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Riemannian and sub-Riemannian methods for
dimension reduction

In this thesis, we propose new methods for dimension reduction based on differ-
ential geometry, that is, finding a representation of a set of observations in a space
of lower dimension than the original data space. Methods for dimension reduction
form a cornerstone of statistics, and thus have a very wide range of applications. For
instance, a lower dimensional representation of a data set allows visualization and
is often necessary for subsequent statistical analyses. In ordinary Euclidean statis-
tics, the data belong to a vector space and the lower dimensional space might be
a linear subspace or a non-linear submanifold approximating the observations. The
study of such smooth manifolds, differential geometry, naturally plays an important
role in this last case, or when the data space is itself a known manifold. Methods
for analysing this type of data form the field of geometric statistics. In this setting,
the approximating space found by dimension reduction is naturally a submanifold
of the given manifold. The starting point of this thesis is geometric statistics for
observations belonging to a known Riemannian manifold, but parts of our work form
a contribution even in the case of data belonging to Euclidean space, R

An important example of manifold valued data is shapes, in our case discrete
curves or surfaces. In evolutionary biology, researchers are interested in studying
reasons for and implications of morphological differences between species. Shape is
one way to formalize morphology. This application motivates the first main contribu-
tion of the thesis. We generalize a dimension reduction method used in evolutionary
biology, phylogenetic principal component analysis (P-PCA), to work for data on a
Riemannian manifold - so that it can be applied to shape data. P-PCA is a version
of PCA for observations that are assumed to be leaf nodes of a phylogenetic tree.
From a statistical point of view, the important property of such data is that the ob-
servations (leaf node values) are not necessarily independent. We define and estimate
intrinsic weighted means and covariances on a manifold which takes the dependency
of the observations into account. We then define phylogenetic PCA on a manifold
to be the eigendecomposition of the weighted covariance in the tangent space of the
weighted mean. We show that the mean estimator that is currently used in evolution-
ary biology for studying morphology corresponds to taking only a single step of our
Riemannian gradient descent algorithm for the intrinsic mean, when the observations
are represented in Kendall’s shape space.

Our second main contribution is a non-parametric method for dimension reduction
that can be used for approximating a set of observations based on a very flexible class
of submanifolds. This method is novel even in the case of Euclidean data. The method
works by constructing a subbundle of the tangent bundle on the data manifold M
via local PCA. We call this subbundle the principal subbundle. We then observe
that this subbundle induces a sub-Riemannian structure on M and we show that the
resulting sub-Riemannian geodesics with respect to this structure stay close to the set
of observations. Moreover, we show that sub-Riemannian geodesics starting from a
given point locally generate a submanifold which is radially aligned with the estimated
subbundle, even for non-integrable subbundles. Non-integrability is likely to occur
when the subbundle is estimated from noisy data, and our method demonstrates that
sub-Riemannian geometry is a natural framework for dealing which such problems.
Numerical experiments illustrate the power of our framework by showing that we can
achieve impressively large range reconstructions even in the presence of quite high
levels of noise.

geometric statistics, differential geometry, Riemannian geometry,
sub-Riemannian geometry, mathematical statistics, machine learning



Méthodes riemanniennes et sous-riemanniennes
pour la réduction de dimension

Nous proposons dans cette these de nouvelles méthodes de réduction de dimension
fondées sur la géométrie différentielle. Il s’agit de trouver une représentation d’un en-
semble d’observations dans un espace de dimension inférieure a ’espace d’origine des
données. Les méthodes de réduction de dimension constituent la pierre angulaire des
statistiques et ont donc un tres large éventail d’applications. Dans les statistiques
euclidiennes ordinaires, les données appartiennent a un espace vectoriel et ’espace
de dimension inférieure peut étre un sous-espace linéaire ou une sous-variété non
linéaire approximant les observations. L’étude de telles variétés lisses, la géométrie
différentielle, joue naturellement un role important dans ce dernier cas. Lorsque
I’espace des données est lui-méme une variété, l’espace approximant de dimension
réduite est naturellement une sous-variété de la variété intiale. Les méthodes d’analyse
de ce type de données relevent du domaine des statistiques géométriques. Les statis-
tiques géométriques pour des observations appartenant a une variété riemannienne
sont le point de départ de cette these, mais une partie de notre travail apporte une
contribution méme dans le cas de données appartenant & I’espace euclidien, R%.

Les formes, dans notre cas des courbes ou des surfaces discretes, sont un ex-
emple important de données a valeurs dans les variétés. En biologie évolutive, les
chercheurs s’intéressent aux raisons et aux implications des différences morphologiques
entre les especes. Cette application motive la premiere contribution principale de la
these. Nous généralisons une méthode de réduction de dimension utilisée en biologie
évolutive, I’analyse en composantes principales phylogénétiques (P-PCA), pour tra-
vailler sur des données a valeur dans une variété riemannienne - afin qu’elle puisse
étre appliquée & des données de forme. P-PCA est une version de PCA pour des
observations qui sont les feuilles d’un arbre phylogénétique. D’un point de vue statis-
tique, la propriété importante de ces données est que les observations ne sont pas
indépendantes. Nous définissons et estimons des moyennes et des covariances in-
trinsequement pondérées sur une variété qui prennent en compte cette dépendance des
observations. Nous définissons ensuite I’ACP phylogénétique sur une variété comme la
décomposition propre de la covariance pondérée dans I'espace tangent de la moyenne
pondérée. Nous montrons que 'estimateur de moyenne actuellement utilisé en biolo-
gie évolutive pour étudier la morphologie correspond & ne prendre qu'une seule étape
de notre algorithme de descente de gradient riemannien pour la moyenne intrinseque,
lorsque les observations sont représentées dans ’espace des formes de Kendall.

Notre deuxieme contribution principale est une méthode non paramétrique de
réduction de dimension fondée sur une classe tres flexible de sous-variétés qui est
novatrice méme dans le cas de données euclidiennes. Grace a une PCA locale, nous
construisons tout d’abord un sous-fibré du fibré tangent sur la variété des données
que nous appelons le sous-fibré principal. Cette distribution (au sens géométrique)
induit une structure sous riemannienne. Nous montrons que les géodésiques sous-
riemanniennes correspondantes restent proches de I’ensemble des observations et que
I’ensemble des géodésiques partant d’un point donné géneérent localement une sous-
variété qui est radialement alignée avec le sous-fibré principal, méme lorsqu’il est
non intégrables, ce qui apparait lorsque les données sont bruitées. Notre méthode
démontre que la géométrie sous-riemannienne est le cadre naturel pour traiter de
tels problemes. Des expériences numériques illustrent la puissance de notre cadre en
montrant que nous pouvons réaliser des reconstructions d’une extension importante,
méme en présence de niveaux de bruit assez élevés.

statistiques géométriques, géométrie différentielle, géométrie
Riemannienne, géométrie sous-Riemannienne, statistique mathématique,
apprentissage automatique



Riemannske og sub-Riemannske metoder til
dimensionsreduktion

I denne athandling praesenteres nye metoder til dimensionsreduktion, baseret pa
differential geometri. Det vil sige metoder til at finde en repreesentation af et dataseet
i et rum af lavere dimension end det opringelige rum. Sadanne metoder spiller en
helt central rolle i statistik, og har et meget bredt anvendelsesomrade. En lavere-
dimensional repraesentation af et dataseet tillader visualisering og er ofte ngdvendigt
for efterfolgende statistisk analyse. I traditionel, Euklidisk statistik ligger observa-
tionerne i et vektor rum, og det lavere-dimensionale rum kan vaere et linesert un-
derrum eller en ikke-lineser undermangfoldighed som approksimerer observationerne.
Studiet af sadanne glatte mangfoldigheder, differential geometri, spiller en vigtig rolle
i sidstneevnte tilfzelde, eller hvis rummet hvori observationerne ligger i sig selv er en
mangfoldighed. Metoder til at analysere observationer pa en mangfoldighed udger
feltet geometrisk statistik. 1 denne kontekst er det approksimerende rum, fundet
via dimensionsreduktion, naturligt en submangfoldighed af den givne mangfoldighed.
Udgangspunktet for denne afhandling er geometrisk statistik for observationer pa en
a priori kendt Riemannsk mangfoldighed, men dele af vores arbejde udggr et bidrag
selv i tilfeeldet med observationer i Euklidisk rum, R?.

Et vigtigt eksempel pa data pa en mangfoldighed er former, i vores tilfaclde
diskrete kurver eller overflader. I evolutionsbiologi er forskere interesseret i at studere
grunde til og implikationer af morfologiske forskelle mellem arter. Former er én made
at formalisere morfologi pa. Denne anvendelse motiverer det fgrste hovedbidrag i
denne afhandling. We generaliserer en metode til dimensionsreduktion brugt i evolu-
tionsbiologi, phylogenetisk principal component analysis (P-PCA), til at virke for data
pa en Riemannsk mangfoldighed - sa den kan anvendes til observationer af former. P-
PCA er en version af PCA for observationer som antages at veere de yderste knuder i
et phylogenetisk trae. Fra et statistisk synspunkt er den vigtige egenskab ved sadanne
observationer at de ikke ngdvendigvis er uatheengige. We definerer og estimerer intrin-
siske veegtede middelveerdier og kovarianser pa en mangfoldighed, som tager hgjde for
sadanne observationers atheengighed. Vi definerer derefter phylogenetisk PCA pa en
mangfoldighed som egendekomposition af den veegtede kovarians i tanget-rummet til
den veegtede middelveerdi. Vi viser at estimatoren af middelvaerdien som pt. bruges i
evolutionsbiologi til at studere morfologi svarer til at tage kun et enkelt skridt af vores
Riemannske gradient descent algoritme for den intrinsiske middelveerdi, nar formerne
repraesenteres i Kendall “s form-mangfoldighed.

Vores andet hovedbidrag er en ikke-parametrisk metode til dimensionsreduktion
som kan bruges til at approksimere et data seet baseret pa en meget flexibel klasse af
submangfoldigheder. Denne metode er ny ogsa i tilfaeldet med Euklidisk data. Meto-
den virker ved at konstruere et under-bundt af tangentbundet pa datamangfoldighe-
den M via lokale PCA “er. Vi kalder dette underbundt principal underbundtet. Vi
observerer at dette underbundt inducerer en sub-Riemannsk struktur pa M og vi viser
at sub-Riemannske geodzeter fra et givent punkt lokalt genererer en submangfoldighed
som radialt flugter med det estimerede subbundt, selv for ikke-integrable subbundter.
Ved stojfyldt data forekommer ikke-integrabilitet med stor sandsynlighed, og vores
metode demonstrerer at sub-Riemannsk geometri er en naturlig tilgang til at handtere
dette. Numeriske eksperimenter illustrerer styrkerne ved metoden ved at vise at den
opnar rekonstruktioner over store afstande, selv under hgje niveauer af stgj.

geometrisk statistik, differentialgeometry, Riemannsk geometri,
sub-Riemannsk geometri, matematisk statistik, maskinlering
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Chapter 1

Introduction

1.1 Statistics on manifolds

Let x1,...,xn be a set of observations. The field of statistics traditionally
assumes that such observations belong to a (finite dimensional) vector space.
That is, the methods rely on being able to add observations, z; + x;, and scale
them, z; - ¢, ¢ € R>o. However, this assumption of a vector space structure is
prohibitive; important phenomena are naturally modelled as belonging to non-
vector spaces. This thesis provides new methods for analyzing such non-linear
data.

A simple example of non-linear data is observations on a surface in R?, such
as the sphere. Such observations can be given to us in the form of vectors in
R3, ie. x; = [(wi)1, (wi)2, (z;)3), but prior knowledge might imply that each
observation satisfies the equation

loill = /@)% + (@3 + @3 =1, i€{l,...,N}, (1.1.1)

meaning that they are points on the unit sphere embedded in R3. Such data
on the sphere, and its analogues in different dimensions, is studied in the field
of directional statistics ([K. V. Mardia, Jupp, and K. Mardia 2000], [Pewsey
and Garcia-Portugués 2021]). The observations can be literal directions, e.g.
wind directions, they can be observations of time points, or more generally any
type of Euclidean observations that has been normalized, meaning that only
directions matter, not magnitude (see [Banerjee et al. 2005] for applications
to text classification, gene expression analysis and other domains). Applying
traditional Euclidean statistical methods to such data, i.e. treating them as
points in R?, disregards this prior knowledge and thus the output might not
be sensible. For example, computing the Euclidean mean of the observations
on the sphere yields a point that does not satisfy the constraint (1.1.1) - it
is not a point on the sphere. There is a need for statistical methods which
can incorporate prior knowledge about the space in which a set of observations
might reside. The particular type of non-linear data spaces studied in this thesis
are manifolds - of which the sphere is an example. In particular, we assume

that the space containing the observations is a Riemannian manifold, implying



1. Introduction

that e.g. distances between points can be computed. This type of statistics is
called Riemannian geometric statistics. Given data on a Riemannian manifold,
the field comprises methods for computing mean values, dimension reduction,
regression, classification etc. (see [Pennec, Sommer, and T. Fletcher 2019] and
[S. F. Huckemann and Eltzner 2021] for an overview).

Determining a set of constraints satisfied by the observations is a common
way to arrive at a manifold data space in applications. Other examples of this are

matrix manifolds such as the manifold of symmetric positive definite matrices,

SPD(d) = {Ac R | AT = 4,
r#0 = 27 Az > 0}.

Such matrices constitutes the observations in e.g. the study of diffusion tensor
images, used in medical imaging, where they form covariance matrices of
Brownian motions describing the motion (diffusion) of water molecules in tissue
(see e.g. [Lazar 2007]). Another example of a matrix manifold is the rotation
group SO(3), which is abundant in engineering applications (see [Chirikjian and
Kyatkin 2021]). In [Hauberg 2015] it is used to model motion capture data.
Another approach to deriving a manifold representing a data set is by
introducing equivalence relations, that is, to consider certain subsets of points in
the original space as identical. The result is a quotient space, which is often a
manifold. An example of this is the notion of a shape space, which is a central
motivation for geometric statistics in general as well as for the work in this thesis

R¥F =2 RIXF interpreted as a set of

in particular. Consider the Euclidean space
matrix-valued points, where each x € R9*¥ is a collection of k points in R? (the
columns), called landmarks. These k points constituting = could for example
be points along a discretized curve in R?, outlining some ’shape’. What do we
mean by ’shape’? One answer is that a shape is that which is left after removing
the effects of translation, scaling and rotation. This can be formalized as a set
of equivalence relations, where two points z, 2z’ € R*** are identified if there
exists a translation, a scaling and a rotation such that applying these operations
to each landmark in x makes them equal to the corresponding landmarks in
z’. Identifying such points in R%** leads to Kendall’s shape space, which is a
quotient manifold [Kendall 1984]. Kendall’s shape space is part of the theoretical
foundation of the field of geometric morphometrics - the study of morphology
(shape) in biology [Klingenberg 2020]. Another example of a shape manifold
is the LDDMM framework [Younes 2010], that enables analysis of full shapes,
e.g. continuous curves and surfaces. Such spaces of full shapes has been used in

the context of computational anatomy and medical imaging for studying organs
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Thesis organization and contributions

like the heart or brain (see [Guigui, Moceri, et al. 2021] for an analysis of heart

movement).

Lastly, we note that defining a manifold in terms of a set of constraints or
a set of equivalence relations can be complementary views on the same object.
For example, it turns out that Kendall’s shape space for & = 3 landmarks in
R2?, interpreted as a space of triangle shapes, can be identified with the sphere.
Thus, performing statistics on such triangle shapes is equivalent to performing

statistics on the sphere.

In the next chapter, we introduce the subject of geometric statistics in more
detail. We put a special emphasis on methods for dimension reduction, which is
the main subject of the thesis. Our contributions to this problem are described
in the following subsection.

1.2 Thesis organization and contributions

Chapter 2 1In this chapter, we present background theory concerning the parts
of Riemannian geometric statistics most closely related to our contributions in
Chapters 3 and 4. We start out by elaborating on the notion of doing statistics for
observations belonging to non-vector spaces. We then summarize the notions in
Riemannian geometry that are fundamental to Riemannian geometric statistics,
and subsequently explain broadly how the various operations are used, and
computed, for this type of statistics. We devote some space to the notion of
tangent space approximations, and statistics based on these, since they are used
extensively both a tool and a benchmark in the methods we develop in chapters
3 and 4. The exposition of tangent space statistics in this Chapter, and in
Appendix A.2 where more technical details are given, includes some points which
are of both theoretical and computational importance but which has, to the best
of our knowledge, not been explicitly presented in the literature on geometric
statistics. The section is concluded with presentations of the two foundational
methods for dimension reduction on Riemannian manifolds; tangent PCA and
Principal geodesic analysis (PGA). The methods for dimension reduction that we
present in chapters 3 and 4 are novel extensions and combinations of these two
methods. In Appendix A.3 we elaborate on the complications with computing
PGA (which is an open problem), and rewrite the objective function to something
more tractable. In Appendix A.4 we derive a Taylor expansion of the PGA
objective function which reduces to tangent PCA when only the 1st order term

is considered and includes curvature in the higher order terms.
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Chapter 3 This chapter presents an extension of Phylogenetic principal
component analysis (p-PCA) to manifold valued data. P-PCA is a version
of PCA for observations that are assumed to be leaf nodes of a phylogenetic
tree. Mathematically, a phylogenetic tree is a rooted, bifurcating tree graph,
which in evolutionary biology represents evolutionary relationships between
species. From a statistical point of view, the important property of such data
is that the observations (leaf node values) are not necessarily independent. In
particular, they are the endpoints of Brownian motions that are more or less
coupled depending on how closely related the species are. P-PCA consists of
eigendecomposition of the socalled phylogenetic covariance matrix, which is
centered around the socalled phylogenetic root, a type of mean. These notions of
mean and covariance takes the dependency of the observations into account. In
evolutionary biology there is a need for applying this method to data on manifolds,
in particular shapes. We therefore extend to a general Riemannian manifold
the probabilistic model of Brownian motions structured according to a tree, and
define intrinsic estimators of the phylogenetic root and covariance. We then define
phylogenetic PCA on a Riemannian manifold to be eigendecomposition of this
covariance matrix in the tangent space at the mean. We show simulation results
on the sphere (Kendall’s shape space for triangles), demonstrating well-behaved
error distributions and fast convergence of estimators. Furthermore, we apply
the method to a data set of mammal jaws, represented as points in the LDDMM
landmark manifold. Lastly, we discuss the relationship between our approach
and the approach taken to the same problem in geometric morphometrics - the
field of biology analysing shapes (morphology). We show that the phylogenetic
root estimator used in geometric morphometrics corresponds to taking a single
step of our Riemannian gradient descent algorithm for the intrinsic root, when

the observations are represented in Kendall’s shape space.

Chapter 4 The method presented in Chapter 3 is an extension of tangent PCA.
Tangent PCA is based on geodesics of the manifold M to which the observations
belong, which is a generalization of straight lines to such a manifold. In this
chapter, we describe a method for dimension reduction that is based on a more
flexible class of curves. Furthermore, whereas the previous chapter presented
an extension of a method that is already well defined in Euclidean space, the
method presented in this chapter is novel also in the case of M = R?. The
method provides a solution to a number of dimension reduction problems, such as;
construction of a lower-dimensional submanifold approximating the observations,

representation of the observations in a lower-dimensional Euclidean space, and

4



Thesis organization and contributions

metric learning, in the sense of estimating a distance metric on M which reflects
a lower dimensional geometry. The method works by constructing a subbundle
of the tangent bundle on M via local tangent PCA’s, which we call the principal
subbundle. We then observe that this subbundle induces a sub-Riemannian
(SR) structure on M, and we show that sub-Riemannian geodesics with respect
to this structure follow the point cloud and can be used to provide solutions
to the aforementioned problems. For example, we show that it is possible to
generate submanifolds consisting of such SR geodesics, even if the subbundle
is non-integrable, which loosely means that it doesn’t 'naturally’ determine
submanifolds of M. Non-integrability is likely to occur when the subbundle is
estimated from noisy data, and our method demonstrates that sub-Riemannian
geometry is a natural framework for dealing which such noise. Last, but not least,
we implemented a class with methods for sub-Riemannian geometry in geomstats
[Miolane et al. 2020], making computations in sub-Riemannian geometry available

for future applications in geometric and Euclidean statistics.

Chapter 5 We round off by giving a brief summary of the contributions of the
thesis and describing current and future directions of work related to phylogenetic
PCA and principal subbundles.

1.2.1 Publications and invited talks

The material presented in Chapter 3 is an extension of the paper, Tangent
phylogenetic PCA [Akhgj, Pennec, and Sommer 2023], published in the
proceedings of the Scandinavian Conference on Image Analysis, 2023.

The material presented in Chapter 4 is based on the preprint Principal
subbundles for dimension reduction [Akhgj, Benn, et al. 2023] which has been
submitted to the journal Foundations of computational mathematics in July
2023. In April 2023, this work was presented by the author at the workshop
Statistics of shapes and Geometry of Shape Spaces, at the Max-Planck-Institute
for Mathematics in the Sciences, Leipzig. In May 2023 it was presented by the
author at the Analysis and PDE Seminar at the university of Bergen, Department

of mathematics.
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Generalizing Euclidean statistical methods

2.1 Generalizing Euclidean statistical methods

Many Euclidean statistical methods can be reformulated in terms of operations
that does not depend on the vector space structure, suggesting that they make
sense on more general spaces. Often, there exist multiple formulations of the
same method that are equivalent in Euclidean space, but which lead to different
solutions in the more general space. One approach to generalizing a given method
is to reformulate it in terms of distances, making it well-defined on a general

meltric space.

Example 2.1.1 (The empirical mean in R?). Let {z;};—1..n be observations
in R and let d(x,y) = |z — y| be the Euclidean distance on R. Consider the
optimization problem

N
= argminZd(u,xi)z. (2.1.1)
neR

Differentiating with respect to u gives

PR N
@§|u—xi|2:2uN—2Z:lxi

and % Zf\[:l | — x;]> = 2N > 0. Thus, the unique minimizer of (2.1.1) is

XN
= NZI (2.1.2)
=1
the arithmetic mean, or empirical first moment. Likewise, for z1,...,zy € R?

one can similarly show that the solution is given by i = % Ef\il T;.
In Equation (2.1.2), vector space operations addition and scalar multiplication
are applied to the observations, while the minimization problem (2.1.1) only

applies a distance metric to the observations.

The above formulation of the arithmetic mean as a distance minimization
problem can be used as a definition of a mean on a general metric space (M, d),
where M is some set and d : M x M — Rx>q is a distance metric on M. The

point here is that M is not necessarily a vector space.

