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Riemannian and sub-Riemannian methods for
dimension reduction

In this thesis, we propose new methods for dimension reduction based on differ-
ential geometry, that is, finding a representation of a set of observations in a space
of lower dimension than the original data space. Methods for dimension reduction
form a cornerstone of statistics, and thus have a very wide range of applications. For
instance, a lower dimensional representation of a data set allows visualization and
is often necessary for subsequent statistical analyses. In ordinary Euclidean statis-
tics, the data belong to a vector space and the lower dimensional space might be
a linear subspace or a non-linear submanifold approximating the observations. The
study of such smooth manifolds, differential geometry, naturally plays an important
role in this last case, or when the data space is itself a known manifold. Methods
for analysing this type of data form the field of geometric statistics. In this setting,
the approximating space found by dimension reduction is naturally a submanifold
of the given manifold. The starting point of this thesis is geometric statistics for
observations belonging to a known Riemannian manifold, but parts of our work form
a contribution even in the case of data belonging to Euclidean space, Rd.

An important example of manifold valued data is shapes, in our case discrete
curves or surfaces. In evolutionary biology, researchers are interested in studying
reasons for and implications of morphological differences between species. Shape is
one way to formalize morphology. This application motivates the first main contribu-
tion of the thesis. We generalize a dimension reduction method used in evolutionary
biology, phylogenetic principal component analysis (P-PCA), to work for data on a
Riemannian manifold - so that it can be applied to shape data. P-PCA is a version
of PCA for observations that are assumed to be leaf nodes of a phylogenetic tree.
From a statistical point of view, the important property of such data is that the ob-
servations (leaf node values) are not necessarily independent. We define and estimate
intrinsic weighted means and covariances on a manifold which takes the dependency
of the observations into account. We then define phylogenetic PCA on a manifold
to be the eigendecomposition of the weighted covariance in the tangent space of the
weighted mean. We show that the mean estimator that is currently used in evolution-
ary biology for studying morphology corresponds to taking only a single step of our
Riemannian gradient descent algorithm for the intrinsic mean, when the observations
are represented in Kendall’s shape space.

Our second main contribution is a non-parametric method for dimension reduction
that can be used for approximating a set of observations based on a very flexible class
of submanifolds. This method is novel even in the case of Euclidean data. The method
works by constructing a subbundle of the tangent bundle on the data manifold M
via local PCA. We call this subbundle the principal subbundle. We then observe
that this subbundle induces a sub-Riemannian structure on M and we show that the
resulting sub-Riemannian geodesics with respect to this structure stay close to the set
of observations. Moreover, we show that sub-Riemannian geodesics starting from a
given point locally generate a submanifold which is radially aligned with the estimated
subbundle, even for non-integrable subbundles. Non-integrability is likely to occur
when the subbundle is estimated from noisy data, and our method demonstrates that
sub-Riemannian geometry is a natural framework for dealing which such problems.
Numerical experiments illustrate the power of our framework by showing that we can
achieve impressively large range reconstructions even in the presence of quite high
levels of noise.

Keywords: geometric statistics, differential geometry, Riemannian geometry,
sub-Riemannian geometry, mathematical statistics, machine learning



Méthodes riemanniennes et sous-riemanniennes
pour la réduction de dimension

Nous proposons dans cette thèse de nouvelles méthodes de réduction de dimension
fondées sur la géométrie différentielle. Il s’agit de trouver une représentation d’un en-
semble d’observations dans un espace de dimension inférieure à l’espace d’origine des
données. Les méthodes de réduction de dimension constituent la pierre angulaire des
statistiques et ont donc un très large éventail d’applications. Dans les statistiques
euclidiennes ordinaires, les données appartiennent à un espace vectoriel et l’espace
de dimension inférieure peut être un sous-espace linéaire ou une sous-variété non
linéaire approximant les observations. L’étude de telles variétés lisses, la géométrie
différentielle, joue naturellement un rôle important dans ce dernier cas. Lorsque
l’espace des données est lui-même une variété, l’espace approximant de dimension
réduite est naturellement une sous-variété de la variété intiale. Les méthodes d’analyse
de ce type de données relèvent du domaine des statistiques géométriques. Les statis-
tiques géométriques pour des observations appartenant à une variété riemannienne
sont le point de départ de cette thèse, mais une partie de notre travail apporte une
contribution même dans le cas de données appartenant à l’espace euclidien, Rd.

Les formes, dans notre cas des courbes ou des surfaces discrètes, sont un ex-
emple important de données à valeurs dans les variétés. En biologie évolutive, les
chercheurs s’intéressent aux raisons et aux implications des différences morphologiques
entre les espèces. Cette application motive la première contribution principale de la
thèse. Nous généralisons une méthode de réduction de dimension utilisée en biologie
évolutive, l’analyse en composantes principales phylogénétiques (P-PCA), pour tra-
vailler sur des données à valeur dans une variété riemannienne - afin qu’elle puisse
être appliquée à des données de forme. P-PCA est une version de PCA pour des
observations qui sont les feuilles d’un arbre phylogénétique. D’un point de vue statis-
tique, la propriété importante de ces données est que les observations ne sont pas
indépendantes. Nous définissons et estimons des moyennes et des covariances in-
trinsèquement pondérées sur une variété qui prennent en compte cette dépendance des
observations. Nous définissons ensuite l’ACP phylogénétique sur une variété comme la
décomposition propre de la covariance pondérée dans l’espace tangent de la moyenne
pondérée. Nous montrons que l’estimateur de moyenne actuellement utilisé en biolo-
gie évolutive pour étudier la morphologie correspond à ne prendre qu’une seule étape
de notre algorithme de descente de gradient riemannien pour la moyenne intrinsèque,
lorsque les observations sont représentées dans l’espace des formes de Kendall.

Notre deuxième contribution principale est une méthode non paramétrique de
réduction de dimension fondée sur une classe très flexible de sous-variétés qui est
novatrice même dans le cas de données euclidiennes. Grâce à une PCA locale, nous
construisons tout d’abord un sous-fibré du fibré tangent sur la variété des données
que nous appelons le sous-fibré principal. Cette distribution (au sens géométrique)
induit une structure sous riemannienne. Nous montrons que les géodésiques sous-
riemanniennes correspondantes restent proches de l’ensemble des observations et que
l’ensemble des géodésiques partant d’un point donné génèrent localement une sous-
variété qui est radialement alignée avec le sous-fibré principal, même lorsqu’il est
non intégrables, ce qui apparait lorsque les données sont bruitées. Notre méthode
démontre que la géométrie sous-riemannienne est le cadre naturel pour traiter de
tels problèmes. Des expériences numériques illustrent la puissance de notre cadre en
montrant que nous pouvons réaliser des reconstructions d’une extension importante,
même en présence de niveaux de bruit assez élevés.

Mots-clés: statistiques géométriques, géométrie différentielle, géométrie
Riemannienne, géométrie sous-Riemannienne, statistique mathématique,

apprentissage automatique



Riemannske og sub-Riemannske metoder til
dimensionsreduktion

I denne afhandling præsenteres nye metoder til dimensionsreduktion, baseret p̊a
differential geometri. Det vil sige metoder til at finde en repræsentation af et datasæt
i et rum af lavere dimension end det opringelige rum. S̊adanne metoder spiller en
helt central rolle i statistik, og har et meget bredt anvendelsesomr̊ade. En lavere-
dimensional repræsentation af et datasæt tillader visualisering og er ofte nødvendigt
for efterfølgende statistisk analyse. I traditionel, Euklidisk statistik ligger observa-
tionerne i et vektor rum, og det lavere-dimensionale rum kan være et lineært un-
derrum eller en ikke-lineær undermangfoldighed som approksimerer observationerne.
Studiet af s̊adanne glatte mangfoldigheder, differential geometri, spiller en vigtig rolle
i sidstnævnte tilfælde, eller hvis rummet hvori observationerne ligger i sig selv er en
mangfoldighed. Metoder til at analysere observationer p̊a en mangfoldighed udgør
feltet geometrisk statistik. I denne kontekst er det approksimerende rum, fundet
via dimensionsreduktion, naturligt en submangfoldighed af den givne mangfoldighed.
Udgangspunktet for denne afhandling er geometrisk statistik for observationer p̊a en
a priori kendt Riemannsk mangfoldighed, men dele af vores arbejde udgør et bidrag
selv i tilfældet med observationer i Euklidisk rum, Rd.

Et vigtigt eksempel p̊a data p̊a en mangfoldighed er former, i vores tilfælde
diskrete kurver eller overflader. I evolutionsbiologi er forskere interesseret i at studere
grunde til og implikationer af morfologiske forskelle mellem arter. Former er én m̊ade
at formalisere morfologi p̊a. Denne anvendelse motiverer det første hovedbidrag i
denne afhandling. We generaliserer en metode til dimensionsreduktion brugt i evolu-
tionsbiologi, phylogenetisk principal component analysis (P-PCA), til at virke for data
p̊a en Riemannsk mangfoldighed - s̊a den kan anvendes til observationer af former. P-
PCA er en version af PCA for observationer som antages at være de yderste knuder i
et phylogenetisk træ. Fra et statistisk synspunkt er den vigtige egenskab ved s̊adanne
observationer at de ikke nødvendigvis er uafhængige. We definerer og estimerer intrin-
siske vægtede middelværdier og kovarianser p̊a en mangfoldighed, som tager højde for
s̊adanne observationers afhængighed. Vi definerer derefter phylogenetisk PCA p̊a en
mangfoldighed som egendekomposition af den vægtede kovarians i tanget-rummet til
den vægtede middelværdi. Vi viser at estimatoren af middelværdien som pt. bruges i
evolutionsbiologi til at studere morfologi svarer til at tage kun et enkelt skridt af vores
Riemannske gradient descent algoritme for den intrinsiske middelværdi, n̊ar formerne
repræsenteres i Kendall´s form-mangfoldighed.

Vores andet hovedbidrag er en ikke-parametrisk metode til dimensionsreduktion
som kan bruges til at approksimere et data sæt baseret p̊a en meget flexibel klasse af
submangfoldigheder. Denne metode er ny ogs̊a i tilfældet med Euklidisk data. Meto-
den virker ved at konstruere et under-bundt af tangentbundet p̊a datamangfoldighe-
den M via lokale PCA´er. Vi kalder dette underbundt principal underbundtet. Vi
observerer at dette underbundt inducerer en sub-Riemannsk struktur p̊aM og vi viser
at sub-Riemannske geodæter fra et givent punkt lokalt genererer en submangfoldighed
som radialt flugter med det estimerede subbundt, selv for ikke-integrable subbundter.
Ved støjfyldt data forekommer ikke-integrabilitet med stor sandsynlighed, og vores
metode demonstrerer at sub-Riemannsk geometri er en naturlig tilgang til at h̊andtere
dette. Numeriske eksperimenter illustrerer styrkerne ved metoden ved at vise at den
opn̊ar rekonstruktioner over store afstande, selv under høje niveauer af støj.

Nøgleord: geometrisk statistik, differentialgeometry, Riemannsk geometri,
sub-Riemannsk geometri, matematisk statistik, maskinlæring
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Chapter 1

Introduction

1.1 Statistics on manifolds

Let x1, . . . , xN be a set of observations. The field of statistics traditionally
assumes that such observations belong to a (finite dimensional) vector space.
That is, the methods rely on being able to add observations, xi + xj , and scale
them, xi · c, c ∈ R≥0. However, this assumption of a vector space structure is
prohibitive; important phenomena are naturally modelled as belonging to non-
vector spaces. This thesis provides new methods for analyzing such non-linear
data.

