artificial transport coefficients are added to the physical
coefficients appearing in Eqs. (1.6) and 1.7. Namely,

µt = µ+ µ∗ (2.25)

βt = β + β∗ (2.26)

κt = κ+ κ∗ (2.27)
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where (.)∗ denote the artificial transport coefficients and (.)t the resulting total
coefficient. The artificial coefficients are computed as

µ∗ = Cµρ

∣∣∣∣∣∣∣
3∑

l=1

[
3∑

m=1

(
∂ξl
∂xm

)2
]r/2

∂rfµ
∂ξrl

∆r+2
l

∣∣∣∣∣∣∣ , (2.28)

β∗ = CβDβfswρ

∣∣∣∣∣∣∣
3∑

l=1

[
3∑

m=1

(
∂ξl
∂xm

)2
]r/2

∂rfβ
∂ξrl

∆r+2
l

∣∣∣∣∣∣∣ , (2.29)

κ∗ = Cκ
ρcs
T

∣∣∣∣∣∣∣
3∑

l=1

[
3∑

m=1

(
∂ξl
∂xm

)2
]r/2

∂re

∂ξrl
∆r+1

l

∣∣∣∣∣∣∣ , (2.30)

where Cµ = 0.005, Cβ = 3.5 and Cκ = 0.01 are dimensionless, user-specified
constants. fµ = fβ = ∇·u represents the dilatation term. ξl denotes the curvilinear
coordinates while xm refers to the cartesian coordinates, for {l, m} ∈ [1, 2, 3]2. ∆l

is the local grid spacing in the physical space normal to the shock, proposed as an
improvement to the original method by Mani et al. [Mani et al. 2009]. Following the
recommendations in [Kawai & Lele 2008, Kawai & Shankar 2010, Mani et al. 2009],
fourth order derivation, i.e. r = 4, is adopted. The fourth derivative are evaluated
by sequential application of the first derivative, Eq. (2.5), and interpolation
schemes, Eq. (2.7). The switching function fsw in Eq. (2.29) is defined based on
[Kawai & Shankar 2010] as

fsw = H(−∇ · u)× (∇ · u)2
(∇ · u)2 + |∇ × u|2 + ε

. (2.31)

This expression is a combination of a heavisyde function H to turn off artificial
bulk viscosity when the fluid is expanding (i.e. ∇ · u > 0) and a Ducros sensor
[Ducros et al. 1999], which helps to localize artificial viscosity only in near-shock
regions. Finally, Dβ = 1 − exp(−y+

A+ ), with the Van Driest constant A+ = 26, is a
wall damping term to force the artificial viscosity to vanish near the wall.

In the case of finite-rate chemistry simulation, artificial diffusion is also added
to all species average diffusion coefficient, defined in Eq. (1.22).

Ds,t = Ds +D∗
s . (2.32)

We use Fiorina and Lele [Fiorina & Lele 2007] entropy-based sensor, extended to
curvilinear coordinates. The artificial diffusion coefficient reads,

D∗
s = CY

cs
cp

∣∣∣∣∣∣∣
3∑

l=1

[
3∑

m=1

(
∂ξl
∂xm

)2
]r/2

∂rs

∂ξrl
∆r+1

l

∣∣∣∣∣∣∣ (2.33)
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where s denotes entropy and CY = 0.01 is the model constant. The advantage of
the entropy-based formulation is twofold. First, the artificial coefficient is computed
only once for all species, reducing computation cost. Secondly, entropy enables
detection of species discontinuities in contact discontinuities or reaction zones not
necessarily related to shock waves.

In the definition of various artificial coefficients, the overbar denotes the
truncated Gaussian filter defined by Cook and Cabot [Cook & Cabot 2004]. It is
applied sequentially to all interior points and in each direction.

fi = a0fi+a1(fi−1+fi+1)+a2(fi−2+fi+2)+a3(fi−3+fi+3)+a4(fi−4+fi+4) (2.34)

a0 =
3565

10368
,

a1 =
3091

12960
,

a2 =
1997

25920
,

a3 =
149

12960
,

a4 =
107

103680
. (2.35)

Finally, a low-pass sixth-order compact filter is applied to each conservative variable
at the end of each Runge-Kutta iteration.

αf f̂i−1+ f̂i+αf f̂i+1 = afi+
b

2
(fi+1+fi−1)+

c

2
(fi+2+fi−2)+

d

2
(fi+3+fi−3) (2.36)

f and f̂ denote the original and filtered quantities, respectively. The coefficients are
set to

a =
1

16
(10αf + 11),

b =
1

32
(34αf + 15),

c =
1

16
(6αf − 3),

d =
1

32
(2αf − 1), (2.37)

and αf ∈ [−1/2, 1/2] is a free parameter. When increased towards 1/2, the cutoff
frequency of the filter is increased. In this work, it is set to αf = 0.490 for all cases
needing shock capturing.
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2.4 Coupling with the Mutation++ library

In the case of a chemical nonequilibrium simulation, the thermodynamic and
transport properties, and the source terms for chemical kinetics, are extracted
from the Mutation++ library [Scoggins et al. 2020]. The library, written in C++,
is coupled with the solver, written in Fortran 95, using a wrapper interface
that facilitates the library function calls by implementing them as functions and
subroutines in the solver. An on-the-fly communication between the solver and the
library is necessary, with evaluation of the thermochemical and transport properties
at each grid point and each iteration, given the local state vector. Quantities are
therefore exchanged between the solver and the library for each grid point, at each
time step. These function evaluation calls add a significant computational overhead
to the solver since each state evaluation involves the iterative solution of nonlinear
equations. This is demonstrated below in Figure 2.7. The library offers however
valuable modularity, decoupling the thermochemical model from the core of the
solver, and offering multiple capabilities to change gas mixtures, databases, and
models. It is easily coupled to any computational fluid dynamics solver as an
input/output problem z = f(x). More precisely, given the local state vector

x = [ρ, ρs, ρe] ∈ RD, (2.38)

the library returns all physico-chemical properties needed to close the governing
equations, as described in §1.2.1.

z = f(x) = [p, T, µ, κ,Ds, hs, ω̇s] ∈ RDZ . (2.39)

An overview of the Mutation++ library and its coupling to a CFD solver, taken
from [Scoggins et al. 2020], is reproduced in Figure 2.4.2 J.B. Scoggins, V. Leroy, G. Bellas-Chatzigeorgis et al. / SoftwareX 12 (2020) 100575

packages provide gas properties, including CEA [1], EGLIB [2],
pegase [3], CHEMKIN [4], Cantera [5], and KAPPA [6], however,
these libraries tend to focus on a specific application, a narrow
range of collisional time-scales, or are specialized in providing
only certain types of properties.

These observations have led to the desire to reduce the work
necessary to implement new models and algorithms and central-
ize their development into a single software library which may be
used by multiple CFD codes to maximize code reuse, testing, and
open collaboration. This paper presents the Mutation++ library,
which has been developed to meet this objective. Mutation++ is
a complete redesign and extension of its Fortran 77 predeces-
sor, MUTATION [7], and developed with several goals in mind,
including

1. provide accurate thermodynamic, transport, and chemical
kinetic properties for multicomponent, partially ionized
gases,

2. ensure the efficient evaluation of these properties using
state-of-the-art, object-oriented algorithms and data struc-
tures in C++,

3. be easily extendable to incorporate new data or algorithms
as they become available,

4. interface to any simulation tool based on the solution of
conservation laws through a consistent and logical inter-
face,

5. use self-documenting database formats to decrease data
transcription errors and increase readability, and

6. be open source to promote code and data sharing among
different research communities.

The latest version of Mutation++ (v1.0.0) has recently been
released open-source under the Lesser GNU Public License (LGPL
v3) and is freely available on Github.4 In the remainder of the
paper, we present an overview of the library and its impact on the
research community to-date. In particular, the four main modules
of the library – thermodynamics, transport, chemical kinetics, and
gas-surface interaction – are presented, with a few examples to
illustrate the library’s use.

2. Software description

2.1. Generalized conservation equations

While it is beyond the scope of this article to describe in
detail all the various physicochemical models that are present in
the literature, it is useful to briefly present a generalized model
which has been used in the design of the library. For a more
complete discussion, see the work of Scoggins [8]. We consider
a generalized conservation law of the form,

@tU + rxF = S, (1)

where U =
⇥
⇢̃i ⇢u ⇢E ⇢ẽm

⇤T , is a vector of species mass,
momentum, and total and internal energy densities, F (U , rxU )
represents their flux, and S(U ) is a source function. The tilde over
the indexed variables in the density vector denotes that these
quantities must be expanded over their indices. The exact forms
of U , F , and S depend on (1) the coordinate system, (2) the physi-
cal model (i.e.: Euler, Navier–Stokes), and (3) the thermochemical
model of the gas (i.e.: equilibrium, reacting, multi-temperature,
state-to-state).

We define the thermochemical state-vector as Û=
⇥
⇢̃i ⇢e ⇢ẽm

⇤T

where ⇢e = ⇢E � ⇢u · u/2 is the static energy density of the gas.
The flux and source functions are closed by constitutive relations

4 https://github.com/mutationpp/Mutationpp.

Fig. 1. Overview of the Mutation++ library and its coupling to CFD.

for thermodynamic, transport, and chemical properties of the gas.
These include quantities such as pressure, enthalpy, viscosity,
thermal conductivity, diffusion coefficients, chemical production
rates, and energy transfer source terms. In general, these prop-
erties are only functions of the local state-vector Û and possibly
its gradient. This fact allows us to separate the solution of Eq. (1)
into two separate domains with limited coupling controlled by
the CFD solver and Mutation++, as shown in Fig. 1.

2.2. Software architecture

Mutation++ is designed with a strong focus on Object-
Oriented Programming (OOP) patterns in C++. The library’s Ap-
plication Programming Interface (API) is thoroughly documented
using the Doxygen format. A continuous integration strategy has
been employed. Regression and black box testing are performed
through a combination of the Catch2 header-only testing frame-
work and CTest. The primary access to the library is through a
Mixture object, which is implemented as a set of submodules
encapsulating clearly separated physical quantities as depicted
in the simplified Unified Modeling Language (UML) diagram in
Fig. 2.

2.3. Software functionalities

Each module in Fig. 2 is described in the following subsections.
Specific examples of some of the outputs that the library can
provide are given in the Section 3.

2.3.1. Thermodynamics
The thermodynamics module provides pure species and mix-

ture thermodynamic quantities, such as enthalpy, entropy, spe-
cific heats, or Gibbs free energies. Mixture thermodynamic quan-
tities are derived as sums of pure species properties, weighted
by the composition of the mixture. Thermodynamic data for pure
species can be found in several references [9–17]. Differences
exist between each database, such as their format, temperature
range of applicability, or degree of nonequilibrium supported.
Such differences often sway simulation tool designers to select a
single database format to support, or hard-code thermodynamic
data directly into their models. This approach makes it difficult
to update data as needed, or compare with other tools using
different databases.

The Mutation++ framework provides an abstraction layer
which enforces a weak coupling between the concrete thermo-
dynamic database (for any given set of species) and the com-
putation of mixture thermodynamic quantities. Such a design
provides the flexibility to swap out different databases as needed,
with minimal effort. The NASA 7- and 9-coefficient polynomial
databases [18–21] and a custom XML format which implements
a Rigid-Rotor/Harmonic-Oscillator (RRHO) model are currently

Figure 2.4: Schematic of the Mutation++ library and its coupling to a generic CFD
solver. Reproduced from [Scoggins et al. 2020].
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2.5 Code performance

2.5.1 Parallel scalability

Due to the stringent requirements of direct numerical simulation in terms of grid
resolution (≈ billion of degrees of freedom for a typical 3D calculation), the code
needs a highly parallel computational framework. Moreover, it should scale well on
massively parallel architectures. This is achieved through domain splitting in the
streamwise and spanwise direction and an MPI communication framework.

The scalability performance of both the 6th order compact scheme and the more
memory efficient 4th order central scheme was tested for a case of a flat plate
boundary layer with a mesh of ≈ 11 Billion degrees of freedom on up to ≈65000
cores of the intrepid BlueGene/P system at the Leadership Computing Facility
at Argonne National Laboratory (the details regarding the grid can be found in
[Sayadi et al. 2013]).

The time required per time step in the code, using both the sixth-order and
fourth-order scheme, are shown in Figure 2.5. An ideal scalability would translate
to a linear curve, decreasing with the number of computational cores involved. The
time required per time step in the code with the compact scheme increases beyond
4096 cores. However, the time per time step continue to decrease linearly in the code
utilizing the fourth-order scheme even up to 65536 cores. These results prove the
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Figure 2.5: Strong scalability (time per iteration) using a grid of ≈ 11 Billion degrees of
freedom. Fourth-order (solid line), and sixth-order (dashed line) finite difference schemes
are compared with ideal scalability (dotted line).

excellent scalability of the code for up to 65536 computational cores using the fourth-
order central finite difference scheme. A sixth-order accurate compact scheme scales
inefficiently above 4096 cores, due to the overhead cost of solving the tridiagonal
system of Eq. (2.9). Moreover, the excellent scalability of the code using the fourth-
order scheme has been reassessed on TGCC’s Irene-Rome supercomputer through a
strong-scaling study using a mesh of ≈ 1.5 billion grid points (see §3.3.2 for details
regarding this grid), on up to 16384 cores. As shown in Figure 2.6, the time per
timestep of the solver decreases linearly with the number of processors used up to
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16384 cores.
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Figure 2.6: Strong scalability (time per iteration) using a grid of ≈ 1.5 Billion degrees of
freedom. Fourth-order (solid line) finite difference scheme is compared with ideal scalability
(dotted line).

2.5.2 Comparison between perfect-gas and real-gas models

Benchmark simulations have been run to compare the computational cost of the
various thermochemical models implemented in the solver. The normalized time
to solution, with respect to the simple CPG model, are presented in Figure 2.7.
The flexibility and extended validity of using Mutation++ come with a large
computational cost. The total simulation time is increased by more than one order
of magnitude when using the CNEQ model compared to the CPG model, and by
a factor of about six compared to the TPG model. A reduction of about 40%
in computational cost can be achieved using Ramshaw’s algebraic diffusion model,
as discussed in §1.2.1.3, compared to the Stefan-Maxwell diffusion model. The
impact of the simplified diffusion model on the accuracy of the solution in chemical
nonequilibrium will be investigated in §3.1.
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Figure 2.7: CPU time of a benchmark simulation, run with different aerothermochemical
models. Including non-equilibrium effects in the simulation causes a significant increase in
computational time.
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This chapter presents numerical simulations of several canonical hypersonic flows
in earth atmosphere. The impact of the thermochemical model on such flows will
also be studied. First, the numerical implementation is validated with a set of two
Ma = 10 boundary layers with different wall boundary conditions and a Ma = 2

shock-wave boundary layer interaction (SBLI). The solver is then used to study more
complex configurations such as roughness, SBLI at higher Mach number and jet in
high-speed crossflow (JISC). In all cases, the CNEQ model uses a five component
air mixture composed of N2,O2,N,O, and NO, interacting based on Park’s chemical
mechanism [Park 1989] for dissociated air (see §1.2.1.3).

3.1 Boundary layers with finite rate chemistry effects

A set of two hypersonic boundary layers in Earth’s atmosphere at Ma = 10, based
on Marxen et al. [Marxen et al. 2013, Marxen et al. 2014b], are considered here to
verify the implementation of the numerical method presented in chapter 2. First,
the steady-state solution and then the growth rate of forced secondary instabilities
inside the two-dimensional boundary layer are compared. The main configurations
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considered are: (i) case I (isothermal), and (ii) case A (adiabatic), referring to the
boundary condition imposed at the wall. A third case, (iii) case R (roughness), is
then designed by including a two dimensional roughness element at the wall using
adiabatic conditions. The configurations and freestream conditions for all three cases
are presented in Table 3.1, where ω and A are related to the forced perturbations
and further explained in §3.1.1.

Isothermal Case (I) Adiabatic Cases (A, R)
Ma∞ 10.0
Re∞ 105

T∞[K] 278 350
p∞[Pa] 4135 3596
Twall/T∞ 4.31 -

ω 45 34
A/Ma∞ 10−3

Table 3.1: Thermodynamic and freestream conditions for the Ma = 10 hypersonic
boundary layers investigated in this study (adapted from [Marxen et al. 2013]).

The computational domain considered here has a finer resolution than in the
previous studies. The nondimensional grid size in the streamwise direction is
∆x = 0.075, simulating a domain from x0 = 14.0 to x1 = 86.0 using Nx = 960

grid points. The sponge regions extend for 5 and 15 nondimensional units at the
inflow and outflow, respectively. In the wall-normal direction, Ny = 211 grid
points are used, clustered near the wall using Eq. (3.1), with the last 26 points
in the free stream used in the sponge region. In Eq. (3.1), y0 and y1 represent the
minimum and maximum wall-normal coordinates, respectively, and κy the stretching
factor. Table 3.2 summarizes the details of the computational domain as well as the
resulting resolution. This resolution is demonstrated sufficient to properly resolve
the dynamics through a grid convergence analysis (performed for case I) where finer
and coarser grid are also investigated (see Table 3.2). The results are shown below
in Figure 3.3.

y(m) = y0 + (y1 − y0)
(
(1− κy)

(
m− 1

Ny − 1

)3

+ κy

(
m− 1

Ny − 1

))
, m ∈ [1, Ny] (3.1)

All three thermochemical models, namely TPG, LTE and CNEQ, are
systematically tested in both cases.

3.1.1 Disturbance forcing

A single frequency, two-dimensional disturbance is introduced in the baseflow at
the wall through a blowing-suction strip extending from xs = 19.3 to xe = 20.7,
centered at xc = 20. This disturbance can be classified as a second-mode instability
according to [Malik & Anderson 1991], which is most amplified in compressible
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Case x0 x1 y0 y1 κx κy Nx Ny

Case A 14.0 85.0 0 1.6 1.0 0.15 960 211
Case I - baseline 14.0 85.0 0 1.6 1.0 0.15 960 211

Case I - fine 14.0 65.0 0 1.7 1.0 0.15 1920 301
Case I - coarse 14.0 70.0 0 1.5 1.0 0.15 768 151

Table 3.2: Mesh configuration for the hypersonic boundary layer simulations

boundary layer flows [Mack 1975, Mack 1984]. This case was initially studied in
[Malik & Anderson 1991] using linear stability theory. The author predicted a
most amplified non-dimensional frequency of ω = 3.4 × 10−5. This case was later
revisited by Marxen et al. [Marxen et al. 2011b, Marxen et al. 2013] using direct
numerical simulations and different thermochemical model (perfect gas, chemical
equilibrium and nonequilibrium), where good agreement for the growth-rate and
amplitude functions were found at Rx =

√
Rex = 2000 compared to the linear

stability theory. The analysis was then further extended to weakly nonlinear stages
[Marxen et al. 2014a].

The disturbance has a nondimensional forcing frequency ω given as,

ω = 2πf̃
µ∞

ρ∞u2∞
. (3.2)

Here, f̃ is the dimensional frequency of the disturbance. The amplitude of the
velocity perturbation A is defined as a fraction of the freestream velocity u∞.
The freestream conditions, reference scales, forcing frequency, and amplitude are
summarized in Table 3.1. The velocity boundary conditions are defined as in
[Marxen et al. 2011b, Marxen et al. 2013]

v(x, 0, t) = Asin(ωt)s(ξ),

u(x, 0, t) = 0.
(3.3)

The shape function s is defined within the strip as

s(ξ) = 18.1875ξ5 − 35.4375ξ4 + 20.25ξ3, (3.4)

where the auxiliary coordinate ξ is defined as

ξ =


(x− xs)/(xc − xs) for xs < x < xc,

(x− xe)/(xe − xc) for xc < x < xe,

0 otherwise.
(3.5)

After the introduction of the disturbance, the wall temperature distribution is held
constant (isothermal boundary condition) for case A. The unsteady simulation is
then advanced until transient effects are advected out of the domain and a time-
periodic state is achieved.
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3.1.2 Post-processing

In order to compare the dynamics of the unsteady simulations, NT flow snapshots are
collected over one forcing period, and the root-mean-squared (RMS) decomposition
of the flow field is performed for a given primitive quantity ϕ ∈ [ρ, u, v, w, P, T, . . .]

as

ϕ =
1

NT

NT∑
i=1

ϕi, (3.6)

ϕRMS =

√√√√ 1

NT

NT∑
i=1

(ϕi − ϕ)2. (3.7)

In the following, the RMS wall-pressure signals will be compared in addition to the
streamwise disturbance amplification. The latter is computed in two ways: i) using
the wall-normal maximum of the RMS wall-normal velocity,

E1
RMS(x) = max

y
(vRMS(x, y)). (3.8)

ii) or using the wall-normal integral of RMS wall-normal velocity squared,

E2
RMS(x) =

� ymax

0
vRMS(x, y)

2dy. (3.9)

Finally, the normalized growth rate αi is computed using

αi(x) =
1

Ej
RMS(x)

∂Ej
RMS(x)

∂x
, (3.10)

for j ∈ [1, 2]. The comparison of the growth rates calculated from the current
simulations and the previously published results serves as a validation of the
accuracy of the solver. Indeed, the spatial derivative in Eq. (3.10) makes the growth
rate highly sensitive to any changes in the flow dynamics.