Definition 2.1.2 (Fréchet mean). [Fréchet 1948] Let (M, d) be a metric space,
and let z,...,zn be points on M. The Fréchet mean is defined as a minimizer
of the following minimization problem,

N

[ = argmin Yy d(u,x;)>. 2.1.3
" ; (i) (2.1.3)
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The Fréchet mean optimization problem is an instance of the following more

general problem, for observations x1,...,xxy € M,

N
Ue argminz d(z, 7 (24))?, (2.1.4)
veQ 5
where Q is some family of closed subsets of M and 7 is a projection of a point
x € M to a subset U € Q with respect to the distance metric d;

7wy (x) € argmind(x, p), (2.1.5)
peU

assumed to be unique for the considered points. The optimization problem
(2.1.4) searches for a subset U which approximates the observations with respect
to the distance d. This reduces to the Fréchet mean problem for Q@ = M, in
which case 7y (2;) = U for any point U € Q. The problem (2.1.4) can be called
an unsupervised approximation problem - unsupervised because there are no
independent variables on which the observations depend, as there is in e.g. a
regression problem. We think of U as a subset that represents the data given a
chosen set of constraints, expressed by Q. For example, elements of Q might
be of lower dimension than the ambient space of observations, and it might
be a linear subspace if the ambient space is a vector space. For a particular
problem, the question is then which family of subsets @ C P(M) yield solutions
with desired properties, e.g. properties similar to the case of Euclidean space.
Principal component analysis, the foundation of the methods presented in this

thesis, is another important example of problem (2.1.4).

Example 2.1.3 (Principal component analysis).

Let {z;}i=1..n C R? be observations in R? and let u be their arithmetic
mean. The two core steps of principal component analysis (see e.g. [Jolliffe and
Cadima 2016]) are the following,

1. Compute the empirical covariance matrix

N
K= > (@i = p)(ai— )" (2.1.6)

i=1

2. Compute the eigendecomposition K = PAP~!, where A is a diagonal

matrix containing the eigenvalues A\;y > --- > \; and P is a matrix
containing the corresponding eigenvectors eq,...,eq as columns.
Assuming that )y is strictly greater than Agy1, we call Vj := span{ey,...,ex}

the k’th eigenspace. This algebraically defined object can be characterized in a

8



Riemannian geometry

different way, namely as the k-dimensional subspace that best approximates the

observations, in the sense of minimizing the following problem

N

Vi = argmin Zd(xi,ﬂ'[j(xi))z, i=1...d—1, (2.1.7)
UeGr(k,R4) i—1

where Gr(k,R?) is the Grassmannian manifold of all k-dimensional subspaces
of R? [Bendokat, Zimmermann, and Absil 2020]. This problem is of the form
(2.1.4) for @ = Gr(k,R?), in which case 7 (x;) is orthogonal projection of x; to
linear subspace U C R?.

This formulation of eigenspaces suggests that we can generalize them to
more general metric spaces (M,d). However, the parameter space Q, the
Grassmannian manifold of linear subspaces of R%, only makes sense when the
space of observations is a vector space. A natural idea is then to look for a
family of subsets Q of M analogous to linear subspaces of a vector space. In the
case of Riemannian manifolds, such subsets, in fact submanifolds, can be built
up from collections of geodesics - a generalization of straight lines to manifolds.
This leads to Principal geodesic analysis and its approximative version tangent
PCA which will be described in Sections 2.4.1 and 2.4.2.

Minimal prerequisites for approaching a problem of the form (2.1.4) on some
metric space (M, d) seems to be the ability to compute the distance metric d,
the existence of a suitable family of subsets Q for the problem at hand, and last,
but not least, the ability to solve optimization problems. In this thesis we study
the case where M is a complete Riemannian manifold and where the distance
metric d is the geodesic distance. In the next section, we give an overview of
how the tools available on Riemannian manifolds enables us to solve problems

in non-Euclidean statistics, such as (2.1.4).

2.2 Riemannian geometry

In this section, we give a brief overview of the central objects in Riemannian
geometry used for Riemannian geometric statistics. For more details, we refer
the reader to, e.g., [Lee 2018] or [Do Carmo and Flaherty Francis 1992].

A Riemannian metric ¢ on M is a smoothly varying family of inner
products on the tangent bundle 7M. Being an inner product on each tangent
space T, M,x € M, g enables measurement of lengths and angles of tangent
vectors. From this, it defines the length of a smooth path ¢ : [0,1] — M as
L(y) := fol g(%(t),¥(t))dt, and a distance between two points as the infimum of

9
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lengths of paths joining them;

d(xz,y) = inf {L((p) (2.2.1)

v :[0,1] = M is smooth
Y(0) ==z,9(1) =y ’

for any x,y € M.

A crucial fact about (finite dimensional) Riemannian geometry, as opposed to
sub-Riemannian geometry, is that the metric determines a canonical isomorphism
between T}, M and its dual space Ty M, called the flat map,

b TyM — TEM v 0P

The inverse of the flat map is called the sharp map, denoted 4. Given a real-
valued function f: M — R we can compute its differential at a point p € M,
which is a covector d,, f € Ty M. Given a Riemannian metric, the induced sharp
map thus provides a canonical way to identify this cotangent vector with a
tangent vector, called the Riemannian gradient of f at p, Vf|, = #(d,f) € T, M.

Recall that a connection on M allows to define the covariant derivative of e.g.
a vector field or a tensor field along another vector field. A vector field is parallel
along a curve if its covariant derivative along the curve is zero. For any points
x,y € M, any tangent vector v € T,, M and any smooth curve ¢ betweeen x and
y, there exists a parallel vector field along the curve, called the parallel transport
of v along . The parallel vector field solves the parallel transport equation, a
1st-order linear ODE. A Riemannian metric induces a canonical connection, the
Levi-Civita connection, as the unique connection satisfying the two conditions of
torsion being constantly zero, VxY — Vy X = [X,Y], and compatibility with
the metric. The latter condition is equivalent to the parallel transport operator
1Y : T, M — Ty M along any smooth curve between x,y € M being an isometry
([Lee 2018], lemma 5.2).

Geodesics are curves whose tangent vectors are parallel with respect to a
chosen connection. This implies that they satisfy the geodesic equation, a 2nd-
order ODE derived from the parallel transport equation. When the connection is
Levi-Civita, determined by a Riemannian metric, geodesics have the property of
being locally length minimizing curves. In particular, the path distance d on M is
a geodesic distance, meaning that a shortest path between x,y € M is a geodesic
w.r.t. the Levi-Civita connection. Furthermore, the Hopf-Rinow theorem states
that (M, d) is a complete metric space if and only if M is geodesically complete,
meaning that solutions to the geodesic equations exist for all time.

The exponential map is the data-to-solution map for the geodesic equation

and carries an initial point p € M and initial direction v € T, M to the value of

10
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the corresponding geodesic v, at time 1,
exp, : Tp,M — M : v exp,(v)=,(1). (2.2.2)

The derivative of the exponential map at v = 0 is the identity map, so the inverse
function theorem implies that exp is locally a diffeomorphism. Let C, C T,,M
be the largest subset containing 0 on which exp, is a diffeomorphism, called
the injectivity domain. Let C), = exp,(C,) C M be its exponential image. The

inverse of exp on C), is called the Riemannian logarithmic map,
log, : Cp = T,M : zlogy(r)= expgl(a:). (2.2.3)

Since T, M = R4, log,, thus defines a chart on M, called a normal chart.
Lastly, a crucial property of the log is its relation to the geodesic distance

metric,

[log, (¥) [l = d(z,y), (2.2.4)

where || - || is the norm induced by the Riemannian metric g, at .

2.3 Basic tools for Riemannian geometric statistics

In this section, we give an overview of how the objects and operations described
in the previous section are used in Riemannian geometric statistics.

First of all, we mention that there is not necessarily a canonical choice of
metric for a certain application. In the case of e.g. the LDDMM shape space
(Section 3.4.1.2), there is a natural parameterized family of metrics, but not
a canonical way to choose among these. Other examples are the manifolds
of correlation matrices and of covariance matrices, where there is a plethora
of different families of metrics (see the PhD thesis [Thanwerdas 2022] for an
overview). This degree of freedom can be seen as modelling flexibility or a
nuissance, depending on the application. In other cases, such as Kendall’s shape
space, there is a natural choice of metric.

After a choice of metric, the geodesic distance induced by the Riemannian
metric turns the manifold M into a metric space (M, d) with respect to which
distance based statistics can be performed. In practice, the distance d(x,y),
x,y € M, is computed via the logarithm, implicitly assuming that y is in the
exponential image of the injectivity area of x.

The gradient induced by the Riemannian metric allows for formulating
optimization algorithms, e.g. gradient descent, for minimizing objective functions
such as (2.1.3) for the Fréchet mean. See e.g. [Boumal 2023] or [Absil, Mahony,

11
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and Sepulchre 2008] and Section 3.3.2 where we discuss gradient descent for a
weighted Fréchet mean.

If closed-form expressions for geodesics are not available for a particular
manifold, we can approximate them by numerically integrating the geodesic
equation. This, and a wide range of other computations on Riemannian manifolds,
is available in Python libraries such as geomstats [Miolane et al. 2020] and
gazgeometry (http://bitbucket.org/stefansommer/jaxgeometry).

Computing the log is a crucial problem for practical geometric statistics,
e.g. for computing the geodesic distance and normal charts. On a general
Riemannian manifold it is not possible to characterize the injectivity domain
neither theoretically nor numerically. When we write log,, (2;) it will thus be
under a, usually implicit, assumption that x; € C,. In the case of no additional
theoretical knowledge, in geomstats and jaxgeometry the logarithm is computed
via a ’shooting method’, which amounts to searching for a geodesic whose
endpoint is as close as possible to the desired endpoint, w.r.t. some easy-to-
compute ambient distance. Such an optimal geodesic is found via a numerical
optimization scheme on the initial tangent vector. This is a relatively expensive

optimization problem. We discuss this further in Appendix A.3.

Tangent spaces are important for Riemannian geometric statistics, and normal
charts are a particularly convenient representation of these. Since T, M is a
vector space approximating M around p, it provides us with the possibility
to do Euclidean statistics on the transformed dataset {logp(xi)} CT,M in a
way that approximates exact statistics on the manifold. This comes with the
benefit of being more computationally efficient, as well as removing the need for
reformulating a method in an intrinsic way. Equation (2.2.4) expresses that the
distance between the base point z and any point y € C,, is preserved in a normal
chart. However, if neither x nor y is the base point then the corresponding
distance in the tangent space is distorted - see subsection 2.3.1 for details.
Theoretically, the basis induced by a normal chart on 7, M is orthonormal. This
is convenient, since Euclidean statistical formulas usually assumes an orthonormal
basis. However, if the log is computed by an optimization in the tangent space, as
described above, the basis is arbitrary, which then has to be taken into account.
This and other points are not fully adressed in the literature. We discuss it
further in Section 2.4.1 and in Appendix A.2.

Lastly, we mention the role of the parallel transport map along a geodesic. It
is often necessary to transport computations done in one tangent space to another,
or collecting tangent vectors from different tangent spaces into a common one,

in which a computation on the set can be performed (see an example of this in
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Appendix A.4 on Taylor approximation of PGA). We therefore need suitable
maps between tangent spaces. If the manifold is a Lie group, the differential
of the group multiplication map (left or right) can be used. On a general

Riemannian manifold, the parallel transport map provides solution.

2.3.1 Distortion of distances in the tangent space

As mentioned, there is a trade-off between the accuracy of the exact computation
of geodesic distances and the convenient properties of the tangent space distances,
such as computational efficiency. This trade-off is a recurrent theme in this

thesis, so we elaborate on it in this section.

Equation (2.2.4) says that the distance between the origin in a tangent space
T, M and each log,(z;) € T,M, as measured with respect to the norm || - ||,
equals the geodesic distance between p and x;. Thus, the tangent space does
not distort these radial distances. However, the distance ||v; — v2|, between
arbitrary points vy, v2 € T, M does not equal the corresponding geodesic distance
d(exp,(v1),exp,(v2)) on the manifold. In particular, the distortion of this
geodesic distance depends on the curvature around p in the following way (see
e.g. [Do Carmo and Flaherty Francis 1992], Section 5 proposition 2.7),

d(expy(t - v1), eapy(t - v2))* = 2 [[vr — va} (2:3.1)
1
— t4 §<R(’Ul7 1)2)’01, UQ>

+0(th),

where R is the curvature tensor and (R(vi,v2)v1,v2), therefore the sectional
curvature with respect to the plane spanned by vy, vy in T, M. Thus, in the
case of positive sectional curvature (such as for any point p on the sphere), the
FEuclidean distances in the tangent space gets underestimated, and vice versa
in the case of negative curvature. The formula also implies that the smaller ¢
is, i.e. the closer the points being compared are, the smaller is the distortion.
For Riemannian geometric statistics this means that the more concentrated, in
the sense of low variability, the data set is, the smaller is the error incurred by
using a distance based Euclidean formula in the tangent space. What a sufficient
level of concentration is, relative to an accepted level of error, depends on the

curvature of the manifold in the vicinity of the observations.
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2. Background: geometric statistics

2.4 Dimension reduction

In this section, we focus on the particular problem of dimension reduction on
Riemannian manifolds. We give details on the two foundational methods, tangent
PCA and principal geodesic analysis. The methods presented in Chapters 3 and
4 are variations and combinations of these two methods. In the last subsection,

we give an overview of more recent methods.

2.4.1 Tangent PCA

Tangent PCA can be described roughly as performing PCA on the log-
transformed observations logp(ml), ey logp(:ﬂN) € T,M, where p might be the
Fréchet mean. However, this description leaves out some important theoretical
and practical details that are not described in the literature, so we do that below.
Our presentation is structured according to the two steps of PCA: step one,
computing the empirical covariance matrix, and step two, the eigendecomposition.

Intrinsic definition of the empirical covariance matrix In Euclidean
statistics, there is a canonical choice of an orthonormal basis. Maybe for this
reason, it is rarely mentioned that the empirical covariance matrix (2.1.6) depends
on the choice of basis, in the following sense. Let v4 and vg be representations
of a vector v in R% with respect to bases A and B, and let @ be the change of
basis matrix from A to B, so that vg = Qua. Changing the basis of v changes

an outer product in the following way,
vpvs” = (Qua) (Qua)’ = Quava”Q".

In contrast, the coordinate representation of o4 = v4v4”, considered as a linear

map, is changed by

B =QpaQ " = Quava’ Q.

Thus, if and only if @ is an orthogonal change of basis matrix, i.e. QT = Q~1,
does changing the basis of v4 lead to the desired change of basis of v vs”,
considered as a linear map. Eigendecomposition of a linear map, represented
by a matrix, is independent of the choice of basis, in the sense that changing
the basis of the linear map leads to a corresponding change of basis of the
eigenvectors (the eigenvalues are not affected by basis change). Recall that the
empirical covariance matrix is a sum of outer products. Thus, PCA depends on
the choice of basis, up to orthogonal basis change, since the empirical covariance

matrix does.
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On a Riemannian manifold there is no canonical basis for a tangent space
T,M. However, from the Riemannian metric one can compute a, non-unique,
orthonormal basis and represent the vectors {Ing(xi)}i=1..N w.r.t. to this
basis. The empirical covariance matrix can then be computed w.r.t. this
orthonormal basis, and the discussion above implies that the result of the
subsequent eigendecomposition will be independent on the particular choice of
orthonormal basis. However, we can do better than this; we can give a coordinate-
free definition of empirical covariance, which has the additional advantage of
allowing computations to be performed in any basis - removing the need for
computing, and transforming the data to, an orthonormal basis.

Following [Pennec, Fillard, and Ayache 2006], we define the empirical
covariance matrix at p € M as the tensor

;X
2(0) = 1 > log,(x;) @log,, (i) € T,M @ T, M. (2.4.1)
i=1
After choosing a local chart around p, which induces a basis A for T,M, the

coordinate representation of this tensor is

1 ol T
Ep)]a = N_1 [log, ()] , ([logp(xi)]A) (9p) 4, (2.4.2)
i=1

where [-]4 denotes representation of an object with respect to basis A. See
Appendix A.2.1 for a derivation of this coordinate expression. Thus, the
coordinate representation of the tensor X(p) is a d X d matrix as we would
expect. If the basis A is orthonormal with respect to metric g, then [gp)a
is the identitity matrix. Thus, the common description of tangent PCA as
eigendecomposition of the matrix vazl [logp(a:i)]A ([logp(a:i)]A)T is only
correct if the basis A is orthonormal. In theory this is the case when the basis is
induced by a normal chart. However, if the log-map is computed numerically
via an optimization scheme it is not necessarily the case (see Appendix A.1).
Lastly, note that if (M, g) is Euclidean space then log,(z) = x — p, so that if p
is the Fréchet mean then the covariance (2.4.2) equals the ordinary Euclidean

empirical covariance formula (2.1.6).

Eigendecomposition in the tangent space Given this intrinsic definition
of empirical covariance on a Riemannian manifold, we can move to step 2 of
PCA, the eigendecomposition. Tangent PCA consists simply of performing
eigendecomposition of 3(p). The eigendecomposition yields eigenvectors
e1,...,eq € T,M and thus eigenspaces Vi := span(ey,...,ex) C T,M
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in the tangent space. The log transformed observations can be projected
to eigenspaces, my, (logp(xi)), and mapped back to M via the exponential
map, exp, (Tvi. (logp(mi))). Since the exponential map is a diffeomorphism
on the tangent cut locus C, it holds that exp,(C, N Vi) is a k-dimensional
embedded submanifold of M. This submanifold can be used as a k-dimensional
approximation of the data. Since the image of a linear subspace under the
exponential map is formed by a collection of geodesics, we interpret the resulting

submanifold of M as an analogue of a linear subspace.

Tangent PCA approximates distances We now discuss the sense in which
tangent PCA is approximative. As discussed in Example 2.1.3 eigenspaces of a
linear map can be formulated as solutions to a distance minimization problem. In
the setting of tangent PCA, eigenspace Vi, k = 1...d—1, solves the optimization

problem
N
Vi = argmin Z d(log, (x;), mu (log,(x:)))?, (2.4.3)
UeGr(k,T,M) i3
where d(z,y) = |z — y|? is the distance between z,y € T,M w.r.t. the norm

induced by g,. Thus, V}, is a linear subspace approximating the log-transformed
observations in 7T}, M. However, as discussed in the previous section, the fact that
Vi is close to the observations {logp(a:i)}izlu_N in the tangent space does not
imply that the submanifold expp(V;€ NCp) is close to the observations {;}i—1. &
in M. More specifically, that d(log,(z;), Ty, (log,(z;))) is small does not imply
that d(wx;,exp,(my, (log,(7;))) is small. To ensure this, one has to minimize
the geodesic distances instead of the tangent space distances. This is done in
principal geodesic analysis, described in the next section.

In Chapter 3, we derive a tensor representation of a particular type of
covariance matrix used in evolutionary biology, and define 'tangent phylogenetic
PCA’ as eigendecomposition of the corresponding matrix. In Chapter 4 we define
socalled local tangent PCA, which are combined in a certain way to construct

approximating submanifolds that does not consist of (Riemannian) geodesics.

2.4.2 Principal geodesic analysis

In this section we assume that the base point is the Fréchet mean, u, as it is
presented in the original paper on PGA [T. P. Fletcher et al. 2004]. As we saw,
tangent PCA approximates the observations with the submanifold exp #(Vk NCu)
where V}, is found by minimizing certain distances in the tangent space 7, M. In

principal geodesic analysis, Vj, C T, M is found by minimizing the corresponding
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geodesic distances on M. The V}’s are obtained in the following sequential way.

Let Vi := span{v; }, where v; minimizes the following objective function,

N
1
v1 € argmin— d(zj, Trexp“(span(v)ﬁcu)(xj))2 (2.4.4)
veT, M N J=1
| X
= in— 1 exp,, (span(v)NC, j 2, 2.4.5
ireng?ﬁlN 2 1108, (Texp,, (span(v)ne,) (€3))]] (2.4.5)

where d is the geodesic distance on (M, g), and 7 is projection with respect

to this distance. The following subspaces Vo := span(vi,va),..., Vi1 =
span(vs,...,v4—1) are found by optimizing for one basis vector v; at a time,
N
) N 12
v € %regjfﬁ/?N ; | IOga:j (Wexm(%aﬁ@“)(x]))” ) (2.4.6)

fori = 2...d—1. For practical purposes, to reduce the dimension of the parameter
space, it can be helpful to add constraints enforcing unit length and orthogonality
to the optimization problem, i.e. ||v||; = 1 and v; L span{V;_;}. Regardless, the
PGA optimization problem is high-dimensional and computationally intensive.
The exact dimension and complexity depends on how many operations are
available closed-form, e.g. log or exp. In Appendix A.3 we elaborate on the
complications with computing PGA, and rewrite the objective function to
something more tractable. No publicly available implementation of PGA exists
to this date (for work in this direction, see [Sommer, Lauze, et al. 2010]).

On a general manifold, as opposed to Euclidean space, the described sequential
procedure of optimizing for one basis vector at a time is not equivalent to
directly solving for the optimal k-dimensional subspace of T),M. Likewise, in
Euclidean space, the eigenspace can equivalently be defined as the solution to a
variance maximization problem, whereas this is not equivalent to error (distance)
minimization on a general manifold. In practice, the sequential approach leads
to a simpler optimization problem, and the formulation in terms of distance
minimization seems to be more stable than variance maximization [Sommer,
Lauze, et al. 2010].

We end our presentation of PGA by deriving tangent PCA as an approxima-
tion of PGA. The tangent PCA objective function (2.4.3) can be derived from
the PGA objective function by making the approximation

IOgu (WEXpu(SPan(v)ﬁC“)(mJ‘)) RU- <U7 IOgM(xj»
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which leads to

d(xj’ ’/Texp“ (span(v)ﬁ(’u)(xj)) ~ H log,u (xj) - loglu, (ﬂ-expu(span(q))) (l'j)) ||p (247)
~ |[log,,(z;) = v - (v,log,, ()l (2.4.8)
~ [ 1og,.(25) = Tepan(w) (108, (25)) ) (2.4.9)

where the first approximation is based on Equation (2.3.1), and Typan(y) is
orthogonal projection in T,M w.r.t. the norm induced by g,. The latter
expression is exactly what tangent PCA minimizes, c¢f. Equation (2.4.3). In
Appendix A.4 we derive a Taylor expansion of the objective function of PGA
whose first order term corresponds to the tangent PCA objective function - this
is another way of deriving tangent PCA as an approximation to PGA. The
higher order terms in the Taylor expansion takes the curvature into account.

Since PGA is based on computing exact distances in M, as opposed to
approximated distances in 1), M, it is more sensitive to the curvature of M than
PGA. However, it is not sensitive to potential non-geodesic variation in the
dataset. This is in line with it being a manifold generalization of PCA, which
assumes that the data is well approximated by linear subspaces. The method
we present in Chapter 4 picks up on non-geodesic variation in the data, by
combining PGA and local tangent PCA’s.

2.4.3 Other methods for dimension reduction on Riemannian
manifolds

We round off by a short survey of other, more advanced, methods for dimension
reduction on Riemannian manifolds. For another, short review, see Section 5 of
[S. F. Huckemann and Eltzner 2021].

The most direct extension of PGA is Geodesic principal component analysis
(G-PCA) [S. Huckemann, Hotz, and Munk 2010], which also approximates the
observations by geodesics, but which furthermore optimizes for the base point .
The method of Principal nested spheres (PNS) [Jung et al. 2010] works for data
belonging to spheres in any dimension (see also principal nested symmetric spaces
[Curry, Marsland, and McLachlan 2019] for a generalization). The observations
are approximated by subspheres of the original sphere, minimizing a sum-of-
squared-errors (SSE) criterion where the error is measured by geodesic distance.
By iteratively fitting a subsphere of one dimension less, the output is a nested
sequence of subspheres (submanifolds). In comparison, the result of PGA is a
nested sequence of submanifolds that are constructed by adding a dimension in

each iteration. Geodesics on the sphere are great arcs, which can be identified
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with circles of radius 1, while the arbitrary subspheres of PNS can have any
radius. Thus, the class of approximating submanifolds of the sphere considered
by PNS is larger than that of PGA and G-PCA.