A simple example of non-linear data is observations on a surface in R3, such
as the sphere. Such observations can be given to us in the form of vectors in
R3, i.e. xi = [(xi)1, (xi)2, (xi)3], but prior knowledge might imply that each
observation satisfies the equation

∥xi∥ =
√

(xi)2
1 + (xi)2

2 + (xi)2
3 = 1, i ∈ {1, . . . , N}, (1.1.1)

meaning that they are points on the unit sphere embedded in R3. Such data
on the sphere, and its analogues in different dimensions, is studied in the field
of directional statistics ([K. V. Mardia, Jupp, and K. Mardia 2000], [Pewsey
and García-Portugués 2021]). The observations can be literal directions, e.g.
wind directions, they can be observations of time points, or more generally any
type of Euclidean observations that has been normalized, meaning that only
directions matter, not magnitude (see [Banerjee et al. 2005] for applications
to text classification, gene expression analysis and other domains). Applying
traditional Euclidean statistical methods to such data, i.e. treating them as
points in R3, disregards this prior knowledge and thus the output might not
be sensible. For example, computing the Euclidean mean of the observations
on the sphere yields a point that does not satisfy the constraint (1.1.1) - it
is not a point on the sphere. There is a need for statistical methods which
can incorporate prior knowledge about the space in which a set of observations
might reside. The particular type of non-linear data spaces studied in this thesis
are manifolds - of which the sphere is an example. In particular, we assume
that the space containing the observations is a Riemannian manifold, implying

1



1. Introduction

that e.g. distances between points can be computed. This type of statistics is
called Riemannian geometric statistics. Given data on a Riemannian manifold,
the field comprises methods for computing mean values, dimension reduction,
regression, classification etc. (see [Pennec, Sommer, and T. Fletcher 2019] and
[S. F. Huckemann and Eltzner 2021] for an overview).

Determining a set of constraints satisfied by the observations is a common
way to arrive at a manifold data space in applications. Other examples of this are
matrix manifolds such as the manifold of symmetric positive definite matrices,

SPD(d) = {A ∈ Rd×d | AT = A,

x ̸= 0 =⇒ xT Ax > 0}.

Such matrices constitutes the observations in e.g. the study of diffusion tensor
images, used in medical imaging, where they form covariance matrices of
Brownian motions describing the motion (diffusion) of water molecules in tissue
(see e.g. [Lazar 2007]). Another example of a matrix manifold is the rotation
group SO(3), which is abundant in engineering applications (see [Chirikjian and
Kyatkin 2021]). In [Hauberg 2015] it is used to model motion capture data.

Another approach to deriving a manifold representing a data set is by
introducing equivalence relations, that is, to consider certain subsets of points in
the original space as identical. The result is a quotient space, which is often a
manifold. An example of this is the notion of a shape space, which is a central
motivation for geometric statistics in general as well as for the work in this thesis
in particular. Consider the Euclidean space Rd·k ∼= Rd×k, interpreted as a set of
matrix-valued points, where each x ∈ Rd×k is a collection of k points in Rd (the
columns), called landmarks. These k points constituting x could for example
be points along a discretized curve in R2, outlining some ’shape’. What do we
mean by ’shape’? One answer is that a shape is that which is left after removing
the effects of translation, scaling and rotation. This can be formalized as a set
of equivalence relations, where two points x, x′ ∈ Rd×k are identified if there
exists a translation, a scaling and a rotation such that applying these operations
to each landmark in x makes them equal to the corresponding landmarks in
x′. Identifying such points in Rd×k leads to Kendall’s shape space, which is a
quotient manifold [Kendall 1984]. Kendall’s shape space is part of the theoretical
foundation of the field of geometric morphometrics - the study of morphology
(shape) in biology [Klingenberg 2020]. Another example of a shape manifold is
the LDDMM framework [Younes 2010], that enables analysis of full shapes, e.g.
continuous curves and surfaces. Such spaces of full shapes has been used in the
context of computational anatomy and medical imaging for studying organs like

2



Thesis organization and contributions

the heart or brain (see [Guigui et al. 2021] for an analysis of heart movement).

Lastly, we note that defining a manifold in terms of a set of constraints or
a set of equivalence relations can be complementary views on the same object.
For example, it turns out that Kendall’s shape space for k = 3 landmarks in
R2, interpreted as a space of triangle shapes, can be identified with the sphere.
Thus, performing statistics on such triangle shapes is equivalent to performing
statistics on the sphere.

In the next chapter, we introduce the subject of geometric statistics in more
detail. We put a special emphasis on methods for dimension reduction, which is
the main subject of the thesis. Our contributions to this problem are described
in the following subsection.

1.2 Thesis organization and contributions

Chapter 2 In this chapter, we present background theory concerning the parts
of Riemannian geometric statistics most closely related to our contributions
in Chapters ?? and ??. We start out by elaborating on the notion of doing
statistics for observations belonging to non-vector spaces. We then summarize the
notions in Riemannian geometry that are fundamental to Riemannian geometric
statistics, and subsequently explain broadly how the various operations are used,
and computed, for this type of statistics. We devote some space to the notion of
tangent space approximations, and statistics based on these, since they are used
extensively both a tool and a benchmark in the methods we develop in chapters
?? and ??. The exposition of tangent space statistics in this Chapter, and in
Appendix A.2 where more technical details are given, includes some points which
are of both theoretical and computational importance but which has, to the best
of our knowledge, not been explicitly presented in the literature on geometric
statistics. The section is concluded with presentations of the two foundational
methods for dimension reduction on Riemannian manifolds; tangent PCA and
Principal geodesic analysis (PGA). The methods for dimension reduction that
we present in chapters ?? and ?? are novel extensions and combinations of
these two methods. In Appendix A.3 we elaborate on the complications with
computing PGA (which is an open problem), and rewrite the objective function
to something more tractable. In Appendix A.4 we derive a Taylor expansion of
the PGA objective function which reduces to tangent PCA when only the 1st
order term is considered and includes curvature in the higher order terms.

3



1. Introduction

Chapter 3 This chapter presents an extension of Phylogenetic principal
component analysis (p-PCA) to manifold valued data. P-PCA is a version
of PCA for observations that are assumed to be leaf nodes of a phylogenetic
tree. Mathematically, a phylogenetic tree is a rooted, bifurcating tree graph,
which in evolutionary biology represents evolutionary relationships between
species. From a statistical point of view, the important property of such data
is that the observations (leaf node values) are not necessarily independent. In
particular, they are the endpoints of Brownian motions that are more or less
coupled depending on how closely related the species are. P-PCA consists of
eigendecomposition of the socalled phylogenetic covariance matrix, which is
centered around the socalled phylogenetic root, a type of mean. These notions of
mean and covariance takes the dependency of the observations into account. In
evolutionary biology there is a need for applying this method to data on manifolds,
in particular shapes. We therefore extend to a general Riemannian manifold
the probabilistic model of Brownian motions structured according to a tree, and
define intrinsic estimators of the phylogenetic root and covariance. We then define
phylogenetic PCA on a Riemannian manifold to be eigendecomposition of this
covariance matrix in the tangent space at the mean. We show simulation results
on the sphere (Kendall’s shape space for triangles), demonstrating well-behaved
error distributions and fast convergence of estimators. Furthermore, we apply
the method to a data set of mammal jaws, represented as points in the LDDMM
landmark manifold. Lastly, we discuss the relationship between our approach
and the approach taken to the same problem in geometric morphometrics - the
field of biology analysing shapes (morphology). We show that the phylogenetic
root estimator used in geometric morphometrics corresponds to taking a single
step of our Riemannian gradient descent algorithm for the intrinsic root, when
the observations are represented in Kendall’s shape space.

Chapter 4 The method presented in Chapter ?? is an extension of tangent
PCA. Tangent PCA is based on geodesics of the manifold M to which the
observations belong, which is a generalization of straight lines to such a manifold.
In this chapter, we describe a method for dimension reduction that is based
on a more flexible class of curves. Furthermore, whereas the previous chapter
presented an extension of a method that is already well defined in Euclidean
space, the method presented in this chapter is novel also in the case of M = Rd.
The method provides a solution to a number of dimension reduction problems,
such as; construction of a lower-dimensional submanifold approximating the
observations, representation of the observations in a lower-dimensional Euclidean

4



Thesis organization and contributions

space, and metric learning, in the sense of estimating a distance metric on M

which reflects a lower dimensional geometry. The method works by constructing
a subbundle of the tangent bundle on M via local tangent PCA’s, which we
call the principal subbundle. We then observe that this subbundle induces
a sub-Riemannian (SR) structure on M , and we show that sub-Riemannian
geodesics with respect to this structure follow the point cloud and can be used
to provide solutions to the aforementioned problems. For example, we show that
it is possible to generate submanifolds consisting of such SR geodesics, even if
the subbundle is non-integrable, which loosely means that it doesn’t ’naturally’
determine submanifolds of M . Non-integrability is likely to occur when the
subbundle is estimated from noisy data, and our method demonstrates that sub-
Riemannian geometry is a natural framework for dealing which such noise. Last,
but not least, we implemented a class with methods for sub-Riemannian geometry
in geomstats [Miolane et al. 2020], making computations in sub-Riemannian
geometry available for future applications in geometric and Euclidean statistics.

Chapter 5 We round off by giving a brief summary of the contributions of the
thesis and describing current and future directions of work related to phylogenetic
PCA and principal subbundles.

1.2.1 Publications and invited talks

The material presented in Chapter ?? is an extension of the paper, Tangent
phylogenetic PCA [Akhøj, Pennec, and Sommer 2023], published in the
proceedings of the Scandinavian Conference on Image Analysis, 2023.

The material presented in Chapter ?? is based on the preprint Principal
subbundles for dimension reduction [Akhøj, Benn, et al. 2023] which has been
submitted to the journal Foundations of computational mathematics in July
2023. In April 2023, this work was presented by the author at the workshop
Statistics of shapes and Geometry of Shape Spaces, at the Max-Planck-Institute
for Mathematics in the Sciences, Leipzig. In May 2023 it was presented by the
author at the Analysis and PDE Seminar at the university of Bergen, Department
of mathematics.
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Chapter 2

Background: geometric statistics
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Generalizing Euclidean statistical methods

2.1 Generalizing Euclidean statistical methods

Many Euclidean statistical methods can be reformulated in terms of operations
that does not depend on the vector space structure, suggesting that they make
sense on more general spaces. Often, there exist multiple formulations of the
same method that are equivalent in Euclidean space, but which lead to different
solutions in the more general space. One approach to generalizing a given method
is to reformulate it in terms of distances, making it well-defined on a general
metric space.

Example 2.1.1 (The empirical mean in Rd). Let {xi}i=1...N be observations
in R and let d(x, y) = |x − y| be the Euclidean distance on R. Consider the
optimization problem

µ̂ = argmin
µ∈R

N∑
i=1

d(µ, xi)2. (2.1.1)

Differentiating with respect to µ gives

d

dµ

N∑
i=1

|µ − xi|2 = 2µN − 2
N∑

i=1
xi

and d2

d2µ

∑N
i=1 |µ − xi|2 = 2N > 0. Thus, the unique minimizer of (2.1.1) is

µ̂ = 1
N

N∑
i=1

xi, (2.1.2)

the arithmetic mean, or empirical first moment. Likewise, for x1, . . . , xN ∈ Rd

one can similarly show that the solution is given by µ̂ = 1
N

∑N
i=1 xi.

In Equation (2.1.2), vector space operations addition and scalar multiplication
are applied to the observations, while the minimization problem (2.1.1) only
applies a distance metric to the observations.

The above formulation of the arithmetic mean as a distance minimization
problem can be used as a definition of a mean on a general metric space (M, d),
where M is some set and d : M × M → R≥0 is a distance metric on M . The
point here is that M is not necessarily a vector space.