3.1.3 results

3.1.3.1 Isothermal case – case I

The mean streamwise velocity and temperature profiles at the streamwise location
where Rx = 2000 for case I are presented in Figure 3.1(a,b), compared with
the results of [Marxen et al. 2013], where only the TPG model was investigated.
This figure shows perfect agreement between previous and current results for the
TPG profiles. By additionally investigating the LTE and CNEQ models in the
present study, we discover minor differences compared to the TPG solution. A
straightforward interpretation of this finding is that the isothermal condition leads to
a maximum temperature of Tmax ≈ 1740K in the boundary layer. Below 2000K air
chemistry is known to be generally inactive [Anderson 2019] with almost negligible
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dissociation. This is supported in Figure 3.1(c) where the species mass fraction
profiles are plotted and no radical species (O,NO,N) is found in significant quantities
throughout the boundary layer. Hence, the thermally perfect gas assumption holds
reasonably well, and more complex models reproduce a similar behavior.
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Figure 3.1: (a) Streamwise velocity, u, (b) temperature, T , and (c) species mass fraction,
Ys, profiles in the boundary layer for case I at Rx = 2000. Current results (solid lines) are
compared to Marxen et al. [Marxen et al. 2013] (symbols) for different gas models: TPG
(black), LTE (blue), CNEQ (red). (c) From left to right : O2,N2.

Figure 3.2(a) shows the base-flow solution for the streamwise velocity and a
snapshot of the evolution of the forced perturbation is presented in Figure 3.2(b).
Figure 3.2(c,d) shows the corresponding wall-pressure RMS signal and the growth
rate, αi, of the second-mode instability in the boundary layer, respectively. Growth
rates are computed using Eq.(3.8) and are not plotted for x < 25 due to their
erratic behavior in that region. Excellent agreement is found downstream in the
investigated range (from x = 25 to x = 50) with the results of [Marxen et al. 2013]
for the TPG model. The grid convergence analysis results are shown in Figure
3.3. Increasing the resolution in both directions does not lead to a significant
difference in the instability growth rate compared to the baseline grid. Moreover, the
current simulations are better resolved than those of [Marxen et al. 2013], and the
improved resolution has been found to explain the more accurate prediction and the
disappearance of small oscillations upstream. Interestingly, despite the CNEQ base
flow being almost identical to that of the TPG model, the instability grows earlier in
the boundary layer and to a higher amplitude compared to the case modeled using
a TPG assumption. This is also conveyed in Figure 3.2(c) where the RMS pressure
peaks upstream and to a slightly higher value in the CNEQ case. Thus, we find that
finite-rate chemistry alters the growth and decay of the perturbations directly, even
though it has a negligible effect on the base-flow solution, potentially altering the
stability and transition behavior without an obvious effect on the base flow. These
results are in agreement with previous studies.



40 Chapter 3. Numerical simulation of hypersonic flows

0.0

0.5
y

(a)

(b)

(c)

(d)

0.000

1.000

u
/
u
∞

 [-
]

0.0

0.5

y

-0.006

0.006

v
′ /
u
∞

 [-
]

0.00

0.03

 P
R
M
S

20 35 50
 x

0.1

0.1

0.3

 α
i

TPG
CNEQ
TPG, Marxen et al. (2011)

Figure 3.2: Contours of normalized (a) mean streamwise velocity u, and (b) wall-normal
perturbation velocity v′ in the laminar isothermal Mach-10 boundary layer in chemical
nonequilibrium (Case I, TPG). Evolution of (c) RMS wall pressure, and (d) growth rate αi

(computed using Eq.(3.8)) as a function of streamwise position x for different gas models:
TPG (black), CNEQ (red). (d) Current results (solid lines) are compared to Marxen et al.
[Marxen et al. 2013] (symbols).
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Figure 3.3: Evolution of growth rate αi (computed using Eq. (3.8)) as a function of
streamwise position x for different grid resolution: coarse (dash-dotted), baseline (solid),
fine (dotted).

3.1.3.2 Adiabatic case – case A

In the adiabatic case, a higher free-stream temperature is imposed by design to
promote CNEQ effects.
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The mean flow and temperature profiles at a streamwise Reynolds number
location Rx = 2000 are presented in Figure 3.4(a,b) and compared to the results of
Marxen [Marxen et al. 2013]. Similar to the isothermal case, practically perfect
agreement is found for all models compared to the previous results. However,
in this case, the base flows differ significantly depending on the model used for
the gas. Wall temperature decreases significantly from a frozen-chemistry (fixed-
composition) assumption to a CNEQ model to an LTE model. These results indicate
that the CNEQ effects in the flow are significant in this case and need to be accounted
for to achieve accurate base-flow predictions.
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Figure 3.4: (a) Streamwise velocity, u, (b) temperature, T , and (c) species mass fraction,
Ys, profiles in the boundary layer for case A at Rx = 2000. Current results (solid lines)
are compared to Marxen et al. [Marxen et al. 2013] (symbols) for different gas models:
TPG (black), LTE (blue), CNEQ (red), frozen chemistry (green). (c) From left to right :
N,NO,O,O2,N2

Due to the near-wall temperature approaching Twall ≈ 4900K at the inflow,
N2 and O2 rapidly start to dissociate to N,O,NO through endothermic chemical
reactions. This is illustrated in Figure 3.4(c), presenting all the mass fraction
profiles at the streamwise location where Rx = 2000. Close to the wall, O2 mass
fraction decreases while O and NO are produced. To a smaller extent, N is also
created through N2 dissociation. Moreover, the dissociated species concentrations
(O,NO,N) build up as the species are convected downstream while continuously
being produced. Consequently, the wall temperature decreases progressively along
the streamwise direction due to cooling by endothermic dissociation.

In Figure 3.5(a), we see the base-flow solution for the streamwise velocity, and
a snapshot of the evolution of the forced perturbation in Figure 3.5(b). Figure
3.5(c,d) shows the corresponding RMS wall pressure signals and growth rates in the
adiabatic case, respectively. Good agreement is found for the CNEQ model up to
x = 40 (Rx = 2000). Downstream, the computed growth rate differs slightly from
the previous results but the overall trend is similar. This difference can be explained
by the older thermochemical model implemented in Mutation++ at the time of the
original study of Marxel et al. [Marxen et al. 2013]. The growth rate in the TPG
model is however noticeably different compared to the cases using the CNEQ model,



42 Chapter 3. Numerical simulation of hypersonic flows

highlighting the inadequacy of perfect gas models in high-enthalpy cases.

Figure 3.5: Contours of normalized (a) mean streamwise velocity u, and (b) wall-normal
perturbation velocity v′ in the laminar adiabatic Mach-10 boundary layer in chemical
nonequilibrium (Case A, CNEQ). Evolution of (c) RMS wall pressure, and (d) growth
rate αi (computed using Eq.(3.8)) as a function of streamwise position x for different gas
models: TPG (black), CNEQ with Stefan-Maxwell multicomponent diffusion model (red),
CNEQ with Ramshaw simplified multicomponent diffusion model (green). (d) Current
results (solid lines) are compared to Marxen et al. [Marxen et al. 2013] (symbols).

Ramshaw’s simplified algebraic diffusion model (see §1.2.1.3) has a negligible
impact on the accuracy of the results. In fact, the base flow and growth rates of
second mode instability for case A were computed again using Eq. (1.21). Base
flows are practically identical in terms of all relevant variables. As shown in Figure
3.5(d), the growth rate is in perfect agreement with that computed using the Stefan-
Maxwell model. A slight discrepancy in the RMS pressure signals after the peak at
x = 50 is observed, which can be attributed to small changes in the diffusion fluxes.
Therefore, Eq. (1.21) is a good compromise between performance and physical
accuracy as it reduces the cost of a CNEQ simulation by 40% compared to the Stefan-
Maxwell multicomponent diffusion model, see Figure 2.7. The same model was also
used in various numerical studies of hypersonic boundary layers with finite-rate
chemistry [Passiatore et al. 2021, Di Renzo et al. 2020, Di Renzo & Urzay 2021].
In the following, the CNEQ model will systematically be used with Ramshaw’s
simplified algebraic diffusion model if not otherwise specified.
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3.1.3.3 Roughness case – case R

Early experiments [Van Driest & Blumer 1968] have shown that the inclusion
of roughness elements in supersonic/hypersonic boundary layers can influence
transition location. Marxen et al. [Marxen et al. 2010] studied the influence of
a two dimensional roughness element on a Ma = 4.8 supersonic boundary layer via
direct numerical simulations. The roughness element was shown to boost the linear
growth mechanism in the boundary layer in a narrow band of frequency while waves
outside that range were damped. More recent investigations [Duan et al. 2013,
Heitmann & Radespiel 2013] qualitatively confirmed these previous results. Few
studies, however, took into account the impact of a more detailed thermochemical
model on the flowfield, a necessity in the hypersonic regime. Stemmer et al.
[Stemmer et al. 2017] studied the steady flow around a three-dimensional roughness
element in a Ma = 6.3 boundary layer and considered TPG, LTE and CNEQ
models. The nonequilibrium case was shown to decrease the wall temperature in
the wake of the roughness (in agreement with the results of case A) but increased
the heat transfer at the wall. Hence, these results underline further the need for
nonequilibrium simulations. In light of these findings, studying linar instability
mechanism in a roughness case, including chemical nonequilibrium effects, would be
of interest to the community.

To that end, a two-dimensional roughness element is added in the previous
flat-plate geometry (case A) with the following analytical expression (taken from
[Marxen et al. 2010]):

ywall(x) =
hR
2

1∑
k=−1

k tan(sR(x− x0,k)), with x0,k = xc,R − klR/2, (3.11)

where hR, lR and xc,R denote height, length and centered location of the roughness,
respectively. The parameter sR controls the smoothness of the roughness element.
The roughness geometry is compiled in Table 3.3 and the modified mesh is presented
in Figure 3.6.

hR 0.2
lR 1
xc,R 30
sR 5

Table 3.3: Roughness geometry parameters
(case R).
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Figure 3.6: Modified grid in the vicinity of
the roughness element (case R).
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The freestream and thermodynamic quantities are kept the same as in case A
to facilitate the comparison. The flow deviation caused by the roughness induces a
recirculation bubble, a separation shock, an expansion fan and a compression wave,
as seen in Figure 3.7(a) where the mean density field is presented.

The flow is forced with the same two dimensional disturbance described in Table
3.1. However, the amplitude of the disturbance is increased from A = 1 × 10−3 to
A = 2 × 10−2. Case A was simulated again with the higher amplitude and both
TPG and CNEQ thermochemical models. No significant changes in the instability
growth pattern are observed for the simulation in CNEQ, as shown in Figure
3.8. However, at higher disturbance amplitude, the second location of positive
amplification is slightly shifted downstream for TPG simulations. The overall trend
remains nonetheless similar.
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Figure 3.7: Contours of normalized (a) mean density ρ, and (b) wall-normal perturbation
velocity v′ in the laminar adiabatic Mach-10 boundary layer in chemical nonequilibrium
with roughness (Case R, CNEQ). Evolution of (c) RMS wall pressure, and (d) growth
rate αi (computed using Eq. (3.9)) as a function of streamwise position x for different gas
models: TPG (black), CNEQ (red).

The data acquisition and post-processing steps are done as described in 3.1.2.
The growth-rate is computed using Eq. (3.9). Contours of instantaneous wall-
normal velocity perturbations are presented in Figure 3.7(b). The presence of
the roughness strongly affects the development of the instability in its vicinity.
Further downstream, the perturbation evolution reverts back to that of a flat-
plate behavior. These observations are supported in Figure 3.7(c) where the RMS
wall-pressure signals of the perturbed boundary layer with and without roughness
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are presented. The wall-pressure signal is strongly modified near the roughness
element (grey vertical band). Further downstream, after the end of the recirculation
bubble on the leeward side of the roughness, both curves exhibit the same trend.
However, the flow with a roughness-induced shock and expansion shows lower
amplitude of the pressure perturbations (only 50% of the flat plate value at the
peak near x = 55). This can be explained in light of the results of Marxen et al.
[Marxen et al. 2010, Marxen et al. 2014b], where a similar analysis was performed
in a compressible Mach 4.8 boundary layer. From a linear stability theory point
of view, two-dimensional roughness elements were shown to act as amplifiers to
two-dimensional disturbances in a narrow band of frequency while shifting the most
amplified frequency to lower values. Here, the forcing frequency was selected based
on the flat-plate case. Thus, if the roughness induces a shift of the most amplified
frequency to lower values, the expected growth of the two-dimensional disturbance
will be weaker, which is what is observed in Figure 3.7(c). The same observation
can be made by looking at the growth-rate of the wall-normal velocity perturbation
in Figure 3.7(d). The growth rate of the flat-plate geometry (red dashed line) is
juxtaposed with the one of the roughness geometry (red solid line). After x = 40,
both growth rates follow the same trajectory, with lower values for the roughness
case. The roughness acts as a band-pass filter on the most amplified frequency of
the flat-plate case due to its shift to lower frequency. Additionally, the same case
has been run with a perfect gas assumption ((R TPG A), black lines in Figure
3.7(c,d)). The pressure fluctuations are of the same order of magnitude but the
instability grows over a longer distance downstream of the roughness and ultimately
reaches higher amplitudes. The growth rate becomes negative at x = 65, compared
to x = 50 for the chemical nonequilibrium case. Hence, in a perfect gas framework,
the roughness has an inverse effect and amplifies the instability growth directly
downstream. This stresses again the importance of the thermochemical model for
the accurate simulation of hypersonic flows.

Figure 3.8: Evolution of growth rate αi (computed using Eq. (3.9)) as a function of
streamwise position x for different amplitude of perturbation: A = 1 × 10−3 (dashed),
A = 2× 10−2 (solid) and different gas model: TPG (black), CNEQ (red).
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3.2 Shock wave boundary layer interaction

Supersonic and hypersonic flows over complex geometries usually involve shock wave
boundary layer interaction (SBLI). The large pressure gradient induced by the
impinging shock may cause the separation of the boundary layer with the occurrence
of a recirculation bubble. This bubble can in turn change the stability characteristics
of the flow on the vehicle surface. In the following section, we first validate the
capability of the code to accurately simulate SBLI against a benchmark Ma = 2

shockwave laminar boundary layer experiment by Hakkinen [Hakkinen et al. 1959].
Then, a higher Mach number case is designed, based on [Hildebrand et al. 2018],
with a high free-stream temperature, to directly assess the effect of finite-rate
chemistry compared to a perfect gas assumption. The reference length is based
on the displacement thickness δ∗0 of the unperturbed boundary layer at the inviscid
shock location x0.

SBLI Case x0 − x1 y0 − y1 κx κy Nx Ny

Ma∞ = 2.0 40− 240 0.0− 80 1.0 0.15 960 501
Ma∞ = 5.92 19− 254 0.0− 36 1.0 0.15 960 450

Table 3.4: Mesh configuration for the two SBLI cases investigated.

3.2.1 A validation case – Ma = 2 SBLI

The capability of the solver to correctly simulate compressible flows including
shocks is verified using a benchmark SBLI case, first investigated experimentally
by [Hakkinen et al. 1959] and later numerically in several studies [Katzer 1989,
Morgan et al. 2010]. In this case, a laminar Ma = 2 boundary layer over an
adiabatic plate is separated by an impinging shock with a shock angle of θ ≈ 32°.
The Reynolds number based on the impinging location of the shock is Rex0 = 3·105.
All other flow conditions match the simulation by [Katzer 1989]. In the top-sponge
opposite of the wall, Rankine-Hugoniot oblique shock relations are used to propagate
the oblique shock downward, progressively introducing the discontinuity into the
domain. The grid used in that case is finer than in the previous studies, using
respectively 960 and 501 points in the streamwise and wall-normal directions. All
grid parameters are specified in table 3.4. Due to the relatively low Mach number,
only a TPG simulation is performed for this configuration.

Figure 3.9(a) shows the density field after convergence of the residuals to machine
precision. All relevant flow features of the SBLI are present: the recirculation
bubble, the separation shock, the expansion fan, and the reflected shock. The results
compare qualitatively well to those of [Morgan et al. 2010]. Figure 3.9(b,c) presents
the wall pressure and skin friction coefficient along the wall. The quantitative
agreement with the results of Morgan et al. [Morgan et al. 2010] is almost perfect.
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Figure 3.9: (a) Density contour for the Ma = 2 laminar SBLI case. The impinging and
reflected shockwaves are visible, as well as the recirculation bubble and other relevant flow
features. (b) Wall pressure and, (c) skin friction coefficient Cf streamwise distribution. The
inviscid shock impingement location is marked with x0, and coincides with the location
of zero on the x-axis. Current results (solid black line) are compared to Morgan et al.
[Morgan et al. 2010] (symbols).

3.2.2 Chemical nonequilibrium effects in laminar SBLI – Ma = 5.92
SBLI

Furumoto et al. [Furumoto et al. 1997] studied the real-gas effects on a steady
oblique SBLI at Ma = 7. The high enthalpy at the free stream leads to Oxygen and
Nitrogen dissociation and a reduction of the size of the recirculation region as well
as peak heating on the surface due to the endothermic real-gas effects. However,
the authors note that the thermochemical model used was rather simplistic. More
recently, Volpiani [Volpiani 2021] studied an oblique SBLI at Ma = 6 in chemical
non-equilibrium with both laminar and turbulent inflow boundary layers. These
results highlight the same trend, with a smaller recirculation bubble and higher
skin friction at the wall when thermochemistry is considered. However, in this
case, the thermochemical model was also simplistic compared to the one included
in Mutation++.
In this section, we propose to study the effects of finite-rate chemistry on a steady
SBLI at Ma = 5.92. A similar case was studied numerically by Hildebrand
et al. [Hildebrand et al. 2018] where the authors used freestream cryogenic
conditions of the ACE Hypersonic Wind Tunnel facility at Texas A&M University
[Semper et al. 2012], and hence a perfect gas assumption. Here, the freestream
Mach number and Reynolds number at impinging location, Rex0 , are kept the same
as in [Hildebrand et al. 2018], while the free-stream pressure and temperature are
increased to match the post-shock conditions of a 15° wedge flying at Ma∞ = 14
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at an altitude of 25 kilometers to promote real-gas effects. The computational
domain is a rectangle of size 256 × 36 reference length units. The reference length
is computed from the inflow Reynolds number Reδ∗ = 9660 of the original study
[Hildebrand et al. 2018], with the updated free-stream conditions, p∞ = 60967 Pa
and T∞ = 1110.5K, resulting in a similar impinging location and corresponding
Reynolds number, Rex0 = 1.15 · 106. A total of 960 grid points are used in the
streamwise direction and 450 in the wall-normal direction, clustered near the wall
using eq. (3.1). The mesh configuration is specified in Table 3.4. For this case, both
the TPG and CNEQ models are investigated.

Figure 3.10(a) shows the density field of the CNEQ simulation. Again, all
the relevant flow features of the SBLI are present: the recirculation bubble, the
separation shock, the expansion fan, and the reflected shock. Figure 3.10(b) shows
the concentration of atomic oxygen YO. While inexistant in the freestream, O is
present in large quantities within the boundary layer and the recirculation bubble.
The wall pressure and skin friction coefficient for both the TPG and CNEQ models
are presented in Figure 3.10(c,d). The length of the separation bubble is smaller
when considering CNEQ effects, in agreement with the literature. This is expected
with the high concentration of dissociated species in the bubble as seen in Figure
3.10(a,d). O2 almost completely dissociates within the recirculation bubble to
form its atomic counterpart O. This endothermic process extracts energy out of
the recirculation bubble, making the interaction weaker. Just upstream of the
reattachment location, the flow exhibits higher skin friction and wall pressure in the
CNEQ case before converging to the same value as the TPG case after reattachment.
These trends are in agreement with the results in [Volpiani 2021].