Barycentric subspace analysis (BSA) [Pennec 2018] is a method which works
for data on an arbitrary Riemannian manifold. This method approximates the
data by the generalization to Riemannian manifolds of barycentric subspaces.
Like PNS, BSA does not depend on a base point. It depends on a chosen set
of points, e.g. observations, generating the barycentric subspace. By adding or
removing points, the result is a nested sequence of barycentric subspaces of the
original manifold.

All the methods mentioned so far consider a certain parameterized class
of curves or submanifolds, and choose among these by minimizing a sum-of-
squared-errors objective function, based on geodesic distance (although for BSA,
the SSE approach is just one option). This corresponds to our earlier general
formulation of the dimension reduction problem (2.1.4) based on a family of
subsets Q of the original space. We now mention some methods which are not
based on a parameterized family of subsets or on minimizing SSE. A method
which is completely non-parametric, in the sense of the family of approximating
curves being infinite dimensional, is the method of principal flows [Panaretos,
Pham, and Yao 2014]. The method fits local tangent PCA‘s and generates
a curve whose tangent vectors are aligned with the first eigenvector - i.e. it
moves in the direction that locally describes the most variation in the data.
This method only works for approximating the observations by a curve, but was
generalized to higher dimensional approximations in [Yao, Eltzner, and Pham
2023]. Our method of principal subbundles, in Chapter 4, can also be considered
a generalization of the principal flow to higher dimensions (in Section 4.4.3.1 we
elaborate on the relationship between these methods). An approach which is not
based on deterministic curves, let alone geodesics, is infinitesmal probabilistic
principal component analysis ([Sommer 2019] and [Pennec, Sommer, and T.
Fletcher 2019], Chapter 10), which is based on anisotropic Brownian motions on
the manifold. This method uses maximum likelihood to fit a covariance matrix
of lower rank than the ambient manifold, say k, describing the motion of the
Brownian motions. This enables, among other things, a representation of the

observations in a k-dimensional Euclidean space.
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Introduction

3.1 Introduction

From a mathematical point of view, a phylogenetic tree is a rooted, bifurcating
tree graph, as exemplified in Figure fa. In evolutionary biology, such graphs
represent evolutionary relationships between species. Each node represents a
species, and its potential parent and child nodes represent its ancestor and
descendant species, respectively. Each node (species) has an associated value,
called a trait, for example a DNA sequence or a continuous measurement such
as height. Assume, for the time being, that traits are values in R?. According
to the Brownian motion model of evolution of such traits ([Cavalli-Sforza and
Edwards 1967], [Felsenstein 1973]), the edges (also called branches) of a tree
represent Brownian motions; the value (trait) of a node n € R is the endpoint
of a Brownian motion starting at the parent node m € R?. The length of the
edge connecting the nodes equals the duration of the Brownian motion - often in
units of billions of years. In this work, the data we are given is, 1., a tree graph,
representing a phylogenetic tree and, 2., the values of the leaf nodes of the tree.
All other node values are unknown, in line with the fact that the leaf nodes
represent recent, observable states while inner nodes represent hypothetical,
unobserved states. From a statistical point of view, the important property
of such data is that the observations (leaf node values) are not necessarily
independent. The more recent their latest common ancestor is, the closer the
values are likely to be. The field of phylogenetic comparative methods ([Felsenstein
1985], [Martins and Hansen 1997], [Harmon 2019]) comprises statistical methods
that take into account the dependencies induced by the tree structure. One such
method is phylogenetic PCA [Revell 2009], a version of PCA adapted to this

specific type of non-independence.

Phylogenetic PCA (p-PCA) is defined for variables taking values in Euclidean
space. In studies of morphological evolution of species, p-PCA has so far been
applied to landmark shapes which, after procrustes alignment, are treated as
elements of a Euclidean space [Polly et al. 2013]. This is common practice in
the field of geometric morphometrics (see e.g. [Mitteroecker and Schaefer 2022],
[Adams, Rohlf, and Slice 2013]), and corresponds to working in an approximation
of a tangent space to Kendall’s shape space (see Section 3.4.1.1). As opposed to
this, we generalize p-PCA and the underlying model of Brownian motions to the
setting where the nodes of the tree can take values in a general finite-dimensional
Riemannian manifold. The methods we present are based on intrinsic (i.e. exact)
computations, and when we do Euclidean computations they are performed

in the exact tangent space. This implies that our method is appropriate for
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3. Phylogenetic PCA for manifold-valued observations
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Figure 3.1: a). An example of a phylogenetic tree. r is the root node and
x1,...,2T4 are the leaf nodes. The edge lengths are written next to each edge.
b). A realization of the tree in Figure a), generated from Brownian motions in
R%. The green '+ at (1,0) is the root node. The two pink stars are the inner
nodes. The 4 green stars are the leaf nodes. There are 6 Brownian motions,
corresponding to the 6 edges in Figure a). If two edges in Figure a) share a node,
the corresponding Brownian motions has different colours.

datasets with larger variance (cf. Section 2.3.1) and on any finite-dimensional
shape manifold, including Kendall’s. The method we present thus enables doing
dimension reduction for shapes properly treated as points on a manifold, while

accounting for the non-independence induced by the underlying tree structure.
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Phylogenetic PCA in Euclidean space

3.1.1 Chapter organization and contributions

In Section 3.2, we describe phylogenetic PCA in the Fuclidean setting, based
on existing work. In Section 3.3, we describe the Brownian motion model on
a Riemannian manifold and our extension of p-PCA to observations on such a
manifold. We call this method tangent phylogenetic PCA. The basic ingredients
are estimation of the root-node of the phylogenetic tree and the covariance of
the Brownian motions. We define the root on a Riemannian manifold as a
weighted Fréchet mean, which can be estimated by Riemannian gradient descent.
We show that the root-estimation performed in [Polly et al. 2013] correponds
approximately to taking a single gradient descent step in Kendall’s shape space.
In Section 4.6 we introduce the particular shape spaces that we illustrate the
method on; the sphere (equivalent to Kendall’s shape space for triangles), on
which we simulate data, and the LDDMM landmark manifold, that we use to

represent and analyse a data set of mammal jaws.

Relation of chapter to publications The material presented in this chapter is
based on the paper Tangent phylogenetic PCA [Akhgj, Pennec, and Sommer 2023|
published in the proceedings of the Scandinavian Conference on Image Analysis,
2023. Since the published version of the paper, the method has been formulated
such that all estimators are now intrinsically defined. In particular, the root node
has been rephrased as a weighted Fréchet mean, and the algorithm for estimating
it has been formulated as a Riemannian gradient descent. Furthermore, the
phylogenetic covariance estimator has been rephrased as a weighted tensor

product of logarithms.

3.2 Phylogenetic PCA in Euclidean space

In this section, we describe Euclidean phylogenetic PCA [Revell 2009]. We define
the tree structures with leaf node observations which constitutes the input to
the algorithm, that is, it is given to us in advance. Furthermore, we define the
underlying Brownian motion model on the tree and describe maximum likelihood
estimators.

Phylogenetic PCA takes as input a rooted, bifurcating tree. We denote this
by

(V.E, L),

where V' is the node set, F is the set of directed edges, and L : E — Ry
is a function giving the ’length’ of an edge, L(e) = L(n;,n;) € Ry, for
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3. Phylogenetic PCA for manifold-valued observations

e = (n;,n;) € E. A node n € V can have an associated value z, € R<.
We will call such a tree a p-tree. P-PCA assumes that only values of leaf nodes
are known. What makes the model Euclidean is the fact that the node values
belong to a Euclidean space. In the subsequent sections, we will generalize this
to allow values in a Riemannian manifold.

The length of a path between two nodes is the sum of the edge lengths
between nodes in the path. There is a unique shortest path from the root r to
any node n; € V, and we denote the length of this path by L(r, n;).

The most recent common ancestor of two nodes n; and n;, MRCA(n;,n;), is
the unique node n € V' from which there is a path to both n; and n;, and which
minimizes the path-lengths L(n,n;) and L(n,n;).

We interpret a p-tree with leaf observations as a phylogenetic tree, where only
the leaf nodes are recent enough in time to be known. Estimating phylogenetic
trees (i.e. nodes, edges and edge-lengths) for various species is a developed and
active field of research. See for example [Nyakatura and Bininda-Emonds 2012],
describing the estimated tree which we use for analysing the data set of mammal

jaws in Section 4.6.

3.2.1 The Brownian motion model on a tree

In this section we describe the model of a p-tree with branches representing
Brownian motions on R?, and how this leads to a joint normal distribution of
the leaf nodes with explicit maximum likelihood estimates.

Let {By°};>o denote a Brownian motion (BM) in R? with initial value
o € RY. Given a p-tree (V,E, L), the associated Brownian motion model
assumes that each edge of the tree corresponds to the path of an R%valued
Brownian motion. All such Brownian motions are assumed to evolve according
to a common covariance matrix. Namely, the values x,,,z,; € R? of two nodes
ni,n; € Vs.t. (n;,n;) € E and L(n;,n;) = t' are related by

T, ~P(B™), (3.2.1)

that is, x,,, is an observation from the time-#’ transition distribution of B*:.
Thus all nodes except for the root are random variables. Figure 1b shows one
realization of the p-tree in Figure 1la.

The assumption that the nodes are endpoints of Brownian motions implies
that the joint distribution of leaf-node values {z1,...,zny} is a normal
distribution on RY4. In [Felsenstein 1973], it is shown that

(21,...,2nx) ~N(Dr,R® C), (3.2.2)
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Phylogenetic PCA in Euclidean space

a normal distribution with mean Dr and covariance matrix R ® C. Here, D
is an (N - d) x d design matrix where D;; = 1, if ¢, j satisfies the inequality
(j—1)- N <i>j-N,and 0 otherwise. That is, the j’th column of Dr contains
only 0’s as well as the j’th element of r repeated N times. r € R is the value
of the root node. R € R is the phylogenetic covariance matriz which is
the covariance matrix for each Brownian motion with R;; being the covariance
between coordinate i and j. C € RN*N is the evolutionary covariance matriz
determined by the p-tree; Cy; = L(r, MRCA(n;,n;)). That is, Cy; is the total
length of edges occuring both in the shortest path from the root node to n; and
to nj. ® is the Kronecker product of matrices. To sum up; the Brownian motion
model structured according to a p-tree implies that the N leaf node observations
can be considered as a single observation from a normal distribution on the
product space RY?. Notice that if the p-tree contains only 2 leaf-nodes each
connected to the root by an edge of length 1, then C' is the identity matrix and
the leaves are 2 independent samples from a normal distribution with mean r
and covariance R.

From this model, one can derive maximum likelihood estimates (MLE’s) for
the lower dimensional parameters » € R? and R € R?*?. The MLE’s of the

phylogenetic root, 7, and covariance, R, is

P=(1Tc )T (1ITC'X), (3.2.3)

! (X — fT)T ct (X —7T), (3.2.4)

R
N -1

where X € R¥*4 is the matrix containing the leaf-node values in rows and
X — 7T € RN*4 is the row-wise difference (see [Harmon 2019], [Martins and
Hansen 1996]). These estimators are identical to the ordinary empirical mean and
covariance, (2.1.1) and (2.1.6), except for the weighting caused by multiplying
by C~!. This amounts to downweighing leaves with longer branch lengths to

the root, and the weights of two leaves are closer the more branches they share.

3.2.2 Phylogenetic PCA

As described in Example 2.1.3, PCA is based on eigendecomposition of the
empirical covariance matrix. Under the model of Brownian motions along a tree,
the covariance is the covariance R of the Brownian motions. Phylogenetic PCA
is defined as PCA based on eigendecomposition of the empirical estimate R.
For clarity, and for comparison with the manifold version presented in Section
3.3.4, we present Algorithm 1 as an example of how to use phylogenetic PCA.
The output of the algorithm is the observations projected to the k’'th eigenspace.
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3. Phylogenetic PCA for manifold-valued observations

Other possible outputs, depending on the particular application, could for
example be visualization of the first eigenvector, i.e. the direction of greatest
variation. Different such uses of the extracted eigenvectors and eigenvalues are
straight-forward reformulations of Algorithm 1. Another choice we made is to
let the dimension k be an input to the algorithm. The choice of k depends on
the application. If the goal is visualization, k is set to 2 or 3. The eigenvalues of
R can also be inspected to find a dimension k representing a sufficient, relative
to the aim, amount of variation in the data. Automatic selection methods also

exists, see e.g. [Minka 2000] which is based on Bayesian model selection.

Algorithm 1 Phylogenetic PCA

Input: A p-tree (V, E, L) with leaf observations {z;};,—1. nx C R%, and a choice
ke {1,...,d} of dimension of the lower dimensional representation

Output: The observations projected to the k’th eigenspace.

1: Compute ML estimates of the root # (eq. (3.2.3)) and center the data around

r,

(Q:i)f = :L’iff, i=1..N.
2. Compute the covariance estimate R (eq. (3.2.4)).

3: Eigen-decompose R and proceed as in ordinary PCA: project the 7-centered
observations {(z;)s}i=1..n to the subspace spanned by the first k eigenvectors,
to get principal components {Z;};—1. N

return {Z;};—1. N

3.3 Phylogenetic PCA on a Riemannian manifold

We now assume given a p-tree (V, E, L) where the leaf observations x1,...,zn
are points on a Riemannian manifold (M, g). The model of Euclidean Brownian
motions structured according to a p-tree is directly transferable to the manifold
setting. The edges now represent Brownian motions on the Riemannian manifold
M so that Equation 3.2.1 still holds, with the transition distribution being
that of a Brownian motion on M. Such Brownian motions are introduced in
the next subsection. Following that, we generalize the phylogenetic root and
covariance estimators to manifold valued data. Tangent phylogenetic PCA will
then be defined as a tangent PCA centered at the root estimate and based
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Phylogenetic PCA on a Riemannian manifold

on an eigendecomposition of the estimated covariance matrix of a Riemannian

Brownian motion.

3.3.1 Brownian motion on a Riemannian manifold

A Riemannian Brownian motion is a stochastic process on a Riemannian manifold,
(M, g), whose infinitesimal generator is the Laplace-Beltrami operator [Hsu 2002].
Similarly to the Euclidean case, we will denote such a Brownian motion with
initial point py € M by {B;°},~,. The process can be simulated via a scheme
similar to Euler-Maruyama [Saia and Manton 2012] as follows. Choose a stepsize
7 > 0 and an orthonormal basis of T}, M w.r.t. the Riemannian metric. Sample a
vector v € T,y M from a standard normal distribution w.r.t. this basis. Starting
from po, the subsequent point is generated as BY° = exp,, (WT) e M. At
any time-point ¢ of the trajectory, the next point Bf{ _ is generated in the same
way but letting the base point be BY°. The resulting sequence of points will be
approximate samples from a Riemannian Brownian motion.

A Riemannian Brownian motion, the type of process described above, is
isotropic, meaning that it spreads out equally in all directions w.r.t. the
Riemannian metric. This can be generalized to non-isotropic Brownian motions,
parameterized by an initial point py and an initial covariance matrix R. The pair
(po, R) is modelled as a point in the frame bundle of M. The construction of this
stochastic process is more involved than in the isotropic case, since the frame
(covariance matrix) needs to transported between tangent spaces by means of
parallel transport. We refer to [Pennec, Sommer, and T. Fletcher 2019], chapter

10, for details on the construction.

3.3.2 Phylogenetic root estimation on a Riemannian manifold

In order to formulate the root estimator intrinsically, we rewrite the Euclidean
expression (Equation (3.2.3)) as follows,

P=(1Tc"11) " (1TC1X)

N
i=1
N
= argminz w; - dga(r, ;). (3.3.1)

d
reRe 4

Here w; = L —w; and the unnormalized weights are the column sums

ZN
w
j=1 7

W; = Z;V:l(Cfl)jyi. The distance, dra(p, q) = Z?:l(pi — ¢;)?, is the ordinary
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3. Phylogenetic PCA for manifold-valued observations

Euclidean one. If this distance is exchanged for the geodesic distance w.r.t. g,
denoted by d, then Equation (3.3.1) is well defined on a Riemannian manifold.

We therefore define the Riemannian root estimate by

which is a weighted Fréchet mean. For conditions regarding existence and
uniqueness of weighted Fréchet means, see [Karcher 1977], [Afsari 2011], [M.

Arnaudon and Miclo 2014]. Minimizers of the corresponding objective function,

N
f(p) = Zwi cdg(r, ;)7 (3.3.2)

can be found by means of Riemannian gradient descent. For details on
optimization on Riemannian manifolds, see [Udriste 1994] and [Absil, Mahony,
and Sepulchre 2008]. Karcher [Karcher 1977] showed that the gradient of f is

N
Vf + p—=Vf],= 722101- log, (i) € T,M,

i=1
which is the Euclidean root estimate of the observations represented in the
tangent space, scaled by a factor of 2 (which could of course be removed by
rescaling the objective function). The gradient descent algorithm for estimating
the phylogenetic root on a Riemannian manifold is given in Algorithm 2. See
Appendix ?? for references discussing convergence of gradient descent algorithms

on Riemannian manifolds.

Algorithm 2 Root node estimation

Input: A p-tree (V, E, L) with leaf observations {x;},—1.. ny C M, an initial
guess rg € M, a convergence threshold € > 0 and a stepsize 7 > 0.

Output: An estimate of the root 7 € M.
1: Set # = ry and pick any vy € T M s.t. ||vp]|g > €.
2: while [jv;||; > € do
3: Map the data to T: M, (x;)s := log(z;),

P == iy wil®)

5: Update # by # < exp.(—7v;) € M

1=1...N.

4: Compute the gradient v; := V f

6: end while

return 7
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Phylogenetic PCA on a Riemannian manifold

3.3.3 Phylogenetic covariance estimation on a Riemannian
manifold
As we did for the root estimator, we reformulate the Euclidean phylogenetic

covariance estimator (3.2.4) as a weighted sum - this time a weighted sum of

outer products;

R 1 T\T ~—1 R
R=4—— (X=7") ¢ (X =7T) (3.3.3)
1 L, A o
= m”z;(c )i (wi —7)(z; —7)7. (3.3.4)

As explained in Section 2.4.1 and appendix A.2.1, we can make intrinsic sense
of an outer product by considering it to be a coordinate expression of a certain
tensor product. Thus, we define the intrinsic phylogenetic covariance estimator
on a Riemannian manifold to be

1 N

I/‘? = m Z (Ofl)id‘ . logf(ilii) X lng(ii). (335)

i,j=1
Cf. Lemma A.2.1, after choosing a chart around 7 and thus a basis for T; M, the
coordinate expression of the estimator is
1 N
R = m Z (C_l)iyj . lng-(J?i)lOg;-(Jﬁi)Tgf». (336)

ij=1

where g, € R™? denotes the matrix representation of the Riemannian metric at

a point p € M, in the chosen chart.

3.3.4 Phylogenetic PCA on Riemannian manifolds

A

Given an estimate of the root node, 7, and of the phylogenetic covariance, R, we
define phylogenetic PCA on a Riemannian manifold as tangent PCA computed
in the tangent space at 7, using covariance R (see Section 3.3.4).

Algorithm 3 is the manifold version of Algorithm 1. It extracts the k-
dimensional eigenspace V C T;M of the covariance estimate IA{, projects the
log-transformed observations {log,(z;)}i=1. .~ to V and maps them out to M
via the exponential map. As discussed in Section 2.4.1 on tangent PCA,
since V. C T, M is a k-dimensional subspace, then expp(V NC,) C M is a
k-dimensional submanifold, where C, is the injectivity domain at p. Therefore,
if {log;(x;)}i=1..n C Cs, then the exponential image of their projection to V are
points on a k-dimensional submanifold of M. In this sense they constitute a k-

dimensional representation of the original data.
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3. Phylogenetic PCA for manifold-valued observations

Algorithm 3 Tangent phylogenetic PCA

Input: A p-tree (V, E, L) with leaf observations {x;};—1. ny C M, an estimate of
the root node # and a dimension k € {1,...,d} of the reduced representation.
Output: The observations mapped to a k dimensional submanifold of M.

1: Map the data to Tm M, z; := log.(x;).

2. Compute the phylogenetic covariance matrix R = vaj:l(C“)m -z, 2T g(7).

3: Kigen-decompose R and proceed as in ordinary PCA in T;M: project the
observations {Z; };—1.. n to the subspace spanned by the first &k eigenvectors
to get principal components {z¥},—1. n C T; M.

return {7;}i—1 n := {exp;(Z¥)}iz1 N

3.3.4.1 Computational aspects of tangent p-PCA

The potentially most costly part of computing tangent p-PCA is the root-
estimation, Algorithm 2, specifically the computation of logarithms. In each
iteration of the gradient descent, N Riemannian logarithms must be computed.
So the computational cost of the algorithm is proportional to the cost of
computing the log map. On a manifold with closed form logs, such as Kendall’s
shape space, the cost is negligible. In the worst case, however, computing the log

RIM(M) and an objective

map is an optimization problem with parameter-space
function that is expensive to evaluate. However, the log-computations in the
algorithm are independent of each other, so can be done in parallel. Computing
the Riemannian logarithm is a typical bottleneck in (Riemannan) geometric
statistics, see Appendix A.1 for a discussion on this as well as a suggestion for

how to speed up computation of the log in certain settings.

3.4 Simulations and applications

In this section, we investigate the behaviour of tangent p-PCA via simula-
tions on the sphere (Kendall’s shape space of triangles in the plane) and by
applying it to a data set of mammal jaws, represented as landmark shapes
in the LDDMM landmark manifold. All implementations are based on the
Python library jazgeometry which provides code for computational Rieman-
nian geometry based on automatic differentiation (for more information see
https://bitbucket.org/stefansommer/jazgeometry/ and [Kithnel, Sommer, and
A. Arnaudon 2019]).
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Simulations and applications

3.4.1 Landmark shape spaces

The methods we have developed in this chapter works on any finite-dimensional
Riemannian manifold, but is motivated by applications to shape spaces. As
examples of such manifolds we consider Kendall’s shape space and the LDDMM
landmark manifold. In this section we introduce these two manifolds. See
also [Salili-James et al. 2022] for an overview and evaluation of various shape
frameworks, including geometric morphometrics and LDDMM, applied to the

problem of classifying shapes.

3.4.1.1 Kendall’s shape space

As mentioned in the introduction in Chapter 1, the starting point of Kendall’s
shape space is the Euclidean space R4*, which can be identified with the space
of d by k matrices R¥*. We interpret a matrix = = [q1,...,qx] € R¥™F as
consisting of k points ¢; € R?, i =1,...,k, called landmarks. We will call such
a matrix a landmark matriz. The landmarks could for example be points along
a curve outlining some ’shape’ in the plane, R?. If all landmarks in a matrix are
translated by some common vector, scaled by a common factor and/or rotated
by a commmon rotation, the collection of transformed points intuitively still
looks like the same ’shape’ - just placed differently relative to the coordinate
system. By identifying matrices € R?** differing only by a translation, a
scaling or a rotation we can therefore construct a space in which each point
is a shape, and different points represent different shapes. Specifically, we say
that z,2’ € R4** are equivalent, z ~ 2/, if there exists some p € R%, ¢ € R
and a rotation matrix R € SO(d) such that ' =c- R[g1 +p,...,qx + p]. This
equivalence relation defines a quotient space which is a smooth manifold for
d < 2, but has singular points of non-smoothness for d > 2, corresponding to
certain degenerate landmark matrices. This manifold can be equipped with a
natural Riemannian metric derived from the Frobenius metric on R?**, resulting
in Kendall’s shape space.

