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engagement à mettre à ma disposition les moyens et les ressources nécessaires pour aborder
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Abstract

The genuine supervision of modern IT systems presents new challenges in terms of scalabil-
ity, reliability, and efficiency. Traditional operations and maintenance systems that rely on
manual tasks and individual troubleshooting are inefficient. Rule-based inference engines,
although useful for detecting anomalies and automating resolution, are limited in handling
the large number of alerts generated by IT systems. Artificial Intelligence for Operating Sys-
tems (AIOps) proposes the use of advanced analytics and machine learning to improve and
automate supervision systems. However, there are several challenges in this field. Firstly,
the lack of unified terminology makes it difficult to compare contributions from different
disciplines. The requirements and metrics for constructing effective AIOps models are not
well-defined. Secondly, AIOps has primarily focused on predictive models for anomaly detec-
tion and failure prediction, neglecting descriptive models that can handle data quality and
complexity concerns. Thirdly, the reliance on opaque black box models limits their adoption
by industry practitioners who need a clear understanding of the decision-making process of
maintenance models. Lastly, existing AIOps solutions often overlook performance evaluation
and scalability issues when developing and evaluating incident management models.

As part of this Ph.D. thesis, we propose several contributions to tackle these challenges
more effectively. Firstly, we offer a systematic approach to AIOps that organizes the exten-
sive knowledge surrounding it. By categorizing data-driven approaches from various research
areas and disciplines according to industry standards and requirements, we provide a cohesive
framework. Secondly, we explore the application of Subgroup Discovery and its generaliza-
tion Exceptional Model Mining, a promising data mining technique, in the context of AIOps.
This well-defined framework allows for the extraction of valuable hypotheses from large and
diverse datasets. It enables users to understand, interact with, and interpret the underly-
ing processes behind predictive models. Our contributions in this area include a practical
application focused on identifying suspicious query fragments in large SQL workloads to pin-
point performance degradation issues. Additionally, we develop an interpretation mechanism
for incident triage models, providing contextualized explanations for the model’s decisions.
Furthermore, we address the challenging problem of memory Java analysis using huge and
complex datasets that incorporate hierarchical data. Lastly, we address the issue of scalabil-
ity by studying incident deduplication, a well-known problem in the industry. Our goal is to
efficiently retrieve the most similar crash reports by combining locality-sensitive hashing and
learning-to-hash techniques within a unified framework. To ensure the relevance and practi-
cality of our propositions, this project involves collaboration between data mining researchers
and practitioners from Infologic, a French software editor.

Keywords: AIOps, Incident Management Procedure, Data Mining, Subgroup Discovery,
Explainable AI, Locality-Sensitive Hashing.
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Résumé

La supervision des systèmes informatiques modernes présente de nouveaux défis en termes de
scalabilité, de fiabilité et d’efficacité. Les méthodes traditionnelles de maintenance basées sur
l’exécution de tâches manuelles ont prouvé leur inefficacité. De manière similaire, les systèmes
experts à base de règles sont limités dans leur capacité actuelle à gérer et anticiper le grand
nombre d’alertes générées par les systèmes informatiques. AIOps for Operating Systems
(AIOps) propose d’utiliser des techniques avancées d’apprentissage automatique centrées sur
la donnée pour améliorer et automatiser les systèmes de supervision. Cependant, il existe
plusieurs défis à relever pour concrétiser cette vision, qui sont partagés à la fois par la commu-
nauté scientifique et les ingénieurs sur le terrain. Tout d’abord, le manque d’une terminologie
claire et unifiée dans le domaine de l’AIOps rend difficile la progression, l’implémentation et la
comparaison des contributions provenant de différentes disciplines. De plus, les exigences et
les métriques nécessaires à la construction de modèles AIOps, alignés avec les contraintes in-
dustrielles, ne sont pas suffisamment élaborées. Deuxièmement, les contributions théoriques
en matière d’AIOps se sont principalement concentrées sur les modèles prédictifs pour la
détection et prédictions des incidents, en négligeant souvent la capacité des modèles descrip-
tifs à gérer et résoudre les défis liés à la qualité, à la complexité, au volume et à la diversité
des données. Troisièmement, la dépendance excessive aux modèles bôıte noire opaques limite
leur adoption par les praticiens de l’industrie. Enfin, les solutions AIOps existantes ne prêtent
pas toujours suffisamment d’importance à l’évaluation des performances des modèles et aux
problèmes de scalabilité lors du développement et de l’évaluation des modèles.

Nous proposons d’abord une approche systématique de l’AIOps qui organise les connais-
sances dans ce nouveau domaine de recherche en fournissant une catégorisation en accord
avec les normes et les exigences de l’industrie. Deuxièmement, nous explorons l’application
de la découverte de sous-groupes qui est une technique prometteuse de fouille de données qui
permet l’extraction d’hypothèses intéressantes à partir de vastes ensembles de données diver-
sifiées. Ainsi, les utilisateurs sont en mesure de comprendre, d’interagir avec et d’interpréter
les processus sous-jacents aux modèles. Nos contributions dans ce domaine comprennent une
application pratique axée sur l’identification de fragments de requêtes SQL suspects permet-
tant de localiser les problèmes de dégradation de performances. De plus, nous développons un
mécanisme d’interprétation pour les modèles de triage des incidents, offrant des explications
contextualisées pour les décisions prises par le modèle. Enfin, nous abordons le problème de
l’analyse des problématiques de saturation de la mémoire Java, caractérisé par un ensem-
ble de données volumineux et complexes intégrant des données hiérarchiques. Nous traitons
également de la scalabilité en étudiant un problème connu de l’industrie qui est la détection de
la déduplication des incidents. Notre objectif est de rechercher de manière efficace et scalable
les rapports de plantage les plus similaires en combinant des techniques de hachage sensibles
à la localité (LSH) et des techniques d’apprentissage de hachage dans un cadre unifié.

Mots clés: AIOps, Procédure de gestion des incidents, Fouilles de données, Découverte
de sous-groupes, IA Explicable, Hachage sensible à la localité.
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Chapter 1

Introduction

1.1 Context and Motivation

In today’s digital era, Information Technology (IT) has become an indispensable element
for the automation of business processes across a multitude of industries. Specialized in-
formation systems and Enterprise Resource Planning (ERP) solutions play a crucial role in
the ongoing transformation, as they are extensively employed to oversee internal operations,
customer and supplier relations, as well as Industry 4.0 factories that heavily rely on real-
time monitoring and observability. Infologic company is one of France’s leading providers of
ERP solutions for the agri-food, health nutrition, and cosmetic sectors and has established
a remarkable reputation over its 40 years in the market with a plethora of provided services
and modules. This comprises commercial oversight, financial and accounting management,
decision-making processes, inventory management, quality assurance, and traceability [131].
Beyond offering these services, Infologic also provides its customers with continuous consul-
tation and proactive maintenance support. Having experienced significant growth of over
10% per year, Infologic is now confronted with the challenge of enhancing operational effi-
ciency, all while ensuring optimal customer satisfaction levels are upheld. In fact, Infologic
ERP system is currently deployed by hundreds of food industries in France, each of which
has at least one server and any failure can be costly. Therefore, Infologic is committed
to providing comprehensive maintenance support of its ERP system across its entire server
fleet, namely Copilote. This ensures the uninterrupted and reliable provision of services
while also mitigating any potential system faults and security threats. To achieve this goal,
Infologic employs thorough maintenance protocols that extend to all machines, databases,
Copilote instances, and workstations belonging to its clients. These protocols encompass
various levels of maintenance, from physical to business-level maintenance.

Prior to 2019, Infologic maintenance protocol was predominantly reliant on reactive main-
tenance (also known as breakdown maintenance). This approach involves repairing system
malfunctions only after they had occurred. Often referred to as the run to failure approach,
reactive maintenance aims to address immediate issues in a timely manner, without consid-
ering the long-term performance of the equipment or service. This shortsighted approach
can lead to costly downtime, lost productivity, and unpredictable future breakdowns. Fur-
thermore, the maintenance department lacked complete visibility into the performance of
the monitored instances. The absence of a centralized infrastructure for collecting, storing,

1
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2 Chapter 1. Introduction

querying, and analyzing both historical and real-time data on all client instance performance
metrics e.g., Key Performance Indicators (KPIs) deprived Infologic of full observability into
the health of the Copilote system and limited its ability to measure the availability of their
services. Despite having already embedded probes that monitor certain performance metrics
in each instance separately, these probes only respond after critical predefined thresholds are
exceeded, providing a simple solution that fails to allow for real-time tracking or predictive
analysis of potential failures. Moreover, the federated visibility makes it challenging to ad-
dress identical alarming symptoms across different clients simultaneously and thus hindering
the possibility of batch data analysis.

Since 2020, Infologic has pivoted towards a data-centric approach, expanding its mainte-
nance scoop to cover both proactive and reactive maintenance. This policy involves collecting
and storing a broad range of data describing the health status of the supervised Copilote
instances, along with behavioral and usage trace data. However, this strategy is confronted
by a number of internal constraints. Firstly, there is a need for data control, since centralized
collection and storage of non-individually sensitive data raises concerns over security and data
ownership. To this aim, Infologic proceeds in centralizing and securing the data within its
own architecture, opting for a Datalake instead of relying on external cloud-based services.
Secondly, the non-disruptiveness of supervised instances is also paramount as these systems
are typically in production and must not be disturbed during regular data collection inter-
vals (e.g. every 10 seconds for certain time measurements). Thirdly, given the heterogeneous
nature of the underlying infrastructure (machines, databases, Copilote instances running
on different versions and hardware, etc), a more streamlined data management procedure
should be instituted. Scalability and flexibility are also fundamental necessities.

The new strategy, while aimed at optimizing the maintenance workflow, comes with
several pain points and obstacles. These challenges primarily stem from conventional en-
gineering practices that are no longer adequate to meet the emerging requirements. The
previous approach focused on manually performing laborious tasks and resolving anomalies
in a repetitive manner, which fails to address the vast amounts of data that need to be
monitored. Moreover, it does not provide the necessary predictive analysis to detect outages
sufficiently early. This has led to shifting towards the development of a data-centered, intel-
ligent, and automated platform rooted in the so-called concept of AIOps (AI for Operating
Systems) [242, 76, 40, 232, 268, 256] to enhance the incident management process, assisting
developers and maintenance engineers from the reporting of the incident to its effective resolu-
tion. This platform boosts the supervision system to automatically and effectively detect and
triage incidents, assess their priority and severity, determine root causes and apply suitable
healing actions, whilst also optimizing the Time To Report (TTR), Time to Engage (TTE),
Time To Diagnose (TTD), and Time To Mitigate (TTM). However, in order to realize the
full potential of an integrally intelligent solution, it is necessary to conduct a thorough eval-
uation of the current landscape, identify areas for improvement, and anticipate any potential
roadblocks that may arise during the implementation of this solution. This process must
also adhere to a set of established efficiency criteria, known as desiderata [177, 202], such as
interpretability, maintainability, scalability, and security. In the following, we first outline our
current maintenance workflow and process, followed by an examination of a modernization
initiative to cope with the identified shortcomings.
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1.1. Context and Motivation 3

Figure 1.1: Evolution of essential maintenance management strategies. OEE stands for Overall Equipment
Effectiveness based on three key factors, availability, performance, and quality.

1.1.1 Exploring Maintenance Practices at Infologic

Infologic offers a unified and dynamic maintenance strategy that encompasses the complete
Copilote fleet. This includes maintenance for all machines, databases, and application
servers. As shown in Figure 1.1, we distinguish between two main types of maintenance,
corrective and preventive. Corrective or reactive maintenance is performed when an incident
is detected, either by Infologic maintenance staff or through a complaint received from a cus-
tomer. On the other hand, preventive maintenance is aimed at preventing potential problems
from occurring and proactively intervening to rectify them. In both cases, a characterized
maintenance call ticket serves as the initial point of primary investigation of the reported
problem. This maintenance ticket can be created either manually by humans (often on-call
engineers) or generated automatically through user maintenance interfaces.

To elaborate further, Figure 1.2 depicts the distinct patterns of maintenance strategies
examined in our analysis. In corrective maintenance, there is generally a time constraint,
which can prompt palliative maintenance that resolves the issue partly or totally, allowing
the underlying activity to be performed. For example, this can be accomplished through a
technical provisional configuration. Nevertheless, curative maintenance must be carried out
in order to implement a stable solution to forestall the issue from occurring again with the
same or other customers. Preventive maintenance, on the other hand, is a set of proactive
measures, frequently utilizing scheduled maintenance routines and conditional maintenance
protocols that enable the assessment of system functionality, allowing for the identification
of anomalies that could potentially result in performance degradation, malfunctions, or er-
rors. Furthermore, the implementation of Proactive Maintenance via predictive analytics is
underway. This approach lies heavily on AIOps and leverages the use of advanced machine
learning algorithms and big data mining to forecast potential system malfunctions by track-
ing and analyzing historical data patterns. Prescriptive maintenance goes beyond predictive
maintenance by employing a proactive approach to intelligently schedule and plan asset main-
tenance. Unlike predictive maintenance, which relies solely on historical data, prescriptive
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4 Chapter 1. Introduction

Figure 1.2: Behavioral scheme of the different maintenance protocols. Adapted and improved from [101].

maintenance also uses current equipment conditions to establish precise instructions for re-
pairs or replacements. Moreover, prescriptive maintenance has the capability to recommend
optimal automatic palliative or curative healing actions.

The approach to preventive maintenance and corrective diagnosis involves a multi-tiered
examination of its components. Firstly, (1) the technical or physical layer includes the ma-
chines and their various components, such as the application server machine, the database,
and elements such as RAM, SWAP, processor and disk usage, network identities, and con-
nectors. Secondly, (2) the application layer focuses on the key components of the Copilote
application server, the database server, and client workstations, including heap, cache code,
resource consumption, launch configuration controls, and dump files. (3) The functional layer
on the other side, evaluates the processes executed by the Copilote application to ensure ef-
ficient electronic data network exchanges, optimal latency, accurate statistics execution, and
more. Finally, (4) the business layer assesses the control and comparison of critical business
parameters. To address issues in each layer, dedicated teams may be assigned to provide
specialized support. The layered maintenance schema is illustrated in Figure 1.3.

Infologic adopts end-to-end client-server architecture to offer comprehensive maintenance
support and assistance to its clients. Figure 1.4 highlights the key actors and tools involved
in the execution of both corrective and preventive maintenance procedures. An internal
organizational platform assumes responsibility for handling maintenance tickets, primarily
concerning corrective maintenance operations. On the other hand, a supervisor and moni-
toring system oversees preventive maintenance actions and automatically generates based on
performance metric data preventive maintenance tickets in the former platform. The two
approaches exhibit some variations. In the ensuing discussion, we will examine each of the
maintenance support services provided, mentioning the underlying motivations, contextual
factors, and operational methodology.
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1.1. Context and Motivation 5

Figure 1.3: Maintenance layers or stratas of the ERP Copilote.

Corrective Maintenance. When a customer encounters a blocking issue requiring mainte-
nance support, such as bug correction or assistance with an urgent task, they may initiate an
incident report. In order to optimize the incident reporting procedure and facilitate the cre-
ation of maintenance tickets, Infologic equips its customers with various tools and methods of
communication to convey their problems. One such tool is (1) the telephone exchange when
customers are able to dial a dedicated Infologic number and ask for support requests, which
are then attended to by maintenance on-call engineers who create the maintenance ticket
manually. Infologic customers have access to (2) Dint, an integrated system within their
instances that allows for the submission of detailed Assistance Requests [ASS] or Anomaly
Reports [ANO] from their client stations via an interactive interface. This interface pro-
vides description fields to categorize the issue, as well as an attachment space to load related
captures and files. (3) Certain privileged customers, as stipulated in their contract, have
the option to submit their requests via direct email to the designated support address. The
maintenance team then assesses these emails and creates the necessary maintenance tickets.

Triage and Diagnosis. Maintenance tickets include fields for important information, such
as the on-call engineer who creates the ticket, creation date, customer details, software ver-
sion, and, most importantly, the designated service team (referred to as a channel). Further-
more, the maintenance ticket tracks the progress of the diagnosis and any transfers of ticket
responsibility between service teams. However, the crucial aspect is the description section,
which contains textual content detailing the issue, as well as possible image captures, pasted
logs, SQL queries, stack traces, and other relevant information. The description section also
includes a comment section reserved for internal Infologic personnel to discuss the problem.
This setup offers as well the advantage of associating similar maintenance tickets from pre-
vious occurrences, albeit through manual identification. Figure 1.5 depicts the maintenance
actors involved in the process of incident management from reporting to resolution. At level
0, the primary focus consists in the initiation of a maintenance call ticket considering each
of the available maintenance tools. Level 1 represents an intermediary stage, capable of ad-
dressing various support issues effectively (e.g., issues related to inventory management or
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6 Chapter 1. Introduction

Figure 1.4: Simplified maintenance process at Infologic including key actors and involved tools.

commercial operations). The final level is designated to tackle low-level concerns, such as
bugs, infrastructure complications, and system crashes, which require the expertise of spe-
cialists. This tri-level classification is based on the complexity and specificity of the problem
at hand. When multiple team members from the same group have the capability to address a
request, the one with the least number of pending requests is generally selected. This assign-
ment of maintenance calls is, however, limited by two key factors: (1) the complexity of the
call, and (2) the choice of the responsible member, taking into account several parameters. In
general, blocking and urgent calls have the highest priority, followed by older calls of normal
criticality that have not yet been addressed. Nevertheless, this procedure is not standardized,
and the complexity of the call cannot be accurately quantified. Furthermore, it is advisable
to assign similar calls to the same person.

Preventive Maintenance. Preventive maintenance is managed almost exclusively through
a functionally-rich platform that offers secure access to instances, with the ability to con-
figure custom programs to execute control activities and orchestrate data collections. The
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Figure 1.5: Different actors involved in creation, diagnosis, and resolution of maintenance tickets at Infologic.

supervised data is recorded and preserved in two distinct forms to accommodate both short-
term operational requirements and long-term data retention needs. The data is stored as
(i) aggregated information with a brief retention period on the Oracle instance, serving as
the source of operational data, and (ii) its raw form with a prolonged retention period on
a datalake. The metric data, meanwhile, is conveniently stored in a time-series database,
InfluxDB, enabling efficient querying and analysis (with a perspective of entirely migrating
to ClickHouse). Additional data, such as the details of parameterization and logging data, is
stored on an object-based database, while the raw text is indexed in ElasticSearch to facilitate
text search and retrieval.

Preventive maintenance is carried out through the implementation of alerts that are trig-
gered by expert rules (i.e., conditional maintenance). The alerting system constantly monitors
the health of the instances by tracking key performance indicators (KPIs) and other metrics
associated with the ERP (physical, application and functional level). Alerts are generated
whenever anomalies are detected in the metrics, or when expert rules are violated (e.g., an
SQL table size exceeding a pre-determined threshold). Alerts generated by the preventive
maintenance management system range from simple alerts concerning a single signal to more
complex alerts based on multiple signals or other alerts. These alerts can also be either
instantaneous, representing a momentary event, or constantly accumulating, indicating an
ongoing issue such as an increase in disk space utilization. Upon the detection of incidents,
maintenance call tickets are automatically created and dispatched to the N2 maintenance
specialists. For example, the identification of an anomaly in the Oracle console results in
the automatic generation of a maintenance call, directed to the Database team. These calls
are distinctly marked with the label ”Preventive Maintenance” to differentiate them from
corrective maintenance calls.

1.1.2 Pain Points and Limitations

The existing maintenance workflow, as explained above, offers a diverse spectrum of services
to satisfy the customers’ requirements pertaining to their functional, business, and technical
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8 Chapter 1. Introduction

issues. However, it heavily depends on repetitive tasks, and iterative assignments, and is
deprived of automated processing. As a result, there is a substantial loss of time and a lack
of proficiency in the management of maintenance costs. Herein, we have compiled a list of the
principal challenges that we have identified, which are either associated with (i) human and
organizational aspects, (ii) traditional practices in maintenance, and (iii) data normalization
(particularly, problems of velocity, volume, and variety of data).

Lack of standardized and automated maintenance routines. Standardizing main-
tenance processes is essential to categorize the process in a phased manner from reporting
through diagnosis and mitigation. Optimizing the process in terms of time, resources, and
cost-effectiveness, and potentially automating it, provides a unified approach to handling
customer support and maintenance requests. At Infologic, existing reporting tools can make
the reporting procedure very costly. Furthermore, customers may not always provide all the
necessary information for troubleshooting, or may not precisely describe the issue, result-
ing in a lengthy exchange in order to create the maintenance ticket. Therefore, optimizing
these processes is more than essential to ensure a smooth and efficient maintenance process.
Moreover, established engineering practices often prioritize adaptive measures and meticulous
analysis of individual cases through the examination of bug reproduction steps and exhaus-
tive logs. This approach, however, prove to be ineffective or even unfeasible when dealing
with large-scale service scenarios, e.g., in the case of Infologic.

Inefficient incident triage and classification. Incidents must be quickly qualified and
assigned to responsible teams and classified into categories in order to determine their priority
and allocate the appropriate resources. If this process is not well-defined, incidents may be
delayed, leading to a prolonged resolution time. At Infologic, there is a significant demand
for an automatic mechanism for routing maintenance tickets to the appropriate team based
on the information provided in the maintenance ticket. Additionally, there is no established
process for prioritizing calls based on specified criteria. Our analysis of historical maintenance
calls also revealed the presence of recurring similar issues that could be grouped together into
buckets and then addressed quickly relying on the historical data as a reference. The ideal
routing process should factor in the individual expertise for efficient resolution, thus reducing
the time to diagnose/mitigate.

Ineffective root cause analysis and incident correlation. If the root cause analysis
process is not performed effectively, the same problems may reoccur. On occasion, in response
to urgent maintenance requests, the maintenance team needs to provide temporary remedies
and promptly close the associated ticket, without affording sufficient time to deliberate on the
root cause and implement a lasting resolution. Consequently, the issue is liable to reappear,
either with the same or with other customers. Furthermore, it is important to recognize
that some issues can lead to further complications if there are interdependencies between
them. As such, we should not be confined to addressing solely the reported problem, but it
is also important to identify any correlated issues that may be interconnected or caused by
the primary problem.

Inconsistent incident documentation In general, inconsistent documentation can lead
to duplication of efforts, particularly when incidents are handed off between multiple teams
across many levels. Infologic is faced with this problem on a frequent basis, which can be
attributed to the lack of proper resolution tracking and ineffective communication practices
between different teams. Our analysis of the maintenance call lifecycle has exposed the
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prevalence of returns to previous support levels and frequent chain switching, which while
may be required in some cases, often results in redundant efforts.

Dealing with diversity and volume challenges in maintenance data. Incident data
may come from various internal and external sources, including phone calls, emails, as well
as log records and performance metrics. The data structures across these sources may have
different structures. These structural variances and large volumes among the diverse sources
of incident data present a significant challenge in unifying them into a coherent and robust
data model. Moreover, current alert-based systems are stressed when dealing with high
volume and velocity of data. Such systems are plagued with several limitations, including
alert flooding, which can result in critical alerts being overlooked.

1.1.3 Towards A Seamless Automated Solution: An AIOps Framework

As stated in 1.1.2, the challenges encountered by Infologic have sparked our interest in re-
placing multiple and manual conventional maintenance routines with a unified, intelligent,
and standardized approach to conduct maintenance incidents from creation through diag-
nosis to resolution. The objective is to automate as many maintenance tasks as possible,
with a view to optimize the reporting time, diagnosis and triage time, and resolution time.
Such a protocol should not only facilitate the resolution of the concerned incident, but also
serve to document the maintenance context within Infologic. This approach is in line with
the concept of AIOps, which stands for AI for Operating Systems. AIOps was first coined
in 2017 by Gartner [242] to address the challenges faced by DevOps by incorporating AI.
AIOps is an extension of the earlier concept of ITOA (IT Operations Analytics) and has
been redefined by Gartner as Artificial Intelligence for Operations systems based on public
opinion and the growing popularity of AI in various fields [268]. AIOps leverages big data,
machine learning, and analytics technologies to intelligently automate a wide range of IT
and maintenance operations and to accelerate the identification and resolution of IT issues
and outages [242, 76]. By ingesting and analyzing massive volumes of data generated by
IT systems, AIOps learns to autonomously detect, diagnose, and even remediate IT service
issues in real-time, which can improve service quality, customer satisfaction, engineering pro-
ductivity, and reduce operational costs [242, 64, 76]. According to [268, 242], a prototypical
AIOps system involves six fundamental abilities that engender diverse tasks, duly reflected
in the associated capabilities, as demonstrated in Figure 1.6.

1. Perception. This capability centers on the ability to gather heterogeneous data types,
including logs, metrics, network traffic data, and more, from a multitude of sources,
such as networks, infrastructure, and applications. It is essential that the ingestion pro-
cess accommodates both real-time streaming and historical data analysis. Additionally,
powerful data visualization, querying, and indexing mechanisms are also necessary ele-
ments.

2. Prevention. This process entails proactive identification of potential failures and fore-
casting high-severity outages in the system using data-driven approaches. Additionally,
accurately predicting the remaining useful lifetime of hardware and application compo-
nents is a vital component of this process. Prevention is paramount to maintaining a
healthy and robust system, which is why implementing an automated system capable
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Figure 1.6: Fundamental abilities of an AIOps platform. Figure adapted from [268, 242]

of continuous system health monitoring and timely alerting administrators of potential
issues is crucial.

3. Detection. If errors occur, it is imperative for the system to detect the associated
anomalies or symptomes. This is achieved by analyzing vast amounts of perceptual
and historical data to identify abnormal content in either the time domain or spatial
domain, or both. This process includes discovering abnormal patterns in data and
detecting flexible abnormal conditions that exceed static thresholds, while minimizing
noise in data, such as false alarms or redundant events.

4. Location. The objective of this process is to identify and analyze potential root causes
responsible for the underlying incidents by conducting a causality and correlation study.
This study must be contextualized within a unified topology to ensure its accuracy and
efficacy. Without the context and constraint of topology, the patterns detected, while
valid, may be unhelpful and distracting. By deriving patterns from data within a topol-
ogy, the number of recurrent and redundant patterns can be reduced, exceptionalities
in data can be highlighted, and hidden dependencies can be identified.

5. Action. This includes conducting reactive triage on problems and prioritizing incidents
once detected or predicted, as well as implementing a series of corrective actions based
on the current scenario and past solutions that have already been provided. However, it
is important to note that automatic healing actions are executed safely and effectively.

6. Interaction. It is referred to as human-computer intelligent interaction. This involves
bidirectional interactive analysis between the intelligent models and the expertise of
users. For instance, the system can integrate human expertise to enhance its models
or similarly leverage model insights to enrich and update a practitioner’s background
knowledge. Furthermore, this includes facilitating communication and collaboration be-
tween different maintenance teams and with customers, promoting efficient information
sharing and effective issue escalation.
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Figure 1.7: Standardized end-to-end procedure proposed for Incident Management.

Drawing on the capabilities of AIOps and our commitment to shift our maintenance
system towards a more standardized approach, our first contribution in this thesis entailed a
redesign and categorization of the maintenance workflow at Infologic. Our new iterative and
sequential workflow assists maintenance tickets through four standardized and clearly defined
phases, from initial reporting to final mitigation and postmortem. This approach, which we
refer to as the end-to-end incident management procedure, was driven by an industrial need
with the aim of minimizing costs and optimizing resources. Figure 1.7 provides a clear visual
representation of this categorization. It should be noted that a maintenance ticket typically
goes through many sub-phases in the maintenance workflow as illustrated above, but there
may be instances where certain phases may not be necessary. In such cases, a phase may
be skipped if it is deemed redundant or does not add value to the resolution of the reported
issue. For instance, if an incident is assigned to a category that has already been investigated
in the past, a root cause analysis phase may not be required.

Incident Reporting. The initiation of a maintenance ticket, also referred to as incident
reporting, can be performed in various ways, such as direct calls, emails, maintenance support
interfaces, and preventive alerts. Nevertheless, this multiplicity of resources can present a
drawback since it necessitates a considerable amount of human resources to manage them.
Furthermore, the reporting system can be protracted due to customers failing to provide the
requisite information, implying a back-and-forth trajectory between the customer and the
maintenance staff for proper qualification of the maintenance call. We propose to simplify the
process of creating external incidents through a portal server accessible to all our customers.
This solution will guide the process of creating and describing maintenance calls, as well as
identifying the necessary fields for triaging, diagnosing, and resolving the reported incidents.
Some fields must be filled out in order to submit the request, such as the environment in which
the incident is being raised (client, server, version, address, client workstation, etc), while
other fields can be automatically reported through our background processes. The customer
will be able to provide a detailed description of the incident, such as a step-by-step procedure
to reproduce the error if it is a bug. By imposing certain constraints on the qualification of
a maintenance call, we can significantly reduce the number of exchanges with the customer
and prevent any foreseeable interaction. Meanwhile, the monitoring system can detect or
predict incidents by periodically monitoring the runtime information of service systems, such
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as software logs, performance metrics, and machine/service-level events. When creating a
well-qualified maintenance ticket in the maintenance dashboard, one initial need consists in
providing an appropriate order for these calls. Chronological ordering may appear to be an
intuitive and trivial choice, as an attempt to tackle long-standing calls is typically a priority.
Nevertheless, it is also crucial to incorporate the constraint of incident severity. At Infologic
we assign each maintenance ticket a priority, denoting its level of urgency (normal, urgent, or
blocking). Typically, it is the customer who designates this status, indicating, for example,
the unavailability of a crucial service. But when multiple calls share the same priority level,
how can one determine which call to address first? What metric should be used to quantify
the priority score? These considerations highlight the necessity of a comprehensive, ticket-
based approach that considers all pertinent fields, such as ticket date, description, incident
reproducibility, functional/business criticality, customer profile, the occurrence of similar
problems with other customers, and more, to establish a normalized severity level.

Incident Triage. Once the maintenance call is created and assessed in terms of criticality, it
must be resolved. A first intuition relies on ascertaining the nature of the incident, whether it
relates to a technical issue such as network problems, security breaches or connectivity prob-
lems with servers/printers, a business-related problem, or software outages (e.g., crashes,
a functionality with erroneous results, etc). To achieve a comprehensive understanding of
the reported incident, it is necessary to precisely and explicitly characterize it in a well-
defined context, which involves narrowing the scope of the call by assigning it to a specialized
team. This process is known as Incident Triage but more specifically as Incident Assign-
ment [329, 59]. Automatic Incident Triage has garnered notable attention in the software
engineering community. This process involves analyzing the information provided in incident
reports and relying on advanced natural language processing techniques to effectively direct
maintenance tickets to the appropriate maintenance team. It is a supervised classification
task in which a model is trained to discern the salient features of an incident, along with any
important characteristics that may be available, and map them to a corresponding class that
designates a specialized service. One could even take the incident triage process to the next
level by automatically recommending the most suitable individual to tackle the incident.
This is typically accomplished by leveraging the prior experience gained from comparable
calls previously handled by the same person. However, in order to fine-tune the incident
triage process even further, it is imperative to address another critical task, namely incident
classification or incident similarity search. In accordance with our objective, it is also re-
quired to categorize incidents assigned to a particular team based on their respective topics,
whenever feasible. For instance, the technical service team at Infologic may be called upon
to rectify incidents related to resource saturation (e.g. hard disk capacity, number of active
threads), processes that exert a considerable demand on the CPU and SWAP, difficulties
with establishing the connection between Copilote and factory equipment, and security
vulnerabilities, etc. To efficiently manage these issues, the technical team should appoint
knowledgeable staff to each topic. Thus, it would be ideal to establish an incident triage
procedure that carries on the process when a call is assigned to the responsible team, with
the identification of the appropriate topic serving as the initial step in the procedure.

Given that, an incident is categorized into a topic (e.g., the incident is assigned to the
database team, and it is related to an SQL query performance, where significantly high
latency is experienced). The team designated to handle such matters is called upon to
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mitigate the issue. However, it is highly probable that this type of incident is not an isolated
event, and it has been reported on prior occasions. In some instances, the issue may not
be limited to a single customer, but could potentially impact multiple customers who have
encountered the same problem. Thus, further investigation of the issue would be redundant
if a solution has already been implemented. However, in the presence of a substantial volume
of historical incidents, searching for identical incidents can be challenging. As a result, (1)
similar maintenance incidents known as near-duplicates should be grouped into the same
category that refers to a specific topology, and (2) a quick, and precise way to search for
historical similar incidents already resolved should be also provided.

Incident Diagnosis. In large-scale systems like Copilote, where numerous components
and functionalities are intricately connected, a single incident can potentially initiate a chain
reaction of other incidents, which may manifest immediately or gradually reveal themselves
over time. While unit tests are designed to capture such cases after remedying functional
errors or software bugs, detecting incidents that arise during on-the-fly solutions or over time
presents a significant challenge. Thus, a causality and correlation study must be performed
to localize the origin of the problem and its potential ramifications.

Incident Mitigation. Obviously, the final stage in incident management lies in restoring
the affected service to its normal, functioning state. If the triage and diagnostic stage has
been performed accurately, then the incident resolution process will be carried out optimally.
Nevertheless, certain problems may have obvious solutions that can be automated, such as
restarting instances for memory leaks. Lastly, it is important to automatically generate an
incident report during postmortem treatment, known as the incident summary, which can be
referred to during the incident diagnosis phase for future issues of a similar nature.

1.2 Challenges Addressed in this Thesis

Several companies have started dispensing AIOps tools as commodities within the last few
years, while a number of technology giants have adopted an AIOps algorithmic viewpoint
to proficiently maintain their on-premises or cloud computing infrastructures and manage
incidents [76, 177, 172, 178, 244, 184, 64], thereby inducing the academic field to evolve and
deliver more ingenious and innovative solutions. In actuality, the notion of utilizing AI to
refine IT and maintenance operations, despite its recent formalization and introduction as
a research field, is not entirely novel [232, 40]. Beginning in the mid-1990s, some research
work explored software defects in source code by employing statistical models founded on
source code metrics [147, 66, 46]. Since the start of the new decade, various techniques have
been proposed to tackle online software [327, 241, 333] and hardware [315, 174, 337] failure
prediction and anomaly detection [67, 297, 225]. Multiple other domains of AIOps, such as
event correlation [306, 199, 187], bug triage [319, 309, 320, 59], and root cause analysis [149,
192, 136, 175], have also witnessed significant contributions over the last two decades. In
fact, The reliability, efficiency, and maintainability of hardware and software systems have
always been a prominent research focus. However, rather than a steady progression of research
contributions, we have recently witnessed an increased interest in this field. This phenomenon
is driven by two main factors: firstly, the remarkable advances achieved in the field of machine
and deep learning, and secondly, the shift of numerous IT organizations from product delivery
to service release, coupled with the transition from traditional to dynamic infrastructures.
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Despite the promising benefits that AIOps offers, it nonetheless poses challenges from both
technical and non-technical perspectives.

Challenge 1. The field of AIOps lacks a unified terminology, making it challenging to
discover and compare contributions from various specialized disciplines. Desiderata and
requirements to construct an effective AIOps model, as well as metrics for comparison,
must also be outlined and contextualized for real-world scenarios.

Firstly, the field of AIOps remains predominantly federated and unstructured as a research
topic. Rather than a homogeneous and well-defined area of study, it encompasses a diverse
array of contributions derived from various specialized disciplines. Given its novelty and
cross-disciplinary nature, AIOps contributions are widely dispersed, lacking standardized
taxonomic conventions for data management, target, and focus areas, implementation details,
requirements, and capabilities. As such, discovering and comparing these contributions has
proven to be a challenging and infeasible [232]. The lack of a unified terminology results in
the absence of guidelines and a clear roadmap for addressing the gaps in the state-of-the-
art within AIOps. Although various data-driven approaches may be attributed to the AIOps
research area, findings from disparate domains, such as machine learning, may not necessarily
apply to software analytics domains like AIOps. For instance, natural language processing
models commonly used in machine learning may produce spurious outcomes when applied to
software engineering-related data according to Menzies [210] and Ray et al. [245]. Dang et al.
[76] highlight several challenges unique to AIOps, which necessitate a deeper comprehension
of the overall problem space, including the business value, data, models, as well as system
and process integration considerations. Therefore, it is important to determine within the
purview of AIOps, the optimal taxonomy that must be entirely driven by an industrial need
necessitating domain expertise in both IT operations and AI techniques.

It is also highly important to outline the requirements (desiderata) to construct effec-
tive AIOps models, including maintainability, interpretability, and scalability, among others.
Additionally, one must also inquire about the metrics that should be employed to compare
AIOps methods that belong to the same category, such as anomaly detection or root cause
analysis. Metrics based on machine learning, such as contingency metrics, do not suffice
or reflect the real accuracy of models when deployed in actual scenarios and hence require
contextual adaptation. For instance, El-Sayed et al. [98] have proposed the novel just-in-time
metric to evaluate their prediction approach on job failures, which utilizes a time window to
mark valid predictions. Multiple other factors and peculiarities should be taken into account
(e.g., human involvement in the loop.)

Challenge 2. The unique data requirements of AIOps models, coupled with the chal-
lenge of obtaining high-quality labeled data, make building accurate AIOps solutions a
complex task.

Secondly, AIOps models require a unique set of data that differs from what is typically
used for general machine learning models. Despite the fact that major cloud services collect
terabytes and even petabytes of telemetry data every day/month, the data quality and quan-
tity available today still do not meet the needs of AIOps solutions. According to [76, 172, 63],
data from diverse sources can assume disparate formats and structures, which complicates the
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task of normalization and cleaning. This data can be either unstructured or semi-structured,
such as logs, execution traces, source code, hierarchical and graph data such as heap mem-
ory dumps, and network traffic, which requires distinct analytical techniques. Additionally,
AIOps models that heavily depend on supervised machine learning algorithms for anomaly
detection or failure prediction necessitate labeled data for model training. However, data
can often be contaminated with noise or missing values, and labeled data may not be easily
obtainable, making it challenging to build accurate and robust AIOps models.

Challenge 3. AIOps has predominantly focused on developing predictive models for
anomaly detection and failure prediction, despite the challenges posed by data quality
and complexity. In contrast, descriptive models, which rely on massive data mining
techniques to extract informative and exceptional patterns, are less adopted but can be
valuable and highly effective in dealing with these challenges.

Thirdly, in numerous AIOps settings, constructing supervised machine learning models
for AIOps poses challenges due to the quality of the data. These challenges include the ab-
sence of clear ground truth labels or the requirement of manual efforts to obtain high-quality
ones, extremely imbalanced datasets, too little amount of data, a high degree of noise, etc.
Consequently, unsupervised or semi-supervised machine learning models are the only feasible
options. Indeed, it is difficult to obtain enough labels to learn ”what is abnormal” about a
service, primarily because every service behavior is continually evolving with the change of
customer needs and underlying infrastructure changes. The difficulty of creating high-quality
unsupervised models also stems from the complexity of dependencies and relationships among
components and services. In addition, the need for frequent model updates and online learn-
ing presents significant challenges to DevOps/MLOps practices, especially when it comes to
intricate feature engineering efforts. Another challenge is to ensure that the behavior of the
model during the training phase is consistent with its performance in the testing and produc-
tion phases. Traditional metrics used to assess models are susceptible to the contamination
zone phenomenon [102], which may lead to erroneous assessments. Indeed, Fourure et al.
[102], highlight that by parameterizing the proportion of data between training and testing
sets, the F1-score of anomaly detection models can be artificially increased.

Despite these challenges facing predictive models, AIOps has predominantly focused on
the development of predictive models for anomaly detection and failure prediction. However,
there is a lesser-known yet highly useful approach, which is the application of descriptive mod-
els. These models rely on massive data mining techniques to extract informative patterns
from data that can aid in detecting, diagnosing, and resolving issues. Descriptive models are
particularly advantageous in dealing with the challenges of data diversity, complexity, and
quality, which makes them a valuable asset in cases such as deduplication failures and com-
plex dependencies. Consequently, it is essential to direct focus toward enhancing descriptive
models in conjunction with predictive models.

Challenge 4. The use of complex machine learning models, which are often opaque
and lack transparency, poses a significant challenge in the adoption of AIOps solutions
by industry practitioners who require a full understanding of maintenance processes.
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Fourthly, in general, the efficacy of machine learning models is directly proportional to
their intricacy, i.e., the most accurate models are opaque, known as black box models as
they do not convey any explanation of the internal process of making decisions or predictive
capabilities [115, 217]. This lack of transparency significantly hinders their adoption by
industry practitioners who require transparency and a full understanding of maintenance
processes and tool behavior. While it is highly valuable that we leverage robust models
that optimize maintenance costs and automate repetitive tasks, doing so necessitates the
sacrifice of transparency and full comprehension of the underlying maintenance processes and
the rationale behind key decisions. Several recent studies in the field of AIOps argue that
interpretable models, even those with lower performance, are preferred when high-performing
models lack interpretability [202]. Rijal et al. [256] emphasize that there is widespread doubt
about the efficiency of machine learning models in the industry. This is driven by the fact that
AIOps solutions primarily rely on learning from experience to predict the future and identify
trends from vast quantities of data. However, IT professionals who have been in the field for
some time are questioning the effectiveness of these models, even after recognizing the need
for digital transformation [202]. Therefore, it appears that businesses need additional time
to build confidence in the soundness and dependability of recommendations from AIOps.

Successfully automating incident management processes is a significant challenge that
requires gaining practitioners’ trust by providing them with explanations of model deci-
sions. The popularity of black box prediction models, combined with the crucial need for
transparency in many decision-making processes, has generated an unprecedented interest in
eXplainable Artificial Intelligence (XAI).

Challenge 5. An existing limitation in AIOps includes overlooking the importance of
performance evaluation when comparing and evaluating incident management models.

Finally, it is imperative in AIOps environments to not only focus on the efficiency of the
model but also on its performance. While optimizing TTx times (reporting, triage, diagnosis,
and mitigation) as highlighted in Figure 1.7 is a crucial factor for implementing a successful
automated incident management procedure, performance study is often overlooked when
comparing different models that tackle the same research field. Many surveys, literature
reviews, experience reports, or benchmark studies [232, 122, 260, 78, 96] primarily rely on
efficiency metrics such as contingency table metrics (e.g., accuracy, precision, recall, ROC,
or AUC) or regression metrics (e.g., MSE, RMSE, MAE, etc) to determine the superiority of
one method over the other. However, in practical scenarios, a model that takes less time to
execute but with a capability of anomaly detection of 90% of F-Score may be preferred over
a model that yields 95% of F-score but takes a longer time to run. Particularly, the authors
in [64] introduce a new metric, Time to Broadcast (TTB), which measures the time it takes
to broadcast a failure to all impacted services.

1.3 Key Research Areas

In response to the aforementioned challenges, we first structured the body of knowledge
around AIOps. Our primary contributions addressed the necessary requirements for building
AIOps models, including challenges related to data, modeling, interpretability, and perfor-
mance optimization. While some of our solutions were designed to address specific use cases,
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Figure 1.8: Key research areas addressed in this thesis.

they can be applied to a wide range of use cases. Overall, this thesis stands out for its ability
to expose, analyze, internalize, and contribute to several diverse research areas that converge
data mining, machine learning, and software engineering. During the course of this thesis
as shown in Figure 1.8, we focused our attention on four interlinked domains: (1) Artificial
Intelligence for Operating Systems (AIOps), which is the primary focus of this work, (2)
Subgroup Discovery (SD) and its generalization Exceptional Model Mining (EMM), which
we employed to address data complexity and diversity challenges in AIOps, (3) eXplainable
Artificial Intelligence (XAI), which we used to increase the transparency and trustworthiness
of our models, and finally (4) Locality Sensitive Hashing (LSH), which we utilized for efficient
and fast similarity search to cope with performance challenges. These domains were carefully
selected based on their potential to improve our understanding of AIOps and to address the
challenges associated with building effective and interpretable models. As such, we believe
that this thesis represents a significant step in our academic and professional journey.

1.3.1 Subgroup Discovery and Exceptional Model Mining

We tackled the challenges related to data, model implementations, and interpretability us-
ing Subgroup Discovery (SD) [304, 15, 233], a promising data mining technique also known
as Supervised Rule Discovery. This approach aims to identify interesting and interpretable
patterns in large datasets with respect to a specific target problem. The primary objective
of Subgroup Discovery is to retrieve interpretable links between different characteristics (i.e.,
descriptive variables) and the property of those individuals we are interested in. Referring to
Figure 1.9, which illustrates a practical example showcasing the utility of this approach. The
dataset used for this example contains information about servers, including their descriptive
attributes and whether they experienced an out-of-memory crash during a week. One inter-
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Figure 1.9: Toy example demonstrating the working of Subgroup Discovery.

esting analysis is to identify subgroups of servers whose probability of crashing is significantly
higher than the average. The dataset is imbalanced, with only 20% of servers shown to crash.
However, two well-characterized subgroups, S1 and S2, have a higher prevalence of crashing
than other subgroups. For instance, subgroup S2 is characterized by the rule: SoftType =
Sales and Version = V3, and the size of a particular class X in the heap dump exceeds 2000
MB, which is highly discriminatory. These subgroups are exceptional and can be useful in
identifying the root cause of the crashes.

Subgroup Discovery is also highly adept at handling the complexity, diversity, and large
volumes of data that arise in the AIOps context, which may contain noise, poor quality, and
non-homogeneity. Furthermore, many subgroup discovery approaches have been proposed in
the data mining community to handle structured, semi-structured, and unstructured data
(e.g., sequential data [112, 206, 124], trees [3] and graphs [86, 288, 16, 144], etc). However,
this technique has yet to be explicitly or implicitly applied in the AIOps domain or its derived
subdomains. Subgroup Discovery can be employed not only to model input data but also to
establish associations with single or many complex target concepts. This methodology can
be leveraged, for instance, in SQL queries to discern the context wherein a well-defined set
of queries display significant latency time [247]. The input data pattern can be mapped to
a formal representation of SQL queries, while the target is expressed numerically in seconds.
However, the target can also be complex and include many different attributes. For example,
one might be interested in SQL queries that are relatively slow but also return fewer lines.
Subgroup Discovery can handle such complex targets, allowing for the discovery of specific
patterns in the data that would be difficult to uncover through manual analysis.

Furthermore, we believe that Subgroup Discovery is particularly useful as it expands the
scope of common problems in AIOps beyond their typical predictive purview to a new axis
focused on identifying exceptional or regular data patterns within a well-defined context.
This approach can help solve challenging problems associated with anomaly detection, fault
localization, event correlation, and root cause analysis. As noted by Prasad and Rich [242],
the identification of relevant and actionable patterns by AIOps relies on contextualizing the
data within an appropriate contextual framework. Without this contextual constraint, the
patterns identified, while valid, may prove unhelpful and distracting. By contextualizing the
data, Subgroup Discovery can reduce the number of patterns, establishes their relevancy, and
reveal hidden dependencies.
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Figure 1.10: Concept of Explainable AI (XAI). New interpretable machine-learning processes try to have the
ability to explain the rationale of black box models, characterize their strengths and weaknesses, and convey
an understanding of how they will behave in the future.

1.3.2 Explainable Artificial Intelligence

When deploying predictive models in AIOps for incident management, it is important to
ensure that these models are not only accurate and effective but also interpretable. Conse-
quently, it is no longer a matter of choice, but rather a necessity to consider interpretability
when building AIOps models. To address this, we conducted an extensive analysis of the
explainable artificial intelligence (XAI) domain. The primary objective of XAI is to establish
a mechanism that offers understandable and transparent explanations for the decisions and
actions of black box models. This is achieved through a range of techniques, including rule
extraction [255, 85, 20], feature importance [265, 198, 254], and model inspection and visual-
ization [154, 110]. Furthermore, XAI aims to detect any biases that may exist in the training
process and identify areas for improvement. Figure 1.10 illustrates a straightforward schema
outlining the process of interpreting black box models. Because of their particularities, the
interpretation of AIOps models poses unique challenges due to their distinctive characteris-
tics. According to [202], interpretations of these models must meet the criteria of internal
and external consistency. Furthermore, interpretation must also follow the principle of time
consistency when updating or explaining future predictions.