3.3. Jet in hypersonic crossflow 49

0

25
y/
δ
∗ 0

(a)

(b)

(c)

(d)

(e)

0.21

2.73

ρ
/
ρ
∞

 [-
]

0

25

y/
δ
∗ 0

-0.00

0.13

Y
O

 [-
]

1

3

p
/
p
∞ TPG

CNEQ

1

0

1

10
3
×
C
f

100 50 0 50 100
(x− x0)/δ

∗
0

10-4
10-3
10-2
10-1

Y
s

N
O
NO
O2

N2

Figure 3.10: Contours of (a) normalized density and, (b) atomic oxygen mass fraction YO
for the Ma = 5.92 laminar SBLI case in CNEQ. The impinging and reflected shockwaves are
visible, as well as the recirculation bubble and other relevant flow features. The recirculation
bubble contains high proportion of dissociated oxygen. (c) Wall pressure and, (d) skin
friction coefficient Cf streamwise distribution for different gas models: TPG (black), CNEQ
(red). The inviscid shock impingement location is marked with x0, and coincides with the
location of zero on the x-axis.

3.3 Jet in hypersonic crossflow

Normal jet injection into a high-speed crossflow (JISC) is another canonical
flow configuration relevant to a wide range of applications in hypersonic
flight. For example, proposed designs of scramjet engines use sonic under-
expanded jet injection into a supersonic crossflow to enhance fuel and
oxidizer mixing and sustain supersonic combustion. One can also use jet
injection into a supersonic/hypersonic crossflow as a reaction control thruster
for aerodynamic maneuvering during atmospheric flight [Grandhi & Roy 2017].
The jet in supersonic crossflow has also been the subject of a wide range
of experimental [Erdem 2011, Santiago & Dutton 1997, Ben-Yakar et al. 2006]
and numerical studies [Chai et al. 2015, Kawai & Lele 2010, Peterson et al. 2006,
Miller et al. 2018].
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The nondimensional parameter that governs the development of flow features is
the jet to crossflow momentum ratio J [Karagozian 2014], given as

J =
ρjU

2
j

ρ∞U2
∞
,

and the density ratio S when compressibility effects are important [Nair et al. 2019],

S =
ρj
ρ∞

.

3.3.1 A preliminary two dimensional case – Ma = 5 2D JISC

The analysis of finite-rate chemistry effects on the JISC set-up is performed for
a two-dimensional flow. In this case, the jet is injected through a rectangular
slot, where the spanwise extent is assumed far larger than its streamwise extent.
Two-dimensional JISC have been extensively studied by Spaid and Zukoski
[Spaid & Zukoski 1968] for a range of inflow Mach number and momentum ratio.

The two-dimensional case is designed by considering a 15° wedge flying at Ma =

9 at an altitude of 25 kilometers. This configuration results in a Ma = 5 boundary
layer past the nose shock. A self-similar solution with free-stream values assigned to
post-shock conditions and an adiabatic wall results in Twall ≈ 4000 Kelvin (K). This
temperature is sufficiently hot to observe intensified dissociation of O2 into atomic
Oxygen and thus can result in a flow in CNEQ. For this case, the CNEQ and
TPG models are considered. The free-stream and jet thermodynamic conditions
are summarized in table 3.5, where subscript j denotes the jet quantities. The
computational domain is a rectangle of size 32.5D × 10D where D̃ = 2mm is the
jet slot width. In the streamwise direction, the inflow starts at x0 = 38.5 and the
injection zone is centered at x = 52.5. The inflow and outflow sponges extend for 1
and 2 jet widths, respectively. In the wall-normal direction, grid points are clustered
near the wall using Eq. (3.1), and the last 20 points are used for the sponge. The
discretization for this case is specified in Table 3.6. The simulation is first initialized
with an adiabatic condition and the resulting wall temperature is held constant after
the jet injection is enforced.

Freestream Jet
Ma∞ p∞[Pa] T∞[K] ReD Maj pj/p∞ Tj/T∞ J

5 49800 947 25291 1.0 10.0 1.0 0.4

Table 3.5: Thermodynamic conditions for the hot 2D JISC.

Figure 3.11(a) shows a numerical Schlieren image (contours of the norm of the
density gradient) for the jet in crossflow simulation in CNEQ. Several characteristic
flow features are observed. The jet has its own shock structure with a barrel shock
and a Mach disk. It mainly acts as an obstruction in the flow. As a result, a large
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Case x0 − x1 y0 − y1 κx κy Nx Ny

JISC 38.5− 71.0 0.0− 10.0 1.0 0.15 1625 500

Table 3.6: Mesh configuration for the hot 2D JISC.

bow-shock forms in the freestream that divert the incoming flow. The induced large
pressure gradient causes the upstream boundary layer to separate upstream of the
injection zone. The thickening of the boundary layer in turn induces a separation
shock that interacts with the bow shock. Finally, a shear layer emanates from the
high-speed jet and the low-speed flow past the bow shock, promoting vortex shedding
through the Kelvin-Helmoltz instability. This results in a strong coupling between
the shock structures, the recirculation bubble, and the shear layer downstream of
the injection zone.

Looking at the pressure distribution at the wall, Figure 3.11(c), a steep pressure
rise due to separation is first encountered. The pressure then plateaus with 3 spikes,
corresponding to primary, secondary and tertiary upstream vortices, respectively.
These vortical structures can be associated to the three ’pockets’ seen in Figure
3.11(a,b). Downstream of the jet, the pressure drop corresponds to the downstream
vortex structures, followed by a hump due to reattachment of the boundary layer
and recompression shock. Therefore, the structure observed are qualitatively similar
as the one described in [Spaid & Zukoski 1968]. Similar flow patterns were observed
for a Ma = 16 axisymmetric shock-dominated hypersonic laminar separated flow
over a double cone, studied by Tumuklu et al. [Tumuklu et al. 2018]. In their study,
a supersonic underexpanded jet is generated through an Edney type IV pattern in
the shock-laminar separation bubble. The jet is inherently unsteady and becomes
the root of the SBLI instability.

Concerning finite-rate chemistry effects, areas of high concentration of O are
observed inside the recirculation bubble in Figure 3.11b. In this high-temperature
region, atomic Oxygen is produced through the endothermic O2 dissociation. This
reaction absorbs energy from the flow and reduces the size of the recirculation
bubble by 10% compared to the TPG simulation in Figure 3.11(c). This observation
holds for the duration of the instantaneous snapshots considered and is similar
to the trend observed in the steady Ma = 5.92 SBLI comparison between the
TPG and CNEQ models. When CNEQ effects are considered, the adiabatic wall
temperature decreases due to endothermic reactions (by about 250K at the wall)
and the boundary layer becomes slightly thicker. The induced cooling effect near
the wall leads to a smaller recirculation bubble and a weaker bow shock.

3.3.2 Three-dimensional jet in cold hypersonic crossflow – Ma = 5
3D JISC

In most engineering applications of interest, the jet is injected through a circular-
shaped nozzle. Flow features are fully three-dimensional, with the formation of a
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Figure 3.11: Instantaneous (a) numerical Schlieren and (b) atomic Oxygen mass fraction
fields for the 2D Ma∞ = 5 JISC. Jet location is at x/D = 52.5. The shock structure, shear
layer and recirculation bubble dynamics are highlighted in the numerical Schlieren (a). (c)
Wall pressure streamwise distribution for different gas models: TPG (black), CNEQ (red).

bow-shock which bends in the spanwise direction. In the upstream recirculation
bubble, the vortical structures wrap around the injection zone and form horseshoe
vortices that are convected downstream, until eventually breaking down. This
induces significant flow in the spanwise direction and is known as the three-
dimensional relieving effect. As a consequence, the size of the recirculation bubble is
reduced compared to the two-dimensional set-up. The formation of vortices in the
jet shear layer above the Mach disk can be attributed to the Kelvin-Helmholtz
instability, arising from the velocity difference between the slower fluid behind
the bow shock and the high speed jet. From a time-averaged point of view, two
counter-rotating vortices are observed above the Mach disk and are responsible for
downstream mixing of freestream with the injected gas.

High-fidelity numerical and experimental data of JISC in the hypersonic regime
are extremely scarce. In fact, most studies are done in the supersonic regime
[Chai et al. 2015, Kawai & Lele 2010, Peterson et al. 2006]. Erdem perfomed
experimental studies of Ma = 5 JISC with different injectant gas and momentum
ratio [Erdem 2011]. Recently, Miller et al. [Miller et al. 2018] performed a large-
eddy simulation (LES) of one of the cases studied by Erdem to shed light on the
unsteady and transient mechanism developing during the injection. It is therefore of
interest to the community to have access to a high-fidelity database of a hypersonic
jet in crossflow case, backed by experimental data. These intricate and complex
features also serve as a perfect playground to identify coherent flow structures in
the flow using data-driven techniques.

To this end, a three-dimensional case is designed based on the experiment of
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Erdem [Erdem 2011]. The freestream temperature is set at T∞ = 62.5K. The low
freestream temperature permits the use of the Thermally Perfect Gas (TPG) model.
The freestream and jet conditions are summarized in Table 3.7.

Freestream Jet
Ma∞ p∞[Pa] T∞[K] Re[m−1] Majet pj/p∞ Tj/T∞ J

5 1210 62.5 13.1× 106 1 29 4 1.16

Table 3.7: Freestream and thermodynamic conditions for the cold 3D JISC (From
[Erdem 2011]).

3.3.2.1 Computational set-up

The computational domain corresponds to a box of size 54D × 9D × 20D, where
D = 2.2 mm, is the circular injector diameter. The box starts at 25 jet diameter
downstream of the leading edge of the flat plate and the jet inlet is placed at x/D =

52.5, y/D = 0, z/D = 10. At the inflow and outflow, the thickness of the sponge
layer is set to 2 jet diameters.

In order to set the resolution needed to perform the DNS simulations, viscous
units are used. Using classical turbulent boundary layer theory, the minimum
grid spacing at the wall is ∆+ = 2.847[µm]. Following the DNS calculations of a
turbulent boundary layer performed by [Sayadi et al. 2013], a uniform grid spacing
of 12 viscous units is set for the spanwise direction. In the streamwise direction,
however, knowing that the upcoming boundary layer is laminar, the grid spacing
is initially set to 195 viscous units at the inlet and is then gradually refined up to
x/D = −3.75 where ∆x+ = 15 with a 5th order version of Eq. (3.1). Based on the
experimental results, x/D = −3.75 is inside the recirculation zone of the separation
bubble ahead of the jet inlet, where laminar flow assumptions still hold. Therefore,
the larger grid size will not influence the development of the jet downstream and
does not violate the DNS assumptions. The streamwise grid spacing then remains
uniform at ∆x+ = 15. In the wall-normal direction, the stretching of Eq. (3.1)
is applied and the last 30 points are used for the sponge layer. The resolution
requirements described leads to a total number of points of ≈ 1.5 billion.

The computational domain and the resulting 1.5 billion points grid used to
capture the small-scale structures of the flow appearing in the leeward side of the
jet are summarized in Table 3.8.

x0 x1 y0 y1 z0 z1 κx κy ∆+
x ∆+

y ∆+
z Nx Ny Nz

25 79 0 9 0 20 0.40 0.12 15 1 12 2048 697 1024

Table 3.8: Mesh configuration for the cold 3D JISC.

The simulation was performed on TGCC’s Irene Rome supercomputer under
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allocation No. 2021-A0102B12426 and No. 2022-A0122B13432 made by GENCI,
using 8192 computational cores. After advection of the transient, time resolved slices
and subdomain were saved every 500 iterations for a time period of D/c∞ = 2 flow-
trough time, corresponding to a sampling Strouhal number of St = fsD/u∞ = 15.
The simulation used roughly 8 million core hours.

3.3.2.2 Validation

Current time-averaged results of the simulation are compared to the experimental
results reported by Erdem [Erdem 2011], which are the only available validation
data. In Figure 3.12(a-c), streamwise pressure distribution at three different
spanwise locations are compared. In terms of both magnitude and location of the
peaks, excellent agreement is found at z/D = 10 (midplane) and z/D = 4.77.
At z/D = 9.10, the pressure peak is slighly shifted upstream in our simulation.
This can be an effect of the spanwise extent of the domain and the periodic
boundary condition. Additionally, Erdem reported the measured Mach disk height
and separation length. The Mach disk height is within 10% of the experimental
value, and actually closer to the theoretical prediction based on a formula by Cassel
[Cassel 2003]. Good agreement is also observed for the separation length, as seen in
Table 3.9?
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Figure 3.12: Comparison of the time averaged streamwise pressure distribution for the
3D JISC case with the experiment of Erdem [Erdem 2011] at different spanwise location:
(a) z/D = 10 (centerline), (b) z/D = 4.77, and (c) z/D = 9.10.

hj/D xsep

Erdem (2011) 1.9 ± 0.075 7.95 ± 0.15
Current results 1.72 8.4

Theory 1.78

Table 3.9: Comparison of Mach disk height and separation length of the time-averaged
flow and of the experiments [Erdem 2011].
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3.3.2.3 Flow structures

Figure 3.13(a,b) shows iso-surfaces of the Q-criterion [Jeong & Hussain 1995] for
an instantaneous snapshot and the time-averaged flowfield, indicating the vortical
structures in the flow. Horseshoe vortices are highlighted. They form in the
recirculation bubble upstream of the injection zone and bend aroung the jet. In
Figure 3.13(b), the mean vortex breaks down downstream, corresponding to the
apparition of smaller structures in the instantaneous flowfield. Close to the jet
centerline, vortices are periodically shed due to the shear-layer instability between
the high-speed jet and the low-speed flow past the bow shock. Closer to the wall, on
the leeward side of the jet, wake vortices are also noticeable on both instantaneous
and time-averaged visualizations.

(a) (b)

Figure 3.13: Isosurfaces of the Q-criterion as an indicator of vortical structures in (a) the
instantaneous flow field, and (b) the average flow, colored by the magnitude of the velocity
vector.

Figure 3.14(a-f) shows a numerical Schlieren in the midplane z/D = 10 for the
time-averaged flowfield and instantaneous snapshots. On the time-averaged flow
(Figure 3.14(a)), the same shock structures as those in the two-dimensional case are
easily recognizable, Figure 3.11(a). The jet expands, forming a barrel shock with a
Mach disk on top. The bow shock now has a 3D structure as it bends in the spanwise
direction. A separation bubble and separation shock are still present in front of the
jet injection. However, they are smaller than in the 2D case, even at a higher jet-to-
crossflow momentum effect, due to the 3D relieving effect. Looking at the series of
instantaneous Schlieren, Figure 3.14(b-f), the vortex shedding induces a whip-like
movement on the bow-shock as well as the jet shock structure. This coupling of the
shock structures with the shear layer likely alter the upstream pressure gradient and
in turn, the recirculation bubble.
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Figure 3.14: Numerical Schlieren of (a) time-averaged flow, and (b-f) instantaneous
snapshot. The jet injection coincides with the location of zero on the x-axis. The shock
structure, shear layer and recirculation bubble dynamics are highlighted in the numerical
Schlieren.
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3.3.3 Modal decomposition of coherent flow structures in the Ma =
5 3D JISC

For design purposes, it is important to understand the unsteady characteristics of the
JISC configuration [Miller et al. 2018]. In fact, the way these instabilities interact
with the meanflow and with each other alter both mean flow characteristics, such
as drag and thrust, and unsteady components such as mixing, heating and local
pressure. In our case, Figures 3.13 and 3.14 highlight how complex the JISC flowfield
is, exhibiting different temporal and spatial features.

3.3.3.1 Proper Orthogonal Decomposition

To decipher the most important unsteady flow features and their associated physical
mechanism, a common strategy is to extract dominant modes from the dataset
[Taira et al. 2017]. In fluid dynamics, Proper Orthogonal Decomposition (POD),
introduced by Lumley [Lumley 1967], extracts modes by optimizing the mean square
of the field variables considered. We assume that the flowfield Q(x, t) can be
decomposed in the following manner

Q(x, t)−Q(x) =
∑
i

ai(t)ΦI(x). (3.12)

Where Q represent the temporal mean, ai(t) and Φj(x) are the time coefficients
and spatial modes, respectively. The goal of POD is to find the optimal basis of
modes Φi, i ∈ [1, r], in the least-square sense, that best represent the flow data.
Let us consider the data matrix X, defined as,

X = [Q(t1) Q(t2) . . . Q(tm)] ∈ Rn×m, (3.13)

where m flow snapshots Q(tj), at corresponding time tj , j ∈ [1,m], are horizontally
stacked. n is usually equal to the grid size times the number of variables considered.
A robust technique to find the relevant modes is to perform the singular value
decomposition (SVD) of the data matrix:

X = ΦΣΨT , (3.14)

where Φ ∈ Rn×n and Ψ ∈ Rn×m represent the left and right singular vector,
respectively. Due to the relation between eigenvalue decomposition of the correlation
matrix XXT and SVD [Taira et al. 2017], the singular value contained in Σ ∈ Rn×n

follows σ2j = λj , and Φ contains the POD modes.

Φ = [Φ1 Φ2 . . . Φn] (3.15)

The time coefficient of mode i at time tj can then be recovered by projecting
the original data onto the corresponding mode as

aji = XjΦ
T
i (3.16)



58 Chapter 3. Numerical simulation of hypersonic flows

For incompressible flows, if the velocity field u is used in the snapshot matrix, the
POD modes are optimal, in the L2 sense, to best represent the kinetic energy of the
flow with the minimal number of modes. In fact, in incompressible flows, only the
kinematic variables are dynamically important. In our case, due to compressibility,
both kinematic and thermodynamic variables contribute to the energy of the flow.
Hence, to obtain POD modes that best represent the total energy of compressible
flow, the Chu norm is commonly used instead [Chu 1965, Hanifi et al. 1996].

3.3.3.2 Application to the shear layer instability

The analysis on the shear layer instability is based on a collection of m = 160 flow
snapshots of the midplane slice, as shown in Figure 3.14. Figure 3.15 shows the first
14 singular values, related to the energy of each mode. As expected, the energy of
each mode quickly drops, proving that only a few modes can capture the dominant
flow structures.
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Figure 3.15: Singular value associated to the shear-layer modes.

Figure 3.16 displays the first five odd-numbered mode shapes. The even
numbered mode shapes present the same patterns, with a slight shift in the
streamwise direction. Figure 3.17 shows the power spectrum density (PSD) of
each mode, computed based on its time coefficient ai(t). Modes come in pairs
with a similar well-defined beating frequency. Hence, each pair of modes combine
to form traveling structures [Taira et al. 2017] in the streamwise direction, namely
the vortex shedding. To gain confidence in the physical meaning of these modes,
we computed the inflection point of the mean streamwise velocity profiles at each
streamwise location. From a hydrodynamic stability point of view, an inflection
point is a necessary condition to support shear instabilities [Schmid et al. 2002]. In
the interaction region, the velocity profiles exhibit several inflection points. The
selection is based on an iterative procedure. At the left hand side of the domain,
the first inflection point in the laminar boundary layer profile is chosen. Then the
next inflection point is chosen as the closest to the previous one. The resulting
inflection line is added on top of all mode shapes in Figure 3.16. The line clearly
crosses the streamwise momentum structures corresponding to the vortex shedding.
This supports the Kelvin-Helmoltz instability mechanism as the root of shear layer
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vortex shedding. Secondly, the POD modes clearly highlight the coupling between
the vortex shedding and the bow shock movement described above. In fact, the
perturbations in the shear layer correspond to opposite sign perturbations along the
bow shock in all modes. This indicates the spatial correlation between these two
features. Physically, pressure decreases during a shedding event. The suction effect
then locally accelerates the flow and the bow shock changes its angle and position
locally.

Figure 3.16: First 5 odd POD modes of the mid-plane slice for streamwise momentum
ρu. The dashed line represent the mean-flow inflection line.

In terms of temporal scales, the fundamental frequency (modes 3 and 4)
corresponds to a Strouhal number of St = 0.5. This value is in the range
of the values reported in other numerical and experimental studies of jet in
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supersonic crossflow [Chai et al. 2015, Kawai & Lele 2010, Peterson et al. 2006,
Miller et al. 2018, Ben-Yakar et al. 2006].
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Figure 3.17: Power spectrum density of shear-layer modes for the cold Ma∞ = 5 3D JISC
case.

The streamwise energy distribution of each pair of modes is plotted in Figure
3.18. As expected, the first pair is the most energetic overall. However, the second
pair becomes more energetic 5 jet diameter after the jet injection. If we compare
the first and third mode shapes in Figure 3.16 (a) and (b) respectively, the third
mode has a larger wavelength in the streamwise direction. Physically, this energy
transfer between modes corresponds to the elongation and rotation of shear-layer
vortices, as seen in Figure 3.14(b-f).
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Figure 3.18: Streamwise energy distribution of shear-layer modes pair for the coldMa∞ =
5 3D JISC case.