Kendall’s shape space can be constructed in two steps. The first step is to

Rdxk

quotient out by translation and scaling by considering only the following

subset,

S’f: {x lq1,- -, qx] € RIxk

k
lelr = 1,3 o},

i=1
where ||[A|lp = /Tr(AAT), for A € R¥* is the Frobenius metric. Sggq is

called the pre-shape space and is a manifold diffeomorphic to a hypersphere

of dimension d(k — 1) — 1. Kendall’s shape space is then the pre-shape space
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3. Phylogenetic PCA for manifold-valued observations

quotiented out by the rotation group, X% = Sk /S0O(d), equipped with a quotient
Riemannian metric derived from the Frobenius metric. The induced geodesic
distance d can be expressed in terms of the sphere distance dSS on the preshape
space as
d(m(z),m(y)) =  min  ds; (@, Ry),

where 7 : Sg — E’; is the projection of a point on the pre-shape sphere to the
equivalence class containing it in the quotient manifold E’;.

Kendall’s shape space is convenient from a computational point of view:
closed form expressions exist for the exponential and the logarithm, and parallel
transport can be computed fairly cheaply (see [Guigui and Pennec 2022]). All

such computations are implemented in Geomstats.

Procrustes alignment Given a preshape x, its Procrustes alignment to
preshape y is given by

Tz, = min |z— R
v = pmin e = Ryllr.

that is, x is rotated so as to minimize the sum of squared distances between
each landmark in z with the corresponding landmark in y. In the geometric
morphometrics literature it is argued that Procrustes alignment is an approximate
way of mapping (the equivalence class containing) x to the tangent space of
Kendall’s shape space at (the equivalence class containing) y. See [Dryden and
K. V. Mardia 2016], Chapter 4, for details. We discuss this practice in geometric
morphometrics further in Section 3.5.1.

3.4.1.2 The LDDMM landmark manifold

For our purposes, the Large deformation diffeomorphic metric mapping
(LDDMM) framework can be seen as a way to define a Riemannian metric
Gm on R¥*F that seems reasonable when a point in R4** is interpreted as a
collection of k landmarks, i.e. a landmark matrix. What we refer to as the
LDDMM landmark manifold is the Riemannian manifold (R¥** g,,). We give
more details on the metric below, but for now we mention that this manifold is
geodesically complete, and so the induced geodesic distance metric dg , on Raxk
is complete (see [Younes 2010] and [Micheli, Michor, and Mumford 2012]). Since
this is a distance metric on R?** it assigns non-zero distance between landmark
matrices z, 2’ € R¥*? that represent the same shape according to Kendall’s
shape space. In this sense, d,,, is not a distance metric on shapes. Therefore,

in practice, a given set of observed landmark matrices are first mapped to the
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Simulations and applications

corresponding pre-shapes and then Procrustes aligned before treating them as
points on the LDDMM landmark manifold (R**4 g, ).

We now give a brief description of the Riemannian metric g,, and the induced
distance metric dg, . The idea of the LDDMM metric is to consider the space of
diffeomorphisms on R, i.e. smooth maps from R? to itself, and a Riemannian
metric on this space. This induces a Riemannian metric g,, on R%** and
thereby also a geodesic distance metric dy,, on R™*. The distance between
two landmark matrices x,y € R4**  defined in this way, can be interpreted as
the least ’energy’ needed to deform R? in such a way that each landmark in
coincides with the corresponding landmark in y.

As opposed to the metric on Kendall’s shape space, the LDDMM Riemannian
metric can be expressed fairly explicitly. More specifically, we can explicitly
express the cometric, g,, whose matrix representation is the inverse of the metric
matrix. The cometric at x € R¥* is a block matrix

gr(@) = [(Ko)igl oy s for (Ku)ij = @(ai,qj)1a € RT

where x = [q1, .. .,qx] is a matrix consisting of k landmarks ¢; € R%, I, is the d

by d identity matrix and ¢ is a kernel function. See [Michor 2020] for a derivation.
A standard choice is a Gaussian kernel ¢(g;, ;) == Bey:p’”‘”*qf'ﬁ/z‘72 € R with
parameters 3,0 > 0 (see [Pennec, Sommer, and T. Fletcher 2019], [Younes 2010],
[Miller, Trouvé, and Younes 2002]). The kernel determines how correlated nearby
landmarks are under low-energy deformations, in the following sense: for larger
o’s, nearby points z,y € R? are mapped to nearby points ¢(x), ¢(y) € R? by
low-energy deformations ¢. For smaller ¢’s, the points ¢(x), ¢(y) can be further
apart and each depends less on the value of the other. The o parameter adds
modelling flexibility, but also implies that there is no canonical metric on the
LDDMM landmark manifold, as there is on Kendall’s shape space.

In the case of LDDMM there are no closed-form expressions for any of
the Riemannian operations that are used in geometric statistics. We therefore
rely on numerical integration and optimization methods, leading to increased
computational costs. The operations are implemented, based on automatic
differentiation, in jaxgeometry (http://bitbucket.org/stefansommer/jaxgeometry).

3.4.2 Simulations on the sphere

We generate observations on the unit sphere, S?, by simulating isotropic Brownian
motions on S? structured according to a p-tree. Note that Kendall’s shape space
for 3 landmarks in R? can be identified with S?. The topology of the tree is the
one shown on Figure la, with branch lengths that are scaled up by a common
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3. Phylogenetic PCA for manifold-valued observations

factor. We simulate isotropic Brownian motions using the Euler-Maruyama-like
scheme described in Section 3.3.1. The true root is the north pole, and the
convergence criterion parameter is set to e = 107, For each of 1000 simulated
trees, we estimate the root node via algorithm 2 and compute its error as the
Riemannian distance to the true root. A single realization of a p-tree is shown in
Figure 3. The error-distribution is shown in Figure 2. We note that it resembles
a x2-distribution. When the leaf nodes are Euclidean, the root is the mean of a
Normal distribution, and it is well known that the exact error-distribution in

this case is y2-distributed.
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geodesic distance from the north pole The 4 green stars are the leaf nodes.
(the true root) to a point on the equator

is m/2 &~ 1.57.

Figure 4 shows a histogram of the number of iterations until convergence for
two different choices of initial root-value: the Fréchet mean and the south pole,
respectively. We see that when the initial point is the Fréchet mean, the root
estimate converges in 2-5 iterations for most datasets. When the initial point is

the south pole, the root estimate converges in 4-11 iterations for most datasets.

3.4.3 Mammal jaws data set

In this section, we analyse a data set of mammal jaws. For each of 113 mammal
species, the data set contains from 1 to 8 jaws, each represented by 14 landmarks

in R2. Figure 3.6 shows the 113 landmark shapes represented in R2. For a
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full description of the data, see [Conith, Meagher, and Dumont 2018]. The
phylogenetic tree is estimated in [Nyakatura and Bininda-Emonds 2012].

The first step of our analysis is to map landmark matrices to preshapes by
scaling and centering them and then perform Procrustes alignment, as described
in Section 3.4.1.1. Then we compute the Euclidean mean of the jaw observations
within each species, and proceed with these 113 points instead of the full data
set. Then, we consider these mean values as points in the LDDMM landmark
manifold with a Gaussian kernel k(g;,q;) = ,6’exp_”q"'_qiﬂz/zf’2 €ER, ¢ €R% In
our analysis, we set § = 1, and ¢ = 1.5w. Here, w = 1—}3 Zzlfl i, where v; is
the average Euclidean distance between the landmarks in shape 4. This yields
o = 0.208, which is thus proportional to the typical distance between landmarks

within a typical jaw shape.

We start out by estimating the root node using algorithm 2. The results
are presented in Figure 3.6. As initial estimate we use the root estimate from
Euclidean p-PCA. The algorithm converges in 8 iterations with a threshold of

€ = 107*. The root estimate deviates visibly from the Euclidean root estimate.

We then perform tangent p-PCA according to Algorithm 3. We compute the
phylogenetic covariance matrix Rin T; M and plot its eigenvalues to determine a
dimension k which describes most of the variability, while reducing the dimension
significantly. The eigenvalues are plotted in Figure 5. The first 6 eigenvectors
describes a large proportion of the (non-phylogenetic) variation, thus we choose
to represent the observations in k = 6 dimensions. Figure 3.7 below shows the
projected observations for both tangent p-PCA and for Fuclidean p-PCA on

Procrustes aligned landmark shapes.
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Figure 3.6: Ilustration of the Mammal jaws data set (yellow dots) and 2 root
estimates, one by algorithm 2 (green '+’-signs) and one by Euclidean p-PCA
(red '+’-signs) after Procrustes alignment. Each shape consists of 14 landmarks
(dots), numbered in the figure.
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Figure 3.7: Blue dots are the Mammal jaws observations after Procrustes
alignment. Red dots are the observations in T: M projected to the first 6 tangent
p-PCA eigenvectors and then mapped back to M via the Riemannian exponential.
Green dots are the observations projected to the first 6 eigenvectors of Euclidean
p-PCA.
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3.5 Discussion and conclusions

3.5.1 Relations between our approach and that of geometric
morphometrics

The field of geometric morphometrics (GM) ([Mitteroecker and Schaefer 2022],
[Adams, Rohlf, and Slice 2013])) studies morphological features of biological
species. One such morphological feature is shape, often in the sense of Kendall’s
shape space, i.e. landmark matrices are analysed in a way that removes the
effects of translation, scale and rotation (or subsets of these transformations). A
typical approach in the field amounts to representing the observed shapes in a
tangent space of Kendall’s shape space and then applying Euclidean formulas.
This tangent space representation is often done in an approximative way, via
Procrustes alignment of an observed set of landmark matrices, as described in
Section 3.4.1.1. This is the approach taken by [Polly et al. 2013] for phylogenetic
PCA on landmark shapes.

Our contribution to the problem of applying phylogenetic PCA on shapes,
relative to the GM approach, is to define the estimators of the root and covariance
in an intrinsic way on a general Riemannian manifold and give algorithms for
their computation based on the exact geometric objects - e.g. the actual tangent
space instead of an approximation. We sum up the practical advantages of this

as follows,

A) the estimators can be applied on any finite-dimensional shape manifold,

not only Kendall’s shape space,

B) the root estimator can handle larger data variation.

In point B) we don’t mention the covariance estimator, since this is based on
the log and therefore on a tangent space representation of the data. As opposed
to this, our definition of the root as a weighted Fréchet mean does not rely on a
tangent space.

A survey of the GM literature has led us to conclude that there seems to be a
consensus in the field that working in the tangent space of Kendall’s shape space,
or approximations thereof, is sufficient for the data sets that are encountered
in practice (see [Rohlf 1999] [Klingenberg 2020], the section Tangent Space
Approzimation to Shape Spaces and references therein). Le. that the observed

variation is usually sufficiently small for the distances in the tangent space to
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approximate the intrinsic distances well. ! This seems to imply that point B)
above is not of practical relevance to the field, when the shapes representation is

Kendall’s shape space. We elaborate on this point in the next section.

3.5.1.1 The root estimator

In [Polly et al. 2013], the method for finding the root given a data set of landmark

matrices consists of the following two steps,

1) Compute generalized Procrustes alignment, that is, compute the Procustes
mean (see [Dryden and K. V. Mardia 2016]) and Procrustes align the
pre-shapes to this.

2) Use the Euclidean root formula, (3.2.3), on the aligned pre-shapes.

Step 1) corresponds approximately to representing the observations in the tangent
space at the Fréchet mean in Kendall’s shape space (see [Dryden and K. V.
Mardia 2016], Chapter 4). This corresponds to line 3 of our Algorithm 2, if the
algorithm is initialized at the Fréchet mean. Step 2) corresponds to computing
the gradient of the objective function for the root estimator, (3.3.2), i.e. line
4 of our algorithm. All in all, the method in [Polly et al. 2013] corresponds,
approximately, to taking a single step of our gradient descent algorithm when
the manifold is Kendall’s shape space and the initial point is the Fréchet mean.

Due to curvature, the further away the Fréchet or Procrustes mean of the
observations is from the Phylogenetic root, the more likely it is that taking
a single step in Algorithm 2 is not sufficient. In Kendall’s Shape space the
computational cost of taking a step in Algorithm 2 is negligible - less than a
few seconds. Indeed, computing the Procrustes mean (commonly used in GM)
already involves iteration of the same type of computation. Therefore, we see
no reason not to continue the gradient descent until convergence with respect
to some desired level of accuracy. This holds even in the case where the data
is concentrated enough for the tangent space to be a good approximation -
indeed, if this is the case, the algorithm will converge faster. In Section 3.4.2 we
investigated the convergence behaviour of the root estimator on the sphere (i.e.
Kendall’s shape space for 3 landmarks in R?) and in the LDDMM landmark
space. On both manifolds, convergence was only very rarely achieved in a single

step from the Fréchet mean.

IFurthermore, it is concluded that the singularities occuring for an ambient dimension
d > 2 does not pose a problem in practice (see [Klingenberg 2020]).
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3.5.2 Conclusions

We have constructed a version of phylogenetic PCA for data taking values in a
finite-dimensional Riemannian manifold, e.g. landmark shape spaces. We have
argued that there is a need in evolutionary biology for doing exactly this. We
have illustrated the method on a data set of landmark shapes, represented as
points in the LDDMM landmark manifold. The method is based on intrinsically
defined estimators, and we have discussed the relation of these to the current
practice in geometric morphometrics (GM). In particular, we have shown that the
root-estimator used in GM corresponds to taking a single step of a Riemannian
gradient descent algorithm on Kendall’s shape space. Our simulations show that

one step is rarely enough, for reasonable convergence criterions.
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4. Principal subbundles for dimension reduction

4.1 Introduction

In this chapter, we present a framework for learning an unknown, lower
dimensional geometry from a set of observations {z1,...,zx} on a Riemannian
manifold A. In the majority of our presentation we will assume that A is simply
Euclidean space R?, since the framework is a contribution in this setting, and
since the principles of the method then stand out more clearly. The more general
formulation for manifold-valued data is presented in Section 4.5.

The framework provides concrete methods for solving the following three
problems,

Figure 4.1: Top: noisy observations on the S-surface, embedded in R% but
projected to R? for the purpose of visualization. The turquoise surface shows
the 2-dimensional manifold reconstructed using the principal subbundle. Below:
a 2D tangent space representation of the observations. Experiment described
further in Section 4.6.2.

(A) Metric learning, i.e. learning a distance metric, d(-,-) : R? x R — Ry,
expressing the unknown underlying geometry (see [Bellet, Habrard, and
Sebban 2015] for an overview).

(B) Manifold reconstruction, i.e. estimating a k-dimensional smooth submani-
fold M C R? around which the data might be assumed to be distributed,
an assumption known as the manifold hypothesis [Cayton 2005]. This

includes surface reconstruction for observations in R? [Huang et al. 2022].
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(C) Dimension reduction, in the specific sense of learning a representation of
the data in R*, k < d, that preserves various chosen local properties, e.g.
pairwise distances and angles between neighbouring points. This problem
is often called manifold learning [Ma and Fu 2012], referring to the fact that
the manifold hypothesis is often assumed, although most such methods do

not reconstruct the manifold in R<.

FEach of these problems constitutes a whole field of research in itself. Indeed,
their assumptions on the data can differ; while methods for (B) and (C) assume
a lower dimensional structure of the data, this is not necessarily the case in (A).
However, the framework described in this chapter can be used to do both (A),
(B) and (C). Our basic assumption is that the data is locally linear, i.e. locally
well approximated by k-dimensional affine linear subspaces. This assumption
holds under the manifold hypothesis, where the tangent space at each point
is a good approximation. However, the assumption may also hold even if the
manifold hypothesis fails, due to the phenomenon of non-integrability (see Section
4.3.4). In this sense, the framework of principal subbundles relaxes the manifold
assumption.

At each point in R? we estimate a k-dimensional linear approximation of the
data by an eigenspace of a local principal component analysis (PCA). Technically,
the collection of these eigenspaces forms a subbundle on R?. In this work we
exploit the fact that such a subbundle determines a sub-Riemannian metric on R.
Under such a metric a curve in R? has finite length if and only if it is horizontal,
i.e. if its velocity vector lies within the subbundle at all time points. Due to the
nature of the chosen subbundle, a horizontal curve initialized within the point
cloud is expected to evolve along the point cloud. Thus, our framework provides
a method for metric learning (A) in the sense that it estimates a sub-Riemannian
metric on R?, which, under certain assumptions, induces a distance metric on
R?. In particular, it is a geodesic distance, meaning that the distance between
p,q € R? equals the length of the shortest horizontal curve connecting p and gq.
A sub-Riemannian metric can be thought of as a Riemannian metric of lower
rank k£ < d. To the best of our knowledge, the low-rank (i.e. sub-Riemannian)
case has not yet been explored in Riemannian approaches to metric learning (e.g.
[Hauberg, Freifeld, and Black 2012], [Perrault-Joncas and Meila 2013]). But
it is exactly this property that enables the metric to also provide solutions to
problems (B) and (C). It yields a method for manifold reconstruction (B) since the
sub-Riemannian metric induces a diffeomorphism, ¢, : R¥ > U — ¢,(U) C R,
whose image is a smooth k-dimensional submanifold M* approximating the

data around a chosen base point z € R%. Technically, ¢, is a restriction of the
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sub-Riemannian exponential map at p. Finally, the framework yields a method
for dimension reduction (C) since U C R¥ is a coordinate chart for the manifold,
so that, after projection of the observations to M¥, each projected observation
x; can be represented as ¢, ' (z;) € R¥.

Methods for manifold reconstruction (B) and dimension reduction (C) often
deal with the problem of how to combine local linear approximations into a
global, non-linear representation. In the field of surface reconstruction from 3D
point clouds, state-of-the-art methods such as Poisson surface reconstruction
(PSR) [Kazhdan, Bolitho, and Hoppe 2006] and Implicit Geometric Regularization
(IGR) [Gropp et al. 2020] are based on estimation of tangent spaces, which is done
via estimation of normals (see [Huang et al. 2022] for a survey and benchmarking).
A fundamental obstacle to this strategy of reconstructing a submanifold from
tangent space approximations, e.g. reconstructing a surface from a normal
field, is that the subspaces determine a submanifold if and only if they form
an integrable subbundle, cf. the Frobenius theorem (see Section 4.3.4 below).
If the subspaces are estimated from a (finite) set of observations, integrability
cannot be assumed to hold, even in the absence of noise. PSR and IGP deal
with this problem by finding a surface whose normals minimize the distance to
the empirical (noisy) normals. This surface is constructed by solving a Poisson
equation (PSR) or by fitting a neural network (IGR). However, the approach
of fitting normals does not generalize to the case of codimension greater than
one, since normals are not defined in this case. Likewise, within manifold
learning, methods based on alignments of local linear approximations (e.g. [Teh
and Roweis 2002, [Zhang and Zha 2004], [Singer and Wu 2012], [Koelle et al.
2022], [Myhre et al. 2020]), can be thought of as different ways to deal with
non-integrability. Such methods are often based on eigendecomposition of a
kernel-type matrix, or other linear-algebraic computations. This strategy is
useful for finding a representation in R* (problem (C)) but not for reconstructing

an underlying manifold (problem (B)).
The approach presented in this chapter is different. We combine the local

linear approximations into a global representation by integrating a system
of second-order ordinary differential equations, the sub-Riemannian geodesic
equations. For k = 1, this integration yields the flow of the first eigenvector
field, called the principal flow in [Panaretos, Pham, and Yao 2014]. There are,
however, important differences between principal flows and our framework for
k = 1, see the discussion in Section 4.4.3.1 and numerical results in Section
4.6.4. A follow-up work to the principal flows is the Principal submanifolds
[Yao, Eltzner, and Pham 2023], where the aim is to leverage k eigenvectors to
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construct a k-dimensional submanifold approximating the data. This method
is closely related to ours, in that it is based on horizontal curves. A crucial
difference, however, is that the curves in [princSubmYaoEltzner| are defined
by an algorithmic procedure with no theoretical guarantees and the output of the
method is a subset of the ambient space whose properties are largely unknown,
such as whether it is in fact a submanifold.

A basic motivation and justification for our method is the following
observation: if one had access to the true tangent spaces, e.g. via a frame
of vector fields spanning them, then the Riemannian geodesic equation w.r.t. the
corresponding Riemannian metric will generate an open subset (a normal chart)
of the true manifold. I.e. it will generate an exact reconstruction, locally. When
the frame is non-integrable, which is likely the case when it is estimated from
data, the more general sub-Riemannian framework is needed. We show that,
surprisingly, we can still generate a submanifold in this setting, and thereby give
solutions to problems (B) and (C). Our framework thus offers a new way to form
a global representation from local linear ones that seems natural from the point

of view of differential geometry.

4.1.1 Chapter organization and contributions

Our main contribution is the idea of collecting eigenspaces of local PCA’s into a
tangent subbundle and showing how the induced sub-Riemannian structure can
be used to model the data. In Section 4.2, we define principal subbundles on R?
and prove smoothness properties. In Section 4.3, we present sub-Riemannian
geometry on R%. A large part of this section is devoted to background theory, with
some exceptions, e.g. subsection 4.3.5 where we prove that a certain restriction
of the sub-Riemannian exponential map is a diffeomorphism, thus generating a
submanifold even if the subbundle is non-integrable. This is the crucial result
showing the usefulness of sub-Riemannian geometry for manifold reconstruction.
In Section 4.4, we discuss the particular sub-Riemannian geometry induced by
the principal subbundle. In Section 4.5, we show how the framework generalizes
to the case of observations on an a priori known Riemannian manifold. Section
4.6 presents numerical solutions to examples of problems (A) (metric learning),
(B) (manifold reconstruction) and (C) (dimension reduction) for observations in
R¢ and on the sphere.

Relation of chapter to publications The material presented in this chapter

was submitted in July 2023 to the journal Foundations of computational
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mathematics and to ArXiv [Akhgj, Benn, et al. 2023]. Minor modifications
has been made, mainly removal of parts describing background material that

has already been presented earlier in the thesis.

4.2 Principal subbundles

In this section, we define the principal subbundle as a collection of eigenspaces
of local PCAs. Recall that the tangent bundle on R%, TR?, can be identified
with R? x R?. For some subset U C R%, the tangent bundle on U, TU C TR?,
can be identified with U x R?. A rank k subbundle D of TU is a collection of

k-dimensional subspaces associated to points in U, that is
D= {(z,v)|xz e UwveD,},

where each D, is a k-dimensional subspace of R%. Given a data set {z;}i=1. v C
R9, we will define the principal subbundle as the subbundle for which each D, is
the span of the first k eigenvectors of a centered local PCA computed at = € RY.
We detail this construction below.