1.3.3 Locality Sensitive Hashing

As mentioned earlier, one of the significant challenges in adopting AIOps is to optimize
performance while implementing multiple tasks associated with the incident management
procedure. For instance, the increasing volume and complexity of data generated by these
systems have made it difficult to quickly locate and search for recurrent and similar data
patterns that often induce anomaly detection and root cause analysis. While it is generally
easy to identify and prioritize extreme problems, ranking and assigning some issues can be
challenging. In fact, different incidents may imply a single root cause. Finding such data
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Figure 1.11: Overall view of LSH applied to maintenance documents.

patterns in high-dimensional and large datasets is a challenging task that cannot be effec-
tively tackled with exhaustive search algorithms. We proposed to leverage Locality-Sensitive
Hashing (LSH) [292], a highly useful and widely used hashing technique for Approximate
Nearest Neighbors (ANN) search that has been employed by Google for indexing and search-
ing similar documents [259]. While this technique has been successfully applied in various
fields, including document retrieval [56, 324, 311], security and privacy approaches [22], and
biological studies [9], its potential in the context of AIOps, specifically for incident manage-
ment, has not been fully realized. This technique, however, can provide significant benefits,
particularly with respect to near-duplicate detection. In essence, Locality-Sensitive Hashing
maps high-dimensional data points to low-dimensional hash codes, such that similar points
are mapped to the same or nearby hash codes with a high degree of probability. This enables
efficient nearest neighbor search in the low-dimensional hash code space, which can be faster
than direct comparison in the high-dimensional data space. Nonetheless, the application
of LSH is not straightforward, as it requires designing suitable probabilistic schemes with
theoretical guarantees that match the target problem.

The diagram shown in Figure 1.11 provides a high-level overview of how LSH implementa-
tion can be applied to maintenance reports. The input to the system is a set of maintenance
reports presented as a collection of documents that describe various problems, while the out-
put is a set of tables (only one is shown for simplicity) that map the documents to particular
categories. Each entry in the table corresponds to a specific group of related documents,
such as reports that pertain to security, database, or hardware issues. The documents in the
same entry are expected to have a semantic similarity value of at least a certain threshold
value among themselves, whereas documents in different entries are expected to have a lower
similarity value.
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1.4 Contributions and Prototypes

Following an introduction to the challenges addressed by this thesis and the main research
areas that has been explored throughout this journey, we elaborate now on our contributions.

1.4.1 A Comprehensive Literature Review of AIOps-based Solutions for
Incident Management Procedure

Our primary contribution [250] lies in providing a systematic approach to the body of knowl-
edge on AIOps, specifically in the context of intelligent incident management procedures.
We established a unified and standardized terminology to define the related terms adopted in
the state of the art, as well as a comprehensive and objective-based taxonomy that captures
the most relevant research in pioneering conferences and journals of machine learning, data
mining, and software engineering. Our focus has been on analyzing data-driven methods
within specialized disciplines and differentiating them by introducing a comprehensive tax-
onomy. This taxonomy is designed to closely align with the specific needs of both industry
and research, ensuring that researchers and practitioners can derive maximum benefits from
our work and facilitate the discovery, implementation, and comparison of these methods.

Prototype. As part of our efforts to make this research accessible, we have created a
repository that organizes all reviewed work into various categories, provides available codes
and datasets, and publishes them for public access at: https://github.com/RemilYoucef/
AIOps-complete-review

1.4.2 Identifying Suspicious Query Fragments in Large SQL Workloads
using Subgroup Discovery

In our research [247], we have tackled a compelling issue related to SQL workload analysis.
This task is essential for database administrators (DBAs) who aim to identify patterns that
highlight database schema issues. The problem we address falls under both the incident
detection and incident diagnosis phases. The motivation for this issue stems from a genuine
industrial need. DBAs can easily pinpoint queries that are repeatedly causing performance
issues, but it is a challenge to automatically identify subsets of queries that share common
properties and at the same time foster a target measure such as execution time, fewer lines
returned, and concurrency issues. While there is no ground truth about suspicious queries
causing these issues, we believe that this problem is a Subgroup Discovery instance. We aim
to retrieve a well-contextualized subset of queries defined with interpretable patterns that
demonstrate exceptional behavior related to performance degradation, alerting signals, or
execution issues, among other queries.

Various methods have been proposed for specific tasks on SQL workloads. However, many
of these approaches rely on clustering-based methods that do not offer a practical means
of identifying subsets of data that specifically discriminate a property of interest. While
several major commercial database systems have developed tools to automate this task, they
remain specific and non-generic tools, limited to certain features. Hence, we proposed a
Subgroup Discovery interactive model that retrieves a well-contextualized subset of queries
with common properties that affect specific target concepts according to the user interest,
such as execution time and concurrency issues. Our approach involved developing a pattern
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language, integrating diverse interestingness measures, and providing exact and heuristic
algorithms to identify subgroups of interest. We conducted experiments on a large SQL
workload, to pinpoint query properties that are correlated with performance degradation.

Prototype. The data and source code used in this study are publicly available at: https:
//github.com/RemilYoucef/sd-4sql

1.4.3 Generating Understandable Summaries of Black Box Incident
Triage Model using Subgroup Discovery

The work presented in [248] tackles a two-fold problem that involves designing an effective and
accurate incident triage model aiming to assign incidents to the right maintenance service
team within our company to successfully mitigate anomalies quickly and interpreting the
decisions of this model to increase trust and have a supportive interpretation. The incident
triage process is particularly challenging due to various concerns. Firstly, incidents come in
different forms, including predicted incidents and incidents directly reported by the end-user,
but often poorly described and contextualized. Secondly, the distribution of incidents across
different services is extremely imbalanced, with some services having thousands of incidents
while others have rarely been called upon. On the other hand, accurate predictive models
proposed for incident triage, often rely on opaque models, which are commonly referred to as
Black Boxes. Such models do not provide any explanation of their output, which presents a
significant challenge in gaining the trust of practitioners. An essential aspect of successfully
automating incident triage is to provide practitioners with an explanation of each model
outcome. To address this challenge, there is a need for transparent models that can provide
practitioners with clear and interpretable explanations of the incident triage process.

Our primary contribution in this work is the proposal of an efficient LSTM black box
model with an attention mechanism for incident assignment, which was trained on a dataset
consisting of over 170,000 reported incident reports. This hence motivates our main contri-
bution, consisting in an original approach that summarizes local explanations of black box
predictions. Indeed, recent developments in explainable AI help in providing global explana-
tions of the model, but also, and most importantly, with local explanations for each model
prediction. Unfortunately, providing a human with an understandable explanation for each
outcome is not conceivable when dealing with an important number of daily predictions. To
address this problem, our original method rooted in Subgroup Discovery proposes to con-
ceptualize the predicted model outcomes into subgroups according to both (1) a common
description and (2) the ability to locally mimic the black box model with a white box one
in order to provide an interpretable interface to the user enabling her to understand the
decision-making process of the model. The proposed solution allows the user to not only
interpret the black box outcome for each subgroup but also to understand the nature of the
objects that a subgroup contains. The conducted experiments show that the identified sub-
groups provide interpretable and meaningful explanations that help practitioners understand
why a given incident was assigned to a specific service team.

Prototype. The source code used in this study are publicly available at: https://github.
com/RemilYoucef/split-sd4x
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1.4.4 Mining Java Memory Heap Dumps using Subjective Interesting
Subgroups with Hierarchical Targets Concepts

In our work [249], we tackled the issue of effectively analyzing and diagnosing a multitude
of incidents related to Java memory heap dumps. One of the most prevalent of these issues
is the occurrence of OutOfMemory Errors resulting from memory leaks. Typically, engineers
utilize tools that provide a detailed memory usage breakdown per class in a Java Virtual Ma-
chine to pinpoint the cause of memory saturation. It is important to note that these classes
are hierarchically organized into packages. By analyzing this histogram, analysts can identify
any classes that consume an unusually high amount of memory, suggesting that they may be
the underlying cause of memory overload. Analyzing histograms for memory incidents can
be a daunting and time-consuming task due to various reasons. Firstly, understanding the
normal consumption size for each class requires significant prior experience. Secondly, certain
memory incidents are not restricted to a particular class but may impact multiple classes in
a package. Identifying the relevant packages and classes from numerous hierarchy levels can
be challenging. Lastly, analysts typically analyze vast datasets containing multiple incidents
across different servers and scenarios. In such cases, identifying contexts that consistently
coincide with memory errors is crucial for pinpointing root causes. Current methods only di-
agnose memory issues independently and lack the ability to analyze large sets simultaneously
for discovering common patterns. Our goal is to develop an approach that addresses these
challenges and extracts valuable insights from such incidents.

Once again, we utilize Subgroup Discovery to uncover interesting subgroups within a
hierarchical structure of multiple attributes. To address noisy data, we have developed an
adaptable pattern syntax and a subjective interestingness metric that selects informative and
non-redundant subgroups and also integrates prior knowledge about the data from the user,
resulting in unexpected patterns. Additionally, the interestingness model can be updated
iteratively as the mining task progresses. Our methodology includes a straightforward yet
efficient algorithm to generate subgroup descriptions and to navigate the complex target
concept space.

Prototype. The data and source code used in this study are publicly available at: https:
//github.com/RemilYoucef/sca-miner

1.4.5 Enhancing Near-Duplicate Crash Report Retrieval with Deep
Locality Sensitive Hash Learning

In [251], we addressed an interesting problem that lies in the effective automation of bucketing
operations for near-identical crash reports. This task entails grouping slightly similar and
redundant reports into coherent categories to expedite the triage and diagnosis of associated
software incidents. To this end, we required an expeditious means of identifying the nearest
neighbors. Hence, we needed a fast and efficient method to identify the closest matches for
a given crash ticket. This would enable us to determine whether any remedial or preventive
actions had been implemented for a similar crash report.

The problem of crash deduplication has long plagued the software development commu-
nity, but innovative strategies have emerged to tackle this issue. One promising approach is
to design highly accurate similarity measures that leverage information retrieval capabilities
and graph matching techniques to compare stack traces. These tailored metrics take into
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account specific stack traces characteristics and are typically incorporated into clustering al-
gorithms. However, this approach has drawbacks, including the need for extensive similarity
calculations and frequent recalculations to maintain stability for clusters. We approached the
problem by treating it as a scalable approximate nearest neighbor search challenge within
large datasets. To this end, we propose to use Locality-Sensitive Hashing (LSH), which of-
fers sublinear performance and provides theoretical guarantees on similarity search accuracy.
However, it can be challenging to derive hash functions satisfying the locality-sensitive prop-
erty for advanced crash bucketing metrics. Therefore, our contribution is focused on exploring
how to employ LSH for this purpose. To consider the most relevant metrics used in the liter-
ature, we introduce DeepLSH, a Siamese DNN architecture with an innovative loss function
that accurately approximates the locality-sensitivity property. Through our experimental
study, we demonstrate the effectiveness and scalability of our approach in quickly retrieving
nearly identical crash reports across a dozen similarity metrics on a large real-world dataset.

Prototype. Data and source code are publicly available at: https://github.com/RemilYoucef/
deep-locality-sensitive-hashing

1.5 Structure of the Thesis

This chapter provides an overview of the thesis context. Firstly, we introduced the industrial
scope, which motivates the study of AIOps research area, and discussed its relevance. We then
highlighted the various challenges encountered and addressed in relation to the development
of a standardized and automated approach for intelligent incident management. Drawing on
this constructed background and the identified limitations, the chapter focuses as well on the
main research questions that drive the contributions of this thesis. The remainder of this
thesis is organized as follows:

❏ Chapter 2 is dedicated to presenting the current state of the art in AIOps. This chapter
serves as a valuable contribution to the field. Our aim is to establish a standardized ter-
minology and a comprehensive taxonomy that effectively organizes the body of knowledge
surrounding AIOps. We propose to categorize federated data-driven approaches from
diverse research areas and specialized disciplines in accordance with established indus-
try requirements. To achieve this, we first establish clear definitions of the key aspects
that define the taxonomy, including data sources, desiderata required for effective inci-
dent management, and evaluation metrics. In concluding this chapter, we motivate our
contributions, and we discuss its positioning regarding the proposed taxonomy.

❏ Chapter 3 focuses on contribution 2. It begins by introducing the theoretical boundaries
of Subgroup Discovery (SD). We highlight the essential building blocks of this framework,
including pattern language, interestingness measures, target concepts, and enumeration
algorithms. These building blocks are essential for defining and solving the underlying
mining tasks. We then explore a practical application by studying a real-world problem
of identifying suspicious query fragments in large SQL workloads, with the aim of pin-
pointing issues related to performance degradation. To this end, we present the raw data,
pre-processing strategy, and an informal description of the problem, as well as how we
adapt SD to tackle this problem. We evaluate the effectiveness of our approach through
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an empirical study that combines quantitative and qualitative analysis, as well as an in-
teractive visualization tool.

❏ Chapter 4 details contribution 3. We begin by presenting our incident assignment model,
which is implemented using a range of techniques, from rough data to black box model
evaluations. Next, we introduce and formalize a novel problem of summarizing black box
outcome explanations using Subgroup Discovery. To address this challenge, we identify
interpretable subgroup descriptions along with their outcome explanations, consisting of
feature importance. We present an empirical study that demonstrates the effectiveness of
our approach in identifying interpretable subgroups with meaningful explanations in the
context of incident assignment.

❏ Chapter 5 is devoted to detail contribution 4, starting with an introduction of the raw
data consisting in Java memory heap dumps that are organized hierarchically along with
their descriptive attributes. We propose a data model that can be used to generically unify
this data, and provide an informal description of the problem. Next, we define the problem
of retrieving subjectively interesting patterns from this data using Subgroup Discovery. We
introduce a pattern language, subjective interestingness measures, an iterative updating
procedure of the model, and a mining algorithm to retrieve actionable patterns. Finally, we
present the results of an empirical study that evaluates the effectiveness of our approach.

❏ Chapter 6 is intended to present contribution 5. Initially, we introduce the underlying
problem of retrieving near-duplicate crash reports by relying on approximate nearest neigh-
bors. Next, we provide an overview of the theoretical boundaries of hashing techniques
for ANN search and particularly focus on locality-sensitive hashing. In order to overcome
the problem of deriving hash functions for stack trace similarity measures, we define our
approach consisting of a deep Siamese neural network architecture with an original ob-
jective loss function to learn and provide a family of binary hash functions that perfectly
approximate the locality-sensitive property. Finally, we demonstrate through our exper-
imental study the effectiveness and scalability of our approach in yielding near-duplicate
crash report under several stack trace-based similarity metrics.

❏ Chapter 7 serves as the conclusion of this thesis, where the contributions are summarized,
and potential avenues for future research are discussed.
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Chapter 2

AIOps-based Data-Driven Approaches for
Incident Management

In this chapter, we delve into the various aspects of AIOps and analyze its current state.
Our primary objective is to establish a foundational knowledge base for AIOps that can
be leveraged in future research. This knowledge serves also as a guiding framework for
our thesis, wherein we propose our significant contributions. In order to establish a
standardized terminology that includes all related concepts, we start by providing clear
definitions of these terms associated with AIOps for incident management. We conduct a
thorough review of previous research and related efforts within the field of AIOps, which
share similar objectives and contribute to the introduction, definition, or exploration of
AIOps. Moreover, we present a list of crucial requirements that should be considered
when developing AIOps solutions. Furthermore, we propose an efficient taxonomy that
categorizes federated data-driven approaches from various research areas and specialized
disciplines. This taxonomy is designed based on established incident management phases,
data sources, model properties, and requirements.

27
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2.1 Introduction

This chapter serves as an introductory point to the domain of AIOps for incident manage-
ment procedures. In addition to presenting our contribution, it provides a comprehensive
investigation of existing approaches aimed at addressing various tasks within incident man-
agement. Additionally, we review other notable contributions that seek to define, structure,
or organize the body of knowledge surrounding AIOps, including the works of [76, 242, 64],
and more. While this chapter effectively familiarizes the reader with the AIOps domains
and its subdomains, offering an overview of diverse contributions in this research area, it is
important to note that it is optional and not necessary for understanding the subsequent
chapters, which delve into the details of our own contributions. A more extensive version of
this chapter can be found in our Survey. However, it is important to mention that in the
discussion sections of the contribution chapters, we will align our work with the proposed
taxonomy presented in this chapter. This alignment allows us to position our contributions
within the current state of the art, reflecting our vision and advancements in the field.

Roadmap. The remainder of this chapter is organized as follows. In Section 2.2, we provide
definitions and clear terminology for the most commonly used terms in the context of AIOps
and incident management. This section also presents a framework that unifies these terms
with clear examples, helping to clarify their meaning and interconnections. In Section 2.3,
we present an exhaustive list of desiderata to be taken into account by both industry and
academia when designing and implementing AIOps solutions. Then, Section 2.4 introduces
our taxonomy, which is used to classify the existing contributions alongside our own contri-
butions. This taxonomy allows for a detailed exploration of various aspects. Aiming to delve
deeper into some aspects of this taxonomy, Section 2.5 discusses the different data sources,
while Section 2.6 presents the metrics that should be used to assess AIOps solutions for differ-
ent tasks, including detection, prediction, and diagnosis. In Section 2.7, we review the most
relevant methods in the state of the art for all the defined tasks. Finally, we conclude with
a discussion of this chapter, which also serves as an understanding of how our contributions,
to be detailed in the upcoming chapters, are located with respect to this research field.

2.2 Definitions and Terminology

In the following, we aim to provide an easy-to-understand explanation of various terms and
concepts that are commonly used in incident management and AIOps. We will define these
terms from our perspective, offering a formal definition that helps clarify their meaning and
relevance in the field.

2.2.1 Faults, Errors, Anomalies, Failures, and Outages

Various terms related to incidents, such as fault, error, bug, failure, outage, and anomaly, have
been widely used in the field, often without a thorough examination of their precise meanings.
For instance, the most commonly used term in the literature is failure to indicate system
downtime, hardware and software crashes, service disruptions, network traffic disturbances,
etc. [327, 241, 174, 337]. On the other hand, some other methods utilize the term outage to
refer to the most severe cases that can significantly reduce system availability and impact user
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Figure 2.1: Comprehensive chronological schema highlighting the distinctions and key connections among
Faults, Bugs, Errors, Anomalies, Failures, and Outages.

experience [62, 333]. These two terms are generally associated with the prediction process.
However, there are also studies that focus on anomaly detection, which deals with identifying
abnormal behaviors that are already present in the data, often in system metrics [67, 297, 225].
Regarding the analysis of root causes, the majority of research falls under the category of
fault localization, which generally identifies faulty components in the source code [307, 253,
2]. It may also extend to faulty actions [180], but it is agreed that this can be the initial
point that ultimately leads to failures. The distinctions between these terms based on faulty
behavior, underlying causes, and resulting consequences have not received sufficient attention.
Although some attempts have been proposed to categorize and differentiate these terms,
such as the work of [260, 21], they do not provide a comprehensive framework. In order
to establish a unified and precise terminology that clarifies the meaning of each interrelated
term, we propose a coherent lexicon that covers a broader range of concepts compared to
the framework proposed by [260]. Moreover, we present a chronological schema in Figure 2.1
illustrating the key relationships among these terms. We also identify the actors involved in
initiating faulty behaviors within a system. Subsequently, we provide formal definitions for
each term from our perspective.

Failures. A Failure refers to an event that occurs when a system, a component, or a service
is unable to fulfill its intended primary function and deviates from it. Failures are often
evident and can be observed by either the user or the system, typically stemming from
errors or anomalies that give rise to observable issues or malfunctions. It is noteworthy that
within systems, various issues may arise, but unless they result in an undesired output, they
do not qualify as failures. Users typically report failures, which can prompt the need for
troubleshooting or repairs to prevent outages.

Outages. An outage refers to a period in which a system, a service, or a network becomes
entirely inaccessible or unavailable to users. Outages can stem from failures such as hardware
malfunctions or software glitches indicating complete interruptions or unavailability of the
service. These situations often necessitate immediate corrective measures to restore normal
operations before delving into the underlying problem for curative maintenance.
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Errors. Errors signify instances where the system deviates from its correct and normal
state, indicating the presence of an actual issue. These errors may not always be immediately
apparent to the user and can remain implicit until they manifest as failures, especially if they
are not accurately detected at the opportune moment. Alternatively, errors can be identified
through the use of specialized tools or specific algorithms designed for detection purposes.

Anomalies. Anomalies are defined as unexpected or abnormal behaviors of patterns that
deviate from the expected state. They represent irregularities or unusual occurrences that
may or may not indicate an error. Unlike errors, anomalies can serve as early indications
of underlying issues, but they can also be harmless or temporary deviations that do not
directly result in failures. Various factors, such as unusual data patterns or external influences
like cyber attacks, can contribute to the emergence of anomalies. These anomalies can be
identified and detected through the monitoring and analysis of system metrics.

Faults and Bugs. A fault pertains to an abnormality or defect discovered in a hardware or
software component that exhibits incorrect behavior, potentially leading to errors and failures
if not promptly detected. These faults generally arise from inherent problems or weaknesses
within the system’s components. They can be caused by various factors, including human
interventions by end-users or administrators, design flaws, system settings, or improper han-
dling. In software development, faults manifest as bugs, which stem from coding mistakes
or oversights during the development phase. Identifying faults that lead to bugs often takes
place during the testing phase. Conversely, in the case of hardware or setup issues, faults
directly result in errors during system operation.

Alerts. In addition to leading to failures, both undetected and detected errors and anomalies
can cause system parameters to deviate from normal behavior as a side effect. This condition
is commonly referred to as symptoms [113]. These symptoms typically manifest as alerting
reports, indicating a specific event or condition that demands attention or action. Alerts
are usually triggered based on predefined rules or thresholds associated with the symptoms,
particularly in the case of anomalies.

Figure 2.1 illustrates the progression of a fault or anomaly, stemming from internal or
external factors, towards a failure and potentially an outage. To illustrate this, let’s consider
a scenario of a fault-tolerant system with a memory leak problem. The fault in this system
is a missing free statement in the source code, which prevents the proper deallocation of
memory. As long as the specific part of the software responsible for memory deallocation
is never executed, the fault remains dormant and does not affect the system’s operation.
However, when the piece of code that should free memory is executed, the software enters an
incorrect state, turning into an error. In this case, memory is consumed but never freed, even
though it is no longer needed. Initially, if the amount of unnecessarily allocated memory
is small, the system may still deliver its intended service without any observable failures
from the outside. As the code with the memory leak is executed repeatedly, the amount of
free memory gradually decreases over time. This out-of-norm behavior, where the system’s
parameter free-memory deviates from the expected state, can be considered a symptom of
the error. It serves as an indication that something is amiss within the system. At some
point, when the memory leak has consumed a significant amount of available memory, there
may not be enough resources left for certain memory allocations. This leads to the detection
of the error, as the system encounters a situation where it cannot allocate memory when
required. In a fault-tolerant system, even if a failed memory allocation occurs, it does not
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necessarily result in a service failure. The system may employ mechanisms such as spare units
to complete the operation and maintain service delivery. Therefore, a single failed memory
allocation, by itself, may not cause a service failure or outage. However, if the entire system
becomes incapable of delivering its service correctly due to a series of errors or significant
resource depletion, a failure occurs. This failure indicates that the system is no longer able to
fulfill its intended function, impacting its users and potentially leading to an outage. During
an outage, the system becomes completely unavailable, and its services cannot be accessed or
utilized by users. In the context of the given example, an outage could happen if the memory
leak issue is not addressed in a timely manner, leading to severe resource exhaustion that
renders the system inoperable. In summary, the presence of a fault and subsequent error
can be indicated by symptoms like memory consumption or depletion. Anomaly detection
and monitoring can help identify deviations from expected system behavior. Alerts can
be generated to notify system administrators or developers about these anomalies, allowing
them to take corrective actions. If the errors and issues persist and prevent the system from
delivering its services correctly, a failure occurs, potentially resulting in an outage.

In the following, aiming to provide unified terminology and avoid confusion, we collectively
refer to all these terms as incidents. This term comprises a broader scope and universally
applies to any unplanned event or occurrence that disrupts the normal state, behavior, or
output of a system, network, or service.

2.2.2 AIOps and Incident Management Procedure

To date, a universally accepted formal definition of AIOps is yet to emerge due to its novelty
and its broad scope involving numerous specialized domains bridging research and industry.
While some definitions focus solely on the capabilities and benefits of AIOps, without delving
into its conceptual framework and operational processes, several research efforts have taken
the initiative to propose a comprehensive definition and outline related subareas (refer to
Table 2.1). These definitions commonly converge on two key points. Firstly, AIOps entails
the application of artificial intelligence to enhance, fortify, and automate a wide range of IT
operations systems. Secondly, AIOps emphasizes the provision of complete visibility, control,
and actionable insights into the past, present, and potentially future states of the system
under consideration. Other definitions also emphasize the importance of various aspects
such as robust data collection, data ingestion and effective querying capabilities, scalable
infrastructure, and efficient real-time automated operations. It is important to note that
AIOps extends beyond the management of incidents and the automation of maintenance
processes. We concur with the findings of [232] that AIOps includes two primary subareas:
incident management and resource management, as depicted in Figure 2.2. In a few words,
resource management covers efficient allocation and utilization of resources for IT operations,
leveraging AI techniques for optimal parameterization. This involves identifying, monitoring,
and allocating resources such as servers, storage, network bandwidth, and virtual machines in
a well-optimized manner. The objective is to ensure effective utilization of available resources,
avoiding bottlenecks, excessive utilization, or underutilization.

Based on our review of various definitions and with the objective of providing a compre-
hensive understanding of AIOps, with its concepts, building blocks, capabilities, scope, and
application to incident management, we propose the following definitions:
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Table 2.1: Available AIOps definitions with corresponding capabilities.

Work Provided Definition Capabilities

[242] ”AIOps platforms combine big data and machine
learning functionality to support all primary IT
operations functions through the scalable ingestion
and analysis of the ever-increasing volume, variety,
and velocity of data generated by IT. The platform
enables the concurrent use of multiple data sources,
data collection methods, and analytical and
presentation technologies”

Performance Analysis,
Anomaly Detection, Event
Correlation, IT Service
Management, and
Automation

[76] ”AIOps is about empowering software and service
engineers (e.g., developers, program managers,
support engineers, site reliability engineers) to
efficiently and effectively build and operate online
services and applications at scale with artificial
intelligence (AI) and machine learning (ML)
techniques”

High Service Intelligence,
High Customer Satisfaction,
High Engineering
productivity

[256] ”AIOps is a methodology that is on the frontier of
enterprise IT operations. AIOps automates various
aspects of IT and utilizes the power of artificial
intelligence to create self-learning programs that help
revolutionize IT services”

Improving human-AI
collaboration, Monitoring
and Proactive IT work,
Efficient time saving, Faster
Mean Time To Repair

[40] ”AIOps is an emerging interdisciplinary field arising
in the intersection between the research areas of
machine learning, big data, streaming analytics, and
the management of IT operations”

Efficient Resource
Management and Scheduling,
Complex failure management

AI for Operating Systems. AIOps is a transformative concept that establishes a symbiotic
relationship between humans and machines. It leverages advanced artificial intelligence, in-
cluding machine learning algorithms and data analytics techniques, to process a large volume
and variety of data generated or collected by IT systems (commonly known as big data). The
primary aim is to enable autonomous and intelligent capabilities for managing and optimizing
complex information technology ecosystems. At its core, AIOps is built upon intelligent algo-
rithms executed on historical and real-time data this is supposed to be collected and queried
efficiently and effectively. This data is converted into actionable and innovative insights and
prescriptive recommendations with the goal to optimize operational performance, provide
situational awareness, and take initiatives to detect, diagnose, predict, and resolve incidents.

Incident Management Procedure. The incident management procedure is a systematic
and well-structured approach aimed at efficiently and effectively handling incidents within
an organization’s IT environment. This procedure includes a predefined series of steps and
processes to be followed, whether incidents arise unexpectedly or are predicted in advance.
Its primary objective is to ensure a consistent and coordinated response, regardless of the
source of the incident report, from internal or external users, abnormal system behavior,
or proactive prediction mechanisms. The procedure involves the qualification, classification,
prioritization, diagnosis, and resolution of incidents. Throughout the entire process, clear
communication channels are established to keep stakeholders informed of the incident’s status
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Figure 2.2: Exploring the research landscape of AIOps subareas with a focus on Incident Management.

and any relevant actions taken. Timeliness is of the essence, and every effort is made to
minimize critical time metrics time to report (TTR), time to engage (TTE), time to diagnose
(TTD), and time to mitigate (TTM). Furthermore, upon successful resolution of incidents, a
crucial post-incident review is initiated. This stage serves to identify valuable lessons learned,
enhance existing processes, and proactively prevent similar incidents in the future.

In the following, we will provide an extensive review of the essential subcategories within
the incident management procedure. Our goal is to examine the most relevant approaches
proposed for each of these phases. It is important to note that not all incidents go through
every step, as certain steps may not be necessary in specific situations. For example, it is not
possible to both detect and predict an incident at the same time. It is worth mentioning that
some previous work has already defined certain terms related to incident management. For
instance, Chen et al. [64] defined the incident management procedure as a three-step process
involving incident reporting, triage, and mitigation. However, their definition remains quite
generic and does not delve into the subcategories of these phases, such as addressing the prob-
lem of incident classification and correlation. On the other hand, Notaro et al. [232] focused
on studying failures and developed a taxonomy based on proactive and reactive approaches,
with significant emphasis on the reporting phase. However, their research appears to neglect
other important phases. Additionally, Zhang et al. [326] provided a formal definition that
includes detailed phases like assignment, prioritization, fault localization, and mitigation.
However, this survey solely concentrates on software bugs and does not generalize to other
specific areas. In this work, our aim is to cover all these use cases under a unified taxonomy,
regardless of the terminology used (failures, bugs, anomalies, etc.) or the specific industry
focus. Therefore, we categorize the incident management phases according to the available
contributions and in accordance with the terminologies outlined in Figures 2.1 and 2.2 as
follows:

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0072/these.pdf 
© [Y. Remil], [2023], INSA Lyon, tous droits réservés



34 Chapter 2. AIOps-based Data-Driven Approaches for Incident Management

Figure 2.3: Time relations in online failure prediction.

Incident Detection. Incident detection refers to the process of identifying and recognizing
deviations from normal operations indicating the presence of abnormal behavior or faulty
events that may indicate the occurrence of an incident (e.g., error or anomaly). This process
involves monitoring and analyzing various data sources (e.g., KPI metrics, system logs, and
user reports). For instance, the domain of anomaly detection falls within this subcategory.

Incident Prediction. Incident prediction refers to the process of forecasting, anticipating,
or estimating the likelihood of potential incidents, primarily failures, before they occur. It
involves leveraging available historical data, along with other relevant factors, to proactively
identify and assess potential risks and vulnerabilities. By analyzing patterns, trends, abnor-
mal events, and anomalies in historical and current data using advanced analytics techniques,
incident prediction aims to enable organizations to take preventive actions and minimize the
impact of future incidents. Incident prediction can be categorized into offline and online
methods. The offline category includes Software Defect Prediction (SDP) [83, 173], which
entails assessing failure risks by executing specific functional units or analyzing portions of the
source code. Another technique in this category is fault injection[269, 226], where deliberate
faults are introduced into a functioning system through stress testing to evaluate its fault
tolerance level. Conversely, online prediction occurs during system runtime. It involves tech-
niques like software rejuvenation [8, 285], which addresses resource exhaustion and prevents
unexpected system failures caused by aging or accumulated faults in software systems. Ad-
ditionally, online prediction involves estimating the remaining useful lifetime of the system.
This category also invloves real-time predictions of hardware and software failures, taking
into account time constraints, as depicted in Figure 2.3. For a prediction to be considered
valid, it must be made with a lead-time p∆tlq greater than the minimal warning time p∆twq.
Moreover, the prediction is only considered valid if the failure occurs within a specific time
period called the prediction period p∆tpq. To make these predictions, data up to a certain
time horizon p∆tdq, referred to as the data window size, is utilized.

Incident Prioritization. Incident prioritization is the process of categorizing and ranking
incidents based on their urgency, impact, and business priorities. It involves evaluating the
severity of the incident, considering factors such as the affected systems, services, and the
potential business impact. Incident prioritization ensures as well that resources are allocated
appropriately, with relatively critical incidents receiving immediate attention and resources.

Incident Assignment. Incident assignment entails the allocation of incidents to the relevant
individuals or teams responsible for investigating and resolving them. This crucial process
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involves analyzing the information contained in incident reports, considering factors such as
the nature and complexity of the incident, as well as the skills and availability of the assigned
personnel. This process is commonly referred to as incident triage in several work [59, 329].
However, triage in a general sense, does not refer only to assignment but also to incident
classification and identification of duplicate incidents.

Incident Classification. Incident classification involves the systematic grouping and cat-
egorization of incidents based on their distinct characteristics, symptoms, or impact. This
classification process establishes a structured framework that enhances the understanding
and effective management of incidents. Surprisingly, despite its crucial role in optimizing
incident management time response, incident classification has not received sufficient cover-
age or extensive attention. While some studies, such as [240, 10], have approached this issue
by treating it as a content optimization problem, others have included it as part of priori-
tization [161, 281]. Some researchers have even considered it within the scope of duplicate
detection [24, 134]. However, we believe that there are inherent differences between these
categories. Incident classification primarily focuses on associating the incident with a specific
topic or category, regardless of the assigned personnel, incident priority, presence of similar
incidents, or whether it is a new incident.

Incident Deduplication. Near-duplicate incident detection is the process that efficiently
identifies incidents that are closely related or exhibit significant similarities, grouping them
into specific buckets that correspond to distinct problems. This process involves real-time
analysis of incoming incidents to determine their similarities, overlaps, and commonalities
with historical incidents that pertain to the same topic. By eliminating duplicates, incident
deduplication reduces redundancy, streamlines incident management efforts, and prevents
unnecessary resource allocation. In fact, Anvik et al. [11] conducted a comprehensive empir-
ical study using bug repositories from Eclipse and Firefox, which revealed that a significant
portion (20%-40%) of bug reports are flagged as duplicates by developers. This study pro-
vides concrete evidence of the necessity to detect duplicate bug reports, shedding light on
the phenomenon of bug-report duplication. The process of detecting near-duplicates can be
considered as a further refinement of the incident classification problem. As already explained
in the introduction, It is commonly referred to as an unsupervised solution, which aims to
accurately identify incidents that are highly similar within a given particular class.

Root Cause Analysis. Root cause analysis (RCA), also known as root cause diagnosis,
plays a pivotal role in the incident management procedure. It is a systematic process that
aims to investigate and identify the underlying causes and contributing factors of incidents,
which we commonly refer to as faults. As depicted in Figure 2.4, RCA delves into the
fundamental fault or primary trigger behind the occurrence of an incident, recognizing that
it may not necessarily stem from a faulty manipulation or defective source code. Its objective
goes beyond addressing the symptoms; instead, it seeks to uncover and understand the root
cause, even if it originates from external factors. In related studies, this process is often
referred to as Fault Localization [303]. These studies focus on pinpointing the specific set of
components (such as devices, network links, hosts, software modules, etc.) that are associated
with a fault that has caused or may cause a particular failure. However, root cause analysis
goes beyond component localization and extends its investigation to faulty actions or risky
external factors that lead to abnormal behaviors within the system.

Incident Correlation. Incident correlation study involves the analysis of multiple incidents
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Figure 2.4: Distinction between Root Cause Analysis, Anomaly Detection and Failure Prediction.

or events with the aim of identifying relationships, dependencies, or shared characteristics
among them. Through this process, a holistic perspective of the incident landscape can be
achieved, allowing for a deeper understanding of the impact and the ability to uncover po-
tential hidden patterns or trends. Incident correlation works alongside root cause analysis
to assess how the underlying causes and faulty components or behaviors can affect other
incidents. This helps in facilitating more efficient incident resolution. The task is consid-
ered challenging due to the inherent complexity and interdependence among components in
software systems [14].

Incident Mitigation. Incident mitigation also known as remediation, refers to the pro-
cess of minimizing the impact and severity of an incident. It involves taking proactive and
automatic measures to contain, resolve, or reduce the effects of the incident. Incident mitiga-
tion can include implementing temporary workarounds, applying fixes or patches, activating
backup systems, or engaging specialized resources or teams to restore normal operations. As
mentioned in [232], contributions related to remediation actions have been relatively fewer
compared to incident prediction, detection, triage, and diagnosis tasks. This could be at-
tributed to the fact that once the underlying problem is identified through diagnosis, the
necessary recovery steps become readily identifiable and achievable. In many cases, historical
incidents with similar resolutions can be referenced, eliminating the need for complex models.

2.3 Desiderata for Effective Incident Management

Developing intelligent, data-driven approaches for incident management is a complex process
that goes beyond traditional machine learning techniques. Simply relying on high-performing
machine learning or big data mining models is insufficient for successfully adopting AIOps so-
lutions. To ensure the effectiveness of such solutions, they must adhere to a set of established
criteria, which we refer to as desiderata. Drawing from numerous reviewed studies, including
[76, 202, 194, 335, 177], we have compiled a comprehensive list of requirements that should be
considered, either fully or partially, when constructing AIOps solutions. These requirements
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are as follows:

1. Trustablity. The literature claims that the requirements for employees skills and
mindsets change with the introduction of AIOps [246]. Manual activities tend to shift
towards adaptation and auditing tasks while dealing with AI requires a different ap-
proach focused on recognizing patterns from raw data, deviating from the traditional
developer mindset. This transition raises questions about trust in AI capabilities and
what it can offer. Consequently, adopted AIOps approaches should incorporate years
of field-tested engineer-trusted domain expertise iteratively and interactively into the
learning, updating, and explanation phases of sophisticated machine learning models
built on raw data. IT professionals possess valuable domain knowledge and insights ac-
quired through years of experience in managing and troubleshooting IT systems. While
not all of their best practices may scale with the AIOps trends, their expertise often
extends beyond raw data analysis. They have a deep understanding of the underly-
ing technology, infrastructure, applications, and business requirements. It is crucial to
fully leverage and model this expertise into AIOps solutions. This can be achieved by
providing mechanisms that incorporate the human in the loop, allowing for interaction,
updates, and corrections to the models when necessary.

2. Interpretability. AIOps solutions should prioritize interpretability, even if it comes
at the expense of model performance. In the context of AIOps, interpretable models
are preferred when high-performing models lack interpretability. Model transparency
enables users to fully understand, interact with, and reason about the recommenda-
tions made by the model, which can help gain support from upper management in
following those recommendations. However, interpreting AIOps models comes with
certain constraints and requirements. In a study by [202], different factors influencing
AIOps model interpretation are investigated across three key dimensions. (1) Internal
Consistency which assesses the similarity between interpretations derived from AIOps
models trained under the same setup. It examines whether the interpretations obtained
from an AIOps model are reproducible when the model is trained with the same data
and implementation across multiple executions. (2) External Consistency which fo-
cuses on the similarity between interpretations derived from similar-performing AIOps
models on a given dataset. Intuitively, interpretations derived from a low-performing
interpretable model could be trustworthy only if the interpretable model has the same
interpretation as other machine learning models on a given dataset. (3) Time Con-
sistency which captures the similarity between interpretations derived from an AIOps
model across different time periods. AIOps models should not only reflect the trends
observed in the most recent training data but also capture and reflect trends observed
over a longer period. It is important to note that some previous work, such as [25] in
defect prediction, has shown that models trained on one time period may not generalize
well when tested on a different time period. Additionally, the size of the training data
can impact the derived interpretations of the models.

3. Scalability. AIOps solutions must efficiently handle large-scale data in complex IT en-
vironments where significant amounts of monitoring and log data are expected. These
environments can encompass thousands to millions of nodes, including servers, network
devices, and applications. To go beyond effective modeling and accurate results, it is
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crucial for AIOps solutions to be implemented within robust architectures that excel at
ingesting, storing, and processing big data efficiently. Scalable architectures and data
processing frameworks play a key role in distributing the workload and effectively han-
dling the high volume of data. Additionally, when considering the adopted approaches,
AIOps solutions should leverage scalable computing techniques, such as distributed and
federated learning, as discussed in studies like [88, 28, 227], to enable parallel process-
ing and distributed data analysis. Scalability also invloves optimizing the utilization of
computational resources. AIOps solutions should possess the capability to dynamically
allocate and distribute resources based on the data volume and processing requirements.
This ensures efficient resource utilization and minimizes bottlenecks that could hinder
performance.

4. Maintainability and Adaptability. The concepts of maintainability and adaptabil-
ity are crucial in AIOps, as they aim to minimize the need for ongoing maintenance and
repetitive fine-tuning. This consideration is essential because DevOps engineers, who
are responsible for managing and maintaining these solutions, often have a multitude of
responsibilities and may not possess extensive expertise in machine learning. Therefore,
AIOps solutions should strive for a high degree of automation and self-management of
routine tasks such as data preprocessing and regular model training to reduce the re-
liance on continuous manual interventions. To achieve this, self-adjusting algorithms
and automated pipelines can be employed [34]. In addition, leveraging advanced ma-
chine learning techniques such as transfer learning [237] and one-shot learning [290] can
greatly benefit AIOps solutions. Instead of training models from scratch, pre-trained
models that have been developed and fine-tuned by machine learning experts can be
utilized to handle new data patterns.

5. Robustness. AIOps solutions need to be built upon robust and stable machine learn-
ing models that can handle a wide range of scenarios and exhibit resilience to variations
in data patterns. These models should be designed to be less sensitive to the noisy and
incomplete data commonly encountered in real-world IT environments [76]. To ensure
the reliability of the modeling process, robust preprocessing techniques, such as sys-
tematic data cleaning and effective imputation methods, can be employed. In addition,
AIOps solutions must be capable of detecting and adapting to concept drift, which
refers to the shifts in underlying data distributions that occur in dynamic IT environ-
ments [201]. Robust algorithms and models, such as those based on online learning,
can be leveraged to handle concept drift and maintain up-to-date insights in the face
of evolving data patterns [50, 49]. Furthermore, AIOps solutions should generalize well
across different IT environments. To achieve this, they should be trained on diverse and
representative data that captures the underlying patterns and relationships applicable
across various scenarios.

6. In-context Evaluation. Unlike conventional machine learning evaluation scenarios,
such as cross-validation, which are often not directly applicable to AIOps due to the
unique characteristics of real-world IT environments, the concept of in-context evalua-
tion emphasizes the need to assess the solution’s performance in a context that closely
resembles its actual production usage. Traditional evaluation methods typically assume
that the data used for evaluation is identically distributed, which may not hold true in
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IT environments. Real-world data often exhibits temporal dependencies, concept drift,
and dynamic patterns, which require specialized evaluation techniques that consider
these factors. To conduct in-context evaluation, it is important to create evaluation
frameworks that capture the intricacies of the production environment. This involves
using datasets with a broad range of scenarios, including normal operations, various
types of incidents, and different environmental conditions. In addition to dataset selec-
tion, evaluating AIOps solutions in context also requires defining appropriate evaluation
metrics and benchmarks that align with the desired outcomes and objectives. Further-
more, in-context evaluation may involve conducting experiments and simulations that
mimic real-world conditions, allowing for comprehensive testing of the AIOps solution’s
performance and robustness.

2.4 Proposed Taxonomy

As previously mentioned in 1.4.1, our aim is to present a taxonomy that categorizes the work
related to AIOps for incident management into primary groups, covering a diverse range of
factors that are crucial to consider when assessing the necessity, design, implementation, and
reproducibility of the reviewed methods. These categories are carefully chosen to provide
a comprehensive and inclusive framework for analyzing the various dimensions that impact
AIOps for incident management. Each of the categories is explained in detail below.

1. Context. It represents the environmental factors that drive and surround the proposed
approach and includes:

A. Focus Area. It refers to the specific research area in which the proposed approach
fits within the incident management procedure. More precisely, it addresses one
of the distinct phases of the incident, as identified in our categorization, which
encompasses reporting, triage, diagnosis, or mitigation and their subcategories.

B. Maintenance Strata. It refers to the different layers or components of the system
as highlighted in Figure 1.3 that are targeted by the method under examination.

C. Scoop and Industry Focus. This concept refers to the specific industrial application
area of the method being studied. Some methods may be exclusively dedicated to a
particular application domain, such as IoT systems, cloud infrastructures, software
systems, etc. Different industries have varying requirements and constraints, and
the reviewed method may need to be tailored accordingly. For instance, a method
that works well in one industry may not be as effective in another.

2. Data Availability and Processing. This category refers to factors pertaining to the
characteristics of the data and their representation, as well as the requisite measures
necessary to render them actionable for efficient analysis and interpretation.

A. Data Sources. It refers to the nature of data that the method is built upon. The
proposed taxonomy includes various types of data sources, such as log metrics,
source code, key performance indicators, topology (environmental characteristics),
alerting signals, execution traces, network traffic, etc.

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0072/these.pdf 
© [Y. Remil], [2023], INSA Lyon, tous droits réservés



40 Chapter 2. AIOps-based Data-Driven Approaches for Incident Management

B. Data Types. Consideration should be attributed to how data is represented. Even
when using the same data source, different representations are possible. For exam-
ple, source code can be represented as an Abstract Syntax Tree (AST), a sequence
of predefined frames, or plain natural language text. To facilitate this under-
standing, a taxonomy of data types has been adopted. This taxonomy includes
structured data, sequential data, graph data, time series (both univariate and
multivariate), textual data, hierarchical data, etc.

C. Required Feature Engineering Process. This refers to any necessary preprocessing
steps to select or transform the data before it can be inputted into the model.

3. Model Design. This category highlights the details about the design and implemen-
tation of the approach by clarifying the methodology adopted, the learning paradigm
or research area employed, and how the approach was evaluated.

A. Approach. It represents the principal approach employed to address the problem
at hand, taking into consideration the context and the data utilized. It elucidates
the way in which the authors formalized and tackled the problem, as well as their
subsequent course of action. For instance, in the realm of predictive models, the
authors may have implemented neural network architectures like Convolutional
Neural Networks (CNNs), Recurrent Neural Networks (RNNs), or Transformers,
etc., or opted for other methods such as clustering, nearest neighbor search, di-
mensionality reduction, or descriptive models like frequent pattern mining, etc.

B. Paradigm. The paradigm provides an abstract demonstration of how the approach
was carried out and trained to attain its objective. For instance, in the case of
training predictive models, it may involve discerning whether the approach was
supervised, semi-supervised, or unsupervised, or whether it entailed pure one-shot,
multitasking, reinforcement, or transfer learning, etc.

C. Evaluation Metrics. This relates to the evaluation metrics used to assess how well
the method performs compared to other techniques currently used in the field.

D. Package Availability. This factor is highly important to reveal the accessibility of
both data and model packages for reproducibility purposes and to guarantee that
the work can be utilized in other contexts.

4. Particularities. The final category of our taxonomy concerns essential factors that
highlight specific attributes and desired outcomes associated with AIOps. We focus
on four key factors: interpretability, transferability, human-in-the-loop, and scalabil-
ity. Interpretability refers to the clarity of the tools provided by the authors, which
facilitate understanding of the model’s mechanisms and experimental results. Trans-
ferability denotes the model’s ability to be applied to different contexts and domains
with similar data representations, motivations, or configurations. Human-in-the-loop
emphasizes the incorporation of human expertise and knowledge to guide the model,
provide feedback, make decisions, and validate results. Scalability refers to the model’s
capacity to scale up or down based on various hyperparameters, such as system size.
We also examine any other pertinent factors explicitly claimed to be adhered to by the
approach, such as security or maintainability.
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In the following, we will delve into major factors that are exclusively relevant to our
studied domain. Our focus is specifically to explain and explore the different data sources
and outline the evaluation methods employed for the proposed AI approaches.

2.5 Data Sources and Types

Data plays the most crucial role in incident management, serving as the fundamental building
block that guides the design of the approach used to identify predictive or descriptive patterns
within it. The primary objective is to use this data to effectively accomplish the desired task
at hand. These data sources offer valuable insights into the IT infrastructure, application
performance, and user behavior. In an industrial setting, data is derived from a multitude of
sources, including physical or software components, and can also be generated or edited by
humans. One key characteristic of this data is its unstructured nature, lacking a standardized
format and displaying non-homogeneity. Consequently, data collected from different sources
may possess vastly different formats, requiring a pre-processing stage to perform subsequent
analysis. Furthermore, data from the same source can be represented in various ways. We
categorize data sources based on the following convention.