Definition 2.1.2 (Fréchet mean). [Fréchet 1948] Let (M, d) be a metric space,
and let x1, . . . , xN be points on M . The Fréchet mean is defined as a minimizer
of the following minimization problem,

µ̂ = argmin
µ∈M

N∑
i=1

d(µ, xi)2. (2.1.3)

7



2. Background: geometric statistics

The Fréchet mean optimization problem is an instance of the following more
general problem, for observations x1, . . . , xN ∈ M ,

Û ∈ argmin
U∈Q

N∑
i=1

d(xi, πU (xi))2, (2.1.4)

where Q is some family of closed subsets of M and π is a projection of a point
x ∈ M to a subset U ∈ Q with respect to the distance metric d;

πU (x) ∈ argmin
p∈U

d(x, p), (2.1.5)

assumed to be unique for the considered points. The optimization problem
(2.1.4) searches for a subset U which approximates the observations with respect
to the distance d. This reduces to the Fréchet mean problem for Q = M , in
which case πU (xi) = U for any point U ∈ Q. The problem (2.1.4) can be called
an unsupervised approximation problem - unsupervised because there are no
independent variables on which the observations depend, as there is in e.g. a
regression problem. We think of U as a subset that represents the data given a
chosen set of constraints, expressed by Q. For example, elements of Q might
be of lower dimension than the ambient space of observations, and it might
be a linear subspace if the ambient space is a vector space. For a particular
problem, the question is then which family of subsets Q ⊂ P(M) yield solutions
with desired properties, e.g. properties similar to the case of Euclidean space.
Principal component analysis, the foundation of the methods presented in this
thesis, is another important example of problem (2.1.4).

Example 2.1.3 (Principal component analysis).
Let {xi}i=1...N ⊂ Rd be observations in Rd and let µ be their arithmetic

mean. The two core steps of principal component analysis (see e.g. [Jolliffe and
Cadima 2016]) are the following,

1. Compute the empirical covariance matrix

K = 1
N − 1

N∑
i=1

(xi − µ)(xi − µ)T . (2.1.6)

2. Compute the eigendecomposition K = PΛP −1, where Λ is a diagonal
matrix containing the eigenvalues λ1 ≥ · · · ≥ λd and P is a matrix
containing the corresponding eigenvectors e1, . . . , ed as columns.

Assuming that λk is strictly greater than λk+1, we call Vk
..= span{e1, . . . , ek}

the k’th eigenspace. This algebraically defined object can be characterized in a
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Riemannian geometry

different way, namely as the k-dimensional subspace that best approximates the
observations, in the sense of minimizing the following problem

Vk = argmin
U∈Gr(k,Rd)

N∑
i=1

d(xi, πU (xi))2, i = 1 . . . d − 1, (2.1.7)

where Gr(k,Rd) is the Grassmannian manifold of all k-dimensional subspaces
of Rd [Bendokat, Zimmermann, and Absil 2020]. This problem is of the form
(2.1.4) for Q = Gr(k,Rd), in which case πU (xi) is orthogonal projection of xi to
linear subspace U ⊂ Rd.

This formulation of eigenspaces suggests that we can generalize them to
more general metric spaces (M, d). However, the parameter space Q, the
Grassmannian manifold of linear subspaces of Rd, only makes sense when the
space of observations is a vector space. A natural idea is then to look for a
family of subsets Q of M analogous to linear subspaces of a vector space. In the
case of Riemannian manifolds, such subsets, in fact submanifolds, can be built
up from collections of geodesics - a generalization of straight lines to manifolds.
This leads to Principal geodesic analysis and its approximative version tangent
PCA which will be described in Sections 2.4.1 and 2.4.2.

Minimal prerequisites for approaching a problem of the form (2.1.4) on some
metric space (M, d) seems to be the ability to compute the distance metric d,
the existence of a suitable family of subsets Q for the problem at hand, and last,
but not least, the ability to solve optimization problems. In this thesis we study
the case where M is a complete Riemannian manifold and where the distance
metric d is the geodesic distance. In the next section, we give an overview of
how the tools available on Riemannian manifolds enables us to solve problems
in non-Euclidean statistics, such as (2.1.4).

2.2 Riemannian geometry

In this section, we give a brief overview of the central objects in Riemannian
geometry used for Riemannian geometric statistics. For more details, we refer
the reader to, e.g., [Lee 2018] or [Do Carmo and Flaherty Francis 1992].

A Riemannian metric g on M is a smoothly varying family of inner
products on the tangent bundle TM . Being an inner product on each tangent
space TxM, x ∈ M , g enables measurement of lengths and angles of tangent
vectors. From this, it defines the length of a smooth path φ : [0, 1] → M as
L(φ) ..=

∫ 1
0 g(γ̇(t), γ̇(t))dt, and a distance between two points as the infimum of

9



2. Background: geometric statistics

lengths of paths joining them;

d(x, y) = inf
{

L(φ)
∣∣∣∣∣ γ : [0, 1] → M is smooth

γ(0) = x, γ(1) = y

}
, (2.2.1)

for any x, y ∈ M .
A crucial fact about (finite dimensional) Riemannian geometry, as opposed to

sub-Riemannian geometry, is that the metric determines a canonical isomorphism
between TpM and its dual space T ⋆

p M , called the flat map,

Z : TpM → T ⋆
p M : v 7→ v

Z
.

The inverse of the flat map is called the sharp map, denoted \. Given a real-
valued function f : M → R we can compute its differential at a point p ∈ M ,
which is a covector dpf ∈ T ⋆

p M . Given a Riemannian metric, the induced sharp
map thus provides a canonical way to identify this cotangent vector with a
tangent vector, called the Riemannian gradient of f at p, ∇f |p = \(dpf) ∈ TpM .

Recall that a connection on M allows to define the covariant derivative of e.g.
a vector field or a tensor field along another vector field. A vector field is parallel
along a curve if its covariant derivative along the curve is zero. For any points
x, y ∈ M , any tangent vector v ∈ TxM and any smooth curve φ betweeen x and
y, there exists a parallel vector field along the curve, called the parallel transport
of v along φ. The parallel vector field solves the parallel transport equation, a
1st-order linear ODE. A Riemannian metric induces a canonical connection, the
Levi-Civita connection, as the unique connection satisfying the two conditions of
torsion being constantly zero, ∇XY − ∇Y X = [X, Y ], and compatibility with
the metric. The latter condition is equivalent to the parallel transport operator
Πy

x : TxM → TyM along any smooth curve between x, y ∈ M being an isometry
([Lee 2018], lemma 5.2).

Geodesics are curves whose tangent vectors are parallel with respect to a
chosen connection. This implies that they satisfy the geodesic equation, a 2nd-
order ODE derived from the parallel transport equation. When the connection is
Levi-Civita, determined by a Riemannian metric, geodesics have the property of
being locally length minimizing curves. In particular, the path distance d on M is
a geodesic distance, meaning that a shortest path between x, y ∈ M is a geodesic
w.r.t. the Levi-Civita connection. Furthermore, the Hopf-Rinow theorem states
that (M, d) is a complete metric space if and only if M is geodesically complete,
meaning that solutions to the geodesic equations exist for all time.

The exponential map is the data-to-solution map for the geodesic equation
and carries an initial point p ∈ M and initial direction v ∈ TpM to the value of
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the corresponding geodesic γv
p at time 1,

expp : TpM → M : v 7→ expp(v) = γv
p (1). (2.2.2)

The derivative of the exponential map at v = 0 is the identity map, so the inverse
function theorem implies that exp is locally a diffeomorphism. Let Cp ⊂ TpM

be the largest subset containing 0 on which expp is a diffeomorphism, called
the injectivity domain. Let Cp = expp(Cp) ⊂ M be its exponential image. The
inverse of exp on Cp is called the Riemannian logarithmic map,

logp : Cp → TpM : x 7→ logp(x) = exp−1
p (x). (2.2.3)

Since TpM ∼= Rd, logp thus defines a chart on M , called a normal chart.
Lastly, a crucial property of the log is its relation to the geodesic distance

metric,

∥ logx(y)∥x = d(x, y), (2.2.4)

where ∥ · ∥x is the norm induced by the Riemannian metric gx at x.

2.3 Basic tools for Riemannian geometric statistics

In this section, we give an overview of how the objects and operations described
in the previous section are used in Riemannian geometric statistics.

First of all, we mention that there is not necessarily a canonical choice
of metric for a certain application. In the case of e.g. the LDDMM shape
space (Section ??), there is a natural parameterized family of metrics, but not
a canonical way to choose among these. Other examples are the manifolds
of correlation matrices and of covariance matrices, where there is a plethora
of different families of metrics (see the PhD thesis [Thanwerdas 2022] for an
overview). This degree of freedom can be seen as modelling flexibility or a
nuissance, depending on the application. In other cases, such as Kendall’s shape
space, there is a natural choice of metric.

After a choice of metric, the geodesic distance induced by the Riemannian
metric turns the manifold M into a metric space (M, d) with respect to which
distance based statistics can be performed. In practice, the distance d(x, y),
x, y ∈ M , is computed via the logarithm, implicitly assuming that y is in the
exponential image of the injectivity area of x.

The gradient induced by the Riemannian metric allows for formulating
optimization algorithms, e.g. gradient descent, for minimizing objective functions
such as (2.1.3) for the Fréchet mean. See e.g. [Boumal 2023] or [Absil, Mahony,
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and Sepulchre 2008] and Section ?? where we discuss gradient descent for a
weighted Fréchet mean.

If closed-form expressions for geodesics are not available for a particular
manifold, we can approximate them by numerically integrating the geodesic
equation. This, and a wide range of other computations on Riemannian manifolds,
is available in Python libraries such as geomstats [Miolane et al. 2020] and
gaxgeometry (http://bitbucket.org/stefansommer/jaxgeometry).

Computing the log is a crucial problem for practical geometric statistics,
e.g. for computing the geodesic distance and normal charts. On a general
Riemannian manifold it is not possible to characterize the injectivity domain
neither theoretically nor numerically. When we write logp(xi) it will thus be
under a, usually implicit, assumption that xi ∈ Cp. In the case of no additional
theoretical knowledge, in geomstats and jaxgeometry the logarithm is computed
via a ’shooting method’, which amounts to searching for a geodesic whose
endpoint is as close as possible to the desired endpoint, w.r.t. some easy-to-
compute ambient distance. Such an optimal geodesic is found via a numerical
optimization scheme on the initial tangent vector. This is a relatively expensive
optimization problem. We discuss this further in Appendix A.3.

Tangent spaces are important for Riemannian geometric statistics, and normal
charts are a particularly convenient representation of these. Since TpM is a
vector space approximating M around p, it provides us with the possibility
to do Euclidean statistics on the transformed dataset

{
logp(xi)

}
⊂ TpM in a

way that approximates exact statistics on the manifold. This comes with the
benefit of being more computationally efficient, as well as removing the need for
reformulating a method in an intrinsic way. Equation (2.2.4) expresses that the
distance between the base point x and any point y ∈ Cx is preserved in a normal
chart. However, if neither x nor y is the base point then the corresponding
distance in the tangent space is distorted - see subsection 2.3.1 for details.
Theoretically, the basis induced by a normal chart on TpM is orthonormal. This
is convenient, since Euclidean statistical formulas usually assumes an orthonormal
basis. However, if the log is computed by an optimization in the tangent space, as
described above, the basis is arbitrary, which then has to be taken into account.
This and other points are not fully adressed in the literature. We discuss it
further in Section 2.4.1 and in Appendix A.2.

Lastly, we mention the role of the parallel transport map along a geodesic. It
is often necessary to transport computations done in one tangent space to another,
or collecting tangent vectors from different tangent spaces into a common one,
in which a computation on the set can be performed (see an example of this in
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Appendix A.4 on Taylor approximation of PGA). We therefore need suitable
maps between tangent spaces. If the manifold is a Lie group, the differential
of the group multiplication map (left or right) can be used. On a general
Riemannian manifold, the parallel transport map provides solution.

