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Abstract 
The intense competition between high-level athletes in track cycling requires research in order to make 

optimisation possible. In this context, the energetic efficiency of roller chain drives is studied to 

improve understanding of loss sources and propose paths of optimisation. 

Losses in chain drives are known to be mostly caused by the meshing/un-meshing process of chain 

links on the sprockets. However, a preliminary study shows that losses caused by the motion of rollers 

along their associated tooth profile have a significant influence. The aim of this work is therefore to 

explore this phenomenon. 

First, an original 2D quasi static model of a two-sprocket drive is presented. The global drive kinematics 

(including transmission error) is determined using specific sub-models for the tight and slack strands. 

A local sprocket sub-model is then introduced to calculate link tension, roller/sprocket contact force 

and roller location. This model can be used for different tooth profile geometries. 

Following a specific validation process, the quasi-static model is used to explore the influence of tooth 

profile geometry on the interdependent evolutions of loads and roller location. Significant differences 

are reported. Its application to typical a track cycling drive shows that the specific constraints involved 

can only be overcome by dedicated tooth profiles. 

A second model is then presented. Based on the results provided by the quasi-static model, it 

calculates drive efficiency, considering the losses caused by meshing and roller motion. Comparisons 

with experimental measurements are carried out to validate the approach proposed. 

The efficiency model is then used to conduct a parametric study on track cycling roller chain drives. 

The influences of tooth profile geometry, applied torque, tension setting, number of sprocket teeth, 

chain pitch and friction coefficient are assessed and interactions between parameters identified. Based 

on the results, guidelines for future optimisations are given. 

Keywords: Mechanical transmission, roller chain, kinematics, tension model, tooth profile geometry, 

roller motion, power losses, efficiency 
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Résumé 
L’importante compétition entre cyclistes sur piste de très haut niveau pousse les travaux de recherches 

à explorer toutes les possibilités d’optimisations. Dans ce contexte, le rendement énergétique des 

transmissions par chaine à rouleaux est étudié dans le but d’améliorer la compréhension des 

puissances dissipées et d’en déduire des possibilités d’optimisations. 

Dans les transmissions par chaine, les pertes sont majoritairement causées par 

l’engrènement/dégrènement des maillons sur les pignons. Toutefois, une étude préliminaire a montré 

que les pertes dues au mouvement des rouleaux le long de leur profil de dent ont une influence 

significative. Le but de ce travail est donc d’explorer ce phénomène. 

Un modèle 2D quasi-statique est tout d’abord présenté. La cinématique générale (comprenant les 

erreurs de transmission) est déterminée en utilisant des sous-modèles spécifiques aux brins tendu et 

mou. Un modèle local de pignon est ensuite introduit afin de calculer les tensions dans les maillons 

ainsi que les forces de contact entre rouleaux et pignons. Le modèle peut être utilisé avec différentes 

géométries de denture. 

Après un processus de validation, le modèle quasi-statique est utilisé pour étudier l’influence du profil 

de denture sur les évolutions corrélées des charges et des positions de rouleaux. Des différences 

significatives sont observées. L’application du modèle à une transmission de cyclisme sur piste montre 

que des géométries de denture dédiées sont indispensables pour faire face aux contraintes spécifiques 

induites par cette utilisation. 

Un second modèle est ensuite proposé. En se basant sur les résultats du modèle quasi-statique, il 

calcule le rendement d’une transmission en prenant en compte les pertes causées par l’engrènement 

ainsi que les mouvements de rouleaux. Des comparaisons avec des résultats expérimentaux sont 

menées pour valider l’approche proposée. 

Le modèle de rendement est ensuite utilisé pour mener une étude paramétrique sur des transmissions 

par chaines de cyclisme sur piste. L’influence de plusieurs paramètres est explorée : géométrie de 

denture, couple appliqué, réglage de la tension, nombres de dent des pignons, pas de la chaine et 

coefficient de frottement. Les interactions entre paramètres sont identifiées. En se basant sur les 

résultats, des lignes directrices pour de futures optimisations sont proposées. 

Mots clefs : Transmission mécanique, chaine à rouleaux, cinématique, modèle de tension, géométrie 

de denture, mouvement de rouleau, puissances dissipées, rendement 
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Symbol Units Description 

 

𝑎 𝑚 Transition of friction correction parameter (tanh width) A 

𝐶1,2 [-] and 𝑚 Chainette fitting contants C_1
,2 

𝐶𝑗 𝑁.𝑚 Torque associated with sprocket 𝑗 C_j 

𝑑 𝑚 Absolute roller displacement d 

𝑑̅ [-] Proportional roller displacement d_b
ar 

𝐷𝑥,𝑦 𝑚 Horizontal and vertical distance between the slack strand tips D_x
,y 

𝛥𝑋 𝑚 Horizontal distance between the axes of the driving and driver sprockets Delt
aX 

𝛥𝑌 𝑚 Vertical distance between the axes of the driving and driver sprockets Delt
aY 

𝐸0,𝑖,𝑖𝑗,𝑖𝑖 [-] DOE factor effect E 

𝐹 𝑁 Generic letter for forces F 

𝑓 [-] Parameter for tight strand length (from Fuglede & Thomsen [1]) f 

𝑔 𝑘𝑔. 𝑠−2 Acceleration of gravity G 

𝐾,𝐾′ 𝑟𝑎𝑑 / 𝑑𝑒𝑔 Constants for calculation of 𝜙𝑡𝑝 (specific to each tooth profile family) 
K, 

K_p
rim

e 

𝐿 𝑚 Distance between the axes of the driving and driver sprockets L 

𝑀𝑗 [-] Tangency points for the tight strand common tangent M_j 

𝑚𝑙𝑖𝑛𝑘 𝑘𝑔 Chain link mass M_l
ink 

𝑛𝑗,𝑠,𝑡,𝑡𝑜𝑡 [-] Number of links N 

𝑁𝑗  [-] Tangency points for the slack strand common tangent N_j 

𝑃𝑙𝑜𝑠𝑠,𝑚𝑒𝑠ℎ,𝑟𝑜𝑙𝑙𝑒𝑟 𝑊 Dissipated powers P 

𝑝 𝑚 Chain pitch p 

𝑃𝑖,𝑘 𝑁 Roller sprocket contact force P_i,
k 

𝑟 𝑚 Chainette parameter r 

𝑅/𝐷𝑏𝑢𝑠ℎ 𝑚 Chain bush radius/diameter R/D
_bu
sh 

𝑅/𝐷𝑝𝑖𝑛 𝑚 Chain pin radius/diameter R/D
_pi
n 

𝑅/𝐷𝑟𝑜𝑙𝑙𝑒𝑟 𝑚 Chain roller radius/diameter R/D
_rol
ler 

𝑅1,2,𝑒𝑡𝑐. 𝑚 Radius of tooth profile circle arc portion R_1
,2,e
tc. 

𝑅𝑐𝑢𝑟𝑣𝑒 𝑚 Local tooth profile curvature radius R_c
urv
e 

𝑅𝑗, 𝑅𝑝𝑖𝑡𝑐ℎ 𝑚 Pitch radius of sprocket 𝑗 R_j 

𝑅𝑡𝑏 𝑚 Tooth bottom radius R_t
b 

𝑅𝑡𝑖𝑝 𝑚 Tip radius for a given tooth profile R_ti
p 

𝑠𝑙𝑎𝑐𝑘 [-] Mid-span movement as a fraction of 𝐿 slac
k 

𝑆𝑆 [-] DOE sum of square SS 
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𝑇𝑖,𝑗,𝑘,𝑠,𝑡 𝑁 Link tension force T_i,
k 

𝑇𝑠/𝑇𝑡 [-] Tension ratio T_s
/T_

t 

(𝑇𝑠 𝑇𝑡⁄ )𝑙𝑖𝑚,𝑡𝑝 [-] Limit ratio in good working conditions (excluding tooth climbing regime) 
T_s
/T_
t_li
m,t
p 

𝑉 [-] DOE variance V 

𝑊 𝐽 Generic letter for mechanical work W 

𝑥𝑖,𝑗, 𝑋𝑖,𝑗  [-] DOE coded units x,X 

𝑥𝑡 𝑚 Length of the tight chain strand X_t 

𝑍 [-] Number of teeth Z 

Greek letters 

𝛼∗ 𝑟𝑎𝑑 Angles between two consecutive links 
Alp
ha^
* 

𝛼𝑗 𝑟𝑎𝑑 Angular pitch of sprocket 𝑗 
Alp
ha_
j 

𝛼𝑠,𝑡,𝑗 𝑟𝑎𝑑 
Angle between a chain strand and the closest link 
with both rollers contacting sprocket 𝑗 

Alp
ha_
s,t,j 

𝛽 𝑟𝑎𝑑 
Tilt angle of the pitch circles common tangent relatively to 
the centre direction 

Bet
a 

𝛽𝑡 𝑟𝑎𝑑 Tilt angle of the tight chain strand relatively to the centre direction 
Bet
a_t 

𝛿 𝑟𝑎𝑑 Friction correction angle 
Delt
a 

|𝛿(∞)| 𝑟𝑎𝑑 Correction angle outside  
Delt
a_i
nf 

𝜂 [-] Chain drive efficiency 
eta 

𝛾 [-] Non-dimensional roller location coordinate 
Ga
mm
a 

𝛾𝑡𝑝
𝐴,𝐵 [-] Non-dimensional roller location coordinate at transition points 𝐴 and 𝐵 

Ga
mm
a_t
p^(
A,B) 

𝜅 𝑟𝑎𝑑 Angle between the direction of the preceding link a the local 𝑥⃗ axis 
Kap
pa 

𝜆𝑖 𝑟𝑎𝑑 Tilt angle for a slack strand link relatively to the horizontal direction 
Lam
bda
_i 

𝜇̅ [-] Global friction coefficient 
Mu
_ba
r 

𝜇𝑏𝑟 [-] Friction coefficient for the bush/roller contact 
Mu
_br 

𝜇𝛿 [-] Friction coefficient associated with the friction correction angle 𝛿 
Mu
_de
lta 

𝜇𝑝𝑏 [-] Friction coefficient for the pin/bush contact 
Mu
_pb 

𝜇𝑟𝑝 [-] Friction coefficient for the roller/profile contact 
Mu
_rp 

𝜈 𝑟𝑎𝑑 Angle between the direction of the following link a the local 𝑥⃗ axis 
Nu 

𝜙 𝑟𝑎𝑑 Roller contact angle 
Phi 

𝜓𝑠,𝑡,𝑗 𝑟𝑎𝑑 
Angle between a strand tip on sprocket 𝑗 and the point of 
tangential contact 

Psi_
s,t,j 

𝜓𝑡,Ⅰ,𝑖𝑛𝑖𝑡 𝑟𝑎𝑑 Initial value for angle 𝜓𝑡,Ⅰ 
Psi_
t,1,i
nit 

𝑠𝑐 𝑚 Curvilinear abscissa of the roller/profile contact point along its trajectory 
S_c 

𝑠𝑟  𝑚 Curvilinear abscissa of the roller centre along its trajectory 
S_r 

𝜏 𝑟𝑎𝑑 Tilt angle of the drive centre direction relatively to the horizontal 
Tau 
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𝜃 𝑟𝑎𝑑 Generic letter for angles 
The
ta 

𝜁 𝑟𝑎𝑑 Driving sprocket rotation angle 
Zet
a 

Indices 

 Description  

𝑖 Rollers and links spatial numbering  

𝑗 
Sprocket numbering. 
Ⅰ for the driving sprocket/chainring, Ⅱ for the driven sprocket/rear cog. 

 

𝑘 Drive sub-positions “per component”  

𝑚 Explored sub-positions within a drive period. Varies between 1 and 𝑛𝑏𝑝𝑜𝑠.  

Subscripts 

𝐴, 𝐵 Relative to kinematic cases 𝐴 and 𝐵 (used in CDEM) 
A,B 

𝑏𝑟 Relative to Bush/Roller chain interface 
Br 

𝑓𝑜𝑙/𝑝𝑟𝑒𝑣 
Designate following and previous link with respect to a given chain articulation 
(used in the CDEM) 

Fol/
pre
v 

𝑖𝑛𝑖𝑡 Use for variables related to the starting position of the kinematic calculation (𝑚 = 1) 
Init 

𝑝𝑏 Relative to Pin/Bush chain interface 
Pb 

𝑟𝑝 Relative to Roller/Profile chain interface 
Rp 

𝑠 Attribute of the slack chain strand 
S 

𝑡 Attribute of the tight chain strand 
T 

𝑡𝑝 Attribute of the roller location transition points 
Tp 

Superscripts 

𝐴, 𝐵 Used to denote transition points 𝐴 and 𝐵  

Abbreviations 

QSCDM: Quasi-Static Chain Drive Model, see Chapter II. 

CDEM: Chain Drive Efficiency Model, see Chapter III. 

GPLD: Geometric Progressive Load Distribution, see Naji & Marshek [2], see Chapter I. 

𝑡𝑝: transition point 

𝐶𝑃: Cycling Profiles, see Chapter IV. 

𝐿𝐶: Loading Condition, see Chapter V. 

EEU: Everything Else Unchanged, see Chapter VI. 

RCD: Real Chain Dimension, see Chapter VI. 

DOE: Design Of Experiments, see Chapter VI. 

ANOVA: ANalysis Of VAriance, see Chapter VI. 
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General introduction 
Following the awarding of the 2024 Olympic Games to Paris, French researchers have mobilised to play 

a role in this national event. Grandes écoles, universities and research centres gathered in the 

collective Sciences2024 research program1. The aim of the project is to provide support to the French 

athletes in their quest for Olympic medals. 

Part of the Sciences2024 program, the THPCA 20242 (high performance in cycling and rowing) research 

project is supported by the French National Research Agency (ANR), see Figure 0-1. This project groups 

the French Cycling Federation (FFC) and the French Rowing Federation (FFA) with the aim of aiding the 

performances of athletes of both disciplines. This project is transdisciplinary as researchers from 

various fields (engineering, mechanics, physiology, computer science, etc.) each play a role. In parallel 

with this project, INSA Lyon founded this thesis whose objective is to develop a numerical model 

dedicated to the study of track cycling roller chain drive efficiency. 

  
(a) (b) 

Figure 0-1: (a) Sciences2024 (b) THPCA 2024 logo  

In this thesis, Chapter I gives an overview of the previous works regarding the modelling of power 

losses in roller chain drives. The evolution of quasi-static tension models used to calculate loads in an 

operating chain (i.e., link tension and roller/profile contact force) is detailed. The evolution of the 

connection between loads and roller location (along its associated tooth profile) is presented. Finally 

previous works regarding chain drive efficiency (mostly based on the quasi-static models mentioned) 

are introduced alongside experimental measurements. 

In Chapter II, an original Quasi-Static Chain Drive Model (QSCDM) is presented. This model is used to 

calculate loads and roller location simultaneously. Any tooth profile geometry can be tested. The effect 

of friction introducing differences between driving and driven sprockets is considered. 

Chapter III presents elements of validation of the QSCDM. Comparisons to both experimental 

measurements and previous numerical studies are carried out with satisfactory results. 

In Chapter IV, the QSCDM is used to study the influence of the tooth profile geometry for industrial 

and track cycling drives. Analysis methods are proposed to facilitate characterising the influence of 

tooth profile geometry on chain drive behaviour, particularly on the evolution of loads and roller 

location. It is shown that the specific constraints of track cycling drives require dedicated tooth profiles 

to ensure satisfactory operations. 

 
1 https://sciences2024.polytechnique.fr/projet 
2 THPCA: Très Haute Performance en Cyclisme et Aviron. Grant number: 20-STHP-0006, 

https://anr.fr/ProjetIA-20-STHP-0006 
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In Chapter V, a Chain Drive Efficiency Model (CDEM) is introduced. Using the results provided by the 

QSCDM detailed in Chapter II, this model calculates the drive efficiency. Validation elements are 

presented based on measurements from both the literature and from a dedicated test rig specifically 

deigned to study track cycling drive efficiency. 

Finally, in Chapter VI, using the CDEM, a parametric study of track cycling drive efficiency is carried out. 

The influence of tooth profile geometry is tested. The effects of various other parameters such as chain 

pitch and external torque are explored. The most influential parameters are identified using a Design 

Of Experiments (DOE) analysis. Based on the results obtained, guidelines for possible optimisation are 

proposed.
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I.1 General context 

I.1.1 Roller chain 

A chain is an arrangement of links able to rotate relatively to each other. It is used with sprockets to 

transmit power between two or more shafts, for instance from a motor to a receptor. Power 

transmission can also be carried out simultaneously with the reduction/increase of rotational speed 

using sprockets with different numbers of teeth. The first sketches of modern chains can be traced 

back to Leonardo da Vinci (see Figure I-1.a). 

 

 

(a) (b) 
Figure I-1: (a) Sketches of chains by Leonardo Da Vinci, cropped and modified from [3] (b) Comparison of 
industrial and bicycle chains [4] 

Chains remained ideas and drawings until Hans Renold invented the bush roller chain in the late 19th 

century [5]. The addition of bushes and rollers (see Figure I-1.b) reduces wear and leads to a significant 

improvement of chain life, allowing the mechanism to be widely used. Indeed, the free rotation around 

the bush distributes the contact stress over the entire roller circumference therefore increasing fatigue 

life compared with a situation where the contact point is always at the same location. A 

nomenclature of a modern roller chain is presented in Figure I-2. 

  
(a) (b) 

Figure I-2: Nomenclature of a modern roller chain: (a) part names, (b) sub-assemblies 

Pins

Rollers
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Chains are composed of an alternance of inner and outer links (see Figure I-2.b). The outer links are 

constituted by pins in interference fit with outer plates. The inner links are formed by bushes, in 

interference fit with inner plates. Articulations between consecutive links are possible as a pin can 

rotate in its associated bush. The rollers are located around the bushes. Each roller rotates freely 

around its associated bush and makes contact with a sprocket. The pin, bush and roller are cylindrical 

parts whose radii are denoted 𝑅𝑝𝑖𝑛, 𝑅𝑏𝑢𝑠ℎ and 𝑅𝑟𝑜𝑙𝑙𝑒𝑟, respectively (see Figure I-2.a). The distance 

between the axis of two consecutive bushes is called the chain pitch. The pitch is also the distance 

between the axis of two consecutive pins for new chains (the pin link pitch increases as the chain wears 

[6] due to the removal of material). The inner and outer links can be designated indifferently as bush 

and pin link, respectively.  

Nowadays, roller chains are widely used in various applications. They are for instance present in 

internal combustion engines (timing chains) [7], [8], lifting machines [9], escalators [10], etc. With 

various applications come different constraints. Rotational speeds can reach thousands of 𝑟𝑝𝑚 in 

internal combustion engines, while more than tens of thousands of newtons can be carried at slow 

rotational speeds in lifting applications [9]. 

To face all these challenges, numerous types of chains are proposed by manufacturers [11]. Among 

them, double pitch chains (see Figure I-3.a) allow weight reduction thanks to increased pitch. Cranked 

link chains (see Figure I-3.b) are formed by a single link type which eases potential length adjustments. 

Roller chains are also used in bicycle applications which constitute the core of this manuscript. 

 
 

(a) (b) 
Figure I-3: (a) Double pitch chain (b) Cranked link chain [12] 

I.1.2 Utilisation for cycling  

In bicycle applications, chains are used to transmit the power supplied by the cyclist (through the 

pedals) from the chainring to the rear wheel. This transmission is usually performed with rotational 

speed modification. Rotational speed is usually increased for a road bike to reach high velocity while it 

can be reduced in cross country cycling. Cycling chains use a pitch of 1 2′′⁄ = 12.7𝑚𝑚. 

For most applications, modern bikes use a derailleur system (see Figure I-4.a). This mechanism allows 

modifications of the rear wheel’s rotational speed, compared to that of the crankshaft, by changing 

the number of teeth of the chainring and rear cog engaged. The ratio between the number of teeth of 

the chainring and rear cog is called gear ratio (see §I.2.2). The use of bicycles for daily trips is expanding 

which obliges public transport to adapt [13]. New modes of bike use encourage manufacturers to 

constantly improve the derailleur system to enable easier gear shifting [14]–[17] and increasing 

reachable ratios [18], [19]. 
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Substantial work has been done on road bike drives to optimise their efficiency. Many websites of 

amateur cyclists discuss the best drive arrangement and lubrication [20], [21]. Some manufacturers 

have proposed innovations such as the oversized derailleur [22] using bigger sprockets. 

 
 

(a) (b) 
Figure I-4: Bicycle drives using (a) the modern derailleur system, adapted from [23] (b) the single speed 
drive (on old bicycle) [24] 

However, this manuscript focuses on track cycling applications. Track bicycles use single speed drives 

(see Figure I-4.a). Such drives do not use a derailleur, resulting in a fixed gear ratio that cannot be 

changed while riding the bike. Consequently, the rotational speed ratio between the crankset and the 

rear wheel is also fixed. Moreover, due to the absence of freewheel (contrary to most bicycles using a 

derailleur), the cyclist is required to pedal as long as the bike is moving. In the absence of a derailleur, 

chain tension adjustments are achieved by changing the centre distance between the chainring and 

the rear cog (see Figure I-4.b). Optimisation is also carried out by the manufacturers of track bike drives 

[25], [26]. In particular, a specific chain using a smaller pitch of 3 8′′⁄ = 9.525𝑚𝑚 was used by the 

Great Britain team at the last Olympic games [27]. 

Track cycling is a sport practised internationally mainly developed in Europe and Japan. It has been an 

Olympic sport since the beginning of the modern Olympic games for men (in 1896) in since 1988 for 

women [28]. Track cycling is practised in circular arenas called velodromes. Various types of race exist. 

Some are team events, some are individual. Some events such as the pursuit (see Figure I-5.a) require 

endurance skills. Others, such as the sprint (see Figure I-5.b) require explosivity. 

  
(a) (b) 

Figure I-5: Track cycling races: (a) Team pursuit (b) Individual sprint (© P. Pichon / FFC) 

 

Rear cogset
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Endurance races are relatively long (about 4 minutes for a typical pursuit) and are characterised by 

high and almost constant speed (about 60𝑘𝑚/ℎ). Conversely, sprint races are usually shorter and 

more speed variations are encountered. In such races, athletes usually start slowly (sometimes in track 

stand) before quickly accelerating to reach speeds of up to 70𝑘𝑚/ℎ. The most extreme conditions for 

the chain drive are encountered in high intensity sprints where the chainring rotational speed can 

reach 130 𝑟𝑝𝑚. The torque applied on the chainring can reach 500𝑁.𝑚 at peak effort and up to 

300𝑁.𝑚 sustained for several drive rotations. 

In track cycling races, final time differences between athletes are usually very close. Table I-1 shows 

the results of the individual men’s sprint final of the Tokyo 2021 Olympic games where the two first 

races were decided by a margin of 1/100 seconds. These reduced gaps justify the interest of chain drive 

optimisation as little improvements can decide the race winner. 

 Race 1 Race 2 Race 3 

Harrie Lavreysen +0.012𝑠 Winner Winner 

Jeffrey Hoogland Winner +0.015𝑠 +0.208𝑠 

Table I-1: Men’s individual sprint, results of the final at Tokyo 2021 Olympic games [29] 

Compared to industrial chain drives, track cycling drives are characterised by: 

• Moderate rotational speed. The maximal speed encountered is 130 𝑟𝑝𝑚 in high intensity 

sprints. 

• High torques. Torques up to 300𝑁.𝑚 can be sustained by top level athletes during high 

intensity sprints. 

• Light chains. Track drives use lighter chains than the usual industrial standard. A typical track 

cycling link of pitch 𝑝 = 1 2′′⁄ = 12.7𝑚𝑚 weighs about 3.6𝑔1 (see Figure I-1.b). 

• High gear ratio. In track cycling applications, gear ratios are typically between 3 and 5 which is 

usually higher than values encountered for industrial applications. Consequently, the number 

of chainring teeth is usually much higher than that of the rear cog. 

• Safety. To preserve the athlete’s safety, the risk of chain breakage must be reduced as much 

as possible. Chain standards [30] should prevent such events as the breaking load must be at 

least 8000𝑁 (no more than 4100𝑁 has been observed for track cycling chains2). Chain drop 

must also be avoided. This question is related to tension setting and will be addressed in the 

manuscript. 

Due to these characteristics, the centrifugal force applied on a roller meshed with a 70 tooth chainring 

(highest possible number of teeth on current track bicycles) rotating at 130 𝑟𝑝𝑚 reaches a maximum 

of about 0.09𝑁 (compared to up to 4100𝑁 in link tension). Therefore, quasi-static modelling is well 

adapted to such drives as the computational cost will be limited without significant loss of precision. 

In track cycling applications, strand vibrations are known to occur. These are probably mainly caused 

by the varying torque applied at the chainring due to preferential pedal direction (more torque is 

applied with horizontal pedals). This study is limited to constant torque and rotational speed. 

Therefore, strand vibrations are neglected. 

 
1 Compared to about 7.6𝑔/𝑙𝑖𝑛𝑘 for industrial chains of the same pitch [11]. 
2 Corresponding to 500𝑁.𝑚 at the chainring for a 𝑍Ⅰ|𝑍Ⅱ = 60|15 drive. 
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Considering the boundaries of the analysis, a corresponding literature review is presented in the 

following parts. 

First, an overview of a roller chain drive is given. The definition of sprocket geometry is detailed and 

different tooth profile standards are presented. Then, the polygonal effect, a perturbation inherent to 

any chain drive, is described. Its kinematic consequences are detailed. Although not studied in this 

thesis, a brief summary of the dynamical implications of the polygonal effect is also given. 

Then, a review of existing quasi-static tension models is provided. Such models are used to determine 

the loads encountered in a chain drive (mainly link tension and roller/sprocket contact force). 

Progressive efforts to explore the dependency between roller locations along the associated tooth 

profile and link tension evolution are detailed. 

Then, previous works dedicated to chain drive efficiency are presented. Models and experimental 

studies are detailed. Orders of magnitudes of drive efficiency are given.  

Finally, the objectives of the thesis are set out considering the detailed literature review. 
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I.2 Overview of roller chain drives 

The following part gives an overview of roller chain drives. Sprocket construction is first detailed. 

Standards regarding tooth profile definition are also presented. Then, the kinematic and dynamical 

consequences of the polygonal effect are explored. 

I.2.1 Sprocket definition 

To define the geometry of a given sprocket, the pitch polygon is first constructed [31] (see Figure I-6.a). 

This polygon has the same number of sides as the desired number of teeth 𝑍. The side of the polygon 

is equal to the desired pitch 𝑝𝑠𝑝𝑟𝑜𝑐𝑘𝑒𝑡. The circumscribed circle of this polygon is called pitch circle. 

The radius of the pitch circle is given by eq.(I-1). 

 𝑅 =
𝑝𝑠𝑝𝑟𝑜𝑐𝑘𝑒𝑡

2sin(𝛼 2⁄ )
 (I-1) 

with: 

• 𝛼 = 2𝜋/𝑍, the pitch angle 

Each vertex of the pitch polygon is associated with an angular sector of width 𝛼. The tooth profile 

geometry of each angular sector is given using the summit as local origin 𝑂 (see Figure I-6.b). Angular 

sectors are usually identical and therefore the definition of only one of them is sufficient to give the 

entire sprocket geometry. 

 
 

(a) (b) 
Figure I-6: (a) Pitch circle and polygon (b) tooth profile definition 

Typical definitions of tooth profile are given in by ASA [32] and ISO [31] standards (see Figure I-7). For 

both standards, the local tooth profile is defined using circle arcs and/or straight lines. Both standards 

propose symmetrical profiles. Therefore, only one half is defined and the second one is obtained by 

symmetry with respect to (𝑂, 𝑦⃗). 
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(a) (b) 

Figure I-7: (a) 𝑨𝑺𝑨 tooth profile [32] (b) 𝑵𝑭 profile from ISO standard [31] 

For ASA and ISO standards, tooth profile parameters are given by equations depending on the number 

of teeth 𝑍, the roller radius 𝑅𝑟𝑜𝑙𝑙𝑒𝑟 (expected to be used with the sprocket) and the sprocket pitch 

𝑝𝑠𝑝𝑟𝑜𝑐𝑘𝑒𝑡. These definitions are given in Appendix A. 

For one set of 𝑍, 𝑅𝑟𝑜𝑙𝑙𝑒𝑟 and 𝑝𝑠𝑝𝑟𝑜𝑐𝑘𝑒𝑡, the ASA standard [32] gives a single tooth profile. It is defined 

by three circle arcs and one straight portion (see Figure I-7.a). 

• Between 𝐴 and 𝐵, the first circle arc defines the tooth bottom (centre 𝑐1). This arc is also called 

seating curve. Its centre coincides with the local origin 𝑂 and its radius is strictly larger than 

the roller radius 𝑅𝑟𝑜𝑙𝑙𝑒𝑟 

• Between 𝐵 and 𝐶, the second circle arc is called the working curve (centre 𝑐2) 

• Between 𝐷 and 𝐸 the last circle arc called the topping curve defines the tooth tip (centre 𝑐3) 

• Points 𝐶 and 𝐷 are linked by the straight portion 

Curve portion parameters are always such that the slope is continuous along the tooth profile (i.e., 

curve portions are tangent at 𝐵, 𝐶 and 𝐷). This profile geometry is denoted as 𝐴𝑆𝐴 profile for the rest 

of the manuscript. 

For one set of 𝑍, 𝑅𝑟𝑜𝑙𝑙𝑒𝑟 and 𝑝𝑠𝑝𝑟𝑜𝑐𝑘𝑒𝑡, the ISO standard [31] gives a range of acceptable profiles. The 

boundaries of the acceptable zone are delimited by two extreme tooth profiles: 𝑁𝐹𝑚𝑖𝑛 and 𝑁𝐹𝑚𝑎𝑥3. 

Therefore, any profile whose geometry lies between the two extreme ones satisfies the standard (see 

Figure I-7.b). For the rest of the manuscript, both 𝑁𝐹𝑚𝑖𝑛 and 𝑁𝐹𝑚𝑎𝑥 geometries are considered. Their 

definition is more straightforward than the 𝐴𝑆𝐴 one as it is based on only two tangent circle arcs. 

For both standards, the bottom of the tooth profile (called tooth bottom) is circular (see Figure I-6.b). 

The centre if this circle arc coincides with the local origin 𝑂 and its radius 𝑅𝑡𝑏 is larger than 𝑅𝑟𝑜𝑙𝑙𝑒𝑟. It 

can be noted that the 𝐴𝑆𝐴 profile satisfies the 𝐼𝑆𝑂 standard as it lies in between the 𝑁𝐹𝑚𝑎𝑥 and 𝑁𝐹𝑚𝑖𝑛 

profiles. 

  

 
3 The ISO standard is based on a previous NF standard. 
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I.2.2 Polygonal effect 

A typical chain drive is represented in Figure I-8. The driving sprocket is at the right-hand side with 

index Ⅰ while the driven sprocket is on the left with index Ⅱ. The driving sprocket rotates clockwise. 

Therefore, the tight strand is the higher one and transmits loads. The slack one is at the bottom. The 

strand tips mark the transition between the links in the chain strands and those meshed with a sprocket 

(see Figure I-8). Each time the driving sprocket meshes a new link, another one is removed from the 

driven sprocket. Therefore, the mean rotational speed ratio of the drive is equal to the gear ratio 

𝑍Ⅰ 𝑍Ⅱ⁄ = 𝑅Ⅰ 𝑅Ⅱ⁄ . 

 
Figure I-8: Diagram of chain drive principle 

For chain and sprockets of matching pitch (i.e., 𝑝𝑠𝑝𝑟𝑜𝑐𝑘𝑒𝑡 = 𝑝𝑐ℎ𝑎𝑖𝑛 = 𝑝), in a first approximation, the 

radius difference between the roller and the tooth bottom can be neglected (the radius difference is 

about 4.3% for 𝑁𝐹𝑚𝑎𝑥 profile4) [33]. Thus, the centre of the rollers in contact with a sprocket lies at 

the vertices of the pitch polygon (see Figure I-8). Consequently, as the drive rotates, strand tips move 

along the pitch circle. Figure I-9 shows the two extreme strand tip positions for a given sprocket 

(assuming a horizontal strand). 

  
(a) (b) 

Figure I-9: Extreme strand tip positions 

 
4 With 𝐷𝑟𝑜𝑙𝑙𝑒𝑟 = 7.75𝑚𝑚 which gives 𝑅𝑡𝑏 = 4.05𝑚𝑚 (see Appendix A). 
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The strand tip movement along the pitch circle causes the projections of the strand tip speed 𝑉tip⃗⃗ ⃗⃗ ⃗⃗⃗ along 

the horizontal and vertical directions to vary (see Figure I-9). Moreover, the height of the strand tip is 

also modified by an amount Δ𝑌𝑡𝑖𝑝, given by eq.(I-2) (see Figure I-9.b). 

 Δ𝑌𝑡𝑖𝑝 = 𝑅 (1 − cos (
𝛼

2
)) (I-2) 

The variation of the strand tip positions is a consequence of the discrete nature of the chains. Indeed, 

contrary to belts, the relative rotation between links can only occur at the chain articulations. This 

phenomenon, and all the consequences that it induces, are generally denoted polygonal effect, due to 

the shape taken by a chain wrapping around a sprocket, approximately following the pitch polygon 

(see Figure I-8). 

The polygonal effect induces periodical variations of the rotational speed ratio, causing transmission 

error. Moreover, it acts as a dynamical excitation which generates possible vibration problems. Both 

subjects (i.e., kinematics and dynamics) are discussed separately below. 

a) Kinematic consequences of the polygonal effect 

Binder [32] was the first to propose a kinematic model of a chain drive. Assuming that all the parts are 

rigid, he proposed to consider the dependency between the rotation of the driving and driven 

sprockets using a four-bar mechanism (see Figure I-10). Thus, the strand tip positions move along the 

pitch circles, making it possible to model the polygonal effect. 

 
Figure I-10: Tight strand model using a four-bar mechanism 

Binder [32] reported that the behaviour of the four-bar mechanism depends on the centre distance 

between the driving and the driven sprockets. He limited his study to drives with a horizontal tight 

strand common tangent (i.e., upper tangent common to both pitch circles, see Figure I-11.b). Two 

extreme cases were considered depending on the length of the common tangent being equal to a 

multiple of the chain pitch (Figure I-11.a) or an odd multiple of a half pitch (Figure I-11.b). These two 

cases correspond to the variation of strand tip positions of both sprockets occurring in simultaneous 

or opposing phase, respectively. It can be noted that, depending on the phasing of both sprocket 

rotations, the number of links in the chain strands can vary (e.g., between 5 and 6 in Figure I-11.a and 

Figure I-11.b, respectively). 
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(a) (b) 

Figure I-11: Drive with tight strand common tangent being (a) a multiple of the chain pitch, (b) an odd 
multiple of half pitch 

For the two extreme cases of Figure I-11, the ratio between the rotational speed of the driving and 

driven sprockets was calculated using the four-bar mechanism shown in Figure I-10. The deviation of 

this instantaneous ratio from its mean value 𝑍Ⅰ 𝑍Ⅱ⁄  (i.e., transmission error) was characterised using 

the parameter Δ𝑅 according to eq.(I-3). The results, with Δ𝑅 expressed in %, are presented in Figure 

I-12. The drives studied were for driving sprockets with less teeth than the driven one (i.e., 𝑍Ⅰ < 𝑍Ⅱ). 

 Δ𝑅 =

(
ΩⅠ

ΩⅡ
)
𝑚𝑎𝑥

− (
ΩⅠ

ΩⅡ
)
𝑚𝑖𝑛

(
ΩⅠ

ΩⅡ
)
𝑚𝑖𝑛

 (I-3) 

 

 
Figure I-12: Variation of 𝜟𝑹 for various numbers of teeth. Adapted from [32] 

For a high driven sprocket number of teeth 𝑍Ⅱ, the two extreme centre distance cases tend toward the 

same deviation Δ𝑅. However, for a smaller 𝑍Ⅱ, the odd multiple of half pitch case diverges whereas 

the multiple of half pitch converges to zero. For the multiple of chain pitch case, drives with 𝑍Ⅰ = 𝑍Ⅱ 

show a constant speed ratio (i.e., Δ𝑅 = 0). On the contrary, a 𝑍Ⅰ|𝑍Ⅱ = 6|6 drive for the odd multiple 

of half pitch case undergoes a variation of about 35%. The results also show that the influence of the 

polygonal effect decreases as the numbers of teeth increase. Variations of less than 1% are predicted 

for drives with high numbers of teeth such as 𝑍Ⅰ|𝑍Ⅱ = 21|48. This undesirable instantaneous speed 

ratio variation is the main reason why chain manufacturers recommend avoiding excessively small 
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numbers of teeth (sprockets with less than 𝑍 = 19 are usually not recommended for industrial 

applications) [34]. 

Mahalingam [35] and Morrison [36] proposed similar studies and also found that multiple number of 

pitch case should be preferred to limit kinematic perturbations. Mahalingam later used his kinematic 

modelling as boundary conditions for a study of strand vibration (see §b) below). In [37], Bouillon & 

Tordion tested experimentally the kinematic theory based on a four-bar mechanism. They measured 

the transmission error as well as the angular acceleration of the sprockets. Their results showed that 

the four-bar mechanism gives a good approximation of sprocket movements for small numbers of 

teeth where polygonal action is dominant (the theory shows good predictions up to 𝑍 = 18 [37]). 

Above this number of teeth, dynamical effects can no longer be neglected (see §b) below). In [1], [38] 

Fuglede & Thomsen also modelled the kinematic consequences of the polygonal effect using a four-

bar mechanism. They proposed an analytical solution for transmission error and sprocket acceleration. 

A generalisation of the two extreme cases “multiple of chain pitch“ and “odd multiple of half pitch” 

was proposed using parameter 𝑓. This parameter was used to define the length of the tight strand 

common tangent according to eq.(I-4). 

 𝐿𝑐𝑡 = (𝑁 + 1 + 𝑓)𝑝 (I-4) 

with: 

• 𝐿𝑐𝑡, the length of the tight strand common tangent (see Figure I-11.b) 

• 𝑁 ∈ ℕ, the minimal number of links in the tight strand 

• 𝑓 ∈ [0 , 1[ 

For 𝑓 = 0, the tight strand common tangent equals a multiple of the chain pitch and the drive is in the 

“multiple of chain pitch” case. For 𝑓 = 0.5, the drive is situated in the “odd multiple of half pitch” case. 

Using their kinematic solution, Fuglede & Thomsen also calculated the required chain length for the 

drive to operate (the slack strand trajectory was assumed to be straight). They showed that polygonal 

action causes this theoretical length to vary. This variation produces fluctuations of link tension during 

drive operations. As for Mahalingam [35], the kinematic study was used as input for a more complex 

analysis of strand vibration (see §b) below). 

To compensate the consequences of polygonal action, Radzimovsky [39] proposed to add an original 

mechanism at the drive input to vary the rotational speed of the driving sprocket. The mechanism 

parameters are adjusted to compensate for the kinematic perturbations to obtain an overall 

mechanism with a constant speed ratio (i.e., Δ𝑅 = 0). 

b) Dynamical consequences of polygonal effect 

Kinematic studies of the polygonal effect are usually carried out to obtain boundary conditions for 

more complex dynamical studies (e.g., Mahalingam [35], Fuglede [38]). Indeed, the periodical variation 

of the speed ratio acts as a dynamical excitation, causing longitudinal and transverse strand vibrations. 

Strand vibrations will not be considered in this manuscript. However, the following section gives a brief 

overview of the literature on the subject. 

Transverse vibration of a chain strand were studied by Binder [32], [40]. The chain strand was 

represented as articulated masses linked to massless bars. The strand boundaries were assumed to be 

fixed (see Figure I-13). Binder [41] also studied impacts occurring between the chain and sprocket at 

each capture of a new roller by the driving sprocket. Sack [42] studied the transverse vibrations 

considering the strand as a string with uniformly distributed mass. The string boundaries were 
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assumed to move at constant speed. Mahalingam [43] used its kinematic study to apply boundary 

speeds caused by polygonal action. All the studies showed that resonance occurs when the meshing 

frequency (frequency of polygonal effect) meets the natural strand frequencies. The addition of 

moving boundaries reduces the predicted natural strand frequencies. Consequently, the drive 

rotational speeds to be avoided in order to prevent large vibrations are also modified. 

 
Figure I-13: Strand modelling with fixed boundaries. Adapted from [40] 

Turnbull [44] studied strand vibration using a 2D dynamic model of chain drive. The torsional vibration 

of the sprockets was included. Experimental measurements were also performed. The results showed 

that the tortional natural frequencies of the sprockets are of the same order as the strand natural 

frequencies. Therefore, they should also be considered and care must be taken to maintain the 

meshing frequency far from them. However, these frequencies depend, for instance, on the properties 

of the shafts, the position of the bearings, etc. Therefore, they must be determined by considering the 

entire system and not only the chain drive. It was proposed to reduce the chain pitch to limit the 

excitation caused by polygonal action (pitch radius 𝑅 can be kept constant by increasing the number 

of teeth, see eq.(I-1)). Moreover, experimental results showed that large transverse strand vibrations 

occur more easily for “multiple of chain pitch” case (i.e., 𝑓 = 0, see eq.(I-4)) despite polygonal 

excitation being less significant. Measurements of the noise caused by roller/sprocket impacts were 

also performed. It was shown that this noise decreases for higher numbers of teeth and smaller chain 

pitch (i.e., less polygonal action). 

Longitudinal strand vibrations was studied by Fawcett et al. studied in [45]–[48]. These vibrations can 

cause significant link tension oscillations. It was shown that changing the centre distance (i.e., 

parameter 𝑓) does not significantly modify these oscillations. Roller/sprocket impacts were also 

studied. It was shown that the addition of lubricant at the roller/sprocket interface reduces the noise. 

An apparatus constraining the tight strand trajectory close to the driving sprocket meshing point was 

also proposed to reduce the noise caused by impacts. A review of this subject from 1981 can be found 

in [49]. 

Strand models were later improved by Chen et al. [50], who considered the chain strand as a travelling 

string (like Mahalingam [43]) but introduced the possibility of varying the string length to account for 

the varying number of links in a chain strand (see Figure I-11). Choi & Johnson studied in [51] the 

influence of a tensioner on strand dynamics. It was shown that the tensioner could be used to reduce 

vibrations. 

More recently, the dynamical behaviour of chain drive was studied using multibody dynamical models. 

Such models can be found for instance in [52]–[57]. In [58], [59] Omar proposed a multibody 

formulation to study bicycle chain drive dynamics including the derailleur system. Examples of link 

tension and acceleration were given. 

The question of the dynamical behaviour of the drive is mainly addressed in industrial applications 

where high rotational speed (thousands of rpm can be reached) makes it more likely to encounter 

natural frequencies and therefore trigger significant vibrations. Patents on this subject can for instance 

Articulated masses Massless bars
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be found in [60], [61] which propose varying the sprocket pitch from one tooth to another to divide 

the excitation caused by the polygonal effect between more frequencies. 

This part gave on overview of roller chain drives. Tooth profile standards and sprocket definition were 

described after which the polygonal effect, inherent to any chain drive, was presented. Previous works, 

using four-bar mechanisms to explore the kinematic consequences on transmission were also 

described. Such models give a good approximation of the dependency between driving and driven 

sprocket rotation. Although not considered in this manuscript, a brief review of the dynamical 

implications of the polygonal effect was also given. This subject is indeed quite complex and requires 

dedicated models which is not in the scope of the study. 

The following part details the evolution of quasi-static tension models which fall within the scope of 

this thesis. 
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I.3 Quasi-static tension models 

The evolution of quasi-static tension models is now presented. These models play an important role in 

modelling drive efficiency as they calculate the loads involved in a chain drive which is necessary to 

ultimately obtain the power losses (see §I.4 below). 

The loads considered are usually link tension and roller/sprocket contact forces. They are determined 

through varying assumptions. The evolution of roller motion modelling is also presented. Its 

connection with load variations is also discussed 

The first model of loads between the chain (including rollers) and sprockets was introduced by Binder 

in 1953 [32]. Binder considered the equilibrium of a chain articulation (i.e., a set of pin, bush and roller, 

see Figure I-14.a) subjected to three external forces (see Figure I-14.b and Figure I-15.a): 

• 𝑇𝑖, the tension in the link preceding the articulation considered 

• 𝑇𝑖+1, the tension in the link following the articulation 

• 𝑃𝑖, the contact force between the tooth profile and the roller 

Roller/profile clearances were neglected (i.e., 𝑅𝑟𝑜𝑙𝑙𝑒𝑟 = 𝑅𝑡𝑏) and all the rollers were assumed to lie at 

the tooth bottom (i.e., the roller centre coincides with the centre of the tooth bottom circle). In this 

specific position, the rollers are called seated. 

  
(a) (b) 

Figure I-14: Equilibrium of chain articulation according to Binder [32] 

The tensions in the tight and slack strands (𝑇𝑡 and 𝑇𝑠, respectively) were assumed to be constant and 

known. Parameters in Figure I-14 are: 

• 𝑖 ∈ ⟦1 , 𝑛 + 2⟧ such that 𝑇1 = 𝑇𝑡 and 𝑇𝑛+2 = 𝑇𝑠 (see Figure I-15.a). 𝑛 is the number of links in 

contact with the sprocket considered 

• 𝜙, pressure angle between the directions of 𝑇𝑖 and 𝑃𝑖 

• 𝛼, angle between the directions of 𝑇𝑖+1 and 𝑇𝑖. As all the rollers are seated, this angle equals 

the pitch angle 

For the 𝐴𝑆𝐴 profile, the pressure angle 𝜙 is estimated in the standard assuming that 𝑃𝑖 acts along the 

profile normal direction and that roller/profile contact occurs at point 𝐵 (see Figure I-7.a). 

The articulation equilibrium shown in Figure I-14.b leads to the following relation between 𝑇𝑖 and 𝑇𝑖+1. 

 𝑇𝑖+1 = 𝑇𝑖
sin(𝜙)

sin(𝜙 + 𝛼)
 (I-5) 

Considering the equilibrium of every articulation in contact with the sprocket considered gives a 

relation between the tight strand tension 𝑇𝑡 and the tension in link 𝑖 (eq.(I-6)). 
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 𝑇𝑖 = 𝑇𝑡 (
sin(𝜙)

sin(𝜙 + 𝛼)
)

𝑖−1

 (I-6) 

This first tension model calculated the tension in each link in contact with a considered sprocket, 

assuming that the tight strand tension 𝑇𝑡 is known. Howerver, this approach suffered from several 

drawbacks. First, link tension does not depend on the instantaneous sprocket orientation since as the 

articulation is meshed it is considered to carry the same amount of load as any other. Secondly, the 

link tension was independent from the slack strand tension 𝑇𝑠. Binder’s model therefore constitutes a 

good approximation for the tensions in links close to the tight strand. Finally, roller location and link 

tension were independent as all the rollers were assumed to be seated independently of any loading 

considerations. Later studies will resolve these open questions. 

 
Figure I-15: Evolution of pressure angle modelling (adapted from [52]): (a) Binder (b) GPLD model from 
Naji & Marshek (c) Kim & Johnson 
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In the 1980s, Naji & Marshek produced numerous studies aimed at improving the first approach 

introduced by Binder. They presented measurements of link tensions performed using an 

instrumented link [62], [63]. Using weights to prescribe strand tension, several tension ratios 𝑇𝑠/𝑇𝑡 

were tested. Due to the constraints of the experimental apparatus, measurements were carried out at 

quasi-static speed. The results were presented as relative tension 𝑇𝑖/𝑇𝑡. Similar tension ratios 𝑇𝑠/𝑇𝑡 

were tested for different absolute tensions. It was shown that, for the loads explored (up to 850𝑁), 

the evolution of relative tension does not depend on the magnitude of absolute tension. Driving and 

driven sprockets were studied and differences in load evolutions were reported (see Figure I-17 

below). 

Based on the experimental results, they introduced the Geometric Progressive Load Distribution 

(GPLD) tension model which significantly improved Binder’s model [2]. Sprocket orientation was 

considered thanks to the addition of angles 𝛼𝑡 and 𝛼𝑠 (for the roller marking the transition with the 

tight and slack strands, respectively, see Figure I-15.b). These angles correct eq.(I-5) for articulations 

in the process of meshing and un-meshing. To account for the slack strand tension 𝑇𝑠, Naji & Marshek 

proposed that each roller can contact either the tight or the slack side of its associated tooth profile 

(see Figure I-16) while remaining seated. A roller contacting the tight side of the profile corresponds 

to Binder’s approach (see Figure I-14.b). 

  
(a) (b) 

Figure I-16: Roller contacting the (a) tight (b) slack side of the tooth profile 

From the tight to the slack strand, the rollers first contact the tight side of the tooth profile before 

switching to contact the slack one. The switch between the two positions was assumed to be 

instantaneous. The last roller to contact the tight side of the profile was called the balance roller (see 

Figure I-15.b). The index 𝑖 of the balance roller depends on the tension ratio 𝑇𝑠/𝑇𝑡 (see Figure I-15.a 

for index 𝑖). The higher the slack strand tension, the further the transition from the slack strand (i.e., 

the lower the index 𝑖 of the balance roller). Variations of the balance index introduced a dependency 

between the location of the rollers along the associated tooth profile and loading conditions. 

The differences measured between the driving and driven sprocket were attributed to the effect of 

friction (see Figure I-17). To account for this effect, Naji & Marshek proposed to correct the pressure 

angle 𝜙 with a friction correction angle 𝛿 = atan(𝜇𝛿). This angle depended on 𝜇𝛿, the static friction 

coefficient between the roller and the tooth profile. The correction can be either positive or negative 

depending on the sprocket being driving or driven and the roller contacting the tight or the slack side. 

Considering all these improvements, the tension in link 𝑖 can be expressed according to eq.(I-7) for a 

driven sprocket (the equation for the driving sprocket is obtained by switching the sign before the 

correction angle 𝛿). 
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𝑇𝑖 = max [𝑇𝑡
sin(𝜙 − 𝛿 + 𝛼 − 𝛼𝑡)

sin(𝜙 − 𝛿 + 𝛼)
(𝑞−)

𝑖−2;          

                                      𝑇𝑠
sin(𝜙 + 𝛿 + 𝛼 − 𝛼𝑠)

sin(𝜙 + 𝛿 + 𝛼)
(𝑞+)

𝑛+1−𝑖]

 (I-7) 

with: 

• 𝑖 ∈ ⟦2 , 𝑛 + 1⟧. 𝑇1 = 𝑇𝑡 and 𝑇𝑛+2 = 𝑇𝑠 

• 𝑞− =
sin(𝜙−𝛿)

sin(𝜙−𝛿+𝛼)
 and 𝑞+ =

sin(𝜙+𝛿)

sin(𝜙+𝛿+𝛼)
 accounting for seated rollers 

• 𝑛, the number of links in contact with the considered sprocket 

Figure I-17 shows a comparison of experimental measurements and the GPLD model for driving and 

driven sprockets. 

 Measurements GPLD model 
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Figure I-17: Evolution of relative link tension (a) experimental measurements, driving sprocket (b) GPLD 
model driving sprocket (c) experimental measurements, driven sprocket (d) GPLD model driven sprocket 
[62] 

Slope breaks are visible (mostly on the model curves, see Figure I-17.b). They mark the capture of a 

new roller by the sprocket considered. Between these breaking points, link tension evolution is mostly 

linear. The agreement between the experimental measurements and model results is very good, 

supporting the GPLD tension model. 
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Again in [2], Naji & Marshek proposed a model of part deformations due to the loads carried. Both link 

elongation and tooth profile deflection were considered. The results showed that both effects mostly 

cancelled each other and that they can be neglected for steel chains meshed with steel sprockets. 

In following studies [64], [65], Naji & Marshek extended the possibilities of roller location along its 

associated tooth profile. Dependency between the position of each roller was introduced considering 

two constraints: each roller should contact its associated tooth profile and the centres of adjacent 

rollers should be separated by a chain pitch 𝑝 (see Figure I-18). Based on roller location, the pressure 

angle 𝜙 could be determined considering the profile normal direction at the roller/profile contact point 

(it was assumed that 𝑃𝑖 acts along the normal direction). However, roller/profile clearances were still 

neglected. Thus, the new approach was only applied to un-seated rollers. Therefore, rollers lying at 

the tooth bottom were still considered seated and their pressure angle were still assumed to be 

constant and given by 𝐴𝑆𝐴 profile geometry. This model was used to assess the influence of inner link 

(pin link) elongation due to the impact of wear on link tension evolution. This more advanced approach 

proposed greater dependency between roller location and link tension. 

Later, Kim & Johnson [52] completed the process started by Naji & Marshek and proposed a link 

tension model with full dependency between roller location and loads. To do so, they used the same 

approach as Naji & Marshek (i.e., consecutive rollers distant by a chain pitch 𝑝) but roller/profile 

clearances were no longer neglected (i.e., 𝑅𝑡𝑝 ≠ 𝑅𝑟𝑜𝑙𝑙𝑒𝑟). This allowed locating the roller at any curve 

portion even when contacting the tooth bottom. This new approach is denoted full roller location. The 

pressure angle was therefore only determined according to the normal direction at the roller/profile 

contact. 

 
Figure I-18: Dependency between the location of two adjacent rollers (the clearance between roller and 
profile is exaggerated) 

Rollers were located along their tooth profile using a dimensionless coordinate 𝛾 (see Figure I-19.b). 

Using this coordinate, the dependency between consecutive roller positions was presented in a curve 

showing the location of the following roller 𝛾𝑖+1 as a function of the preceding one 𝛾𝑖  (see Figure 

I-19.a). To facilitate comprehension, the notations of this manuscript are used in Figure I-19 in place 

of the original ones presented in [52]. 
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(b) 

(a) 
Figure I-19: (a) Relation between consecutive roller locations, adapted from [52] (b) coordinate 𝜸 (the 
clearance between roller and profile is exaggerated) 

This curve exhibits two intersection points with the first bisector 𝑦 = 𝑥. These points are called 

transition points (denoted 𝑡𝑝). As shown in Figure I-19.b, transition point 𝐵 (i.e., 𝛾𝑡𝑝
𝐵  in Figure I-19) lies 

at the tight side of the profile while transition point 𝐴 lies at the slack one. The transition points 

correspond to stable roller locations. Therefore, if roller 𝑖 lies at a transition point, all the rollers will 

also lie at this point (following and preceding). Moreover, consecutive roller locations can be 

graphically determined following back and forth travel between the first bisector and the characteristic 

curve. An example with 𝛾𝑖 = 4.75 is given in Figure I-19. It can be noted that the configurations where 

all the rollers lie at a transition point represent a limit. This limit can be approached as close as desired 

(i.e., consecutive 𝛾𝑖  can approach 𝛾𝑡𝑝
𝐴,𝐵) but can never be reached unless all the roller locations are 

exactly equal to 𝛾𝑡𝑝
𝐴,𝐵. In addition, for high values of 𝛾𝑖  (above 𝛾𝑖 ≈ 7.5 in Figure I-19.a), the consecutive 

roller location 𝛾𝑖+1 cannot be defined. For such roller locations, no intersection between the 

consecutive tooth profile and the circle of radius 𝑝 can be found (see Figure I-18). In concrete terms, 

when a roller is located too high on the tooth profile, the following one cannot contact the sprocket 

within its associated tooth profile. 

As the transition points cannot be crossed, the graph is split into three distinct zones: 

• 𝛾 ∈ [0 , 𝛾𝑡𝑝
𝐴 [. The adjacent roller relation is such that 𝛾𝑖+1 < 𝛾𝑖 and the roller locations tend to 

zero. However, roller locations in this zone induce impossible link tension evolution. Therefore, 

in practical cases, no rollers lie in this zone (more details are given in §II.2.2). 

• 𝛾 ∈ ]𝛾𝑡𝑝
𝐴  , 𝛾𝑡𝑝

𝐵 [. As the transition points cannot be crossed, the roller locations tend to 𝛾𝑡𝑝
𝐴  more 

or less quickly depending on the initial 𝛾. This zone represents stable drive operations and is 

encountered in most practical cases. 
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• 𝛾 ∈ ]𝛾𝑡𝑝
𝐵  , 𝛾𝑚𝑎𝑥]. In this zone, 𝛾𝑖+1 > 𝛾𝑖, therefore, the roller location proceeds until a position 

such that 𝛾𝑖+1 is undefined is reached (i.e., a roller will eventually miss a tooth resulting in 

dysfunction of the drive). Coordinates 𝛾 rising above 𝛾𝑡𝑝
𝐵  correspond to rollers climbing the 

tooth flank of the profile. This zone does not represent desirable working conditions as it is 

associated with possible chain drop. However, it is physically possible to reach this zone (unlike 

the first one) for drives under extreme loading conditions. 

The tension model used by Kim & Johnson was distinct from the GPLD and considered pin and bush 

link differently. Moreover, friction was no longer considered only at the roller/profile interface (using 

correction angle 𝛿) but rather at all articulation interfaces (i.e., pin/bush, bush/roller and 

roller/profile). Using this specific tension model combined with the full roller location introduced, Kim 

& Johnson proposed a numerical procedure to solve link tension and roller location simultaneously. 

Typical roller locations results are presented in Figure I-20. The two plateaux correspond to transition 

points 𝑡𝑝𝐴 and 𝑡𝑝𝐵. They can be interpreted as the equivalent roller location corresponding to a roller 

contacting the slack and tight side of the tooth profile, respectively. The results agreed with the 

experimental link tension measurements of Naji & Marshek [62]. Moreover, it was shown that friction 

at pin/bush and bush/roller interfaces does not significantly influence link tension predictions. 

 
Figure I-20: Roller location during sprocket rotation for driving and driven sprockets (0° corresponds to 
tight strand meshing/un-meshing). Adapted from [52] 

To achieve full roller location, the computational cost was high. Moreover, this new model still 

considered only one sprocket rather than a full transmission. Strand tensions 𝑇𝑠 and 𝑇𝑡 had to be 

assumed. Only the 𝐴𝑆𝐴 profile was considered. 

The evolution of roller location and pressure angle modelling between Binder [32] and Kim & Johnson 

[52] is shown in Figure I-21 and Figure I-15 respectively. 
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Figure I-21: Evolution of roller location modelling between seated roller to full roller location (clearance 
between roller and profile is exaggerated for full roller location) 

Verne [66] applied the full roller location methodology of Kim & Johnson to the GPLD model. Eq.(I-7) 

was adapted as angles 𝛼 and 𝜙 were no longer assumed but rather determined from the roller location 

and the tooth profile normal direction, respectively. Numerical search was also used to calculate loads 

and roller locations simultaneously. This model was then applied to entire drives (i.e., not only for one 

sprocket) but strand tensions were still assumed. The influence of tooth profile geometry was also 

studied as comparisons between 𝐴𝑆𝐴 and 𝑁𝐹 tooth profiles (see Figure I-7) were carried out. Contrary 

to Naji & Marshek, both link elongation and tooth deflection were considered. As strand tensions were 

assumed, the model resolutions for each sprocket were independent and carried out sequentially. 

Therefore, roller locations for both sprockets were both dependent on the strand tensions but 

independent from each other. The resulting drive model was mostly used for dynamical studies. 

With a similar approach, Troedsson & Vedmar proposed static and dynamic drive models [67], [68]. 

The full roller location approach of Kim & Johnson was also used. This time, only the ISO tooth profile 

was studied. Link elongation was considered but tooth deflection was neglected. Moreover, Troedsson 

and Vedmar introduced a specific sub-model for the slack strand. This model calculates the tension in 

the slack strand links assuming that they are subjected only to gravitation. Thanks to this new 

component, the slack strand tension 𝑇𝑠 no longer needs to be assumed and dependency between 

sprockets was introduced. Therefore, a single resolution was carried out for the entire drive. The 

authors however reported numerical challenges associated with this resolution [69]. 

Lodge & Burgess later proposed a different approach in [70], [71] to investigate cycling and industrial 

drives. Indeed, in their study, roller location was not relevant. Moreover, the agreement of Kim & 

Johnson’s model with Naji & Marshek’s experimental measurements (see Figure I-17.a) was similar to 

what was obtained using the GPLD model (as mentioned above, see [52]). Therefore, they opted for a 

less computationally intensive study. Instead of using full roller location, they proposed three sub-
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models meant to represent three possible sprocket behaviours. The choice between sub-models was 

done based on the tension ratio 𝑇𝑠/𝑇𝑡 applied on the sprocket considered. Going from the highest 

ratios to the smallest, the three sub-models were: 

• The GPLD model as presented by Naji & Marshek in [2] (see eq.(I-7)). This sub-model 

represents the sprocket behaviour where rollers tend to cross the tooth profile going from one 

transition point to the other (i.e., zone 2 in Figure I-19). Friction modelling based on the 

correction of the pressure angle 𝜙 by 𝛿 was used. 

• The static roller sub-model. In this sub-model, based on Binder’s approach [32] (see eq.(I-6)), 

all the rollers are assumed to be seated and contacting the tight side of the tooth profile (see 

Figure I-16). The pressure angle 𝜙 is assumed to be equal for all rollers and its value is adjusted 

between 𝜙 − 𝛿 and 𝜙 + 𝛿 for a driven sprocket (switch sign before 𝛿 for driving sprocket) to 

transition towards the nest sub-model. 

 
Figure I-22: Roller climbing the tooth flank to reach 𝝓𝒎𝒊𝒏 [70] 

• The low slack tension sub-model. In this sub-model, a new roller position is assumed. Instead 

of being seated and contacting either the tight or the slack side of the profile, rollers can also 

climb the tooth flank (i.e., zone 3 in Figure I-19). It is assumed that this new position reduces 

the pressure angle to 𝜙𝑚𝑖𝑛 (see Figure I-22), without changing 𝛼, making it possible to reach 

smaller tension ratio 𝑇𝑠/𝑇𝑡. For the 𝐴𝑆𝐴 profile, 𝜙𝑚𝑖𝑛 is estimated in the standard assuming 

that roller/profile contact occurs at point 𝐷 (see Figure I-7.a). 

To account for the changing direction of roller motion (i.e., from 𝑡𝑝𝐵 toward the tooth tip), the 

sign of the correction angle is switched in this sub-model. As with the GPLD model, a transition 

roller can be defined between the first ones (close to the tight strand) being seated (see Figure 

I-14) and the last ones climbing the tooth flank. As the applied ratio decreases, this transition 

roller moves toward the tight strand until all the rollers climb the tooth flank. Beyond this limit 

case (i.e., all rollers climbing the tooth flank), it is assumed that chain drop occurs.  

The resulting expression for link tension 𝑇𝑖 is given for a driven sprocket in eq.(I-8). 

 

𝑇𝑖 = min [𝑇𝑡
sin(𝜙 + 𝛿 + 𝛼 − 𝛼𝑡)

sin(𝜙 + 𝛿 + 𝛼)
(𝑞+)

𝑖−2                    

                                 𝑇𝑠
sin(𝜙𝑚𝑖𝑛 + 𝛿 + 𝛼𝑠)

sin(𝜙𝑚𝑖𝑛 + 𝛿)
(𝑞+,𝑚𝑖𝑛)

𝑖−𝑛−1
]

 (I-8) 

with: 

• 𝑖 ∈ ⟦2 , 𝑛 + 1⟧. 𝑇1 = 𝑇𝑡 and 𝑇𝑛+2 = 𝑇𝑠 

• 𝜙𝑚𝑖𝑛, given by the ASA standard for rollers climbing the tooth flank [32] 

• 𝑞+,𝑚𝑖𝑛 =
sin(𝜙𝑚𝑖𝑛+𝛿)

sin(𝜙𝑚𝑖𝑛+𝛿+𝛼)
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This sprocket model was then used along an improved formulation of the slack strand model proposed 

by Troedsson & Vedmar [67] to model two-sprocket drives. The slack strand tension 𝑇𝑠 was therefore 

given by the dedicated model while the tight strand one was assumed to match torque requirements 

on the drive. 

The complete drive model was validated using new experimental data proposed by Stephenson et al. 

[72]. These data were obtained for a drive operating at real rotational speed thanks to an original 

experimental apparatus. However, the results obtained exhibited more noise measurements than the 

quasi-static measurements from Naji & Marshek [62]. 

The three sub-models approach drastically reduces computational cost as analytical formulations 

replaced numerical search. However, roller motion was no longer precisely assessed. Moreover, this 

model is applicable only for the 𝐴𝑆𝐴 tooth profile (values of 𝜙 are not given in the ISO standard [31]). 

For all the tension models detailed in this part, friction coefficients, when needed, were assumed 

constant and given as inputs. 

More broadly, it is known that chain dimensions can deviate from the nominal ones (e.g., pitch, part 

radii). Such deviation can be caused by manufacturing imperfections resulting, for instance, in uneven 

chain and/or sprocket pitch. The assembly process can also cause distortions of the parts which can 

potentially create asymmetrical links and therefore contacts between plates (even for perfectly aligned 

drive). Moreover, under loading, chain parts distort mainly through tooth deflection and link 

elongation (comprising pin bending) [2]. Finally, wear can be modelled as an increase in pin link pitch 

[65] potentially reaching several percent [73]. The effect of such dimension modifications has been 

taken into account in previous tension models such as link elongation in [65], [66], [69] and show an 

influence on load distribution. However, all these deviations from the nominal dimensions probably 

vary in the same order of magnitude which makes it difficult to considered one without considering 

all. 

This part was dedicated to the introduction of quasi-static tension models. These models calculate the 

link tension of roller/sprocket contact force, providing varying hypotheses. Works have been carried 

out to model the dependency between roller location and loads. This movement culminated with the 

models of Kim & Johnson and Troedsson & Vedmar where full roller location was determined 

simultaneously with loads. Lodge & Burgess later proposed another approach based on three sub-

models. Computational cost was reduced as numerical search was replaced by analytical formulations. 

However, precise roller location could no longer be determined outside of three assumed locations: 

seated in contact with the tight or slack side of the profile (see Figure I-16) and climbing the tooth flank 

(see Figure I-22). 
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I.4 Chain drive efficiency 

This part is dedicated to the previous works regarding chain drive efficiency. It includes modelling and 

experimental measurements, both considering industrial and bicycle drives. Models of drive power 

losses usually use one of the tension models introduced in the previous part (see §I.3). 

The first model of chain drive efficiency was carried out by Binder [32]. Expressions for power loss due 

to link meshing were proposed. The meshing phenomenon designates the rotational motion 

undergone by each link during its meshing/un-meshing from/to a given sprocket. Indeed, let us 

consider for instance a link coming from the tight strand to be meshed on the driving sprocket. Links 

constituting the tight strand are arranged along a straight line (i.e., with no change of orientation 

between each other). However, once both rollers are in contact with the driving sprocket, the link 

direction follows in a first approximation the side on the pitch polygon (see §I.2). Therefore, the angle 

between consecutive links (i.e., angle 𝛼𝑡, see Figure I-23) goes from zero (link in the tight strand) to 

the pitch angle 𝛼 (link with both rollers in contact with the sprocket). This angular variation causes 

friction in the chain articulation and therefore energy dissipation. The same phenomenon also occurs 

at the slack strand but usually under significantly lower link tension. 

 
Figure I-23: Losses due to friction at chain articulations in chain drive 

 

 
Figure I-24: Pin and bush articulations 

In his study of the meshing phenomenon, Binder introduced a distinction between pin and bush 

articulations (see Figure I-24). In roller chains, pin and bush links alternate. However, the meshing of a 

pin or a bush link produces different power losses. Indeed, the meshing of a pin link causes friction 

mainly at the interface between the pin and the bush (see Figure I-25.a). When a bush link meshes, 

friction additionally occurs at the bush/roller interface (see Figure I-25.b). Moreover, the loads 
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associated with this relative motion between parts are different depending on whether a pin or a bush 

link is meshing (see Figure I-25). 

  
(a) (b) 

Figure I-25: Meshing from the tight strand of (a) pin (b) bush articulation, side view 

Therefore, pin articulation designates an articulation such that meshing occurs for a pin link. Similarly, 

bush articulation designates an articulation such that a bush link is meshing. It can be noted that for a 

pin (bush) articulation, un-meshing is undergone by the bush (pin link). 

The implication of the proposed power loss relations in terms of drive efficiency was not discussed by 

Binder [32]. However, the results show that the dissipated work is proportional to the pitch angle 𝛼. 

This first suggests that larger sprockets (with smaller pitch angle) could exhibit better efficiency. 

Hollingworth & Hills [74], [75] proposed a study of chain drive efficiency dedicated to cranked link 

chains (see Figure I-3.b). They assumed that only link meshing contributes to chain drive power losses. 

For a cranked link chain, all articulations have the same type (pin or bush articulation) but this type can 

be reversed by changing the set-up direction. The two types of articulation were designated as “open 

end forward” and “narrow end forward” in this specific context. Coulomb friction was assumed at all 

chain interfaces. The prediction of drive efficiency depending on the articulation type (i.e., the set-up 

direction) was proposed. The results showed that open end forward direction (i.e., pin articulation) 

should be favoured for drives such that 𝑍Ⅱ > 𝑍Ⅰ. However, the proposed power loss expressions could 

not be derived by the author. The same difficulties of reproducing calculations were already reported 

by Logde in [71]. 

Kidd studied the efficiency of chain drives applied to road bicycles [76]. Experimental measurements 

were carried out to assess the effect of various parameters (lubricant, input power, sprocket size, etc.). 

It was shown that the derailleur system is responsible for a large share of the power losses for a road 

bike drive. Experimental measurements from [76] with and without a derailleur system are presented 

in Figure I-26. The results show efficiencies between 95 and 98.5% for drives with a derailleur while 

99% is reached for simple two-sprocket drives without a derailleur. 
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Figure I-26: Chain drive efficiency measurements with and without a derailleur system. Adapted from [76] 

The results showed that drive efficiency (with and without a derailleur) rises with increasing input 

power. As the measurements were carried out at constant speed, higher input powers were achieved 

by increasing the transmitted torques. This increase in drive efficiency was attributed to a decrease of 

the proportional contribution of slack strand meshing losses. Indeed, increasing the applied torque 

mostly increases the tight strand tension while maintaining the slack one constant. Therefore, the 

relative contribution of the slack strand decreases as the input power increases, resulting in higher 

efficiency. This effect is particularly visible in the presence of a derailleur system (see Figure I-26). 

Indeed, this system applies significant tension in the slack strand and adds articulation points at both 

idler sprockets (see Figure I-4.a). A linear relation between reciprocal tight strand tension and chain 

drive efficiency was proposed on the basis of the results presented. Smaller reciprocal tensions, 

associated with higher torques, tight strand tensions, and power, resulted in higher drive efficiencies. 

The effect of the number of sprocket teeth was also tested and the results showed higher efficiency 

for drives with larger sprockets. 

Kidd [76] also proposed a model of chain drive efficiency. Meshing losses were considered with 

distinction between pin and bush articulations. Potential drive misalignments caused by the derailleur 

system (i.e., shift between rear cog and chainring planes) were also modelled through friction between 

chain plates. The model results also exhibited higher efficiencies for increasing input powers (i.e., 

higher torques) and sprocket sizes. The analysis of each sprocket contribution to losses highlighted the 

dominant contribution of the rear cog. This higher contribution (compared the chainring one) was 

attributed to the smaller number of rear cog teeth (and therefore larger pitch angle 𝛼) encountered in 

usual cycling drives. 

At the same time, Spicer et al. [77] also studied bicycle chain drives. Experimental measurements were 

carried out using a test rig dedicated to road bike drives. The results confirmed the linear relation 

between reciprocal tight strand tension and drive efficiency. However, the efficiencies measured by 

Spicer et al. [77] were significantly lower than those of Kidd [76]. Efficiencies fell to about 85% whereas 

Kidd reported efficiencies systematically above 90%. The interest of bigger sprockets was also 

reported experimentally. 

A model was also proposed. Meshing losses were considered along lateral friction between plates due 

to the offset introduced by the derailleur system. The difference between pin and bush articulation 

was neglected. However, no comparison with the experimental data was proposed. 
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In [78], Spicer et al. suggested that possible non-linearities in the tensile behaviour of the links could 

be responsible for limitating drive efficiency. This new possible source of loss was proposed as an 

explanation for the lower drive efficiencies measured in [77]. 

Later, Lodge & Burgess also proposed an experimental and theoretical study of drive efficiency [70], 

[71]. Experimental results confirmed that bigger sprockets exhibit higher efficiency. The increasing 

efficiency for higher applied torque was also reported. Two-sprocket drives (close to track cycling 

drives) were studied with an efficiency of around 98%.  

An efficiency model based on the tension model detailed in the previous part (see §I.3) was also 

proposed. As with the preceding studies, meshing losses were assumed to be the only source of losses. 

As only two-sprocket drives were considered, losses due to the offset introduced by the derailleur 

were neglected. The distinction between pin and bush articulation was considered. The dissipated 

work was calculated by integrating the loads given by each sub-model (see §I.3) between 𝛼𝑡 = 0 and 

𝛼𝑡 = 𝛼. For instance, for a pin articulation leaving or entering the tight strand (for the driving and 

driven sprocket, respectively), the work dissipated at the pin/bush interface is calculated as shown by 

eq.(I-9). 

 

𝑊𝑝𝑖𝑛 𝑏𝑢𝑠ℎ⁄ ,𝑝𝑖𝑛 𝑎𝑟𝑡 =
𝜇

√1 + 𝜇2
𝑅𝑝𝑖𝑛∫ 𝑇𝑡𝑑𝛼𝑡

𝛼

0

 

= 

=
𝜇

√1 + 𝜇2
𝑇𝑡𝑅𝑝𝑖𝑛𝛼 

(I-9) 

The dependence on pitch angle 𝛼 is clear for this specific case. However, relations can be more 

complex. Eq.(I-10) gives the development for the bush/roller interface, again for a pin articulation. For 

this interface, the force to be considered is now 𝑇1 (see Figure I-25.a) which varies as 𝛼𝑡 goes from 0 

to 𝛼. 

 

𝑊𝑏𝑢𝑠ℎ 𝑟𝑜𝑙𝑙𝑒𝑟⁄ ,𝑝𝑖𝑛 𝑎𝑟𝑡 =
𝜇

√1 + 𝜇2
𝑅𝑝𝑖𝑛∫ 𝑇𝑡

sin(𝜙 + 𝛿 + 𝛼 − 𝛼𝑡)

sin(𝜙 + 𝛿 + 𝛼)
𝑑𝛼𝑡

𝛼

0

 

= 

=
𝜇

√1 + 𝜇2
𝑇𝑡𝑅𝑝𝑖𝑛

cos(𝜙 + 𝛿) − cos(𝜙 + 𝛿 + 𝛼)

sin(𝜙 + 𝛿 + 𝛼)
 

(I-10) 

The model proposed was able to capture the increasing efficiency for rising torque as well as the 

interest of larger sprockets. However, discrepancies between the model and the experimental 

measurements were reported for low torque and heavy chains. These differences were attributed to 

neglected loss phenomena such as vibrations and impacts between rollers and sprockets. 

More recently, Zhang & Tak [79] proposed a model considering meshing losses as well as damping in 

the chain links. Sgamma et al. [80] conducted an experimental study on chain efficiency. Based on the 

results obtained, they proposed a phenomenological model to predict drive efficiency. The range of 

parameters tested (particularly the slack strand tension) applied to motorcycle drives. 

In [81], the author proposed to consider the contribution of losses caused by roller motion along the 

corresponding tooth profile. This type of loss was denoted roller losses (see Figure I-23). Preliminary 

results were obtained providing simplifying hypotheses (the difference between pin and bush 

articulation was neglected, roller motion was independent from the applied torque). These results 
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suggested that roller losses could be as influential as meshing losses (see Figure I-27). This conclusion 

highlighted the interest of any potential model of chain drive efficiency considering roller motion. 

 
Figure I-27: Contribution of roller and meshing losses to global losses for different kinematic conditions 
(case a and b) [81] 

The dependencies of drive efficiency on sprocket size and driving torque call into question the 

optimisation of the full system containing the chain drive (even regardless of the influence of roller 

losses). Indeed, favouring for instance bigger sprockets increases the weight of the drive which can be 

detrimental to the whole mechanism (e.g., mountain bikes). Of course, the answer requires 

optimisation studies specific to each application considered (moving or static drive, fixed or varying 

rotational speed, etc.). Guidelines regarding global optimisations were proposed by Lodge & Burgess 

in [82]. Similarly, considering the cycling context, the relation with applied torque causes drive 

efficiency to vary along a race depending on the power supplied by the cyclist. This dependency was 

explored by Barnaby et al. in [83], [84]. 

All the models presented in this part assumed Coulomb law of friction [85]. The friction coefficients 

are always input variables. Their values are usually assumed and constant. Possible dependences of 

the friction coefficient on tribological conditions (e.g., roughness, sliding speed, etc.), such as proposed 

for instance in [86], are neglected. 

It can also be noted that the influence of vibrations on drive efficiency has never been studied. 

Further remarks on test rigs 

All the experimental studies presented by Kidd [76], Spicer et al. [77], Lodge & Burgess [70], Zhang & 

Tak [79] and Sgamma et al. [80] were based on test rigs reproducing the architecture of a usual chain 

drive. These test rigs had two shafts, for the driving and driven sprockets. These shafts were 

instrumented to measure torque and rotational speed and ultimately calculate drive efficiency (see 

Figure I-28.a). 

The advantage of this approach is its similarity to the real application. Measurements can be carried 

out for instance at fixed torque and/or rotational speed, for various sprockets, etc. The potential 

addition of a derailleur system is also facilitated by the architecture.  
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(a) (b) 

Figure I-28: (a) Usual test rig for efficiency measurements, adapted from [70] (b) pendulum test rig [87] 

However, the main drawback of this approach lies in the measurement uncertainties. Indeed, chain 

drives are very efficient mechanisms (about 98% for two sprocket drives [70]). Therefore, any test rig 

must have high accuracy to measure potential variations between drive configurations. Moreover, 

chain drives can transmit considerable powers (up to 1600𝑊 for track cycling5). Therefore, expensive 

sensors are usually required to match the required accuracy. To get round this challenge, alterative 

test rigs have been proposed. 

Egorov et al. [88] proposed to measure the deceleration of the drive. Providing that the inertias of both 

shafts are well known beforehand, the deceleration time allows measuring drive efficiency with high 

precision. The disadvantage of this architecture is that the efficiency obtained represents an average 

over the entire deceleration. Therefore, it does not allow assessing the efficiency for fixed conditions 

(e.g., fixed torque or rotational speed). 

Wragge-Morley et al. [87] proposed to build a pendulum with a chain drive (see Figure I-28.b). 

Measuring the oscillation decay characterises the dissipations occurring in the drive. This architecture 

reduces uncertainties [87] as time decay can be measured more easily and with better accuracy 

compared to torque. However, as with the inertia based measurement [88], such a test rig does not 

enable easily testing drive efficiency in fixed conditions. Moreover, any change of the sprocket tested 

might be difficult. 

This part was dedicated to a review of experimental and modelling works on chain drive efficiency. 