In summary, the Proper Orthogonal Decomposition modes prove to be highly
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effective in extracting coherent vortex shedding structures and capturing their
evolution in the context of the jet in crossflow interaction. By applying POD
on two-dimensional jet data, we are able to identify and isolate the dominant
flow patterns associated with the vortex shedding in the shear layer. These POD
modes provide valuable insights into the dynamic behavior and development of these
vortical structures, allowing for a deeper understanding of the complex flow physics
involved in jet in crossflow phenomena.
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The reference solution enforced in the numerical sponge at the outer portion
of the computational domain (Figure 2.1) is usually chosen as a (locally) self-
similar solution. This section outlines the mathematical formulation of these
(locally) self-similar solutions for hypersonic boundary layers. The focus is
set on the lesser known locally self-similar solution in chemical nonequilibrium
[Lees 1956, Di Renzo & Urzay 2021, Williams et al. 2021]. In addition to their use
as reference solutions for simulation in chemical nonequilibrium, they also provide a
fairly accurate estimation of the thermodynamic states and composition encountered
in a typical scenario of a hypersonic boundary layer.

4.1 Formulation

4.1.1 Conservation equations for two-dimensional boundary layers

Let us consider conservation equations for mass, species, momentum and stagnation
enthalpy. for a steady two-dimensional boundary layer. These equations are derived
from the Navier-Stokes equation, Eqs. (1.1-1.4), using the typical order of magnitude
analysis, i.e. δ ≪ L, where δ is the boundary layer thickness in the wall normal
direction and L is a reference length in the streamwise direction. The equations
simplify to the following form

∂ρu

∂x
+
∂ρv

∂y
= 0, (4.1)
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ρu
∂Ys
∂x

+ ρv
∂Ys
∂y

= − ∂

∂y
(ρYsVs,y) + ω̇s , ∀s ∈ S, (4.2)

ρu
∂u

∂x
+ ρv

∂u

∂y
= −dpe

dx
+

∂

∂y

(
µ
∂u

∂y

)
, (4.3)

ρu
∂h0
∂x

+ ρv
∂h0
∂y

= − ∂

∂y

(
µ
∂u

∂y
+ κ

∂T

∂y
−
∑
s∈S

ρYshsVs,y

)
. (4.4)

Vs,y is the wall normal component of species ′s′ diffusion velocity vector, defined in
Eq. (1.21). The equations are subject to the following boundary conditions away
from the wall as y →∞

ρ = ρe, u = ue, Ys = Ys,e, T = Te, (4.5)

where (.)e denotes an edge quantity. At the wall (y = 0), similarly as in §2.1, we
have the classical no-slip and non catalytic boundary conditions

u = v = 0,
∂Ys
∂y

= 0. (4.6)

The wall can be either adiabatic ∂T/∂y = 0 or isothermal T = Tw. We assume no
streamwise pressure gradient, hence p = p∞ and all the edge quantities are equal to
the freestream quantities denoted by (.)∞.

4.1.2 Locally self-similar transformation

Following Lees [Lees 1956], as well as the more recent work of Di Renzo et al.
[Di Renzo & Urzay 2021] and Williams et al. [Williams et al. 2021], we introduce
the similarity variables

ξ(x) = ρeµeuex and η(x, y) =
ue√
2ξ

� y

0
ρdy. (4.7)

By introducing a streamfunction ψ = f(η)/
√
2ξ, such that

u = uef
′
, and ρv = −ρeµeue

f√
2ξ
− ηxf

′√
2ξ, (4.8)

the continuity equation Eq. (4.1) is automatically satisfied. (.)
′ indicates

differentiation with respect to η and ηx = ∂η/∂x. With this set of variables, the
momentum equation reduces to

(Cf
′′
)
′
+ ff

′′
= 0, (4.9)

where C = ρµ/(ρeµe) is the Chapman-Rubesin parameter. Using the species
diffusion velocity formulation of Di Renzo et al. [Di Renzo & Urzay 2021], which
is equivalent to Eq. (1.21), each species conservation equation can be cast into the
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following form,CsYs
Sce,s

X ′
s

Xs
−
∑
j∈S

DjYj
DsXs

X
′
j

+ fY
′
s +DasΩ̇s = 0, ∀s ∈ S. (4.10)

Similarly as the Chapman-Rubesin parameter for momentum, Cs = ρ2Ds/(ρ
2
eDs,e)

is a nondimensional group of variable for mass diffusion. Scs,e = µe/(ρeDs,e) is
the Schmidt number based on edge conditions, representing the ratio of momentum
to mass diffusion. Das = x/(uetch,s) is a Damköhler number defined as a ratio
between streamwise residence time and the characteristic chemical time scale tch,s
of species s, based on the maximum temperature in the boundary layer. Finally,
Ω̇s = tch,sω̇s/ρ is the normalized production rate of species s.

The equation for stagnation enthalpy takes the following form,

cp,eTe
h0,e

(
CT θ

′

Pre

)′

+fm′+
ue
h0,e

(
Cf

′
f

′′
)′

+
∑
s∈S

hs,e
h0,e

CsgsYs
Sce,s

X ′
s

Xs
−
∑
j∈S

DjYj
DsXs

X
′
j

′

= 0,

(4.11)
where θ = T/Te, CT = ρκ/(ρeκe) and Pre = µecp,e/κe is the Prandtl number
based on edge condition. Additionally, gs = hs/hs,e is the species-specific enthalpy,
normalized by its edge value and equivalently for the stagnation enthalpy, m =

h0/h0,e.

4.1.3 Thermochemical model

The self-similar equations (4.9-4.11) are closed with the perfect gas equation of state,
rewritten in terms self-similar variables as

θ =
ρeW

ρW
. (4.12)

Similar to the Navier-Stokes equations (1.1-1.4), the solution of Eqs. (4.9-4.11)
requires closure by modeling different nondimensional terms representing transport
of momentum C, mass Cs, and energy CT , as functions of the thermodynamic state
and composition.

For the five thermochemical models devised in §1.2, only the CNEQ model
necessites the resolution of Eqs. (4.10). In all other cases, these equations can
be omitted and the third term on the left-hand side of Eq. (4.11) vanishes. In any of
these cases, the solution obtained is only a function of η through f(η) and becomes
independent of the streamwise location. Therefore, it can be coined a self-similar
solution. In the physical space, a one-dimensional self-similar profile can be scaled
with

√
x to recover the full flowfield.

However, in the case of CNEQ, the edge Damköhler number Das = x/(uetch,s)

introduces a dependency with respect to the streamwise location x, in Eqs. (4.10).
Hence, the solution is a function of η and x and can only be coined a locally self-



66 Chapter 4. Self-similar solutions for hypersonic boundary layers

similar solution. In other words, in the physical space, at each streamwise location
of interest, a new solution has to be recalculated.

4.1.4 Numerical resolution

The locally self-similar solutions in chemical nonequilibrium presented herein
were generously computed by C.T. Williams and M. Di Renzo during Stanford
CTR summer program 2022. Their method uses a second-order finite-difference
discretization and a Newton-Raphson solver to numerically solve Eqs. (4.9-4.11),
supplemented with Eq. (4.12) [Williams et al. 2021, Di Renzo & Urzay 2021].

4.2 Results

This section investigates the accuracy of locally self-similar solutions in chemical
nonequilibrium by comparing to direct numerical simulation.

For each case, locally self-similar solutions are generated at each discrete
streamwise location and interpolated onto the final grid. The resulting field of
locally self-similar solutions is used as the initial and reference solution for the
numerical sponge. The solution is then advanced with the Navier-Stokes solver
until convergence of the residuals to machine precision.

4.2.1 An isothermal boundary layer at suborbital enthalpy

The comparison is first carried out for a two-dimensional, Mach-10,
cooled-wall hypersonic boundary layer, based on the conditions studied by
[Di Renzo & Urzay 2021]. Lengths are non-dimensionalized using the displacement
thickness δ∗0 at the inflow, with a corresponding Reynolds number Reδ∗0 = 6, 000.
The freestream temperature is T∞ = 1039 K, and the wall temperature is set to
Tw = 1700 K. Freestream pressure is set to p∞ = 57.1 kPa. The computational
domain extends from x = 65δ∗0 to 265δ∗0 in the streamwise direction, with 960 grid
points uniformly distributed. In the wall-normal direction, the domain extends
from y = 0 to 5δ∗0 , and 211 grid points are used, clustered near the wall using
Eq. (3.1) to properly resolve the large gradients in that region.

The self-similar solutions were generated using 0.5 core hours on the Yellowstone
cluster at Stanford, compared with 1,500 core hours needed to obtain the converged
laminar DNS.

Figure 4.1 displays a comparison of the DNS and self-similar profiles at Rx =

1000. Despite the strongly cooled-wall, aerodynamic heating produces temperatures
of the order of Tmax ≈ 4T∞ at a wall-normal distance of y = 0.8, as shown
in Figure 4.1(b). This temperature is sufficiently high to promote dissociation
of O2 into its atomic counterpart, as well as to produce NO. However, it is too
low to produce significant amounts of atomic N, as shown in Figure 4.1(c). The
temperature then decreases towards the wall after the peak aerodynamic heating,
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Figure 4.1: (a) Streamwise velocity, u, (b) temperature, T , and (c) species mass fraction,
Ys, profiles in the boundary layer for Di Renzo’s [Di Renzo & Urzay 2021] isothermal
boundary layer at Rx = 1000. DNS results (solid lines) are compared to the locally self-
similar solution (dash-dotted). (c) From left to right : N,NO,O,O2,N2

due to wall cooling. Mass fractions of O and NO, on the other hand, stay relatively
high, owing to the diffusion of radicals away from the wall.

Almost perfect agreement is observed for the velocity and temperature profiles.
The most notable difference is in the species mass fractions, where higher
dissociation is observed in the self-similar solution than in the DNS. This can be
explained by the streamwise species diffusion flux that is neglected in the locally
self-similar solution.

4.2.2 Case A

The second comparison uses the adiabatic Mach-10 boundary layer, case A, for
which a complete description is done in §3.1.3.2. The profiles of Figure 3.4 are
juxtaposed to the initial profiles, computed with a locally self-similar solution in
chemical nonequilibrium, at Rx = 2000 in Figure 4.2.
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Figure 4.2: (a) Streamwise velocity, u, (b) temperature, T , and (c) species mass fraction,
Ys, profiles for case A at Rx = 2, 000. DNS results (solid lines) are compared to the locally
self-similar solution (dash-dotted). (c) From left to right : N,NO,O,O2,N2
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In this adiabatic set-up, a higher discrepancy is found between the different
profiles. The adiabatic temperature at the wall is significantly higher at Twall/T∞ =

12.44, compared to Twall/T∞ = 11.68 for the self-similar solution. This difference of
266 K induces more dissociation within the boundary layer, as seen on Figure 4.2(c)
where the radical species N, O and NO are all present in higher quantities near the
wall. Finally the DNS boundary layer is thicker than the self-similar counterpart,
Figure 4.2(a). This larger difference between the self-similar solution and DNS in
this caser can be explained by higher maximum temperature, where Twall ≈ 4900 K.
This theoretically leads to a greater degree of dissociation, resulting in increased
streamwise diffusion that is not considered in the locally self-similar solution.
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In this chapter, we first detail the strategy leading to the different training
steps of a reduced-order thermochemical model for hypersonic flow simulation in
chemical nonequilibrium. Secondly, we focus on the coupling with the flow solver
for closed-loop simulations. The case chosen to showcase the different steps is the
steady adiabatic Ma = 10 boundary layer, described in details in 3.1.3.2. Finally,
the last section presents the application of the reduced-order thermochemical model
for the efficient simulation of steady hypersonic flow in chemical nonequilibrium.
Three cases are chosen, case A, §3.1.3.2, an isothermal boundary layer at suborbital
enthalpy, §4.2.1, and the shock-wave boundary layer interaction scenario presented
in §3.2.2.

This section is based on our recent publication on the topic
[Scherding et al. 2023].
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5.1 Strategy

As described in §2.4, high-fidelity simulations of hypersonic flows in chemical
nonequilibrium rely on detailed thermochemical models of the mixture properties.
In the context of this work, the mixture properties are obtained by coupling the
flow solver with the Mutation++ library [Scoggins et al. 2020]. It can be seen as an
input/output problem z = f(x). More precisely, given the local state vector

x = [ρ, ρs, ρe] ∈ RD, (5.1)

the library returns all physico-chemical properties needed to close the governing
equations

z = f(x) = [p, T, µ, κ,Ds, hs, ω̇s] ∈ RDZ . (5.2)

As shown in Figure 2.7, these functions calls increase by more than one order
of magnitude the cost of simulation in CNEQ compared to an equivalent CPG
simulation. While these function calls cannot be entirely avoided, existing features
of the flow inspire strategies to seek a less expensive method to evaluate the required
properties. (i) Flows have history. In other words, several calls to the library may
be redundant since some thermodynamic states are seen multiple times throughout
the simulation. (ii) Any flow of interest contains only a subset of all possible
thermodynamic states, given its nature and freestream conditions. Hence, only
a small subset of the input space of function f̃ needs to be accessed. (iii) While
data-driven method requires a lot of data for training, some (rare) flows of interest,
such as hypersonic boundary layers in chemical non-equilibrium, exhibit elegant,
locally self-similar solutions [Lees 1956] that can be used for training instead of an
expensive direct numerical simulation (DNS). This final point will be explored in
§6.2.2.

The proposed algorithm leverages these features by creating a surrogate model
of the function f̃ only on a subset of input states relevant to the simulation,
which is commonly represented as a low-dimensional manifold in RD. This
allows us to first perform dimensionality reduction of the input space (see
[Bouhlel et al. 2016, Hawchar et al. 2017]). Next, following a similar approach as
in [Bettebghor et al. 2011], regions with different dynamics and/or discontinuities
between them are clustered into a low-dimensional representation. Finally, surrogate
models are constructed on each cluster of this low-dimensional space. Hence, the
training of the algorithm is performed in three steps: (i) dimensionality reduction,
(ii) community clustering, and (iii) surrogate model construction. Once trained, the
model replaces the look-up library already in place to predict the thermochemical
properties of the mixture within the flow solver. We stress that the lighter version
of the library will perform correctly only on the range of conditions seen during the
simulation. A general schematic of the training process and the coupling with the
flow solver is presented in Figure 5.1.

It should be noted that this strategy is also applicable to flows in thermal
non-equilibrium, where the internal energy modes are out of equilibrium with the



5.2. Training 73

CFD solver

Governing equations

Discretization

Boundary conditions

Input/Output library

𝑓: ℝ! ⟶ ℝ!!
𝒙 ⟼ 𝐳 = 𝑓(𝒙)

Input 𝒙

Output 𝒛

Dimensionality reduction

Clustering/Classification

Surrogate model

Input 𝑥 Output �̂�

𝑔"! : ℝ
# ⟶ℝ$"

𝒚 ⟼ '𝒛 = 𝑔"!(𝒚)

𝒙 ∈ ℝ$ ⟶ 𝒚 ∈ ℝ# 𝑑 ≪ 𝐷

𝒚 ∈ 𝐶% 𝑘 = 1,… , 𝑁"

Off-line training

On-the-fly adaptivity

Light model

Figure 5.1: General schematic of the model training and coupling to replace any expensive
Input/Output library.

translational energy of the flow [Munafò et al. 2015]. Since the additional source
terms modeling the energy exchange in the internal energy equation(s) are modeled
as a function of the local thermodynamic state vector as well, they can be added to
the outputs and a surrogate can be constructed accordingly. This endeavor however
lies outside of the scope of the current study and will be pursued as a subject of a
future work.

5.2 Training

5.2.1 Data acquisition

To train the model, N thermodynamic state vectors q̃th are randomly sampled
on the grid of a previously converged simulation in chemical non-equilibrium and
concatenated into the input vector X̃ ∈ RN×D (here, D = 6). The corresponding
outputs from the library are collected and concatenated into the output vector
Z̃ ∈ RN×DZ , with DZ = 18. Figure 5.2 shows the numerical range of selected
output variables along each input, normalized between 0 and 1 with a minimum-
maximum scaling

X =
X̃− X̃min

X̃max − X̃min

, Z =
Z̃− Z̃min

Z̃max − Z̃min

. (5.3)

Taking dynamic viscosity µ, for example, it shows a strong dependency on
density ρ and internal energy ρe but a low variation with respect to the radicals’
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Figure 5.2: Numerical range of selected Mutation++ outputs Z (vertical) with respect to
the inputs X (horizontal).

partial densities ρO, ρN and ρNO. The same observations can be made for all other
outputs. Hence, the variation of the function f̃ with respect to the inputs can be
accurately represented on a low-dimensional subspace of the inputs. This motivates
the first step of the algorithm, namely, dimensionality reduction.

5.2.2 Dimensionality Reduction

The goal of this section is to find an effective algorithm for dimensionality reduction
of the input space in order to construct a mapping between its reduced-order
representation and the output of the library

Ẑ = g(Y), (5.4)

where g is the approximation of the scaled library f , in the low-dimensional
subspace of the inputs, Y is the reduced-order representation of an input X and
Ẑ the prediction of the model. The benefit of this first pre-processing step is to
maintain high accuracy of the surrogate model, while decreasing the overall cost
of construction and evaluation. In fact, constructing a response surface faces the
well-known curse of dimensionality; as the number of input dimensions increases,



5.2. Training 75

the cost of constructing an accurate surface increases exponentially. This approach
was proven successful in [Bouhlel et al. 2016] where PLS was used in tandem with
kriging to reduce the dimension of the input space.

5.2.2.1 Principal component analysis

The most common technique for dimensionality reduction of a dataset X ∈ RN×D in
high dimensions is principal component analysis (PCA) (see eg. [Shlens 2014]). The
principal components of X are found through the eigenvalue decomposition of the
correlation matrix XXT of the data. The dataset X is then projected onto d < D

leading eigenvectors (or principal components) of the covariance matrix, resulting in
a low-dimensional representation Y ∈ RN×d of the original dataset. Alternatively,
the principal components can be found directly by applying the singular value
decomposition to X = UΣVT . They correspond to the left singular vector in U. In
the fluid community, this technique is known as proper orthogonal decomposition
(POD) and has been applied to the jet in hypersonic crossflow in §3.3.3.

However, depending on the shape of the manifold, the variations of the output
variables with respect to the low-dimensional sub-space may not be properly
preserved, which is the case presented in Figure 5.3(a) with points of high and
low temperature projected onto similar locations. This example illustrates the
limitations of PCA for dimensionality reduction of a dataset constrained to a
nonlinear manifold.

5.2.2.2 Auto-encoders

Nonlinear dimensionality reduction via auto-encoders (AE) typically have a higher
compression rate than linear techniques. An auto-encoder is a parametric model
(i.e. a deep neural network with an activation function σ) that embeds the input
dataset X ∈ RN×D into a low-dimensional representation Y ∈ RN×d through an
encoder function E. The low-dimensional representation is then decoded back to the
input space with the decoder function D, producing a reconstruction of the input
X̂ ∈ RN×D.

Y = E(X)

X̂ = D(Y)
(5.5)

The weights of the two networks E and D can be trained using back-propagation of
the L2 error ∥X − X̂∥2 through the network. If the activation function is selected
as the identity (i.e σ(x) = x), the auto-encoder is linear and unbiased

E =WE

D =WD
(5.6)

whereWE andWD are the weights matrices of the encoder and decoder, respectively.
These optimal weights can be found through PCA. In fact, the linear latent space
of dimension d of the encoder will span the same sub-space as the top d PCA
singular vectors. The equivalence between the two techniques was first shown by
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Figure 5.3: Low-dimensional representation Y ∈ RN×d (d = 2) of X ∈ RN×D, colored
by temperature T . (y1, y2) denote the coordinates of the latent space. Obtained with (a)
PCA (b) AE (c) PLS (d) IO-E.

Baldi & Hornik [Baldi & Hornik 1989]. Correspondingly, a two-layered nonlinear
auto-encoder can be mathematically described as follows

Y =WE,2σ(WE,1X+ bE,1) + bE,2

X̂ =WD,2σ(WD,1Y + bD,1) + bD,2
(5.7)

where σ is a nonlinear activation function, WE,1 ∈ RH×D,WE,2 ∈ Rd×H are
the weights matrices of the first and second layer of the encoder with respective
biases bE,1 ∈ RH and bE,2 ∈ Rd. H denotes the dimension of the hidden layer.
The matrices and bias vectors of the decoder have transposed dimensions. This
corresponds to the minimal architecture (i.e. with one hidden nonlinear layer
and an output linear layer) requested by the universal approximation theorem
[Cybenko 1989]. However, more hidden layers can be considered. Figure 5.3(b)
shows the manifold unrolled in two dimensions with an auto-encoder, colored by the
magnitude of the temperature, an output of the library. The AE outperforms PCA
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by preserving the local structure and preventing points at different thermodynamic
states (i.e different temperatures) to be projected onto the same location. However,
the highest temperature zone is concentrated in a thin layer adjacent to the lower
temperature area. This will result in strong and unphysical gradients of the
surrogate model within this region.