4.21 Local PCA at the local mean

Let 21,...,zx be observations in R?. By local PCA at p € R? we mean the
extraction of eigenvectors of the following weighted and centered second moment.

Definition 4.2.1 (Weighted, centered first and second moments). Let K, : R>g —
R+ be a smooth, decaying kernel function with range parameter o > 0. At a

point p € RY, the normalized weight of observation z; is

Ka(llzi —pl)
wz(p) = N B}
Zj:l Ko(||lzi —pl)
where || - || is the standard norm on R?. The weighted first moment (the local

mean) and the centered weighted second moment (the local covariance matrix)
are then:

N N
m(p) = Zwi(p) zi , Salp) = Zwi(m(p))(wi —m(p))(z; — m(p))” € R

Remark 4.2.2. To save computational time, instead of using w;(m(p)) in X, (p)
we suggest to use w;(p), i.e. not recomputing the weights at m(p). This cheaper

version is used for the experiments in Sections 4.6.1-4.6.3.
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For K, constantly equal to 1 (or @ = o0), X, (p) is the ordinary mean-
centered covariance matrix, independent of p. In our experiments we use a
gaussian kernel with standard deviation a. A motivation for using local PCA’s
is the following. Under the manifold hypothesis, with an underlying manifold
of dimension k, the k-dimensional eigenspace of a local PCA at an observation
x; converges to the true tangent space of that submanifold at x; in the limit of
zero noise and the number of observations going to infinity (see e.g. [Singer and

Wu 2012], Theorem B.1, for a convergence result).

4.2.2 Eigenvector fields and the principal subbundle

We define the principal subbundle at p € R? as a k-dimensional eigenspace of the
weighted second moment at p. For it to be well-defined at p, the k’th and k+1’th
eigenvalues of the second moment at p should be different. I.e. the subbundle is

defined only outside the following set of points, which we will call singular,
Sak ={p R | Me(p) = Mesa(p)}, 1<k<d (4.2.1)

where \i(p) > --- > A\g(p) are the eigenvalues of X, (p) € R?*4,

Definition 4.2.3 (Principal subbundle). Let A;(p) > --- > A4(p) be the
eigenvalues of 3, (p) € R¥*? with associated eigenvectors e1(p), ..., eq(p). Let
Sa.i; be the set of singular points (Eq. (4.2.1)). Then the principal subbundle on
R?\ S, 1 is defined as

Sk’a = {(p,v) | pE Rd \ Sa,kav € Span{el(p)a ) 6k(p)}} C T(Rd \ Sa,k)~

Remark 4.2.4. We will assume the data and the chosen parameters satisfies that
Aie(p) # Mg+1(p) at all points where we want to evaluate the principal subbundle.
In our computations we have not encountered points where this assumption was

violated.

Remark 4.2.5. Cf. the proof of Proposition 4.2.7 (below), if Ax(p) > Ap11(p) at
some p € R%, then this property holds on an open set around p.

Note that the principal subbundle only depends on the eigenspaces, not the
choice of eigenvectors. The latter are not uniquely determined, they depend on
a choice of sign and, in the case of repeated eigenvalues, a rotation within a
subspace. In order to define a sub-Riemannian structure from this subbundle
it needs to be smooth, which is satisfied cf. Proposition 4.2.7 below. A closely
related result, Lemma 4.2.6 below, states that if an eigenvalue A’ at p € R? has

multiplicity 1, then there exists a smooth vector field on an open subset O C R?
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around p which is an eigenvector for ¥, (x) at each € O. We call this vector

field an eigenvector field.

Lemma 4.2.6 (Existence of smooth eigenvector fields). Let ¢’ be an eigenvector
of Yo (p) at p € R with eigenvalue N of multiplicity 1. Then there exists an open
subset O(p) C R? around p and smooth maps e : O(p) — R% and X : O(p) — Rxo
satisfying e(p) = €/, \(p) = N, |le(x)] =1 and T, (z)e(x) = A(z)e(x) for all
z € O(p).

This result follows directly from [J.-G. Sun 1985], Theorem 2.3, since %,
is a smooth map. From this result on eigenwectors, one can conclude that
the eigenspaces are smooth at p if either the eigenvalues A1 (p), ..., Ap+1(p) are
distinct, or A\x(p), ..., Aa(p) are distinct at p € R?. However, we can in fact show
smoothness of the subbundle under the milder, indeed minimal, condition that
Ai(p) > Mg+1(p) (Proposition 4.2.7). Appendix B.1 contains the proof of this
and all other results in the chapter.

Proposition 4.2.7. The principal subbundle, defined on R%\ S, k, is smooth.

Figure 4.2 illustrates the principal subbundle (blue arrows) induced by point
clouds in R? and R3, including the effect of centering the second moment at the

local mean.

We are interested in studying curves whose velocity vectors are constrained
to lie in the principal subbundle (i.e. eigenspaces of local PCA’s). This can be

done using sub-Riemannian geometry, which we introduce next.

4.3 Sub-Riemannian geometry

We now introduce basic notions of sub-Riemannian geometry on R?. We focus on
the special case that we need, where the sub-Riemannian metric is a restriction
of the standard Euclidean inner product. This viewpoint is not presented in
sources that we know of, so we devote some space to it. For more comprehensive
introductions see e.g. [Agrachev, Barilari, and Boscain 2019] or [Jean 2014].
We strive to make the presentation accessible to someone with only a slight
knowledge of differential geometry. Most of the sub-Riemannian computations
described in this section has been implemented by the authors in the software

library geomstats, for public availability.
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1.0 4

0.5

0.0

Figure 4.2: Two illustrations of a principal subbundle induced by point clouds (green
points) and sub-Riemannian geodesics (red and pink curves). On Figure (a) the
subbundle rank is k = 1, on (b) it is k = 2. Blue arrows span the principal subbundle
subspace at the basepoint of the arrows; on Figure a) each subspace is a line (spanned
by one arrow), on Figure (b) they are planes (spanned by two arrows). The geodesics
are initialized at the red, respectively pink, dots, which are inside, respectively outside,
the point clouds. The observations colored in a darker green are those with an assigned
normalized weight w;, w.r.t. the position of the red dot, larger than 1075 - thus the
lighter green observations has only a negligible effect on the local PCA computation.
On Figure (b), the duration of integration, and thus the curve length, is T = 27 (red
geodesic) and T' = 2.37 (pink geodesic), respectively - these are the circumferences of
great circles centered at the origin and passing through the initial points.
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4. Principal subbundles for dimension reduction

4.3.1 Horizontal curves and the sub-Riemannian distance

In the special case that we consider, a sub-Riemannian structure on R? is fully
determined by a rank k subbundle D C TR%. The subbundle can be represented
as a smoothly varying orthogonal projection matrix,

g R R s F(p)FT (p), (4.3.1)

where F' : R? — R* is a smooth map s.t. F(p) is a rank k matrix whose
columns form an orthonormal basis for D,, at any p € R?. The map g* is called
the cometric. If g*(p) has full rank d at every p € R?, then the map p — g*(p)~!
is called a Riemannian metric. We discuss relations between Riemannian and
sub-Riemannian geometries below.

A basic intuition behind sub-Riemannian geometry is that, at each point
p € R, D, contains the allowed velocity vectors of a curve passing through p. If

a curve v : [0, 1] — R? satisfies

d

Z(t) = () € Dygy

for almost all ¢ € [0,1] it is called horizontal. This class of curves induces a

distance metric on R?, the Carnot-Carathéodory metric,

7 :10,1] — R? is horizontal

D =1in
P (p,q) = f{m) 1(0) = (D) = g

} €RsoU {0}, (4.3.2)

for any p, ¢ € R%, where L(v) := f01 [I5(¢)||dt is the curve length functional. An
important property of a sub-Riemannian geometry is whether any two points p, g
can be connected by a horizontal curve, or, equivalently, whether d(p, ¢) is finite
for all p,q € R?. A sufficient condition for this is that D is bracket-generating
(cf. the Chow-Rashevski theorem, [Chow 2002], [Agrachev, Barilari, and Boscain
2019]). This means that, for all p € R?, Lie D, equals R?, where Lie D,, consists
of the span of all D-valued vector fields and all of their iterated Lie brackets (see
e.g. [Lee 2013]). In this case, d¥ induces the standard topology on R9.

4.3.2 Sub-Riemannian geodesics

We now turn to horizontal curves that are 'locally length-minimizing’, i.e. any
local perturbation of the curve increases its length. For our purposes, the most
important class of such curves is called normal sub-Riemannian geodesics.
Normal geodesics are solutions to a system of equations on the cotangent
bundle T*R?, which, in our setting, can be identified with R% x R?. A curve
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v :[0,7] — R? is a normal geodesic if and only if it is the projection to R¢ of a
curve in T*R%, 1) : [0,1] — T*R?, that satisfies the sub-Riemannian Hamiltonian

equations. Let H denote the sub-Riemannian Hamiltonian,

* 1 *
H TR = Rxo : (p0) = 50" g0

We will write H), if we consider it as a function on T;Rd only. The Hamiltonian

equations are then given by

0H

p= Tn(p’ n) = gpn,
. (4.3.3)
0= —67)(1?7 n)-

A solution 1 (t) := (p(t), n(t)) with initial value (po, n0) is called a normal extremal.
The associated normal geodesic is the curve 7°(t) = 7(p(t),n(t)) = p(t), i.e.
the projection of v to the first component R%. Notice that the horizontality of +
is apparent from the fact that g; projects 1 to D), in (4.3.3). In the Riemannian
case the Hamiltonian equations are equivalent to a system of ODE’s on the
tangent bundle called the geodesic equations. This parameterizes geodesics
by their initial tangent vector instead of, as in the sub-Riemannian case, the
initial cotangent vector. We end this section with a few facts about solutions
to Hamilton’s equations that we will need later on. Firstly, the Hamiltonian
is conserved along solutions, i.e. H(p,n:) = H(po,no) for all t € [0,T] (see
e.g. [Agrachev, Barilari, and Boscain 2019], Section 4.2.1). This implies that a

normal geodesic v is a constant speed curve, since

||7(t)|| = ||9;t77t|| =V 2H (pg,ny)- (4-3-4)

This further implies that /0 has unit speed if 1y € H, '(1/2), and therefore
that its length is given by the duration of integration T'. Lastly, we will need
the fact that the Hamiltonian equations are time-homogenous in the sense that,
for any no € H~'(1/2) and a > 0, 43 (t) = 4 (at) ([Agrachev, Barilari, and
Boscain 2019], Section 8.6).

4.3.3 The sub-Riemannian exponential and logarithm

The sub-Riemannian ezponential map at p € R? maps a cotangent n € T;Rd =

R? to the position at time 1 of the normal geodesic initialized by (p,n), i.e.
expl? : T;Rd SR pe exp?(n) = (1).
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4. Principal subbundles for dimension reduction

The exponential map will also be denoted simply by exp. The time-homogeneity
of the Hamiltonian equations mentioned in the previous section has two important
consequences. Firstly, for a > 0, it holds that exp,(an) = 7;/(c), so scaling 7
amounts to moving along a single normal geodesic; secondly, v can be assumed
to be unit speed parameterized, and therefore the length of the normal geodesic
a = exp,(an), a € [0,1], is given by V/2H (n). In the case where this normal
geodesic is a global, not just local, length minimizer between its endpoints p and

y = exp,(n), we get the formula

d®(p,y) = /2H(p,n). (4.3.5)

4.3.3.1 Optimizing for the logarithm

To compute the sub-Riemannian distance between two points, eq. (4.3.5) suggests
that one should invert the exponential map. If the exponential map at p is
a diffeomorphism (thus invertible) around 0 € T;]Rd, its inverse is called the

logarithmic map, defined by

logf ‘RIDU—-0C T;Rd satisfying fylljog‘?(y)(l) =y
for some open sets U and O with p € U. However, such an open set U on which
exp, is a diffeomorphism only exists if rank(D) = d (see [Agrachev, Barilari,
and Boscain 2019] Prop. 8.40), in which case the geometry is Riemannian. A
simple way to see this is that exp,(H, (0)) = 0, where H,*(0) = D,". In the
sub-Riemannian case of rank(D) < d we propose an approximate log map given
as a solution to the following optimization problem, for p,y € R?,

log,(y) € argmin | exp,(n) — ylI> + H(p,n), (4.3.6)
ne

where A = Tp*Rd. This problem searches for the shortest normal geodesic
between p and y. For reasons that will be explained in Section 4.4.4, we will also
be interested in the case of A =D C T;Rd, the metric dual of D, (Equation
4.3.7 below). Under certain assumptions on D, notably bracket-generatingness,
the image set exp,(I*R?) is dense in R? even when rank D < d [Rifford 2014],
implying that the error || exp,(n) —y||* in (4.3.6) can be made arbitrarily small.
The problem of finding shortest horizontal curves between points is studied in non-
holonomic control theory (see e.g. [Jean 2014]). In our current implementations,
however, we find (local) solutions via a minimization algorithm based on BFGS
[Wright, Nocedal, et al. 1999] and automatic differentation of the exponential
map, which is possible using e.g. the python library Jax [Frostig, Johnson, and
Leary 2018].
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4.3.4 The subbundle induces a foliation

If a bracket generating subbundle D (i.e. Lie D = TR?) represents one extreme
for subbundles on R? then its opposite is that of a constant rank integrable
subbundle; that is, a constant rank subbundle D satisfying LieD = D. An
important property of integrable subbundles is that they posses integral manifolds
which are immersed submanifolds M C R? such that TyM = ﬁp for all points
p € M. Given a constant rank integrable subbundle D, the global Frobenius
Theorem tells us that R? is foliated, or partitioned, by the collection of all
maximal integral manifolds of D - each integral manifold is called a leaf and
has dimension equal to the rank of D (see Lee, Chapter 19 for full details on
integrable subbundles, there called involutive distributions, and the Frobenius
Theorem). The geometry induced by D on M C R is Riemannian since ﬁp
is the full tangent space at each point p € M, implying that all curves on M
are horizontal; therefore the sub-Riemannian geodesic equations are identical
to the Riemannian geodesic equations of the submanifold. If a subbundle D is
neither bracket generating (Lieﬁ = TR?) nor integrable (Lielv) = 25) then the
subbundle Lie D C TR? is integrable and foliates R¢ by its integral manifolds M,
each of dimension rank(Lie D). The induced geometry on each integral manifold
M is sub-Riemannian (not all curves are horizontal).

In relation to problem A, mentioned in the introduction, the previous
discussion implies that the induced distance metric is finite, d?(p,q) < oo,
for all points p, ¢ in the same leaf, whereas it is infinite for points belonging
to different leaves - a horizontal curve is constrained to move within a single
leaf. In relation to problem B, we are interested in generating a k-dimensional
submanifold of R? from a rank k& subbundle D whose integrability or bracket
generation is a priori unknown. In Proposition 3.1 below we show how this can
be done via sub-Riemannian geometry. The generated submanifold is tangent to

D in ’'radial’ directions, but not in all directions, as will be explained below.

4.3.5 The exponential image of the dual subbundle

The content of the previous sections implies the following. If D is integrable,
then there exists an open set U C D, s.t. M = exp,(U) is a k-dimensional
embedded submanifold of R whose tangent space a every point ¢ € M equals
D,. In this case, exp,, is a diffeomorphism from U to this submanifold. On the
other hand, if D is not integrable, there exists no submanifold that is tangent
to D, in particular exp,(U) does not satisfy this. However, in the following we

show that exp,(U) is still a k-dimensional embedded submanifold.
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4. Principal subbundles for dimension reduction

Let
D} = {(v,")|v € D,} C T}R? (4.3.7)

be the dual space of D, w.r.t. the standard inner product (v,u) := v7u. This
simply means that Dy consists of the tangent vectors (column vectors) in D,
considered as covectors (row vectors). Thus, Dy is a k dimensional subspace of
TrR? which can be identified with D, € TR?.

Proposition 4.3.1 (exp,, is a local diffeomorphism from Dy). Let u € R? be
arbitrary. There exists an open subset C), C Dy, containing 0 such that expE

restricted to C), is a diffeomorphism onto its image. That is,
D D d
M, =exp,(C,) CR
is a smooth k-dimensional embedded submanifold of R® containing p.

We postpone the proof to Section 4.5, where Proposition 4.5.1 generalizes the
statement to the setting where the ambient space is a Riemannian manifold.

It holds that Tp(MMD) =D, at p = u, but at a general p € ME these spaces
are different if D is not integrable. They need not even be ’close’, as can be
seen in e.g. the Heisenberg group where exp? (Cp) is the xy-plane, to which
the Heisenberg subbundle is almost orthogonal at certain points p. But M f is
'radially horizontal’, in the sense that it is the union of normal geodesics from
o each of which is horizontal w.r.t. D. In particular, if we assume that C), is

convex and let 9C), C Dy denote its boundary, then

expZ (Cy) = {1(t) | n € 9C,, t € [0,1])}, (4.3.8)

where each geodesic ¢ — ~,/(t) is tangent to D.
Note that, since the exponential map restricted to C, is a diffeomorphism,
the log-optimization problem (4.3.6) with A = D} has a unique solution for

pzuandannyME.

4.4 Sub-Riemannian geometry of the principal subbundle

In this section, we present a sub-Riemannian (SR) structure on R? based on local
PCA’s, namely, the SR structure determined by the principal subbundle. Moving
horizontally with respect to the principal subbundle means to move within a
k-dimensional subspace of maximum local variation at each step. Therefore,
geodesics that are horizontal w.r.t. this structure follow the point cloud, and the
associated exp and log maps can be used for representing the data. The image

of the dual subbundle under the exponential map, described in Proposition 4.3.1
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above, will be called a principal submanifold when the principal subbundle is used.
Such a submanifold approximates the data for well-chosen hyperparameters.
This is described in Section 4.4.3 where we also give an algorithm to compute it.
Furthermore, we discuss the use of the log optimization problem (4.3.6) for giving
a representation of the observations in R¥ (Section 4.4.4) and for computing

distances between observations (Section 4.4.5).

4.4.1 Properties of the sub-Riemannian structure

The sub-Riemannian structure that we will use to model the data is the
one determined by the principal subbundle £%¢, also denoted simply by &.
Proposition 4.2.7 about smoothness of the subbundle implies smoothness of
the cometric g*. For any p € R\ Sa,; the cometric can be represented as
g5 = F(p)F(p)" € R4, where F = [e1(p), ..., ex(p)] is a matrix whose columns
are the first & eigenvectors of the weighted second moment X, (p) (Definition
4.2.1).

We know that £ is of constant rank k, but we do not know if Lie& is of
constant rank, let alone if it is bracket-generating (i.e. rank(Lie£) = d). Under
the manifold hypothesis, in the limit of zero noise and the number of observations
going to infinity, the convergence result of [Singer and Wu 2012] (Theorem B.1)
suggests that the subbundle is everywhere tangent to a submanifold and thus

integrable.

4.4.2 Computing geodesics

We compute geodesics w.r.t. the chosen sub-Riemannian structure by numerically
integrating the sub-Riemannian Hamiltonian equations (4.3.3), see Appendix B.2
for notes on the implementation and approximations allowing speed-up. In [J.-G.
Sun 1985], Theorem 2.4, formulas are given for the derivatives of eigenvector
fields. This enables computation of derivatives of the Hamiltonian,

1 *
H(p.n) = 50" g5m

1

=50 F)F @)™

= 2@ erlen®), o),

via automatic differentiation libraries such as Jax [Frostig, Johnson, and Leary
2018]. The formulas in [J.-G. Sun 1985] hold under the assumption that the first
k + 1 eigenvalues, A1(p), ..., \p+1(p), are distinct (cf. Lemma 4.2.6). Note that
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4. Principal subbundles for dimension reduction

our basic assumption on the observations is that they are well approximated
locally by a k-dimensional linear space, implying that the first k eigenvalues are
relatively close, possibly equal. Two comments on this: 1. Using the results in
[J.-g. Sun 1990] (see also Proposition 4.2.7 and its proof), it is possible to compute
derivatives of the Hamiltonian under the milder assumption of only A;(p) and
Ai+1(p) being distinct - however, in practice we have not had the need to pursue
this. 2. Since the differences between Aq, ..., Ay are likely to be relatively small,
the ordering and rotation of the eigenvectors is effectively random. However,
this does not affect the Hamiltonian equations, since the Hamiltonian depends
only on the cometric, a projection matrix, which is invariant to rotations and
permutations of the basis F(p) within &,.

Figure 4.2 illustrates sub-Riemannian geodesics with respect to the metric
induced by two different point clouds. The surfaces (principal submanifolds)
presented in figures 4.1 and 4.5 are likewise composed of many such geodesics,

cf. the next section.

4.4.3 Principal submanifolds (Problem B)

As the first use of principal subbundles, we define the principal submanifold from
a base point p € R?\ S, x, given a set of observations in R?. This choice of data
representation implicitly assumes that the data is locally well-described by a

submanifold, i.e. the 'manifold hypothesis’

Definition 4.4.1 (Principal submanifold at p). Let {z1,...,zx} C R? be a set of
observations. Let u € R?\ S, x be a chosen base point, let o be the kernel range
and let k& € {1,...,d—1} be the rank of the principal subbundle, £ = £ c TR,
Let & be the dual subbundle at p, and B, C £} a k-dimensional open ball of

radius 7 containing 0. The principal submanifold of radius r is given by
k(. £ d
My (r) == exp,,(B;) C RY, (4.4.1)

Remark 4.4.2. We will assume that r is sufficiently small for M Zj (r) to actually
be a submanifold, cf. Proposition 4.3.1. If we write simply M /’j, we will assume

that r takes the largest such value.

Algorithm 4 describes how to compute a point set representation of a principal
submanifold, up to arbitrary resolution. For hyperparameters, u, k, o (the base
point, dimension and range, respectively), the principal submanifold, M 5, is an
estimate of the true underlying submanifold, M, locally around p. As described
in Section 4.3.3, le cannot be expected to be exactly tangent to £ since &

might not be integrable. However, since £¥® approximates the tangent spaces

56



Sub-Riemannian geometry of the principal subbundle

of the true submanifold our expectation is that the subbundle is ’close’ to being
integrable and therefore that the difference between &, and T, (M Z’f ) is small for
peM Zj The approximation M Zj ~ M comes with the following guarantee: if
1 € M and the principal subbundle contains the true tangent spaces to M around
1, then the principal submanifold is an open subset of the true submanifold M.
In particular, the ball B, C £; C TyM = R* is a (normal) coordinate chart
for M. Figure 4.3 illustrates the effect of noise on the geodesics, and therefore
on the principal submanifold, for points distributed around the unit sphere. In
the noiseless case, Figure 4.3 a), the computed geodesic paths are identical to
the exact Riemannian geodesics on the sphere, up to numerical error, and the
resulting principal submanifold is thus identical to the sphere (the mean norm of
each generated point is 0.9992 with standard deviation 0.0014). In Figure 4.3 b)
the observations on the sphere have been added isotropic Gaussian noise in R3
with marginal standard deviation ¢ = 0.1. In this case the geodesics still evolve
very close to the sphere (the mean norm of each generated point is 1.0299 with
standard deviation 0.0162), but they start to cross after some integration steps,
so that the manifold property of M Zf(r) seems to hold for a smaller value of the

radius r compared to the noiseless case.

