
HAL Id: tel-04391610
https://theses.hal.science/tel-04391610v1

Submitted on 12 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stochastic Majoration-Minimization Algorithms
Jean-Baptiste Fest

To cite this version:
Jean-Baptiste Fest. Stochastic Majoration-Minimization Algorithms. Optimization and Control
[math.OC]. Université Paris-Saclay, 2023. English. �NNT : 2023UPAST134�. �tel-04391610�

https://theses.hal.science/tel-04391610v1
https://hal.archives-ouvertes.fr


T
H

E
SE

D
E

D
O

C
T

O
R

A
T

N
N

T
:2

02
3U

PA
ST

13
4

Algorithmes de
Majoration-Minimisation Stochastiques

Stochastic Majorization-Minimization Algorithms

Thèse de doctorat de l’université Paris-Saclay

École doctorale n◦ 580 Sciences et Technologie de l’Information et de la
Communication (STIC)

Spécialité de doctorat: Sciences du Traitement du signal et des images
Graduate School: Sciences de l’ingénierie et des systèmes.

Référent : CentraleSupélec

Thèse préparée dans l’unité de recherche Centre de la Vision Numérique (Université
Paris-Saclay, CentraleSupélec), sous la direction de Émilie Chouzenoux, Chargée de

Recherche, Inria Saclay.

Thèse soutenue à Paris-Saclay, le 03 octobre 2023, par

Jean-Baptiste FEST

Composition du jury
Membres du jury avec voix délibérative

Jérôme MALICK Rapporteur / Président du jury
Directeur de Recherche, LJK, CNRS, Université
Grenoble Alpes
Silvia VILLA Rapporteur
Professeure, Università degli studi di Genova
Claire BOYER Examinatrice
Maître de Conférences, LPSM, Sorbonne Université
Gersende FORT Examinatrice
Directrice de Recherche, CNRS, Institut Mathéma-
tique de Toulouse



Titre: Algorithmes de Majoration-Minimisation stochastiques
Mots clés: Optimisation Stochastique et Non Convexe, Algorithmes MM, Problèmes
Inverses, Apprentissage

Résumé: De nombreux problèmes rencontrés
en optimisation différentiable sont mathéma-
tiquement associés à des fonctions de coût dont
la minimisation requiert de travailler sur un
espace de dimension particulièrement élevée.
Certaines opérations numériques sont alors im-
possibles à réaliser et ainsi, de par l’occupation
mémoire que nécessite leur mise en œuvre,
l’utilisation de certains algorithmes, pourtant
réputés efficaces, devient inenvisageable. Par
ailleurs, en étant uniquement le fruit d’un mod-
èle d’observation et/ou de connaissance, la fonc-
tion de coût en elle-même peut ne pas rendre
pleinement compte des phénomènes physiques à
décrire. Un traitement purement déterministe
des données est alors insuffisant et l’élaboration
de méthodes probabilistes devient indispens-
able. En réponse à cette double problématique,
le travail de thèse présenté a pour objectif de
construire des approches d’optimisation pour
la résolution de problèmes de grandes tailles
posés aussi bien dans les domaines du traite-
ment d’images ou de l’apprentissage statistique.
Notre point de départ s’articule autour d’une
classe de méthode particulière, fondée sur le
principe de Majoration-Minimisation (MM),
réputée pour la robustesse des schémas
numériques qu’elle est susceptible d’engendrer
indépendamment de la convexité (ou non) du
problème. Les contributions de ce travail de
thèse sont fondées sur deux axes d’analyse. Une
première partie s’attache à concevoir un nou-
veau schéma MM, quadratique, pour manipuler