5.2.2.3 Partial least-squares

Since our interest lies in reducing the dimensionality of the input to construct a
reduced-order surrogate model of the input/output relations, it is useful to entangle
the input into a low-dimensional space that best reconstructs the outputs. In
analogy to PCA finding dependencies between the inputs, partial least-squares
(PLS) finds a basis of the input space that optimally accounts for features in the
output space. It has been used to construct surrogate models aimed at reducing
the dimensions of the input space (see [Bouhlel et al. 2016]). Different variants of
PLS now exist, using either a singular value decomposition (PLS-SVD) or iterative
algorithms (such as PLS-W2A in [Wegelin 2000]). While it has been shown that in
cases where the dimension of the latent space is strictly greater than one, PLS-SVD
differs from PLS-W2A and its variant PLS2, no major differences in the resulting
latent space were observed. The results of PLS-SVD are presented here to highlight
the similarity to PCA. Given the input X and output vectors Z, the PLS-SVD
algorithm [Wegelin 2000] determines

XTZ = UΣVT . (5.8)

Similar to PCA, the projection of the input is then obtained by projecting onto the
d < D top left singular vectors

Y = XU (5.9)

where U ∈ RD×d is the truncated left-singular matrix. Figure 5.3(c) shows the
training set projected onto the two-dimensional basis generated with PLS. As
expected, adding the output information in the computation improves the output’s
representation in the reduced-order input basis compared to PCA. However, an
artificial discontinuity is created near the high-gradient region that was not present
in Figure 5.3(b). This highlights the lower compression rate of linear techniques
compared to nonlinear ones.

5.2.2.4 Input/output-encoders

The strategy adopted here is therefore a nonlinear dimensionality reduction of the
input data using input/ouput-encoders (IO-E), a modified version of auto-encoders
(AE) adapted to input/ouput relations. To that end, the decoder architecture is
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modified to best reconstruct the output of the library Z ∈ RN×DZ as

Ẑ =WD,2σ(WD,1Y + bD,1) + bD,2 (5.10)

where the weight matrices are now WD,1 ∈ RHD×d,WD,2 ∈ RDZ×HD with respective
biases bD,1 ∈ RHD and bD,2 ∈ RDZ . HD now represents the hidden dimension
of the decoder. The resulting network is then trained via back-propagation of the
reconstruction error based on the output ∥Z − Ẑ∥2. The input/output-encoder
(IO-E) architecture is illustrated in fig. 5.4.
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Figure 5.4: Schematic of the input/output-encoder architecture proposed. An
input sample X is passed through the encoder network to generate a low-dimensional
representation Y. Y is decoded back to predict the library output Ẑ. At each training
step, the L2 loss ∥Z − Ẑ∥2 between the library and the network prediction is calculcated
and backpropagated until convergence of the encoder and decoder weights, WE and WD,
is reached.

Figure 5.3(d) shows the equivalent manifold using the IO-E architecture, with
the same number of hidden dimensions. The IO-E architecture outperforms all other
techniques as the high-temperature region is now projected onto its own properly
defined zone with smooth variations. This feature will have a marked impact on the
performance of the library when linked to the solver. It is worth noting that the
decoder part of the IO-E could be used directly to predict the output of the library.
However, we will see in §5.4.1.4 that the accuracy of the full IO-E is not optimal,
motivating the application of clustering algorithms to separate regions with varying
behavior in the reduced dimension to improve the performance of the regressor.

5.2.3 Community clustering

In the second step of the algorithm, we seek to discover clusters within our
data. In our present context, a cluster represents a subset of data that shares
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similar thermodynamic features. These feature classification will then be useful in
constructing a dedicated surrogate surface of the low-dimensional input manifold.
To this end, Newman’s spectral algorithm for community detection in a network
[Newman 2006] is used. A clear advantage of Newman’s algorithm is that the
number of clusters is not defined a priori, in contrast to more common clustering
techniques (e.g. k-means). The number of clusters is instead the result of a
maximization procedure performed on the modularity Q of the network. In other
words, the number of thermodynamic clusters in the flow are determined only from
the data and is not based on a priori knowledge of the user. This knowledge might
be even impossible to come by in complex, unsteady hypersonic flows subjected to
shocks.

Following this approach, the Euclidean distance matrix ∆ of the dataset in low-
dimensional space is computed

∆ij = ∥yi − yj∥2 for (Yi,Yj) ∈ Y2. (5.11)

The dataset is subsequently recast into an undirected network with a binary
adjacency matrix A, constructed as

Aij =

{
1 if ∆ij < ε,

0 otherwise.
(5.12)

Two points are connected with an edge if their Euclidean distance is below a certain
threshold ε. This threshold is usually chosen as a fraction of the mean of the
distance matrix ∆. The influence of the threshold ε on the number of clusters will
be investigated in §5.4.1.2.

Finally, the dataset is progressively split into two communities until the
modularity, Q, is maximized. The modularity is defined as the proportion of edges
contained within a community over the same proportion for a random reference
network. Let ki be the number of edges pointing towards the data point numbered
i, and m the total number of connections within the network. Then, the probability
of having an edge between i and j in the random reference network is kikj/m.
Hence, the modularity Q is defined as,

Q =
1

m

∑
ij

(
Aij −

kikj
m

)
δci,cj , (5.13)

where δci,cj is the Kronecker delta for the communities of i and j. For instance,
δci,cj = 1 only when i and j belong to the same community. By defining a vector s
where si = 1 if vertex i belongs to the first group, and si = −1 otherwise, we can
reformulate

Q =
1

2m

∑
ij

(
Aij −

kikj
m

)
(sisj + 1) =

1

2m
sTBs, (5.14)
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where the modularity matrix B is given as,

Bij = Aij −
kikj
m

. (5.15)

Since the graph is undirected, the modularity matrix B is symmetric and the
modularity Q represents a Rayleigh quotient of matrix B. In order to maximize
Q, we need to choose a vector s that is parallel to the principal eigenvector
(corresponding to the largest eigenvalue) of B, v, which can be achieved by setting
si = 1 if vi > 0 and si = −1 if vi < 0. In order to partition the graph into more than
two communities, this algorithm is repeated until the modularity of each subgraph
can no longer be increased. A thorough descripion of the full algorithm can be found
in [Newman 2006].
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Figure 5.5: Demonstration of the Newman algorithm. (a) Original distance matrix ∆ of
dataset Y. (b) Restored communities from running Newman’s algorithm on A, showing
two distinct clusters

Figure 5.5 shows the application of the clustering algorithm to the boundary layer
data. The distance matrix ∆ is constructed on Y. After running the algorithm on
the subsequent adjacency matrix A, two distinct clusters are identified, highlighted
by the low distance between the points within a cluster in Figure 5.5(b).

5.2.4 Surrogate model construction

Finally, a surrogate surface is computed on the scattered low-dimensional points
of each cluster. Various algorithms can be used to that end, such as kriging
[Kleijnen 2009, Bouhlel et al. 2016], artificial neural networks [Sun & Wang 2019],
or radial basis functions neural networks [Broomhead & Lowe 1988, Powell 1992,
Buhmann 2000]. In the application of interest to this work, radial basis functions
networks (RBF) provided the best trade-off between performance and accuracy, as
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well as an easy training step. However, it should be noted that our choice is not
definitive and can be easily changed.

RBF can be seen as a special type of three layer deep neural network with radial
basis functions as activation functions in the hidden layer, and an associated center
xi, as shown in Figure 5.6. The parameters of the models are the NR input training
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Figure 5.6: Schematic of the radial basis function network architecture.

points Xc ∈ RNR×d and the associated weights Λ ∈ RNR . Given the set of input
points x1, . . . ,xNR ∈ Rd and the function value at these points f(x1), . . . , f(xNR),
the radial basis function (RBF) interpolant g is given by

g(ϕ,x) =
NR∑
i=1

λiϕ(∥x− xi∥) (5.16)

where ϕ is the kernel function whose value depends on the distance r = ∥x − xi∥
between the evaluation point x and the center xi of the RBF. The weights Λ =

[λ1, ..., λNR ]
T that minimize the mean-square error of the RBF over the training

input points can be obtained through the solution of the linear system

ΦΛ = f , (5.17)

where f = [f(x1), ..., f(xNR
)]T denotes the vector containing the function values at

the RBF center. The kernel matrix Φ is defined as

Φi,j = ϕ(∥xi − xj∥). (5.18)

In this study, the thin-plate spline kernel [Wood 2003] was used, i.e.,

ϕ(r) = r2log(r). (5.19)

With this particular kernel, the kernel matrix is only conditionally positive definite.
To ensure a unique solution for the interpolation weights, the system is augmented
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by a polynomial p ∈ Πd
m (space of polynomials of d variables and degree up to m)

to the right hand side of eq. (5.16) [Buhmann 2000], resulting in

g(x) =
NR∑
i=1

λiϕ(∥x− xi∥) + p(x). (5.20)

The extra degrees of freedom are accounted for by enforcing orthogonality of the
coefficients with respect to the polynomial space as

NR∑
i=1

λir(x) = 0, r ∈ Πd
m. (5.21)

Finally, the polynomial coefficients c = [c1, ..., cdp ]
T and the RBF coefficients Λ are

found through the solution of the following linear system(
Φ P

PT 0

)(
Λ

c

)
=

(
f

0dp

)
, (5.22)

where Pi = [1,xi, ...,x
dp
i ] for i ∈ [1, NR] is the polynomial matrix.

Due to the large size of the training set, using one cluster center per training
point (i.e. NR = N = O(105)) will likely result in overfitting and prohibitive
computational cost [Schwenker et al. 2001]. Following the recommendations in
[Schwenker et al. 2001], the interpolant is constructed in two steps. First, the
k-means algorithm with NR ≪ N clusters is applied on the concatenation of the
input and output vector (X,Z) ∈ RN×(D+DZ). The addition of the output vector
results in a low within-cluster variance of the outputs and will ultimately improve
the surrogate model. The NR centroids obtained with k-means, xc, are sent to the
library to compute the function value vector f. Simultaneously, they are encoded
in the low-dimensional space to obtain the NR cluster centers, yc

1, ...,y
c
NR
∈ Rd,

that will be used to train the RBF. Figure 5.7 shows the resulting tesselation in
the embedded space after applying the k-means algorithm with NR = 250 for each
cluster. The influence of the number of RBF centers on the quality of the surrogate
model will be assessed in §5.4.1.3.

Following this approach, a single interpolant, gck , is constructed for each cluster,
ck; in other words, gck is the approximation of the scaled library function f on
the low-dimensional subspace corresponding to cluster ck. The advantage of having
one interpolant per cluster is twofold. First, it allows the surrogate model to best
fit a region with a given dynamics of the high-dimensional function, especially
in the presence of discontinuities, similar to the approach of Bettebghor et al.
[Bettebghor et al. 2011]. Secondly, as the surrogate model spans a smaller range of
input parameters, less centers are required to capture the given dynamics accurately,
resulting in a lighter model with faster evaluation time. To enforce continuity of
the surrogate surface near the cluster boundaries, the nearest centroids that do not
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Figure 5.7: Tesselation of the low-dimensional space after applying the k-means algorithm
with NR = 250 on the concatenation of the input X ∈ RN×D and output Z ∈
RN×DZ vectors. Black dots represent the cluster centroids’ low-dimensional representation
yc
1, ...,yc

NR
.

belong to the considered cluster are added to its training set.
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5.3 Coupling to the flow solver

Once the model is trained, we can replace the calls of the solver to the look-up
library with the new lighter model. New points have to go through three steps: (i)
Out-of-sample dimensionality reduction, (ii) classification, and (iii) interpolation.
These three steps will be described in the following. Let Xt ∈ RNt×D denote the
stack of all new points.

5.3.1 Out-of-sample encoding

The low-dimensional representation of Xt (after proper scaling of X̃t) is
straightforward. Indeed, the point is simply fed to the encoder portion of the
input/output-encoder

Yt =WE,2σ(WE,1X
t + bE,1) + bE,2. (5.23)

This results in a fast and inexpensive encoding of the new out-of-sample points. In
fact, the time complexity of the encoding step is O(H ×Cac × L×Nt), where H is
the maximum number of neurons in a layer, Cac is the complexity of the activation
function and L is the number of layers in the encoder step of the input/output-
encoder.

5.3.2 Classification

The next step is to determine to which community the new state Yt belongs. To
this end, after applying Newman’s algorithm, a random forest classifier is trained
on the resulting clusters. A random forest classifier, formally proposed by Breiman
[Breiman 2001], is a collection of ntree tree-based classifiers, h(x,Φk), k = 1, ..., ntree,
where Φk are identically distributed random vectors. Each tree votes for the most
likely class of input vector x, and the majority wins. fig. 5.8 shows the confusion
matrix C of the classifier trained on the two clusters obtained above with ntree = 20.
The clusters of the embedded new points Yt, not seen during the training-phase of
the classifier, are predicted and compared to the true clusters (given by Newman’s
algorithm). The off-diagonal values count the number of points that are assigned to
the wrong cluster. All off-diagonal values are zero, demonstrating the ability of the
classifier to correctly predict the community of an out-of-sample point.

The time complexity of the induction time of the classifier is O(ntree×Ntlog(Nt))

(see the book by Witten, Frank and Hall [Frank et al. 2004] for a demonstration),
where ntree is the number of decision trees in the random forest. The logarithmic
term accounts for the worst case scenario for the maximum depth of each tree.
However, the maximum depth is usually set to a smaller value, resulting in a
complexity of O(ntree × depth × Nt), which results in relatively fast classification
times.
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Figure 5.8: Confusion matrix C of the random forest classifier (ntree = 20), tested on
unseen data points during training. Cij is the number of points belonging to cluster cj
predicted to be in cluster ci.

5.3.3 Evaluation

Finally, once Yt has been found to belong to cluster ck, the corresponding RBF gck
is called to evaluate the thermochemical properties Ẑt of the mixture at that state
Xt,

Ẑt = gck(Y
t) =

NR∑
i=1

λiϕ(∥Yt −Yc
i∥). (5.24)

(̂.) denotes the predicted value by the reduced library, as opposed to the true value
that would have been given by the target library, Zt. Finally, these properties are
re-scaled according to

˜̂
Z
t

= Ẑt ∗ (Z̃max − Z̃min) + Z̃min (5.25)

and passed back to the flow solver.
The time complexity of each surrogate model is given by O(CRBF×Nt×NR×d),

where CRBF is the complexity of the kernel function. The time limiting part of
the RBF interpolation is the calculation of the distance matrix that scales with
O(Nt × NR × d). Hence, using a relatively small number NR of RBF centers,
compared to Nt, will greatly improve the performance of the surrogate model. It
should be noted that the dimensionality reduction directly contributes to the added
performance of the surrogate model, as d < D.

5.3.4 Global time performance

The time complexity of the whole algorithm can be recovered by adding the time
complexity of each of the three steps. Hence, the total time complexity of the
algorithm can be written as O(CMLN), where CML = O(HCacL + ntreedepth +

dNRCRBF ).
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5.3.5 Implementation details

The reduced-order thermochemical model is implemented in python in a custom
object class, thermoROM. Common machine learning libraries are used during the
different training steps:

• Input-Output encoder: TensorFlow

• Newman clustering: custom implementation using Numpy and Scipy

• k-means: Scikit-Learn

• RBF: custom implementation using Numpy and Scipy

At the start of the simulation, the reduced-order thermodynamic model class,
thermoROM, is initialized. This step loads in memory the different objects needed:
the encoder, the classifier and the RBFs. At every iteration, the variables are
evaluated following the steps described above by using the evaluate method of
the class.

Calling the class within the flow solver, written in fortran, required the use of
the callpyfort library (see the GitHub repository). An additional wrapper of the
class was implemented to accomodate the input and output data format required
by the library.

5.4 Closed-loop testing on steady hypersonic flows

This section presents the application of the reduced-order thermochemical model
for the efficient simulation of steady hypersonic flow in chemical nonequilibrium.
First, the laminar Mach 10 adiabatic boundary layer (case A - §3.1.3.2) is chosen
as a benchmark case. Each step of the off-line training is assessed, and then the
performance of the model in predicting the output quantities when coupled to the
Navier-Stokes solver is analyzed. The same strategy is then applied to the isothermal
boundary layer of Di Renzo and Urzay [Di Renzo & Urzay 2021], described in §4.2.1,
and the shock-wave boundary layer interaction scenario presented in §3.2.2. These
additional cases are chosen to showcase the robustness of the technique to more
complex thermodynamic manifold.

In all three cases, the model is trained on the converged steady solution of
the Navier-Stokes equations. Starting from this steady solution, the simulation is
restarted with the data-driven model in a closed-loop simulation. These tests will
allow to assess the stability, accuracy and performance of the model.

5.4.1 Case A

N = 200, 000 thermodynamic state vectors x = [ρ ρe ρs] are sampled from the
converged solution and concatenated into the input dataset X. The corresponding
Mutation++ output dataset Z is also obtained.

https://github.com/nbren12/call_py_fort
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5.4.1.1 Input/output encoding

The architecture and hyperparameters of the input/output-encoder used for this
test case are provided in Table 5.1.

Architecture
Encoder Decoder

Layer Size Layer Size
Input 6 Latent space 2

Fully connected 12 Fully connected 6
Fully connected 6 Fully connected 12
Latent space 2 Output 18

Hyperparameters
Parameter Value Parameter Value

Learning rate 1× 10−3 Epochs 2000
Loss Mean-squared error Batch size 256

Activation function tanh Optimizer Adam (keras default)

Table 5.1: Architecture and hyperparameters of the input/output-encoder used to train
the IO-E network on the Ma = 10 adiabatic flat plat boundary layer test case.

An important parameter is the number of dimensions required to properly unfold
the input manifold. To this end, the architecture and hyperparameters, as well as
the random seed to initialize the network weights, are held constant, and only the
dimension of the latent space is varied. We follow the reconstruction loss ∥Ẑ− Z∥2
of the testing set as a function of the latent space dimension d. As seen in Figure
5.9, the loss saturates after d = 2, suggesting that two dimensions are sufficient to
represent the input manifold, originally in R6.

5.4.1.2 Newman’s community clustering

The second step is to cluster the data on the low-dimensional manifold using
Newman’s algorithm. The only hyper-parameter needed for Newman’s clustering
algorithm is the threshold ε to determine the adjacency matrix A from the distance
matrix ∆, as described in §5.2.3. To showcase the robustness of the number of
clusters with respect to the threshold ε, the algorithm is applied over a range of
thresholds, chosen as multiples of the mean of the distance matrix ∆. As shown
in Figure 5.10, over the range tested, the algorithm returns Nc = 2 clusters before
over-fitting with extreme values.

Figure 5.11(a) shows the two clusters obtained in the embedded space. As
expected, the two clusters define different regions in the reduced space. To gain
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Figure 5.9: Reconstruction loss ∥Ẑ−Z∥2 of the embedding done by IO-E with respect to
the number of latent space dimensions d.
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Figure 5.10: Number of clusters Nc obtained with Newman’s algorithm as a function of
the threshold ε, given as multiples of the distance matrix mean ∆.
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more physical insight, Figure 5.11(b) shows randomly selected points of the training
set, mapped back to their original location in the Cartesian space and colored by
their cluster number. Contours of temperature T in Kelvin are added. Each cluster
fills a region of the flow with different levels of chemical non-equilibrium. The blue
cluster represents the free stream, where temperature is low and chemistry is frozen.
Alternatively, the red cluster corresponds to the near-wall region with dissociated
species and high temperatures.

The random forest classifier has been trained with ntree = 20. This number
proved sufficient to obtain an acceptable prediction accuracy of new points clusters,
as demonstrated in Figure 5.8.

Figure 5.11: Training points Y colored by their cluster number. (a) In the latent space
found by IO-E. (b) At the Cartesian location they were sampled from, with contours of
temperature T in Kelvin.

5.4.1.3 Surrogate model construction

Once the clusters are determined, a separate RBF interpolant is trained for each
cluster as described in §5.2.4.