1. Source Code. It represents the fundamental building blocks of software, including
various units such as functions, file codes, classes, and modules. It reflects the design,
structure, and logic of different functionalities and services within the software system.
In previous works, source code has been represented in diverse ways, including through
code metrics, which are handcrafted features derived directly from the source code.
Code metrics play a critical role in software defect prediction by quantifying different
aspects of the codebase that can impact software quality. These metrics cover a wide
range, from static module-level metrics [208] for procedural languages, such as Lines of
Code (LOC), Coupling Between Objects (CBO), Lack of Cohesion in Methods (LCOM),
and Depth of Inheritance Tree (DIT), which provide insights into module complexity
and potential defect-proneness. At the class level [66], metrics like Number of Methods
(NOM), Weighted Methods per Class (WMC), and Response for a Class (RFC) offer
indications of class complexity and the potential occurrence of defects. Machine learning
algorithms are trained using these metrics to identify patterns and relationships between
code quality and defects. Another representation of source code is in the form of
Abstract Syntax Trees (AST) [294], which capture the syntactic structure of the code by
breaking it down into constituent elements such as expressions, statements, functions,
classes, and variables (Figure 2.5). The AST also represents the relationships between
these elements, including their nesting and dependencies. Additionally, source code has
been modeled using the program spectrum [2, 52], which provides execution information
from specific perspectives, such as conditional branches or loop-free intra-procedural
paths and also as a sequence of tokens [229, 322] in many research works, particularly
in Fault Localization.

2. Topology (Environment Features). Topology refers to the structure, either phys-
ical or logical, of the IT environment. It encompasses information about the com-
ponents, connections, and spatial relationships within the system. This data source
offers valuable insights into the overall architecture, providing details about servers,
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Figure 2.5: Sample Java method and its Abstract Syntax Tree (AST).

Figure 2.6: An example of logging statements by SLF4J and the generated logs [123].

network devices, databases, and their interdependencies. Additionally, topology data
may include configuration settings, software versions, and other relevant features of
the system. The presence of topology is crucial as it establishes the context necessary
for identifying meaningful and actionable patterns within the data. Without the con-
straints and context provided by topology, the detected patterns, while valid, may be
misleading or distracting. Topology has found extensive use in various areas, such as
determining causality and localizing faults [187, 247], ranking incident [188], prediction
of incident [177], as well as enhancing explainability in the IT environment [248].

3. Event Logs. Logs consist of human-readable statements generated by software ap-
plications, operating systems, or devices to describe events or actions. They serve
as valuable records, providing information about system activities, errors, warnings,
and other relevant events. Timestamps are typically included in logs, along with de-
tails such as the event’s source, severity, and description. Analyzing logs is essential
for understanding the sequence of events leading to an incident, identifying abnormal
behaviors, debugging issues, and ultimately pinpointing the root cause. In general,
logs are semi-structured text that is produced by logging statements (e.g., printf(),
logger.info()) within the source code. For instance, Figure 2.6 displays two log mes-
sages generated by corresponding logging statements in the code. The initial words
of the log messages (e.g., ”Wombat”) are determined by the logging framework (e.g.,
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Figure 2.7: Log parsing example [318].

SLF4J1), and they follow a structured format. On the other hand, the remaining words
(e.g., ”50 degrees”) are unstructured as they are written by developers to describe spe-
cific system runtime events. Once logs are collected, they need to be parsed to be
utilized in various downstream log mining tasks, such as anomaly detection.

Parsing log messages is a crucial step in making logs usable for different analytical
tasks. This process aims to transform the semi-structured log messages into structured
log events by extracting (constant parts) and variables (variable parts) [123]. In the
given example depicted in Figure 2.7, a log parsing scenario is presented, showcasing
a log message obtained from the Hadoop Distributed File System (HDFS) [318]. A
log message consists of two main components, the message header, and the message
content. The message header, which is determined by the logging framework, is rel-
atively straightforward to extract, including details like verbosity levels (e.g., INFO).
On the other hand, extracting essential information from the message content proves
to be more challenging due to its unstructured nature, primarily consisting of free-form
natural language written by developers. Typically, the message content comprises both
constants and variables. Constants represent fixed text provided by developers (e.g., the
word ”Received”), describing a particular system event. On the other hand, variables
correspond to the dynamic runtime values of program variables, carrying contextual
information. The set of constants forms the event template.

Numerous log parsing techniques have been proposed, including clustering-based ap-
proaches (e.g., LKE [103], LogSig [280]), heuristic-based methods (e.g., iPLoM [204],
SLCT [284]), Evolutionary Algorithms such as MoLFI [212], and Frequent Pattern Min-
ing techniques like Logram [73]. These algorithms are evaluated based on factors such
as offline or online parsing mode, coverage, and alignment with domain knowledge.
Parsed logs have been used in log mining algorithms with different approaches, includ-
ing structured features [318, 122], log sequences [91, 209], graphs [225] and Finite State
Automatas (FSA) [193].

4. Key Performance Indicators (KPIs). These metrics serve as performance indi-
cators for assessing the health and efficiency of IT infrastructure and services. They

1https://www.slf4j.org/
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Figure 2.8: Examples of Key Performance Indicators (KPIs) from Infologic maintenance dashboard.

provide quantitative measurements that offer insights into system performance, avail-
ability, reliability, and response times. Examples of these metrics include response
time, error rates, disk reads, resource utilization (such as CPU, Swap, and Memory
Consumption), and up-time. In Figure 2.8, we illustrate a sample set of real-time mon-
itored metrics within our company, Infologic, including disk and min heap utilization,
as well as the number of open threads, etc. Typically, these metrics are represented as
univariate or multivariate time series, which are utilized for various purposes such as
detecting abnormal trends [297, 182], predicting failure by monitoring certain measures
[174, 195], estimating the remaining useful lifetime of physical components, or stor-
age capacity [337], identifying recurrent and unknown performance issues [183], and
conducting root cause analysis and incident correlations [136, 266]. For instance, Lu
et al. [195] utilize SMART (Self-Monitoring, Analysis, and Reporting Technology) mul-
tivariate time series data that combines disk performance and disk location data to
accurately predict disk failures.

5. Network Traffic. This type of data involves the analysis of data packet flow within
a computer network, including key information such as source and destination IP ad-
dresses, ports, protocols, and packet sizes. This data source provides valuable insights
into communication patterns, network congestion, anomalies, and potential security
threats. By analyzing network traffic, it becomes possible to identify and address
network-related issues, pinpoint performance bottlenecks, and detect signs of malicious
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Figure 2.9: [Left] Example of an incident report for a bug in Eclipse. This bug is about a missing node of
XML files in Product Web Tools Platform [320]. [Right] Bug report lifecycle according to [326].

activities that could lead to significant incidents. Different approaches have been em-
ployed to model network traffic data. For instance, in one study [159], SNMP data
was utilized to monitor network links and diagnose anomalies in network traffic. The
authors treated flow measurements as multivariate time series collected over time, en-
abling the separation of traffic into normal and anomalous subspaces. In a subsequent
work by the same authors [160], static features such as source and target destination
addresses or ports were incorporated into the traffic data to detect and diagnose security
threats and service outages. Another approach, presented in [295], involved represent-
ing network traffic as image-like structures using the IDX file format for encrypted
traffic classification. This process involved mapping the network traffic data onto a 2D
grid, where each grid cell represented a specific traffic attribute, such as packet size,
source IP address, or destination port. The intensity or color of each pixel in the image
reflected the value or frequency of the corresponding network traffic attribute at that
particular location.

Furthermore, network traffic has been represented as graphs by [23] to localize the
sources of performance problems in networks. Probabilistic inference graphs were con-
structed from the observation of packets exchanged in the network infrastructure. Nodes
of the inference graph are divided into root cause nodes (corresponding to internal IP
entities), observation nodes (corresponding to clients), and meta-nodes, which model
the dependencies between the first two types of nodes. Each node is also associated
with a categorical random variable modeling the current state (up, troubled, down),
which is influenced by other nodes via the dependency probabilities.

6. Incident Reports. Incident reports are valuable sources of information that compre-
hensively document the details, impact, discussions, and resolution of incidents. These
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reports are typically initiated by developers, testers, or end-users, capturing crucial
information to aid incident management. As illustrated in Figure 2.9(left), incident
reports commonly include an identification number and a title, along with contextual
features such as the timeline of when the incident was reported and modified, the
affected system or service’s topology, the severity or importance of the incident, the as-
signed programmer responsible for resolution, and the incident’s resolution status (e.g.,
new, unconfirmed, resolved). Of utmost importance, incident reports contain a detailed
description of the issue, including information on how to reproduce the problem, stack
traces (in the case of a bug), and the expected behavior. Additional comments within
the report may include discussions about potential solutions, diagnosis and root cause
analysis, and actions taken to mitigate the incident. Attachments such as proposed
patches, test cases, or screenshots may also be included to provide further context and
support. Furthermore, incident reports should offer historical context to leverage past
knowledge from similar incidents. Tagging relevant information from previous incidents
enables to the application of valuable lessons learned in the current resolution processes.

The challenge in processing incident reports lies in the diversity of data types, including
structured, semi-structured, and unstructured data. For example, environment charac-
teristics are typically presented in structured or tabular formats [64, 320, 238], while
stack traces, problematic SQL queries and user traces fall into the category of semi-
structured data [326, 238]. On the other hand, the description of the problem and
the comments section dedicated to the analysis and diagnosis of the problem consist of
unstructured natural language text [59, 320, 165], which requires data normalization.
Various approaches have been employed to encode these different data types. For in-
stance, both Chen et al. [59] and Pham et al. [238] utilized the FastText algorithm [41]
for text encoding. Another approach employed by [165] was the use of Word2Vec [214],
which builds pretrained subword vectors based on an external corpus and then fine-
tunes them using historical incident data. Contextualization data, on the other hand,
was handled using exponential family embeddings in the work of [238]. In addition,
some researchers explored Assignment information in incident reports to create what is
referred to as a ”Tossing Graph,” aiming to reduce the need for reassigning incidents
to other developers [309, 38, 135].

The textual incident report plays a crucial role in the incident triage process and un-
dergoes various stages throughout its lifecycle. Figure 2.9(right) illustrates the lifecycle
of an incident report. Initially, when an incident is reported, the report is marked as
UNCONFIRMED. At this stage, a verification process is conducted to ensure that the
incident is not a duplicate and is indeed a new issue. If it is confirmed to be a new
incident, the status is changed to NEW. Next, an assignment mechanism is employed
to assign the incident report to the most qualified and available developer to address
the problem. The status is then updated to ASSIGNED. The assigned developer works
on reproducing and localizing the incident, aiming to fix it. Once the incident has been
resolved, the status of the report is changed to RESOLVED. In some cases, if the tester
is not satisfied with the solution, the incident may be reopened, and the status is set
to REOPEN. Conversely, if the tester verifies that the solution has effectively resolved
the issue, the status is changed to VERIFIED. The final status of an incident report
is CLOSED, indicating that no further occurrences of the incident have been reported.
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Figure 2.10: [Left] Example of an alert on memory consumption from [334]. [Right] Explanation of alert
template extraction.

Different outcomes can follow the RESOLVED status. If the developer successfully ad-
dresses the incident by making necessary code changes, the status is updated to FIXED.
However, if the developer is unable to resolve the incident for any reason, the status is
set to WONTFIX. In cases where the developer identifies the report as a duplicate of
an existing incident, the status is changed to DUPLICATE.

7. Alerting Signals. Alerting signals are notifications generated by monitoring systems
or tools when specific thresholds on time series metrics or conditions on event occur-
rences are surpassed. These signals serve as indications of abnormal behavior, potential
issues, or breaches of established thresholds. Examples of triggering events include high
CPU usage, low disk space, high latency time, or application errors. Alerting signals act
as an early warning system, allowing proactive identification and resolution of emerg-
ing problems before they escalate into failures. It’s important to note that alerting
signals are not raw or unprocessed data directly collected from monitored systems,
such as KPI metrics or event logs. Instead, they are refined data derived from metrics
or events based on a set of predefined rules. For example, Figure 2.10 illustrates an
example alert generated by the AlertRank Framework [334], indicating that the current
memory utilization has exceeded the threshold of 79%, leading to a P2-error severity.
This alert is derived from the analysis of memory consumption over time and generated
using alert templates within the source code, similar to log events, as shown in Fig-
ure 2.10. Alerting signals are commonly used to identify and prioritize critical issues
within a system [334]. They can also be utilized for categorizing similar or identical
problems into specific categories [332], as well as deducing correlations among multiple
simultaneous events [215].

8. Execution Traces. In addition to the main data sources mentioned above, which
are utilized in the incident management process to develop data-driven approaches for
incident detection, diagnosis, triage, and resolution, there are other data sources that
are specifically relevant to certain tasks. One such example is execution traces, which
provide a hierarchical description of the modules and services invoked to fulfill a user
request and are employed in the diagnosis task. These traces capture the flow of control,
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method invocations, input/output data, and interactions with external dependencies.
Execution traces are particularly valuable for diagnosing complex or intermittent prob-
lems that are challenging to reproduce.

Stack traces, for example, are detailed reports that provide information about the ex-
ecuted methods and their associated packages during a crash. They can be obtained
through system calls in various programming languages. In Java, stack traces are pre-
sented in descending order, with the top of the stack trace indicating the most recent
method call. Stack traces have primarily been utilized in the context of crash dedupli-
cation, which involves identifying near-duplicate reports that indicate the same bug or
error. In the field of research, stack traces have been modeled using graphical represen-
tations [150]., sequence-based approaches [251, 48, 87], or vectorization techniques such
as n-grams and TF-IDF for information retrieval purposes [171, 258]. Another promi-
nent type of execution trace comprises SQL queries executed to retrieve a service or
important data. Significant emphasis has been placed on analyzing SQL workloads in
the context of diagnosing incidents. This analysis aims to identify schema issues in data
models within databases and improve performance, such as recommending and selecting
indexes [82, 57], detecting anti-patterns [61], and identifying insider threats [156]. Pars-
ing SQL queries efficiently is crucial for feeding them into analytical models to extract
essential components such as tables, predicates, and projections [12, 7]. This enables
their utilization as static features in incident management. Alternatively, some methods
treat SQL queries as natural language, employing techniques such as Query2Vec [133]
to capture their semantic meaning.

Heap dumps in Java memory analysis are another type of data that can be considered.
They are snapshots of the Java heap memory taken at a specific moment in time.
The Java heap is the region of memory where objects are allocated and deallocated
during the execution of a Java application. A heap dump captures the complete state
of the Java heap, including all objects and their attributes such as instance variables
and references. This provides a detailed view of the memory usage within the Java
application. Heap dumps are particularly useful for analyzing memory-related issues,
such as memory leaks [140, 316]. In the related literature, heap dumps are commonly
represented as trees [164], graphs [207], or hierarchies [249].

2.6 Evaluation Metrics

To comprehensively evaluate the quality and performance of data-driven approaches in inci-
dent management tasks, it is crucial to assess them using appropriate metrics, also known as
figures of merit. While machine learning metrics are commonly used to evaluate predictive
models, it is important to note that relying solely on these metrics, such as contingency met-
rics, may not accurately reflect the models’ performance in real-world scenarios, especially
when considering time constraints. For example, in the case of incident prediction, the goal
is to predict incidents while minimizing false alarms and maximizing the coverage of actual
incidents. However, predicting incidents after the designated prediction period (∆tp) is not
considered accurate since the incident has already occurred, leading to suboptimal alloca-
tion of time and resources. Therefore, we introduce a set of established metrics, focusing
primarily on two main tasks: detecting and predicting incidents. It is worth mentioning that
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Table 2.2: Contingency table.

True Failure True Non-failure Sum

Prediction: Failure
(Failure Warning)

True positive (TP)
(Correct Warning)

False positive (FP)
(False Warning)

Positives
(POS)

Prediction: No failure
(No Failure Warning)

False Negative (FN)
(Missing Warning)

True Negative (TN)
(Correctly no Warning)

Negatives
(NEG)

Sum Failures (F) Non-Failures (NF) Total (N)

these metrics can be adapted for other tasks as well, and several other metrics have been
proposed to evaluate triage, diagnosis, and the effectiveness of automated remediation actions
for restoring services and systems, which will be briefly covered.

To organize the metrics effectively, we categorize them based on the nature of the model
output. This categorization includes metrics suitable for classification tasks such as Software
Defect Prediction (SDP), scalar prediction, or regression tasks like Remaining Useful Lifetime
estimation (RUL), as well as metrics for assessing the correlation between achieved results
and reality or the trade-off between gain and complexity when comparing different methods,
such as Fault Localization and Incident Correlation.

2.6.1 Classification Metrics

Classification metrics are commonly derived from four cases, as shown in Table 2.2. A
prediction is classified as a true positive if an incident occurs within the prediction period
and a warning is raised. Conversely, if no incident occurs but a warning is given, the prediction
is considered a false positive. If the algorithm fails to predict a true incident, it is categorized
as a false negative. Finally, if no true incident occurs and no incident warning is raised, the
prediction is labeled as a true negative. To compute metrics like precision and recall, the
contingency table is populated with the number of true positives (TP), false positives (FP),
false negatives (FN), and true negatives (TN). The prediction algorithm is applied to test
data that was not used to determine the parameters of the prediction method. This allows
the comparison of prediction outcomes against the actual occurrence of incidents. The four
possible cases are illustrated in Figure 2.11. It’s worth noting that the prediction period (∆tp)
is instrumental in determining whether an incident is counted as predicted or not. Therefore,
the choice of ∆tp also has implications for the contingency table and should align with the
requirements of subsequent steps in the incident management process.

Figure 2.11: A timeline showing true incidents and all four types of predictions TP, FP, FN, TN.
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Table 2.3: Metrics obtained from the contingency table.

Metric Formula Other names

Precision TP
TP`FP Confidence

Recall TP
TP`FN

Support
Sensitivity

False positive rate FP
FP`TN Fall-out

Specificity TN
TN`FP True negative rate

False negative rate FN
FN`TP 1 - recall

Negative predictive value TN
TN`FN

False positive error rate FP
FP`TP 1 - precision

Accuracy TP`TN
TP`TN`FP`FN

Odds ratio TPˆTN
FPˆFN

2.6.1.1 Contingency Table Metrics

The metrics presented in Table 2.3 are derived from the contingency table (see Table 2.2).
They are commonly used in pairs, such as precision/recall, true positive rate/false positive
rate, sensitivity/specificity, and positive predictive value/negative predictive value. Different
research areas may use different names for the same metrics, so the leftmost column indicates
the commonly used terminology, while the rightmost column lists alternative names.

Precision is the ratio of correctly identified incidents to the total number of predicted
incidents. Recall, on the other hand, is the ratio of correctly predicted incidents to the total
number of true incidents. For example, a prediction algorithm with a precision score of 0.8
correctly identifies incidents with a probability of 0.8 and produces false positives with a
probability of 0.2. A recall of 0.9 indicates that 90% of true incidents are predicted, while
10% are missed. It’s important to note that improving precision (reducing false positives)
often results in a decrease in recall (increasing false negatives) and vice versa. To balance
the trade-off between precision and recall, the F-Measure is used as the harmonic mean of
the two, assuming equal weighting.

One limitation of precision and recall is that they don’t consider true negative predictions.
Therefore, it is necessary to consider other metrics in combination with precision and recall.
The false positive rate is the ratio of incorrectly predicted incidents to the total number of
non-incidents. A lower false positive rate is desirable, provided that the other metrics do
not deteriorate. Specificity is the ratio of correctly not raised incident warnings to the total
number of non-incidents, while the negative predictive value (NPV) is the ratio of correctly
not raised incident warnings to the total number of not raised warnings. Accuracy is defined
as the ratio of all correct predictions to the total number of predictions made.

Accuracy appears to be an appropriate metric for incident prediction due to the rarity
of incidents. Achieving high accuracy by always classifying the system as non-faulty may be
misleading because it fails to capture any incidents, resulting in a recall of zero. However, it
is important to consider true negatives when assessing incident prediction techniques. Let’s
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Figure 2.12: Example of Precision/Recall, and ROC curves.

consider an example from [260]. Two prediction methods perform equally well in terms of
true positives (TP), false positives (FP), and false negatives (FN), resulting in the same
precision and recall. However, one method makes ten times more predictions than the other
because it operates on more frequent measurements. The difference between these methods is
reflected only in the number of true negatives (TN), which becomes apparent in metrics that
include TN. True negatives are counted by considering predictions made when no incident
was imminent and no warning was issued.

It is noteworthy that the quality of predictions depends not only on algorithms but also
on factors such as the data window size (∆td), lead-time (∆tl), and prediction period (∆tp).
Predicting incidents at an exact point in time is highly unlikely, so predictions are typically
made within a specific time interval (prediction period). The number of true positives is in-
fluenced by (∆tp): a longer prediction period captures more incidents, increasing the number
of true positives and impacting metrics like recall.

2.6.1.2 Precision and Recall-Curves

Incident predictors often utilize an adjustable decision threshold. When the threshold is set
low, incident warnings are raised easily, increasing the chances of capturing true incidents
(resulting in high recall). However, a low threshold also leads to many false alarms, resulting
in low precision. Conversely, if the threshold is set very high, the situation is reversed.
To visualize this trade-off, precision/recall curves are used, plotting precision over recall for
various threshold levels. An example is shown in Figure 2.12 (right).

Similar to precision/recall curves, the receiver operating characteristic (ROC) curve (Fig-
ure 2.12 (left)) plots the true positive rate versus the false positive rate (sensitivity/recall
versus 1-specificity, respectively). This curve assesses the model’s ability to distinguish be-
tween incidents and non-incidents. The closer the curve is to the upper-left corner of the
ROC space, the more accurate the model is. The Area Under the Curve (AUC) is defined as
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Table 2.4: Metrics used for regression tasks in incident management tasks.

Metric Formula

Mean Absolute Error (MAE) 1
n

řn
i“1 |ŷi ´ yi|

Root Mean Squared Error (RMSE)
b

1
n

řn
i“1pŷi ´ yiq2

Mean Absolute Percentage Error (MAPE) 1
n

řn
i“1

ˇ

ˇ

ˇ

ŷi´yi
yi

ˇ

ˇ

ˇ
ˆ 100%

R-squared (R2) 1´
řn

i“1pyi´ŷiq
2

řn
i“1pyi´ȳq2

Explained Variance Score 1´ Varpy´ŷq

Varpyq

the area between the ROC curve and the x-axis. It is calculated as:

AUC “

ż 1

0
tprpfpr´1q dfpr

where tpr and fpr represent the true positive rate and false positive rate, respectively.
The AUC measures the probability that a data point from an incident-prone situation receives
a higher score than a data point from a non-incident-prone situation. By summarizing the
capacity of a prediction algorithm to discriminate between incidents and non-incidents, the
AUC converts the ROC curve into a single number. A random predictor has an AUC of 0.5,
while a perfect predictor achieves an AUC of one.

2.6.2 Regression Metrics

Regression metrics are commonly used in tasks such as remaining useful lifetime estimation
or anomaly detection, particularly when applied to time series metric data to identify out-
liers. Unlike classification metrics, the metrics used for regressors remain consistent across
conventional machine learning models, as shown in Table 2.4. Mean Absolute Error (MAE)
is a metric that represents the average absolute difference between the predicted values ŷi
and the actual values yi. It provides a measure of the average magnitude of errors. Several
works have utilized MAE for regression tasks [235]. Root Mean Squared Error (RMSE) is
similar to MAE, but it takes the square root of the average squared differences between the
predicted values and the actual values. RMSE penalizes larger errors more significantly. It
has been used, for example, in anomaly detection [166]. Mean Absolute Percentage Error
(MAPE) measures the average percentage difference between the predicted values and the
actual values. It is particularly useful when evaluating the accuracy of predictions relative
to the scale of the target variable [181]. R-squared (R2) is a metric used to represent the
proportion of variance in the target variable that is explained by the predicted values. R2
ranges from 0 to 1, where a value of 1 indicates a perfect fit and a value of 0 indicates no
improvement over a naive baseline [269]. Finally, the explained variance score, similar to R2,
measures the proportion of variance in the target variable that is explained by the predicted
values. However, it is based on the variance of the residuals and can be used as an alternative
metric for evaluation [269].
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2.6.3 Other Metrics

In addition to the commonly used regression and classification metrics, there exists a set of
specialized metrics that are particularly relevant for evaluating the effectiveness and perfor-
mance of specific incident management tasks, such as fault localization, incident correlation,
and incident deduplication. These metrics are often specifically designed for incident man-
agement purposes and may have limited applicability outside of this domain. Some of these
metrics have been developed in alignment with specific research studies, while others are
unique to the field of incident management.

In fault localization research, several specific metrics are utilized to evaluate the effec-
tiveness of different techniques. One such metric is T-Score, which estimates the percentage
of code that a programmer can ignore before identifying the first faulty location in the pro-
gram [253, 190]. Another metric commonly used is EXAM (Expense metric), which measures
the percentage of program statements that need to be examined before encountering the first
faulty statement [137, 139]. In addition to these metrics, other research work have also em-
ployed the Wilcoxon signed-rank test [300] as a statistical evaluation method. This test serves
as an alternative to the paired Student’s t-test when the assumption of a normal distribu-
tion in the population cannot be made. In their study, Wong et al. [302] utilize this test to
compare the effectiveness of two techniques, denoted as α and β. The test examines the one-
tailed alternative hypothesis that β requires the examination of an equal or greater number
of statements compared to α. By determining the confidence level at which the alternative
hypothesis can be accepted, one can assess whether technique α is statistically more effective
than β.

In the field of software defect prediction, there are cases where it is more useful to evaluate
the classes based on their predicted number of defects in a ranking manner. One approach
to assess the performance of the prediction model is by calculating Spearman’s correlation
coefficient [273], as demonstrated in the study conducted by [74]. Another method used in this
context is the cumulative lift chart, which compares the performance of two different models
or strategies by plotting the cumulative gain against the number of cases. This approach has
been also employed by [96].

In the domain of Intrusion Detection Systems within practical network settings, Mirhei-
dari et al. [215] conducted a comprehensive comparison of alert correlation algorithms. The
study aimed to evaluate the performance of these algorithms using both quantitative and
qualitative measures. The quantitative assessment focused on accuracy, while the qualitative
evaluation delved into additional aspects such as Extendibility and Flexibility. These aspects
refer the algorithm’s adaptability, localizability, and capacity to adjust to new conditions.
Furthermore, the evaluation considered the algorithm’s ability to parallelize tasks and the
associated memory requirements. This evaluation aligns with the desirable attributes empha-
sized in Section 2.3, which outlines the desired characteristics for AIOps solutions in incident
management.

In the context of incident triage and deduplication, specific performance metrics have been
adopted to improve the evaluation of these processes. These metrics include Mean-reciprocal
rank [72], Recall rate of order k [262], and Average Hit Ratio [6] [289, 148]. It is noteworthy
that there are some metrics specifically designed to assess the process rather than a particular
algorithm or data-driven approach. While we previously discussed metrics such as Mean Time
To Report (MTTR), Mean Time To Engage (MTTE), Mean Time to Diagnose (MTTD), and
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Mean Time to Mitigate (MTTM), other research works [64, 242] have introduced alternative
terminology. For example, MTTR may be referred to as Mean Time to Repair, and MTTD
as Mean Time to Detect. Furthermore, there are additional valuable measures that have been
considered, such as Mean Time Between Failures (MTBF) [45], which evaluates the average
duration between consecutive incidents or failures to assess system reliability.

2.7 Review of AIOps Approaches for Incident Management

As mentioned earlier, the scattered nature of AIOps solutions poses challenges when it
comes to comparing and applying them effectively. Consequently, several review papers have
concentrated on specific tasks such as anomaly detection [123, 335, 54, 70], failure predic-
tion [260, 78, 96, 36], incident triage [6, 326], and root cause analysis [303, 215, 272]. While
it is worth noting that some research studies, similar to ours, have conducted comprehensive
reviews of the incident management process (e.g., [232, 256, 40]), they may not cover all
the necessary tasks or lack clear terminology, well-defined desiderata, and requirements for
constructing an effective AIOps model. In the subsequent sections, we will delve into the
most pertinent works for each task within the incident management procedure. For detailed
mappings of these research works as well as review, experience, and use-case study papers to
the categorization presented in Section 2.4, please refer to our Survey [250].

2.7.1 Incident Detection

Incident detection approaches are reactive methods of incident management that aim to track
and identify abnormal states or behaviors in a system. Their purpose is to either anticipate
failures before they occur or mitigate the consequences of failures after they have happened.
This is driven by the understanding that, despite employing advanced prediction techniques,
it is impossible to completely eliminate the occurrence of failures. These methods also aid in
comprehending the causal relationships, as well as understanding the temporal characteristics
that lead to incidents. Automated incident detection typically requires a variety of monitoring
tools, ranging from basic print statements (which form the fundamental unit of system logs)
to more complex instrumentation techniques or entire frameworks [232]. Incident detection
methods often leverage unsupervised learning approaches, primarily because acquiring high-
quality, sufficient, and balanced data labels poses significant challenges. Among the notable
techniques employed in this context, we find clustering methods, dimensionality reduction
techniques, and auto-encoders. Additionally, other approaches such as Graph Mining and
Statistical Models, have been leveraged in this context.

At the technical layer, specifically at the network level, Lakhina et al. [159] propose an
anomaly detection method for network traffic analysis using SNMP data. The authors apply
Principal Component Analysis (PCA) to link flow measurements collected over time to sepa-
rate traffic into normal and anomalous subspaces. Anomalies are identified by reconstructing
new observations using abnormal components. If the reconstruction error exceeds a prede-
fined threshold based on explained variance, the data point is considered anomalous. In a
subsequent work [160], a similar approach incorporating additional features such as source
and target destination address or port is proposed, using traffic feature distribution entropy.
More recently, Deng and Hooi [84] addresses the challenge of detecting anomalous events in
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the context of cyber security attacks by analyzing high-dimensional time series data, specif-
ically sensor data. The authors propose an approach that combines structure learning with
graph neural networks. Furthermore, they leverage attention weights to provide explainabil-
ity for the detected anomalies.

At the hardware level, accurate methods for anomaly detection rely on analyzing multi-
variate time series system metrics using auto-encoders. Multi-Scale Convolutional Recurrent
Encoder-Decoder (MSCRED) [325] constructs multi-scale signature matrices to represent dif-
ferent system statuses at various time steps. It utilizes a convolutional encoder to capture
inter-sensor correlations and an attention-based Convolutional Long-Short Term Memory
(ConvLSTM) network to identify abnormal time steps by capturing temporal patterns. Sim-
ilarly, OmniAnomaly [275] focuses on capturing normal patterns in multivariate time series
using Variational auto-encoders (VAE), by learning robust representations through tech-
niques like stochastic variable connection and planar normalizing flow. This approach pro-
vides interpretations for detected entity anomalies based on the reconstruction probabilities
of constituent univariate time series. USAD [19] employs adversarial training in the auto-
encoder architecture to effectively isolate anomalies while maintaining fast training speeds.
Experimental results focus also on the scalability and robustness of the approach. On the
other hand, SR-CNN [252] has been the first attempt to propose an approach that combines
Spectral Residual (SR) and Convolutional Neural Network (CNN) techniques.

CloudPD [267] introduced conventional machine learning techniques for anomaly detec-
tion in cloud environments, addressing both the application and functional layers. The ap-
proach involved utilizing various measures at the virtual machine (VM) and application ma-
chine levels, including operating system variables and application performance metrics. The
paper proposed three unsupervised machine learning methods: k-nearest neighbors (k-NN),
Hidden Markov Models (HMMs), and k-means clustering. In the context of anomaly de-
tection for seasonal key performance indicator (KPI) time series, Donut [317] employs deep
Variational Autoencoders (VAEs) and provides solid theoretical explanations. The Donut
framework can operate effectively in both unsupervised and semi-supervised settings. No-
tably, the authors emphasize the importance of model explanations and propose a novel
interpretation in the latent z-space to enhance understanding of the model outcomes. F-
Fade [55] is an approach to detect anomalies in edge streams, which are commonly used to
capture interactions in dynamic networks. It proposes a frequency-factorization technique
to model the time-evolving distributions of interaction frequencies between node pairs. This
approach has proven to effectively operate in an online streaming setting while requiring
constant memory. In a recent study, Xie et al. [314] introduced Trace-VAE as a solution for
handling microservice traces. They proposed a novel approach using a dual-variable graph
variational autoencoder to effectively model the intricate structures of the traces and detect
anomalies.

Log-based approaches have emerged as effective methods for detecting anomalies in func-
tional and business services. Fu et al. [103] proposed a clustering-based technique in which
log entries were mapped to their corresponding template versions, enabling the identification
of line templates. Subsequently, a finite state machine (FSM) was learned to model program
workflows based on the log evidence. This FSM-based model facilitated the verification of
correct program execution and the detection of software problems. In another study by [318],
text analysis and information retrieval techniques were applied to console logs and source
code for anomaly detection in large-scale data centers. State variables and object identifiers
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were automatically extracted from parsed logs, and their frequency across different docu-
ments was analyzed using principal component analysis (PCA) and term inverse-document
frequency (TF-IDF). Anomalies were detected using a threshold-based rule on the reconstruc-
tion error. More recent work has focused on sequential recurrent neural networks (RNNs).
DeepLog [91] introduced the use of long short-term memory (LSTM) networks to learn pat-
terns from logs and predict the probability distribution of the next log key based on the
observation of previous log keys. An abnormal log key was identified if it did not appear in
the top-k keys ranked by probability. The paper also proposed an online learning strategy
based on user feedback and attempted to provide explanations using a finite-state machine.
LogAnomaly [209], while adopting the language model approach, employed template embed-
dings (template2vec) to extract semantic information and automatically match and merge
similar log keys. This process eliminated the need for human feedback. LogRobust [330]
addressed the challenge of log instability caused by changing log statements and noise in log
processing. It utilized LSTM layers, semantic vectors, and attention mechanisms to compute
an anomaly score directly, rather than predicting the next probable log keys.

2.7.2 Incident Prediction

Incident prediction approaches are proactive methods designed to prevent failures by address-
ing both static aspects, such as source code, and dynamic aspects, such as the availability of
computing resources. The ultimate objective is to suggest preventive measures or take imme-
diate actions as early as possible. These strategies vary extensively regarding the taxonomy
we proposed (i.e., the scoop, data used, area of application, etc.).

Software Defect Prediction. SDP is a method used to estimate the likelihood of en-
countering a software bug within a functional unit of code, such as a function, class, file, or
module. The core assumption linking SDP to failure occurrence is that code with defects
leads to errors and failures during execution. Traditionally, defect-prone software is identified
using code metrics to construct defect predictors, as discussed in 2.5. Nagappan et al. [223]
propose an SDP approach based on code complexity metrics. However, they highlight the
challenge of multicollinearity among these metrics, making the problem more complex. To
address this, they employ Principal Component Analysis (PCA) to obtain a reduced set of
uncorrelated features and use linear regression models for post-release defect prediction. Men-
zies et al. [211], shift their focus from static code metrics to the choice of prediction models,
advocating for the use of Naive Bayes with logarithmic features. While early SDP contribu-
tions primarily focused on single-release perspectives, another category of works, known as
changelog approaches [220, 236], concentrate on software history as a more influential factor
for estimating defect density. In addition to introducing the benchmark SDP dataset AEEEM
in [96], the authors compute various change-related metrics, such as the number of revisions,
refactoring, and bug fixes per file, which are correlated with the number of future defects.
Their approach relies on code entropy, churn, and a Learning to Rank (LTR) method. Nam
et al. [224] address transfer learning for software defects by employing an extended version
of Transfer Component Analysis (TCA) to learn common latent factors between source and
target projects.

Critiques of traditional code metrics point out their handcrafted and simplistic nature. An
alternative approach involves parsing the source code using ASTs. Wang et al. [295] question
the ability of code metrics to capture semantics and distinguish between code regions with the
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same structure but different semantics. They propose using latent semantic representations
and training a Deep Belief Network (DBN) on AST-parsed code to learn semantic features.
More recently, Li et al. [173] explore the use of Convolutional Neural Networks (CNN) for
SDP. They extract a subset of AST nodes representing various semantic operations during
parsing. These nodes are mapped to numerical features using embeddings and fed into a 1D
convolutional architecture.

Software Aging and Rejuvenation. Software aging is a phenomenon whereby a soft-
ware system gradually degrades in performance and reliability over time. Known causes of
software aging include memory leaks and bloats, unreleased file locks, data fragmentation,
and numerical error accumulation [51]. Garg et al. [106] propose a method for estimating the
time-to-exhaustion of various system resources, including free memory, file, and process table
sizes, and used swap space. They utilize regression techniques and seasonal testing to iden-
tify trends and quantify the exhaustion time. In a related study, Vaidyanathan and Trivedi
[285] explore the impact of software aging resulting from the current system workload. They
develop a semi-Markov reward model based on available workload and resource data, where
different workload scenarios are represented as model states. The association to a specific
state is determined using k-means clustering. To estimate the time-to-exhaustion of memory
and swap space, a non-parametric regression technique is employed separately for each work-
load state. The challenge of non-linear and piece-wise linear resource consumption is tackled
by [8] by utilizing an ensemble of linear regression models. These models are selected using
a decision tree based on the same input features as the regression model, which consists of a
combined set of hardware and software host metrics.

Hardware Failures Prediction. In large-scale computing infrastructures, ensuring hard-
ware reliability is crucial for achieving service availability goals. However, due to the sheer
number of components involved and the necessity to use commodity hardware in data cen-
ters, hardware failures pose a significant challenge. For example, Google has reported that
20-57% of disks experience at least one sector error over a 4-6 year period [213]. Hard drives
are the most frequently replaced components in large cloud computing systems, and they
are a leading cause of server failure [291]. To address this, hard-drive manufacturers have
implemented self-monitoring technologies like SMART metrics in their storage products. In
the approach presented by [336], Hidden Markov and Semi-Markov Models (HMM/HSMM)
are used to estimate likely event sequences based on SMART metric observations from a
dataset of around 300 disks (with approximately two-thirds being healthy). Two models,
one trained from healthy disk sequences and the other from faulty disk sequences, are used
to estimate the sequence log-likelihood at test time, with the class being determined by the
highest score. Wang et al. [298] propose a similarity-based detection algorithm that selects
relevant SMART features using Minimum Redundancy Maximum Relevance (mRMR) and
projects the input data into a Mahalanobis space constructed from the healthy disk popula-
tion. This approach aims to detect faulty disks that deviate more from the distribution. Xu
et al. [315] introduce the use of Recurrent Neural Networks (RNNs) to model the long-term
relationships in SMART data. Unlike binary classification approaches, their model is trained
to predict the health status of disks, providing additional information on the remaining use-
ful life and serving as a ranking approach. These approaches are typically used in an online
setting after an offline training step. However, integrating additional data and updating the
characteristics of faulty disks as new failures occur presents a challenge. To address this, the
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approach presented by [312] proposes the use of Online Random Forests, a model that can
adaptively evolve with changing data distributions through online labeling.

In terms of other hardware components, FailureSim [79] presents an approach for assessing
the status of hardware in cloud data centers using multi-layer perceptrons and RNNs. Their
method focuses on assessing 13 different host failing states associated with specific compo-
nents such as CPU, memory, and I/O. On the other hand, Zhang et al. [328] address network
switch failures. Their method, based on system log history, involves extracting templates
from logs and correlating them with faulty behavior. They compare their extraction method
and similar approaches for the extraction tasks and then train a Hidden Semi-Markov Model
using the obtained templates.

Remaining Useful Lifetime Estimation. The Remaining Useful Life (RUL) is a crucial
real-time performance indicator for operating systems during their operational lifespan. It
signifies the time remaining until the system becomes no longer functional. Accurate RUL
estimation is vital for planning condition-based maintenance tasks, aiming to minimize sys-
tem downtime. Numerous data-driven approaches have been proposed to model the intricate
behavior of system components. According to [36], Long Short-Term Memory (LSTM) is
considered a highly suitable tool for handling dynamic data in RUL problems. For example,
in a study by [337, 308], a vanilla LSTM model was employed to predict the RUL of aircraft
engines. In another research conducted by [203], a hybrid approach combining Convolutional
Neural Networks (CNN) and LSTM was used. Reinforcement Learning has also been utilized
to enable models to update themselves based on learned experiences, even from incorrect
decisions. Simulation environments are particularly advantageous in this context. For in-
stance, in [31], a Transfer Learning approach was developed. This approach learned from
states, actions, and rewards to generate an optimal reward policy. These algorithms focus on
sequentially predicting RUL for a specific type of pumping system.

Software Failure Prediction. Predicting system failures from an application perspective
involves exploring potential failures that may occur in various aspects, such as jobs, tasks,
processes, VMs, containers, or nodes. Existing approaches tackling this problem predom-
inantly rely on system metrics, service states, and topology. For instance, Cohen et al.
[69] propose an approach based on Tree-augmented Bayesian Networks (TANs) to associate
observed variables with abstract service states. This allows for forecasting and detecting Ser-
vice Level Objective (SLO) violations and failures in three-tiered Web services. The system
observes system metrics like CPU time, disk reads, and swap space, modeling their inter-
dependencies. Through a greedy strategy, the optimal graph structure, including the most
relevant input metrics, is selected. While originally developed for detection, this approach
can also be utilized for diagnosing failures due to the interpretability properties of TANs. A
framework for predicting system availability in datacenters has been proposed by [53], utiliz-
ing auto-regressive models and fault-tree analysis. This framework detects component-level
symptoms, such as high CPU temperature, bad disk sectors, and memory exhaustion, which
serve as the leaves of the fault tree. By considering these symptoms and the tree structure,
a model of dependencies in combinational logic determines the availability state determinis-
tically, allowing for the tracking of errors before they lead to failures. The HORA prediction
system [241] adopts a holistic approach by leveraging architectural knowledge in conjunction
with online KPIs data to predict Quality of Service (QoS) violations and service failures in
distributed software systems. Bayesian Networks are employed to establish component depen-
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dency and failure propagation models. These models associate component failures, predicted
from system metrics using auto-regressive predictors, with system-wide problems. LSTM
networks are also utilized in a comprehensive characterization study conducted by [132] on a
workload trace dataset from Google. In this study, failures are predicted at the job and task
level, where a job consists of multiple tasks, with each task representing a single-machine
command or program. Failures are predicted based on resource usage, performance data,
and task information, including completion status, and user/node/job attributes.

2.7.3 Incident Prioritization

As a large number of incidents can be reported simultaneously, it becomes time-consuming
and resource-intensive to handle all of them at once. However, certain incidents require
immediate attention due to their importance or severity. To address this issue, various data-
driven approaches have been proposed to rank incidents or alerts based on prioritization
factors. Some of these techniques can also be applied to other scenarios, as they are not solely
dedicated to ranking but also involve detection and diagnosis mechanisms. For instance, Tian
et al. [282] introduce a machine learning-based approach that recommends priority levels for
bug reports by considering factors such as temporal information, textual content, author
details, related reports, severity, and product information. These factors are extracted as
features, which are then used to train a discriminative model capable of handling ordinal
class labels and imbalanced data. In another study by [60], a large-scale empirical analysis of
incidents collected from 18 real-world online service systems at Microsoft reveals that many
incidents are considered insignificant and not prioritized for immediate resolution, even after
identifying their root cause. These incidents are referred to as Incidental Incidents. To
address this issue, the authors propose DeepIP (Deep learning based Incident Prioritization),
which utilizes historical incidents containing incident descriptions and topology information
to prioritize incidents. DeepIP employs an attention-based Convolutional Neural Network
(CNN) specifically designed to identify incidental incidents.

To tackle the problem of Threat Alert Fatigue, Hassan et al. [120] present NODOZE,
a ranking system that identifies suspicious activities. The volume of generated alerts often
exceeds the capacity of cyber analysts to investigate them, resulting in the risk of missing
true attack alerts among false alarms. NODOZE constructs a causal dependency graph for
each alert event using contextual and historical information of threat alerts. Anomaly scores
are assigned to the edges based on the frequency of related events occurring in the enterprise,
and these scores are propagated along neighboring edges using a novel network diffusion
algorithm. The aggregate anomaly score is then used for triage. Zhao et al. [334] propose
AlertRank, an automatic and adaptive framework for identifying severe alerts. AlertRank
utilizes a range of powerful and interpretable features, including textual and temporal alert
features, as well as univariate and multivariate anomaly features for monitoring metrics. The
XGBoost ranking algorithm is employed to identify severe alerts among all incoming alerts,
and novel methods are used to obtain labels for training and testing.

2.7.4 Incident Assignment

Numerous data-driven approaches have been proposed to optimize the process of incident
assignment by automatically assigning incidents to the appropriate service team and individ-
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ual. Typically, these approaches involve training a classifier using historical incident reports
that contain textual information, topology data, or prioritization scores. The trained clas-
sifier is then used to assign new incidents. In a semi-supervised text classification approach
presented by [319], the authors address the issue of limited labeled incident reports in existing
supervised methods. They combine a naive Bayes classifier with expectation-maximization,
leveraging both labeled and unlabeled incident reports. By iteratively labeling unlabeled inci-
dent reports, they improve the classifier’s performance. Additionally, they employ a weighted
recommendation list that considers the weights of multiple developers during classifier train-
ing to enhance performance. More recently, Lee et al. [165] were the first to propose the
use of a Convolutional Neural Network (CNN) and pre-trained word embeddings for inci-
dent assignment. In another study, Xi et al. [309] propose iTriage, an incident assignment
approach that considers three crucial aspects: textual content, metadata (topology), and
tossing sequence of incident reports. They utilize a sequence-to-sequence model to jointly
learn features from textual content and tossing sequence, followed by a classification model
that integrates features from textual content, metadata, and tossing sequence. DeepCT [59]
is another approach highlighting that incident triage is a continuous process that incorporates
intensive discussions among engineers. They use a GRU-based model with an attention-based
mask strategy and a revised loss function to incrementally learn knowledge from discussions
and update incident triage results.

DeepTriage [238] have been proposed to address incident assignment challenges such as
imbalanced incident distribution, diverse input data formats, scalability, and gaining engi-
neers’ trust in the incident assignment process. The approach combines multiple machine
learning techniques, including gradient-boosted classifiers, clustering methods, and deep neu-
ral networks, in an ensemble to recommend the responsible team for the incident.

2.7.5 Incident Classification

As discussed earlier, the primary objective of incident classification is to enhance the diag-
nosis of incidents, thereby centralizing the efforts of the maintenance team. However, this
category has often been overlooked in the review process and is generally associated with
deduplication, triage, or prioritization. Nevertheless, there exist research works that align
perfectly with this category, offering approaches to organize a large volume of incidents or
alerts into representative sets of issues or topics. One such study by [332] addresses the
handling of alert storms. Their approach comprises two stages: alert storm detection and
alert storm summary. In the alert storm summary stage, irrelevant alerts are filtered out
using an alert denoising method that learns alert patterns from the system’s normal states.
Alerts reflecting service failures are then clustered together based on textual and topological
similarities. From each cluster, the most representative alert is selected, forming a concise set
of alerts for investigation. Another notable contribution, presented by [183], proposes a Hid-
den Markov Random Field (HMRF) based approach for automatically identifying recurrent
performance issues in large-scale software systems. Their approach formulates the problem as
an HMRF-based clustering problem, which involves learning metric discretization thresholds
and optimizing the clustering process.

In the context of classifying textual incident reports, Xia et al. [310] introduce a novel
framework for bug triaging that utilizes a specialized topic modeling algorithm called multi-
feature topic model (MTM). MTM extends Latent Dirichlet Allocation (LDA) by considering
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product and component information from bug reports, effectively mapping the term space
to the topic space. They also introduce an incremental learning method named TopicMiner,
which leverages the topic distribution of a new bug report to assign an appropriate fixer
based on the fixer’s affinity to the topics. Yang et al. [321] also employ LDA to extract
topics from bug reports and identify related bug reports for each topic. Their approach
first determines the topics of a new bug report and then utilizes multiple features (such as
component, product, priority, and severity) to identify similar reports that share the same
set of features as the new bug report.

2.7.6 Incident Deduplication

Incident deduplication detection aims to identify the most similar incidents among a set of
historical incidents, which exhibit slight differences but primarily address the same problem.
This work can be categorized into basically two main categories.

The first category focuses on presenting techniques for detecting duplicate incident re-
ports using their descriptions and characteristics. Hiew [126] made the initial attempt to de-
tect duplicate bug reports based on the textual information of incident reports. His approach
transforms the textual part of incident reports into word vectors, calculates the similarity
between them, and ranks candidate duplicate incident reports based on their similarity to a
given incident. Runeson et al. [257] conducted another pioneering work where they consid-
ered additional textual features such as software versions, testers, and submission dates, and
performed large-scale experimental studies on industrial projects. Sureka and Jalote [278]
proposed a novel approach to detecting duplicate incident reports based on N-grams. Ad-
ditionally, Banerjee et al. [24] proposed considering word sequences when calculating the
textual similarity between incident reports.