2.3.1 Distortion of distances in the tangent space

As mentioned, there is a trade-off between the accuracy of the exact computation
of geodesic distances and the convenient properties of the tangent space distances,
such as computational efficiency. This trade-off is a recurrent theme in this
thesis, so we elaborate on it in this section.

Equation (2.2.4) says that the distance between the origin in a tangent space
TpM and each logp(xi) ∈ TpM , as measured with respect to the norm ∥ · ∥p,
equals the geodesic distance between p and xi. Thus, the tangent space does
not distort these radial distances. However, the distance ∥v1 − v2∥p between
arbitrary points v1, v2 ∈ TpM does not equal the corresponding geodesic distance
d(expp(v1), expp(v2)) on the manifold. In particular, the distortion of this
geodesic distance depends on the curvature around p in the following way (see
e.g. [Do Carmo and Flaherty Francis 1992], Section 5 proposition 2.7),

d(expp(t · v1), expp(t · v2))2 = t2 ∥v1 − v2∥2
p (2.3.1)

− t4 1
3 ⟨R(v1, v2)v1, v2⟩

+ O(t4),

where R is the curvature tensor and ⟨R(v1, v2)v1, v2⟩p therefore the sectional
curvature with respect to the plane spanned by v1, v2 in TpM . Thus, in the
case of positive sectional curvature (such as for any point p on the sphere), the
Euclidean distances in the tangent space gets underestimated, and vice versa
in the case of negative curvature. The formula also implies that the smaller t

is, i.e. the closer the points being compared are, the smaller is the distortion.
For Riemannian geometric statistics this means that the more concentrated, in
the sense of low variability, the data set is, the smaller is the error incurred by
using a distance based Euclidean formula in the tangent space. What a sufficient
level of concentration is, relative to an accepted level of error, depends on the
curvature of the manifold in the vicinity of the observations.
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2. Background: geometric statistics

2.4 Dimension reduction

In this section, we focus on the particular problem of dimension reduction on
Riemannian manifolds. We give details on the two foundational methods, tangent
PCA and principal geodesic analysis. The methods presented in Chapters ?? and
?? are variations and combinations of these two methods. In the last subsection,
we give an overview of more recent methods.

2.4.1 Tangent PCA

Tangent PCA can be described roughly as performing PCA on the log-
transformed observations logp(x1), . . . , logp(xN ) ∈ TpM , where p might be the
Fréchet mean. However, this description leaves out some important theoretical
and practical details that are not described in the literature, so we do that below.
Our presentation is structured according to the two steps of PCA: step one,
computing the empirical covariance matrix, and step two, the eigendecomposition.

Intrinsic definition of the empirical covariance matrix In Euclidean
statistics, there is a canonical choice of an orthonormal basis. Maybe for this
reason, it is rarely mentioned that the empirical covariance matrix (2.1.6) depends
on the choice of basis, in the following sense. Let vA and vB be representations
of a vector v in Rd with respect to bases A and B, and let Q be the change of
basis matrix from A to B, so that vB = QvA. Changing the basis of v changes
an outer product in the following way,

vBvB
T = (QvA) (QvA)T = QvAvA

T QT .

In contrast, the coordinate representation of φA = vAvA
T , considered as a linear

map, is changed by

φB = QφAQ−1 = QvAvA
T Q−1.

Thus, if and only if Q is an orthogonal change of basis matrix, i.e. QT = Q−1,
does changing the basis of vA lead to the desired change of basis of vAvA

T ,
considered as a linear map. Eigendecomposition of a linear map, represented
by a matrix, is independent of the choice of basis, in the sense that changing
the basis of the linear map leads to a corresponding change of basis of the
eigenvectors (the eigenvalues are not affected by basis change). Recall that the
empirical covariance matrix is a sum of outer products. Thus, PCA depends on
the choice of basis, up to orthogonal basis change, since the empirical covariance
matrix does.
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On a Riemannian manifold there is no canonical basis for a tangent space
TpM . However, from the Riemannian metric one can compute a, non-unique,
orthonormal basis and represent the vectors

{
logp(xi)

}
i=1..N

w.r.t. to this
basis. The empirical covariance matrix can then be computed w.r.t. this
orthonormal basis, and the discussion above implies that the result of the
subsequent eigendecomposition will be independent on the particular choice of
orthonormal basis. However, we can do better than this; we can give a coordinate-
free definition of empirical covariance, which has the additional advantage of
allowing computations to be performed in any basis - removing the need for
computing, and transforming the data to, an orthonormal basis.

Following [Pennec, Fillard, and Ayache 2006], we define the empirical
covariance matrix at p ∈ M as the tensor

Σ(p) = 1
N − 1

N∑
i=1

logp(xi) ⊗ logp(xi) ∈ TpM ⊗ TpM. (2.4.1)

After choosing a local chart around p, which induces a basis A for TpM , the
coordinate representation of this tensor is

[Σ(p)]A = 1
N − 1

N∑
i=1

[
logp(xi)

]
A

([
logp(xi)

]
A

)T

[gp]A, (2.4.2)

where [·]A denotes representation of an object with respect to basis A. See
Appendix A.2.1 for a derivation of this coordinate expression. Thus, the
coordinate representation of the tensor Σ(p) is a d × d matrix as we would
expect. If the basis A is orthonormal with respect to metric g, then [gp]A
is the identitity matrix. Thus, the common description of tangent PCA as
eigendecomposition of the matrix 1

N−1
∑N

i=1
[
logp(xi)

]
A

([
logp(xi)

]
A

)T

is only
correct if the basis A is orthonormal. In theory this is the case when the basis is
induced by a normal chart. However, if the log-map is computed numerically
via an optimization scheme it is not necessarily the case (see Appendix A.1).
Lastly, note that if (M, g) is Euclidean space then logp(x) = x − p, so that if p

is the Fréchet mean then the covariance (2.4.2) equals the ordinary Euclidean
empirical covariance formula (2.1.6).

Eigendecomposition in the tangent space Given this intrinsic definition
of empirical covariance on a Riemannian manifold, we can move to step 2 of
PCA, the eigendecomposition. Tangent PCA consists simply of performing
eigendecomposition of Σ(p). The eigendecomposition yields eigenvectors
e1, . . . , ed ∈ TpM and thus eigenspaces Vk

..= span (e1, . . . , ek) ⊂ TpM
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in the tangent space. The log transformed observations can be projected
to eigenspaces, πVk

(
logp(xi)

)
, and mapped back to M via the exponential

map, expp

(
πVk

(
logp(xi)

))
. Since the exponential map is a diffeomorphism

on the tangent cut locus Cp it holds that expp(Cp ∩ Vk) is a k-dimensional
embedded submanifold of M . This submanifold can be used as a k-dimensional
approximation of the data. Since the image of a linear subspace under the
exponential map is formed by a collection of geodesics, we interpret the resulting
submanifold of M as an analogue of a linear subspace.

Tangent PCA approximates distances We now discuss the sense in which
tangent PCA is approximative. As discussed in Example 2.1.3 eigenspaces of a
linear map can be formulated as solutions to a distance minimization problem. In
the setting of tangent PCA, eigenspace Vk, k = 1 . . . d−1, solves the optimization
problem

Vk = argmin
U∈Gr(k,TpM)

N∑
i=1

d(logp(xi), πU (logp(xi)))2, (2.4.3)

where d(x, y) = ∥x − y∥2
p is the distance between x, y ∈ TpM w.r.t. the norm

induced by gp. Thus, Vk is a linear subspace approximating the log-transformed
observations in TpM . However, as discussed in the previous section, the fact that
Vk is close to the observations {logp(xi)}i=1...N in the tangent space does not
imply that the submanifold expp(Vk ∩ Cp) is close to the observations {xi}i=1...k

in M . More specifically, that d(logp(xi), πVk
(logp(xi))) is small does not imply

that d(xi, expp(πVk
(logp(xi))) is small. To ensure this, one has to minimize

the geodesic distances instead of the tangent space distances. This is done in
principal geodesic analysis, described in the next section.

In Chapter ??, we derive a tensor representation of a particular type of
covariance matrix used in evolutionary biology, and define ’tangent phylogenetic
PCA’ as eigendecomposition of the corresponding matrix. In Chapter ?? we
define socalled local tangent PCA, which are combined in a certain way to
construct approximating submanifolds that does not consist of (Riemannian)
geodesics.

2.4.2 Principal geodesic analysis

In this section we assume that the base point is the Fréchet mean, µ, as it is
presented in the original paper on PGA [T. P. Fletcher et al. 2004]. As we saw,
tangent PCA approximates the observations with the submanifold expµ(Vk ∩ Cµ)
where Vk is found by minimizing certain distances in the tangent space TµM . In
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principal geodesic analysis, Vk ⊂ TpM is found by minimizing the corresponding
geodesic distances on M . The Vk’s are obtained in the following sequential way.
Let V1 ..= span{v1}, where v1 minimizes the following objective function,

v1 ∈ argmin
v∈TµM

1
N

N∑
j=1

d(xj , πexpµ(span(v)∩Cµ)(xj))2 (2.4.4)

= argmin
v∈TµM

1
N

N∑
j=1

∥ logxj
(πexpµ(span(v)∩Cµ)(xj))∥2, (2.4.5)

where d is the geodesic distance on (M, g), and π is projection with respect
to this distance. The following subspaces V2 ..= span(v1, v2), . . . , Vd−1 ..=
span(v1, . . . , vd−1) are found by optimizing for one basis vector vi at a time,

vi ∈ argmin
v∈TµM

1
N

N∑
j=1

∥ logxj
(πexpµ(Vi−1∩Cµ)(xj))∥2, (2.4.6)

for i = 2 . . . d−1. For practical purposes, to reduce the dimension of the parameter
space, it can be helpful to add constraints enforcing unit length and orthogonality
to the optimization problem, i.e. ∥v∥g = 1 and vi ⊥ span{Vi−1}. Regardless, the
PGA optimization problem is high-dimensional and computationally intensive.
The exact dimension and complexity depends on how many operations are
available closed-form, e.g. log or exp. In Appendix A.3 we elaborate on the
complications with computing PGA, and rewrite the objective function to
something more tractable. No publicly available implementation of PGA exists
to this date (for work in this direction, see [Sommer, Lauze, et al. 2010]).

On a general manifold, as opposed to Euclidean space, the described sequential
procedure of optimizing for one basis vector at a time is not equivalent to
directly solving for the optimal k-dimensional subspace of TpM . Likewise, in
Euclidean space, the eigenspace can equivalently be defined as the solution to a
variance maximization problem, whereas this is not equivalent to error (distance)
minimization on a general manifold. In practice, the sequential approach leads
to a simpler optimization problem, and the formulation in terms of distance
minimization seems to be more stable than variance maximization [Sommer,
Lauze, et al. 2010].

We end our presentation of PGA by deriving tangent PCA as an approxima-
tion of PGA. The tangent PCA objective function (2.4.3) can be derived from
the PGA objective function by making the approximation

logµ(πexpµ(span(v)∩Cµ)(xj)) ≈ v · ⟨v, logµ(xj)⟩
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which leads to

d(xj , πexpµ(span(v)∩Cµ)(xj)) ≈ ∥ logµ(xj) − logµ(πexpµ(span(v))(xj))∥p (2.4.7)

≈ ∥ logµ(xj) − v · ⟨v, logµ(xj)⟩∥p (2.4.8)
≈ ∥ logµ(xj) − πspan(v)(logµ(xj)))⟩∥p (2.4.9)

where the first approximation is based on Equation (2.3.1), and πspan(v) is
orthogonal projection in TpM w.r.t. the norm induced by gµ. The latter
expression is exactly what tangent PCA minimizes, cf. Equation (2.4.3). In
Appendix A.4 we derive a Taylor expansion of the objective function of PGA
whose first order term corresponds to the tangent PCA objective function - this
is another way of deriving tangent PCA as an approximation to PGA. The
higher order terms in the Taylor expansion takes the curvature into account.