Experimental measurements showed that the efficiency of two sprocket drives used in track cycling 

applications is relatively high (about 99%). Higher efficiencies were also reported for larger sprockets 

and higher torques. Several models have been presented. Most of them are based on one of the 

tension models detailed in the previous part (§I.3) to calculate link tension 𝑇 and contact force 𝑃. 

Coulomb friction was assumed for all the models and constant friction coefficients were considered. 

Previous efficiency models were mostly based on meshing losses caused by the articulation of chain 

links during their meshing and un-meshing from sprockets (none considered the effect of strand 

vibrations). Based on this loss type, the beneficial effect of bigger sprockets and higher torques on 

drive efficiency was reproduced. Indeed, bigger sprockets reduce the pitch angle 𝛼 which limits 

meshing losses. As for higher torques, they cause the slack strand meshing losses to become less 

influential, which increases drive efficiency. However, meshing-loss based models failed to explain all 

 
5 For 300𝑁.𝑚 applied at 130𝑟𝑝𝑚 at the chainring. 
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the experimental measurements, particularly for low torques [70]. A possible explanation is given by a 

preliminary study presented by the author [81]. The results suggest that losses caused by roller motion 

along the associated profile (called roller losses) can contribute as much to global dissipation as 

meshing losses. 
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I.5 Conclusion and thesis objectives 

This chapter was dedicated to the introduction of the research context and literature review.  

First, the specificities of track cycling chain drives were detailed. The latter are mainly: light chains, 

moderated rotational speeds and high loading torques. These constraints led to a quasi-static 

modelling approach. 

An overview on roller chain drive was then given. The definition of standard sprockets was detailed. 

The polygonal effect, a phenomenon inherent to any chain drive, was presented. This phenomenon is 

important to consider when studying chain drive operation as it introduces transmission error resulting 

in a complex relation between the instantaneous speeds of the driving and driven sprocket The 

literature on the subject showed that kinematic models using four-bar mechanisms are an interesting 

approach when dynamical effects are neglected. 

The evolution of quasi-static tension models (dedicated to the calculation of link tensions and 

roller/sprocket contact forces) was then presented. The successive models improved the connection 

between loads and roller location. However, this connection was introduced along with numerical 

challenges which resulted in computationally intensive models. The successive results agreed with the 

link tension measurements performed on industrial drives (mainly, Naji & Marshek [62] and 

Stephenson et al. [72]). 

Finally, previous models and experimental measurements dedicated to chain drive efficiency were 

presented. Most models were based on meshing losses caused by the relative articulation between 

consecutive links during meshing and un-meshing. These models generally agreed with experimental 

data with a notable exception for low torques. Recently, the author highlighted that losses caused by 

roller motion along the associated tooth profile might have a significant influence on drive efficiency. 

However, the results were only preliminary and deeper studies are required to get rid of the simplifying 

hypotheses. This importance of roller losses also raised the question of the tooth profile as it might 

change the roller motion evolution. 

Thesis objectives 

Considering the previous works on the subject, the main objective of this thesis is to study chain drive 

efficiency, taking into account the influence of losses caused by roller motion along the associated 

tooth profile. To do so, a parametric model of chain drive efficiency is developed. The model will be 

able to consider different tooth profile geometries both from standards or created for the study (e.g., 

𝐴𝑆𝐴, 𝑁𝐹𝑚𝑖𝑛 and 𝑁𝐹𝑚𝑎𝑥). It will be used to test the influence of various parameters such as tension 

settings, loading conditions (i.e., driving torque), chain pitch, sprocket number of teeth, etc.  

Efficiency modelling will be carried out in two steps. First an original Quasi-Static Chain Drive Model 

(QSCDM) will be presented. Compared to previous works, its formulation is general such that any tooth 

profile geometry can be considered. This first model will compute loads (i.e., link tension and 

roller/sprocket contact force) and displacements (i.e., roller motion and link orientation). Elements of 

previous studies by Lodge & Burgess [70], Troedsson & Vedmar [69] and Kim & Johnson [52] will be 

reused. An original architecture based on dedicated sub-models for chain strands and sprocket is 

proposed to facilitate the numerical resolution and therefore limit the possible issues reported by 

Troedsson & Vedmar [69]. Validation will be presented based on industrial drives. The quasi-static 

model presented will then be used to study the influence of tooth profile geometry on both cycling 

and industrial chain drive behaviour (load evolution, roller motion, etc.). In the second step, an original 

Chain Drive Efficiency Model (CDEM) will be presented. Compared to previous studies, the influence 

of losses caused by roller motion is considered. Combined with the Quasi-Static Chain Drive Model 

(QSCDM), it will calculate chain drive efficiency considering roller motion and tooth profile geometry. 

Finally, the CDEM will be used to carry out a parametric study of track cycling drive efficiency 
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considering the influence of roller losses. Guidelines for possible optimisations will be discussed on the 

basis of the results obtained. 

Considering the track cycling application (light chain, moderate speed, see §I.1.2), dynamical effects, 

including strand vibrations, will be neglected. However, the proposed quasi-static model (QSCDM) is 

general and can be applied to any two-sprocket drive as long as the hypotheses are met (e.g., 

dynamical effects can be neglected). It can therefore be used for industrial drives6 with moderate 

rotational speed. Considering that the literature on quasi-static tension models (see §I.3) is mainly 

composed of industrial examples, the QSCDM will be validated on such industrial drives. The same 

reasoning stands for the efficiency model (CDEM). The latter will however be used to conduct a 

parametric study only on track cycling drives. 

 

  

 
6 Compared to track cycling drives, industrial ones usually have a smaller gear ratio 𝑍Ⅰ 𝑍Ⅱ⁄ . Chains can have a 
pitch different to 1/2′′ (higher or lower) and the slack to tight tension ratio 𝑇𝑠/𝑇𝑡 is usually higher due to higher 
slack strand tension (tensioners are often used). 
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This chapter introduces an original Quasi-Static Chain Drive Model (QSCDM). This model, dedicated to 

two-sprocket chain drives, calculates the location of each roller along its corresponding tooth profile 

simultaneously to the link tension and roller/sprocket contact force (generally designated as the loads). 

It consists of the first step of the Chain Drive Efficiency Model (CDEM), introduced later in Chapter IV. 

The QSCDM considers a whole drive with relations between the chain strands and the sprockets. The 

drive studied is characterised by its geometry (centre distance, vertical shift between the sprockets), 

the chain properties (pitch, link mass and roller diameter) as well as the 2D tooth profile of each 

sprocket (tooth geometry and sprocket pitch). Dependency on the external loading conditions (e.g., 

driving torque) and the drive geometry (e.g., slack strand tension setting) is investigated. The model 

has the ability to run using different tooth profile geometries. 

Although being as general as possible, this model is meant to study single-speed bicycle drives. The 

hypotheses chosen are therefore adapted to this context. As no derailleur system is present for single 

speed drive, the model is assumed to be planar (2D). Cycling drives are used with relatively light chains 

(≈3.6 𝑔/𝑙𝑖𝑛𝑘) and moderate rotational speed (130𝑟𝑝𝑚 at most on the driving sprocket, see Chapter 

I). Thus, all dynamical effects are neglected hence the quasi-static model. Variations in chain 

dimensions are neglected (including wear and manufacturing imperfections) as all dimensions are 

assumed to be nominal. Moreover, based on the work of Naji & Marshek [2], which states that part 

deformations do not significantly influence load distribution, all the components are assumed to be 

rigid. Link elongation and tooth deflection are therefore not considered. Friction is introduced using a 

correction angle as presented by Naji & Marshek [2], [62], [64]. 

The Quasi-Static Chain Drive Model (QSCDM) consists of three sub-models connected to each other: 

the first two are for each chain strand (tight and slack) and the last one is used for both the driving and 

the driven sprocket. The slack strand is considered with a similar approach to that of Troedsson & 

Vedmar [67] and Lodge & Burgess [70], assuming that only gravitation applies on the strand. The tight 

strand is considered to be straight and modelled as a four bar mechanism [1], [35]. An original 

numerical procedure is presented to calculate the strand trajectories and the number of links in each 

sub-model (denoted as global kinematics). The global kinematics is assumed to be independent from 

the tooth profile geometry as all the rollers in contact with a sprocket are considered to lie on the pitch 

circle. Moreover, as part deformations are neglected, this global kinematics is also independent from 

the loading conditions applied on the drive. The local sprocket sub-model (used for the driving and the 

driven sprocket) is based on the approach presented by Kim & Johnson [52]. However, instead of being 

assumed and constant, imposed link tensions are based on the kinematics and external loading 

conditions determined. Roller locations are therefore calculated considering the influence of the 

previous part of the model. Compatibility issues occurring at the transition between each sub-model 

are also addressed. As the model is quasi static, each consecutive drive sub-position is solved 

independently. 
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Figure II-1: General Quasi-Static Chain Drive Model (QSCDM) solving procedure 

The general solving procedure is presented in Figure II-1. This chapter details the different steps. First, 

the global kinematics is introduced including the tight and slack strand modelling. The local sprocket 

sub-model is then presented. It details the dependency between roller locations and loads and 

determines each simultaneously. Finally, the procedure used to solve the entire model is presented. 

  

Tight 

strand

Local sprocket

sub-model

For all sub-positions

Slack 

strand

Global kinematics

Loading conditions

Loads & Roller locations:

Inputs for the CDEM (Chapter IV)
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II.1 Global drive kinematics 

For the sake of convenience, in the entire manuscript, unless otherwise stated, the driving sprocket 

rotates clockwise (angle 𝜁) and is represented on the right-hand side of the drive. Thus, the tight 

strand, transmitting power, is always the one above. Links and rollers are numbered spatially according 

to Figure II-2 using index 𝑖. Roller 𝑖 = 1 is the first roller in contact with the driving sprocket then 𝑖 

increases in the rotation direction of the drive (clockwise direction). Link 𝑖 is always located before 

roller 𝑖 (in the direction of rotation). The driving and driven sprockets are denoted 𝑗 = Ⅰ and 𝑗 = Ⅱ, 

respectively (see Figure II-2). Except for 𝜁 monitoring the driving sprocket rotation, all angles are 

positive counter-clockwise. 

 
Figure II-2: Link and roller spatial numbering  

The number of links with both rollers in contact with the driving and the driven sprockets are denoted 

𝑛Ⅰ and 𝑛Ⅱ, respectively. The number of links in the tight and slack strand are 𝑛𝑡 and 𝑛𝑠, respectively. 

Therefore, the total number of links and rollers in the chain 𝑛𝑡𝑜𝑡 is given by eq.(II-1). 

 𝑛𝑡𝑜𝑡 = 𝑛Ⅰ + 𝑛Ⅱ + 𝑛𝑠 + 𝑛𝑡 (II-1) 

For the global kinematics, the clearance between the roller and the tooth profile is neglected. 

Therefore, it is assumed that the centres of the rollers in contact with a sprocket lie on the 

corresponding pitch circle. Based on [33], Figure II-3 shows the parameters used to characterise a given 

drive. 
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Figure II-3: Definition of the global drive geometry (a) drive spatial parameters (b) pitch circles and common 
tangents 

The parameters in Figure II-3 are: 

• 𝛼𝑗 = 2𝜋/𝑍𝑗, the angular pitch of sprocket 𝑗. 𝑍𝑗  being the number of teeth of sprocket 𝑗, 

• 𝑝, the chain and sprocket pitch (assumed to be equal), 

• 𝐿 = ‖𝑂Ⅱ𝑂Ⅰ
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ‖, the centre distance between the driving and driven sprocket axes, 

• 𝜏 = (𝑥⃗, 𝑂Ⅱ𝑂Ⅰ
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ), the tilting angle between the centre axis 𝑂Ⅱ𝑂Ⅰ

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  and the horizontal direction 𝑥⃗, 

• Δ𝑌 = 𝑂Ⅱ𝑂Ⅰ
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ . 𝑦⃗, the vertical signed distance between the sprocket axes, 

• Δ𝑋 = 𝑂Ⅱ𝑂Ⅰ
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ . 𝑥, the horizontal signed distance between the sprocket axes, 

• 𝑅𝑗 = 𝑝 [sin(𝛼𝑗 2⁄ )]⁄ , the radius of the pitch circle for sprocket 𝑗, 

• 𝛽 = (𝑂Ⅱ𝑂Ⅰ
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ,𝑀Ⅱ𝑀Ⅰ

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) = sin−1 (
𝑅Ⅰ−𝑅Ⅱ

𝐿
), the angle between the centre axis 𝑂Ⅱ𝑂Ⅰ

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  and the top 

common tangent. The bottom common tangent is symmetrical to the top one with respect to 

𝑂Ⅱ𝑂Ⅰ
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ . The tangency points for the top and bottom common tangent are denoted 𝑀𝑗 and 𝑁𝑗, 

respectively. 
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II.1.1 Tight strand sub-model 

This part details the sub-model used for the tight strand of the chain drive. 

The tight strand is assumed to be a straight line between the first and last roller (in terms of index 𝑖) 

contacting the driving and driven sprocket, respectively (i.e., rollers 𝑖 = 1 and 𝑖 = 𝑛Ⅰ + 𝑛Ⅱ + 𝑛𝑠 + 1 

see Figure II-4). These two specific rollers are called strand tips, and link articulations are assumed to 

occur only at these points. 

 
Figure II-4: Tight strand definition 

The strand tips-roller centres are called 𝐵𝑗 (𝑗 = Ⅰ or Ⅱ for the driving and driven sprocket, respectively). 

The centres of the adjacent rollers are called 𝐴𝑗 and 𝐶𝑗 (Figure II-4). The rollers of centre 𝐶𝑗 are in 

contact with the sprocket while the rollers of centre 𝐴𝑗 lie in the tight strand. 

Angles 𝛼𝑡,Ⅰ and 𝛼𝑡,Ⅱ are introduced in eqs.(II-2) between the directions of the tight strand and the 

closest link with both rollers in contact with the driving and driven sprockets, respectively (as in [2], 

[64], [70]). 

 𝛼𝑡,Ⅰ = (𝐶Ⅰ𝐵Ⅰ
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝐵Ⅰ𝐴Ⅰ

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗) (a) 
(II-2) 

 𝛼𝑡,Ⅱ = (𝐵Ⅱ𝐴Ⅱ
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗, 𝐶Ⅱ𝐵Ⅱ

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗) (b) 

These angles will be used the check the validity of the drive kinematics and for load calculation (see 

§II.1.3 and §II.2.2). 

As the transmission rotates, the positions of the strand tips move along the pitch circles. Thus, the tight 

strand direction varies during the drive operation and is therefore distinct from the common tangent 

direction 𝛽 which is constant for a given drive. To monitor these variations, angle 𝛽𝑡 (Figure II-4) is 

introduced to measure the direction of the tight strand while angles 𝜓𝑡,𝑗 (Figure II-5) track the position 

of the strand tips relatively to the tangency points (𝑀𝑗), see eq.(II-3) and (II-4). 

 𝛽𝑡 = (𝑂Ⅱ𝑂Ⅰ
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝐵Ⅱ𝐵Ⅰ

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) (II-3) 

 

 𝜓𝑡,Ⅰ = (𝑂Ⅰ𝐵Ⅰ
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗, 𝑂Ⅰ𝑀Ⅰ

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) (a) 
(II-4) 

 𝜓𝑡,Ⅱ = (𝑂Ⅱ𝑀Ⅱ
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑂Ⅱ𝐵Ⅱ

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗) (b) 
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Figure II-5: Definition of (a) 𝝍𝒕,Ⅱ (b) 𝝍𝒕,Ⅰ (b) 

The tight strand induces a dependency between the rotation of the driving and driven sprockets. This 

dependency is expressed using a four bar mechanism [1], [32], [35]–[37] (see Chapter I, §I.2.2) 

illustrated in Figure II-6. 

 
Figure II-6: Four bar model of the tight strand 

The chain closure condition involves the following equations between 𝛽, 𝜓𝑡,Ⅰ, 𝜓𝑡,Ⅱ and 𝛽𝑡. 

 {
𝑥𝑡 cos(𝛽𝑡) − 𝑅Ⅱ sin(𝜓𝑡,Ⅱ + 𝛽) + 𝑅Ⅰ sin(𝛽 − 𝜓𝑡,Ⅰ) = 𝐿

𝑥𝑡 sin(𝛽𝑡) + 𝑅Ⅱ cos(𝜓𝑡,Ⅱ + 𝛽) − 𝑅Ⅰ cos(𝛽 − 𝜓𝑡,Ⅰ) = 0
 (II-5) 

with: 

 𝑥𝑡 = 𝑝𝑛𝑡 (II-6) 

Once the tight strand is fully defined (i.e., 𝜓𝑡,𝑗 and 𝛽𝑡 are known), angles 𝛼𝑡,Ⅰ and 𝛼𝑡,Ⅱ can be calculated 

using eqs.(II-2). Figure II-7 shows a zoom-in and these two angles. 
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Figure II-7: Definition of angles (a) 𝜶𝒕,Ⅱ (b) 𝜶𝒕,Ⅰ 

As the tight strand is assumed to be straight, the tension is the same for all the included links. This 

particularly stands for the boundary link tensions 𝑇𝑖=1 and 𝑇𝑖=𝑛Ⅰ+𝑛𝑠+𝑛Ⅱ+2 denoted 𝑇𝑡,Ⅰ and 𝑇𝑡,Ⅱ, 

respectively (see eq.(II-7), link numbering is given in Figure II-2). 

 𝑇𝑡,Ⅰ = 𝑇𝑖=1 (a) 

(II-7)  𝑇𝑡,Ⅱ = 𝑇𝑖=𝑛Ⅰ+𝑛𝑠+𝑛Ⅱ+2 (b) 

 𝑇𝑡,Ⅰ = 𝑇𝑡,Ⅱ (c) 

II.1.2 Slack strand sub-model 

As with the tight strand, the slack strand tips are the centres of the first and last contacting rollers of 

the driven and the driving sprockets, respectively (i.e., roller 𝑖 = 𝑛Ⅰ + 𝑛𝑠 + 1 and 𝑖 = 𝑛Ⅰ + 1 in Figure 

II-2). Their roller centres are designated as 𝐸𝑗  and the centres of the adjacent rollers are 𝐷𝑗 and 𝐹𝑗 (see 

Figure II-8). 

 
Figure II-8: Slack strand definition 

Angles 𝛼𝑠,𝑗  (Figure II-8) and 𝜓𝑠,𝑗 (Figure II-9) are also defined in a similar way to the tight strand in 

eqs.(II-8). 
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 𝛼𝑠,Ⅰ = (𝐸Ⅰ𝐹Ⅰ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝐷Ⅰ𝐸Ⅰ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗) (a) 
(II-8) 

 𝛼𝑠,Ⅱ = (𝐷Ⅱ𝐸Ⅱ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗, 𝐸Ⅱ𝐹Ⅱ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) (b) 

 

 𝜓𝑠,Ⅰ = (𝑂Ⅰ𝑁Ⅰ
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗, 𝑂Ⅰ𝐸Ⅰ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗) (a) 

(II-9) 
 𝜓𝑠,Ⅱ = (𝑂Ⅱ𝐸Ⅱ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗, 𝑂Ⅱ𝑁Ⅱ

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗) (b) 

 

 
Figure II-9: Definition of (a) 𝝍𝒔,Ⅱ (b) 𝝍𝒔,Ⅰ 

As the slack strand does not transmit load, its tension is significantly lower than the tight one. As such, 

the effect of gravity on the strand trajectory is preponderant. To consider this effect, the model 

presented by Troedsson & Vedmar [67] and improved by Lodge & Burgess [70] is used. The load in the 

strand is assumed to be due solely to gravitation and the link masses are considered to be lumped at 

the roller centres. The slack strand is therefore modelled as a set of punctual masses (each with mass 

𝑚𝑙𝑖𝑛𝑘) linked with massless bars (see Figure II-10). The centre of roller 𝑖 is designated as 𝑅𝑖. 

 
Figure II-10: Slack strand modelling 

A given roller is subjected to three external forces (Figure II-10). The tension in the preceding and 

following links (respectively 𝑇𝑖 and 𝑇𝑖+1) and the weight (corresponding to the weight of one chain link 

of mass 𝑚𝑙𝑖𝑛𝑘). The spatial direction of link 𝑖 is given relatively to the horizontal direction (𝑥⃗ in Figure 

II-10) by angle 𝜆𝑖.The equilibrium of a roller leads to the following equations. 
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{
 
 

 
 𝑇𝑖+1 = 𝑇𝑖

cos(𝜆𝑖)

cos(𝜆𝑖+1)

tan(𝜆𝑖+1) =
𝑚𝑙𝑖𝑛𝑘𝑔 + 𝑇𝑖 sin(𝜆𝑖)

𝑇𝑖 cos(𝜆𝑖)

        (II-10) 

with: 

• 𝑖 ∈ ⟦𝑛Ⅰ + 2, 𝑛Ⅰ + 𝑛𝑠⟧ 

• 𝜆𝑖 = (𝑥⃗, 𝑅i𝑅i−1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗) 

Equations (II-10) connect the characteristics of one roller/link pair (e.g., 𝜆𝑖 and 𝑇𝑖) with the following 

one (𝜆𝑖+1, 𝑇𝑖+1). Therefore, if a set of values (𝑇𝑖, 𝜆𝑖) is known, it is possible to calculate all the tensions 

and link orientations considering all the rollers step by step. 

Moreover, as presented by Lodge & Burgess in [70], a valid slack strand must fulfil the following 

equations (eqs.(II-11), see Figure II-10), ensuring that a set of angles 𝜆𝑖 is consistent with the positions 

of the strand boundaries.  

 ∑ 𝑝cos(𝜆𝑖)

𝑛Ⅰ+𝑛𝑠+1

𝑖=𝑛Ⅰ+2

− 𝐷𝑥 = 0 (a) 

(II-11)    

 ∑ 𝑝sin(𝜆𝑖)

𝑛Ⅰ+𝑛𝑠+1

𝑖=𝑛Ⅰ+2

− 𝐷𝑦 = 0 (b) 

Therefore, once the slack strand tips’ locations are known (i.e., angles 𝜓𝑠,𝑗), distances 𝐷𝑥 and 𝐷𝑦 are 

deduced and the corresponding slack strand can be calculated. Numerical search is used to find a set 

of values (e.g., 𝑇𝑛Ⅰ+2, 𝜆𝑛Ⅰ+2) resulting in the smallest residual value on eqs.(II-11). Similarly with the 

tight strand, once the slack strand trajectory is known (angles 𝜆𝑖 for all rollers), the values of angles 

𝛼𝑠,Ⅰ and 𝛼𝑠,Ⅱ can be computed using eqs.(II-8). 

The tension in the boundary links (𝑇𝑖=𝑛Ⅰ+2 and 𝑇𝑖=𝑛Ⅰ+𝑛𝑠+1) are denoted 𝑇𝑠,Ⅰ and 𝑇𝑠,Ⅱ, respectively. 

Unlike the tight strand (see eqs.(II-7)), they do not necessarily have the same value. 

 𝑇𝑖=𝑛Ⅰ+2 = 𝑇𝑠,Ⅰ (a) 
(II-12) 

 𝑇𝑖=𝑛Ⅰ+𝑛𝑠+1 = 𝑇𝑠,Ⅱ (b) 

The slack strand sub-model can only be used in conditions where the number of links in the strand is 

sufficient. As no link elongation is modelled, the condition translates in eq.(II-13), ensuring that the 

distance between strand tips is smaller than the strand length. 

 √𝐷𝑥
2  + 𝐷𝑦

2 < 𝑝𝑛𝑠  (II-13) 

In order to study the influence of the tension setting on drive behaviour and efficiency, it is necessary 

to quantify strand looseness. A representation of the chain tension is usually obtained with a measure 

of the mid-span movement (i.e., the peak to peak slack strand deflection) expressed as a proportion 

of 𝐿 [73] (Figure II-11). The mid-span recommendation is 4-6% of 𝐿 for regular industrial drives [73]. 

For sensitive transmissions (high speed, impulse, reversing) the setting can be reduced to 2-3% [73].  
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Figure II-11: Mid-span movement of the slack strand, adapted from [73] 

The procedure to geometrically calculate the mid-span movement for a given drive sub-position is 

given in the Appendix E. As its value changes for each sub-position (i.e., for each driving sprocket 

orientation), the looseness setting of a given drive is calculated as the mean mid-span movement value 

on ten linearly spaced sub-positions within the drive movement studied. For the rest of the manuscript, 

the looseness setting will be given as a proportion of 𝐿 expressed in % for each drive studied. 

II.1.3 Global kinematics: numerical procedure 

The models for the tight and slack strand have been introduced. The numerical procedure to solve the 

global kinematics is now detailed. 

Both strands have been introduced as independent systems. However, they are connected by the 

driving and driven sprockets. The centre of every roller in contact with a sprocket is assumed to lie on 

the related pitch circle at a distance 𝑝 apart from each other. Therefore, the tight and slack tips on a 

given sprocket are intertwined by the following equation (see Figure II-12 and eqs.(II-4) and (II-9)). 

 𝜋 − 2(−1)𝑗𝛽 = 𝜓𝑡,𝑗 + 𝛼𝑗𝑛𝑗 + 𝜓𝑠,𝑗 (II-14) 

 

 
Figure II-12: Relation between 𝝍𝒔,Ⅰ and 𝝍𝒕,Ⅰ 

Angles 𝛼𝑡,𝑗 and 𝛼𝑠,𝑗, introduced in the previous sections, are now used to assess the validity of any 

proposed kinematics [81] as they are restricted to the interval ]0, 𝛼𝑗] (with 𝑗 = Ⅰ,Ⅱ). Indeed, let us 
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consider the meshing at the driving sprocket (roller coming from the tight strand to be captured by the 

driving sprocket). When a new roller comes into contact with the sprocket (roller 𝐵 in Figure II-13.a), 

angle 𝛼𝑡,Ⅰ equals 0+. Angle 𝛼𝑡,Ⅰ increases as the driving sprocket continues its rotation. Assuming that 

the following roller comes into contact when its centre hits the pitch circle, the next capture occurs 

when 𝛼𝑡,Ⅰ = 𝛼Ⅰ (Figure II-13.b). At the following instant, the strand tip jumps to roller A and the same 

procedure is repeated. 

 
Figure II-13: Extreme satisfactory tight strands at the driving sprocket with (a) 𝜶𝒕,Ⅰ = 𝟎

+, (b) 𝜶𝒕,Ⅰ = 𝜶Ⅰ 

The global kinematics is independent from the loading conditions and cyclic. The angular period 

corresponds to a driving sprocket rotation of 𝛼Ⅰ (inducing an 𝛼Ⅱ rotation of the driven one). 

Calculations are therefore only carried out for one drive period (i.e., the driving sprocket rotation angle 

𝜁 goes from 𝜁 = 0 to 𝜁 = 1). The period considered is divided into sub-positions upon which the 

following numerical procedure is applied. 

The tight strand is solved first following the flow chart presented in Figure II-14.a. The algorithm is 

initialised with values for 𝜓𝑡,Ⅰ and 𝑛𝑡. Values for 𝛽𝑡 and 𝜓𝑡,Ⅱ are then computed using equations (II-5) 

and angles 𝛼𝑡,Ⅰ and 𝛼𝑡,Ⅱ are calculated using eqs.(II-2). The values obtained are compared to the 

interval ]0, 𝛼𝑗] to check the validity of the kinematics proposed. If the conditions are not fulfilled, the 

initial predictions are changed. Indeed, if 𝛼𝑡,Ⅰ exceed 𝛼Ⅰ, it means that the roller assumed to be the 

strand tip is in fact the second meshed roller (see Figure II-15.a). Therefore, the number of links in the 

tight strand as well as the value of 𝜓𝑡,Ⅰ must be adjusted (a link is removed from the tight strand and 

𝜓𝑡,Ⅰ is reduced by 𝛼Ⅰ). Similarly, a negative value of 𝛼𝑡,Ⅰ signifies that the roller assumed to be the strand 

tip is in reality part of the tight strand (see Figure II-15.b). The same reasoning applies to the driven 

sprocket with 𝛼Ⅱ except that 𝜓𝑡,Ⅱ is not adjusted as its value is calculated using the four-bar mechanism 

relation (eqs. (II-5)). When the conditions on 𝛼𝑡,𝑗 are met, the tight strand is solved. 
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(a) (b) 

 Figure II-14: Flow chart for (a) tight and (b) slack strand numerical calculation 

The slack strand is then determined using the algorithm presented in Figure II-14.b. The method is 

similar to that used for the tight strand except for the initializing variables. The values for 𝑛Ⅰ and 𝑛Ⅱ 

are first predicted. The locations of the corresponding slack strand tips (i.e., 𝜓𝑠,𝑗) are then determined 

using equation (II-14). Based on these locations, a slack strand is modelled and the corresponding 𝛼𝑠,𝑗 

angles are calculated and compared to ]0, 𝛼𝑗] to check the validity of the proposed geometry. As with 

the tight strand, if the conditions are not met, the initial predictions are changed until an acceptable 

proposal is found. 

 
Figure II-15: Unsatisfactory tight strand at the driving sprocket (a) 𝜶𝒕,Ⅰ > 𝜶Ⅰ (b) 𝜶𝒕,Ⅰ < 𝟎 

𝛼𝑡,Ⅰ ∈ ]0, 𝛼Ⅰ]  

Initialise 𝜓𝑡,Ⅰ and 𝑛𝑡 

Tight strand solved 

(i.e., 𝛽𝑡, 𝑛𝑡, 𝜓𝑡,𝑗  

and 𝛼𝑡,𝑗  known) 

Calculate 𝜓𝑡,Ⅱ and 𝛽𝑡  

(eq.(II-5)) 

then 𝛼  and 𝛼  (eqs.(II-2)) 

𝛼𝑡,Ⅰ ≤ 0  ൜
𝑛𝑡 = 𝑛𝑡 + 1

𝜓𝑡,1 = 𝜓𝑡,Ⅰ + 𝛼Ⅰ
 

 

𝛼𝑡,Ⅰ > 𝛼Ⅰ ൜
𝑛𝑡 = 𝑛𝑡 − 1

𝜓𝑡,1 = 𝜓𝑡,Ⅰ − 𝛼Ⅰ
 

𝛼𝑡,Ⅱ  ∈ ]0, 𝛼Ⅱ]  

 

𝛼𝑡,Ⅱ ≤ 0  𝑛𝑡 = 𝑛𝑡 + 1 
 

𝛼𝑡,Ⅱ > 𝛼2 𝑛𝑡 = 𝑛𝑡 − 1 

Yes 

No 

No 

Yes No 

𝛼𝑠,Ⅰ ∈ ]0, 𝛼Ⅰ]  

Model a slack strand (eq.(II-10)) then 

calculate 𝛼𝑠,Ⅰ and 𝛼𝑠,Ⅱ (eqs (II-8)) 

Initialise 𝑛Ⅰ and 𝑛Ⅱ 

Slack strand solved 

(i.e., 𝜓𝑠,𝑗, 𝛼𝑠,𝑗 , 𝜆𝑖 

 and 𝑇𝑠,𝑗 known) 

 

Calculate 𝜓𝑠,Ⅰ and 𝜓𝑠,Ⅱ (eq.(II-14))  𝛼𝑠,Ⅰ ≤ 0  𝑛Ⅰ = 𝑛Ⅰ − 1 
 

𝛼𝑠,Ⅰ > 𝛼Ⅰ 𝑛Ⅰ = 𝑛Ⅰ + 1 

 

𝛼𝑠,Ⅱ ∈ ]0, 𝛼Ⅱ]  

𝛼𝑠,Ⅱ ≤ 0  𝑛Ⅱ = 𝑛Ⅱ − 1 
 

𝛼𝑠,Ⅱ > 𝛼2 𝑛Ⅱ = 𝑛Ⅱ + 1 

 

Yes 

Yes 

No 
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The first sub-position to be solved is characterised by the initial driving sprocket orientation 𝜓𝑡,Ⅰ|𝑖𝑛𝑖𝑡 

(given as input parameter). Any initial value for 𝑛𝑡|𝑖𝑛𝑖𝑡 and 𝑛𝑗|𝑖𝑛𝑖𝑡
 can be provided. However, to limit 

the number of steps and improve computation time, the following initial values are used. The initial 

value of 𝑛𝑡 is obtained considering that the length of the common tangents equals 𝐿 cos(𝛽) (see Figure 

II-3). Similarly, initial values of 𝑛𝑗 (see eq.(II-16)) are based on the theoretical wrapping angle of 

sprocket 𝑗 (𝑂j𝑁j
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗, 𝑂j𝑀j

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗) being equal to 𝜋 ± 2𝛽 depending on the sprocket being driving or driven (see 

Figure II-12). 

 𝑛𝑡|𝑖𝑛𝑖𝑡 = round(
𝐿 cos(𝛽)

𝑝
) (II-15) 

   

 𝑛𝑗|𝑖𝑛𝑖𝑡
= round(

𝜋 − 2(−1)𝑗𝛽

𝛼𝑗
) (II-16) 

with: 

• round, function giving the nearest integer 

The global kinematics numerical procedure presented in Figure II-14 stops when an acceptable 

geometry is found. Therefore, if two (or more) acceptable geometrical solutions coexist for the same 

drive position (i.e., same 𝜁), the procedure can stop on either one depending on the initialisation 

values. In the preliminary study presented in [81], no such issue was reported. This was probably 

because the slack strand was assumed to be a straight line like the tight one. However, using the more 

developed non-linear model presented in §II.1.2, the coexistence of two simultaneous geometrical 

solutions was observed for the slack strand. 

The two possible solutions can be generated using either the results of the preceding or following drive 

sub-position as the initialisation value (respectively called forward and backward calculation, see 

Figure II-16). 

 
Figure II-16: Kinematic procedure for forward and backward calculation 

Figure II-17 shows the evolution of the number of links in the slack strand during one drive period 

(from 𝜁 = 0 to 𝜁 = 𝛼Ⅰ) for two slack strand settings to appreciate the two simultaneous solutions. It 

can be seen that the two solutions agree on the most part of the drive period. The two solutions differ 

on “non-determined zones”. Elsewhere, they are in accordance on “agreement zones”. The differences 

between the two solutions are caused by different predictions of the roller capture and release events 

at the slack strand. It is observed that the width of the non-determined zones increases with the 

slackness of the strand. (i.e., the looser the strand, the larger the non-determined zones, see Figure 

II-17). 

Backward calculation

Forward calculation
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Figure II-17: Non-determined zone for (a) slack=4% (b) slack=50% 

In real life cases, the backward calculation would represent a backward rotation of the driving sprocket 

(counter-clockwise according to the convention of this manuscript) but still with the upper strand being 

tight. Such drive operations are non-physical and therefore not considered here. Consequently, the 

forward calculation solution is always considered. However, to ensure that the forward branch is 

chosen, the initial position (given by 𝜓𝑡,Ⅰ|𝑖𝑛𝑖𝑡) must be in an agreement zone. Therefore, a specific 

check is added at the initialisation of the procedure. If the starting position prescribed by 𝜓𝑡,Ⅰ|𝑖𝑛𝑖𝑡 lies 

in one of the non-determined zones, the global kinematics calculation is initialised with the closest 

unambiguous drive sub-position. The cyclic properties of the model are then used to obtain the 

kinematics with the phasing prescribed by 𝜓𝑡,Ⅰ|𝑖𝑛𝑖𝑡. 

The global drive kinematics giving both strands’ trajectories as well as the numbers of links in each sub-

model (i.e., 𝑛𝑡, 𝑛𝑠, 𝑛Ⅰ and 𝑛Ⅱ), has been presented. The slack tensions for each sprocket (𝑇𝑠,Ⅰ and 𝑇𝑠,Ⅱ) 

are also determined. The results are independent from the loading conditions and tooth profiles as the 

rollers in contact with a sprocket are assumed to lie on each pitch circle. The tight strand sub-model 

has been detailed. It consists of a four-bar mechanism and expresses the dependency between the 

rotation of the driving and driven sprockets. The slack strand sub-model, based on the works of 

Troedsson & Vedmar [67] and Lodge & Burgess [70] is also presented. It calculates the trajectory of a 

hanging chain strand subjected only to its weight. Finally, the original numerical procedure used for 

the calculation of the global kinematics is introduced. The question of simultaneous solutions due the 

non-linear slack strand model is treated. The solution obtained with the recursive algorithm is always 

preferred (each sub-position is initialised using the results of the preceding one). 
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II.2 Local sprocket sub-model, roller location and 

load calculation 

This part details the local sprocket sub-model used for the simultaneous calculation of loads and roller 

locations. This sub-model can be used on either the driving or the driven sprocket. 

In this part, as only one sprocket is considered at a time, the subscript 𝑗 is not specified unless essential 

for understanding. For instance, notations 𝛼, 𝛼𝑡, 𝛼𝑠 are used to designate variables 𝛼𝑗, 𝛼𝑡,𝑗, 𝛼𝑠,𝑗, 

respectively. All indexes 𝑖 refer to the driving sprocket. In particular roller 𝑖 = 1 corresponds to the 

first roller in contact with the sprocket, while roller 𝑖 = 𝑛 + 1 corresponds to the last roller in contact 

(marking the transition with the tight and slack strand respectively). The developments for the driven 

sprocket are obtained by changing these indexes according to Figure II-2  

II.2.1 Location of a roller along its corresponding tooth profile 

a) Tooth profile definition 

The definition of sprocket geometry has been detailed in Chapter I. In this model, it is assumed that all 

sprocket angular sectors are identical. Therefore, a sprocket is fully defined by one angular sector in 

the local coordinate system (𝑂𝑖 , 𝑥i⃗⃗⃗ ⃗, 𝑦i⃗⃗⃗ ⃗) (see Figure II-8.b). The angular sector is defined as a piecewise 

curve where each portion is either a circle arc or a straight line. The definition of the portions must 

ensure the continuity of the slope (i.e., the derivative of the curve). Moreover, the defined geometry 

must be such that it is not possible for a roller to contact the profile at more than one point. This 

implies that the radius of any convex circle portion (especially the tooth bottom circle of radius 𝑅𝑡𝑏) 

must be greater than the roller radius (e.g., 𝑅𝑡𝑏 > 𝑅𝑟𝑜𝑙𝑙𝑒𝑟 in Figure II-18). 

 
Figure II-18: Tooth profile (a) roller centre trajectory (b) local coordinate system (the clearance between roller 
and profile is exaggerated) 

Axes 𝑥i⃗⃗⃗ ⃗ and 𝑦i⃗⃗⃗ ⃗ can be seen in the radial and tangential directions to the pitch circle at the local origin 

respectively (see Figure II-18). The local origins of two adjacent tooth profiles are 𝛼𝑗 apart (see Chapter 

I and Figure II-20 below). 

Knowing the roller radius and the definition of the tooth profile, it is possible to determine the roller 

centre trajectory. This curve is composed of all the possible locations for the centre of a roller in contact 

with the defined profile. In practice, this curve is defined as the parallel to the tooth profile (toward 

𝑂𝑖), shifted by 𝑅𝑟𝑜𝑙𝑙𝑒𝑟 (Figure II-18). It therefore has the same number of circle arcs and lines as the 

tooth profile. A procedure to calculate the roller centre trajectory based on 𝑅𝑟𝑜𝑙𝑙𝑒𝑟 and the tooth 

profile definition is detailed in the Appendix B.  
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To locate the roller along its corresponding tooth profile, three different coordinates are used (see 

Figure II-19). These three coordinates are intertwined and knowing only one of them is sufficient to 

calculate the remaining two. The conversion methodology is detailed in the Appendix C. 

• 𝛾 is a dimensionless coordinate. The definition is similar to coordinates 𝜂 and 𝜉 in [67] and [52] 

respectively. 𝛾 starts at 0 and is an integer at each point of transition between two portions of 

the curve. Therefore, 𝛾 ranges between [0, 𝑁𝑏𝑝𝑜𝑟𝑡𝑖𝑜𝑛], with 𝑁𝑏𝑝𝑜𝑟𝑡𝑖𝑜𝑛 being the number of 

curve portions defining the tooth profile. Between integers, 𝛾 varies linearly with the sweeping 

angle 𝜃 for circle sectors and with 𝑥 for the straight parts (see Figure II-19). 

• 𝑠𝑐 is the curvilinear abscissa of the contact point between the roller and its corresponding 

tooth profile (along the tooth profile). 

• 𝑠𝑟  is the curvilinear abscissa of the roller centre along the roller centre trajectory. 

Coordinate 𝛾 is easier to interpret than the curvilinear abscissas but it also distorts reality. A distance 

of e.g., Δ𝛾 = 0.5 does not correspond to the same distance in 𝑚𝑚 depending on the curve portion 

considered. On the contrary, the curvilinear abscissas will be used for calculations but their 

interpretation in terms of roller position along the tooth profile is more difficult. 

  
(a) (b) 

Figure II-19: (a) Roller location coordinates (b) Definition of circle arc and line profile portion (the clearance 
between roller and profile is exaggerated) 

b) Relation between consecutive roller locations 

The relation between consecutive roller locations is considered in a way similar to that of Kim & 

Johnson [52] and Troedsson & Vedmar [67] (see Chapter I). Therefore, adjacent rollers on a given 

sprocket are distant by a chain pitch 𝑝. Therefore, knowing the location of a roller, the adjacent one 

will lie on the roller centre trajectory of the adjacent profile at a distance 𝑝. The problem can therefore 

be treated as finding the intersection between a circle of radius 𝑝 centred at the known roller position 

and the adjacent roller centre trajectory (see Figure II-20) 
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Figure II-20: Dependency between the location of two adjacent rollers (the clearance between roller and 
profile is exaggerated) 

A detailed procedure (based on [52]) to calculate the location of the following roller (from the tight to 

the slack strand) based on the adjacent one is given in the Appendix D. This procedure is general and 

can be applied to any tooth profile. 

As proposed by Kim & Johnson [52] and Troedsson & Vedmar [67] (see Chapter I, §I.3), the relation 

between two consecutive roller locations is visualised by plotting 𝛾𝑖+1 as a function of 𝛾𝑖. This 

representation is called the roller location characteristic curve. The same relation can also be plotted 

for the two additional coordinates 𝑠𝑐 and 𝑠𝑟. Examples of curves obtained using 𝑠𝑟  and 𝑠𝑐 as roller 

location variables are presented in Figure II-21. The general image of the curves is affected but the 

intrinsic relation is the same. Transition points and the three zones presented in §I.3 are visible. As for 

𝛾, the curves using 𝑠𝑐 or 𝑠𝑟  also exhibit values for articulation 𝑖 which results in a non-defined roller 

location for articulation 𝑖 + 1 (see Figure II-21.b). 
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Figure II-21: Example of roller location characteristic curves for (a) 𝜸, (b) 𝒔𝒄, (c) 𝒔𝒓 

In practice, the loading conditions applied will force the roller locations to lie close to 𝛾𝑡𝑝
𝐵  (see Chapter 

IV). Therefore, the notation 𝛾𝑡𝑝 (without superscript) can be used to designate 𝛾𝑡𝑝
𝐵  (similarly for 𝑠𝑐,𝑡𝑝 

and 𝑠𝑟,𝑡𝑝). 

The characteristic adjacent roller location curve is specific to each tooth profile, it varies with respect 

to the geometry definition, number of teeth, etc. A library of curves for several tooth profiles families 

(e.g., 𝐴𝑆𝐴, 𝑁𝐹𝑚𝑎𝑥, 𝑁𝐹𝑚𝑖𝑛) is available in Appendix A. 

This section highlights that there is a direct relation between a roller location and the locations of the 

adjacent ones. Therefore, the location of a single roller defines the locations of all the rollers on the 

sprocket considered. 
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c) Angles between links 

Depending on the location of each roller along its corresponding tooth profile (represented by 

coordinate 𝛾), the relative position of consecutive links is not the same. However, these positions will 

prove useful to link roller locations to loading conditions (see §II.2.2, Tension model) and later to 

calculate the efficiency of a chain drive (see Chapter V) and must therefore be tracked. 

To do so, four angles are defined for each roller (Figure II-22). 

• 𝛼𝑖
∗, angle between the directions of the following and preceding link (link 𝑖 + 1 and 𝑖 

respectively). This angle equals 𝛼 if the three roller centres lie on the pitch circle (as assumed 

for the global kinematics, see §II.1) 

 𝛼i
∗ = (𝑅i𝑅i+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗, 𝑅i−1𝑅i⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗) (II-17) 

• 𝜙𝑖, angle between the direction of the preceding link (link 𝑖) and the profile normal at the 

contact point between the roller and the profile. 

 𝜙i = (𝑅i−1𝑅i⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗, 𝑢⃗⃗) (II-18) 

• 𝜅𝑖, angle between the direction of the preceding link (link 𝑖) and the 𝑥i⃗⃗⃗ ⃗ direction in the local 

profile axis system. 

 𝜅i = (𝑅i𝑅i−1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗, 𝑥i ⃗⃗⃗⃗⃗) (II-19) 

• 𝜈𝑖, angle between the direction of the following link (link 𝑖 + 1) and the 𝑥i⃗⃗⃗ ⃗ direction in the local 

profile axis system. 

 𝜈i = (𝑅i𝑅i+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗, 𝑥i⃗⃗⃗ ⃗) (II-20) 

Parameters in Figure II-22 are: 

• 𝑢⃗⃗, the outgoing normal at the contact point between tooth profile and roller 𝑖 

• 𝑅𝑖, the centre of roller 𝑖 

 
Figure II-22: Angles between consecutive links (a) 𝝓 and 𝜶∗(b) 𝝂 and 𝜿 (c) relation between the angles (the 
clearance between roller and profile is exaggerated) 
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Moreover, angles 𝜅, 𝜈 and 𝛼∗ are connected by eq.(II-21) (see Figure II-22.c). 

 𝜅𝑖 − 𝜈𝑖 = 𝜋 − 𝛼𝑖
∗ (II-21) 

At this point, compatibility issues arise at the interfaces between the global kinematics (used to 

calculate angles 𝛼𝑡,𝑠,𝑗, see §II.1) and the local sprocket sub-model. Indeed, for the global kinematics, 

all roller centres are assumed to lie on their related pitch circle while the local sprocket sub-model 

locates the rollers more accurately (using coordinate 𝛾). Questions arise especially for angles 𝛼1
∗, 𝛼𝑛+1

∗ , 

𝜅1, 𝜈𝑛+1 and 𝜙1 (with 𝑛 being the number of links in contact with the sprocket considered). Calculating 

them involves the location of rollers both in a chain strand (whose trajectory is determined using the 

global kinematics) and in contact with the sprocket considered. These compatibility issues are 

represented in Figure II-23. The roller location as assumed in the global kinematics calculation (see 

§II.1) is represented in Figure II-23.a while the precise roller location allowed by the local sprocket sub-

model is represented in Figure II-23.b. 

 
Figure II-23: Roller locations according to (a) global kinematics (b) local sprocket sub-model (the clearance 
between roller and profile is exaggerated) 

Compatibility is solved using the following hypotheses. It is first assumed that angles 𝛼1
∗ and 𝛼𝑛+1

∗  are 

equal to angles 𝛼𝑡 and 𝛼𝑠, respectively, as calculated through the global kinematic study. 

 𝛼1
∗ = 𝛼𝑡 (II-22) 

 𝛼𝑛+1
∗ = 𝛼𝑠 (II-23) 

For angles 𝜅1 and 𝜈𝑛+1, equation (II-21) is considered to be fulfilled, therefore, the angles are 

calculated from 𝜈1 and 𝜅𝑛+1, respectively, as follows (eqs.(II-24) and (II-25)). 

 𝜅1 = 𝜋 − 𝛼1
∗ + 𝜈1 = 𝜋 − 𝛼𝑡 + 𝜈1 (II-24) 

 𝜈𝑛+1 = 𝜅𝑛+1 − 𝜋 + 𝛼𝑛+1
∗ = 𝜅𝑛+1 − 𝜋 + 𝛼𝑠 (II-25) 

The tight strand span is significantly larger than the roller/profile clearance (i.e., 𝐿 cos(𝛽) ≫ 𝑅𝑡𝑏 −

𝑅𝑟𝑜𝑙𝑙𝑒𝑟). Therefore, it is assumed that the tight strand direction calculated in the global kinematics is 

not affected by the roller/profile clearance. Therefore, 𝜙1 is calculated using the following relation 

(see Figure II-24). 

 𝜙1 = 𝜃 − 𝛼𝑡  (II-26) 

with: 

• 𝜃 = (𝑢⃗⃗, 𝑣⃗). Vector 𝑢⃗⃗ = 𝑂2𝑂1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ gives the direction of link 2 and vector 𝑣⃗ is the outgoing profile 

normal at the roller profile contact point. 
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Figure II-24: Calculation of 𝝓𝟏 (the clearance between roller and profile is exaggerated) 

The assumptions stated to solve the compatibility issue (eqs. (II-22) to (II-26)) are justified by the small 

roller/profile clearance in real cases (about 4.3% between 𝑅𝑟𝑜𝑙𝑙𝑒𝑟 and 𝑅𝑡𝑏 for 𝑁𝐹𝑚𝑎𝑥 profile1). For 

specific drives with a bigger roller/profile clearance, these assumptions might have more influence. 

The values of all the link angles are directly related to the roller locations, themselves directly related 

to the location of one roller. Therefore, all the link angle values can be calculated from the location 

of one roller in contact with the sprocket considered. 

II.2.2 Tension model 

All the parameters introduced to locate the rollers and describe their relative orientations are now 

used to express the equilibrium conditions of a chain in contact with a given sprocket. This results in a 

relation between roller locations, loads (link tension and roller-profile contact force) and external 

loading conditions (e.g., strand tensions). 

As with previous tension models [2], [32], [70] detailed in Chapter I, the equilibrium of a chain 

articulation (i.e., a set of pin, bush and roller) is considered. The effect of gravity is neglected with 

respect to the other forces considered. Therefore, a chain articulation with its roller in contact with a 

sprocket is subjected to three external forces (Figure II-25): 

• 𝑇𝑖, the tension force in the preceding link, 

• 𝑇𝑖+1, the tension force in the following link, 

• 𝑃𝑖, the total (i.e., tangential plus normal) contact force between the roller of articulation 𝑖 and 

its corresponding tooth profile. 

It is assumed that the tension forces act along the direction of their related link. Contact force 𝑃𝑖 acts 

along a roller radius and its direction is given by angle 𝜙𝑖. As with the approach of Kim & Johnson [52] 

and Verne [66], angles 𝜙𝑖 and 𝛼𝑖
∗ are not assumed but calculated from the locations of rollers along 

their associated tooth profile. 

 
Figure II-25: Equilibrium of a chain articulation in contact with a sprocket 

 
1 With 𝐷𝑟𝑜𝑙𝑙𝑒𝑟 = 7.75𝑚𝑚 which gives 𝑅𝑡𝑏 = 4.05𝑚𝑚 (see Appendix A) 
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The three forces are concurrent at the roller centre; therefore, the torque equilibrium is always 

verified. The equilibrium along the two planar directions (𝑥⃗ and 𝑦⃗ in Figure II-25) leads to the following 

relations. These relations are similar to those presented by Binder in [32] (see eq.(I-5)). 

 

{
 
 

 
 𝑇𝑖+1 = 𝑇𝑖

sin(𝜙𝑖)

sin(𝜙𝑖 + 𝛼𝑖
∗)

𝑃𝑖 = 𝑇𝑖
sin(𝛼𝑖

∗)

sin (𝜙𝑖 + 𝛼𝑖
∗)

 (II-27) 

Friction is introduced in the model in a similar way to that presented by Naji & Marshek in [2] (see 

Chapter I). According to this method, also used in [6], [62], [70], [81], the moment induced by the 

tangential friction force (𝐹𝑖 in Figure II-26) is neglected. The effect of friction is therefore equivalent to 

a correction of the angle 𝜙𝑖 by a factor 𝛿 (Figure II-26). Angle 𝛿 is calculated based on 𝜇𝛿 representing 

the static friction coefficient at the roller/tooth interface [2]. 

 
Figure II-26: Articulation equilibrium with friction 

In the original formulation [2], the value of the correction angle had only two possibilities; 𝛿 =

+atan(𝜇𝛿) and 𝛿 = −atan(𝜇𝛿) with no intermediate values. The correction sign must be such that 

the tangential friction force (𝐹𝑖 in Figure II-26) opposes the roller motion along its corresponding tooth 

profile. Consequently, this sign depends on the direction of roller motion and the sprocket studied 

being driving or driven [2], [70]. In this model, the same principle is used. However, the correction 

factor can now range between [− atan(𝜇𝛿) , + atan(𝜇𝛿)] as a tanh type function is used to connect 

the two extreme values (see Figure II-27). The interest of this continuous connection will be highlighted 

in Chapter IV. Moreover, it is assumed that all the rollers have the same correction angle 𝛿 and that its 

value is related only to the position of the first roller in contact with the sprocket considered (𝛾1 or 

equivalently 𝑠𝑐,1). The sign switches at the transition point 𝑠𝑐,𝑡𝑝 as it marks the transition between 

zone 2 and zone 3 (see Figure II-21) where the direction of roller motion along the tooth profile 

changes (from one transition point to the other in zone 2 and toward the tooth tip in zone 3). The 

correction angle is therefore calculated as follows. 

 𝛿(𝑠𝑐,1) = (−1)
𝑗 atan(𝜇𝛿) tanh (

3(𝑠𝑐,1 − 𝑠𝑐,𝑡𝑝)

𝑎
) (II-28) 

The width of the tanh function is characterised by the parameter 𝑎 (see eq.(II-28)) such that the 

transition between the two extreme values ±atan(𝜇𝛿) occurs between ±𝑎 according to eqs.(II-29).  

 𝛿(𝑎) = 0.99 atan(𝜇𝛿) (a) 
(II-29) 

 𝛿(−𝑎) = −0.99 atan(𝜇𝛿) (b) 
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Since 𝑎 is a numerical parameter, its value has therefore been chosen to avoid interferences with the 

results. A sensitivity study was carried out and a value of 𝑎 = 1𝑒−10𝑚 = 0.1𝑛𝑚 chosen for this work 

(details are given in Appendix F).  

 
Figure II-27: Correction factor 𝜹 as a function of 𝒔𝒄,𝟏 

Adding the influence of friction to equation (II-27) leads to the new articulation equilibrium relation 

expressed in eq.(II-30). 

 

{
 
 

 
 𝑇𝑖+1 = 𝑇𝑖

sin(𝜙𝑖 + 𝛿)

sin(𝜙𝑖 + 𝛿 + 𝛼𝑖
∗)

𝑃𝑖 = 𝑇𝑖
sin(𝛼𝑖

∗)

sin(𝜙𝑖 + 𝛿 + 𝛼𝑖
∗)

 (II-30) 

Finally, the ratio between the tight and slack strand tensions is expressed in eq.(II-31) considering the 

consecutive equilibrium of all the articulations in contact with the sprocket (see Figure II-28). 

 
𝑇𝑠
𝑇𝑡
=∏

sin(𝜙𝑖 + 𝛿)

sin(𝜙𝑖 + 𝛿 + 𝛼𝑖
∗)

𝑛+1

𝑖=1

 (II-31) 
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Figure II-28: Sprocket equilibrium 

Eq. (II-31) highlights the direct relation between the tension ratio (ratio of the slack to tight strand 

tension) and angles 𝜙𝑖 and 𝛼𝑖
∗; themself directly related to the location of one roller. Thus, the position 

of one roller is directly related to the tension ratio. In practice, the tension ratio is expressed as a 

function of the location of the roller marking the transition with the tight strand (i.e., roller 𝑖 = 1). 

Figure II-29 shows the evolution of the slack to tight tension ratio (𝑇𝑠/𝑇𝑡) as a function of the location 

of the first roller 𝑠𝑐,1. This relation is plotted for |𝛿(∞)| = 5° and 0° (corresponding to 𝜇𝛿 = 0.087 and 

0, respectively) to appreciate the effect of friction. The value of 𝑎 is set at 1𝑒−6𝑚 for illustration 

purposes. 

 
Figure II-29: Example of relation between the tension ratio and the location of the first roller 
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Figure II-29 shows that the effect of friction on a driving sprocket results in a higher (lower) tension 

ratio for a given roller location before (after) the transition point. The effect on a driven sprocket is 

reversed. Deeper analysis of the relation between tension ratio and roller location will be carried out 

in Chapter IV. The curves in Figure II-29 exhibit a minimum value for the tension ratio called (
𝑇𝑠

𝑇𝑡
)
𝑙𝑖𝑚

. 

The existence of this minimum value signifies that not all ratios can be reached. If a ratio is too small 

(i.e., the external loading conditions are too severe), no solutions are possible, meaning that the chain 

cannot wrap around the sprocket while carrying the prescribed load. 

Furthermore, a global relation between the tight and slack tensions and the torque applied on the 

sprocket can be developed (see eq.(II-32)). This relation is obtained considering the equilibrium of the 

system constituted by the sprocket and all the articulations in contact with it (articulation from 𝑖 = 1 

to 𝑖 = 𝑛 + 1, see Figure II-28). 

 𝐶 = 𝑅 [𝑇𝑡 cos (𝛼𝑡 −
𝛼

2
) − 𝑇𝑠 cos (𝛼𝑠 −

𝛼

2
)] (II-32) 

Equations (II-31) and (II-32) are combined to express a direct relation between the location of the first 

roller (i.e., 𝑠𝑐,1) and the external loading conditions. The latter are fully defined by two out of the three 

variables 𝑇𝑡, 𝑇𝑠 and 𝐶. 

Going back to Chapter I, §I.3, it was stated that rollers cannot lie in zone 1 (see Figure II-21). Indeed, 

when rollers lie in zone 1, the induced angles 𝛼𝑖
∗ and 𝜙𝑖 injected in eq. (II-30) are such that 𝑇𝑖+1 is 

smaller than 𝑇𝑖 for all 𝑖. This results in a drive where the tight strand tension 𝑇𝑡 is lower than the slack 

one 𝑇𝑠. Such a case implies an inversion between the driving and driven sprocket with the tight strand 

being at the bottom of the drive. These drives are not within the scope of this study. 

The local sprocket sub-model has been introduced. It takes into account the dependency between 

roller locations introduced by Kim & Johnson [52] and Troedsson & Vedmar [67] with a tension model 

close to what Verne used in [66]. Friction is introduced thanks to a correction angle as proposed by 

Naji & Marshek in [2]. The sub-model obtained shows that the location of roller 𝑖 = 1 (expressed as 

𝑠𝑐,1) is interdependent with the external loading conditions applied on the sprocket.  

All the sub-models constituting the QSCDM have been detailed. Their combination in the general 

solving procedure is now explained (this general procedure includes the global kinematics solved in 

§II.1.3). 
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II.3 Solving of the entire chain drive model 

II.3.1 Resolution of all the sub-positions 

The cyclic property of the global kinematics has already been presented in §II.1.3. Its period 

corresponds to a driving sprocket rotation of 𝛼Ⅰ (inducing an 𝛼Ⅱ rotation of the driven one). The 

external loading conditions are also assumed to have the same cyclic property making it possible to 

solve the model for only one period before generalising the results. 

As only one period is explored, the driving sprocket rotation angle 𝜁 ranges between the interval [0, 𝛼Ⅰ]. 

The explored interval is divided into a given number of sub-positions 𝑛𝑏𝑝𝑜𝑠 numbered by index 𝑚 (𝑚 ∈

 ⟦1, 𝑛𝑏𝑝𝑜𝑠⟧). The initial orientation of the driving sprocket, for sub-position 𝑚 = 1, is given by 𝜓𝑡,Ⅰ|𝑖𝑛𝑖𝑡. 

The external loading conditions are given as inputs by specifying either the torque applied on one 

sprocket 𝐶𝑗 or the tight strand tension 𝑇𝑡. 

 

 

(a) (b) 
Figure II-30: Flow chart for solving the entire model for loading conditions given as (a) torque on one 
sprocket (b) tight strand tension 

The global kinematics is first solved as detailed in §II.1 giving values for the slack strand tension for 

each sprocket (𝑇𝑠,Ⅰ and 𝑇𝑠,Ⅱ for the driving and driven sprocket, respectively) as well as angles 𝛼𝑠,𝑡,𝑗 and 

the number of links in each sub-model of the drive (i.e., 𝑛𝑗 and 𝑛𝑠,𝑡). At this point, the procedure differs 

depending on the external loading conditions applied (see Figure II-30). If a torque is prescribed, the 

sprocket on which the torque is applied is solved first. Based on the slack strand tension, the value of 

𝑠𝑐,1 matching the loading conditions is determined by numerical search. Solving the first sprocket gives 

the value of the tight strand tension 𝑇𝑡,𝑗 (equal for both sprockets, see eqs.(II-7)). Therefore, the 

tension ratio is known for the remaining sprocket and it can then be solved via numerical search as 

well. If the loading conditions are given as a tight strand value, the two sprockets can be solved 

simultaneously, still via numerical search, as the tension ratio is prescribed for both (Figure II-30.b). 
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The numerical search problem consists in finding the value of 𝑠𝑐,1 in accordance with the prescribed 

loading conditions. Unlike the work by Kim & Johnson in [52], the relation presented between the roller 

locations and the tension ratio (i.e., relation between 𝑠𝑐,1 and 𝑇𝑠 𝑇𝑡⁄  or 𝐶) as described in this work is 

not always monotonous (see Figure II-29 or Figure II-31). This is caused by either the influence of the 

friction correction (i.e., angle 𝛿) or the profile geometry. The main consequence being that it is possible 

for several roller locations 𝑠𝑐,1 to satisfy the imposed loading conditions. When multiple solutions 

coexist, the smallest suitable 𝑠𝑐,1 is preferred to favour the continuity of the roller motion obtained 

coming from the stable drive operation (closer to the transition point, Figure II-31). 

 
Figure II-31: Simultaneous numerical solutions 

Moreover, it should be noted that the relation between the loading conditions and roller location is 

specific for one drive sub-position (i.e., one driving sprocket orientation 𝜁). Indeed, the number of links 

𝑛𝑗, the angles 𝛼𝑠,𝑡,𝑗 and the slack strand tension 𝑇𝑠,𝑗 vary within the studied period. Figure II-32 

illustrates this variation. The tension ratio/roller location relation is plotted right before and right after 

the capture of a new roller by the driving sprocket. The 𝑠𝑐,1 interval plotted is such that its minimum 

results in 𝑇𝑠 𝑇𝑡⁄ = 1 and its maximum corresponds to the maximal 𝑠𝑐,1 value that does not result in a 

roller missing a tooth (see Figure II-21.b). 
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Figure II-32: Example of extreme relations between tension ratio and roller location 

The interval of possible roller location 𝑠𝑐,1 is reduced when an additional roller is captured (i.e., after 

roller capture). Indeed, smaller 𝑠𝑐,1 values are sufficient for a roller to miss the tooth when the number 

of rollers in contact increases (positions such that 𝛾𝑖+1 is not defined are reached sooner, see Figure 

II-21.b). Combined with the modification of the tension ratio imposed by the loading conditions, the 

resulting roller location 𝑠𝑐,1 changes (i.e., 𝑠𝑐,1 is not constant for any 𝜁). 

The solving procedure presented is sequential. The global kinematics is solved first before using its 

results for the sprocket sub-model. This strategy takes advantage of the hypothesis stating that the 

global kinematics is independent from the external loading conditions. This approach is different from 

that used by Troedsson & Vedmar [67] where all the sub-models were solved together.  

The strategy used in this study allows easier solving of each sub-model. However, compatibility issues 

are introduced at the interfaces between the global kinematics and the local sprocket sub-model (see 

Figure II-23). Indeed, the first assumed that all rollers lie on the pitch circle while the second make it 

possible to locate them more precisely along their corresponding tooth profile (see §II.2.1). 

II.3.2 Resolution for one chain component 

Up to now, the procedure used to spatially solve (following spatial index 𝑖, see Figure II-2) the roller 

locations (𝛾, 𝑠𝑐 , 𝑠𝑟 , 𝜅, 𝜈) and the loads (𝑇, 𝑃) for all the explored sub-position 𝑚 has been given. These 

spatial results are denoted “per position”. However, to ultimately calculate power losses (see Chapter 

IV), it is interesting to know the evolution of loads and roller locations following a single chain 

component (e.g., a roller or a link). As the model is periodic, the spatial information obtained can be 

rearranged into evolutions following a specific chain component (link or roller) during its contact with 

a given sprocket. These new results “per component” are denoted with index 𝑘. The challenge to be 

overcome here is that the spatial numbering introduced in Figure II-2 changes each time a new roller 

is captured by the driving sprocket. Therefore, to track a given chain component (e.g., a roller in Figure 

II-33) the results of each sub-position must be combined in the correct order. In Figure II-33, 𝜁𝑐𝑎𝑝𝑡𝑢𝑟𝑒 

corresponds to the value of 𝜁 right before roller capture by the driving sprocket. 
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Figure II-33: Evolution of index 𝒊 of a given roller throughout the drive operation (a) right after roller 
capture by the driving sprocket (b) right before the capture of a new roller (c) right after the capture of a 
new roller (a drive period away from (a)) (d) right before the capture of a second roller (one drive period 
away from (b)) 

The values “per position” are identified by indexes 𝑚 and 𝑖. 𝑃(𝑚, 𝑖) designates the value of the contact 

force at roller 𝑖 for sub-position 𝑚. The evolution “per component” 𝑃(𝑘) is obtained by going through 

all the possible (𝑚, 𝑖) values, and applying eqs.(II-33) on each. 

      𝒇𝒐𝒓 𝒎 ≤ 𝒎𝒄𝒂𝒑𝒕𝒖𝒓𝒆:     𝑘 = 𝑖(𝑛𝑏𝑝𝑜𝑠 −𝑚𝑐𝑎𝑝𝑡𝑢𝑟𝑒) + 𝑚 (a) 

(II-33)    

 𝒇𝒐𝒓 𝒎 > 𝒎𝒄𝒂𝒑𝒕𝒖𝒓𝒆:     𝑘 = (𝑖 − 1)(𝑛𝑏𝑝𝑜𝑠 −𝑚𝑐𝑎𝑝𝑡𝑢𝑟𝑒) + (𝑚 −𝑚𝑐𝑎𝑝𝑡𝑢𝑟𝑒) (b) 

with: 

• 𝑚𝑐𝑎𝑝𝑡𝑢𝑟𝑒 the index of the sub-position immediately before roller capture by the driving 

sprocket (corresponding to 𝜁𝑐𝑎𝑝𝑡𝑢𝑟𝑒, see Figure II-34). 

The index rearrangement characterised by eqs.(II-33) is represented graphically in Figure II-34. Each 

row corresponds to a given sub-position 𝑚 while each column corresponds to all the contact forces on 

roller 𝑖. The evolution of force 𝑃 “per component” starts with the values corresponding to 𝑃𝑖=1 after 

the capture of a new roller (𝑚 > 𝑚𝑐𝑎𝑝𝑡𝑢𝑟𝑒). It continues with the 𝑃1 value before the roller capture 

(𝑚 ≤ 𝑚𝑐𝑎𝑝𝑡𝑢𝑟𝑒). The same principle is repeated for all 𝑖 until the roller is released by the sprocket (𝑖 =

𝑛Ⅰ + 1). 
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Figure II-34: Rearrangement of a variable “per position” to its evolution “per component” 

An analogue procedure is applied to rearrange the values of all roller locations (𝛾, 𝑠𝑐 , 𝑠𝑟 , 𝜅, 𝜈) and loads 

(𝑇, 𝑃) from “per position” into “per component”. 

The differences between “per position” and “per component” representation can be appreciated in 

Figure II-35. “Per position” curves are given for 4 distinct sub-positions (indexes 𝑚 and correcponding 

𝜁 are given in the figure). Calculations were carried out with 𝜓𝑡,Ⅰ|𝑖𝑛𝑖𝑡 = 0. The 𝜁 pitch is non-even. 

More details are given in Appendix I. The evolution of force 𝑃 will be commended later in Chapter IV. 

 
Figure II-35: Evolution of the contact force 𝑷, “per position” and “per component”  

Roller capture
by the

driving sprocket
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The curves “per position” constitute a capture of the spatial force distribution at a given driven sub-

position. Therefore, each curve gives crossing points without the evolution of e.g., force 𝑃 between 

them. The real evolution of the force can only be appreciated by combining the information included 

in all the “per position” curves. Doing so allows for example appreciating the maximum reached after 

the initial increase at 𝜁 𝛼Ⅰ⁄ = 1. It can be noted that the number of rollers in contact with the sprocket 

considered is not constant for all drive positions (varies from 8 to 9). This is due to the phase shift 

between the roller capture and release by the sprocket. 

The resolution procedure for the whole chain drive model has been detailed. It depends on the 

external loading conditions being given as torque 𝐶𝑗 or tight strand tension 𝑇𝑡. In both cases, the global 

kinematics is solved first to obtain the slack strand tension for both sprockets. Then, based on these 

slack tensions and the loading conditions, the location of the first roller 𝑠𝑐,1 is determined via numerical 

search. Due to the complexity of the relation between 𝑠𝑐,1 and tension ratio, it is possible for several 

roller locations to match the imposed conditions. In such cases, the smaller 𝑠𝑐,1 solution is preferred 

to favour continuity coming from the stable drive operation zone. The conversion of the results from 

the “per position” to the “per component” arrangement is then presented. 
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II.4 Conclusion 

In this chapter, the Quasi-Static Chain Drive Model (QSCDM) was introduced. This 2D model studies a 

chain drive considering the connections between strands and sprockets, each represented by specific 

sub-model. Calculations can be carried out using different tooth profile geometries. 

The global kinematics of the drive (i.e., strand trajectories, number of links in each sub-model) is 

assumed to be independent from the external loading conditions and sprocket tooth profile. It is 

determined using the sub-models presented for the tight and slack strand using an original numerical 

procedure. The strand trajectories obtained give angles 𝛼𝑠,𝑡,𝑗 and slack strand tensions 𝑇𝑠,𝑗, used later 

in the local sprocket sub-model. 

The local sub-model used for the sprockets was detailed. It is used to calculate the loads (i.e., link 

tension and roller/profile contact force) and roller locations along their corresponding tooth profile 

simultaneously, as both are intertwined. The direct relation between roller locations and loading 

conditions was presented. The compatibility issues at the interfaces between strands and local 

sprocket sub-models were addressed. 

The general solving procedure for the whole QSCDM was then introduced. The global kinematics was 

solved first before its results were used in the local sprocket sub-model. The external loading 

conditions can be prescribed via a torque applied on either sprockets or via the tight strand tension. 

This sequential approach facilitates the solution of each sub-model but introduces compatibility issues. 

Cases where several roller locations 𝑠𝑐,1 are suitable were treated. 
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The Quasi-Static Chain Drive Model (QSCDM) has been introduced. It is now compared to both 

numerical and experimental results from the literature to test its aptitude to correctly predict chain 

drive behaviour. Validation in carried out in different steps. Sub-parts of the model are considered 

separately before analysing the predictions of the entire QSCDM. 

The global kinematics is first considered alone. The tight strand numerical solution is validated using 

the analytical solution proposed by Fuglede & Thomsen [1]. The slack strand model predictions are 

analysed and compared to known analytical results for hanging cables [89]. 

The sprocket sub-model is then considered in two steps. First, roller location and link angle calculation 

are studied without considering the loads involved. Roller location characteristic curves (see Chapter 

II, §II.2.1) are compared to those presented by Kim & Johnson in [52]. Then, consecutive roller locations 

and resulting link angles (articulation angle 𝛼∗and pressure angle 𝜙) are compared to the numerical 

results of Naji & Marshek [64] and the graphical1 results of Binder [32]. 

In the second step, the local sprocket sub-model is studied, without the connection to the global 

kinematics to match the literature case studies. Link tension and roller location “per position” are 

compared to the experimental results of Stephenson et al. [72] and the numerical model of Lodge & 

Burgess [70]. Then, link tension and roller location “per component” are compared with the numerical 

results presented by Kim & Johnson in [52]. 

Finally, the whole QSCDM (i.e., global kinematic, roller location and loads calculation “per component”) 

is compared to the numerical results of Troedsson & Vedmar [67]. 

  

 
1 Obtained measuring link angles on large size sketches. 
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III.1 Global drive kinematics 

III.1.1 Tight strand 

The tight strand sub-model is compared to the analytical results presented by Fuglede & Thomsen [1]. 

The same validation was also presented by the author in [81]. 

In [1], Fuglede & Thomsen presented an analytical analysis of a tight chain strand (see §I.2.2). They 

proposed an analytical solution for the relation between the rotation of the driving and driven 

sprockets (i.e., relation between 𝜓𝑡,Ⅰ and 𝜓𝑡,Ⅱ). Expressions for the associated rotational speed (𝜓̇𝑡,𝑗) 

and acceleration (𝜓̈𝑡,𝑗) were also given. As with the model presented in this manuscript, Fuglede & 

Thomsen assumed an equal pitch for the chain and the sprockets and no clearance between the roller 

and tooth profile (i.e., 𝑅𝑟𝑜𝑙𝑙𝑒𝑟 = 𝑅𝑡𝑏, see Figure II-18).  

In [1], the drives considered are such that the tight strand common tangent is horizontal (i.e., 𝛽 + 𝜏 =

0, see (see Figure II-3). The drive centre distance (i.e., distance 𝐿) is characterised by the parameters 

𝑁 and 𝑓 as prescribed by eq.(III-1) (see §I.2.2, eq (I-4)). 

 𝐿 cos(𝛽) = (𝑁 + 1 + 𝑓)𝑝 (III-1) 

with: 

• 𝑁 ∈ ℕ, the minimal number of links in the tight strand 

• 𝑓 ∈ [0,1[ 

Three drive configurations are studied (see Table III-1), each for three values of 𝑓, resulting in a total 

of nine cases. For each configuration, the numerical procedure presented in §II.1.3 for the calculation 

of the global kinematics is used. 

𝒁Ⅰ|𝒁Ⅱ 𝑵 

6|9 4 

12|18 11 

21|63 34 
Table III-1 : Drive configurations compared with results from Fuglede & Thomsen [1] 

Figure III-1 shows comparison with the results from Fuglede & Vedmar. The evolution of the driven 

sprocket rotation 𝜓𝑡,Ⅱ, the rotational speeds ratio 𝜓̇𝑡,Ⅱ/𝜓̇𝑡,Ⅰ and the driven sprocket acceleration 𝜓̈𝑡,Ⅱ 

are shown. In the article, Fuglede & Thomsen presented curves. Sample points have been digitised for 

comparison. In Figure III-1, solid lines are calculated using the tight strand sub-model presented in 

§II.1.1. Instantaneous derivatives are computed numerically from the displacements using a central 

difference. The initial chainring orientation 𝜓𝑡,Ⅰ|𝑖𝑛𝑖𝑡 is set at the position of roller capture by the driving 

sprocket, calculated according to [1], allowing direct comparison with similar curve phasing. The 

driving sprocket rotational speed is set at 100rpm. 

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0066/these.pdf 
© [G. Lanaspeze], [2023], INSA Lyon, tous droits réservés



Chapter III 

 

 

74 

 
Figure III-1: Comparison of the tight strand kinematics with Fuglede & Thomsen [1] 

Both models are in agreement for all the drive configurations tested. The positions of roller capture 

and release by the driving and driven sprocket, respectively, are particularly well predicted. These 

particular drive sub-positions are associated with discontinuities in 𝜓𝑡,Ⅱ and 𝜓̈𝑡,Ⅱ plots in Figure III-1 as 

the strand tips are considered to jump instantaneously. The 𝜓𝑡,Ⅱ curves show that the roller capture 

and release are simultaneous for 𝑓 = 0 (i.e., common tangent with a length equal to a whole number 

of pitches). For other values of 𝑓, both events do not occur in phase. They are in opposing phase for 

𝑓 = 0.5. The velocity ratio curves (𝜓̇𝑡,Ⅱ/𝜓̇𝑡,Ⅰ) highlight that the rotational velocity ratio varies during a 

meshing period and is therefore not exactly equal to the mean value 𝑍Ⅰ|𝑍Ⅱ (i.e., transmission error). 

This variation is caused by the change in the tight strand orientation (see angle 𝛽𝑡 §II.1.1) and is part 

of the polygonal effect (see §I.2.2). The highest deviation (compared to 𝑍Ⅰ|𝑍Ⅱ) occurs for 𝑓 = 0.5. 
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Higher numbers of teeth are associated with lower deviation of the velocity ratio and consequently 

lower discontinuities in rotation acceleration (see  𝜓̈𝑡,Ⅱ curves in Figure III-1). The results are consistent 

with the literature stating that polygonal effect and vibration issues are higher for small number of 

teeth [33], [44], [90]. Moreover, drives with a tight strand common tangent length equal to an odd 

number of a half pitch (i.e., 𝑓 = 0.5) have already been associated with higher kinematic perturbations 

[44], [48], [49], [90] (see §I.2.2). 

The results of the numerical procedure used for tight strand calculation are consistent with the 

analytical results of Fuglede & Thomsen [1] for a wide range of tooth numbers. The tight strand 

predictions (i.e., angles 𝛽𝑡, 𝜓𝑡,𝑗  and 𝑛𝑡) are therefore validated. Compared to analytical approaches, 

the numerical modelling presented could be more easily adapted with different hypotheses (e.g., 

elongated chain pitch, etc.). 

III.1.2 Slack strand 

The slack strand sub-model is compared to the known catenary results for hanging cables [89]. Then 

the prediction in terms of link orientation and tension are analysed. 

The catenary (or chainette) result is an analytical solution known in the literature for hanging cables 

subjected only to gravitational field and with continuous mass distribution [89]. For such cases, the 

trajectory of the hanging cable is governed by the following generic equation (called catenary or 

chainette). 

 𝑓(𝑥) = 𝑟. cosh (
𝑥

𝑟
+ 𝐶1) + 𝐶2 (III-2) 

with: 

• 𝑟 = 𝑇ℎ/𝑔𝑤, the ratio between the horizontal tension (𝑇ℎ) at the strand tips and the 

gravitational acceleration 𝑔 multiplied by the linear density of the solid considered 𝑤 =

𝑚𝑙𝑖𝑛𝑘/𝑝 (with 𝑝 the chain and pitch), respectively. 

• (𝐶1, 𝐶2) ∈ ℝ
2, two constants to be adjusted to make the general curve compatible with each 

particular case. 

To fit eq.(III-2) to any particular case, parameter 𝑟 is first calculated using the tension prediction of the 

slack strand model for 𝑇ℎ. The values of both constants (𝐶1and 𝐶2) are determined considering the 

conditions imposed on the trajectory at both extremities (the local origin 𝑂𝑙𝑜𝑐𝑎𝑙 is set at the left strand 

tip, see Figure III-4). 

 𝑓(0) = 0 ⇔ C2 = −𝑟. cosh(𝐶1) (III-3) 
   

 𝑓(𝐷𝑥) = 𝐷𝑦 ⇔ 𝑟. cosh(
𝐷𝑥
𝑟
+ 𝐶1) + 𝐶2 = 𝐷𝑦 (III-4) 

Combining eqs. (III-3) and (III-4) gives the following relation for 𝐶1. 