The second category primarily relies on designing similarity metrics that can reflect the se-
mantic crash similarity between execution reports, specifically stack traces. Lerch and Mezini
[171] employed the TF-IDF-based scoring function from Lucene library [196]. Sabor et al.
[258] proposed DURFEX system which uses the package name of the subroutines and then
segment the resulting stack traces into N-grams to compare them using the Cosine similar-
ity. Some alternative techniques propose to compute the similarity using derivatives of the
Needleman-Wunsch algorithm [228]. In [48], the authors suggested adjusting the similarity
based on the frequency and the position of the matched subroutines. Dang et al. [75] proposed
a new similarity measure called PDM in their framework Rebucket to compute the similarity
based on the offset distance between the matched frames and the distance to the top frame.
More recently, TraceSim [289] has been proposed to take into consideration both the frame
position and its global inverse frequency. Moroo et al. [219] present an approach that com-
bines TF-IDF coefficient with PDM. Finally, we outline some earlier approaches that used
edit distance, as it is equivalent to optimal global alignment [26, 216].

2.7.7 Root Cause Analysis

Root cause analysis approaches aim to determine the underlying faults that give rise to soft-
ware bugs, errors, anomalies, or hardware failures. More concretely, root cause analysis is a
diagnostic task that needs to be performed when reporting incidents, either after or in par-
allel with the triage process. In complex systems, it is necessary to first isolate and restrict
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the analysis to the faulty component or functionality, a process known as Fault Localization.
Specifically, Fault Localization involves identifying a set of components (devices, hosts, soft-
ware modules, etc.) that serve as the initial trigger for an error within the system. It is
important to note that fault localization can operate at different layers, including the phys-
ical, application, and functional layers. To simplify, we can differentiate between two types
of fault localization, technical fault localization (which encompasses network and hardware
layers) and software fault localization (which includes functional and business layers). Soft-
ware fault localization centers around the analysis of the source code, regardless of whether
the software in question is deployed on numerous or just a few machines. Additionally, we
explore other techniques for root cause diagnosis.

Technical Fault Localization. FChain [230] is a fault localization system designed for
pinpointing faulty components in an online cloud environment. It operates as a black-box
solution, relying on low-level system metrics to detect performance anomalies. Components
displaying anomalies are then sorted based on manifestation time and examined sequentially
using a discrete Markov model. Various techniques, such as analyzing interdependencies be-
tween components and studying the overall propagation trend, are used to filter out spurious
correlations. Hotspot [277], on the other hand, utilizes Monte Carlo Tree Search (MCTS) to
efficiently explore attribute combinations and measure their correlation with sudden changes
in the Page View metric. Similarly, Squeeze [185] proposes a comparable method using a
combined top-down and bottom-up search strategy. It introduces a novel correlation metric
called Generalized Potential Score (GPS). These enhancements enable Squeeze to localize
root causes even in cases with lower statistical significance. Li et al. [179] also apply a pat-
tern mining approach to structured logs in order to discover association rules of the form
X ÝÑ Y , using the FP-growth mining algorithm. Here, Y represents a predefined attribute
combination that describes a failure. The authors also present five different use cases that are
applicable in large-scale service infrastructures. With Sherlock, [23] focus on localizing the
sources of performance problems in enterprise networks by constructing probabilistic infer-
ence graphs based on the observation of packets exchanged within the network infrastructure.
The nodes of the inference graph are divided into three types: root cause nodes (correspond-
ing to internal IP entities), observation nodes (corresponding to clients), and meta-nodes
that model the dependencies between the other two types. Each node is associated with a
categorical random variable that represents its current state (up, troubled, down), which is
influenced by other nodes through dependency probabilities. The inference graph is learned
by observing the packets exchanged between nodes during normal operation. Once the graph
is constructed, measurements from the observation nodes can be utilized to obtain a set of
state-node assignment vectors, which correspond to the estimated operational state of the
network.

Software Fault Localization. A software fault localization approach typically yields a set
of suspicious statements or components. In contrast to SDP, this method relies on observed
failure patterns obtained from production runs and unit tests, rather than predictions of the
likelihood of a code component entering a defective state.

Numerous approaches have been developed to tackle the problem of software fault local-
ization. One prominent category is program spectrum-based techniques, which rely on the
similarity between program execution profiles obtained from execution traces. These profiles
represent both successful and faulty runs of programs. For example, Renieres and Reiss [253]
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employ nearest neighbor search to compare a failed test with a similar successful test, using
the Hamming distance as a measure of similarity. Another well-known technique, Taran-
tula [138], utilizes coverage and execution results to compute the suspiciousness score of each
statement. This score is based on the number of failed and successful test cases covering the
statement, as well as the total number of successful and failed test cases. Subsequent re-
search in this field has proposed refinements to the suspiciousness scoring, such as Ochiai [1],
Crosstab [301] and DStar [302].

Statistical debugging approaches have also been explored. Liu et al. [190] introduce a sta-
tistical debugging method called SOBER, which analyzes predicate evaluations in failing and
passing runs. By estimating the conditional probability of observing a failure given the ob-
servation of a specific predicate, the approach identifies predicates with higher probabilities,
indicating their potential involvement in software bugs or their proximity to them. Abreu
et al. [2] later proposes a Bayesian reasoning approach known as BARINEL, which incorpo-
rates a probabilistic framework for estimating the health probability of components. This
model, based on propositional logic, captures the interaction between successful and failed
components. Furthermore, data mining techniques have shown promise in fault localization
due to their ability to unveil hidden patterns in large data samples. Cellier et al. [52] dis-
cuss a combination of association rules and Formal Concept Analysis as a means to assist
in fault localization. This technique aims to identify rules that associate statement coverage
with corresponding execution failures, measuring the frequency of each rule. A threshold is
set to determine the minimum number of failed executions covered by a selected rule. The
generated rules are then partially ranked using a rule lattice, and the ranking is examined to
locate the fault.

Other RCA Techniques. Many other approaches have been proposed to assist in the di-
agnosis of root causes to cope with the challenging inherent complexity and inter-dependency
between components in software systems. For instance, X-Ray [14], is a tool that addresses
the challenge of troubleshooting performance issues by providing insights into why certain
events occurred during performance anomalies. The contribution of the described technique
is indicated as performance summarization, which works by instrumenting binaries while the
applications execute. It attributes performance costs to each basic block and utilizes dy-
namic information flow tracking to estimate the likelihood that a block was executed due to
each potential root cause. It then summarizes the overall cost of each potential root cause
by aggregating the per-block cost multiplied by the cause-specific likelihood over all basic
blocks. The technique can also be used differentially to explain performance differences be-
tween two similar activities. Another work conducted by [261] utilizes Hierarchical Hidden
Markov Models (HHMM) to associate resource anomalies to root causes in clustered resource
environments, on the different levels of container, node, and cluster. Markov models are
constructed on different levels, trained with the Baum-Welch algorithm using response time
sequences as observations.

2.7.8 Incident Correlation

Research on incident correlation typically focuses on studying correlations between alerting
signals, occurring incidents, or alerting signals and incidents. Existing correlation algorithms
primarily analyze the correlation of raw key performance indicators (KPIs) or transform the
KPIs into events and analyze their correlation. For instance, [193] construct dependency re-
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lationships among system components by mining co-occurrence patterns in log events using
association rule mining algorithms. Luo et al. [199] formulate the correlation problem as a
two-sample problem to assess the correlation between KPI time series and event sequences
in online service systems. They employ the nearest neighbors method to evaluate the exis-
tence of the correlation and analyze temporal relationships and monotonic effects Luo et al.
[199]. Wu et al. [306] propose a methodology and efficient algorithm for discovering leaders
among a set of time series based on lead-lag relations. By analyzing lagged correlations and
constructing a graph-based representation, they compute a leadership rank that quantifies
the influence of each time series. CoFlux [276] is an unsupervised approach for correlat-
ing Key Performance Indicators (KPIs) in internet service operations management. CoFlux
addresses the challenge of separating fluctuations from normal variations in KPIs with differ-
ent structural characteristics and determines correlation, temporal order of fluctuations, and
directional consistency between KPIs using robust feature engineering.

Correlating alerts has been an important concern in Intrusion Detection Systems. For
example, GhasemiGol and Ghaemi-Bafghi [108] utilize alert partial entropy to determine the
probability of alerts indicating the same information. Density-based spatial clustering of
applications with noise (DBSCAN) is used to group alerts. Tan et al. [279] propose a multi-
variate correlation analysis system for attack detection by extracting geometric correlations
between characteristics of network traffic. Their solution employs anomaly-based detection,
focusing on legitimate network traffic patterns, and utilizes the Mahalanobis distance to mea-
sure similarity between traffic records. Bateni and Baraani [27] present an Enhanced Random
Directed Time Window (ERDTW) alert selection policy based on sliding time windows anal-
ysis. ERDTW classifies time intervals into relevant (safe) and irrelevant (dangerous) based
on attributes described in mathematical logic rules and expressions. For example, if a time
interval contains numerous alerts with the same IP address, it is more likely to be flagged as
dangerous.

2.7.9 Incident Mitigation

Through the triage and diagnosis steps of incident management, valuable knowledge is gained,
including the identification of incident scope, retrieval of historical duplicates, and analysis
of root causes. This knowledge enables the initiation of automatic repair actions known as
mitigation or remediation actions. Incident mitigation has received less attention compared
to reporting and diagnosis tasks, as it is often a consequence of the outcomes of those pro-
cesses. Once the underlying problem has been clarified through diagnosis, the recovery steps
become readily identifiable and attainable without the need for complex models. However,
our commitment extends to providing a list of research works that focus on resolution tasks,
even when triage or diagnosis are involved.

In a study conducted by [338], similarity-based algorithms are proposed to suggest resolu-
tions for recurring problems based on incident tickets. The approach retrieves k suggestions
for ticket resolution using a k-NN approach. Similarity between tickets is evaluated using a
combination of numerical, categorical, and textual data, with individual and aggregate simi-
larity measures defined. The solution is further extended to address false-positive tickets in
both historical and incoming data. This is achieved by classifying tickets as real or false using
a binary classifier and weighing ticket importance based on the prediction outcome. The final
solution recommendation considers both importance and similarity. The paper also explores
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ideas for improving feature extraction, such as topic discovery and metric learning. Wang
et al. [293] propose a cognitive framework based on ontologies to construct domain-specific
knowledge and suggest recovery actions for IT service management tickets. The approach
involves analyzing free-form text in ticket summaries and resolution descriptions. Domain-
specific phrases are extracted using language processing techniques, and an ontology model is
developed to define keywords, classes, relations, and a hierarchy. This model is then utilized
to recommend resolution actions by matching concept patterns extracted from incoming and
historical tickets using similarity functions like the Jaccard distance. In a work conducted by
Meta [184], natural language processing techniques are employed to predict repair actions for
hardware failures based on closed incident tickets. Through the analysis of raw text logs, up
to five repair actions are recommended. Ding et al. [89] propose an automated mining-based
approach for suggesting appropriate healing actions. The method involves generating signa-
tures of an issue using transaction logs, retrieving historical issues based on these signatures,
and suggesting a suitable healing action by adapting actions used for similar past issues.

2.8 Discussion

As mentioned in 1.2, despite the existence of a wide range of AIOps solutions proposed to
address various incident management tasks using advanced artificial intelligence techniques,
certain limitations and gaps have been identified. In this thesis, we aim to address these
gaps by applying specialized techniques in specific use-cases, which can be easily extended
and transferred to other domains. One such technique is Subgroup Discovery, a promising
data mining approach employed to tackle data quality issues, including imbalanced, noisy, and
complex data. By utilizing Subgroup Discovery, we propose an alternative approach to detect
and diagnose incidents, moving away from conventional classifiers that may require revision
and can be less effective when deployed in real-world industrial scenarios. Additionally, we
incorporate new techniques of explainable artificial intelligence, considering the complexity
of explanations to avoid overwhelming users. This ensures that the explanations provided are
both interpretable and actionable. Addressing performance challenges, we focus on a specific
issue related to crash report deduplication triage, driven by industrial needs. To tackle
this problem efficiently, we employ a fast and effective retrieval technique called Locality
Sensitive Hashing embedded into a deep Siamese neural network to support a wide range of
crash bucketing similarity measures.
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Chapter 3

Introduction to Subgroup Discovery with
a Practical Application to SQL Workload
Analysis

Subgroup Discovery and its generalization, Exceptional Model Mining, aim to provide
sophisticated frameworks for the extraction of insightful and interpretable patterns from
vast datasets characterized by abnormal distributions in relation to the overall data.
These frameworks are designed to address specific target problems within specialized
contexts. Notably, they have demonstrated remarkable efficiency in handling complex,
diverse, and extensive datasets, while offering flexibility in user interaction and the in-
tegration of domain-specific knowledge. Despite their successful application in diverse
domains such as physics, education, and neuroscience, it is surprising that their utiliza-
tion in the context of AIOps for incident management tasks has received relatively less
attention compared to predictive models. This is particularly astonishing considering
the inherent challenges posed by data quality, complexity, and the difficulties in train-
ing accurate models in real-production scenarios. Therefore, our primary objective is to
formally introduce and provide an overview of this domain, emphasizing its relevance
in the field of AIOps. Firstly, we establish the foundational elements that are crucial
for tackling any related data mining task. These definitions will serve as a solid foun-
dation for the subsequent contributions presented in this thesis, with a particular focus
on Chapters 3, 4, and 5. Subsequently, we explore a practical and direct application of
these concepts to a real-world problem involving the identification of SQL data patterns
that exhibit correlations with various performance degradation issues.

67
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3.1 Introduction

”It is a very sad thing that nowadays there is so little useless information”1. This quote
by Oscar Wilde serves as a reminder that the value of information in terms of its diversity,
volume, and velocity has far surpassed what was witnessed over a century ago when its worth
as a precious commodity was already acknowledged. When it comes to the new digital ERA
and AIOps environments, enterprises are equipped with powerful and scalable tools capable of
collecting enormous amounts of telemetry data, ranging from terabytes to even petabytes, on
a daily or monthly basis. Within this landscape, every individual piece of data holds valuable
potential that can drive decision-making processes. However, the diverse nature of data, with
its disparate formats and structures, as well as the vast volumes involved, necessitates the
use of effective tools to address the challenges of cleaning, imputing, normalizing, and fitting
this data into suitable models in order to extract meaningful patterns.

In various AIOps scenarios, the construction of supervised machine learning models for
anomaly detection, failure prediction, and fault localization is a common practice. However,
AIOps encounters notable challenges related to data quality [76, 64, 40]. These challenges
are highlighted by the absence of clear ground truth labels, highly imbalanced datasets with
substantial noise, and other similar factors. Furthermore, even when these aforementioned
challenges are addressed, obtaining a sufficient number of labels to learn ”what is abnormal”
in the context of AIOps can be difficult. This is primarily due to the continuous changes
in system behavior, the complex dependencies and relationships among components and
services within large-scale service systems, the frequent need for model updates, and the
incorporation of human knowledge and trust in the process (commonly known as the ”human
in the loop” paradigm). Despite the numerous challenges faced by predictive models, it is
noteworthy that significant efforts have been invested in the development of such models
within the AIOps domain. Recently, there has been a growing emphasis on considerations
such as interpretability and scalability. However, it is surprising that there has been relatively
limited adoption of pattern mining techniques (e.g., Formal Concept Analysis [52, 89] and
Frequent Pattern Mining [73, 179]) despite their capability to extract informative patterns
from large datasets, which can assist in detection, diagnosis, and mitigation tasks. Descriptive
models, particularly Subgroup Discovery [15, 162, 304], offer distinct advantages in addressing
the challenges of data diversity, complexity, and quality, as well as providing flexibility for
interactive mining in collaboration with human experts.

Subgroup Discovery is a significant component of Knowledge Discovery in Databases re-
search field, which aims to tackle the common challenge of extracting relevant knowledge
from vast amounts of raw data. Its primary objective is to identify subsets of data instances
that exhibit compelling distributions in relation to a predefined target concept. Subgroup
Discovery, also known as Supervised Rule Discovery, operates as both a descriptive and su-
pervised technique. The term descriptive denotes that the results are intended for descriptive
purposes, enabling interpretation by human experts within a specific context. On the other
hand, the term supervised signifies that the user specifies the property of interest, the tar-
get, which serves as the focus of the knowledge discovery process. The Subgroup Discovery
Process relies on the establishment of its fundamental pillars. Firstly, the pattern languages
used to define contextualized data patterns are diverse and heterogeneous, using combina-

1Wilde, Oscar: A Few Maxims For The Instruction Of The Over-Educated, Saturday Review, 1894.
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tions of itemsets, numerical vectors, graphs, and more. These patterns are developed in
conjunction with a well-defined target concept. Secondly, given that the number of potential
patterns grows exponentially with the input data, intelligent enumeration techniques become
essential. These techniques involve exhaustive search techniques but also heuristic search,
considering the exploration/exploitation trade-off. Their purpose is to generate a concise set
of interesting patterns, guided by the concept of interestingness that assess the quality of
retrieved patterns and guide the complexity of the search. Exceptional Model Mining [95],
while operating within the same description space as SD, extends its capabilities by enabling
the handling of multiple complex target concepts.

We leverage this promising data mining approach to address the analysis of large work-
loads of SQL queries effectively. Specifically, when it comes to database administration (DBA)
tasks, the analysis of query workloads plays a crucial role in identifying schema issues and
enhancing overall performance. While DBAs can easily pinpoint individual queries that con-
sistently lead to performance problems, the challenge lies in automatically identifying subsets
of queries that share specific properties and simultaneously impact target measures, such as
latency time. In this context, patterns are defined based on combinations of query clauses,
topology, alerting signals, and key performance indicator (KPI) metrics. These patterns as-
sist in answering pertinent questions like ”What factors contribute to slow SQL queries?”
or ”How can we characterize queries that excessively consume I/O communication?”. The
automated discovery of such patterns within an extensive search space, followed by present-
ing them as hypotheses, serves the purpose of assisting in issue localization and root cause
analysis. This scenario aligns with the principles of Subgroup Discovery. In the following
sections, we demonstrate how to instantiate and develop this versatile data mining framework
to identify potential causes of SQL workload issues.

Roadmap. The remainder of this chapter is organized as follows. In Section 3.2, we start
by providing formal definitions of the Subgroup Discovery task and delving into its various
components in comprehensive detail. This includes an examination of the pattern syntax, in-
cluding the dataset and target concept, as well as the search space and selection criteria, such
as the measure of interestingness. To enhance understanding, we illustrate each component
using relevant examples drawn from our specific use case. Additionally, we provide a brief
overview of the distinctive features of Exceptional Model Mining. Continuing forward, Sec-
tion 3.3 presents the framework we have implemented to analyze various performance issues
pertaining to SQL workloads. We demonstrate in Section 3.4 the effectiveness of Subgroup
Discovery in this context through both quantitative and qualitative experiments. To conclude
the chapter, Section 3.5 provides discussion and potential avenues for future research

3.2 Overview of Subgroup Discovery

Subgroup Discovery is a technique for detecting local patterns [218] that has been formally
coined by [304, 152]. However, the idea of discovering interesting subgroups in a database
can be traced back to [270]. The objective of Subgroup Discovery is to identify subsets of
objects within a dataset, known as subgroups, whose distribution of target labels statistically
deviates from the overall dataset. In other words, these subgroups exhibit distinct patterns
that differ from what is typically observed in the dataset as a whole. To provide a general
definition of Subgroup Discovery, we refer to the work of [125]. While there may be slight
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variations in the details of Subgroup Discovery definitions found in the literature [152, 15],
there is a general consensus regarding the fundamental nature of the task.

Definition 1 (Subgroup Discovery). In Subgroup Discovery, we assume we are given a
so-called population of individuals (objects, customers, ... etc.) and a property of those
individuals we are interested in. The task of Subgroup Discovery is then to discover the
subgroups of the population that are statistically “most interesting”, i.e. are as large
as possible and have the most unusual statistical (distributional) characteristics with
respect to the property of interest.

Based on this definition, subgroups are generated by descriptions that capture the proper-
ties of individuals, providing interpretability and comprehensibility to the user. The definition
further necessitates a statistically significant distribution of the property of interest. To assess
the significance of this deviation, a quality measure is employed, taking into consideration
both the subgroup’s ability to generalize and its capacity to highlight intriguing deviations
from the norm with respect to a chosen target concept. To further illustrate these concepts,
let’s consider a toy example dataset in Table 3.1 consisting of properties associated with a
small set of SQL queries. As an example, the columns Verrou and Cumulof provide infor-
mation about the queried database tables within the SQL query. Additionally, the column
Verrou.data represents a predicate in the WHERE clause (further details on the parsing of
SQL queries and their representation in a structured format can be found in Section 3.3).
In addition to the query information itself, this dataset includes additional details such as
the query topology (representing environmental features), alerting signals that occur during
query execution, and a report of their executions. For convenience, the execution time is
provided as a numerical value, along with a discrete value indicating whether the query is
considered slow or not with the associated number of rows returned by each query.

Table 3.1: Illustrative dataset: execution report of SQL queries.

O
FROM WHERE ENV features Alerts ASH qnrows qtime

a1

Verrou

a2

Cumulof

a3

Verrou.ik

a4

Verrou.date

a5

Cumulof.ik

a6

Soft version

a7

Server name

a8

manyActiveSessions

a9

Concurrency

a10

nrows

a11

time

a12

slow

o1 1 0 1 0 0 v2 LYN Alarm 22 10 2.15 0

o2 1 0 1 1 0 v1 BLV Critical 3 1 15.81 1

o3 0 1 0 0 1 v1 BLV Critical 15 27 1.14 0

o4 1 1 0 1 1 v2 LYN Alarm 31 12 10.87 1

o5 1 1 1 0 1 v3 LYN Alarm 11 25 2.1 0

o6 1 0 1 2 0 v3 LYN Critical 6 100 17.93 1

o7 1 1 1 1 1 v2 LYN Info 27 1 15.8 1

o8 0 1 0 0 1 v2 BLV Alarm 9 37 9.95 0

o9 1 0 1 0 0 v3 BLV Critical 10 112 8.95 0

o10 0 1 0 0 1 v2 BLV Alarm 7 1 14.7 1

o11 0 1 0 0 0 v2 LYN Info 25 16 1.0 0

Let’s consider the task of characterizing slow queries. In this case, the column slow holds
specific information that is of particular interest, and it serves as the target concept for Sub-
group Discovery. The main goal is to identify subgroups of queries that exhibit common
properties while maximizing the proportion of queries that are classified as slow. This objec-
tive aligns with the fundamental aim of Subgroup Discovery, which is to uncover interpretable
connections between various characteristics (descriptive variables) and the specific property
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of interest (in this example, slow queries), as discussed in [270]: ”Clearly, the result of a data
mining session should never be a listing of the members of such a subgroup. Rather, it should
result in a (characteristic) description of the subgroup”.

For instance, considering queries that include the attribute Verrou.date. It can be
hypothesized that these queries tend to be slower compared to others. Remarkably, 100%
of these queries are categorized as slow, while the overall proportion of slow queries is only
45%. This particular subgroup can be described by the pattern: (Verrou.date ě 1). Another
interesting subgroup consists of queries that belong to the software version v2 and include
the attribute Cumulof.ik as a predicate. This subgroup can be described as a conjunction
of two basic patterns: (Cumulof.ik “ 1 ^ Soft.version “ v2). However, given the large
number of attributes involved, the possible combinations of conjunctive patterns become
vast. Consequently, it becomes challenging to identify the most significant and discriminant
descriptions and present the corresponding statistics to a human expert. This is where an
automatic Subgroup Discovery approach proves to be highly valuable. Such an approach
conducts a deep search among candidate hypotheses and evaluates each of them using a
function that measures their interestingness (e.g., the ratio of slow queries within the subgroup
compared to the overall ratio).

In addition to the fully automatic approach, the involvement of human expertise can
greatly enhance the Subgroup Discovery process, which is known for its iterative and inter-
active nature. For example, the pattern (Verrou.date ě 1) can provide valuable insights
to experts, suggesting that an index may be missing on the Verrou.date attribute. This
information can prompt experts to take mitigation actions, such as adding an index, and
then reapply the Subgroup Discovery approach to determine if the issue has been resolved.

While the previous examples focused on binary properties (slow or not), Subgroup Dis-
covery can also handle numerical properties. For instance, considering the target con-
cept as the numerical attribute time, a statistically interesting subgroup pattern could be
(Verrou ě 1 ^ manyActiveSessions = Critical). This pattern indicates that queries with
both conditions have an average time of 14.22s, which is considerably larger than the dataset’s
overall average of 9.12s. It is worth noting that if we had chosen the binary target slow, this
particular subgroup would not have been as impressive, as it consists of only 3 queries, with
one of them being slightly below the 10s threshold. Furthermore, the size of subgroups often
plays a role in assessing their quality. Discriminant subgroups that cover a larger number of
queries are typically considered more statistically significant.

More formally, the Subgroup Discovery task can be described by a quadruple pD,L, T,Qq.
Here, D represents the dataset containing objects or individuals characterized by their de-
scriptive features. L refers to the pattern language or pattern syntax, which represents the
search space containing all potential candidate subgroup descriptions that can be formed
from the dataset. The target concept T specifies the property of interest for the discovery
task. Finally, Q indicates the selection criteria used for evaluating and filtering the candidate
subgroups. These selection criteria can consist of constraints on the subgroups or generally
an interestingness measure that scores the candidate subgroups based on factors such as the
distribution of the target concept and the number of instances covered. Additionally, an
optional parameter k can be utilized to determine the number of subgroup patterns to be
returned. The result of the Subgroup Discovery task is either the complete set of subgroups
in the search space that satisfy all the specified constraints or the top k subgroups based on
the chosen interestingness measure. Figure 3.1 provides an overview of the key components

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0072/these.pdf 
© [Y. Remil], [2023], INSA Lyon, tous droits réservés



72 Chapter 3. Subgroup Discovery for SQL Workload Analysis

Figure 3.1: Building blocks of a Subgroup Discovery task (Summary).

involved in a Subgroup Discovery task, which we will delve into in the upcoming subsections.

3.2.1 Dataset

The different data sources are unified into a dataset D “ pO,Aq defined as an ordered pair of
a set of instances (also called individuals, cases or data records) O “ toiu1ďiďn and a set of
attributes A “ taju1ďjďm. Each attribute a : O ÝÑ dompaq is a function that maps objects
to values in its domain dompaq. Consequently, apoq denotes the value of the attribute a for
the object o. dompaq is given by R if a is numerical, by a finite set of categories Ci if a is
nominal (categorical), or by t0, 1u if a is Boolean. A nominal attribute with a total ordering
of its values is called an ordinal nominal attribute. These notations are illustrated in Table 3.1
with a dataset of 11 objects O “ to1, ..., o11u referring to queries described by 12 attributes.
For example, Server.name is a nominal attribute with two possible values: LYN and BLV.
manyActiveSessions, which corresponds to an alert, is an ordinal attribute with three levels:
Info, Alarm, Critical. time is a numerical attribute that indicates the execution time of a
query. slow is a binary attribute, taking the value 1 when the query time exceeds 10 seconds
and 0 otherwise. The queries in the table are parsed to track the occurrence of each token
associated with each clause. Consequently, each token is represented as a numerical attribute
aj P A where dompajq “ N Ă R. For instance, Verrou.data is a numerical attribute that
denotes the number of times the Verrou.data attribute appears in the WHERE clause.

The definition of Subgroup Discovery presented above is not limited to data structured in
a single table. In the previous discussion, we made use of the single-table assumption [305],
where all the data is contained within a single table, with instances represented as rows
and their characteristics (attributes) as columns. This assumption simplifies the analysis
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for many practical applications. However, several Subgroup Discovery algorithms have been
developed specifically for the multi-relational setting, where data is distributed across multiple
tables. In Chapter 5, we will address this scenario when our target concept is organized with
multiple attributes hierarchically. Nonetheless, it is possible to transform data consisting
of multiple tables into a single table through propositionalization and aggregation methods.
This conversion approach, while enabling analysis using the single-table assumption, can
result in very large data tables and may involve a loss of information [153].

3.2.2 Search Space

The search space initially involves isolating the target concept T from the remaining at-
tributes, which will be utilized to define the subgroup pattern syntax. For convenience, let’s
assume we are dealing with a single target attribute t P A that is suitable for the target
application (further details about the target concept will be discussed in the next section).
For instance, if our objective is to characterize slow queries, the target attribute T would
represent the execution time (qtime). Consequently, the crucial question arises: which at-
tributes should we employ to describe interesting subgroups? These attributes are referred
to as descriptive attributes denoted by AD Ď AzT , with |AD| “ mD and which are used to
represent by intent a subgroup which is defined by extent as a subset of objects S Ď O.

A pattern language L is then defined based on descriptive attributes AD, and it consists
of an extensive set of subgroup descriptions (also known as patterns or intents). Each sub-
group description is constructed using selection expressions known as selectors (also referred
to as conditions or basic patterns). A basic pattern sel : O ÝÑ tTrue,Falseu represents a
constrained selector that identifies a subset of objects based on their descriptive attribute
values and determines whether an instance belongs to the pattern. For example, the selec-
tor (Server.name “ BLV) evaluates to true for the instances to2, o3, o8, o9, o10u, where the
attribute Server.name has the value BLV.

These selectors are combined using boolean formulas in order to form subgroup descrip-
tions, employing a propositional description language. The most prevalent setting in Sub-
group Discovery typically focuses on conjunctive combinations of selectors. This choice is
motivated by the fact that such subgroup descriptions are more easily comprehensible and
interpretable by human domain experts [168]. Specifically, in the case of strictly conjunctive
subgroup descriptions, we define the covering relation as follows.

Definition 2 (Description and covering relation). A pattern P “ sel1^sel2^....^selmD

is a subgroup description that covers all instances, for which all selectors selj evaluate
to True. Equivalently it is also written as a set of selectors: P “ tsel1, sel2, ..., selmDu.
In particular, the pattern PH “ H, which is given by the empty conjunction, describes
all instances in the dataset.

We write P poq for the boolean value that indicates if an instance o P O is covered by
the pattern P . The set of instances, for which this formula evaluates to true, is called the
subgroup cover or the extent.

Definition 3 (Extent). The extent of a pattern P is defined as: sgpP q “ to P O |
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P poq “ Trueu and denotes the set of instances which are covered by P . |sgpP q| is
the count of these instances. The complement ␣P of a subgroup pattern P covers all
instances that are not covered by P

Patterns are partially ordered in L by a specialization (or a generalization) relationship:

Definition 4 (Specialization Ď). A subgroup pattern Pspec is called a specialization of
another subgroup pattern Pgen and we note Pgen Ď Pspec iff Pspec ùñ Psgen. Pgen is
then a generalization of Pspec. Trivially, a generalization covers all instances that are
covered by its specializations:

Pgen Ď Pspec ñ sgpPgenq Ě sgpPspecq

This can be illustrated by an example from Table 3.1 considering the two patterns: P “
pVerrou.date ě 1q and P 1 “ pVerrou.date ě 1 ^ manyActiveSessions = Criticalq. We
have P Ď P 1 since P 1 ùñ P and we have sgpP q “ to2, o4, o6, o7u Ě sgpP 1q “ to2, o6u

It is worth noting that there exists a wide range of description languages in the litera-
ture. These include itemsets [274], hyper-rectangles [143], sequences [206, 112], graphs and
trees [144, 86, 16], etc. These languages define the space or set of possible descriptions, which
in turn determine the set of possible subsets of records that can be considered in an analysis
task. In this thesis, as mentioned earlier, we specifically focus on attribute-value data [233]
for all our contributions and use cases.

Categorical Attributes. When it comes to defining selectors for descriptive attributes
in order to create more complex patterns in the search space, we need to distinguish be-
tween categorical and numerical attributes. The simplest and most commonly used selectors
for nominal attributes check for value-identity, which can be represented as selaj“vpoq “
True ðñ ajpoq “ v. An example of this type of selector is the previously mentioned
selServer.name = BLV. Another option for nominal attributes is to use negations of values as
selectors instead of using the values directly. In the case of ordinal attributes, we can choose
a more sophisticated selector selajěvpoq “ True ðñ ajpoq ě v. This can be useful, for
example, when we are interested in data queries that are associated with at least a certain
number of alarm alerts, i.e., selmanyActiveSessionsěAlarm.

Numerical Attributes. Determining suitable selectors for numerical attributes poses a
greater challenge compared to categorical attributes. While value-identity selectors can be
used for numerical attributes, they yield meaningful results only when the attribute has
a limited range and does not rely on a continuous scale. For example, a selector such as
pVerrou.date “ 1q works perfectly fine when the numbers belong to N, and it would be
unexpected to encounter a query with a high frequency of this attribute, say 100 occur-
rences. However, when it comes to attributes like concurrency, which represents the level
of concurrency or contention experienced by a session during a specific sample interval, in-
terpreting selectors based on a single value becomes difficult. Instead, selectors for numeri-
cal attributes are typically specified using intervals that cover the domain of the attribute:
selajPrlb,ubspoq “ True ðñ lb ď ajpoq ^ ajpoq ď ub. The values lb and ub appearing in the
selectors of a numerical attribute are referred to as cut points. Open, half-open, or closed
intervals can be used to define the selectors. In Subgroup Discovery, there are two approaches
to identify the optimal set of intervals [105]. The first approach is online discretization, where
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the mining algorithms determine the best intervals during the automatic search for the top
subgroups. The second approach involves determining the intervals used as selectors through
an offline discretization step prior to the search. Then, any Subgroup Discovery algorithm
can be applied. Various discretization methods exist for numerical attributes. These meth-
ods include Equal-width discretization, Equal-frequency discretization, and others. These
techniques are unsupervised, meaning that the discretization is performed independently of
the chosen target concept. Additionally, there are supervised discretization methods such as
Entropy-based discretization [99] and Chi-Merge discretization [146], which take into account
the binary target concept when performing the discretization.

3.2.3 Target Concept

The Subgroup Discovery task varies depending on the type of the target concept T . Whether
it is a binary target, numerical target, or a complex target like in Exceptional Model Mining.

3.2.3.1 Binary Target Concepts

In the case of a binary target, the property of interest is represented by a pattern PT . For
any subgroup description P , the instances that are covered by PT are referred to as positive
instances (denoted as tppP q). The remaining instances in P are considered negative instances
(denoted as fppP q). We use the notation pP “ |tppP q| and nP “ |fppP q| to represent the
number of positive and negative instances covered by the subgroup description P , respectively.
The distribution of the target concept for a subgroup description can be fully characterized by
the target share τP “

pP
pP `nP

“
pP

|sgpP q| , which represents the proportion of positive instances
within the subgroup. The main objective is to identify subgroup descriptions where the
target share is either unexpectedly high or unexpectedly low. For instance, if we rely on
the slow attribute as our target concept, and considering the previously mentioned pattern
P “ pCumulof.ik “ 1^Soft.version “ v2q, we have tppP q “ to4, o7, o10u and fppP q “ to8u
and the target share τP “

3
4 “ 0.75.

3.2.3.2 Numerical Target Concepts

In many scenarios, numerical target attributes can be discretized into binary targets, simi-
lar to what we have done when transforming the numerical attribute time into the binary
attribute slow. However, this approach can lead to misleading results and a loss of valuable
information. For example, the last pattern indicates that 75% of the subgroup queries are
classified as slow, with one object o8 P fppP q, yet the execution time timepo8q “ 9.95 is only
slightly below the threshold of 10 seconds. This highlights the need to consider the complete
distribution of the numerical target attribute. To address this, the target distribution for
a subgroup description P should be compared with respect to one or more distributional
properties of the numerical target attribute. These properties may include the mean value
µP , the median medP , or the variance σ2

P .

3.2.3.3 Complex Target Concepts

Another variant that has emerged in Subgroup Discovery is Exceptional Model Mining
(EMM) [167] which is considered as a generalization of SD. In contrast to traditional Subgroup
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Discovery, this approach does not rely on a single attribute to define the property of interest.
Instead, it utilizes a set of model attributes. In Exceptional Model Mining, a distinct model
is constructed for each subgroup. This model consists of a fixed model class specific to the
mining task, as well as model parameters that depend on the values of the model attributes
within the subgroup. The objective of Exceptional Model Mining is to identify subgroup
descriptions where the model parameters significantly deviate from those of the model built
from the entire dataset. Several EMM models have been proposed, involving target variables
such as regression [94], correlation [95], classification with a target [92], preference among
targets [81], Bayesian networks [93], and more. Despite the increased complexity of EMM
models, the algorithmic strategies used to identify exceptional subgroups remain similar to
those of SD. In fact, the search space for subgroups in EMM remains similar to that of SD.
We explore the application of EMM in the next Chapter 5.

Figure 3.2 showcases an example from [32], illustrating the investigation of the relation-
ship between price and demand in the field of economics. According to the economic law
of demand, it is generally expected that an increase in the price of a product will lead to
a decrease in its demand, resulting in a negative slope when regressing demand on price in
a typical regression model. However, there exist specific scenarios where the relationship
between price and demand deviates from this conventional expectation. In some cases, when
certain conditions are met, people tend to buy more of a product as the price increases. This
exceptional behavior challenges the negative slope assumption and can result in a positive
slope in the regression line. To explore these exceptional cases, EMM is applied to a dataset
comprising product objects. Each product is characterized by descriptive attributes such
as category, age, and brand, along with two target variables: price and demand. In [94], a
regression model is used to analyze the relationship between price and demand. By leverag-
ing EMM, it becomes possible to identify attribute restrictions that define subgroups with
regression models of the target variables significantly differing from the overall regression
model observed across the entire dataset.

𝒪 Brand Country Age Price Demand
𝑜# Alpha US 2 250 150
𝑜$ Beta FR 5 100 100

… … … … … …

𝑜% Alpha UK 1 210

Descriptive attributes Target attributes
Demand

Price
Plotting objects w.r.t their 

target attributes

A subgroup 𝑆 corresponding 
to some restrictions on values 

of descriptive attributes

The model of the subgroup 𝑆
à Exceptional model.

The model of all the dataset

Figure 3.2: Example of EMM with a regression model on two target attributes [32].

3.2.4 Interestingness Measures

The task of subgroup discovery is to extract the most interesting subgroups from a large set
of potential candidates within the search space. In pursuit of this goal, several interestingness
measures have been proposed in the literature, tailored to different types of target concepts.
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In this chapter, we will focus on showcasing a selection of interestingness measures specifically
designed for binary and numerical target concepts, as applied in our use case of SQL workload
analysis. In the subsequent chapters, we will introduce additional interestingness measures
specifically designed for more complex target attributes adapted to our use cases. We define
an interestingness measure as follows:

Definition 5 (Interestingness measure). A measure ϕ : LÑ R;P ÞÑ ϕpP q is a mapping
that evaluates the quality of a subgroup pattern P w.r.t. the property of interest T .
The greater is ϕpP q, the more interesting is P .

Indeed, It is important to mention that there has been extensive research on defining
similarity measures and exploring their criteria. In the context of knowledge discovery in
databases, the goal is to identify patterns that are valid, novel, potentially useful, and un-
derstandable [100]. One framework for assessing interestingness is proposed by [107], who
break it down into nine criteria. These criteria, to some extent, overlap with each other and
include conciseness, coverage, diversity between patterns, surprisingness, and actionability.
The authors categorize these criteria into three groups: objective measures, subjective mea-
sures, and semantics-based measures. Objective criteria can be computed solely using raw
data, often utilizing statistical or information-theoretic measures. Subjective measures like
novelty and surprisingness involve the consideration of the user’s prior knowledge [271, 80]
(refer to 3.2.7). Semantics-based measures, such as utility and actionability, take into account
the meanings of subgroup descriptions in the specific application domain.

In the following, we present measures that can serve as a function ϕ to assess the quality
of subgroup patterns when the target attribute is either binary or numerical. It is widely
acknowledged that discriminant subgroups of interest are those that maximize the deviation
of the target attribute T compared to the overall dataset, while also possessing a sufficiently
large size. Preferably, discriminant subgroups should be substantial in size, indicating their
significance and reducing the likelihood of their existence in the dataset being attributed
to chance. Many of the existing measures belong to the renowned family of Klösgen func-
tions [152], which are defined based on the parameter a P r0, 1s.

KlösgenapP q “ suppP qa ¨ pµpsgpP qq ´ µpOqq ,

where the support suppP q “ |sgpP q|

|O|
measures the proportion of objects from the set O be-

longing to the subgroup P , and the target mean µpsgpP qq “
ř

oPsgpP q

T poq

|sgpP q|
represents the

average value of the target attribute T within subgroup P . Hence, a higher value of suppP q
corresponds to a higher value of KlösgenapP q. However, maximizing KlösgenapP q also in-
volves maximizing the deviation of µpsgpP qq from the overall mean µpOq. The choice of
parameter a determines the relative importance of suppP q in the final measure of interest-
ingness, leading to measures with different statistical interpretations. These measures are
presented in what follows.

Average function u. Also called unusualness [263], it refers to the Klösgen function with
a “ 0, denoted as upP q “ µpsgpP qq ´ µpOq. This measure is utilized when there is a desire
to evaluate subgroups without considering the impact of suppP q on the score. Typically, in
conjunction with a minimum size constraint for returned subgroups, it helps avoid retrieving
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very small subgroups. upP q provides a subgroup ordering that is identical to another popular

measure: LiftpP q “ µpsgpP qq

µpOq
.

WRAcc measure [163]. It is one of the most popular measures in SD. It corresponds to the
Klösgen function with a “ 1:

WRAccpP q “ suppP q ¨ pµpsgpP qq ´ µpOqq .

For the specific case when T is binary, it can be written as:

WRAccpP q “ Prpo P sgpP q ^ T poq “ 1q ´ Prpo P sgpP qq ¨ PrpT poq “ 1q,

where Pr is the probability of an event to happen. Theoretically, the more P is statistically
dependent on true target values (T poq “ 1), the higher is |WRAccpP q|.

Mean-test. One drawback of WRAcc is that it tends to assign high scores to subgroups with
large support, even if they lack uniqueness or unusualness. Consequently, many methods
have favored the use of the Mean-test measure, which corresponds to the Klösgen function
with a “ 0.5:

Mean-testpP q “
a

suppP q ¨ pµpsgpP qq ´ µpOqq .

From a statistical standpoint, it has been demonstrated that this measure yields an equivalent
ordering compared to the Binomial test [168].

T-score. One limitation of the Klösgen functions is that they do not explicitly optimize
the dispersion of the target attribute within subgroups. This can result in inconsistent con-
clusions, especially when the dataset contains numerous outliers. In some cases, the mean
µpsgpP qq might not accurately represent the target values in the subgroup P , especially if P
includes a few outliers with extreme values of T . To address this concern, one measure that
incorporates subgroup cohesion is the T-score [239], defined as:

T-scorepP q “

a

suppP q

σpP q
¨ pµpsgpP qq ´ µpOqq ,

where σpP q represents the standard deviation of target values T within subgroup P . A
smaller value of σpP q indicates higher cohesion among the target values in P , leading to a
higher T-score. This measure reflects the significance of the deviation of target values within
a subgroup using a Student’s t-test. However, it is important to note that a direct statistical
interpretation of the T-score should be avoided when the target attribute is not normally
distributed and the subgroup size is small, such as |sgpP q| ă 30.

Median-based measures q med. An alternative approach to mitigate the influence of
outliers on subgroup scores is to employ the median medpsgpP qq of T in the Klösgen function,
instead of the average µpsgpP qq. The use of the median estimator is advantageous as it offers
greater robustness to noise [170]:

q medpP q “ suppP qa ¨ pmedpsgpP qq ´ medpOqq .
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3.2.5 Exploring the Search Space

Once the pattern language is established and the appropriate subgroup interestingness mea-
sure is selected based on the specific use case, the next step involves exploring the search
space using efficient and preferably scalable algorithms to identify the top-k subgroups. In
the following, we present a typical subgroup discovery task, which aims to find the top-k sub-
groups based on the defined quality measure. This task is formally analogous to the generic
problem outlined in [95].

Problem 1 (Top´k Subgroup Discovery Problem). Given a user specified parameter
k, find the top-k subgroups with the highest values of the interestingness measure ϕ.
Formally, find the subgroup set:

R “ tP P L | rankpP q ď ku,

where rankpP q gives the rank of P w.r.t. its score ϕ, that is: rankpP q “ |tP 1 P L |
ϕpP 1q ą ϕpP qu| ` 1.

The computational complexity of the subgroup discovery (SD) problem is known to be
prohibitive due to the exponentially increasing size of the search space |L| with respect to
|AD|. To address this challenge, various algorithms have been proposed to efficiently explore
the search space. These algorithms can be categorized into heuristic, exact, and anytime
approaches, each with its own trade-offs in terms of optimality and scalability.

Heuristic approaches are employed when the search space is too large for exhaustive explo-
ration. While these strategies may not guarantee the discovery of optimal patterns, they offer
tractability and faster execution times. The objective is to develop strategies that enable the
discovery of high-quality patterns while considering diversity. Several strategies have been
introduced in the literature [163, 197], with the most common being the use of breadth-first
search, as exemplified by the well-known beam search algorithm. Notable works [287, 243]
demonstrate algorithms that utilize beam search to discover high-quality, non-redundant sub-
groups. Sampling-based methods [42, 43] have also been sparsely used in subgroup discovery
as heuristic approaches. These methods offer the advantage of discovering high-quality pat-
terns within a short amount of time. Typically, a statistical distribution is designed based on
the optimization of quality criteria, allowing patterns that optimize those criteria to have a
significantly higher probability of being generated. Exhaustive algorithms, on the other hand,
prioritize the guarantee of the discovery task at the expense of execution time and feasibility.
Various techniques have been proposed to render the search more tractable. These techniques
include compressing the search space using equivalence classes and closure systems [111],
pruning the number of candidates using anti-monotone constraints [142] and employing op-
timistic estimates for the quality of subgroup specializations [111, 170, 29]. Furthermore,
another category of algorithms that combines the properties of the three first categories is
known as anytime algorithms, which allow for the retrieval of the best set of patterns at any
given moment during the search [44, 30].

In the following sections, we delve into two methods that we have extensively explored in
our use cases, both within this chapter and in Chapter 5. These methods include: (1) an exact
algorithm based on a depth-first search, and (2) a heuristic algorithm utilizing beam search. It
is important to note that our focus does not center on introducing significant contributions to
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the exploration of the search space in the field of Subgroup Discovery. Instead, our objective
is to showcase the application and evaluation of these methods within the context of our
specific use cases.

Depth-first algorithm. This approach exhaustively explores the search space S in a depth-
first manner. After defining an order relation between patterns, the search space forms a
lattice structure with the empty pattern as a supremum and the pattern containing all the
selectors as infimum. Then, this lattice is explored in depth. We start from the empty pat-
tern P “ pai P dompaiq | ai P ADq, i.e., no restriction for any attribute. Then, a refinement
operator is recursively applied on selectors of P , continuously making it more restrictive.
Refinements can be operated by adding a symbolic attribute value or adding a numerical
attribute cut point. As the search space can be extremely large, a naive enumeration of
subgroups fails. For this reason, the exact algorithm uses many techniques to optimize the
exploration. Some anti-monotonic constraints are generally used, such as minimum support
δ, i.e., if a pattern covers less than δ objects then this pattern is not refined anymore, as
its refinement necessarily covers less than δ objects. Furthermore, tight optimistic estimates
TOE [170] are used. These functions allow to efficiently upper bound all the subgroup inter-
estingness values in a whole branch of the search space. If the TOE of a branch is lower than
the score of the top´k already found subgroup, then the branch is pruned, as it does not
contain any subgroup with a score higher than the already found top´k. Refer to [170] for
other optimization strategies details.

Beam-search algorithm. The most popular heuristic approach is Beam-search [68]. This
approach performs a heuristic level-wise search over the pattern lattice. It requires specifying
the width parameter w P N, which is the maximum number of patterns kept in each level of
the lattice. It starts from the empty pattern P “ pai P dompaiq|ai P ADq. Then, it recursively
goes to the next level by refining patterns of the current level and selecting the top´w refined
patterns that maximize the interestingness. These top´w patterns are then refined again to
continue to a deeper level. At the end, the algorithm selects the top´k subgroups among all
the top´w ones selected from each level.