des données à grande échelle, en permettant
idéalement d’exploiter pleinement les capac-
ités intrinsèques des outils de calculs modernes.
D’un point de vue théorique, nous établissons
les propriétés de convergence associées à ce nou-
vel algorithme MM quadratique distribué sous
des hypothèses raisonnables. Dans un second
temps, nous proposons une extension stochas-
tique de ce dernier en supposant inexact l’accès à
certaines informations relatives à la fonction de
coût, en particulier l’évaluation de son gradient.
Les méthodes d’analyse asymptotiques nécessi-
tent alors la mise ne place d’outils théoriques
originaux. En particulier, l’obtention de cer-
taines garanties asymptotiques, dans le cas non
convexe, suppose la mise en évidence de résul-
tats inédits qu’il devient indispensable d’étudier
en détails.
Dans ce contexte, la dernière partie de ce travail
de thèse se détache du cadre MM et est dédiée
au développement d’une nouvelle méthodolo-
gie pour le raffinement de certains résultats de
convergence autour des schémas stochastiques
et toujours dans un cadre non nécessairement
convexe. Nous nous appuyons plus spécifique-
ment sur les récents développements autour de
la théorie de Kurdyka-Łojasiewicz (KL) pour
l’optimisation déterministe. L’objectif en résul-
tant est finalement de proposer une transposi-
tion de ces derniers dans le domaine stochas-
tique à des fins d’application sur le plus grand
nombre d’algorithmes possibles.
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Abstract: Many problems encountered in dif-
ferentiable optimization are mathematically as-
sociated with cost functions whose minimiza-
tion requires working in a particularly high-
dimensional space. Certain numerical opera-
tions are therefore impossible to carry out and,
because of the amount of memory required to
implement them, the use of certain algorithms,
even though they are reputed to be efficient,
becomes unthinkable. Furthermore, by being
solely the result of an observation and/or knowl-
edge model, the cost function in itself cannot
fully account for the physical phenomena to be
described. Purely deterministic data processing
is therefore insufficient, and the development
of probabilistic methods becomes essential. In
response to this twofold problem, the long-term
aim of this thesis work is to build a stochastic
algorithm for solving large-scale problems in the
fields of image processing and statistical learn-
ing.

Our starting point revolves around a partic-
ular class of method, based on the principle of
Majorization-Minimization (MM), reputed for
the robustness of the numerical schemes regard-
less of the convexity (or not) of the problem.
Our contribution lies on two lines of analysis.
The first part aims to design a new MM scheme,

more specifically a quadratic scheme, to manip-
ulate large-scale data, ideally enabling the in-
trinsic capabilities of modern computation tools.
From a theoretical point of view, we establish
the convergence properties associated with the
proposed distributed quadratic MM algorithm
under mild assumptions. Secondly, we propose
a so-called stochastic extension of the latter by
assuming that the access to certain information
relating to the cost function, in particular the
evaluation of its gradient, is prone to errors. We
present an asymptotic analysis of the algorithm,
by relying on theoretical tools relatively new in
the probabilistic field. Obtaining deeper asymp-
totic guarantees supposes the demonstration of
novel results that need to be studied in depth.

In this context, the last part of this thesis
goes beyond the MM framework and is dedi-
cated to the development of a new methodol-
ogy for the strengthening of convergence results
of stochastic schemes in general and in a non-
necessarily convex framework. More specifically,
we draw on recent developments in Kurdyka-
Łojasiewicz (KL) theory for deterministic opti-
mization. The resulting objective is finally to
propose a transposition of the latter into the
stochastic domain for application to the largest
possible number of algorithms.
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Résumé français

Ce travail de thèse, mené dans le cadre du projet européen ERC MAJORIS, sous la direction de
Emilie Chouzenoux, s’articule autour de l’optimisation différentiable et est dédié, sur le long-terme, à
la résolution de problèmes de grande taille pour le traitement de données (e.g. signal, image).