To assess the number of centroids needed, the RBFs are trained simultaneously,
for both clusters, with the same number of centroids NR (note that this number can
be varied to accommodate clusters of different sizes). The error of the model for
the testing set ∥Ẑ − Z∥2 is plotted against the number of centroids NR in Figure
5.12 (dashed curve). As expected, the error decreases as the number of centroids is
increased. To assess potential overfitting, one can follow the evolution of the mean
of the squared RBF coefficients Λ2,

Λ2 =
1

NR

NR∑
i=1

λ2i (5.26)

where a high value will likely indicate overfitting. On the right axis of Figure 5.12, we
see that Λ2 (dotted curve) increases with the number of RBF centroids. Therefore,
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choosing the right NR is a trade-off between low error and minimum overfitting. In
this case, a value of NR = 500 for each cluster has been retained.
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Figure 5.12: Left axis: reconstruction error of surrogate model ∥Ẑ−Z∥2 on a testing set
(dashed line). Right axis: mean of squared RBF coefficients Λ2 (dotted line). Both with
respect to the number of RBF centers NR used in training.

5.4.1.4 Model accuracy

The reduced library is tested (off-line) on a full snapshot (which includes also the
training points used to build the model) to assess the capacity of the model to
interpolate new points not encountered during training. Four configurations of the
data-driven model are tested: (i) model 1, using the full IO-E for prediction (ii)
model 2, with no dimensionality reduction and no clustering (d = 6, Nc = 1,
NR = 500), (iii) model 3, with dimensionality reduction, but without clustering,
(d = 2, Nc = 1, NR = 500), and (iv) model 4, with both dimensionality reduction
and clustering (d = 2, Nc = 2, NR = 500).

Figure 5.13 displays the relative error (as a percentage) between the temperature
T given by Mutation++ and the prediction of the data-driven model T̂ , for the four
configurations enumerated above; contours of temperature in Kelvin are also added
to highlight the evolution of the flow. First, the prediction of model 1 produces
the highest error by a wide margin. This showcases the difficulty of properly
training a neural network for prediction in high dimensions. The figure shows the
maximum relative error in all three remaining models to be only a few percent, and
located around the edge of the boundary layer, where the gradients are strongest. In
addition, the error in model 2 is higher than the error of model 3, even though some
information is lost in the latter due to the encoding step. This is a direct consequence
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Figure 5.13: Comparison of the relative temperature error |T̂ − T |/T in percent with
contours of temperature. (a) Model 1: full IO-E (b) Model 2: d = 6, Nc = 1, NR = 500 (c)
Model 3: d = 2, Nc = 1, NR = 500 (d) Model 4: d = 2, Nc = 2, NR = 500
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of the curse of dimensionality: as the number of dimensions increases, the sampling
volume in the input space increases exponentially. However, in this case, we kept the
number of RBF centers NR fixed. To get to the same level of accuracy, NR should
be increased in model 2, resulting in a performance loss. Finally, the error decreases
slightly from model 3 to model 4. This improvement originates from the clustering
step. In fact, each of the two clusters have NR = 500 centers. Hence, the input
space is actually populated with NR = 1000 RBF centers in model 4. According to
Figure 5.12, this improves the accuracy of the surrogate surface. The added number
of centroids, however, does not result in a loss of performance. Assuming that a
fraction α of the Nt query points are in cluster 1, then 1 − α query points are in
cluster 2. The evaluation time of the surrogate surface linked to cluster 1 then scales
roughly as αdNtNRCRBF . Similarly, for cluster 2, it scales as (1− α)dNtNRCRBF .
Finally, the total evaluation time, i.e., the sum of the two, remains dNtNRCRBF .
This can be easily generalized to a higher number of clusters.

These results demonstrate that the preprocessing steps involved in the
construction of the model improve overall performance while maintaining a high
level of accuracy.

5.4.1.5 Model stability

The resulting data-driven model (model 4, with all pre-processing steps) is coupled
to the flow solver in a time-marching simulation. Starting from the solution obtained
with Mutation++, the simulation is restarted using the reduced library only, also
referred as a closed-loop prediction. After running for two flow-through times, the
solution remains stable. The base-flow profiles are compared for various quantities
of interest in Figure 5.14. Excellent agreement is found between the profiles. The
only discrepancies observed are in the atomic oxygen profile in the freestream region
with values in the range of 10−7, which are not deemed important to the overall
accuracy and stability of the model. This validates the accuracy and suitability of
the data-driven model to simulate hypersonic flows in chemical non-equilibrium over
the enthalpy range observed during the training step.

5.4.1.6 Model performance

To compare the performance of the data-driven model to the full library, we
performed a scaling study.

Mutation++ is a serial library, hence its time complexity can be expressed as
O(CM++Nt) where Nt is the number of independent, evaluated thermodynamic
states, corresponding to each grid points in a numerical simulation for instance.
Two variants of Mutation++ are considered here. The first one solves directly the
Stefan-Maxwell diffusion problem and returns the diffusion velocity. In the second
one, the diffusion coefficients Ds are returned and the diffusion fluxes are later
computed using Eq. (1.21). See §1.2.1.3 for a more detailed discussion about the
different modeling choice for multicomponent diffusion.
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Figure 5.14: (a) Streamwise velocity, u, (b) temperature, T , and (c) species mass fraction,
Ys, profiles for case A at Rx = 2, 000. The converged solution obtained with Mutation++
(solid lines) is compared to the solution restarted with the reduced-order thermochemical
model (dotted lines with symbols) after 2 flow-through time. (c) From left to right :
N,NO,O,O2,N2

The diffusion fluxes are computed in the same fashion with the data-driven
model. Moreover, we recall that its time complexity is O(CMLNt), where CML =

O(HCacL + ntreedepth + NRCRBF ). For all three thermochemical models, the
prefactor is empirically determined and shown in Figure 5.15.
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Figure 5.15: Comparison of the time complexity of Mutation++ with Stefan-Maxwell
diffusion (dotted black line), the purely local version (solid red line) and the data-driven
model (dash dotted blue line). The best non-linear least-squares fit of the form CNα is
added.

All curve fits, shown in Figure 5.15, suggest that, in practice, the models
scale as O(Nt) with exponents close to unity. The ratio of the prefactor is
CML/CM++ ≈ 0.45 when using Mutation++ in its local version. We can therefore
expect a 55% CPU gain by using the data-driven model instead of Mutation++. In
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fact, we assessed a CPU time reduction of 50% during the simulation, with a grid of
size N ≈ 400, 000. This confirms a speedup through the use of a surrogate model.
Secondly, the speed-up is even more significant when the library also solves for the
Stefan-Maxwell diffusion problem at each grid point. Although not rigorously a one-
to-one model comparison anymore, the data-driven model now performs 70% faster
without any loss of accuracy. In fact, Fick’s law based diffusion model have been
shown to be highly accurate in hypersonic simulations. Moreover, fine tuning of
the hyperparameters may allow even higher CPU gains as CML is proportional to a
linear combination of the hyperparameters. Finally, we stress that the data-driven
algorithm is a python implementation competing with a compiled C++ library.
The speed-up reported here can be significantly increased by porting the model
to a compiled language. It is also believed that the speed-up would be more
significant when the dimensionality of the input space increases to include more
chemical species.

5.4.2 Isothermal boundary layer at sub-orbital enthalpy

The second case chosen is the isothermal Ma = 10 boundary layer at suborbital
enthalpy of Di Renzo and Urzay [Di Renzo & Urzay 2021]. Numerical details
of this case were presented in the context of the locally self-similar solution in
chemical nonequilibrium, §4.2.1. The application of a data-driven reduced order
thermochemical model for this case was presented in [Scherding et al. 2022].

Aerodynamic heating produces temperatures of the order of Tmax ≈ 4T∞
at a wall-normal distance of y = 0.8. This temperature is sufficiently high to
promote dissociation of O2 into its atomic counterpart, as well as production of
NO. However, it is too low to produce significant amounts of atomic N, as seen on
Figures 4.1 and 5.17. Temperature then decreases towards the wall after the peak
aerodynamic heating, due to wall cooling. Mass fractions of O and NO, on the
other hand, stay relatively high, owing to the diffusion of radicals away from the
wall and the lower convection speed. Hence, radical species are present in regions
where they could not exist in case of chemical equilibrium. This demonstrates
the strong coupling between hydrodynamics and chemistry and results in a more
complex thermodynamic manifold. In fact, in the adiabatic case, temperature
and concentrations of dissociation products increase monotonically with decreasing
distance from the wall, resulting in a rather simplistic manifold of thermochemical
states.

To train the data-driven surrogate model, N = 105 thermodynamic state
vectors are sampled from the converged solution. The corresponding outputs of
the library are collected simultaneously. The model obtained has the following
specifications: d = 2, Nc = 2 and NR = 250. The resulting clusters are shown
in Figure 5.16. Interestingly, the cooled near-wall region is assigned the same
cluster as the freestream, despite the high-concentration of radical species. Indeed,
Mutation++ outputs are more sensitive to internal energy rather than radical
species concentration (Figure 5.2). Hence, during the encoding process, some
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information about the radical concentration is lost and clusters rather demarcate
ranges of density and internal energy.

Figure 5.16: Training points Y colored by their cluster number. (a) In the latent space
found by IO-E. (b) At the Cartesian location they were sampled from, with contours of
temperature T in Kelvin.

In this case, the data-driven model performs 75% faster than the original
library, drastically decreasing the time to solution of such calculations. The better
performance is directly linked to a smaller number of RBF centers, NR = 250,
compared to the adiabatic case where NR = 500 was a conservative choice.
Restarting the simulation with the data-driven model (i.e, in a closed loop),
the solution remains stable after four flow-through times using the reduced-order
thermochemical model (Figure 5.17(a-c)).
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Figure 5.17: Profiles of (a) streamwise velocity, (b) temperature, (c) species mass fractions
(from left to right: N, O, NO, N2, O2), and (d) temperature gradient at Rx = 1000. Solid
lines and dotted lines with symbols correspond to the solutions generated using Mutation++
and the data-driven model, respectively.
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5.4.3 SBLI with finite rate chemistry

Following the same steps, the model is trained on the Ma = 5.92 SBLI case with
finite rate chemistry (see §3.2.2 for numerical details). The model has the following
specifications: d = 3, c = 3, NR = 500. In this case, the dimensions of the latent
space and the number of clusters are higher due to the more complex thermodynamic
manifold learned by the IO-E. A two dimensional projection of the three dimensional
manifold is presented in Figure 5.18(a). In this plane, distinct thermodynamic
regions (i.e. different clusters) are wrapped around a scarcely populated center
area. This can be explained by the impinging, recirculation and reflected shocks that
induce abrupt change in the thermodynamic state. These regions and their borders
become even more meaningful when reported in their physical location in the flow, as
seen on Figure 5.18(b) where a numerical Schlieren is superposed. The green cluster
corresponds to mildly hot conditions with high density, i.e. the freestream and
post impinging shock conditions. After the recirculation shock, the thermodynamic
states shift instantaneously to higher densities and temperatures, represented by the
blue cluster. However, close to the apex of the recirculation bubble, the expansion
fan decreases these thermodynamic variables, inducing a shift back to the green
cluster. Finally, the red cluster, found in the boundary layer, corresponds to high
temperatures and low densities. At the core of the recirculation bubble, temperature
decreases and density increases, which brings the local state vector back to the green
cluster.

Figure 5.18: Training points Y colored by their cluster number. (a) In the latent space
found by IO-E. (b) At the Cartesian location they were sampled from, with contours of
magnitude of the density gradient ∥∇ρ∥

In a closed-loop simulation, the model remains stable while maintaining a factor 2
speed-up in predicting thermochemical properties. In fact, Figure 5.19(a) and Figure
5.19(b) show that the wall pressure and skin friction remain in excellent agreement
with the baseflow solution after 2 flow-through times. A slightly higher skin friction
is observed after reattachment of the boundary layer, owing to a higher value of
viscosity predicted by the model. Concerning the species, the only discrepancy with
the initial solution is observed for atomic nitrogen mass concentration in Figure
5.19(c). However, it is present in such small quantities that it does not have an
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impact on the stability of the solution. In fact, the thermochemical properties are not
sensitive to small perturbations in atomic nitrogen concentration (cf. Figure 5.2),
another fact motivating the dimensionality reduction performed in pre-processing.
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Up to this point, the reduced-order thermochemical models have exhibited the
ability to preserve stable and consistent solutions, while enhancing the performance
of evaluating physico-chemical properties. This outcome is unsurprising since the
models have been trained on identical steady solutions without any alterations.
However, hypersonic flows of interest can exhibit unsteady features such as
hydrodynamic instabilities and turbulence. On one hand, turbulence enhances the
average skin friction and heat-flux at the wall – two critical design parameters
– compared to a laminar flow. On the other hand, hydrodynamic instabilities
can cause even larger deviation from the mean flow. For example, Sayadi et
al. [Sayadi et al. 2013] have shown that the instabilities present in a transitional
boundary layer produce higher skin-friction and wall heat-flux than in the fully
turbulent boundary layer.

High-order numerical methods are well suited to study such flows with their high
accuracy and minimal modeling assumptions. However, the stringent requirement
for performing direct numerical simulations of turbulent hypersonic flows and the
additional cost incurred by the complex thermochemical nonequilibrium model
have limited numerical studies to the lower Reynolds number regime and simple
configurations [Di Renzo & Urzay 2021, Passiatore et al. 2022]. Thus, an optimized
and tailored reduced-order thermochemical model could be utilized to study higher
Reynolds number flows, for instance. Thus, the following question needs answering:
(i) can the model deal with unsteady hypersonic flows within its predictive
capabilities ?

The dynamic nature of unsteady flows introduces numerous thermodynamic
states that cannot be fully predicted beforehand without a DNS. This poses a well-
known issue for any reduced-order model [Huang & Duraisamy 2023] as they are
likely to fail when applied in a parameter range not seen during training. One
solution to increase the predictive capabilities of the model is to expand the range
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of the training data by including data from many simulations using the full-order
thermochemical model. However, this approach would severely increase the off-line
training cost and counter its use for speeding up subsequent simulations, especially
if a turbulent DNS with the full-order thermochemical model is needed.

To efficiently train the data-driven model, it is therefore important to obtain
the training data at a low-computational cost, while being representative of the
full flow system behavior. This raises the second question: (ii) can we investigate
techniques to approximate (at least partly) the unsteady thermodynamic
manifold beforehand at a low computational cost?

We first answer question (i) by considering simple unsteady regimes. Secondly,
we consider using the steady DNS solution as the training set for an unsteady flow
simulation, partially answering question (ii). Finally, we propose another training
alternative, by leveraging the use of low-fidelity locally self-similar solutions in
chemical nonequilibrium to generate the training set.

6.1 Extension for the simulation of unsteady hypersonic
flows

Several issues arise by adding unsteadiness to the problem. First, pressure prediction
becomes of paramount importance as the momentum equation contains the pressure
gradient. Hence, any error in the pressure prediction would be enhanced by
differentiation and could ultimately alter the flow dynamics. This problem was
not encountered in the steady cases studied initially where pressure was mostly
constant within the boundary layer (or a given thermodynamic cluster). Secondly,
if the predicted pressure and temperature are not thermodynamically consistent,
thermodynamic instability can be triggered, as demonstrated in [Pini et al. 2015].

The adaptation of the methodology to accurately compute the dynamics of
unsteady hypersonics flows in chemical nonequilibrium is first detailed. Two cases
are then considered for testing: (i) the adiabatic Mach 10 laminar boundary layer
optimally forced with two-dimensional disturbances through a blowing-suction strip,
as described in §3.1.3.2, and (ii) the thermochemical manifold is made more complex
with a roughness-induced shock and expansion while keeping the optimal forcing of
the laminar boundary layer (case R §3.1.3.3).

6.1.1 Modification to the algorithm

6.1.1.1 Pressure-advantaged dimensionality reduction

The goal of the dimensionality-reduction step is to find a lower dimensional subspace
where all outputs have a smooth variation with respect to this new set of coordinates.
The shape of the manifold as it unfolds (for example, existence of non-unique values
in a given region of the low-dimensional subspace [Zdybał et al. 2022]), will affect
the predictions of the RBF. Moreover, different outputs may lead to different shapes
of the lower-dimensional manifold. For example, in our case of interest, kinetic terms
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are active (non-zero) only in a small region of the thermodynamic input space while
temperature displays variations over the entire explored space. During the training
of the IO-E, all outputs of the library in the vector z ∈ RDZ are scaled between 0
and 1 with a minimum-maximum scaler. Thus, they all have the same weight, and
the unfolding becomes a trade-off between all the outputs, as the loss is based on
the L2 norm of the error ∥z̃− z∥2, where z̃ denotes the prediction of the decoder.

This approach worked for steady cases but when considering unsteady flows
where dynamics of the flow are governed by the momentum equation (Eq. 1.3), in
which the pressure P directly appears through its gradient, any significant error in
the pressure prediction would be enhanced through numerical differentiation, and
the dynamics would be altered. Since our goal is to reproduce faithfully the dynamics
of the boundary layer, it is therefore desirable to bias the dimensionality reduction
step towards a better pressure unfolding. To this end, the scaled pressure value is
multiplied by a scalar α > 1 during the training of the IO-E. Hence, P ∈ [0, α] while
other outputs lie in the [0, 1] interval. The consequence is that more weight will
be put on the pressure to reduce the IO-E loss, resulting in a smoother variation
of pressure values on the low-dimensional manifold. This is conveyed in Fig. 6.1
where the low-dimensional manifold, colored by pressure, is presented for α = 1 and
α = 5.

Figure 6.1: Low-dimensional representation Y ∈ RN×d (d = 2) of X ∈ RN×D, colored
by pressure p. (y1, y2) denote the coordinates of the latent space. (a) α = 1 (b) α = 5.
The same network architecture, random seed, training set and number of epochs were used
during training.

6.1.1.2 Physics-based prediction of temperature

In order to maintain thermodynamic consistency, temperature is evaluated as
in [Scherding et al. 2022], and is computed from the pressure prediction of the
model p̂ through the equation of state (Eq. (1.10)), which was shown to
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improve the reconstruction of the temperature gradient during the simulation. The
combination of pressure-advantaged dimensionality reduction and the reconstruction
of temperature using the equation of state results in a highly accurate, stable and
thermodynamically consistent prediction of the two primitive variables p and T .

6.1.2 Application

6.1.2.1 case A

The first unsteady test case is the adiabatic Mach 10 laminar boundary layer
optimally forced with two-dimensional disturbances through a blowing-suction strip,
as described in §3.1.3.2. An amplitude of perturbation of A/u∞ = 2× 10−2 is used.

The data-driven model is trained by sampling inputs and outputs from a time-
periodic solution, containing perturbations. The hyper-parameters of the models
are as follows: d = 3, NC = 2 and NR = 400. They are determined by following
the same metrics presented in §5.4.1. A parameter α = 2 was used for the pressure
unfolding. Note that the dimension of the latent space (d = 3) is higher compared
to that of the steady case (d = 2). In fact, the perturbations add complexity to
the thermodynamic manifold, and an additional dimension is necessary to properly
unfold it to a lower-dimensional subspace. Even though the latent space has a
higher dimension, the two clusters determined by Newman’s algorithm are consistent
with the one found in the steady case, see Figure 5.11. They represent the cold,
frozen freestream and the hot and chemically reactive near-wall region, respectively.
With this set of hyper-parameters, the model performs 60% faster than the original
Mutation++ library.

Starting from the time-periodic solution that provided the training samples, the
simulation is restarted for one forcing period with the true model (e.g. Mutation++
library) and the data-driven model. The RMS wall pressure and growth rates
obtained are displayed in Figure 6.2. The agreement for the RMS wall-pressure
signals are perfect. For the growth rates, the results of the data-driven model follow
the same trend as the true solution but the curves are noisier. This noisiness is
a direct consequence of the growth rate calculation via differentiation (Eq. 3.10).
The data-driven model induces slight deviation in the envelope of the perturbation
that is enhanced through differentiation. However, the error in the growth rate is
no more than 5% across the streamwise domain.

Overall, the data-driven model provides a very good estimate of the dynamics
compared to the true solution. This is expected as the perturbed states were already
included in the training. Hence, over the forcing period, the model worked mainly
in interpolation mode with high accuracy.

6.1.2.2 case R

Secondly, case R (§3.1.3.3) is chosen to showcase that the data-driven reduced-order
thermochemical model can also deal with simulations of unsteady hypersonic flows
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Figure 6.2: Evolution of (a) RMS wall pressure, and (b) growth rate αi, computed using
Eq. (3.9), as a function of streamwise position x for case A. Solid lines correspond to the
baseline solution (Mutation++). Dotted lines with circles correspond to the result of the
data-driven model.

in chemical non-equilibrium with characteristic compressible flow features: shocks
and expansion fans.