 𝑟. cosh (
𝐷𝑥
𝑟
+ 𝐶1) − 𝑟. cosh(𝐶1) − 𝐷𝑦 = 0 (III-5) 

Eq. (III-5) is solved numerically to obtain the catenary curve adapted to the prescribed mass (𝑤), 

tension (𝑇ℎ) and geometrical conditions 𝐷𝑥 and 𝐷𝑦 (Definition of 𝐷𝑥 and 𝐷𝑦 are recalled in Figure III-4). 

Differences between the slack strand model presented (with discreet mass distribution) and the 

corresponding catenary are shown in Figure III-2. As the results are independent of the scale of the 
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chain, they are given relatively to the chain pitch 𝑝 (scaled variables are given with a bar, e.g., 𝑋̅ =

𝑋/𝑝). The link mass and roller diameter are given for a standard track cycling chain2. 

𝒎̅𝒍𝒊𝒏𝒌 = 𝟎.𝟐𝟖𝒈 𝒎⁄ ; 𝑫̅𝒓𝒐𝒍𝒍𝒆𝒓 = 𝟎. 𝟔𝟏 

  

(a) (b) 
Figure III-2: Comparisons between the slack strand sub-model and the catenary curve (a) 𝑫̅𝒙 = 𝟐, 𝑫̅𝒚 =

−𝟎. 𝟖, 𝒏𝒔 = 𝟔 (b) 𝑫̅𝒙 = 𝟗, 𝑫̅𝒚 = −𝟑. 𝟓, 𝒏𝒔 = 𝟏𝟎 

Both models show the same trend. The trajectories obtained exhibit a bell shape tending toward a 

straight line as the distance between the tips increases. Comparisons with the catenary curve show 

notable differences for small 𝑥 spans. In Figure III-2.a, the small number of links in the strand results 

in sharp changes in link orientation, causing considerable deviation from the smooth catenary curve. 

For values of 𝐷̅𝑥 and 𝐷̅𝑦 more compatible with a real chain strand (Figure III-2.b), the difference 

becomes negligible. The discreet approach used in the model presented §II.1.2 therefore shows 

greater interest for strands with a high number of links (longer chain) and small spans. 

The prediction of the model in terms of link tension is now analysed. Figure III-3 shows the evolution 

of the tension in the first link of the strand for various values of 𝐷̅𝑥. Tensions are scaled by the chain 

pitch. Examples of the strand trajectories obtained are inserted in the figure. 𝐷̅𝑦 is set at zero and the 

number of links is constant and set to 6. The ratios for mass and roller diameter are again taken from 

the standard track cycling chain. 

 
2 𝑝 = 12.7𝑚𝑚 ; 𝑚𝑙𝑖𝑛𝑘 = 3.6𝑔 ; 𝐷𝑟𝑜𝑙𝑙𝑒𝑟 = 7.75𝑚𝑚 
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Figure III-3: Tension (scaled by chain pitch) in the first strand link in strand trajectories for various 𝑫̅𝒙 
values 

As the number of links in contact is constant, increasing the 𝑥 span 𝐷̅𝑥 stretches the chain strand. 

Therefore, tension 𝑇̅1 increases with 𝐷̅𝑥. The rise is firstly moderate and then goes asymptotically to 

infinity as the distance between the strand tips tends to 𝑛𝑠. 𝑝 (i.e., 𝐷̅𝑥 tends to 𝑛𝑠). This quick increase 

for very stretched strands might have consequences on the drive behaviour as a small change in strand 

span results in a significant change in tension. The loading conditions could therefore drastically 

change within a given angular period 𝛼Ⅰ. Nevertheless, the increase is expected as the tension in the 

tip links must compensate the purely vertical strand weight. The magnitude must then increase as the 

force directions tend toward the horizontal for an increasingly stretched strand. 

The slack strand model is now applied to a chain drive. The tooth numbers are 𝑍Ⅰ|𝑍Ⅱ = 31|31 (i.e., 31 

teeth for both the driving and driven sprocket) meshed with double pitch chain (𝑝 = 25.4𝑚𝑚). The 

link mass is set at 12.7𝑔 (from the No 2040 chain in [11]). The strand trajectory is studied for a 

particular drive sub-position where a theoretical straight slack strand would be horizontal3 (i.e., 𝐷𝑦 =

0). Different strand loosenesses are tested (see §II.1.2 for the looseness measurement). It must be 

noted that the looseness cannot reach 0% as the value given is a mean value for one drive period 

(computed from 10 linearly spaced values of 𝜁 within a drive period 𝛼Ⅰ). For that number to exist, the 

strand must be defined for each drive position (i.e., fulfilling eq.(II-13)), therefore forcing the mean 

value to be strictly positive. 

The slack strand model prediction in terms of link orientation 𝜆𝑖 is presented in Figure III-4. The link 

numbers are given in the local numbering system as specified in the figure. 

 
3 𝜁 ≈ 0.88𝛼Ⅰ with 𝜓𝑡,Ⅰ|𝑖𝑛𝑖𝑡 = 0 
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Figure III-4: Angles 𝝀𝒊 for various slack settings 

As the strand is stretched, the number of links 𝑛𝑠 decreases (two links are added for 𝑠𝑙𝑎𝑐𝑘 = 10% 

compared to the 6 and 2% cases, see Figure III-4). It can also be observed that the magnitudes of link 

orientations 𝜆𝑖 decrease with the slack value tending to zero for a straight strand. Angles 𝜆𝑖 are 

symmetric with respect to the middle of the strand, with negative values at the strand beginning and 

positive ones for the second half. This is consistent with the bell shape trajectory applied to particular 

cases where 𝐷𝑦 = 0 (the angles would not be symmetric for 𝐷𝑦 ≠ 0). 

It was demonstrated that the slack strand model presented shows consistent behaviour. The 

trajectories obtained are similar to the known results of catenary curves, especially for high strand 

spans as in chain drives. The link tension increases as expected as the strand is stretched. When used 

on a chain drive, the slack strand model still exhibits consistent results as the predicted link orientation 

decreases with the slack setting. 
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III.2 Local sprocket sub-model: relation between 

roller locations 

The specific sub-models used for the tight and slack strand for the global kinematics calculation have 

been analysed. This part compares the sprocket sub-model predictions in terms of roller location and 

link angle. Connections between roller location and loads are presented in the following section. 

III.2.1 Roller location characteristic curves 

As mentioned in Chapter I, Kim & Johnson [52] introduced the notion of the roller location 

characteristic curve. This curve represents the location of a given roller as a function of the location of 

the previous one (i.e., 𝛾𝑖+1 as a function of 𝛾𝑖). 

Figure III-6.a shows roller location characteristic curves calculated by Kim & Johnson in [52]. Figure 

III-6.b shows the same curves using the QSCDM. The curves are plotted for 𝐴𝑆𝐴 profiles with 𝑍 = 12, 

24 and 36. The sprocket pitch is 𝑝 = 1 2⁄
′′
= 12.7𝑚𝑚 and the roller diameter is 𝐷𝑟𝑜𝑙𝑙𝑒𝑟 = 8.51𝑚𝑚. 

The resulting dimensions for the 𝐴𝑆𝐴 profile are calculated according to the standard given in [32], 

[52], [64] (see Appendix A). 

Kim & Johnson’s curves are given for coordinates 𝜉. It is equivalent to 𝛾 but ranges between [−4,4] 

instead of [0,8] for the 𝐴𝑆𝐴 profile (Figure III-5). 

  
(a) (b) 

Figure III-5: Roller location coordinate for 𝑨𝑺𝑨 profile according to (a) Kim & Johnson [52] (b) this model 

 

  
(a) (b) 

Figure III-6: Adjacent roller location characteristic curve according to (a) Kim & Johnson [52] (b) QSCDM  

Figure III-6 shows that the curves obtained are identical for all numbers of teeth tested, therefore 

validating the procedure presented. 
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All the curves are symmetric with respect to the line 𝑦 = −𝑥 consistently with the profile being 

symmetric. Their shape is modified with the number of teeth 𝑍. The smaller the number of teeth, the 

greater the deviation from the first bisector. Consequently, it takes fewer rollers to cross the zone 

between the transition points (𝛾 ∈ [𝛾𝑡𝑝
𝐴 , 𝛾𝑡𝑝

𝐵 ]) for small 𝑍. Similarly, starting from the same 𝛾 beyond 

the transition points (i.e., 𝛾 > 𝛾𝑡𝑝
𝐵 ), it takes fewer rollers for a small number of teeth before skipping a 

tooth. However, one cannot directly conclude that sprockets with small number of teeth will result in 

easier chain drop. Indeed, the link angles (e.g., 𝛼∗ and 𝜙) and therefore the implications in terms of 

load calculation are different depending on 𝑍 (see Chapter IV below). 

III.2.2 Consecutive roller location and link angles 

Roller locations are related to the link angles 𝜙 (called pressure angle), 𝛼∗ (articulation angle), 𝜅 and 𝜈 

(see §II.2). Calculation of link angles are compared to the studies presented by Binder [32] and Naji & 

Marshek [64]. No chain strand nor load is considered as the studies focused only on consecutive roller 

locations imposed by the geometry of the sprocket (i.e., the 2D tooth profile) and the chain pitch. As 

no load is applied, the location of one roller must be prescribed (see below). 

In 1956, Binder proposed a purely graphical study of consecutive roller locations. Using large size 

sketches of sprockets, he measured the articulation and pressure angles (𝛼∗ and 𝜙, respectively), 

stating that the centre of two consecutive rollers should be a chain pitch 𝑝 apart. In [64], Naji & 

Marshek proposed a numerical procedure to automate the work of Binder (see Chapter I). This 

provides better precision and repeatability. Similarly, angles 𝜙 and 𝛼∗ were calculated. In both studies, 

the clearance between the roller and tooth bottom was neglected (i.e., 𝑅𝑟𝑜𝑙𝑙𝑒𝑟 = 𝑅𝑡𝑏). This assumption 

leads to a slight shift of the roller centre trajectory compared to the procedure presented as the 

distance to the tooth profile is 𝑅𝑡𝑏 instead of 𝑅𝑟𝑜𝑙𝑙𝑒𝑟 (see Figure III-7, see Figure I-21). Consequently, 

for rollers in contact with the tooth bottom curve (i.e., seating curve in [64]), the pressure angle 𝜙 

could not be calculated/measured from the geometry. Moreover, all the cases where the contact point 

with the tooth profile lies at the seating curve (i.e., 𝛾 ∈ [3,5] for 𝐴𝑆𝐴 profiles, see Figure III-7) are 

combined in one roller location condition called “seated roller” (see Chapter I). 

  
(a) (b) 

Figure III-7: Roller location according to (a) Naji & Marshek and Binder’s assumptions (b) the model 
presented (the clearance between roller and profile are exaggerated) 

For all the cases presented, the 𝐴𝑆𝐴 profile is still used but with a sprocket pitch 𝑝 = 1′′ = 25.4𝑚𝑚 

and roller diameter 𝐷𝑟𝑜𝑙𝑙𝑒𝑟 = 15.88𝑚𝑚. Various numbers of teeth are tested with variations of the 

chain pitch to simulate wear. For all the sprockets considered, the number of rollers in contact is 

assumed to be (𝑍 2)⁄ + 1 (only even numbers of teeth 𝑍 are tested). The numbering used is given in 

Figure III-8. Angles 𝛼1
∗, 𝜙1 and 𝛼(𝑍 2)⁄ +1

∗  cannot be calculated as the chain strands are not considered. 

The location of the last roller (roller (𝑍 2⁄ ) + 1) is assumed and the resulting locations of the other 

ones are calculated. 
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(a) (b) 

Figure III-8: Roller location according to the QSCDM (a) 𝒁 = 𝟏𝟎 no elongation (b) 𝒁 = 𝟑𝟎 𝟑% pin-links 
elongation  

The first case is for a sprocket of 𝑍 = 10 teeth with the chain pitch equal to the sprocket one. According 

to [32] and [64], the last roller in contact (i.e., roller (10 2⁄ ) + 1 = 6) is set at the highest point of the 

working curve, corresponding to 𝛾 = 6 (see Figure III-7.b). The comparisons are shown in Figure III-9. 

 
Figure III-9: Comparison of pressure angle 𝝓 and articulation angle 𝜶∗ with Naji & Marshek [64] and 
Binder [32] ; 𝒁 = 𝟏𝟎, no link elongation 

The location for the initial roller (i.e., roller 1) resulting in roller 6 lying at 𝛾 = 6 is close, but still greater 

than the transition point (𝛾1 ≈ 5.03, 𝛾𝑡𝑝
𝐵 ≈ 5.024 for the profile considered). The evolution of roller 

location exhibits an exponential aspect as the first rollers almost lie at the same contact point before 

a fast increase in 𝛾 occurs for the last ones (particularly for rollers 5 and 6). For the pressure and 

articulation angles, the evolution obtained shows the same trend and values comparable with the 

results of Naji & Marshek and Binder. The pressure angles 𝜙 decrease as the rollers climb the tooth 

flank starting from 𝜙1 ≈ 22° to 𝜙6 ≈ 6°. Similarly, the articulation angles obtained also decrease while 

staying relatively close to the value obtained with all the rollers seated 𝛼 = 36° (corresponding to the 

pitch angle for 𝑍 = 10). The smaller value is 𝛼5
∗ = 32.4°. All the values of 𝛼∗ are smaller than 𝛼. 

Overall, the results obtained do not exactly match these of Naji & Marshek and Binder. The differences 

are certainly related to the method used (Binder’s results were obtained from purely graphical means) 

and the assumption stated (no clearance between the roller and the tooth bottom). 

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0066/these.pdf 
© [G. Lanaspeze], [2023], INSA Lyon, tous droits réservés



Chapter III 

 

 

82 

For the second test, the influence of chain pitch variation was tested (the results are shown in Figure 

III-10). 

To simulate wear, the pin link lengths are assumed to be elongated by 3% (the length of the bush links 

remains equal to the sprocket pitch). Four numbers of teeth are tested (𝑍 = 10, 20, 30 and 60). For 

all cases, Binder and Naji & Marshek assumed that roller (𝑍/2) + 1 is “seated” (i.e., in contact with 

the seating or tooth bottom curve). In the model presented, this corresponds to all 𝛾 ∈ [3,5]. For the 

sake of comparison, it was considered that roller (𝑍/2) + 1 lies at 𝛾 = 5 for all cases. Pin and bush 

links alternate, and the last link (i.e., link (𝑍/2) between roller (𝑍/2) and (𝑍/2) + 1) is a pin link. 

The images of the roller locations obtained for the two case studies are presented in Figure III-8. 

Similarly to the preceding case, the values obtained are not equal but have similar trends, compared 

to Naji & Marshek and Binder’s results. The deviations are still probably caused by the different 

assumptions. The alternation between elongated and non-elongated links results in the rollers 

arranging themselves along two distinct curves reaching an asymptote when a sufficient number of 

rollers are in contact. For 𝑍 = 60, these asymptotes are around 𝛾 ≈ 6.5 and 𝛾 ≈ 5.9. The pressure 

angles are also arranged in two curves, both decreasing as the rollers move away from the transition 

point. For the link angle, two distinct values emerge above and below the pitch angle 𝛼. The distance 

between the values obtained and 𝛼 can be relatively important (up to ±5° with 𝛼 = 6° for 𝑍 = 60). 

The comparison between the cases with and without pin link elongation shows that the consecutive 

roller locations greatly depend on the chain pitch as a 3% variation is sufficient to greatly modify the 

link angles obtained. The consequence in terms of drive behaviour may also be considerable as the 

loads are computed based on these angles (see eq.(II-27)). 

Based on the comparison presented with the results of Naji & Marshek [64] and Binder [32], the 

method used for the link angle calculations is considered validated.  
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III.3 Local sprocket sub-model: connection 

between loads and roller location  

In the previous part, the sprocket sub-model prediction in terms of adjacent roller location and 

resulting link angles was compared to the literature and proven to be reliable. 

In this part, the relation between roller location and loads (link tension and contact forces see Chapter 

II) is explored. The local sprocket sub-model is still considered alone (without connection to the global 

drive kinematics) to match the conditions of the comparison cases. The local sprocket sub-model 

predictions “per position” are compared to the model of Lodge and Burgess [70] and the experimental 

data of Stephenson et al. [72]. Then, the results “per component” are compared to the model 

presented by Kim and Johnson [52]. 

III.3.1 Loads and roller location “per position” 

The load predictions of the local sprocket sub-model (see §II.2.2) are first compared to the work of 

Stephenson et al. [72] and Lodge & Burgess [70]. Due to the specificity of the case studied here, the 

model results are presented “per position”. 

Stephenson et al. presented an original experimental apparatus allowing real time measurements of 

the tension force in a chain link. Lodge & Burgess presented an enlarged tension model based on the 

GPLD model originally introduced by Naji & Marshek [2] (see Chapter I). In the GPLD model, it is 

assumed that a roller can only have two positions: in contact with the tight side of the tooth profile or 

in contact with the slack side of the tooth profile (see Figure III-11, Chapter I). The switch between 

these two positions is assumed to be instantaneous. The principle of this model is detailed by the 

author in [81]. 

  
(a) (b) 

Figure III-11: Roller position in the GPLD model; roller in contact with the (a) tight (b) slack side of the 
tooth profile [2], [70], [81] 

Lodge & Burgess studied the same drive as Stephenson et al. Validation is therefore carried out on 

both simultaneously. The numbers of teeth of the drive studied are 𝑍Ⅰ|𝑍Ⅱ = 18|36. The chain and 

sprockets pitches are identical (𝑝 = 3 8′′⁄ ). Three loading conditions are explored as the driving 

sprocket undergoes a torque of 53𝑁.𝑚, 33𝑁.𝑚 or 23𝑁.𝑚. Due to the specificities of the drive 

studied, tension mechanisms compelled both strand trajectories and slack strand tension. Therefore, 

the model presented for the global kinematics cannot be used.  

To allow comparison, the model is modified as follows. As the global kinematics cannot be calculated, 

only one drive position is studied. Angles 𝛼𝑡,𝑗 and 𝛼𝑠,𝑗 are therefore constant and their value is 

assumed to be 𝛼𝑗/2. The number of links in each part of the drive are set based on the paper of 

Stephenson et al. [72] (see Figure III-12). The slack strand tension is set at 𝑇𝑠 = 200𝑁 as prescribed in 

[72]. A friction correction angle |𝛿(∞)| = 5° is considered (see Table III-2, other drive parameters are 

not needed). Neither the roller diameter nor the tooth profile are specified in either study [70], [72]. 
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For these calculations, the roller diameter is set according to the American standard (see Table III-3) 

and the 𝐴𝑆𝐴 tooth profile is used. As a consequence of the modifications applied, link meshing (i.e., 

variation of angles 𝛼𝑠,𝑡,𝑗, part of the polygonal effect) is not modelled. 

𝒁Ⅰ|𝒁Ⅱ 𝑳 𝜟𝒀 𝒔𝒍𝒂𝒄𝒌 |𝜹(∞)| 

18|36 - - - 5° 
Table III-2: Drive parameter for comparison with Lodge & Burgess [70] and Stephenson et al. 

Pitch 𝒑 𝑫𝒓𝒐𝒍𝒍𝒆𝒓 𝒎𝒍𝒊𝒏𝒌 

3 8′′⁄ = 9.525𝑚𝑚 5.08𝑚𝑚 - 
Table III-3: Chain parameters [11] for comparison with Lodge & Burgess [70] and Stephenson et al. 

For each loading condition, the tight strand tension 𝑇𝑡 is calculated based on the slack one and the 

torque applied on the driving sprocket using eq.(II-32). The link tension obtained for the drive position 

studied is then calculated using the local sprocket tension model (see §II.2). The comparison of the 

results obtained with the experimental data of Stephenson et al. and the model of Lodge & Burgess 

are presented in Figure III-13. The x-coordinate is given as specified in Stephenson’s paper [72]. The 

instrumented link is in contact with the driving sprocket between position 94 and 104. It is then part 

of the slack strand until position 35 (a full drive rotation is completed at position 108). It contacts the 

driven sprocket until position 57 and finally completes its rotation as part of the tight strand. The 

corresponding link and roller numbering is given in Figure III-12. 

 
Figure III-12: Link position in the drive presented by Stephenson et al. [72] 
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Figure III-13: Comparison of link tension with Lodge & Burgess [70] and Stephenson et al. [72] for several 
torques 

Despite the noise in the experimental data, the local sprocket sub-model and the measurements agree 

regarding the general link tension evolution. The variation in the measured strand tensions is probably 

a consequence of the tensioning rail (not modelled here). For the sprocket sub-model, the sharp 

transition between sprockets and strands is probably caused by the absence of the link meshing 

(constant 𝛼𝑠,𝑡,𝑗 and number of links 𝑛𝑠,𝑡,𝑗). The sprocket sub-model also agreed with the model of 

Lodge & Burgess. The main difference is observed for the links in contact with both sprockets. Lodge 

& Burgess’s model predicted a sharp change at the link tension minima as the rollers are assumed to 

switch instantaneously from contacting the tight side to the slack side of the tooth profile. Conversely, 

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0066/these.pdf 
© [G. Lanaspeze], [2023], INSA Lyon, tous droits réservés



Quasi-Static Chain Drive Model: elements of validation 

 

 

87 

the model presented in this manuscript considers a gradual process. The link evolution obtained is less 

angular, resulting in better agreement with the experimental measurements. 

The gradual transition of the roller from contacting the tight to the slack side of the tooth profile is 

represented in Figure III-14. It shows the locations of the rollers in contact with the driving and driven 

sprocket (still “per position”). The roller numbering is still according to Figure III-12. The GPLD model 

does not directly give any information on the roller locations. However, these are extrapolated from 

the tension curves presented in Figure III-13. It is considered that a roller in contact with the tight or 

slack side of the profile lies at the transition points (respectively 𝛾𝑡𝑝
𝐵  and 𝛾𝑡𝑝

𝐴  for the tight and slack 

side). The transition roller is that marking the border between decreasing and increasing tension and 

the side switch is instantaneous. 

 
Figure III-14: Roller location for the driving and driven sprocket, comparison with extrapolated locations 
from the GPLD model 

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0066/these.pdf 
© [G. Lanaspeze], [2023], INSA Lyon, tous droits réservés



Chapter III 

 

 

88 

Predictions of both models have low dependences on the loading conditions tested. For the GPLD 

model, the transition roller on the driven sprocket is at position 43 for 𝐶𝐼 = 53𝑁.𝑚 and 44 for the 

remaining conditions. It is always at position 100 for the driving one. For the model presented, the 

roller location changes slightly for the first roller to cross the profile but the curve shapes are almost 

the same. For the driven sprocket, the rollers tend to cross the entire profile, from one transition point 

to the other, while they barely reach the second transition point for the driving sprocket. The 

differences between driving and driven sprockets are due to the different numbers of rollers in contact 

and to the effect of friction (details on differences between driving and driven sprockets are given in 

Chapter IV). The comparisons with the roller locations extrapolated from the GPLD are consistent as 

the instantaneous switches between the profile sides occur within the gradual transitions predicted by 

the model presented for all the cases tested. It should be noted that the side switching dynamics, 

ignored in the GPLD approach, approximately involves half of the rollers in contact. These differences 

in the side switching dynamics are responsible for the divergence in link tension. 

III.3.2 Loads and roller location “per component” 

“Per component” predictions of the local sprocket sub-model are now compared to the work 

presented by Kim & Johnson [52]. 

Kim & Johnson [52] presented a sprocket model to calculate the evolution of link tension, contact force 

and roller location. No strand was considered and tensions 𝑇𝑡 and 𝑇𝑠 (tensions in the tight and slack 

strand, respectively) were assumed to be constant and known. The approach presented in this 

manuscript for the calculation of consecutive roller locations is similar to that proposed by Kim & 

Johnson (see §II.2). However, the tension model is different. In [52], Kim & Johnson distinguished pin 

and bush links and studied their equilibrium considering friction at all the chain articulation interfaces 

(i.e., pin/bush, bush/roller and roller/profile) whereas in the QSCDM, the differences between pin and 

bush links are neglected and friction is considered only at the roller/profile interface. 

The results presented by Kim & Johnson were for a 31 tooth double pitch sprocket meshed with the 

standard No 2040 chain (𝑝 = 25.4𝑚𝑚). The friction coefficient at the roller/profile interface was 

assumed to be 0.08 (corresponding to |𝛿(∞)| ≈ 4.57°). The tension in a pin link as well as roller 

locations were calculated for various tension ratios (𝑇𝑠/𝑇𝑡). The sprocket wrapping angle (as 

introduced in [65]) was assumed to be 180° (i.e., both strands are assumed to be parallel, see Figure 

III-15). Both driving and driven sprockets were studied to explore the influence of friction. In [52], Kim 

& Johnson carried out a comparison of their results with the experimental measurements of Naji & 

Marshek [62] (see §I.3) with good agreement. Therefore, this comparison with the results of Kim & 

Johnson indirectly applies to the experimental measurements of Naji & Marshek. 

A 31|31 drive is studied to enable the comparison with the local sprocket sub-model. The slack strand 

is assumed to be straight using the method presented in [81] therefore forcing the wrapping angle of 

each sprocket to 180°. The two strand directions are then used to calculate angles 𝛼𝑠,𝑡,𝑗. As both 

strands are parallel, the conditions in terms of number of links 𝑛𝑗 and meshing angle 𝛼𝑠,𝑡,𝑗 are identical 

for the driving and driven sprockets. The tension of both the slack and the tight strand is set to match 

the ratios tested. The chain parameters are set according to [11] for a No 2040 standard chain and 

|𝛿(∞)| is chosen to match a friction coefficient of 0.08. The parameters used for this case study are 

summarised in Table III-4 (other drive parameters are not needed) and Table III-5. 

 

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0066/these.pdf 
© [G. Lanaspeze], [2023], INSA Lyon, tous droits réservés



Quasi-Static Chain Drive Model: elements of validation 

 

 

89 

 
(a) 

 
(b) 

Figure III-15: (a) general view of 𝟑𝟏|𝟑𝟏 double pitch drive (b) Driving sprocket at the positions of roller 
capture and release 

 

𝒁Ⅰ|𝒁Ⅱ 𝑳 𝚫𝒀 𝒔𝒍𝒂𝒄𝒌 |𝜹(∞)| 

31|31 (double pitch) - 0 - 4.57° 
Table III-4: Drive parameters for comparison with Kim & Johnson [52] 

Pitch 𝒑 𝑫𝒓𝒐𝒍𝒍𝒆𝒓 𝒎𝒍𝒊𝒏𝒌 

25.4𝑚𝑚 7.92𝑚𝑚 - 
Table III-5: Chain parameters for comparison with Kim & Johnson [52] 

A comparison of both models for the link tension and roller location is presented in Figure III-16. Sub-

figures (a-d.1) are from Kim & Johnson [52] while (a-d.2) are from the local sprocket sub-model. Five 

different tension ratios are explored (𝑇𝑠 𝑇𝑡⁄ = 1, 0.75, 0.5, 0.25 and 0.03). The results are given as a 

function of the sprocket rotation angles. The tracked link leaves the tight strand at 0° which also 

corresponds to the capture of the tracked roller (see Figure III-15.b). For the driven sprocket, curves 

are shown from the tight to the slack strand to match Kim & Johnson’s representation. 
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Figure III-16: Comparison with Kim & Johnson [52] in link tension and roller location for driving and driven 
sprockets 

The roller location from Kim & Johnson was originally presented in terms of coordinate 𝜉. To compare 

them, they have been converted to 𝛾 using eq. (III-6) (see Figure III-5, only valid for 𝐴𝑆𝐴 profiles). 
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 𝛾 = 𝜉 + 4 (III-6) 

with: 

• 𝜉 ∈ [−4,4], the roller location coordinate as presented by Kim & Johnson in [52] 

• 𝛾 ∈ [0,8], the roller location coordinate for the presented model. 

The roller location curves show rotation angles greater than 180° as the tracked articulation remains 

in contact with the sprocket for another angular period (angle 𝛼Ⅰ) after the link has been released. The 

articulation therefore leaves the sprocket at a rotation angle of 180 + 𝛼Ⅰ ≈ 203° (see Figure III-15.b). 

Both models agreed on the evolution of link tension and roller location for all the tension ratios tested 

and for both driving and driven sprockets. In terms of link tension, both models exhibit superimposed 

curves at the beginning of the sprocket rotation for all the ratios tested. Then, the curves start to split 

up at the same rotation angles for both models, with the curves related to higher tension ratios leaving 

the common trajectory first. Depending on the ratio, tension reaches its minimum before increasing 

again or simply decreases all the way to the slack strand. The differences between the driving and 

driven sprockets (due to the effect of friction, see §I.3) are similar. The driving sprocket shows a slower 

decrease in link tension than the driven one for all ratios. Naji & Marshek [62] reported the same 

behaviour observed experimentally with superimposed curves at the beginning of rotation regardless 

of the loading conditions. In terms of roller location, the results also exhibit superimposed curves as 

all the roller locations start at the first plateau where 𝛾𝑖 ≈ 𝛾𝑡𝑝
𝐵 . The curves then diverge with the more 

loaded cases showing less roller displacement. For the lowest ratio (𝑇𝑠 𝑇𝑠⁄ = 0.03), the rollers do not 

reach the second plateau associated with transition point 𝐴 (𝛾𝑖 ≈ 𝛾𝑡𝑝
𝐴 ), regardless of the sprocket being 

driving or driven. For the driven one the rollers tend to start “crossing the profile” sooner and therefore 

reach the second plateau before compared to the rollers in contact with the driving sprocket under 

the same loading conditions. Detailed analysis of the differences between driving and driven sprockets 

will be given in Chapter IV. 

For both models, slope breaks are visible in the link tension evolution. They are caused by the 

fluctuations of angles 𝛼𝑠,𝑡 and indicate the roller captured (released) on the driving (driven) sprocket. 

Their angular period is therefore 𝛼Ⅰ ≈ 23°. These slope breaks are also visible in both the experimental 

results [62] and in the GPLD model [2] from Naji & Marshek. 

The good agreement of the two models suggests that the effect of friction at the pin/bush and 

bush/roller interface, as modelled by Kim & Johnson, does not significantly influence the link tension 

and roller location. However, friction at the roller/profile interface greatly influences the results 

obtained, exhibiting differences between the driving and driven sprockets. Considering the good 

agreement of Kim & Johnson’s model with the experimental results of Naji & Marshek [2] (the 

comparison is shown in [52]), this suggests that the approach used in this work for the friction model 

(correction angle 𝛿) is sufficient to represent loads and roller location evolution with limited 

complexity. 
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III.4 Complete drive model 

The global kinematics (i.e., tight and slack strand sub-models) and local sprocket sub-model have been 

considered independently and compared to the literature. The QSCDM (i.e., global kinematics, roller 

location, load calculation and transition from “per position” to “per component”) is now compared to 

the work presented by Troedsson & Vedmar in [67]. 

In their work, Troedsson & Vedmar presented a complete chain drive model, including a specific model 

for the slack strand (used as a basis for the sub-model presented in this work, see §II.1.2). The effect 

of gravity was considered for the load computation but friction was neglected. The elongation of the 

links under the action of link tension was also taken into account (contrary to the model presented) 

but tooth deflection was ignored. A mock test for a 10|20 drive was presented. The total number of 

links 𝑁𝑏𝑙𝑖𝑛𝑘 equalled 40 and a torque of 𝐶Ⅰ = 5𝑁.𝑚 was applied on the driving sprocket. The centre 

distance 𝐿 was 196.8𝑚𝑚. The sprocket and chain pitch were assumed not to be equal, their values 

being respectively 𝑝𝑠𝑝𝑟𝑜𝑐𝑘𝑒𝑡 = 15.875𝑚𝑚 (5/8′′) and 𝑝𝑐ℎ𝑎𝑖𝑛 = 15.95𝑚𝑚. The tooth profile used was 

not given in detail in the paper but was from the standard DIN 8187. However, this standard has been 

replaced by the ISO 606 [31] (defining 𝑁𝐹𝑚𝑖𝑛 and 𝑁𝐹𝑚𝑎𝑥 profiles, see §I.2.1) and the author could not 

obtain the precise definition of the geometry mentioned. 

Changes had to be carried out to enable the comparison with the QSCDM presented in the manuscript. 

The global kinematics calculation method cannot be used with different pitches for the chain and 

sprockets. Therefore, it is considered that both pitches equal 15.875𝑚𝑚. To fit the smaller chain pitch, 

the centre distance must be adapted and is set to 196.5𝑚𝑚 to match the slack strand tension. Neither 

the mass of the links nor the roller diameter were given in in the paper [67]. Based on the pitch, their 

values are taken from a catalogue [91] (chain No 500, see Table III-7). As the tooth profile used in the 

paper could not be found by the author, the profile 𝑁𝐹𝑚𝑎𝑥, from the standard ISO 606 [31] is used. 

Finally, the correction angle 𝛿(∞) is set to 0 as friction was neglected in the paper. The parameters 

used for this case study are summarised in Table III-6 and Table III-7 

𝒁Ⅰ|𝒁Ⅱ 𝑳 𝚫𝒀 𝒔𝒍𝒂𝒄𝒌 |𝜹(∞)| 

10|30 196.5mm 0 7.46% 0° 
Table III-6: Drive parameters used for comparison with Troedsson & Vedmar [67] 

Pitch 𝒑 𝑫𝒓𝒐𝒍𝒍𝒆𝒓 𝒎𝒍𝒊𝒏𝒌 

15.875𝑚𝑚 10.16𝑚𝑚 12.38𝑔/𝑙𝑖𝑛𝑘 
Table III-7: Chain parameters for comparison with Troedsson & Vedmar [67]. Based on chain No 500 in [91] 

The chain drive is solved using the QSCDM with the above parameters. The evolution of loads (link 

tension and contact force) as well as roller locations (i.e., 𝛾) are calculated “per component” and 

compared to the results of the paper. Figure III-17 shows the evolution of the contact force at 

articulation 𝑖 (during its contact with the driving and driven sprocket) and link tension for link 𝑖 + 1 

(see Figure III-19 and Figure II-2). These forces are denoted 𝐹𝑖+1 and 𝐹𝑐 respectively for Troedsson & 

Vedmar. The x-axis coordinate is the driving sprocket rotation expressed as a fraction of the driving 

sprocket pitch angles (𝜁/𝛼Ⅰ). 
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Figure III-17: Comparison of link tension and contact force with Troedsson & Vedmar [67] 

The curves look similar for both models. The tracked roller first comes into contact with the driving 

sprocket, resulting in the link tension going from the tight to the slack one. After a period in the slack 

strand, the articulation comes into contact with the driven sprocket which takes it back to the tight 

strand. Both models show oscillations in the strand tensions. These oscillations are caused by two main 

phenomena: the slack tension variation and the meshing angles variation. Indeed, as the slack strand 

tips move, the slack strand tension varies (see Figure III-18.a) and meshing angles 𝛼𝑠,𝑡,𝑗 also vary at the 

same time (see roller capture and release sub-positions in Figure III-18). These parameters all intervene 

in the relation between torque and strand tension (see eq.(II-32)). As a consequence, the tight strand 

tension adjusts to maintain a constant driving torque resulting in the variation shown in Figure III-18.b. 

The oscillations in the slack strand tension seem higher for the model presented, compared to the 

results of Troedsson & Vedmar, which results in higher oscillations in the tight tension as well. This 

difference is probably caused by the chain mass. Indeed, the higher slack strand oscillations in the 

model presented suggest that the link mass used is higher than in the paper. The contact forces exhibit 

the same trend for both models as the first peak occurs during the link meshing before the force rapidly 

decreases. However, the reached peak values differ, as they are a little higher for the driving sprocket 

and a little lower for the driven one in the QSCDM compared to that of Troedsson & Vedmar. The 

higher strand tension oscillations might reflect the contact force, probably explaining some of the 

differences observed. The possible different tooth profiles used for both models could also have an 

influence. Despite these discrepancies, the general force evolutions are very similar for both models. 

Figure III-18 represents the tight and slack strand tension at the driving sprocket (respectively 𝑇𝑡,Ⅰ and 

𝑇𝑠,Ⅰ) during a model period. The sub-positions of roller capture and release by both sprockets are 

represented. The adaptive angular pitch used in the model is visible. The discretisation pitch is reduced 

around each event of roller capture or release and specifically around those concerning the tight 

strand. This allows capturing with improved precision these significant instants with limited 

consequences on computation time (see Appendix I). The slack tension varies for each sub-position, 

reaching about 5𝑁 to 6.6𝑁 at its lowest and highest points, respectively. The maximal slack tension 

occurs at about 𝜁 𝛼Ⅰ⁄ = 0.3 between the roller release by the driven sprocket and the roller capture 

by the driving one. The minimum is reached immediately before the release of a new roller by the 
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driving sprocket into the slack strand. As the release (capture) of a roller at the driving (driven) sprocket 

is assumed to be instantaneous, the slack strand tip position also changes instantaneously. This results 

in discontinuities in the slack strand tension with the one resulting from the roller release at the driving 

sprocket being the most significant. The resulting variation of the tight strand tension 𝑇𝑡,Ⅰ (to ensure 

constant torque) is shown in Figure III-18.b. The phasing is different compared to the slack one. The 

maximum tension (about 211𝑁) is reached around the position of roller capture by the driving 

sprocket while the lowest one (about 200𝑁) lies close to the position of roller release from the driven 

sprocket. The magnitude of the discontinuity caused by the roller release from the driving sprocket is 

similar in the tight tension but its relative importance is reduced as the magnitude of the tight strand 

variation is greater than that of the slack one. 

 
Figure III-18: link tension at the driving sprocket: (a) slack strand, (b) tight strand 

In order to compare the prediction in terms of roller location, the normal directions at the roller/profile 

contacts are shown in Figure III-19. As for the roller locations, these normal directions depend on the 

drive position considered. However, this information was not given by Troedsson & Vedmar. For the 

model presented, the normals are shown for the drive position immediately before the capture of a 

new roller by the driving sprocket (i.e., 𝜁 ≈ 0.52𝛼Ⅰ with 𝜓𝑡,Ⅰ|𝑖𝑛𝑖𝑡 = 0). 
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(a) (b) 

Figure III-19: Roller-profile contact normal direction according to: (a) Troedsson & Vedmar [67], (b) 
QSCDM. The strands are shortened for visualisation 

As friction is neglected (i.e., |𝛿(∞)| = 0), the normal directions are also the directions of the contact 

forces. In both models, all the rollers in contact with the driving sprocket carry loads: the closer to the 

tight strand, the greater the load carried. Indeed, the normal direction tends to the radial direction 

(i.e., no load carried) as the rollers move their way to the slack strand. The same trend is observed for 

the driven sprocket. However, according to the QSCDM, the normal direction of the last roller in 

contact is oriented towards the slack strand (i.e., the contact point has moved to the slack side of the 

profile, see Figure III-11). The transition from a roller contacting the tight to the slack side of its profile 

is much quicker in the QSCDM than in the paper [67]. Indeed, in Troedsson & Vedmar, the five rollers 

closer to the slack strand (for the driven sprocket) carry almost no loads but do not “cross the profile”. 

Conversely, in the model presented, the transition from contact with the tight to the slack side of the 

profile is completed by the two rollers closer to the slack strand (still for the driven sprocket). It is 

interesting to note that despite these differences in terms of normal direction, the evolutions of the 

contact forces are similar for the two models (as shown by Figure III-17). The differences are therefore 

probably caused by the drive position studied. It is also possible that the roller diameter is different for 

both models resulting in different adjacent roller relations therefore causing the differences in normal 

direction. 

To conclude, despite the parameters being slightly different (i.e., chain pitch, tooth profile and link 

mass), the results of both models are very similar, both in load evolution and in normal direction (i.e., 

related to roller location). The QSCDM presented in its entirety therefore seems able to predict the 

behaviour of a given chain drive. The similar results suggest that the link elongation (considered by 

Troedsson & Vedmar but neglected in the presented model) does not significantly affect the drive 

behaviour. However, the loads applied on this case study are moderate (up to 200𝑁 compared to a 

maximum of 4000𝑁 in track cycling drives, see §I.1.2) so this conclusion should to be tested in more 

extreme loading conditions. Similarly, the effect of gravity, considered by Troedsson & Vedmar in the 

tension model of a roller in contact with a sprocket, but neglected in the tension model presented, 

does not seem to significantly influence the results. 
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III.5 Conclusion 

This chapter was dedicated to the validation of the Quasi-Static Chain Drive Model (QSCDM). The 

process was carried out on the different sub-parts and finally on the whole QSCDM. 

The global kinematics was first reviewed. The comparison of the tight strand sub-model was in 

agreement with the analytical predictions of Fuglede & Thomsen [1]. The predictions of the roller 

capture and release positions are similar, likewise for the sprocket rotation speed and acceleration. 

The numerical procedure presented has the advantage of accommodating the addition of new 

hypotheses more easily (e.g., replacing the condition on 𝛼𝑠,𝑡 with a detection of roller sprocket 

collision). The slack strand sub-model was then analysed and compared to the known results for a 

catenary curve. Its behaviour proved to be consistent and its application to a chain drive also exhibited 

predictable results. 

The local sprocket sub-model was then analysed in two steps. First, the relation between adjacent 

rollers was considered regardless of the impact on loads. Its successful comparison with the roller 

location characteristic curves presented by Kim & Johnson [52] was detailed. The calculation of link 

angles was then compared to the graphical measurements performed by Binder [32] and the numerical 

predictions of Naji & Marshek [64]. The comparison showed similar trends despite exhibiting little 

variations imputed to the different hypotheses stated. 

In the second step, the relation between roller location and loads, as predicted by the local sprocket 

sub-model, was studied. The sub-model was tested alone without the connection to the global 

kinematics. The predictions were compared to the model developed by Lodge & Burgess [70] and the 

experimental results of Stephenson et al. [72]. Due to the specificity of the cases studied (strand 

trajectories compelled by guide rails), the evolution of the meshing angles 𝛼𝑠,𝑡,𝑗 could not be 

calculated. Therefore, the results were presented “per position”. The results are consistent for link 

tension evolution. Compared to the model of Lodge & Burgess, assuming instantaneous roller location 

variation, the QSCDM is able to capture the progressive switching between the two transition points 

(between the slack and tight side of the tooth profile). “Per component” predictions were compared 

to the model of Kim & Johnson [52] for the classical case study of a 31|31 double pitch chain. Both 

models agreed on the evolution of link tension and roller location. This agreement suggests that 

friction at the pin/bush and bush/roller interfaces (considered by Kim & Johnson but neglected in this 

manuscript) do not significantly influence the drive behaviour. The correction angle approach used in 

this manuscript therefore seems sufficient to model the effect of friction. 

The whole QSCDM (i.e., global kinematic and sprocket sub-model) was then compared to the results 

presented by Troedsson & Vedmar [67]. Despite uncertainties on the precise tooth profile geometry 

and chain characteristics, the predictions were in accordance. This result supports the hypothesis 

stating that part deformations, and specifically link elongation, do not significantly influence the drive 

behaviour (i.e., loads and roller locations). Similarly, the choice of neglecting gravity in the sprocket 

sub-model is backed. 

The whole QSCDM as well as its constitutive sub-models were compared successfully to the results of 

the literature from both numerical models and experimental measurements. Although meant to study 

track cycling drives, the model hypotheses are general enough to cover industrial cases. Thanks to this 

flexibility, the model was validated using industrial chain drive literature as no appropriate results for 

cycling drives could be found. The similarity between the industrial drives tested and cycling cases 

(e.g., negligible dynamical effect) ensures the validity of applying the method specifically to track 

cycling.
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The Quasi-Static Chain Drive Model (QSCDM) has been presented and validated against numerical 

models and experimental results from the literature. In this chapter, it is used to analyse the influence 

of tooth profile on the chain drive behaviour, for both industrial and cycling applications. 

First, the influence of the standard tooth profiles (𝐴𝑆𝐴, 𝑁𝐹𝑚𝑖𝑛 and 𝑁𝐹𝑚𝑎𝑥) on chain drive behaviour 

is tested. Industrial drives are considered in order to analyse the impact of these profiles on their 

dedicated application. The loads (i.e., link tension and roller/profile contact force) are calculated using 

the three profiles. The specificities of the QSCDM presented are explored and compared to single 

sprocket models of Naji & Marshek [2], [6] and Kim & Johnson [52]. The influence of the connection 

between strands and sprockets on loads and roller location oscillations is characterised. This first 

section demonstrates the interest of the QSCDM presented for industrial drive applications. Moreover, 

it provides a first assessment of the influence of tooth profile on drive behaviour. 

Based on the results of the first part, analysis methods are presented. These original methods are 

focused on characteristic pressure angle values. The latter characterise each tooth profile. These 

methods also enable easier analysis and prediction of the influence of a given profile on the drive 

behaviour. A global analysis of the main drive behaviours is presented. Parallels with other models 

presented in the literature are also given. 

Finally, the analysis methods presented are applied to track cycling drives. Their interest is 

demonstrated through easier interpretation of the results. The specificities inherent to track cycling 

applications are explored. The interest of dedicated tooth profiles is demonstrated and original 

geometries are proposed. Finally, the influence of the new tooth profile geometries is tested on a 

typical track cycling drive and a comparison with the industrial case is carried out. 
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IV.1 Analysis of industrial drives 

The influence of the standard profiles is tested considering the typical 𝑍Ⅰ|𝑍Ⅱ = 31|31 double pitch 

drive [52], [62] already broached in the validation process (see §III.3.2). 

Both the driving and the driven sprockets have 31 teeth. They are used with the double pitch chain 

ANSI C2040R, as in the work of Naji & Marshek [62] and Kim & Johnson [52]. The chain characteristics 

are taken from a catalogue [11] and summarised in Table IV-1. The chain has a number of links 

𝑁𝑏𝑙𝑖𝑛𝑘 = 80 and the distance 𝐿 is set to obtain a slack strand looseness of 𝑠𝑙𝑎𝑐𝑘 = 4% to match the 

recommendation for industrial drives [73]. As in Naji & Marshek in [62], a correction angle |𝛿(∞)| =

5° is chosen. The drive parameters are summarised in Table IV-2.  

Pitch 𝒑 𝑫𝒓𝒐𝒍𝒍𝒆𝒓 𝒎𝒍𝒊𝒏𝒌 

1′′ = 25.4𝑚𝑚 7.92𝑚𝑚 12.7𝑔 
Table IV-1: Characteristics of the ANSI C2040R chain, based on [11] 

 

𝒁Ⅰ|𝒁Ⅱ 𝑳 𝚫𝒀 𝒔𝒍𝒂𝒄𝒌 |𝜹(∞)| 

31|31 ≈ 819mm 0 4% 5° 
Table IV-2: Parameters of the 𝟑𝟏|𝟑𝟏 double pitch drive 

Parameters 𝜓𝑡,Ⅰ|𝑖𝑛𝑖𝑡and 𝑎 are set to 0 and 1𝑒−10𝑚, respectively. A general view according the global 

kinematics of the drive studied (generated with the QSCDM) is presented in Figure IV-1 according the 

global kinematics. The results of the global kinematics analysis are presented for one drive period in 

Figure IV-2. 

 
Figure IV-1: General view of the 𝟑𝟏|𝟑𝟏 double pitch drive (𝒔𝒍𝒂𝒄𝒌 = 𝟒%) 
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Figure IV-2: Global kinematics of the 𝟑𝟏|𝟑𝟏 double pitch drive 

The variation of the meshing angles 𝛼𝑡,𝑗 and 𝛼𝑠,𝑗  is shown. They vary between ]0, 𝛼𝑗] (with 𝑗 = Ⅰ or Ⅱ 

for the driving and driven sprocket, respectively). The discontinuities in the curves mark roller capture 

and release events. For both sprockets, the roller capture and release do not occur simultaneously. 

Therefore, the number of links in contact with each sprocket is not constant and varies between 7 and 

8. Consequently, the numbers of links in the strands also vary between 33 and 32. Indeed, the 

looseness setting of the slack strand (4%) is tight enough to obtain the same extreme number of links 

in both strands. As shown previously in §III.4, the moving tips cause the slack strand tension to vary 

within a drive period. Only the driving sprocket slack tension 𝑇𝑠,Ⅰ is plotted as the driven one is almost 

equal due to the strand being almost symmetric (𝐷𝑦 ≪ 𝑝. 𝑛𝑠). The slack tension increases from about 

27𝑁 at its minimum to about 33𝑁 at its maximum. Discontinuities in the tension occur at the roller 

release (capture) by the driven (driven) sprocket. This is due to the compatibility between the global 

kinematics and the local sprocket sub-model (see Chapter II). Indeed, for slack strand calculation, the 

rollers marking the strand tips are assumed to lie on the pitch circle. Therefore, they cannot leave 

(come into contact with) the sprocket gradually. As the drive is symmetric (i.e., 𝑍Ⅰ = 𝑍Ⅱ and Δ𝑌 = 0), 

the global kinematics for the driving and driven sprockets is the same (the ranges of the meshing angles 

and number of links are in the same intervals). The only difference is a shift in phase caused by the top 

common tangent not being equal to a whole number of pitches. Consequently, the slack strand tension 

has the same value at the events of roller capture (release) by the driving sprocket and release 

(capture) by the driven one. The kinematics presented is the same for all the profiles tested (see §II.1). 
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Comparison of the three industrial profiles is presented in Figure IV-3. Markers are set at the boundary 

points between the curve portions in Figure IV-3.a. 

  
(a) (b) 

Figure IV-3: Comparison of 𝑨𝑺𝑨, 𝑵𝑭𝒎𝒂𝒙 and 𝑵𝑭𝒎𝒊𝒏 profiles: (a) in the local profile coordinate system, (b) 
for a whole sprocket (31 teeth double pitch sprocket) 

In the local coordinate system view (Figure IV-3.a), the differences of tooth bottom radius (𝑅𝑡𝑏) can 

be appreciated. The 𝑁𝐹𝑚𝑖𝑛 profile is that with the smallest clearance with the roller. Along the tooth 

flank, the 𝑁𝐹𝑚𝑖𝑛 profile exhibits the steepest slopes while the 𝑁𝐹𝑚𝑎𝑥 has the shallowest. The slope of 

the profile flank does not significantly vary for the 𝑁𝐹 profiles as it is defined by a circle with a large 

radius (compared to the other dimensions). The 𝐴𝑆𝐴 profile slopes lie between the two preceding 

profiles with significant changes along the curve. Going from the transition point to the tooth tip, the 

slope first lies close to the 𝑁𝐹𝑚𝑎𝑥 one before catching up with the 𝑁𝐹𝑚𝑖𝑛 and finally decreasing at the 

topping curve (last portion of the 𝐴𝑆𝐴 profile). One can note that the 𝐴𝑆𝐴 profile satisfies the ISO 

standards as its definition always lies between the two 𝑁𝐹 ones. The positions of the transition points 

are not the same for each profile. However, it is interesting to note that these specific points lie almost 

at the borders of the tooth bottom portion (i.e., close to 𝛾 = 3 and 𝛾 = 5 for 𝑁𝐹 and 𝐴𝑆𝐴 profiles, 

respectively, see Appendix A). 

The different tip diameters can be appreciated in the global view (Figure IV-3.b). However, this 

parameter will have limited influence on the profile properties (see §IV.2 and IV.3). 
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IV.1.1 Tooth profile influence 

Beforehand, it is important to remember the general dynamics of roller location. It was demonstrated 

by Kim & Johnson in [52] that rollers marking the transition with the tight strand always contact the 

tooth profile close to the transition point 𝐵 (𝑡𝑝𝐵). Then, depending on the loading conditions, 𝑠𝑐,1 is 

located before or after 𝑡𝑝𝐵. Consequently, rollers tend to cross the profile going toward transition 

point 𝐴 (𝑡𝑝𝐴) or tend to climb the tooth flank with a high risk of chain drop (see Chapter I and Chapter 

II). Therefore, roller location always starts at the transition point 𝑡𝑝𝐵 (or simply 𝑡𝑝). An example of 

typical roller location evolution for the 𝐴𝑆𝐴 profile is given in Figure IV-4.a. 

 

 
(b) 

(a) 
Figure IV-4: 𝑨𝑺𝑨 driving sprocket (a) example of roller location (b) tight and slack side of the profile 

Taking advantage of this a priori known roller motion, new parameters allowing roller location 

comparisons between several tooth profiles are introduced. Indeed, the different coordinates used for 

roller location (i.e., 𝛾, 𝑠𝑐 and 𝑠𝑟) are dependent on the profile considered and do not necessarily fall 

within the same intervals, thereby preventing direct comparison. 

The first parameter is the contact point displacement 𝑑. It represents the displacement of the 

roller/profile contact point starting at the capture of articulation 𝑖 (i.e., at index 𝑘 = 1, see eq.(IV-1)). 

𝑑𝑖  is positive when the roller tends to cross the tooth profile while it is negative when the roller location 

tends to infinity (see Figure IV-5). 

 𝑑𝑖(𝑘) = 𝑠𝑐,𝑖(𝑘 = 1) − 𝑠𝑐,𝑖(𝑘) (IV-1) 

The second parameter of roller location is 𝑑̅𝑖. It represents the evolution of 𝑑𝑖  scaled by the distance 

between the two transition points along the tooth profile. The proportion, expressed in percentage, 

represents the length covers by the roller/profile contact point between the two points. When 𝑑̅𝑖 =

0%, the roller lies at 𝑠𝑐,𝑡𝑝
𝐵  and it reaches 𝑠𝑐,𝑡𝑝

𝐴  for 𝑑̅𝑖 = 100% (eq.(IV-2)). 𝑑̅𝑖  can also exhibit negative 

values when the roller tends to climb the tooth profile. For these cases, the scaling allows appreciating 

this motion in relation to the inter transition points distance. 

 𝑑̅𝑖(𝑘) =
𝑑𝑖(𝑘)

𝑠𝑐,𝑡𝑝
𝐵 − 𝑠𝑐,𝑡𝑝

𝐴  (IV-2) 

This representation is interesting as the distance between the two transition points along the tooth 

profile (called inter-𝑡𝑝 distance, see Figure IV-5) differs for all profiles (see Table IV-3). Therefore, 
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different profiles might exhibit the same displacement 𝑑𝑖  for different proportions of inter-𝑡𝑝 distance 

𝑑̅𝑖. 

  
(a) (b) 

Figure IV-5: (a) inter-𝒕𝒑 distance, (b) absolute contact displacement 𝒅 

 

 𝑨𝑺𝑨 𝑵𝑭𝒎𝒂𝒙 𝑵𝑭𝒎𝒊𝒏 

Inter transition points 
distance (𝒎𝒎) 

7.58 8.66 9.60 

Table IV-3: Inter transition points distances for industrial tooth profiles 

Similarly to what Naji & Marshek proposed in [2], the half tooth profile with positive 𝑥 values (i.e., right 

half of the profile in Figure IV-4.b) is designated as the tight side of the tooth profile. Conversely, the 

second half, with negative 𝑥 values, is called the slack side of the tooth profile. Therefore, 𝑡𝑝𝐵 and 𝑡𝑝𝐴 

are located on the tight and slack sides of the profile, respectively (see Chapter I). 

The results for the driving sprockets at torque 𝐶Ⅰ = 5𝑁.𝑚 are given in Figure IV-6. The evolution of the 

link tension 𝑇𝑖+1 and contact force 𝑃𝑖 (numbering according to Figure II-2) is given “per component” 

as a function of the driving sprocket rotation angle 𝜁 expressed in fraction of 𝛼Ⅰ. For driving sprockets, 

the origin 𝜁 = 0 marks the capture of articulation 𝑖 from the tight strand. 
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Figure IV-6: Link tension, contact force and roller location for 𝑪Ⅰ = 𝟓𝑵.𝒎, driving sprocket 

The link tension and contact force evolution show expected evolution. As presented in the literature 

(e.g., [2], [52], [62], [64], [70]), the link tension first decreases to a minimum around 𝜁 𝛼Ⅰ⁄ = 5 before 

re-increasing slightly to reach the slack strand tension (about 30𝑁 in this example, see Figure IV-2). 

The contact force first increases quickly during the meshing of the articulation (up to 𝜁 𝛼Ⅰ⁄ = 1) before 

decreasing regularly to reach its minimum at the same time as the link tension. It then increases again, 

still along the link tension before dropping to zero after the un-meshing of the articulation. 

The influence of the tooth profile geometry is visible on all the plotted results. For the link tension, the 

curve slopes are different depending on the profile. Moreover, quick initial decreases are associated 

with equally quick final re-increases. The 𝑁𝐹𝑚𝑖𝑛 profile exhibits the steeper slopes. For the contact 

force, steep slopes are associated with bigger initial and final maxima. The decrease after the first 

maximum (after 𝜁/𝛼Ⅰ = 1) also follows the same trend as the link tension slopes (i.e., the steeper the 

link tension decrease, the steeper the contact force decrease). All these differences are associated 

with a tooth being able to withstand different loads. Profiles able to withstand more load on each 

tooth (associated with high peak value on the contact force curve) also exhibit steeper slopes on the 

link tension evolution. The maximal contact force value reaches about 56, 60 and 72𝑁 for the 𝐴𝑆𝐴, 

𝑁𝐹𝑚𝑎𝑥 an 𝑁𝐹𝑚𝑖𝑛 profiles, respectively. During the first period, the link tension decreases from around 

112𝑁 to approximately 71, 64 and 47 for the 𝐴𝑆𝐴, 𝑁𝐹𝑚𝑎𝑥 an 𝑁𝐹𝑚𝑖𝑛 profiles, respectively. 

Concerning the roller location, 𝑑𝑖  is positive for all the profiles meaning that all display behaviour in 

which rollers tend to cross the profile from 𝑡𝑝𝐵 to 𝑡𝑝𝐴 (see eq.(IV-1)). For all the profiles, the roller 

remains at the transition point (i.e., at 𝑠𝑐,𝑡𝑝
𝐵 ) during the decrease in link tension. Depending on the 

tooth profile, the distance 𝑑 travelled by the roller differs with the 𝑁𝐹𝑚𝑖𝑛 profile associated with the 

biggest travel distance. However, this difference is caused by the different inter-𝑡𝑝 distance (see Table 

IV-3) as the distance between the transition points is fully crossed for all profiles (i.e., 𝑑̅𝑖 = 100% is 
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reached for all the profiles). However, the rollers tend to stay longer at the transition point for profiles 

with moderate slopes in link tension and contact force (e.g., 𝐴𝑆𝐴 profile). 

Compared to the curves presented in the literature, e.g., Naji & Marshek [62] (see Figure I-17) or Kim 

& Johnson [52] (see §III.3.2), the link tension curves exhibit oscillations. These oscillations are mainly 

visible closer to the slack strand (for high values of 𝜁/𝛼Ⅰ). Consequently, the slope breaks at each whole 

value of 𝜁/𝛼Ⅰ (marking the capture of a new roller) are less visible compared to the results of Naji & 

Marshek [62] and Kim & Johnson in [52]. This subject will be discussed in the next section (see §IV.1.2). 

The intrinsic relation between loads and roller location must be noted. As long as the roller contacts 

the tight side of the tooth profile (corresponding to 𝑑̅𝑖 < 50% for symmetric profiles), 𝑇𝑖+1 is smaller 

than 𝑇𝑖 and the tension decreases (see eq.(II-27)). Once the roller reaches the slack side of the profile 

(corresponding to 𝑑̅𝑖 > 50% for symmetric profiles), tension 𝑇𝑖+1 becomes greater than 𝑇𝑖 and the 

tension re-increases. The minimum in link tension is therefore reached at 𝑑̅𝑖 = 50% for symmetric 

profiles. The same reasoning applies to the contact force. 

The same results are plotted in Figure IV-7 for a driving torque of 𝐶Ⅰ = 50𝑁.𝑚, again for the driving 

sprocket. 

 
Figure IV-7: Link tension, contact force and roller location for 𝑪Ⅰ = 𝟓𝟎𝑵.𝒎, driving sprocket 

The link tension reaches higher values than in the previous case as the tight tension increases to match 

the new torque condition (the tight tension now reaches about 820𝑁). The contact force also increases 

accordingly. However, the general shape of both curves remains identical with a strong link tension 

decrease until a minimum is reached around 𝜁/𝛼Ⅰ = 6. For the 𝐴𝑆𝐴 profile, the tension now decreases 

all the way down to the slack strand value (as 𝑑̅𝑖 < 50%). As for the previous case (𝐶Ⅰ = 5𝑁.𝑚), the 

𝑁𝐹𝑚𝑖𝑛 profile exhibits the steeper slopes both in link tension and contact force. 
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In terms of roller location, all the profiles show rollers starting close to 𝑡𝑝𝐵 before tending to 𝑡𝑝𝐴. 

However, the rollers tend to stay longer nearby 𝑡𝑝𝐵 compared to the preceding case. As a 

consequence, they do not entirely cross the profile. The greatest roller motion is observed for the 

𝑁𝐹𝑚𝑖𝑛 profile where about 80% of the inter-𝑡𝑝 distance is travelled (representing ≈ 8𝑚𝑚 along the 

tooth profile). For the 𝐴𝑆𝐴 profile the roller barely moves from the 𝑡𝑝 as it starts its crossing only 

around 𝜁/𝛼Ⅰ = 7 to reach about 30% of the inter-𝑡𝑝 distance. 

The oscillations, observed in the previous case, are less visible for link tension and contact force as 

their magnitude is less significant compared to the amplitude of each curve. However, they are visible 

in the roller location curves. Their influence is particularly significant for the 𝐴𝑆𝐴 and 𝑁𝐹𝑚𝑎𝑥 profile 

where they cause the roller motion to be non-monotonic. This subject is discussed in §IV.1.2. 

The differences between driving and driven sprockets are now presented. The results obtained for a 

driven sprocket, again for 𝐶Ⅰ = 50𝑁.𝑚, are shown in Figure IV-8. As in the work of Naji & Marshek [2], 

[6], [62] and Kim & Johnson [52] the results are given from the tight to the slack strand. The abscissa 

is again the angle 𝜁/𝛼Ⅰ. However, articulations contacting a driven sprocket go from the slack to the 

tight strand. Therefore, 𝜁 𝛼Ⅰ⁄ = 0 is associated with the roller release into the tight strand while the 

articulation meshing (from the slack strand) occurs at 𝜁 𝛼Ⅰ⁄ |𝑚𝑎𝑥. 

 
Figure IV-8: Link tension, contact force and roller location for 𝑪Ⅰ = 𝟓𝟎𝑵.𝒎, driven sprocket 

Compared to the driving sprocket in the same loading conditions (see Figure IV-7), the slopes for the 

link tension and contact force are steeper. Thus, the minimal link tension is reached earlier (around 

𝜁/𝛼Ⅰ = 3) and the maximal contact force is higher. Consequently, the rollers leave the 𝑡𝑝 sooner and 

also tend to travel further along the tooth profile. 𝑑̅𝑖  reaches at least 80% for all the profiles, with the 

𝑁𝐹𝑚𝑖𝑛 profile even reaching 𝑡𝑝𝐴 (i.e., 𝑑̅𝑖 = 100%). These observations are consistent with the results 
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presented by Kim & Johnson [52] (see §III.3.2). The oscillations in the roller location curves are less 

significant compared to the driving sprocket. Non-monotonic motion is only slightly observed for the 

𝐴𝑆𝐴 profile. It is interesting to note that the results obtained for the driven sprocket with 𝑁𝐹𝑚𝑎𝑥 profile 

are very similar to those for a driving 𝑁𝐹𝑚𝑖𝑛. Both show a link tension of about 350𝑁 at 𝜁/𝛼Ⅰ = 1 and 

a maximal associated contact force of about 530𝑁. They also both exhibit roller travel between 80 

and 90% of the inter-𝑡𝑝 distance. This indicates that the differences between tooth profiles behave in 

the same manner as the differences between driving and driven sprockets. 

IV.1.2 Loads and roller location oscillations, the interest of 

relative tension 

On all studied examples, the curves show oscillations (in link tension, contact force and roller location). 

These oscillations are not always discernible depending on their magnitude. However, it was observed 

that load variation and roller location are coupled. Therefore, oscillations in one necessarily mean 

oscillation in the other. These oscillations are not present on the model results by Kim & Johnson [52] 

(see §III.3.2) or in the measures from Naji & Marshek [62] (see Figure I-17). Figure IV-9 shows a 

comparison of the link tensions obtained in this part using the whole model (𝐶Ⅰ = 5𝑁.𝑚) and the 

results of the validation process (see §III.3.2), both for driving sprockets. The curves from the validation 

(obtained using the local sprocket sub-model alone, see Figure IV-9.b) are representative of the results 

of Kim & Johnson and Naji & Marshek (see Figure I-17 and §III.3.2). Only slope breaks at each capture 

of a new roller (𝜁 = 𝛼Ⅰ ≈ 23°) are visible while the curves for the QSCDM (Figure IV-9.a) show 

oscillations. This part is dedicated to the explanation of this oscillation phenomenon. 

 
Figure IV-9: Comparison between link tensions using (a) the whole model (from Figure IV-6) (b) the 
validation curves presented at §III.3.2 (from Figure III-16) 

a) Effect on the tight strand tension variation 

In the results presented in the previous part, a whole chain drive is studied. Strand tensions result from 

a specific slack strand model, and a condition of constant torque on the driving sprocket is applied. 

Therefore, the following differences are apparent between this work and that of Kim & Johnson and 

Naji & Marshek. 

• Non-parallel strands resulting in different phasing in the roller capture and release, 

• Variation of slack strand tensions 𝑇𝑠,𝑗, 

• Variation of tight strand tension 𝑇𝑡 (resulting from the constant torque condition). 
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However, both works considered the variation of angles 𝛼𝑠,𝑡,𝑗 allowing to model the meshing of the 

sprocket considered. However, in this study, as the strand trajectories result from the drive kinematics, 

they are not necessarily parallel. This implies different phasing in the roller capture and release events 

compared to Kim & Johnson and Naji & Marshek. Figure IV-2 showed the variation of the slack strand 

tension and meshing angles 𝛼𝑠,𝑡,𝑗 during a drive period. As the driving torque is forced to be constant, 

the tight strand tension has to adjust according to eq.(II-32). The same phenomenon was already 

reported in the validation process with the results of Troedsson & Vedmar (see §III.4). The resulting 

tight strand tension for 𝐶Ⅰ = 5 and 50𝑁.𝑚 is shown in Figure IV-10. 

 
Figure IV-10: Driving sprocket tight strand tension for 𝑪𝑰 = 𝟓 and 𝟓𝟎𝑵.𝒎 

The more highly loaded the drive, the more the tight strand variation differs from that of the slack one. 

This is due to the relative influence of the two causes responsible for tight strand variation: slack strand 

variation and meshing angles. The more the drive is loaded, the less significant the slack strand 

variation becomes compared to the effect of the meshing angles. Consequently, the tight strand 

tension maximum progressively distinguishes from the slack tension maximum. For 𝐶Ⅰ = 50𝑁.𝑚, the 

maximal tight strand tension occurs at the driving sprocket roller capture. The discontinuities in the 

slack strand variation occurring at the roller capture (release) by the driven (driving) sprocket are still 

visible in the tight strand variation. However, their relative influence reduces as the magnitude of tight 

strand tension variation increases. 

To cancel the influence of the tight strand tension variation, the relative load (scaled by 𝑇𝑡) can be 

plotted. Examples of results expressed in relative tension (𝑇𝑖+1/𝑇𝑡) are presented in Figure IV-11. Plots 

in relative tension were also presented in Kim & Johnson and Naji & Marshek as they also allow 

generalising the results to any tight strand tension. 

 
Figure IV-11: Absolute versus relative link tension evolution 
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Figure IV-11 shows that fewer oscillations are present on the relative tension plots compared to the 

initial absolute representation. In particular, the slopes for the first periods became constant and the 

capture of a new roller (for each whole 𝜁/𝛼Ⅰ value) is more visible. The superposition of relative tension 

curves for the different driving torque and for each tooth profile is presented in Figure IV-12 (for the 

driving sprocket). 

 
Figure IV-12: Relative link tension for three loading conditions, driving sprocket  

The curves are superimposed for the first model period. This indicates that the tension decay follows 

the same trend for a given profile, independently of the loading conditions. For instance, the link 

tension falls by approximately 60% during the meshing for the 𝑁𝐹𝑚𝑖𝑛 profile (40% for the 𝐴𝑆𝐴). 

However, oscillations are still present as the link goes to the slack strand. Therefore, another 

phenomenon, apart from the tight strand variation, is responsible for these oscillations. 
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b) Effect of the tension ratio variation 

Knowing both strand tensions allows calculating the tension ratio 𝑇𝑠/𝑇𝑡,𝑗 which also varies along a drive 

period (see Figure IV-13). 

 
Figure IV-13: Driving sprocket tension ratio for 𝑪Ⅰ = 𝟓 and 𝟓𝟎𝑵.𝒎 

As for the slack tension in Figure IV-2, the tension ratio is plotted only for the driving sprocket. The 

phasing of the tension ratio variations follows the variations of the slack tension (as 𝑇𝑠 𝑇𝑡⁄ ∝ 𝑇𝑠). The 

ratio varies significantly during one drive period, going for instance from about 0.26 to 0.29 for a 

driving torque of 𝐶Ⅰ = 5𝑁.𝑚. The variation of the tension ratio causes the deviations from the 

literature. 

Figure IV-14 shows a 3D plot of relative tension (𝑇/𝑇𝑡) as a function as the rotation angle (𝜁/𝛼Ⅰ). The 

third dimension shows the slack to tight tension ratio (𝑇𝑠/𝑇𝑡). The red curve highlights the path 

followed by the link studied in this 3D space. The case considered is for a driving sprocket at 𝐶Ⅰ =

5𝑁.𝑚 with 𝑁𝐹𝑚𝑖𝑛 profile. The colour scale shows the differences with the slice corresponding to the 

median tension ratio. 

 
Figure IV-14: 3D plot of relative link tension depending on the rotation angle (𝜻/𝜶Ⅰ) and the tension ratio 
(𝑻𝒔/𝑻𝒕) 
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This representation clearly shows the variation of tension ratio during the roller sprocket contact. The 

model period is visible in the periodical oscillations of the red curve. Each slice of the 3D plot represents 

a constant tension ratio condition, similar to the works presented by Kim & Johnson and Naji & 

Marshek. Differences between the constant ratio conditions (highlighted by the colour) become 

significant close to the slack strand. Figure IV-15 shows a similar plot in a 2D space. The two dotted 

curves show the relative link tension plot for the two extreme ratios. The solid line plot shows the path 

followed with a varying tension ratio. 

 
Figure IV-15: Relative link tension bounded by the two extreme tension ratio conditions 

The solid line travels back-and-forth between the two extreme ratio conditions resulting in link tension 

oscillations. Consistently with Figure IV-12, Figure IV-15 also shows superimposed curves for the first 

drive periods. 

The oscillations in the link tension and contact force curves have multiple sources. The loading 

conditions imposed in this work cause variations of the tight and slack strand tensions. Consequently, 

the tension ratio also varies. Because of these specific constraints, the roller location can exhibit non-

monotonic motion (called back-and-forth motion). In the model definition (see §II.2), it was assumed 

that the sign of the friction correction angle 𝛿 is dependent only on the location of the first roller 𝑠𝑐,1. 

This assumption implies that the motion of every roller is monotonic and depends only on the zone in 

which the first roller lies (zone 2 or 3, see §II.2). Therefore, the back-and-forth roller motions are in 

contradiction with this hypothesis. Indeed, the friction force should oppose the roller motion and 

therefore switch sides (i.e., the friction angle should switch signs) each time the roller motion changes 

direction. However, no satisfactory model for this phenomenon could be developed in this work. It is 

therefore still assumed that the correction angle depends only on the location of the first roller even 

in the presence of back-and-forth roller motion. More details about the condition of appearance of 

this non-monotonic roller motion are given in the Appendix G. 

Typical examples of industrial drives have been analysed. The results show that roller location and load 

(link tension and contact force) are intertwined. The influence of the tooth profile geometry was 

tested. The results show that the decreasing and increasing slopes both in link tension and contact 

force vary depending on the profile, steep slopes being associated with higher maximum contact forces 

and longer roller displacements. The comparison of driving and driven sprockets show that the slopes 
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associated with the driven sprocket are steeper, with the same correlations with maximum contact 

force and roller displacement (longer roller displacement and higher maximum).  

Significant oscillations are present in all the curves analysed. These oscillations were not reported in 

the work of Kim & Johnson [52] and Naji & Marshek [2], [62]. The source of this phenomenon comes 

from the differences between the models. In this manuscript, the model considers a whole drive with 

the dependency between strands and sprockets. Therefore, both strand tensions vary resulting in 

variations of the tension ratio. The influence of the variation of 𝑇𝑡 and 𝑇𝑠/𝑇𝑡 on the oscillations has 

been studied. Not all the profiles (i.e., 𝐴𝑆𝐴, 𝑁𝐹𝑚𝑎𝑥 and 𝑁𝐹𝑚𝑖𝑛) react to this perturbation in the same 

way. The significance of the oscillations in loads decreases as the driving torque increases. The opposite 

is observed for roller location. In some cases, back-and-forth roller motions have been reported. These 

specific non-monotonic motions are in contradiction with the hypotheses stated for friction correction 

(monotonic roller motion with direction given by the first roller location 𝑠𝑐,1). 

The analysis of industrial drives demonstrates the influence of tooth profile geometry on chain drive 

behaviour. Based on this first assessment, the following part proposes original methods to characterise 

tooth profile properties. 
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IV.2 Tooth profile analysis methods 

IV.2.1 Pressure angle at the transition point 𝝓𝒕𝒑 

For the loading conditions explored in the previous part, and for both driving and driven sprockets, the 

rollers first lie at the 𝑡𝑝 before starting to cross the profile at different instants depending on the tooth 

profile (i.e., 𝐴𝑆𝐴, 𝑁𝐹𝑚𝑎𝑥 and 𝑁𝐹𝑚𝑖𝑛), loading conditions, etc. Similarities have been observed in the 

differences between tooth profiles and between driving and driven sprockets, suggesting that the 

same phenomenon could explain both. 

Figure IV-16 shows plots of the pressure angle 𝜙𝑖 for the driving and driven sprocket (at 𝐶Ⅰ = 50𝑁.𝑚). 

 
Figure IV-16: Pressure angle 𝝓𝒊 for driving and driven sprocket 

The evolution of 𝜙𝑖 is consistent with the roller location variations (see Figure IV-7 and Figure IV-8). 

Indeed, the pressure angle depends on the directions of the previous link and profile normal at the 

roller/profile contact point (see §II.2). When the rollers lie at the transition point, both directions are 

almost unchanged. Consequently, the pressure angle 𝜙𝑖 obtained is also constant. As soon as the roller 

starts crossing the tooth profile, the normal direction changes and the pressure angle increases. When 

the profile is entirely crossed (e.g., for 𝑁𝐹𝑚𝑖𝑛 driven sprocket) the pressure angle stabilises at a new 

plateau as the roller reaches the second transition point 𝑡𝑝𝐴. The link meshing is visible between 

𝜁 𝛼Ⅰ⁄ = 0 and 1 where an initial decrease occurs as 𝛼𝑡 is increasing (see Figure IV-16). 

Similarly, the evolution of the articulation angle 𝛼𝑖
∗ is shown in Figure IV-17. The link meshing and un-

meshing are clearly visible as 𝛼𝑖
∗ goes from 0 (roller capture) to about 𝛼𝑗 when a new roller is captured 

(𝜁 𝛼Ⅰ⁄ = 1). The un-meshing shows the inverse variation. Apart from this, the articulation angle 

remains almost constant and very close to the pitch angle 𝛼𝑗 despite the roller location variations. 

Small angle variations are visible with the greatest deviation from the pitch angle value occurring one 

drive period before the roller starts to cross the profile. This corresponds to the following roller (i.e., 

roller 𝑖 + 1) starting to cross the profile. The biggest deviation is observed for the 𝑁𝐹𝑚𝑎𝑥 profile, 

certainly because this profile has the biggest roller/tooth bottom clearance, therefore resulting in the 

biggest gap between roller centres and pitch circle (see Figure IV-3). 
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𝜁 𝛼Ⅰ⁄  

Figure IV-17: Articulation angle for the driving and driven sprockets 

Besides the meshing and un-meshing process, the articulation angle 𝛼𝑖
∗ is nearly constant and only the 

pressure angle 𝜙𝑖 varies in first approximation. 

The value of 𝜙𝑖 at the transition point is characteristic of a given tooth profile and called 𝜙𝑡𝑝. The 

difference between driving and driven sprockets is exactly 2|𝛿(∞)| = 2 × 5° = 10° (see Figure IV-16). 

It is therefore due to the influence of the friction correction angle 𝛿. A pressure angle can be associated 

with both transition points. Their values are obtained numerically knowing the tooth profile definition. 

Table IV-4 shows the value of 𝜙𝑡𝑝|𝐵 and 𝜙𝑡𝑝|𝐴 for the three profiles studied before the friction 

correction. As for the other transition point properties, 𝜙𝑡𝑝 (without mentioning 𝐴 or 𝐵) designates 

𝜙𝑡𝑝|𝐵
. 

 𝑨𝑺𝑨 𝑵𝑭𝒎𝒂𝒙 𝑵𝑭𝒎𝒊𝒏 

𝝓𝒕𝒑|𝑩
 24.87° 19.73° 9.83° 

𝝓𝒕𝒑|𝑨
 131.9° 137.0° 146.9° 

Table IV-4: 𝝓𝒕𝒑 without friction correction for 𝑨𝑺𝑨, 𝑵𝑭𝒎𝒂𝒙 and 𝑵𝑭𝒎𝒊𝒏 tooth profiles 

The eq.(II-27) showed that the ratio between 𝑇𝑖+1 and 𝑇𝑖 depends on the pressure angle 𝜙𝑖 and the 

articulation angle 𝛼𝑖
∗. Considering in first approximation that the articulation angle equals 𝛼𝑗, smaller 

values of 𝜙 result in smaller 𝑇𝑖+1/𝑇𝑖 ratios (i.e., a tooth caring more load). The contact force shows the 

same trend (see eq.(II-27)). Therefore, the differences observed between profiles can be analysed 

considering parameter 𝜙𝑡𝑝. Profiles with smaller 𝜙𝑡𝑝 value (e.g., 𝑁𝐹𝑚𝑖𝑛, see Table IV-4) are associated 

with steeper slopes both in link tension and contact force slopes, and greater roller location variations. 

Due to friction, the value of 𝜙𝑡𝑝 is corrected by ±|𝛿(∞)| depending on the sprocket being driving or 

driven. The similarities observed between a driving 𝑁𝐹𝑚𝑖𝑛 and driven 𝑁𝐹𝑚𝑎𝑥 profile are therefore 

explained by the similar corrected pressure angle 𝜙𝑡𝑝 ± |𝛿(∞)| (about 14.7°, see Figure IV-16). 