Since PGA is based on computing exact distances in M , as opposed to
approximated distances in TµM , it is more sensitive to the curvature of M than
PGA. However, it is not sensitive to potential non-geodesic variation in the
dataset. This is in line with it being a manifold generalization of PCA, which
assumes that the data is well approximated by linear subspaces. The method
we present in Chapter ?? picks up on non-geodesic variation in the data, by
combining PGA and local tangent PCA’s.

2.4.3 Other methods for dimension reduction on Riemannian
manifolds

We round off by a short survey of other, more advanced, methods for dimension
reduction on Riemannian manifolds. For another, short review, see Section 5 of
[S. F. Huckemann and Eltzner 2021].

The most direct extension of PGA is Geodesic principal component analysis
(G-PCA) [S. Huckemann, Hotz, and Munk 2010], which also approximates the
observations by geodesics, but which furthermore optimizes for the base point µ.
The method of Principal nested spheres (PNS) [Jung et al. 2010] works for data
belonging to spheres in any dimension (see also principal nested symmetric spaces
[Curry, Marsland, and McLachlan 2019] for a generalization). The observations
are approximated by subspheres of the original sphere, minimizing a sum-of-
squared-errors (SSE) criterion where the error is measured by geodesic distance.
By iteratively fitting a subsphere of one dimension less, the output is a nested
sequence of subspheres (submanifolds). In comparison, the result of PGA is a
nested sequence of submanifolds that are constructed by adding a dimension in
each iteration. Geodesics on the sphere are great arcs, which can be identified
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with circles of radius 1, while the arbitrary subspheres of PNS can have any
radius. Thus, the class of approximating submanifolds of the sphere considered
by PNS is larger than that of PGA and G-PCA.

Barycentric subspace analysis (BSA) [Pennec 2018] is a method which works
for data on an arbitrary Riemannian manifold. This method approximates the
data by the generalization to Riemannian manifolds of barycentric subspaces.
Like PNS, BSA does not depend on a base point. It depends on a chosen set
of points, e.g. observations, generating the barycentric subspace. By adding or
removing points, the result is a nested sequence of barycentric subspaces of the
original manifold.

All the methods mentioned so far consider a certain parameterized class of
curves or submanifolds, and choose among these by minimizing a sum-of-squared-
errors objective function, based on geodesic distance (although for BSA, the SSE
approach is just one option). This corresponds to our earlier general formulation
of the dimension reduction problem (2.1.4) based on a family of subsets Q of
the original space. We now mention some methods which are not based on
a parameterized family of subsets or on minimizing SSE. A method which is
completely non-parametric, in the sense of the family of approximating curves
being infinite dimensional, is the method of principal flows [Panaretos, Pham,
and Yao 2014]. The method fits local tangent PCA‘s and generates a curve
whose tangent vectors are aligned with the first eigenvector - i.e. it moves in
the direction that locally describes the most variation in the data. This method
only works for approximating the observations by a curve, but was generalized
to higher dimensional approximations in [Yao, Eltzner, and Pham 2023]. Our
method of principal subbundles, described in Chapter ??, can also be considered
a generalization of the principal flow to higher dimensions (in Section ?? we
elaborate on the relationship between these methods). An approach which is not
based on deterministic curves, let alone geodesics, is infinitesmal probabilistic
principal component analysis ([Sommer 2019] and [Pennec, Sommer, and T.
Fletcher 2019], Chapter 10), which is based on anisotropic Brownian motions on
the manifold. This method uses maximum likelihood to fit a covariance matrix
of lower rank than the ambient manifold, say k, describing the motion of the
Brownian motions. This enables, among other things, a representation of the
observations in a k-dimensional Euclidean space.
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Summary of contributions

3.1 Summary of contributions

In Chapter 2 and its associated appendix A, we gave background on geometric
statistics on Riemannian manifolds, with a special focus on computational aspects
and on the two foundational methods for dimension reduction; Tangent PCA
and Principal geodesic analysis. We gave details, not contained in the literature,
on how to do statistics in the tangent space in a way that does not depend on
the chosen coordinates. A special attention was given to the empirical covariance
tensor, central to tangent PCA. Furthermore, we discussed and rewrote the
objective function of PGA from a computational point of view, and derived a
Taylor expansion of it.

In Chapter ??, we formulated a version of Tangent PCA adapted to
applications in evolutionary biology; Tangent phylogenetic PCA. This method
assumes that the data are leaf-nodes of a phylogenetic tree, and takes the
implied correlation structure of such data into account. We defined, and derived
estimators for, the associated notions of phylogenetic mean and covariance. This
work is a generalization to Riemannian manifolds of a method, phylogenetic PCA,
for Euclidean data. In studies of morphology in evolutionary biology the method
is being applied to Procrustes aligned point configurations representing landmark
shapes. In our version, we give a Riemannian gradient descent algorithm for
estimating the intrinsic phylogenetic mean, and show that the way the mean is
currently estimated in morphometrics corresponds to taking only a single step
of this algorithm, when the Riemannian manifold is Kendall’s shape space.

In Chapter ??, we developed a method for dimension reduction on a
Riemannian manifold M which approximates the data based on a very flexible
class of curves, and submanifolds composed of such curves. The method works
by constructing a subbundle of the tangent bundle on the manifold M via local
PCA’s. We call this subbundle the principal subbundle. This subbundle induces
a sub-Riemannian (SR) structure on M , and we show that sub-Riemannian
geodesics with respect to this structure stay close to the set of observations. We
show that it is possible to approximate the data set by submanifolds consisting
of such SR geodesics, even if the subbundle is non-integrable. In particular, we
show that the image under the SR exponential map of the dual space to the
subbundle at a base point µ is an embedding into M , yielding a submanifold of
M whose dimension equals the rank of the subbundle. Non-integrability is likely
to occur when the subbundle is estimated from noisy data, and our method
demonstrates that sub-Riemannian geometry is a natural framework for dealing
which such noise. We also contributed to the software library geomstats [Miolane
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et al. 2020], with a class representing a sub-Riemannian metric and associated
computations of geodesic etc. This makes computations in sub-Riemannian
geometry available for future applications in geometric, and Euclidean, statistics.

3.2 Future work related to phylogenetic PCA

Using anisotopic normal distributions Sommer et al. defines an anisotropic
normal distribution ([Sommer and Svane 2015], [Pennec, Sommer, and T. Fletcher
2019]) on a Manifold M , equipped with a connection or a Riemannian metric,
as the time-t transition distribution of an anisotropic Brownian motion on M .
This distribution has mean µ, called the diffusion mean, and covariance Σ if
the initial point of the Brownian motion is µ and its covariance is Σ (more
precisely Σ is a frame, so (µ, Σ) is a point in the frame bundle on M). The
mean and covariance can be estimated by maximum likelihood methods (see
[Sommer 2015] and [Grong and Sommer 2022]). The diffusion mean, defined
through a stochastic process, is an alternative to the Fréchet mean, defined via
the geodesic distance. The framework of anisotropic normal distributions (ANS)
seems natural to use in relation to phylogenetic comparative methods (PCM)
since the underlying model for the latter is exactly based on such Brownian
motions. To adapt the ANS framework to the PCM setting, however, requires
to modify the framework to deal with Brownian motions structured according
to a tree-graph. This is ongoing work. An off-the-shelf solution is to exchange
the weighted Fréchet mean with the weighted diffusion mean (see [Sommer and
Bronstein 2020] and [Jensen and Sommer 2022]).

Geometric morphometrics in relation to recent developments in compu-
tational geometric statistics We see potential in revisiting the geometric
morphometrics (GM) literature in view of the recent developments in computa-
tional differential geometry and geometric statistics. The basis of the methods in
GM was developed before software libraries such as geomstats and jaxgeometry
made available intrinsic computations on manifolds, in particular for geometric
statistics. As discussed in Chapter ??, the field of geometric morphometrics
builds on a wide range of approximations of intrinsic computations, e.g. different
ways to compute local linear approximations to Kendall’s shape space. It is
possible that, in light of the mentioned recent computational developments,
some of these are superfluous, or that some of them can be exchanged for more
suitable, intrinsic methods. We hope that our work on phylogenetic PCA is one
step in this direction.
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A broader picture In continuation of the previous subsection on GM, we
state the following long term goal: to formulate on Riemannian manifolds those
phylogenetic comparative methods that are relevant for morphometrics and where
intrinsic differential geometry can make a contribution. Such methods could be
other basic statistical operations than PCA, e.g. phylogenetic generalized least
squares regression [Symonds and Blomberg 2014]. Or it could be in the direction
of allowing more flexible probabilistic models, e.g. based on processes more
general than Brownian motions, and where the parameters are not necessarily
the same throughout the tree (see [Harmon 2019] and [Mitov, Bartoszek, and
Stadler 2019]). Or it could be in the direction of uncertainty quantification,
e.g. how does uncertainty in tree estimation propagate to uncertainty in the
estimated parameters.

Choosing landmark positions that are comparable (homologuous) between
species can be difficult, and the annotation of such datasets involves costly manual
labour. Therefore it seems desirable to also develop phylogenetic comparative
methods for ’full shapes’, i.e. shapes defined by continuous curves and surfaces
instead of landmarks, e.g. using the LDDMM framework for continuous curves
or surfaces (see [Younes 2010]) or other shape representations (see [Salili-James
et al. 2022] for a comparison of different representations in the context of shape
classification). See [Mitteroecker and Schaefer 2022] for a discussion of potential
pros and cons of ‘landmark-free‘ shape representations in the context of biology
and geometric morphometrics. However, geometric statistics is less developed for
such infinite-dimensional manifolds compared to the finite dimensional setting
treated in this thesis.

3.3 Future work related to principal subbundles

Evaluation We illustrated the framework of principal subbundles on a number
of experiments in Chapter 4, but it was not fully benchmarked with respect to
competing methods for manifold reconstruction, dimension reduction and metric
learning. This is our most immediate direction of future work.

Improving computations As mentioned in Appendix B.2.1, we have so far
experimented with two ways of integrating the Hamiltonian equations; standard
Euler integration and symplectic Euler. We plan to test other, e.g. higher-
order, symplectic integrators, with the aim of decreasing computational cost (by
allowing for increased step size) while keeping the error tolerable. One candidate
could be the second-order leapfrog scheme (see e.g. [Hairer 2001]), which is
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the most commonly used integrator in the field of Hamiltonian Monte-Carlo
according to [Betancourt 2017].

A second strategy for speeding up computations is to limit the number of
points in which the local PCA is computed, in the following way. We suggest to
precompute local PCA’s only at observations, and interpolate between these by
local averages. This strategy is used in surface reconstruction methods based on
normals (in [Kazhdan, Bolitho, and Hoppe 2006] Poisson surface reconstruction
is computed in this way). In that setting, the interpolation is simply a local
average of normal vectors. In the higher dimensional case we need to compute
an average of k-dimensional subspaces (see [Marrinan et al. 2014] for an overview
of different such averages).

A third strategy for speeding up computations is to lower the number
of observations that are considered in each local PCA when integrating the
Hamiltonian equations. Let p be a point on the ambient manifold N and choose
a radius r > 0. For a moment, we will consider only observations that are inside
the geodesic ball Br(p) ⊂ N . Choose a weight threshold ϵ > 0 such that the
distance corresponding to this weight, r0 = K−1

α (ϵ), is below r, where Kα is
the kernel function in of the weighted second moment, Definition ??. Then it
holds that Br0(q) ⊆ Br(p) for any q such that d(p, q) ≤ r − r0. This holds in
particular for any point along a geodesic qt = expp(tv) up to time t ≤ r − r0 if
∥v∥ = 1. This means that, relative to the threshold ϵ, the observations contained
in Br(p) are sufficient for computing the principal subbundle (local PCA) at
points along this geodesic until time t′ = r − r0. At qt′ a new ball Br(qt′) can be
computed, and the process can be repeated. We think of this process as changing
between ’charts’ Br(·) containing a relevant subset of observations for a given
time interval. We have presented the strategy for computing a single geodesic,
but we expect a similar procedure to be useful when computing neighbouring
geodesics generating a principal submanifold (Algorithm ??).