Une majorité de phénomènes physiques se traduit mathématiquement par la minimisation, c’est à
dire la recherche d’un point de minimum, d’une fonction de coût particulière, découlant d’un modèle
d’observation ou d’approximation. Par exemple, en mécanique Newtonienne, les positions d’équilibre
d’un objet, dans un référentiel donné, s’interprètent typiquement comme les extrema d’une énergie
potentielle. Le tracé d’une droite de régression linéaire est, de même, caractérisé par un coefficient
directeur et une ordonnée à l’origine rendant la plus faible possible une certaine erreur, issue de la
donnée des points expérimentaux. Quand bien même l’établissement de la fonction de coût associée
au problème étudié résulte généralement de choix ne dépendant pas du numéricien, la minimisation de
cette dernière est une tâche qui lui est, à l’inverse, pleinement confiée.

Deux stratégies de résolutions peuvent alors être distinguées. La première, plus naturelle, consiste
à exhiber une expression analytique, sous réserve d’existence, d’un point minimum, par l’intermédiaire
d’outils purement analytiques (dérivation, résolution d’équations à la main, etc.). Toutefois, de telles
opérations supposent de travailler exclusivement avec une fonction de coût possédant une structure
relativement simple. En pratique, la complexité, toujours croissante, des modèles de connaissances
ne permet pas l’applicabilité de cette approche pour l’immense majorité des problèmes d’optimisation
rencontrés aujourd’hui. La seconde, par opposition, réside dans la construction d’un procédé numérique
spécifique, un algorithme, visant à approcher au mieux, en un certain sens mathématique, une solution,
c’est à dire un point de minimum de la fonction étudiée.

Dans ce contexte, le travail que nous présentons dans ce manuscrit propose le développement de
stratégies itératives pour la résolution de problème d’optimisation non contraints (sur un espace de
Hilbert tout entier). La dimension de l’espace de recherche est également supposée suffisamment im-
portante pour rendre difficilement envisageable le recours à des opérations usuelles de type inversion
ou même produits matriciels, par les outils de calculs employés. Le problème d’optimisation est alors
dit de grande taille ou grande échelle. Par ailleurs, nous nous plaçons dans une situation, en aval, pour
laquelle, nous n’interférons nullement dans les choix de modélisation ; la fonction de coût du problème
est supposée donnée et immuable. Nous lui attribuons cependant un caractère continûment différen-
tiable et, de fait, une régularité suffisante, pour permettre l’utilisation de méthodes de type descente
de gradient (Chapitre 2). La relative simplicité de ces dernières et leur interprétation géométrique,
particulièrement intuitive, ont historiquement permis leur développement dès le dix-huitième siècle.
Aujourd’hui encore de telles approches sont privilégiées pour traiter l’immense majorité des problèmes
d’optimisation rencontrés.

Bien que ce travail de thèse soit principalement fondé sur la construction de stratégies de résolu-
tion de type descente de gradient, il présente la spécificité d’adopter un point de vue dit quadratique.
Notre constat étant le suivant ; un algorithme de descente de gradient résulte de la minimisation, sur
un espace donné, d’une fonction quadratique, approchant et se substituant à la fonction de coût, à
l’itéré courant. Nous nous intéressons plus spécifiquement à la classe d’approximation reposant sur le
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principe dit de Majoration-Minimisation (MM) ; la fonctionnelle quadratique, à minimiser, est alors
construite de façon à majorer la fonction de coût initiale tout en coïncidant avec cette dernière au point
d’intérêt. Notre choix est motivé par les garanties théoriques en résultant et mise en évidence au cours
de ces vingt dernières années. En effet, de par sa construction, un schéma de type MM induit néces-
sairement une décroissance des évaluations de la fonction de coût associées aux itérés. L’algorithme
en résultant possède ainsi des propriétés naturelles de robustesse, lui offrant certaines garanties de
convergence, quand bien même cette fonction de coût possède une courbure au comportement parti-
culièrement capricieux, sous-entendu non nécessairement convexe (Chapitre 3). Par ailleurs, la forme
quadratique de la fonction d’approximation permet, en complément, la construction de règles de mise à
jour structurellement simples facilitant l’incorporation de méthodes d’accélération de type sous-espace.