𝜙𝑡𝑝|𝐵 is associated with the decreasing link tension slope. Similarly, 𝜙𝑡𝑝|𝐴 is associated with the 

renewed increase in link tension (and contact force) when the rollers reach the slack side of the tooth 

profile. As the industrial profiles are symmetrical, 𝜙𝑡𝑝|𝐴 is as large as the pressure angle at 𝑡𝑝𝐵 (i.e., 

𝜙𝑡𝑝|𝐵) is small (see Table IV-4). 
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𝜙𝑡𝑝|𝐵
 corresponds to the “tooth pressure angle for a new chain” given in the ASA standard [32]. This 

angle is calculated analytically for the 𝐴𝑆𝐴 profile assuming that the two rollers (roller 𝑖 − 1 and 𝑖 

needed to calculate 𝜙𝑖) are seated and that the contact point lies at the transition between the seating 

and working curve (i.e., at point B, see Appendix A corresponding to 𝛾 = 5). 

The pressure angles 𝜙𝑡𝑝|𝐴,𝐵
 change with the number of teeth according to a function specific to each 

tooth profile. However, hierarchy between tooth profiles, in terms of 𝜙𝑡𝑝, is usually respected. For 

instance, a 𝑁𝐹𝑚𝑖𝑛 profile always has smaller 𝜙𝑡𝑝 than an 𝐴𝑆𝐴 one with the same teeth number. More 

information about this point will be given in §IV.3.1. 

IV.2.2 Pressure angle characteristic curve 

In the previous part, the influence of the tooth profile for loading conditions such that the rollers tend 

to cross the profile (i.e., 𝑠𝑐,1 < 𝑠𝑐,𝑡𝑝) has been explored. 𝜙𝑡𝑝 proves to be a good parameter to analyse 

the tooth profile’s influence in these conditions. The following section now explores the limit tension 

ratio (𝑇𝑠 𝑇𝑡⁄ )𝑙𝑖𝑚 for each profile below which no mechanical solution is possible (see §II.2). Exploring 

these extreme loading conditions will demonstrate the interest of the second analysis tool: the 

pressure angle characteristic curve. 

During a drive period, the meshing angles 𝛼𝑠,𝑡,𝑗 and the number of links in contact change for a given 

sprocket. These parameters modify the dependence between 𝑠𝑐,1 and 𝑇𝑠/𝑇𝑡 (see §II.2 and eq.(II-31)), 

therefore modifying the limit tension ratio.  

 
Figure IV-18: Limit tension ratio for each sub-position within a drive period 
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Figure IV-18 shows the significant variation of the limit tension ratio for all sub-positions within a drive 

period. For instance, for the 𝑁𝐹𝑚𝑖𝑛 profile, the limit ratio can vary up to 100% (from approximately 

1.5𝑒−6 to 3𝑒−6). Discontinuities are visible at the roller capture and release events. They are a 

consequence of the compatibility between sub-models. The most favourable sub-positions (i.e., that 

allow reaching the smaller tension ratio) are the same for all profiles. Indeed, all the conditions 

responsible for the variation of the limit ratio stem from the global kinematics, which is independent 

of the tooth profile geometry. For the driven (driving) sprocket, the most favourable sub-position is 

located immediately before (after) a new roller is released (captured). The influence of angles 𝛼𝑡,𝑗 

therefore seems to be dominant on the limit tension ratio. These sub-positions correspond to 𝜁 𝛼Ⅰ⁄ ≈

0.5 and 0.26 for the driving and driven sprocket, respectively. The limit ratio varies greatly depending 

on the tooth profile considered. It can range from about 1𝑒−3 for the 𝑁𝐹𝑚𝑎𝑥 profile to 1.5𝑒−6 for the 

𝑁𝐹𝑚𝑖𝑛. In practice, this implies that the 𝑁𝐹𝑚𝑖𝑛 profile is able to withstand more severe loading 

conditions than the 𝑁𝐹𝑚𝑎𝑥. The differences between driving or driven sprocket also depend on the 

profile. The 𝐴𝑆𝐴 profile shows the greatest difference regarding this point with a driving sprocket able 

to endorse ratio about 5 times smaller than the driven (i.e., about 3𝑒−4 and 16𝑒−4 for the driving and 

driven sprocket, respectively).  

The differences between driving and driven sprockets can be analysed considering the relation 

between the location of roller 1 (i.e., 𝑠𝑐,1) and the tension ration 𝑇𝑠/𝑇𝑡 (see §II.2) at a given sub-

position. This relation is plotted in Figure IV-19 for the three profiles at the most favourable sub-

position given above. 

 
Figure IV-19: Relation between 𝒔𝒄,𝟏 and 𝑻𝒔/𝑻𝒕 at the most favourable sub-position 
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Differences between driving and driven sprockets are caused by the friction correction angle 𝛿. For a 

driving (driven) sprocket, the correction is positive (negative) before the 𝑡𝑝 (i.e., 𝑠𝑐,1 < 𝑠𝑐,𝑡𝑝) and 

negative (positive) after (i.e., 𝑠𝑐,1 > 𝑠𝑐,𝑡𝑝). The transition between the two extreme 𝛿 values occurs in 

the interval [𝑠𝑐,𝑡𝑝 − 𝑎, 𝑠𝑐,𝑡𝑝 + 𝑎]. 

As shown in Figure IV-18, the 𝑁𝐹𝑚𝑖𝑛 profile can reach ratios up to 100 times smaller than other profiles, 

mainly due to its small 𝜙𝑡𝑝 value. Indeed, for values of 𝑠𝑐,1 before the transition point (𝑠𝑐,1 < 𝑠𝑐,𝑡𝑝), 

going closer to the 𝑡𝑝 allows reaching smaller ratios as all pressure angles tend to match 𝜙𝑡𝑝. Beyond 

the 𝑡𝑝, the behaviour depends on the profile. For 𝐴𝑆𝐴 and 𝑁𝐹𝑚𝑎𝑥, the relation between 𝑠𝑐,1 and 𝑇𝑠/𝑇𝑡 

is decreasing meaning that smaller ratios can be reached. On the contrary, for the 𝑁𝐹𝑚𝑖𝑛 profile, higher 

values of 𝑠𝑐,1 beyond the 𝑡𝑝 result in higher tension ratios. Due to the friction correction, driven 

sprockets reach their minimal tension ratio nearby the 𝑡𝑝 as the correction is not overcome even for 

profiles showing a decreasing relation beyond the 𝑡𝑝 (e.g., 𝐴𝑆𝐴 profile). Conversely, for the driving 

sprocket, friction correction favours cases with 𝑠𝑐,1 > 𝑠𝑐,𝑡𝑝. Consequently, the 𝐴𝑆𝐴 and 𝑁𝐹𝑚𝑎𝑥 profiles 

reach their minimal tension ratio beyond the transition point. For the 𝑁𝐹𝑚𝑖𝑛 profile, the minimum for 

the driving and driven sprocket are both reached by the 𝑡𝑝 (see Table IV-6). Contrary to the 𝑁𝐹𝑚𝑎𝑥 

and 𝑁𝐹𝑚𝑖𝑛 profiles, the 𝐴𝑆𝐴 profile shows considerable non-monotonic variation after the 𝑡𝑝. For 

some ratios, up to 4 possible roller locations could therefore be suitable (see §II.3 for simultaneous 

𝑠𝑐,1 solutions). 

The minimal reachable tension ratios for all profiles are presented in Table IV-5. Table IV-6 gives the 

locations (𝑠̅𝑐,1)𝑙𝑖𝑚 that allow reaching the minimal tension ratio. These locations are given relatively 

to the transition point 𝑠𝑐,𝑡𝑝 according to eq.(IV-3). Positive (negative) (𝑠̅𝑐,1)𝑙𝑖𝑚 corresponds to the 

minimal ratio being reached after (before) the transition point. 

 (𝑠̅𝑐,1)𝑙𝑖𝑚 = 𝑠𝑐,1 − 𝑠𝑐,𝑡𝑝 (IV-3) 

 

 𝑨𝑺𝑨 𝑵𝑭𝒎𝒂𝒙 𝑵𝑭𝒎𝒊𝒏 

Driving 2.55𝑒−4 1.02𝑒−3 1.54𝑒−6 
Driven 4.61𝑒−3 1.10𝑒−3 1.54𝑒−6 

Table IV-5: Minimal tension ratio for driving and driven sprocket 

 

 𝑨𝑺𝑨 𝑵𝑭𝒎𝒂𝒙 𝑵𝑭𝒎𝒊𝒏 

Driving 3.00𝑒−5 𝑚 1.60𝑒−5 𝑚 2.63𝑒−10 𝑚 
Driven −4.37𝑒−9 𝑚 −1.53𝑒−9 𝑚 −1.08𝑒−9 𝑚 

Table IV-6: (𝒔̅𝒄,𝟏)𝒍𝒊𝒎 for 𝑨𝑺𝑨, 𝑵𝑭𝒎𝒂𝒙 and 𝑵𝑭𝒎𝒊𝒏 sprockets 

It can be observed that the driven sprockets always reach their minimal ratios before the transition 

point (i.e., (𝑠̅𝑐,1)𝑙𝑖𝑚 < 𝑠𝑐,𝑡𝑝) while the driving ones reach theirs before the 𝑡𝑝. Therefore, the minimal 

ratio is always reached in the zone of negative friction correction. Moreover, driven sprockets always 

reach their minimum very close to the 𝑡𝑝 (i.e., (𝑠̅𝑐,1)𝑙𝑖𝑚 ≈ 1𝑒−9𝑚) while it can be attained further for 

driving sprockets (see Figure IV-19). 

Reaching the minimum ratio before or after the transition point has consequences for the locations of 

all the rollers in contact with the sprocket. According to the adjacent location characteristic curve (see 

§II.2), when the roller location 𝑠𝑐,1 is beyond the transition point, locations of following rollers tend to 

infinity. And the more the initial roller location exceeds 𝑠𝑡𝑝, the more the rollers will climb the tooth 

flank until one eventually misses a tooth, resulting in a chain drop. Figure IV-20 shows the resulting 
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roller location for a driven (a) and a driving sprocket (b) at the minimal ratio configuration (both with 

𝐴𝑆𝐴 profile). For the driven profile, as 𝑠𝑐,1 is nearby the transition point, all the rollers remain 

approximately at the same location. For the driving one however, the location tends to infinity and the 

rollers climb the tooth flank. 

  
(a) (b) 

Figure IV-20: Roller location for the limit tension ratio (a) driven (b) driving 𝑨𝑺𝑨 profile 

It was mentioned in the previous part (§IV.2.1) that smaller tension ratios are reached for small 

pressure angle 𝜙 values. This angle is changed by the friction correction, explaining the differences 

between driving and driven sprockets. However, the pressure angle is mainly a consequence of the 

profile geometry. To appreciate the differences between tooth profiles, it is therefore useful to plot a 

second characteristic curve. In Figure IV-21, the pressure angle of roller 𝑖 + 1 is plotted against the 

location of roller 𝑖 (expressed using 𝛾). For each possible roller location, the pressure angle 

characteristic curve shows the pressure angle of the following roller, therefore exhibiting its variation 

depending on the profile geometry. 

 
Figure IV-21: Pressure angle characteristic curves for 𝑨𝑺𝑨, 𝑵𝑭𝒎𝒂𝒙 and 𝑵𝑭𝒎𝒊𝒏 profiles 

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0066/these.pdf 
© [G. Lanaspeze], [2023], INSA Lyon, tous droits réservés



Chain drive behaviour, influence of tooth profile for industrial and track cycling drives 

 

 

119 

Going back to the pressure angle values presented in Table IV-4, the characteristic curve shows the 

symmetric property of the profiles studied. In particular, profiles with small 𝜙𝑡𝑝 (e.g., 𝑁𝐹𝑚𝑖𝑛) also 

exhibit bigger pressure angles when the roller comes into contact with the opposite tooth flank. 

This curve is not defined for all values of 𝛾. Indeed, as for the adjacent roller location curve (see Figure 

II-21), for high 𝛾𝑖  values (i.e., roller climbing the tooth flank), 𝛾𝑖+1 and therefore 𝜙𝑖+1 might not be 

defined. 

The pressure angle at the transition point 𝜙𝑡𝑝 can first be read on this curve, giving an indication on 

the profile’s properties in terms of link tension, contact force and roller location (see §IV.2.1). Then, 

the curve shape, particularly after the transition point (𝛾 > 𝛾𝑡𝑝) allows deducing the profile properties. 

For instance, it can be observed that the pressure angle increases after the 𝑡𝑝 for the 𝑁𝐹𝑚𝑖𝑛 profile. 

As a consequence, in terms of 𝜙, there is no benefit for a roller to climb the tooth flank on this profile. 

This translates into a minimal ratio being reached by the transition point. Conversely, for the 𝑁𝐹𝑚𝑎𝑥 

profile, the pressure angle keeps decreasing after the 𝑡𝑝. This results in a limit ratio reached after the 

𝑡𝑝 for a driving sprocket, as smaller 𝜙 values are obtained for a roller climbing the tooth flank. For 𝐴𝑆𝐴 

and 𝑁𝐹𝑚𝑎𝑥 driven sprockets, the benefit of climbing the tooth flank is unclear. Indeed, it allows 

reducing the pressure angle but along a positive friction correction. To explore these cases, the same 

characteristic curve is plotted in Figure IV-22 after adding the correction angle. The parameters used 

are still |𝛿(∞)| = 5° and 𝑎 = 1𝑒−10𝑚. 

 
Figure IV-22: Pressure angle characteristic curves for 𝑨𝑺𝑨, 𝑵𝑭𝒎𝒂𝒙 and 𝑵𝑭𝒎𝒊𝒏 profile with friction 
correction 

For the 𝐴𝑆𝐴 profile, the corrected pressure angle 𝜙 − 𝛿 can reach negative values for the smallest 

pressure angle immediately after the 𝑡𝑝. A negative pressure angle value results in a sign switch in 

eq.(II-27), therefore translating into negative link tension. Such a specific condition would probably not 

occur on a regular chain drive. To prevent any perturbation, the value of the corrected pressure angle 

is bounded at 1°. 

As a 5° correction angle was used, the driving and driven curves are always 10° apart. The correction 

sign switch is visible at the transition point. Both curves reached a corrected pressure angle of 𝜙𝑡𝑝 −

|𝛿(∞)| either immediately before or after the transition point. Based on this corrected curve, the case 

of a 𝑁𝐹𝑚𝑎𝑥 driven sprocket can be settled. The corrected curve shows that, even if the pressure angle 
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reduces after the 𝑡𝑝, the decrease is not strong enough to overcome the positive correction resulting 

in a minimal pressure angle occurring at the 𝑡𝑝. This explains why the minimal ratio was observed by 

the transition point (see Table IV-6). For a driven 𝐴𝑆𝐴 sprocket, the interest of climbing the tooth flank 

cannot be clearly assessed. Indeed, it can be observed that the positive friction correction can be 

overcome as smaller pressure angles are possible after the 𝑡𝑝 even with the +5° handicap. However, 

Figure IV-22 shows only the pressure angle for the roller 𝑖 + 1, not for all the following ones. Therefore, 

even if one roller can reach a smaller pressure angle, the following ones might have a location such 

that their pressure angle is greater than the preceding one, potentially cancelling the benefit obtained. 

These complex effects can be appreciated by directly plotting the relation between 𝑠𝑐,1 and 𝑇𝑠/𝑇𝑡 as 

presented in Figure IV-19. For the example (𝐴𝑆𝐴 driven sprocket) considered, there is no advantage as 

the minimal ratio is reached by the 𝑡𝑝. But for other cases, for instance with more rollers in contact 

with the driven sprocket or with a smaller friction correction, the relation would change and maybe 

result in another roller location for the limit ratio. 

Apart from the question of the driven 𝐴𝑆𝐴 profile, the analysis of the pressure angle characteristic 

curve allows deducing the behaviour of the profile under maximal load. 

The effect of tooth profile geometry on a chain drive can be summarised as follows. When the loading 

conditions allow stable operations (𝑠𝑐,1 < 𝑠𝑐,𝑡𝑝), the pressure angle at the transition point 𝜙𝑡𝑝 proves 

to be a good tool for analysing the profile’s influence. Profiles with smaller 𝜙𝑡𝑝 tend to withstand more 

load on each tooth, resulting in steeper slopes in the load variation (for both increase and decrease). 

The tooth profile also influences the limit tension ratio that a sprocket can support before chain drop 

occurs. Depending on the profile geometry, the rollers might tend to climb the tooth flank to reach 

smaller pressure angles. This phenomenon usually occurs for the driving sprocket as the negative 

friction correction intensifies the potential reduction of the pressure angle. Conversely, driven 

sprockets should reach their limit tension ratio nearby the transition point as the positive friction 

correction undergone when climbing the tooth flank usually cancels the possible benefit relating to 

the pressure angle. However, these conclusions depend on the correction angle |𝛿(∞)|. A smaller 

correction angle favours possible tooth flank climbing. 

IV.2.3 Simplified analysis, the three sprocket behaviours 

Based on the three sub-models presented by Lodge & Burgess [70] and considering the results of the 

previous parts, roller motions can be split into three different behaviours (see Figure IV-23).  

• Inter-tp behaviour. When 𝑠𝑐,1 < 𝑠𝑐,𝑡𝑝 − 𝑎, all rollers are corrected with 𝛿 = +|𝛿(∞)| =

+atan(𝜇𝛿) for driving sprockets (𝛿 = −|𝛿(∞)| = −atan(𝜇𝛿) for driven ones). The roller 

locations tend more or less quickly to 𝑠𝑐,𝑡𝑝
𝐴  depending on the loading conditions. In this zone, 

the behaviour of the model is similar to Kim & Johnson’s model [52]. The GPLD model [2], [70], 

[81] is a first approximation of this behaviour. 

• Static roller behaviour. When 𝑠𝑐,1 ∈ [𝑠𝑐,𝑡𝑝 − 𝑎, 𝑠𝑐,𝑡𝑝 + 𝑎], all the rollers are corrected with the 

same 𝛿 ∈ [− atan(𝜇𝛿),+ atan(𝜇𝛿)] depending on loading conditions. Moreover, as 𝑠𝑐,1 is very 

close to the transition point, all the roller locations stay almost the same. In this zone, the 

friction correction angle “adjusts” to the loading conditions with almost no consequences on 

roller location. The model is then similar to what Lodge & Burgess called the “static roller 

model” [70]. 

• Tooth climbing behaviour. When 𝑠𝑐,1 > 𝑠𝑐,𝑡𝑝 + 𝑎, all the rollers are corrected with 𝛿 =

−|𝛿(∞)| = −atan(𝜇𝛿) for driving sprockets (𝛿 = +|𝛿(∞)| = +atan(𝜇𝛿) for driven ones). 
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The roller locations tend to climb the tooth flank. In this zone, the behaviour resembles the 

“low slack tension” model again presented by Lodge & Burgess [70]. 

 
(a) 

 
(b) 

Figure IV-23: Three zones in the relation between roller location and tension ratio (driving 𝑨𝑺𝑨 profile at 
the most favourable sub-position, see Figure IV-19) 

The behaviour in which each sprocket lies depend on the loading conditions applied, and on the tooth 

profile used. Going toward small tension ratio (more extreme loading conditions), the sprocket first 

exhibits inter-tp behaviour. Then, as the ratio reduces, the rollers increasingly stay nearby the 𝑡𝑝 until 

they all stick to it in a static roller behaviour. Then, depending on the geometry and the sprocket being 

driving or driven, the roller may tend to climb the tooth flank in order to reach smaller tension ratios. 

However, as shown in §IV.2.2, the interest of the tooth climbing behaviour is not present for all 

profiles. 

For driven sprockets, due to the negative friction correction undergone before the 𝑡𝑝, the reachable 

tension ratios in inter-tp behaviour overlap those of the static roller one. The inter-tp behaviour also 

usually overlaps the tooth climbing behaviour. However, this last point depends on the profile 

geometry and, the friction correction angle (see Figure IV-24 and Figure IV-22). This results in 

simultaneous solutions (see Figure IV-24). As in this work, the solution with the smallest roller location 

is always preferred (see §II.3), the inter-tp branch is always chosen. This point was already addressed 

as choice between sub-models by Lodge and Burgess in [70] and the GPLD model (corresponding to 

the inter-tp behaviour) was also preferred. 
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Figure IV-24: Three zones in the relation between roller location and tension ratio (Driven 𝑨𝑺𝑨 profile at 
the most favourable sub-position, see Figure IV-19) 

The three different behaviours are illustrated in Figure IV-25 for a driving torque of 𝐶Ⅰ = 600𝑁.𝑚 

(the driven sprocket uses the 𝑁𝐹𝑚𝑖𝑛 profile to withstand the applied load). For this specific loading 

condition, the 𝑁𝐹𝑚𝑖𝑛 sprocket is situated in the inter-tp behaviour while the 𝑁𝐹𝑚𝑎𝑥 is in static roller 

behaviour and the 𝐴𝑆𝐴 is in tooth climbing one. 

 
Figure IV-25: Link tension, contact force and roller location for 𝑪Ⅰ = 𝟔𝟎𝟎𝑵.𝒎, driving sprocket 
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In the static roller behaviour, all the rollers are nearby the 𝑡𝑝 and the friction correction adjusts to the 

loading conditions. Therefore, two profiles are not discernible as the pressure angles (constant for all 

rollers in this case) adjusts to the same value for both profiles to match the loading conditions. An 

example is given in Figure IV-26 where both the 𝐴𝑆𝐴 and 𝑁𝐹𝑚𝑎𝑥 profiles are in the static roller 

behaviour (still with 𝑁𝐹𝑚𝑖𝑛 driven sprocket).  

 
Figure IV-26: Link tension, contact force and roller location for 𝑪Ⅰ = 𝟐𝟎𝟎𝑵.𝒎, driving sprocket 

However, the zone of static roller behaviour depends on the profile used. Therefore, the 𝑁𝐹𝑚𝑎𝑥 profile 

is able to reach smaller ratios in static roller behaviour than the 𝐴𝑆𝐴 as its 𝜙𝑡𝑝 is also smaller. 

It should also be noted that the existence of static roller behaviour depends on the chosen 𝑎 parameter 

(tanh width). Indeed, for this behaviour to exist, the transition of 𝛿 between −atan(𝜇𝛿) and 

+atan(𝜇𝛿) (or the reverse for driving sprockets) must be able to occur within a “static roller zone” 

where the roller location remains approximately the same. This zone could for instance be defined as 

the first roller locations 𝑠𝑐,1 such that all the following rollers remain “close to the transition point”. 

The comparison of the interval width obtained with 𝑎 would give an indication of the existence of the 

static roller behaviour. 

An example is carried out with an 𝐴𝑆𝐴 31 teeth double pitch sprocket in contact with 9 rollers. Rollers 

are considered “close to the 𝑡𝑝” in a zone of 2𝜇𝑚 width and centered at the 𝑡𝑝, corresponding to the 

interval [𝑠𝑐,𝑡𝑝 − 1𝜇𝑚 , 𝑠𝑐,𝑡𝑝 + 1𝜇𝑚]. The interval obtained for 𝑠𝑐,1, ensuring that all the following 

rollers remain in the 2𝜇𝑚 zone, is approximately [𝑠𝑐,𝑡𝑝 − 1𝑒
−8𝑚 , 𝑠𝑐,𝑡𝑝 + 1𝑒

−8𝑚]. The width of this 

resulting “static roller zone” for 𝑠𝑐,1 remains significantly bigger than 𝑎 = 1𝑒−10𝑚, resulting in the 

existence of the static roller behaviour. However, this analysis is difficult to generalise as it depends on 

the tooth profile and the number of links in contact with the sprocket. For more information about the 

value of 𝑎, see Appendix F. 
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This part was dedicated the introduction of analysis methods used to characterise tooth profile 

properties. The pressure angle at the transition point 𝜙𝑡𝑝 was introduced. This parameter gives 

information about the profile’s ability to support loads, with low 𝜙𝑡𝑝 being associated with high loading 

capacity. The different slopes in link tension and contact force observed in §IV.1 can be analysed using 

this parameter. The limit tension ratio (𝑇𝑠 𝑇𝑡⁄ )𝑙𝑖𝑚 of each tooth profile was then presented. Differences 

between profiles and between driving and driven sprockets were observed. Driven sprockets reach 

their minimal ratio nearby the transition point, while driving ones might tend to climb the tooth flank 

to reach smaller tension ratios (e.g., 𝐴𝑆𝐴 and 𝑁𝐹𝑚𝑎𝑥 profiles). Pressure angle characteristic curves, 

with and without friction correction, were introduced to characterise profile properties. These curves 

give information about the pressure angle evolution depending on roller location and represents tooth 

profile properties, such as the tendency to climb the tooth flank to reach small tension ratios. 

Then, an analysis of the model based on three characteristic behaviours was presented (in a similar 

way to Lodge & Burgess in [70]). The three behaviours are inter-tp, static roller and tooth climbing. The 

appearance of each behaviour depends on the tooth profile used and the loading conditions applied. 

In the following part, a typical track cycling drive is presented and the analysis methods proposed are 

applied to this specific case. 
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IV.3 Application to track cycling drives 

The conclusions of the previous parts are now applied to the context of track cycling drives. These 

drives are characterised by large numbers of teeth at the driving sprocket (called chainring) compared 

to the driven one (called rear cog). The looseness of the slack strand is usually higher than in industrial 

contexts and the driving torque can reach up to 300𝑁.𝑚 sustained for several drive rotations (see 

Chapter I). 

A typical track cycling drive is considered. The numbers of teeth are 𝑍Ⅰ|𝑍Ⅱ = 60|15. The slack strand 

is set at 11% (see drive parameters in Table IV-2). A typical track cycling chain is used (its characteristics 

are given in Table IV-8). Sprockets and chain pitches match at 12.7𝑚𝑚 and Δ𝑌 = −50𝑚𝑚. The general 

aspect of the drive is presented in Figure IV-27 and the global kinematics, again obtained with 

𝜓𝑡,Ⅰ|𝑖𝑛𝑖𝑡 = 0 is presented in Figure IV-28. 

𝒁Ⅰ|𝒁Ⅱ 𝑳 𝚫𝒀 𝒔𝒍𝒂𝒄𝒌 |𝜹(∞)| 

60|15 ≈ 385mm −50𝑚𝑚 11% 5° 
Table IV-7: Parameters of the 𝟔𝟎|𝟏𝟓 double pitch drive 

Pitch 𝒑 𝑫𝒓𝒐𝒍𝒍𝒆𝒓 𝒎𝒍𝒊𝒏𝒌 

1/2′′ = 12.7𝑚𝑚 7.75𝑚𝑚 3.6𝑔 
Table IV-8: Characteristics of the typical track cycling chain 

 

 
Figure IV-27: General view of the 𝟔𝟎|𝟏𝟓 track cycling drive (𝒔𝒍𝒂𝒄𝒌 = 𝟏𝟏%) 
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Figure IV-28: Global kinematics of the 𝟔𝟎|𝟏𝟓 track cycling drive 

As for the 31|31 drive, the number of links in contact with the driving (chainring) and driven (rear cog) 

sprocket vary. However, as the number of teeth differs between the chainring and rear cog, so do the 

number of links in contact 𝑛𝑗. The slack tension also varies (only 𝑇𝑠,Ⅰ is plotted as the slack tension is 

almost equal for both sprockets) and exhibits discontinuities at the event of roller capture and release 

relative to the slack strand. Unlike the symmetric 31|31 drive studied in §IV.1, the slack strand tension 

is not the same at the event of roller capture (release) by the chainring and release (capture) by the 

rear cog. This is due to the drive not being symmetric (𝑍Ⅰ ≠ 𝑍Ⅱ and Δ𝑌 ≠ 0). However, the main 

difference between industrial and track cycling drives comes from the magnitude of the slack strand 

tension. Indeed, as the track cycling chain is lighter, the resulting tension is smaller and only reaches 

about 2.7𝑁 in this example. As torques applied to track cycling drives are very high (up to 300𝑁.𝑚 on 

the chainring maintained for several chainring revolutions), the resulting tension ratios applied to the 

sprockets are significantly lower than in the preceding industrial example. For the 60|15 drive, a 

driving torque of 𝐶Ⅰ = 300𝑁.𝑚 results in a tension ratio 𝑇𝑠 𝑇𝑡⁄ = 1.2𝑒−3. This ratio is typically within 

the limit ratio zone presented in Figure IV-19 and Table IV-5. Therefore, not all the profiles might be 

able to withstand the ratios encountered in track cycling applications. 
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However, limit ratios are specific to a given profile, number of teeth, and sub-position. It can therefore 

be fastidious to check the limit of each possible sprocket. A more general approach to quickly assess 

the capability of each sprocket depending of the profile used is presented in the following part. 

IV.3.1 Limit tension ratio in stable working conditions 

It was shown in the previous part (§IV.2) that the limit ratio is reached either with all rollers lying 

nearby the 𝑡𝑝 or with rollers climbing the tooth flank depending on the profile and sprocket being 

driving or driven. In a track cycling context, the risk of chain drop must be reduced. Therefore, tooth 

climbing behaviour (where rollers climb the tooth flank) in not desirable. As a consequence, the limit 

ratio in stable working conditions (𝑇𝑠 𝑇𝑡⁄ )𝑙𝑖𝑚,𝑡𝑝 is defined as the smallest reachable tension ratio 

considering only inter-tp and static roller behaviour. 

As shown before (see §IV.2), the minimal reachable ratio, excluding tooth climbing behaviour, is 

obtained in static roller with a negative friction correction 𝛿 = −|𝛿(∞)|, for both driving and driven 

sprockets. When all the rollers lie nearby the 𝑡𝑝, Figure IV-17 shows that the articulation angles 𝛼∗ 

remains almost equal to the pitch angle 𝛼. This leads to the following approximate tension ratio 

expression for all the rollers stuck at the 𝑡𝑝 with a negative friction correction. 

 
𝑇𝑠
𝑇𝑡
=∏

sin(𝜙𝑖 − |𝛿(∞)|)

sin(𝜙𝑖 − |𝛿(∞)| + 𝛼𝑖
∗)

𝑛+1

𝑖=1

 (IV-4) 

with: 

• 𝑛, the number of links in contact with the sprocket considered 

• 𝜙𝑖 = 𝜙𝑡𝑝 for 𝑖 ∈ ⟦2, 𝑛⟧ 

• 𝛼𝑖
∗ = 𝛼 for 𝑖 ∈ ⟦2, 𝑛⟧ 

In eq.(IV-4), for the first and last roller in contact (𝑖 = 1 and 𝑛 + 1), angles 𝜙𝑖 and 𝛼𝑖
∗ vary, therefore 

influencing the tension ratio. In order to obtain an expression independent of any sub-position related 

parameter, the effect of the first and last roller (𝑖 = 1 and 𝑛 + 1) is considered to be equivalent to one 

articulation with angle 𝜙𝑖 = 𝜙𝑡𝑝 and 𝛼𝑖
∗ = 𝛼. Therefore, the expression for the limit ratio in stable 

working conditions is given in eq.(IV-5). 

 (
𝑇𝑠
𝑇𝑡
)
𝑙𝑖𝑚,𝑡𝑝

= (
sin(𝜙𝑡𝑝 − |𝛿(∞)|)

sin(𝜙𝑡𝑝 − |𝛿(∞)| + 𝛼)
)

𝑁

 (IV-5) 

with: 

• 𝑁 = floor(𝑍 2⁄ ) − 1, the equivalent number of links (floor designates a round down 

operation).  

The equivalent number of links 𝑁 can be adjusted to the application. In this case, it is set at 

floor(𝑍 2⁄ ) − 1 to be representative of a rear cog in track cycling applications. Indeed, as the chainring 

is usually significantly bigger than the rear cog, the number of links in contact with the rear cog is 

smaller than 𝑍/2 (see Figure IV-28). 

Based on the definition given by Binder in [32] for the “pressure angle for a new chain”, the pressure 

angle at the transition point can usually be approximated with the general expression given in eq. 

(IV-6). 
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 𝜙𝑡𝑝 = 𝐾 −
𝐾′

𝑍
 (IV-6) 

with: 

• 𝐾 and 𝐾′ numerical constants fitted for each tooth profile 

Constants 𝐾 and 𝐾′, obtained for 𝐴𝑆𝐴, 𝑁𝐹𝑚𝑎𝑥 and 𝑁𝐹𝑚𝑖𝑛 sprockets of pitch 𝑝 = 12.7𝑚𝑚 used with a 

chain of matching pitch, and 𝐷𝑟𝑜𝑙𝑙𝑒𝑟 = 7.75𝑚𝑚 are presented in Table IV-9. 

 𝑨𝑺𝑨 𝑵𝑭𝒎𝒂𝒙 𝑵𝑭𝒎𝒊𝒏 

𝑲 (𝒅𝒆𝒈) 34.64 29.96 20 
𝑲′ (𝒅𝒆𝒈) 123 137.1 135.5 

Table IV-9: Constants 𝑲 and 𝑲′ for 𝑨𝑺𝑨, 𝑵𝑭𝒎𝒂𝒙 and 𝑵𝑭𝒎𝒊𝒏 profiles 

Using eq. (IV-5) with the value of 𝜙𝑡𝑝 calculated according to eq.(IV-6) allows plotting the limit tension 

ratio in stable working conditions as a function of the number of teeth (see Figure IV-29). A correction 

angle of |𝛿(∞)| = 5° is used. 

 
Figure IV-29: Limit tension ratio in stable working conditions for industrial profiles 

The use of the equivalent number of links 𝑁 (based on the floor function) causes oscillations for odd 

and even numbers of teeth. The order of magnitude of the tension ratio for the 60|15 drive with a 

driving torque 𝐶Ⅰ = 300𝑁.𝑚 is also represented. 

The 𝑁𝐹𝑚𝑖𝑛 capacity to withstand more load than the other two profiles is clearly visible. The 𝐴𝑆𝐴 

profile carries lower load in stable working conditions due to its high 𝜙𝑡𝑝. Figure IV-29 shows that only 

the 𝑁𝐹𝑚𝑖𝑛 profile can be used in track cycling applications as the limit ratios are too high for the 

remaining profiles. Based on this assessment, and to study the influence of profile geometry on track 

cycling drives, three original tooth profile geometries are proposed. The definition of these new tooth 

geometries is based on the 𝑁𝐹𝑚𝑎𝑥 and 𝑁𝐹𝑚𝑖𝑛 ones (see Appendix A). 

• The profiles are symmetric. Therefore, only one half is defined and the second one is deduced 

from symmetry about (𝑂, 𝑦⃗), see Figure IV-30. 
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• The defined half is given by two tangent circle arcs (to ensure slope continuity). This 

configuration was chosen to match the standard (ISO 606 [31]). Moreover, it covers a great 

variety of geometries with a limited number of parameters. 

 
Figure IV-30: Definition of tooth profile with two circle sectors 

As the two circle arcs must be tangent, the geometry is fully defined using only four parameters (see 

Figure IV-30) 

• 𝑅1 = 𝑅𝑡𝑏, the radius of the first circle sector. This curve portion corresponds to the tooth 

bottom of the profile. 

• 𝜃1, the sweep angle for the first circle sector. 

• 𝑅2, the radius of the second circle sector. 

• 𝑅𝑡𝑖𝑝, the tip radius of the profile. 

The three profiles proposed are called Cycling Profiles and are denoted 𝐶𝑃1, 𝐶𝑃2 and 𝐶𝑃3. They are 

illustrated for 𝑍 = 15 in Figure IV-31 and their geometrical characteristics are presented in Table IV-10. 

These characteristics have been chosen in such way that the profiles proposed are able to withstand 

the low track cycling tension ratios. The tooth bottom radius 𝑅1 goes from almost no clearance with 

the roller (𝑅𝑟𝑜𝑙𝑙𝑒𝑟 = 3.875𝑚𝑚) for 𝐶𝑃1 to significant clearance for 𝐶𝑃3. Different definitions for angle 

𝜃1 and radius 𝑅2 are proposed based on the characteristics of the 𝑁𝐹𝑚𝑎𝑥 and 𝑁𝐹𝑚𝑖𝑛 profiles and from 

observations and measurements of real track cycling sprockets. The previous parts (§IV.1 and IV.2) 

showed that the profile properties are mainly influenced by 𝜙𝑡𝑝 being a result of the inter-𝑡𝑝 zone 

geometry. Therefore, and especially considering only stable working conditions (i.e., no tooth climbing 

behaviour), the tooth flank definition beyond the 𝑡𝑝 does not seem to be a significant parameter. 

Based on this conclusion, all the Cycling Profiles are defined with the same tip radius. Its value 

corresponds to the mean tip radius of the 𝑁𝐹𝑚𝑖𝑛 and 𝑁𝐹𝑚𝑎𝑥 profiles. 
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(a) (b) 

Figure IV-31: Comparison of 𝑵𝑭𝒎𝒊𝒏 and Cycling profiles: (a) in the local profile coordinate system, (b) for a 
whole sprocket (𝒁 = 𝟏𝟓, 𝒑 = 𝟏𝟐. 𝟕𝒎𝒎) 

 

 𝑪𝑷𝟏 𝑪𝑷𝟐 𝑪𝑷𝟑 

𝑹𝟏 (𝒎𝒎) 3.9 4.05 4.2 

𝜽𝟏 (𝒅𝒆𝒈) 75 − 125/𝑍 75 − 85/𝑍 70 − 45/𝑍 

𝑹𝟐 (𝒎𝒎) 
1

2
𝑍 + 6 𝑍 + 1 2𝑍 − 9 

𝑹𝒕𝒊𝒑 (𝒎𝒎) 2.023𝑍 + 3.141 

Table IV-10: Geometrical characteristics of the Cycling Profiles 

 

 𝑪𝑷𝟏 𝑪𝑷𝟐 𝑪𝑷𝟑 

𝑲 (𝒅𝒆𝒈) 15 15 19.96 
𝑲′ (𝒅𝒆𝒈) 55.3 97.42 139.5 

Table IV-11: Constants 𝑲 and 𝑲′ for cycling profiles 𝑪𝑷𝟏,𝟐,𝟑 

Constants 𝐾 and 𝐾′, for the calculation of 𝜙𝑡𝑝, are presented in Table IV-11. Parameter 𝐾 constitutes 

the limit value for an infinite number of teeth while parameter 𝐾′ characterises how fast 𝜙𝑡𝑝 tends to 

𝐾 for high 𝑍. Compared to the industrial profiles (see Table IV-9), the Cycling Profiles exhibit smaller 

values of 𝐾. Profile 𝐶𝑃1 has the smallest 𝐾′ parameter of all the tested profiles and will therefore tend 

more rapidly to its limit pressure angle 𝜙𝑡𝑝(∞) = 𝐾. The evolution of the pressure angle at the 

transition point 𝜙𝑡𝑝 depending on the number of teeth is given for all the tooth profiles in Figure IV-32. 
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Figure IV-32: Evolution of 𝝓𝒕𝒑 with the number of teeth 

As prescribed by eq.(IV-6), all the profiles show increasing 𝜙𝑡𝑝 with the number of teeth 𝑍. Profiles 

𝑁𝐹𝑚𝑎𝑥 and 𝐴𝑆𝐴 show the larger 𝜙𝑡𝑝 which is consistent with their high limit tension ratio in stable 

working conditions (see Figure IV-29). Despite the different 𝐾 and 𝐾′ parameters, the tooth profile 

hierarchy is usually respected as 𝜙𝑡𝑝 ordering of the tooth profile families (i.e., 𝐴𝑆𝐴, 𝑁𝐹𝑚𝑖𝑛, 𝐶𝑃1, etc.) 

is similar regardless of the number of teeth (e.g., profile 𝐶𝑃2 always has the smallest pressure angle, 

profile 𝐴𝑆𝐴 always has the biggest). The only exception is the profile 𝐶𝑃1 whose curve crosses those 

of 𝑁𝐹𝑚𝑖𝑛 and 𝐶𝑃3 at about 𝑍 = 17 teeth. Due to its smaller 𝐾′ parameter, it tends to reach its limit 

value more rapidly than the others. Consequently, its 𝜙𝑡𝑝 is bigger than those of 𝑁𝐹𝑚𝑖𝑛, 𝐶𝑃2 and 𝐶𝑃3 

at 𝑍 = 10 but almost catches with 𝐶𝑃2 at 70 teeth. The pressure angles of all the Cycling Profiles are 

smaller than those of the 𝑁𝐹𝑚𝑖𝑛 one (except for 𝐶𝑃1 for small numbers of teeth). They should 

therefore be able to withstand small tension ratios. The evolution of the limit ratio in stable working 

conditions is shown in Figure IV-33 (calculated with a friction correction of |𝛿(∞)| = 5°). As expected, 

the low 𝜙𝑡𝑝 values for the Cycling Profiles allow reaching small limit tension ratios in stable working 

conditions. 

 
Figure IV-33: Limit ratio in stable working conditions for industrial and cycling profiles  
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It is interesting to note that profile families are generally consistent as the limit tension ratio in stable 

working conditions remains almost constant regarding to the number of teeth. Indeed, articulation 

angle 𝛼 decreases as 𝑍 increases which counterbalances the increase in 𝜙𝑡𝑝 shown in Figure IV-32. 

However, high numbers of teeth are generally associated with lower limit tension ratios. The evolution 

of the limit tension ratio according to the number of teeth is monotonic for the 𝐴𝑆𝐴, 𝑁𝐹𝑚𝑎𝑥 and 𝐶𝑃1 

profiles. For the three remaining ones (𝑁𝐹𝑚𝑖𝑛, 𝐶𝑃2 and 𝐶𝑃3), the relation is non-monotonic as small 

numbers of teeth result in smaller limit tension ratios. The maximal limit ratio (sprocket carrying least 

load) occurs for 𝑍 = 15. The behaviour of the profile family 𝐶𝑃1 is quite different from the others as 

significant differences in limit tension ratio in stable working conditions are visible regarding to the 

number of teeth. A 70-tooth sprocket supports a ratio about 1000 times smaller than a 𝑍 = 10 

sprocket (about 3𝑒−7 versus 2𝑒−4, respectively). The unusual behaviour is due to its small parameter 

𝐾′, as shown in Figure IV-32. 

For the calculation of 𝐶𝑃2 at 𝑍 = 10, the corrected pressure angle 𝜙𝑡𝑝 − 𝛿 is set at the floor value of 

1° (see Figure IV-22). 

The relation between tooth profile geometry and limit tension ratio in stable working conditions can 

also be appreciated through parameter 𝜙𝑡𝑝. Figure IV-34 represents the relation between 𝜙𝑡𝑝 and the 

limit tension ratio in stable working conditions. It allows quickly discriminating which profile is suitable 

for which application given the required limit tension ratio. 

Figure IV-34 is calculated without the influence of friction (|𝛿(∞)| = 0°). The equivalent number of 

links 𝑁 is set at 𝑍 2⁄ − 1. 

 
Figure IV-34: Relation between 𝝓𝒕𝒑 and (𝑻𝒔 𝑻𝒔⁄ )𝒍𝒊𝒎,𝒕𝒑 

Points related to each profile family are presented. As in Figure IV-33, the discrimination between 𝐴𝑆𝐴 

and 𝑁𝐹𝑚𝑎𝑥 and the other profile families is clear. Except for 𝐶𝑃1 and 𝐶𝑃2, the relatively constant limit 

tension ratio regarding the number of teeth is also observed. The specific behaviour of the 𝐶𝑃1 profile 

is clearly visible with a significant drop in limit ratio as the number of teeth increases. Figure IV-34 and 

Figure IV-32 show that this drop is caused by 𝜙𝑡𝑝 increasing more slowly than for the other profiles. 

In the previous parts (§IV.1 and IV.2), it was shown that the properties of the tooth profiles (mainly 

𝜙𝑡𝑝) can vary significantly with consequences on the behaviour of the chain drive (see §IV.1). Profiles 

𝑁𝐹𝑚𝑖𝑛 and 𝑁𝐹𝑚𝑎𝑥 were defined as the two extreme acceptable geometries for standard ISO 606 [31]. 
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However, the resulting properties were significantly different in terms of link tension, contact force, 

roller motion (see e.g., Figure IV-7) and limit tension ratio (see §IV.2). Moreover, the 𝐴𝑆𝐴 profile, 

whose definition lies between the 𝑁𝐹𝑚𝑖𝑛 and 𝑁𝐹𝑚𝑎𝑥 profiles (see Figure IV-3), also complies with the 

ISO 606 standard with an even greater difference in behaviour (tendency to climb the tooth flank, non-

monotonic 𝑠𝑐,1-𝑇𝑠/𝑇𝑡 relation). Therefore, the existing standards are not sufficient to ensure constant 

drive behaviour. Due to their specific geometry, the Cycling Profiles do not comply with the ISO 606 

standard (see Appendix A for definitions of all the tooth profiles used in this manuscript). 
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IV.3.2 Tooth profile influence 

The influence of the tooth profile is now tested on the 60|15 track cycling drive. The four profiles 

withstanding the severe tension ratios specific to the application are tested (𝑁𝐹𝑚𝑖𝑛 and 𝐶𝑃 profiles). 

Figure IV-35 shows the link tension, contact force and roller location evolution for the chainring (i.e., 

driving sprocket) with a driving torque 𝐶Ⅰ = 50𝑁.𝑚. The friction correction angle is still |𝛿(∞)| = 5° 

and 𝑎 = 1𝑒−10𝑚. 

 
Figure IV-35: Link tension, contact force and roller location for 𝑪Ⅰ = 𝟓𝟎𝑵.𝒎, chainring 

As expected based on Figure IV-33, all the profiles present inter-tp behaviour as the ratio applied is 

smaller than (𝑇𝑠 𝑇𝑡⁄ )𝑙𝑖𝑚,𝑡𝑝. The general shape of the curves is similar to what was obtained for 

industrial drives. The evolution appears smoother as the number of links in contact with the chainring 

(𝑛Ⅰ ∈ ⟦32 , 33⟧, see Figure IV-28) is higher than what was observed on the 31-tooth double pitch 

sprocket (𝑛Ⅰ ∈ ⟦7 , 8⟧, see Figure IV-2). However, slope breaks are still visible for each whole value of 

𝜁/𝛼Ⅰ, particularly on the roller location evolution. Two groups of profiles are visible. Profiles 𝐶𝑃1and 

𝐶𝑃2 show similar behaviours with the steepest slopes and therefore the longest roller motion (≈ 70% 

of the inter-𝑡𝑝 distance). On the other hand, profiles 𝑁𝐹𝑚𝑖𝑛 and 𝐶𝑃3 also show similar behaviours with 

shallower slopes and shorter roller motion (≈ 60% of the inter-𝑡𝑝 distance). The differences between 

absolute and proportional contact displacement are explained by the different inter-tp distances for 

each profile. Those distances are given in addition to the characteristic parameters of all profiles in 

Appendix A. 

The results obtained for the rear cog (i.e., driven sprocket), still with 𝐶Ⅰ = 50𝑁.𝑚 are presented in 

Figure IV-36. 

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0066/these.pdf 
© [G. Lanaspeze], [2023], INSA Lyon, tous droits réservés



Chain drive behaviour, influence of tooth profile for industrial and track cycling drives 

 

 

135 

 
Figure IV-36: Link tension, contact force and roller location for 𝑪Ⅰ = 𝟓𝟎𝑵.𝒎, rear cog 

The two groups visible for the chainring (𝐶𝑃1-𝐶𝑃2 on one side and 𝑁𝐹𝑚𝑖𝑛-𝐶𝑃3 on the other) are not 

present for the rear cog. On the contrary, the 𝐶𝑃1 profile behaves like profiles 𝑁𝐹𝑚𝑖𝑛 and 𝐶𝑃3, leaving 

𝐶𝑃2 with the steepest slopes and the longest roller motion. The change in the behaviour of the 𝐶𝑃1 

profile between the chainring and rear cog is consistent with Figure IV-34 and Figure IV-32. These 

figures showed that, for small (high) numbers of teeth the 𝜙𝑡𝑝 value for 𝐶𝑃1 is comparable to 𝐶𝑃3 and 

𝑁𝐹𝑚𝑖𝑛 (𝐶𝑃2). Although the final roller position is close for all profiles (about 70% of the inter-𝑡𝑝 

distance), a roller in contact with the 𝐶𝑃2 profile will undergo more displacement as this profile is more 

subject to oscillations. The differences between absolute and proportional contact displacement are 

still caused by different inter-𝑡𝑝 distances. As fewer links are in contact with the rear cog (𝑛Ⅱ ∈ ⟦5 , 6⟧, 

see Figure IV-28), the slope breaks at each whole value of 𝜁/𝛼Ⅰ, are clearly visible in link tension and 

contact force. These breaks correspond to the roller release in the tight strand. Regarding roller 

location, apart from the slope breaks caused by roller release, each profile exhibits a specific oscillation 

pattern. 

An example with a more severe driving torque of 𝐶Ⅰ = 300𝑁.𝑚 is presented in Figure IV-37. 
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Figure IV-37: Link tension, contact force and roller location for 𝑪Ⅰ = 𝟑𝟎𝟎𝑵.𝒎, rear cog 

As observed for industrial drives, increasing the loading (i.e., reducing the tension ratio) reduces roller 

motion. The maximal roller displacement reaches about 50% of the inter-𝑡𝑝 distance for the 𝐶𝑃1, 𝐶𝑃3 

and 𝑁𝐹𝑚𝑖𝑛 group and about 60% for the 𝐶𝑃2. The oscillation pattern of each profile tends to converge 

with only the roller release slope breaks affecting roller motion. Roller motion oscillation increases 

with the loading torque but no back-and-forth motion is observed in this example. Due to the small 

𝜙𝑡𝑝, characteristic of cycling profiles, the first tooth (at 𝜁 𝛼Ⅰ⁄ = 1) carries the majority of the load. For 

𝐶Ⅰ = 300𝑁.𝑚, all the profiles show a maximum contact force at about 2000𝑁. This value decreases 

to about 400𝑁 for the second tooth (𝜁 𝛼Ⅰ⁄ = 2). The decrease continues causing the final teeth (closer 

to the slack strand) to bear almost no load (𝑃𝑖 ≈ 1.6𝑁 at 𝜁 𝛼Ⅰ⁄ = 5). The same phenomenon is 

observed in link tension where almost no load is carried after 𝜁 𝛼Ⅰ⁄ = 4. 

Compared to what was observed for industrial drives, the general behaviour is similar. The slopes in 

link tension and contact force depend directly on parameter 𝜙𝑡𝑝 and roller motion reduces for small 

tension ratios. However, as the 𝜙𝑡𝑝 for Cycling Profiles are significantly lower than those for 𝑁𝐹𝑚𝑎𝑥 

and 𝐴𝑆𝐴, the link tension and contact force undergo steeper slopes. 

Considering energy efficiency, tooth profiles with low 𝜙𝑡𝑝 (e.g., profile 𝐶𝑃2) result in more roller 

displacement. However, these displacements are performed with lower forces as the decreasing 

slopes are steeper. On the contrary, with a higher 𝜙𝑡𝑝 value, the rollers undergo less displacement but 

the loads are higher. Therefore, it is not possible to easily assess which profile will result in the best 

efficiency. 
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IV.4 Conclusion 

This chapter analysed the influence of tooth profile geometry on both industrial and cycling chain 

drives. The QSCDM, introduced in Chapter II was used for all the calculations. Analysis methods were 

proposed to characterise the tooth profile properties to analyse their influence more quickly. 

An industrial 31|31 drive was presented first. Link tension, contact force and roller location were 

shown for three industrial profiles (𝐴𝑆𝐴, 𝑁𝐹𝑚𝑎𝑥 and 𝑁𝐹𝑚𝑖𝑛). Each profile exhibited different increasing 

and decreasing slopes for the evolution of loads (link tension and contact force). Roller location was 

shown to be connected with loads as link tension and contact force decrease (increase) when the roller 

contacts the tight (slack) side of the tooth profile. Profiles with steeper slopes also exhibit longer roller 

motion (e.g., 𝑁𝐹𝑚𝑎𝑥 profile). Driven sprockets exhibited steeper slopes than driving ones with the 

same profile. Consequently, the roller motion was also longer for driven sprockets. Increasing driving 

torque reduces roller motion. Oscillations both in loads and roller displacement were reported for all 

loading conditions. Such oscillations were not observed in the work of Kim & Johnson [52] and Naji & 

Marshek [2], [62]. In these works, only a single sprocket was considered instead of the whole drive in 

the QSCDM. These oscillations are explained by the variations in strand tensions resulting in variations 

of the tension ratios. For extreme cases, back-and-forth roller motion was reported. This non-

monotonic variation is not compatible with the hypothesis stated for friction modelling. However, this 

phenomenon would require additional work in order to propose a suitable model. Nevertheless, the 

source of these oscillations in loads and roller motion were found in a more realistic model (the whole 

drive compared to a single sprocket). Consequently, these phenomena are probably more 

representative of what might happen in a real chain drive than the steady evolution showed in the 

literature (see §III.3.2 and e.g., in [2], [52]). 

The analysis of industrial drives gives a first assessment of the influence of tooth profile on chain drive 

behaviour. Based on these results, original analysis methods were presented. The pressure angle at 

the transition point 𝜙𝑡𝑝 was introduced. This parameter is related to the increasing and decreasing 

slopes specific to each profile, the small 𝜙𝑡𝑝 being associated with the steeper slopes. Then, the limit 

tension ratio that each profile is able to withstand was analysed. Depending on the sprocket being 

driving or driven, the location of the first roller 𝑠𝑐,1 at the limit ratio changes. The limit ratio was 

reached either with all the rollers lying at the transition point or climbing the tooth flank. To analyse 

the differences between profiles, the pressure angle characteristic curve, showing the evolution of 

𝜙𝑖+1 as a function of 𝛾𝑖, was presented. This curve captures the geometrical properties of a given 

profile. Considering correction due to friction, the behaviour at the limit tension ratio could be 

determined (except for the unclear case of driven 𝐴𝑆𝐴 sprockets). At their limit ratio, all the rollers 

were demonstrated to lie nearby the transition point for driven sprockets. For driving ones, 𝐴𝑆𝐴 et 

𝑁𝐹𝑚𝑎𝑥 profiles reach their limit ratio with the rollers climbing the tooth flank, contrary to the 𝑁𝐹𝑚𝑖𝑛. 

The influence of friction correction on this phenomenon was also addressed. Depending on the loading 

conditions, three behaviours of roller motion were proposed based on the sub-models described by 

Lodge & Burgess in [70]. For higher tension ratios, the rollers tend to cross the profile from 𝑡𝑝𝐵 to 𝑡𝑝𝐴 

in the inter-tp behaviour. As the tension ratio decreases (the driving torque increases), rollers stay 

longer at 𝑡𝑝𝐵 until all lie almost immobile. When subjected to this behaviour, called static roller 

behaviour, the friction correction switches sign while the rollers stay nearby the transition point. Then, 

depending on the profile, even smaller ratios can be reached for rollers climbing the tooth flank in the 

roller climbing behaviour. The transition between each behaviour is progressive and occurs at specific 

ratios for each profile. The QSCDM therefore combines all the different approaches presented in the 

literature (GPLD, static roller and low slack tension, [2], [62], [70]). 

The analysis methods developed were then applied to a typical track cycling drive. The limit tension 

ratio in stable working conditions was introduced. This ratio excludes the tooth climbing behaviour as 
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the risk of chain drop cannot be accepted in track cycling. It was shown that 𝜙𝑡𝑝 is directly related to 

this limit ratio with the smaller 𝜙𝑡𝑝 making it possible to reach the smaller ratios. Analysis of the limit 

ratio in stable working conditions showed that 𝐴𝑆𝐴 and 𝑁𝐹𝑚𝑎𝑥 profiles cannot withstand the severe 

ratios encountered in track cycling drives. Original tooth profile geometries, the Cycling Profiles, were 

introduced. These profiles are built such that their 𝜙𝑡𝑝 is small enough to overcome track cycling 

constraints. The influence of tooth profile geometry on track cycling drive was tested using the four 

profiles suitable for track cycling applications (𝑁𝐹𝑚𝑖𝑛, 𝐶𝑃1,2,3). The drive behaviour was similar to the 

results obtained with the industrial case. However, the very low 𝜙𝑡𝑝 of the tested profiles caused the 

increasing and decreasing slopes to be even steeper. As a consequence, most of the load, both in link 

tension and contact force, is carried by the first roller/link.  

Considering track cycling drive energy efficiency, the results obtained do not allow easily determining 

which profile will result in the smallest dissipation. Indeed, profiles with longer roller motion undergo 

this motion under lower loads than what was observed for profiles exhibiting the shorter roller motion. 

Moreover, each profile reacts differently to the varying tension ratio and exhibits its own oscillation 

pattern, likely with consequences on the resulting power losses. An analysis of chain drive efficiency 

considering the effect of roller motion is therefore necessary to determine which geometry results in 

the lowest power losses. The two last chapters of this thesis are dedicated to this analysis. 
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It was shown in the previous chapter (Chapter IV) that the 2D geometry of the tooth profile influences 

drive behaviour, both for industrial and track cycling applications. Roller motion was modified 

depending on the tooth profile geometry considered so that the most energetic efficient profile could 

not be easily determined. Moreover, the author showed in [81] that dissipations due to roller motion 

could represent a significant part of chain drive losses. It is therefore necessary to explore this 

phenomenon. 

This chapter is dedicated to the presentation and validation of an original Chain Drive Efficiency Model 

(CDEM). This efficiency model continues from the QSCDM introduced in Chapter II and uses the results 

obtained “per component” as input parameters. 

The first part details the efficiency model. This model considers losses due to friction at interfaces 

between chain parts. This includes losses due to meshing and roller motion as both cause relative 

displacements between parts. Dissipations are assumed to occur only for articulations in contact with 

a sprocket. Moreover, the drive is assumed to be perfectly aligned and therefore no lateral contact 

between plates is considered. Coulomb friction is assumed at all chain interfaces. 

Elements of validation of the efficiency model are then presented. Predictions are compared to 

experimental results from the literature considering industrial drives. Differences between the 

approach presented, considering additional losses due to roller motion, and previous models 

considering only meshing losses are highlighted. The results show that losses due to roller motion 

explain lower efficiency measurements at low torque. Then, measurements from a test rig developed 

in parallel with this thesis and dedicated to track cycling applications are used to validate the model’s 

relevance for these specific drives. Model predictions and test rig results are compared for several 

tension settings, numbers of teeth and tooth profiles. 
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V.1 Chain Drive Efficiency Model 

Meshing and roller losses were introduced in Chapter I, §I.4. Meshing losses are caused by the 

articulation movement undergone by each link during its meshing and un-meshing at a given sprocket. 

Roller losses are caused by the motion of the rollers along their associated tooth profile during contact 

with a sprocket. This motion was highlighted in Chapter IV and shown to be dependent on the tooth 

profile. 

However, the physical phenomena responsible for the meshing and roller motion losses are similar as 

both are caused by friction at interfaces between chain parts. Therefore, no distinction between the 

two loss types is considered in the model. Instead, a new distinction based on the contribution of each 

interface is proposed. 

The chain is considered to operate in a single plane (i.e., 2D). Therefore, it is assumed that no lateral 

contact between plates occurs. Consequently, within a chain articulation (i.e., set of pin, bush and 

roller, see Chapter II and Figure V-1), friction is assumed to occur only at three interfaces between 

parts: pin/bush, bush/roller and roller/profile (see Figure V-1.a). Coulomb friction [85] is assumed at 

all interfaces, each having a distinct friction coefficient (see Table V-1 below). Pins, bushes and rollers 

are assumed to be perfectly cylindrical. Their outer radius is denoted 𝑅𝑝𝑖𝑛, 𝑅𝑏𝑢𝑠ℎ and 𝑅𝑟𝑜𝑙𝑙𝑒𝑟 (see 

Figure V-1.b). 

Losses are considered only for chain articulations in contact with a sprocket. Indeed, no relative motion 

between links occurs at the tight strand as it is assumed to be perfectly straight. Moreover, dissipations 

in the slack strand are neglected as link tension is usually very low (compared to tension in the tight 

strand) in track cycling applications, see Figure IV-28. 

Until now, no consideration of rotational speed has been introduced as the chain drive model is quasi 

static. However, time considerations are needed for efficiency calculations. It is assumed that the chain 

drive operates under steady state conditions. The chainring rotational speed ΩⅠ is constant and given 

as input variable. Constant loadings conditions are given by a torque 𝐶𝑗 applied either on the chainring 

or the rear cog. 

  
(a) (b) 

Figure V-1: (a) Chain drive articulation (b) Definition of 𝑹𝒑𝒊𝒏, 𝑹𝒃𝒖𝒔𝒉 and 𝑹𝒓𝒐𝒍𝒍𝒆𝒓 

The Chain Drive Efficiency Model (CDEM) is used, continuing from the QSCDM introduced in Chapter 

II (see Figure V-2). Its input variables are the variation of loads (link tension 𝑇 and contact force 𝑃), 

roller location (𝑠𝑐) and relative link orientation (link angles 𝛼∗, 𝜈 and 𝜅). All input variables are provided 

“per component” (see §II.3.2). Two kinematic cases (A and B, see below) are considered to calculate 

the roller rotation based on the roller/profile contact point displacement (given by 𝑠𝑐). Therefore, the 

final result of the efficiency model is an interval bounded by the two kinematic hypotheses. 

In a regular roller chain, inner link (bush link) and outer link (pin link) alternate (see Figure V-3). Two 

types of articulation are defined from this alternance as their influence on dissipation differs (see 

Chapter I). These two types have been named differently in previous studies: forward/rear pin [32], 
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[76], open/narrow end forward (in the context of cranked link chains) [74], [75] and pin/bush 

articulation [70], [79]. In the following development, the denomination pin/bush articulation is used. 

A pin (bush) articulation corresponds to an articulation such that a pin (bush) link undergoes rotation 

during articulation due to meshing on the considered sprocket. From the standpoint of power loss, the 

meshing of a pin articulation mainly produces friction at the pin/bush interface. For bush articulation 

however, additional dissipations are caused at the bush/roller interface. Moreover, the loads at stake 

for each interface are also different depending on the type of articulation (see Chapter I and §V.1.1 

below). Figure V-3.b shows a pin articulation during its meshing on the chainring and a bush 

articulation during its meshing on the rear cog. 

 
Figure V-2: Position of the chain drive efficiency model 

 

 
(a) 

 
(b) 

Figure V-3: (a) Pin and bush articulation (b) Meshing of pin articulation on the chainring and bush 
articulation on the rear cog 
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V.1.1 Loads and motion of chain articulations 

For the following development, a chain drive articulation is considered (i.e., set of pin, bush and roller, 

see Figure V-1). All input variables are given “per component” using index 𝑘 according to Chapter II, 

§II.3.2. 

The following parameters are taken from the chain drive model (see Figure V-4). 

• 𝑃, the contact force between the profile and the roller of the articulation considered 

• 𝑇𝑓𝑜𝑙  and 𝑇𝑝𝑟𝑒𝑣, the tensions in the link following and preceding the articulation considered, 

respectively. 𝑓𝑜𝑙 and 𝑝𝑟𝑒𝑣 stand for following and previous, respectively; 

• 𝜅, the tilting angle of the previous link (with respect to the local 𝑥⃗ axis, see Figure V-4); 

• 𝜈, the tilting angle of the following link (with respect to the local 𝑥⃗ axis, see Figure V-4); 

• 𝛼∗, the angle between the following and the previous link; 

• 𝑠𝑐, the curvilinear abscissa of the contact point between the roller and the tooth profile. To 

simplify notations, 𝑠𝑐 is simply denoted 𝑠 in this chapter. 

The denomination 𝑇𝑝𝑟𝑒𝑣/𝑇𝑓𝑜𝑙  is close to that of 𝑇𝑖/𝑇𝑖+1 introduced in Chapter II. Indeed, both designate 

the previous and following links with respect to a given articulation. However, index 𝑖 refers to spatial 

numbering (i.e., “per position”). Therefore, each articulation changes index 𝑖 at chainring roller 

capture. The 𝑝𝑟𝑒𝑣/𝑓𝑜𝑙 refers to the same articulation during several drive periods in a “per 

component” perspective. Concretely, 𝑝𝑟𝑒𝑣/𝑓𝑜𝑙 links are defined from 𝑖/𝑖 + 1 but changing index 𝑖 at 

each chainring roller capture. 𝑃 in the CDEM context is defined in a similar way from 𝑃𝑖 in Chapter II. 

 
Figure V-4: (a) Loads applied on pin and bush articulations, (b) displacement parameters for pin 
articulation, (c) displacement parameters for bush articulation 

Although connected by eq.(II-21), 𝛼∗, 𝜈 and 𝜅 are all used in the following development to facilitate 

understanding.  

To calculate loss, it is necessary to know the motion of each chain part and the forces applied while 

the motions studied are performed. These two points are treated below. 
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a) Motion of parts 

The motions of each chain part are defined by variables 𝑠𝑐, 𝛼∗, 𝜅, 𝜈 and roller rotation angle 𝜃 (see 

Figure V-4.b-c). Except for roller rotation, the displacement of each chain part between sub-positions 

𝑘 and 𝑘 + 1 is given directly according to eq.(V-1). 

 Δ𝑠𝑘 = 𝑠𝑘+1 − 𝑠𝑘 (a) 

(V-1) 
 Δ𝛼∗𝑘 = 𝛼

∗
𝑘+1 − 𝛼

∗
𝑘 (b) 

 Δ𝜈𝑘 = 𝜈𝑘+1 − 𝜈𝑘 (c) 

 Δ𝜅𝑘 = 𝜅𝑘+1 − 𝜅𝑘 (d) 

The chain drive model proposed in Chapter II gives the location of the contact point between the roller 

and its corresponding tooth profile using variable 𝑠. However, no information is given about the 

rotation of the roller itself (angle 𝜃 in Figure V-4.b-c). This rotation must therefore be calculated 

providing kinematic hypotheses at the roller/profile contact. 

The materials and lubrication conditions are likely to be similar at both the roller/profile and the 

bush/roller interfaces. However, the radius at the bush roller interface is smaller than at the 

roller/profile one (e.g., 𝐷𝑟𝑜𝑙𝑙𝑒𝑟 = 7.75𝑚𝑚 and 𝐷𝑏𝑢𝑠ℎ = 5.1𝑚𝑚 for usual track cycling chain). 

Therefore, for a given torque, sliding will occur first at the bush/roller interface. Consequently, the 

bush/roller interface cannot undergo rolling if the roller/profile interface is subjected to sliding.  

Therefore, two extreme kinematic cases are considered: 

• Case A: It is assumed that there is no sliding at the bush/roller interface. Therefore, the roller 

rolls without sliding on the tooth profile. This condition is sufficient to define roller rotation 

and therefore sliding occurs at the bush/roller interface.  

For this case, the roller kinematics implies the following equation between Δ𝜃𝑘 and Δ𝑠𝑘. 

Case A: Δ𝜃𝑘 =
−Δ𝑠𝑘
𝑅𝑟𝑜𝑙𝑙𝑒𝑟

 (V-2) 

• Case B: Sliding is assumed to occur at both roller/profile and bush/roller interfaces. For this 

case, no kinematic condition constrains roller rotation. It is therefore assumed that no rolling 

occurs at the bush/roller interface. As a consequence, the roller/profile contact point slides a 

distance Δ𝑠𝑘. Figure V-5 illustrates this change of orientation, the roller in sub-position 𝑘 is 

represented by a dotted line while sub-position 𝑘 + 1 by a solid line. Excluding any unlikely 

self-rotation of the roller, this corresponds to the kinematic condition with the longest sliding 

distance. 

For case B, the roller rotation is expressed as follows. 

Case B: Δ𝜃𝑘 =
Δ𝑠𝑘
𝑅𝑐𝑢𝑟𝑣𝑒

 (V-3) 

with: 
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• 𝑅𝑐𝑢𝑟𝑣𝑒 the profile curvature radius at the roller/profile contact point considered. 𝑅𝑐𝑢𝑟𝑣𝑒 

can be positive or negative depending on whether the profile portion considered is convex 

or concave, respectively. 

The calculation of Δ𝜃𝑘 can be more complex when the contact point changes curve portions. 

Details about these specific cases are given in Appendix H. 

 
Figure V-5: Relation between 𝜟𝒔𝒌 and 𝜟𝜽𝒌 for case B (sub-position 𝒌 and 𝒌 + 𝟏 in dashed and solid lines, 
respectively) 

Cases A and B represent two extreme kinematic conditions: in case A, the sliding distance at the 

roller/profile contact point is null while it is maximal for case B (excluding roller self-rotation). For case 

B, sliding is assumed at both roller interfaces. Following Coulomb friction theory, the tangential force 

is therefore fixed at both interfaces and roller equilibrium cannot be achieved. However, no feedback 

loop is considered in the chain drive model between kinematics and loads. The roller kinematics as 

given by the chain drive model is therefore considered to be independent of any later assumption 

regarding kinematics (case A or B) or loads. 

b) Forces 

Between sub-position 𝑘 and 𝑘 + 1, link tensions and roller/profile contact force are considered as 

constant. The value is assumed to be the mean between position 𝑘 and 𝑘 + 1 (see eq.(V-4)). 

 𝑃𝑘 =
𝑃𝑘+1 + 𝑃𝑘

2
 (a) 

(V-4)  𝑇𝑝𝑟𝑒𝑣̅̅ ̅̅ ̅̅ ̅
𝑘
=
𝑇𝑝𝑟𝑒𝑣𝑘+1 + 𝑇𝑝𝑟𝑒𝑣𝑘

2
 (b) 

 𝑇𝑓𝑜𝑙̅̅ ̅̅ ̅
𝑘
=
𝑇𝑓𝑜𝑙𝑘+1 + 𝑇𝑓𝑜𝑙𝑘

2
 (c) 

Assuming Coulomb friction with sliding at a given interface [85], the magnitudes of tangential and 

normal forces (𝐹𝑇⃗⃗⃗⃗⃗ and 𝐹𝑁⃗⃗ ⃗⃗ ⃗, respectively) are linked by eq.(V-5) (see Figure V-6). 

 𝐹𝑇 = 𝜇𝐹𝑁 (V-5) 

with: 

• 𝐹𝑇 = ‖𝐹𝑇⃗⃗⃗⃗⃗‖ 

• 𝐹𝑁 = ‖𝐹𝑁⃗⃗ ⃗⃗ ⃗‖ 

• 𝜇 the sliding friction coefficient at the interface considered. 
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This equation can be rearranged using the total force 𝐹⃗ as follows. 

 𝐹𝑇 = 𝐹
𝜇

√1 + 𝜇2
 (V-6) 

with: 

• 𝐹 = ‖𝐹⃗‖ 

 
Figure V-6: Decomposition of total force 

Returning to our application, 𝑇 and 𝑃 are magnitudes of total forces 𝐹. Therefore, the magnitudes of 

the forces producing work at each interface are given in Table V-1 according to eq.(V-6) (see Figure 

V-4). 

Interface Pin articulation Bush articulation 

Pin/bush 
𝑇𝑝𝑟𝑒𝑣̅̅ ̅̅ ̅̅ ̅

𝑘
.

𝜇𝑝𝑏

√1+ 𝜇𝑝𝑏
2

 𝑇𝑓𝑜𝑙̅̅ ̅̅ ̅
𝑘
.

𝜇𝑝𝑏

√1 + 𝜇𝑝𝑏
2

 

Bush/roller 
𝑃𝑘 .

𝜇𝑏𝑟

√1 + 𝜇𝑏𝑟
2

 

Roller/profile 
𝑃𝑘 .

𝜇𝑟𝑝

√1 + 𝜇𝑟𝑝
2

 

Table V-1: Magnitudes of tangential force at each interface for pin and bush articulations 

with: 

• 𝜇𝑝𝑏, the friction coefficient at the pin/bush interface 

• 𝜇𝑏𝑟, the friction coefficient at the bush/roller interface 

• 𝜇𝑟𝑝, the friction coefficient at the roller/profile interface 

Contact force 𝑃 applies at the roller/profile interface. As dynamical effects are neglected, the 

bush/roller force also has a magnitude of 𝑃. For the bin/bush interface, the force to be considered is 

the tension in the neighbouring pin link. It therefore depends on the articulation being a pin or a bush 

one. For a pin articulation, 𝑇𝑝𝑟𝑒𝑣 is considered while 𝑇𝑓𝑜𝑙  is used for a bush one (see Table V-1). 
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V.1.2 Power losses calculation 

The motion of each part constituting a chain articulation as well as the forces applied on it have been 

detailed. Both can now be combined to calculate the resulting power losses. The dissipated mechanical 

works for a pin articulation during its contact with a given sprocket are first detailed. 

a) Pin articulation mechanical work 

Figure V-7 shows motion parameters (i.e., 𝜈, 𝜅, 𝛼∗ and 𝜃) and forces (𝑇𝑓𝑜𝑙, 𝑇𝑝𝑟𝑒𝑣 and 𝑃) on a pin 

articulation. The preceding link is a pin link (tension 𝑇𝑝𝑟𝑒𝑣, orientation 𝜅) and the following one is a 

bush link (tension 𝑇𝑓𝑜𝑙  and orientation 𝜈). 

 
Figure V-7: (a) motion parameters and (b) forces on pin articulations  

The losses undergone by a pin articulation are split into the contribution of each interface: pin/bush, 

bush/roller and roller/profile.  

i. Pin/bush interface (pb) 

The dissipated work at a given interface is calculated considering the product between the sliding 

distance and the tangential force (already introduced in Table V-1). 

Between sub-positions 𝑘 and 𝑘 + 1, the pin/bush interface is subject to the following sliding distance 

(see notations in Figure V-7). 

 𝑑𝑠𝑙𝑖𝑑𝑖𝑛𝑔|𝑝𝑏,𝑝𝑖𝑛 𝑎𝑟𝑡
𝑘

= 𝑅𝑝𝑖𝑛. |Δ𝛼
∗
𝑘| (V-7) 

This motion occurs under the following tangential force (according to Table V-1). 

 
𝐹𝑇|𝑝𝑏,𝑝𝑖𝑛 𝑎𝑟𝑡

𝑘 = 𝑇𝑝𝑟𝑒𝑣̅̅ ̅̅ ̅̅ ̅
𝑘
.

𝜇𝑝𝑏

√1+ 𝜇𝑝𝑏
2

 
(V-8) 

The resulting work is then expressed as follows. 

 

𝑊|𝑝𝑏,𝑝𝑖𝑛 𝑎𝑟𝑡
𝑘 = 𝑑𝑠𝑙𝑖𝑑𝑖𝑛𝑔|𝑝𝑏,𝑝𝑖𝑛 𝑎𝑟𝑡

𝑘
. 𝐹𝑇|𝑝𝑏,𝑝𝑖𝑛 𝑎𝑟𝑡

𝑘  

= 

= 𝑅𝑝𝑖𝑛 . |Δ𝛼
∗
𝑘|. 𝑇𝑝𝑟𝑒𝑣̅̅ ̅̅ ̅̅ ̅

𝑘
.

𝜇𝑝𝑏

√1 + 𝜇𝑝𝑏
2

 
(V-9) 
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Finally, the total work dissipated at the pin/bush interface during the contact with the sprocket 

(sprocket 𝑗) considered is obtained by summing eq.(V-9) from the sub-position of roller capture (𝑘 =

1) to the sub-position of roller release (𝑘 = 𝑘𝑚𝑎𝑥). 

 

𝑊|𝑝𝑏,𝑝𝑖𝑛 𝑎𝑟𝑡
𝑗

= ∑ 𝑊|𝑝𝑏,𝑝𝑖𝑛 𝑎𝑟𝑡
𝑘

𝑘𝑚𝑎𝑥−1

𝑘=1

 

= 

= ∑ 𝑇𝑝𝑟𝑒𝑣̅̅ ̅̅ ̅̅ ̅
𝑘
.

𝜇𝑝𝑏

√1 + 𝜇𝑝𝑏
2

. 𝑅𝑝𝑖𝑛. |Δ𝛼
∗
𝑘|

𝑘𝑚𝑎𝑥−1

𝑘=1

 

(V-10) 

ii. Bush/roller interface (br) 

At the bush/roller interface, the sliding distance is more complex. Indeed, between sub-positions 𝑘 

and 𝑘 + 1, the bush link (i.e., following link, see Figure V-7) changes orientation by an amount Δ𝜈𝑘. 

Simultaneously, the roller orientation changes by an amount Δ𝜃𝑘. Therefore, the sliding distance is 

expressed as follows. 

 𝑑𝑠𝑙𝑖𝑑𝑖𝑛𝑔|𝑏𝑟,𝑝𝑖𝑛 𝑎𝑟𝑡
𝑘

= 𝑅𝑏𝑢𝑠ℎ. |Δ𝜃𝑘 − Δ𝜈𝑘| (V-11) 

In eq.(V-11), Δ𝜃𝑘 is set to the appropriate value depending on the kinematic hypothesis considered 

(case A or case B). 

According to Table V-1, the following expression stands for the tangential force. 

 
𝐹𝑇|𝑏𝑟,𝑝𝑖𝑛 𝑎𝑟𝑡

𝑘 = 𝑃̅𝑘 .
𝜇𝑏𝑟

√1 + 𝜇𝑏𝑟
2

 
(V-12) 

As with the previous interface, the total work dissipated at the bush/roller interface during the contact 

with sprocket 𝑗 is given by eq.(V-13). 

 𝑊|𝑏𝑟,𝑝𝑖𝑛 𝑎𝑟𝑡
𝑗

= ∑ 𝑃𝑘 .
𝜇𝑏𝑟

√1 + 𝜇𝑏𝑟
2

. 𝑅𝑏𝑢𝑠ℎ. |Δ𝜃𝑘 − Δ𝜈𝑘|

𝑘𝑚𝑎𝑥−1

𝑘=1

 (V-13) 

It can be noted that the variation in pin link orientation does not influence the loss at the bush/roller 

interface (angle 𝜅 does not appear in eq.(V-13)). 

iii. Roller/profile interface (rp) 

At the roller/profile interface, the sliding distance between sub-positions 𝑘 and 𝑘 + 1 also depends on 

the case considered (A or B) according to eq.(V-14). For case A, the pure rolling condition implies that 

no sliding occurs; as for case B the sliding distance reaches its maximum Δ𝑠𝑘. 

Case A: 𝑑𝑠𝑙𝑖𝑑𝑖𝑛𝑔|𝑟𝑝,𝑝𝑖𝑛 𝑎𝑟𝑡
𝑘

= 0 (a) 

(V-14) 

Case B:     𝑑𝑠𝑙𝑖𝑑𝑖𝑛𝑔|𝑟𝑝,𝑝𝑖𝑛 𝑎𝑟𝑡
𝑘

= Δ𝑠𝑘 (b) 

According to Table V-1, the tangential force is given by the following equation. 
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𝐹𝑇|𝑟𝑝,𝑝𝑖𝑛 𝑎𝑟𝑡

𝑘 = 𝑃̅𝑘 .
𝜇𝑟𝑝

√1 + 𝜇𝑟𝑝
2

 
(V-15) 

Consequently, the total work dissipated at the roller/profile interface during the articulation contact 

with sprocket 𝑗 is given as follows, depending on the kinematic case considered. 