Extensions In this section, we mention two alternative ways to use a principal
subbundle. The common theme is to consider other classes of curves than
sub-Riemannian geodesics. This is the subject of ongoing work and is therefore
only described cursorily.

One extension is to consider horizontal stochastic processes instead of
sub-Riemannian geodesics. E.g. a sub-Riemannian equivalent of Brownian
motions. The time-t transition distribution of such processes can act as an
analogue to anisotropic normal distributions; they are probability distributions
concentrated around the data. To perform maximum likelihood estimation for
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such distributions we need the sub-Riemannian equivalent of bridge-processes (a
stochastic process conditioned on hitting a specified point), which is work-in-
progress. Such bridge processes are also expected to be of independent interest,
e.g. for generarative models, as a process that moves between two specified
observations while following the point cloud.

Another extension aims at generating curves that are attracted to the point
cloud in a different way than the sub-Riemannian geodesics described in Chapter
??. Sub-Riemannian geodesics determined by the principal subbundle are
constrained to move horizontally w.r.t. the subbundle. I.e. they are subjected
to constraints on their velocity vectors (as well as the constraint of being locally
length-minimizing). When these curves are initialized within the point cloud
they remain within it - at least in principle, and up to numerical error. Apart
from this, they are not attracted to the data. It might be useful to introduce, in
some way, an ’attraction term’ that forces a curve initialized outside of the data
to move towards it. This could also act as a correction to the deviation from
the point cloud that is sometimes incurred by the numerical integration of the
geodesic equations. We are currently considering multiple ways of adding such a
data attraction term. One strategy is to add a term to the metric matrix which
goes to infinity when evaluated outside of the point cloud, similar to what is
done in [Hauberg 2018]. This changes the geometry of the space, in the sense of
changing the metric. Another approach is to consider more general Hamiltonians
than the sub-Riemannian Hamiltonian (Section ??)). This does not change the
geometry, but only the solutions to the Hamiltonian equations, which are then
no longer geodesics.
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Appendix A

Appendix for Chapter 2

A.1 Computational aspects of geometric statistics

For doing statistics on a Riemannian manifold we need to be able to compute
operations such as those described in Section 2.3. For a given manifold, closed
form expressions may or may not be available - most often numerical approxi-
mations are needed at some stage of a computation. Fortunately, a large effort
has been put into implementing numerical differential geometry and geometric
statistics in recent years, with software libraries such as geomstats [Miolane et al.
2020] and jaxgeometry (http://bitbucket.org/stefansommer/jaxgeometry).

Two main computational bottlenecks for geometric statistics is computation
of the exponential and logarithmic maps. The former is computed by numerical
integration of the geodesic equation in a chart, either as a 2nd order ODE in the
tangent bundle or as two coupled first order ODE’s in the cotangent bundle (i.e.
the Hamiltonian geodesic equations, see ??). The logarithm can be computed by
a shooting method, i.e. by solving an optimization problem in the tangent space
that searches for the initial tangent vector minimizing some distance between
the endpoint of the candidate geodesic and the desired endpoint. This distance
should be efficient to compute, e.g. an ambient Euclidean distance if we have
available an embedding of the manifold in a Euclidean space. In more detail,
the optimization problem is the following,

logp(y) ∈ argmin
v∈TpM

d0(expp(v), y) + λ∥v∥g. (A.1.1)

The term λ∥v∥g facilitates finding a length-minimizing geodesic, with the
hyperparameter λ > 0 determining how much emphasis is placed on this
length-minimizing property compared to the ’matching term’ d(expp(v), y). In
Geomstats and in Jax geometry, this optimization problem is solved using the
BFGS algorithm [Wright, Nocedal, et al. 1999] with automatic differentiation.

Thus, the objective function in the optimization problem for the log map
involves computing the exponential map, i.e. solving the geodesic equations.
This is computed at least once at each step of the optimization algorithm. This
has led us to develop a discrete approximation of the log map, presented in
the following section. We use this approximation in Chapter ??, e.g. when
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computing projections to a principal submanifold in Section ??, and we expect
it to be of wider interest for computations on Riemann manifolds.

Lastly, we note that when the log is computed by solving (A.1.1), the basis
for the tangent space is arbitrary, in particular it is not necessarily orthonormal
as one might expect if considering the computed log to be a point in a normal
chart.

A.1.1 Discretization of the log map

We propose a discrete approximation of the Riemannian logarithmic map. The
idea is to pick a finite set of relatively evenly distributed tangent vectors on the
unit sphere in TpM . For each such tangent vector we integrate the geodesic
equations up to a chosen time point r > 0. For each point along a geodesic
initialized by one of these tangent vectors, we store its time index and its position
in M . The collection of all such positions forms a discretized geodesic ball of
radius r in M . For a given point x ∈ M , logp(x) is then approximated by
the tangent vector corresponding to the nearest point on the generated grid.
’Nearest’ is here defined w.r.t. a distance metric d0 that should be efficient to
compute, e.g. an ambient Euclidean metric, as for the objective function (A.1.1).
The procedure is described in 3 steps below.

1. Generate an even grid Sd ⊂ Sd ⊂ TpM on the unit sphere (w.r.t. the
Riemannian meric g) in the tangent space at p, and a grid of timepoints
[0, r] ⊂ [0, r], for some final time r > 0.

2. Generate a discrete ball Bp of radius r > 0 around p on M by

Bp
..= {expp(tv) | t ∈ [0, r], v ∈ Sd}.

For each point yv0
t0

..= expp(t0v0) ∈ Bp, store the parameters of the
corresponding initial tangent vector, i.e. t0, v0.

3. Define the discrete log, logp(y), by

logp(y) ∈ argmin
yv

t ∈Bp

d0(yv
t − y) + λ|t| (A.1.2)

where λ is a trade-off parameter, as described in relation to Equation (A.1.1).
The optimization problem (A.1.2) is discrete. It can be vectorized, such that the
only computationally heavy part is the initialization steps 1 and 2. We expect
the discrete log to be the most useful in situations where ’many’ logs, logp(·),
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need to be computed for the same base point p ∈ M , such as in the gradient
descent for a Fréchet mean (Algorithm ??, Chapter ??).

A.2 Statistics in the tangent space

A general strategy for performing statistics on data belonging to a Riemannan
manifold, x1, . . . , xN ∈ M , is to map the data to a tangent space TµM at a well
chosen base point µ ∈ M , and apply Euclidean statistical methods in this vector
space. To minimize distortion of distances due to tangent space linearization
(see Section 2.3.1), it is preferable that the base point is relatively close to the
observations. A Fréchet mean is a good candidate, since it is a minimizer of
the sum of squared distances to the observations - note however that due to
curvature it can be well outside the support of the data (this is the case for data
distributed along a great arc on the sphere, for example). Having chosen µ, the
next step is to map the observations to TµM via the Riemannian logarithm, i.e.
the data is represented as

logµ(x1), . . . , logµ(xN ) ∈ TµM.

The Euclidean statistical method can then be applied to the transformed dataset.
For some methods, it is a reasonable final step to map the result back to M
via the Riemannian exponential. In this way, e.g. a regression line in TµM is
mapped to a curve on M , or a subspace of TµM found by e.g. PCA is mapped
to a submanifold of M .

When following this strategy, one needs to take into account the fact that
there is no canonical basis for a tangent space, and that Euclidean formulas
usually assume the data to be represented in an orthonormal coordinate system.
In various presentations of tangent space statistics (e.g. the tangent PCA
approximation of PGA in [T. P. Fletcher et al. 2004]) is it implicitly assumed
that the observations are represented in a basis induced by a normal chart. This
basis is orthonormal - the local representation of the Riemannian metric is the
identity matrix. However, if the chart does not induce an orthonormal basis
on the tangent space, one needs to change to one, or take the non-orthonormal
basis into account. As described in Appendix A.1, when the log is computed
numerically by the optimization problem (A.1.1), the basis chosen for the tangent
space is arbitrary, not necessarily orthonormal.

To find an orthonormal basis for TµM , one can do the following. Let p ∈ M

and let g be the Riemannian metric on M , represented in local coordinates

29



A. Appendix for Chapter 2

around p. Let
LLT = g−1(µ)

be the cholesky decomposition of the cometric. Then the columns of L form an
orthonormal basis for TpM .

In the next section, we focus on the particular case of tangent PCA, i.e.
Euclidean PCA performed in a tangent space.

A.2.1 Expressing the second moment in coordinates

The geometric statistics literature is unclear regarding the meaning of the
covariance matrix defined as the tensor product (2.4.1), and what its coordinate
expression is. Therefore, in this section, we show how to derive the coordinate
expression (2.4.2) from (2.4.1).

For some v, u ∈ TpN , the expression v ⊗ u can be identified with an
endomorphism on TpN . Its coordinate representation is thus a d × d matrix.
There seems to be some confusion about this in the geometric statistics literature,
so we give details below. For the remainder of this section we denote a Riemannian
metric by h, to align the notation with Chapter ??, where multiple metrics are
at play.

Lemma A.2.1. Let (N , h) be a Riemannian manifold, and u, v ∈ TpN . Given
a choice of basis for TpN , the tensor v ⊗ u ∈ TpN ⊗ TpN can be expressed in
coordinates as

vuT hp ∈ Rd×d, (A.2.1)

where u, v ∈ Rd×1 are the vectors and hp ∈ Rd×d is the Riemannian metric
represented w.r.t. the chosen basis.

Proof. The tensor v ⊗ u is an element of the tensor product space TpN ⊗ TpN .
After choosing a Riemannian metric, there is a canonical isomorphism between
TpN and its dual space, T ⋆

p N , given by the Riemannian flat map,

Z : TpN → T ⋆
p N : u 7→ hp(u, ·) := u

Z
.

Thus
TpN ⊗ TpN ∼= TpN ⊗ T ⋆

p N ,

where elements of the latter space are denoted (1, 1) tensors. Furthermore, there
is a canonical isomorphism, independent of a Riemannian metric,

TpN ⊗ T ⋆
p N ∼= End(TpN ),
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where End(TpN ) is the space of endomorphisms on TpN . This isomorphism
is given by the map Φ which takes an endomorphism A to the (1, 1) tensor
Φ(A) that acts on w ∈ TpN and η ∈ T ⋆

p N by Φ(A)(w, η) = η(Aw). The linear
map corresponding to a (1,1) tensor of the form v ⊗ u⋆, v ∈ TpN , u⋆ ∈ T ⋆

p N , is
w 7→ Φ−1(v ⊗ u⋆)(w) = v · u⋆(w), i.e. a scaling of v by u⋆(w) ∈ R.

After choosing a basis for TpN , the tangent vectors v, w can be represented
as column vectors v, w ∈ Rd×1. The flat map can be represented by the
matrix hp, which is the matrix representation of the Riemannian metric at p.
After identifying covectors with row vectors (i.e. coordinate representations
of linear maps from TpN to R), u

Z can be represented as the row vector
u
Z = (hpu)T ∈ R1×d. This acts on w by u

Z(w) = (hp u)T
w. Thus, w.r.t.

some chosen basis, the matrix representation of our desired endomorphism is
given by

Φ−1(v ⊗ u
Z) = v(hpu)T = vuT hp.