4.4.3.1 Relation to principal flows

We end this subsection with a discussion on the relation between a principal
submanifold for k¥ = 1 and the principal flow, described in [Panaretos, Pham,
and Yao 2014]. For k£ = 1, integrating the Hamiltonian equations (4.3.3) yields
the flow of the first eigenvector field e; starting from p. This is called the
principal flow in [Panaretos, Pham, and Yao 2014], but the methods differ in
important ways. Firstly, the principal flow at p is based on a second moment
which is centered around p, not at the local mean around p. The span of the first
eigenvector of such an uncentered second moment will be ’orthogonal’” to the
point cloud when evaluated at points outside of it. This causes the principal flow
to stray away from the observations if it reaches such a point. As opposed to this,
the first eigenvector of the centered second moment stays tangential to the point
cloud when evaluated outside of it, as illustrated by the pink curve in Figure
4.2 a). This behaviour arguably makes it more stable, see simulation results in
section 4.6.4 and Figure 4.6. Secondly, to handle the fact that eigenvectors are
determined only up to their sign, the principal flow is computed by solving a
variational problem and integrating an associated system of ODE’s. This system
of ODE’s has to be integrated for a range of candidate values of a Lagrange

multiplier, in the end choosing the value for which the corresponding curve
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minimizes an energy functional. As opposed to this, we formulate the problem
as a Hamiltonian system of ODE’s which is invariant to the sign of the vector
field (only the corresponding rank 1 subbundle matters), removing the need for
the variational formulation and the ODE integration for multiple values of a
Lagrange multiplier. It is this reformulation of principal flows as solutions to
a set of geodesic (Hamiltonian) equations that also allows us to generalize the

concept to higher dimensions.

4.4.3.2 Projection to a principal submanifold

An observation z; € R? can be projected to MZf by
mary () = expf, (log,, (1))

where @M(xi) is a solution to (4.3.6) with search space A = &,,. Alternatively,

given a discrete representation M, 5 of M*, computed using Algorithm 4, one

H b
can use the discrete projection m — (x;) == argmin v lz; — p||, which can be
peiy,

n
solved numerically as a Fuclidean 1-nearest neighbours problem.

Algorithm 4 Point set representation of a principal submanifold

Input:

e Geometric parameters: kernel range o € (0, 00), submanifold dimension
ke {l,...,d— 1}, base point u € R?\ S, 1, radius r > 0.

o Numerical parameters: a number of geodesics L € N, the stepsize A > 0.

Output:
sL+1 points in Mfa’k (r) € R?, where s = |r/A] is the number of integration
steps.

1: Initialization: Generate L cotangents 7; on the k-dimensional unit sphere,
m €Sk C (k) 2RF i=1...L.

2: fori=1to L do

3: Integrate Hamiltonian equations (4.3.3) with initial condition (i, 7;) over
s =|r/A] steps of stepsize A.

4: Store the points along the trajectory; p;; = expﬁ (jAn;),j=1...s.

5: end for

6: return Points {p;; = expi(jAm)’i =1...N,j=1...s}
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Figure 4.3: Two illustrations of geodesics w.r.t. the sub-Riemannian metric
induced by points clouds distributed around the unit sphere. On Figure a) 2000
points (green points) x; are sampled uniformly on the sphere. On Figure b) noise
is added to the observations, which are now sampled from y; = N(z;, I3 - 0), i.e.
isotropic Gaussian distributions with marginal standard deviation o = 0.1 (green
points). On each figure, 75 geodesics with initial cotangents on a grid in the dual
subbundle at the basepoint = (0,—1,0) are generated (these are the curves
with a color gradient from red to yellow). The duration, and thus length of each
geodesic is T' = 7, which theoretically corresponds to half a round on the unit
sphere. The endpoint of each geodesic is marked by the blue dots. For points on
the geodesics on Figure a), the mean norm is 0.9992 with standard deviation
0.0014, thus the geodesics stay close to the true submanifold (the sphere). For
points on the geodesics on Figure b), the mean norm is 1.0299 with standard
deviation 0.0162 - thus the geodesics still stay close to the sphere, but they now
deviate somewhat from great arcs, as illustrated by the endpoints not being
exactly at the opposite pole.
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4. Principal subbundles for dimension reduction

4.4.4 Representation of observations in k-dimensional Euclidean
space (Problem C)

The ball B, C £ = R¥ forms a coordinate chart for the principal submanifold,
i.e. any point p € M,’f (r) can be represented as p := exp;l(p) € R*. It behaves
like a normal chart, in the sense that the SR distance between the base point u
and p € M ;lf is preserved, d€ (i, p) = ||p||, while the distances between arbitrary
points p,q € Ml’j are distorted in a way that depends on the curvature of M/f
If {x1,...,2zy} are observations distributed around M, ;If , then the projections
Lave: (z;) € Mﬁ,i = 1...N, can be represented in this chart by solving the
log problem (4.3.6) with A = &,,, yielding lower dimensional representations
W = @H(WME (z;)) € R* i = 1..N. Computing this is less complex than
it looks; in fact, solving the projection problem (either the continuous or the
discrete version, c.f. Section 4.4.3.2) already involves solving the log-problem, so
computing a projection also yields the representation in R*. See Figure 4.1 and

Section 4.6.2 describing a 2D representation of the S-surface embedded in R'%°.

4.4.5 Computing the SR distance between points (Problem A)

As discussed in Section 4.3.3, we can combine Equations (4.3.5) and (4.3.6) to

approximate the SR distance between two points z,y € R?\ Sa .k by

d¥(z,y) ~ \/2H (log, (1)),

with log search space A = T;Rd. As mentioned, we cannot expect to find the
exact SR distance, i.e. the length of the globally shortest curve joining = and vy,
even in the case of a bracket-generating subbundle for which d€ is in fact finite
for all z,y. When the points are observations, i.e. z,y € {z;};=1,. n, this might
not be desirable either since the error in the log minimization problem (4.3.6)
can be interpreted as an effect of random noise. In practice, we have found it
useful to approximate the log by the discrete log, presented in Appendix A.1.1.

See Section 4.6.3 for a numerical evaluation of estimated distances d based
on a dataset in R%. Figure 4.4 illustrates a computation of log, (y) based
on a dataset distributed around the S-surface. The base point, z, is the blue
dot and the target point, y, is the pink dot. The red curve is the geodesic
t — expé(t-log,(y)),t € [0,1], the length of which constitutes our estimate of
the distance between x and y. As expected, the endpoint expg (log,.(y)) doesn’t
match y exactly. On Figure 4.5, the color gradient and concentric circles on the

face illustrate the SR distance to the base point on the nose.
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Figure 4.4: Tllustration of a computation of log, (y) based on observations
(green dots) distributed around the S-surface. The base point, z, is the blue
dot and the target point, y, is the pink dot. The red curve is the geodesic
t = exp$ (t - log, (), t € [0,1].

4.4.6 Hyperparameters

The kernel range « and the dimension k are hyperparameters that are common
to many methods and there is a significant body of literature about how to select
them. See Appendix B.3 for our comments and references. Regarding the base
point ; € R? of a principal submanifold, we suggest to use a local mean around
a well-chosen observation xy. Which particular zy will be application specific,

but a general purpose option is a within-sample Fréchet mean,

N
1
g€ argmin — Y d(p,x;),

ue{mi}izluNN; '

where d is either the Euclidean distance or d€ of the principal subbundle.

4.5 Generalization to observations on a Riemannian
manifold

In this section, we generalize the framework of principal subbundles to the setting
where the observations are points on an a priori known Riemannian manifold. A
numerical application of the method to such data is presented in Section 4.6.4.
These two sections assume a deeper knowledge of differential geometry than
elsewhere, but they can be skipped without loss of continuity by the reader
who wish to focus on the case of Euclidean valued data. It turns out that the
formulation of principal subbundles for Euclidean valued data, given above, is
based only on operations that generalize naturally to the setting of manifold

valued data, as we show below.
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Figure 4.5: Illustration of the experiment described in Section 4.6.1. Two
principal submanifolds recontructing the ’head sculpture’ surface from a noisy
point cloud (blue points). One submanifold is centered approximately at the tip
of the nose, the other is centered at the left end of the green line. The figure
shows the raw points generated by Algorithm 4 - no subsequent processing, apart
from coloring, has been applied. The skewed circles on the face are geodesic
balls, i.e. points on the same circle have the same sub-Riemannian distance to
the base point. Likewise, the colors of the face depends on the SR distance to
the base point at the tip, a lighter color signifies shorter distance. The green
line on the top submanifold highlights a single SR geodesic - each of the two
submanifolds consists of L = 2500 such geodesics.

We now assume that {z;};,—1. n are points on an a priori known smooth
manifold A of dimension d < oo, equipped with a known Riemannian metric h.
This is a generalization of the theory presented above, where N was R? and h
was the Euclidean metric. Our aim is now to find a lower dimensional geometric

structure (e.g. a submanifold) within this given manifold V.

4.5.1 Sub-Riemannian structures on a general smooth manifold

This section introduces sub-Riemannian geometry on a smooth manifold A of

dimension d, not necessarily R?. A rank k sub-Riemannian structure on A is
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determined by a rank k subbundle D of TA and a metric tensor g on D. We
will assume that the sub-Riemannian metric tensor g is the restriction h|p of
a given Riemannian metric tensor h on TA to D, i.e. g,(u,v) = h,(u,v) for
all z € N and u,v € D,. The pair (D, g) is equivalent to a rank k cometric
tensor g* on T*N. The triple (N, g, D), or equivalently the pair (N, g*), is
called a sub-Riemannian manifold. The version of sub-Riemannian geometry
we described and used in the previous sections corresponds to ' = R¢ and the
ambient Riemannian metric h being the Euclidean metric.

In this general setting, a curve v : [0, 7] — N is still called horizontal if its
velocities satisfy 4, € D,, C T,,N for all ¢ € [0,7]. And this again induces the
Carnot-Carathéodory distance metric d” (equation 4.3.2) on N. The discussion
in Section 4.3.4 about integrability and foliations carries over directly; the
subbundle D partitions A into a foliation of submanifolds of dimension Lie D,
and the distance metric d?(z,y) is finite only between points on the same leaf.
The Hamiltonian equations, exp and log are also defined exactly as in Section 4.3,
and the relationship between the sub-Riemannian distance and the Hamiltonian
(Eq. (4.3.5)) still holds. One difference from the previous Euclidean setting,
however, is that the cometric cannot be expressed as a projection matrix, as
we did in Equation (4.3.1). Therefore it is more convenient to represent the
Hamiltonian in the following equivalent way (see [Agrachev, Barilari, and Boscain

2019], Proposition 4.22 for a derivation,

Mg

1
B 1:1
where {f;}i;=1. is an orthonormal frame for D w.r.t. g and n(f;(z)) denotes
the cotangent 1 € T} N evaluated at the tangent f;(z) € T,N. The derivatives
of the Hamiltonian that enter into the Hamiltonian equations can be expanded
in a way that is suitable for implementation (see Equation (4.38) in [Agrachev,
Barilari, and Boscain 2019]).

To construct a k-dimensional submanifold from a k-dimensional non-integrable
subbundle we still need a result such as Proposition 4.3.1, which luckily holds in
this general setting. The result carries over verbatim, with the dual subbundle

now being the dual w.r.t. our (general) Riemannian metric & on N i.e.
Dr = {hz(v,")|v € Dy} CTIN.

Proposition 4.5.1 (The exponential is a local diffeomorphism on the dual
subbundle). Let p € N be arbitrary. There exists an open subset C, C D*
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containing 0 such that expg lc, is a diffeomorphism onto its image. That is,

MP .= exp?(Cp) cN

p

is a smooth k-dimensional embedded submanifold of R® containing p.

Proof. We will show that expz? is a local immersion by showing that dy expz? is
injective ([Lee 2013], Proposition 4.1). For any n € ToD = D it holds that

d
do (expl)on= —| expl(0+ sn)

dS s=0
d

Y (s)
=0

g*(p)n,

where the second equality uses the fact that the sub-Riemannian exponential
satisfies exp?’(sn) = ~71(s), see corollary 8.36 in [Agrachev, Barilari, and Boscain
2019]. Viewed as a map g, :D* =D, C N (i.e. as the sub-Riemannian sharp
map), g, 1s injective on D} by construction of Dj. Thus expz? is an immersion.
This implies the existence of a set €}, C Dy containing 0 s.t. exp, ’ c, is an
embedding ([Lee 2013] Proposition 4.25). Which implies that M} := exp?’(C})
is an embedded k-dimensional submanifold of N'. p € MpD since expl? (0) = p,
by definition. O

4.5.2 Principal subbundles on a Riemannian manifold

We now generalize local PCA to the setting of observations on a Riemannian
manifold. In this setting, local PCA is exchanged for local tangent PCA, by

which we mean the extraction of eigenvectors from the following second moment.

Definition 4.5.2 (Non-centered weighted tangent second moment on a Rieman-
nian manifold). Let {x1,...,2x} be observations on a Riemannian manifold
(N, h). Let K, : R>9g — R>( be a smooth, decaying kernel function with range
parameter o > 0. At a point p € N, we denote by logz (z;) the Riemannian
log of the observation point x; w.r.t. metric h. The weighted tangent second

moment is defined by

Z w;(p (logp r;) ® log, (xl)> ,
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with normalized weight functions

Ka(|[logp () )

w; : N = Rso : pr—=w(p) = :
- SN Ka(|[ogh (2)1],)

(4.5.2)

Remark 4.5.3. Recall that ||log!(z;)|, = d"(p,z;) since the length of the
shortest geodesic from p to x; is precisely the length of the vector in T, M

that exponentiates to x;.

For any v,u € T,N, the tensor product v ® u can be identified with a linear
map on T,N (an endomorphism), whose coordinate representation is a d x d
matrix, as explained in Section 3.3 and Appendix A.2. The coordinate expression

of the second moment is

sz ) togh)] ([togh )] )" ol

As in the case of Euclidean valued data, we want the principal subbundle
of TN to be based on local PCA’s centered around local means. For that
purpose, the principal subbundle subspace at point p will be based on the
eigendecomposition of the weighted second moment at the weighted mean m(p)
defined below:

Definition 4.5.4 (Weighted tangent mean map on a Riemannian manifold). Let
{z1,...,2n} C N be observations on a Riemannian manifold (N, k), let the
normalized weight functions w; be defined as in (4.5.2), and let expz be the
Riemannian exponential map at p w.r.t. metric h. The weighted tangent mean

map is defined by
m : N =N : p—m(p) =exph (Z w;(p) log): xz)> . (4.5.3)

The eigenvectors of X, (m(p)) belong to the tangent space at m(p), not the
tangent space at p. Thus, the extracted eigenvectors needs to be mapped back
to the tangent space at p, which we do by parallel transport, as described in the
definition below.

The principal subbundle on (N, h) can only be defined at points p s.t. both
p and m(p) is outside the cut locus of every observation and of each other, since
we need to compute the corresponding logarithms. We therefore define the set

of singular points as follows,
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S={peNipmpe U Cutl) o M) = Matmio) )

qe{z1,....zN,p}

(4.5.4)

where A;(m(p)) is the i’th eigenvalue of ¥, (m(p)) of Definition 4.5.2.

Definition 4.5.5 (Principal subbundle on a Riemannian manifold). Let A;(q) >
-+ > Aa(q) be the eigenvalues of X,(q), at ¢ € N, with associated eigenvectors
e1(q),--.,eq(q). Let II¥(v) denote parallel transport of v € T, N to T, along
the length-minimizing geodesic between x and y. Then the principal subbundle
ke C TN is defined as

gher {(w) IpEN S,

v € span {IE  er (). .. T, e ) } |

Remark 4.5.6. If (N, h) is Euclidean space, the above definition reduces to the
Euclidean Definition 4.2.3 since (logg(xi) ® logg(xi)) = (z; — ¢)(z; — ¢)T and
I is the identity map for ¢ € R<.

Remark 4.5.7. The above construction of the subbundle subspace at p can be
approximated by using the Euclidean definition in the tangent space at p, i.e. by
letting Ezlf’a at p € N be the span of eigenvectors of 3, (0) computed from vectors
{logg(wi)}izlmN C T,N = R? where ¥, is the Euclidean second moment from
Definition 4.2.1. In this way, only N log’s have to be computed, instead of
2N (see Algorithm 5), and the parallel transport operation is omitted. Note
that the experiments in Section 4.6.4 uses Definition 4.5.5, not the described

approximation.

Algorithm 5 describes how to compute the principal subbundle from data on
a Riemannian manifold (N, h).

As for the Euclidean case (Proposition 4.2.7), we prove that the principal
subbundle on (N, h) is smooth at all points where it is defined.

Proposition 4.5.8. The principal subbundle, defined on N\ S;“k, is smooth.

4.5.3 Computing with a principal subbundle on a Riemannian
manifold

Given a dataset {z1,...,xy} C N, the associated principal subbundle &
determines a sub-Riemannian structure on N, namely (N, h|g,E). Using this
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Algorithm 5 Computing the principal subbundle at a point on a Riemannian
manifold

Input:
o Observations {z;};=1..n on a Riemannian manifold A/ of dimension d,
and a point p € N, satisfying m(p) € N'\ Sa., at which to compute
the subbundle subspace.

o Parameters a € (0,00) (range of the kernel), k € {1,...,d — 1}
(dimension of the subspace).

Output:

e A set of vectors spanning the principal subbundle subspace at p,
E CTN.

1: fori=1to N do

R(g
2: Compute the normalized weight w;(p) = Ko (l[log, (o))

SN Ka(lllogh(z)p)

Jj=1

3: end for

4: Compute the weighted mean m(p) € N around p (Eq. (4.5.3)).

5: for i =1to N do
6: Compute the normalized weight at m(p),

o Ka(|| logfn(p) (Iz) ”m(p))
= ~ .
et Kalll1ogh ) (@) )

w;(m(p))

7. end for

8: Compute the weighted second moment at the weighted mean,

N
Sa(m(®)) = 3 wi(m(p)) (1085, (@) logh, ) (2:)hy )
i=1

9: Eigendecompose X, (m(p)) and select the k eigenvectors {eq,...,ex} with
the largest k eigenvalues.

10: Parallel transport each eigenvector from Ty, )N to T,N along the length-
minimizing geodesic between m(p) and p, yielding e} := II", (€ € T,N.

11: return {e7,..., e} }.

structure, we can integrate the associated sub-Riemannian Hamiltonian equations
in the same way as described in section 4.4.2, except that we use the expression

(4.5.1) for the Hamiltonian. This gives us sub-Riemannian exponential and
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logarithmic maps on N, so that problems A, B and C can be solved on a
general Riemannian manifold, in exactly the same way as in the Euclidean case,
described in sections 4.4.3-4.4.5.

A principal submanifold is computed in the same way as in the Euclidean
case (Algorithm 4). Tt assumes that we have a representation of the manifold
in a chart. Due to the centering step, computing the subbundle at a point
p € M requires solving the parallel transport equation and computing 2N log
maps, N logs between the observations and point p (lines 1-3), and N logs
between the observations and the local mean around p (lines 5-7). See remark
4.5.7 for an approximation requiring only N log computations and no parallel
transport. The run time of the algorithm thus depends heavily on the run time
of the log map, or an approximation thereof, on the given Riemannian manifold.
Examples of manifolds with computationally cheap log maps are hyperspheres,
Kendall ’s shape space, Grassmann manifolds, SPD matrices. See the Python
library Geomstats [Miolane et al. 2020] for implementations of various manifolds

including efficient log maps.

4.5.4 Relations to tangent PCA and PGA

As described in Section 2.4, the most direct generalizations of PCA to manifold-
valued data are tangent PCA and PGA. We argue that a principal submanifold
constructed from a principal subbundle on N can be seen as a locally data-
adaptive combination of these two methods. In the principal subbundles
framework, we compute local tangent PCA’s to construct the principal subbundle
&, of the tangent bundle TN. This determines a data-dependent sub-Riemannian
metric and thus sub-Riemannian geodesics on A/, with which we can approximate
the data. In contrast to PGA, the geodesics forming the principal submanifold are
not those of the ambient Riemannian manifold (N, g), but those of an estimated
sub-Riemannian structure on A/. In PGA, the approximating submanifold is the
exponential image of a k-dimensional tangent subspace, i.e. expﬁ(A) C N for
A C T, N. This is similar to a principal submanifold, except that the exponential
is now the sub-Riemannian exponential determined by the principal subbundle
and the subspace A is the metric dual of £, the principal subbundle at 4. Note
that by doing local PCA’s (i.e. solving many simple, local least-squared-error
problems) we remove the need for the expensive 'global’ optimization for the

subspace A necessary for PGA.
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4.6 Applications

We now demonstrate how principal subbundles provide solutions to problems
A, B,C, mentioned in the introduction. In particular, we reconstruct 2D
submanifolds embedded in R? and R0, respectively, and give a 2D tangent space
representation of the latter. We furthermore evaluate a sub-Riemannian distance
metric on R°Y learned from observations distributed around a 4-dimensional
sphere embedded in R°. In subsection 4.6.4 we compute a 1D principal
submanifold approximating data on the sphere (a Riemannian manifold).

4.6.1 Surface reconstruction in R? (problem B)

We reconstruct a 2D surface, the 'head sculpture’, based on a point cloud
contained in the surface reconstruction benchmark dataset from [Huang et al.
2022]. According to the classification in [Huang et al. 2022], the surface is of
complexity level 2 out of 3, and the point cloud has been added noise of level
2 out of 3, see [Huang et al. 2022] for details. Note that the evaluations in
the benchmarking paper was made after a preliminary denoising step, whereas
our reconstruction was done on the raw point cloud. This is to illustrate the
potential use of principal submanifolds for denoising. The hyperparameters we
use for the principal subbundle are o = 0.001, and k& = 2. See Appendix B.5.2
for a reconstruction of the face using observations distorted by noise level 3 out
of 3.

Figure 4.5 shows two principal submanifolds reconstructing the head sculpture
locally: one is based around the tip of the nose (radius » = 0.3) and one at
the top left side of the head (r = 0.25). Both base points are computed as the
kernel-weighted mean around a chosen observation. The numerical parameters
in Algorithm 4, determining the resolution, were L = 2500 (the number of
geodesics) and A = 0.001 (the integration stepsize).

A principal submanifold corresponds to a chart on the surface; in particular, a
normal chart. It is a basic fact of differential geometry that a complicated surface
such as the head sculpture cannot be covered by a single such chart. One therefore
needs to reconstruct the surface based on multiple principal submanifolds
corresponding to different base points; however, principal submanifolds based
at different points might not overlap in a smooth way due to noise. To
construct a smooth surface covering the whole area, we thus need a scheme for
combining different principal submanifolds M€ | M¢

po g
are conceivable. In appendix B.4, we propose one that combines submanifolds by

... Many such schemes

weighing points according to their sub-Riemannian distance to a set of nearest
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base points. The discrepancy between submanifolds in the areas of overlap
depends on the level of noise. In the experiment shown in Figure 4.5 we did not
find it necessary to use a weighing scheme - see Appendix B.5.1 for a close-up
illustration of the overlap.