Toutefois, dans un cadre d’optimisation grande-échelle, de telles stratégies d’accélération à elles-
seules ne suffisent pas à véritablement compenser les limitations générées par la dimension du problème,
rendant toujours difficile, en machine, le stockage en mémoire de la plupart objets à manipuler. La
nature des obstacles auxquels nous sommes confrontés nous incite ainsi à concevoir un schéma MM
quadratique, plus souple, notamment à des fins d’implémentation parallèle. Plusieurs travaux, an-
térieurs à ce projet de thèse, ont en particulier proposé une nouvelle structure de gestion des données
de type bloc distribuée ; une étape de mise à jour repose alors uniquement sur l’actualisation, via une
procédure quadratique MM, avec accélération de sous-espace, d’un petit nombre de coordonnées. Le
schéma en résultant, nommé BP3MG, possède ainsi une complexité grandement réduite, à itération
fixé, par rapport à son homologue MM quadratique et présente l’avantage d’en conserver les propriétés
de convergence sans ajout d’hypothèse supplémentaire sur la fonction de coût (Chapitre 4). Cepen-
dant ce même algorithme ne permet pas d’exploiter pleinement les potentielles capacités de la machine
de calcul se chargeant de sa mise en œuvre, en particulier lorsqu’il s’agit d’un serveur multicœurs.
De par la gestion cloisonnée et uniquement successive de ses différentes données (i.e. des groupes de
coordonnées aux itérés courant), BP3MG ne peut en effet être véritablement implémenté de façon à
pleinement exploiter les possibilités offertes par ce type d’architecture.

Le développement d’un algorithme inédit s’est ainsi avéré indispensable pour répondre au mieux
à cette problématique. Plus précisément, le schéma conçu, BD3MG, est dérivé de BP3MG dans sa
structure, mais possède une règle de mise à jour plus générique, favorisant un traitement asynchrone
des données (Chapitre 5). Plusieurs processeurs sont alors mobilisés, travaillent de façon indépendante
et effectuent chacun une itération de type MM quadratique sur un groupe de coordonnées spécifique.
Ils sont enfin assignés en amont par un homologue commun, dit le maître. Les propriétés asymptotiques
de cet algorithme sont étudiées dans un premier temps et toujours dans un cadre non convexe. La
méthode d’analyse mise en place, moyennant certaines spécificités induites par la nature asynchrone de
la gestion des données, peut en particulier s’interpréter comme une généralisation de celle proposée au
cours l’étude de BP3MG. La deuxième partie de ce travail, de nature purement numérique, a vocation
à tester les performances de BD3MG pour la résolution d’un problème inverse de type déconvolution,
sur des données simulées puis réelles dans un contexte de microscopie biphotonique.

La première partie de ce projet de thèse propose en conséquence des développements pour une
amélioration d’ordre structurel du schéma MM quadratique initial. De façon générale, c’est en effet
la mise à jour même des itérés qui se voit remodelée afin de tenir compte des capacités intrinsèques
des architectures de traitement de données. Un second axe d’analyse, jouant un rôle complémentaire à
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celui décrit jusqu’à présent, s’articule directement autour de la fonction de coût en s’interrogeant sur
l’exactitude de l’information qu’elle est susceptible de délivrer. D’une part, cette même fonction de coût
est la représentation mathématique d’un modèle de connaissance et ne peut donc, à elle seule, suffire à
décrire l’ensemble des phénomènes mis en jeu par le problème induit. D’autre part et toujours dans un
contexte d’optimisation grande-échelle, certaines évaluations telles celles du gradient, du Hessien (dans
le cas deux fois différentiable) voire de la fonction de coût elle-même, sont difficilement envisageables de
par la place qu’elles occupent en mémoire machine. En réponse à ces deux limitations, l’utilisation d’un
modèle de type "boîte noire" devient légitime ; les phénomènes physiques non identifiés et parfois la
donnée exacte de la fonction de coût en résultant se retrouvent masqués par le prisme d’approximations
obéissant à des lois probabilistes. Ce type de modélisation a plus particulièrement donné naissance,
dans la littérature, au domaine de l’optimisation dite stochastique (Chapitre 7).