A.2.1.1 Verifying independence of the coordinate system

Let Q be the change-of-basis matrix from basis a of TpN to basis b. Then
Q⋆ = (QT )−1 is the corresponding change-of-basis matrix from basis a⋆ to b⋆ for
T ⋆

p N , where these bases are dual to a, b. Thus, the change of basis of tangent
vector v from a to b is computed as vb = Qabva. The flat map Z is a linear map
from TpN to T ⋆

p N , so if (hp)a is its representation w.r.t. bases a and a⋆, then
its representation w.r.t. bases b and b⋆ is computed as

(hp)b = Q⋆(hp)aQ−1 = (QT )−1(hp)aQ−1.

We verify that the change of basis of the individual elements u, v, hp matches
the change of basis of the matrix (as a linear map) (A.2.1):

vbuT
b (hp)b = Qva(Qua)T (QT )−1(hp)aQ−1 (A.2.2)

= QvauT
a (hp)aQ−1. (A.2.3)

As opposed to this, the expression vbuT
b does not transform properly under

basis change: vbuT
b = Qva(Qua)T = QvauT

a QT is only equal to QvauT
a Q−1 if

QT = Q−1, i.e. if the basis change matrix is orthogonal, meaning that it only
rotates the basis.
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A.3 Computing principal geodesic analysis

In this section, we elaborate on the optimization problem (A.3.1) that defines
principal geodesic analysis (PGA). We will see that, if no closed form expressions
for the Riemannian log and projection w.r.t. to geodesic distance are available,
then it is a triply nested optimization problem. As of this date, to the best of
our knowledge, there exists no publicly available implementation of PGA. The
first principal direction solves

v1 ∈ argmin
v∈TµM

1
N

N∑
j=1

d(xj , πexpµ(span(v)∩Cµ)(xj))2 (A.3.1)

= argmin
v∈TµM

1
N

N∑
j=1

∥ logxj
(πexpµ(span(v)∩Cµ)(xj))∥2

g, (A.3.2)

The projection problem π can be rephrased as

πexpµ(span(v))(q) ∈ argmin
p∈expµ(span(v))

d(p, q) (A.3.3)

= argmin
α∈R

d
(
expµ(α · v), q

)
. (A.3.4)

The log is given by the optimization problem (A.1.1). The outer optimization
for v ∈ TµM thus makes this a triply nested optimization problem.

Automatic differentiation [Margossian 2019] provides an efficient way to
compute gradients for solving optimization problems, and packages like geomstats
and jaxgeometry relies heavily on it. At the time of writing, automatic
differentiation of such ’implicitly’ defined functions, where the output is the
solution to an optimization problem, is still at an early stage of development. An
alternative approach is to rewrite the problem into a large global optimization
instead of a nested one.

We first move out the inner optimization for the projection,

argmin
v∈TµM

1
N

N∑
j=1

∥ logxj
(πexpµ(span(v))(xj))∥2

g (A.3.5)

= argmin
α∈RN

v∈TµM

1
N

N∑
j=1

∥logxj
(expµ(αjv))∥2

g (A.3.6)

We then move out the inner optimization for the log,

v1 ∈ argmin
α∈RN

v∈TµM

1
N

N∑
j=1

∥logxj
(expµ(αjv))∥2

g (A.3.7)
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≈ argmin
α∈RN

v∈TµM

W ∈Rd×N

1
N

N∑
j=1

∥W:j∥2
g + λd0(expexpµ(αjv)(W:j), xj)2, (A.3.8)

where W is a matrix whose columns are the log-vectors, one for each observation.
λ is the same trade-off parameter as in the log-optimization problem (A.1.1),
controlling the emphasis on minimizing approximation error in the log relative
to minimizing the length of the corresponding geodesic. d0 is a distance that can
be computed easily - henceforth we will assume that d0(x, y) = ∥x − y∥Eucl is
the Euclidean distance and that the manifold is embedded in a Euclidean space.

The interpretation of the optimization problem (A.3.8) can be problematic,
in the following sense. An optimization scheme will produce a sequence of
parameter candidates in the parameter space R(d+1)N+d, but for each update of
parameters (αj)0 ∈ R, j = 1 . . . N , and v0 ∈ TµM the vector W:j ∈ Rd is used as
a tangent vector belonging to a different tangent space, Texpµ((αj)0v0)M . On a
general Riemannian manifold (that is not e.g. a Lie group), there is no canonical
way to identify tangent spaces. One way to map between different tangent spaces
is the parallel transport map, Πy

x : TxM → TyM . This map is an isometry,
meaning that it preserves angles and lengths of vectors. Parallel transport
depends on a chosen curve between points x, y, which we will assume to be the
length-minimizing geodesic (assumed unique) between x, y. Therefore, we can use
parallel transport to ensure that the vectors W:j , j = 1, . . . , N , represent tangent
vectors in the same tangent space, namely TµM . Let α̃jv ..= expµ(αjv) ∈ M .
Then this amounts to the following version of the optimization problem,

argmin
α∈RN

v∈TµM

W ∈Rd×N

1
N

N∑
j=1

∥W:j∥2
g + λ∥exp

α̃jv
(Πα̃jv

µ W:j) − xj∥2
Eucl, (A.3.9)

The parameter space of the final optimization problem (A.3.9) for the first
principal direction v1 is of dimension (d + 1)N + d. For the i’th principal
component, solving (2.4.6), the projection problem causes the projection
parameter α to grow in dimension; α ∈ Ri·N , since a point in an i dimensional
subspace is parameterized by i coordinates. Thus the parameter space dimension
for the i’th component is (d+ i)N +d. Evaluating the objective function involves
solving the parallel transport equation once and computing two exponential maps,
i.e. integrating the geodesic equations twice. The authors have implemented
this scheme with promising results for lower dimensional parameter spaces, but
more work needs to be done in testing it for higher dimensions.
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A.4 Taylor-approximation of PGA

In this section we derive a Taylor approximation of the PGA objective function.
The expansion contains 3 terms, the first of which corresponds to the objective
function of tangent PCA. The subsequent terms takes curvature into account.
The expansion is derived by expressing the PGA objective function in terms
of the socalled neighbouring log map, which is a map with a known Taylor
expansion. The neighbouring log and its Taylor expansion was first introduced
by Pennec in [Pennec 2019] building on work by Gavrilov ([Gavrilov 2006],
[Gavrilov 2007]).

Definition A.4.1 (The neighbouring log map). Let p be a point on M , and
let v, w be tangent vectors in TpM . Let Πy

x(v) be the parallel transport of v

from TxM to TyM along the (assumed unique) length-minimizing geodesic from
x ∈ M to y ∈ M . Let pu

..= expp(u). Then the neighbouring log map is given by

lp(u, v) = Πp
expp(u)

(
logexpp(u)(expp(v))

)
(A.4.1)

= Πp
pu

(
logpu

(pv)
)

. (A.4.2)

The Taylor expansion of the neighbouring log is given by

lp(v, w) = w − v + 1
6R(w, v)(v − 2w) + 1

24(∇vR)(w, v)(2v − 3w)

+ 1
24(∇wR)(w, v)(v − 2w) + O(5),

where R is the curvature tensor and ∇·R its covariant derivative. See [Pennec
2019] for details.

We now formulate the PGA objective function, for the first principal
component, in terms of the neighbouring log map. The objective function
for the subsequent components can be found similarly. Below, we will use
the notation xj

..= logµ(xj), and ∥ · ∥p for the norm on TpM induced by that
Riemannian metric, and ⟨·, ·⟩p for the Riemannian metric at p ∈ M .

v1 ∈ argmin
v∈TµM

1
N

N∑
j=1

d(xj , πexpµ(span(v))(xj))2 (A.4.3)

= argmin
α∈RN

v∈TµM

1
N

N∑
j=1

d(xj , expµ(αjv))2 (A.4.4)
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= argmin
α∈RN

v∈TµM

1
N

N∑
j=1

∥logxj
(expµ(αjv))∥2

xj
(A.4.5)

= argmin
α∈RN

v∈TµM

1
N

N∑
j=1

∥Πµ
xj

logxj
(expµ(αjv))∥2

µ (A.4.6)

= argmin
α∈RN

v∈TµM

1
N

N∑
j=1

∥lµ (xj , αj v)) ∥2
µ (A.4.7)

≈ argmin
α∈RN

v∈TµM

1
N

N∑
j=1

(
∥αjv − xj∥2

µ (A.4.8)

+ 1
3 ⟨R(αjv, xj)(αjv), xj⟩µ (A.4.9)

+ 1
12 ⟨(∇xj+αjvR)(αjv, xj)(αjv), xj⟩µ

)
(A.4.10)

Equation (A.4.4) uses the fact that

πexpµ(span(v))(q) ∈ argmin
p∈expµ(span(v))

d(p, q) = argmin
α∈R

d
(
expµ(α · v), q

)
,

and Equation (A.4.6) uses the fact that parallel transport is an isometry.
Thus, the expansion consists of 3 terms. Including only the first order term yields
the objective function of tangent PCA. The higher order terms take curvature
into account.

The complexity of the approximated optimization problem is comparable to
’tangent PCA’, thus relatively inexpensive. In particular, the log-map needs to
be solved only once for every observation. In contrast to this, the exact PGA
problem is a nested optimization problem, as we discussed in Section A.3.
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Appendix for Chapter ??

B.1 Proofs

B.1.1 Smoothness of the principal subbundle

We show smoothness first on Rd and then on a Riemannian manifold (N , h).
The proof of the latter utilizes the former result in a chart, as well as smoothness
results for the involved maps, which are only non-trivial in the manifold case.

*

Proof. Let p ∈ Rd \ Sα,k be arbitrary. We will show that there exists a local
frame of smooth vector fields spanning the subspace Eα,k

p′ at every point p′ on
an open set U around p. By Lemma 10.32 in [Lee 2013], this is equivalent to
the subbundle being smooth on Rd \ Sα,k.

The eigenvalues of Σα(p) at p are

λ1(p) ≥ · · · ≥ λk(p) > λk+1(p) ≥ · · · ≥ λd(p),

where only λk and λk+1 are assumed to be different. Since Σα : Rd → Rd×d is a
smooth map, Theorem 3.1 of [Sun 1990] implies that there exists an open set
B(p) ⊂ Rd around p and d continuous functions λ̄i(·) : B(p) → R satisfying
that λ̄i(p′) is an eigenvalue of Σα(p′) for all p′ ∈ B and λ̄i(p) = λi(p), i = 1 . . . d.

Since each λ̄i is continuous, there exists an open subset U ⊂ B on which the
ordering λ̄1(p′) ≥ · · · ≥ λ̄d(p′) holds for all p′ ∈ U , and where λ̄i(p′) = λ̄j(p′) is
only possible for i, j s.t. λ̄i(p) = λ̄j(p). In particular λ̄i(p′) < λ̄k+1(p′) for all
i < k + 1 and p′ ∈ U .

Theorem 3.2 of [Sun 1990] now says that there exists a frame of analytic
vector fields p 7→ {X1(p), . . . , Xk(p)} such that, for all p′ ∈ U ,

span {X1(p′), . . . , Xk(p′)} = Vλ̄1(p′),...,λ̄k(p′)(Σα(p′))

where Vλ̄1(p′),...,λ̄k(p′)(Σα(p′)) denotes the eigenspace of Σα(p′) corresponding to
eigenvalues λ̄1(p′), . . . , λ̄k(p′), which is exactly the principal subbundle subspace
Eα,k

p′ .

To show that the principal subbundle on a Riemannian manifold is smooth,
we need a result on smoothness of a certain map involving parallel transport.
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Lemma B.1.1. Let the map f : N → N and the vector field O on N be smooth.
Let Πy

x : TxN → TyN denote parallel transport along the (assumed unique)
length-minimizing geodesic from x to y. Then the vector field

p 7→ Πp
f(p)O(p) ∈ TpN (B.1.1)

is smooth for every p /∈ Cut(f(p)).