4.6.2 Unfolding the S-surface in R'%° (problem C)

In this experiment, we demonstrate the use of principal subbundles to contruct a
representation of Ré-valued data in R*, k < d. Let y; == ((vi)1, (¥:)2, (v:)3)T €
R3, i = 1..3000, be points on the S-surface, scaled such that its height, width
and depth is 1. We embed each point in R%, d = 100, by adding zeros,
g = ((yi)1, (Wi)2, (yi)s,0,.. .,O)T. The observations are then generated by
adding Gaussian noise, z; ~ N(9;,0213) € R for o = 0.025.

The upper part of Figure 4.1 shows the observations {z;},—1. n and
an approximating principal submanifold, projected to R? for the purpose
of visualization. The base point of the principal submanifold is the local
mean around the within-sample Fréchet mean w.r.t. FEuclidean distance,
= (0.47,0.47,0.49). The lower part of Figure 4.1 shows the log representation
of the observations in £ & T,MZF. The kernel range is o = 0.01 and the rank is
k=2

4.6.3 Learning a distance metric on R5? (problem A)

We sample N = 10000 points, {y; };=1..n, uniformly on the k-dimensional unit
sphere embedded in R?, for k = 4, d = 50. For each of these points y; € R?
we generate an observation z; € R? by adding d-dimensional Gaussian noise,
x; ~ N(y;,0l4), where o = 0.01.

We generate 20 such data sets with associated principal subbundles &;,
j = 1..20. For each data set we compute the SR distance d% (p,q),j5 = 1...20,
where p = (1,0,...,0) € R? and ¢ = (—/1/2,—+/1/2,0,...,0) € R%. We find
the mean, p0, and standard deviation, o, of these 20 computed distances to be
o = 35 25021 di (p,q) = 37 +0.023, o9 = 0.025. This result shows that the

_3

learned distances are close to true distance, 45 (p,q) = 47, on the 4-dimensional

sphere.

4.6.4 Curve approximation on the sphere

In this experiment we randomly generate 20 datasets, each with N = 100 points

distributed around a random curve on the sphere, S2. The random curves are
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generated as follows. A 4’th order polynomial
FiR=oR:it—= (t—a1)(t—a2)(t—as3)(t —aq) (4.6.1)

is generated by sampling roots aj,as from a uniform distribution on (—1,0),
and roots as, as from a uniform distribution on (0,1). Using two such intervals
yields polynomials with more complex curvature. The graph of the polynomial,
P = {t, f(t)|t € [-1,1]}, is considered a subset of T},,S? and mapped to S?
by the Riemannian exponential, exp,, , where po = (0,0,1) is the north pole
(in extrinsic coordinates). Let {¢;};=1. 8 C [—1,1] be 100 evenly spaced points.
Let z; = exp,, ((ti, f(t:))), i = 1... N, be points on the curve on S?. The noisy
observations are generated as z; = exp,, (v;), where v; ~ N(0,1> - o), a 2D
isotropic Gaussian with marginal variance o, assuming a representation of T%,S?
in an orthonormal basis. In our experiments we used o = 5-10~*. Note that the
resulting observations on S? are non-uniformly sampled along the curve (making
the problem more difficult). See Figure 4.6 for an example of such a randomly
generated dataset.

For each randomly generated dataset we estimate a base point as the within-
sample Fréchet mean w.r.t. the geodesic distance on the sphere. We use as
kernel function a Gaussian density with standard deviation o = 0.045. This
value is hand picked since our aim is to compare the performance of different
methods disregarding uncertainty due to estimation of hyperparameters. Using
this kernel function, we compute 3 curve approximations of the data set. Firstly,
we compute the principal submanifold using Algorithm 4. Secondly, we compute
the Principal submanifold without the centering and parallel transport step,
i.e. the Principal flow [Panaretos, Pham, and Yao 2014]. Thirdly, we compute
as baseline model the first principal geodesic from tangent PCA. For each
approximation we compute the sum of squared errors (SSE), where the errors are
measured by the length of the geodesic joining observation z; and its geodesic
projection to the given curve. Figure 4.6 shows an example data set and its
3 curve approximations. Figure 4.7 shows boxplots summarizing the 20 SSE’s
computed for each approximation method.

The SSE’s and visual inspection of the corresponding plots shows that the
centered version of the Principal submanifold is significantly more stable than
the uncentered version (the principal flow). The uncentered version tends to
stray away from the data when it reaches positions slightly outside of the point
cloud. This is as expected, c.f. our discussion in Section 4.4.3. The principal
geodesic has the highest SSE, as expected for this type of data that is distributed
around a curve with relatively high curvature.
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Figure 4.6: Three curves approximating
a set of observations (blue points) on the
sphere S?. The green curve is the princi-
pal geodesic computed by tangent PCA
centered at the red point. The yellow
curve is the principal submanifold based
on a non-centered second moment (i.e.
it is a principal flow). The red curve is
the principal submanifold based on our
proposed centered second moment. The
base point of both principal submani-
folds is the red point.

4.7 Conclusions

We have introduced the idea of modelling a data set {z1,..

8

D —

True curve Centered P.S. Uncentered P.S. Tangent PCA

Figure 4.7: A box plot comparing
the sum of squared errors (SSE),
measured w.r.t. geodesic distance
on the sphere, for each curve ap-
proximation. The True curve’ la-
bel refers to the SSE for the curve
t — exp, o(t, f(t)), described in
Section 4.6.4, from which noisy sam-
ples are generated. The other labels
refers to the curves described in the
caption of Figure 4.6, with 'P.S. ab-
breviating principal submanifold.

Lzn} CRY by a

tangent subbundle consisting of affine subspaces of R%, and the sub-Riemannian
geometry that it induces. We have demonstrated that geodesics w.r.t. this
sub-Riemannian structure can be used to solve a number of important problems
in statistics and machine learning, such as: reconstruction of submanifolds
approximating the observations, finding lower dimensional representations and
computing geometry-aware distances. Furthermore, we have shown that the
framework generalizes to datasets on a given Riemannian manifold.

It can be considered a drawback of the framework that the point cloud
must be relatively well connected, in the sense of not having large "holes’ or
disconnected parts, relative to the kernel range. However, we conjecture that
this can be somewhat alleviated by introducing a position-dependent range

parameter.
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5.1 Summary of contributions

In Chapter 2 and its associated appendix A, we gave background on geometric
statistics on Riemannian manifolds, with a special focus on computational aspects
and on the two foundational methods for dimension reduction; Tangent PCA
and Principal geodesic analysis. We gave details, not contained in the literature,
on how to do statistics in the tangent space in a way that does not depend on
the chosen coordinates. A special attention was given to the empirical covariance
tensor, central to tangent PCA. Furthermore, we discussed and rewrote the
objective function of PGA from a computational point of view, and derived a

Taylor expansion of it.

In Chapter 3, we formulated a version of Tangent PCA adapted to applications
in evolutionary biology; Tangent phylogenetic PCA. This method assumes that
the data are leaf-nodes of a phylogenetic tree, and takes the implied correlation
structure of such data into account. We defined, and derived estimators for,
the associated notions of phylogenetic mean and covariance. This work is a
generalization to Riemannian manifolds of a method, phylogenetic PCA, for
Euclidean data. In studies of morphology in evolutionary biology the method is
being applied to Procrustes aligned point configurations representing landmark
shapes. In our version, we give a Riemannian gradient descent algorithm for
estimating the intrinsic phylogenetic mean, and show that the way the mean is
currently estimated in morphometrics corresponds to taking only a single step

of this algorithm, when the Riemannian manifold is Kendall’s shape space.

In Chapter 4, we developed a method for dimension reduction on a
Riemannian manifold M which approximates the data based on a very flexible
class of curves, and submanifolds composed of such curves. The method works
by constructing a subbundle of the tangent bundle on the manifold M via local
PCA’s. We call this subbundle the principal subbundle. This subbundle induces
a sub-Riemannian (SR) structure on M, and we show that sub-Riemannian
geodesics with respect to this structure stay close to the set of observations. We
show that it is possible to approximate the data set by submanifolds consisting
of such SR geodesics, even if the subbundle is non-integrable. In particular, we
show that the image under the SR exponential map of the dual space to the
subbundle at a base point y is an embedding into M, yielding a submanifold of
M whose dimension equals the rank of the subbundle. Non-integrability is likely
to occur when the subbundle is estimated from noisy data, and our method
demonstrates that sub-Riemannian geometry is a natural framework for dealing

which such noise. We also contributed to the software library geomstats [Miolane
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et al. 2020], with a class representing a sub-Riemannian metric and associated
computations of geodesic etc. This makes computations in sub-Riemannian

geometry available for future applications in geometric, and Euclidean, statistics.

5.2 Future work related to phylogenetic PCA

Using anisotopic normal distributions Sommer et al. defines an anisotropic
normal distribution ([Sommer and Svane 2015], [Pennec, Sommer, and T. Fletcher
2019]) on a Manifold M, equipped with a connection or a Riemannian metric,
as the time-¢ transition distribution of an anisotropic Brownian motion on M.
This distribution has mean p, called the diffusion mean, and covariance X if
the initial point of the Brownian motion is p and its covariance is ¥ (more
precisely ¥ is a frame, so (u,X) is a point in the frame bundle on M). The
mean and covariance can be estimated by maximum likelihood methods (see
[Sommer 2015] and [Grong and Sommer 2022]). The diffusion mean, defined
through a stochastic process, is an alternative to the Fréchet mean, defined via
the geodesic distance. The framework of anisotropic normal distributions (ANS)
seems natural to use in relation to phylogenetic comparative methods (PCM)
since the underlying model for the latter is exactly based on such Brownian
motions. To adapt the ANS framework to the PCM setting, however, requires
to modify the framework to deal with Brownian motions structured according
to a tree-graph. This is ongoing work. An off-the-shelf solution is to exchange
the weighted Fréchet mean with the weighted diffusion mean (see [Sommer and
Bronstein 2020] and [Jensen and Sommer 2022]).

Geometric morphometrics in relation to recent developments in compu-
tational geometric statistics We see potential in revisiting the geometric
morphometrics (GM) literature in view of the recent developments in computa-
tional differential geometry and geometric statistics. The basis of the methods in
GM was developed before software libraries such as geomstats and jaxgeometry
made available intrinsic computations on manifolds, in particular for geometric
statistics. As discussed in Chapter 3, the field of geometric morphometrics builds
on a wide range of approximations of intrinsic computations, e.g. different ways
to compute local linear approximations to Kendall’s shape space. It is possible
that, in light of the mentioned recent computational developments, some of
these are superfluous, or that some of them can be exchanged for more suitable,
intrinsic methods. We hope that our work on phylogenetic PCA is one step in

this direction.
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A broader picture In continuation of the previous subsection on GM, we
state the following long term goal: to formulate on Riemannian manifolds those
phylogenetic comparative methods that are relevant for morphometrics and where
intrinsic differential geometry can make a contribution. Such methods could be
other basic statistical operations than PCA, e.g. phylogenetic generalized least
squares regression [Symonds and Blomberg 2014]. Or it could be in the direction
of allowing more flexible probabilistic models, e.g. based on processes more
general than Brownian motions, and where the parameters are not necessarily
the same throughout the tree (see [Harmon 2019] and [Mitov, Bartoszek, and
Stadler 2019]). Or it could be in the direction of uncertainty quantification,
e.g. how does uncertainty in tree estimation propagate to uncertainty in the
estimated parameters.

Choosing landmark positions that are comparable (homologuous) between
species can be difficult, and the annotation of such datasets involves costly manual
labour. Therefore it seems desirable to also develop phylogenetic comparative
methods for ’full shapes’, i.e. shapes defined by continuous curves and surfaces
instead of landmarks, e.g. using the LDDMM framework for continuous curves
or surfaces (see [Younes 2010]) or other shape representations (see [Salili-James
et al. 2022] for a comparison of different representations in the context of shape
classification). See [Mitteroecker and Schaefer 2022] for a discussion of potential
pros and cons of ‘landmark-free‘ shape representations in the context of biology
and geometric morphometrics. However, geometric statistics is less developed for
such infinite-dimensional manifolds compared to the finite dimensional setting
treated in this thesis.

5.3 Future work related to principal subbundles

Evaluation We illustrated the framework of principal subbundles on a number
of experiments in Chapter 4, but it was not fully benchmarked with respect to
competing methods for manifold reconstruction, dimension reduction and metric

learning. This is our most immediate direction of future work.

Improving computations As mentioned in Appendix B.2.1, we have so far
experimented with two ways of integrating the Hamiltonian equations; standard
Fuler integration and symplectic Euler. We plan to test other, e.g. higher-
order, symplectic integrators, with the aim of decreasing computational cost (by
allowing for increased step size) while keeping the error tolerable. One candidate

could be the second-order leapfrog scheme (see e.g. [Hairer 2001]), which is

76



Future work related to principal subbundles

the most commonly used integrator in the field of Hamiltonian Monte-Carlo
according to [Betancourt 2017].

A second strategy for speeding up computations is to limit the number of
points in which the local PCA is computed, in the following way. We suggest to
precompute local PCA’s only at observations, and interpolate between these by
local averages. This strategy is used in surface reconstruction methods based on
normals (in [Kazhdan, Bolitho, and Hoppe 2006] Poisson surface reconstruction
is computed in this way). In that setting, the interpolation is simply a local
average of normal vectors. In the higher dimensional case we need to compute
an average of k-dimensional subspaces (see [Marrinan et al. 2014] for an overview
of different such averages).

A third strategy for speeding up computations is to lower the number
of observations that are considered in each local PCA when integrating the
Hamiltonian equations. Let p be a point on the ambient manifold A/ and choose
a radius 7 > 0. For a moment, we will consider only observations that are inside
the geodesic ball B,.(p) C M. Choose a weight threshold € > 0 such that the
distance corresponding to this weight, 7o = K (), is below r, where K, is
the kernel function in of the weighted second moment, Definition 4.2.1. Then it
holds that B,,(¢) C B,(p) for any ¢ such that d(p,q) < r —rg. This holds in
particular for any point along a geodesic g; = exp,,(tv) up to time ¢ <r — g if
|lv]| = 1. This means that, relative to the threshold ¢, the observations contained
in B,.(p) are sufficient for computing the principal subbundle (local PCA) at
points along this geodesic until time ¢’ = r — rg. At ¢ a new ball B,.(g) can be
computed, and the process can be repeated. We think of this process as changing
between ’charts’ B,.(-) containing a relevant subset of observations for a given
time interval. We have presented the strategy for computing a single geodesic,
but we expect a similar procedure to be useful when computing neighbouring

geodesics generating a principal submanifold (Algorithm 4).

Extensions In this section, we mention two alternative ways to use a principal
subbundle. The common theme is to consider other classes curves than sub-
Riemannian geodesics. This is the subject of ongoing work and is therefore only
described cursorily.

One extension is to consider horizontal stochastic processes instead of
sub-Riemannian geodesics. E.g. a sub-Riemannian equivalent of Brownian
motions. The time-¢ transition distribution of such processes can act as an
analogue to anisotropic normal distributions; they are probability distributions

concentrated around the data. To perform maximum likelihood estimation for
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such distributions we need the sub-Riemannian equivalent of bridge-processes (a
stochastic process conditioned on hitting a specified point), which is work-in-
progress. Such bridge processes are also expected to be of independent interest,
e.g. for generarative models, as a process that moves between two specified
observations while following the point cloud.

Another extension aims at generating curves that are attracted to the
point cloud in a different way than the sub-Riemannian geodesics described in
Chapter 4. Sub-Riemannian geodesics determined by the principal subbundle are
constrained to move horizontally w.r.t. the subbundle. I.e. they are subjected
to constraints on their velocity vectors (as well as the constraint of being locally
length-minimizing). When these curves are initialized within the point cloud
they remain within it - at least in principle, and up to numerical error. Apart
from this, they are not attracted to the data. It might be useful to introduce, in
some way, an 'attraction term’ that forces a curve initialized outside of the data
to move towards it. This could also act as a correction to the deviation from
the point cloud that is sometimes incurred by the numerical integration of the
geodesic equations. We are currently considering multiple ways of adding such a
data attraction term. One strategy is to add a term to the metric matrix which
goes to infinity when evaluated outside of the point cloud, similar to what is
done in [Hauberg 2018]. This changes the geometry of the space, in the sense of
changing the metric. Another approach is to consider more general Hamiltonians
than the sub-Riemannian Hamiltonian (Section 4.3.2)). This does not change
the geometry, but only the solutions to the Hamiltonian equations, which are

then no longer geodesics.
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Appendix A
Appendix for Chapter 2

A.1 Computational aspects of geometric statistics

For doing statistics on a Riemannian manifold we need to be able to compute
operations such as those described in Section 2.3. For a given manifold, closed
form expressions may or may not be available - most often numerical approxi-
mations are needed at some stage of a computation. Fortunately, a large effort
has been put into implementing numerical differential geometry and geometric
statistics in recent years, with software libraries such as geomstats [Miolane et al.
2020] and jazgeometry (http://bitbucket.org/stefansommer/jaxgeometry).

Two main computational bottlenecks for geometric statistics is computation
of the exponential and logarithmic maps. The former is computed by numerical
integration of the geodesic equation in a chart, either as a 2nd order ODE in the
tangent bundle or as two coupled first order ODE’s in the cotangent bundle (i.e.
the Hamiltonian geodesic equations, see 4.3.2). The logarithm can be computed
by a shooting method, i.e. by solving an optimization problem in the tangent
space that searches for the initial tangent vector minimizing some distance
between the endpoint of the candidate geodesic and the desired endpoint. This
distance should be efficient to compute, e.g. an ambient Euclidean distance if
we have available an embedding of the manifold in a Euclidean space. In more

detail, the optimization problem is the following,

log,(y) € argmin do(exp,(v),y) + Al[v]l,- (A.1.1)
veTy M

The term A||v||, facilitates finding a length-minimizing geodesic, with the
hyperparameter A\ > 0 determining how much emphasis is placed on this
length-minimizing property compared to the 'matching term’ d(exp,(v),y). In
Geomstats and in Jax geometry, this optimization problem is solved using the

BFGS algorithm [Wright, Nocedal, et al. 1999] with automatic differentiation.
Thus, the objective function in the optimization problem for the log map
involves computing the exponential map, i.e. solving the geodesic equations.
This is computed at least once at each step of the optimization algorithm. This
has led us to develop a discrete approximation of the log map, presented in the

following section. We use this approximation in Chapter 4, e.g. when computing
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projections to a principal submanifold in Section 4.4.3.2, and we expect it to be
of wider interest for computations on Riemann manifolds.

Lastly, we note that when the log is computed by solving (A.1.1), the basis
for the tangent space is arbitrary, in particular it is not necessarily orthonormal
as one might expect if considering the computed log to be a point in a normal
chart.

A.1.1 Discretization of the log map

We propose a discrete approximation of the Riemannian logarithmic map. The
idea is to pick a finite set of relatively evenly distributed tangent vectors on the
unit sphere in 7, M. For each such tangent vector we integrate the geodesic
equations up to a chosen time point r > 0. For each point along a geodesic
initialized by one of these tangent vectors, we store its time index and its position
in M. The collection of all such positions forms a discretized geodesic ball of
radius 7 in M. For a given point x € M, log,(r) is then approximated by
the tangent vector corresponding to the nearest point on the generated grid.
‘Nearest’ is here defined w.r.t. a distance metric dg that should be efficient to
compute, e.g. an ambient Euclidean metric, as for the objective function (A.1.1).

The procedure is described in 3 steps below.

1. Generate an even grid S¢ ¢ S C T,M on the unit sphere (w.r.t. the
Riemannian meric ¢) in the tangent space at p, and a grid of timepoints

[0,7] C [0, 7], for some final time r > 0.

2. Generate a discrete ball E of radius r > 0 around p on M by

By, = {exp,(tv) | t € [0,7],v € Sa3.

For each point y;° := exp, (tovo) € B,, store the parameters of the

corresponding initial tangent vector, i.e. tg,vg.

3. Define the discrete log, @p(y), by

log,(y) € argmin do(y; —y) + Al (A.1.2)

i €Bp
where \ is a trade-off parameter, as described in relation to Equation (A.1.1).
The optimization problem (A.1.2) is discrete. It can be vectorized, such that the

only computationally heavy part is the initialization steps 1 and 2. We expect

the discrete log to be the most useful in situations where 'many’ logs, logp(~),
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need to be computed for the same base point p € M, such as in the gradient

descent for a Fréchet mean (Algorithm 2, Chapter 3).

A.2 Statistics in the tangent space

A general strategy for performing statistics on data belonging to a Riemannan
manifold, x1,...,xx € M, is to map the data to a tangent space 1), M at a well
chosen base point 1 € M, and apply Euclidean statistical methods in this vector
space. To minimize distortion of distances due to tangent space linearization
(see Section 2.3.1), it is preferable that the base point is relatively close to the
observations. A Fréchet mean is a good candidate, since it is a minimizer of
the sum of squared distances to the observations - note however that due to
curvature it can be well outside the support of the data (this is the case for data
distributed along a great arc on the sphere, for example). Having chosen u, the
next step is to map the observations to 7), M via the Riemannian logarithm, i.e.

the data is represented as
log, (71),...,log,(zN) € T\, M.

The Euclidean statistical method can then be applied to the transformed dataset.
For some methods, it is a reasonable final step to map the result back to M
via the Riemannian exponential. In this way, e.g. a regression line in T, M is
mapped to a curve on M, or a subspace of T, M found by e.g. PCA is mapped
to a submanifold of M.

When following this strategy, one needs to take into account the fact that
there is no canonical basis for a tangent space, and that Euclidean formulas
usually assume the data to be represented in an orthonormal coordinate system.
In various presentations of tangent space statistics (e.g. the tangent PCA
approximation of PGA in [T. P. Fletcher et al. 2004]) is it implicitly assumed
that the observations are represented in a basis induced by a normal chart. This
basis is orthonormal - the local representation of the Riemannian metric is the
identity matrix. However, if the chart does not induce an orthonormal basis
on the tangent space, one needs to change to one, or take the non-orthonormal
basis into account. As described in Appendix A.1, when the log is computed
numerically by the optimization problem (A.1.1), the basis chosen for the tangent
space is arbitrary, not necessarily orthonormal.

To find an orthonormal basis for 7,,M, one can do the following. Let p € M

and let g be the Riemannian metric on M, represented in local coordinates
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around p. Let
LL" = g7 ()

be the cholesky decomposition of the cometric. Then the columns of L form an
orthonormal basis for 7}, M.
In the next section, we focus on the particular case of tangent PCA, i.e.

Euclidean PCA performed in a tangent space.

A.2.1 Expressing the second moment in coordinates

The geometric statistics literature is unclear regarding the meaning of the
covariance matrix defined as the tensor product (2.4.1), and what its coordinate
expression is. Therefore, in this section, we show how to derive the coordinate
expression (2.4.2) from (2.4.1).

For some v,u € T,N, the expression v @ u can be identified with an
endomorphism on T,N. Its coordinate representation is thus a d x d matrix.
There seems to be some confusion about this in the geometric statistics literature,
so we give details below. For the remainder of this section we denote a Riemannian
metric by h, to align the notation with Chapter 4, where multiple metrics are at

play.

Lemma A.2.1. Let (N, h) be a Riemannian manifold, and u,v € T,N. Given
a choice of basis for T,N, the tensor v @ u € Ty,N @ T,N can be expressed in
coordinates as

vulh, € R¥*?, (A.2.1)

where u,v € R¥>1 are the vectors and hy € R4%4 js the Riemannian metric

represented w.r.t. the chosen basis.