3.2.6 Avoiding Redundancy

The process of selecting interesting subgroups based solely on discriminative measures can
lead to significant overlap among the identified patterns, where distinct patterns cover nearly
the same set of objects. This limitation becomes more pronounced in a top-k approach,
as the limited result set R may exclude other potentially interesting subgroups. Consider
the example shown in Table 3.1, where two different patterns, P “ pVerrou ě 1q and
P 1 “ pVerrou.ik ě 1q, exhibit high correlation since they cover similar sets of objects. To
address the need for presenting diverse yet interesting patterns, various solutions have been
proposed in the literature. In our approach, we propose utilizing the Jaccard similarity [231],
which measures the similarity between two subgroup patterns as the fraction of their ex-
tent intersection over their extent union. For the example patterns P and P 1, the Jaccard
similarity is computed as follows:

simpP, P 1q “ JpP, P 1q “
|sgpP q X sgpP 1q|

|sgpP q Y sgpP 1q|
“

6

7

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0072/these.pdf 
© [Y. Remil], [2023], INSA Lyon, tous droits réservés



3.2. Overview of Subgroup Discovery 81

Greedy Selection. The greedy approach follows an iterative process to construct the non-
redundant subgroup set R1. In each iteration, the best subgroup pattern P ‹ is identified from
the initial subgroup set R and added to R1. Subsequently, all subgroups in R that exhibit a
similarity exceeding a specified threshold with P ‹ are removed. This process is repeated until
R becomes empty. However, it is important to note that this technique requires the user to
determine an appropriate threshold for the Jaccard similarity. Choosing a threshold that is
too large may still result in overlapping subgroups while selecting a small threshold can lead
to the suppression of potentially interesting subgroups. As a result, the performance of this
method is highly sensitive to threshold choice, which often requires empirical selection.

Hierarchical Clustering. To provide a comprehensive and easily interpretable overview of
the resulting subgroups, we employ agglomerative hierarchical clustering [17] on the result
set R. This clustering technique starts with each subgroup forming a separate cluster at the
bottom of the hierarchy. As we move up the hierarchy, pairs of clusters are merged based on
their similarity, using the Jaccard dissimilarity defined as 1´Jaccard similarity. The resulting
output is a binary clustering tree, also known as a dendrogram. Hierarchical clustering offers
a hierarchy of partitions, allowing the flexibility to select a specific partition by truncating
the tree at a desired level. This means that instead of relying on a dissimilarity threshold
like the greedy approach, users can specify the number of non-redundant subgroups patterns
without explicitly setting a dissimilarity threshold.

In addition to the aforementioned approaches, there are alternative techniques that specif-
ically address the issue of redundancy among the discovered patterns. One such approach is
Subgroup Set Discovery [29, 286]. Rather than focusing solely on individual subgroups, this
methodology aims to identify sets of high-quality non-redundant subgroups. The scoring of
pattern sets in this approach combines components that evaluate the aggregated individual
interestingness of the contained subgroups, as well as components that measure the diversity
of the subgroup patterns.

3.2.7 Background Knowledge and Subjective Interestingness

The incorporation of background knowledge, also referred to as prior knowledge, is widely
acknowledged as a crucial aspect of successful data mining tasks in real-world scenarios. This
is because the extracted patterns should not only be statistically significant but also relevant
to the user’s specific preferences. For instance, a pattern may be deemed interesting by one
user, while another user, may not find it compelling. This can be attributed to several factors.
Firstly, the first user may have already anticipated the existence of that pattern based on her
existing knowledge or because she possesses a deeper understanding of the underlying data
distribution. Alternatively, the pattern may be associated with a topic that does not capture
the interest of the second user. In subgroup discovery, considering background knowledge is
particularly valuable in different stages, starting with the data preparation phase. During
this phase, background knowledge assists in generating an appropriate search space (e.g., by
considering the normality/abnormality information of attribute values, we can derive dis-
cretization bounds to refine the search [18]). Additionally, algorithms exploit background
knowledge to optimize the search by avoiding the exploration of uninteresting attribute com-
binations. However, our main focus lies in the integration of background knowledge into the
interestingness measures. These measures can be adapted during the search algorithm to
account for the importance of attributes and their known correlations.

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0072/these.pdf 
© [Y. Remil], [2023], INSA Lyon, tous droits réservés



82 Chapter 3. Subgroup Discovery for SQL Workload Analysis

Several studies have proposed interestingness models that go beyond considering only the
data and take the user’s perspective into account. This subjective nature of interestingness
introduces a challenge in pattern mining, which was recognized in prior research [271] and has
gained attention in the past decade. Notably, a significant work by [80] presents a compre-
hensive and statistically-founded framework that incorporates user background knowledge as
constraints on a probability distribution, representing the user’s uncertainty about the data.
The maximum entropy (MaxEnt) distribution is employed to model the prior information,
capturing patterns that are surprising given the user’s beliefs. Furthermore, this framework
also prioritizes patterns that are easily understandable to the user. The subjective interest-
ingness SIpP q of a pattern P is defined as the ratio between the information content ICpP q
and the description length DLpP q of the pattern, reflecting the information density within
the pattern. Additionally, when a pattern is presented to the user, the background model is
updated to incorporate this new information as already known by the user. This allows for
the discovery of fresh and non-redundant patterns. A visual representation of this framework
can be found in Figure 3.3 from the work by [32]. In our research presented in Chapter 5, we
leverage the subjective interestingness framework to drive our work forward.

Figure 3.3: Overview of the subjective interestingness framework proposed in [80].

3.3 SQL Workload Analysis Problem

The SQL workload analysis problem has garnered significant attention in the database and
software engineering communities. The aim is to enhance the reliability and efficiency of
interacting with data in large-scale systems. Query workload analysis has proven effective
in addressing various related problems, employing data-driven strategies. These methods
automatically analyze logs and executed queries to perform tasks like index recommenda-
tion [58, 57], anti-pattern detection [13, 97, 61], and modeling user and application behav-
ior [283, 323]. The usability of these methods depends heavily on how the data is represented.
Thus, several approaches have been proposed to transform the data into simplified forms be-
fore carrying out the main task, such as workload compression [57], efficient parsing [157],
or embedding [133] of SQL queries. Then, a myriad of Machine Learning methods have
been evaluated for different workload analysis tasks. However, many of these approaches
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Figure 3.4: Addressing key questions in Subgroup Discovery for SQL workload analysis.

rely on clustering-based methods, which are impractical for identifying subsets of data that
specifically differentiate a desired property. In contrast, various major commercial database
systems have developed tools to automate this task, such as query planners and optimizers.
For instance, Microsoft SQL Server has included the index selection feature in its Tuning
Advisor since SQL Server 2000 [4]. Although these tools are widely used by DBAs, they
remain specific and non-generic, limited to certain features. Utilizing a query optimizer, for
example, necessitates examining individual cases to identify issues in each query separately.

Hence, we believe that the Subgroup Discovery approach offers an efficient solution to
this problem, as it can uncover various types of tasks and provide answers to the broader
question: How to characterize SQL queries that exhibit certain properties of interest? For
instance, determining the factors that contribute to slow queries can be extremely beneficial
for performance optimization problems. Similarly, several other questions of this nature
may arise, such as characterizing queries that excessively consume I/O communication or
identifying contexts where SQL queries significantly escalate concurrency issues.

Building a Subgroup Discovery framework to tackle this problem, however, requires ad-
dressing several key questions, as illustrated in Figure 3.4. (1) Firstly, the data needs to be
introduced to the algorithm in the correct format. (2) Secondly, it is essential to identify
the most suitable and actionable data that can be augmented with SQL queries for contex-
tualization. (3) Thirdly, choosing the appropriate settings regarding the building blocks of
the subgroup discovery approach is important. (4) Lastly, an interaction mechanism must be
introduced to enable iterative learning and collaboration with the user.

3.3.1 Data Preprocessing

We performed our analysis on a workload W consisting of 150K unparametrized SQL state-
ments. These statements were collected from over 400 databases supervised within our com-
pany, all of which share a nearly identical database schema. To ensure efficiency, we parsed the
queries to extract tables and attributes specific to each type of SQL clause. Subsequently, we
enriched the queries by incorporating various database metrics and supervision alerts. This
augmentation process yielded thousands of properties that greatly assist in contextualizing
the Subgroup Discovery approach.
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Table 3.2: Example of parsing an SQL query.

Raw SQL query

SELECT m.ik

FROM model AS m

JOIN prod AS p

WHERE m.ik = p.ik

AND m.uex = p1

AND (m.uex in collection0

OR m.ik in collection1)

AND (m.dossierinfo = p3

GROUP BY m.ik

HAVING (COUNT(DISTINCT p.ik) = p2)

AND (SUM(m.nbembal) = MAX (p.nbembal))

Our parsing result Parsing result of [205]

SELECT model.ik ÝÑ 1 SELECT ik ÝÑ 1

FROM model ÝÑ 1 FROM model ÝÑ 1

JOIN prod ÝÑ 1 FROM prod ÝÑ 1

WHERE model.ik ÝÑ 3 WHERE ik ÝÑ 4

WHERE model.uex ÝÑ 1 WHERE uex ÝÑ 1

WHERE model.dossierinfo ÝÑ 1 WHERE dossierinfo ÝÑ 1

WHERE prod.ik ÝÑ 1

GROUPBY model.ik ÝÑ 1 GROUPBY ik ÝÑ 1

HAVING prod.ik ÝÑ 1 HAVING ik ÝÑ 1

HAVING model.nbembal ÝÑ 1 HAVING nbembal ÝÑ 2

HAVING prod.nbembal ÝÑ 1

COUNT prod.ik ÝÑ 1

SUM model.nbembal ÝÑ 1

MAX prod.nbembal ÝÑ 1

3.3.1.1 Query Transformation

A common preprocessing step involves decomposing, parsing, and tokenizing SQL queries.
This process results in the formation of a numerical vector where dimensions represent the
usage count of data tables and attributes [12, 7, 5]. To accomplish this, we utilized the
readily available Mozilla parser [221], which provides an SQL syntactic tree in XML format.
We further parsed this tree to normalize case sensitivity and eliminate irrelevant terms such
as constants and logical operators. Each token is then associated with the clause it belongs to
by appending a prefix indicating the relevant clause. For example, in Table 3.2, the queried
table model appears in the FROM clause of the query, resulting in the token FROM model. For
every token, we record the frequency of its appearance within each SQL clause.

We made two extensions to the Mozilla parser2. Firstly, we expanded its functionality
to handle not just SQL queries, but also Hibernate queries used in our ERP as the ORM
layer. This involved adding support for the reserved keywords used in Hibernate queries,
such as JOIN FETCH, to the original parser. Secondly, and perhaps more significantly, our
parser stands out from several existing parsers [12, 7, 5] due to its ability to handle nested
queries while preserving the query’s structure. Unlike many parsers [205, 5], we do not

2https://github.com/klahnakoski/mo-sql-parsing/pull/26
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Table 3.3: Additional features used with parsed SQL queries.

Query properties Topology Alerts Oracle ASH

query serverName dbMemory manyActiveSessions application concurrence

day declination sgaMax blockedSessions configuration network

hour softwareVersion dbProcesses poolAlmostFull administrative cpu

time codeVersion jdbcMin anomalyASH systemI/O userI/O

nrows dbVersion jdbcMax queuing scheduler

dbCursorsMax commit

remove substitutes for temporary table names, known as aliases. Instead, we utilize aliases
to determine the table to which a column in a SELECT clause or a predicate in WHERE or
GROUP BY clause belongs. This approach proves beneficial when dealing with nested queries,
join clauses, or queries involving multiple tables. As a result, unlike the method proposed by
[205], our parser encodes two columns with the same name from different tables differently,
as illustrated in the example in Table 3.2. Additionally, following the work of [82], we treat
function calls present in the SQL statement as independent clauses. Lastly, it is important
to mention that we do not group semantically equivalent queries into a canonical form, as
done in [157]. This is because the manner in which a query is written can affect its execution
plan and, consequently, its execution time.

3.3.1.2 Other Data Sources

As highlighted in Table 3.3, we augmented our parsed SQL queries with the following addi-
tional information into the data model:

Topology. Each database is queried by our in-house developed Enterprise Resource Plan-
ning software (ERP), serving as the application. In our analysis, we take into account the ap-
plication identifier (serverName), as well as its major and minor versions (softwareVersion,
codeVersion). The relevant properties of the database include its vendor/version (dbVersion),
one of six main schema families (declination), the size of the database server memory
(dbMemory), the maximum database memory usage (sgaMax), the maximum number of pro-
cesses (dbProcesses), the minimum and maximum size of the connection pool (jdbcMin,
jdbcMax), and the limit on the number of cursors per database session (dbCursorMax).

Active Session History (ASH). Active Session History (ASH)[234] was introduced in
Oracle 10g and later implemented in other database systems like PostgreSQL. ASH provides
information about active sessions that are waiting for system resources such as CPU, System
I/O, or Network. It offers a temporal distribution of sessions waiting for each resource
category, captured at regular intervals. This data is valuable for diagnostics and tuning
purposes. For instance, it can help identify queries that unexpectedly consume excessive
network resources by generating a high number of network waiting sessions.

Alerts. Our monitoring system generates rule-based alerts when anomalies are detected
in the database environment. For our analysis, we consider: (1) manyActiveSessions for
an unusually high number of active sessions, (2) blockedSessions when certain sessions
remain blocked for a significant duration, (3) poolAlmostFull when the connection pool size
approaches its maximum limit, and (4) anomalyASH for abnormalities in the distribution of
ASH data, such as an increased proportion of sessions waiting for network or system I/O. We
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Figure 3.5: Overview of our Subgroup Discovery framework for SQL workload analysis.

enrich the queries with any alerts that coincide with their execution. Each alert is assigned
one of four levels: Info, Alarm, Critical, or Blocking.

These features have been carefully selected in collaboration with our DBAs. It is im-
portant to note that our methodology is highly flexible, allowing for the consideration of
additional numerical and categorical properties as needed. It is worth highlighting that no
previous work has explored such a combination of high-dimensional features alongside the
expressive representation of SQL queries.

3.3.2 Overview on the Framework

Figure 3.5 provides an overview schema of the implemented framework, which illustrates the
entire process from data preprocessing to mining interesting subsets of queries that indicate
specific properties of interest. The framework handles a large batch of SQL queries along
with their associated topology (i.e., environmental features) and calculates the corresponding
alert levels that co-occur with the execution time of queries. Efficient parsing of queries is
performed to convert them into a structured format, enriched with relevant information, and
then fed into a subgroup discovery model. The framework offers the user the ability to select
subsets of data to be used in the pattern syntax. Furthermore, the user can configure the
target based on the specific use case they wish to perform, such as characterizing slow queries
or retrieving subsets of queries that demonstrate concurrency issues. To facilitate comparison
between different results, a wide range of similarity measures is provided. Additionally, the
user can choose the algorithm for search space exploration. We used the Python implemen-
tation of [169], which provides several subgroup discovery algorithms. However, since this
implementation does not support all the relevant measures for our case study, we extended
and collaborated to the framework3 to incorporate the support measure, T-score, as well as
median-based measures like q med.

3https://github.com/flemmerich/pysubgroup/graphs/contributors
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Figure 3.6: Main sections of the interactive SD tool: (1) dataset properties, (2) search strategy, and (3) results.

Figure 3.6 showcases a graphical interface designed to enhance user interaction and fa-
cilitate the selection of appropriate parameters for their task. The interactive visualization
supports various data types for both input features and the target, including nominal and
numerical attributes. It offers a diverse set of interestingness measures and algorithms. The
main window consists of three essential panels: (1) the dataset properties, (2) the search
strategy, and (3) the results.

Dataset panel: This panel enables users to select subsets of data that are of interest. They
can achieve this through data point selection, where queries are plotted based on execution
times, row counts, and other query properties. The graph on the right conveniently rescales
the selection made on the left graph.

Search strategy panel: Here, users can configure the mining task. First, they need to
define the target. There are two options available: choosing a specific attribute as the target
or creating a binary target graphically by associating the positive class with the data subset
selected in the right graph while considering the remaining data in the left graph as the
negative class. Additionally, users can specify the interestingness measure and the mining
algorithm. Finally, they can set the desired number of returned subgroups and the maximum
depth of patterns.

Results: After executing the mining task, this panel displays the identified subgroups. For
each subgroup, it presents the corresponding pattern along with relevant statistics such as
subgroup size, median values, or target share.

3.4 Experiments

We conducted experiments to assess the effectiveness of the Subgroup Discovery approach in
addressing the SQL workload analysis problem. Firstly, we validated the capability of the
framework presented in 3.3.2 to characterize discriminant subgroups that exhibit statistical
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Table 3.4: Datasets statistics.

Dataset Queries Features FROM Tables JOIN Tables Projections WHERE atts HAVING atts GROUPBY atts ORDERBY atts Sparsity

All 148796 8691 497 526 3740 3294 10 199 391 99.55%

D1 37149 4596 275 270 2036 1680 10 96 196 99.22%

D2 48823 246 1 1 86 85 2 21 11 84.27%

D3 3031 570 58 30 158 275 3 6 15 94.77%

D4 26735 3723 218 234 1658 1324 10 91 154 98.97%

significance in relation to various target problems. Subsequently, we performed a quantitative
analysis to evaluate the execution time of each algorithm under different parameter settings,
including the number of patterns (k) and rules depth.

3.4.1 Experimental Setup

We conducted experiments on an SQL workload consisting of Hibernate queries executed on
our production environment servers over a span of one week. Due to the large number of
queries, our monitoring system records only those with execution times exceeding 5 seconds.
To enrich the dataset, we incorporated additional relevant information described in Table 3.3.
The dataset comprises 148,796 queries, each described by 8,691 features. Table 3.4 presents
an overview of the dataset characteristics. It’s worth noting that the dataset is highly sparse,
with only 0.45% of non-zero values. The experiments described hereafter were initially con-
ducted on a single machine with an Intel(R) Core(TM) i5-10210U CPU @1.60GHz and 32GB
RAM.

3.4.2 Qualitative Analysis

We address the following diverse set of research questions:

✘ RQ1: What factors contribute to the slow execution of queries?

✘ RQ2: Under what circumstances do queries exhibit concurrency issues?

✘ RQ3: How can we characterize queries that frequently coincide with alerts related to
blocked sessions?

3.4.2.1 Methodology

To ensure a comprehensive analysis, we conducted experiments for each use case within a
specific context based on the industrial requirements we encountered. In detail, we evaluated
each research question using the following subsets of data:

• RQ1: We assessed this question on dataset D1, which comprises queries executed on
all sales servers with a minimum of 100 users. The sales declination accounts for 74.04%
of the data.

• RQ2: To address this question, we focused on dataset D3, which specifically considers
the software version V15 2. This particular version exhibits a significantly higher occur-
rence of concurrency issues compared to other software versions. For our analysis, we
utilized a binary target that identifies a potential issue if there are at least an average
of 5 concurrent processes within a 10-second interval during query execution.
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Table 3.5: Subgroup Discovery results.

ID Target Measure Subgroup patterns Size Quality

D1 time Median

pP1q : WHERE stocks.gestion.modele.lot.prod.ref.auditinfo.etat ě 1
pP2q : FROM ventes.cumuls.modele.cumulmultiple ě 1
pP3q : WHERE ventes.cumuls.modele.cumulmultiple.valzvcliX ě 1
pP4q : WHERE .ventes.cumuls.modele.cumulmultiple.valzvartX ě 1

8
451
45
45

161 ¨ q medpPHq

21 ¨ q medpPHq

21 ¨ q medpPHq

21 ¨ q medpPHq

D2
slow

τPH
» 0.6

Lift
pP5q : GROUPBY stocks.gestion.modele.mvtrealise.refexterne ě 1
pP6q : serverName = ServerX^ systemI/O ą 50

131
38

τP “ 1
τP “ 1

WRAcc
pP7q : WHERE stocks.gestion.modele.mvtrealise.etatsynchro ě 1^ jdbcMax ă 200
pP8q : WHERE stocks.gestion.modele.mvtrealise.auditinfo.datcre ě 1^ dbVersion “ 2.3
pP9q : manyActiveSessions “ Alarm

20668
20675
44

τP » 0.99
τP » 0.99
τP » 93%

D3
concurrence
τPH

» 0.06
Lift pP10q : FROM .stocks.fichierbase.modele.produit ě 1^ administrative “ 0.3 8 τP “ 1

Binomial pP11q : serverName “ ServerY^ commit ě 1.7^ systemI/O ą 10.2 51 τP » 0.94

D4
blockedSess
τPH

» 0.04
Lift

pP12q : JOIN .commandesfactures.modele.histcdeligliv.applibudrist ě 1
pP13q : WHERE ventes.commandesfactures.modele.cdeligliv.bonliv.datdepart ě 1

7
9

τP “ 1
τP » 0.90

Binomial
pP14q : anomalyASH “ Critical
pP15q : poolAlmostFull “ Info

151
124

τP » 0.85
τP » 0.99

• RQ3: Dataset D4 consists of a specific set of servers where we observed a notable
increase in blocked session alerts.

Table 3.4 provides detailed characteristics of these four sub-datasets. For each scenario,
we selected the top 10 subgroups based on the most appropriate interestingness measure for
the respective problem. The measure selection was made empirically by comparing the iden-
tified subgroups using different measures. We opted for the measure that not only produced
meaningful results but also offered interpretability through statistical distribution analysis
and expert consultation. To ensure diversity and avoid redundancy, we processed the re-
sulting patterns. The obtained patterns are presented in Table 3.5, which includes their
respective sizes and deviant qualities compared to the dataset. In the case of binary target
problems, we compared the target share τP for each subgroup pattern P .

3.4.2.2 Results Interpretation

Actionable and relevant subgroups have been identified in different use cases. In dataset
D1, we focused on subgroups whose median execution time is significantly higher than the
median of the dataset, while taking into account the subgroup size. We chose the measure
q med instead of the Mean-test because we observed that the mean is more sensitive to
outliers in this particular example. One subgroup pattern pP1q, consists of queries involving
the attribute auditinfo.etat in the WHERE clause. It has a very large median compared to
the dataset, but only a few objects. The density distribution of this subgroup, as shown in
Figure 3.7a, exhibits significant divergence from the usual distribution of the original data. On
the other hand, the pattern pP2q includes all the 451 queries executed on the cumulmultiple
table, characterized by a large median. Subgroup patterns pP3q and pP4q are subsets of pP2q,
as they cover only queries with the attributes valzvcliX and valzvartX, respectively, in
their WHERE clause. Figure 3.7a demonstrates that the deviation of pP3q and pP4q from the
overall distribution is stronger than the deviation of pP2q since they do not cover some slow
queries present in pP2q. To better understand this result, we examined the cumulmultiple

table by highlighting the distributions of its attributes in Figure 3.7b. We then confirm that
mostly the attributes valzvcliX and valzvartX cause the subgroup pP2q to be identified.

In dataset D2, we discretize the attribute time to categorize queries with an execution
time exceeding 10 seconds as slow queries. Each measure yields interesting results that
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(a) Subgroups distribution w.r.t time on D1 compared
to overall data.

(b) Distribution of cumulmultiple attributes.

Figure 3.7: Statistical distributions of subgroups found on D1.

incorporate extended features, such as alerts in pP9q and environment variables in pP7q.
For instance, we discovered that all queries executed on the mvtrealise table, specifically
on ServerX4, when the systemI/O is at least 50, have an execution time of more than 10
seconds. Furthermore, whenever the refexterne attribute is used in the GROUP BY clause,
the query experiences significant delays. Unlike the lift measure, which solely relies on
subgroup precision, WRAcc takes into account the subgroup size. Remarkably, subgroups pP7q

and pP8q stand out as they cover over 42% of the queries while maintaining an approximate
target share of 0.9, compared to the overall one. In other words, these subgroups contain
more than 70% of the slow queries.

In dataset D3, our objective is to identify the context in which queries face concurrency
problems. The most effective measures for this analysis are lift and binomial. Despite the
estimated target share is only 0.06 on the overall dataset, we managed to extract subgroups
exceeding the threshold of 0.94. A notable subgroup, denoted as pP11q, alone represents 28%
of the objects that exhibit concurrency issues.

In datasetD4, our focus is on extracting relevant hypotheses that demonstrate the context
in which the blockedSessions alert is raised, specifically with blocking or critical levels. This
alert typically occurs when a query locks a critical resource, causing new sessions to be put on
hold. We discovered that whenever the table applibudrist is joined with another table, the
alert is triggered. Another possible reason is a process querying a table without appropriate
indexes. To validate this assumption quickly, subgroup pP13q allows us to check the presence of
this scenario on the datdepart attribute. Moreover, we observed a high correlation between
the aforementioned alert and two other alerts described by subgroups pP14q and pP15q.

3.4.3 Quantitative Analysis

We conducted an analysis of the time performance of both exhaustive and heuristic SD algo-
rithms on the four datasets. For each scenario, we varied the number of returned subgroups
(k) and the depth, representing the maximum number of selectors per pattern. The results
are presented in Table 3.6. The limit value indicates an execution time exceeding 1,000 sec-
onds. It is noteworthy that Beam-Search consistently completed within 274 seconds for all
configurations, whereas Depth-First exceeded the 1,000-second threshold in many instances.

4Server names have been anonymized
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Table 3.6: Execution time (in seconds) of SD algorithms.

Algo Beam-Search (heuristic) Depth-First (exhaustive)

# patterns (k) 10 50 10 50

depth 2 3 2 3 2 3 2 3

D1 20.17 90.39 113.71 274.60 limit limit limit limit

D2 5.35 5.40 28.44 45.04 440.01 limit 458.2 limit

D3 0.75 0.83 3.94 4.27 0.18 0.50 0.53 0.59

D4 10.73 10.98 56.30 62.35 limit limit limit limit

Notably, in the case of D3, Depth-First required less time than Beam-Search. This obser-
vation can be attributed to the relatively smaller number of features compared to the other
datasets. These results demonstrate the impact of the algorithm parameters, namely the
number of returned patterns and the depth. As these values increase, the execution time also
increases. In our qualitative experiments, we used Beam-Search with a beam width of 50 for
D1 and D4, while we exploited results from Depth-First on D2 and D3.

3.5 Discussion

In this chapter, our objective was to introduce the framework of subgroup discovery to a highly
practical and valuable application in AIOps, specifically for incident management. We focused
on addressing a common challenge in both incident detection and diagnosis: identifying
emerging issues and root causes of performance degradation when querying databases on a
low-level basis. We initially presented the fundamental components of subgroup discovery
necessary to tackle a specific use case. This included the pattern syntax, which defines
the search space of potentially interesting patterns for users, as well as the interestingness
measures that are based on objective and/or subjective criteria. Additionally, we discussed
the mining algorithms used to effectively retrieve the best patterns according to the chosen
measure. Next, we introduced our framework which incorporates two supplementary steps.
The first step involves a pre-processing phase that enables efficient parsing of SQL queries
and the integration of relevant information for this task. The second step encompasses a
post-processing phase where we propose a visualization tool. This tool aids practitioners
in interacting with the framework and allows them to leverage their expertise to improve
the model. Through empirical analysis, we demonstrated how this approach can uncover
interesting hypotheses from queries executed on numerous databases.

Subgroup Discovery has the potential for various extensions that can enhance its results.
While we have presented a direct application of this framework, our experiments highlighted
the need to consider multiple targets in many cases. For example, identifying patterns of
queries that return few rows but have long running times falls under the scope of Exceptional
Model Mining. Furthermore, although we already employ a rich pattern language, there is
an opportunity to leverage the syntactic tree structure of queries to mine more expressive
tree patterns, which surpass simple conjunctions of SQL clauses. Lastly, it is crucial to con-
sider subjectivity and practitioner preferences during the mining process. In a nutshell, this
chapter serves as an introduction to Subgroup Discovery, showcasing its effective application
in important use cases for incident management. However, there are challenges when dealing
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Table 3.7: Mapping the contribution SD-4SQL to our proposed taxonomy.

Context

Focus Area Incident Detection and Incident Correlation

Maintenance Layer Functional

Scoop ERP Software System

Data
Source and Type

SQL Queries ÝÑ Tab data

Topology ÝÑ Tab data

Alerting Signals ÝÑ Tab data

ASH ÝÑ Tab data

Feature Eng Parsing of SQL queries required

Model

Approach Subgroup Discovery

Paradigm Supervised Rule Disocovery

Metrics Lift, WRAcc, Median-test, T-Score

Availability Data and Code (https://github.com/RemilYoucef/sd-4sql)

Particularities Interpretability, Human in the loop, In context-Evaluation

Contribution First to apply SD on SQL workload Analysis

with complex data structures such as graphs and hierarchies. Additionally, when the target
concept is not simply defined but derived from a complex combination of attributes, it be-
comes challenging to provide an interestingness measure and an effective search algorithm.
Sometimes, it is necessary to perform a search when the target concept itself is modeled
as another search space, for instance, when both rule components are patterns. In the up-
coming chapters, we will explore these challenges, contributing to both subgroup discovery
and AIOps for incident management. In the next chapter, we delve into applying subgroup
discovery in the context of explainable AI to summarize explanations for similar predictions
made by black box models. In Chapter 5, we tackle another intriguing problem involving
the analysis of Java memory heap dumps, which are typically represented hierarchically as a
target concept. We also provide in the following Table 3.7 the positioning of our contribution
according to the taxonomy introduced in Section 2.4 and its alignment with the existing
landscape.
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Chapter 4

Summarizing Interpretable Incident Triage
Predictions with Subgroup Discovery

In large-scale systems experiencing a growing number of reported incidents, the need
for an efficient Incident Triage process is crucial. Traditional approaches rely on on-call
engineers (OCEs) to quickly assess incident severity and determine the appropriate ser-
vice to address the issue. However, there have been advancements in predictive models
that aim to automate these decision-making processes. Specifically, the assignment of
incidents to the responsible individuals or teams plays a vital role in this phase. To
accomplish this, sophisticated models are utilized to analyze incident reports accurately
and make informed decisions. Unfortunately, many of these methods operate as black
boxes, obscuring the decision-making mechanisms behind their predictions. This lack of
transparency greatly hinders their adoption among practitioners who require a deeper
understanding of and justification for these predictions. Nevertheless, recent progress
in eXplainable Artificial Intelligence (XAI) offers hope by providing both global expla-
nations for models and, more importantly, localized explanations for individual model
outcomes. However, providing an explanation for each outcome to a human user becomes
impractical when dealing with a significant volume of daily predictions, especially con-
sidering that many incidents are duplicates and can share the same local explanations.
To tackle this issue, we propose leveraging Subgroup Discovery, which naturally groups
objects that share similar properties according to a target problem while providing a
description for each group. Nevertheless, employing Subgroup Discovery poses various
challenges. In this case, the target concept is defined as an explanation model rather
than a single attribute, necessitating the proposal of an appropriate similarity measure
and effective yet scalable algorithms to yield meaningful results.

93
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4.1 Introduction

The need for an effective process of incident triage becomes essential in large-scale systems
with an increasing number of incidents reported by monitoring systems and equipment/soft-
ware users. On the front line, on-call engineers (OCEs) have to quickly assess the severity of
an incident, qualify it, ensure that all the required information is provided, and decide which
service to contact for palliative and/or curative actions. To expedite and improve these deci-
sions, the state-of-the-art incident assignment methods in recent years have provided a wide
range of predictive models. These models aim to predict the appropriate service to target
based on the textual information provided in the incident reports, sometimes incorporating
background knowledge. Typically, these approaches involve training a classifier using histor-
ical incident reports that contain textual information, topology data, or prioritization scores.
The trained classifier is then used to assign new incidents [165, 309, 59, 238]. These models
usually employ sophisticated deep learning algorithms such as LSTM units, convolutional
networks, text embedding approaches, and ensemble models. Unfortunately, such methods
create opaque models, often referred to as black boxes, as they do not provide any explanation
of their output (outcome or prediction) to the end user. This limitation drastically hinders
their deployment in real-world scenarios since practitioners need to be able to understand
and justify why a given incident has been routed to a particular service team instead of
another. Hence, an important challenge in successfully automating incident triage is gaining
practitioners’ trust by providing them with an explanation for each model outcome. This
explanation can also be part of the incident diagnosis, as it assists with root cause analysis.

The popularity of black box prediction models combined with the crucial need for trans-
parency in many decision processes has led to an unprecedented interest in eXplainable
Artificial Intelligence (XAI). Pioneering research work has been conducted to interpret the
decisions of sophisticated models by providing what is known as white box models capable of
capturing the mechanisms followed by the model to make predictions. According to to [115],
these methods can be categorized into global and local explainers. Global methods such as
RxREN [20], FIRM [339], and inTrees [85], aim to explain the internal logic of the model
by constructing an interpretable model (e.g., a decision tree or a set of decision rules) that
approximates the predictions of the original model. These methods offer the advantage of
providing a comprehensive explanation for the behavior of the black box model. By learning
an interpretable model that covers the entire dataset, it is possible to explain any result
of a given input object. However, global methods may fail to explain all facets of the pre-
dictive process when the original model is exceedingly complex or when the data contains
interactions and dependencies between variables. Moreover, these methods may not perform
well when the relationship between the target outcome and the variables is nonlinear. On
the other hand, local approaches, such as LIME [254], SHaP [198], Anchors [255] and many
others [118, 155, 117] provide an explanation for each prediction of a given input object and
have exhibited better fidelity performance compared to global methods. These approaches
learn a white box model for each data instance independently based on synthetic data gen-
erated in the neighborhood of that data instance. This allows them to figure out how the
model behaves locally and better capture the behavior of the black box model. Nonetheless,
applying this type of approach to large datasets poses a challenge. When the total number
of predictions to be explained is large, the complexity of the approach escalates, and it be-
comes unfeasible for practitioners to analyze each prediction separately. Few methods have
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Figure 4.1: Overview of our explainable incident triage framework: (1) Input data are processed to extract
relevant features, (2) a black box model uses these features to provide an accurate incident triage, (3) contex-
tualized groups of black box predictions are explained using a Subgroup Discovery approach.

been proposed to address this issue, by grouping similar explanations into clusters [129] or
by selecting a subset of representative explanations [254]. While these methods can provide
a picture of the different possible explanations of a model, they do not provide the user with
the contexts in which each explanation holds.

Hence, we first propose an efficient black-box model based on 170K user-reported incidents
from our ERP system that we dealt with over the last 7 years. Then, we propose to take
advantage of the Subgroup Discovery approach to explore its ability to group predicted objects
into subgroups that support the same explanation. Instead of providing a specific explanation
for the prediction of each object, we group objects into a controlled number of subgroups
(i). For each subgroup, we provide an explanation that holds for all of its objects (ii). Each
subgroup is then associated with a description pattern that differentiates it from the rest of the
dataset. This approach is beneficial because it allows the user to interpret not only the black
box outcome for each subgroup but also the nature of the objects contained within a subgroup.
Formally, our objective is to present a pattern in the form of Pattern P ÝÑ Explanation e.
This explanation is typically represented by a white box model, often a regression model,
which allows us to interpret the weights assigned to different features. In this case, the
target concept is modeled as a combination of attributes, which pertains to the problem of
Exceptional Model Mining. Consequently, we need to introduce an interestingness measure
to evaluate the significance of this rule in relation to a global white box model that refers to
all the objects in the dataset. Additionally, an algorithm that is both scalable and efficient is
required to extract meaningful subgroups with interesting explanations. We believe that this
approach presents a novel solution to the challenge of explaining model outcomes, particularly
when dealing with a large number of outcomes, as observed in tasks such as Incident Triage
or Assignment. To provide a clearer understanding of our approach, Figure 4.1 illustrates
the entire process of the proposed methodology.

Roadmap. In Section 4.2, we present the methodology conducted, starting from raw data
to evaluations of the proposed black box model. Subsequently, in Section 4.3, we formalize a
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novel problem of summarizing explanations for black box outcomes using Subgroup Discovery
where we introduce our framework, dubbed SplitSD-4XAI. In this section, we also clarify the
choices made in developing our framework. Moving forward, we present an extensive empirical
study in Section 4.4 that demonstrates the effectiveness of our framework in identifying
interpretable subgroups and providing meaningful explanations, specifically in the context of
the incident assignment. Finally, in Section 4.5, we conclude this chapter with a summary,
discussion of limitations, and perspectives.

4.2 Background and Methodology

We conduct our analysis on a set R of 170k incident reports that concern more than 1k
servers over the last 7 years from the Software ERP system of Infologic. Each server contains
at least an instance of the monitored ERP software but contains other components that are
also supervised, including databases, hardware, and network. We efficiently process incident
texts to extract discriminant features, then we can augment them with various attributes
that allow contextualizing incidents, such as environmental features (topology), performance
metrics, and standard events

4.2.1 Raw data

Incident reports. We define the set R “ tr1, ...rnu of incident reports described by: (1) the
title rtitle, (2) the summary rsummary which contains commands, stack-traces, and text written
in human language (mainly French), (3) the component rcomponent in which the incidents
happen (e.g., the ERP software, the virtual machine, the storage disk), (4) the incident
creation timestamp rtime, (5) a Boolean rinternal that indicates whether the incident has been
reported internally by our company or externally by a customer. In the latter case, we include
(6) the customer rcustomer concerned by the incident.

Environment features. These features describe the environment and the component in
which the incident happens. For instance, the ERP software is characterized by its application
identifier, its version, and its type among 6 main families (sales, factory, finance, etc.). A
virtual machine can be characterized by the number of CPUs, the size of the RAM, the size
of swap memory, etc.

Performance metrics. We continuously gather time series data that captures the behavior
of multiple components spanning from hardware to the business level. A wide range of mem-
ory components, including heap and non-heap memory for Java Virtual Machines running
the ERP, as well as RAM and swap usage, are monitored at a high frequency. Additionally,
we collect various other metrics to ensure comprehensive observability. These metrics encom-
pass storage utilization, the frequency and average execution time of SQL queries, and the
number of users connected to each ERP software instance. The availability of these diverse
metrics proves highly valuable, as they provide efficient insights into the context surrounding
incidents, facilitating more effective incident triage processes.

Standard events. We capture a wide range of timestamped events that occur within super-
vised components. These events indicate interactions with users within the ERP software,
such as screen openings, data visualizations, and data creations. Additionally, events can
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also arise from the automatic execution of scheduled tasks. Furthermore, various components
generate distinct types of events, such as garbage collections in the Java Virtual Machine,
network latency, and system alerts.

4.2.2 Text transformation

Incident titles and summaries are processed using conventional NLP techniques to extract
relevant textual features. Most of these steps are achieved with the spaCy1 Python library.
The process begins with tokenization to extract a bag of words representation. Notably,
N-grams representation is not utilized as it did not improve prediction accuracy in our spe-
cific use case. Special characters, stop words, and noisy terms (e.g., those with fewer than
3 characters) are removed, along with words that appear frequently in incident reports but
lack discriminative value. Numbers are retained as they can provide useful information, such
as error and response codes. Subsequently, each remaining token undergoes lemmatization,
which involves reducing words to their base or dictionary form (lemma) that represents the
canonical form of the word. Finally, we compute the Term Frequency / Inverse Document

Frequency (tf-idf) for the remaining terms in each incident report. This calculation cap-
tures the importance of a term within a specific document (incident report) relative to its
frequency across the entire corpus of incident reports. We retain only the top 10K terms
in both rtitle and rsummary. The choice of this term count is made empirically, based on
maximizing prediction performance. The tf-idf formula is as follows:

tf-idfpt, rq “ tfpt, rq ˆ idfptq

where tfpt, rq is the frequency of the term t in the report r, idfptq “ log
´

|R|

dfptq

¯

is the inverse

document frequency, and dfptq is the numebr of incidents containing the term t.

4.2.3 Black box model for incident triage

We unify the different data sources into a dataset defined by a tuple pO,A, Y q, where O “

toiu1ďiďn is a set of objects that refer to the historical incident reports, A “ taju1ďjďm is a set
of descriptive attributes, and the classes Y “ ty1, ..., ynu that represent the services assigned
to each incident. An incident is assigned to a service (a class) y P tClass1, ..., Classpu where
p is the total number of services. These notations are illustrated in Table 4.1 with a dataset
containing 7 objects O “ to1, ..., o7u, referring to 7 incidents, each of them described by
10 attributes and a class y. For instance, the attributes ta1, ..., a5u are numerical and they
provide the tf-idf of terms that characterize rtitle and rsummary. The attribute weekend (a6)
indicates whether the incident has happened during a weekend. Other attributes correspond
to some environment features, alerts, and metrics.

The incident triage task consists in predicting the class y (the service) of an incident
report r based on its attributes ta1, ..., amu. It is noteworthy that, since our goal is to
make the prediction at the beginning of the incident life-cycle, all the considered attributes
are available from the very first moment when the incident report is created. We consider
training and validation subsets of objects OT , OV Ď O that we use to train prediction models
denoted by b. The output bpoq “ tbpoq1, ..., bpoqpu P r0, 1s

p provides a probability distribution

1https://spacy.io/
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Table 4.1: Toy Example of a dataset of incidents pO,A, Y q.

O
rtitle rsummary rtime ENV features Alerts Metrics Service

a1
disk

a2
swap

a3
full

a4
java

a5
http

a6
weekend

a7
Soft. version

a8
Soft. type

a9
Memory usage

a10
% used heap

y
class

o1 0.7 0 0.4 0 0 True 1 Sales - 60 TEC

o2 0 0.8 0.3 0 0 True 3 Sales Blocker 50 TEC

o3 0.5 0 0 0 0.6 True 2 Factory - 60 TEC

o4 0 0.5 0.9 0.6 0 True 3 Factory Critical 97 OT

o5 0 0.7 0.6 0 0 False 1 Sales Critical 96 OT

o6 0.1 0 0 0.6 0.6 False 2 Sales Alarm 85 OT

o7 0.1 0 0 0 0.9 False 1 Sales - 60 OT

over the p predicted output classes. Inspired by recent work [238, 104, 59] which show in
most cases that best results are achieved by DNN and ensemble models, we have opted for
an LSTM-attention architecture as depicted in Figure 4.2. We also evaluated against the
following black box methods: Random Forest, XGBoost. Additionally, we have considered
the logistic regression and multinomial Naive Bayes as white box models to confirm that the
usage of black box models effectively improve the prediction quality. We have tested each
model in three different scenarios: (1) TOP1: predict the true service, (2) TOP2: predict
the two most probable services, i.e., if the true service belongs to this TOP2, the prediction is
considered correct, (3) TOP3: predict the three most probable services. Table 4.2 reports the
results obtained on the validation set OV . We use the most common performance metrics in
multi-label classification i.e., Precision, Recall and F1 score in their weighted average formula.
Interestingly, we observe that in all considered scenarios, our proposed model achieves the
best performances compared to other models and improves the F1 score of Logistic Regression
by 9%. In addition, the model shows to be very accurate when it comes to predicting the
most likely services to deal with the incident. Out of 30 different services, the model manages
to reach an F-score of 0.96 when the correct service belongs to the 3 most probable services
predicted by the black box model (the TOP3 setting).

Table 4.2: Performance comparison of prediction models in the incident triage task.

DNN RF XGBoost Naive Bayes Logistic Regression

P R F1 P R F1 P R F1 P R F1 P R F1

TOP1 0.84 0.77 0.82 0.74 0.72 0.73 0.75 0.75 0.74 0.74 0.75 0.74 0.75 0.72 0.73

TOP2 0.92 0.91 0.91 0.89 0.88 0.88 0.89 0.89 0.89 0.89 0.90 0.89 0.89 0.88 0.89

TOP3 0.97 0.96 0.96 0.94 0.94 0.93 0.94 0.94 0.94 0.95 0.94 0.94 0.94 0.94 0.94

4.2.4 Explaining Black box outcomes

The single outcome explanation problem. This problem consists in giving an expla-
nation e for the decision bpoq “ tbpoq1, ..., bpoqpu P r0, 1s

p related to a specific object o P O
where e belongs to a human-interpretable domain E [115].

White box model. In order to extract an explanation e P E for a decision bpoq, one
of the most popular methods is to train an interpretable model that learns to imitate the
decisions of b specifically in the neighborhood of the object o. This interpretable model
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Figure 4.2: Overview of the LSTM-attention architecture employed for incident triage model.

is called a white box model and it is denoted w. New objects are synthetically generated
from the neighborhood of o, and the model w is trained to mimic decisions of b on these
objects. One may use linear regression as a white box model. We provide an illustration
of the process using an example to demonstrate how the widely recognized LIME (Local
Interpretable Model-Agnostic Explanations) method [254] works, as shown in Figure 4.3. In
Panel (A), the two regions represent two classes that cannot be accurately predicted using
a linear or logistic regression model. To explain the predictions for a specific data point,
we generate a synthetic neighborhood around that particular instance. Subsequently, the
black box model is applied to make predictions for this newly generated synthetic data. A
linear regression model is then trained within this neighborhood, similar to a tangent in
complex functions, considering the predictions from the black box model (Panel D). Finally,
the interpretations are derived based on the weights of the linear model. In our case, since
we deal with hundreds of attributes which are strongly linearly correlated, linear regression
models generally tend to overfit and the model coefficients will have large variance, thus
making the model unreliable. Therefore, we need to consider regularization techniques that
shrink the linear model coefficients, and take into consideration the case where the number of
objects to explain is less than the number of attributes used in explanation. In our settings,
we use Ridge regression which penalizes the sum of squared coefficients (L2 penalty). While
Lasso regression is more appropriate to achieve sparsity, it has been observed that if predictors
are highly correlated, the prediction performance of the lasso is dominated by ridge regression
[340]. Moreover, Lasso solution is not uniquely determined when the number of attributes is
greater than the number of objects.

Synthetic neighborhood. For a given object o P O, we denote by Npoq the set of syntheti-
cally generated instances in the neighborhood of o, plus the object o. As already highlighted,
to explain o, we train a model w that imitates b on the set Npoq. For instance, as shown in
Figure 4.3, the LIME approach initially employs a uniform distribution for each attribute aj
to generate synthetic data instances (Panel B). Then, an exponential smoothing technique
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Figure 4.3: Process of explaining predictions using LIME approach. Figure from [217].

Table 4.3: Summarizing explanations of black box predictions of incidents from Table 4.1 with Subgroup
Discovery. The number of explanations is reduced from 7 to 3 by grouping objects in contextualized subgroups
supporting the same explanations.

O
Pred. bpoq1
of TEC

Pred. bpoq2
of OT

Local model wpoq
of majority class

Subgroup model Subgroup description

o1 0.9 0.1 disk` 0.1 ¨ swap` 0.5 ¨ full
0.8 ¨ disk` 0.7 ¨ swap

`0.4 ¨ full
weekend “ True^ java “ 0o2 0.8 0.2 0.1 ¨ disk` swap` 0.4 ¨ full

o3 0.6 0.4 disk´ 0.5 ¨ http` 0.3 ¨ full

o4 0.3 0.7 0.9 ¨ java` 0.5 ¨ full´ 0.2 ¨ swap java` 0.6 ¨ full
´0.3 ¨ swap

%used heap ě 96
o5 0.2 0.8 java` 0.6 ¨ full´ 0.3 ¨ swap

o6 0.2 0.8 0.8 ¨ http
0.9 ¨ http

Soft. type “ Sales ^
weekend “ Falseo7 0.1 0.9 0.9 ¨ http´ 0.1 ¨ disk

is applied to assign greater importance to instances that are in proximity to the instance of
interest based on their Euclidean distance (Panel C). The quality of w to mimic the behavior
of b is assessed with some fidelity measures. The fidelity can be assessed in terms of functions
such as MSE and F1-score, evaluated using the outcome of the black box model.

In Table 4.3, we show bpoq1 (resp. bpoq2) the probability of the class TEC (resp., OT)
predicted by the black box model. The majority class is TEC in to1, o2, o3u, whereas it
is OT in the remaining objects. The table gives the local model w trained to mimic the
prediction of the majority class by the black box in the neighborhood of each object o P O.
For example, the local model that provides an explanation for the prediction of TEC for o3 is
wpoq “ disk´0.5 ¨http`0.3 ¨ full. This means that the higher the tf-idf of the words “disk”
and “full” in the incident report, the higher the probability of the TEC class, in contrast, the
higher the tf-idf of “http”, the lower the probability of TEC.
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In practice, we may have a large set OE Ď O of objects whose decisions tbpoq | o P OEu

need to be explained. Providing a specific explanation for each prediction is overwhelming
for the user, and it may be even impossible for her to dig into each explanation separately. In
addition, many objects that share certain properties in common may have similar explana-
tions. i.e., an explanation can be valid for a group of objects. We aim to reduce the number
of explanations by partitioning the objects into subgroups s Ď OE that can support the same
explanation. However, we need to be able to characterize these subgroups by some common
interpretable description or pattern that separates them from the rest of the dataset. To this
aim, we use the concepts of Subgroup Discovery which are described hereafter.