Proof. For x, y ∈ N , the parallel transported vector Πy
xW ∈ TyN of W ∈ TxN

along a curve γ : (0, 1) → N is the value at time 1 of a vector field V along γ

satisfying the linear initial value problem (an ODE)

V̇ k(t) = −V j(t)γ̇i(t)Γk
ij(γ(t)) (B.1.2)

V (0) = W, (B.1.3)

where Γk
ij , i, j, k ∈ {1, . . . , d} are the Christoffel symbols determined by the

metric h. See [Lee 2018], Section 4, for details.
If γ is a geodesic with initial velocity Q ∈ TxN then it is a solution to the

geodesic equations (equations (B.1.5) and (B.1.6), below). In this case, we can
write the parallel transport equation and the geodesic equations as a single,
coupled, ODE:

V̇ k(t) = −V j(t)γ̇i(t)Γk
ij(γ(t)) (B.1.4)

γ̇k(t) = Uk(t) (B.1.5)
U̇k(t) = −U i(t)U j(t)Γk

ij(γ(t)) (B.1.6)
U(0) = Q (B.1.7)
V (0) = W (B.1.8)
γ(0) = x. (B.1.9)

Note that the equation for V is coupled with the equations for γ and U , but
not vice versa, so that, in practice, the whole path γ can be computed first, and
then subsequently V .

This is again a linear initial value problem, and the fundamental theorem for
ODE’s states that solutions exist, and depend smoothly on the initial conditions
Q, W, x. This shows smoothness of the parallel transport operator in the case
where γ((0, 1)) is contained in a single chart. For the more general case, we refer
to the technique used in the proof of Proposition 4.32 in [Lee 2018] for showing
that solutions found on individual charts overlap smoothly.
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The map (B.1.1) takes a point p ∈ N to a vector field at time 1 satisfying
equations (B.1.4)-(B.1.9). For each p, the initial conditions are

x = f(p)
Q = logh

f(p)(p)

W = O(p)

all of which depend smoothly on p, if p /∈ Cut(f(p)). Since the solution to the
ODE depends smoothly on the initial conditions, and since the initial conditions
depends smoothly on p, the vector field (B.1.1) is smooth.

*

Proof. As in the Euclidean case, we want to prove the existence of a smooth
frame around every point p ∈ S ′

α,k spanning the subbundle locally around p. We
will make use of the corresponding result for N = Rd, in a chart. In order to
do this, we need to make sure that all of the involved maps are smooth as a
function of p.

The tangent mean map m : N → N and the tensor field p 7→ Σα(p) ∈
TpN ⊗ TpN is smooth if each logarithm logh

p(xi), i = 1 . . . N , is smooth as a
function of the base point p ∈ N . This is ensured by the cut locus conditions in
S ′

α,k.
Assuming smoothness of Σα, we now consider charts (U, φ) on N and (O, ϕ)

on TN ⊗ TN , U ⊂ Rd, φ : U → φ(U) ⊂ N , respectively O ⊂ Rd×d, ϕ : O →
φ(O) ⊂ TN ⊗TN (identifying each TpN ⊗TpN with the space of endomorphisms
on TpN , cf. Section A.2.1), around a point p ∈ N and φ(p) ∈ TN ⊗ TN . In
this chart,

f := ϕ−1 ◦ Σα,k ◦ m ◦ φ

is a smooth map from Rd to Rd×d. Eigendecomposition of the matrix f(p′), p′ ∈
U , is independent of the basis and thus of the choice of charts. As shown in the
proof of Proposition ??, there exists a smooth frame p′ 7→ {X1(p′), . . . , Xk(p′)},
Xi(p′) ∈ Rd, defined on some open subset U ⊂ Rd around φ−1(p) s.t.

span{X1(p′), . . . , Xk(p′)} = Vk(f(p′)), ∀p′ ∈ U ,

where the right hand side is the eigenspace of f(p′) corresponding to the largest k

eigenvalues. We have thus shown the existence of a smooth frame on φ(U) ⊂ N
spanning the corresponding eigenspaces of Σα ◦ m at every point of φ(U).
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The last thing we need to take account of is the parallel transport map. Since
parallel transport is an isometry, it holds that

span{Πy
p′X1(p′), . . . , Πy

p′Xk(p′)} = span{Πy
p′F1(p′), . . . , Πy

p′Fk(p′)} ⊂ TyN ,

where {F}i=1..k is any other frame spanning the same subspace as {X}i=1..k at p′.
Thus, the parallel transported frame X spans the same subspace as the parallel
transported eigenvectors {ei}i=1...k at p′ (the Xi’s are not necessarily eigenvectors,
as explained in [Sun 1990]). By Lemma B.1.1, the map p 7→ Πp

m(p)V (p) is smooth,
for a smooth vector field V . We have thus shown that the principal subbundle
at p is spanned by a smooth frame around p.

B.2 Notes on implementation

At each step of the integration of a geodesic, eigenvectors needs to be computed
at the current position p. This involves evaluating the kernel Kα(|xi − p|) for
all i = 1..N . For large datasets, we suggest to do this using libraries specialized
at such kernel-operations, such as KEOPS, as well as automatically filtering
out points far away from p whose weight will be close 0 anyway. We have not
had the need to implement these optimizations in order to run the examples of
Section ??.

The integration of the L geodesics in the algorithm for the principal
submanifold can be parallelized; the computation of each one is independent
from the rest.

To speed up computations further, we suggest to compute the sub-Riemannian
metric at p ∈ Rd as a weighted mean of the metric computed at a finite number
of points around p, possibly at every observation. This is similar to the approach
used to compute Poisson surface reconstruction [Kazhdan, Bolitho, and Hoppe
2006] (where the surface normal at p ∈ R3 is evaluated as the mean of normals
computed nearby p) and the learned Riemannian metrics in [Hauberg, Freifeld,
and Black 2012]. In this way, the derivatives of the metric, and therefore the
Hamiltonian, can be computed closed form, removing the need for automatic
differentiation.

B.2.1 Choice of integration scheme

The integration of Hamilton’s equations can be done using a symplectic
integration scheme which aims at keeping the Hamiltonian constant. A constant
hamiltonian is equivalent to constant speed, cf. eq. (??). This is desired because
the computation of curve length and distance via eq. (??) assumes constant
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speed. We compared ordinary Euler integration to semi-implicit Euler (see
e.g. [Hairer et al. 2006]), a first-order symplectic integrator, and found the
Hamiltonian to be better preserved using ordinary Euler integration in our
experiments.

B.3 Choosing the kernel range α and bundle rank k

Firstly, note that these parameters can be considered to be a modelling choice,
expressing the scale at which we want to analyze the data - what scale of variation
to take into account. However, one can aim to find the ’lowest level of variation
that is not due to random noise’. Secondly, note that the ’optimal’ value of one
hyperparameter depends on the value of the other. Since the rank k takes a
finite number of values k ∈ {1, . . . , d − 1}, we suggest to start by estimating this.
See [Bac et al. 2021] for a survey and benchmarking of different methods. Given
an estimated k, we suggest to select a range parameter for which the separation
between eigenvalues λk and λk+1 is the most clear on average. The optimal
kernel range depends on the level of noise and the rate of change of the affine
subspace Ep as a function of p, which, in the case of the manifold hypothesis,
is an expression of the curvature of the underlying manifold. A fast varying
E calls for a smaller α, while high levels of noise as well as a lower number of
observations calls for a larger α.

B.4 Algorithm for combining principal submanifolds for 2D
surface reconstruction

In this section, we present an algorithm for combining principal submanifolds
{Mk

µj
(rj)}j=1..l based at different base points µj , j = 1 . . . l. In this case, k = 2

and we’ll write Mµj
instead of M2

µj
. Given a point x ∈ R3, the algorithm first

projects x to a set of nearest principal submanifolds, and then represents x as
a weighted average of these projections, weighted by the SR distance between
a projection and its corresponding base point. The point x can e.g. be an
observation, x ∈ {xi}i=1..N , or a point in a principal submanifold, x ∈ Mµj

. The
algorithm can then be run for each point x in {xi}i=1..N or in Mµj

, j = 1..l.
The point sets representing principal submanifolds Mµj (rj), j = 1 . . . l, are

generated by Algorithm 1. For each point p ∈ Mµj (rj), we assume that the
corresponding initial cotangent η(p) ∈ E⋆

µj
has been stored.

Apart from the hyperparameters of the principal subbundle and submanifolds,
the algorithm needs a ’threshold parameter’ ϵ > 0. x will not be projected to
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Supplementary figures

principal submanifold Mµj if the distance between x and its projection x̂j to
Mµj

is greater than ϵ. Thus, the size of ϵ should be comparable to an estimate
of the noise-level in the point cloud.

The algorithm is the following.

1. Project to each submanifold: project x to each Mµj
(rj), j = 1..l, wrt.

Euclidean distance, i.e. find the closest point in Mµj
(rj) w.r.t. Euclidean

distance. Denote this projection of x to Mµj
(rj) by x̂j . Denote the

corresponding initial cotangent by η(x̂j) and the distance by dj
..=

d(µj , η(x̂j)) = ∥η(x̂j)∥.

2. Filter out projections: let B ..= {j ∈ {1, . . . , l}
∣∣ |x − x̂j | < ϵ} consist

of indices of the basepoints satisfying that the projection of x to Mµj
is

sufficiently close to x.

3. Rescale distances: set d̃j
..= dj · 1/sj(dj), where sj is a continuous,

decaying bijection with domain and image given by sj : [0, rj ] → [0, 1]. We
suggest to use the affine function satisfying these constraints.

4. Compute weighted average: the weighted representation of x is now
computed as

x̂ = 1∑
j∈B wj

∑
j∈B

wj x̂j ,

where (unnormalized) weights wj are given by

wj(x) = e−(d̃j−d̃j⋆ )2/(2σ), j = 1 . . . |B|,

and j⋆ ..= argminj∈B dj is the index of the principal submanifold that
is closest w.r.t. SR distance. The standard deviation σ in wj controls
how fast the weights should go to zero. A general-purpose choice is
σ = maxj∈{1,..,l} rj}.

B.5 Supplementary figures

B.5.1 Illustration of overlapping submanifolds

Figure B.1 is a supplement to figure ??, zooming in on the region of overlap
between the two principal submanifolds.
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Figure B.1: Supplementary figure to Figure ??, zooming in on the region where
the two submanifolds overlap. The left, beige submanifold in this figure is the
purple one in Figure ??, recolored to be able to distinguish more clearly the two
submanifolds.

B.5.2 Reconstruction of head sculpture surface under noise level
3 out of 3

Figure B.2 illustrates the reconstruction of the face of the ’head sculpture’ (from
the benchmark dataset described in [Huang et al. 2022]), with noise level 3 out
of 3. The parameters are the same as for the experiment described in section ??
except for a slightly larger kernel range.

B.5.3 Illustration of the log map on a 4-dimensional sphere in R50

Figure B.3 shows a single computed geodesic, found by solving the log problem
logp(q), for p, q and observations as described in section??. The distance dE(p, q)
is estimated as the length of the computed geodesic. The blue points are
observations on the 4-dimensional sphere embedded in R50 projected to R3.
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(a) Frontal view.

(b) Side view.

Figure B.2: Figures (a) and (b) show a principal submanifold recontructing the
’head sculpture’ surface from a point cloud (purple points) with noise level 3 out
of 3. The submanifold is centered around the tip of the nose. The figure shows
the raw points generated by Algorithm ?? - no subsequent processing, apart
from coloring, has been applied. The skewed circles on the face are geodesic
balls, i.e. points on the same circle has the same SR distance to the center point.
The colors of the face depends on the SR distance to the base point at the tip, a
lighter color signifies shorter distance.
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Figure B.3: Illustration of a single computed geodesic found by solving the log
problem logp(q), for p, q and observations as described in section ??. The blue
points are observations on the 4-dimensional sphere embedded in R50 projected
to R3. The orange point is the initial point p, the red points are points on the
geodesic, the green point is the target point q.
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