Case A:                          𝑊|𝑟𝑝,𝑝𝑖𝑛 𝑎𝑟𝑡
𝑗

= 0 (a) 

(V-16) 

Case B: 𝑊|𝑟𝑝,𝑝𝑖𝑛 𝑎𝑟𝑡
𝑗

= ∑ 𝑃𝑘 .
𝜇𝑟𝑝

√1 + 𝜇𝑟𝑝
2

𝑘𝑚𝑎𝑥−1

𝑘=1

. Δ𝑠𝑘 (b) 

As the sliding distance is null for case A (pure rolling), so it is for the total dissipated work. 

Finally, the total work dissipated by a pin articulation during its contact with sprocket 𝑗 is calculated as 

the sum of the dissipated works at each interface (pin/bush, bush/roller and roller/profile). 

 𝑊|𝑝𝑖𝑛 𝑎𝑟𝑡
𝑗

= 𝑊|𝑝𝑏,𝑝𝑖𝑛 𝑎𝑟𝑡
𝑗

+𝑊|𝑏𝑟,𝑝𝑖𝑛 𝑎𝑟𝑡
𝑗

+𝑊|𝑟𝑝,𝑝𝑖𝑛 𝑎𝑟𝑡
𝑗

 (V-17) 

b) Bush articulation mechanical work 

The same development is now given for a bush articulation. Motion parameters (i.e., 𝜈, 𝜅, 𝛼∗ and 𝜃) 

and forces (𝑇𝑓𝑜𝑙, 𝑇𝑝𝑟𝑒𝑣  and 𝑃) are shown in Figure V-8. Compared to a pin articulation, the pin and bush 

link are switched. The bush link is now the previous one, located with angle 𝜅, and its tension force is 

𝑇𝑝𝑟𝑒𝑣. 

 
Figure V-8: (a) motion parameters and (b) forces on bush articulations 

i. Pin/bush interface 

The sliding distance at the pin/bush interface is identical to the pin articulation case (see eq.(V-7)). 

 𝑑𝑠𝑙𝑖𝑑𝑖𝑛𝑔|𝑝𝑏,𝑏𝑢𝑠ℎ 𝑎𝑟𝑡
𝑘

= 𝑅𝑝𝑖𝑛. |Δ𝛼
∗
𝑘| (V-18) 

The tangential force differs from the pin articulation case as the pin link is now the following one (see 

Figure V-8). Therefore, the tangential force is based on 𝑇𝑓𝑜𝑙̅̅ ̅̅ ̅
𝑘

 (see Table V-1). 

 
𝐹𝑇|𝑝𝑏,𝑏𝑢𝑠ℎ 𝑎𝑟𝑡

𝑘 = 𝑇𝑓𝑜𝑙̅̅ ̅̅ ̅
𝑘
.

𝜇𝑝𝑏

√1 + 𝜇𝑝𝑏
2

 
(V-19) 
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The total dissipated work is therefore expressed as follows. 

 𝑊|𝑝𝑏,𝑏𝑢𝑠ℎ 𝑎𝑟𝑡
𝑗

= ∑ 𝑇𝑓𝑜𝑙̅̅ ̅̅ ̅
𝑘
×

𝜇𝑝𝑏

√1 + 𝜇𝑝𝑏
2

× 𝑅𝑝𝑖𝑛 × |Δ𝛼
∗
𝑘|

𝑘𝑚𝑎𝑥−1

𝑘=1

 (V-20) 

ii. Bush/roller interface 

For the bush/roller interface, the difference compared to the pin articulation case comes from the 

bush link now being the previous one. Its tilting variation is then given by 𝜅 resulting in the following 

expression for the sliding distance. 

 𝑑𝑠𝑙𝑖𝑑𝑖𝑛𝑔|𝑏𝑟,𝑏𝑢𝑠ℎ 𝑎𝑟𝑡
𝑘

= 𝑅𝑏𝑢𝑠ℎ. |Δ𝜃𝑘 − Δ𝜅𝑘| (V-21) 

As for the pin articulation case, Δ𝜃𝑘 is set to the appropriate value depending on the kinematic 

hypothesis considered (case A or case B). 

According to Table V-1, the tangential force is the same as for the pin articulation case. 

 
𝐹𝑇|𝑏𝑟,𝑏𝑢𝑠ℎ 𝑎𝑟𝑡

𝑘 = 𝑃̅𝑘 .
𝜇𝑏𝑟

√1 + 𝜇𝑏𝑟
2

 
(V-22) 

The total dissipated work is given as follows. 

 𝑊|𝑏𝑟,𝑏𝑢𝑠ℎ 𝑎𝑟𝑡
𝑗

= ∑ 𝑃𝑘 .
𝜇𝑏𝑟

√1 + 𝜇𝑏𝑟
2

. 𝑅𝑏𝑢𝑠ℎ. |Δ𝜃𝑘 − Δ𝜅𝑘|

𝑘𝑚𝑎𝑥−1

𝑘=1

 (V-23) 

iii. Roller/profile interface 

For the roller/profile interface, the dissipated work is identical to the pin articulation case. It is 

therefore directly expressed in eq.(V-24) depending on the kinematic hypothesis (case A or B). 

Case A:                         𝑊|𝑟𝑝,𝑏𝑢𝑠ℎ 𝑎𝑟𝑡
𝑗

= 0 (a) 

(V-24) 

Case B: 𝑊|𝑟𝑝,𝑏𝑢𝑠ℎ 𝑎𝑟𝑡
𝑗

= ∑ 𝑃𝑘 .
𝜇𝑟𝑝

√1 + 𝜇𝑟𝑝
2

𝑘𝑚𝑎𝑥−1

𝑘=1

. Δ𝑠𝑘 (b) 

As with the pin articulation case, the total work dissipated by a bush articulation during its contact with 

sprocket 𝑗 is given by eq.(V-25). 

 𝑊|𝑏𝑢𝑠ℎ 𝑎𝑟𝑡
𝑗

= 𝑊|𝑝𝑏,𝑏𝑢𝑠ℎ 𝑎𝑟𝑡
𝑗

+𝑊|𝑏𝑟,𝑏𝑢𝑠ℎ 𝑎𝑟𝑡
𝑗

+𝑊|𝑟𝑝,𝑏𝑢𝑠ℎ 𝑎𝑟𝑡
𝑗

 (V-25) 
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c) Summary of dissipated works 

Dissipated works at each articulation interface are summarised in Table V-2. 

Interface Pin articulation Bush articulation 

Pin/bush 
𝑻𝒑𝒓𝒆𝒗̅̅ ̅̅ ̅̅ ̅

𝒌
.

𝜇𝑝𝑏

√1 + 𝜇𝑝𝑏
2

. 𝑅𝑝𝑖𝑛. |Δ𝛼
∗
𝑘| 𝑻𝒇𝒐𝒍̅̅ ̅̅ ̅̅

𝒌
.

𝜇𝑝𝑏

√1 + 𝜇𝑝𝑏
2

. 𝑅𝑝𝑖𝑛. |Δ𝛼
∗
𝑘| 

B
u

sh
/r

o
lle

r Case A 
𝑃𝑘 .

𝜇𝑏𝑟

√1 + 𝜇𝑏𝑟
2

. 𝑅𝑏𝑢𝑠ℎ. |
−Δ𝑠𝑘
𝑅𝑟𝑜𝑙𝑙𝑒𝑟

− 𝚫𝝂𝒌| 𝑃𝑘 .
𝜇𝑏𝑟

√1 + 𝜇𝑏𝑟
2

. 𝑅𝑏𝑢𝑠ℎ. |
−Δ𝑠𝑘
𝑅𝑟𝑜𝑙𝑙𝑒𝑟

− 𝚫𝜿𝒌| 

Case B 
𝑃𝑘 .

𝜇𝑏𝑟

√1 + 𝜇𝑏𝑟
2

. 𝑅𝑏𝑢𝑠ℎ. |
Δ𝑠𝑘
𝑅𝑐𝑢𝑟𝑣𝑒

− 𝚫𝝂𝒌| 𝑃𝑘.
𝜇𝑏𝑟

√1+ 𝜇𝑏𝑟
2

. 𝑅𝑏𝑢𝑠ℎ. |
Δ𝑠𝑘
𝑅𝑐𝑢𝑟𝑣𝑒

− 𝚫𝜿𝒌| 

R
o

ll
er

/p
ro

fi
le

 

Case A 0 

Case B 
𝑃𝑘 .

𝜇𝑟𝑝

√1 + 𝜇𝑟𝑝
2

. Δ𝑠𝑘 

Table V-2: Work dissipated in each chain articulation interface between sub-positions 𝒌 and 𝒌 + 𝟏 

V.1.3 Dissipation over the entire drive 

The mechanical work dissipated by a pin and a bush articulation during their contact with a given 

sprocket 𝑗 was expressed. These results are now combined to calculate the efficiency of the drive. 

Losses are considered only during the contact with sprockets. Therefore, during an entire drive 

rotation, a pin articulation undergoes the following dissipation (𝑗 = Ⅰ and Ⅱ for the chainring and rear 

cog, respectively). 

 𝑊|𝑝𝑖𝑛 𝑎𝑟𝑡 = 𝑊|𝑝𝑖𝑛 𝑎𝑟𝑡
𝑗=Ⅰ

+𝑊|𝑝𝑖𝑛 𝑎𝑟𝑡
𝑗=Ⅱ

 (V-26) 

Similarly, the work dissipated by a bush articulation is given by eq.(V-27). 

 𝑊|𝑏𝑢𝑠ℎ 𝑎𝑟𝑡 = 𝑊|𝑏𝑢𝑠ℎ 𝑎𝑟𝑡
𝑗=Ⅰ

+𝑊|𝑏𝑢𝑠ℎ 𝑎𝑟𝑡
𝑗=Ⅱ

 (V-27) 

For a complete rotation of the drive, the total work dissipated by all the chain articulation is as follows. 

 𝑊𝑡𝑜𝑡 =
𝑁𝑏𝑙𝑖𝑛𝑘
2

. (𝑊|𝑝𝑖𝑛 𝑎𝑟𝑡 +𝑊|𝑏𝑢𝑠ℎ 𝑎𝑟𝑡) (V-28) 

with:  

• 𝑁𝑏𝑙𝑖𝑛𝑘, the total chain number of links. 𝑁𝑏𝑙𝑖𝑛𝑘 is always an even number as cranked links are 

not studied in this work. 

This amount of work is dissipated within a time Δ𝑡 required for a complete drive rotation (see 

eq.(V-29)). 

 Δ𝑡 =
𝑁𝑏𝑙𝑖𝑛𝑘
𝑍Ⅰ

.
2𝜋

ΩⅠ

 (V-29) 
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with: 

• ΩⅠ, the chainring rotational speed rad/s (given as input). 

Therefore, the total power loss caused by the dissipation in all the chain articulations is given as 

follows. 

 𝑃𝑙𝑜𝑠𝑠 =
𝑊𝑡𝑜𝑡

Δ𝑡
=
(𝑊|𝑝𝑖𝑛 𝑎𝑟𝑡 +𝑊|𝑏𝑢𝑠ℎ 𝑎𝑟𝑡)

2
.
ΩⅠ𝑍Ⅰ
2𝜋

 (V-30) 

The energy efficiency of the drive is therefore: 

 

𝜂 =
𝐶ⅠΩⅠ − 𝑃𝑙𝑜𝑠𝑠

𝐶ⅠΩⅠ

 

= 

= 1 −
𝑍Ⅰ . (𝑊|𝑝𝑖𝑛 𝑎𝑟𝑡 +𝑊|𝑏𝑢𝑠ℎ 𝑎𝑟𝑡)

4𝜋𝐶Ⅰ
 

(V-31) 

with: 

• 𝐶Ⅰ, the mean chainring torque (for an entire drive rotation), either given as input or calculated 

using eq.(II-32). 

The dissipated works depend on the kinematic case considered (case A or B). Therefore, using 

eq.(V-31), two efficiency values 𝜂𝐴 and 𝜂𝐵 are obtained, one for each kinematic case. Case B (sliding 

at both bush/roller and roller/profile interfaces) is the less favourable in terms of chain drive efficiency 

and therefore 𝜂𝐵 is always the lower bound of the interval. 

The chain drive model introduced in Chapter II is quasi static. Therefore, its results are independent of 

the drive rotational speed. The work dissipated in a chain articulation is calculated based on these 

speed free results. No notion of speed is added in the calculation of the dissipated work (see Table V-2, 

friction coefficients are assumed to be constant). The drive rotational speed appears in eq.(V-30) giving 

the power loss but cancels in eq.(V-31). In this model, the drive efficiency 𝜂 is therefore independent 

from any speed consideration. This consequence of the quasi static chain drive model is supported by 

the experimental results of Lodge & Burgess [70] showing no significant effect of the rotational speed 

on efficiency. These tests were run for moderate speeds (up 150𝑟𝑝𝑚) which is consistent with track 

cycling applications (see Figure V-10 below). For higher rotational speeds, the effect on power losses 

could be considered, for instance, by adding a physical model for the friction coefficients calculation 

(presented for instance in [86]). However, such a model was not used in this work. 

The efficiency model can be easily adapted to study cranked link chains (i.e., with only pin or bush 

articulations depending on the set-up direction). For such cases, eq.(V-28) should be modified to 

account for only the type of articulation considered (pin or bush). 

For the rest of the manuscript, the chain drive efficiency model introduced in this part will be called 

the Chain Drive Efficiency Model (CDEM). 
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Further remarks: 

Although not differentiated in the efficiency model presented, terms referring to meshing and roller 

losses can be identified in dissipated work expressions (see Table V-2). Indeed, angles between links 

mostly vary during link meshing and un-meshing and are essentially constant elsewhere (see Figure 

V-9 for 𝛼∗ variation). Therefore, the terms Δ𝛼∗, Δ𝜈 and Δ𝜅 are mostly associated with meshing losses. 

On the other hand, the terms implying variation of the roller location Δ𝑠 are associated with roller 

losses. Figure V-9 shows the variation of articulation angle 𝛼∗ and the proportional contact 

displacement for the rear cog of the 60|15 drive studied in §IV.3.2 at 𝐶Ⅰ = 50𝑁.𝑚. It should be noted 

that the roller barely moves at the transition with the tight strand (from 𝜁 𝛼Ⅰ⁄ = 0 to 1). Therefore, 

meshing and roller losses are mostly distinct in time. Indeed, meshing losses occur at link meshing and 

un-meshing while roller losses mostly occur in between. When the rollers do not reach the second 

transition point (i.e.,  𝑑̅𝑖 < 100%) meshing and roller losses can coexist at transition with the slack 

strand. However, the load, and therefore the associated losses, at this point are usually significantly 

lower. 

 
Figure V-9: Articulation angle and proportional roller displacement at the rear cog; 𝟔𝟎|𝟏𝟓, 𝑪Ⅰ = 𝟓𝟎𝑵.𝒎 
(see §IV.3.2) 

The model proposed is based on the numerical calculation of part motions and loads. Therefore, its 

results are dependent on the discretisation of the chain drive model. Considering the cyclic properties 

of the chain drive model (see Chapter II) the discretisation of “per component” variables directly 

depends on the number of sub-positions considered in the drive period studied. A study of the 

influence of this discretisation parameter on the efficiency predictions is presented in the Appendix I. 

It resulted in the adaptative pitch presented for example in Figure III-18. This adaptative pitch allows 

good representation of roller capture and release events (important to capture meshing losses) while 

limiting computation time. The influence of the friction correction angle 𝛿 and tanh parameter 𝑎 

(defined in Chapter II) on efficiency predictions were also tested. More information is presented in the 

Appendix I. 

The Chain Drive Efficiency Model (CDEM) was introduced. This model unifies meshing and roller losses. 

It uses “per component” loads (link tension and roller/profile contact force) and roller location 

provided by the QSCDM (introduced in Chapter II). In accordance with the QSCDM, only 2D motions 

are considered. Coulomb friction is assumed at all the articulation interfaces considered (pin/bush, 

bush/roller and roller/profile). Roller rotation, not given by the chain drive model, is determined based 

on two extreme kinematic cases (denoted case A and B).  
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V.2 Elements of validation 

The Chain Drive Efficiency Model (CDEM) was presented in the previous part. Its predictions are now 

compared to experimental measurements to assess the validity of the approach proposed. Results 

from the literature are first considered for industrial chain drives. Then results obtained using a 

dedicated track cycling test rig are compared with CDEM predictions. 

V.2.1 Industrial drive: model and experiments from Lodge & 

Burgess [70] 

The predictions of the Chain Drive Efficiency Model (CDEM) are compared to the work presented by 

Lodge & Burgess in [70]. In this paper, a model of chain drive efficiency was proposed considering only 

meshing losses at both the tight and slack strands. Experimental measurements were also conducted 

at several rotational speeds and used to validate the model. This comparison focusses on a 19|19 chain 

drive. It is specified in the paper that a Renold BS [11] chain of pitch 1/2′′ with 100 links was used but 

the tension setup and the tooth profile used were not mentioned. 

To allow the comparison, the CDEM is set with the parameters given in Table III-4. The friction 

correction angle is |𝛿(∞)| = 5° and the slack strand looseness is set at 𝑠𝑙𝑎𝑐𝑘 = 7.25% (details about 

this tension setting are given below). The chain characteristics are summarised in Table III-5 according 

to the manufacturer’s catalogue [11] for a BS chain of 1/2′′. In addition, pin and bush diameters (not 

given in the catalogue) were measured on an ISO industrial chain of matching pitch. All the friction 

coefficients 𝜇𝑝𝑏, 𝜇𝑏𝑟 and 𝜇𝑟𝑝 are assumed to be constant and equal to 0.11, as given in the paper for 

a lubricated steel/steel contact [70]. 

𝒁Ⅰ|𝒁Ⅱ 𝑳 𝚫𝒀 𝒔𝒍𝒂𝒄𝒌 |𝜹(∞)| 

19|19 513.7𝑚𝑚 0 7.25% 5° 
Table V-3: Drive parameters for comparison with Lodge & Burgess [70] 

Pitch 𝒑 𝑫𝒑𝒊𝒏 𝑫𝒃𝒖𝒔𝒉 𝑫𝒓𝒐𝒍𝒍𝒆𝒓 𝒎𝒍𝒊𝒏𝒌 

12.7𝑚𝑚 4.42𝑚𝑚 6.37𝑚𝑚 8.51𝑚𝑚 8.89𝑔 
Table V-4: Chain parameters from [11] for comparison with Lodge & Burgess [70] 

It can be noted that the chain used is significantly heavier than a bicycle chain. The Renold BS chain 

has a mass of 8.89𝑔/𝑙𝑖𝑛𝑘 compared to 3.6𝑔/𝑙𝑖𝑛𝑘 for regular track cycling chain (see Table III-5 and 

Table V-5). This choice was made on purpose in the paper to favour losses in the slack strand (heavier 

links increase the slack strand tension).  

In order to ensure comparison with the efficiency model presented by Lodge & Burgess [70], losses 

due to meshing had to be distinguished from the roller ones. Losses due to meshing are calculated 

considering only the losses occurring during the meshing and un-meshing period (e.g., in the intervals 

𝜁 𝛼Ⅰ⁄ ∈ [0,1] and 𝜁 𝛼Ⅰ⁄ ∈ [𝜁 𝛼Ⅰ⁄ |𝑚𝑎𝑥 − 1, 𝜁 𝛼Ⅰ⁄ |𝑚𝑎𝑥], in Figure V-9 ). As shown in Figure V-9, some roller 

losses can occur at the transition with the slack strand but their influence should be minimal as the 

loads are significantly lower than in the tight one. Knowing the CDEM meshing losses, the looseness 

setting 𝑠𝑙𝑎𝑐𝑘 is chosen so that CDEM meshing loss predictions equal those of Lodge & Burgess’s model 

for 𝐶Ⅱ = 30𝑁.𝑚 (i.e., to fit the prediction of both models for the biggest torque, see Figure V-10). The 

value obtained (𝑠𝑙𝑎𝑐𝑘 = 7.25%) is higher than the 4 to 6% recommended from industrial drive [73] 

but still represents a realistic tension setting. The corresponding slack strand tension varies around 

14.5𝑁. 
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Figure V-10 shows the comparison between the efficiency model of Lodge & Burgess, the experimental 

measurements performed by Lodge & Burgess, and the CDEM. The meshing losses, calculated as 

detailed above, are also shown. The interval between the two extreme efficiencies 𝜂𝐴 and 𝜂𝐵 is 

represented in the shaded area. As mentioned in §V.1.3, case B corresponds to the lower efficiency. 

 
Figure V-10: Chain drive efficiency, comparison with Lodge & Burgess [70] 

Both CDEM meshing losses and the model of Lodge & Burgess predict the same increase in chain drive 

efficiency with increasing output torques 𝐶Ⅱ. Considering only the meshing losses, this effect is 

explained as follows. The input power and the tight strand tension increase with torque. In the 

meantime, the slack strand tension remains the same (global kinematics is independent of the loading 

conditions). Therefore, the significance of the slack strand meshing losses decreases as torque 

increases, resulting in growing efficiency. Compared to the model of Lodge & Burgess, the whole CDEM 

(shaded area in Figure V-10) exhibits lower efficiency due to additional roller losses. The effect of roller 

losses is particularly significant for low torque. For instance, for 𝐶Ⅱ = 1𝑁.𝑚, the efficiency predicted 

considering only meshing losses is about 97% while the full CDEM predicts down to 94.1% (for case 

B) considering the effect of roller losses. However, with increasing torque, the effect of roller losses 

decreases as the predicted interval tends toward the meshing losses curve. Compared to the 

experimental measurements, Lodge & Burgess’s efficiency model mostly overestimates the drive 

efficiency, especially for low torques. This overestimation was attributed in the paper [70] to vibrations 

and roller sprocket impacts. The CDEM shows better agreement with the experimental results. Indeed, 

the lower efficiency, due to roller losses, is in accordance with the experimental measurements at low 

torques. This result suggests that the losses responsible for the deviation of Lodge & Burgess’s model 

from the experimental results could be caused by roller motion. It should be noted that the agreement 

with the 100𝑟𝑝𝑚 measurements is less convincing as the efficiencies are higher than those observed 

for 50 and 150𝑟𝑝𝑚 cases at low torque. However, the experimental results suggest that drive 

rotational speed is not a first order parameter on efficiency as no tendency with increasing speed is 

present. 

An inflection in the CDEM predictions is visible at 𝐶Ⅱ = 15𝑁.𝑚. Efficiency stops momentarily to 

increase with growing torque before catching up with the original trend at about 𝐶Ⅱ = 16𝑁.𝑚. This 

inflection is not present in the meshing loss predictions. To investigate this phenomenon, Figure V-11 

shows the roller motion at the driving sprocket for several output torques. 
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Figure V-11: Roller displacement for several torques, 𝟏𝟗|𝟏𝟗 drive, driving sprocket, 𝑨𝑺𝑨 profile 

As already shown in Chapter IV, rollers contact the driving sprocket nearby the transition point 𝑡𝑝𝐵. 

The interval of tension ratios 𝑇𝑠/𝑇𝑡 explored is moderate as extreme values are about 0.36 and 0.018 

for 𝐶Ⅱ = 1 and 30𝑁.𝑚, respectively (see Chapter IV for orders of magnitude of tension ratios). This 

results in the driving sprocket being in the inter-𝑡𝑝 regime (rollers tending to cross the profile toward 

𝑡𝑝𝐴) up to 𝐶Ⅱ = 16𝑁.𝑚 before reaching the static roller regime (see Figure V-11). The tooth climbing 

regime is not reached as rollers are still immobile at 𝑡𝑝𝐵 for 𝐶Ⅱ = 30𝑁.𝑚. Consequently, the curves 

are superimposed for small 𝜁/𝛼Ⅰ and become distinguishable when the rollers leave the transition 

point. As the output torque 𝐶Ⅱ increases, the rollers tend to stay longer nearby the transition point. 

The inflexion, noticed in the efficiency predictions, corresponds to the transition from the inter-𝑡𝑝 

regime to the static roller one. Figure V-11 shows that this transition occurs between 𝐶Ⅱ = 14.5 and 

16𝑁.𝑚 as the rollers all remain immobile at the transition point for 𝐶Ⅱ = 16𝑁.𝑚. During the 

transition, back-and-forth roller motion occurs, particularly for 𝐶Ⅱ = 15𝑁.𝑚. This additional roller 

motion causes additional losses and explains the inflection in the efficiency predictions. 

The increase of efficiency with growing torques, already reported in [70], is therefore related to two 

distinct effects. As the tight strand tension increases (to match the increasing torque requirement), 

the constant losses due to meshing at the slack strand become less significant compared to the input 

power (increasing with torque). At the same time, the increasing torque reduces roller motion and 

related roller losses. As it considers both meshing and roller losses, the CDEM therefore predicts a 

stronger effect of torque on chain drive efficiency compared to the model of Lodge & Burgess (see 

Figure V-10). More details about these points are given in the following chapter (see Chapter VI). 

The comparison of CDEM with the results of Lodge & Burgess [70] shows that both models are in 

agreement. Considering additional roller losses, the CDEM justifies the drop in efficiency at low torque 

that could not be explained by models based only on meshing losses. It was shown that temporarily 

inflection could occur in the increasing relation between torque and efficiency. Such inflection is 

caused by the appearance of back-and-forth roller motion causing additional roller displacement and 

losses.  

The new efficiency model is now tested against experimental results from a test rig dedicated to 

efficiency measurements of track cycling drives. 
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V.2.2 Track cycling drive: dedicated test rig measurements 

A test rig dedicated to measurements of track cycling drive efficiency was developed at the LaMCoS1 

laboratory (see Figure V-12.a). This test rig mimics a track cycling drive. Two shafts, representing the 

chainring and rear cog axis are instrumented with torque transducers measuring both torque and 

rotational speed. No derailleur system is present. Rotational speed is imposed on Shaft 1 while resistive 

torque is imposed on Shaft 2 (see Figure V-12.b). The power is delivered and absorbed by two servo 

motors. Bearings are mounted between the drive and torque transducers. Consequently, comparing 

the power between the two shafts gives a measure of the efficiency of the tested drive plus the losses 

of the bearings and torque transducers. Therefore, only relative results are presented (comparison 

between drives) as the absolute drive losses cannot be easily determined. The centre distance 𝐿 as 

well as the vertical shift Δ𝑌 can be set to match track bike dimensions. Any chainring or rear cog 

matching the track cycling standards can be tested. 

  
(a) (b) 

Figure V-12: Track cycling efficiency test rig (a) general view (b) diagram 

For the results presented, the vertical shift Δ𝑌 is always set at −50𝑚𝑚 to reproduce real track bike 

dimensions [92]. The centre distance 𝐿 is adjusted for each test to match the tension setting 

requirements. On the test rig, a representation of the chain tension is obtained by measuring the 

deflection at the middle of the tight strand under a mass of 1𝑘𝑔. The deflection is measured 

perpendicularly to the tight common tangent direction (see Figure V-13.a). The measurement is carried 

out with unloaded drive. The tight strand is considered (instead of the slack one) as measurements are 

easier to carry out (the calliper can be put on the top of the strand, etc.) which ensures better precision 

and repeatability. The order of magnitude of the values obtained should be comparable to the slack 

strand deflections computed by the model (see Chapter II, §II.1.2) as the unloaded drive allows the 

strand looseness to pass indifferently from the tight or slack strand. 

All the tests are performed using track cycling chains with their original lubricant. The characteristics 

of the chains used are given in Table V-5. 

Pitch 𝒑 𝑫𝒑𝒊𝒏 𝑫𝒃𝒖𝒔𝒉 𝑫𝒓𝒐𝒍𝒍𝒆𝒓 𝒎𝒍𝒊𝒏𝒌 

12.7𝑚𝑚 3.6𝑚𝑚 5.10𝑚𝑚 7.75𝑚𝑚 3.6𝑔 
Table V-5: Track cycling chain dimensions for experimental measurements and model calculations 

Calculations using the CDEM are all performed with a friction correction angle |𝛿(∞)| = 5° and vertical 

shift Δ𝑌 = −50𝑚𝑚. All the friction coefficients (𝜇𝑝𝑏, 𝜇𝑏𝑟 and 𝜇𝑟𝑝) are assumed to be constant and 

 
1 Contact and Structural Mechanics Laboratory, INSA Lyon (http://lamcos.insa-lyon.fr/) 
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equal to 0.11, similarly to the previous case. The chain dimensions are identical to these used on the 

test rig (see Table V-5). 

  
(a) (b) 

Figure V-13: Measurements of (a) tight strand deflection (b) centre distance 𝑳 

Unless stated otherwise, comparisons between test rig results and CDEM are carried out using a real 

track cycling tooth profile called “Reference”. The chainring and rear cog have been manufactured 

following this profile and used on the test rig. The precise 2D geometry of this profile was given to the 

author allowing efficiency calculations. The 𝜙𝑡𝑝 parameter of this real track cycling profile is 

comparable to the values presented for the Cycling Profiles (see §IV.3). This confirms the conclusions 

of Chapter IV regarding specifying constraints on tooth profiles for track cycling applications. 

The geometry of this Reference tooth profile is not given in this manuscript for confidentiality reasons. 

All the experiments presented are representative of track cycling applications. Severe loading 

conditions are imposed with low slack strand tension (see 𝑚𝑙𝑖𝑛𝑘 in Table V-5) resulting in low tension 

ratios. In this work, the author formatted the results obtained from the test rig. However, he did not 

develop the test rig itself or perform the measurements presented. The test rig results are presented 

here for the purpose of validating the chain drive efficiency model. 

a) Influence of chain tension 

The comparison of CDEM predictions with the test rig results is first conducted regarding the influence 

of the tension setting on the drive efficiency. 

Several tension settings were tested on the test rig with the regular 60|15 drive presented in Chapter 

IV (see §IV.3). The tight strand deflection passed from 5𝑚𝑚 for the tightest setting to 30 for the 

loosest. In terms of centre distance, this corresponds to 385.5 to 387.4𝑚𝑚. The tested chain had 100 

links. The chainring and rear cog used the Reference profile. The influence of chain tension was tested 

for two loading conditions (denoted 𝐿𝐶1 and 𝐿𝐶2) described in Table V-6. The first condition (𝐿𝐶1) 

shows reduced output torque (on Shaft 2) compared to 𝐿𝐶2. 𝐿𝐶2 also exhibits higher rotation speeds. 

These conditions have been chosen to be representative of real track cycling applications. 𝐿𝐶2 is 

representative of a high intensity sprint while 𝐿𝐶1 mimics endurance races. 

Loading conditions (𝑳𝑪) 𝑪Ⅱ (𝑵.𝒎) 𝜴Ⅰ (𝒓𝒑𝒎) Input power 𝑷Ⅰ (𝑾) 

𝑳𝑪𝟏 13 90 490 
𝑳𝑪𝟐 30 130 1634 

Table V-6: Tested loading conditions for comparison between experiments and model results 
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Figure V-14 illustrates the two extreme tension settings (i.e., tight strand deflections of 5 and 30𝑚𝑚) 

using the drive arrangements predicted by the QSCDM for equivalent configurations. One can note 

that the number of links in contact with the chainring decreases as the slack strand became looser 

(strand tips are shown in red). 

  
(a) (b) 

Figure V-14: 𝟔𝟎|𝟏𝟓 drives (a) 𝒔𝒍𝒂𝒄𝒌 = 𝟐% (b) 𝒔𝒍𝒂𝒄𝒌 = 𝟐𝟎% (with profile 𝑪𝑷𝟏). Both figures have the same 
scale. 

The total losses measured by the test rig (losses from the drive and from the bearings) are presented 

in Figure V-15. The tests were performed by sessions of 25 minutes with efficiency measurements at 

5, 15 and 25 minutes. Each tension setting (i.e., tight strand deflection value) was tested during 6 

sessions (i.e., 18 efficiency measurements). The minimal and maximal values as well as the standard 

deviation are also represented in Figure V-15. 

 
Figure V-15: Total power losses measured by the test rig for tension settings 

Tighter settings correspond to small tight strand deflections (left of the graph) while looser settings 

are on the right of the graph. 

For 𝐿𝐶1, as expected, the total losses decrease as the tension setting became looser. Starting from 

15𝑚𝑚 of tight strand deflection, the losses seem to reach a plateau where additional strand looseness 

does not result in less dissipation. On the contrary, between 5 and 10𝑚𝑚 deflection, the effect of the 

tension setting is more significant. Between the tightest and the loosest settings, the mean difference 

in power losses reaches Δ𝑃 = 0.89𝑊 (see eq.(V-32)). For 𝐿𝐶2 however, no significant effect is visible. 

It must be noted that the dispersion at this loading condition is higher. Indeed, more than 1600𝑊 are 
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transmitted which increases the uncertainties related to the torque transducer. For 𝐿𝐶2 the standard 

deviation reaches about 1.5𝑊. 

 Δ𝑃 = 𝑃𝑡𝑖𝑔ℎ𝑒𝑠𝑡 𝑠𝑒𝑡𝑡𝑖𝑛𝑔 − 𝑃𝑙𝑜𝑜𝑠𝑒𝑠𝑡 𝑠𝑒𝑡𝑡𝑖𝑛𝑔 (V-32) 

with: 

• 𝑃𝑡𝑖𝑔ℎ𝑒𝑠𝑡 𝑠𝑒𝑡𝑡𝑖𝑛𝑔, the power losses obtained for the tightest tension setting (i.e., smallest tight 

strand deflection or 𝑠𝑙𝑎𝑐𝑘 parameter). 

• 𝑃𝑙𝑜𝑜𝑠𝑒𝑠𝑡 𝑠𝑒𝑡𝑡𝑖𝑛𝑔, the power losses obtained for the loosest tension setting (i.e., highest tight 

strand deflection or 𝑠𝑙𝑎𝑐𝑘 parameter). 

To perform comparisons with these experimental results, the CDEM is tested with the parameters 

given in Table V-7. The Reference tooth profile geometry is used for all calculations. The values of 𝐿 are 

chosen to obtain slack strand looseness ranging from 2% (tightest setting) to 20% (loosest setting). 

The range of explored tensions should be wider with the model than with the test rig. Indeed, 𝑠𝑙𝑎𝑐𝑘 =

2% roughly corresponds to a tight strand deflection of 
2

100
× 383 ×

1

2
= 3.8𝑚𝑚 and 𝑠𝑙𝑎𝑐𝑘 = 20% 

should correspond to about 39𝑚𝑚 (compare with from 5 to 30𝑚𝑚 with the test rig). However, this 

comparison between the measured deflection and the computed one can only be carried out for an 

order of magnitude. Indeed, the chain drive model neglects roller/profile clearance for global 

kinematics (see Chapter II). Therefore, its centre distance predictions are underestimated as 

roller/profile but also chain articulation clearances must be overcome to reach the required tension 

(these clearances are neglected in the model, see Chapter II). Therefore, the centre distances 𝐿 

predicted by the model are systematically lower than that applied on the test rig to obtain a similar 

tension setting. 

𝒁Ⅰ|𝒁Ⅱ 𝑳 𝚫𝒀 𝒔𝒍𝒂𝒄𝒌 |𝜹(∞)| 

60|15 386.1 → 383.0𝑚𝑚 −50𝑚𝑚 2 → 20% 5° 
Table V-7: Drive parameters of the model for comparison of tension influence with test rig measurements 

The obtained drive efficiencies are represented in Figure V-16. The solid curves show the mean 

efficiency values and shaded areas show the interval [𝜂𝐵, 𝜂𝐴]. 

 
Figure V-16: Efficiency as a function of the 𝒔𝒍𝒂𝒄𝒌 setting for 𝑳𝑪𝟏 and 𝑳𝑪𝟐 
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In accordance with the experimental measurements for 𝐿𝐶1, efficiency increases for higher 𝑠𝑙𝑎𝑐𝑘 

values (i.e., looser tension settings). Indeed, as the looseness increases, the slack strand tension 

decreases from about 13𝑁 to about 1.5𝑁 (for 𝑠𝑙𝑎𝑐𝑘 = 2% and 𝑠𝑙𝑎𝑐𝑘 = 20%, respectively). 

Therefore, the associated losses are also reduced. Moreover, the decrease of slack strand tension also 

reduces the tension ratio 𝑇𝑠/𝑇𝑡 which tends to limit roller motion (see Chapter IV) and therefore the 

associated losses. Furthermore, consistently with the results shown in Figure V-10, the predicted 

efficiency is higher for 𝐿𝐶2 as the torque applied is greater (𝐶Ⅱ = 30𝑁.𝑚 against 13 for 𝐿𝐶1). The 

interval [𝜂𝐵, 𝜂𝐴] also narrows as fewer roller motions occur as the torque increases. 

The consequence of these efficiency values in terms of power dissipated by the chain drive are 

represented in Figure V-17. Power loss differences between the tightest (𝑠𝑙𝑎𝑐𝑘 = 2%) and the loosest 

(𝑠𝑙𝑎𝑐𝑘 = 20%) settings Δ𝑃 are given (see eq.(V-32)). 

Comparison of the Δ𝑃 predictions between test rig measurements and CDEM predictions are 

summarised in Table V-8 for 𝐿𝐶1 and 𝐿𝐶2. 

 
Figure V-17: Dissipated losses predictions depending on the 𝒔𝒍𝒂𝒄𝒌 setting for 𝑳𝑪𝟏 and 𝑳𝑪𝟐 

 

 Test rig experimental results Model predictions 

𝑳𝑪𝟏 0.89𝑊 1.4𝑊 
𝑳𝑪𝟐 Non-significant 2.37𝑊 

Table V-8: Influence of tension setting: Comparison of 𝜟𝑷 between experimental measurements and CDEM 

predictions 

According to the CDEM predictions, losses are reduced for higher 𝑠𝑙𝑎𝑐𝑘 settings for both loading 

conditions (𝐿𝐶1 and 𝐿𝐶2). Consistently with the experimental measurements, the dissipated losses 

tend to an asymptote for high 𝑠𝑙𝑎𝑐𝑘 settings. The strong reduction in losses measured by the test rig 

between 5 and 10𝑚𝑚 deflection (see Figure V-15) is also visible between 𝑠𝑙𝑎𝑐𝑘 = 2 and ≈ 6% in the 

model predictions (see Figure V-17). A difference of Δ𝑃 = 1.4𝑊 is predicted by the model between 

the two extreme tension settings (i.e., 𝑠𝑙𝑎𝑐𝑘 = 2 and 20%). This difference is consistent with the 

measurement of 0.89𝑊 by the test rig. Moreover, the interval of tension setting explored by the model 

is probably wider than that explored with the test rig. This wider interval will tend to increase the 

predicted Δ𝑃, especially at low 𝑠𝑙𝑎𝑐𝑘 settings (high tension) where small looseness variations cause 

high efficiency differences. For 𝐿𝐶2, due to the higher transmitted power, the model predicts a 
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difference of dissipated power of 2.37𝑊 between the two extreme settings. This difference was not 

observed in the test rig results. However, the predictions of the CDEM are within the order of 

magnitude of the measurement dispersions. Therefore, the predicted relation between the tension 

setting and drive losses is difficult to measure with the sensors available.  

Although the prediction of Δ𝑃 is higher for 𝐿𝐶2 than for 𝐿𝐶1, its relative influence compared to the 

losses of the drive is significantly lower. Δ𝑃 reaches 1.4𝑊 compared to a loss of about 5.5𝑊 for 𝐿𝐶1. 

For 𝐿𝐶2, the drive losses represent about 16𝑊 with Δ𝑃 = 2.37𝑊 for 𝐿𝐶2. Therefore, the influence of 

the 𝑠𝑙𝑎𝑐𝑘 setting decreases as torque increases. 

For 𝐿𝐶1, CDEM predictions and experimental results agree on the asymptotical relation between 

tension setting and losses. Differences of dissipated power between the two extreme settings Δ𝑃 are 

also in accordance. The model prediction is higher but this difference could be explained by the 

difficulties of representing the same tension setting for both the test rig and the numerical model. 

For 𝐿𝐶2 no significant results were observed in the test rig measurements. However, CDEM predictions 

show that the effect should lie within the test rig uncertainties. Indeed, the dispersion of the 

experimental results increases with the power transmitted. 

b) Effect of numbers of sprockets teeth: comparison of 𝟔𝟎|𝟏𝟓 and 𝟓𝟐|𝟏𝟑 drives 

The second comparison between the CDEM prediction and the test rig results is carried out considering 

efficiency results for different numbers of teeth. Two configurations with the same gear ratio 𝑍Ⅰ 𝑍Ⅱ⁄ =

4 are considered: 𝑍Ⅰ|𝑍Ⅱ = 60|15 and 52|13. Sprocket size differences can be appreciated in Figure 

V-18 showing drive arrangements predicted by the QSCDM. 

  
(a) (b) 

Figure V-18: (a) 𝟔𝟎|𝟏𝟓 drive (b) 𝟓𝟐|𝟏𝟑 drive, both with a looseness setting of 𝒔𝒍𝒂𝒄𝒌 = 𝟏𝟏% (with Profile 
𝑪𝑷𝟏). Both figures have the same scale. 

The comparison between the two drives is still carried out for the two loading conditions given in Table 

V-6. A chainring and a rear cog both corresponding to the Reference tooth profile were used for all the 

tests. The test rig centre distance 𝐿 is chosen to obtain a tension setting representative of a typical 

track cycling drive (tight strand deflexion under 1𝑘𝑔 mass of ≈ 20𝑚𝑚). The resulting centre distances 

varied from 381 to 386𝑚𝑚. It can be noted that the tight strand deflection considered lies at the 

plateau where differences in 𝑠𝑙𝑎𝑐𝑘 settings have minimal consequences on efficiency (see Figure 

V-15). Chains of 100 and 94 links were used for the 60|15 and 52|13 drives, respectively.  

The total losses (drive + bearings) measured by the test rig are presented in Figure V-19. The mean 

values are given with the minimal and maximal measurements and the standard deviation. As for the 

previous case, the results were obtained by performing 25-minute tests of each configuration with 

efficiency measurements at 5, 15 and 25 minutes. 3 and 4 sessions were performed for 52|13 and 

60|15 at 𝐿𝐶1, respectively (corresponding to a total of 9 and 12 measurements, respectively). For 𝐿𝐶2, 

8 sessions were performed for both configurations (24 measurements) in order to reduce 

uncertainties. 
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Figure V-19: Total power losses measured by the test rig for 𝟔𝟎|𝟏𝟓 and 𝟓𝟐|𝟏𝟑 drives for both Loading 
Conditions (𝑳𝑪𝟏 and 𝑳𝑪𝟐) 

As with the previous case, higher losses are measured for 𝐿𝐶2 which come along increasing test rig 

uncertainties (higher standard deviation and [𝑚𝑖𝑛 , 𝑚𝑎𝑥] interval, see Figure V-19). For both loading 

conditions, the mean losses obtained with the 60|15 drive are lower than those obtained with the 

52|13 one. The difference Δ𝑃 between 60|15 and 52|13 drives (see eq.(V-33)) reaches 1.42𝑊 for 𝐿𝐶1 

and 2.86𝑊 for 𝐿𝐶2. These results confirm previous measurements from the literature showing that 

efficiency is higher for bigger sprockets [70], [76], [93]. 

 Δ𝑃 = 𝑃52|13 − 𝑃60|15 (V-33) 

with: 

• 𝑃52|13, the power losses obtained for the 52|13 drive 

• 𝑃60|15, the power losses obtained for the 60|15 drive 

Comparison with the CDEM predictions is carried out with the following parameters. The slack strand 

looseness is set at 𝑠𝑙𝑎𝑐𝑘 = 11% to obtain a comparable tension setting. As with the test rig tests, the 

number of links are 100 and 94 for the 60|15 and 52|13 drive, respectively. The Reference profile is 

used for all the calculations allowing direct comparisons with the experimental measurements. A 

summary of the drive parameters used is given in Table V-9. 

𝒁Ⅰ|𝒁Ⅱ 𝑳 𝚫𝒀 𝒔𝒍𝒂𝒄𝒌 |𝜹(∞)| 

52|13 381.3𝑚𝑚 
−50𝑚𝑚 11% 5° 

60|15 385.8𝑚𝑚 
Table V-9: Drive parameters for the comparison of 𝟓𝟐|𝟏𝟑 and 𝟔𝟎|𝟏𝟓 drives 

The results obtained are presented in Figure V-20. Predicted efficiencies as well as drive losses are 

shown for each configuration. Error bars give the values of efficiency 𝜂 and power losses 𝑃 for cases A 

and B. The main bars represent the mean of both cases. Differences in power losses Δ𝑃 between 60|15 

and 52|13 (see eq.(V-33)) configurations are also shown. 
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Figure V-20: Model predictions for 𝟔𝟎|𝟏𝟓 and 𝟓𝟐|𝟏𝟑 drives for both Loading Conditions (𝑳𝑪𝟏 and 𝑳𝑪𝟐) 

For both loading conditions, the predicted efficiencies are higher for the 60|15 drive. Moreover, 

efficiencies are also higher for 𝐿𝐶2 (with more torque) than for 𝐿𝐶1 and the [𝜂𝐵, 𝜂𝐴] interval is reduced 

(see Figure V-16). Consequently, in accordance with the test rig results, loss predictions are higher for 

the 52|13 drive. 

Loss differences Δ𝑃 measured by the test rig and calculated with the CDEM are given in Table V-10. 

 Test rig experimental results CDEM predictions 

𝑳𝑪𝟏 1.42𝑊 0.69𝑊 
𝑳𝑪𝟐 2.86𝑊 2.33𝑊 

Table V-10: Comparison of 𝜟𝑷 between experimental measurements and model predictions for different 

sprocket sizes 

Test rig results and CDEM predictions agreed that the 60|15 drive is always more efficient than the 

52|13 (physical explanations about this point are given in Chapter VI). Moreover, the orders of 

magnitude of the Δ𝑃 are similar for the CDEM and the test rig. However, model predictions in terms 

of Δ𝑃 are lower than test rig measurements. This is particularly true for 𝐿𝐶1 where the prediction is 

about half the measured value. For 𝐿𝐶2, the model prediction is within the test rig error bars (see 

Figure V-19).  

It is possible that the 𝑠𝑙𝑎𝑐𝑘 settings used for the CDEM were looser than the test rig ones. Indeed, as 

mentioned above, tension settings are difficult to compare between the CDEM and the test rig. This 

could explain the lower Δ𝑃 predictions as increasing the slack strand tension (i.e., reducing the strand 

deflection) would automatically increase the drive losses and therefore the differences between 52|13 

and 60|15 (see Figure V-15). As this effect decreases with increasing torque (see Figure V-16) this could 

explain why the CDEM predictions for Δ𝑃 are better for 𝐿𝐶2 than for 𝐿𝐶1. However, the 𝑠𝑙𝑎𝑐𝑘 setting 
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tested should lie at the plateau where this effect should not be very significant. It is also possible that 

the assumed friction coefficients (0.11 for all interfaces) are too low and that more dissipative contacts 

occur for the drive tested, resulting in higher Δ𝑃. 

Nevertheless, test rig measurements and model predictions both agreed that bigger sprockets exhibit 

higher efficiency. This result is consistent with the literature as it has already been reported both 

experimentally [70], [76], [93] and by models [70], [74], [76], [93]. Moreover, the order of magnitudes 

obtained for loss differences Δ𝑃 are consistent between test rig measurements and model predictions, 

suggesting that no important phenomenon has been neglected. 

c) Influence of chainring tooth profile 

The final comparison between CDEM calculations and test rig results is carried out by testing the 

influence of the chainring tooth profile. Three chainrings from the market (denoted Chainring 1, 2 and 

3) are compared, using the test rig, to the Reference chainring. All the tests are performed at Loading 

Condition 𝐿𝐶1 (see Table V-6) using a 60|15 drive configuration. A 15 tooth Reference rear cog was 

used for all tests. Parameters of the chains used corresponded to Table V-5 with 100 links (see Figure 

V-21). The drive centre distance was again set to obtain a strand deflection under 1𝑘𝑔 mass of ≈

20𝑚𝑚. Slight differences in tight strand deflection were observed between chainring tooth profiles 

for a given centre distance 𝐿. Therefore, each drive was set with its specific centre distance to obtain 

the required tension setting (the values of 𝐿 obtained ranged from 384 to 386𝑚𝑚). However, as the 

tension setting lies in the plateau reported in Figure V-15, the consequences on the efficiencies 

measured should not be significant. 

Manual interventions had to be performed on the test rig between the trials of the different chainrings. 

Due to these interventions, sensor offsets were modified causing the magnitude of total losses 

measured by the test rig to be different for each chainring. However, the Reference chainring was 

tested after each intervention. Therefore, a test with the Reference chainring is available for each 

chainring tested (i.e., Chainring 1,2 and 3) in the same test rig conditions. Consequently, the results 

are given directly in Figure V-22 relatively to the reference case (Reference chainring and rear cog). The 

difference Δ𝑃 corresponds to the losses obtained with a given chainring compared to those obtained 

with the Reference one according to eq.(V-34). 

 
Figure V-21: Illustration of chainring influence tests 

 

 Δ𝑃 = 𝑃𝐶ℎ𝑎𝑖𝑛𝑟𝑖𝑛𝑔 𝑖 − 𝑃𝑅𝑒𝑓 (V-34) 

with: 

• 𝑃𝑐ℎ𝑎𝑖𝑛𝑟𝑖𝑛𝑔 𝑖, the total losses measured using Chainring 𝑖 
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• 𝑃𝑟𝑒𝑓, the total losses measured using the Reference chainring 

Tests were performed in sessions of 25 minutes with measurements at 5, 15 and 25 minutes. Each 

comparison with the Reference configuration was carried out on 12 measurements (4 sessions of 3 

measurements). The minimal and maximal values as well as the standard deviation are indicated in 

Figure V-22. 

 
Figure V-22: Test rig measurements for the three chainrings tested relatively to the Reference case 

The measured Δ𝑃 are negative, suggesting better efficiency with the tested chainring than for the 

reference case (Reference chainring and rear cog, see eq.(V-34)). However, all Δ𝑃 are included in the 

standard deviations. Therefore, the tests concluded that there were no significant differences between 

the three chainrings tested and the Reference one. 

Except for the Reference tooth profile (denoted “Ref” in Figure V-23), the precise 2D geometries of the 

chainrings tested (Chainrings 1,2 and 3 in Figure V-22) are not known by the author. To perform 

comparisons with the model results, the influence of the chainring tooth profile is assessed by testing 

the four profiles able to withstand track cycling constraints: 𝑁𝐹𝑚𝑖𝑛, 𝐶𝑃1, 𝐶𝑃2 and 𝐶𝑃3 (see §IV.3). The 

calculations are performed for 𝐿𝐶1 (see Table V-6) using the drive parameters given in Table V-9 for 

60|15 drive. The chain parameters can be found in Table V-5 with 100 links. Drive efficiency as well as 

relative losses Δ𝑃 (see eq.(V-34)) compared to the reference case are given in Figure V-23. The intervals 

obtained using case A and case B are represented. For the relative losses, intervals [Δ𝑃𝑚𝑖𝑛 , Δ𝑃𝑚𝑎𝑥] 

(see Figure V-23) are calculated assuming that cases A and B could occur indifferently for each 

configuration (see eq.(V-35)). 

 Δ𝑃𝑚𝑖𝑛 = 𝑃𝑟𝑒𝑓|𝐴 − 𝑃𝑝𝑟𝑜𝑓𝑖𝑙𝑒|𝐵 (a) 
(V-35) 

 Δ𝑃𝑚𝑎𝑥 = 𝑃𝑟𝑒𝑓|𝐵 − 𝑃𝑝𝑟𝑜𝑓𝑖𝑙𝑒|𝐴 (b) 

with:  

• 𝑃𝑟𝑒𝑓|𝐴,𝐵, the dissipation obtained with the Reference geometry for case A or B 

• 𝑃𝑝𝑟𝑜𝑓𝑖𝑙𝑒|𝐴,𝐵, The dissipation obtained using the tested profile (𝑁𝐹𝑚𝑖𝑛, 𝐶𝑃1, 𝐶𝑃2 or 𝐶𝑃3) for 

case A or B 
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Figure V-23: Influence of chainring tooth profile according to the CDEM predictions 

The drive efficiencies predicted by the CDEM are identical for all the chainrings tested. Consequently, 

the Δ𝑃 values are negligible and included in the [Δ𝑃𝑚𝑖𝑛, Δ𝑃𝑚𝑎𝑥] intervals. Therefore, the model also 

concluded that the chainring tooth profile had a negligible effect on drive efficiency. 

The CDEM can be used to explain the similar efficiencies for all the chainrings tested. Indeed, using a 

similar method as indicated in §V.2.1, the computed losses are split between roller and meshing losses 

and between the chainring and the rear cog contribution. The proportions obtained for a 𝐶𝑃1 chainring 

are presented in Figure V-24 and Table V-11 (𝑗 = Ⅰ and Ⅱ for the chainring and rear cog, respectively). 

Losses due the roller motion are denoted ‘roller’ while those due to meshing are denoted ‘mesh’. 

 
Figure V-24: Loss contributions for the 𝟔𝟎|𝟏𝟓 drive, LC1, 𝑪𝑷𝟏 chainring and Reference rear cog 

 

 𝑷Ⅰ,𝒓𝒐𝒍𝒍𝒆𝒓 𝑷Ⅰ,𝒎𝒆𝒔𝒉 𝑷Ⅱ,𝒓𝒐𝒍𝒍𝒆𝒓 𝑷Ⅱ,𝒎𝒆𝒔𝒉 

Case A 
< 1% 18% 

3% 78% 
Case B 6% 75% 

Table V-11: Loss contributions for the 𝟔𝟎|𝟏𝟓 drive, LC1, 𝑪𝑷𝟏 chainring and Reference rear cog 

First, it is observed that the total predicted losses are higher for case B than for case A (4.81𝑊 and 

4.59𝑊, respectively). This was expected considering the less favourable hypotheses of case B. Meshing 

losses are caused by parameters depending on the global kinematics: tight strand tension 𝑇𝑡, pitch 

angle 𝛼Ⅰ,Ⅱ, etc. They are therefore identical for all the chainrings. Thus, changing the chainring tooth 
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profile influences only the losses attributed to roller motion at the chainring. However, results show 

that this loss type contribution represents less than 1% (both for cases A and B). In these conditions, 

the negligible influence of chainring geometry seems consistent. This low proportion of roller motion 

related losses is due to the low tension ratio (about 6.2𝑒−3) resulting in small roller motion. Moreover, 

this motion occurs under moderate loading due to the rapid decrease in both link tension 𝑇 and contact 

force 𝑃 undergone using track cycling profiles (see e.g., Figure IV-36). More details about this point will 

be given in the following chapter (Chapter VI). 

The remaining proportions show that meshing losses are by far the greatest contributor in this loading 

condition. 18% of the losses are due to the chainring meshing losses while between 75 to 78% are 

caused by the rear cog meshing losses. This difference between chainring and rear cog meshing are 

directly related to the pitch angle 𝛼𝑗 [32], [70], [76]. Indeed, the rear cog pitch angle is significantly 

higher than the chainring one due to its smaller number of teeth (𝛼Ⅰ = 24° and 𝛼Ⅱ = 6° in this 

example), resulting in a greater sliding distance. The results also show that roller losses at the rear cog 

are more significant than those at the chainring. 

No significant influence of the chainring geometry was reported on the test rig measurements. 

Although direct comparisons using the tested tooth profile geometries could be performed, analysis 

of the model results prove that the chainring geometry is not a significant parameter under the loading 

condition tested. The CDEM prediction therefore seems correct. Moreover, the model proves to be an 

efficient tool for analysing and explaining the test rig results. 

Comparisons with experimental results, both from the literature and from a dedicated test rig were 

carried out. In both cases, the CDEM predictions agreed with experimental the measurements, 

therefore demonstrating the relevance of the approach presented.  
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V.3 Conclusion 

This chapter was dedicated to the introduction and validation of the Chain Drive Efficiency Model 

(CDEM). This model calculates chain drive efficiency considering meshing losses and losses due to roller 

motions along their corresponding tooth profile. 

The efficiency model was first introduced. This model considers all losses due to friction at the chain 

interfaces. This includes meshing losses and losses caused by roller motion along their associated tooth 

profile. It is intended to be used with the QSCDM presented in Chapter II as it uses loads (link tension 

and roller/profile contact force) and roller location “per component” as inputs. The hypotheses are the 

same as those of the chain drive model: only planar motions (2D) are considered without any influence 

of dynamical effects (quasi-static). The chain is assumed to be perfectly aligned and therefore friction 

is considered only at the pin/bush, bush/roller and roller/profile interfaces (no lateral contact occurs 

with plates). Coulomb friction is assumed at all interfaces. Differences between pin and bush 

articulations are considered. The results per component provided by the chain drive model (introduced 

in Chapter II) give only the evolution of the roller/profile contact location. Therefore, additional 

kinematic hypotheses are stated to determine roller rotation. Two extreme cases, meant to represent 

the best and worst possible conditions, were considered. In case A, rolling without sliding occurs at the 

roller/profile interface while sliding occur at the bush/roller one. In case B, sliding occur at both the 

bush/roller and roller/profile interfaces. The contact hypotheses assumed for this efficiency model are 

different from those of Kim & Johnson’s tension model [52] in which rolling at the bush/roller interface 

was considered simultaneously to sliding at the roller/profile one. As a consequence of the two 

kinematic cases considered, the predicted efficiency is given in the form of an interval [𝜂𝐵, 𝜂𝐴].  

The CDEM predictions were then compared to experimental results, both from the literature and from 

a dedicated test rig. Predictions agreed with the experimental measurements of Lodge & Burgess [70] 

for an industrial drive. The results showed that lower efficiencies observed at low torque, which could 

not be explained by a model considering only meshing losses (like that presented by Lodge & Burgess), 

seemed to be caused by roller motion losses. This comparison demonstrates the interest of the model 

presented. The predictions of the CDEM were then compared to experimental measurements from a 

test rig dedicated to track cycling applications. For a high transmitted power (about 1600𝑊), the 

variability in the experimental results made comparisons difficult. However, for lower power (about 

490𝑊), the trends found with the CDEM and the test rig were in accordance. The model and 

experimental measurements agreed on the asymptotic relation between chain tension and drive 

efficiency. The interest of using bigger sprockets was also found by both approaches and the 

magnitude of model predictions in terms of saved power was consistent with the experimental results. 

Finally, the model and experiments agreed on the negligeable influence of the chainring tooth profile. 

For this last case, the model proves to be a good tool for explaining numerical results as it provides 

information about the significant loss mechanisms. 

The validation process showed that the influence of the parameters tested (e.g., torque, chain tension, 

etc.) is usually more significant than the width of the interval [𝜂𝐵, 𝜂𝐴]. Therefore, considering two 

kinematic hypotheses does not prevent conclusions to be drawn with the CDEM. 

The Chain Drive Efficiency Model (CDEM) was introduced and validated. It will now be used to explore 

the efficiency of track cycling drives and identify the parameters with the greatest impact. 
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The previous chapter introduced a Chain Drive Efficiency Model (CDEM). The latter considers both 

roller and meshing losses and has the ability to consider different tooth profile geometry. Using the 

model introduced, this chapter presents a parametric analysis of chain drive efficiency. Only track 

cycling cases are considered. They are characterised by low slack strand tensions (about 3𝑁) and high 

input torques (up to 300𝑁.𝑚 at the chainring sustained for several drive rotations), resulting in small 

tension ratios (about 1𝑒−3 for 300𝑁.𝑚). An example of such a drive is presented in Chapter IV. Only 

the four profiles able to withstand track cycling constraints are considered: 𝑁𝐹𝑚𝑖𝑛, 𝐶𝑃1, 𝐶𝑃2 and 𝐶𝑃3. 

The first part is dedicated to the full characterisation of a regular 60|15 drive. To do so, the influence 

of torque and tension setting on the efficiency of such a drive is studied. It is shown that the action of 

both parameters can be combined into a single third one: the tension ratio. The evolution of loss 

mechanisms for several ratios is then analysed. Total losses are split between roller and meshing 

contributions to determine which phenomenon is dominant for track cycling drives. In addition, 

calculations are carried out for different tooth profiles to study their influence on drive efficiency. A 

key tooth profile parameter explaining the differences between geometries is identified. 

Then, the analysis is extended to other drive configurations. To do so, parameters related to the drive 

architecture are explored. The influence of the number of sprocket teeth is characterised for several 

applied torques. Application to drives with constant gear ratio 𝑍Ⅰ/𝑍Ⅱ is presented (e.g., 44|11 and 

60|15 drives with a gear ratio of 4). The influence of chain pitch is then tested for standards directly 

above and below the reference 1/2′′ pitch used in cycling applications. Changing the chain pitch 

usually occurs with the modification of chain part dimensions (i.e., change of pin, bush and roller 

diameters) [11]. To properly separate the effect of this change of dimension from the pitch change, 

hypothetical cases with pin, bush and roller dimensions equal to those of a reference 1/2′′ chain are 

studied. Then, the influence of the friction coefficient is assessed. Losses are also split between the 

contribution of each interface (pin/bush, bush/roller and roller/profile) in order to identify the main 

contributors. 

Finally, an analysis of chain drive efficiency based on Design Of Experiments (DOE) is proposed. This 

analysis summarises the effect of all the parameters considered in this chapter (i.e., torque, tension 

setting, sprocket sizes, chain pitch and friction coefficient). It gives a global point of view to easily 

identify which parameters have the greatest influence. Interactions between parameters are also 

identified. Based on this analysis, guidelines for future efficiency optimisation are given. 

Parameters used for efficiency calculations 

In this chapter, unless otherwise stated, all calculations are carried out for |𝛿(∞)| = 5° and 𝑎 =

0.1𝑛𝑚 = 1𝑒−10𝑚. As with the validation process, the friction coefficients at pin/bush, bush roller and 

roller profile interfaces (i.e., 𝜇𝑝𝑏, 𝜇𝑏𝑟 and 𝜇𝑟𝑝, respectively) are assumed to be constant and all equal 

to a global friction coefficient 𝜇̅ = 0.11 [70]. By default, a 1/2′′ chain is considered with the dimensions 

given in Table VI-1. The vertical shift is constant: Δ𝑌 = −50𝑚𝑚. The numbers of chain links are always 

even and chosen so that the centre distance 𝐿 obtained is adjusted to obtain the required tension 

setting 𝑠𝑙𝑎𝑐𝑘, with the smallest value above 𝐿 = 380𝑚𝑚. These constraints are chosen to match the 

geometrical properties of a real track bicycle [92]. In the previous chapter (see Chapter V), torques 

were given for the rear cog to match the test rig conditions. In this chapter however, torque values 𝐶Ⅰ 

are given for the chainring (i.e., torque applied by the athlete). Values are therefore generally higher 

due to the gear ratio 𝑍Ⅰ/𝑍Ⅱ. 

Pitch 𝒑 𝑫𝒑𝒊𝒏 𝑫𝒃𝒖𝒔𝒉 𝑫𝒓𝒐𝒍𝒍𝒆𝒓 𝒎𝒍𝒊𝒏𝒌 

12.7𝑚𝑚 3.6𝑚𝑚 5.10𝑚𝑚 7.75𝑚𝑚 3.6𝑔 
Table VI-1: Regular track cycling chain parameters  
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VI.1 𝟔𝟎|𝟏𝟓 drive: characterisation and tooth 

profile analysis 

This part is dedicated to the characterisation of a regular 60|15 track cycling drive. The influence of 

torque (i.e., chainring torque 𝐶Ⅰ) and tension setting 𝑠𝑙𝑎𝑐𝑘 on drive efficiency is explored. It is shown 

that they can be simultaneously analysed using the tension ratio 𝑇𝑠/𝑇𝑡. Then, the underlying 

mechanisms explaining the evolution of efficiency depending on the tension ratio are analysed. To 

simultaneously explore the influence of tooth profile geometry, calculations are carried out using the 

four profiles suitable for track cycling applications (see Chapter IV, Figure IV-33): 𝑁𝐹𝑚𝑖𝑛, 𝐶𝑃1, 𝐶𝑃2 and 

𝐶𝑃3. 

Profile parameters are recalled in Table VI-1. All the profiles studied are defined using two circle arcs 

1 and 2 (see Appendix A for profile definition). 𝑅1 is the radius of the tooth bottom circle arc (to be 

compared with 𝑅𝑟𝑜𝑙𝑙𝑒𝑟 = 3.875𝑚𝑚) and 𝑅2 is the radius on the second arc. 

 𝑪𝑷𝟏 𝑪𝑷𝟐 𝑪𝑷𝟑 𝑵𝑭𝒎𝒊𝒏
1 

𝑲 (𝒅𝒆𝒈) 15 15 19.96 20 

𝑲′ (𝒅𝒆𝒈) 55.3 97.42 139.5 135.5 

𝑹𝟏 (𝒎𝒎) 3.9 4.05 4.2 3.91 

𝜽𝟏 (𝒅𝒆𝒈) 75 − 125/𝑍 75 − 85/𝑍 70 − 45/𝑍 70 − 45/𝑍 

𝑹𝟐 (𝒎𝒎) 
1

2
𝑍 + 6 𝑍 + 1 2𝑍 − 9 0.93(𝑍 + 2) 

𝑹𝒕𝒊𝒑 (𝒎𝒎) 2.023𝑍 + 3.141 𝑅𝑝𝑖𝑡𝑐ℎ + 4.0625 

Table VI-2: Tooth profiles parameters for 𝑵𝑭𝒎𝒊𝒏, 𝑪𝑷𝟏, 𝑪𝑷𝟐 and 𝑪𝑷𝟑 

Used in eq.(IV-6), parameters 𝐾 and 𝐾′ result in the 𝜙𝑡𝑝 values presented in Figure IV-32. Profiles 

𝑁𝐹𝑚𝑖𝑛 and 𝐶𝑃3 showed similar pressure angles. Profile 𝐶𝑃2 had the smallest 𝜙𝑡𝑝 for all the numbers 

of teeth tested. Below 15 teeth, profile 𝐶𝑃3 has the biggest pressure angle. Its value then decreases 

toward that of 𝐶𝑃2, leaving the 𝑁𝐹𝑚𝑖𝑛 and 𝐶𝑃3 profiles with the highest 𝜙𝑡𝑝 above 17 teeth. Regarding 

the tooth bottom radius 𝑅1, 𝐶𝑃1 has the smallest one close to the 𝑁𝐹𝑚𝑖𝑛 value. Profile 𝐶𝑃2 and 𝐶𝑃3 

exhibit higher radii. Each profile then shows different values for 𝑅2 and 𝑅𝑡𝑖𝑝 (see Table IV-10). 

However, the transition points lie close to the border between the two circle arcs for all the profiles 

(see Appendix A and Figure VI-1). Therefore, parameters 𝑅2 and 𝑅𝑡𝑖𝑝 should not influence profile 

behaviour as no roller will contact the tooth flanks higher than both transition points. Indeed, these 

profiles are considered in this chapter because they do not reach the tooth climbing regime for usual 

track cycling loading conditions (conversely to 𝑁𝐹𝑚𝑎𝑥 and 𝐴𝑆𝐴). Consequently, for all the calculations 

presented in this chapter, all the profiles present roller motion in inter-tp or static roller behaviour (see 

Chapter IV). 

 
1 For 𝑝 = 12.7𝑚𝑚 and 𝐷𝑟𝑜𝑙𝑙𝑒𝑟 = 7.75𝑚𝑚 
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Figure VI-1: Profiles 𝑵𝑭𝒎𝒊𝒏 and Cycling Profiles in local coordinate system with transition points A and B 
(𝒁 = 𝟏𝟓, 𝒑 = 𝟏𝟐. 𝟕𝒎𝒎) 

VI.1.1 Influence of torque and tension setting. Common 

approach of tension ratio 

a) Efficiency depending on torque 

The influence of torque is studied first. Calculations are carried out for the usual 60|15 drive with a 

tension setting 𝑠𝑙𝑎𝑐𝑘 = 11%. The centre distance 𝐿 is set to the smallest value above 380𝑚𝑚 allowing  

to obtain the prescribed tension setting. This results in a chain with 100 links. The slack tension is about 

2.7𝑁 in these conditions (see Figure IV-28). Torques ranging from 5 to 300𝑁.𝑚 are considered to 

match track cycling conditions. The conditions imposed result in chainring tension ratio 𝑇𝑠,Ⅰ/𝑇𝑡 ranging 

from about 6.1𝑒−2 for 𝐶Ⅰ = 5𝑁.𝑚 to about 1.1𝑒−3 for 300𝑁.𝑚. 

A summary of the drive parameters is given in Table VI-3. 

𝒁Ⅰ|𝒁Ⅱ. 𝒔𝒍𝒂𝒄𝒌 (%) 𝑳 (𝒎𝒎) 𝑵𝒃𝒍𝒊𝒏𝒌 𝑻𝒔,Ⅰ (𝑵) 𝑪Ⅰ (𝑵.𝒎) 𝑻𝒔,Ⅰ/𝑻𝒕 

60|15 11 > 380 100 ≈ 2.7 5 → 300 6.1𝑒−2 → 1.1𝑒−3 

Table VI-3: Drive characteristics for the influence of chainring torque 𝑪Ⅰ 

The efficiencies obtained are first presented only for the 𝑁𝐹𝑚𝑖𝑛 profile in Figure VI-2. The mean 

efficiency between cases A and B is represented by a solid line while the interval [𝜂𝐵, 𝜂𝐴] is represented 

by a shaded area. 
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Figure VI-2: Influence of torque on efficiency for the 𝑵𝑭𝒎𝒊𝒏 profile. 𝟔𝟎|𝟏𝟓, 𝒔𝒍𝒂𝒄𝒌 = 𝟏𝟏% 

As observed during the CDEM validation (renvoi §V.2), efficiency increases with increasing torque. This 

relation is explained by two effects. First, the decreasing influence of the slack strand meshing losses. 

Indeed, these losses are independent from the chainring torque, contrary to the tight strand ones. 

Second, the roller motion reduces for higher torque (relation between roller motion and loading 

conditions are presented in Chapter IV). Details on each loss type contribution is given in the following 

section (see §VI.1.2). The effect is more significant at low torques before efficiency asymptotically 

converges for higher loading conditions. Mean efficiency ranges from about 98.5% at 𝐶Ⅰ = 5𝑁.𝑚 to 

99.09% at 300𝑁.𝑚. The increase slows significantly starting from 50𝑁.𝑚 where efficiency already 

reaches 99.04% and a plateau is attained approximately at 𝐶Ⅰ = 100𝑁.𝑚 where 99.07% is obtained.  

The variation between cases A and B can be appreciated. The interval drastically reduces with 

increasing torque. The difference is about 0.4% at 5𝑁.𝑚 but becomes almost negligible for higher 

torques (about 0.005% between cases A and B at 𝐶Ⅰ = 300𝑁.𝑚) 

The influence of tooth profile is shown in Figure VI-3.a where mean efficiency is plotted for the four 

profiles studied (intervals between cases A and B are not shown for readability reasons). The second 

plot (Figure VI-3.b) shows the difference between each profile efficiency and the 𝑁𝐹𝑚𝑖𝑛 one. 
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Figure VI-3: Influence of torque on efficiency, comparison of profiles. (a) Absolute values (b) Comparison 
with 𝑵𝑭𝒎𝒊𝒏. 𝟔𝟎|𝟏𝟓, 𝒔𝒍𝒂𝒄𝒌 = 𝟏𝟏% 

All the profiles show the same trend of increasing efficiency with higher chainring torque. The plateau 

starting approximately at 𝐶Ⅰ = 100𝑁.𝑚 is also observed for all profiles. Profiles 𝑁𝐹𝑚𝑖𝑛 and 𝐶𝑃1 show 

almost the same behaviour. Profiles 𝐶𝑃2 and 𝐶𝑃3 exhibit efficiencies below the two other ones. 

Overall, the differences between profiles are small. The highest gap is observed at 5𝑁.𝑚 between 

profiles 𝐶𝑃1 and 𝐶𝑃2 and reaches 0.13%. At ΩⅠ = 100𝑟𝑝𝑚 (about 52𝑊 at the chainring) this 

difference would result in saving 0.7𝑊 using 𝐶𝑃1 instead of 𝐶𝑃2. Moreover, as with the difference 

between cases A and B, the differences between profiles decrease with higher torque. At 50𝑁.𝑚, the 

gap between 𝐶𝑃1 and 𝐶𝑃2 is 0.03% which results in 0.16𝑊 assuming ΩⅠ = 100𝑟𝑝𝑚 (524𝑊 of power 

produced by the cyclist at the chainring). Therefore, even if the power is usually higher for greater 

torques, differences between profiles decrease quicker and the potential gain related to power losses 

becomes negligible for high torques. 

b) Efficiency depending on tension setting 

The effect of tension setting is now studied on the 60|15 drive. Slack strand looseness from 2 to 20% 

are tested. Four chainring torques are studied as summarised in Table VI-4. 

𝒁Ⅰ|𝒁Ⅱ. 𝒔𝒍𝒂𝒄𝒌 (%) 𝑳 (𝒎𝒎) 𝑵𝒃𝒍𝒊𝒏𝒌 𝑻𝒔,Ⅰ (𝑵) 𝑪Ⅰ (𝑵.𝒎) 𝑻𝒔,Ⅰ/𝑻𝒕 

60|15 2 → 20 > 380 100 ≈ 13.3 → 1.6 
5, 50, 

100 and 300 
2.4𝑒−1 → 6.6𝑒−4 

Table VI-4: Drive characteristics for the influence of tension setting 𝒔𝒍𝒂𝒄𝒌 
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The results are first presented only for the 𝑁𝐹𝑚𝑖𝑛 profile in Figure VI-4. The [𝜂𝐵, 𝜂𝐴] interval is still 

shown in the shaded area and the mean value by the solid line. 

 
Figure VI-4: Influence of tension setting on efficiency for the 𝑵𝑭𝒎𝒊𝒏 profile. 𝟔𝟎|𝟏𝟓, 𝑪Ⅰ = 𝟓, 𝟓𝟎, 𝟏𝟎𝟎 and 
𝟑𝟎𝟎 N.m 

As shown during the validation process (see §V.2), efficiency is higher for looser settings (high 𝑠𝑙𝑎𝑐𝑘 

values). This effect is caused by the reduction of roller and slack strand meshing losses. The reduction 

of roller losses manifests through the narrowing of the [𝜂𝐵 , 𝜂𝐴] interval with growing torque. As for 

the slack strand meshing losses, they are directly related to the slack strand tension which decreases 

for looser settings (i.e., higher 𝑠𝑙𝑎𝑐𝑘). The slack tension is about 13.3𝑁 at 2% and falls to 

approximately 1.6𝑁 at 20% (see Table VI-4). To a lesser extent, lower slack tension results in lower 

tight tension for a given torque, which also reduces losses. The curve shapes are similar to what has 

been observed for the influence of torque (see Figure VI-2). Efficiency increases quickly for small 𝑠𝑙𝑎𝑐𝑘 

settings (i.e., tight drives) before reaching a plateau at about 7.5%. Therefore, as the torque increases, 

the influence of the slack setting decreases. It is very significant at 𝐶Ⅰ = 5𝑁.𝑚 where a difference of 

about 1.9% is observed between the tightest and the loosest setting (i.e., between 𝑠𝑙𝑎𝑐𝑘 = 2 and 

20%). For 50𝑁.𝑚, the effect decreases to 0.3% and 0.07% at 300𝑁.𝑚. Assuming ΩⅠ = 100𝑟𝑝𝑚, 

these differences represent 1, 1.5 and 2.2𝑊, respectively. Therefore, although the difference in 

efficiency decreases, the resulting power losses increase with increasing torque (assuming constant 

rotational speed). However, track cycling drives usually already lie at the plateau at 𝑠𝑙𝑎𝑐𝑘 ≈ 11%. 

Potential gains are therefore limited. Moreover, the risk of chain drop ultimately rises with increasing 

looseness as the tension ratio is reduced (see §IV.2). For all the results presented in Figure VI-4, the 

chainring tension ratio goes from 0.24 for 𝐶Ⅰ = 5𝑁.𝑚 at 𝑠𝑙𝑎𝑐𝑘 = 2% to 6.6𝑒−4 for 𝐶Ⅰ = 300𝑁.𝑚 at 

𝑠𝑙𝑎𝑐𝑘 = 20% (see Table VI-4). 
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Differences between profiles are presented in Figure VI-5 for 𝐶Ⅰ = 5 and 300𝑁.𝑚. 

 
Figure VI-5: Influence of slack on efficiency, comparison of profiles comparison. 𝟔𝟎|𝟏𝟓, 𝑪Ⅰ = 𝟓, 𝟓𝟎, 𝟏𝟎𝟎 
and 𝟐𝟎𝟎𝑵.𝒎 

The results are close to what has been observed with the influence of torque (see Figure VI-3). All the 

profiles show the same increasing relation with the tension setting. Similarly, the effect is reduced in 

the same way for all profiles by increasing torques (see Figure VI-5 for 𝐶Ⅰ = 300𝑁.𝑚). The ranking 

between profiles (in terms of efficiency) is the same as in Figure VI-3 with 𝐶𝑃1 being the most efficient 

profile closely followed by 𝑁𝐹𝑚𝑖𝑛. 𝐶𝑃3 and 𝐶𝑃2 follow respectively. The potential gains between 𝐶𝑃1 

and 𝐶𝑃2 profiles are maximal for the lower tension ratio (𝐶Ⅰ = 5𝑁.𝑚, 𝑠𝑙𝑎𝑐𝑘 = 2%) and reach 0.22%. 

However, this condition is also the least efficient as it combines low torque and high looseness setting. 

It is noteworthy that the inflection in the 𝐶𝑃3 curve at 𝐶Ⅰ = 300𝑁.𝑚 for 𝑠𝑙𝑎𝑐𝑘 = 14.5%. This 

inflection is caused by the emergence of back-and-forth roller motion at the transition between inter-

𝑡𝑝 and static roller behaviour. A similar phenomenon was presented in the validation process (see 

§V.2). The motion quickly disappears as the efficiency at 𝑠𝑙𝑎𝑐𝑘 = 15% already converges with the 

original tendency. 

c) The tension ratio perspective 

The influence of torque 𝐶Ⅰ and tension setting 𝑠𝑙𝑎𝑐𝑘 have been shown. Both phenomena exhibit similar 

shapes with a strong increase before reaching a plateau. However, variations of both the slack setting 

and the chainring torque result in a variation of the ratio between the tight and slack tensions. Indeed, 

increasing the strand looseness (i.e., parameter 𝑠𝑙𝑎𝑐𝑘) reduces the slack tension. Similarly, increasing 

the chainring torque results in higher tight tension to match the torque requirements. It was shown in 
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Chapter IV that the tension ratio is fundamental for understanding the drive behaviour. In the inter-tp 

regime, smaller tension ratios are associated with less roller motion as the drive behaviour tends to 

the static roller one (no tooth climbing behaviour occurs for the profiles studied). Therefore, an 

analysis of the previous results considering the tension ratio is now presented. 

In the following, tension ratio designates the ratio of slack to tight strand tensions calculated at the 

chainring (i.e., slack tension 𝑇𝑠,Ⅰ is considered). The slack tension at the rear cog is usually almost equal 

so this ratio is representative of both sprocket behaviours. 