4.3 Summarizing black box explanations with SD

None of the existing approaches have harnessed the potential of the Subgroup Discovery
framework for the purpose of explaining black box predictions. In our pursuit to leverage
this approach and enhance the complexity of local explainers while providing them with an
interpretable context, we encountered several complex challenges. These challenges revolve
around the structure of the mined data, the interestingness of subgroups, and the develop-
ment of a scalable mining algorithm that optimizes a novel interestingness measure within
the Subgroup Discovery (SD) framework. In the following sections, we begin by defining our
pattern language, which delineates the search space for subgroups. Subsequently, we intro-
duce our measure to assess the interestingness of each subgroup. This measure evaluates the
fidelity of the subgroup model in relation to the black box model, as well as the deviations
from a global model. Finally, we formally present our problem of summarizing black box
explanations using Subgroup Discovery and present our mining algorithm.

4.3.1 Pattern language and subgroup model target

To define the search space of subgroup descriptions (i.e., patterns), we utilize the pattern
language L, employing the same notations as Chapter 3. The pattern language L is based
on the descriptive attributes A and is expressed as L “

Śm
i“1 seli, where seli represents the

set of all possible selectors for the attribute ai. However, in the subgroup pattern, we have
considered terms encoded in tf-idf as Boolean variables, indicating their presence or absence.
For convenience, we refer to a subgroup as s instead of a pattern P , i.e., s “ sgpP q.

Instead of providing an explanation for the prediction of each o P OE , we aim to group
these objects into a limited number of subgroups that cover all the objects of OE to explain,
and for each subgroup s, we provide an explanation that holds for all its objects.

In Table 4.3, we give the predicted probability bpoqi for each class. The prediction of each
object o is then explained by a local model w trained to mimic the behavior of the black
box model in the neighborhood of o. This model w estimates the outcome of b using a linear
equation between tf-idf of terms appearing in the corresponding incident reports.

We can partition the data into three subgroups whose objects can support the same
explanation. For example, the first subgroup refers to all incidents that have happened in
the weekend and that do not contain the word java in their text. Their predicted probability
of TEC can be explained by the same relation: (0.8 ¨ disk ` 0.7 ¨ swap ` 0.4 ¨ full). Doing
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this, we summarize 7 different local models in only 3 subgroups models along with a pattern
that uniquely identifies the objects explained by each model. To ensure that a subgroup
model holds for all the objects of the subgroup, we seek to minimize the error made by the
subgroup model while imitating the black box model on the neighborhood of each object of
the subgroup. These notions are formalized below.
Subgroup model. A subgroup model ws is a white box model used to explain the predictions
of b on the objects of a subgroup s. It is trained on the neighborhoods of the objects of s.
The neighborhood generation process is described later in 4.3.3.1.

4.3.2 Interestingness Measure

In our approach, we focus on extracting subgroups that maximize fidelity with respect to the
black box predictions. In simpler terms, our objective is to identify subgroup patterns whose
subgroup models demonstrate a higher level of similarity to the behavior exhibited by the
black box model for those subgroup instances. We use the Sum of Squared Errors to evaluate
the fidelity of a white box model ws, fitted on a subgroup s and its objects neighborhood, to
imitate a black box model b:

Lps, ws, bq “
ÿ

oPs

ÿ

o1PNpoq

p
ÿ

i“1

`

bpo1qi ´ wspo
1qi

˘2
.

The global loss for a set of subgroups S “ ts1, s2, ...u Ď S along with their fitted models

W “ tws1 , ws2 , ...u is defined as: LpS, bq “
ř|S|

i“1 Lpsi, wsi , bq.
Controlling the number of subgroups. To control the total number of collective expla-
nations of the predictions tbpoq | o P OEu, we propose to upper bound the number of returned
subgroups with a threshold K P N. The goal is thus to find a subgroup set ts1, s2, ...u of size
at most K, whose fitted white models tws1 , ws2 , ...u minimize the loss function with respect
to the black box model. The problem is formalized as follows:

Problem 2 (Summarizing explanations with SD). Let OE Ď O be a subset of objects
whose predictions need to be explained, and b the black box model used for predic-
tion. Given a user-specified threshold K P N representing the maximum number of
explanations, find a subgroup set S “ ts1, s2, ...u with their fitted white box models
W “ tws1 , ws2 , ...u such that (1) |S| ď K, (2) the subgroup set covers all the objects
to explain:

Ť

sPS s “ OE , and (3) the global loss for the subgroup set is minimized:
S “ argminS1ĎSLpS

1, bq.

4.3.3 Search Algorithm

The problem of summarizing explanations with SD is NP-Hard. This can be proven by
reducing the NP-Complete problem of weighted set cover in a polynomial time to Problem 2:
each set corresponds to a subgroup, and the set weight is represented by the loss Lps, ws, bq of
the corresponding subgroup. Thus, providing a scalable approach that finds the best solution
to Problem 2 is not possible. We propose to use an efficient heuristic strategy detailed in
Algorithm 1 (SplitSD-4XAI) and empirically prove its performance. This algorithm starts
by generating the neighborhoods Npoq used to train local models for each object o P OE ,
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using GenerateNeighbors explained in 4.3.3.1. Then, it constructs a non-overlapping set of
subgroups using a split based strategy. It begins with the subgroup set S “ tOEu that
contains a subgroup covering all the objects of OE . In each iteration, and given the current
set of subgroups S, one of the subgroups of S is split into two subgroups that minimizes
the overall loss. The split is applied for one of the attributes a P A. This procedure is
done iteratively until the number of subgroups K is reached, or, until there is no additional
possible improvement of the loss, as detailed in 4.3.3.2.

Algorithm 1: SplitSD-4XAI

Input: OE a set of objects, b a black box prediction model, K a threshold on the
number of subgroups.

Output: S Ď S a subgroup set that covers all the objects OE , W the set of white
box models associated with the found subgroups.

1 for o P OE do
2 Npoq Ð GenerateNeighborspoq
3 S Ð tOEu

4 W Ð dictptuq // W is a dictionary
5 W rOEs Ð wOE

// wOE
is the white box fitted to the subgroup OE

6 improveÐ True, splitsÐH, newSubgroupsÐ tOEu

7 while |S| ď K and improve do
8 // Compute the best splits for the new subgroups:
9 for s P newSubgroups do

10 pa, vq Ð argminaPA,vPRaLpsra ď vs, wsraďvs, bq ` Lpsra ą vs, wsraąvs, bq

11 splitsÐ splitsY tps, a, vqu

12 // Choose the subgroup split that leads to the minimum loss:
13 ps, a, vq Ð argminps,a,vqPsplitsLpSztsu Y tsra ď vs, sra ą vsu, bq

14 if Lpsra ď vs, wsraďvs, bq ` Lpsra ą vs, wsraąvs, bq ă Lps, ws, bq then

15 S Ð Sztsu Y tsra ď vs, sra ą vsu
16 remove W rss
17 W rsra ď vss Ð wsraďvs

18 W rsra ą vss Ð wsraąvs

19 newSubgroupsÐ tsra ď vs, sra ą vsu
20 splitsÐ splitsztps, a, vqu

21 else
22 improveÐ False

23 return pS,W q

4.3.3.1 Neighborhood generation

The goal of this step is to sample a set of neighbors Npoq for each object o P OE , using
a locality-aware sampling strategy. Many approaches have been proposed to address this
problem [254, 114, 116]. As this part of the process is not the main concern of our study, any
of these approaches can be directly used in GenerateNeighbors.
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However, the application of the LIME explainer procedure, for example, does not appear
to be effective due to its high sensitivity to the parameters of the exponential smoothing
function. Consequently, it can lead to significantly different local models, resulting in varying

interpretations. More formally, the function used is defined as πpo, o1q “ exp
´

´Dpo,o1q

σ2

¯

, where

D represents the Euclidean distance and σ represents the kernel width, indicating the size
of the neighborhood. A smaller kernel width implies that an instance must be very close
to influence the local model. Referring to the LIME implementation2, this parameter is
arbitrarily set to 0.75 ¨ |A|, which fails to generalize well to many other cases. Additionally,
there is no systematic mechanism provided to determine the optimal kernel width based on
the specific use case. An interesting example presented in [217] (Figure 4.4) demonstrates this
issue. They attempt to explain a prediction of an instance x “ 1.6. The black box model’s
predictions based on a single feature are represented by a thick line, while the distribution of
the data is indicated by rugs. Three local models with different kernel widths are computed,
resulting in highly disparate regression models. Consequently, it becomes challenging to
determine whether the X feature has a negative, positive, or negligible effect on the given
data instance. This example focuses on a single feature, but the challenge becomes even more
complex in high-dimensional feature spaces.

Figure 4.4: Parameter sensitivity problem in LIME neighborhood sampling procedure [217].

In order to limit the bias due to this step, we use a simple yet efficient sampling approach
considering two main conditions (1) the closer a point o1 is to o, the higher the chance to
sample it in Npoq, (2) the correlation between the different attributes and the variance of
each attribute need to be taken into account in order to sample more realistic objects. To
provide further justification for these conditions, particularly the second one, we present in
Figure 4.5 a visual representation of different sampling results. These outcomes arise due to
variations in correlation and variance, directly influencing the importance of features in the
resulting local models. One effective approach to incorporate both variance and correlation
in the sampling process is by utilizing the covariance function between two attributes:

2https://github.com/marcotcr/lime/blob/master/lime/lime_tabular.py
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Figure 4.5: Different sampling results with different values of variance and correlation.

Covpai, ajq “
1

|O| ´ 1

|O|
ÿ

k“1

paipokq ´ āiqpajpokq ´ ājq

In order to generate an object o1 P Npoq, the attribute values Apoq are drawn from a
multivariate normal distribution N pA, Σz q centered in Apoq with a covariance Σ

z , where Σ is
the covariance matrix of pO,Aq and z P N is a parameter that shrinks the original covariance
Σ to the locality of o. Since the multivariate Gaussian distribution generates values in R for
all attributes, categorical features need first to be converted into numerical values. In ordinal
data (e.g., Memory usage alert), while encoding, we should retain the information regarding
the order in which the category is provided. Nominal features (e.g., Soft. type) are encoded
so that each category is mapped with a binary variable containing either 0 or 1 using one
hot encoding. Then, after the sampling process, these values are discretized. Particularly,
for nominal attributes, the category having the closer value to 1 among other categories of
the same nominal attribute is set to 1, otherwise 0.

4.3.3.2 Optimizing L with a split-based strategy

Let us now detail the approach used to identify a subgroup set S “ ts1, s2, ...u that optimizes
the loss, while satisfying the constraints of coverage (YsPSs “ O) and maximum size (|S| ď
K). In what follows, for a given subgroup s, we use the notation srai ď vs and srai ą vs to
split s into two subgroups with respect to the values of attribute ai. By considering that Ÿ
corresponds either to ď or ą, we define srai Ÿ vs “ to P s | aipoq Ÿ vu. Notice that if we
split a subgroup s with a Boolean attribute a P A, there is only one possible split, that is
srai ď 0s and srai ą 0s. Nominal attributes are transformed into a one hot representation,
and are then treated exactly as Boolean attributes.

Algorithm 1 (SplitSD-4XAI) describes the different steps of this approach. The subgroup
set is stored in S, and the corresponding white box models are kept in a dictionary W . S
is initialized with a subgroup OE that covers all the objects to explain. The variable splits
stores the best split for each subgroup s P S. This variable is updated in each iteration by
computing the best splits of the newly added subgroups kept in newSubgroups (Line 9 to
Line 11). Then, the subgroup s whose split reduces the loss the most is selected. It is removed
from S and replaced by the subgroups resulted from this split, i.e. sra ď vs and sra ą vs.
This loop is repeated until |S| “ K, or until there is no further split that reduces the loss.
Particularly, since the used loss function is the SSE whose optimization is convex for a linear
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model, a new split will either reduce LpSq or let it unchanged, but it will never increase it.
In fact, this is guaranteed for any model whose optimization is global, such as models with
a convex loss function (linear regression, ridge regression, LASSO, etc.), as proven by the
following property.

Property 1. Let s0, s1, s2 s.t. s0 “ s1 Y s2 and s1 X s2 “ H, then we have: Lps1, ws1 , bq `
Lps2, ws2 , bq ď Lps0, ws0 , bq.

Proof. This can be proven by contradiction. Let us consider that the inequality does not
hold. Then, Lps1, ws1 , bq ` Lps2, ws2 , bq ą Lps0, ws0 , bq. As Lps0, ws0 , bq “ Lps1, ws0 , bq `
Lps2, ws0 , bq, we have Lps1, ws1 , bq`Lps2, ws2 , bq ą Lps1, ws0 , bq`Lps2, ws0 , bq. Two cases are
then possible:

• Lps1, ws1 , bq ą Lps1, ws0 , bq, which means that ws1 is not the best model that fits s1,
which is absurd because ws1 is a global optimal solution of L on s1.

• Lps1, ws1 , bq ď Lps1, ws0 , bq, thus we have necessarily Lps2, ws2 , bq ą Lps2, ws0 , bq. Fol-
lowing the same logic, this implies that ws2 is not the best fit for s2, which is also
absurd.

4.4 Experiments

An experimental study was carried out to assess the efficacy of SplitSD-4XAI in summa-
rizing explanations for black box decisions within the domain of incident triage. The primary
objective of these experiments was to address the following research questions:

✘ RQ1: Do subgroup models provide good explanations, in other words, are explanations
of subgroup models faithful to the black box model predictions?

✘ RQ2: Are subgroup models human interpretable and do they help practitioners under-
stand the black box results?

✘ RQ3: Are subgroup models different from each other?

4.4.1 Experimental Setup and Baselines

We have collected 170k incident reports involving more than 1k servers over the last 7 years.
Although most of the data types introduced in Section 4.2 have been used in these exper-
iments, metrics, and alerts have been as they cover only incidents of the last few months.
Once the data is processed and encoded, we split it randomly into training (65%), validation
(10%), and test set (25%). The results of the accurate black box model used for triaging
are provided in Table 4.2. The distribution of incident reports across different services is
extremely imbalanced, with the most popular services having thousands of incidents, while
other minority services were rarely called upon. We randomly select from the test set 2000
incidents to be summarized in no more than 200 subgroups with their explanations. For that,
we apply SplitSD-4XAI with a neighborhood size of 250 for each object (|Npoq| “ 250). The
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complete process requires about 3 hours to execute when the number of subgroups K “ 200.
Throughout these experiments, we compare SplitSD-4XAI with two baselines:

1. Global white box (global-wb): This method consists in training a white box model
on the set of data that we need to explain to globally approximate the decisions of
the black box model. The aim of this comparison is to evaluate the effectiveness of a
global white box model in approximating a black box model and determine the extent
to which we can enhance its performance using SplitSD-4XAI.

2. Local white box (local-wb): In this approach, we adopt the training of local white
box models to explain each data object individually. Following a methodology similar
to LIME [254], we make use of our proposed local neighborhood generation method
to ensure a fair comparison between SplitSD-4XAI and the local-wb model. As a
result, we obtain a separate model for each object that requires an explanation. The
purpose of this comparison is to evaluate whether it is possible to achieve comparable
explanatory quality results with a small number of explanations, as opposed to using a
larger number.

4.4.2 Experimental Results

In what follows, we present the results obtained from the evaluation of the scenarios related
to the criteria defined previously.

RQ1: We assess whether SplitSD-4XAI effectively identifies subgroups whose associated
models accurately mimic the decisions of the black box model. Our objective is to vali-
date whether the subgroup models provided by SplitSD-4XAI explain the behavior of the
black box model while maintaining its performance. Initially, we analyze this by calculat-
ing the Mean Squared Error (MSE “ SSE

|OE |
) between the predictions made by SplitSD-4XAI

and the black box model b, considering different numbers of computed subgroups K. The
results, depicted in Figure 4.6a, also include the MSE values obtained from the global-wb

and local-wb methods as reference. Notably, as the number of subgroups increases, the
MSE decreases significantly. Interestingly, the largest improvement occurs even with a small
number of subgroups. To determine the optimal number of subgroups K‹, where the fidelity
closely matches that of the local-wb method, and further increasing K does not significantly
enhance fidelity, we employ the elbow technique using the Kneed package3. We demonstrate
that with just 25 subgroup models, we can substantially enhance the fidelity compared to
the global-wb method and achieve a score that closely approximates that of the local-wb

method, which employs 2000 models.

In a second analysis, we compare SplitSD-4XAI with two baselines using the F1-score

metric. This score evaluates the extent to which each approach is capable of replicating the
service predictions made by the black box model. Specifically, we assess the F1-score for the
three most probable services predicted by each model and compare them to the black box
model’s predictions. For example, when evaluating Service-2, we consider the services with
the second-highest probabilities and compare them to the second-most probable services pre-
dicted by the black box model. Our evaluation focuses on only 25 subgroup models, and the
results are presented in Figure 4.6b. The F1-scores achieved by SplitSD-4XAI consistently

3https://github.com/arvkevi/kneed
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(a) MSE of global-wb, local-wb, and SplitSD-4XAI

(with different K).
(b) F1-score of global-wb, local-wb and
SplitSD-4XAI with K‹ found by elbow technique.

Figure 4.6: Quality of explanations of black box outcomes.

outperform those of the global-wb baseline. Moreover, with just 25 subgroups, we achieve
nearly comparable F1-score results as the local-wb method (0.87 for SplitSD-4XAI with
25 models compared to 0.88 for local-wb in relation to Service-1).

These results demonstrate that SplitSD-4XAI is able to significantly reduce the number
of explanations while keeping them faithful to the black box decisions.

RQ2: Our approach aims to group predicted objects into subgroups with the following
objectives: (1) Each subgroup should possess a distinct description that sets it apart from the
rest of the data, and (2) objects within the same subgroup should support a same consistent
explanation. To achieve this, we provide a description (pattern) for each subgroup, along
with its corresponding model. From this model, we derive human-interpretable explanations
that assist practitioners in comprehending the rationale behind predicting one service over
another. We accomplish this by identifying the most significant features of the model based
on the ridge model coefficients. The contribution of each feature in predicting the analyzed
class is computed as the ratio between the absolute value of the feature coefficient and the
sum of the absolute values of all model coefficients. It is important to note that the relevance
of feature importance is contingent upon the fidelity of the subgroup models to the black
box. The more accurately the subgroup model emulates the behavior of the black box, the
greater our confidence in the explanation based on the coefficient values.

Figure 4.7 presents the descriptions and explanations for four distinct subgroups, each
corresponding to the most predicted service within the subgroup. We specifically chose the
most popular and frequently requested services for analysis. As an example, consider the
subgroup (s3 : summary stats “ 0 ^ summary stock ą 0), which comprises incident reports
characterized by a tf-idf value for the term stock greater than 0, while excluding the term
stats in their descriptions. This subgroup is predominantly dominated by the service ST,
representing Stock-related incidents (approximately 41% of the incident reports). In the first
subgroup, our focus lies in explaining predictions for the sales service concerning incidents
reported between 12 p.m. and 11 p.m. that do not contain terms related to statistics or
stock in their summaries. The feature importance plot highlights terms that exhibit a strong
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Sales TEC

s1 description: hr P r12.0, 23.0s

^summary stats “ 0

^summary stock “ 0

s2 description: hr P r1.0, 12.0s

^summary stats “ 0

^summary stock “ 0

^app SV “ 0

ST EDI

s3 description: summary stats “ 0

^summary stock ą 0

s4 description: hr P r1.0, 12.0s

^summary stats “ 0

^app SV “ 1

^day “ Wednesday

Figure 4.7: Subgroup examples: Patterns and the most important features of the subgroup models for specific
services. Green color (resp. red) corresponds to features that contribute positively (resp. negatively) to
predicting the analyzed service.

positive correlation with the sales context, such as creation, update, validation, and packing
of orders. On the other hand, terms like velocity increase the likelihood of the sales service
being requested. However, terms such as logistic and connection decrease this probability
in favor of other services. Similarly, in the case of s2, we observe that incidents assigned to
the Technical team (TEC) exhibit discriminative terms such as save, session, and blocking.
For the subgroup model of s3, we find that terms related to stock (e.g., expenses, cost, and
menu) are included. The last example is particularly intriguing as it pertains to the subgroup
description and the quality of the associated explanation when predicting the EDI (Electronic
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Figure 4.8: Distribution of incidents on the subgroups.

Data Interchange) service. Specifically, when considering supervision servers, we confirm that
numerous issues reported to this service are related to the daemon, as all EDI operations
are performed by daemons. Furthermore, explanations not only aid in comprehending and
interpreting the results of the black box model, but they can also shed light on its limitations.
In the second example, we observe that the term functionality exhibits a positive contribution
in the incident title, but a negative contribution in the summary. Such an explanation allows
us to gain a deeper understanding of the behavior of the black box model and offers insights
for potential improvements.

RQ3: Another important question to address is whether the explanations provided by
SplitSD-4XAI for the identified subgroups are diverse. If most subgroups have similar expla-
nations, there may still be room for further summarization, indicating that SplitSD-4XAI

might not have efficiently captured the necessary distinctions. To investigate this, we ex-
amine the similarity between the linear models associated with the subgroups identified by
SplitSD-4XAI when the number of subgroups is set to 25. To measure the similarity between
the explanations of two subgroups, denoted as s1 and s2, we employ the cosine function, which
operates on the coefficient vectors of the corresponding linear models, ws1 and ws2 . Our find-
ings reveal a significant level of dissimilarity among a large proportion of subgroup pairs.
Specifically, approximately 93% of the subgroup pairs exhibit a similarity score (sim) of less
than or equal to 0.4. Furthermore, we analyze the distribution of the 2000 incidents among
the 25 identified subgroups. As depicted in Figure 4.8, our proposed solution demonstrates
a balanced distribution without major outliers on the lower end, referring to subgroups with
the smallest sizes. Conversely, the presence of numerous outliers in the distribution indicates
the existence of numerous similar incidents that should be collectively explained rather than
treating them independently, as done in the local-wb approach.

4.5 Discussion

In this chapter, we tackled one of the most demanding tasks in incident management,
which is incident assignment during the triage phase. Our focus was on automatically rout-
ing incident reports to the appropriate teams using sophisticated deep learning algorithms
known for their efficient analysis of textual data. However, we encountered a significant chal-
lenge related to interpretability. The issue arises when service teams seek explanations for
why a specific incident has been assigned to them, and practitioners express concerns about
using models whose decision-making mechanisms they cannot understand. This calls for a
solution that can provide interpretable explanations for the model’s decisions. While local
models can offer accurate explanations while maintaining some fidelity to the black box mod-
els, they face limitations in terms of complexity due to the number of required local models.
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Table 4.4: Mapping the contribution SplitSD-4XAI to our proposed taxonomy.

Context

Focus Area Incident Triage: Assignement

Maintenance Layer N/A

Scoop ERP Software System

Data
Source and Type

Incident Reports ÝÑ Tab data

Topology ÝÑ Tab data

Standard Events ÝÑ Tab data

Performance Metrics ÝÑ Tab data

Feature Eng Vectorization of textual data with tf-idf

Model

Approach
LSTM-Attention Model ÝÑ Incident Assignement

Subgroup Discovery (EMM) ÝÑ Summarizing local b.b explanations

Paradigm Supervised

Metrics
F1-Score ÝÑ Incident Assignement

Fidelity ÝÑ Summarizing local b.b explanations

Availability Code (https://github.com/RemilYoucef/split-sd4x)

Particularities Interpretability, In context-Evaluation, Scalabity

Contribution First to apply SD in the context of XAI to contextualise local explanations

In our work presented in this chapter, we addressed this problem through the use of subgroup
discovery and most likely exceptional model mining. We devised a framework that incorpo-
rates three key building blocks to effectively tackle our target problem. Instead of mapping a
single incident prediction to a human-interpretable explanation, our framework maps a con-
textualized set of incidents described by an interpretable pattern to an interpretable subgroup
model. Notably, our framework provides users with the flexibility to determine the number
of subgroups and, consequently, the number of explanations they desire. We conducted ex-
periments using incident reports, and the results showcased the effectiveness of our approach,
which we refer to as SplitSD-4XAI. Our framework successfully provides a concise set of
high-fidelity explanations for a black box model. Even with a small number of explanations,
the results are comparable to individual explanations for each incident. For instance, we were
able to explain 2,000 decisions using only 25 subgroups, without a significant loss in fidelity.

We believe that this work opens up new avenues for future research. One interesting
direction is to expand our approach to compare the behaviors of different models and uncover
what each model captures in various situations. This could involve using more sophisticated
explainers such as SHAP [198] instead of relying solely on the LIME methodology [254].
Another improvement could be to incorporate a constraint based on the distribution of classes
per subgroup. For example, one could prioritize grouping together incidents that are more
likely to belong to a single class in order to analyze fewer explanations within the subgroup
model.

Looking ahead to the next chapter, we will delve into another problem within the incident
diagnosis phase, specifically focusing on the analysis of Java out-of-memory exceptions using
the subgroup discovery approach. In this particular use case, the available datasets consist of
suspect leaky classes with identified sizes, organized hierarchically. This unexplored aspect
of subgroup discovery adds to the novelty of our research in the field. In Table 4.4, we
provide the positioning of our contribution based on the taxonomy introduced in Section 2.4,
demonstrating its alignment with the existing landscape.
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Chapter 5

Mining Java Memory Heap Dumps using
Subjective Interesting Subgroups with Hi-
erarchical Targets Concepts

Java out-of-memory incidents are a common and challenging problem in software sys-
tems. Diagnosing these incidents is difficult due to the complexity of analyzing large
histograms that contain information about suspect leaky classes occupying memory at
the point of saturation. Additionally, the hierarchical relationship between packages and
classes in these histograms adds to the complexity. It is also important to highlight that
Java out-of-memory incidents are not always caused by memory leaks, but can also be
the result of coding mistakes in the source code. To address this issue, we propose using
Subgroup Discovery, which has been successfully employed in diagnosing performance
issues in SQL query executions. However, applying Subgroup Discovery to this problem
presents several challenges. The targets now involve real-valued attributes organized hi-
erarchically, which is a novel problem in Subgroup Discovery that has not been explored
before. This motivates us to introduce a novel and generic Subgroup Discovery setting
with hierarchical target concepts. We define an adapted pattern syntax and a quality
measure that identify relevant, non-redundant, and noise-resistant subgroups. Lever-
aging the developer’s prior knowledge about similar historical problems and interesting
patterns, we employ the framework of subjective interestingness. This framework incor-
porates prior knowledge about the data and emphasizes patterns that are surprising and
informative when contrasted with these priors. We propose an approach that mines sub-
sets of incidents to pinpoint, for each characterized subgroup, the potential root cause
behind the memory issue. To demonstrate the effectiveness of our approach and the
quality of the identified patterns, we provide an empirical study.

113
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5.1 Introduction

The analysis of Java memory problems has consistently piqued the interest of both the soft-
ware engineering and data mining communities. Their shared objective is to provide prac-
titioners with efficient and effective tools for detecting, diagnosing, and mitigating these
incidents. Traditional manual approaches often fall short in tackling these complex issues,
especially when confronted with a high influx of incidents from diverse sources. This limi-
tation becomes even more apparent in large-scale systems like ERP software-connected fac-
tories or cloud systems, where the sheer volume of incidents poses a significant challenge
for manual analysis. One of these common incidents is related to OutOfMemory Errors, i.e.,
when the memory allocated to the software is saturated. This is often due to a memory
leak [313, 140, 299, 272] caused by some specific bug. Engineers usually exploit tools that
give statistics about the memory content at the moment of the error, which helps to find
the root-cause. For instance, the jmap command depicts a histogram showing the memory
consumed by each class in a Java Virtual Machine, as demonstrated in Figure 5.1. Moreover,
these classes are hierarchically organized in packages. For example, the class LinkedHashMap
in Line 9 is part of the package java.util, which is itself included in the package java. Using
this histogram, the analyst may identify some classes that consume much more memory than
expected, which may be the cause of the memory saturation.

Analyzing such histograms can be overwhelming and time-consuming for multiple reasons:
(i) the analyst may not know what is the normal size consumption corresponding to each
class. She needs to have either a significant experience or some reference histograms of
healthy servers to compare with. In Figure 5.1, even if [C is the most consuming class, it
does not mean that it is the cause of the incident as this value may be its usual size, (ii) some
memory incidents are not only related to a single class but to a software feature which impacts
several classes belonging to some packages. Among many hierarchy levels, how to concisely
identify those suspicious packages and/or classes? (iii) the analyst often inspects a large
dataset of histograms related to many incidents that happen in different servers and multiple
situations. Each incident is described by its context (e.g., software version and type) as well
as its jmap histogram describing memory content. In this case, she seeks to find contexts that
significantly co-occur with specific kinds of memory errors, which would help to pinpoint the
root cause for several incidents at once and also limits the efforts of diagnosing each incident
separately. In fact, existing methods [65, 140, 299, 272] aim to diagnose memory problems
separately, but not to analyze large sets of incidents simultaneously to discover common
patterns. Also, they address particularly the problem of memory leak detection, whereas
there are many other possible factors that cause OutOfMemory incidents.

Subgroup Discovery happens to be an effective and generic tool to address these challenges
encountered in analyzing Java memory problems. It excels at extracting valuable informa-
tion from datasets by grouping data within an interpretable context that exhibits abnormal
behavior compared to the rest of the data. However, applying Subgroup Discovery to this
specific problem context is not a trivial task. The distinctive aspect of this problem lies
in the representation of target concepts as hierarchically organized sets of numerical values
that are closely interconnected. Remarkably, existing Subgroup Discovery approaches have
not previously considered such a case, thereby introducing a novel research area within the
field. Furthermore, when investigating memory-related problems, developers often accumu-
late background knowledge through iterative analyses. Consequently, it becomes crucial to
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Figure 5.1: Example of a jmap histogram.

incorporate subjective measures when identifying data subgroups. These measures should
take developers’ prior knowledge into account and facilitate the inclusion of newly obtained
information that also needs to be concise and non-redundant. Hence, we introduce a novel
and generic SD setting that elegantly addresses this case. We use Subjective Interestingness
framework [80] to model the information dependency between hierarchical attributes, and to
assess the informativeness of patterns. Its success resides in its ability to incorporate prior
knowledge that the user may have about the data, which allows retrieving patterns that are
surprising w.r.t. these priors. But also, it makes it possible to iteratively update the interest-
ingness model to account for information already transmitted to the user during the mining
task, and continuously bring informative subgroups. We characterize these subgroups with
specific subsets of target attributes called antichains (a set of hierarchically incomparable
elements). In fact, this antichain constraint allows us to avoid redundancy inside the same
pattern, as hierarchically comparable attributes often transmit the same information. This
work is built upon the approach proposed in [33] which seeks to extract contrastive attributes
from only a single hierarchy. In other terms, this existing method is not able to mine a dataset
of many hierarchies described by additional contextual attributes. The contribution we pro-
pose in this Chapter is exploited to analyze a dataset of jmap histograms and contextualize
memory errors.

Roadmap. The next Section 5.2 introduces the background notations used to define our
framework by presenting the raw data as well as an informal description of the studied prob-
lem. Section 5.3 formally defines the problem setting by introducing the employed pattern,
the subjective interestingness, the iterative updating procedure of the background model, and
the mining algorithm. In Section 5.4 we report an empirical study to evaluate the proposed
approach. We conclude in Section 5.5 with a discussion of possible improvements and other
future perspectives.
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5.2 Background and Methodology

We conduct our analysis on a set of Java memory snapshots, a.k.a. Java memory heap

dumps. Each generated memory snapshot denotes the instantiated objects that are stored
in the heap of the Java virtual machine of a specific server at a particular moment. These
snapshots can be generated using the jmap tool. Each snapshot is mapped with a hierarchy
that recursively groups classes and/or sub-packages of the same package, along with the size
of their instantiated objects. Furthermore, we incorporate additional descriptive features
pertaining to memory snapshots, such as environment variables and performance metrics,
resulting in many properties that allow contextualizing the Subgroup Discovery.

5.2.1 Raw Data

Java Memory Heap Dumps. Java memory analysis plays a crucial role in monitoring
the performance of a Java application, allowing developers to effectively manage memory
consumption and maintain application consistency. In a Java virtual machine (JVM), all
application-created objects, such as strings, integers, and arrays, are stored in the heap. The
heap memory utilizes dynamic allocation, as there is no fixed pattern for allocating and deal-
locating memory blocks. To efficiently manage heap memory, the JVM incorporates a garbage
collector. This component collects unused Java objects from memory by releasing resources as
long as they no longer have references. Essentially, the JVM automatically reclaims memory
that is no longer in use. However, there are instances where the garbage collector is unable
to free up memory due to certain objects still retaining references. This situation can lead
to memory saturation. When the application attempts to create new objects but encounters
insufficient remaining memory, it throws the java.lang.OutOfMemoryError exception. This
exception can occur for three main reasons: (1) the currently allocated heap size is insufficient
to accommodate the objects generated during runtime, (2) there is a coding error that retains
references to unnecessary objects, causing a memory leak, (3) a large number of objects are
loaded into memory simultaneously, overwhelming the available memory space.

To obtain specific memory-related statistics, we make use of the command-line utility
jmap with the -histo option. This allows us to generate a class-wise histogram, providing
information such as the number of instantiated objects per class in the heap and the to-
tal memory used by each of these objects. The histogram includes the fully qualified class
names, as shown in Figure 5.1. For each memory snapshot, we utilize this histogram to
construct a hierarchy that organizes classes and sub-packages recursively under their respec-
tive parent packages. This hierarchy helps us understand the relationships between different
classes and packages. For instance, as demonstrated in the sub-hierarchy presented in Fig-
ure 5.2, the java.lang package contains the sub-package java.lang.reflect and the class
java.lang.String, among others. As a result, the size of a package is determined by the
combined size of its sub-packages and classes.

Additional features for contextualization. Each memory snapshot is incorporated with
additional descriptive characteristics. Particularly, these features describe the execution envi-
ronment and the software component in which the exception OutOfMemoryError is triggered
(i.e., its topology). For instance, the Java virtual machine can be parameterized by the flag
Xmx which specifies the maximum memory allocation pool for the JVM, the Xms to indicate the
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Figure 5.2: Example of a JMAP sub-hierarchy retrieved from two different memory snapshots with some class/-
package sizes.

initial memory allocation pool, the size of swap memory. Information on when the memory
collapsed is also provided (e.g., whether it is a working day), etc.

We create a dataset D “ pO,A,Hq that unifies the different data sources mentioned
above. O “ toiu1ďiďn is a set of objects that correspond to memory snapshots indexed by
the pairs (server;timestamp). A “ taju1ďjďm is the set of descriptive attributes used to
contextualize the snapshots, and H “ tHiu1ďiďn is a set of hierarchies constructed from jmap

histograms. These hierarchies group classes and/or sub-packages that belong to the same
package and include the size of their instantiated Java objects. Table 5.1 provides a dataset
with 10 objects O “ to1, ..., o10u corresponding to 10 memory snapshots generated during
outOfMemoryError exceptions. Each object is described by 4 attributes and referenced by
a hierarchy H P tH1, ...,H10u. Figure 5.2 illustrates a typical example of sub-hierarchical
elements that have varying values of both H1 and H5, which highlight the integer-valued
attributes associated with class sizes and their corresponding packages. For instance, the
package java.lang.reflect in H1 has a size of 2.98 GB and contains only two classes,
namely, java.lang.reflect.Method (size of 2.7 GB) and java.lang.reflect.Field (size
of 280 MB).

Table 5.1: Toy Example of a dataset pO,A,Hq. Gray cells indicate that the size values are larger than what
was expected.

O Descriptive attributes A Size of instantiated objects w.r.t. packages in MB

represented with hierarchies H (see example for snapshots o1 and o5 in Fig. 5.1)

softType softVersion Xmx weekDay J.L.* J.L.reflect.* J.L.reflect.Field J.L.reflect.Method J.L.String

o1 Sales V 3 4.2e` 09 True 3242 2980 280 2700 176

o2 Sales V 3 2.3e` 09 False 3296 3003 322 2678 355

o3 EDI V 1 6.4e` 09 True 2305 1474 264 1210 163

o4 Factory V 1 1.8e` 09 False 2217 1481 386 1095 480

o5 Factory V 2 2.4e` 09 True 2475 1582 390 1192 513

o6 Manager V 2 5.3e` 09 True 2016 1258 56 1202 140

o7 Sales V 3 2.4e` 09 True 3398 2814 320 2494 402

o8 Factory V 3 8.2e` 09 False 2715 1326 84 1200 147

o9 Sales V 3 6.4e` 09 True 2430 1577 412 1165 120

o10 Sales V 1 4.5e` 09 True 2570 1283 68 1215 422
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5.2.2 Hierarchical Target Concepts

We consider the scenario where the concepts of interest are defined as a set of positive integer-
based attributes that are structured hierarchically. These hierarchically organized concepts
are generally referred to as counters based on their observed values. These counters represent
either the size of the classes (which are located at the leaves of the hierarchy) or packages
(which are located at internal nodes). The root node represents the size of the heap at the
time of the memory crash. We formally define a hierarchy H P H as follows.

Definition 6 (Hierarchy). A hierarchy Hi P H is defined as a tuple Hi “ pEpiq,ď

, xe1, x
piq
1 yq for i P J1, nK where:

• Epiq “ txe1, x
piq
1 y, ..., xek, x

piq
k yu is a set of k items (nodes or concepts) with their

counters. For convenience, We sometimes use E “ te1, ..., eku to refer to the set
of items without their counters.

• ď is a partial order relation defined over this set E, indicating the relationship of
predecessors between hierarchically linked concepts,

• @e P E : e1 ď e (the item e1 is called the root of H)

• there is only one path from the root e1 to any other item:

@ej , ek, el P E : ej ď el ^ ek ď el ùñ ej ď ek _ ek ď ej .

In Figure 5.2, the following relations hold: pjava.lang.*q ď pjava.lang.reflect.*q

and pjava.lang.*q ď pjava.lang.reflect.Fieldq. In other terms, if ej ď ek, then ej is a
predecessor of ek but not necessarily the direct parent of ek. Moreover, we assume that the
counter value xl of a concept el is always larger or equal to the value of its successors. We
introduce the following operations used throughout the remainder of this Chapter.

Definition 7 (Hierarchy operations). Given E1 Ď E:

• Precedessors operator ò, and successors operator ó as:

ò E1 “ te P E | De1 P E1 : e ď e1u,

ó E1 “ te P E | De1 P E1 : e1 ď eu,

• Strict predecessor relation: ej ă ek ô ej ď ek ^ ej ‰ ek,

• The direct successor relation ă as: ej ă ek ðñó tejuX ò teku “ tej , eku. Also, if
ej ă ek, we use the notation πk “ j to refer to the index of the only direct parent
of ek (ej “ eπk

),

The counter value of each concept el for an object oi P O is denoted using the discrete

random variable X
piq
l defined in N. If a particular value of a concept el P E is empirically

observed for the object oi P O, it will be denoted in the hierarchy Hi by x̂
piq
l . Obviously, we

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0072/these.pdf 
© [Y. Remil], [2023], INSA Lyon, tous droits réservés



5.2. Background and Methodology 119

have, @i P J1, nK,@l P J2, kK : Xpiq
l ď X

piq
πl and hence, x̂

piq
l ď x̂

piq
πl (e.g., x5java.lang.String “ 513 ď

x5java.lang.˚ “ 2475).

5.2.3 Contrastive Antichains as patterns

We first introduce the concept of contrastive antichains as interesting patterns based on a
single hierarchy. These patterns are comprised of a subset of hierarchically disjoint concepts
that are informative and non-redundant. In our case study, we aim to concisely inform
developers about suspicious classes and packages. To evaluate the interestingness of a pattern,
we rely on prior knowledge about counters, such as developers’ rough estimates of the space
occupied by classes in the heap. For example, in Figure 5.2, developers expect the size of the
java.lang.string class to be around 160 MB based on the analysis conducted on healthy
servers. Thus, discovering that this class takes up 513 MB in snapshot o5 is surprising.

Providing the user with such concepts can be interesting. However, because one counter’s
information affects the expectation of other hierarchically related concepts, one intuition
is to recursively aggregate the interesting concepts at the same level into a higher level of
the hierarchy. This approach is shown in Figure 5.2, where, for example, instead of listing
both the leaking classes java.lang.reflect.Method and java.lang.reflect.Field, we
only provide their parent package java.lang.reflect. Another intuition is to only include
non-comparable concepts in the pattern (i.e., no concept is a predecessor or successor of any
other concept in the same pattern). We refer to this set of concepts by an antichain. Thus,
an antichain denoted as PA ensures that the information provided is not redundant. For
each identified concept el P PA for a specific object oi P O, a contrastive antichain pattern

informs the user about the value x̂
piq
l . Yet, users generally tend to memorize only the order

of magnitude indication instead of precise values. Hence, we refer to the counters in patterns

with the scale tlog2px̂
piq
l qu.

Definition 8 (Contrastive Antichains). Given a hierarchy Hi “ pE
piq,ď, xe1, x

piq
1 yq with

pairs of concepts and their values xel, x
piq
l y P E

piq, a contrastive antichain pattern PA Ď E
is a subset of concepts that form an antichain w.r.t. ď, i.e., @ej , ek P PA: ej ď ek ùñ

ej “ ek, with the integers tlogpx̂
piq
l qu describing the scale of the values of their counters.

5.2.4 Need to Characterize Subgroups with a Common Antichain

Developers often analyze a large set of objects (memory snapshots) at once. Providing con-
trastive antichains for each individual object can be overwhelming, and many objects may
share hierarchical concepts that have similar properties. We need to simultaneously character-
ize a subset of objects that are together associated to a contrastive antichain pinpointing sus-
picious classes or packages. An interesting example in Table 5.1 is the subgroup to2, o4, o5, o7u
containing memory snapshots from virtual machines with a Xmx flag value not exceeding
2.5e`09. All these snapshots exhibit unexpectedly high memory consumption of classes form-
ing the following antichain: {java.lang.reflect.Field, java.lang.String}. Subgroup
Discovery can hence prove invaluable by exploring the set of all candidate hypotheses and us-
ing a quality function to subgroups along with their retrieved antichain and identify the best of
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them. We exploit the subjective interestingness framework (SI). This framework makes it pos-
sible to iteratively incorporate the new information provided to the user when communicating
a subgroup to her, to avoid communicating subgroups with redundant information. For in-
stance, suppose the user is presented with the subgroup to1, o2, o7, o9u defined by Sales servers
of Version 3 associated with an antichain consisting of only the package java.lang.reflect.
Subsequently, the user is presented with another subgroup containing objects to2, o4, o5, o7u,
associated with the antichain {java.lang.reflect.Field, java.lang.String}. Although
the second pattern is interesting, it becomes less surprising when the user is aware of the first
pattern, because to2, o7u are already associated with the concept java.lang.reflect, which
is a package that already includes java.lang.reflect.field. Hence, we should ignore this
pattern and suggest a more restrictive one, such as the subgroup that covers only to4, o5u
with the description pXmx ă 2.5e` 09^ softType “ Factoryq.

5.3 Mining Interesting Subgroups with Hierarchical Targets

5.3.1 Pattern Language

We have chosen to incorporate both the descriptive pattern language and the target (or
antichain) pattern language into a unified framework. This decision is based on the fact that
our search space involves exploring both simultaneously. In other words, given a descriptive
pattern obtained from the descriptive search space, our goal is to find the most optimal
contrasting antichain in the target search space and evaluate their quality within a unified
pattern. To formally define this unified pattern language, we introduce the pair L “ pLS ,LAq,
where LS represents the subgroup pattern language defined over descriptive attributes A, and
LA represents the antichain pattern language defined over concepts E from H. A pattern
P P L is denoted as P “ pPs, PAq, where Ps P LS is a constrained selector that identifies
a subset of objects based on their descriptive attribute values (using the same notations
as in Chapter 3), and PA P LA is a retrieved antichain from E. The descriptive pattern
language, LS , is defined as LS “

Śm
i“1 seli, where seli represents the set of all possible

selectors for an attribute ai. On the other hand, the target or antichain pattern language,
LA, is defined as the set of all possible antichains that can be derived from E, denoted as
LA “ tPA Ď E | @el, ek P PA: el ď ek ùñ el “ eku.

5.3.2 Subjective Interestingness Measure

We design a subjective interestingness measure to assess the quality of each pattern P “

pPs, PAq. This function measures its surprisingness when contrasted with some background
distribution that represents user priors about the data. Therefore, we need to formally model

the prior beliefs about each counter xel, x
piq
l y P Epiq. We will present these counters through

the probability distributions PrpX
piq
l “ x

piq
l q.

5.3.2.1 Background Distribution

For each concept in the hierarchy, we assume that we have a reference that derives either
an approximation of its value or its proportion to other concepts that are hierarchically
dependent on it. In our case, we compute jmap histograms on normally behaving servers to

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0072/these.pdf 
© [Y. Remil], [2023], INSA Lyon, tous droits réservés
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derive expected values of the size (or the proportion of size to the parent) that each class
and/or package can hold in the heap. In particular, we aim to represent expectations about
the xl value of each concept el P E and expectations conditioned on the parent except for the
root, i.e., xl | xπl

. For example, the expected average size occupied by a java.lang.String

class is „ 160MB. We formalize these constraints as follows:

• Expectations: initially, the expectation of each random variable X
piq
l is independent

of oi and given as x̄l:

@i P J1, nK,@l P J1, kK :
ÿ

xl

PrpX
piq
l “ xlq ¨ xl “ x̄l,(5.1)

• Conditional expectations: the initial expectation of the ratio of the value of a
concept over its parent value, conditional on that parent value, is equal to:

(5.2) @i P J1, nK,@l P J2, kK :
ÿ

xl

PrpX
piq
l “ xl | Xpiq

πl
“ xπl

q ¨
xl
xπl

“
x̄l
x̄πl

,

. It is proven that for l ą 1, the second constraint is already sufficient as it necessarily implies
the first one [33].

This means it suffices for the constraint (5.1) to consider only the root node, in additional
to conditional expectation constraints in (5.2) for the other nodes. More formally, we have:

Property 2. If the two following sets of conditions hold:

1. Expectations for only the root:

@i P J1, nK,
ř

x1
PrpX

piq
1 “ x1q ¨ x1 “ x̄1,

2. Conditional expectations for other nodes:

@i P J1, nK,@l P J2, kK :
ř

xl
PrpX

piq
l “ xl|X

piq
πl “ xπl

q ¨
xl
xπl
“

x̄l
x̄πl

,

It follows @i P J1, nK,@l ą 1,
ř

xl
PrpX

piq
l “ xlq ¨ xl “ x̄l.

These constraints admit an infinity of solutions to define the probability distributions for
all concepts. Hence, similar to [80], we use only the distributions that maximizes the entropy
i.e., the distributions that do not introduce any further assumptions that reduce the entropy,
but only and explicitly the specified constraints (i.e. the expectations). This results in two
types of probability distribution; (1) an initially geometric distribution for the root nodes

X
piq
1 having an expectation equal to x̄1 [80]:

PrpX
piq
1 “ x1q “

ˆ

1´
1

1` x̄1

˙x1

¨
1

1` x̄1

(2) binomial distributions for conditional random variables with and average x̄l
x̄πl
¨xπl

[119]
:

PrpX
piq
l “ xl |X

piq
πl
“ xπl

q “

ˆ

xπl

xl

˙

¨

ˆ

x̄l
x̄πl

˙xl

¨

ˆ

1´
x̄l
x̄πl

˙xπl
´xl
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Given these two probability distributions, and as proven in [33], we can derive geometric

probability distributions for each random variables X
piq
l :

Property 3. The marginal distribution for each random variable X
piq
l is geometric, and it

is given as:

PrpX
piq
l “ xlq “

ˆ

1´
1

1` x̄l

˙xl

¨
1

1` x̄l
.

5.3.2.2 Interestingness of a Pattern

Now that a probability distribution has been defined to model the user’s background knowl-
edge, we need to evaluate the antichain PA on each object of the subgroup o P extpPsq with
respect to its probability distribution. This is necessary to efficiently determine the most
interesting and surprising patterns that contradict the background beliefs or the previously
discovered findings (i.e., after iteratively updating its primary knowledge). To assess the
score of a given pattern P “ pPs, PAq P L, we propose a new quality measure rooted in the
framework of subjective interestingness SI [80]. SIpP q is defined as the ratio between the

information content of the pattern P and its description length: SIpP q “ ICpP q

DLpP q
.