La problématique mise en évidence précédemment est finalement à l’origine de ce travail de thèse,
à savoir étendre l’algorithme MM quadratique en vue de traiter des problèmes d’optimisation dif-
férentiable dans des cadres probabilistes et idéalement toujours non convexes. Face à la multitude
des modèles "boîte noire" envisageables, nous considérons ici une incertitude au premier ordre, c’est
à dire portant directement sur le gradient de la fonction de coût. Les fonctionnelles quadratiques
d’approximation, découlant du procédé MM, s’en voient directement affectées et perdent, en partic-
ulier, la propriété de majoration. Le schéma MM quadratique associé, que nous nommons SABRINA,
dispose alors d’une mise à jour de type gradient stochastique préconditionné (Chapitre 7) et obéit
logiquement à une condition de descente stochastique, synonyme d’une certaine robustesse. Nous en
déduisons des propriétés de convergence, certes élémentaires mais attestant toutefois de l’intérêt, au
moins théorique, de l’utilisation d’un tel schéma. A des fins d’évaluation de performances, l’algorithme
SABRINA est mis en œuvre pour la résolution d’un problème d’apprentissage de type classification
binaire puis pour l’identification d’un noyau de bruit sur une image satellite bruitée.

La stratégie employée pour la mise en évidence des propriétés de convergence de SABRINA demeure
cependant classique et, d’une certaine façon, les résultats ainsi obtenus ne sont que le reflet d’un
algorithme stochastique finalement bien construit. En dehors de toute hypothèse de convexité, relier des
comportements élémentaires (e.g. une limite nulle pour les évaluations du gradient et d’une autre finie
pour celles de la fonction de coût) avec idéalement la convergence des itérés vers un point stationnaire
constitue aujourd’hui un problème ouvert de la littérature stochastique. A l’inverse, de récents outils,
utilisant la théorie de Kurdyka Łojasiewicz (KL), ont permis l’émergence d’une nouvelle catégorie de
preuves pour démontrer la convergence globale (i.e. en itérés) de plusieurs algorithmes déterministes
à partir d’une condition de descente. Ici, les difficultés rencontrées pour leur mise en application sont
d’ordre techniques et engendrées par l’ajout du cadre d’étude stochastique que nous nous imposons.
Partant de ce constat, nous proposons de nous détacher du schéma MM quadratique afin de développer,
de façon plus générale, une méthodologie permettant d’obtenir des convergences de type presque sûr
des itérés vers un point stationnaire en partant de propriétés issues typiquement d’une condition de
descente conditionnelle (Chapitre 8). Notre objectif consiste plus précisément à étendre les approches
initiées en optimisation déterministe pour mieux les adapter aux contraintes imposées par un contexte
d’ordre probabiliste.

Une courte dernière partie a vocation à clôturer notre propos et propose quelques pistes de recherche
à court et moyen termes associées à plusieurs aspects développés tout au long de ce projet.
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General notations

Here we present some of the mathematical notations we will use throughout this manuscript. Some of
them will also be reminded on the fly.

• (H, ⟨., .⟩) : any real finite dimensional Hilbert space endowed with a scalar product ⟨., .⟩. If
H = Rd (withd > 0), ⟨., .⟩ corresponds to the usual Euclidean scalar product.

• Italic style: any deterministic quantity.

• Italic and Bold style: any deterministic vector (in the sense of an element of H) or linear
operator,

• I: the identity application whatever the space,

• (Ω,F ,P): any generic probability space provided with a σ-algebra F and a probability measure
P,

• Non-italic style: any random quantity,

• Non-italic and Bold style: any random vector (in the sense of an element of H) or random linear
operator.

• f or F : the cost function to minimize.

• ∇f or ∇F : (under existence) the gradient operator of the cost function to minimize.

• xs: any global minimizer of the cost function, i.e. any solution of the unconstrained optimization
problem considered .