The mean value of chainring tension ratio 𝑇𝑠,Ⅰ/𝑇𝑡 is calculated for all cases presented in the previous 

section. Each case is plotted in Figure VI-6 showing mean drive efficiency as a function of the chainring 

tension ratio for the 𝑁𝐹𝑚𝑖𝑛 profile. Points obtained by varying the tension setting for constant torque 

are denoted ‘Constant torque’ while those obtained with a fixed slack setting (𝑠𝑙𝑎𝑐𝑘 = 11%) and 

varying torques are denoted ‘Constant slack’. In Figure VI-6, the x-axis is in logarithmic scale and is 

reversed. Therefore, low tension ratios (severe loading conditions) are at the right-hand side of the 

figure. Conversely, high ratios (moderate loading conditions) are at the left-hand side. 

 
Figure VI-6: Efficiency depending on chainring tension ratio for the 𝑵𝑭𝒎𝒊𝒏 profile (reversed x-axis) 

Cases with low chainring torque (e.g., 𝐶Ⅰ = 5𝑁.𝑚) are visible at the left-hand side of the figure (high 

tension ratio of about 0.2 to 5𝑒−2). They overlap between 4𝑒−2 and 5𝑒−2 with the constant slack 

calculations. Lower ratios are obtained with a chainring torque 𝐶Ⅰ = 300𝑁.𝑚. The smallest ratio 

corresponds to 𝐶Ⅰ = 300𝑁.𝑚 with the loosest tension setting 𝑠𝑙𝑎𝑐𝑘 = 20%. 

The points obtained illustrate a clear trend showing the same asymptotic shapes as what was observed 

for the influence of torque and tension. The rapid increase is present for high ratios (moderate 

loadings) before the efficiency reaches a plateau for low ratios. 

The general trend presented in Figure VI-6 is obtained with the best fit of a degree 5 polynomial. 

However, the arrangement around the common trend is not perfect as points with similar ratios do 

not display exactly the same efficiency. This phenomenon is observed in particular between 4𝑒−2 and 
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5𝑒−2 and around 2𝑒−2. These variations are caused by slight differences in roller motions obtained 

depending on the ratio being reached for different values of torque 𝐶Ⅰ and tension setting 𝑠𝑙𝑎𝑐𝑘. A 

deeper analysis of the differences observed around 𝑇𝑠,Ⅰ/𝑇𝑡 = 2𝑒
−2 is presented in Appendix J. 

VI.1.2 Analysis of the influence of tension ratio on chain drive 

efficiency 

As with the 𝑁𝐹𝑚𝑖𝑛, general trends are obtained for each tooth profile using the best fit of a degree 5 

polynomial on the mean efficiency between cases A and B. These tendencies are plotted for all the 

profiles tested in Figure VI-7 and show growing efficiency with decreasing tension ratio. 

 
Figure VI-7: Efficiency depending on chainring tension ratio, profile comparisons 

The efficiency ranking between profiles is similar to what was observed in Figure VI-3 and Figure VI-5 

for torque and tension setting variation, respectively. Profile 𝐶𝑃1 exhibits the highest efficiency 

followed closely by 𝑁𝐹𝑚𝑖𝑛. Profiles 𝐶𝑃3 and 𝐶𝑃2 are behind. The results obtained in the previous 

section (§VI.1.1) can therefore be analysed simultaneously using the tension ratio. The magnitude of 

the effect studied (variation of tension setting 𝑠𝑙𝑎𝑐𝑘 or torque 𝐶Ⅰ) depends on the tension ratios 

explored. Therefore, the calculation at, for instance, 𝑠𝑙𝑎𝑐𝑘 = 11% for various torques (see Figure 

VI-2), showed higher efficiency variation than those obtained for constant chainring torque at 𝐶Ⅰ =

300𝑁.𝑚 as the tension ratio range explored was smaller and also restricted to small ratios (see Figure 

VI-7). 

Now that both influences of tension and torque have been included in the tension ratio parameter, 

the reasons explaining increasing efficiency with decreasing ratio can be detailed. To do so, a closer 

look is given to three specific ratios. The highest and the lowest considered in the calculations carried-

out and a ratio meant to represent a usual track cycling drive. The drive configuration for each ratio is 

detailed in Table VI-5. 
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 𝒁Ⅰ|𝒁Ⅱ 𝑻𝒔,Ⅰ 𝑻𝒕⁄  𝑪Ⅰ (𝑵.𝒎) 𝒔𝒍𝒂𝒄𝒌 (%) 

High ratio  0.25 5 2 

Usual track cycling 6.5𝑒−3 50 11 

Low ratio 6.6𝑒−4 300 20 

Table VI-5: Drive parameters for the three studied chainring tension ratios 

It was shown in Chapter IV that roller motion decreases as the chainring torque increases (i.e., the 

tension ratio decreases). Figure VI-8 and Table VI-6 illustrate the consequences of this variation in 

terms of contribution of each loss type (i.e., meshing and roller losses) for the chainring and rear cog 

(designated using subscript Ⅰ and Ⅱ, respectively). 

 𝑷Ⅰ,𝒓𝒐𝒍𝒍𝒆𝒓 (%) 𝑷Ⅰ,𝒎𝒆𝒔𝒉 (%) 𝑷Ⅱ,𝒓𝒐𝒍𝒍𝒆𝒓 (%) 𝑷Ⅱ,𝒎𝒆𝒔𝒉 (%) 𝜼 (%) 

High ratio 
Case A 5 12 31 𝟓𝟑 97.5 

Case B 7 7 50 𝟑𝟓 96.1 

Usual track 
cycling 

Case A < 1 18 3 𝟕𝟖 99.1 

Case B < 1 17 7 𝟕𝟓 99 

Low ratio 
Case A 

< 1 19 < 1 𝟖𝟏 99.1 
Case B 

Table VI-6: Cases A and B, split between roller and meshing losses at the chainring and rear cog (Ⅰ and Ⅱ, 

respectively) for various tension ratios 
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 Case A: Case B:  

 
Figure VI-8: Cases A and B, split between roller and meshing losses at the chainring and rear cog (Ⅰ and Ⅱ, 
respectively) for various tension ratios. 

For high ratios (moderate loading conditions), the proportion of losses caused by roller motion is very 

significant compared to the meshing losses. It ranges from 36% for case A to 57% for case B. Indeed, 

the roller motion is considerable for these ratios, resulting in significant losses. However, as the tension 

ratio reduces, rollers tend to stay longer nearby the transition point (see Figure VI-9). Moreover, the 

relative contact force 𝑃𝑖/𝑇𝑡 also reduces with the tension ratio (see Figure VI-9). The combination of 

both effects lowers the influence of roller losses. Efficiency therefore increases as meshing losses 

gradually become the only significant source of dissipation. For a usual track cycling drive, the 

proportion of roller losses increases from 3 to 7% depending on case A and B, respectively. Following 

the same trend, roller losses are almost non-existant for the lowest ratio. The significant proportion 

roller losses for high ratios are consistent with the preliminary study proposed by the author in [81]. 

However, the exploration of smaller ratios more representative of track cycling applications shows that 
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the significance of roller losses quickly decreases. As presented in the preceding chapter (see §V.2.2), 

the rear cog is responsible for most of the losses at all ratios as it always produces at least 81% of the 

total dissipation. It should be noted that efficiency is always lower for case B compared to case A. This 

indicates that the magnitude of meshing losses is the same for case A and B and that only roller losses 

increase, resulting in a decrease in the proportion of meshing loss. 

 
Figure VI-9: Roller motion and roller profile contact force for high, usual track cycling, and low ratios 

A first factor explaining the increase in efficiency with decreasing ratio was explored: the reduction of 

roller losses. However, a second one, independent of roller losses, also plays a role. As introduced by 

Lodge & Burgess in [70] and earlier in this manuscript, the meshing losses at the tight strand gradually 

become dominant as their relative influence increases with decreasing tension ratios. This increase is 

illustrated in Figure VI-10 and Table VI-7 showing a split in the proportion of loss between losses due 

to roller motion and tight and slack strand meshing. 
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 Case A: Case B:  

 
Figure VI-10: Cases A and B, split between roller and meshing losses at the tight and slack strands for various 
tension ratios 

 

 𝑷𝒓𝒐𝒍𝒍𝒆𝒓 (%) 𝑷𝒎𝒆𝒔𝒉,𝒔𝒍𝒂𝒄𝒌 (%) 𝑷𝒎𝒆𝒔𝒉,𝒕𝒊𝒈𝒉𝒕 (%) 𝜼 (%) 

High ratio 
Case A 36 16 𝟒𝟖 97.5 

Case B 58 11 𝟑𝟏 96.1 

Usual track 
cycling 

Case A 3 
< 1% 

𝟗𝟔 99.1 

Case B 8 𝟗𝟏 99 

Low ratio 
Case A 

< 1 < 1% 
𝟏𝟎𝟎 

99.1 
Case B 𝟗𝟗 

Table VI-7: Cases A and B, split between roller and meshing losses at the tight and slack strands for various 

tension ratios 
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Consistently with Figure VI-8, the proportion of roller losses decreases with decreasing tension ratio. 

However, this second splitting method allows appreciating the contribution of tight strand meshing 

losses compared to the slack ones. The growing importance of tight strand meshing losses with 

decreasing tension ratios is clear. Indeed, meshing losses are directly dependent on the associated 

strand tension. Therefore, as the tight tension becomes dominant compared to the slack one (i.e., 

tension ratio reduces), the tight meshing losses increase in significance. For high ratios, tight meshing 

losses are significant but have the same order of magnitude as the other contributions: meshing at the 

slack strand and losses due to roller motion. For a usual track cycling drive, tight meshing losses are 

responsible for 91 to 96% of the total dissipation. For extreme loadings (lowest tension ratios) all 

other loss types are negligible.  

The two phenomena explaining the increasing drive efficiency with decreasing tension ratio have been 

detailed. 

• First, roller motion decreases for lower ratios, resulting in this type of loss type becoming 

negligeable for severe loadings. Meshing losses are therefore the predominant type of 

dissipation for usual track cycling applications. This point could not be assessed with efficiency 

models based only on meshing losses such as in [70], [74]–[76], [94]. 

• Secondly, among the meshing losses, those caused at the slack strand become less significant 

as the tension ratio decreases. This results in the tight strand meshing losses becoming the 

most significant sources of loss for usual track cycling applications. This point was already 

mentioned by Lodge & Burgess [70] and Kidd [76] with an efficiency model based only on 

meshing losses. 

The analysis carried out also explains the limited influence of tooth profile. Indeed, tooth profile 

geometry influences only roller losses as the meshing phenomenon is common to every geometry. 

Therefore, the tooth profile geometry influences only efficiency for conditions where roller losses 

make a significant contribution such as high tension ratios. For lower tension ratios, as roller losses 

decrease in significance, so does the influence of tooth profile. However, only track cycling profiles 

were tested. These profiles have relatively similar properties to withstand the specific constraints of 

their application, accentuating the small tooth profile influence. It would be interesting to test the 

influence of industrial tooth profiles (𝐴𝑆𝐴 and 𝑁𝐹𝑚𝑎𝑥) on efficiency compared to e.g., 𝑁𝐹𝑚𝑖𝑛 as their 

properties exhibit more discrepancies compared to the Cycling Profiles. However, the efficiency of 

industrial drives is beyond the scope of this thesis and is left for future works. 

Nevertheless, an answer can be given to the question formulated at the end of Chapter IV: is it more 

efficient to favour roller motion under small loads (with a low 𝜙𝑡𝑝 value) compared to less roller motion 

but undergo under higher loads (with higher 𝜙𝑡𝑝). 

As shown in Figure VI-7, the most efficient tooth profile among those tested is 𝐶𝑃1, followed by 𝑁𝐹𝑚𝑖𝑛. 

These profiles do not have the smallest 𝜙𝑡𝑝 (see Table VI-2 and Figure IV-32). They are however those 

with the smallest tooth bottom radii (𝑅1 in Table VI-2) which results in smaller absolute roller 

displacement 𝑑𝑖  for the same proportional displacement 𝑑̅𝑖. From this analysis, the tooth bottom 

radius therefore seems to be the dominant parameter for assessing the influence of tooth profile on 

drive efficiency. 

This part was dedicated to the effect of chainring torque 𝐶Ⅰ and tension setting 𝑠𝑙𝑎𝑐𝑘 on drive 

efficiency. At the same time, four tooth profile geometries were tested. 
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First, the effect of torque was considered. The results show that efficiency increases while the interval 

[𝜂𝐵 , 𝜂𝐴] reduces with rising torques. These results are consistent with modelling and experimental 

studies in the literature [70], [76], [84], [94]. Starting at about 𝐶Ⅰ = 100𝑁.𝑚, efficiency reaches a 

plateau where the influence of further torque increases become almost negligible. The effect of the 

tension setting exhibits higher efficiency for high 𝑠𝑙𝑎𝑐𝑘 values (i.e., looser tension settings). An 

asymptotical behaviour is also reported with the plateau starting at about 𝑠𝑙𝑎𝑐𝑘 = 7.5%. This result 

situates the typical track cycling setting (𝑠𝑙𝑎𝑐𝑘 = 11%) in the zone of optimal efficiency. Moreover, it 

ensures that a slight variation around the chosen setting will not lead to an excessive effect on drive 

losses. This result is consistent with the test rig measurements presented in §V.2.2. Then, it was shown 

that the similar asymptotical variation observed for the effect of both chainring torque and tension 

setting can be analysed considering a third parameter: the tension ratio (i.e., the ratio of slack to tight 

strand tension). The relation between drive efficiency and tension ratio shows the same asymptotic 

shape with lower ratios (i.e., more severe loading conditions) being associated with higher efficiencies. 

This indicates that two drives with the same ratio have approximately the same efficiency regardless 

of this ratio being reached e.g., with small torque and tight tension setting or with high torque and 

loose setting. 

Mechanisms underlying the asymptotic relation between efficiency and tension ratio were then 

explored. Two main reasons were identified. First, it was shown that losses due to roller motion 

decrease for lower ratios. This phenomenon is caused by a limitation of roller motion and a reduction 

of the relative contact force 𝑃𝑖/𝑇𝑡. Secondly, the slack strand meshing losses decrease in significance 

as the slack tension becomes negligible compared to the tight one. This last point was already reported 

in the literature [70], [76]. Due to a combination of these two effects (i.e., the reduction of both roller 

and slack strand meshing losses), the tight strand meshing losses become dominant for low tension 

ratios and therefore for a typical track cycling drive. 

The influence of 2D tooth profile geometry was also tested. As the profile geometry only modifies roller 

losses, its influence reduces with the magnitude of this type of loss. Therefore, the results show that 

efficiency is almost independent of tooth profile for low ratios typical of track cycling drives. The small 

differences show that 𝜙𝑡𝑝 is not a dominant parameter for assessing profile efficiency properties. The 

tooth bottom radius seems to be the only influential parameter, as profiles with smaller roller/profile 

clearances exhibit higher efficiencies. This effect is probably caused by the reduced distance travelled 

by a roller while crossing the tooth profile. 
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VI.2 Influence of number of teeth, pitch and 

friction coefficient 

This part extends the analysis to drives other than the regular 60|15 one. Therefore, parameters 

related to the architecture of the chain drive are explored. The influence of sprockets numbers of teeth 

is analysed first. Then, the influence of chain pitch is studied. Finally, the consequence of the variations 

of the global fiction coefficient 𝜇̅ are explored and the losses are split between the contributions of 

each interface (pin/bush, bush/roller, and roller/profile). Only the 𝑁𝐹𝑚𝑖𝑛 geometry is considered. 

Indeed, the previous part showed that tooth profile does not change the general drive behaviour in 

terms of efficiency (i.e., the effects of torque and tensions setting were similar for all profiles). 

Moreover, the influence of tooth profile was shown to be minimal for typical track cycling drives. 

VI.2.1 Tooth number 

To assess the influence of number of teeth on chain drive efficiency, a wide variety of 𝑍Ⅰ|𝑍Ⅱ 

configurations are tested. The boundaries are chosen considering the geometrical limitations of a track 

bike. Indeed, to prevent collision with the chain stays (see Figure VI-11), the number of chainring teeth 

𝑍Ⅰ is limited to 70. On the other hand, rear cogs with fewer than 𝑍Ⅱ = 11 teeth are not considered as 

the resulting pitch circle is smaller than the hub screw. Their manufacturing is therefore more difficult. 

Moreover, the polygonal effect is very significant for such small numbers of teeth so their use is not 

recommended by manufacturers (see Chapter I). The maximal (minimal) number of rear cog 

(chainring) teeth is chosen to obtain realistic gear ratios. Finally, 𝑍Ⅰ ranges between ⟦40,70⟧ while 𝑍Ⅱ 

varies between ⟦11,25⟧. 

 
Figure VI-11: Bicycle frame diagram [95] 

The tension setting is set at 𝑠𝑙𝑎𝑐𝑘 = 11% for all drives resulting in about 3𝑁 of slack strand tension. 

The numbers of chain links are even and chosen to match the tension requirements with the smallest 

centre distance above 𝐿 = 380𝑚𝑚 and Δ𝑌 = −50𝑚𝑚. The 40|11 drive is, for instance, tested with 

86 links and 𝐿 = 381.5𝑚𝑚. For the 70|25 drive, 110 links are considered with 𝐿 = 385.1𝑚𝑚.  

Calculations are carried out for three driving torques: 𝐶Ⅰ = 5𝑁.𝑚, 50𝑁.𝑚 and 300𝑁.𝑚. 𝐶Ⅰ = 50𝑁.𝑚 

represents a typical track cycling drive. 𝐶Ⅰ = 300𝑁.𝑚 accounts for the extreme loading conditions 

encountered in high intensity sprints or during race starts. Finally, 𝐶Ⅰ = 5𝑁.𝑚 is chosen to explore the 

consequences of the number of sprocket teeth for less severe conditions. 
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Figure VI-12 shows the mean efficiencies between cases A and B depending on the number of sprocket 

teeth. 

 
Figure VI-12: Efficiency depending on the number of teeth for various torques 

Efficiencies increase with greater chainring torque which is consistent with the analysis presented in 

the previous part (see §VI.1). Isolines indicate which number of teeth between the chainring and the 

rear cog is the most influential. For every torque, the influence of the number of rear cog teeth is more 

significant than the chainring one (isolines are almost horizontal). This is particularly true for high 

numbers of chainring teeth. This positive effect is explained by the reduction of the pitch angle 𝛼Ⅱ for 

higher numbers of teeth (see Figure VI-13.a). This reduction limits the meshing losses associated with 

the rear cog which results in higher efficiencies. The effect of the number of chainring teeth is less 

straightforward as it depends on the torque considered. Higher numbers of teeth result in more 

efficient drives for high torques (𝐶Ⅰ = 50 and 300𝑁.𝑚) while the effect is detrimental for low torques 

(𝐶Ⅰ = 5𝑁.𝑚, except for low 𝑍Ⅰ and high 𝑍Ⅱ). Indeed, increasing the number of chainring teeth reduces 

the tight strand tension (for constant torque, see Figure VI-13.b). This reduction has two main effects. 

First, the tight strand meshing losses reduce as they directly depend on this tension. Secondly, the 

tension ratio rises as the slack tension remains approximately constant. This rise tends to increase the 

proportion of roller and slack meshing losses which reduces efficiency. The overall behaviour resulting 

from these two contrary effects indeed depends on the chainring torque. For high torques, the tension 

ratio varies between 8.5𝑒−4 to 1.3𝑒−3 for 𝐶Ⅰ = 300𝑁.𝑚 (see Figure VI-13.c) and ranges from 5𝑒−3 to 

7.5𝑒−3 for 𝐶Ⅰ = 50𝑁.𝑚. These values are located at the plateau described in the previous part (see 

Figure VI-7). Therefore, the efficiency reduction due to the increase of tension ratio increase is 

negligible and the effect of increasing the number of chainring teeth is positive. At 𝐶Ⅰ = 5𝑁.𝑚 

however, the tension ratio varies between about 4.5𝑒−2 and 7𝑒−2 (see Figure VI-13.d). For such ratios, 
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Figure VI-7 indicates that the efficiency decrease is much more significant. Therefore, the overall effect 

is detrimental. 

It must also be noted that increasing the number of chainring teeth reduces the pitch angle 𝛼Ⅰ. 

However, at the same time, the number of chain articulations performed during a given amount of 

time increases (𝑍Ⅰ articulations are performed for each chainring rotation). Both effects are opposite. 

Their influence will be clarified in the following section. 

 
Figure VI-13: (a) rear cog pitch angle 𝜶Ⅱ, (b) Tight strand tension 𝑪Ⅰ = 𝟑𝟎𝟎𝑵.𝒎, (c) Tension ratio for 𝑪Ⅰ =

𝟑𝟎𝟎𝑵.𝒎, (d) Tension ratio for 𝑪Ⅰ = 𝟓𝑵.𝒎 

In track cycling applications, the choice of number of teeth is mostly dictated by the gear ratio (i.e., 

𝑍Ⅰ/𝑍Ⅱ) which greatly influences the athlete’s sensations and performances. The gear ratio is chosen by 

the athlete according to his physical characteristics which make any change difficult. Therefore, it 

makes more sense to compare drives with identical gear ratios as a potential change should not modify 

the athlete’s sensations. Thus, all the drives with a gear ratio of 4 are extracted from the previous 

results (i.e., Figure VI-12) and presented in Figure VI-14. The results are shown for 𝐶Ⅰ = 5𝑁.𝑚, 50𝑁.𝑚 

and 300𝑁.𝑚. Similar results for gear ratio of 3 and 5 are presented in Appendix K. 
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Figure VI-14: Effect of tooth number on efficiency for drives of gear ratio 𝟒 

The interest of increasing sprocket sizes is present for every torque condition, even for 𝐶Ⅰ = 5𝑁.𝑚. 

Indeed, despite the slightly detrimental effect of increasing 𝑍Ⅰ at low torques, the increase of 𝑍Ⅱ is 

more significant, resulting in more efficient drives. The interest of increasing sprocket size is usually 

greater for small sprockets than for larger ones. More efficiency is saved, for instance, between 44|11 

and 48|12 than between 64|16 and 68|17. The effect also decreases with increasing torque but 

remains relatively significant. Assuming ΩⅠ = 100𝑟𝑝𝑚, the power losses saved between a 44|11 and 

a 68|17 drive are about 0.27, 2.4 and 14𝑊 for 𝐶Ⅰ = 5𝑁.𝑚, 50𝑁.𝑚 and 300𝑁.𝑚, respectively. 

The effect of the number of sprocket teeth is significant and can be explained by the following factors. 

• Increasing the number of chainring teeth results in reducing the tight strand tension for a given 

torque. 

• For both sprockets, increasing the number of teeth reduces the articulation angle. 

Both factors result in reduced meshing losses which are dominant for track cycling drives (except for 

very low torques, see Figure VI-8 and Figure VI-10). Therefore, the positive effect of the number of 

teeth on drive efficiency is present regardless of the torque applied. 

The increase in tooth number is restricted by the pitch radius reaching bicycle geometrical limitations. 

However, a reduction in articulation angle 𝛼𝑗 can be achieved independently of the pitch radius, by 

changing the chain pitch. The effect of this parameter is explored in the next section. 
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VI.2.2 Chain pitch 

In cycling applications, a pitch 𝑝 = 1 2′′⁄ = 12.7𝑚𝑚 is used. For this pitch, dedicated chains are 

proposed by the manufacturers. Cycle plates are usually thinner than industrial ones to achieve weight 

reductions. In industrial applications, other pitches are used and in particular the standard directly 

below and above 1/2′′: 3 8′′⁄ = 9.525𝑚𝑚 and 5 8′′⁄ = 15.875𝑚𝑚, are designated as short and long 

pitch, respectively. The influence of these different pitches on drive efficiency is explored in this 

section. No cycling chains for these pitches are widely commercialised. Therefore, the pin, bush and 

roller dimensions of industrial chains will be used (see Table VI-8 below). As mentioned in §I.1.2, the 

British team used a 3/8′′ chain at the last Tokyo Olympic games [27]. However, the precise pin, bush 

and roller dimensions are not known by the author. Only drives with a gear ratio of 4 are considered. 

When changing the pitch, all other chain dimensions (i.e., pin, bush and roller diameters) are also 

modified accordingly. However, these dimensions also influence power losses and consequently drive 

efficiency. To isolate the effect of chain pitch and chain dimension changes, two cases are considered 

for short pitch: 3/8′′ and long pitch: 5 8′′⁄ . Calculations using Real Chain Dimensions (denoted RCD) 

according to the chosen pitch are carried out. Additionally, calculations changing only the chain pitch 

and keeping other chain dimensions identical to the usual 1/2′′ track cycling chain (Everything Else 

Unchanged, EEU) are also performed. Figure VI-15 illustrates views of EEU and RCD chain links. The 

differences for an entire drive are illustrated in Figure VI-16, showing the same number of teeth for 

EEU and RCD. The parameters (i.e., dimensions and mass) of each chain considered in this section are 

summarised in Table VI-8. 

 
Figure VI-15: Views of EEU and RCD chain links (a) 𝒑 = 𝟑/𝟖′′ (b) 𝒑 = 𝟓/𝟖′′ (c) 𝒑 = 𝟏/𝟐′′. All scales are the 
same. 

 

  
(a) (b) 

Figure VI-16: 𝟗𝟐|𝟐𝟑 drives, 𝒑 = 𝟑/𝟖′′ (a) EEU (b) RCD. Both figures have the same scale. 
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𝒑 

(𝒊𝒏𝒄𝒉) 
𝒑 

(𝒎𝒎) 
𝑫𝒑𝒊𝒏 

(𝒎𝒎) 
𝑫𝒃𝒖𝒔𝒉 
(𝒎𝒎) 

𝑫𝒓𝒐𝒍𝒍𝒆𝒓 
(𝒎𝒎) 

𝒎𝒍𝒊𝒏𝒌 
(𝒈) 

𝒎̅ 
(𝒈 𝒎𝒎⁄ ) 

Regular track 
cycling chain 

1/2 12.7 
   

3.6 
 

Short pitch 
EEU 

3/8 9.525 2.7 

Long pitch  
EEU 

5/8 15.875 4.5 

Short pitch 
RCD 

3/8 9.525 3.25 4.75 6.35 3 0.31 

Long pitch 
RCD 

5/8 15.875 5.05 7.05 10.15 6.5 0.41 

Table VI-8: Chain parameters for different pitches 

For 3/8′′ and 5/8′′ chains, the pin and roller diameters are taken from industrial standards 

corresponding to the pitch considered [11]. The bush diameters, not provided in the catalogue, were 

measured on industrial chains with matching pitch (ISO n°- 06 B-1 and 10 B-1 for 3/8′′ and 5/8′′, 

respectively [96]). The RCD link masses are estimated using a CAD2 software assuming standard steel 

for every piece. The link masses for EEU chains are calculated from the 1/2′′ mass proportional to the 

chain pitch. The slack tensions obtained with the EEU chains should therefore be similar to the 

reference case (i.e., 1/2′′). 

Part dimensions are smaller for smaller pitch chains. Thus, the 3/8′′ chain has the smallest dimensions 

for pin, bush and roller diameter followed by the 1/2′′ and the 5/8′′. Link mass is also reduced with 

reduced pitch. However, the linear mass density follows a different trend (see Table VI-8). The usual 

track cycling chain exhibits the lowest, just below the 3/8′′ and the 5/8′′ chains. This indicates that 

weight saving measures could probably be carried out on 3/8′′ and 5/8′′ chains before any eventual 

track cycling use. 

Different chain pitches are compared for equivalent pitch radii. To determine the equivalent number 

of teeth, 𝑍Ⅱ is first set to obtain the closest possible pitch circle compared to the reference case 

according to eq.(VI-1). Then, the number of chainring teeth is taken as 𝑍Ⅰ = 4𝑍Ⅱ to ensure a similar 

gear ratio. The number of teeth obtained does not necessarily agree with the closest pitch circle 

obtained with eq.(VI-1). Therefore, pitch circle radii are not exactly similar for all pitches but 

correspond to the closest equivalent drive possible. 

 𝑍′ = round(
𝜋

asin (
𝑝′

𝑝 . sin (
𝜋
𝑍))

) (VI-1) 

with: 

• round, function giving the nearest integer 

• 𝑍′, the number of teeth with the new pitch 𝑝′ 

• 𝑝 and 𝑍 the original pitch and number of teeth, respectively 

 
2 CAD: Computer Aided Design 
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Comparisons are carried out based on three drives of gear ratio 4. The smallest one (44|11 for 𝑝 =

1/2′′), the largest one (68|17 for 𝑝 = 1/2′′), and the usual track drive (60|15 for 𝑝 = 1/2′′). Pitch 

circle dimensions and number of teeth for each pitch are presented in Table VI-9. 
𝒑
=
𝟏
/𝟐
′′

 

𝒁Ⅰ|𝒁Ⅱ 𝟒𝟒|𝟏𝟏 𝟔𝟎|𝟏𝟓 𝟔𝟕|𝟏𝟖 

𝑹Ⅰ (𝒎𝒎) 89.01 121.33 137.50 

𝑹Ⅱ (𝒎𝒎) 22.54 30.54 34.56 

𝒑
=
𝟑
/𝟖
′′

 

𝒁Ⅰ|𝒁Ⅱ 𝟔𝟎|𝟏𝟓 𝟖𝟎|𝟐𝟎 𝟗𝟐|𝟐𝟑 

𝑹Ⅰ (𝒎𝒎) 91.00 121.31 139.49 

𝑹Ⅱ (𝒎𝒎) 22.91 30.44 34.98 

𝒑
=
𝟓
/𝟖
′′

 

𝒁Ⅰ|𝒁Ⅱ 𝟑𝟔|𝟗 𝟒𝟖|𝟏𝟐 𝟓𝟔|𝟏𝟒 

𝑹Ⅰ (𝒎𝒎) 91.07 121.36 141.56 

𝑹Ⅱ (𝒎𝒎) 23.21 30.67 35.67 

Table VI-9: Drive dimensions for several pitches 

𝑁𝐹𝑚𝑖𝑛 sprockets adapted for each case (defined by pitch and roller diameter) are generated following 

the ISO 606 [31] standard as detailed in the Appendix A. The results for 𝐶Ⅰ = 50𝑁.𝑚 are presented in 

Figure VI-17. 
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Figure VI-17: Effect of chain pitch on efficiency for 𝑪Ⅰ = 𝟓𝟎𝑵.𝒎 

Efficiency predictions follow the same trend for all the pitch radii tested (based on 44|11, 60|15 and 

68|17 drives for 𝑝 = 12.7𝑚𝑚). Except for the 44|11 case discussed below, no significant differences 

between the 1/2′′ and EEU cases are reported. Differences arise for the RCD cases where 3/8′′ and 

5/8′′ show the best and worst efficiency for all radii, respectively. This indicates that pitch change, 

although resulting in a modification of the pitch angle 𝛼𝑗 does not result in changed efficiency. Indeed, 

while changing the drive pitch, the number of articulations performed in a given amount of time also 

changes with an effect tending to counterbalance 𝛼𝑗 change. Reducing (increasing) the drive pitch 

results in decreasing (expanding) the pitch angle but also increasing (reducing) the number of 

articulations performed for one chainring rotation. Figure VI-17 shows that the overall effect is 

negligible for the drives tested. 

Deeper analysis of 𝟒𝟒|𝟏𝟏 like drives 

In addition to the effects already mentioned, roller motion is also modified by different tooth profiles 

and roller diameters. Similarly to the deviation from the general trend caused by roller motions in 

§VI.1.1 (see Appendix J), roller motions also influence the results here and their effect is difficult to 

dissociate from others. Therefore, the significant efficiency increases for the 3/8′′ EEU case on the 

44|11 based drive is associated with less oscillations in chainring roller motion and shorter 

roller/sprocket contact at the rear cog (see Figure VI-18). These different roller motions translate into 

a shorter [𝜂𝐵, 𝜂𝐴] interval (see Figure VI-17). The same remark applies for the 68|17 based drives 

where the 5/8′′ EEU case results in better efficiency than the reference one. Moreover, the drive pitch 

radii are each slightly different, and depend on the chain pitches, which also induces a variation of 

efficiency. 
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Figure VI-18: Roller motion for 𝟒𝟒|𝟏𝟏 based drives, 𝑪Ⅰ = 𝟓𝟎𝑵.𝒎 

Overall, for the pitch radii tested, the main effect is visible for the RCD cases. For these cases, the 

influence is mainly a consequence of changing part dimensions. Indeed, for shorter (longer) pitches, 

pin, bush and roller diameters are reduced (increased) resulting in smaller (larger) sliding distances 

(see §V.1) and therefore smaller (larger) associated losses. This effect is significant and results in 

efficiency gains from 0.1 to 0.18% depending on the pitch radii (see Figure VI-17). Still assuming ΩⅠ =

100𝑟𝑝𝑚, 0.94, 0.58 or 0.52𝑊 could be saved for 44|11, 60|15 and 67|18 based drives, respectively 

(compared to the reference case with 𝑝 = 1 2′′⁄ = 12.7𝑚𝑚). 

The results for 𝐶Ⅰ = 300𝑁.𝑚 are presented in Figure VI-19. 
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Figure VI-19: Effect of chain pitch on efficiency for 𝑪Ⅰ = 𝟑𝟎𝟎𝑵.𝒎 

As with the effect of sprocket size, the influence of pitch variation is largely maintained for high 

torques. This was not the case, for instance, for the influence of the tension setting 𝑠𝑙𝑎𝑐𝑘. The same 

conclusions as in Figure VI-17 can be drawn for 𝐶Ⅰ = 300𝑁.𝑚. The principal effect of pitch change 

comes from the modification of chain dimensions as the efficiencies obtained for EEU cases are similar 

to the reference case (𝑝 = 1/2′′). Assuming ΩⅠ = 100𝑟𝑝𝑚, the power losses saved reaches 5 and 3𝑊 

for 44|11 and 60|15 or 68|17 based drives, respectively (same power loss save for 60|15 and 68|17). 

Combining the potential gains obtained using the effects of pitch and sprocket size, a usual 60|15 drive 

with 𝑝 = 1/2′′ could be replaced by a 92|23 one with 𝑝 = 3/8′′ resulting in an efficiency saving of 

0.19% and 0.21% for 𝐶Ⅰ = 50 and 300𝑁.𝑚, respectively. Still assuming ΩⅠ = 100𝑟𝑝𝑚, this 

represents a significant save of about 1𝑊 and 6.6𝑊, respectively. 
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VI.2.3 Friction coefficient 

This section is dedicated to the influence of friction coefficients. The drive efficiency model introduced 

different coefficients for each interface: pin/bush (𝜇𝑏𝑝), bush/roller (𝜇𝑏𝑟) and roller/profile (𝜇𝑟𝑝). In 

this chapter, all the coefficients are assumed to be equal and constant. The global value was chosen at 

𝜇̅ = 0.11 [70]. 

a) Modification of 𝝁̅ 

First, the influence of the global friction coefficient 𝜇̅ on drive efficiency is tested. Its value is changed 

independently from the friction correction angle |𝛿(∞)|. Indeed, the theory of friction correction is 

based on the roller/profile friction coefficient. However, experimental evidence of the reduction of the 

effect of friction on load evolution with, for example, more efficient drive lubrication, does not yet 

exist. 

Therefore, a constant correction angle is considered. It equals the only value supported experimentally 

by the studies of Naji & Marshek [62]: |𝛿(∞)| = 5° (i.e., 𝜇𝛿 is distinct from 𝜇𝑟𝑝). 

Calculations are still carried out for the usual 60|15 drive with a tension setting 𝑠𝑙𝑎𝑐𝑘 = 11%. The 

global friction coefficient varies between [0.09 , 0.13] which represents about ±20% of variation 

around the assumed value of 𝜇̅ = 0.11. 

The results for 𝐶Ⅰ = 5𝑁.𝑚, 50𝑁.𝑚 and 300𝑁.𝑚 are presented in Figure VI-20. Solid lines show the 

mean efficiency between cases A and B. The interval [𝜂𝐵, 𝜂𝐴] is represented in shaded areas. 

 
Figure VI-20: Effect of global friction coefficient 𝝁̅ on efficiency for various torques. 𝟔𝟎|𝟏𝟓, 𝒑 = 𝟏𝟐. 𝟕𝒎𝒎 

As expected, efficiency decreases with increasing 𝜇̅ which is consistent with physical intuition. 

Moreover, the decrease is linear. Indeed, §V.1 (see Table V-2) shows that losses are proportional to 

the friction coefficient (Coulomb friction is assumed). Therefore, power losses and ultimately drive 

efficiency (see eqs.(V-30) and (V-31)) also vary linearly with the global friction coefficient 𝜇̅. The effect 

is relatively significant for all torques. The differences in efficiency between the best and worst cases 

(i.e., 𝜇̅ = 0.09 and 0.13, respectively) reach about 0.53%, 0.34% and 0.32% for 𝐶Ⅰ = 5𝑁.𝑚, 50𝑁.𝑚 

and 300𝑁.𝑚, respectively. This results, in terms of power losses, in 0.28, 1.78 and 10.1𝑊 for 𝐶Ⅰ =

5𝑁.𝑚, 50𝑁.𝑚 and 300𝑁.𝑚, respectively (still assuming ΩⅠ = 100𝑟𝑝𝑚). The reduction of the interval 

[𝜂𝐵, 𝜂𝐴] with increasing torques (already mentioned e.g., in Figure VI-2) is clearly visible. 
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As for chain pitch and number of teeth, the effect largely persists for high torques as it influences the 

meshing losses that are dominant for severe loading conditions. 

b) Contribution of each chain interface 

The effect of friction coefficient on drive efficiency is considerable for all loading conditions. Friction 

coefficients could be reduced by using adapted lubricants or surface treatments. This optimisation trail 

is very interesting as it does not require the athlete to change any physiological or psychological habits. 

However, tribological improvements are usually achieved for precise contact conditions. These 

conditions depend on (non-exhaustive list) materials, roughness, clearance and sliding speeds. It is 

therefore likely that the optimal lubricant for, for instance, the pin/bush interface does not perfectly 

suit the other ones (i.e., bush/roller and roller/profile). In this context, knowing which interface is 

responsible for most of the losses is important in order to determine which conditions to focus on. To 

this end, Figure VI-21 and Table VI-10 show the contribution of each interface to global losses for 𝐶Ⅰ =

5𝑁.𝑚, 50𝑁.𝑚  and 300𝑁.𝑚. The calculations are still performed for a 60|15 drive with 𝑠𝑙𝑎𝑐𝑘 =

11%. 

 𝑷𝒑𝒊𝒏/𝒃𝒖𝒔𝒉 (%) 𝑷𝒃𝒖𝒔𝒉/𝒓𝒐𝒍𝒍𝒆𝒓 (%) 𝑷𝒓𝒐𝒍𝒍𝒆𝒓/𝒑𝒓𝒐𝒇𝒊𝒍𝒆 (%) 𝜼 (%) 

𝑪Ⅰ = 𝟓𝑵.𝒎 
Case A 𝟔𝟏 39 0 98.7 

Case B 𝟒𝟕 28 25 98.3 

𝑪Ⅰ = 𝟓𝟎𝑵.𝒎 
Case A 𝟕𝟓 25 0 99.1 

Case B 𝟕𝟏 24 5 99 

𝑪Ⅰ = 𝟑𝟎𝟎𝑵.𝒎 
Case A 𝟕𝟕 23 0 

99.1 
Case B 𝟕𝟔 23 < 1 

Table VI-10: Cases A and B, split between chain interfaces (pin/bush, bush/roller and roller/profile). 𝟔𝟎|𝟏𝟓, 

𝒑 = 𝟏𝟐. 𝟕𝒎𝒎 
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 Case A: Case B:  

 
Figure VI-21: Cases A and B, split between chain interfaces (pin/bush, bush/roller and roller/profile). 
𝟔𝟎|𝟏𝟓, 𝒑 = 𝟏𝟐. 𝟕𝒎𝒎 

The contribution of the roller/profile interface is always null for case A as rolling without sliding is 

assumed (see §V.1). As with the pie charts presented in §VI.1.2 (see Figure VI-8 and Figure VI-10), lower 

efficiency for case B indicates that total losses are higher. For this example, the pin/bush interface 

represents the same amount of loss for case A and B and the smaller proportion is only a consequence 

of higher overall losses for case B. 

As the applied torque increases, the tension ratio reduces and tight strand meshing losses 

progressively become preponderant, as shown in §VI.1.2. During meshing losses, dissipations occur at 

the pin/bush interface for both pin and bush articulations. Additional dissipation occurs at the 

bush/roller interface for bush articulation. Therefore, the pin/bush interface is always the largest loss 

contributor. As torque increases and meshing losses become the only significant source of loss, the 

pin/bush contribution tends to about 3/4, leaving the last quarter for bush/roller interface.  
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Based on this assessment, any tribological optimisation (either lubrication or surface treatment) should 

preferentially be dedicated to the pin/bush interface. However, this comes with the challenge of 

reaching this interface. Indeed, as clearances are small, it can be difficult to ensure that sufficient 

lubricant is supplied in the heart of the chain articulation. 

This part was dedicated to the analysis of parameters related to the architecture of the drive. 

Calculations were carried out only for the 𝑁𝐹𝑚𝑖𝑛 tooth profile as the previous part (see §VI.1) showed 

that tooth profile geometry does not greatly influence losses for track cycling drives. 

The influence of the number of sprocket teeth was first analysed. Extreme numbers of teeth were 

chosen based on the geometrical limitations of track bicycles [92]. Chainring and rear cog showed 

different influences. For the chainring, the conclusions change depending on the applied torque. 

Indeed, increasing its number of teeth reduces the tight strand tension and therefore reduces the 

tension ratio. This causes a reduction of tight strand meshing losses but increases the proportion of 

roller and slack meshing losses. For low torques, the overall effect is negative while it is positive for 

high torques. However, the effect of the number of rear cog teeth is always more significant. Increasing 

𝑍Ⅱ results in better drive efficiency thanks to reduced pitch angle. Therefore, for drives with a constant 

𝑍Ⅰ/𝑍Ⅱ ratio, the overall effect of bigger sprockets is always positive. 

In order to further reduce the pitch angle while maintaining acceptable sprocket size, the effect of 

chain pitch was then explored. Standard pitches directly above and below the usual 1/2′′ one were 

considered. However, changing sprocket pitch usually entails modifying the dimensions of the chain 

parts (e.g., pin, bush and roller diameters). To separate this effect from the pitch change, EEU 

(Everything Else Unchanged) cases were considered. For these cases, only chain pitch was modified 

while the other chain dimensions were kept constant. The results showed that smaller pitch indeed 

reduces losses. However, significant differences were reported only for RCD cases, showing that the 

effect is mainly due to modified chain dimensions. This highlighted that reducing only the pitch angle 

for constant sprocket size (i.e., EEU cases) does not greatly modify chain efficiency as the number of 

articulations experience in a given amount of time also increases. 

Finally, the effect of the global friction coefficient 𝜇̅ was explored. Consistent with the assumption of 

Coulomb friction, the evolution of drive efficiency depending on 𝜇̅ is linear. Efficiency variations for a 

modification of about 20% of the friction coefficient were given. Then, the losses were split between 

each chain interface (pin/bush, bush/roller and roller/profile). The breakdown showed that the 

pin/bush interface is responsible for most of the losses (3/4 for 𝐶Ⅰ > 50𝑁.𝑚). This indicates that any 

potential optimisation of lubricant properties should be carried out based on the tribological 

conditions (i.e., sliding speed, roughness, etc.) encountered at this interface. 

The first two parts of this chapter explored the influence of numerous parameters on chain drive 

efficiency. In the following part, the Design Of Experiments (DOE) methodology is used to compare 

each influence. 

  

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0066/these.pdf 
© [G. Lanaspeze], [2023], INSA Lyon, tous droits réservés



Parametric study of chain drive efficiency 

 

 

201 

VI.3 Comparison of parameter influences using 

Design Of Experiments 

In this chapter, the dependency of chain drive efficiency on numerous parameters has been explored. 

However, each parameter has mainly been studied alone while keeping the others constant. 

Therefore, potential interactions between parameters were difficult to appreciate. Moreover, it was 

not easy to compare each contribution which made it difficult to determine on which ones the effort 

of optimisation should focus. In order to answer these questions, the Chain Drive Efficiency Model 

(CDEM) is analysed using a Design Of Experiments (DOE) methodology. This tool allows the identifying 

the contribution of each factor as well as the potential interactions with minimal calculations.  

The DOE is used to explore the contribution of 6 parameters:  

• 𝜇̅, the global friction coefficient 

• 𝑠𝑙𝑎𝑐𝑘, the tension setting 

• 𝐶Ⅰ, the torque applied on the chainring 

• 𝑅Ⅱ, the rear cog pitch radius 

• 𝑅Ⅰ, the chainring pitch radius 

• 𝑝, the drive pitch (identical pitch for sprockets and chain) 

Although §VI.1 showed that the effect of tension setting 𝑠𝑙𝑎𝑐𝑘 and chainring torque 𝐶Ⅰ both depend 

on the tension ratio, the two parameters are considered here to retain easily interpretable variables. 

§VI.2 showed that the effect of the number of sprocket teeth mainly reduces to a pitch circle radius 

modification. Therefore, the numbers of teeth are determined based on the last three parameters: 𝑅Ⅱ, 

𝑅Ⅰ and 𝑝. For 3/8 and 5/8′′ pitches, chains with real dimensions (i.e., RDC in §VI.2.2) are used (EEU 

cases are not considered, see Table VI-8). Only discreet values of pitch 𝑝 are considered. The ranges 

explored for each factor are given in Table VI-11. 

𝝁̅ 𝒔𝒍𝒂𝒄𝒌 (%) 𝑪Ⅰ (𝑵.𝒎) 𝑹Ⅱ (𝒎𝒎) 𝑹Ⅰ (𝒎𝒎) 𝒑 (𝒊𝒏𝒄𝒉) 

[0.09 , 0.13] [4 , 20] [5 , 300] [22.5 , 42.6] [80.9 , 141.5] ⟦3 , 5⟧ × 1/8 

Table VI-11: Ranges of DOE factors 

The intervals are essentially identical to the boundaries set in the previous parts except for the tension 

setting 𝑠𝑙𝑎𝑐𝑘. Indeed, for drives with a larger pitch (e.g., 5/8′′) and a small number of teeth, the 

variation of instantaneous mid-span movement (see §II.1.2) within a drive period is larger. 

Consequently, too small 𝑠𝑙𝑎𝑐𝑘 values are not always reachable (this point was already addressed in 

§III.1.2). The lower bound of the 𝑠𝑙𝑎𝑐𝑘 setting is therefore increased to 4%. Radii 𝑅Ⅱ and 𝑅Ⅰ are chosen 

to include 11 teeth rear cog with 𝑝 = 1/2′′ and 56 teeth chainring with 𝑝 = 3/8′′ (see Table VI-9). 

Unless stated otherwise, in this part 𝑖 and 𝑗 are used for factor indexation (see Table VI-12) and 𝑘 is 

the number of the DOE trials (e.g., Table VI-14 below). 
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VI.3.1 Fractional factorial design  

The aim of the DOE is to characterise the influence of different factors on a given response: in this case 

drive efficiency 𝜂. As the factors usually have different units and variation ranges, non-dimensional 

coded units 𝑥𝑖 are introduced in order to compare factor variation within the same scale. Coded units 

vary between −1 and 1. 𝑥𝑖 = −1 corresponds to the lowest value explored for factor 𝑖 while 𝑥𝑖 = 1 

corresponds to the highest one. Conversion between the coded and original values is carried out 

according to eq.(VI-2). 

 𝑥𝑖 =
2(𝐴𝑖 − 𝐴i̅)

𝐴𝑖,𝑚𝑎𝑥 − 𝐴𝑖,𝑚𝑖𝑛
 (VI-2) 

with: 

• 𝐴𝑖,𝑚𝑎𝑥, the maximal value of factor 𝑖 

• 𝐴𝑖,𝑚𝑖𝑛, the minimal value of factor 𝑖 

• 𝐴i̅ =
𝐴𝑖,𝑚𝑎𝑥+𝐴𝑖,𝑚𝑖𝑛

2
, the mean value of factor 𝑖 (see Table VI-12) 

Table VI-12 gives the index 𝑖 associated with each of the six factors considered. Conversions between 

coded units and usual values (calculated using eq.(VI-2)) are also given. In this section, the coded level 

of each factor can be designated either using their index 𝑖 or directly by the name of the factor (e.g., 

𝑥𝑖=1or 𝑥𝜇̅, see Table VI-12). 

  𝒙𝒊 = −𝟏 𝒙𝒊 = 𝟎 𝒙𝒊 = 𝟏 

Factor 𝒊 𝐴𝑖,𝑚𝑖𝑛 𝐴̅ 𝐴𝑖,𝑚𝑎𝑥 

𝜇̅ 𝟏 0.09 0.11 0.13 

𝑠𝑙𝑎𝑐𝑘 (%) 𝟐 4 12 20 

𝐶Ⅰ (𝑁.𝑚) 𝟑 5 152.5 300 

𝑅Ⅱ (𝑚𝑚) 𝟒 22.5 32.55 42.6 

𝑅Ⅰ (𝑚𝑚) 𝟓 80.9 111.2 141.5 

𝑝 (𝑖𝑛𝑐ℎ) 𝟔 3/8 1/2 5/8 

Table VI-12: Index 𝒊 and conversion between coded and usual values for each factor 

Without information about the function relating the coded variables 𝑥𝑖 and the chain drive efficiency 

𝜂, a general function is assumed as follows [97]. 

 𝜂 = 𝑓(𝑥1, 𝑥2, 𝑥3, … ) (VI-3) 

A Taylor-Mac Laurin series expansion of the function is usually considered. Assuming the derivatives 

to be constant, the expansion is expressed as a polynomial [97], [98]. Its expression is given by 

eq.(VI-4). The output of the polynomial function is usually denoted 𝑌. In that case, it corresponds to 

the prediction of chain drive efficiency 𝜂 according to the polynomial. 
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 𝜂 = 𝑌 = 𝐸0 + ∑ 𝐸𝑖𝑥𝑖

𝑛𝑏𝑓𝑎𝑐𝑡

𝑖=1

+ ∑ 𝐸𝑖𝑗𝑥𝑖𝑥𝑗(1 − 𝛿𝑖𝑗)

𝑛𝑏𝑓𝑎𝑐𝑡

𝑖=1

+ ∑ 𝐸𝑖𝑖𝑋𝑖
2

𝑛𝑏𝑓𝑎𝑐𝑡

𝑖=1

+⋯ (VI-4) 

with: 

• 𝛿𝑖𝑗 = ൜
0 𝑖𝑓 𝑖 ≠ 𝑗
1 𝑖𝑓 𝑖 = 𝑗

, the Kronecker delta  

• 𝐸0, 𝐸𝑖, 𝐸𝑖𝑗, 𝐸𝑖𝑖, …, the coefficients of the polynomial 

• 𝑛𝑏𝑓𝑎𝑐𝑡, the number of factors 

• 𝑋𝑖
2 defined below in eq.(VI-5)  

Coefficient 𝐸0 gives the mean value of the polynomial. Coefficients 𝐸𝑖  characterise the linear effect of 

factor 𝑖 on the output value 𝑌. Coefficients 𝐸𝑖𝑗  characterise the potential interactions between factors. 

Coefficients 𝐸𝑖𝑖  characterise the quadratic effect of factor 𝑖. The development can be extended with 

the same principle to higher degrees. 

Coefficients 𝐸 will later be determined to fit the polynomial model on CDEM results (in a least square 

sense, see §VI.3.2). For cases where factor levels are equally spaced with the same number of 

observations per level factor (conditions fulfil here), the coded level can be chosen so that the effect 

calculations become non-correlated (i.e., orthogonal). This enables calculating a given coefficient 𝐸𝑖  

without having to consider all the others, see for instance eqs.(VI-7) and (VI-8) below. Such coded levels 

adapted to each specific case can be found in [99]. In particular for this study, quadratic coefficients 

𝐸𝑖𝑖  are multiplied with the coded variable 𝑋𝑖
2, determined based on 𝑥𝑖 according to eq.(VI-12). 

 𝑋𝑖
2 = 3𝑥𝑖

2 − 2 (VI-5) 

The idea of the DOE analysis is to determine the main polynomial coefficients using carefully chosen 

trials. Then the analysis of the sign and magnitude of each coefficient (called effect) can be carried out 

to assess the contribution of each factor (𝐸𝑖, 𝐸𝑖𝑖  and 𝐸𝑖𝑗) on chain drive efficiency. 

For our application, the previous parts showed that the effect of the factors considered are highly non-

linear (e.g., influence of chainring torque 𝐶Ⅰ, see VI.1.1). Therefore, it is interesting to study quadratic 

contributions 𝐸𝑖𝑖  as they are likely to be significant. To do so, three levels of coded units (𝑥𝑖 = −1, 0 

and 1) must be considered. With 6 factors having three levels each, the total number of possible level 

combinations is 36 = 729. It means that 729 trials must be carried out to calculate the 729 polynomial 

coefficients (i.e., 𝐸𝑖, 𝐸𝑖𝑗, 𝐸𝑖𝑖, etc.) corresponding to the effects of all factors and all interactions. It is 

called full factorial design 36 (6 factors with 3 levels each) and results in a perfect fit of the polynomial 

model on the trials. In this design, among the 729 coefficients, 6 correspond to main effects (𝐸𝑖, order 

1), 6 to quadratic effects (𝐸𝑖𝑖, order 2) and 15 to linear interaction between two factors (𝐸𝑖𝑗, order 2), 

see Table VI-13. The remaining coefficients are associated with higher orders (i.e., ≥ 3). 

However, it is likely that the high order actions have limited influence on the final results (e.g., order-

6 interaction 𝐸123456). Therefore, to reduce the number of trials and consequently the computational 

cost, a fractional factorial design is used. Fractional DOE is a variation of the basic factorial DOE in 

which only a subset of the trials is used to determine only polynomial coefficients of interest. Doing 

so, several polynomial coefficients are determined simultaneously with no possibility to separate each 

contribution (i.e., actions are called aliased). It is then important to carefully choose which coefficients 

to alias. Low order effects (e.g., effect of order one 𝐸𝑖) are usually aliased with higher order ones (e.g., 

order five). 
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Order 0 𝐸0 1 

Order 1 (𝑬𝒊) 𝜇̅, 𝑠𝑙𝑎𝑐𝑘, 𝐶Ⅰ, 𝑅Ⅱ, 𝑅Ⅰ, 𝑝 6 

Order 2, quadratic (𝑬𝒊𝒊) 𝜇̅2, 𝑠𝑙𝑎𝑐𝑘2, 𝐶Ⅰ
2, 𝑅Ⅱ

2, 𝑅Ⅰ
2, 𝑝2 6 

Order 2, interaction (𝑬𝒊𝒋) 

𝜇̅. 𝑠𝑙𝑎𝑐𝑘, 𝜇̅. 𝐶Ⅰ, 𝜇̅. 𝑅Ⅱ, 𝜇̅. 𝑅Ⅰ, 𝜇̅. 𝑝 
𝑠𝑙𝑎𝑐𝑘. 𝐶Ⅰ, 𝑠𝑙𝑎𝑐𝑘. 𝑅Ⅱ, 𝑠𝑙𝑎𝑐𝑘. 𝑅Ⅰ, 𝑠𝑙𝑎𝑐𝑘. 𝑝, 

𝐶Ⅰ. 𝑅Ⅱ, 𝐶Ⅰ. 𝑅Ⅰ, 𝐶Ⅰ. 𝑝 
𝑅Ⅱ. 𝑅Ⅰ, 𝑅Ⅱ. 𝑝 

𝑅Ⅰ. 𝑝 

15 

Table VI-13: Actions with order ≤ 𝟐 for six 3-level factors 

In this study, it is assumed that only the 28 actions with order ≤ 2 are significant (see Table VI-13). 

Therefore, a factorial plan 36−1 is used with the alias generator 𝟎 = 𝟏𝟐𝟑𝟒𝟓𝟔 [97], [98]. This generator 

indicates that coefficient 𝐸0 will be aliased with two other coefficients: 𝐸123456 and 𝐸122232425262 (i.e., 

interaction between the 6 linear and 6 quadratic terms, respectively). The resulting fractional design 

ensures that all actions with order ≤ 2 are aliased with ones of a strictly higher order, assumed as non-

significant. Using this fractional design reduces the number of trials to 36−1 = 243. 

Coded units for each trial are arranged into the 243 × 6 trial matrix in which each line gives the values 

associated with the trial considered. This orthogonal matrix is called test matrix and is given in 

Appendix L. Index 𝑘 is introduced to number the trials between 1 and 𝑛𝑏𝑡𝑟𝑖𝑎𝑙 = 243. 

Coded units for trials 𝑘 = 55 and 𝑘 = 177 are given as examples in Table VI-14. The conversion into 

factor values is given in Table VI-15. 

𝒌 𝒙𝝁̅ 𝒙𝒔𝒍𝒂𝒄𝒌 𝒙𝑪Ⅰ 𝒙𝑹Ⅱ 𝒙𝑹Ⅰ 𝒙𝒑 

55 −1 −1 −1 1 −1 1 

177 1 0 0 −1 1 −1 

Table VI-14: Coded units for trials 𝟓𝟓 and 𝟏𝟕𝟕 

𝒌 𝝁̅ 𝒔𝒍𝒂𝒄𝒌 (%) 𝑪Ⅰ (𝑵.𝒎) 𝑹Ⅱ (𝒎𝒎) 𝑹Ⅰ (𝒎𝒎) 𝒑 (𝒊𝒏𝒄𝒉) 

55 0.09 4 5 42.6 80.9 5/8 

177 0.13 11 152.5 22.5 141.5 3/8 

Table VI-15: Factor values for trials 𝟓𝟓 and 𝟏𝟕𝟕 

The number of chainring and rear cog teeth 𝑍𝑗  are calculated from the values of factors 𝑅Ⅰ, 𝑅Ⅱ and 𝑝 

according to eq.(VI-7). 

 𝑍𝑗 = round(
𝜋

asin (
𝑝
2𝑅𝑗

)
) (VI-6) 

with: 

• 𝑗 = Ⅰ for the chainring and Ⅱ for the rear cog 

Due to the discrete nature of the numbers of teeth (required to be integers), the real pitch circle radii 

are slightly different from the value prescribed by the coded units. Therefore, the real pitch radius of 
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two trials with the same 𝑥𝑅𝑗  are different for different pitches. The gap between the 𝑅𝑗 factor values 

and the real pitch radii is larger for bigger pitches.  

The number of chain links and centre distance 𝐿 are then determined to find the smallest 𝐿 value 

higher than 380𝑚𝑚 allowing to match the tension setting requirement given by factor 𝑠𝑙𝑎𝑐𝑘. The 

vertical shift is still Δ𝑌 = −50𝑚𝑚. General views of the drives obtained for 𝑘 = 55 and 177 are shown 

in Figure VI-22. 

  
(a) (b) 

Figure VI-22: General views (a) 𝒌 = 𝟓𝟓 (b) 𝒌 = 𝟏𝟕𝟕. Both figures have the same scale. 

The simulation of the CDEM is then carried out with the prescribed chainring torque 𝐶Ⅰ and efficiency 

is calculated considering the given global friction coefficient 𝜇̅. The results obtained for all the trials 

are arranged in a column vector 𝜼𝑪𝑫𝑬𝑴 where 𝜼𝑪𝑫𝑬𝑴(𝑘) gives the mean efficiency (𝜂𝐴 + 𝜂𝐵) 2⁄  

predicted by the CDEM for trial 𝑘. Vector 𝜼𝑪𝑫𝑬𝑴 is also given in Appendix L. 

VI.3.2 Results of the polynomial model 

Equations given in this section are adapted from [98]–[100]. 

The polynomial model introduced in eq.(VI-4) is fitted on the CDEM results of the 243 trials 𝜼𝑪𝑫𝑬𝑴. To 

do so, the effect of the 28 actions of interest 𝐸0, 𝐸𝑖, 𝐸𝑖𝑖  and 𝐸𝑖𝑗  are calculated. Thanks to the carefully 

chosen orthogonal polynomial basis (mentioned above), each effect can be calculated independently 

of the others. Intermediate variable 𝑀 is calculated first according to eq.(VI-7). 

𝐸0: 𝑀0 = ∑ 𝜼𝑪𝑫𝑬𝑴(𝑘)

𝑛𝑏𝑡𝑟𝑖𝑎𝑙

𝑘=1

 (a) 

(VI-7) 

𝐸𝑖: 𝑀𝑖 = ∑ 𝑥𝑖,𝑘𝜼𝑪𝑫𝑬𝑴(𝑘)

𝑛𝑏𝑡𝑟𝑖𝑎𝑙

𝑘=1

 (b) 

𝐸𝑖𝑗: 𝑀𝑖𝑗 = ∑ 𝑥𝑖,𝑘𝑥𝑗,𝑘𝜼𝑪𝑫𝑬𝑴(𝑘)

𝑛𝑏𝑡𝑟𝑖𝑎𝑙

𝑘=1

 (c) 

𝐸𝑖𝑖: 𝑀𝑖𝑖 = ∑ 𝑋𝑖,𝑘𝜼𝑪𝑫𝑬𝑴(𝑘)

𝑛𝑏𝑡𝑟𝑖𝑎𝑙

𝑘=1

 (d) 

with: 

• 𝑥𝑖,𝑘/𝑋𝑖,𝑘  the coded level for factor 𝑖 at trial 𝑘 
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The polynomial coefficients (called effects) are calculated according to eq.(VI-8) from the values of 𝑀. 

 

𝐸0: 𝐸0 =
𝑀0

𝑛𝑏𝑡𝑟𝑖𝑎𝑙
 (a) 

(VI-8) 

𝐸𝑖: 𝐸𝑖 =
𝑀𝑖

∑ 𝑥𝑖,𝑘
2𝑛𝑏𝑡𝑟𝑖𝑎𝑙

𝑘=1

 (b) 

𝐸𝑖𝑗: 𝐸𝑖𝑗 =
𝑀𝑖𝑗

∑ (𝑥𝑖,𝑘𝑥𝑗,𝑘)
2𝑛𝑏𝑡𝑟𝑖𝑎𝑙

𝑘=1

 (c) 

𝐸𝑖𝑖: 𝐸𝑖𝑖 =
𝑀𝑖𝑖

∑ 𝑋𝑖,𝑘
2𝑛𝑏𝑡𝑟𝑖𝑎𝑙

𝑘=1

 (d) 

The analysis of the effects obtained is carried out in the following section (see §VI.3.3). 

From the effects 𝐸 the sum of squares 𝑆𝑆 attributed to each of the 28 actions considered are computed 

using eq.(VI-9). The sum of squares on the entire results 𝜼𝑪𝑫𝑬𝑴 is also computed according to 

eq.(VI-10). 

𝐸𝑖: 𝑆𝑆𝑖 = 𝐸𝑖𝑀𝑖 (a) 

(VI-9) 𝐸𝑖𝑗: 𝑆𝑆𝑖𝑗 = 𝐸𝑖𝑗𝑀𝑖𝑗  (b) 

𝐸𝑖𝑖  𝑆𝑆𝑖𝑖 = 𝐸𝑖𝑖𝑀𝑖𝑖 (c) 

 

 𝑆𝑆𝑡𝑜𝑡 = ∑ (𝜼𝑪𝑫𝑬𝑴(𝑘) − 𝜂𝐶𝐷𝐸𝑀̅̅ ̅̅ ̅̅ ̅̅ )2

𝑛𝑏𝑡𝑟𝑖𝑎𝑙

𝑘=1

 (VI-10) 

with: 

• 𝜂𝐶𝐷𝐸𝑀̅̅ ̅̅ ̅̅ ̅̅ , the mean value of results vector 𝜼𝑪𝑫𝑬𝑴 

The variance 𝑉 associated to each action is obtained from the sum of squares 𝑆𝑆 according to 

eq.(VI-11). For the 28 actions considered, variances and sum of squares are equal due to the associated 

degree of freedom 𝑑𝑜𝑓 being one. 

𝐸𝑖: 𝑉𝑖 = 𝑆𝑆𝑖/𝑑𝑜𝑓𝑖 (a) 

(VI-11) 𝐸𝑖𝑗: 𝑉𝑖𝑗 = 𝑆𝑆𝑖𝑗/𝑑𝑜𝑓𝑖𝑗 (b) 

𝐸𝑖𝑖  𝑉𝑖𝑖 = 𝑆𝑆𝑖𝑖/𝑑𝑜𝑓𝑖𝑖 (c) 

with: 

• 𝑑𝑜𝑓𝑖 = 𝑑𝑜𝑓𝑖𝑗 = 𝑑𝑜𝑓𝑖𝑖 = 1 for the 28 actions considered. 

Among the 28 actions considered, to evaluate, which ones are the most significant and even which 

ones are non-significant, an analysis of variance (ANOVA, see [99], [100]) is conducted. This analysis 

consists in calculating the ratio between the variance due to each factor considered (i.e., 𝑉𝑖, 𝑉𝑖𝑗 or 𝑉𝑖𝑖) 

and the residual variance due to neglected actions. In this case, the residual sum of squares 𝑆𝑆𝑟𝑒𝑠 

(attributed to the neglected actions with order ≥ 3) is calculated from 𝑆𝑆𝑡𝑜𝑡 and the 𝑆𝑆 attributed to 
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each of the 28 actions considered (eq.(VI-9)). Then, the associated variance 𝑉𝑟𝑒𝑠 is calculated using 

eq.(VI-12). This variance accounts for all the actions neglected a priori in the analysis (i.e., actions with 

order ≥ 3). 

 𝑉𝑟𝑒𝑠 =
𝑆𝑆𝑟𝑒𝑠
𝑑𝑜𝑓𝑟𝑒𝑠

=
(𝑉𝑡𝑜𝑡 − ∑ 𝑉𝑖

𝑛𝑏𝑓𝑎𝑐𝑡
𝑖=1

− ∑ 𝑉𝑖𝑗
𝑛𝑏𝑓𝑎𝑐𝑡
𝑖,𝑗=1

− ∑ 𝑉𝑖𝑖
𝑛𝑏𝑓𝑎𝑐𝑡
𝑖=1

)

𝑑𝑜𝑓𝑟𝑒𝑠
 (VI-12) 

with: 

• 𝑑𝑜𝑓𝑟𝑒𝑠 = 243 − 28 = 215 

Then a Fisher-Snedecor test [99], [100] is carried out for each of the 28 actions considered. This test 

consists by comparing the ratio 𝑉/𝑉𝑟𝑒𝑠 with a reference value which ultimately gives a probability that 

the action considered is more significant than the neglected ones. 

Figure VI-23 shows the certainty (in %) that each action is more influential than the residual constituted 

by all the actions neglected a priori (i.e., actions with order ≥ 3). 

 
Figure VI-23: Certainty of action significance compared to the residual variance according to the Fisher-
Snedecor test [99], [100] 

Actions with a certainty level lower than 95% are considered to be non-influential and will be 

neglected for the rest of the analysis. According to Figure VI-23, actions: 𝑅Ⅰ, 𝜇̅
2, 𝑅Ⅰ

2, 𝜇̅. 𝑠𝑙𝑎𝑐𝑘, 𝜇̅. 𝑅Ⅰ, 

𝑠𝑙𝑎𝑐𝑘. 𝑅Ⅰ, 𝑅Ⅰ. 𝑅Ⅱ and 𝑅Ⅰ. 𝑝 are rejected. The variance attributed to each of these actions have then been 

added to the residual variance 𝑉𝑟𝑒𝑠 (see eq.(VI-12)). The Fisher-Snedecor has been carried out again to 

ensure that all the remaining actions are above the 95% limit even with the increased residual 

variance. After this second test, no other actions had to be rejected. Among the 243 actions studied, 

the 19 remaining ones after the Feshier-Snedecor test account for 93% of the global sum of squares 

𝑆𝑆𝑡𝑜𝑡 (see eq.(VI-10)). 

The non-significance of action 𝜇̅2 was expected as efficiency is proportional to the global friction 

coefficient 𝜇̅, as highlighted in §VI.2.3. 

It is interesting to note that the effects of 𝑅Ⅰ and most of its related interactions (except 𝐶Ⅰ. 𝑅Ⅰ) are non-

significant. Indeed, 𝑍Ⅰ was shown to have an influence on efficiency in §VI.2.1. However, this effect 

was shown to be detrimental to efficiency for low torques and positive for high torques. The effect of 

chainring torque 𝐶Ⅰ is likely to be similar, as shown in §VI.1.1. It is therefore possible that the effect of 
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𝑅Ⅰ is hidden in the effect of 𝐶Ⅰ. Moreover, back-and-forth roller motions occur for some trials, 

particularly with low 𝑠𝑙𝑎𝑐𝑘 settings (tight drives). This phenomenon, present for high and low torques, 

might have contributed to blurring the 𝑅Ⅰ effect. 

A polynomial model is created according to eq.(VI-4) considering only the 19 remaining actions 

(polynomial coefficients obtained are given in Figure VI-28.a below). Its predictions are compared to 

the chain drive efficiency model calculations 𝜼𝑪𝑫𝑬𝑴 for the 243 trials. The results are shown in Figure 

VI-24. 

 
Figure VI-24: CDEM and DOE-based polynomial predictions for the 𝟐𝟒𝟑 trials on the fractional design 

The predictions of the DOE based polynomial model are consistent with the results of the CDEM. This 

supports the variance analysis as the polynomial model is based only on the 19 most influential actions 

determined using the Fisher-Snedecor test. It is important to note that the efficiency ranking between 

trials is generally identical for both models (i.e., if a trial 𝑘 exhibits higher efficiency than another trial 

𝑘′ according to the CDEM, so it is for the DOE-based polynomial). This point shows that the DOE based 

model can be used to determine if a given drive configuration is more efficient than another one. 

However, the ranking is not respected for some trials, particularly close to trial 79 (see Figure VI-25). 
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Figure VI-25: Zoom in on the non-consistent ranking for trials 𝟕𝟕 to 𝟖𝟎 

Trials 73 to 81 all have the same values for 𝐶Ⅰ, 𝑅Ⅰ and 𝑅Ⅱ (𝑥𝐶Ⅰ = 1, 𝑥𝑅Ⅰ = −1 and 𝑥𝑅Ⅱ = 1) but a 

different pitch 𝑝 and tension setting 𝑠𝑙𝑎𝑐𝑘. It is likely that the varying chain pitch 𝑝 resulted in different 

pitch radii (see eq.(VI-6)) between trials, explaining the discrepancies with the Chain Drive Efficiency 

Model (CDEM). 

The differences between the CDEM and the DOE-based polynomial model are represented according 

to eq (VI-13) in Figure VI-26. 

 |Δ𝜂| = |𝜂𝐶𝐷𝐸𝑀 − 𝜂𝐷𝑂𝐸 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙| (VI-13) 

 

 
Figure VI-26: Absolute difference between the CDEM and the DOE-based polynomial model for the 𝟐𝟒𝟑 
trials of the fractional design 

The biggest gaps (|Δ𝜂 > 0.5%|) occur for trials with the lowest efficiency predictions. These trials all 

correspond to cases with a high chain pitch (i.e., 𝑝 = 5/8′′). Excluding these cases, the gaps are usually 

lower than 0.25%. This gap of 0.25% between the prediction of the chain drive efficiency model and 
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the DOE-based one is usually higher than the effects of each parameter studied in this chapter (e.g., 

the variation due to chain pitch was of the order of 0.1% in §VI.2.2). 

The DOE-based polynomial is also tested in 25 trials with random coded values in the interval [−1 , 1] 

(𝑥𝑝 is randomly taken between −1, 0 and 1). The comparison is shown in Figure VI-27. 

 
Figure VI-27: Comparison between predictions of the CDEM and polynomial DOE-based model for the 𝟐𝟓 
random trials. (a) efficiency predictions (b) absolute difference 

Except for the last cases (number 23 to 25), the tendencies are also similar between both models. The 

absolute differences |Δ𝜂| are always less than 0.25%. It can be noted that the predictions of the DOE-

based polynomial model are almost systematically higher than the CDEM ones. This indicates that the 

729 − 19 = 710 actions neglected either a priori (i.e., order ≥ 3) or after the Fisher-Snedecor test 

(see Figure VI-23) overall have a detrimental effect on efficiency. 

From the comparisons between the DOE-based polynomial model and the CDEM, it was observed that 

the hierarchies between drive configurations are usually similar for both models. Therefore, the 

polynomial model usually allows quickly determining if a given drive configuration is more or less 

efficient than another. Missing hierarchies might be caused by pitch radius variations between trials 

with same 𝑥𝑅𝑗  values but with different chain pitches. The efficiency predictions of the polynomial 

model generally overestimate drive efficiency. The absolute difference is typically of the order of 0.1%. 

The difference has the same magnitude as the effect explored in this chapter. Therefore, the DOE-

based polynomial model is not accurate enough to replace the CDEM. However, as the hierarchies are 

identical, analysis of the polynomial coefficients 𝐸 (called effects) gives an interesting view of the 

general trends of chain drive efficiency variation. These trends are analysed in the following section. 

VI.3.3 Analysis of polynomial coefficients 𝑬 

This part is dedicated to the analysis of the polynomial coefficients 𝐸. The coefficients are called effects 

and characterise the influence of each action on drive efficiency. 

According to eq.(VI-8), the effect of the significant actions (according to the Fisher-Snedecor test) are 

presented in Figure VI-28.a. The magnitude of effects 𝐸 alone does not characterise the influence of 

the relative actions as the intervals ranged by each factor are different. To identify the actions with the 
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greatest influence on drive efficiency, the proportions of the sum of squares 𝑆𝑆̅̅ ̅ = 𝑆𝑆/𝑆𝑆𝑡𝑜𝑡 (expressed 

in percentage) attributed to each action are also plotted in Figure VI-28.b. Higher 𝑆𝑆̅̅ ̅ are associated 

with greater influence on efficiency. 

 
Figure VI-28: (a) Effect 𝑬 (b) Sum of squares proportion 𝑺𝑺̅̅̅̅  for significant actions 

The sign of the effects gives the direction of influence of the action considered. For instance, the 

negative effect of the global friction coefficient 𝜇̅ indicates that higher friction coefficients result in 

lower drive efficiency. The effect of chain pitch 𝑝 is also negative as the chain efficiency decreases for 

a higher pitch. These results are consistent with the previous part (see §VI.2). On the contrary, the 

effect of chainring torque 𝐶Ⅰ, tension setting 𝑠𝑙𝑎𝑐𝑘 and rear cog radius 𝑅Ⅱ are positive. This indicates 

that the larger these factors are, the higher the drive efficiency. These results are also consistent with 

previous parts (see §VI.1 and §VI.2). The DOE provides the additional information of the proportional 

sum of squares 𝑆𝑆̅̅ ̅ which enables easier comparison of the influence of each factor. From the 

proportional sum of squares, Figure VI-28.b shows that the chainring torque is the most influential 

factor (representing about 25% of 𝑆𝑆𝑡𝑜𝑡). This indicates that a large part of drive efficiency is 

determined by the torque applied by the athlete. The rear cog radius and chain pitch follow with 

proportional sum of squares of about 17 and 16%, respectively. This assessment supports the idea of 

using a rear cog as large as possible as the effect on drive efficiency is substantial. Moreover, this 

modification can be made relatively easily as it is possible to preserve the drive ratio by also adjusting 

the chainring size. The chain pitch also plays an important role. However, this effect must be tempered 

as the variation is mostly between 5/8′′ and 1/2′′ chains (see quadratic analysis below), resulting in 

limited perspective for cycling applications. Among linear actions, the friction coefficient follows with 

𝑆𝑆̅̅ ̅ ≈ 7%. This indicates that this factor is not very influential. Finally, the tension setting 𝑠𝑙𝑎𝑐𝑘 

represents about 4% of 𝑆𝑆̅̅ ̅ showing its limited influence compared to other factors. 

Linear actions account for the most part of the efficiency variation as they represent about 70% of 

𝑆𝑆𝑡𝑜𝑡. However, some quadratic actions also exhibit considerable influence. This is particularly the case 

for 𝐶Ⅰ
2 and 𝑝2. Interactions between first order actions also play a role as they account for about 10% 

of 𝑆𝑆̅̅ ̅. Analysing the sign of these effects might be difficult. Therefore, dedicated tools are used below 

to facilitate interpretation. 
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a) Analysis of quadratic effect 

Figure VI-29 shows effect plots for the six main factors. These plots are built from the mean efficiency 

values for each coded unit 𝑥𝑖 being at −1, 0 and 1. Each point therefore results from a mean of 81 

trials. 

 
Figure VI-29: Effect plot for the six main factors 

The plot for 𝜇̅ shows the detrimental effect of this factor on drive efficiency (i.e., the higher the global 

friction coefficient the lower the efficiency). This is consistent with the effect 𝐸𝜇̅ < 0 shown in Figure 

VI-28. Moreover, the relation is linear, consistently with action 𝜇̅2 being negligible according to the 

Fisher-Snedecor test. The second plot is for the 𝑠𝑙𝑎𝑐𝑘 parameter. This time, efficiency increases for 

higher 𝑠𝑙𝑎𝑐𝑘 values corresponding to the positive effect 𝐸𝑠𝑙𝑎𝑐𝑘 in Figure VI-28. However, the relation 

is not linear as the effect is less significant between 𝑥𝑠𝑙𝑎𝑐𝑘 = 0 and 1 than between −1 and 0. This 

deviation from linearity is characterised by the effect 𝑠𝑙𝑎𝑐𝑘2. The same behaviour is observed for 𝐶Ⅰ 

with an even stronger deviation from linearity. Indeed, the high significance of 𝐶Ⅰ
2 effect (𝑆𝑆̅̅ ̅ ≈ 7.6%) 

induced a strong decrease of the chainring torque effect for high torques. Almost the entirety of the 

torque effect lies between 𝑥𝐶Ⅰ = −1 and 0 (i.e., 𝐶Ⅰ = 5 to 152.5𝑁.𝑚, see Table VI-12) while between 

𝑥𝐶Ⅰ = 0 and −1, the effect is almost inexistant. These results are consistent with the analysis presented 

in §VI.1 showing that efficiency as a function of tension ratio quickly reached a plateau for low ratios 

(i.e., high torques and/or low-tension settings). The effect of the rear cog radius 𝑅Ⅱ is positive (i.e., 

higher radii associated with higher efficiencies) and almost linear. For the chainring radius 𝑅Ⅰ, the mean 

efficiencies are identical for all values of 𝑥𝑅Ⅰ. This indicates an absence of correlation with the drive 

efficiency which is consistent with the Fisher-Snedecor test showing that this factor is negligible. 