Similar to the flat-plate case, the reduced-order thermochemical models is
trained by sampling input-output pairs from a snapshot of the unsteady run. The
following specifications are retained: d = 3, α = 5, NC = 2 and NR = 400. With
this set of parameters, the data-driven model evaluates thermochemical properties
60% faster than the Mutation++ library. The simulation is then restarted using
the data-driven model for one forcing period. The agreement between the RMS
pressure signals at the wall is perfect (Fig. 6.3a). Concerning the growth rates (Fig.
6.3b), discrepancies are observed in the zone of influence of the roughness (between
x = 25 and x = 35). In fact, the zone of influence of the roughness, where the
shock and expansion fan interact with the two-dimensional disturbance, is relatively
narrow compared to the full numerical domain. Subsequently, the corresponding
thermodynamic states are proportionally less represented in the training set. Once
the instabilities return to the growth pattern of the boundary layer, the agreement
with Mutation++ is nearly perfect. Hence, there is no global influence of the error.
This demonstrates the accuracy and robustness of the model in simulating unsteady
hypersonic flows in chemical non-equilibrium with shocks and expansions.
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Figure 6.3: Evolution of (a) RMS wall pressure, and (b) growth rate αi as a function
of streamwise position x for case R. Solid lines correspond to the baseline solution
(Mutation++). Dotted lines with circles corresponds to the results of the data-driven
thermochemical model. The grey vertical band represents the extent of the roughness.

6.2 Generating training data efficiently

Now that we have addressed the initial question posed at the start of this chapter, we
can conclude that if a data-driven model has been exposed to every conceivable state
found within a specific configuration, it possesses the capability to faithfully replicate
the dynamics and quantities of interest. Moreover, the utilization of the data-driven
reduced order thermochemical model significantly reduced the performance disparity
between equivalent simulations using the CNEQ and perfect-gas thermochemical
model. In fact, simulations in CNEQ with Mutation++ and the Stefan-Maxwell
multicomponent diffusion model are up to 5.5 times more expensive than the
equivalent simulations with a perfect gas model, see Figure 2.7. This gap is decreased
to a factor 3 with the simplified diffusion model (Eq. (1.21)). With the data-driven
surrogate model, this value is brought down to 1.2 approximately. Moreover, its
lower bound is theoretically 0.8 with an infinitely fast thermochemical model. This
hard limit is due to the additional Ns − 1 = 4 additional species conservation
equations (Eqs. (1.2)) that have to be solved alongside the five original equations
(Eqs. (1.1,1.3,1.4)) for simulations in CNEQ.

However, a complete training set is not always readily available for more complex
unsteady hypersonic flow simulations. Providing training data directly from a first
unsteady simulation with the full thermochemical model would represent a sub-
optimal approach and hinders its use in speeding up the calculation. It is therefore
of interest to investigate techniques to approximate (at least partly) the unsteady
thermodynamic manifold beforehand from a steady calculation.
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6.2.1 Artificially augmented training set

In the following, two different training sets X1 ∈ RN×D and X2 ∈ RN×D with
N = 3× 105 training points are considered. In the first set, thermodynamic states
are sampled from the converged steady-state solution of case A, i.e. the base flow
without any perturbation, as in §5.4.1. The second set is sampled from a single flow
snapshot taken during one oscillation period and contains perturbed states, as in
§6.1.2.1.

In order to verify whether the addition of perturbations yields new
thermodynamic states, we compare the distribution of the library outputs with
respect to the input thermodynamic state in the different training sets. To this end,
we use kernel density estimation (KDE) [Rosenblatt 1956]. First, the inputs and
outputs of either training dataset Xj and Zj , j ∈ {1, 2} are concatenated into new
vectors mi, i = 1, ..., N ∈ RD+DZ and assumed to be independent and identically
distributed samples drawn from the same multivariate distribution fm. The kernel
density estimator of fm is derived as

f̂mh (m) =
1

hN

N∑
i=1

K

(∥m−mi∥
h

)
, (6.1)

where K(r) = e−r2 denotes the Gaussian kernel and h is the bandwidth. The latter
is estimated according to [Scott 2015] as h = N−1/(D+4). This results in (D+DZ)

2

bivariate distributions that can be plotted to track the distribution of any output
with respect to the different component of the input thermodynamic state vector.

In Figure 6.4, the bivariate distributions of pressure p and temperature T

against all inputs of the library are plotted. Black lines represent the training
set sampled on the steady solution, while blue lines represent the training set
containing perturbations. The distributions of temperature cover mostly the same
area, with slightly higher temperature values found in the blue training set. However,
wide differences are observed for pressure distributions. Indeed, pressure is nearly
constant in a boundary layer. Hence, the baseflow distribution is mostly constant
around the freestream value of p∞ = 3596 Pa, with variations of no more than 3%
with respect to all inputs. However, in the perturbed solution (blue lines), pressure
variations are up to 12% in amplitude with respect to the freestream value. A
model trained on the baseflow solution would not be able to predict accurately this
pressure range. Since the momentum equations contain the pressure force term, the
dynamics would be altered if pressure is not correctly computed by the data-driven
model.

Since the changes are not so significant, the training set can be artificially
augmented in order to increase the domain of predictability of the model trained on
the base-flow solution. To this end, M random thermodynamic states are sampled
from the input training set. To each of these randomly selected points xi, additive
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Figure 6.4: Pairwise kernel density of pressure P and temperature T with respect to the
thermodynamic state vector components ρ, e, YN ,YO, and YNO. Black lines represent the
baseflow training set; blue lines represent the training set with perturbations included and
an isothermal wall; green lines represent the baseflow training set, artificially augmented.
Extreme contour lines represent a probability of 1%.

white noise is added in all input directions, generating new points xr
i ,

xr
i = xi ⊙ (1 +A⊙R) (6.2)

where A = [0.05, 0.2, 0, 0, 0, 0]T ∈ RD is an input dependent amplitude vector,
R ∈ RD is a random vector drawn from a uniform distribution in the interval [−1, 1],
and ⊙ denotes the Hadamard (element-wise) product. This process is repeated
several times (Nrand = O(102)) for each sampled point. This results in a set Xr ∈
RMNrand×D of artificial inputs. The corresponding outputs are obtained by calling
the library, Zr = f(Xr). Looking at the artificially augmented distribution in Fig.
6.4 (green lines), the pressure range of the perturbed solution is mostly recovered.
One can therefore expect the model to work well in simulating the growth of second-
mode waves in the boundary layer.

6.2.1.1 Application

Using the green training set, a model is trained using the same specifications as in
§5.4.1. Starting from the time-periodic solution that provided the training samples
of the blue training set, the simulation is restarted for one forcing period with the
new data-driven model. The resulting RMS wall-pressure signals and growth rates
are shown in Figure 6.5, (triangular markers). The agreement between the RMS
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wall pressure remains almost perfect. However, the error on the growth rate is
now higher with this model than the one trained with full-state information (see
Figure 6.2), with a maximum error of 10% at x = 40. Nevertheless, it still describes
accurately the trend inside the boundary layer. These oscillations are again due
to (now larger) modulations of the envelope of the wall-normal RMS velocities
that are enhanced through differentiation. This higher error can be explained by
the fact that some information is lacking in the artificially augmented base-flow
training set. For example, looking at the density-pressure bivariate distribution in
Figure 6.4, the green distribution (artificially augmented base-flow) does not fully
recover the pressure range of the blue distribution (solution with instabilities) around
ρ = 0.02 [kg/m3]. Hence, pressure will be extrapolated in this domain, ultimately
altering the dynamics.

0.0

0.1

 P
R
M
S

(a)

(b)

M++
ML (with noise)

0.3

0.0

0.3

α
i

Figure 6.5: Evolution of (a) RMS wall pressure, and (b) growth rate αi, computed using
Eq. (3.9), as a function of streamwise position x for case A. Solid lines correspond to the
baseline solution (Mutation++). Dotted lines with triangles correspond to the result of the
data-driven model, trained on the jittered baseflow.

Separately, as a last test, a model was trained on the baseflow solution without
artificial states (black distribution in Fig. 6.4). The dynamics could not be recovered
as the simulation became unstable and quickly diverged. While not perfect,
artificially augmented base-flow provides an easy solution to partially recover the
flow dynamics and recover stability in the model.

Fine tuning the artificial points could result in a better recovery of the full
pressure range of the unsteady flow, yielding a more accurate growth-rate prediction.
This would require extensive knowledge about the unsteady features and their
numerical range. It is however not clear how much the thermodynamic manifold
would change in a case of a complex turbulent flows, for instance.

On the other hand, a brute-force inclusion of artificial points with higher
standard deviations from their mean (higher-amplitude noise) would prevent the
training of a tailored model. For instance, in the dimensionality-reduction step, the
high-to-low dimensional mapping could become too challenging to learn, and the
model would be under-fitting.
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Thus, while attractive, this methodology should rather be considered as a
preprocessing step on the training set to improve robustness and generalizability
of the model. Indeed, injecting artificial noise (jittering) into the training set is
a common technique in neural network training to improve robustness and reduce
overfitting, as it is equivalent to a Tikhonov regularization [Bishop 1995, An 1996].

Therefore, a more prudent strategy would be to derive reduced-order model
that can actively learn the new states on-the-fly during the simulation, which will be
studied in the next chapter. This improved strategy will help tackle more challenging
flows while keeping a model tailored to the specific case.

6.2.2 Using self-similar solution for training

In the previous section, the training set still came from a costly high-fidelity
solution. We propose here to leverage locally self-similar solutions in chemical non-
equilibrium to generate the training dataset, eliminating the previous computational
bottleneck associated with DNS (see Chapters 4 for a description of these solutions).
We consider here the conditions of the Ma = 10 isothermal boundary layer at
surborbital enthalpy of Di Renzo and Urzay [Di Renzo & Urzay 2021], §4.2.1. This
case was successfully simulated using a reduced-order thermochemical model in
§5.4.2 with a model trained with full-state knowledge of the DNS.

In §4.2.1, Figure 4.1 displays a comparison of the DNS and self-similar profiles
at Rx = 1, 000. Good agreement is observed for the velocity, temperature, and mass
fraction profiles. The most notable difference is in the species mass fractions, where
higher dissociation is observed in the self-similar solution than in the DNS. This can
be explained by the streamwise species diffusion flux that is neglected in the locally
self-similar solution. The self-similar solutions were generated using 0.5 core hours
on the Yellowstone cluster, compared with 1,500 core hours needed to obtain the
converged laminar DNS.

Locally self-similar profiles are then interpolated on the numerical grid of the
DNS, and input/output pairs are sampled. To assess the viability of using the
self-similar solutions as a training basis for the thermochemical model, we compare
the distribution of the input thermodynamic states from the DNS with that of the
self-similar solutions, using again kernel density estimation (KDE), Eq. (6.1).

Figure 6.6 shows the pairwise KDE plots of the selected thermodynamic state
vector components obtained when sampling points from either the laminar DNS
(blue) or the self-similar solutions (black). Considering the diagonal plots, both
distributions are bimodal along each component of the thermodynamic state vector.
This bimodality comes from the freestream and the peak aerodynamic heating
regions. Very good agreement is found for density (Figure 6.6(a)). A slight deviation
in the high energy e and high radical’s partial density (e.g. ρO) is observed.
The latter is a direct consequence of the higher level of dissociated species shown
in Figure 4.1. Since temperature distributions are almost identical (Figure 4.1
(b)), the internal energy increases (Eq. (1.11)), due to higher specific enthalpies of
atomic species compared with their molecular counterpart. Looking at the bimodal
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Figure 6.6: Pairwise kernel density of the selected thermodynamic state vector components
ρ, e and ρO: blue lines represent laminar DNS; black lines represents self-similar solutions.
Extreme contour lines represent a probability of 1%.
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distribution (Figure 6.6(b,d,e)), the self-similar distribution (blue) extends to higher
e and ρO.

Overall, the thermodynamic distribution spanned by the laminar flow is mostly
contained in the region spanned by the locally self-similar solutions, resulting in
reasonable accuracy of the surrogate model. However, a minority of states not
seen during training would require extrapolation of the model in a time-marching
simulation, which could be detrimental to the convergence and accuracy of the
converged solution. Hence, this emphasizes again the need for active-learning
capability to obtain truly predictive reduced-order thermochemical gas models.

6.2.2.1 Extension to turbulent DNS

Transition to turbulence is a critical consideration in the design of successful
aerospace missions in the hypersonic regime. In fact, skin friction and heat
flux at the wall are enhanced in a turbulent boundary layer compared with a
laminar one. However, the DNS of turbulent boundary layers requires billions of
degrees of freedom [Di Renzo & Urzay 2021, Passiatore et al. 2022]. The additional
computational cost incurred by a complex thermochemical model could be better
utilized to study higher Reynolds number hypersonic reacting flows, for instance.
Hence, an efficient data-driven thermochemical model would be highly beneficial in
these scenarios. Providing training data directly from the turbulent simulations,
however, would represent a suboptimal approach. It is thus prudent to investigate
the possibility of approximating the manifold (at least partly) using the laminar
self-similar solutions in chemical non-equilibrium.

To this end, we consider a fully turbulent section of the boundary layer simulated
by [Di Renzo & Urzay 2021]. The velocity and temperature fields on a streamwise
slice (at half the spanwise extent) are plotted in Figure 6.7(a,b). We see that
higher temperatures are present within the boundary layer compared with the
laminar solution, partly due to the presence of shocklets within the boundary layer,
increasing local temperatures.

N thermodynamic states are sampled out of the domain and an approximation of
the probability density function is obtained with KDE (Eq. (6.1)). We compare the
distribution from the self-similar (black) and turbulent (red) solution in Figure 6.8.
The turbulent boundary layer presents a bimodal distribution along each component
of the thermodynamic state vector except energy. In fact, the high-energy peak
disappears in the turbulent boundary layer due to sweeps and injection of cold air
in the peak heating region. Higher energy levels are also observed due to the presence
of shocklets. The most notable difference is a shift of the freestream density peak
to lower densities. This is the result of a succession of pressure waves emanating
from the boundary layer to the freestream as it transitions to turbulence. The
self-similar manifold predominantly covers the thermodynamic states seen in the
turbulent boundary layer section considered. These results also suggest that locally
self-similar solutions could be used to warm-start the training of a data-driven
model adapted to hypersonic turbulent boundary layer simulations with finite-rate
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Figure 6.7: Contours of normalized (a) streamwise velocity, (b) temperature, and (c)
atomic oxygen mole fraction at z = 10πδ∗0 , in the turbulent cooled-wall Mach 10 boundary
layer [Di Renzo & Urzay 2021].

chemistry. In such a scenario, if the model possesses the ability to dynamically
learn and incorporate new thermodynamic states in real-time, its predictive capacity
could enable turbulent simulations of hypersonic flows in chemical nonequilibrium
at a significantly reduced computational cost.
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7.1 Motivation

The results of the last chapter have proven that reduced-order thermochemical
models need an on-the-fly learning procedure to be truly predictive and efficient
in speeding up the simulations of hypersonic flows in chemical non-equilibrium.

In fact, to achieve optimal performance, it is crucial to efficiently train the data-
driven model in the first place. One approach to accomplish this is by warm-
starting the training process using representative thermodynamic data that are
more affordable to obtain compared to DNS. These data could be derived from
a self-similar solution, which provides a reasonable approximation of the system’s
behavior, as seen in §6.2.2. This warm-starting process provides a starting point
for the model’s training, enabling it to capture essential features and relationships
within the data.

However, during real-time usage of the model, new flow features may arise, such
as perturbations or changes in parameters. For example, a model trained on a self-
similar solution will cover most of the thermodynamic states encountered in the
high-fidelity simulation. However, a minority of state will still require extrapolation
of the model, as seen in §6.2.1.1, Figures 6.6 and 6.8. Secondly, in §6.2.1.1, a model
trained on a high-fidelity steady simulation did not recover the dynamics of the
forced flow (Figure 6.5) as faithfully as the model trained on the forced solution
directly (Figure 6.2), even though artificial noise was included in the training to
extend the range of applicability of the model. In both cases, these additions result
in new thermodynamic states that were not present in the initial training set.
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Figure 7.1: General schematic of the model training and coupling to replace any expensive
Input/Output library.

In such cases, the data-driven model needs to adapt to these new states to provide
accurate predictions. To address this issue, a continuous learning framework has
to be implemented. This framework allows the data-driven model to dynamically
update and adapt its internal representation based on new incoming data. This
way, as new flow features or changes occur, the model can adjust its predictions
accordingly, incorporating the updated thermodynamic states into its learned
patterns.

By combining a warm-start training with a continuous learning framework,
the data-driven model can effectively handle both the initial training phase with
limited data and the adaptation to new thermodynamic states during real-time
usage. This approach enhances the model’s versatility and ensures its accuracy
even in the presence of evolving flow features. More generally, adaptive reduced-
order models are a promising solution to improve the predicition capability of
reduced-order model. Therefore, this subject has gained attention in the scientific
community recently [Peherstorfer 2020, Yano et al. 2021, Ramezanian et al. 2021,
Huang & Duraisamy 2023].

In this chapter, we first define the methodology to enable active learning
capability for the reduced-order thermochemical gas model. It corresponds to the
parts highlighted in red in the schematic of the data-driven model in Figure 7.1.
Secondly, this novel method is tested in two time marching simulations that generate
thermodynamic states unseen during training. Namely, a low-fidelity (self-similar) to
high-fidelity DNS transient simulation and an optimally disturbed laminar boundary
layer.
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7.2 Methodology

In this section, we describe the methodology for on-the-fly active learning of the
model during a time-marching simulation. The strategy is divided in three steps:

• §7.2.1. Extrapolation detection: We first define a metric to detect when
the model is extrapolating.

• §7.2.2.1. Online k-means: Secondly, new centers are added to the RBF
thanks to an online clustering procedure.

• §7.2.2.2. Update procedure of the RBF: Finally, the RBF is efficiently
updated by taking into account these new centers.

The different steps are showcased using case A: the model is trained on the
self-similar solution, the black distribution in Figure 6.6, and tested directly on the
converged laminar DNS, the blue distribution in Figure 6.6.

During a simulation, the user sets an updating frequency fup (or a number of
iterations) at which all the steps described below are performed and the model is
updated.

7.2.1 Extrapolation detection

To overcome the generalization problem, one should first describe the region of the
embedded space where training data is available. In fact, a correct characterization
of this region would allow us to identify the regions where the outputs of the RBF
are not reliable, which would subsequently signal the need for retraining.

One way to detect the borders of the space spanned by the training data is to use
an α-shape of this set. Briefly, an α-shape is a generalization of the convex-hull of a
set of points and were introduced by Edelsbrunner et al. [Edelsbrunner et al. 1983].
However, the hyperparameter α is difficult to tune, and the method lacks
generalization in higher dimensions. Leonard et al. [Leonard et al. 1992] instead
estimated the local density of training data using kernel density estimation (KDE).
A low density of probability indicates possible extrapolation. An even simpler
method to detect extrapolation in an online procedure was proposed by Lohninger
[Lohninger 1993] and is based on RBF with gaussian kernels. In fact, evaluation
of the RBF is based on the distance of the evaluation point xt to the centers
Xc = [xc

1, . . . ,x
c
NR

], of the RBF (Eq. (5.24)). The difference of the maximum of
the activation functions to 1 can then be used as a parameter to flag extrapolation

fe(x
t) = 1− max

xc ∈ Xc
ϕ(∥xt − xc∥). (7.1)

Using the above relation, if the evaluation point is geometrically close to a center,
the second term on the right-hand side tends to 1 and fe tends to 0. However, if the
evaluation point lies far from any center, fe tends to 1, indicating extrapolation. A
threshold on the value of fe is then used to distinguish between extrapolation and
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interpolation regions, respectively. However, a drawback of this method is that it
relies on monotonic kernel functions, which is not the case of the thin-plate spline
kernels, (Eq. (5.19)), used here.

Hence, we propose an alternative approach based on the minimum distance of
the evaluation point xt to the set of centers Xc,

fe(x
t) = min

xc ∈ Xc
∥xt − xc∥. (7.2)

Let Xc
i,k = [xc

i,1 . . .x
c
i,k] be the matrix containing the k-nearest neighbors of centroid

xc
i in Xc. The threshold for extrapolation detection, de, is then computed as

de =
1

NR

NR∑
i=1

1

k

k∑
j=1

∥xc
i − xc

i,j∥

 (7.3)

A demonstration of this method is plotted on Figure 7.2 where the points
outside of the α-shape of the training data (shown in black) are correctly flagged in
extrapolation.

Figure 7.2: Evaluation points Yt colored by the extrapolation flag: blue and red represent
points detected outside and inside the training range, respectively. The α-shape of the
training data is drawn underneath in black.