• x∗: any stationary (or critical) point of the cost function (for which it is not possible to directly
conclude whether it is a global minimizer or not).

13



List of useful accronyms

This list of the acronyms below is not exhaustive, but is intended to identify those that will be developed
in this manuscript.

3MG Majorization-Minimization Memory Gradient
B2MM Block Majorization-Minimization
B2MS Block Majorization-Minimization Subspace

BD3MG Block Distributed Majorization-Minimization Memory Gradient
BP3MG Block Parallel Majorization-Minimization Memory Gradient

KL Kurdyka - Łojasiewicz
MG Memory Gradient
MM Majorization-Minimization

QMM Quadratic Majorization-Minimization
SABRINA Stochastic SuBspace MajoRIrization-MiNimization Algorithm

SMM Subspace Majorization-Minimization
SQMM Subspace Quadratic Majorization-Minimization
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Chapter 1

General introduction

1.1 Context

This work focuses on the development of iterative algorithms for solving smooth unconstrained opti-
mization problems. Mathematically, these consist in researching a minimizer of a so-called cost function
within an entire given Hilbert space. In the situation where the cost function is regular enough to be
considered as continuously differentiable, gradient descent approaches appear as the most natural reso-
lution strategies. However, they imply to have access to a complete knowledge of first order information
to be fully efficient.

We here place ourselves in the challenging context where such an information is too incomplete
to apply the gradient-based usual methods. The first reason is computer-related and is classically
induced by the dimension of the problem; the larger this dimension, the more restrictive the storage
of certain objects (typically the gradient) in memory. This generates a natural trade-off between
capturing the best information as possible and preserving reasonable machine complexities. In the
context of signal processing or statistical learning, the management of huge quantities of data, that
are growing inexorably with the development of the technological tools available, requires confronting
such a situation in each of the problems encountered today. The second source takes it origin from the
modeling choices themselves; the construction of a cost function is nothing but a setting in equations
of the problem and therefore it bridges the gap between the physical observation world, from which
it initially comes from, and the mathematical one attached to its resolution. The complexity of the
observation/acquisition model and that of the cost function to be adopted therefore evolve in the same
direction and when these are too high, they logically lead to the manipulation of partially known or
approximate mathematical objects. As a result, the choice of a purely deterministic framework might
be too limited to theoretically account with relevancy for typical observed phenomenons. It is then
necessary to consider a setting in which the objects at stake can be modeled as black boxes from which
only a few outputs are accessible to the user. On the mathematical point of view, such a framework is
said to be probabilistic or stochastic.
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1.2 Objectives identifications

Several lines of analysis will be conducted in this thesis as a response to the previous challenges.
The first one consists in adapting the existing minimization algorithms by changing the way the data
are handled. One possible approach is to use block processing of the different variables, possibly
on different machines, while taking into account and controlling the resulting communication delays.
This is generally referred to as asynchronous programming and, on the mathematical viewpoint, it
generally implies to drastically change the structure of the associated minimization scheme. We then
seek in a second step to free ourselves from the purely deterministic setting for a probabilistic one.
Adopting such a framework requires the use of specific tools usually employed in the study of so-called
random processes. The development of modern probability theory actually promoted the mathematical
modeling of uncertainties resulting from a wide class of optimization problems and gave birth to
stochastic approximation paradigm in the early 1960s. Somewhat less popularized during the next
decades, the recent interest for this field has logically gone hand in hand with the increasing challenges
involving large scale data manipulations, in particular in the field of machine learning.

Although this thesis is initially based on the construction of gradient-type descent methods, our
starting point differs from the usual approach to the extent it revolves around the Majorization-
Minimization (MM) principle and in particular, on quadratic MM schemes. Our motivation initially
relies on the fact that many efficient existing schemes from the literature can be interpreted as the
result of the minimization, given a certain space, of a surrogate quadratic application, which substitutes
for (and approaches) the cost function, in a neighborhood of the current iterate. More specifically,
quadratic MM resolution strategy results from the consideration of the specific class of quadratic
tangent majorization approximations. Such a choice is all the more encouraging as many theoretical
guarantees have been highlighted over the last years for the deterministic framework. The inner
construction of any MM update necessarily implies the successive evaluations of the cost function to be
decreasing. The resulting algorithm therefore becomes particularly robust to deal with functions whose
curvatures properties are difficult to handle and in particular the non-convex ones. In addition, the
quadratic structure of the approximations of F promotes a simple closed-form and easily parallelizable
updates.