Proof. The tensor v ® u is an element of the tensor product space T,N @ T,N.
After choosing a Riemannian metric, there is a canonical isomorphism between

TN and its dual space, Tg./\/ , given by the Riemannian flat map,
b TN = TyN u— hy(u,-) = ns

Thus
TN @ TN =ZT,N TN,

where elements of the latter space are denoted (1, 1) tensors. Furthermore, there

is a canonical isomorphism, independent of a Riemannian metric,
TN @ TyN = End(T,N),
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where End(T,N) is the space of endomorphisms on T,A. This isomorphism
is given by the map ® which takes an endomorphism A to the (1,1) tensor
®(A) that acts on w € T, and n € Ty N by ®(A)(w,n) = n(Aw). The linear
map corresponding to a (1,1) tensor of the form v ® u*,v € TyN,u* € TN, is
wr o ®@u*)(w) =v- u*(w), i.e. ascaling of v by u*(w) € R.

After choosing a basis for T, N, the tangent vectors v, w can be represented
as column vectors v,w € R, The flat map can be represented by the
matrix hy,, which is the matrix representation of the Riemannian metric at p.
After identifying covectors with row vectors (i.e. coordinate representations
of linear maps from T,N to R), u’ can be represented as the row vector
ub = (hpu)T € R4 This acts on w by ub(w) = (hpu)Tw. Thus, w.r.t.
some chosen basis, the matrix representation of our desired endomorphism is

given by

A.2.1.1 Verifying independence of the coordinate system

Let @ be the change-of-basis matrix from basis a of T,N to basis b. Then
Q* = (QT)~! is the corresponding change-of-basis matrix from basis a* to b* for
T ;N , where these bases are dual to a,b. Thus, the change of basis of tangent
vector v from a to b is computed as v, = Qqpv,. The flat map b is a linear map
from T,N to T;./\/, so if (hy), is its representation w.r.t. bases a and a*, then

its representation w.r.t. bases b and b* is computed as
(hp)b = Q*(hp)aQ_l = (QT)_I(hp)aQ_1~

We verify that the change of basis of the individual elements u, v, h,, matches

the change of basis of the matrix (as a linear map) (A.2.1):

ot (hp)y = Qua(Qua) ™ (QT) ™ (hp)a@ (A.2.2)

= Quaul (hy) Q™ . (A.2.3)

As opposed to this, the expression vbubT does not transform properly under
basis change: Ubulj; = Qua(Qua)T = Quul' QT is only equal to Quul' Q! if

QT = Q7 ', i.e. if the basis change matrix is orthogonal, meaning that it only

rotates the basis.
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A.3 Computing principal geodesic analysis

In this section, we elaborate on the optimization problem (A.3.1) that defines
principal geodesic analysis (PGA). We will see that, if no closed form expressions
for the Riemannian log and projection w.r.t. to geodesic distance are available,
then it is a triply nested optimization problem. As of this date, to the best of
our knowledge, there exists no publicly available implementation of PGA. The
first principal direction solves

N
o1
V1 € argmlnﬁ d(.I‘j, 7Texpu(spafn(v)ﬁ@,t) ('Tj))Q (Agl)
veT, M j=1
1 N
= argmin— Z [ log, (ﬂexPu(SPan(v)ﬂCH)(%’))Hga (A.3.2)
ve,M N =

The projection problem 7 can be rephrased as

Texp,, (span(v)) (@) €  argmin  d(p, q) (A.3.3)
pGepo(span(v))
=argmin d (expu(a “v),q) . (A.34)
a€R

The log is given by the optimization problem (A.1.1). The outer optimization
for v € T, M thus makes this a triply nested optimization problem.

Automatic differentiation [Margossian 2019] provides an efficient way to
compute gradients for solving optimization problems, and packages like geomstats
and jaxgeometry relies heavily on it. At the time of writing, automatic
differentiation of such ’implicitly’ defined functions, where the output is the
solution to an optimization problem, is still at an early stage of development. An
alternative approach is to rewrite the problem into a large global optimization
instead of a nested one.

We first move out the inner optimization for the projection,

N
1 2
E};régTIleglN ; ” logarj (ﬂ-exp“(span(v)) (x])) Hg (A35)
L XN
= argmin— Z [log,,. (exp,, (a;v))]|? (A.3.6)
aerN N = J
veT, M
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We then move out the inner optimization for the log,

N
1
v1 € argmin—; Z [[log,,, (expu(ajv))Hi (A.3.7)
a€RN =1
veTy, M
1 N
~ arggllin N Z HWJHE + )‘do(expexpu(aj'u)(wj% ‘rj)27 (A38)
fleETMM 7=l
WeRIxXN

where W is a matrix whose columns are the log-vectors, one for each observation.
A is the same trade-off parameter as in the log-optimization problem (A.1.1),
controlling the emphasis on minimizing approximation error in the log relative
to minimizing the length of the corresponding geodesic. dy is a distance that can
be computed easily - henceforth we will assume that do(z,y) = ||z — y|| Bua 1s

the Euclidean distance and that the manifold is embedded in a Euclidean space.

The interpretation of the optimization problem (A.3.8) can be problematic,
in the following sense. An optimization scheme will produce a sequence of
parameter candidates in the parameter space R(TDN+d hyt for each update of
parameters (aj)o € R, j =1... N, and vy € T),M the vector W.; € R? is used as
yM. On a

general Riemannian manifold (that is not e.g. a Lie group), there is no canonical

a tangent vector belonging to a different tangent space, Texpu((a].)ovo
way to identify tangent spaces. One way to map between different tangent spaces
is the parallel transport map, IIY : T,M — T, M. This map is an isometry,
meaning that it preserves angles and lengths of vectors. Parallel transport
depends on a chosen curve between points x,y, which we will assume to be the
length-minimizing geodesic (assumed unique) between x, y. Therefore, we can use
parallel transport to ensure that the vectors W.;, 7 = 1,..., N, represent tangent
vectors in the same tangent space, namely 7),M. Let a;v = exp,(a;v) € M.

Then this amounts to the following version of the optimization problem,

N
1 -
Argmin — DWW l5 + Mexp = (T8 W5) = 25 Byers (A.3.9)
a€RN J=1 J
vET,LI\/I
W ERAX N

The parameter space of the final optimization problem (A.3.9) for the first
principal direction vy is of dimension (d + 1)N + d. For the ¢’th principal
component, solving (2.4.6), the projection problem causes the projection
parameter o to grow in dimension; o € R*Y | since a point in an ¢ dimensional

subspace is parameterized by 7 coordinates. Thus the parameter space dimension
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for the ¢’th component is (d+4 i) N +d. Evaluating the objective function involves
solving the parallel transport equation once and computing two exponential maps,
i.e. integrating the geodesic equations twice. The authors have implemented
this scheme with promising results for lower dimensional parameter spaces, but

more work needs to be done in testing it for higher dimensions.

A.4 Taylor-approximation of PGA

In this section we derive a Taylor approximation of the PGA objective function.
The expansion contains 3 terms, the first of which corresponds to the objective
function of tangent PCA. The subsequent terms takes curvature into account.
The expansion is derived by expressing the PGA objective function in terms
of the socalled neighbouring log map, which is a map with a known Taylor
expansion. The neighbouring log and its Taylor expansion was first introduced
by Pennec in [Pennec 2019] building on work by Gavrilov ([Gavrilov 2006],
[Gavrilov 2007]).

Definition A.4.1 (The neighbouring log map). Let p be a point on M, and
let v,w be tangent vectors in T, M. Let II%(v) be the parallel transport of v
from T, M to T,,M along the (assumed unique) length-minimizing geodesic from
r € M toy € M. Let p, := exp,(u). Then the neighbouring log map is given by

1w 0) =T ) (1080, (€30, (1)) (A41)
=112 (log,, (pv)) - (A.4.2)

The Taylor expansion of the neighbouring log is given by

L(v,w)=w—v+ %R(w,v)(v —2w) + 2—14(V1,R)(w,v)(2v — 3w)
1

+ ﬂ(VwR)(w, v)(v —2w) + O(5),

where R is the curvature tensor and V.R its covariant derivative. See [Pennec
2019] for details.

We now formulate the PGA objective function, for the first principal
component, in terms of the neighbouring log map. The objective function
for the subsequent components can be found similarly. Below, we will use
the notation Zj := log,(z;), and || - ||, for the norm on 7},M induced by that

Riemannian metric, and (-, -), for the Riemannian metric at p € M.
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N

v1 € argmin— Az, Texp (span(o)) (T 2 A43
1 UEgT MN; J p,. (span( ) (;)) ( )
N
= argmm—Zd (z,exp, (ajv v))? (A.4.4)
o N
veiwﬂil\/l ‘7 1
N
- argm;n—z I1og,, (exp, ()2, (A45)
ez
—argmm—ZHH log,, (exp,, (v ))||i (A.4.6)
a€RN
veTy M
- l 2 A4
aﬁiﬁﬁ“N Z 10, (5, 05 0)) |12 (A47)
veTy M
| X
. |2
~ — v — T A48
argming: 3 13 (A48)
vET, M
1 _ _
+ 5 {R(e;v,7)(a;0), Tj) (A.4.9)

+ 112<(v:vj+aij)(04jU,1‘j)(ajU),zj>u> (A.4.10)

Equation (A.4.4) uses the fact that

Wexp”(span(v))(q) € argmin d(p,q) = argmin d (expu(oz . v),q) ,
pEexp,, (span(v)) a€R
and Equation (A.4.6) uses the fact that parallel transport is an isometry.
Thus, the expansion consists of 3 terms. Including only the first order term yields
the objective function of tangent PCA. The higher order terms take curvature
into account.
The complexity of the approximated optimization problem is comparable to
‘tangent PCA’, thus relatively inexpensive. In particular, the log-map needs to
be solved only once for every observation. In contrast to this, the exact PGA

problem is a nested optimization problem, as we discussed in Section A.3.
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B.1 Proofs

B.1.1 Smoothness of the principal subbundie

We show smoothness first on R? and then on a Riemannian manifold (N, h).
The proof of the latter utilizes the former result in a chart, as well as smoothness

results for the involved maps, which are only non-trivial in the manifold case.
Proposition 4.2.7. The principal subbundle, defined on R\ S, 1, is smooth.

Proof. Let p € R4\ S, 1 be arbitrary. We will show that there exists a local
frame of smooth vector fields spanning the subspace S;,’k at every point p’ on
an open set % around p. By Lemma 10.32 in [Lee 2013], this is equivalent to
the subbundle being smooth on RY\ S,, .

The eigenvalues of X, (p) at p are

A(p) > > Ak(p) > M1 (p) > -+ > Aalp),

where only A, and A,y are assumed to be different. Since X, : R? — R9*4 is a
smooth map, Theorem 3.1 of [J.-g. Sun 1990] implies that there exists an open
set B(p) C R? around p and d continuous functions \;(-) : B(p) — R satisfying
that \;(p') is an eigenvalue of ¥, (p’) for all p’ € % and \;(p) = Xi(p),i =1...d.

Since each ); is continuous, there exists an open subset % C % on which the
ordering i (p') > --- > \g(p') holds for all p’ € %, and where \;(p') = \;(p') is
only possible for 7,5 s.t. A\i(p) = j\j (p). In particular \;(p') < Apy1(p) for all
i<k+landp € %.

Theorem 3.2 of [J.-g. Sun 1990] now says that there exists a frame of analytic
vector fields p — {X1(p),..., Xk(p)} such that, for all p’ € %,

span {X1(p), -, Xe ()} = V5, (), 3 (0) (Za ()

where V3, ), 3, () (Za(p’)) denotes the eigenspace of X4 (p') corresponding to
eigenvalues A1 (p'), ..., \i(p’), which is exactly the principal subbundle subspace

a,k
gak, O

To show that the principal subbundle on a Riemannian manifold is smooth,

we need a result on smoothness of a certain map involving parallel transport.
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Lemma B.1.1. Let the map f: N — N and the vector field O on N be smooth.
Let 11¥ : T,N — T,N denote parallel transport along the (assumed unique)
length-minimizing geodesic from x to y. Then the vector field

p T O(p) € TN (B.1.1)

is smooth for every p ¢ Cut(f(p)).

Proof. For x,y € N, the parallel transported vector IIYW € T,N of W € T,N
along a curve v : (0,1) — A is the value at time 1 of a vector field V along ~y
satisfying the linear initial value problem (an ODE)

VE(t) = =VI ()4 (0TH (v(1)) (B.1.2)
V() =W, (B.1.3)

where Ffj, i,j,k € {1,...,d} are the Christoffel symbols determined by the
metric h. See [Lee 2018], Section 4, for details.

If v is a geodesic with initial velocity @ € T, N then it is a solution to the
geodesic equations (equations (B.1.5) and (B.1.6), below). In this case, we can
write the parallel transport equation and the geodesic equations as a single,

coupled, ODE:

VE(t) = =VI(0)F (0T (v(1)) (B.1.4)
k() = UR(t) (B.1.5)
Uk(t) = =U' () U7 ()T (1(t)) (B.1.6)
U =Q (B.1.7)
V()=W (B.1.8)
~7(0) = z. (B.1.9)

Note that the equation for V is coupled with the equations for v and U, but
not vice versa, so that, in practice, the whole path + can be computed first, and
then subsequently V.

This is again a linear initial value problem, and the fundamental theorem for
ODE’s states that solutions exist, and depend smoothly on the initial conditions
Q, W, x. This shows smoothness of the parallel transport operator in the case
where v((0, 1)) is contained in a single chart. For the more general case, we refer
to the technique used in the proof of Proposition 4.32 in [Lee 2018] for showing

that solutions found on individual charts overlap smoothly.
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The map (B.1.1) takes a point p € N to a vector field at time 1 satisfying
equations (B.1.4)-(B.1.9). For each p, the initial conditions are

z = f(p)
Q= ZOQ;}(p)(p)
W =0(p)

all of which depend smoothly on p, if p ¢ Cut(f(p)). Since the solution to the
ODE depends smoothly on the initial conditions, and since the initial conditions

depends smoothly on p, the vector field (B.1.1) is smooth. O
Proposition 4.5.8. The principal subbundle, defined on N\ Slayk, is smooth.

Proof. As in the Euclidean case, we want to prove the existence of a smooth
frame around every point p € 8(;1 « spanning the subbundle locally around p. We
will make use of the corresponding result for N' = R¢, in a chart. In order to
do this, we need to make sure that all of the involved maps are smooth as a
function of p.

The tangent mean map m : N/ — A and the tensor field p — X,(p) €
T,N @ T,N is smooth if each logarithm logZ(xi), i =1...N, is smooth as a
function of the base point p € A/. This is ensured by the cut locus conditions in

’

Sk

Assuming smoothness of ¥, we now consider charts (U, p) on N and (O, ¢)
on TN @ TN, U C R4 ¢ : U — o(U) C N, respectively O C R4 ¢ : O —
©(0) C TN QTN (identifying each T,N @ T, with the space of endomorphisms
on TN, cf. Section A.2.1), around a point p € N and p(p) € TN @ TN. In
this chart,

fi=0¢"loTar0omogp
is a smooth map from R? to R9*?. Eigendecomposition of the matrix f(p'), p’ €
U, is independent of the basis and thus of the choice of charts. As shown in the

proof of Proposition 4.2.7, there exists a smooth frame p’ — {X1(p'),..., Xx (')},
X;(p') € R?, defined on some open subset %2 C R? around ¢~ 1(p) s.t.

span{ Xy (p),..., Xx(0)} = Vi(f(¥'), W' €%,

where the right hand side is the eigenspace of f(p’) corresponding to the largest k
eigenvalues. We have thus shown the existence of a smooth frame on p(U) C N

spanning the corresponding eigenspaces of X, o m at every point of ¢(U).
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The last thing we need to take account of is the parallel transport map. Since

parallel transport is an isometry, it holds that
span{IL), X1 (p'), ..., I, Xy (p')} = span{Il}, Fi(p'), ..., I, Fy.(p)} C TN,

where {F};—1. ; is any other frame spanning the same subspace as {X },—1 x
at p’. Thus, the parallel transported frame X spans the same subspace as the
parallel transported eigenvectors {e;};=1. r at p’ (the X;’s are not necessarily
eigenvectors, as explained in [J.-g. Sun 1990]). By Lemma B.1.1, the map
D an(p)V(p) is smooth, for a smooth vector field V. We have thus shown
that the principal subbundle at p is spanned by a smooth frame around p. O

B.2 Notes on implementation

At each step of the integration of a geodesic, eigenvectors needs to be computed
at the current position p. This involves evaluating the kernel K, (|x; — pl|) for
all ¢ = 1..N. For large datasets, we suggest to do this using libraries specialized
at such kernel-operations, such as KEOPS, as well as automatically filtering
out points far away from p whose weight will be close 0 anyway. We have not
had the need to implement these optimizations in order to run the examples of
Section 4.6.

The integration of the L geodesics in the algorithm for the principal
submanifold can be parallelized; the computation of each one is independent
from the rest.

To speed up computations further, we suggest to compute the sub-Riemannian
metric at p € R? as a weighted mean of the metric computed at a finite number
of points around p, possibly at every observation. This is similar to the approach
used to compute Poisson surface reconstruction [Kazhdan, Bolitho, and Hoppe
2006] (where the surface normal at p € R? is evaluated as the mean of normals
computed nearby p) and the learned Riemannian metrics in [Hauberg, Freifeld,
and Black 2012]. In this way, the derivatives of the metric, and therefore the
Hamiltonian, can be computed closed form, removing the need for automatic

differentiation.

B.2.1 Choice of integration scheme

The integration of Hamilton’s equations can be done using a symplectic
integration scheme which aims at keeping the Hamiltonian constant. A constant
hamiltonian is equivalent to constant speed, cf. eq. (4.3.4). This is desired

because the computation of curve length and distance via eq. (4.3.5) assumes
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constant speed. We compared ordinary Euler integration to semi-implicit Euler
(see e.g. [Hairer et al. 2006]), a first-order symplectic integrator, and found
the Hamiltonian to be better preserved using ordinary Euler integration in our

experiments.

B.3 Choosing the kernel range o and bundle rank &

Firstly, note that these parameters can be considered to be a modelling choice,
expressing the scale at which we want to analyze the data - what scale of variation
to take into account. However, one can aim to find the "lowest level of variation
that is not due to random noise’. Secondly, note that the 'optimal’ value of one
hyperparameter depends on the value of the other. Since the rank k takes a
finite number of values k € {1,...,d — 1}, we suggest to start by estimating this.
See [Bac et al. 2021] for a survey and benchmarking of different methods. Given
an estimated k, we suggest to select a range parameter for which the separation
between eigenvalues A\, and Ap4; is the most clear on average. The optimal
kernel range depends on the level of noise and the rate of change of the affine
subspace &, as a function of p, which, in the case of the manifold hypothesis,
is an expression of the curvature of the underlying manifold. A fast varying
& calls for a smaller «,, while high levels of noise as well as a lower number of

observations calls for a larger «.

B.4 Algorithm for combining principal submanifolds for 2D
surface reconstruction

In this section, we present an algorithm for combining principal submanifolds
{M/jj (rj)}j=1..1 based at different base points ;,j = 1...1. In this case, k = 2
and we’ll write M, instead of M 31 Given a point = € R3, the algorithm first
projects x to a set of nearest principal submanifolds, and then represents = as
a weighted average of these projections, weighted by the SR distance between
a projection and its corresponding base point. The point x can e.g. be an
observation, x € {x;};=1..v, or a point in a principal submanifold, 2 € M. The
algorithm can then be run for each point z in {x;};=1. x orin M, ,j = 1...

The point sets representing principal submanifolds M, (r;),j = 1...1, are
generated by Algorithm 1. For each point p € M, (r;), we assume that the
corresponding initial cotangent n(p) € £ has been stored.

Apart from the hyperparameters of the principal subbundle and submanifolds,

the algorithm needs a 'threshold parameter’ ¢ > 0. z will not be projected to
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principal submanifold M,,; if the distance between x and its projection Z; to
M,,; is greater than e. Thus, the size of € should be comparable to an estimate
of the noise-level in the point cloud.

The algorithm is the following.

L. Project to each submanifold: project x to each M, (r;),j = 1.1, wrt.
Euclidean distance, i.e. find the closest point in M, (r;) w.r.t. Euclidean
distance. Denote this projection of x to M, (r;) by &;. Denote the
corresponding initial cotangent by 7(Z;) and the distance by d; :=

d(pg,n(25)) = lIn(@;)]-

2. Filter out projections: let B := {j € {1,...,1} ||z — &;| < €} consist
of indices of the basepoints satisfying that the projection of x to M,,; is

sufficiently close to x.
3. Rescale distances:  set Jj = d; - 1/s;(d;), where s; is a continuous,
decaying bijection with domain and image given by s; : [0,7;] — [0,1]. We

suggest to use the affine function satisfying these constraints.

4. Compute weighted average: the weighted representation of x is now

N 1 Z .
r=—=— le‘j,

ZjeB w] jeB

computed as

where (unnormalized) weights w; are given by
wj(w) = e~ /C) 1. |B],

and j* := argmin;.p d; is the index of the principal submanifold that
is closest w.r.t. SR distance. The standard deviation ¢ in w; controls

how fast the weights should go to zero. A general-purpose choice is

0 = MaXje{1,..1} 75}

B.5 Supplementary figures

B.5.1 lllustration of overlapping submanifolds

Figure B.1 is a supplement to figure 4.5, zooming in on the region of overlap

between the two principal submanifolds.
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Figure B.1: Supplementary figure to Figure 4.5, zooming in on the region where
the two submanifolds overlap. The left, beige submanifold in this figure is the
purple one in Figure 4.5, recolored to be able to distinguish more clearly the two
submanifolds.

B.5.2 Reconstruction of head sculpture surface under noise level
3outof3

Figure B.2 illustrates the reconstruction of the face of the ’head sculpture’ (from
the benchmark dataset described in [Huang et al. 2022]), with noise level 3 out
of 3. The parameters are the same as for the experiment described in section
4.6.1 except for a slightly larger kernel range.

B.5.3 lllustration of the log map on a 4-dimensional sphere in R5°

Figure B.3 shows a single computed geodesic, found by solving the log problem
log,(q), for p,q and observations as described in section4.6.3. The distance
d€(p,q) is estimated as the length of the computed geodesic. The blue points

are observations on the 4-dimensional sphere embedded in R®0 projected to R>.
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(b) Side view.

Figure B.2: Figures (a) and (b) show a principal submanifold recontructing the
"head sculpture’ surface from a point cloud (purple points) with noise level 3 out
of 3. The submanifold is centered around the tip of the nose. The figure shows
the raw points generated by Algorithm 4 - no subsequent processing, apart from
coloring, has been applied. The skewed circles on the face are geodesic balls, i.e.
points on the same circle has the same SR distance to the center point. The
colors of the face depends on the SR distance to the base point at the tip, a
lighter color signifies shorter distance.
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Figure B.3: Illustration of a single computed geodesic found by solving the log
problem log,(q), for p, ¢ and observations as described in section 4.6.3. The blue
points are observations on the 4-dimensional sphere embedded in R° projected
to R3. The orange point is the initial point p, the red points are points on the
geodesic, the green point is the target point gq.
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