Finally, the chain pitch 𝑝 plot shows that higher pitches reduce drive efficiency. The quadratic effect is 

also significant. Therefore, most of the influence attributed to this factor in Figure VI-29 occurs 

between 𝑥𝑝 = 1 and 0 (i.e., 𝑝 = 5/8 to 1/2′′). Much less influence is visible for further reduction of 

the chain pitch. 
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b) Analysis of interactions 

Interaction plots help to interpret the sign of the effects 𝐸𝑖𝑗. These plots characterise the reciprocal 

actions between two parameters. They show the mean response of a parameter discriminated by the 

value of the second one. To study, for instance, the interaction between 𝑠𝑙𝑎𝑐𝑘 and 𝐶Ⅰ, the effect of 

𝑠𝑙𝑎𝑐𝑘 is plotted for 𝑥𝐶Ⅰ = −1 or 1 (each point therefore results from the mean value of 27 trials). The 

comparison of the two slopes obtained gives information on the interaction effect. Plots for the three 

most significant interactions (in terms of 𝑆𝑆̅̅ ̅) are presented in Figure VI-30. 

 
Figure VI-30: Examples of interaction plots 

The interaction between 𝑠𝑙𝑎𝑐𝑘 and 𝐶Ⅰ is described first. For 𝑥𝐶Ⅰ = −1, the effect of 𝑠𝑙𝑎𝑐𝑘 is 

considerable as indicated by the slope. On average, 1% of efficiency is saved between 𝑥𝑠𝑙𝑎𝑐𝑘 = −1 

and 1 (with 𝑥𝐶Ⅰ = −1). However, for high torques (i.e., 𝑥𝐶Ⅰ = 1), the effect greatly reduces as indicated 

by the almost constant line. This indicates that interaction 𝑠𝑙𝑎𝑐𝑘. 𝐶Ⅰ tends to reduce the influence of 

tension setting 𝑠𝑙𝑎𝑐𝑘 for high chainring torques 𝐶Ⅰ. The interaction can also be interpreted the other 

way round, i.e., the influence of the chainring torque is reduced for loose tension settings. Therefore, 

the negative effect 𝐸𝑠𝑙𝑎𝑐𝑘.𝐶Ⅰ indicates a reduction of both effects with a high product of both coded 

values 𝑥𝑠𝑙𝑎𝑐𝑘 and 𝑥𝐶Ⅰ. This strong interaction is still consistent with §VI.1 and the efficiency plateau for 

low tension ratios. For the interaction 𝐶Ⅰ. 𝑝 between the chainring torque and the chain pitch, the slope 

variation between 𝑥𝐶Ⅰ = −1 and 1 is less significant. However, it indicates that the increase of 

efficiency for a smaller chain pitch is less significant for high torques than for smaller ones. The same 

conclusion can be drawn for the interaction between 𝑅Ⅱ and 𝐶Ⅰ. Indeed, the slope characterising the 

effect of 𝑅Ⅱ diminishes for 𝑥𝐶Ⅰ = 1 compared to 𝑥𝐶Ⅰ = −1. Overall, the three interactions studied show 

that all the effects, no matter their sign, are reduced for high chainring torque. Among the six factors, 

the number of rear cog teeth 𝑅Ⅱ best preserves its effect at high torques 𝐶Ⅰ. Conversely, high torques 

almost completely cancels the effect of the tension setting 𝑠𝑙𝑎𝑐𝑘. 

Finally, it can be noted that the values calculated for 𝑥𝐶Ⅰ = 1 are systematically higher than those for 

𝑥𝐶Ⅰ = −1. This once again shows that high torques favour better efficiency and that this factor is 

preponderant. 
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c) Conclusions and guidelines for efficiency optimisation 

The Design Of Experiments (DOE) tool was used to analyse the effects of all the factors of chain drive 

efficiency considered. Six factors were studied: the global friction coefficient 𝜇̅, the tension setting 

𝑠𝑙𝑎𝑐𝑘, the chainring torque 𝐶Ⅰ, the chainring and rear cog pitch radii 𝑅Ⅰ and 𝑅Ⅱ, and the chain pitch 𝑝. 

Each factor had three levels to characterise the non-linear effects. A 36−1 fractional design was used 

to limit the computational cost of the analysis. This choice was made to ensure that the 28 actions 

with order ≤ 2 of interest were mixed up (i.e., aliased) with actions of strictly superior order. 

An analysis of the variance (ANOVA, [99], [100]) attributed to each factor has been carried out. 

Comparison with the residual variance through a Fisher-Snedecor resulted in considering only 19 

actions accounting for about 93% of the total sum of squares. The effect of the chainring pitch radius 

was shown to be negligeable. The predictions of a polynomial model based on the 19 influential actions 

were compared to those of the Chain Drive Efficiency Model (CDEM). The ability of the DEO-based 

polynomial model to preserve efficiency rankings between drive configurations was demonstrated. 

However, the absolute predictions of the polynomial model are not accurate enough to represent an 

alternative to the CDEM. 

The analysis of the effects was then carried out. The analysis confirmed the conclusions of the previous 

parts. Higher chainring torque, tension setting and rear cog pitch radius favour better drive efficiency. 

On the other hand, friction coefficient and chain pitch show the opposite effect (i.e., higher values 

result in lower efficiency). Analysis of the quadratic effects showed that the influence of chainring 

torque and chain pitch are highly non-linear. Finally, the interactions between factors were explored. 

The results showed that high chainring torque values tend to reduce the effect of all the other factors, 

particularly the tension setting 𝑠𝑙𝑎𝑐𝑘. The interest of the DOE analysis lies in ranking the effects by 

significance.  

The following conclusions are drawn for each factor by descending order of the sum of squares 

proportion. 

1. Chainring torque 𝐶Ⅰ: This factor is the most influential parameter for chain drive efficiency. 

However, its effect is highly non-linear which causes its influence to be concentrated on low 

torques. 

2. Rear cog pitch radius 𝑅Ⅱ: The quadratic effect of 𝑅Ⅱ as well as its interaction with 𝐶Ⅰ are 

moderate. Therefore, its influence is mainly preserved for any radius and regardless of the 

torque applied. 

3. Chain pitch 𝑝: The quadratic effect of 𝑝 is significant. Therefore, the potential gain of changing 

a 1/2′′ chain for a 3/8′′ one is less significant than suggested by the high proportional variance 

of factor 𝑝. 

4. Global friction coefficient 𝜇̅: Lower values obviously result in better efficiency. Neither 

quadratic effect nor interaction with other factors are highly significant. This indicates that the 

potential gains resulting from smaller friction coefficients are mainly independent from any 

other parameters. 

5. Tension setting 𝑠𝑙𝑎𝑐𝑘: Its influence is non-linear and highly corelated with the chainring torque 

𝐶Ⅰ consistently with §VI.1. 

6. Chainring pitch radius 𝑅Ⅰ: Its effect was shown to be negligeable by the Fisher-Snedecor 

analysis. Indeed, §VI.2.1 shows that the chainring size is less influential than the rear cog one 

(due to the higher number of chainring teeth for track cycling applications) and that it depends 

on the torque applied. The appearance of back-and-forth roller motion for some trials might 

also have influenced this conclusion. 
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Based on this analysis, the following guidelines for optimising track cycling drives can be drawn up. 

When possible, depending on the athlete’s physical qualities, power generation through torque 

instead of rotational speed should be favoured. This can be achieved by increasing the gear ratio 𝑍Ⅰ/𝑍Ⅱ. 

The rear cog radius should be increased as much as possible. The chainring radius can also be increased 

to ensure a similar gear ratio without detrimental repercussions. However, the potential consequences 

of using bigger sprockets on other bicycle losses such as aerodynamic drag should be investigated to 

ensure that the overall benefit for the whole bicycle-athlete system is positive. The chain pitch 𝑝 should 

also be reduced as smaller pin, bush and roller dimensions result in better efficiency due to the limited 

sliding distances. However, such modification can be costly as it requires new compatible chains and 

sprockets. Increasing sprocket size and reducing chain pitch would probably increase the mass of the 

chain drive. For endurance races where the speed is mainly constant, this effect should be negligible. 

However, for shorter races such as sprints and team sprints, optimisation between drive mass and 

efficiency should be considered. It is also worth noticing that the minimum bike weight of 6.8 kg 

imposed by UCI [101] is often reached by adding ballast. In such context, larger drives could be used 

without adversely affecting the overall weight of the bike. Finally, studies on lubrication and surface 

treatment should not be neglected although the effect is less significant than the other factors. Indeed, 

the limited interaction with other parameters ensures that all the gains made through lower friction 

coefficients would not influence the other drive parameters. Moreover, from the athlete’s point of 

view, changing this parameter is mostly transparent. No major optimisation possibilities appear for the 

tension setting 𝑠𝑙𝑎𝑐𝑘. Indeed, its effect is not dominant and the current settings are already situated 

on the efficiency plateau, therefore limiting any potential gain. 
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VI.4 Conclusion 

This chapter was dedicated to the study of roller chain drive efficiency. The influence of numerous 

factors was tested, from the torque applied by the athlete on the chainring to the number of teeth and 

chain pitch. Roller motions were considered and differences between tooth profile geometries studied. 

First, the efficiency of a regular 60|15 track cycling drive was characterised. To do so, the influence of 

the chainring torque 𝐶Ⅰ and tension setting 𝑠𝑙𝑎𝑐𝑘 was detailed for several tooth profile geometries. 

The results showed that the influence of 𝐶Ⅰ and 𝑠𝑙𝑎𝑐𝑘 were similar for all the profiles tested. Efficiency 

increases and the interval [𝜂𝐵, 𝜂𝐴] decreases with increasing chainring torque. Above about 𝐶Ⅰ =

100𝑁.𝑚, efficiency reaches a plateau where it remains constant for higher torques. The same 

behaviour was observed for the influence of the tension setting 𝑠𝑙𝑎𝑐𝑘. Efficiency rises with the 𝑠𝑙𝑎𝑐𝑘 

setting (i.e., for looser tension setting) and a plateau of efficiency is reached at about 𝑠𝑙𝑎𝑐𝑘 = 7.5%. 

The influences of both factors were then studied considering a third one: the tension ratio. A more 

general curve of efficiency depending on tension ratio was built. This curve is punctuated by changes 

of torques and/or tension setting. Efficiency increases for lower ratios and reaches a plateau at about 

𝑇𝑠,Ⅰ 𝑇𝑡⁄ = 2𝑒−2. Mechanisms explaining the increased efficiency with lower ratios were then detailed. 

It was shown that roller losses decrease for lower ratios. Moreover, the influence of slack strand 

meshing losses also decreases as the slack tension becomes negligible compared to the tight one. 

Therefore, for typical track cycling drives with low tension ratios 𝑇𝑠/𝑇𝑡, tight strand meshing losses are 

largely preponderant. Differences between profiles were shown to be minor. However, it seems that 

profiles with smaller tooth bottom radii exhibit slightly better efficiencies. As the trends observed were 

similar for all tooth profiles, the rest of the chapter focused only on 𝑁𝐹𝑚𝑖𝑛 geometry. 

The analysis was then extended to drive configurations other than the 60|15 one. Influences of 

parameters related to the architecture of the drive were explored. The effect of the number of 

sprocket teeth was detailed considering the pitch radius limitations imposed by track bikes. It was 

shown that the influence of the number of chainring teeth depends on the torque applied. Its effect 

on efficiency is detrimental for low torque while it is positive for high ones. However, for any torque 

value, the effect of the number of rear cog teeth is dominant compared to the chainring one and results 

in higher efficiencies for higher 𝑍Ⅱ. This effect is attributed to the reduction of the pitch angle 𝛼𝑗 

resulting in less meshing losses. Overall, for a constant gear ratio 𝑍Ⅰ/𝑍Ⅱ, increasing the number of 

sprocket teeth results in higher efficiency regardless of the torque applied. The effect of chain pitch 

was then explored. The idea of changing the chain pitch was tested to assess the influence of further 

pitch angle reduction while limiting sprocket size. The effect of modified chain dimensions (e.g., pin, 

bush and roller diameters) inherent to pitch change was separated from the pitch modification itself. 

EEU (Everything Else Unchanged) cases were considered where pin, bush and roller dimensions are 

similar to the reference 1/2′′ one with only the pitch being changed. EEU cases showed similar 

efficiency to that of the reference 1/2′′ drive. However, Real Chain Dimension (RCD) cases showed 

that smaller pitches are associated with higher efficiency due to reduced sliding distances. This analysis 

showed that changing the pitch angle without modification of pitch radius 𝑅𝑗 does not influence chain 

efficiency. Indeed, reduced pitch angles are counterbalanced by more chain articulations for a given 

amount of time. Then, the effect of the global friction coefficient 𝜇̅ was explored. The potential gains 

of lower coefficients were quantified. Moreover, contribution of each chain interface was presented. 

This breakdown showed that the pin/bush interface is responsible for most of the losses. Potential 

lubricant optimisation should therefore focus on the tribological conditions (i.e., sliding speed, 

roughness, etc.) encountered at this interface. 

Finally, an analysis the Chain Drive Efficiency Model (CDEM) using a Design Of Experiments (DOE) was 

presented. All the parameters explored in the chapter were considered: chainring torque, tension 

setting, sprocket sizes, chain pitch and friction coefficient. This analysis aimed at facilitating the 
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comparison of each factor’s influence in order to identify the most influential optimisation possibilities. 

This tool also allowed exploring interactions between factors. A fractional factorial design was used to 

limit the computation cost of the analysis. A Fisher-Snedecor test [99], [100] was conducted to identify 

19 actions responsible for about 93% of the sum of squares. The results showed that the chainring 

torque 𝐶Ⅰ is the main factor influencing drive efficiency, followed by the rear cog radius 𝑅Ⅱ and the 

chain pitch 𝑝. The effect of the chainring radius 𝑅Ⅰ was negligible. Based on these assessments, 

guidelines for optimisation of chain drive efficiency were given. However, in the context of high-level 

track cycling, future studies should consider the implication of any change to the chain drive on the 

global athlete-bicycle system. Indeed, care must be taken that potential side effects do not cancel the 

gains obtained from better drive efficiency (e.g., weight increase, modification of aerodynamic 

properties, etc.). 
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General conclusion 
The main objective of this study was to explore roller chain drive efficiency in the context of track 

cycling. It was also proposed to consider the influence of losses caused by the motion of rollers along 

their corresponding tooth profile. To achieve this, an efficiency model was developed, based on 

previous works, in two mains steps. First, a Quasi-Static Chain Drive Model (QSCDM) is proposed to 

calculate roller locations as well as the evolution of loads (i.e., link tensions and roller/profile contact 

forces). Then, based on these results, a Chain Drive Efficiency Model (CDEM) is introduced to calculate 

drive efficiency. 

The Quasi-Static Chain Drive Model (QSCDM) was first introduced. This model is based on previous 

studies and reuses modelling components from the literature. It assumed that the chain operates in a 

single plane (2D). All dynamical effects are neglected and chain parts are assumed to be rigid (i.e., part 

deformations are neglected). The drive kinematics is determined using two dedicated sub-models for 

the tight and slack strands. Kinematics is assumed to be independent of the external loading conditions 

(e.g., applied torque) and also of the driving and driven sprockets tooth profile geometries. Loads and 

roller locations are calculated using a local sprocket sub-model. This sub-model uses the kinematic 

results and can be used with different tooth profile geometries. The effect of friction is modelled using 

a correction angle 𝛿 which introduces differences between driving and driven sprockets. Compatibility 

issues between the different sub-models (e.g., strand and local sprocket sub-models) as well as 

challenges raised by the numerical resolution were addressed. The QSCDM was built considering the 

track cycling context, thereby justifying, for instance, the quasi-static approach (light chains and 

moderate rotational speeds). However, it can be used for industrial chain drives whose characteristics 

meet the model hypotheses. 

Elements of validation of the QSCDM were then presented. Model predictions were tested using both 

numerical results and experimental measurements from the literature. Comparisons with numerical 

results from Kim & Johnson [52] and Troedsson & Vedmar [67] supported the hypotheses stated for 

the QSCDM. Indeed, the simpler tension model (compared to Kim & Jonhson) as well as the rigid solids 

assumption (contrary to Troedsson & Vedmar) did not significantly impact the predictions. 

Comparisons were carried out for industrial chain drives as similar results relating to track cycling do 

not yet exist in the literature. 

The QSCDM was then used to explore the influence of tooth profile geometry on drive behaviour (i.e., 

loads and roller location evolution). Industrial and track cycling drives were considered. For industrial 

drives, significant differences were reported between geometries extracted from ASA [32] and ISO [31] 

standards. Based on the industrial results, methods for analysing the influence of tooth profile were 

proposed. The pressure angle at the transition point 𝜙𝑡𝑝 was introduced as a key factor to asses tooth 

profile influence. Tooth profiles with a low 𝜙𝑡𝑝 were associated with high load carrying capacity 

resulting in strong decrease of link tension and roller/profile contact force. Three main sprocket 

behaviours, inspired by the sub-models proposed by Lodge & Burgess [70], were introduced: inter-tp, 

static roller and tooth climbing. These behaviours allow easier analysis of roller location evolution 

depending on the loading conditions applied. The tools developed were then applied to track cycling 

chain drives, characterised by low slack over tight tension ratio 𝑇𝑠/𝑇𝑡. It was shown that the specific 

constraints for this application could only be overcome by dedicated tooth profiles. This led to the 

introduction of original geometries adapted to the cycling context: the Cycling Profiles. 
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Then, the Chain Drive Efficiency Model (CDEM) was introduced. It calculates drive efficiency based on 

the results supply by the QSCDM. Two extreme kinematic cases A and B were considered to asses roller 

rotation based on roller location along its associated profile. Consequently, the result of the CDEM is 

an interval [𝜂𝐵 , 𝜂𝐴]. Validation of the efficiency predictions was also proposed. Results from the 

literature on industrial drives showed that the losses caused by roller motion might explain lower 

efficiencies for small external torques. Comparisons with experimental measurements carried out, in 

the laboratory, using a test rig dedicated to track cycling drives were also presented. 

Finally, the CDEM was used to conduct a parametric study of track cycling chain drive efficiency. The 

influence of tooth profile geometry was shown to be minimal in this context, probably due to the high 

similarities between profiles. These similarities are explained by the extreme constraints imposed by 

track cycling applications that all Cycling Profiles must cope with. Apart from tooth profile geometry, 

the influence of tension setting, applied torque, chain pitch, sprocket number of teeth and friction 

coefficient were explored. An analysis based on the Design Of Experiments (DOE) methodology was 

also proposed to compare the effect of each parameter. Based on the results, guidelines for 

optimisation of track cycling chain drives were given. 

This research work left several pending questions that point to interesting perspectives. In the short 

term, the following points could be explored: 

• The optimisation guidelines given through the DOE analysis require experimental 

measurements to verify the predicted gains. Moreover, potential side effects for the efficiency 

of the global cyclist-bicycle system (outside the scope of this thesis) should be explored before 

implementing these solutions. For instance, increased sprocket size should improve chain 

drive efficiency. However, the drive weight could also increase and potential aerodynamic 

consequences might occur. These effects need to be clarified to ensure that the overall 

outcome is positive. 

• The application of the CDEM model to industrial cases might provide interesting results. 

Indeed, the lower tension ratios encountered allow the use of tooth profiles with more 

property variations compared to track cycling. The influence on drive efficiency might 

therefore be greater for instance between a Cycling Profile 𝐶𝑃 and the 𝐴𝑆𝐴 profile. Moreover, 

the question of increasing efficiency is receiving more attention due to the upcoming energetic 

transition. In this context, the models developed could be interesting tools to introduce 

efficiency as a selection criterion in industrial context. 

• The sprocket sub-model part of the QSCDM can be easily adapted to consider small variations 

of chain pitch 𝑝𝑐ℎ𝑎𝑖𝑛 compared to the sprocket one 𝑝𝑠𝑝𝑟𝑜𝑐𝑘𝑒𝑡. This ability could be used to 

explore the influence of wear (which translates in pin-link pitch elongation) and continue the 

work initiated by Naji & Marshek [6]. Similarly, the influence of the deviations from nominal 

dimensions mentioned in §I.3 could be estimated. 

Other questions require substantial work and therefore constitute long-term perspectives. 

• In specific conditions, back-and-forth roller motions were predicted by the QSCDM with 

consequences on drive efficiency. It could be interesting to verify the physical existence of this 

phenomenon by trying to measure such motion experimentally. To do so, drive configurations 

with significant slack strand tension variations should be studied. Such drives could be 

characterised by heavy chain, long pitch and small numbers of sprocket teeth. 

• Understanding the influence of friction on the evolution of loads (link tensions and 

roller/profile contact forces) can be improved. In this study it was modelled using a correction 
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angle 𝛿. However, this approach is based on few experimental measurements. Particularly, it 

would be interesting to test experimentally if lubricating conditions at the roller/profile 

interface significantly influence differences between the driving and driven sprockets. In other 

terms, are 𝜇𝛿  and 𝜇𝑟𝑝 the same parameter? 

• Finally, studying the influence of dynamical effects, particularly strand vibrations, on drive 

efficiency would be very interesting. Especially in the cycling context where the torque applied 

at the pedals usually undergoes considerable variation within a chainring revolution. This 

acyclic torque might significantly influence strand vibration with potential consequences on 

drive efficiency. 
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 Tooth profiles definition 

All tooth profiles considered in this manuscript are symmetrical. Therefore, only one half is defined. 

Then, the second one can be deduced by symmetry with respect to (𝑂, 𝑦⃗) (see Figure A-1). 

A.1 Tooth profile definitions 

a) 𝑨𝑺𝑨 tooth profile definition 

The definition of the 𝐴𝑆𝐴 tooth profile can be found in [32], [64]. It is given as follows. 

 
Figure A-1: Definition of the 𝑨𝑺𝑨 tooth profile [32], [64] 

In Figure A-1, the 𝐴𝑆𝐴 tooth profile is defined using four curve portions: 

• Between 𝐴 and 𝐵, the first circle arc defines the tooth bottom. This arc is also called seating 

curve. Its centre coincides with the local origin 𝑂 and its radius is strictly superior to the roller 

radius 𝑅𝑟𝑜𝑙𝑙𝑒𝑟. Its parameters are: centre 𝑐1, radius 𝑅1, central angle 𝜃1. 

• Between 𝐵 and 𝐶, a second circle arc is called the working curve (centre 𝑐2, radius 𝑅2, central 

angle 𝜃2.) 

• Points 𝐶 and 𝐷 are linked by a line called the straight portion 

• Between 𝐷 and 𝐸 a last circle arc called the topping curve defines the tooth tip (centre 𝑐3, 

radius 𝑅3, central angle 𝜃3.) 

Curve portion parameters are given as functions of the sprocket pitch 𝑝, the number of teeth 𝑍 and 

the diameter of the roller to be used with the profile considered 𝐷𝑟𝑜𝑙𝑙𝑒𝑟. The pitch angle 𝛼 =
2𝜋

𝑍
=

360°

𝑍
 

is also used as an intermediate variable. The radii 𝑅𝑖 and central angles 𝜃𝑖 of each circle arc are 

summarised in Table A-1. Additional parameters needed to fully define the profile are given in Table 

A-2. 
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𝒊 𝑹𝒊 𝜽𝒊 

1 0.5025𝐷𝑟𝑜𝑙𝑙𝑒𝑟 + 0.0015 × (0.0254) 55° −
60°

𝑍
 

2 1.3025𝐷𝑟𝑜𝑙𝑙𝑒𝑟 + 0.0015 × (0.0254) 18° −
56°

𝑍
 

3 
𝐷𝑟𝑜𝑙𝑙𝑒𝑟 × (0.8 cos(𝜃2) + 1.24 cos (17° −

64°

𝑍
) − 1.3025)

− 0.0015 × (0.0254) 

Function of other 
parameters (see Table 

A-2) 
Table A-1: Radii 𝑹𝒊 and central angles 𝜽𝒊 

𝑯 (Intermediate variable) √𝑅3
2 − (1.24𝐷𝑟𝑜𝑙𝑙𝑒𝑟 −

𝑝

2
)
2

 

𝑿𝑬 
𝑝

2
cos (

𝛼

2
) + 𝐻 sin (

𝛼

2
) 

𝒀𝑬 −
𝑝

2
sin (

𝛼

2
) + 𝐻 cos (

𝛼

2
) 

𝑿𝒄𝟐 −0.8𝐷𝑟𝑜𝑙𝑙𝑒𝑟 cos(90° − 𝜃1) 

𝒀𝒄𝟐  0.8𝐷𝑟𝑜𝑙𝑙𝑒𝑟 sin(90° − 𝜃1) 

𝑿𝒄𝟑 1.24𝐷𝑟𝑜𝑙𝑙𝑒𝑟 cos (
𝛼

2
) 

𝒀𝒄𝟑  −1.24𝐷𝑟𝑜𝑙𝑙𝑒𝑟 sin (
𝛼

2
) 

Table A-2: Other characteristic point coordinates, see Figure A-1 

In [32], two main pressure angles values are given for the 𝐴𝑆𝐴 profile: 

• First, the tooth pressure angle for new chain 𝜙𝑛𝑒𝑤 𝑐ℎ𝑎𝑖𝑛. This angle is calculated assuming that 

rollers 𝑖 − 1 and 𝑖 are seated and that the roller/profile contact point (for roller 𝑖) lies at point 

𝐵 (see Figure A-1). 

 𝜙𝑛𝑒𝑤 𝑐ℎ𝑎𝑖𝑛 = 35° −
120°

𝑍
 (A-1) 

• The minimal pressure angle 𝜙𝑚𝑖𝑛 is meant to account for rollers climbing the tooth flank. Its 

value is calculated still assuming rollers 𝑖 − 1 and 𝑖 to be seated. However, this time the contact 

point is considered to lie at point 𝐶 (see Figure A-1). 

 𝜙𝑚𝑖𝑛 = 17° −
64°

𝑍
 (A-2) 

These angles can be compared to the expression for 𝜙𝑡𝑝 obtained using the QSCDM, see Table A-6 

below. 

  

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0066/these.pdf 
© [G. Lanaspeze], [2023], INSA Lyon, tous droits réservés



Appendix A 

 

226 

b) 𝑵𝑭 tooth profiles definition 

𝑁𝐹 tooth profiles are defined by the ISO 606 standard [31] using two tangent circles arcs. These 

profiles are defined by four parameters (see Figure A-2): 

• 𝑅1, 𝜃1 the radius and central angle of the first circle arc (tooth bottom) 

• 𝑅2, the radius of the second circle arc 

• 𝑅𝑡𝑖𝑝, the tip radius 

The centre of the first circle arc is the local origin 𝑂. 

The four parameters are functions of the sprocket pitch 𝑝, the number of teeth 𝑍 and the diameter of 

the roller to be used with the profile considered 𝐷𝑟𝑜𝑙𝑙𝑒𝑟. The pitch diameter 𝐷𝑝 =
𝑝

sin(𝛼/2)
 is also used 

as intermediate variable. 

 
Figure A-2: Definition of tooth profile with two circle sectors 

 

 𝑵𝑭𝒎𝒊𝒏 𝑵𝑭𝒎𝒂𝒙 

𝑹𝟏 0.505𝐷𝑟𝑜𝑙𝑙𝑒𝑟 0.505𝐷𝑟𝑜𝑙𝑙𝑒𝑟 + 0.069(𝐷𝑟𝑜𝑙𝑙𝑒𝑟)
1
3 

𝜽𝟏 70° −
45°

𝑍
 60° −

45°

𝑍
 

𝑹𝟐 0.12𝐷𝑟𝑜𝑙𝑙𝑒𝑟(𝑍 + 2) 0.008𝐷𝑟𝑜𝑙𝑙𝑒𝑟(𝑍
2 + 180) 

𝑹𝒕𝒊𝒑 
1

2
(𝐷𝑝 + 1.25𝑝 − 𝐷𝑟𝑜𝑙𝑙𝑒𝑟) 

1

2
(𝐷𝑝 + 𝑝(1 −

1.6

𝑍
) − 𝐷𝑟𝑜𝑙𝑙𝑒𝑟) 

Table A-3: Parameters of 𝑵𝑭𝒎𝒂𝒙 and 𝑵𝑭𝒎𝒊𝒏 tooth profile 

Note: For the calculation of 𝑅1 for the 𝑁𝐹𝑚𝑎𝑥 profile, 𝐷𝑟𝑜𝑙𝑙𝑒𝑟 must be given in 𝑚𝑚. 
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c) Cycling profiles definition 

The cycling profiles are defined similarly to the 𝑁𝐹 ones (see Figure A-2) according to the parameters 

given in Table A-4. Compared to the 𝐴𝑆𝐴 and the 𝑁𝐹 profiles, the Cycling Profiles are only 

parametrised by the number of teeth 𝑍. Therefore, their definition is only suitable for cycling 

applications (i.e., 𝑝 = 1 2′′⁄ = 12.7𝑚𝑚 and 𝐷𝑟𝑜𝑙𝑙𝑒𝑟 = 7.75𝑚𝑚). 

 𝑪𝑷𝟏 𝑪𝑷𝟐 𝑪𝑷𝟑 

𝑹𝟏 (𝒎𝒎) 3.9 4.05 4.2 

𝜽𝟏 (𝒅𝒆𝒈) 75 − 125/𝑍 75 − 85/𝑍 70 − 45/𝑍 

𝑹𝟐 (𝒎𝒎) 
1

2
𝑍 + 6 𝑍 + 1 2𝑍 − 9 

𝑹𝒕𝒊𝒑 (𝒎𝒎) 2.023𝑍 + 3.141 

Table A-4: Definition of the Cycling Profiles 𝑪𝑷 
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A.2 Profile characteristic parameters 

Table A-5 gives the transition point coordinates and inter-tp distance for each tooth profile family. 

Values are given for 𝑍 = 15, 30 and 60 teeth, 𝑝 = 1 2′′⁄ = 12.7𝑚𝑚 and 𝐷𝑟𝑜𝑙𝑙𝑒𝑟 = 7.75𝑚𝑚. 

  
(a) (b) 

Figure A-3: Inter-tp distance for (a) 𝑨𝑺𝑨 (b) two-circle tooth profile 

 

 𝒁 𝜸𝒕𝒑
𝑨  𝜸𝒕𝒑

𝑩  
Inter-tp distance 

(𝒎𝒎) 

𝑨𝑺𝑨 

15 2.9703 5.0297 7.15 

30 2.9755 5.0245 7.42 

60 2.9777 5.0223 7.55 

𝑵𝑭𝒎𝒊𝒏 

15 0.9978 3.0022 9.18 

30 0.9977 3.0023 9.39 

60 0.9976 3.0024 9.49 

𝑵𝑭𝒎𝒂𝒙 

15 0.9775 3.0225 8.25 

30 0.9787 3.0213 8.47 

60 0.9793 3.0207 8.58 

𝑪𝑷𝟏 

15 0.9982 3.018 9.09 

30 0.9984 3.0016 9.66 

60 0.9985 3.0015 9.94 

𝑪𝑷𝟐 

15 0.9880 3.0120 9.91 

30 0.9887 3.0113 10.30 

60 0.9891 3.0109 10.50 

𝑪𝑷𝟑 

15 0.9752 3.0248 10.05 

30 0.9753 3.0247 10.28 

60 0.9758 3.0242 10.39 

Table A-5: Transition point coordinates and inter-tp distances 
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Table A-6 gives parameters 𝐾 and 𝐾′ for all tooth profiles. They are used in eq.(A-3) to calculate the 

pressure angle at the transition point 𝜙𝑡𝑝|𝐵
= 𝜙𝑡𝑝 (see Chapter IV). 

 𝑲 (𝒅𝒆𝒈) 𝑲′ (𝒅𝒆𝒈) 

𝑨𝑺𝑨 34.64 123 

𝑵𝑭𝒎𝒂𝒙 29.96 137.1 

𝑵𝑭𝒎𝒊𝒏 20 135.5 

𝑪𝑷𝟏 15 55.3 

𝑪𝑷𝟐 15 97.42 

𝑪𝑷𝟑 19.96 139.5 

Table A-6: Parameters 𝑲 and 𝑲′ 

 𝜙𝑡𝑝 = 𝐾 −
𝐾′

𝑍
 (A-3) 

Compared to the expression 𝜙𝑛𝑒𝑤 𝑐ℎ𝑎𝑖𝑛 for an 𝐴𝑆𝐴 profile given in [32] (see eq.(A-1)), the expression 

given by the QSCDM for 𝜙𝑡𝑝 is close. The differences are probably due to the different hypotheses 

stated (roller seated and assumed contact point for 𝜙𝑛𝑒𝑤 𝑐ℎ𝑎𝑖𝑛). This indicates that a good 

approximation of 𝜙𝑡𝑝 can be obtained only by geometrical mean (with hypotheses similar to 

𝜙𝑛𝑒𝑤 𝑐ℎ𝑎𝑖𝑛) at the stage of tooth profile conception without any numerical analysis. 
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A.3 Characteristic curve library 

Examples of roller location characteristic curves are given for 𝐴𝑆𝐴 and 𝑁𝐹 profiles in Figure A-4 and 

𝐶𝑃 profiles in Figure A-5 for 𝑍 = 15, 30 and 60 teeth. For 𝑠𝑐 and 𝑠𝑟, curves are centred on the 

curvilinear abscissa of the bottom of the tooth profile 𝑠0 (tooth profile point such tat 𝑦 = 0). For 

symmetrical profiles (all profiles here), this point corresponds to 𝛾 = 𝑁𝑏𝑝𝑜𝑟𝑡𝑖𝑜𝑛/2 (i.e., 𝛾 = 4 for 𝐴𝑆𝐴 

and 𝛾 = 2 for the others). 

 
Figure A-4: Roller location characteristic curves for 𝑨𝑺𝑨 and 𝑵𝑭 tooth profiles 
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Figure A-5: Roller location characteristic curves for 𝑪𝑷 tooth profiles 

Figure A-6 shows examples of pressure angle characteristic curves for all tooth profiles. Lower pressure 

angles near the transition point (i.e., near 𝛾 = 3, see Table A-5), reached by the Cycling Profiles, 

compared to 𝐴𝑆𝐴 and 𝑁𝐹𝑚𝑎𝑥, are visible. 
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Figure A-6: Roller location characteristic curves for Cycling Profiles (𝑪𝑷) 
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 Calculation of roller centre trajectory 

From the definition of the tooth profile, the roller centre trajectory is calculated from the roller radius. 

The problem here is to find the parallel to the tooth profile shifted by 𝑅𝑟𝑜𝑙𝑙𝑒𝑟 toward the “inside” of 

the profile (i.e., toward 𝑂𝑖, see Figure B-2 below). To ease the notations, a quick definition of the curve 

portions (circle arc or line) is first given in §B.1. 

B.1 Curve portion definition 

  
(a) (b) 

Figure B-1: Definition of (a) circle arc (b) line 

In Figure B-1: 

• A circle arc (see Figure B-1.a) is defined by its centre 𝑐, and the two extreme points 𝐴 and 𝐵. 

Knowing these three points, additional parameters are calculated (see eqs.(B-1) to (B-3)): 

o The radius 𝑅 

o The central angle 𝜃 

o The tilting angle 𝜃0 

 𝑅 = {
√(𝑥𝐴 − 𝑥𝑐)

2 + (𝑦𝐴 − 𝑦𝑐)
2

√(𝑥𝐵 − 𝑥𝑐)
2 + (𝑦𝐵 − 𝑦𝑐)

2
 (B-1) 

 

 𝜃 = (𝑐𝐵⃗⃗ ⃗⃗⃗, 𝑐𝐴⃗⃗⃗⃗⃗) (B-2) 

 

 𝜃0 = (𝑥⃗, 𝑐𝐵⃗⃗ ⃗⃗⃗) (B-3) 

• Similarly, a line (see Figure B-1.b) is defined by its two extreme points 𝐴 and 𝐵. From these 

two points, it is possible to compute the slope 𝑚 and the y-intercept 𝑝. 

 𝑚 =
𝑦𝐵 − 𝑦𝐴
𝑥𝐵 − 𝑥𝐴

 (B-4) 

 

 𝑝 = {
𝑦𝐴 −𝑚𝑥𝐴
𝑦𝐵 −𝑚𝑥𝐵

 (B-5) 

For both circle arcs and lines, point 𝐴 is the extreme point with the smallest 𝑥 coordinate (always at 

the left-hand side according to the coordinate axis given in Figure B-1.a). 
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In any tooth profile definition, curve portion are continuously connected. Therefore, the 𝐵 point of the 

first portion coincides with the 𝐴 point of the second one (see connection between curve portion 1 

and 2 in Figure B-2.a). 

B.2 Roller centre trajectory 

This part now details the procedure used for the calculation of the roller centre trajectory. Similarly to 

the tooth profile, the roller centre trajectory is defined using circle arcs and straight lines still according 

to the definitions given in §B.1. 

First, it is assumed that two straight portions cannot be adjacent. Indeed, as the tooth profile must 

ensure continuous slopes, two adjacent straight portions can be assembled in a single one. Taking 

advantage of this property, the circle arcs are treated first. 

The parallel of each circle arc is defined as another circle arc with the same centre and central angle. 

The radius is determined as 𝑅𝑖 ± 𝑅𝑟𝑜𝑙𝑙𝑒𝑟. The sign depending on the circle arc being concave or convex 

(see eqs.(B-6)). 

• A concave curve has a decreasing derivative (e.g., Figure B-2.a). 

• A convex curve has an increasing derivative (e.g., Figure B-2.b). 

  
(a) (b) 

Figure B-2: Roller centre trajectory for (a) concave and (b) convex circle arc 

 

Concave: 𝑅𝑖
′ = 𝑅𝑖 + 𝑅𝑟𝑜𝑙𝑙𝑒𝑟 (a) 

(B-6) 
Convex: 𝑅𝑖

′ = 𝑅𝑖 − 𝑅𝑟𝑜𝑙𝑙𝑒𝑟 (b) 

with: 

• 𝑅𝑖, the circle arc radius for curve portion 𝑖 at the tooth profile 

• 𝑅𝑖′, the circle arc radius for curve portion 𝑖 at the roller centre trajectory 

Points 𝐴′ and 𝐵′ for the circle arcs of the roller centre trajectory are determined using 𝑅𝑖′ and following 

directions 𝑐𝐴⃗⃗⃗⃗⃗ and 𝑐𝐵⃗⃗ ⃗⃗⃗, respectively (see Figure B-1.a Figure B-2.a ). 

Once all the circle arcs have been processed, the lines are re-defined between the extreme points 𝐴′ 

and 𝐵′ (see Figure B-3). 
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(a) (b) 

Figure B-3: Calculation of the roller centre trajectory (a) circle arcs (b) lines 

The two steps of the procedure are therefore: 

1. Create the parallel to each circle arc whose radius is calculated according to eq.(B-6) 

2. Create the parallel to each line between the corresponding 𝐴′ and 𝐵′ points according to Figure 

B-3 
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 Conversion between equivalent roller 

location coordinates 

C.1 Conversion between 𝜸, 𝒔𝒓 and 𝒔𝒄 

Parameters used to describe circle arcs and lines are given in Appendix B. 

In this appendix, the whole and fractional parts of 𝛾 are used. They are represented by ⌊𝛾⌋ and {𝛾}, 

respectively according to eq.(C-1). 

 𝛾 = ⌊𝛾⌋ + {𝛾} (C-1) 

with: 

• ⌊𝛾⌋ ∈ ℕ 

• {𝛾} ∈ [0,1[ 

Conversion from 𝛾 to 𝑠𝑐 or 𝛾 to 𝑠𝑟  follows the same procedure. One just has to consider the parameters 

of the tooth profile or the roller centre trajectory to obtain 𝑠𝑐 and 𝑠𝑟  respectively. The same goes for 

conversions from 𝑠𝑐 to 𝛾 and 𝑠𝑟  to 𝛾. Therefore, conversion procedures are only given from 𝛾 to 𝑠 

(without subscript) and from 𝑠 to 𝛾. 

Definition of the roller location coordinates 𝛾, 𝑠𝑐 and 𝑠𝑟  are given in Figure C-1.a. Curve portions are 

numbered from 1 to 𝑁𝑏𝑝𝑜𝑟𝑡𝑖𝑜𝑛 with index 𝑘. Curve portion 𝑖 goes from 𝛾 = 𝑘 − 1 to 𝛾 = 𝑘 (see Figure 

C-1.a). Figure C-1.b shows that 𝛾 is proportional to the sweeping angle 𝜌 for circle arc and to 𝑥 for line. 

 
 

(a) (b) 
Figure C-1: (a) Roller location coordinates (b) proportionality of 𝜸 for circle arc and line 

a) Conversion form 𝜸 to 𝒔 

Starting from a coordinate 𝛾, the equivalent 𝑠 value is calculated with two steps. First, 𝑠𝑤ℎ𝑜𝑙𝑒, the 

curvilinear abscissa corresponding to ⌊𝛾⌋ is calculated following eqs.(C-2) and (C-3). 

 𝑠𝑤ℎ𝑜𝑙𝑒 =∑ 𝑙𝑝𝑜𝑟𝑡𝑖𝑜𝑛
𝑘

⌊𝛾⌋

𝑘=1

 (C-2) 

with: 

• 𝑙𝑝𝑜𝑟𝑡𝑖𝑜𝑛
𝑘 , the length of portion 𝑘, calculated according to eqs.(C-3). 
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Circle arc: 𝑙𝑝𝑜𝑟𝑡𝑖𝑜𝑛
𝑘 = 𝑅𝑘𝜃𝑘 (a) 

(C-3) 

Line: 𝑙𝑝𝑜𝑟𝑡𝑖𝑜𝑛
𝑘 = (𝑥𝐵

𝑘 − 𝑥𝐴
𝑘)√1 +𝑚𝑘

2 (b) 

with: 

• 𝑅𝑘, 𝜃𝑘, radius and central angle of curve portion 𝑘 (in case of circle arc), respectively 

• 𝑥𝐵
𝑘, 𝑥𝐴

𝑘 and 𝑚𝑘 the x-coordinate of points 𝐴, 𝐵 and the line slope for curve portion 𝑘 (in case 

of line), respectively 

Then, 𝑠𝑓𝑟𝑎𝑐, the length along the curve considered between ⌊𝛾⌋ and 𝛾 is calculated according to 

eqs.(C-4). 

Circle arc: 𝑠𝑓𝑟𝑎𝑐 = {𝛾}𝑅⌊𝛾⌋+1𝜃⌊𝛾⌋+1 (a) 

(C-4) 

Line: 𝑠𝑓𝑟𝑎𝑐 = {𝛾} (𝑥𝐵
⌊𝛾⌋+1

− 𝑥𝐴
⌊𝛾⌋+1

)√1 +𝑚⌊𝛾⌋+1
2  (b) 

Finally, the equivalent 𝑠 value is calculated according to eq.(C-5). 

 𝑠 = 𝑠𝑤ℎ𝑜𝑙𝑒 + 𝑠𝑓𝑟𝑎𝑐  (C-5) 

b) Conversion from 𝒔 to 𝜸 

First, comparison between 𝑠 and the curvilinear abscissa of the points of transition between curve 

portions is carried out until a value of ⌊𝛾⌋ fulfilling eq.(C-6) is found. 

 𝑠𝐴
⌊𝛾⌋+1

≤ 𝑠 ≤ 𝑠𝐵
⌊𝛾⌋+1

 (C-6) 

From ⌊𝛾⌋, 𝑠𝑓𝑟𝑎𝑐  is calculated following eq.(C-7). 

 𝑠𝑓𝑟𝑎𝑐 = 𝑠 − 𝑠𝐴
⌊𝛾⌋+1

 (C-7) 

The 𝑠𝑓𝑟𝑎𝑐  value obtained is used to calculate {𝛾} according to eqs.(C-8) 

Circle arc: {𝛾} =
𝑠𝑓𝑟𝑎𝑐

𝑅⌊𝛾⌋+1𝜃⌊𝛾⌋+1
 (a) 

(C-8) 

Line: 
{𝛾} =

𝑠𝑓𝑟𝑎𝑐

[(𝑥𝐵
⌊𝛾⌋+1

− 𝑥𝐴
⌊𝛾⌋+1

)√1 +𝑚⌊𝛾⌋+1
2 ]

 
(b) 

Finally, 𝛾 is obtained from ⌊𝛾⌋ and {𝛾} according to eq.(C-1). 
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C.2 Conversion between 𝜸 and (𝒙, 𝒚) 

Roller location can also be given in coordinates (𝑥, 𝑦). These coordinates are associated with a local 

tooth profile coordinate system (𝑂𝑖, 𝑥i⃗⃗⃗ ⃗, 𝑦i⃗⃗⃗ ⃗), see Figure C-1.b. 

a) Conversion from 𝜸 to 𝑴(𝒙, 𝒚) 

Knowing the 𝛾, the equivalent coordinates (𝑥, 𝑦) are calculated according to eqs.(C-9) depending on 

curve portion ⌊𝛾⌋ + 1 being a circle arc or a line. 

Circle arc: {
𝑥 = 𝑥𝑐

⌊𝛾⌋+1
+ 𝑅⌊𝛾⌋+1 cos (𝜃(1 − {𝛾}) + 𝜃0

⌊𝛾⌋+1
)

𝑦 = 𝑦𝑐
⌊𝛾⌋+1

+ 𝑅⌊𝛾⌋+1 sin (𝜃(1 − {𝛾}) + 𝜃0
⌊𝛾⌋+1

)
 (a) 

(C-9) 

Line: {
𝑥 = 𝑥𝐴

⌊𝛾⌋+1
+ {𝛾} (𝑥𝐵

⌊𝛾⌋+1
− 𝑥𝐴

⌊𝛾⌋+1
)

𝑦 = 𝑚⌊𝛾⌋+1𝑥 + 𝑝⌊𝛾⌋+1
 (b) 

with: 

• (𝑥𝐶 , 𝑦𝐶), the centre coordinates of circle arc ⌊𝛾⌋ + 1 (see Figure B-1.a) 

• 𝑅⌊𝛾⌋+1, 𝜃⌊𝛾⌋+1 and 𝜃0
⌊𝛾⌋+1

, the radius, central angle and tilting angle of the circle arc ⌊𝛾⌋ + 1, 

respectively (see Figure B-1.a and Figure C-1.b) 

• 𝑥𝐵
⌊𝛾⌋+1

, 𝑥𝐴
⌊𝛾⌋+1

, 𝑚⌊𝛾⌋+1 and 𝑝⌊𝛾⌋+1 the x-coordinate of points 𝐴 and 𝐵, the line slope and the y-

intercept for curve portion ⌊𝛾⌋ + 1, respectively 

Depending on the curve considered (tooth profile or roller centre trajectory), coordinates (𝑥, 𝑦) can 

specify the location of the roller centre or the roller/profile contact point. 

b) Conversion from 𝑴(𝒙, 𝒚) to 𝜸 

Comparisons between x-coordinates of points 𝐴 and 𝐵 of each curve portion (see Figure B-) and 𝑥 are 

carried out in order to determine ⌊𝛾⌋ according to eq.(C-10). 

 𝑥𝐴
⌊𝛾⌋+1

≤ 𝑥 ≤ 𝑥𝐴
⌊𝛾⌋+1

 (C-10) 

Once ⌊𝛾⌋ is known, {𝛾} is calculated according to eqs.(C-11) (see Figure C-1.b). 

Circle arc: {𝛾} =
𝜌

𝜃⌊𝛾⌋+1
 (a) 

(C-11) 

Line: {𝛾} =
𝑥 − 𝑥𝐴

⌊𝛾⌋+1

𝑥𝐵
⌊𝛾⌋+1

− 𝑥𝐴
⌊𝛾⌋+1

 (b) 

with: 

• 𝜌 = (𝑐⌊𝛾⌋+1𝐵⌊𝛾⌋+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗, 𝑐⌊𝛾⌋+1𝑀⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ), see Figure C- 

Finally, 𝛾 is obtained from ⌊𝛾⌋ and {𝛾} according to eq.(C-1).  
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 Adjacent roller location 

D.1 General procedure 

This appendix presents the procedure used to calculate the coordinate 𝛾𝑖+1 of roller 𝑖 + 1 knowing 𝛾𝑖, 

the coordinate of roller 𝑖. The procedure presented is based on the previous works by Naji & Marshek 

[64] and Kim & Johnson [52]. Notations introduced in Appendix B and Appendix C are used. 

As a first step, the roller centre coordinate (𝑥𝑖, 𝑦𝑖), in the local coordinate system 𝑥i⃗⃗⃗ ⃗, 𝑦i⃗⃗⃗ ⃗, are calculated 

from 𝛾𝑖  following §C.2. 

Then, from (𝑥𝑖 , 𝑦𝑖), coordinates (𝑥𝑖
′, 𝑦𝑖′) of the centre of a hypothetic roller in contact with the 

adjacent tooth profile with the same 𝛾 coordinate are calculated using eq.(D-1). (𝑥𝑖
′, 𝑦𝑖′) are still 

expressed in the local coordinate system 𝑥i⃗⃗⃗ ⃗, 𝑦i⃗⃗⃗ ⃗ (see Figure D-1.a). 

 {
𝑥𝑖
′ = 𝑥𝑖 cos(𝛼) − (𝑅𝑝 + 𝑦𝑖) sin(𝛼)

𝑦𝑖
′ = (𝑅𝑝 + 𝑦𝑖) cos(𝛼) + 𝑥𝑖 sin(𝛼) − 𝑅𝑝

 (D-1) 

with: 

• 𝛼 = 2𝜋/𝑍, the pitch angle of the sprocket considered 

• 𝑅𝑝 =
𝑝𝑠𝑝𝑟𝑜𝑐𝑘𝑒𝑡

2 sin(𝛼/2)
, the pitch radius of the sprocket considered 

From (𝑥𝑖
′, 𝑦𝑖′), the problem reduces to find the intersection between the roller centre trajectory of 

tooth profile 𝑖 and a circle of radius 𝑝𝑐ℎ𝑎𝑖𝑛 centred in (𝑥𝑖
′, 𝑦𝑖′). If the tooth profile has been defined 

following the constraints stated in Chapter II, no more than one intersection can exist (see Figure 

D-1.b). 

  
(a) (b) 

Figure D-1: (a) Calculation of (𝒙𝒊
′, 𝒚𝒊

′) from (𝒙𝒊, 𝒚𝒊) (b) Calculation of (𝒙𝒊+𝟏, 𝒚𝒊+𝟏) from (𝒙𝒊
′, 𝒚𝒊

′) 

To find the intersection, it is necessary to determine on which curve portion the roller 𝑖 + 1 lies 

(located by 𝑥𝑖+1 and 𝑦𝑖+1. To do so, eq.(D-2) defines distances 𝑑 between (𝑥𝑖
′, 𝑦𝑖′) and the points 𝐴 

and 𝐵 of each curve portion (see Figure B-1). 
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{
 

 𝑑𝐴,𝑘 = √(𝑥𝐴
𝑘 − 𝑥𝑖

′)
2
+ (𝑦𝐴

𝑘 − 𝑦𝑖
′)
2

𝑑𝐵,𝑘 = √(𝑥𝐵
𝑘 − 𝑥𝑖

′)
2
+ (𝑦𝐵

𝑘 − 𝑦𝑖
′)
2
 (D-2) 

The index 𝑘 of the curve portion of interest must fulfil eq.(D-3). 

 (𝑑𝐴,𝑘 − 𝑝𝑐ℎ𝑎𝑖𝑛)(𝑑𝐵,𝑘 − 𝑝𝑐ℎ𝑎𝑖𝑛) ≤ 0 (D-3) 

Then, depending on portion 𝑘 being a circle arc or a line, the coordinates (𝑥𝑖+1, 𝑦𝑖+1) of the adjacent 

roller can be found analytically. Solution for circle/circle and circle/line intersections are given in §D.2 

or §D.3, respectively. 

Finally, coordinates (𝑥𝑖+1, 𝑦𝑖+1) are converted into equivalent roller location 𝛾𝑖+1 still following §C.2. 

The procedure can therefore be summarised as follows: 

1. Calculate (𝑥𝑖 , 𝑦𝑖) from 𝛾𝑖. 

2. Calculate the equivalent coordinate (𝑥𝑖
′, 𝑦𝑖

′) of an hypothetic roller with the same coordinate 

𝛾 in contact with the adjacent tooth profile. 

3. Solve analytically the intersection between the roller centre trajectory and the circle of centre 

(𝑥𝑖
′, 𝑦𝑖

′) and radius 𝑝𝑐ℎ𝑎𝑖𝑛. The solution gives (𝑥𝑖+1, 𝑦𝑖+1). 

4. Calculate 𝛾𝑖+1 from (𝑥𝑖+1, 𝑦𝑖+1). 

Finally, it can be noted that the procedure can be inversed to determine the coordinates of the 

preceding roller (i.e., 𝛾𝑖−1 from 𝛾𝑖). 

  

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0066/these.pdf 
© [G. Lanaspeze], [2023], INSA Lyon, tous droits réservés



Adjacent roller location 

 

 

241 

D.2 Intersection between two circles 

The procedure detailed here is based on [102]. 

The problem outline is to analytically find the coordinates of the intersection points between two given 

circles. In the general case, two circles can have either two, one or no intersection points. However, as 

the circle arc considered fulfils eq.(D-3), the case of interest is the first one (two intersection points). 

The problem of finding the intersection points of two circles (denoted 1 and 2) can be expressed by 

the following equation system for 𝑥 and 𝑦 given in eqs.(D-4). 

 {
(𝑥 − 𝑋1)

2 + (𝑦 − 𝑌1)
2 = 𝑅1

2

(𝑥 − 𝑋2)
2 + (𝑦 − 𝑌2)

2 = 𝑅2
2 (D-4) 

with: 

• 𝑋1 and 𝑌1, the coordinates of the first circle centre 

• 𝑅1, the radius of the first circle 

• 𝑋2 and 𝑌2, the coordinates of the second circle centre 

• 𝑅2, the radius of the second circle 

The system can be written equivalently in a coordinate system with (𝑋1, 𝑌1) as origin, see eqs.(D-5). 

 {
𝑥2 + 𝑦2 = 𝑅1

2

(𝑥 − 𝑋2
′)2 + (𝑦 − 𝑌2

′)2 = 𝑅2
2 (D-5) 

Eqs.(D-5) is equivalent to eqs.(D-6). 

 ൜
𝑥2 + 𝑦2 = 𝑅1

2

𝑎𝑥 + 𝑏𝑦 = 𝑐
 

(a) 
(D-6) 

(b) 

with: 

• 𝑎 = 2. 𝑋2
′  

• 𝑏 = 2. 𝑌2
′ 

• 𝑐 = 𝑅1
2 + 𝑋2

′ 2 + 𝑌2
′2 + 𝑅2

2 
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Figure D-2: Intersection points of two circles 

Eq.(D-6.b) is characteristic of the straight-line connecting the two intersection points (𝑥1, 𝑦1) and 

(𝑥2, 𝑦2), see Figure D-2. 

Substituting 𝑦2 according to eq.(D-6.a) into the square of eq.(D-6.b) leads to a new quadratic equation 

for 𝑥, see eq.(D-7). 

 𝑥2(𝑎2 + 𝑏2) + 𝑥(−2𝑎𝑐) + (𝑐2 − 𝑏2𝑅1
2) = 0 (D-7) 

The discriminant for eq.(D-7) is given by eq.(D-8). 

 Δ = (−2𝑎𝑐)2 − 4(𝑎2 + 𝑏2)(𝑐2 − 𝑏2𝑅1
2) (D-8) 

Δ in eq.(D-8) is always positive as it is assumed that there are two distinct intersection points. The x-

coordinate for both intersection points are then given by eq.(D-9). 

 𝑥1,2 =
2𝑎𝑐 ± √Δ

2(𝑎2 + 𝑏2)
 (D-9) 

The corresponding y-coordinates are given, using eq.(D-6.b), in eq.(D-10). 

 𝑦1,2 =
𝑐 − 𝑎𝑥1,2

𝑏
 (D-10) 

Thus, the solving procedure for the problem of circle intersection is as follows: 

1. Write the equation system in the coordinate system with (𝑋1, 𝑌1) as origin 

2. Solve the problem using eqs.(D-6) to (D-10) 

3. Move back the solution (𝑥1,2, 𝑦1,2) into the original coordinate system 

Finally, among the two intersection points, only one is of interest for the problem of consecutive roller 

location. Therefore, a final test to determine which point lies in the considered circle arc must be 

carried out.  
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D.3 Intersection between a circle and a line 

As for the problem with two circles, the intersection between a straight line and a circle can either take 

place at zero, one or two distinct points. Similarly, considering eq.(D-3) only the two-intersection point 

case is considered. 

 
Figure D-3: Intersection points between a circle and a line 

Knowing 𝐴 and 𝐵, two distinct points on the straight line (see Figure D-3), the intersection problem 

can be expressed with the equation system for 𝑥 and 𝑦 given in eqs.(D-11). 

 ൜
𝑦 = 𝑚𝑥 + 𝑝

(𝑥 − 𝑋𝐶)
2 + (𝑦 − 𝑌𝐶)

2 = 𝑅2
 

(a) 
(D-11) 

(b) 

with: 

• 𝑚 =
𝑌𝐵−𝑌𝐴

𝑋𝐵−𝑋𝐴
 and 𝑝 = 𝑌𝐵 −𝑚𝑋𝐵, the parameters of the straight-line equation 

• 𝑋𝐶  and 𝑌𝐶, the circle centre coordinates 

• 𝑅, the circle radius 

Substituting eq.(D-11.a) into eq.(D-11.b) leads to the quadradic equation for 𝑥 given in eq.(D-12). 

 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 (D-12) 

with: 

• 𝑎 = 1 +𝑚2 

• 𝑏 = −2𝑋𝐶 + 2𝑚𝑝 − 2𝑚𝑌𝐶  

• 𝑐 = 𝑋𝐶
2 + 𝑝2 − 2𝑝𝑌𝐶 + 𝑌𝐶

2 − 𝑅2 

The coordinates of the two intersection points are therefore given by eqs.(D-13). 

 { 𝑥1,2 =
−𝑏 ± √Δ

2𝑎
𝑦1,2 = 𝑚𝑥1,2 + 𝑝

 
(a) 

(D-13) 
(b) 
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with Δ = 𝑏2 − 4𝑎𝑐, the discriminant of eq.(D-12). 

As for the intersection of circles, the solution of practical use is the one lying into the interval of 

interest. 
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 Calculation of the mid-span movement 

This appendix details the numerical procedure used to calculate the mid-span movement and 

ultimately the 𝑠𝑙𝑎𝑐𝑘 parameter (see Chapter II). 

It is assumed that the maximal slack strand deflection is obtained when the slack strand trajectory is 

constrained in such way that it forms two straight parts connected at the link where the hypothetic 

load is applied (see Figure E-1). Therefore, for each roller of the slack strand, the corresponding two 

lines trajectory is computed by finding the intersection of two circles Figure E-1): 

• Circle of centre 𝐸Ⅰ and radius 𝑖𝑚𝑠. 𝑝 

• Circle of centre 𝐸Ⅱ and radius (𝑛𝑠 − 𝑖𝑚𝑠). 𝑝 

with:  

• 𝑖𝑚𝑠 ∈ ⟦1, 𝑛𝑠 − 1⟧ 

Note: Index 𝑖𝑚𝑠 is different from the spatial index 𝑖 used for rollers and links numbering. 

 
Figure E-1: Calculation of the mid-span movement 𝒅 

Once the intersection point is found, the distance 𝑑𝑖𝑚𝑠  to the common tangent is calculated (Figure 

E-). The process is repeated for all 𝑖𝑚𝑠. The mid-span movement for sub-position 𝑚 is considered to 

be twice the biggest found deflection 𝑑 = max(𝑑𝑖𝑚𝑠). This leads to eq.(E-1) giving the expression of 

the instantaneous 𝑠𝑙𝑎𝑐𝑘𝑚 parameter (i.e., for a given drive sub-position 𝑚). The final 𝑠𝑙𝑎𝑐𝑘 is 

calculated as a mean for ten linearly spaced sub-position as detailed in Chapter II. 

 𝑠𝑙𝑎𝑐𝑘𝑚 =
2𝑑

𝐿
 (E-1) 

It must be noted that this geometric method does not consider possible collision between the 

stretched strand and the sprockets. Indeed, for high looseness, a slack strand stretched upward might 

collide a sprocket. For such case, the theoretical two-line trajectory, assumed for mid-span calculation 

cannot be reached (see Figure E-2). The theoretical mid-span movement would therefore be higher 

than what could be measured for a real drive in identical conditions. Moreover, the calculated 

geometric deflection is the limit theoretically obtained for an infinite force pulling the strand. The 

deflection observed on a real drive would necessarily be smaller. 

However, the theoretical deflection computed geometrically can be compared as an order of 

magnitude with a deflection observed on real drives (see for instance Chapter V). 
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Figure E-2: Possible collision between the stretched slack strand and the sprockets 

  

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0066/these.pdf 
© [G. Lanaspeze], [2023], INSA Lyon, tous droits réservés



Choice of 𝒂 (transition of friction correction parameter) 

 

 

247 

 Choice of 𝒂 (transition of friction 

correction parameter) 

The tanh function is introduced in Chapter II to calculate the friction correction angle 𝛿. It allows to 

continuously join the two extreme values ±atan(𝜇𝛿). The tanh function depends on the parameter 𝑎 

giving the width of the transition zone. The choice of this parameter changes the relation between 𝛿 

and 𝑠𝑐,1 (see eq.(II-28)) therefore influencing the relation between 𝑠𝑐,1 and the loading conditions 

(illustration of this relation is given in Figure II-27). 𝑎 is a numerical parameter, therefore, its value is 

chosen so that it does not influence the results obtained. 

Due to the connection between the global kinematics (which considers all the roller centres on the 

pitch circles) and the local sprocket sub-model (considering precise roller location along the tooth 

profile), the slack strand tensions 𝑇𝑠,𝑗 change discontinuously when a roller is added or removed to the 

slack strand (see for instance Figure III-18). These discontinuities pass from the slack tension to the 

tension ratio applied on the sprockets. Combined with the modification of 𝛿, these discontinuities can 

be amplified resulting in significant jumps in the roller location evolution predicted. Depending on the 

value of 𝑎, the amplitude of these discontinuities varies (see evolution of 𝑠𝑐 “per component” in Figure 

F-1). 

 
Figure F-1: Examples of discontinuities in 𝒔𝒄 evolution for the driving sprocket 

The value of 𝑎 is chosen so that it does not affect the amplitude of the discontinuities. Figure F-2 shows 

the maximal gap (defined in Figure F-1) on the roller location 𝑠𝑐 depending on the torque applied on 

the driving sprocket for several values of 𝑎 (from 𝑎 = 1𝑒−6𝑚 to 𝑎 = 1𝑒−12𝑚). Two drives are studied 

(as in Chapter IV). A 31|31 double pitch industrial drive (𝑠𝑙𝑎𝑐𝑘 =  4%) and a 60|15 cycling drive 

(𝑠𝑙𝑎𝑐𝑘 = 11%), both with the profile 𝑁𝐹𝑚𝑖𝑛. All calculations are performed with |𝛿(∞)| = 5°. 
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Figure F-2: Evolution of the maximal gap depending on parameter 𝒂, (a) cycling (b) industrial drives  

For the cycling drive (Figure F-2.a), the 𝑎 = 1𝑒−6𝑚 curve stops at 𝐶𝐼 = 240𝑁.𝑚 as no solution was 

found beyond (i.e., the value of 𝑎 also influences the limit tension ratio). Emergence of discontinuities 

are characterised by rapid increase of the gap. For both cases, large values of 𝑎 induce the apparition 

of discontinuities. For the industrial drive (Figure F-2.b), no effect is reported for value smaller than 

1𝑒−7𝑚 (for the explored torque range), 1𝑒−8 for the cycling drive. 

The influence of the parameter 𝑎 varies depending on the profile used and the loading conditions. 

Therefore, to be sure to always lie on the plateau where variable 𝑎 has no effect, a value of 𝑎 =

1𝑒−10𝑚 is chosen for the entire manuscript (unless otherwise stated). 

The influence of 𝑎 on drive efficiency calculated by the CDEM is detailed in Appendix I 
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 Back-and-forth roller motion 

It was shown in Chapter IV that un-monotonous roller motion called back-and-forth roller motion can 

appear. This appendix explores the underlying causes behind this specific phenomenon. 

The conclusions of Chapter IV, in terms of roller motion, can be summarised as follows. Going from 

high to low tension ratios, a sprocket goes through three behaviours: 

• The inter-tp behaviour where rollers tend to cross the profile from 𝑡𝑝𝐵 to 𝑡𝑝𝐴 

• The static roller behaviour where rollers are (quasi) immobile at 𝑡𝑝𝐵 

• The tooth climbing behaviour where rollers climb the tooth flank beyond 𝑡𝑝𝐵 to reach smaller 

pressure angles 𝜙 

a) Inter-tp behaviour 

Between each sub-position, angles 𝛼𝑠 and 𝛼𝑡 vary which modifies the relation between 𝑇𝑠/𝑇𝑡 and 𝑠𝑐,1 

(see Chapter II). Moreover, the constant torque condition, imposed in Chapter IV, changes the tension 

ratio required which also modifies the location of the first roller 𝑠𝑐,1. In the absence of tension ratio 

variation, Kim & Johnson show in [52] that the resulting roller motion is monotonous from 𝑡𝑝𝐵 to 𝑡𝑝𝐴. 

To explore the influence of the varying tension ratio, the constant torque condition is replaced by a 

constant tensions one. Figure G-1 gives an example for the case presented in Chapter IV with 𝐶Ⅰ =

50𝑁.𝑚 (see Figure IV-7). The tight and strand tensions are set to 830 and 30𝑁, respectively to closely 

match the loading conditions. This results in the driving torque 𝐶Ⅰ varying between 49.40 and 

50.50𝑁.𝑚. 

 
Figure G-1: Comparison between roller motion with constant torque or constant tensions conditions 
(based on Figure IV-7, 𝑪Ⅰ = 𝟓𝟎𝑵.𝒎) 

Back-and-forth roller motions disappear for the constant tensions case (consistently with the results 

of Kim & Johnson in [52]). This shows that the tension ratio variation causes back-and-forth roller 

motion in the inter-tp behaviour. It is interesting to note that the absolute distance 𝑑𝑖  reached is similar 

for both cases which confirms that the loading conditions are similar. 
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b) Tooth climbing behaviour 

In the tooth climbing behaviour, removing the tension ratio variation using the constant tensions 

conditions is not sufficient to prevent back-and-forth roller motion. This might be caused by the 

variation of slopes in curve illustrating the relation between 𝑠𝑐,1 and 𝑇𝑠/𝑇𝑡. The slopes usually 

shallower after the transition points (i.e., for 𝑠𝑐,1 > 𝑠𝑐,𝑡𝑝). The most complex slope variation is 

observed for the 𝐴𝑆𝐴 profile (see Figure II-29). 

Figure G-2 shows a comparison between constant torque and constant tensions for the 𝐶Ⅰ = 600𝑁.𝑚 

case (renvoi Figure IV-25). The tight and slack tensions are set to 𝑇𝑡 = 9622𝑁 and 𝑇𝑠 = 30𝑁. This 

results in the driving torque 𝐶Ⅰ varying between 592.7 and 605.2𝑁.𝑚. The loading conditions are such 

that the 𝐴𝑆𝐴 sprocket is in the tooth climbing behaviour, while the 𝑁𝐹𝑚𝑎𝑥 one is in static roller and 

the 𝑁𝐹𝑚𝑖𝑛 is in inter-tp. It is observed that the constant tensions conditions remove back and forth 

motion for the 𝑁𝐹𝑚𝑖𝑛 sprocket (i.e., inter-tp behaviour) but not for the 𝐴𝑆𝐴 one (tooth climbing 

behaviour). 

 
Figure G-2: Comparison between roller motion with constant torque or constant tensions conditions 
(based on Figure IV-25, 𝑪Ⅰ = 𝟔𝟎𝟎𝑵.𝒎) 

Figure G-3 shows a comparison of constant torque and constant tensions cases based on the 𝐶Ⅰ =

600𝑁.𝑚 configuration. It confirms that link tension 𝑇, contact force 𝑃 and roller motions 𝑑 and 𝑑̅ are 

similar. 
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(a) 

 
(b) 

Figure G-3: Comparison between (a) constant torque and (b) constant tensions cases (based on Figure 
IV-25, 𝑪Ⅰ = 𝟔𝟎𝟎𝑵.𝒎) 
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 Calculation of 𝜟𝜽 

The variation of roller orientation Δ𝜃𝑘 between sub-positions 𝑘 and 𝑘 + 1 is calculated from Δ𝑠𝑘 (see 

Chapter V). For case 𝐵 (i.e., sliding at both bush/roller and roller/profile interfaces), the relation 

between Δ𝜃 and Δ𝑠 is given by eq.(H-1) (see Chapter V). 

Case B: Δ𝜃𝑘 =
Δ𝑠𝑘
𝑅𝑐𝑢𝑟𝑣𝑒

 (H-1) 

with: 

• 𝑅𝑐𝑢𝑟𝑣𝑒 the profile curvature radius at the roller/profile contact point considered. 𝑅𝑐𝑢𝑟𝑣𝑒 

can be positive or negative depending on whether the profile portion considered is convex 

or concave, respectively. 

However, it is possible that the variation of curvilinear abscissa Δ𝑠𝑘 occurs between two curve 

portions. In the case of one portion being concave (𝑅𝑐𝑢𝑟𝑣𝑒 < 0) and the second one being convex 

(𝑅𝑐𝑢𝑟𝑣𝑒 > 0), the sigh of Δ𝜃𝑘 must be clarified. 

This case typically arises for two-circle profiles (i.e., 𝑁𝐹 and 𝐶𝑃 profiles) where the transition point 𝑡𝑝𝐵 

lies in the second circle arc (being concave). In the inter-tp regime, roller location goes from 𝑡𝑝𝐵, in 

the concave circle arc, toward 𝑡𝑝𝐴 through the tooth bottom which is a convex circle arc (examples of 

transition point coordinates are given in Appendix A). 

In the following, it is assumed that the roller tracked is in contact with a curve portion denoted 1 at 

sub-position 𝑘 before transitioning to a second curve portion 2 for sub-position 𝑘 + 1. Therefore, Δ𝑠𝑘 

can be split in two contributions according to eq.(H-2). 

 Δ𝑠𝑘 = Δ𝑠𝑘,1 + Δ𝑠𝑘,2 (H-2) 

with: 

• Δ𝑠𝑘,1, the variation of curvilinear abscissa in portion 1 

• Δ𝑠𝑘,2, the variation of curvilinear abscissa in portion 2 

On both curve portions, the variation of curvilinear abscissa results in a variation of roller orientation 

Δ𝜃𝑘,1 and Δ𝜃𝑘,2 calculated according to eq.(H-3) (adapted from eq.(H-1)).  

 Δ𝜃𝑘,𝑖 =
Δ𝑠𝑘,𝑖
𝑅𝑐𝑢𝑟𝑣𝑒,𝑖

 (H-3) 

with: 

• Δ𝑠𝑘,𝑖, the variation of curvilinear abscissa in portion 𝑖 

• 𝑅𝑐𝑢𝑟𝑣𝑒,𝑖, the curvature radius of portion 𝑖 (infinite for a line portion) 

The global variation of roller orientation Δ𝜃𝑘 is calculated as the sum of the absolute value of each 

contribution. The sign is taken as the sign of the biggest contributor (between Δ𝜃𝑘,1 and Δ𝜃𝑘,2). The 
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hypothesis stated is that possible compensation with Δ𝜉 and Δ𝜈 (see eq.(V-11) and eq.(V-21)) is more 

likely to happen for the portion with the biggest Δ𝜃𝑘,𝑖. This translates into eq.(H-4). 

 Δ𝜃𝑘 = sgn(∑Δ𝜃𝑘,𝑖

2

𝑖=1

)∑|Δ𝜃𝑘,𝑖|

2

𝑖=1

 (H-4) 

with: 

• sgn, the sign function such that sgn(𝑥) = {

−1 𝑖𝑓 𝑥 < 0
0 𝑖𝑓 𝑥 = 0
1 𝑖𝑓 𝑥 > 0

 

The influence of this hypothesis on the drive efficiency obtained reduces as the number of sub-

positions considered increases which cause the values of Δ𝑠𝑘 and Δ𝜃𝑘 to reduce. Its influence is 

therefore included into the influence of the discretisation explored in Appendix I. 
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 Influence of 𝜻 discretisation, 𝜹, and 𝒂 on 

efficiency 𝜼 

This appendix explores the influence of various parameters on the efficiency 𝜂 predict by the Chain 

Drive Efficiency Model (CDEM, see Chapter V). All calculations are carried out for the classical track 

cycling drive 60|15. Unless otherwise stated, 𝑁𝐹𝑚𝑖𝑛 tooth profile is used for the chainring and the rear 

cog. The first part (§I.1) proposes a sensibly study of drive efficiency to the chosen numerical 

discretisation. The two followings (§I.2 and §I.3) explore the influence of |𝛿(∞)| and 𝑎 on the efficiency 

results (§I.2 and §I.3, respectively). They show that this manuscript conclusions are largely 

independent of these parameters. 

I.1 Influence of 𝜻 discretisation on 𝜼 

This appendix explores the influence of the discretisation pitch on the results of the CDEM. The number 

of sub-positions 𝑘𝑚𝑎𝑥 considered for efficiency calculation directly depends on the discretisation of 𝜁 

within the drive period explored in the QSCDM (see Chapter II). The influence of this discretisation is 

therefore tested. Calculation parameters are set according to Table I-1. Different looseness settings 

𝑠𝑙𝑎𝑐𝑘 are considered. Similarly to Chapter VI, the centre distance 𝐿 is set to the smallest value above 

380𝑚𝑚 that satisfies the 𝑠𝑙𝑎𝑐𝑘 setting considered. The chainring torque is set at 𝐶Ⅰ = 5𝑁.𝑚 which is 

the case with highest influence of roller losses (see Chapter VI). It was chosen to vary the looseness 

setting 𝑠𝑙𝑎𝑐𝑘 as this parameter shows the most noticeable influence of 𝜁 discretisation on drive 

efficiency.  

𝒁Ⅰ|𝒁Ⅱ 𝒔𝒍𝒂𝒄𝒌 (%) 𝑳 (𝒎𝒎) 𝑵𝒃𝒍𝒊𝒏𝒌 𝑪Ⅰ (𝑵.𝒎) |𝜹(∞)| 𝒂 (𝒎) 

60|15 2 → 20 > 380 100 5 5° 1𝑒−10 

Table I-1: Drive parameter for the influence of 𝜻 discretisation on drive efficiency 

For the conditions explored (typical track cycling drive), meshing losses are dominant (see Chapter VI). 

It is therefore necessary to precisely capture the meshing and un-meshing process at both the 

chainring and the rear cog to ensure reliable efficiency prediction. 

To limit the number of sub-positions explored by the QSCDM, the discretisation pitch is refined only 

around the event of roller capture and release (associated to meshing losses). These events are 

characterised by discontinuities in the evolution of angles 𝜓𝑠,𝑡,𝑗 and number of links 𝑛𝑠,𝑡,𝑗 (see for 

instance §III.1.1). When refined, the interval in which the discontinuities occur is subdivided in 9 

smaller intervals (see Figure I-1). 

 
Figure I-1: Reduced discretisation pitch around capture/release events 

Capture/release event

Reduced discretisation pitch
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Depending on the cases, refinement is carried out around all the events of roller capture/release or 

only around some of them. Indeed, it is known that meshing losses are mostly caused at the tight 

strand and by the sprocket with the smallest tooth number (see Chapter I and Chapter VI). Therefore, 

it is interesting to change only the discretisation pitch around the most influent (in terms of power 

losses) meshing/un-meshing events. Table I-2 details the three possible refinements considered here. 

All Driving (chainring) and driven (rear cog) meshing/un-meshing 

Tight Driving (chainring) meshing and driven (rear cog) un-meshing 

Small teeth 
𝑍Ⅰ > 𝑍Ⅱ: Driving (chainring) meshing 

𝑍Ⅰ ≤ 𝑍Ⅱ:Driven (rear cog) meshing 

Table I-2: Definition of all, tight and small teeth refinement 

Table I-3 details different refinement strategies. Case 1 corresponds to 25 evenly spaced points per 

period. Case 6 exhibits the highest number of points. It must be noted that refinements introduced in 

Table I-2 can be combined. For instance, for case 3 (see Table I-3), discretisation pitch is first reduced 

around all the capture and release events before a second refinement is carried out only for those of 

the tight strand. 

Case 𝟏 25 points per period 

Case 𝟐 25 points per period + all 

Case 𝟑 25 points per period + all + tight 

Case 𝟒 25 points per period + all + tight + small teeth 

Case 𝟓 25 points per period + all + all + tight + small teeth 

Case 𝟔 25 points per period + all + all + all + tight + small teeth 

Table I-3: Discretisation characteristics of the six tested cases 

Figure I-2 shows the obtained values of 𝜁 as a function of the sub-position index 𝑚 for the 60|15, 

𝑠𝑙𝑎𝑐𝑘 = 11% drive. The refinements at each capture/release events are clearly visible. Consistently 

with Table I-3, for instance for case 6, the discretisation pitch is minimal (i.e., the curve slope in Figure 

I-2) around the roller release from the rear cog as this event correspond to the tight strand for the 

smallest sprocket. The interest of the non-uniform pitch is also visible. Indeed, using a uniform 

discretisation with the smallest pitch (from case 6 around roller release from the rear) would result is 

a significantly higher number of sub-positions (more than 1 000 000 for the example of Figure I-2). 

Therefore, the variable pitch allows important precision around events of interest without too 

significant consequences on the computational cost. 
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Figure I-2: Evolution of 𝜻 as a function of 𝒎 for each discretisation case (𝟔𝟎|𝟏𝟓, 𝑪Ⅰ = 𝟓𝑵.𝒎, 𝒔𝒍𝒂𝒄𝒌 =
𝟏𝟏%) 

Figure I-3 shows the influence of the considered 𝜁 discretisation on the relation between 𝑠𝑙𝑎𝑐𝑘 setting 

and efficiency 𝜂 (only cases 1, 4 and 6 are plotted for visibility reasons). Curves show mean efficiency 

between cases A and B (see Chapter V). It is observed that efficiencies predicted with case 1 are always 

higher than those obtained with cases 4 and 6. Moreover, an oscillation pattern is visible. Efficiencies 

predicted with case 1 gradually diverge from the ones predicted with case 6 before discontinuously 

catching back. This is consistent with a discretisation issue of the meshing/un-meshing phenomenon. 

No significant variation is visible for case 6 which suggests that the lower discretisation pitch around 

roller capture/release is sufficient to ensure independence of 𝜁 discretisation on 𝜂. Evolution for cases 

4 and 6 are similar which suggest that sufficient discretisation might be reached before case 6. 

 
Figure I-3: Comparison of mean efficiency (between cases A and B) for cases 𝟏, 𝟒 and 𝟔  

Figure I-4.a shows the efficiency difference between each case and case 6 considered to be the 

reference (still in mean efficiency between cases A and B). The mean numbers of considered sub-
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positions 𝑛𝑏̅̅̅̅ 𝑝𝑜𝑠 for one drive period are also presented in Figure I-4.b. This number is calculated as the 

mean of 𝑛𝑏𝑝𝑜𝑠 for all slack settings (between from 𝑠𝑙𝑎𝑐𝑘 = 2 to 20%). This number is not constant 

for all 𝑠𝑙𝑎𝑐𝑘 settings as capture/release events might occurs in the same interval resulting in lower 

number of sub-positions per drive period. 