Information Content (IC). Also known as self-information or surprisal [71] measures the
amount of information communicated to the user. It is defined as the negative log proba-
bility under the background distribution: ICpP q “ ´ logpPrpP qq. However, calculating the
information content of such complex pattern can be challenging, especially when dealing with
multiple probability distributions of the same concept associated with different objects in the
subgroup. To address this, we aim to quantify the information gain provided by an effective

aggregation of counters xel, x̂
piq
l y in PA, by evaluating the objects of the subgroup under their

respective probability distributions (which might have been updated in previous iterations).
A straightforward solution would be to use the mean value of each concept in the subgroup.
However, the mean is too sensitive to outliers and does not provide a complete overview of the
subgroup values w.r.t. a concept, as no assumptions are made about the subgroup variance.

To overcome this issue, we came out with the idea of calculating the cumulative dis-
tribution function from the quantile qα of order α that indicates the value below which
a certain percentage of the subgroup values fall, for each concept. The hyperparameter
(0 ă α ă 1) is selected based on the quality of the subgroups returned. For instance, if
the quantile of order 0.25 is considered, then our solution informs the user that 75% of the
subgroup values are greater than this quantile. To better understand this approach, let’s
consider the subgroup s “ to1, o2, o7, o9u with corresponding values t2980, 3003, 2814, 1577u
for the package java.lang.reflect. Assuming that all objects have the same geometric
probability distribution with a mean of 1250MB (in the first iteration), we can use the cu-
mulative distribution function under the quantile of order 0.25 to calculate the probability

PrpX
piq
java.lang.reflect. ě 2814q “ 0.08, which is interesting. In other words, for the subgroup

defined as psoftType “ Sales ^ softVersion “ V 3q, 75% of its objects have a size that is
greater than or equal to 2814MB for the java.lang.reflect. package. This information is
valuable and surprisings since it deviates from what we would expect based on its probability
distribution.

As previously stated in 5.2.3, the information content is communicated to the user by
transmitting the scales of the values, instead of the exact values. As a consequence, we define
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the new random variables Y
piq
l “ tlog2pX̂

piq
l qu. Concretely, the IC of a pattern P P L is given

as follows:

ICpP q “ IC ppPs, PAqq “ ´ log

˜

ź

oiPs

ź

elPPA

PrpY
piq
l ě qα

s
l q

¸

,

“ ´
ÿ

oiPs

ÿ

elPPA

log
´

PrpY
piq
l ě qα

s
l q

¯

,

“ ´
ÿ

oiPs

ÿ

elPPA

log
´

p1´ plq
2qα

s
l
´ p1´ plq

2qα
s
l `1

¯

.

where qα
s
l is the quantile of order α of the values ty

piq
l uoiPs for the concept el P PA

Description Length (DL). It measures the complexity involved in communicating a pattern
P to a user. In our case, we propose to compute it based on both the subgroup pattern Ps

and the antichain PA. When communicating the antichain, items closer to the root e1 are
more likely to be familiar to the user and easier to interpret. For instance, it is simpler to
communicate the package java.lang (2nd level) than the class java.lang.reflect.Method
(4th level). On the other hand, a subgroup with only a few selectors is easier to interpret, as it
helps to quickly pinpoint the root cause. In order to characterize as many objects as possible
in a subgroup that is distinguished by an interesting antichain, we avoid linear penalization
of the subgroup size. Hence, the DL is given as:

DLpP q “ DLspPsq ¨DLApPAq

“ pβ ¨ logp|s|q ` γ ¨ }Ps}q ¨

˜

η ¨ p
ÿ

elPPA

1` logp| ò telu|qq

¸

with β, γ and η are hyperparameters to weight each part of the DL according to the user
preferences.

5.3.3 Updating the Background Knowledge

When conveying a pattern to the user, her background knowledge model must be updated to
take into consideration the new piece of information. The communicated pattern values are
likely to become the new expected values, and therefore, the probability distributions must
also be updated accordingly. In the following, let R Ď L be the set of patterns that have

already been observed up to the ith iteration, that is, R “ pP 1
s , P

1
Aq, ..., pP

piq
s , P

piq
A q. We refer

to the quality of the pattern P assuming the user has knowledge of R as:

SIpP | Rq “ ICpP | Rq
DLpP q

“
´ logpPrpP | Rqq

DLpP q

The probability PrpP | Rq represents the likelihood of pattern P appearing in the data
given that the user is aware of the quantile of order α for the subgroup values of each concept
for all previously communicated patterns P 1 “ pP 1

s, P
1
Aq P R. In other words, instead of
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Algorithm 2: SCA-Miner

Input: the dataset: Dcrash “ pO,A,Hq, width: the number of most promising subgroups
per level, depth: the maximum depth to explore in the lattice, threshold: a
threshold on the number of patterns.

Output: P: An ordered collection of patterns P P L sorted based on iteratively updated
SI.

1 P Ð xy

2 RÐH

3 repeat
4 // Update the model with the sum-product algorithm

5 // and derive the probabilities PrpY
piq
l “ ŷ

piq
l | Rq :

6 Sum-product(H, R)
7 // Get the best subgroup along with its associated contrastive antichain:
8 pPs, PAq Ð BeamSearch(D, width, depth, R)
9 if Ps ‰ H and PA ‰ H then

10 P.appendppPs, PAqq

11 RÐ RY pPs, PAq

12 until Ps “ H or PA “ H or |P| “ threshold;

knowing the exact value of each object, the user only knows that its probability being higher

than qα
s1

l is p1´ αq. Thus, we update the probability distribution PrpY
piq
l “ ylq as follows:

PrpY
piq
l “ ylq “

$

&

%

PrpY
piq
l “ ylq ¨

1´α

PrpY
piq

l ěqαs1

l q
, if Y

piq
l ě qα

s1

l .

PrpY
piq
l “ ylq ¨

α

1´PrpY
piq

l ěqαs1

l q
, otherwise.

For example, assuming that the user has been given the subgroup s1 “ to1, o2, o7, o9u,
whose antichain contains the package java.lang.reflect and that the first quartile (i.e.,
α “ 0.25) has been used to retrieve useful patterns, then the new probability distribution for

each of the objects in s1 must verify: PrpY
piq
java.lang.reflect ě tlog2p2814quq “ 0.75.

The hierarchical organization of the concepts implies that updating the probability dis-
tribution of a particular concept will have a direct and recursive impact on its predecessors
and successors. For instance, if the user becomes certain (with a probability of 75%) that the
size of the java.lang.reflect. package is larger than 2814, then it follows that the size of
its parent, java.lang., must also be larger than 2814 with a probability greater than 75%,
since Xπl

ą Xl. These dependencies between the random variables can be represented using a
Bayesian tree, which is a graphical model. To propagate the impact of updating some random
variables to all nodes in the hierarchy, we use the sum-product inference algorithm [39].

5.3.4 Mining Interesting Patterns

The process of finding the most interesting patterns P P L described by an interpretable
subgroup description that is associated with a contrastive antichain, is very costly, since the
computational complexity of a subgroup discovery task is known to be prohibitive. Besides,
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Algorithm 3: BeamSearch

Input: the dataset: Dcrash “ pO,A,Hq, width: the number of most promising subgroups
per level, depth: the maximum depth to explore in the lattice, R : the set of already
provided patterns

Output: the best pattern P ‹ “ pP ‹
s , P

‹
Aq.

1 beamÐ txH, 0, tuyu
2 continueÐ True
3 current depthÐ 0
4 while continue “ True do
5 last beamÐ beam.copy()
6 for elt in last beam do
7 for Sel in

Ťm
j“1 selj do

8 Ps Ð eltr0s Y Sel
9 pSIpPs, PAq, PAq Ð GreedySearchpPs,H,Rq

10 if SIpPs, PAq ą worst SI in beam then
11 replace worst pattern in beam with txPs, SIpPs, PAq, PAyu

12 current depthÐ current depth` 1
13 if last beam “ beam or current depth ą depth then
14 continueÐ False

15 return the best pattern P ‹ in beam

each generated subgroup pattern Ps P L∫ has to be evaluated with the set of all possible
antichains LA that tend to be at most 2k´1`1 in a rooted tree [151]. Moreover, the interest-
ingness measure used in our framework SI is not monotonic (i.e., it is not straightforward to
derive non-trivial bounds on its values to prune some uninteresting patterns), which implies
that exhaustive search is not a feasible strategy to be adopted. We employ optimization
procedures that are commonly used in both scenarios (i.e., enumeration of subgroup patterns
and the search for contrastive antichains). We derive SCA-Miner, a heuristic approach that
uses beam search to generate at each level of the lattice the most k´interesting subgroups
with their associated antichain which is retrieved with a greedy search algorithm w.r.t. the
subjective interestingness measure.

The proposed approach is outlined in Algorithm 2 (SCA-MINER), which is an iterative
approach, that aims at each iteration to provide the user with an interesting pattern P . The
algorithm starts by updating the model using the sum-product method to incorporate the
previously acquired knowledge for the userR. Then, based on the beam search strategy, which
enumerates the subgroup patterns and uses a greedy search to derive the associated antichain
that maximizes the SI, the algorithm expands its best patterns collection P. SCA-MINER

continues until the beam search yields an empty pattern or the maximum size of P is reached.

We use Beam search as highlighted in Algorithm 3 that systematically explores the con-
junctions of selectors by expanding at each iteration a limited set of patterns that have the
largest SI so far. Beam search evaluates the subgroup patterns on their set of hierarchies
to extract the best associated contrastive antichain. In this phase, we use a greedy search
method to greedily build a contrastive antichain for a specific subgroup pattern. This process
is repeated on each level in the Beam search, where only the most promising patterns are
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Algorithm 4: GreedySearch

Input: Ps: a subgroup pattern, H: the set of hierarchies, R the set of already provided
patterns.

Output: pSIpPs, PAq, PAq: The best greedily constructed antichain associated to its SI

1 quality Ð 0
2 PA Ð tu

3 continueÐ True
4 C Ð E
5 while continue “ True do

6 e‹ Ð argmaxelPC
ICppPs,PAYteluq|Rq

DLApPAYteluq

7 if ICppPs,PAYte‹uq|Rq

DLApPAYte‹uq
ě

ICppPs,PAq|Rq

DLApPAq
then

8 P ‹
A Ð PA Y te

‹u

9 C Ð tel P C | el ę e‹ ^ e‹ ę elu

10 quality Ð
ICppPs,P ‹

Auq|Rq

DLApP ‹
Auq

11 else
12 continueÐ False
13 if C “ tu then
14 continueÐ False

15 return ( quality
DLspPsq

, P ‹
A)

maintained. The mining process stops when all possible selectors are explored or a chosen
stopping criterion is met (i.e., the search depth). The best pattern found throughout the
search is provided as an output.

To greedily build a contrastive antichain for a specific subgroup pattern, we use the
algorithm detailed in 4. GreedySearch algorithm starts from the empty set of items PA “ tu,
and a set of candidates C “ E, and in each iteration tries to find the best item e‹ that
maximizes the ratio ICpPs,PAq

DLApPAq
. In this case, all the hierarchically related concepts to e‹ (i.e.,

its successors and predecessors) are removed from C. When C becomes empty or when no
possibility to improve the pattern quality remains, the best pattern P ‹

A with its quality is
returned. This process is repeated on each level in the Beam search, where only the most
promising patterns are maintained. The mining process stops when all possible selectors are
explored or a chosen stopping criterion is met (i.e., the search depth). The best pattern found
throughout the search is provided as an output.

5.4 Experiments

We present in the following the experimental study we conducted to evaluate the perfor-
mance and quality of results provided by SCA-Miner for analyzing Java memory heap dumps
reported by our ERP software. We aim to assess whether the approach is capable of iden-
tifying interesting patterns based on Subjective Interestingness and whether the update of
the background model is effective. Additionally, we review the descriptions of the identified
patterns for both subgroups and antichains and assess their interpretability and relevance to
our case study (i.e., memory crashes).
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Figure 5.3: Overview of the subjective Subgroup Discovery framework with hierarchical target concepts.

Figure 5.3 is a recapitulation of the whole process of the proposed approach. The input
dataset describes a set of incidents by jmap histograms, as well as other descriptive attributes
contextualizing each incident. Moreover, the approach is provided by some priors about the
data to be analyzed. These priors are the jmap histograms computed in healthy servers,
which give the expected sizes of classes. The approach uses these priors to derive background
distributions that represent healthy memory usage. Then, it mines the dataset of incidents
to find the most informative subgroup, along with suspicious classes and packages. Once
this subgroup is communicated to the analyst, the background model is then updated to
incorporate this piece of information already known by her, and then identify the next most
informative subgroup. This iterative process can be repeated as much as needed.

5.4.1 Experimental Setup and Methodology

Datasets and hyperparameters. Our experimental study involved analyzing more than
4,000 Java memory heap dumps collected over a 3-month period from approximately 350
servers. To establish reference values for the average heap space usage of each class or package,
we generated a separate dataset of heap dumps from healthy servers at the beginning of each
week. We only considered the top 200 classes in each histogram associated with a heap
dump, as these are often the ones that retain the most heap space. The resulting dataset
comprised 3,320 memory snapshots, each described by 14 descriptive attributes, and mapped
into hierarchies to contextualize each subgroup and antichain. We used the readily available
data mining tool Pysubgroup [169] to extend the beam search algorithm to fit our pattern
language and measure of interest. We set the beam width to 50 and the number of selective
selectors to 4, and displayed the top 20 patterns based on Subjective Interestingness (SI).
We set the quantile of order 20 to inform users about 80% of the subgroup data values for a
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specific concept. The hyperparameters associated with the DL function were set empirically
as β “ 0.8, γ “ 0.2, and η “ 1.

Baselines. While there are no approaches in the literature that specifically support hier-
archical Subgroup Discovery with interesting target concepts, we consider some baselines in
our study to highlight the benefits of SCA-MINER novel features, including the hierarchical
structure and the new interestingness measure, as well as its capability to iteratively up-
date the user background knowledge to avoid redundancy. First, we compare with the SI

approach, which returns the best results according to our interestingness measure, but does
not iteratively update the background model. Next, we compare with Customized WRAcc

(CWRAcc), which adapts the widely-used WRAcc measure [163] to our problem, measuring
the deviation of the subgroup mean value from the mean value of the entire dataset regarding

a target concept. Specifically, CWRAccpPs, PA, θq “
1

|PA|
θ

ř

elPPA
p 1

|s|

ř

oiPs
x̂

piq
l ´ x̄lq. We run

the Beam Search algorithm under the same hyperparameters as SCA-MINER. We also compare
against the KL divergence, as performed in [286], to measure the difference between the ob-
served probability distributions for the contextualized memory snapshots and the expected
probability distribution, at each level of the hierarchy. Finally, we perform a post-processing
step PP for each of these baselines to eliminate redundant patterns according to the Jaccard
coefficient.

5.4.2 Comparative Evaluation

Figure 5.4 displays the comparative measures used to evaluate SCA-MINER against the baseline
techniques discussed earlier. The SI measure produces larger contrast values in general (with
or without update) compared to the CWRAcc and KL-Divergence measures. This is due to
the fact that CWRAcc typically retrieves antichains containing nodes with higher counters,
which do not necessarily result in contrastive patterns, as their average contrast is remark-
ably low when compared to that of the SI measure. Nonetheless, the contrast values of the
non-updated SI tend to be higher than those of the updated SI because the algorithm often
focuses on the same top patterns, generating a high level of redundancy. This redundancy is
demonstrated in the bar graphs, where more than 60% of the patterns are redundant, which
makes the process less surprising for the end user. Similarly, when using the CWRAcc and
KL-Divergence measures, the resulting patterns often contain redundancy. Even after apply-
ing post-processing to the final pattern set, there is still a much higher level of redundancy
when compared to using the updated SI measure (only about 4% redundancy).

5.4.3 Illustrative Results.

We present the top 4 patterns discovered by SCA-MINER from our dataset in Figure 5.5. Each
pattern is accompanied by a description of its corresponding subgroup and the number of
memory snapshots it covers. The red color in the figure represents the expected value of
the concept in the antichain, while the green color indicates the average observed values of
the subgroup with respect to this concept. We chose to report the mean value in the charts
since it is more interpretable, intuitive, and comparable to the expected value. However,
in Table 5.2, we also provide all the statistics related to the top 4 patterns, including the
minimum and maximum value, and 0.2´order quantile, which further reveals the properties
of the subgroup distributions. Overall, our approach has successfully identified interesting
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Figure 5.4: Comparison of contrast and redundancy between top patterns of SCA-MINER against the baselines.

Table 5.2: Statistics related to antichains that belong to the top retrieved patterns.

Top k Antichains x̄ Min q0.2 Avg Max

Top 1
company.outil.persistance 13 568 579 606 659
java.sql 7 267 271 284 305

Top 2
company.stock.gestion.
modele.LotContQualVal

3 1 344 458 749

Top3 java.util.HashMap$KeySet 2 1 104 104 106

Top 4
company.core.services.droits 21 104 482 541 730
company.outils.persistance.IK 8 80 82 88 118

and surprising over-expressed patterns for all the extracted patterns. These patterns are
diverse, non-redundant, and cover large subgroups (e.g., 85 and 183 memory snapshots in
the second and third pattern). Additionally, our approach is capable of outputting generic
packages as well as single classes when relevant.

The first discovered pattern discovered highlights that the server PAM-p-03012 experi-
enced a consistent increase in heap usage for two packages: company.outils.persistance

and java.sql. The latter package includes several classes such as sql.Timestamp and
sql.BigDecimal, indicating that the memory saturation is due to improper usage of the
Direct SQL API in the source code. This API allows direct access to the database from the
source code, bypassing the Hibernate (Object-Relational-Mapping) layer. Although it avoids
loading Java objects mapped to the database in memory, it can cause memory saturation with
SQL objects if not properly handled. The second component of the antichain is the package
company.outils.persistance, which covers classes used to identify objects with primary
keys, further strengthening the hypothesis of excessive object loading with the Direct SQL
API. This hypothesis was confirmed by reviewing past maintenance resolution tickets, some
of which occurred shortly after memory saturation. It’s important to note that although this
incident highlights a memory crash problem, it is not a memory leak, as it occurs rapidly
due to an unhandled use case. This confirms that our method is not limited to specific issues
and can diagnose any memory-related problem.

The antichain associated with the second pattern is noteworthy because it highlights
the class LotContQualVal, which is highly contrastive for all Factory servers, with more
than 97 weekly users. This pattern reveals that the frequent use of this particular class
in Factory servers tends to cause memory saturation when the number of users exceeds a
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Figure 5.5: Top patterns returned by SCA-MINER

certain threshold, which is considerably high in the context of an ERP for industries. Despite
having the best Information Content (IC), this pattern is ranked second because it has a
lower generality and a relatively high depth compared to other patterns (i.e., DLAis larger).
On the other hand, Despite having a smaller depth, pattern 3 has been ranked lower than
pattern 2 because it has more selectors (3), making it less interpretable than pattern 2. The
Factory servers are crucial because they manage the core of the factory and our clients’
production. The LotContQualVal class is instrumental in identifying functionality with an
unusual problem, particularly those related to product quality features. This problem leads
to a quick saturation event, and many maintenance tickets raised by our clients have identified
this class as one of the crucial elements in root-cause analysis.

Pattern 4 highlights a prevalent issue in our ERP, which is memory leaks caused by the
RightValue class. Therefore, in this pattern, we provide our experts with a more general
solution that identifies memory leak problems across all classes in the services.droits
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(a) Size of the classes belonging to services.droits

package in pattern 4.
(b) Heap consumption of services.droits dur-
ing 50 days in a leaky server.

Figure 5.6: Explanation of an interesting pattern found by SCA-MINER.

package, rather than just a specific class. This is shown in Figure 5.6a, where we compare
the expected value with the subgroup average value for all relevant classes. Through further
analysis with our experts, we discovered a growing memory leak that had gone unnoticed for
several weeks (Figure 5.6b), which was not detected by other supervision tools. The antichain
package helped pinpoint the source of the bug in the source code so that it could be fixed
as a temporary solution. However, to prevent this problem from recurring, we established a
systematic memory snapshot control to monitor the trend of the package size.

5.5 Discussion

In this chapter, we present our contribution, SCA-MINER, the first algorithm that enables the
discovery of subgroups from data with labels/targets anchored in a hierarchy. This algorithm
outputs the appropriate level of label abstraction in the hierarchy to the user, along with a
descriptive pattern. It takes into account non-redundancy and interestingness using the sub-
jective interestingness framework. We illustrate this contribution with an effective use case
involving the analysis of a large batch of Java memory heap dumps. The goal is to identify
potential issues that lead to memory crashes, including memory leaks. Our approach allows
simultaneous analysis of multiple incidents and incorporates the user’s background iteratively
into the model. It identifies various problems related to Java memory crashes, not limited
to memory leaks. Importantly, our model does not require access to the source code or any
additional information beyond the memory heap dumps and contextualizing information. We
start by presenting the formal definition and the necessary preliminaries for implementing
our approach. Next, we introduce the SCA-Miner algorithm, which incorporates a new pat-
tern syntax that combines descriptive patterns and target patterns. We also propose a new
subjective interestingness measure to assess the interestingness of subgroups. This measure
can vary iteratively based on the patterns transmitted to the user. Finally, using a real-life
dataset provided by our ERP supervision team, we highlight several actionable patterns.
Some of these patterns are directly integrated into our rule-based maintenance engine. Mov-
ing forward, our plan is to utilize the algorithm regularly to discover new interesting rules,
bugs, and memory leaks. While runtime was not our primary concern, we recognize that there
is room for improvement in the algorithm implementation by incorporating other heuristic
approaches such as MCTS (Monte Carlo Tree Search) and genetic algorithms. Additionally,
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Table 5.3: Mapping the contribution SCA-Miner to our proposed taxonomy.

Context

Focus Area Root Cause Analysis

Maintenance Layer Application

Scoop ERP Software System

Data
Source and Type

Java Heap Dumps ÝÑ Hierarchies

Topology ÝÑ Tab data

Feature Eng Parsing of Heap Dumps

Model

Approach Subgroup Discovery with Subjective Interestingness Framework

Paradigm Supervised

Metrics Contrast and Redundancy (new metrics)

Availability Data and Code (https://github.com/RemilYoucef/sca-miner)

Particularities Interpretability, In context-Evaluation, Human in the loop

Contribution
First to consider hierarchical target concepts in Subjective SD framework

First to apply this framework to analyze Java memory crashes.

it would be beneficial to consider time-related pattern constraints for characterizing contin-
uous increases. Furthermore, we believe that our approach can make a significant impact
on mining patterns and descriptive rules in massively multi-labeled data when a hierarchy
is available, (e.g., folksonomy and web data). Similarly to the previous two chapters, we
provide the positioning of our contribution according to our taxonomy in Table 5.3.

In the upcoming chapter, we address another problem that cannot be addressed through
subgroup discovery. Our goal is to summarize similar crash reports by grouping them into
buckets based on shared similarities according to a given similarity measure. However, this
problem focuses more on localizing similar incident reports based on a newly reported one,
rather than contextualizing incidents that exhibit a specific property of interest. Specifically,
the property of interest, in this case, can be a single bug induced by multiple bugs, which is
currently not available to us as information. Therefore, our objective is to improve the search
process, both in terms of efficiency and speed, to identify duplicate crash reports using any
given similarity measure.
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Chapter 6

Enhancing Near-Duplicate Crash Report Re-
trieval with Deep Locality Sensitive Hash
Learning

Automatic near-duplicate crash report detection, also known as automatic crash buck-
eting, is a crucial phase in the software development process for efficiently triaging bug
reports. A common methodology involves grouping similar reports using clustering tech-
niques that rely on customized similarity measures aimed at comparing stack traces.
However, with real-time streaming bug collection, there is a need for systems to quickly
answer the question: What are the most similar bugs to a new one? This entails ef-
ficiently finding near-duplicates. Therefore, it is natural to consider nearest neighbors
search to tackle this problem. Locality-sensitive hashing (LSH) is a well-known approach
that can effectively address this problem and handle large datasets due to its sublinear
performance and theoretical guarantees on similarity search accuracy. Surprisingly, LSH
has not been considered in the crash bucketing literature. It is indeed nontrivial to derive
hash functions that satisfy the so-called locality-sensitive property for the most advanced
crash bucketing metrics. Consequently, in this chapter, we study how we leverage LSH
for this task. To be able to consider the most relevant metrics used in the literature, we
introduce DeepLSH, a Siamese DNN architecture with an original loss function that ap-
proximates the locality-sensitivity property of any given similarity measures, particularly
those intended for comparing similarity measures and even for Jaccard and Cosine met-
rics, for which exact LSH solutions exist. Technically, we design an original loss function
based on locality-sensitive property preservation while addressing the problem of opti-
mizing non-smooth objective functions due to binarization. We support this claim with
a series of experiments on an original dataset performed using state-of-the-art similarity
measures proposed to handle the crash deduplication problem.

133
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6.1 Introduction

Collecting and triaging runtime errors after a software release is a standard quality process
(e.g., Windows Error Reporting [109], Mozilla Crash Reporter [222]). At Infologic, we receive
a daily influx of over ten thousand of automatic and user-generated reports. Each report
comprises a Java stack trace and relevant contextual information It is important to note that
not all crash reports hold the same level of priority: Rare occurrences indicate unexpected
shutdowns, more frequent ones involve GUI issues that obstruct end-users from completing
their tasks, while the majority fall into the silent category. The latter typically represents
bugs that either have workarounds found by users (thus limiting their impact) or background
process failures that may take days to notice but have significant consequences. Hence, it is
imperative to promptly address such bugs.

While extreme problems are rare and easy to identify and prioritize, it remains challenging
to sort, rank and assign other reports to developers (or simply ignore them). Indeed, many
different reports may actually imply a single root cause and a bug can produce slightly differ-
ent stack traces known as near-duplicates [75]. Therefore, it is highly valuable to group similar
crashes into buckets to accelerate the crash investigation process [87]. Reporting systems use
a range of heuristics and manually developed rules to organize crash reports into categories,
ideally each referring to the same bug [109]. However, in many cases, it may assign crash
reports caused by the same bug to multiple buckets [109]. Thus, various alternatives address
the stack trace-based report deduplication problem by designing custom and accurate similar-
ity measures between stack traces, relying mostly on string and graph matching (e.g., edit
distance, prefix match and LCSS) [87, 150, 48] and information retrieval (e.g., TF-IDF and N-
grams) [171, 258]. Other metrics take into account specific characteristics of stack traces, such
as the distance to the top frame or alignment between matched frames) [289, 75, 219]. In the
aforementioned studies, similarity measures are generally embedded in clustering algorithms,
but this comes with several drawbacks: First, it needs numerous similarity calculations when
assigning a new stack trace to a cluster. Second, clusters are not stable over time and should
be recalculated frequently without losing links to actual bug tickets that have been previously
created. It can also be difficult to set its various parameters.

At Infologic, we aim to process reports in quasi-real time. An essential aspect of this
objective is efficiently identifying the nearest neighbors for each crash report. We need to
quickly determine if a corresponding ticket has already been created, allowing us to update
its statistics, or if a new ticket needs to be generated. We must perform the same checks
to ascertain whether similar issues have been encountered before and if any temporary or
permanent solutions have been provided. However, the computational demands of searching
for nearest neighbors are generally prohibitive. For instance, conducting linear scans, took
approximately 10 hours to compare 1,000 stack traces against a pool of 100,000 stack traces
using the similarity metric proposed by [48]. This has triggered the necessity to explore the
concept of Approximate Nearest Neighbors Search (ANN) [200].

Hashing is a popular technique for ANN [200], and particularly LSH, allowing to search for
approximate nearest neighbors in constant time. LSH satisfies the locality-sensitive property,
that is, similar items are expected to have a higher probability to be mapped into the same
hash code (or hash bucket) than dissimilar items [292]. Most importantly, LSH provides
guarantees on the search accuracy that is, the probability for two stack traces having randomly
the same hash function is need to be equal to their similarity and the collision probability
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of being hashed into at least one bucket can be simply and fully controlled with two key
parameters representing the user’s desired search precision and recall. The more accurate
LSH is, the larger its hash tables are. Fortunately, LSH is known for its computational and
storage efficiency, as well as its sublinear search performance [130]. LSH remains surprisingly
unexplored in the crash bucketing literature, despite its potential benefits. It is indeed not
trivial to derive hash functions that guarantee the locality-sensitive property for the most
advanced metrics of crash bucketing. Generating hash functions that meet this property
is a non-trivial task. Although several LSH function families have been proposed, each
for estimating one and only one conventional similarity/distance measure, e.g., Min-Hash
function for Jaccard coefficient [47] and Sign-Random-Projection (Sim-Hash) function for
angular distance [56], etc., a generalized procedure for applying LSH to various similarity
measures remains ambiguous and theoretically complex. More specifically, there is currently
no systematic procedure for deriving a family of LSH hash functions for any given similarity
measure.

Exploring the application of LSH to custom similarities for crash deduplication is a novel
area that we delve into. We propose to learn these hash functions in a supervised manner to
mimic any given similarity measure while incorporating the locality-sensitive hashing com-
ponent into the model learning process. We draw inspiration from the field of Learn to Hash
techniques [189, 191, 176, 90, 158, 296], which effectively reduce the dimensionality of input
data representations while preserving similarity. In fact, we aim to leverage the strengths of
both LSH and Learn to Hash approaches. Our proposed model generates a hash code, with
LSH guarantees, that is shared by the nearest neighbors of the input stack trace. This ap-
proach is the first similarity-agnostic method that utilizes hashing for the crash deduplication
problem. To summarize, our contribution is three-fold:

• Aiming to overcome the problem of deriving LSH functions for stack trace similarity
measures, we propose a generic approach dubbed DeepLSH that learns and provides a
family of binary hash functions that perfectly approximate the locality-sensitive prop-
erty to retrieve efficiently and rapidly near-duplicate stack traces.

• Technically, we design a deep Siamese neural network architecture to perform end-
to-end hashing with an original objective loss function based on the locality-sensitive
property preserving with appropriate regularization to cope with the binarization prob-
lem of optimizing non-smooth loss functions.

• We demonstrate through our experimental study the effectiveness and scalability of
DeepLSH to yield near-duplicate crash reports under a dozen of similarity metrics.

Roadmap. The remainder of this chapter is structured as follows. In Section 6.2, we provide
a comprehensive background that introduces the problem at hand and familiarizes readers
with hashing for ANN, particularly focusing on the properties of LSH. Subsequently, in Sec-
tion 6.3, we present the architecture of the DeepLSH model. We delve into the derivation of
the objective loss function, which is based on the preservation of locality-sensitive properties.
Furthermore, we address the challenge of optimizing non-smooth loss functions to directly
obtain binary hash functions without compromising information integrity when relaxing vec-
tors. Section 6.4 presents an overview of related work that explores hashing techniques in
similar contexts, as well as an examination of stack trace-based similarity metrics that are
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1 id: 16377610978254995717215-XXXXXXX-XX

2 sessionId: 2D7E2416131887D473F6CFD7B35769C

3 version: 13.7

4 @timestamp: 2022-12-26 11:13:40.657

5 typeError: ERROR

6 functionality: com.company.modules.factory.Factory

7 message: No CAB matches reading ’Invalid’

8 detail: class com.company.exceptions.MyException:

9 at com.company.LancAdapter.do(LancAdapter.java:449)

10 at com.company.CABWrapper.read(CABWrapper.java:191)

11 ...

12 at com.company.Main(Main.java:94)

13 user message : I got this error while I was trying to ...

Figure 6.1: An example of a crash report with a stack trace and its context. User message is only available
for user-generated crash reports

subsequently utilized in the experimental studies. In Section 6.5, we present the results of
our experimental study, where we assess the efficiency and scalability of DeepLSH using a
large dataset of historical crash reports. We evaluate its performance under a variety of stack
trace-based similarity metrics.

6.2 Background and Problem definition

Software often contains bugs that cause crashes and errors. In what follows, we use both
terms interchangeably to denote application crash (the system is down) and both errors from
background tasks or error pop-ups presented to the end-users. All of them are provided
with a Java stack trace and a run-time context (software/OS/database version, timestamp,
etc.) [264]. A stack trace is a detailed report of the executed methods associated with
their packages during a crash. Stack traces can be retrieved through system calls in many
programming languages. In Java, the stack trace lists methods in descending order: the
most-inner call corresponds to the top of the stack trace. This is illustrated with a crash
report from a software product in Figure 6.1. A stack trace dataset is a defined as set of N
stack traces D “ ts1, s2, ..., sNu.

6.2.1 Approximate Nearest Neighbors Search

A similarity measure between two stack traces is a function denoted as sim : DˆD ÝÑ r0, 1s.
It can be any conventional similarity metric (Jaccard coefficient) or a specialized stack-trace
similarity measure (e.g., PDM [75], TraceSim [289], etc.). The distance function is naturally
given by dist : D ˆD ÝÑ r0, 1s where dist “ 1´ sim. Given a dataset D of N stack traces,
the problem of nearest neighbor search under a user-defined similarity measure sim consists
in finding, for a specific stack trace s P D, another stack trace denoted as nnpsq P Dztsu such
that: nnpsq “ argmaxs1PDztsu simps, s

1q.

An alternative to nearest neighbor search is the fixed-radius nearest neighbor (R´near
neighbor) problem, which seeks to find a set of stack traces SR that are within the distance
R of s p0 ă R ă 1q, such that: SR “ ts

1 P Dztsu | distps, s1q ď Ru. There exist simple tree-
based algorithms for approximate nearest neighbor search problems, notably KD trees [35]
and SR-tree [141]. However, for large-scale high-dimensional cases, these techniques suffer
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from the well-known problem of curse of dimensionality [37] where the performance is often
surpassed by a linear scan. Consequently, significant research efforts have been dedicated
to exploring highly efficient and scalable methods for approximating nearest neighbor search
problems in large-scale datasets, including Locality-Sensitive Hashing (LSH).

Locality-Sensitive Hashing (LSH) has been particularly proposed to tackle the problem of
randomized or probabilistic approximate nearest neighbors search [292], that is, targeting the
ANN problem with guarantees aiming to find approximate nearest neighbors with probability
rather than a deterministic way (which is not tractable). This choice is driven by the purpose
of ensuring guarantees on the search accuracy with respect to the exact nearest neighbor
search while giving the user the ability to balance precision and recall to her desired level.
Formally, we define our problem as follows:

Problem 3 (Randomized approximate nearest neighbors search (RANN)). Given a new
reported stack trace s, a dataset D of historical stack traces, the goal is to report some
of the R´nearest neighbors R of s such that: R “ ts1 P Dztsu | Prrs1 P SRs ě 1 ´ δu
with p0 ă δ ă 1q. The lower the parameter δ, the lower the chance of finding elements
in the radius (i.e., more restrictive)

6.2.2 Hashing approach for the RANN problem

Hashing-based approaches attempt to map data features from the input space into a lower-
dimensional space using hash functions so that the approximate nearest neighbors search on
the resulting hash vectors can be performed efficiently. The compact hash codes generally
belong to the Hamming space i.e., binary codes. We define the hash function for a stack
trace s as y “ hpsq where y is the hash code and h : D ÝÑ t0, 1ub where b ě 1 is the
number of bits in the hash code. In approximate nearest neighbors search settings, we
usually opt for multiple hash functions to compute the final meta-hash code: Y “ Hpsq,
where Hpsq “ rh1psq, h2psq, ..., hKpsqs

T and K is the number of hash functions. Hashing-
based nearest neighbors search includes hash table lookup strategy, [292] which seeks to
design an efficient search scheme rooted in hash tables. The hash table is a data structure
made of buckets, each of which is indexed by a meta-hash code such that the probability of
collision of near-duplicates under a given similarity measure is maximized.

Given a stack trace s, the stack traces ts1 P Dztsu | Hpsq “ Hps1qu are retrieved as
near-duplicates of s. In order to improve the recall, we generally construct L hash tables
containing hash buckets, each corresponding to a hash code tH1, H2, ...,HLu. The near-
duplicate stack traces are then defined as ts1 P Dztsu | Dj P rr1, Lss, Hjpsq “ Hjps

1qu. To
ensure good precision, the meta-code length of the hash functions needs to be increased.

6.2.3 LSH for RANN problem

To address the problem 3 of randomized nearest neighbors search, Locality-Sensitive Hashing
(LSH) [130] maps high dimensional data to lower dimensional representations by using a
family H of random hash functions that satisfy the locality-sensitive property. Thus, similar
data items in the high-dimensional input space are expected to have more chances to be
mapped to the same hash buckets than dissimilar items. These similar data items are said
to collide. Starting with a formal definition of an LSH family H to address our problem, we
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consider a metric space such that, M “ pD, distq, a threshold 0 ă R ă 1, an approximation
factor c ą 1, and two probabilities p1 and p2. The hash family H is a set of M hash functions
th1, h2, ..., hMu where each h P H is defined as h : D ÝÑ t0, 1ub. An LSH family must satisfy
the following conditions for any two stack traces s, s1 P D and any random hash function
h P H:

• if distps, s1q ď R, then Prrhpsq “ hps1qs ě p1,

• if distps, s1q ě cR, then Prrhpsq “ hps1qs ď p2.

A family H is said to be pR, cR, p1, p2q´sensitive if p1 ą p2. Alternatively [56], a sufficient
condition for H to be an LSH family is that the collision probability should be monotonically
increasing with the similarity, i.e.,

(6.1) Prrhpsq “ hps1qs “ gpsimps, s1qq,

where g is a monotonically increasing function. Indeed, most of popular known LSH families
such as Minhash [47] for Jaccard similarity, satisfy this strong property.

The LSH scheme indexes all stack traces in hash tables and searches for near-duplicates
via a hash table lookup strategy. The LSH algorithm uses two key hyperparameters L and
K to be tuned. Given the LSH family H, the LSH algorithm amplifies the gap between the
high probability p1 and the low probability p2 by concatenating K hash functions chosen
independently and uniformly at random from H, to form a meta-hash function Hpsq “
rh1psq, h2psq, ..., hKpsqs

T . The meta-hash function is associated with a bucket ID in a hash
table. Intuitively, it reduces the chances of collision between similar stack traces, since this
requires them to have the same value for each of the K hash functions (i.e., high precision
over the recall). To improve the recall, L meta-hash functions H1, H2, ...,HL are sampled
independently, each of which corresponds to a hash table. These meta-hash functions are
used to map each stack trace into L hash codes, and L hash tables are constructed to index
the corresponding buckets, each using K random hash functions. The LSH algorithm is
conducted in two phases as illustrated in Figure 6.2 (considering, L “ 4 hash tables, for each
we have K “ 3 hash functions of b “ 4 bits.)

1. Pre-processing phase: The L hash tables are built from the N stack traces. Each
hash table is indexed by K hash functions constituting its meta-hash function. Note
that we store pointers to stack traces in hash tables, since storing them in the original
format is memory intensive.

2. Querying phase: Given a stack trace s, the algorithm iterates over the L meta-hash
functions in order to retrieve all stack traces that are hashed into the same bucket
as s, then reports the union from all these buckets

ŤL
j“1ts

1 P D | Hjpsq “ Hjps
1qu.

A pL,Kq´parameterized LSH algorithm succeeds in finding candidate near-duplicates
for a stack trace s with a sampling probability at least 1 ´ p1 ´ pKqL, where p is the
collision probability of LSH function. This means that δ “ p1´ pKqL as defined in the
problem 3 of randomized ANN. If property (6.1) holds, in particular for the identity
function, i.e., gpxq “ Ix, we can rely on the so-called probability-similarity relation
between two different stack traces s, s1 P D such that:

(6.2) PK,Lps, s
1q “ 1´ p1´ simps, s1qKqL
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Figure 6.2: pL,Kq´ parameterized LSH algorithm for retrieving near-duplicate stack traces with guarantees.

6.3 DeepLSH Design Methodology

To address Problem 3 in the context of crash deduplication in order to retrieve efficiently and
with approximate guarantees the near-duplicates, we need to define appropriate LSH families
for a given stack trace-based similarity measure. We recognize many suitable LSH families
that have been already proposed for several similarity measures [77, 56, 47]. However, to the
best of our knowledge, no generic mechanism exists to generate a family of hash functions that
satisfies the locality-sensitive property for any user-defined similarity measure. Particularly,
this presents a major limitation towards using LSH for crash deduplication problem, since the
most efficient measures are non-linear functions and often rely on human expertise. Therefore,
we propose DeepLSH, a generic approach that takes as input only the stack trace dataset and
any user-defined similarity measure (measure-agnostic), to provide a family of hash functions
that converges to the locality-sensitive property.

6.3.1 Learning a family of LSH functions

We exploit a deep supervised Siamese neural network with an original objective loss function
to learn hash functions that converge to the locality-sensitive property for a given similarity
measure. Figure 6.3 shows the structure of the proposed model that combines two identical
neural networks sharing the same structure and the same parameters Θ. As input, we provide
the model with the set G of all possible distinct pairs of stack traces. The model output is
provided with the similarity values for each pair of stack traces. The model F , with its
corresponding parameters Θ, consists in encoding a stack trace into a compact vector that
represents a family of M concatenated binary hash codes, each of which is encoded in b bits
in the Hamming space, denoted as FΘpsq. The model consists of a concatenation of stacked
convolution layers with different kernel sizes. We depict three kernel region sizes: 2, 3, and
4, each of which has 256, 512, or 1024 filters. These filters perform convolutions on the
one-hot encoded stack frames to generate feature maps. Then, 1-Max pooling is performed
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Figure 6.3: DeepLSH: Deep Siamese hash learning neural network overview.

over each map to record the largest number from each feature. Finally, the resulting features
are concatenated to form a feature encoding vector for the penultimate layer that is fully
connected to the hash model. It is noteworthy that our deep hash approach is model agnostic
and, therefore, any feature encoder structure (e.g., CNN, CNN-LSTM, AE, etc.) can be also
used as a stack trace encoder instead of our proposed network architecture.

Given the two hash vectors of the Siamese neural network, our contribution consists in
designing an objective loss function that efficiently conducts FΘ to learn a family of binary
hash functions that aim to converge to the locality-sensitive property for the given similarity
function sim. We propose to leverage Property (6.1) which is sufficient to imply the two
required conditions of an LSH family. Assuming that the function g is the identity function:
gpxq “ Ix since the similarity values are within the closed interval r0, 1s, the set of parameters
Θ are optimized such that the probability of two random projected hash functions of order
k from the resulting hash vectors, hik and hjk being equal, converges to the similarity value
between the two stack traces si and sj i.e.,

(6.3) Prrhik “ hjks “ PrrHpsiqk “ Hpsjqks “ simpsi, sjq

More formally, we seek to minimize the Mean Squared Error (MSE) between the probability
of collision of two randomly projected hash functions of order k, i.e. hik resp. hjk of Hpsiq
resp. Hpsjq, and the similarity value simpsi, sjq, that is:

(6.4) argmin
Θ

ÿ

psi,sjqPG

1

|G|
rPrrFΘpsiqk “ FΘpsjqks ´ simpsi, sjqs

2

At this point, the challenge is to formalize the probability of collision in the loss function.
In other words, we attempt to quantify the probability PrrFΘpsiqk “ FΘpsjqks during the
learning phase. In what follows, we present the complete procedure for designing a computed
loss function for the model F .
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6.3.2 Objective loss function

Given that the hash vectors are in a Hamming space, i.e., the vectors are restricted to binary
values, t0, 1u or t´1, 1u, it can be demonstrated that calculating the collision probability
between two randomly projected hash functions of the same order hik and hjk is equivalent
to computing the Hamming similarity between the two hash vectors Hpsiq and Hpsjq. This
equivalence is satisfied since, for the Hamming similarity when b “ 1, it has been proven in
[130], that the projection function (i.e., a single bit drawn randomly) verifies the locality-
sensitive property. In other terms, for two binary vectors x and x1 of length d with a Hamming
distance r, the collision probability by randomly pulling a hash function from the set th :
r´1, 1sd Ñ t´1, 1u | hpxq “ xi, i P t1, ..., duu verifies:

(6.5) Prrhpxq “ hpx1qs “ gprq “ 1´
r

d

Intending to leverage property (6.5) and given that our hash functions are rather b-bit
encoded (b ě 1), i.e., not restricted to a single projection but a succession of b coordinates, we
need to generalize this property for b ě 1. Consequently, we define a generalized Hamming
distance between two hash vectors Hpsiq and Hpsjq as the number of different projected hash

functions of order k: |tk P rr1,M ss | hik ‰ hjku|. As a result, each hash function that belongs
to th1 : r´1, 1sMˆb Ñ t´1, 1ub | h1psq “ Hpsqku satisfies the locality-sensitive property. This
leads to conclude that for two different stack traces si and sj , the collision probability between
two projected hash functions of a specific order k1 referring to (6.5):

(6.6) Prrhik1 “ hjk1s “ 1´
|tk P rr1,M ss | hik ‰ hjku|

M

Correspondingly, referring to the property (6.6), the objective function as described
in (6.4) can be formalized as follows:

(6.7)
ÿ

psi,sjqPG

1

|G|
r1´

|tk | hik ‰ hjk, k P rr1,M ssu|

M
´ simpsi, sjqs

2

A challenging problem in hashing, on the other hand, consists in dealing with the binary
constraint on hash vectors. This binary constraint leads to NP-hard mixed integer optimiza-
tion problem [90]. In particular, the challenge in neural network parameter optimization is
the vanishing gradient descent from the Sign function used to obtain binary values. Specifi-
cally, the gradient of the Sign function is zero for all non-zero input values, which is limiting
for neural networks that rely on gradient descent for training. In order to handle this chal-
lenge, most deep hashing techniques relax the constraint during the learning of hash functions
using Sigmoid or Hyperbolic Tangent functions [191, 121, 158, 127]. With this relaxation,
the continuous hash codes are learned first. Then, the codes are binarized with thresholding.
Continuous relaxation is a simple approach to address the original binary constraint problem.
However, with binary hash codes that result from thresholding in the test phase, the solution
may be suboptimal, compared to including the binary constraint in the learning phase.

To this extent, we propose a simple yet efficient solution to cope with the binary constraint
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in the training phase. The solution lies in using approximate Hamming similarity. It requires
having continuous values that are extremely close to binary values t´1, 1u. We propose to use
the Hyperbolic Tangent activation on the hash layer while including the following condition
in the loss function to drive the absolute hash values to be exceedingly close to 1:

(6.8)
1

M ¨ b
HpsqT .Hpsq ´ 1 “ 0.

Under this regularization term incorporated into the loss function, we define the approx-
imate generalized Hamming similarity as follows:

(6.9) gHam pHpsiq, Hpsjqq “ 1´

řM
k“1DChebyshevph

i
k, h

j
kq

2 ¨M
,

where DChebyshev “ maxlPt1,...,bup|h
i
k,l ´ hjk,l|q

The Chebyshev distance between hik,l and hjk,l is then given as the maximum absolute
distance in one of the b dimensions. This implies that two hash codes are assumed to be
similar if all bits of the hash code are matched for a specific projection. In other words, if D
l P t1, ..., bu for a specific k such that |hik,l ´ hjk,l| « 2, then hik and hjk are considered as two
different hash codes.

Finally, to ensure independence between the hash code bits along with the load-balanced
locality-sensitive hashing, and inspired by the work of [90], we have introduced the following
regularization term that pushes the model to diversify the hash codes:

(6.10)
1

M ¨ b
HpsqT .1M ¨b “ 0.

Putting all together. Having all the necessary elements to design an appropriate objective
loss function to be optimized for DeepLSH model, we define for convenience the following
notations. Let S “ tsimpsi, sjqui,jPrr1,Nss P r0, 1s

NˆN be the matrix representation of the sim-

ilarities between all the stack trace pairs, and H “ rHps1q, Hps2q, ...,HpsN qs P r´1, 1s
M ¨bˆN

be the approximate binary hash vectors generated by the model FΘ, such that, Hpsiq “
rhi1, h

i
2, ..., h

i
M s

T P r´1, 1sM ¨b. We refer to W “ tgHampHpsiq, Hpsjqqui,jPrr1,Nss P r0, 1s
NˆN

as the matrix representation of the generalized Hamming similarity between all pairs of hash
vectors produced from the model FΘ. We formulate the following optimization problem to
learn the parameters of our DeepLSH model using gradient descent:

min
Θ

LDeepLSH “
1

|G|
∥W ´ S∥2

`
λ1

2
∥ 1

M ¨ b
HTH´ IN∥2

`
λ2

|G|
∥ 1

M ¨ b
HT1M ¨b∥2

` λ3∥Θ∥2F ,(6.11)
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λ1, λ2, and λ3 are regularization parameters to assess the importance of the different
parts of the objective function.