7.2.2 Growing RBF

The input/output pairs detected in extrapolation have to be learned by the RBF
to improve the function mapping in that newly explored region of the latent
space. This topic is known as growing RBF, or more generally as resource-
allocating network (RAN), and several training techniques have been proposed in the
literature for their on-line training [Platt 1991, Kadirkamanathan & Niranjan 1993,
Karayiannis & Mi 1997, Huang et al. 2005, Bortman & Aladjem 2009]. The
common strategy is to sequentially feed new observations to the network. If an
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observation makes a significant contribution to the overall performance of the model
(it fulfills the novelty criterion given a certain metric), then a new center (or neuron)
is added in the hidden layer. If not, the parameters of the network in the vicinity of
the observation are updated. Recent improvement even allow to prune the network,
providing an optimal architecture in terms of complexity (number of units in the
hidden layer) [Huang et al. 2005, Bortman & Aladjem 2009].

The original implementation used least mean squares filters (LMS) [Platt 1991]
for the update procedure of the network parameters. While the LMS algorithm
iteratively updates the filter coefficients efficiently, it does not guarantee optimality
in the least-square sense. In fact, it is a stochastic gradient descent algorithm
and can therefore converge to a local minimum or exhibit some residual error
even after convergence. In contrast, the optimal solution in the least-square
sense can be obtained using methods like the Recursive Least Squares (RLS)
algorithm. This method provides a closed-form optimal solution in the least-square
sense. However, they are computationally more expensive (due to the necessity of
performing a matrix inversion) and may not be suitable for real-time applications.
Kadirkamanathan and Niranjan instead used extended Kalman filters (EKF) for the
update procedure [Kadirkamanathan & Niranjan 1993, Bortman & Aladjem 2009].
This provided a good trade-off between computational efficiency and optimality of
the solution (even though not strictly) in the least-square sense. Finally, these
update procedures also require the tuning of many hyperparameters.

Here, we propose a novel and efficient update technique, optimal in the least-
square sense, that follows the two-step training procedure of the off-line training.
First, we obtain the new units in the hidden layer by performing a sequential k-
means clustering of the observations detected outside the training range. Secondly,
we efficiently retrain the whole RBF in "one-go" using the Schur complement.

7.2.2.1 Online k-means

The fist step in the update procedure is to generate new centers on the new subspace
defined by the data points detected outside of the initial training range. This set
of points is denoted as Xe ⊂ Xt. During the off-line initial training stage, the
tesselation of the latent space was generated using the k-means algorithm, resulting
in the set of centroids (centers for the RBF) Xc. The count of the number of training
points associated with each centroid is saved in matrix C ∈ RNR .

In the online stage, we use an in-house adapted version of the k-means algorithm
for sequential data, namely the sequential k-means algorithm, which is close to the
original formulation of the k-means algorithm by MacQueen [MacQueen 1965], see
also [Duda & Hart 2006]. The pseudo-code of the algorithm is described in Alg. 1.

A clear advantage of the distance-based formulation is that the numbers of new
centers is automatically determined by the algorithm and does not come as an extra
hyper-parameter. The algorithm is applied on the set Xe (blue points in Figure 7.2)
in Figure 7.3.
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Algorithm 1: Online k-means pseudo-code
for xe ∈ Xe do

Find the closest centroids xc
j ∈ Xc to xe

Compute r = ∥xe − xc
j∥

if r < de then
C[j]← C[j] + 1
xc
j ← xc

j + (xe − xc
j)/C[j]

else
Append xe to Xc

NR ← NR + 1
Append 1 to C

end
end

0 1
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1

y 2

(a)

0 1
y1

0

1

y 2

(b)

Figure 7.3: (a) Initial tesselation of the low-dimensional space after applying the k-means
algorithm withNR = 200 where each circular dot represents a cluster centroids yc ∈ Yc. (b)
Application of the online k-means algorithm on the set of states detected in extrapolation,
Xe (blue region in Fig. 7.2, generating 55 new centroids, represented by triangles.
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7.2.2.2 Update procedure of the RBF

Let us first consider an RBF with gaussian kernel. As long as all centers are distinct,
the kernel matrix is always a symmetric positive definite real matrix and is therefore
invertible. Let Φ1,1 ∈ Rn×n represent the initial kernel matrix, Φ2,2 ∈ Rm×m the
kernel matrix of the new centers added by the online k-means algorithm and Φ1,2 =

ΦT
2,1 ∈ Rn×m the cross kernel matrix between initial and new centers, respectively.

Hence, optimally updating the model parameters in the least-square sense requires
the inversion of the augmented kernel matrix, of size (n+m)× (n+m), defined as,

Φ =

(
Φ1,1 Φ1,2

Φ2,1 Φ2,2

)
, (7.4)

However, as the number of centers increases, this task can become
computationally intensive, especially for an on-line procedure with high retrain
frequency.

Schur complement and matrix inversion
Let M be a square matrix of size (n +m) × (n +m), written in terms of block

partitions as

M =

(
A B

C D

)
, (7.5)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n and D ∈ Rm×m. If A is invertible, the
Schur complement of block A of matrix M is defined as

M/A = D − CA−1B. (7.6)

We then have the following theorem, see for instance Gallier [Gallier 2011] for a
proof.

Theorem A (Invertibility of Schur complement) If A is invertible, then

M is invertible ⇐⇒ M/A is invertible,

which implies that

M−1 =

(
A−1 +A−1B(M/A)−1CA−1 −A−1B(M/A)−1

−(M/A)−1CA−1 (M/A)−1

)
. (7.7)

Application of the Schur complement to the update procedure of the
RBF

Based on the definition of the augmented kernel matrix, Eq. (7.4), it is
straightforward to apply the Schur complement for efficient matrix inversion. In fact,
since Φ−1

1,1 is known from the initial RBF training and Φ is invertible (as a symmetric
positive definite real matrix), theorem A states that the Schur complement of
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the block Φ1,1 of matrix Φ is invertible. We can then compute its inverse and
immediately construct Φ−1 with Eq. (7.7). Hence, inverting the whole matrix
requires only the inversion of a m × m matrix instead of a (n + m) × (n + m)

one.
In the case of thin-plate spline kernel used here, the poly-harmonic terms

complicate the processus. The augmented system matrix with poly-harmonic terms
can be written as,

M =

 Φ1,1 Φ1,2 P1

Φ2,1 Φ2,2 P2

PT
1 PT

2 0

 =

(
Φ P

PT 0

)
, (7.8)

where P1 and P2 are the polynomial matrices computed on the initial and new
centers, respectively. See §5.2.4 for the definition of the polynomial matrix. We
can circumvent the problem by first using the Schur complement to invert the
first block, Φ, composed of the Φi,j terms, as described above for a gaussian
kernel. It is worth noting that due to the nature of the thin-plate spline kernel,
Φi,i are only conditionnaly positive definite matrices. Thus, invertibility is not
always guaranteed. However, we did not encounter any non-invertible matrix in the
numerical tests realized. Secondly, we compute the full inverse by using again the
Schur complement of block Φ of M . In total, this requires first the inversion of an
m×m matrix and secondly a dp × dp matrix, where dp is the number of monomial
in the space of polynomials Πd

p of d variables and degrees up to p. Since usually
the degree p is chosen small (i.e, p < 3) and m < n, these two inversions are more
efficient that the inversion of the full (n+m+dp)×(n+m+dp) matrix directly. This
is shown in Figure 7.4, where run-time is compared with that of the direct inversion.
When m is proportionally small compared to n, direct inversion is systematically
slower. During a simulation, since fretrain is set to a low value, m is always small
compared to n (less than 5% of m). This provides efficient inversion of the RBF
system matrix while maintaining optimality of the model in the least-square sense.

Finally, the RBFs corresponding to each cluster are retrained and the resulting
error in latent space and physical space with the true value of Mutation++ are
shown in Figure 7.5. Clearly, error drastically decreases in the extrapolation region,
demonstrating the efficient and optimal active learning capability of the model.
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Figure 7.5: Comparison of the relative temperature error |T̂ − T |/T in percent with
contours of temperature in the physical space. (a) Original model, (b) model after
retraining.
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7.3 Results

7.3.1 Low-fidelity to high-fidelity transient simulation

The first test chosen is a low-fidelity to high-fidelity transient simulation based
on case A (see §4.2.2 for a complete description). The simulation is initialized
with a set of locally self-similar solutions in chemical nonequilbrium. The flow
then transiently evolves until converging to the steady solution to the Navier-Stokes
equations. This case is chosen since large differences are observed between the low-
fidelity and high-fidelity solutions using the full-order thermochemical gas model (in
this case Mutation++). Hence, a model trained only on the low-fidelity simulation
will encounter many new states that have to be actively learned throughout the
transient simulation.

The base model is trained on the locally self-similar solution, and white noise
with 2% amplitude is added to improve the robustness of the model. The hyper-
parameters of the models are : d = 2, NC = 2, NR = 200. During the simulation,
the model is updated every 100 iterations.

Figure 7.6 presents the evolution of the population of the RBF centers in
the latent space as well as boundary layer profiles at different instant during the
simulation. As the simulation advances in-time, more centers are added as new
thermodynamic states are encountered. It is important to note that the number of
centers rapidly plateaus after a first transient where many new states are discovered.
The final total number of centers is 602. This proves the convergence of the active
learning process during the simulation. Correspondingly, the boundary layer profiles
evolve towards the converged solution. Interestingly, at a given time, the solution
using the reduced-order model lags slightly behind the one with the full-order
model. However, it eventually converges very closely to the reference simulation
using Mutation++, as supported by the residual plots for both simulation in Figure
7.7. The main difference is in the radical mass fractions. However, they are present
in such small quantities that they do not alter more relevant quantities of interest
such as the velocity profiles and maximum temperature within the boundary layer.
Furthermore, a reduced-order model is not expected to be precise in the range
[0, 10−5].

Figure 7.8 presents the evaluation time of thermochemical properties for all grid
points. The model initially performs 80% faster than Mutation++. As the solution
progresses and new centers are added, the performance of the model slightly degrades
until reaching a final performance that is 75% faster than Mutation++. This loss
of performance is due to the higher evaluation cost after progressively growing the
RBF. In fact, we recall here that the time complexity of the evaluation step of the
RBF is O(CRBF ×Nt×NR× d). Hence, as NR increases during the active learning
process, so does the time complexity. However, since the number of new centers at
each update is small and the load is split between two clusters, this additional cost
is not detrimental to the overall performance of the data-driven model.

The time spent during the updating step is however hard to evaluate since it
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Figure 7.6: Transient low to high-fidelity simulation of case A using both full and reduced-
order thermochemical models. Left column: RBF centers in the latent space. Black and
red dots represent initial and newly added centers during the simulation, respectively.
Right column: evolution of the boundary layer profiles. Solid and dotted lines with
markers correspond to the solution using the full and reduced-order thermochemical model,
respectively. Each line represents uniformly sampled instantaneous snapshot at a non-
dimensional time t ∈ [0, 10], ordered chronologically.
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Figure 7.7: Evolution of residuals during the transient simulation using (a) full-order and
(b) reduced-order thermochemical model, respectively. In both case, all residual curves
decrease by at least 2 order of magnitude, which is deemed sufficient to assess convergence
of the solution.
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depends on the number of points detected during extrapolation. To evaluate it
empirically, two simulations have been run for 1000 iterations, with and without
update every 100 iterations, respectively. The simulation with updates was 1.05
times slower, even though it was initialized with the locally self-similar solutions
and the update load is higher early on during the transient, as seen on Figures 7.6
and 7.8. Hence, the update time is marginal in the total time to solution and can
be omitted as a first approximation. Hence, directly integrating the curve of the
data-driven reduced order model leads to a time to solution 77% times faster than
Mutation++.
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Figure 7.8: Comparison of time per iteration during the transient simulation using both
full (solid line) and reduced-order thermochemical model (dashed-dotted).

This first test proves that the data-driven reduced order thermochemical
model can actively learn new-states on-the-fly. Thus, the models are predictive,
generalizable and can help reduce the high cost associated with high-fidelity
simulation of hypersonic flows in chemical nonequilibrium, with minimal impact
on the accuracy of the solution.

7.3.2 Optimally disturbed boundary layer with blowing-suction

The second test case is the optimally disturbed boundary layer, described in §3.1.3.2.
The model is trained on the steady solution, supplemented with white noise of
2% amplitude to increase robustness. The hyper-parameters of the model are :
d = 2, NC = 2, NR = 200.

Disturbances are triggered in the boundary layer at the wall, through a blowing-
suction strip, as described in §3.1.1. Starting from the steady solution, the
simulation is advanced with the data-driven model and an update frequency of 100



7.3. Results 127

iterations until a time-periodic state is reached. Flow snapshots are then collected
and the post-processed in the same way as described in §3.1.2.

Figure 7.9 shows the evolution of the population of the RBF centers in the latent
space during the transient phase all the way up to the time-periodic state, showing
that the model learns online during the simulation.

Figure 7.10 depicts the RMS wall pressure and growth rates obtained. However,
the level of agreement observed in this figure is not as close to the reference
solution as that of the two previous models illustrated in Figures 6.2 and 6.5. In
fact, the aforementioned models began from a time-periodic solution achieved with
Mutation++, resulting in a shorter integration time. In contrast, the simulation
presented in Figure 7.10 underwent a transient phase until reaching a time-periodic
state. The time-periodicity of the solution is proven by the similarity in results
between the post-processed dynamics at intervals of eight forcing periods, as
demonstrated in Figure 7.10, wherein the RMS wall pressure and growth rate of
the second-mode instability are identical. However, the time-periodic state slightly
deviates from the reference solution, explaining the higher discrepancies. The
overall dynamic remains close to the reference, noting that the thermochemical
model (i.e TPG or CNEQ) has a higher impact on the dynamics, as shown in
3.5. This demonstrates the algorithm’s capability to actively learn a reduced-order
thermochemical model that is both accurate and efficient during a time-marching
simulation, resulting in decreased CPU time required to obtain reliable results. In
fact, Figure 7.11 shows that by integrating the time per iteration, the solution was
obtained using 75% less computational resources than when using Mutation++.
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Figure 7.9: Evolution of RBF centers in the latent space during the unsteady simulation
of second-mode growth in case A boundary layer. Black and red dots represent initial and
newly added centers during the simulation, respectively.
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Figure 7.11: Comparison of time per iteration during the unsteady simulation using both
full (solid line) and reduced-order thermochemical model (dashed-dotted).







Conclusion

The major challenges posed by the need for space exploration have undeniably
revitalized research on the practical applications of hypersonic flows. At such high
speed and high enthalpy regimes as those encountered during atmospheric (re-)entry
or sustained hypersonic cruise, gases exhibit behaviors that deviate from predictions
made by conventional models used in CFD solvers. As a result, enhanced models
become imperative to accurately capture the complex interactions among various
phenomena prevalent in these configurations.

In the first part of this dissertation, we have presented a computational tool
that can accurately simulate flows at hypersonic speed, including high-enthalpy
gas effects in the presence of weak and strong shockwaves. This is achieved by
augmenting the flow solver with additional conservation equations for each chemical
species while the Mutation++ library models the thermodynamic, transport and
kinetics terms.

Extensive code verification has been completed against previous results for
reacting boundary layers, SBLI cases, and jet injections in high-speed crossflow.
The applications have been extended towards novel, higher-enthalpy cases where
the effects of gas thermochemistry are pronounced. Our findings are in agreement
with the literature, and provide insight in cases and regimes that have not been
thoroughly investigated before.

Supplementing the flow solver with complex thermochemical models has,
however, a negative impact on its performance. A simulation in chemical
nonequilibrium is in general one order of magnitude slower than its equivalent with a
perfect gas model. More generally, many engineering applications rely on expensive
high-dimensional functions such as Mutation++.

Therefore, we presented in the second part of this work a novel technique
to reduce any high-dimensional look-up library to a lower-dimensional surrogate,
and thus reduce the CPU costs of numerical simulations that rely on these
libraries. Several machine learning techniques have been used: encoding based on
deep neural networks, community clustering, surrogate modeling and classification
in a three-step learning phase: in the first step, the proposed input/output-
encoder architecture has been shown to outperform partial least-squares (PLS)
for dimensionality reduction of input/output relations. Clustering was performed
using Newman’s algorithm. It discovered physically consistent clusters in the low-
dimensional latent space without a-priori knowledge of the number of clusters.
Then, a random-forest classifier was trained, which reliably predicted the cluster
of previously unencountered data points. Finally, a radial basis function network
was constructed on each cluster to obtain a continuous and local representation of
the library via a reduced-order surrogate model.

The combination of these pre-processing steps has been shown to improve the
efficiency of the simulation while maintaining high accuracy on several canonical
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cases, such as reacting boundary layers and shock wave boundary layer interaction.
During this demonstration, we observed up to 70% CPU time decrease to compute
the thermochemical properties of the mixture. In steady cases, the newly computed
base flows were recovered accurately when compared to the true solution (obtained
with Mutation++). In unsteady cases, the reduced-order thermochemical models
faithfully reproduced the dynamics of the flow.

A high level of accuracy was only achievable when the training set contained
all possible flow features. In cases where the model was trained on an incomplete
training set, solutions developed instabilities and quickly diverged due to the poor
performance of the model in extrapolation. In tandem, we also demonstrated that
when a complete training set is not available or too expensive to obtain, self-similar
solutions provide a good approximation of the thermodynamic state manifold, at a
fraction of the cost, thus proving to be a viable substitute for training.

These observations led to the augmentation of the model with an on-the-fly
learning procedure, which was successfuly demonstrated for two types of transient
simulations, removing the need for a complete training set and making the technique
truly predictive and generalizable. In the first test, namely a low to high-fidelity
transient simulation, the data-driven model converged quickly to a high-fidelity
solution with good agreement to the reference while decreasing the time-to solution
by almost 80% compared to using Mutation++. The second test started from the
high-fidelity steady solution and the boundary layer was optimally forced wiuth
blowing and suction. The simulation using the data-driven model converged to a
time-periodic state that provided good approximation of the general dynamics of
the boundary layer while using 75% less computation time.

Outlook

There are several directions in which there is significant potential for improvement
and extension of this tools’ capabilities.

First, this computational framework can be readily ported into other application
fields to accelerate simulations that rely on high-dimensional look-up tables to
model complex flow behavior such as combustion, phase-change or fluid-particle
interactions. In the context of hypersonic flows, we could first readily apply
the technique to a more ambitious DNS simulation, such as the transitional
boundary layer of Di Renzo and Urzay [Di Renzo & Urzay 2021]. In fact, we
observed in §6.2.2.1 that the self-similar solutions provided a good estimation of the
thermodynamic manifold of the turbulent section. With active learning capability,
we expect the statistics to remain close to the one of the full-order thermochemical
model, while the latter are significantly more expensive to obtain. There are also
more accurate options for gas modeling, including thermal nonequilibrium and
state-to-state transitions, that can also benefit from adaptive reduced-order gas
model to accelerate such simulations. There is also great interest in extending our
results for different gas mixtures, representing atmospheric compositions of celestial
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objects interesting for space exploration, or more complex geometries. Application
to ablation and more detailed chemical mechanisms can also be pursued in the
context of future work.

Secondly, several improvements can be made to improve the technique
performances and accuracy. They are non-exhaustively listed here as a potential
basis for future work;

• Active learning of the low-dimensional manifold. During the online
stage, the embedding of the input thermodynamics states does not evolve and
is solely based on the off-line training. However, in complex scenarios, different
thermodynamic states could be projected onto the same location if the off-line
training was not sufficient to properly learn the low-dimensional manifold. It
might therefore be of interest to adapt the low-dimensional manifold on-the-fly
as well.

• Initialization of new ’Newman’ clusters. The new RBF centers are added
to the corresponding Newman cluster given by the classifier. However, if one of
this Newman clusters grows too much, the performance of the corresponding
surrogate model would decrease drastically. More importantly, the Newman
cluster would lose its inner thermodynamic consistensy of similar states. An
interesting approach would be to initialize new Newman clusters online based
on a specific criterion. One potential criterion could be the maximum number
of centers allowed in the surrogate model or the maximum variation observed
in an output within a cluster. By monitoring these criteria, new clusters can
be initialized when they are exceeded.

• Pruning of RBF. Alternatively, the states encountered during a time-
marching simulation could shift from one region to another of the manifold.
In this case, some RBF centers would become useless (too far from the
evaluation region) while still impacting its evaluation cost. It could be
interesting to prune these centers to improve the performance of the surrogate
model while not altering its accuracy. One can potentially use the work of
[Bortman & Aladjem 2009] as a starting point.

• Criterion for update frequency fup. The update of the algorithm is done
at a constant update frequency. However, the update load (i.e the numbers of
new states encountered at a given time) is different throughout the simulation
and is usually higher early on in the transient. Therefore, the update frequency
could be instead based on a tailored criterion, such as done in Adaptive Mesh
Refinement.
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