In light of those, the presented thesis is intended to develop two different aspects of differentiable
optimization relative to quadratic MM approaches. First, remaining in a deterministic framework,
the very structure of quadratic MM scheme is rethought so as for the latter to be a better legiti-
mate candidate capable of meeting the requirements of "efficient" programming at a large scale. Our
medium-term objective is to obtain a parallel version of the MM algorithm able to operate in a asyn-
chronous manner. Our second approach consists in extending the existing MM results to a stochastic
setting. We particularly pay attention to deal with non-necessary convex cost function in a way to
preserve as best as possible the primary versatility of MM algorithms. The second part of the thesis
seeks to develop a range of theoretical tools for convergence analysis in the stochastic context, that
can be reused for MM algorithms and even beyond. More generally, our investigations lead us to move
away from the purely MM framework by constructing new theoretical results for non-convex stochastic
optimization.
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1.3 Outlines

We provide here a short description of each of the chapters contained in this manuscript. With the
exception of this one, there are eight of them that can be divided into two categories regarding the two
main objectives of this thesis. Chapters 2-5 are relative to the deterministic part of our work while
Chapters 6-8 concern the stochastic one. Figure 1.1 illustrates the dependency of the various chapters
in this manuscript.

Chapter 2 is a short literature review on unconstrained and differentiable deterministic optimiza-
tion. We favour a pedagogical approach by introducing to the reader a reminder of the usual tools and
existing algorithms used in such a field. Some points may notably be supplemented in usual academic
books as [19] or [178]. Two specific features shall be highlighted. On the one hand, we propose an orig-
inal approach based on the descent condition notion to better understand the usual convergence proofs
strategies. One the other hand, we also introduce the reader to the Kurdyka-Lojasiewicz (KL) theory,
that we then we use all along this manuscript as a cornerstone approach to overcome the limitations
imposed by a non-convex framework.

Chapter 3 provides a summary of existing results and methods around the so-called quadratic
MM principle. Once the notion of (quadratic) majorant has been introduced, we present, in order of
increasing complexity, the main schemes that have been developed in the literature in recent years.
Some theoretical results that are already known or that have been overlooked are also presented for the
sake of understanding and to justify the legitimacy of such approaches. In particular, we introduce the
subspace technique, which shall be incorporated in MM algorithm to deal with large scale problems.

Chapter 4 can be considered as our first primary contribution and is dedicated to the asymptotical
study of an extended class of quadratic MM based algorithms. Although the use of block parallel
versions have already been partially experimented to deal with large scale optimization problems over
the last years, no asymptotical guarantees have yet been genuinely proposed in the non-convex setting.
In this chapter, we thus promote a complete theoretical investigation for a generic Block parallel MM
Subspace (B2MS) scheme for which the cost function under consideration is not supposed to be convex.
More specifically, we establish convergence results both global (convergence to a stationary point) and
local (convergence speed estimation) by using KL theory.

Chapter 5 exhibits our main contribution to the use of deterministic quadratic MM methods in a
large scale optimization setting. B2MS algorithm has the advantage of greatly reducing the complexity
of the update steps, but its non-distributed structure generally does not allow it to process the received
information to converge in a reasonable number of iterations in high dimension. Nevertheless, the latter
algorithm remains an interesting starting point to build a new MM-based scheme whose structure is
flexible enough to allow distributed data processing on several autonomous machine cores while allowing
the arrival of different updates on a first-in, first-out basis. This results in a distributed version of B2MS
we call BD3MG (Block Distributed MM Memory Gradient) for the specific choice of memory gradient
subspaces. Once BD3MG scheme is presented, an in-depth study of its convergence properties, through
the establishment of a descent inequality, is conducted and several numerical experiments are carried
out to prove its efficiency in high dimension on both academic and real data examples.