6.4 Related Work

In order to provide a comprehensive understanding of the positioning of our contribution
relative to existing approaches, as well as to introduce the baselines and metrics utilized
in the experimental study, we discuss the two research areas covered by our work: (1) the
approximate nearest neighbor search through hashing techniques, and (2) custom similarity
measures for the stack trace deduplication problem.

Hashing for ANN search. Locality-sensitive hashing has been widely studied by the the-
oretical computer science community. Its main aspect focuses on the generation of a family
of random hash functions that meet the locality-sensitive property for conventional similarity
measures [259, 77, 56, 130, 47]. Particularly, Min-Hash (or min-wise independent permuta-
tions) [47] is an LSH function designed specifically for Jaccard similarity. Sim-Hash [56, 259]
is another popular technique whose aim is to estimate angular similarities such as Cosine.
Sim-Hash has been adopted by Google [259] and it is often used in text processing appli-
cations to compare between documents using their representations as a set of features (e.g.,
bag-of-words or n-grams). Both techniques cannot, however, be applied to estimate other
similarity metrics besides Jaccard or Cosine. Designing LSH functions for any given similarity
metric remains ambiguous and theoretically challenging, as there is no established method
for deriving a set of LSH hash functions for a specific similarity measure. On the other hand,
the concept of learn to hash has become the focus of many learning-based hashing methods,
especially for the computer vision community [189, 191, 127, 121, 158, 296, 186, 331]. These
methods are generally intended for the search of image similarity and rely on the semantic
label information instead of continuous values. Moreover, these techniques are highly effec-
tive in reducing the dimensionality of the input data representations while preserving their
similarities. However, they do not meet our main objective, which consists in an end-to-end
procedure to retrieve near-duplicate data objects with guarantees. They do not reveal a
systematic way to construct hash tables from the resulting hash codes, and neither do they
control the trade-off between recall and precision using key parameters, as does LSH. Alter-
natively, we take benefit from both worlds, i.e., LSH and Learn to Hash, by proposing an
end-to-end procedure that incorporates the LSH component in a learning process. We have
identified a similar baseline approach in [127] that proposes a different methodology compared
to ours, consisting of a deep hash coding neural network combined with Hamming LSH fitted
on the resulting compact vectors to retrieve near-duplicate images in a large database. The
authors first proposed a constrained loss function without incorporating the locality-sensitive
property, and then performs discretization on continuous hash vectors to carry out the Ham-
ming LSH separately from the model. We show through our experiments in Section 6.5
by adapting this two-step approach to stack traces, that it leads to a considerable search
performance degradation compared to DeepLSH.

Stack trace similarities. We report research studies that tackle the crash report dedu-
plication problem using stack trace similarity functions. [171] employed the TF-IDF-based
scoring function from Lucene library [196]. [258] proposed DURFEX system which uses the
package name of the subroutines and then segment the resulting stack traces into N-grams to
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compare them using the Cosine similarity on their vector representations. Some alternative
techniques have been proposed to compute the similarity using derivatives of the Needleman-
Wunsch algorithm [228]. In [48], the authors suggested adjusting the similarity based on
the frequency and the position of the matched subroutines. [75] proposed a new similarity
measure called PDM in their framework Rebucket. This method computes the similarity
based on the offset distance between the matched frames and the distance to the top frame.
More recently, TraceSim [289] has been proposed to take into consideration both the frame
position and its global inverse frequency. [219] present an approach that combines TF-IDF
coefficient with PDM. Finally, we outline some earlier approaches that used edit distance
as it is equivalent to optimal global alignment [26, 216]. It is noteworthy that our approach
DeepLSH does not propose a new similarity measure and does not question the effectiveness or
compete against these existing measures, but it is complementary to them. We demonstrate
in what follows that DeepLSH model is able to estimate all these measures with the purpose of
providing a scalable way to yield approximate near-duplicate stack traces w.r.t these custom
similarity functions.

6.5 Experiments

We report our experimental study to assess the effectiveness of our approach DeepLSH in
performing efficient, fast, and scalable approximate nearest neighbors search, by providing
appropriate hash functions that can approximate the stack trace similarity measures.

6.5.1 Experimental Setup and Baselines

Stack trace dataset and training methodology. Our experiments are conducted on a
comprehensive real-world dataset comprising stack traces automatically reported by our ERP
software. To establish a robust training dataset, we selectively choose the most frequent stack
traces from our historical incident database, creating distinct pairs of stack traces. These
pairs are then utilized to train our DeepLSH model. Each pair is assigned a similarity value
calculated using diverse similarity functions. We evaluate the performance of the DeepLSH

model using twelve different similarity measures: Jaccard (Bag of Words and bi-grams),
Cosine (Bag of Words, bi-grams, and TF-IDF), Edit distance [26], PDM [75], Brodie [48],
DURFEX [258], Lerch [171], Moroo [219], and TraceSim [289].

It is important to note that these similarity metrics serve as a reference point and act
as the ground truth in our current setup. Our objective, therefore, is not to evaluate the
effectiveness of these similarity measures or compare them with each other. This is because
each measure is applied to a vast dataset of stack traces, where labeled information is not
always available, or manual labeling is impractical, especially in cases of frequent background
process failures that may occur in the thousands per day. Therefore, our goal is to ensure that
regardless of the used similarity measure employed for stack traces, our DeepLSH approach can
effectively replicate this measure of similarity. Additionally, it should be capable of scaling
up and being utilized within large-scale systems.

Regarding the training methodology, the training set consists of 499500 pairs of stack
traces, while the validation and test set are constituted of 99900 pairs. The number of hash
functions M and the size of each hash code b can be parameterized by the user. By default,
these values are respectively set to 64 hash functions of 8 bits. The max iteration is fixed at
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20 epochs with a batch size of 256 or 512. The parameter optimization process is achieved
with the readily available Adam optimizer of TensorFlow with an adaptive learning rate and
a weight decay of 1e´4.

Baselines. As there is no explicit competing approach for DeepLSH in the state-of-the-
art, we chose to initially compare with (1) Standard LSH methods, namely Min-Hash
and Sim-Hash. This comparison should only be performed with the Jaccard and Cosine
metrics respectively, since they are not generalizable to other measures compared to DeepLSH.
As mentioned in Section 6.4, we compare against the closest method to our work, referred
to as (2) (CNNH+LSH) [127]. This approach uses the concept of Learn to Hash and then
performs in a post-processing step the Hamming LSH. The methodology followed in this work
is significantly different to ours. DeepLSH unlike the latter incorporates the LSH component
into the model learning phase, resulting in a new loss function with related regularization to
meet the locality-sensitive property. Regarding the application of [127] on stack traces, since
it was primarily designed for images, we only needed to provide a list of one-hot encoded
stack-frames to the convolutional feature extractor instead of pixels. Finally, to evaluate the
scalability of our approach, we compare against (3) Native k-NN (k-Nearest neighbors)
approach of linear complexity, using the exact computation of similarity functions between
stack traces. It is noteworthy that clustering techniques have not been considered as baselines
(as discussed in the introduction), since the addressed problem is an ANN search.

Evaluation protocol. Through this experimental study, we address the following research
questions by proposing an evaluation protocol to assess each point claimed in this work:

✘ RQ1 [Model Evaluation]: Does DeepLSH model manage to converge to the locality-
sensitive property to mimic a diverse set of stack-trace-based similarity metrics? We
first highlight, by means of the Kendall τ ranking coefficient [145], whether the model
succeeds in preserving the original order between the predicted pairwise similarities. In
addition, we study how accurately the generalized Hamming similarity approximates
the true Hamming similarity between the discretized hash vectors in the test phase.

✘ RQ2 [DeepLSH for ANN search]: Does DeepLSH model achieve satisfactory per-
formance in finding near-duplicate crash reports user a given similarity measure? By
querying the model to obtain the hash vectors for unseen stack traces, we study the
search performance to retrieve approximately near-duplicate stack traces based on two
metrics that are widely used in the context of crash deduplication: Recall Rate at the
first k positions (RR@k) [262] and the Mean Reciprocal Rank (MRR) [72].

✘ RQ3 [Preserving LSH guarantees]: To what extent does DeepLSH succeed in pre-
serving the guarantees of LSH compared to Standard LSH methods and the baseline
(CNNH+LSH) [127]. For this purpose, we provide recall, precision, and F-score measures
adjusted to quantify the extent to which the probability-similarity constraint (6.2) has
been satisfied (more details are provided hereafter).

✘ RQ4 [Runtime Analysis]: We report the execution time required for DeepLSH to find
near-duplicates as shown, compared to Native k-NN approach of linear time complexity.
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Figure 6.4: Locality-sensitive hash preserving. Correlation between the probability of hash collision and the
similarity value.

6.5.2 Model Evaluation

In Figure 6.4, we highlight the strong linear correlation between the probability of hash colli-
sion and the similarity values for almost all similarity measures. It is also important to assess
the capability of DeepLSH model to maintain the order between pairwise similarity values.
For instance, for a triplet of stack traces s, p and q if simps, pq ą simps, qq, we aim to evaluate
whether the model is likely to provide hash functions s.t. Prrhkpsq “ hkppqs ą Prrhkpsq “
hkpqqs for k P M . For this purpose, we measure the Kendall rank correlation coefficient,
between the set of similarity values, and the set of generalized Hamming similarities between
the resulting hash vectors as shown in Figure 6.5. Remarkably, we obtained satisfactory
results compared to our baseline (on average, 0.82 for DeepLSH, against 0.60 for (CNNH+LSH),
that is, 0.22 of improvement) which permitted to achieve better and accurate results on the
ANN search. Finally, thanks to the regularization conditions (6.8) and (6.10) incorporated
in the objective loss function, the model yields approximate binary hash values extremely
close to t´1, 1u that are binarized/relaxed in the test phase. We seek to evaluate whether
our proposed solution to deal with the binarization problem using the generalized Hamming
similarity (6.9) performed in the training phase, is optimal and captures the true Hamming
similarity between the discretized hash values in the test phase. Considering the TraceSim
measure as an example in Figure 6.6 (on the left), we notice a strong linear correlation be-
tween the true hamming similarity calculated on the binary vectors and the approximate
generalized Hamming similarity used in the loss function during the learning phase. This
means that our loss optimization process is as identical as the optimization of any loss func-
tion with strictly binary values in the training phase. In the same Figure (on the right), we
show the impact of not incorporating the LSH component into the model, as has been done
in Hu et al. [127]. Performing LSH on the discretized vectors in a post-processing step results
in a sub-optimal optimization, since the correlation between the similarity calculated using
basic embedding and the true Hamming similarity is not even monotonic. Consequently,
(CNNH+LSH) has failed to capture TraceSim similarity.
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Figure 6.5: Kendall’s τ coefficient between the real and predicted pairwise similarities.

Figure 6.6: Comparison between DeepLSH and (CNNH+LSH) [127] in preserving the Hamming similarity between
hash vectors.

6.5.3 Evaluation of DeepLSH for ANN

The objective of DeepLSH approach, given a similarity measure, is to generate, for a new
stack trace s reported by our monitoring system, an appropriate hash vector to query a
pL,Kq´parameterized LSH for quickly and efficiently locate in a sub-linear time complexity
its near-duplicates as illustrated in Figure 6.7. The hash vector contains M hash functions,
partitioned across L hash tables each consisting of a concatenation of K hash functions called
a meta-hash function of size K ¨ b. An existing stack trace q P Rs is identified as a near-
duplicate stack of s if it matches the stack trace s at least in one meta-hash function. The
set of near-duplicate stack traces of s is denoted by Rs. It is worth noting that the set Rs is
sorted in the original order with respect to the similarity measure value.

LSH offers the possibility to control the trade-off between precision and recall (w.r.t LSH
guarantees) by setting the hyperparameters values K and L. We thus choose to consider the
tuple of hyperparameters that maximizes the F-score, as shown in Figure 6.8 (e.g., pL,Kq “
p16, 4q for PDM). We ignore extreme cases (i.e., cases where the threshold is very small or very
large, which refers to a very large value of L or K). In a first analysis, we were interested in
the Recall Rate of order k. For each stack trace s that belongs to a query set Q, we yield a set
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Figure 6.7: Near-duplicate stack trace retrieving using DeepLSH model and pL,Kq´ parameterized LSH.

Figure 6.8: F-score boxplots w.r.t. different values of pL,Kq.

of its approximate nearest neighbors Rs (i.e., potential near-duplicates) such that |Rs| ě k
and hence,

RR@k “
1

k ¨ |Q|
ÿ

sPQ

k
ÿ

i“1

1rnnips,*argsqPRss,

where nnips, *argsq is a function that returns the real nearest neighbor of order i for the stack
trace s given a set of historical stack traces and the LSH hyperparameters L and K.

In order to evaluate the ranking quality of a set of near-duplicates Rs for a stack trace
s according to a pL,Kq combination, and relative to the set of true nearest neighbors Ts,
we use the Mean reciprocal rank (MRR) [72]. This measure seeks to compute the reciprocal
rank of a retrieved near-duplicate s1 P Rs relative to its actual position in the set of true
nearest neighbors. More concretely:

MRR “
1

|Q|
ÿ

sPQ

1

|Rs|

ÿ

s1PRs

rankps1,Rsq

rankps1, Tsq

E.g., let’s consider a given stack trace q, where we retrieve the set of its approximate nearest
neighbors and subsequently sort themRq “ ts2, s3, s5u and the set of its true nearest neighbor
is given as Tq “ ts1, s2, s3, s4, s5u. The MRR is then: 1

3p
1
2 `

2
3 `

3
5q « 0.63. The MRR, in this

case, is over-penalized since we failed to find the true nearest neighbor s1 in Rq. The set Rq

is sorted according to the original order w.r.t to the similarity measure.

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0072/these.pdf 
© [Y. Remil], [2023], INSA Lyon, tous droits réservés



6.5. Experiments 149

Table 6.1: Comparison between the search performances of DeepLSH against the standard LSH approaches
w.r.t. their addressed similarity measures and CNNH+LSH [127] in terms of Recall Rate (RR@k) and Mean
Reciprocal Rank (MRR).

Similarity Measure
RR@1 RR@5 MRR

CNNH+LSH DeepLSH MinHash SimHash CNNH+LSH DeepLSH MinHash SimHash CNNH+LSH DeepLSH MinHash SimHash

Jaccard 0.71 0.87 0.90 ´ 0.79 0.92 0.92 ´ 0.85 0.96 0.95 ´

Jaccard-bigram 0.67 0.87 0.90 ´ 0.76 0.91 0.92 ´ 0.82 0.93 0.94 ´

Cosine 0.84 0.81 ´ 0.61 0.83 0.90 ´ 0.62 0.88 0.87 ´ 0.80
Cosine-bigram 0.76 0.84 ´ 0.58 0.79 0.93 ´ 0.58 0.89 0.91 ´ 0.80

TF-IDF 0.73 0.76 ´ 0.55 0.75 0.88 ´ 0.55 0.85 0.90 ´ 0.73
Edit Distance 0.81 0.88 ´ ´ 0.75 0.94 ´ ´ 0.88 0.95 ´ ´

PDM 0.80 0.84 ´ ´ 0.76 0.90 ´ ´ 0.82 0.93 ´ ´

Brodie 0.79 0.84 ´ ´ 0.76 0.90 ´ ´ 0.82 0.93 ´ ´

DURFEX 0.72 0.83 ´ ´ 0.79 0.91 ´ ´ 0.82 0.91 ´ ´

Lerch 0.70 0.78 ´ ´ 0.70 0.85 ´ ´ 0.80 0.88 ´ ´

Moroo 0.75 0.80 ´ ´ 0.68 0.90 ´ ´ 0.80 0.93 ´ ´

TraceSim 0.81 0.79 ´ ´ 0.75 0.90 ´ ´ 0.84 0.92 ´ ´

The results are presented in detail in Table 6.1, according to the identified similarity mea-
sures that have been proposed to address the crash-deduplication problem. We choose 2 differ-
ent values of k “ t1, 5u for the recall rate. We compare DeepLSH against MinHash, SimHash,
and (CNNH+LSH). Ideally, standard LSH techniques should guarantee optimal search accuracy
compared to DeepLSH, since they are proven to converge to the locality-sensitive property
w.r.t. their similarity measures. Interestingly, we observe that DeepLSH almost matches the
search performances of MinHash on Jaccard similarity, and outperforms SimHash. Since
MinHash is a robust probabilistic model that has been specifically designed to estimate Jac-
card similarity, but however can’t be generalized to other similarity metrics specifically those
intended to compare between stack traces. This demonstrates also that DeepLSH is not only
generalizable to other complex measures but can even be used for measures where an ex-
isting LSH is already known. We also show that DeepLSH outperforms (CNNH+LSH) with a
large margin on 3 different comparison metrics and for almost all similarity measures. More
specifically, we notice that DeepLSH search performance is enhanced with a larger value of k
up to 0.94 for Edit distance with an improvement of „ 0.2 over (CNNH+LSH).

6.5.4 LSH guarantees Preserving

In what follows, we aim to evaluate whether DeepLSH succeeds in preserving the guarantees
of LSH regarding the probability-similarity relation in (6.2). To this end, for a specific stack
trace s we look for the true near-duplicate stack traces q P RTrue

s that the model should return
with a pK,Lq setting, s.t. PK,Lps, qq “ 1 ´ p1 ´ simps, qqKqL ě 0.5, i.e., the probability to
belong to the set is equal or higher than 0.5. We then derive the precision, recall and F-score
between the returned set of near-duplicates Rs and RTrue

s . More formally we derive this
values, s.t:

Recall “
1

|Q|
ÿ

sPQ

|Rs XRTrue
s |

|RTrue
s |

and Precision “
1

|Q|
ÿ

sPQ

|Rs XRTrue
s |

|Rs|

As detailed in Table 6.2, one can notice that DeepLSH is much better than all baselines
in terms of F-score on almost all similarity measures, including the accurate Minhash for
Jaccard. DeepLSH showed significantly better performance in terms of recall, i.e., its ability to
capture all similarities that are beyond the threshold imposed by an optimal parameterization
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Table 6.2: Comparison between the precision/recall and f-score of DeepLSH in preserving the probability-
similarity relation (6.2) against the standard LSH approaches w.r.t. theirs addressed similarity measures and
CNNH+LSH [127].

Similarity Measure
Precision Recall F-score

CNNH+LSH DeepLSH MinHash SimHash CNNH+LSH DeepLSH MinHash SimHash CNNH+LSH DeepLSH MinHash SimHash

Jaccard 0.64 0.78 0.76 ´ 0.78 0.85 0.85 ´ 0.70 0.81 0.80 ´

Jaccard-bigram 0.56 0.76 0.70 ´ 0.70 0.74 0.83 ´ 0.62 0.75 0.75 ´

Cosine 0.77 0.72 ´ 0.74 0.74 0.84 ´ 0.6 0.75 0.78 ´ 0.66
Cosine-bigram 0.74 0.74 ´ 0.66 0.72 0.82 ´ 0.41 0.73 0.78 ´ 0.50

TF-IDF 0.85 0.76 ´ 0.49 0.61 0.86 ´ 0.62 0.71 0.81 ´ 0.55
Edit Distance 0.37 0.78 ´ ´ 0.78 0.88 ´ ´ 0.50 0.83 ´ ´

PDM 0.68 0.85 ´ ´ 0.76 0.86 ´ ´ 0.72 0.85 ´ ´

Brodie 0.36 0.83 ´ ´ 0.81 0.86 ´ ´ 0.50 0.84 ´ ´

DURFEX 0.73 0.78 ´ ´ 0.70 0.79 ´ ´ 0.71 0.78 ´ ´

Lerch 0.74 0.76 ´ ´ 0.57 0.76 ´ ´ 0.64 0.76 ´ ´

Moroo 0.66 0.73 ´ ´ 0.85 0.82 ´ ´ 0.74 0.77 ´ ´

TraceSim 0.31 0.80 ´ ´ 0.84 0.88 ´ ´ 0.45 0.84 ´ ´

of pK,Lq. On the other hand, the reported precision values, as opposed to (CNNH+LSH), show
that DeepLSH does not generate false positives, so that false near-duplicates are not grouped
in the same bucket. In particular, on similarity measures that use the Levenshtein distance
(e.g. ED, Brodie, and TraceSim), we observe a rather low precision for (CNNH+LSH), which
shows, on the one hand, the limitation of (CNNH+LSH) to generalize to such metrics, and on
the other hand agrees with the explanation of Figure 6.6.

6.5.5 Runtime Analysis

We evaluate the scalability of DeepLSH and how quickly this approach identifies, for a batch
of stack traces in a large historical crash database, the most similar stacks w.r.t. a given
similarity measure. We report the execution time required to find the near-duplicate candi-
dates for 1, 000 new stack traces when querying on more than 100, 000 historical crashes (100
million queries). We compare basically against the native k-NN based approach.

Table 6.3: Comparison between the runtime required to find near-duplicate stack traces for DeepLSH, k-NN
based approach and standard LSH techniques. Limit indicates that the approach failed to get a result within
10 hours.

Similarity Measure
Runtime („ Seconds)

k-NN CNNH+LSH DeepLSH MinHash SimHash

Jaccard 258 30 26 57 -
Cosine 8288 15 14 - 3
TF-IDF 8510 16 15 - 4

Edit Distance 4911 29 29 - -
PDM 10047 16 16 - -
Brodie Limit 27 27 - -

DURFEX 12160 26 24 - -
Lerch 3118 24 24 - -
Moroo 15253 25 25 - -

TraceSim 13050 30 30 - -

The reported results are depicted in Table 6.3. The execution time for a native k-NN ap-
proach depends on the batch size, the size of the database, and the computational complexity
of the similarity measure. With the latter, most similarity measures under the conditions

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0072/these.pdf 
© [Y. Remil], [2023], INSA Lyon, tous droits réservés



6.6. Discussion 151

Table 6.4: Mapping the contribution DeepLSH to our proposed taxonomy.

Context

Focus Area Incident Deduplication

Maintenance Layer Functional

Scoop ERP Software System

Data
Source and Type Stack traces ÝÑ Sequences

Feature Eng Parsing of Stack traces

Model

Approach Locality-Sensitive Hashing embedded in Siamese NN

Paradigm Supervised

Metrics
Mean Reciprocal Rank (MRR)

Recall Rate of order k.

Availability Data and Code (https://github.com/RemilYoucef/deep-locality-sensitive-hashing)

Particularities Scalability, Maintainability, In context-Evaluation

Contribution First similarity-agnostic method that utilizes hashing for the crash deduplication problem.

described above require more than an hour to return any results (more than 3 hours for
DURFEX, Moroo, and TraceSim) and no results returned by Brodie within 10 hours. On
the other hand, DeepLSH only depends on the number of hash tables which does not exceed
64 tables. We notice that the runtime is roughly constant and around 24 „ 27 seconds on
average. Remarkably, DeepLSH is even faster than MinHash for Jaccard Similarity. SimHash,
on the other hand, has proven to be faster, and (CNNH+LSH) has been similar to DeepLSH

in runtime, but as seen above, both approaches show poor search performance and lower
guarantees.

6.6 Discussion

In this chapter, we tackled the important task of fast and efficient automatic crash bucketing
in software development. We investigated the potential of locality-sensitive hashing (LSH)
for this purpose, leveraging its sublinear performance and theoretical guarantees in terms of
accuracy for similarity search. This approach offers significant advantages when dealing with
large datasets, yet surprisingly, LSH has not been explored in the crash bucketing literature.
The main reason for the lack of consideration of LSH in crash bucketing research is the
challenge of deriving hash functions that satisfy the locality-sensitive property for advanced
and complex crash bucketing metrics. To address this gap, we first the concept of Locality-
sensitive hashing in the context of approximate nearest neighbors search. Then, we propose
a novel, parameterizable approach dubbed DeepLSH. We introduced an original objective loss
function, complemented by appropriate regularizations, enabling convergence to the desired
locality-sensitive property. By doing so, DeepLSH had the capability to mimic any given
similarity metrics, thereby enhancing and improving the time and efficiency of near-duplicate
crash report detection. Overall, our findings highlight the untapped potential of LSH in the
crash-bucketing domain. Table 6.4 provides the positioning of our contribution according to
our taxonomy.
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Chapter 7

Conclusion

Back in 2020, the journey of this thesis began with a comprehensive evaluation of the current
maintenance landscape at Infologic. This involved examining existing routines, maintenance
protocols, incident management processes from reporting to mitigation, and the engagement
of teams in taking responsibility for these incidents. The objective was to identify areas and
opportunities for improvement, with a focus on automating processes that can be better man-
aged through automated actions, while also leveraging human expertise to ensure efficiency,
reliability, usability, and trust within the maintenance team. This thesis was motivated by a
real industrial context, presenting concrete problems and studying existing solutions in both
academia and industry, relying on software engineering, machine learning, and community
practices. The aim was to bring innovative solutions that not only benefited the specific use
case but also addressed identified gaps in the current state of the art.

Our objective was to establish a data-driven approach to effectively and efficiently manage
incidents while optimizing available resources. This objective aligns well with the concept of
AIOps, which emerged as a defined policy in 2017, and generalize them to common cases.
However, this approach is not as straightforward, especially considering the challenges faced
in this thesis. Designing a performant model for specific cases does not guarantee its utility
across various scenarios in the current or future state. Additionally, findings from machine
learning models do not necessarily apply to software analytics domains like AIOps due to
factors such as data quality and the inherent complexity of software systems.

The first lesson learned was that designing, implementing, and deploying machine learning
models in real-world software systems scenarios is not trivial. To transfer knowledge from AI
models to the AIOps domain, a set of requirements needed to be investigated. Furthermore,
to address our problems related to AIOps and pioneer research in this area, we encountered a
diverse range of contributions from various specialized disciplines. For example, domains like
software defect prediction, software aging, and anomaly detection methods provide indepen-
dent taxonomies and different ways to handle data. They may focus on single or multiple use
cases or address specific maintenance layers (e.g., functional, network, or hardware). This
diversity makes it challenging to extend their work to cover other topics.

In fact, five main issues related to existing work in our studied domain can be identified.
Firstly, the field of AIOps lacks unified terminology due to its novelty and contributions from
various specialized disciplines. Additionally, the requirements for transferring knowledge from
data-driven approaches to AIOps models are not well-defined or suited to real-world scenar-
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ios. Secondly, obtaining high-quality labeled data is a challenge, making the construction
of accurate AIOps solutions complex. This leads us to the third limitation, where existing
methods primarily focus on developing predictive models for anomaly detection and failure
prediction, overlooking the challenges posed by data quality and complexity. Descriptive
models, which historically have been effective in dealing with these challenges by employing
data mining techniques to extract informative and exceptional patterns within a contextu-
alized topology, are less adopted. Fourthly, most predictive models rely on opaque models
that are difficult to interpret, raising ethical and trust concerns among practitioners. Finally,
in the maintenance context, the ultimate objective is to optimize and control maintenance
costs, with time being a crucial factor. However, existing work often overlooks scalability
and focuses to assess the accuracy of the model.

In this chapter, we concisely summarize the primary contributions made in this thesis to
address these challenges. Additionally, we present an outlook highlighting promising research
directions for the future in both academic and industrial domains.

7.1 Summary of Contributions

In Chapter 2, our objective was to establish a fundamental knowledge base for AIOps based
on our perspective, which we believe can serve as a valuable resource for future research. In
order to achieve this, we introduced a standardized terminology that encompasses all rele-
vant concepts, along with a comprehensive taxonomy that effectively organizes the extensive
knowledge surrounding AIOps. We offered a clear comparison of terms associated with in-
cident management in the realm of AIOps, as well as a detailed explanation of the various
data sources and evaluation metrics that should be utilized in this context. Additionally, we
conducted a thorough examination of previous research and related efforts within the field
of AIOps, and presented a list of essential requirements that should be taken into account
during the development of AIOps solutions.

In Chapter 3, we proposed the utilization of Subgroup Discovery as a solution for ad-
dressing the limitations associated with data complexity, exceptional cases, and regularities
within large datasets concerning a specific target problem, model implementations, and in-
terpretability. We harnessed the power of this framework to extract valuable and easily un-
derstandable patterns from extensive datasets that possess abnormal distributions compared
to the overall data. Furthermore, we took advantage of its efficiency in handling complex,
diverse, and extensive datasets, all while providing flexibility in user interaction and incorpo-
rating domain-specific knowledge and subjective criteria. Following the formal definition of
its fundamental components, such as pattern syntax, interestingness measure, target concept,
and mining algorithm, we proceeded to explore a practical and direct application of these
concepts in a real-world scenario. This application involved identifying SQL data patterns
that demonstrate correlations with various performance degradation issues.

In Chapter 4, we showcased the effectiveness of Subgroup Discovery in assisting explain-
able artificial intelligence (XAI) approaches, enabling them to offer concise and contextualized
explanations while maintaining a high level of accuracy comparable to black box models in
the context of AIOps. Our investigation focused on an intriguing use case involving the
assignment of incident reports to appropriate responsible teams. Typically, this task re-
lies on sophisticated NLP techniques that require explanations to establish trust among

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0072/these.pdf 
© [Y. Remil], [2023], INSA Lyon, tous droits réservés



7.2. Perspectives 155

practitioners. To address this challenge, we proposed an algorithm based on the Subgroup
Discovery framework. This algorithm identifies groups of incident data that share simi-
lar properties, providing a contextualized description for each group. We also developed a
human-interpretable interface that highlights the importance of each feature within each sub-
group for a given class. Notably, this use case presented a novel scenario in which the target
concept was defined as an explanation model rather than a single attribute. As a result, we
needed to introduce an appropriate interestingness measure and design effective yet scalable
algorithms to generate meaningful results.

In Chapter 5, we addressed the challenging problem of diagnosing the underlying causes
of Java out-of-memory incidents in an effective manner. The diagnosis of such incidents is
typically difficult due to the complexity involved in analyzing large histograms that provide
information about memory-occupying classes suspected of causing saturation. Moreover, the
hierarchical relationship between packages and classes within these histograms adds another
layer of intricacy. To tackle this specific problem, as well as related problems that involve hi-
erarchical data organization, we proposed the introduction of a novel and versatile Subgroup
Discovery framework with hierarchical target concepts. This framework enables us to define
a pattern syntax tailored to the problem and a subjective quality measure that effectively
identifies relevant, non-redundant, and noise-resistant subgroups. It also takes into account
the user’s prior knowledge regarding similar historical issues and interesting patterns. Ad-
ditionally, we proposed a search mining algorithm designed to efficiently identify subsets of
incidents. This approach was able to pinpoint the potential root causes behind memory issues
for many of our relevant use-cases at Infologic.

In Chapter 6, we tackled the specific issue of enhancing performance and scalability in inci-
dent management. One significant application of this approach is to speed up the detection of
duplicate incidents. Instead of clustering, we formulated the problem as an approximate near-
est neighbor search and suggested employing locality-sensitive hashing (LSH) combined with
a specific similarity measure to compare crash reports, particularly stack traces. Although
LSH is effective in handling large datasets and offers sublinear performance and theoretical
guarantees for accurate similarity search, it is challenging to derive hash functions that sat-
isfy the locality-sensitive property for advanced crash deduplication metrics. To overcome
this challenge, we propose a Siamese deep neural network architecture with an original loss
function that approximates the locality-sensitive property of any given similarity measures,
especially those designed for comparing similarity measures. We have designed this unique
loss function to preserve the locality-sensitive property while dealing with the optimization
of non-smooth objective functions caused by binarization.

7.2 Perspectives

Through the contributions made in this thesis, our primary objective was to address the open
research questions mentioned earlier and simultaneously tackle real-world problems driven by
our industrial requirements. We have accomplished several significant results, and some of
them are already being integrated into our production system at Infologic. However, it is
essential to acknowledge that there is always room for improvement, and we may encounter
minor or major limitations during the implementation, testing, or deployment phases of our
solutions. These limitations can arise in both applicative and theoretical aspects. In the
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following, we will outline our perspectives on enhancing the robustness of our solutions and
expanding their applicability to cover a broader range of use cases.

Firstly, as outlined in the introduction, we have proposed a comprehensive revision of
the AIOps domain. This includes reevaluating its categorization, identifying the necessary
requirements, exploring techniques for data cleaning and processing, and addressing the chal-
lenges associated with deployment, training, and updating effective data-driven approaches.
This endeavor has allowed us to shift our maintenance efforts away from traditional routines,
which have proven to be less effective in handling and qualifying in a timely manner some
incidents and diagnosing issues. These routines also lack the high standards required to op-
timize the cost of maintenance actions. Consequently, we have initiated a new project aimed
at automating the entire maintenance process. This project involves a redesign of the main-
tenance workflow at Infologic. To achieve this, we have developed our proposed automated
iterative workflow that incorporates both human knowledge and insights gained from past
experiences. This workflow guides maintenance tickets through clear phases, each utilizing
the best approaches to address incidents based on their context, as proposed in our taxon-
omy. We also ensure that the nature of the data is considered and that the evaluation process
is fair, while ensuring compliance with the AIOps requirements outlined in Chapter 2. In
summary, our efforts focus on developing an end-to-end incident management procedure that
covers all types of incidents. We are actively deploying its components to gradually replace
traditional routines where applicable.

Our proposed methods, as described in this thesis, are currently in the process of being
deployed. We are particularly concentrating on the incident triage model, where we aim to
incorporate explanations of the predictions made for service teams. This additional step en-
hances trust and encourages practitioners to utilize this model. Furthermore, we are working
on leveraging the Subgroup Discovery framework to analyze SQL queries. Hereafter, we to
provide some theoretical and practical perspectives regarding the application of our proposed
methods.

Regarding our contribution, SD4-SQL, there are certain limitations in its current imple-
mentation and deployment. Presently, it only supports SELECT queries and restricts users to
choosing only one property at a time. To address these limitations, we have planned sev-
eral improvements. Firstly, we intend to extend our SQL parsing query to support a broader
range of query types, including INSERT, UPDATE, DELETE, and CREATE queries. This expansion
will follow the same parsing scheme for consistency and improved functionality. Furthermore,
we believe that enhancing the pattern syntax to accommodate tree structures, such as the
JSON format, instead of the conventional tabular format, would be advantageous. This mod-
ification aims to prevent sparsity issues in data and significantly reduce the complexity of
the mining algorithm when scanning the set of potential interesting patterns. Additionally,
integrating new query types also necessitates considering new measures of interestingness.
Different query types exhibit diverse behaviors, and as a result, the current measures may
not effectively indicate the target problem. Therefore, we are committed to developing new
interestingness measures that align with the characteristics of each query type. Moreover,
the current framework solely incorporates objective measures. To provide a more comprehen-
sive evaluation, we are determined to introduce subjective criteria iteratively. This addition
will allow us to ignore patterns that may not be surprising to database administrators, or
patterns that are expected based on their expertise and perspective. Lastly, we recognize
the importance of enabling users to consider multiple target attributes simultaneously. To
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enhance user experience, we are planning to incorporate a feature that allows users to select
and analyze multiple attributes at once, according to their preferences and requirements.

The third contribution can benefit from several improvements, particularly in the in-
cident assignment model and the explanation mechanism. Firstly, instead of relying on
LSTM-attention units, we can leverage newer NLP models such as transformers. This shift is
motivated by the presence of technical language in our incident reports, specific to our indus-
trial settings. Additionally, the use of French language makes it challenging to apply existing
stemming and lemmatization models to our use cases, often requiring manual preprocessing
efforts before feeding the data into a prediction model. To address this, we plan to train
a language model capable of learning the main technical language used by our customers
and internal staff at Infologic. This approach will provide dynamic embeddings of incidents
with respect to their context, effectively capturing the semantic aspects of the incidents,
which are often similar as discussed in the introduction. Moreover, the incident triage model
can be enhanced by incorporating not only human textual data, topology, and performance
metrics, but also semi-structured data such as stack traces and image captures frequently
submitted in incident reports. Extracting useful information from stack traces may require
parsing techniques, while image captures often require optical character recognition (OCR)
to extract relevant details. In terms of the explanation mechanism, one interesting direction
is to extend our approach to compare the behaviors of different models and uncover what
each model captures in various situations. This could involve using more sophisticated ex-
plainers such as SHAP, expanding beyond relying solely on the LIME methodology or local
white box models. Another improvement could involve incorporating a constraint based on
the distribution of classes per subgroup, especially in the case of multi-label classification.
For instance, one possible approach is to prioritize grouping together incidents that are more
likely to belong to a single class. This would result in analyzing fewer explanations within
the subgroup model, necessitating a revision of the pattern syntax.

Regarding our SCA-Miner algorithm, we have already observed its ability to uncover
surprising and actionable patterns that have successfully identified numerous Java memory
incidents in the past. However, we acknowledge that its runtime is not optimal. This can be
attributed to the requirement for mining algorithms that need to iterate through a large set
of potentially interesting subgroup candidates and retrieve the best contrastive antichain for
each subgroup. In reality, this runtime issue is not overly critical because our framework is
not designed for daily use. Instead, it operates on a batch of Java memory incidents to gen-
erate a report on possible root causes. As a result, it can be sufficiently executed to analyze
heap dumps collected over a one-week period. The entire process takes only a few minutes to
produce five interesting patterns. Nonetheless, if we aim to improve this aspect, alternative
approaches like MCTS and genetic algorithms can be explored. Furthermore, we must pay
particular attention to the temporal dimension when maintaining prior knowledge. Addi-
tionally, incorporating time-related pattern constraints would be beneficial for characterizing
continuous increases. It’s worth noting that this framework is not limited to analyzing Java
memory issues. It can also be applied to analyze execution traces within the source code. The
data structure in this case is hierarchical, with the root representing the requested service.
The hierarchy then describes the workflow the program follows to produce the final result.
Each node represents a basic instruction or an internal node such as a function, module, or
loop block. Each node is associated with the time it takes to complete its execution, providing
valuable insights into the program’s behavior
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Our recent contribution, DeepLSH, introduces a novel hashing scheme that effectively pre-
serves the locality-sensitive hashing property for any given similarity measure. Experimental
evaluations have demonstrated the reliability of this framework, particularly in the context of
incident deduplication detection. Specifically, we have extensively evaluated it on a large his-
torical dataset of crash reports, utilizing stack trace-based similarity measures as our ground
truth. This was necessary due to the limited availability of labeled information for each
measure when applied to vast datasets of stack traces. To determine the most suitable simi-
larity measure for our specific use case, one potential solution is to implement an AB testing
mechanism. This would help identify the measure that best aligns with our requirements.
Additionally, we could propose our own similarity measure or utilize a weighted combination
of the most favored similarity measures as determined by our developers. Deploying such a
model poses certain challenges, particularly in terms of updating the model with newly re-
ported stack traces. We need to establish mechanisms to ensure the model remains up-to-date
and reflects the latest information accurately. Furthermore, we aim to extend the capabilities
of this framework beyond crash reports to include near-duplicate incident reports. This in-
volves applying the hashing technique to textual data along with other relevant information
contained in incident reports. In our preliminary tests, we employed a pre-trained fastText
model to embed incident reports and used the word mover’s distance [128] to compare the
resulting vectors. This approach has shown promising results, indicating the potential of our
model in retrieving near-duplicate incident reports.
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197. José Maŕıa Luna, José Raúl Romero, Cristóbal Romero, and Sebastián Ventura. Dis-
covering subgroups by means of genetic programming. In Krzysztof Krawiec, Alberto
Moraglio, Ting Hu, A. Sima Etaner-Uyar, and Bin Hu, editors, Genetic Programming
- 16th European Conference, EuroGP 2013, Vienna, Austria, April 3-5, 2013. Proceed-
ings, volume 7831 of Lecture Notes in Computer Science, pages 121–132. Springer, 2013.
79

198. Scott M. Lundberg and Su-In Lee. A unified approach to interpreting model predictions.
In (NIPS 2017, pages 4765–4774, 2017. 19, 94, 111

199. Chen Luo, Jian-Guang Lou, Qingwei Lin, Qiang Fu, Rui Ding, Dongmei Zhang, and
Zhe Wang. Correlating events with time series for incident diagnosis. In Proceedings
of the 20th ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 1583–1592, 2014. 13, 64

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0072/these.pdf 
© [Y. Remil], [2023], INSA Lyon, tous droits réservés



176 Bibliography

200. Xiao Luo, Chong Chen, Huasong Zhong, Hao Zhang, Minghua Deng, Jianqiang Huang,
and Xiansheng Hua. A survey on deep hashing methods. CoRR, abs/2003.03369, 2020.
134

201. Yingzhe Lyu, Heng Li, Mohammed Sayagh, Zhen Ming Jiang, and Ahmed E Hassan.
An empirical study of the impact of data splitting decisions on the performance of aiops
solutions. ACM Transactions on Software Engineering and Methodology (TOSEM), 30
(4):1–38, 2021. 38

202. Yingzhe Lyu, Gopi Krishnan Rajbahadur, Dayi Lin, Boyuan Chen, and Zhen Ming
Jiang. Towards a consistent interpretation of aiops models. ACM Transactions on
Software Engineering and Methodology (TOSEM), 31(1):1–38, 2021. 2, 16, 19, 36, 37

203. Meng Ma and Zhu Mao. Deep-convolution-based lstm network for remaining useful life
prediction. IEEE Transactions on Industrial Informatics, 17(3):1658–1667, 2020. 58

204. Adetokunbo Makanju, A Nur Zincir-Heywood, and Evangelos E Milios. A lightweight
algorithm for message type extraction in system application logs. IEEE Transactions
on Knowledge and Data Engineering, 24(11):1921–1936, 2011. 43

205. Vitor Hirota Makiyama, Jordan Raddick, and Rafael DC Santos. Text mining applied
to SQL queries: A case study for the sdss skyserver. In SIMBig, pages 66–72, 2015. 84,
85

206. Romain Mathonat, Diana Nurbakova, Jean-François Boulicaut, and Mehdi Kaytoue.
Seqscout: Using a bandit model to discover interesting subgroups in labeled sequences.
In 2019 IEEE International Conference on Data Science and Advanced Analytics, DSAA
2019, Washington, DC, USA, October 5-8, 2019, pages 81–90. IEEE, 2019. 18, 74

207. Evan K Maxwell, Godmar Back, and Naren Ramakrishnan. Diagnosing memory leaks
using graph mining on heap dumps. In Proceedings of the 16th ACM SIGKDD in-
ternational conference on Knowledge discovery and data mining, pages 115–124, 2010.
48

208. Thomas J McCabe. A complexity measure. IEEE Transactions on software Engineering,
(4):308–320, 1976. 41

209. Weibin Meng, Ying Liu, Yichen Zhu, Shenglin Zhang, Dan Pei, Yuqing Liu, Yihao
Chen, Ruizhi Zhang, Shimin Tao, Pei Sun, et al. Loganomaly: Unsupervised detection
of sequential and quantitative anomalies in unstructured logs. In IJCAI, volume 19,
pages 4739–4745, 2019. 43, 56

210. Tim Menzies. The five laws of se for ai. IEEE Software, 37(1):81–85, 2019. 14

211. Tim Menzies, Jeremy Greenwald, and Art Frank. Data mining static code attributes to
learn defect predictors. IEEE transactions on software engineering, 33(1):2–13, 2006.
56

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0072/these.pdf 
© [Y. Remil], [2023], INSA Lyon, tous droits réservés



Bibliography 177

212. Salma Messaoudi, Annibale Panichella, Domenico Bianculli, Lionel Briand, and Rai-
mondas Sasnauskas. A search-based approach for accurate identification of log message
formats. In Proceedings of the 26th Conference on Program Comprehension, pages 167–
177, 2018. 43

213. Justin Meza, Qiang Wu, Sanjev Kumar, and Onur Mutlu. A large-scale study of flash
memory failures in the field. ACM SIGMETRICS Performance Evaluation Review, 43
(1):177–190, 2015. 57

214. Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of
word representations in vector space. arXiv preprint arXiv:1301.3781, 2013. 46

215. Seyed Ali Mirheidari, Sajjad Arshad, and Rasool Jalili. Alert correlation algorithms: A
survey and taxonomy. In Cyberspace Safety and Security: 5th International Symposium,
CSS 2013, Zhangjiajie, China, November 13-15, 2013, Proceedings 5, pages 183–197.
Springer, 2013. 47, 53, 54

216. Natwar Modani, Rajeev Gupta, Guy M. Lohman, Tanveer Fathima Syeda-Mahmood,
and Laurent Mignet. Automatically identifying known software problems. In Proceedings
of the 23rd International Conference on Data Engineering Workshops, pages 433–441.
IEEE Computer Society, 2007. 61, 144

217. Christoph Molnar. Interpretable Machine Learning. 2019. 16, 100, 104

218. Katharina Morik, Jean-François Boulicaut, and Arno Siebes, editors. Local Pattern De-
tection, International Seminar, Dagstuhl Castle, Germany, April 12-16, 2004, Revised
Selected Papers, volume 3539 of Lecture Notes in Computer Science, 2005. Springer. 69

219. Akira Moroo, Akiko Aizawa, and Takayuki Hamamoto. Reranking-based crash report
deduplication. In Xudong He, editor, The 29th International Conference on Software
Engineering and Knowledge Engineering, pages 507–510. KSI Research Inc. and Knowl-
edge Systems Institute Graduate School, 2017. 61, 134, 144

220. Raimund Moser, Witold Pedrycz, and Giancarlo Succi. A comparative analysis of the
efficiency of change metrics and static code attributes for defect prediction. In Proceed-
ings of the 30th international conference on Software engineering, pages 181–190, 2008.
56

221. Mozilla. Moz SQL parser. 84

222. Mozilla. Mozilla crash reporter, 2012. 134

223. Nachiappan Nagappan, Thomas Ball, and Andreas Zeller. Mining metrics to predict
component failures. In Proceedings of the 28th international conference on Software
engineering, pages 452–461, 2006. 56

224. Jaechang Nam, Sinno Jialin Pan, and Sunghun Kim. Transfer defect learning. In 2013
35th international conference on software engineering (ICSE), pages 382–391. IEEE,
2013. 56

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0072/these.pdf 
© [Y. Remil], [2023], INSA Lyon, tous droits réservés



178 Bibliography

225. Animesh Nandi, Atri Mandal, Shubham Atreja, Gargi B Dasgupta, and Subhrajit Bhat-
tacharya. Anomaly detection using program control flow graph mining from execution
logs. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining, pages 215–224, 2016. 13, 29, 43

226. Roberto Natella, Domenico Cotroneo, Joao A Duraes, and Henrique S Madeira. On
fault representativeness of software fault injection. IEEE Transactions on Software
Engineering, 39(1):80–96, 2012. 34

227. Sasho Nedelkoski, Jasmin Bogatinovski, Ajay Kumar Mandapati, Soeren Becker, Jorge
Cardoso, and Odej Kao. Multi-source distributed system data for ai-powered analytics.
In Service-Oriented and Cloud Computing: 8th IFIP WG 2.14 European Conference,
ESOCC 2020, Heraklion, Crete, Greece, September 28–30, 2020, Proceedings 8, pages
161–176. Springer, 2020. 38

228. Saul B Needleman and Christian D Wunsch. A general method applicable to the search
for similarities in the amino acid sequence of two proteins. Journal of molecular biology,
48(3):443–453, 1970. 61, 144

229. S Nessa, M Abedin, W Eric Wong, L Khan, and Y Qi. Fault localization using n-gram
analysis. In Proceedings of the 3rd International Conference on Wireless Algorithms,
Systems, and Applications, pages 548–559, 2009. 41

230. Hiep Nguyen, Zhiming Shen, Yongmin Tan, and Xiaohui Gu. Fchain: Toward black-box
online fault localization for cloud systems. In 2013 IEEE 33rd International Conference
on Distributed Computing Systems, pages 21–30. IEEE, 2013. 62

231. Suphakit Niwattanakul, Jatsada Singthongchai, Ekkachai Naenudorn, and Supachanun
Wanapu. Using of jaccard coefficient for keywords similarity. In Proceedings of the
international multiconference of engineers and computer scientists, volume 1, pages
380–384, 2013. 80

232. Paolo Notaro, Jorge Cardoso, and Michael Gerndt. A survey of aiops methods for failure
management. ACM Transactions on Intelligent Systems and Technology (TIST), 12(6):
1–45, 2021. 2, 13, 14, 16, 31, 33, 36, 54

233. Petra Kralj Novak, Nada Lavrac, and Geoffrey I. Webb. Supervised descriptive rule
discovery: A unifying survey of contrast set, emerging pattern and subgroup mining. J.
Mach. Learn. Res., 10:377–403, 2009. 17, 74

234. Oracle help center. Active session history. 85
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