 
Figure I-4: (a) Efficiency difference with case 𝟔 (b) Mean number of sub-positions within a drive period 

The oscillations observed in Figure I-3 for case 1 are clearly visible in Figure I-4.a. Oscillations of lower 

amplitude are still visible for case 2. Starting from case 3 the difference with case 6 is always lower 

that 0.005% except for low 𝑠𝑙𝑎𝑐𝑘 values where it can reach 0.02%. Figure I-4.b shows that an 

important increase in sub-position number occurs between case 4 and case 6 (due to the additional 

all discretisation, see Table I-3). From these results, case 4 seemed to be the best compromise between 

precision and computational cost. With this discretisation, the typical calculation time was about 8 

minutes for each drive configuration (i.e., to solve the QSCDM and the CDEM). Case 4 is therefore used 

in the entire manuscript resulting in the adaptative discretisation pitch visible for instance in Figure 

III-18 or Figure IV-2. 
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I.2 Influence of 𝜹 on 𝜼 

This appendix explores the influence of the friction correction angle 𝛿 on drive efficiency. The classical 

60|15 is still considered with the parameters given in Table I-4. Three values of |𝛿(∞)| are tested: 3°, 

5° and 7° (5° was used for all the calculations presented in this manuscript). The looseness setting is 

set at 𝑠𝑙𝑎𝑐𝑘 = 11% and the chainring torque 𝐶Ⅰ varies between 5 and 300𝑁.𝑚. Except for Figure I-8 

below, the 𝑁𝐹𝑚𝑖𝑛 tooth profile is used for all calculations. 𝜁 discretisation is set according the case 4 

in §I.1. 

Efficiency as a function of chainring torque 𝐶Ⅰ is presented in Figure I-5.a. Differences with the case 

 |𝛿(∞)| = 5° are shown in Figure I-5.b. 

𝒁Ⅰ|𝒁Ⅱ 𝒔𝒍𝒂𝒄𝒌 (%) 𝑳 (𝒎𝒎) 𝑵𝒃𝒍𝒊𝒏𝒌 𝑪Ⅰ (𝑵.𝒎) |𝜹(∞)| 𝒂 (𝒎) 

60|15 11 > 380 100 5 → 300 𝟑, 𝟓 and 𝟕 1𝑒−10 

Table I-4: Drive parameters for the influence of 𝜹 on drive efficiency 

 

 
Figure I-5: (a) Influence of |𝜹(∞)| on drive efficiency (b) Differences with |𝜹(∞)| = 𝟓° 

The relation between chainring torque 𝐶Ⅰ and drive efficiency is similar for all correction angles. 

Particularly, the drive efficiency increases with larger chainring torques 𝐶Ⅰ is comparable for all cases. 

Efficiency is higher for lower correction angles. The difference reduces with increasing torques and 

seems to reach an asymptote at a value lower than ±0.01% of difference for high torques (see Figure 

I-5.b). 

The causes of these differences are shown in Figure I-6 which gives the evolution of the roller losses at 

the chainring and the rear cog. The total meshing losses are also given. 
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Figure I-6: Influence of |𝜹(∞)| on different loss sources: roller losses at (a) the rear cog (b) the chainring 
and (c) total meshing losses 

First, losses for case B (circles in Figure I-6) are always higher than the corresponding ones for case A 

which is consistent with the underlying kinematic hypothesis (see Chapter V). Results show that lower 

correction angles increase roller losses at the chainring while they reduce those at the rear cog. Indeed, 

for the chainring, in the inter-tp behaviour, the friction correction tends to increase 𝜙 which reduces 

roller motion and therefore roller losses (see Chapter IV and Chapter VI). For the rear cog the effect is 

opposite as the friction correction reduces 𝜙 in the inter-tp behaviour. However, the roller losses at 

the rear cog are significantly higher than those at the chainring (about ten times higher, scales are 

different in Figure I-6). Therefore, lower correction angles overall result in less roller losses and 

therefore better efficiency. 

Figure I-6.c confirms that meshing losses are independent of the friction correction angle and the 

kinematic case (A or B). The scale also recalls that meshing losses are largely dominant for such drives. 

An example of resulting roller motions for 𝐶Ⅰ = 250𝑁.𝑚 is given in Figure I-7. One can notice that the 

chainring is in static roller behaviour for |𝛿(∞)| = 7° which is consistent with the related roller loss 

being null in Figure I-6.b. 
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Figure I-7: Influence of |𝜹(∞)| on chainring and rear cog roller motions for 𝑪Ⅰ = 𝟐𝟓𝟎𝑵.𝒎 

Considering only 𝑁𝐹𝑚𝑖𝑛 tooth profile, it was shown that the influence of 𝛿 mainly reduces to an 

efficiency shift (see Figure I-5). However, it is important to verify that all tooth profiles are shifted the 

same way so that the efficiency hierarchy is independent of the 𝛿 value considered. Figure I-8 shows a 

comparison of efficiency (relatively to the 𝑁𝐹𝑚𝑖𝑛) as a function of chainring torque for the four profiles 

suitable for track cycling application (i.e., 𝑁𝐹𝑚𝑖𝑛, 𝐶𝑃1, 𝐶𝑃2 and 𝐶𝑃3). Figure I-8.b is similar to Figure 

VI-3.b. 
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Figure I-8: Comparison between tooth profiles (a) |𝜹(∞)| = 𝟑° (b) |𝜹(∞)| = 𝟓° (c) |𝜹(∞)| = 𝟕° 

Consistently with Figure I-6 showing that roller losses are increased by larger values of |𝛿(∞)|, the 

differences between tooth profiles are amplified for larger |𝛿(∞)|. However, the tooth profile 

hierarchy is similar regardless of the friction correction. 𝐶𝑃1 is still the most efficient profile due to its 

low tooth bottom radius (see Table A-4) followed by 𝑁𝐹𝑚𝑖𝑛, 𝐶𝑃2 and 𝐶𝑃3. However, it can be noted 

that for 𝐶𝑃1 and |𝛿(∞)| = 3°, no solution could be found beyond 𝐶Ⅰ = 255𝑁.𝑚. Indeed, the values 

of |𝛿(∞)| change the profile capacity to withstand loads. This shows that the margin of 𝐶𝑃1 profile in 

terms of loading capacities is lower than for the other profiles. 

This part shows that the conclusions regarding efficiency are largely independent of the |𝛿(∞)| value 

considered. However, this parameter changes the magnitude of the losses. The values of |𝛿(∞)| = 5° 

is supported by the experimental study of Naji & Marshek [62] regarding loads evolution. It could also 

be fitted along with 𝜇̅ (see Chapter VI) on efficiency measurements. 
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I.3 Influence of 𝒂 on 𝜼 

The influence of parameter 𝑎 on drive efficiency is finally tested. The 60|15 drive with 𝑁𝐹𝑚𝑖𝑛 tooth 

profile is still considered with the parameters given in Table I-5. The 𝜁 discretisation is still according 

to case 4 in §I.1. 

Figure I-9 shows drive efficiency as a function of the chainring torque 𝐶Ⅰ for values of 𝑎 between 1𝑒−6 

and 1𝑒−12𝑚 (𝑎 = 1𝑒−10𝑚 was used for all the calculations of this manuscript, see Appendix F). 

𝒁Ⅰ|𝒁Ⅱ 𝒔𝒍𝒂𝒄𝒌 (%) 𝑳 (𝒎𝒎) 𝑵𝒃𝒍𝒊𝒏𝒌 𝑪Ⅰ (𝑵.𝒎) |𝜹(∞)| 𝒂 (𝒎) 

60|15 11 > 380 100 5 → 300 5 𝟏𝒆−𝟔 → 𝟏𝒆−𝟏𝟐 

Table I-5: Drive parameters for the influence of 𝜹 on drive efficiency 

 

 
Figure I-9: (a) Influence of 𝒂 on drive efficiency (b) Differences with 𝒂 = 𝟏𝒆−𝟏𝟐𝒎 

Except for 𝑎 = 1𝑒−6𝑚, all efficiencies are similar regardless of 𝑎. Figure I-9.b shows that differences 

in efficiency starts with the discontinuities in roller motion reported in Appendix F. The influence is 

important for 𝑎 = 1𝑒−6𝑚 but becomes negligible beyond. For 𝑎 = 1𝑒−7𝑚, differences with other 𝑎 

values are visible but are smaller than 0.001% (see Figure I-9.b) which is largely lower than the 

efficiency differences reported in Chapter VI (lowest differences are of the order of 0.1%). Indeed, 

values of 𝑎 influence roller motion and therefore roller losses that quickly reduce in significance with 

rising torque. Therefore, for track cycling drive, starting from 1𝑒−8𝑚, the influence of 𝑎 on drive 

efficiency is negligible. 

The curve for 𝑎 = 1𝑒−6𝑚 stops at 𝐶Ⅰ = 240𝑁.𝑚 as no solutions was found beyond for similar reasons 

as in Appendix F. 
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 Efficiency variations for similar tension 

ratios 

Chapter VI showed that a correlation exists between drive efficiency 𝜂 and tension ratio 𝑇𝑠,Ⅰ/𝑇𝑡. 

However, small deviations were observed around the common trend recalled in Figure J-1 (similar to 

Figure VI-6). This appendix explores the cases around 𝑇𝑠,Ⅰ 𝑇𝑡⁄ = 2−2. 

 
Figure J-1: Efficiency depending on chainring tension ratio for the 𝑵𝑭𝒎𝒊𝒏 profile (reversed x-axis) 

A zoom-in view of the preceding curve around 2𝑒−2 is presented in Figure J-2 (in linear scale). Each 

marker corresponds to a calculated drive configuration. Marker types highlight the context of each 

calculation and particularly the chainring torque and tension setting considered. Squares show the 

drive configurations obtained by varying the 𝑠𝑙𝑎𝑐𝑘 setting with constant torque 𝐶Ⅰ = 100𝑁.𝑚. Circles 

represent varying 𝑠𝑙𝑎𝑐𝑘 with 𝐶Ⅰ = 50𝑁.𝑚. Stars represent constant 𝑠𝑙𝑎𝑐𝑘 = 11% and varying 

torques. Three cases 1, 2 and 3 are extracted from each sub-family (i.e., squares, circles and stars). A 

deeper analysis is carried out for these cases to explain efficiency deviations. The drive parameters are 

given in Table J-1. 

 𝒁Ⅰ|𝒁Ⅱ Tooth profile 𝑻𝒔,Ⅰ 𝑻𝒕⁄  𝑪Ⅰ (𝑵.𝒎) 𝒔𝒍𝒂𝒄𝒌 (%) 

Case 1   0.0171 100 2 

Case 2 0.0167 50 4 

Case 3 0.0170 19 11 

Table J-1: Drive parameters for cases 1, 2 and 3 
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Figure J-2: Efficiency depending on chainring tension ratio for 𝑵𝑭𝒎𝒊𝒏 profile. Zoom-in around 𝑻𝒔,Ⅰ 𝑻𝒕⁄ =

𝟐𝒆−𝟐 

 

 
Figure J-3: Chainring and rear cog roller motions for Cases 1, 2 and 3 
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The three cases studied show similar tension ratios but each ratio is reached with different torque and 

tension settings. Case 1, which shows lower efficiency, corresponds to a relatively high torque (𝐶Ⅰ =

100𝑁.𝑚) with a tight tension setting (𝑠𝑙𝑎𝑐𝑘 = 2%). On the contrary, case 3 exhibits a lower chainring 

torque (19𝑁.𝑚) but a looser tension setting (𝑠𝑙𝑎𝑐𝑘 = 11%). Case 2 lies in between the two preceding 

ones and results in the highest efficiency. Chainring and rear cog roller motion for the three cases are 

presented in Figure J-3. 

Roller motions are comparable and show similar trends for all cases. For both the chainring and rear 

cog, rollers leave the transition point (i.e., 𝑑̅𝑖 = 0%) at the same time for all cases and reach between 

75 to 80% of the inter-𝑡𝑝 distance. However, differences between each case are visible. First, for cases 

with a tighter tension setting (i.e., lower 𝑠𝑙𝑎𝑐𝑘 value), the wrapping angle is larger, resulting in rollers 

staying longer in contact with both sprockets (see Figure J-4). Therefore, case 3 (𝑠𝑙𝑎𝑐𝑘 = 11%) exhibits 

rollers leaving the chainring and the rear cog sooner than for other cases, resulting in lower roller 

losses. Moreover, for case 1 (with the tightest tension setting), significant back-and-forth roller motion 

is visible at the chainring. Small back-and-forth roller motions are also visible, still at the chainring, for 

case 2. The differences between cases translate into variations of efficiency. Therefore case 1 exhibits 

the lowest efficiency due to back-and-forth roller motion at the chainring and to its rollers contacting 

each sprocket for more time compared to the other cases. Similarly, case 3 shows the best efficiency 

as rollers leave each sprocket sooner and no back-and-forth roller motion occurs. 

  
(a) (b) 

Figure J-4: General aspect and wrapping angle for: (a) case 1, (b) case 3. Both figures have the same scale. 

Therefore, the tension ratio influences the general drive behaviour resulting in a strong corelation with 

efficiency. However, each different drive has its particularity resulting in differences in roller motion. 

These differences cause dispersion around the general trend between drive efficiency and tension 

ratio. 
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 Influence of the numbers of sprockets 

teeth for constant gear ratios 

Chapter VI explored the influence of the numbers of sprockets teeth on drive efficiency. The interest 

of studying drives with an identical gear ratio 𝑍Ⅰ/𝑍Ⅱ was highlighted and an example for all the possible 

drives (considering the geometrical limitations of track bikes) with a gear ratio of 4 was given. Figure 

K-1 and Figure K-2 illustrates the variation of efficiency for drives for a gear ratio of 3 and 5, 

respectively. Figure K-1 shows more drives than Figure K-2 as the lower gear ratio enables more choices 

with the boundaries considered. Comparison of Figure K-1 and Figure K-2 illustrates the preeminent 

effect of the number of rear cog teeth compared to the chainring one. Indeed, efficiencies are generally 

higher for drives with a gear ratio of 3 compared to 5 due to the higher number of rear cog teeth. 

Overall, the trend given in §VI.2.1 for drives for a gear ratio of 4 is still observed with drives with higher 

numbers of sprockets teeth being the more energetic efficient. 

 
Figure K-1: Effect of tooth number on efficiency for drives of gear ratio 𝟑 
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Figure K-2: Effect of tooth number on efficiency for drives of gear ratio 𝟓 
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 DOE matrices 

L.1 Trial matrix: 

 

𝒌 𝒙𝝁̅ 𝒙𝒔𝒍𝒂𝒄𝒌 𝒙𝑪Ⅰ  𝒙𝑹Ⅱ  𝒙𝑹Ⅰ  𝒙𝒑 

1 -1 -1 -1 -1 -1 -1 
2 0 -1 -1 -1 -1 0 
3 1 -1 -1 -1 -1 1 
4 -1 0 -1 -1 -1 0 
5 0 0 -1 -1 -1 1 
6 1 0 -1 -1 -1 -1 
7 -1 1 -1 -1 -1 1 
8 0 1 -1 -1 -1 -1 
9 1 1 -1 -1 -1 0 

10 -1 -1 0 -1 -1 0 
11 0 -1 0 -1 -1 1 
12 1 -1 0 -1 -1 -1 
13 -1 0 0 -1 -1 1 
14 0 0 0 -1 -1 -1 
15 1 0 0 -1 -1 0 
16 -1 1 0 -1 -1 -1 
17 0 1 0 -1 -1 0 
18 1 1 0 -1 -1 1 
19 -1 -1 1 -1 -1 1 
20 0 -1 1 -1 -1 -1 
21 1 -1 1 -1 -1 0 
22 -1 0 1 -1 -1 -1 
23 0 0 1 -1 -1 0 
24 1 0 1 -1 -1 1 
25 -1 1 1 -1 -1 0 
26 0 1 1 -1 -1 1 
27 1 1 1 -1 -1 -1 
28 -1 -1 -1 0 -1 0 
29 0 -1 -1 0 -1 1 
30 1 -1 -1 0 -1 -1 
31 -1 0 -1 0 -1 1 
32 0 0 -1 0 -1 -1 
33 1 0 -1 0 -1 0 
34 -1 1 -1 0 -1 -1 
35 0 1 -1 0 -1 0 
36 1 1 -1 0 -1 1 
37 -1 -1 0 0 -1 1 
38 0 -1 0 0 -1 -1 
39 1 -1 0 0 -1 0 
40 -1 0 0 0 -1 -1 
41 0 0 0 0 -1 0 
42 1 0 0 0 -1 1 
43 -1 1 0 0 -1 0 
44 0 1 0 0 -1 1 
45 1 1 0 0 -1 -1 
46 -1 -1 1 0 -1 -1 
47 0 -1 1 0 -1 0 
48 1 -1 1 0 -1 1 
49 -1 0 1 0 -1 0 
50 0 0 1 0 -1 1 
51 1 0 1 0 -1 -1 
52 -1 1 1 0 -1 1 
53 0 1 1 0 -1 -1 
54 1 1 1 0 -1 0 
55 -1 -1 -1 1 -1 1 
56 0 -1 -1 1 -1 -1 
57 1 -1 -1 1 -1 0 
58 -1 0 -1 1 -1 -1 
59 0 0 -1 1 -1 0 
60 1 0 -1 1 -1 1 
61 -1 1 -1 1 -1 0 
62 0 1 -1 1 -1 1 

63 1 1 -1 1 -1 -1 
64 -1 -1 0 1 -1 -1 
65 0 -1 0 1 -1 0 
66 1 -1 0 1 -1 1 
67 -1 0 0 1 -1 0 
68 0 0 0 1 -1 1 
69 1 0 0 1 -1 -1 
70 -1 1 0 1 -1 1 
71 0 1 0 1 -1 -1 
72 1 1 0 1 -1 0 
73 -1 -1 1 1 -1 0 
74 0 -1 1 1 -1 1 
75 1 -1 1 1 -1 -1 
76 -1 0 1 1 -1 1 
77 0 0 1 1 -1 -1 
78 1 0 1 1 -1 0 
79 -1 1 1 1 -1 -1 
80 0 1 1 1 -1 0 
81 1 1 1 1 -1 1 
82 -1 -1 -1 -1 0 0 
83 0 -1 -1 -1 0 1 
84 1 -1 -1 -1 0 -1 
85 -1 0 -1 -1 0 1 
86 0 0 -1 -1 0 -1 
87 1 0 -1 -1 0 0 
88 -1 1 -1 -1 0 -1 
89 0 1 -1 -1 0 0 
90 1 1 -1 -1 0 1 
91 -1 -1 0 -1 0 1 
92 0 -1 0 -1 0 -1 
93 1 -1 0 -1 0 0 
94 -1 0 0 -1 0 -1 
95 0 0 0 -1 0 0 
96 1 0 0 -1 0 1 
97 -1 1 0 -1 0 0 
98 0 1 0 -1 0 1 
99 1 1 0 -1 0 -1 

100 -1 -1 1 -1 0 -1 
101 0 -1 1 -1 0 0 
102 1 -1 1 -1 0 1 
103 -1 0 1 -1 0 0 
104 0 0 1 -1 0 1 
105 1 0 1 -1 0 -1 
106 -1 1 1 -1 0 1 
107 0 1 1 -1 0 -1 
108 1 1 1 -1 0 0 
109 -1 -1 -1 0 0 1 
110 0 -1 -1 0 0 -1 
111 1 -1 -1 0 0 0 
112 -1 0 -1 0 0 -1 
113 0 0 -1 0 0 0 
114 1 0 -1 0 0 1 
115 -1 1 -1 0 0 0 
116 0 1 -1 0 0 1 
117 1 1 -1 0 0 -1 
118 -1 -1 0 0 0 -1 
119 0 -1 0 0 0 0 
120 1 -1 0 0 0 1 
121 -1 0 0 0 0 0 
122 0 0 0 0 0 1 
123 1 0 0 0 0 -1 
124 -1 1 0 0 0 1 
125 0 1 0 0 0 -1 
126 1 1 0 0 0 0 
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127 -1 -1 1 0 0 0 
128 0 -1 1 0 0 1 
129 1 -1 1 0 0 -1 
130 -1 0 1 0 0 1 
131 0 0 1 0 0 -1 
132 1 0 1 0 0 0 
133 -1 1 1 0 0 -1 
134 0 1 1 0 0 0 
135 1 1 1 0 0 1 
136 -1 -1 -1 1 0 -1 
137 0 -1 -1 1 0 0 
138 1 -1 -1 1 0 1 
139 -1 0 -1 1 0 0 
140 0 0 -1 1 0 1 
141 1 0 -1 1 0 -1 
142 -1 1 -1 1 0 1 
143 0 1 -1 1 0 -1 
144 1 1 -1 1 0 0 
145 -1 -1 0 1 0 0 
146 0 -1 0 1 0 1 
147 1 -1 0 1 0 -1 
148 -1 0 0 1 0 1 
149 0 0 0 1 0 -1 
150 1 0 0 1 0 0 
151 -1 1 0 1 0 -1 
152 0 1 0 1 0 0 
153 1 1 0 1 0 1 
154 -1 -1 1 1 0 1 
155 0 -1 1 1 0 -1 
156 1 -1 1 1 0 0 
157 -1 0 1 1 0 -1 
158 0 0 1 1 0 0 
159 1 0 1 1 0 1 
160 -1 1 1 1 0 0 
161 0 1 1 1 0 1 
162 1 1 1 1 0 -1 
163 -1 -1 -1 -1 1 1 
164 0 -1 -1 -1 1 -1 
165 1 -1 -1 -1 1 0 
166 -1 0 -1 -1 1 -1 
167 0 0 -1 -1 1 0 
168 1 0 -1 -1 1 1 
169 -1 1 -1 -1 1 0 
170 0 1 -1 -1 1 1 
171 1 1 -1 -1 1 -1 
172 -1 -1 0 -1 1 -1 
173 0 -1 0 -1 1 0 
174 1 -1 0 -1 1 1 
175 -1 0 0 -1 1 0 
176 0 0 0 -1 1 1 
177 1 0 0 -1 1 -1 
178 -1 1 0 -1 1 1 
179 0 1 0 -1 1 -1 
180 1 1 0 -1 1 0 
181 -1 -1 1 -1 1 0 
182 0 -1 1 -1 1 1 
183 1 -1 1 -1 1 -1 
184 -1 0 1 -1 1 1 
185 0 0 1 -1 1 -1 
186 1 0 1 -1 1 0 
187 -1 1 1 -1 1 -1 
188 0 1 1 -1 1 0 
189 1 1 1 -1 1 1 
190 -1 -1 -1 0 1 -1 
191 0 -1 -1 0 1 0 
192 1 -1 -1 0 1 1 
193 -1 0 -1 0 1 0 
194 0 0 -1 0 1 1 
195 1 0 -1 0 1 -1 
196 -1 1 -1 0 1 1 
197 0 1 -1 0 1 -1 

198 1 1 -1 0 1 0 
199 -1 -1 0 0 1 0 
200 0 -1 0 0 1 1 
201 1 -1 0 0 1 -1 
202 -1 0 0 0 1 1 
203 0 0 0 0 1 -1 
204 1 0 0 0 1 0 
205 -1 1 0 0 1 -1 
206 0 1 0 0 1 0 
207 1 1 0 0 1 1 
208 -1 -1 1 0 1 1 
209 0 -1 1 0 1 -1 
210 1 -1 1 0 1 0 
211 -1 0 1 0 1 -1 
212 0 0 1 0 1 0 
213 1 0 1 0 1 1 
214 -1 1 1 0 1 0 
215 0 1 1 0 1 1 
216 1 1 1 0 1 -1 
217 -1 -1 -1 1 1 0 
218 0 -1 -1 1 1 1 
219 1 -1 -1 1 1 -1 
220 -1 0 -1 1 1 1 
221 0 0 -1 1 1 -1 
222 1 0 -1 1 1 0 
223 -1 1 -1 1 1 -1 
224 0 1 -1 1 1 0 
225 1 1 -1 1 1 1 
226 -1 -1 0 1 1 1 
227 0 -1 0 1 1 -1 
228 1 -1 0 1 1 0 
229 -1 0 0 1 1 -1 
230 0 0 0 1 1 0 
231 1 0 0 1 1 1 
232 -1 1 0 1 1 0 
233 0 1 0 1 1 1 
234 1 1 0 1 1 -1 
235 -1 -1 1 1 1 -1 
236 0 -1 1 1 1 0 
237 1 -1 1 1 1 1 
238 -1 0 1 1 1 0 
239 0 0 1 1 1 1 
240 1 0 1 1 1 -1 
241 -1 1 1 1 1 1 
242 0 1 1 1 1 -1 
243 1 1 1 1 1 0 
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L.2 Results vector 𝜼𝑪𝑫𝑬𝑴: 

 

𝒌 𝜼𝑪𝑫𝑬𝑴(𝒌) 
1 98,179 
2 97,457 
3 95,192 
4 98,502 
5 97,139 
6 98,129 
7 97,883 
8 98,555 
9 98,037 

10 98,920 
11 98,138 
12 98,648 
13 98,541 
14 98,888 
15 98,491 
16 99,094 
17 98,728 
18 97,922 
19 98,527 
20 98,879 
21 98,480 
22 99,096 
23 98,731 
24 97,933 
25 98,962 
26 98,254 
27 98,703 
28 98,520 
29 97,099 
30 98,040 
31 98,348 
32 98,801 
33 98,450 
34 99,103 
35 98,797 
36 97,872 
37 98,884 
38 99,127 
39 98,855 
40 99,304 
41 99,055 
42 98,453 
43 99,229 
44 98,698 
45 99,005 
46 99,299 
47 99,048 
48 98,439 
49 99,231 
50 98,702 
51 99,007 
52 98,939 
53 99,160 
54 98,896 
55 98,079 
56 98,657 
57 98,281 
58 99,205 
59 98,931 
60 98,072 

61 99,196 
62 98,527 
63 98,955 
64 99,420 
65 99,205 
66 98,683 
67 99,365 
68 98,922 
69 99,190 
70 99,123 
71 99,316 
72 99,091 
73 99,361 
74 98,913 
75 99,184 
76 99,125 
77 99,317 
78 99,093 
79 99,441 
80 99,232 
81 98,746 
82 97,644 
83 95,470 
84 97,076 
85 97,504 
86 98,330 
87 97,705 
88 98,773 
89 98,262 
90 96,795 
91 98,505 
92 98,905 
93 98,504 
94 99,136 
95 98,784 
96 97,997 
97 99,012 
98 98,324 
99 98,768 

100 99,128 
101 98,770 
102 97,957 
103 99,016 
104 98,338 
105 98,772 
106 98,646 
107 98,963 
108 98,591 
109 97,330 
110 98,158 
111 97,671 
112 98,977 
113 98,645 
114 97,501 
115 98,999 
116 98,130 
117 98,682 
118 99,328 
119 99,090 
120 98,484 
121 99,281 
122 98,780 

123 99,070 
124 99,010 
125 99,217 
126 98,973 
127 99,274 
128 98,763 
129 99,062 
130 99,015 
131 99,220 
132 98,976 
133 99,363 
134 99,135 
135 98,591 
136 98,817 
137 98,435 
138 96,959 
139 99,115 
140 98,316 
141 98,839 
142 98,778 
143 99,116 
144 98,851 
145 99,400 
146 98,965 
147 99,233 
148 99,193 
149 99,373 
150 99,167 
151 99,490 
152 99,299 
153 98,851 
154 99,182 
155 99,368 
156 99,160 
157 99,492 
158 99,301 
159 98,857 
160 99,429 
161 99,035 
162 99,272 
163 95,848 
164 97,237 
165 96,374 
166 98,532 
167 97,930 
168 96,138 
169 98,487 
170 97,108 
171 98,136 
172 99,125 
173 98,761 
174 97,840 
175 99,033 
176 98,335 
177 98,796 
178 98,658 
179 98,988 
180 98,621 
181 99,020 
182 98,287 
183 98,784 
184 98,675 

185 98,993 
186 98,630 
187 99,178 
188 98,843 
189 98,110 
190 98,331 
191 97,838 
192 95,751 
193 98,835 
194 97,693 
195 98,439 
196 98,353 
197 98,830 
198 98,516 
199 99,280 
200 98,753 
201 99,067 
202 99,039 
203 99,244 
204 99,009 
205 99,386 
206 99,167 
207 98,635 
208 99,024 
209 99,236 
210 98,998 
211 99,389 
212 99,171 
213 98,645 
214 99,324 
215 98,858 
216 99,126 
217 98,615 
218 97,195 
219 98,139 
220 98,541 
221 98,969 
222 98,680 
223 99,251 
224 99,001 
225 98,170 
226 99,192 
227 99,379 
228 99,178 
229 99,513 
230 99,331 
231 98,900 
232 99,457 
233 99,078 
234 99,307 
235 99,508 
236 99,325 
237 98,887 
238 99,459 
239 99,084 
240 99,310 
241 99,254 
242 99,418 
243 99,226 
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Résumé étendu en français 
This thesis has been written in English. Therefore, an extended summary in French is presented below. 

It describes the main outlines of this research work. 

Ce manuscrit de thèse a été rédigé en anglais. En conséquence, un résumé étendu, reprenant les 

principaux points de ce travail de recherche, est présenté en français ci-dessous. 

I. Introduction 

L’importante compétition entre cyclistes sur piste de très haut niveau pousse les travaux de recherches 

à explorer toutes les possibilités d’optimisations. Dans ce contexte, le rendement énergétique des 

transmissions par chaine à rouleaux est étudié dans le but d’améliorer la compréhension des pertes 

de puissance et de proposer des possibilités d’optimisations. 

Le travail de recherche présenté dans ce manuscrit propose une étude du rendement des 

transmissions par chaine en prenant en compte l’influence des pertes provoqués par le mouvement 

des rouleaux le long de leur profil de dent associé. L’influence de la géométrie de denture utilisée pour 

le pignon menant (plateau) et le pignon mené (pignon) est également prise en compte. 

Pour ce faire, un premier modèle permettant de calculer les charges (i.e., tension dans les maillons et 

force de contact rouleau/profil) est présenté (appelé QSCDM1). Un second modèle dédié au calcul du 

rendement d’une transmission par chaine est ensuite proposé (appelé CDEM2). Sur la base de ces deux 

outils, l’influence de la géométrie de denture sur le fonctionnement d’une transmission par chaine est 

d’abord étudiée. Enfin, une étudie du rendement des transmissions par chaine de cyclisme sur piste 

est proposée. 

  

 
1 Quasi-Static Chain Drive Model (QSCDM) : Modèle de transmission par chaine quasi-statique 
2 Chain Drive Efficiency Model (CDEM) : Modèle de rendement de transmission par chaine 
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II. Contexte et étude bibliographique 

Ce chapitre est consacré à l'introduction du contexte de l’étude et à l'analyse de la littérature. 

Dans un premier temps, les spécificités des transmissions par chaine en cyclisme sur piste sont 

détaillées. Celles-ci sont principalement : des chaînes légères (3.6 𝑔/𝑚𝑎𝑖𝑙𝑙𝑜𝑛3), des vitesses de 

rotation modérées (jusqu’à 130𝑡𝑟/𝑚𝑖𝑛 au plateau) et des couples importants (jusqu’à 300𝑁.𝑚 au 

plateau maintenus durant plusieurs rotations). Ces contraintes ont conduit à une approche de 

modélisation quasi-statique. 

Une vue d'ensemble de la transmission par chaine à rouleaux est ensuite donnée. La définition des 

pignons standards (selon les normes ASA [32] et ISO 606 [31]) est détaillée. Les profils de denture en 

résultant sont désignés 𝐴𝑆𝐴 et 𝑁𝐹𝑚𝑖𝑛/𝑚𝑎𝑥 dans le manuscrit. L'effet polygonal, un phénomène 

inhérent à toute transmission par chaîne, est présenté. Ce phénomène est important à prendre en 

compte lors de l'étude du fonctionnement des transmissions par chaine car il introduit une erreur de 

transmission qui se traduit par une relation complexe entre les vitesses instantanées du pignon menant 

(plateau) et du pignon mené (pignon). La littérature sur le sujet est détaillée. Elle montre que les 

modèles cinématiques utilisant des mécanismes à quatre barres constituent une approche 

intéressante lorsque les effets dynamiques sont négligés. 

Les évolutions successives des modèles de tension quasi-statique (dédiés au calcul des tensions dans 

les maillons et des forces de contact entre rouleaux et pignons) sont ensuite présentées. Les modèles 

successifs ont permis d'améliorer l’interdépendance entre les charges et les positionnements des 

rouleaux. Cependant, ce lien est introduit avec des défis numériques qui se traduisent par des modèles 

à forte intensité de calcul. Les résultats de ces modèles successifs sont en accord avec les mesures de 

tension de maillons, effectuées dans des conditions représentatives de transmissions industrielles 

(principalement Naji & Marshek [62] et Stephenson et al. [72]). 

Enfin, les modèles et mesures expérimentales antérieurs, consacrés à l'efficacité des transmissions par 

chaine sont présentés. La plupart des modèles sont basés sur les pertes d'engrènement causées par 

l'articulation entre maillons consécutifs pendant l'engrènement et le désengrènement. Ces modèles 

concordent généralement avec les données expérimentales, à l'exception notable des couples faibles. 

Récemment, l'auteur a souligné que les pertes causées par le mouvement des rouleaux le long de leur 

profil de dent associé pouvaient avoir une influence significative sur l'efficacité de la transmission. 

L'importance des pertes causées par les rouleaux soulève également la question du profil de denture, 

qui pourrait modifier l'évolution du mouvement des rouleaux. 

Objectifs de la thèse 

Compte tenu des travaux antérieurs sur le sujet, l'objectif principal de cette thèse est d'étudier 

l'efficacité des transmissions par chaine en tenant compte de l'influence des pertes causées par le 

mouvement des rouleaux le long de leur profil de denture associé. Pour ce faire, un modèle 

paramétrique d’efficacité de transmissions par chaine est développé. Le modèle sera capable de 

prendre en compte différentes géométries de profils de denture provenant de normes ou créées pour 

l'étude (e.g., 𝐴𝑆𝐴, 𝑁𝐹𝑚𝑖𝑛 et 𝑁𝐹𝑚𝑎𝑥). Il sera utilisé pour tester l'influence de divers paramètres tels que 

les réglages de tension, les conditions de charge (i.e., le couple appliqué), le pas de la chaîne, les 

nombre de dents des pignons, etc. 

 
3 A comparer à environ 7.6𝑔/𝑚𝑎𝑖𝑙𝑙𝑜𝑛 pour des chaines industrielles de pas identique [11]. 
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La modélisation du rendement se fera en deux étapes. Tout d'abord, un modèle quasi statique de 

transmission par chaine (QSCDM) sera présenté. Par rapport aux travaux précédents, sa formulation 

est générale et permet de prendre en compte n'importe quelle géométrie de denture. Ce premier 

modèle calculera les charges (i.e., les tensions dans les maillons et les forces de contact entre rouleaux 

et pignons) et les déplacements (i.e., le mouvement des rouleaux et les orientations des maillons). Des 

éléments des études précédentes de Lodge & Burgess [70], Troedsson & Vedmar [67] et Kim & Johnson 

[52] seront réutilisés. Une architecture originale basée sur des sous-modèles dédiés aux brins tendu et 

mou et aux pignons est proposée pour faciliter la résolution numérique et donc limiter les éventuels 

problèmes signalés par Troedsson & Vedmar [67]. La validation sera présentée sur la base 

d'entraînements industriels. Le modèle quasi-statique (QSCDM) sera ensuite utilisé pour étudier 

l'influence du profil de denture sur le comportement de transmissions par chaine industrielles et 

cyclistes (évolution des charges, mouvement des rouleaux, etc.). Dans un second temps, un modèle de 

rendement de transmission par chaine (CDEM) sera présenté. Par rapport aux études précédentes, 

l'influence des pertes causées par le mouvement des rouleaux est prise en compte. Combiné au 

modèle de transmission par chaine quasi statique (QSCDM), il calculera le rendement d’une 

transmission en prenant en compte le mouvement des rouleaux et la géométrie de denture. Enfin, le 

CDEM sera utilisé pour réaliser une étude paramétrique de l'efficacité des transmissions par chaines 

de vélo de piste en tenant compte de l'influence des pertes de rouleaux. A partir des résultats obtenus, 

des lignes directrices pour des optimisations possibles seront discutées. 

Compte tenu de l'application en cyclisme sur piste (chaine légère, vitesse modérée, etc.), les effets 

dynamiques, y compris les vibrations des brins, seront négligés. Cependant, le modèle quasi-statique 

proposé (QSCDM) est général et peut être appliqué à n'importe quelle transmission à deux pignons 

tant que les hypothèses sont respectées (e.g., les effets dynamiques peuvent être négligés). Il peut 

donc être utilisé pour les transmissions industrielles à vitesse de rotation modérée. Étant donné que 

la littérature sur le modèle de tension quasi-statique est principalement constituée d'exemples 

industriels, le QSCDM sera validé sur de tels transmissions industrielles. Le même raisonnement 

s'applique au modèle d'efficacité (CDEM). Ce dernier sera toutefois utilisé pour mener une étude 

paramétrique uniquement sur les transmissions de cyclisme sur piste. 
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III. Modèle quasi-statique de transmission par 

chaine (QSCDM4) 

Dans ce chapitre, le modèle de transmission par chaine quasi statique (QSCDM) est présenté. Ce 

modèle 2D permet d'étudier une transmission par chaîne, en considérant les connexions entre les brins 

et les pignons, chacun étant représenté par un sous-modèle spécifique. Les calculs peuvent être 

effectués en utilisant différentes géométries de denture. La résolution est effectuée en deux étapes 

successives. Tout d’abord, la cinématique globale (i.e., les trajectoires des brins, et le nombre de 

maillons dans chaque sous-modèle) est déterminée. Ses résultats sont ensuite utilisés par le sous-

modèle local de pignon. 

La cinématique globale de la transmission est détaillée en premier. Cette dernière est supposée être 

indépendante des conditions de charge (i.e., du couple appliqué) et du profil de denture des pignons. 

Les jeux entre rouleaux et fonds de dent sont également négligés de tel sorte que le centre de chaque 

rouleau en contact avec un pignon se trouve sur le cercle primitif. Un sous modèle est utilisé pour 

chaque brin (brin tendu et brin mou). Le brin tendu est supposé être parfaitement rectiligne et sa 

modélisation est basée sur un mécanisme 4-barres. La dépendance entre la rotation du plateau et du 

pignon peut ainsi être exprimée et prise en compte. Le sous-modèle de brin mou est basé sur des 

travaux précédent [67], [70]. Il suppose que la tension est uniquement causée par l’effet de la gravité. 

Les deux sous-modèles sont utilisés au sein d’une procédure numérique originale. Une fois la solution 

obtenue, les trajectoires des brins sont connues. Cela permet de connaitre les angles 𝛼𝑡,𝑠,𝑗 ainsi que 

les tensions appliquées par le brin mou sur chaque pignon 𝑇𝑠,𝑗. Ces données sont nécessaires pour 

utiliser le sous-modèle local du pignon. 

Le sous-modèle local utilisé pour les pignons est ensuite détaillé. Il permet de calculer simultanément 

les charges (i.e., les tensions dans les maillons et les forces de contact entre rouleaux et pignons) ainsi 

que l'emplacement des rouleaux le long du profil de denture. En effet, il est montré que les charges et 

les positions de rouleaux sont liées. Les positions successives des rouleaux le long de leur profil sont 

calculées en considérant que les centres de deux rouleaux consécutifs doivent être distant d’un pas de 

chaine (l’allongement sous charge est négligé [2]). En utilisant la relation ainsi obtenue, une courbe 

caractéristique appelée courbe caractéristique des positions de rouleaux est construite [52], [67]. Elle 

représente les positions du rouleau 𝑖 + 1 (notée 𝛾𝑖+1) en fonction de celle du rouleau 𝑖 (notée 𝛾𝑖). Les 

points stables de cette courbe (i.e., point pour lesquels les positions 𝑖 et 𝑖 + 1 sont identiques) sont 

appelés points de transitions. Ils sont au nombre de deux et sont appelées 𝑡𝑝𝐴 et 𝑡𝑝𝐵. Il est montré 

qu’une relation directe existe entre l'emplacement des rouleaux le long de leur profil et le chargement 

imposé sur la transmission (e.g., le couple appliqué). Cette relation fait appel à des angles 

caractéristiques entre les directions de maillons consécutifs (𝛼∗, 𝜉 and 𝜈) et entre les forces de tension 

𝑇 et de contact 𝑃 (angle de pression 𝜙). Le frottement est introduit en utilisant un angle de correction 

𝛿 selon une approche similaire à celle de Naji & Marshek [2]. Les problèmes de compatibilité aux 

interfaces entre les brins et les sous-modèles locaux de pignon sont également abordés. 

La procédure générale de résolution de l’ensemble du QSCDM est introduite. La cinématique globale 

est résolue en premier, avant que ses résultats ne soient utilisés dans le sous-modèle local de pignon. 

Les conditions de chargement peuvent être spécifiées, de manière équivalente, soit par un couple 

appliqué sur l'un ou l'autre des pignons soit par la tension du brin tendu. Cette approche séquentielle 

(i.e., cinématique globale puis sous-modèle de pignon) permet de résoudre facilement chaque sous-

 
4 Quasi-Static Chain Drive Model (QSCDM) : Modèle quasi-statique de transmission par chaine 
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modèle mais introduit des questions de compatibilité. Une seule période d’engrènement 

(correspondant à une rotation des pignons menant et mené d’un angle 𝛼Ⅰ et 𝛼Ⅱ respectivement) est 

étudiée. Cette dernière est découpée en sous-positions sur lesquelles la procédure de résolution est 

appliquée. Cependant, la résolution donne une distribution spatiale des résultats « per position ». Une 

dernière étape est donc nécessaire afin d’obtenir les charges et les mouvements de rouleaux en 

suivant un composant donné (e.g., un maillon ou un rouleau). Ces résultats sont appelés « per 

component ». La méthode permettant de déterminer les résultats « per component » à partir de ceux 

« per position » est détaillée. Enfin, les cas où plusieurs positions de rouleaux 𝑠𝑐,1 conviennent sont 

traités. 
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IV. Eléments de validation du QSCDM 

Ce chapitre est consacré à la validation du modèle quasi statique de transmission par chaine (QSCDM) 

présenté plus haut. La validation est menée sur différentes sous-parties du modèle et finalement sur 

l'ensemble du QSCDM. 

La cinématique globale est tout d'abord examinée. La comparaison du sous-modèle de brin tendu est 

en accord avec les prévisions analytiques de Fuglede & Thomsen [1]. Les prédictions des positions de 

capture et de libération des rouleaux sont similaires, de même que la vitesse de rotation et 

l'accélération du pignon. Comparée à une étude analytique, la procédure numérique présentée a 

l'avantage d'être plus souple à l'ajout de nouvelles hypothèses. Le sous-modèle du brin mou est 

ensuite analysé et comparé aux résultats connus de la courbe caténaire (ou chainette) [89]. Son 

comportement se montre cohérent. Une application à un exemple de transmission par chaine donne 

également des résultats cohérents. 

Le sous-modèle local de pignon est ensuite analysé en deux étapes. Tout d'abord, des prédictions de 

positions de rouleaux, indépendamment de l'impact sur les charges, sont considérées. Une 

comparaison des courbes caractéristiques des positions de rouleaux est proposée avec les résultats de 

Kim & Johnson [52]. Le calcul des angles entre maillons est ensuite confronté aux mesures graphiques 

de Binder [32] et aux prévisions numériques de Naji & Marshek [64]. La comparaison a montré des 

tendances similaires malgré de faibles variations imputées aux différentes hypothèses considérées 

dans chacune des études. 

Dans un second temps, la relation entre les positions des rouleaux et les charges, telle que prédite par 

le sous-modèle de pignon local, est étudiée. Le sous-modèle est testé seul, sans lien avec la 

cinématique globale. Les prédictions sont confrontées au modèle de Lodge & Burgess [70] et aux 

résultats expérimentaux de Stephenson et al. [72]. En raison de la spécificité des cas étudiés 

(trajectoires de brins contraintes par des rails de guidage/tendeurs), l'évolution des angles 

d'engrènement 𝛼𝑠,𝑡,𝑗 ne peut être calculée. Les résultats sont donc présentés « per position ». Les 

comparaisons sont menées pour des prédictions de tension de maillons et montrent des résultats 

cohérents. Comparé au modèle de Lodge & Burgess, qui suppose une variation instantanée de la 

position du rouleau, le modèle proposé permet de saisir le changement progressif entre les deux points 

de transition (entre 𝑡𝑝𝐵 sur le côté tendu de la denture et 𝑡𝑝𝐴 sur le côté mou). Les prédictions « per 

component » sont ensuite comparées au modèle de Kim & Johnson [52] sur l'étude du cas classique 

d'une transmission 𝑍Ⅰ|𝑍Ⅱ = 31|31 avec chaine à pas double. Les deux modèles s'accordent sur 

l'évolution de la tension des maillons et de la position des rouleaux. Cette concordance suggère que le 

frottement aux interfaces axe/bague et bague/rouleau (pris en compte par Kim & Johnson mais négligé 

dans ce manuscrit) n'influence pas de manière significative le comportement de la transmission. 

L'approche de l'angle de correction, utilisée dans ce manuscrit, semble donc suffisante pour modéliser 

l'effet du frottement. 

L'ensemble du QSCDM (i.e., la cinématique globale et le sous-modèle de pignon) est ensuite confronté 

aux résultats du modèle présenté par Troedsson & Vedmar [67]. Malgré des incertitudes sur la 

géométrie de denture ainsi que les caractéristiques de la chaine utilisée pour les calculs de Troedsson 

& Vedmar, les prédictions sont en accord. Ce résultat confirme l'hypothèse selon laquelle les 

déformations des pièces, et plus particulièrement l'allongement des maillons, n'influencent pas de 

manière significative le comportement de la transmission (c'est-à-dire les charges et les positions des 

rouleaux). De même, le choix de négliger la gravité dans le sous-modèle de pignon est appuyé. 
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Dans ce chapitre, l'ensemble du QSCDM ainsi que les sous-modèles qui le constituent sont comparés 

avec succès aux résultats de la littérature, provenant à la fois de modèles numériques et de mesures 

expérimentales. Bien qu'elles soient destinées à l'étude des transmissions de cyclisme sur piste, les 

hypothèses du modèle sont suffisamment générales pour couvrir des cas industriels. Grâce à cette 

flexibilité, le modèle a été validé à l'aide de la littérature sur des transmissions par chaine industrielles, 

car aucun résultat approprié n'a pu être trouvé pour les transmissions cyclistes. La proximité entre les 

transmissions industrielles testées et les cas de cyclisme (e.g., effet dynamique négligeable) garantit la 

validation pour une utilisation spécifique au cyclisme sur piste. 
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V. Comportement des transmissions par chaine, 

influence du profil de denture sur des cas 

industriels et de cyclisme sur piste 

Ce chapitre analyse l'influence de la géométrie du profil de denture sur les transmissions par chaine 

industrielles et cyclistes. Le QSCDM, présenté au §III, est utilisé pour tous les calculs. Des méthodes 

d'analyse sont proposées pour caractériser les propriétés du profil de denture. Ces dernières 

permettent de rapidement caractériser l’influence du profil. 

Une transmission industrielle 31|31 (à pas double) est d'abord considérée. Les tensions dans les 

maillons, les force de contact et les positions des rouleaux sont calculés pour trois profils industriels 

(𝐴𝑆𝐴, 𝑁𝐹𝑚𝑎𝑥 et 𝑁𝐹𝑚𝑖𝑛). Chaque profil présente des pentes différentes lors des croissances et 

décroissances d’efforts (tension dans les maillons et force de contact) observées durant le contact des 

composants avec un pignon. Les positions des rouleaux sont couplées avec les charges : la tension dans 

les maillons et la force de contact diminuent (augmentent) lorsque le rouleau entre en contact avec le 

côté tendu (mou) du profil de la denture. Les profils avec des pentes plus importantes présentent 

également un mouvement de rouleau plus long (par exemple, le profil𝑁𝐹𝑚𝑖𝑛). Les pignons menés 

présentent des pentes plus importantes que les pignons menants avec le même profil. Par conséquent, 

le mouvement des rouleaux est également plus long pour les pignons menés. L'augmentation du 

couple appliqué réduit le mouvement des rouleaux. Des oscillations, à la fois dans les charges et le 

déplacement des rouleaux, sont présentes pour toutes les conditions de chargement. De telles 

oscillations n'ont pas été observées dans les travaux de Kim & Johnson [52] et de Naji & Marshek [2], 

[62]. Dans ces précédents travaux, un seul pignon était considéré au lieu de la transmission complète 

dans le QSCDM. Ces oscillations s'expliquent par les variations de tension des brins (𝑇𝑠 and 𝑇𝑡 pour le 

brin mou et tendu respectivement) qui entraînent des variations du rapport de tension 𝑇𝑠/𝑇𝑡. Dans les 

cas extrêmes, les mouvements de rouleaux effectuent des va et vient le long du profil de denture (avec 

de multiples changements de direction). Cette évolution non monotone n'est pas compatible avec 

l'hypothèse énoncée pour la modélisation du frottement. Toutefois, ce phénomène nécessiterait des 

travaux supplémentaires afin de proposer un modèle approprié. Néanmoins, les oscillations des 

charges et du mouvement des rouleaux trouvent leur source dans un modèle plus réaliste 

(modélisation d’une transmission complète par rapport à un seul pignon). Par conséquent, ces 

phénomènes sont probablement plus représentatifs de ce qui pourrait se produire dans une 

transmission par chaine réelle que l'évolution régulière décrite dans la littérature (e.g., [1, 3]). 

L'analyse des transmissions industrielles donne une première évaluation de l'influence du profil de 

denture sur le comportement des transmissions par chaîne. Sur la base de ces résultats, des méthodes 

d'analyse originales sont présentées. L'angle de pression au point de transition 𝜙𝑡𝑝 est introduit. Ce 

paramètre est lié aux pentes croissantes et décroissantes propres à chaque profil. Les petits 𝜙𝑡𝑝 sont 

associés aux pentes les plus importantes. Ensuite, le rapport de tension limite que chaque profil est 

capable de supporter est analysé. La position 𝑠𝑐,1 du premier rouleau pour un pignon soumis au 

rapport limite change pour un pignon menant ou mené. Le rapport limite est atteint soit lorsque tous 

les rouleaux se trouvent au point de transition, soit lorsqu'ils grimpent sur le flanc de la dent. Pour 

analyser les différences entre les profils, la courbe caractéristique de l'angle de pression, montrant 

l'évolution de 𝜙𝑖+1 en fonction de 𝛾𝑖, est proposée. Cette courbe reflète les propriétés géométriques 

d'un profil donné. En tenant compte de la correction due au frottement, le comportement au rapport 

de tension limite peut être déterminé (sauf pour le cas plus complexe d’un pignon mené avec un profil 

𝐴𝑆𝐴). Pour les pignons menants, tous les rouleaux se situent près du point de transition 𝑡𝑝𝐵au ratio 
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de tension limite. Pour les pignons menés, les profils 𝐴𝑆𝐴 et 𝑁𝐹𝑚𝑎𝑥 atteignent leur rapport limite avec 

des rouleaux grimpant sur le flanc de la denture à l'inverse du 𝑁𝐹𝑚𝑖𝑛 qui l’atteint avec tous les rouleaux 

immobiles au point de transmission (de la même manière que pour le pignon menant). L'influence de 

l’angle de correction 𝛿 sur ce phénomène est également étudiée. En se basant sur ces résultats, et en 

reprenant l’idée de sous modèle introduite par Lodge & Burgess [70], trois comportements du 

mouvement des rouleaux sont proposés en fonction de la charge appliquée sur le pignon considéré. 

Pour un rapport de tension 𝑇𝑠/𝑇𝑡 plus élevé (i.e., chargements moins sévères), les rouleaux ont 

tendance à traverser le profil, du 𝑡𝑝𝐵 vers le 𝑡𝑝𝐴, dans le comportement appelé inter-tp. Lorsque le 

rapport de tension diminue (i.e., le couple appliqué augmente), les rouleaux restent plus longtemps 

au 𝑡𝑝𝐵 jusqu'à ce qu'ils soient presque immobiles. Lorsqu'ils sont soumis à ce comportement, appelé 

comportement rouleaux statiques, la correction due au frottement change de signe tandis que les 

rouleaux restent proches du point de transition 𝑡𝑝𝐵. Ensuite, en fonction du profil, des rapports encore 

plus faibles peuvent être atteints pour des rouleaux grimpant sur le flanc de la dent, dans le 

comportement appelé rouleau grimpant. La transition entre chaque comportement est progressive et 

se produit à des rapports spécifiques pour chaque profil. Le QSCDM unifie donc les différentes 

approches présentées dans la littérature (GPLD, static roller et low slack tension, [1, 4, 8]). 

Les méthodes d'analyse développées sont ensuite appliquées à une transmission 60|15 typique en 

cyclisme sur piste. Le rapport de tension limite dans des conditions de fonctionnement stables est 

introduit. Ce rapport exclut le comportement de rouleaux grimpants car le risque de saut de chaine ne 

peut pas être couru en cyclisme sur piste (pour des raisons de sécurité des athlètes). Une expression 

analytique simplifiée, et basée sur le paramètre 𝜙𝑡𝑝, permettant de calculer ce rapport est proposée. 

Il est montré que 𝜙𝑡𝑝 est directement lié à ce rapport limite, les plus petits 𝜙𝑡𝑝 permettant d'atteindre 

les rapports les plus faibles. L'analyse du rapport limite dans des conditions de fonctionnement stables 

montre que les profils 𝐴𝑆𝐴 et 𝑁𝐹𝑚𝑎𝑥 ne peuvent pas supporter les rapports sévères (i.e., très faible, 

de l’ordre de 1𝑒−3) rencontrés dans les transmissions de cyclisme sur piste. Des géométries originales 

de profils de denture, les profils cyclistes (appelés 𝐶𝑃), sont introduites. Ces profils sont construits de 

telle sorte que leur 𝜙𝑡𝑝 soit suffisamment petit pour faire face aux contraintes spécifiques au cyclisme 

sur piste. L'influence de la géométrie du profil de denture sur le comportement de la transmission en 

cyclisme sur piste est ensuite testée en utilisant les quatre profils adaptés à cette application (𝑁𝐹𝑚𝑖𝑛, 

𝐶𝑃1,2,3). Le comportement de la transmission est similaire aux résultats obtenus pour le cas industriel. 

Cependant, le très faible 𝜙𝑡𝑝 des profils testés a pour conséquence des pentes croissantes et 

décroissantes encore plus importantes. En conséquence, la majeure partie de la charge, tant en 

tension dans les maillons qu'en force de contact, est supportée par le premier rouleau/maillon. 

Si l'on considère l'efficacité énergétique des transmissions de cyclisme sur piste, les résultats obtenus 

ne permettent pas de déterminer facilement quel profil entraînera la plus faible dissipation. En effet, 

les profils ayant un mouvement de rouleaux plus important subissent ce mouvement sous des charges 

plus faibles que ce qui a été observé pour les profils présentant un mouvement de rouleau plus court. 

En outre, chaque profil réagit différemment aux variations du rapport de tension. Cela influe sur les 

mouvements de rouleaux et donc sur les pertes de puissance qui en résultent. Une analyse du 

rendement des transmissions par chaine prenant en compte l'effet du mouvement des rouleaux est 

donc nécessaire pour déterminer quelle géométrie entraîne les pertes de puissance les plus faibles. 

Les deux derniers chapitres de cette thèse sont consacrés à cette analyse. 
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VI. Modèle de rendement (CDEM5) : 

développement et validation 

Ce chapitre est consacré à l'introduction et à la validation du modèle de rendement de transmission 

par chaine (CDEM). Ce modèle calcule le rendement d’une transmission par chaine en tenant compte 

des pertes d'engrènement et des pertes dues aux mouvements des rouleaux le long de leur profil de 

denture associé. 

Le modèle de rendement est d'abord présenté. Ce modèle prend en compte toutes les pertes dues aux 

frottements entre les différents composants d’une chaine. Cela inclut les pertes dues à l'engrènement 

et les pertes causées par les mouvements des rouleaux le long de leur profil de denture correspondant. 

LE CDEM fonctionne avec le QSCDM présenté au chapitre II (§III) car il utilise les charges (tension dans 

les maillons et force de contact entre le rouleau et le profil) et l'emplacement des rouleaux « per 

component » comme données d'entrée. Les hypothèses sont identiques à celles du modèle du 

QSCDM : seuls les mouvements plans (2D) sont considérés sans aucune influence des effets 

dynamiques (quasi-statique). La chaine est supposée parfaitement alignée et le frottement n'est donc 

pris en compte qu'aux interfaces axe/bague, bague/rouleau et rouleau/profil (aucun contact latéral 

avec les plaques n’est considéré). Des frottements de Coulomb sont supposés à toutes les interfaces. 

Les différences entre les articulations d’axes (pin articulation) et de bagues (bush articulation) sont 

prises en compte. Les résultats « per component » fournis par le modèle de transmission par chaine 

(présenté au chapitre II, voir §III) ne donnent que l'évolution de l'emplacement du contact 

rouleau/profil. Par conséquent, des hypothèses cinématiques supplémentaires sont formulées pour 

déterminer la rotation propre du rouleau. Deux cas extrêmes, censés représenter les meilleures et les 

pires conditions possibles, sont envisagés. Dans le cas A, du roulement sans glissement se produit à 

l'interface rouleau/profil, tandis que du glissement se produit à l'interface bague/rouleau. Dans le cas 

B, le glissement se produit à la fois aux interfaces bague/rouleau et rouleau/profil. Les hypothèses de 

contact retenues pour ce modèle de rendement sont différentes de celles du modèle de tension de 

Kim & Johnson [52] où le roulement à l'interface bague/rouleau était considéré comme simultané au 

glissement à l'interface rouleau/profil. En conséquence des deux cas cinématiques considérés, le 

rendement prédit est donné sous la forme d'un intervalle [𝜂𝐵, 𝜂𝐴]. 

Les prévisions du CDEM sont ensuite comparées aux résultats expérimentaux, provenant à la fois de la 

littérature et d'un banc d'essai dédié. Les prédictions sont en accord avec les mesures expérimentales 

de Lodge & Burgess [70] sur des transmissions industrielles. Les résultats montrent que les faibles 

rendements observés à faible couple, qui ne pouvaient pas être expliqués par un modèle ne prenant 

en compte que les pertes d'engrènement (comme celui présenté par Lodge & Burgess), semblent être 

causés par les pertes dues au mouvement des rouleaux. Cette comparaison démontre l'intérêt du 

modèle présenté. Les prédictions du CDEM sont ensuite comparées aux mesures expérimentales d'un 

banc d'essai dédié aux applications de cyclisme sur piste. Ce banc a été développé au LaMCoS6, 

simultanément à ces travaux de recherche. Pour une puissance transmise élevée (environ 1600𝑊), la 

variabilité des résultats expérimentaux rend la comparaison difficile. Cependant, pour une puissance 

plus faible (environ 490𝑊), les tendances observées avec le CDEM et le banc d'essai sont conformes. 

Le modèle et les mesures expérimentales s'accordent sur la relation asymptotique entre la tension de 

la chaine et le rendement de la transmission. L'intérêt d'utiliser des pignons plus grands a également 

été mis en évidence par les deux approches et les prédictions du modèle en termes de puissance 

 
5 Chain Drive Efficiency Model (CDEM) : Modèle de rendement de transmission par chaine 
6 LaMCoS : Laboratoire de Mécanique des Contact et des Structure. http://lamcos.insa-lyon.fr/?L=2 
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économisée sont cohérentes avec les résultats expérimentaux. Enfin, le modèle et les expériences 

s’accordent sur l'influence négligeable du profil de denture du plateau. Dans ce dernier cas, le modèle 

s'avère être un bon outil pour expliquer les résultats numériques. En effet, ce dernier montre que les 

pertes causées par le mouvement des rouleaux au plateau sont négligeables (par rapport aux pertes 

d’engrènement et dues au mouvement des rouleaux au pignon) pour des applications en cyclisme sur 

piste. Or, les différences entre profils de denture se manifestent uniquement sur les pertes causées 

par les rouleaux, d’où le résultat mesuré (pas d’influence du fabriquant de plateau sur le rendement 

de la transmission). 

Le processus de validation a montré que l'influence des paramètres testés (e.g., le couple, la tension 

de la chaîne, etc.) est généralement plus importante que la largeur de l'intervalle [𝜂𝐵, 𝜂𝐴]. Par 

conséquent, la prise en compte de deux hypothèses cinématiques n'empêche pas de tirer des 

conclusions avec le CDEM. 

Le modèle d'efficacité de la transmission par chaine (CDEM) a été présenté et validé. Dans la suite, Il 

est utilisé pour explorer le rendement des transmissions de cyclisme sur piste afin d’identifier les 

paramètres les plus influents. 
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VII. Etude paramétrique du rendement des 

transmissions de cyclisme sur piste 

Ce chapitre est consacré à l'étude du rendement des transmissions par chaine à rouleaux. L'influence 

de nombreux facteurs est testée, depuis le couple appliqué par l'athlète sur le plateau jusqu'au nombre 

de dents et au pas de la chaîne. Les mouvements des rouleaux sont pris en compte et les différences 

entre les géométries des profils de denture sont étudiées. 

Dans un premier temps, le rendement d'une transmission 60|15, classique du cyclisme sur piste, est 

caractérisé. Pour ce faire, les influences du couple 𝐶Ⅰ appliqué au plateau ainsi que du réglage de la 

tension 𝑠𝑙𝑎𝑐𝑘 sont détaillées pour plusieurs profils de denture. Les résultats montrent que les 

influences de 𝐶Ⅰ et 𝑠𝑙𝑎𝑐𝑘 sont similaires pour tous les profils testés. Le rendement augmente et 

l'intervalle [𝜂𝐵, 𝜂𝐴] se réduit avec l'augmentation du couple du plateau. Au-dessus d'environ 𝐶Ⅰ =

100𝑁.𝑚, le rendement atteint un plateau où il reste constant pour des couples plus élevés. Le même 

comportement est observé pour l'influence du réglage de la tension 𝑠𝑙𝑎𝑐𝑘. Le rendement augmente 

pour les paramètres 𝑠𝑙𝑎𝑐𝑘 plus importants (i.e., pour un réglage de tension plus lâche) et un plateau 

de rendement est atteint à environ 𝑠𝑙𝑎𝑐𝑘 = 7.5%. L'influence de ces deux facteurs est ensuite étudiée 

en tenant compte d'un troisième facteur : le rapport de tension. Une courbe plus générale du 

rendement en fonction du rapport de tension est proposée. Cette courbe peut être parcourue par des 

changements de couples 𝐶Ⅰ et/ou de réglages de tension 𝑠𝑙𝑎𝑐𝑘. Le rendement augmente pour des 

rapports plus faibles et atteint un plateau à environ 𝑇𝑠,Ⅰ 𝑇𝑡⁄ = 2𝑒−2. Les mécanismes expliquant 

l'augmentation du rendement pour des rapports plus faibles sont ensuite détaillés. Il est montré que 

les pertes au niveau des rouleaux diminuent pour des rapports plus faibles. De plus, l'influence des 

pertes d'engrènement au brin mou diminue également car la tension du brin mou devient négligeable 

par rapport à celle du brin tendu. Par conséquent, pour les transmissions typiques du cyclisme sur piste 

avec des rapports de tension 𝑇𝑠/𝑇𝑡 faibles, les pertes d'engrènement associées au brin tendu sont 

largement prépondérantes. Les différences entre les profils se révèlent être mineures. Toutefois, il 

semble que les profils ayant des rayons de fond de dent plus petits présentent des rendements 

légèrement supérieurs. En conséquence, le profil 𝐶𝑃1 (avec le rayon de fond de dent le plus faible) est 

le plus efficace. 

Plus généralement, les tendances observées étant similaires pour tous les profils de denture, la suite 

du chapitre n'a été menée que sur la géométrie 𝑁𝐹𝑚𝑖𝑛. 

L'analyse est ensuite étendue à des configurations de transmission autres que la 60|15. L'influence 

des paramètres liés à l'architecture de la transmission est étudiée. L'effet du nombre de dents des 

pignons est détaillé en tenant compte des limitations de rayon imposées par les dimensions des vélos 

de piste. Il est démontré que l'influence du nombre de dents du plateau dépend du couple appliqué. 

Son effet sur le rendement est préjudiciable pour les couples faibles alors qu'il est positif pour les 

couples élevés. Cependant, indépendamment du couple appliqué, l'effet du nombre de dents du 

pignon arrière est prépondérant par rapport à celui du plateau et se traduit par des rendements plus 

élevés pour des 𝑍Ⅱ plus élevés. Cet effet est attribué à la réduction de l'angle d’articulation 𝛼𝑗 qui se 

traduit par une réduction des pertes d'engrènement. Globalement, pour un rapport d’engrènement 

𝑍Ⅰ/𝑍Ⅱ constant, l'augmentation du nombre de dents des pignons se traduit par un rendement plus 

élevé, quel que soit le couple appliqué. L'effet du pas de la chaine est ensuite étudié. L'idée de modifier 

le pas de la chaine est testée pour évaluer l'influence d'une réduction supplémentaire de l'angle 

d’engrènement tout en limitant l’encombrement des pignons. La modification du pas de la chaine 

s’accompagne de modification des autres dimensions (notamment les diamètres d’axe, de bague et 

rouleau). Le changement de ces diamètres influe également sur le rendement de la transmission. Cet 
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effet doit donc être séparé du changement de pas seul. Pour ce faire, des cas EEU (Everything Else 

Unchanged, toute choses égales par ailleurs) pour lesquels le pas seul est modifié sont étudiés (les 

dimensions des axes, bagues et rouleaux sont similaires à celles de la chaine de pas 1 2⁄ ′′). Les cas EEU 

montrent un rendement similaire à celui de la transmission 1/2′′ de référence. Des cas RCD (Real Chain 

Dimension, dimensions réelles) sont également considérés. Les résultats montrent que les rendements 

RCD sont meilleurs pour les pas plus faibles. L’effet est donc indépendant de la réduction de pas et est 

attribué aux réductions des distances de glissement pour les pas plus faibles (les diamètres d’axes, de 

bague et de rouleaux réduisent avec les pas de chaine). Cette analyse montre que la modification de 

l'angle d’engrènement sans modification du rayon primitif 𝑅𝑗 n'influence pas le rendement de la 

transmission. En effet, les angles d’engrènement réduits sont compensés par un plus grand nombre 

d'articulations de la chaine pour une durée donnée. Ensuite, l'effet du coefficient de frottement global 

𝜇̅ est exploré. L’influence de coefficients de frottement plus faibles ou plus forts est quantifiée. De 

plus, la contribution de chaque interface de la chaine (i.e., axe/bague, bague/rouleau et rouleau/profil) 

à la dissipation globale est présentée. Cette décomposition montre que l'interface axe/bague est 

responsable de la majeure partie des pertes. Une potentielle optimisation du lubrifiant utilisé doit donc 

se concentrer sur les conditions tribologiques (vitesse de glissement, rugosité, etc.) rencontrées à cette 

interface. 

Enfin, une analyse du modèle de rendement de transmission par chaine (CDEM) à l'aide d'un plan 

d'expérience (Design Of Experiments, DOE) est présentée. Tous les paramètres étudiés dans ce 

chapitre sont pris en compte : couple au plateau, réglage de la tension, taille des pignons, pas de la 

chaine et coefficient de frottement. Le but de cette analyse est de faciliter la comparaison de 

l'influence de chaque facteur afin d'identifier les possibilités d'optimisation les plus importantes. Cet 

outil permet également d'explorer les interactions entre les facteurs. Un plan fractionnaire est utilisé 

pour limiter le temps de calcul de l'analyse. Un test de Fisher-Snedecor [99], [100] est effectué pour 

identifier 19 actions responsables d'environ 93% de la somme des carrés des écarts à la moyenne (Sum 

of Square, 𝑆𝑆). Les résultats montrent que le couple appliqué au plateau 𝐶Ⅰ est le principal facteur 

influençant le rendement de transmission, suivi du rayon du pignon arrière 𝑅Ⅱ et du pas de chaine 𝑝. 

L'effet du rayon du plateau 𝑅Ⅰ s’avère négligeable. Sur la base de ces résultats, des lignes directrices 

pour l'optimisation du rendement des transmissions par chaine sont données. Toutefois, les 

recommandations données prennent uniquement en compte le rendement de la transmission. Dans 

le contexte du cyclisme sur piste de haut niveau, les études futures devraient prendre en compte 

l'implication de toute modification de la transmission par chaine sur le système global athlète-vélo. En 

effet, il faut veiller à ce que de potentiels effets indésirables n'annihilent pas les gains liés à un meilleur 

rendement de la transmission (e.g., augmentation du poids, modification des propriétés 

aérodynamiques, etc.) 
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VIII. Conclusion 

L'objectif principal de cette thèse était d’étudier le rendement des transmissions par chaine à rouleaux 

dans le contexte du cyclisme sur piste. Il a également été proposé de prendre en compte l'influence 

des pertes causées par le mouvement des rouleaux le long de leur profil de denture correspondant. 

Pour ce faire, un modèle de rendement a été développé, sur la base de travaux antérieurs, en deux 

étapes principales. Tout d'abord, un modèle de transmission par chaine quasi-statique (QSCDM) est 

proposé pour calculer le positionnement des rouleaux ainsi que l'évolution des charges (i.e., les 

tensions dans les maillons et les forces de contact entre le rouleau et le profil). Ensuite, sur la base de 

ces résultats, un modèle de rendement de la transmission par chaine (CDEM) est introduit pour 

calculer le rendement de la transmission. 

Le modèle quasi-statique de transmission par chaine (QSCDM) a d'abord été présenté. Ce modèle 

s'inspire d'études antérieures et réutilise les éléments de modélisation de la littérature. Il suppose que 

la chaine fonctionne dans un seul plan (2D). Tous les effets dynamiques sont négligés et les pièces de 

la chaine sont supposées rigides (i.e., les déformations des pièces sont négligées). La cinématique de 

transmission est déterminée à l'aide de deux sous-modèles dédiés aux brins tendu et mou. La 

cinématique est supposée être indépendante des conditions de chargement (e.g., le couple appliqué) 

et également des profils de denture des pignons utilisés. Les charges et l'emplacement des rouleaux 

sont calculés à l'aide d'un sous-modèle local de pignon. Ce sous-modèle utilise les résultats 

cinématiques et peut être utilisé avec différents profils de denture. L'effet du frottement est modélisé 

à l'aide d'un angle de correction 𝛿 qui introduit des différences entre pignons menants et pignons 

menés. Les problèmes de compatibilité entre les différents sous-modèles (e.g., les sous-modèles de 

brin et de pignon local) ainsi que les défis posés par la résolution numérique sont abordés. Le QSCDM 

est construit en tenant compte du contexte du cyclisme sur piste qui justifie par exemple l'approche 

quasi-statique (chaînes légères et vitesses de rotation modérées). Cependant, il peut être utilisé pour 

des transmissions par chaine industrielle dont les caractéristiques répondent aux hypothèses du 

modèle. 

Les éléments de validation du QSCDM ont ensuite été présentés. Les prédictions du modèle ont été 

confrontées à la fois à des résultats numériques et à des mesures expérimentales tirées de la 

littérature. Les comparaisons avec les résultats numériques de Kim & Johnson [52] et Troedsson & 

Vedmar [67] ont confirmé les hypothèses formulées pour le QSCDM. En effet, le modèle de tension 

plus simple (par rapport à Kim & Jonhson) ainsi que l'hypothèse de solides rigides (à l'inverse de 

Troedsson & Vedmar) n'ont pas d'impact significatif sur les prédictions. Les comparaisons ont été 

effectuées pour des transmissions par chaine industrielle, car il n'existe pas encore de résultats 

similaires dans le contexte du cyclisme sur piste dans la littérature. 

Le QSCDM a ensuite été utilisé pour étudier l'influence de la géométrie du profil de denture sur le 

comportement de la transmission (i.e., les charges et l'évolution de la position des rouleaux). Des 

transmissions industrielles et de cyclisme sur piste ont été étudiées. Pour les transmissions 

industrielles, des différences significatives ont été signalées entre les géométries extraites des normes 

ASA [32] et ISO [31]. Sur la base des résultats industriels, des méthodes d'analyse de l'influence du 

profil de denture ont été proposées. L'angle de pression au point de transition 𝜙𝑡𝑝 a été introduit 

comme facteur clé pour évaluer l'influence du profil de denture. Les profils de denture à faible 𝜙𝑡𝑝 ont 

été associés à une capacité de charge élevée entraînant une forte décroissance de la tension de maillon 

et des forces de contact rouleau/profil. Les premières dents portant une forte majorité de la charge. 

Trois comportements de pignons principaux, inspirés des sous-modèles proposés par Lodge & Burgess 
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[70], ont été introduits : inter-tp, rouleau statique et rouleau grimpant. Ces comportements facilitent 

l'analyse de l'évolution de la position du rouleau en fonction des conditions de chargement appliquées. 

Les outils développés ont ensuite été appliqués aux transmissions par chaine de cyclisme sur piste, 

caractérisées par un faible ratio entres les tensions de brin mou et tendu 𝑇𝑠/𝑇𝑡. Il a été montré que les 

contraintes spécifiques à cette application ne pouvaient être satisfaites que par des profils de denture 

spécifiques. Cela a conduit à l'introduction de géométries originales adaptées au contexte du cyclisme : 

les profils de cyclisme 𝐶𝑃. 

Ensuite, le modèle de rendement de transmission par chaine (CDEM) a été introduit. Ce modèle calcule 

le rendement d’une transmission sur la base des résultats fournis par le QSCDM. Deux cas 

cinématiques extrêmes A et B sont considérés pour évaluer la rotation du rouleau en fonction de sa 

position le long de son profil associé. Par conséquent, le résultat du CDEM est un intervalle [𝜂𝐵 , 𝜂𝐴]. 

Une validation des prédictions de rendement a également été proposée. Les résultats de la littérature 

pour les transmissions industrielles montrent que les pertes causées par le mouvement des rouleaux 

pourraient expliquer les rendements plus faibles pour les petits couples. Une comparaison avec des 

mesures expérimentales réalisées à l'aide d'un banc d'essai dédié aux transmissions de cyclisme sur 

piste a également été présentée. 

Enfin, le CDEM a été utilisé pour réaliser une étude paramétrique du rendement de la transmission par 

chaine du cyclisme sur piste. L'influence de la géométrie du profil de denture s'est révélée minime dans 

ce contexte, probablement en raison des grandes similitudes entre les profils. Ces similitudes 

s'expliquent par les contraintes extrêmes imposées par les applications de cyclisme sur piste 

auxquelles tous les profils doivent faire face. Outre la géométrie du profil de denture, l'influence du 

réglage de la tension, du couple appliqué, du pas de la chaîne, des nombres de dents et du coefficient 

de frottement a été étudiée. Une analyse basée sur les plans d’expériences (DOE) a également été 

proposée pour comparer l'effet de chaque paramètre. Sur la base des résultats, des lignes directrices 

pour l'optimisation des transmissions par chaine du cyclisme sur piste ont été données. 

Ce travail de recherche a laissé plusieurs questions en suspens qui ouvrent des perspectives 

intéressantes. À court terme, les points suivants pourraient être explorés : 

• Les possibilités d'optimisation données par l'analyse DOE nécessitent des mesures 

expérimentales pour vérifier les gains prédits. De plus, les effets secondaires potentiels sur le 

rendement du système global cycliste-vélo (en dehors du champ d'application de cette thèse) 

devraient être explorés avant de mettre en œuvre ces solutions. Par exemple, l'augmentation 

de la taille des pignons devrait améliorer le rendement de la transmission par chaîne. 

Cependant, le poids de la transmission pourrait également augmenter et des conséquences 

aérodynamiques potentielles pourraient apparaître. Ces effets doivent être clarifiés pour 

s'assurer que le résultat global soit positif. 

• L'application du modèle CDEM à des cas industriels pourrait donner des résultats intéressants. 

En effet, les rapports de tension plus faibles rencontrés permettent d'utiliser des profils de 

denture dont les propriétés varient davantage par rapport au cyclisme sur piste. Les variations 

de rendement pourraient donc être plus importantes, par exemple, entre un profil cycliste 𝐶𝑃 

et un profil 𝐴𝑆𝐴. 

• Le sous-modèle de pignon, qui fait partie du QSCDM, peut facilement être adapté pour 

prendre en compte une faible variation du pas de la chaine 𝑝𝑐ℎ𝑎𝑖𝑛𝑒 par rapport au pas du 

pignon 𝑝𝑝𝑖𝑔𝑛𝑜𝑛. Cette capacité pourrait être utilisée pour explorer l'influence de l'usure (qui 

se traduit par un allongement du pas de la chaine) et poursuivre le travail initié par Naji & 

Marshek [6]. 
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D'autres questions nécessitent des travaux importants et constituent donc des perspectives à long 

terme. 

• Dans des conditions spécifiques, le QSCDM a prédit des mouvements de va-et-vient des 

rouleaux, avec des conséquences sur le rendement de la transmission. Il pourrait être 

intéressant de vérifier l'existence physique de ce phénomène en essayant de mesurer ce 

mouvement expérimentalement. Pour ce faire, il conviendrait d'étudier les configurations de 

transmission présentant une variation importante de la tension du brin mou. Ces transmissions 

pourraient être caractérisées par une chaine lourde, un pas long et des nombres de dent 

faibles. 

• La compréhension de l'influence du frottement sur l'évolution des charges (tensions dans les 

maillons et forces de contact entre le rouleau et le profile) peut être améliorée. Dans cette 

étude, elle a été modélisée à l'aide d'un angle de correction 𝛿, mais cette approche repose sur 

peu de mesures expérimentales. En particulier, il serait intéressant de tester 

expérimentalement si les conditions de lubrification à l'interface rouleau/profil influencent 

significativement les différences entre le pignon menant et le pignon mené. En d'autres 

termes, 𝜇𝛿 et 𝜇𝑟𝑝7 sont-ils le même paramètre ? 

• Enfin, il serait très intéressant d’étudier l’influence des effets dynamiques, particulièrement 

les vibrations des brins. D’autant plus dans le contexte du cyclisme sur piste ou le couple 

appliqué sur les pédales varie fortement au cours d’une révolution de plateau. Cet acyclisme 

pourrait avoir une influence significative sur les vibrations de brins et potentiellement sur le 

rendement de la transmission. 

 

 
7 𝜇𝛿 est relié à l’influence du frottement sur la distribution des charges alors que 𝜇𝑟𝑝 est le coefficient de 

frottement entre rouleau et profil utilisé pour le calcul du rendement. Dans ces travaux, il a été supposé que ces 
deux paramètres sont indépendant. 
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