Chapter 6 can be seen as the stochastic counterpart of Chapter 2. The diversity of existing methods
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today has led us to make choices of presentation that we hope to be as little restrictive as possible around
stochastic gradient type schemes. For the sake of analogy, we also try to keep the theoretical approach
adopted in Chapter 2 via the descent notion but this time adapted to a probabilistic framework. We
insist once again on the pedagogical aspect of this chapter, the objective of the latter being to familiarise
the reader with the notions that we will discuss in the rest of this manuscript. In particular, we try
to highlight the difficulties that a stochastic setting implies for the use, as such, of the non-convex
convergence tools from the KL theory.

Chapter 7 is dedicated to the introduction of our stochastic MM scheme we call SABRINA. Al-
though the structure of the latter is based on those of the usual subspace MM quadratic, its interest
lies in its ability to remain stable and efficient using only an estimate of the gradient. Through the
construction of this new scheme, our objective is thus to recover the initial robustness of the usual
MM deterministic scheme for the study of not necessarily convex cost functions. We establish various
properties of convergence by showing in particular that SABRINA satisfies a stochastic descent con-
dition. Various numerical tests around binary classification problems are conducted for performance
evaluations as well as comparisons with the usual stochastic gradient algorithms from the literature.

Chapter 8 is of theoretical nature and aims to provide novel answers to the problem raised in
Chapter 6, namely a new version of the generic KL inequality in a way to be technically consistent
with a stochastic context. The objective of this work is to provide a proof methodology based on this
new mathematical tool in a way to conclude on the almost sure convergence of a given scheme without
convexity hypothesis. The medium-term objective is to apply the latter methodology to refine the
convergence guarantees of as many stochastic algorithms as possible.

Chapter 9 finally gives the conclusion by both summarizing the work presented in this manuscript
and proposing various medium an long term research perspectives.

Figure 1.1: Chapters Dependency
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Table 1.1 below summarizes the themes covered by each chapter of the manuscript.

Chapter 4 Chapter 5 Chapter 7 Chapter 8
MM algorithms ✓ ✓ ✓

Convex optimization ✓
Non-convex Optimization ✓ ✓ ✓ ✓

Block coordinate optimization ✓ ✓
Distributed optimization ✓

KL Theory ✓ ✓ ✓
Stochastic optimization ✓ ✓
Stochastic KL theory ✓

Table 1.1: List of the main topics of the manuscript and their distribution by chapter.

20



Chapter 2

Deterministic differentiable
optimization: a general overview

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 The class of descent methods . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.1 Descent direction computation . . . . . . . . . . . . . . . . . . . . . . 24

2.2.2 Overview on step-size computation strategies . . . . . . . . . . . . . . 27

2.3 Mathematical tools for asymptotic analysis . . . . . . . . . . . . . . . . . . 29

2.3.1 The ideal objective of global convergence . . . . . . . . . . . . . . . . 30

2.3.2 Descent condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.3 Residual analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.4 Making the link between descent condition and global convergence . 33

2.3.5 About local convergence . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.6 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4 Curvature properties of the cost function . . . . . . . . . . . . . . . . . . . 37

2.4.1 Coercivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4.2 Lipschitz continuity of the gradient . . . . . . . . . . . . . . . . . . . 38

2.4.3 Convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4.4 Strict/Strong Convexity . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.5 Dealing with the non-convex world in differentiable optimization . . . . . . 43

2.5.1 Convex setting limitations . . . . . . . . . . . . . . . . . . . . . . . . 43

2.5.2 Kurdyka-Łojasiewicz theory . . . . . . . . . . . . . . . . . . . . . . . 46

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

21



2.1 Introduction

Unconstrained (Euclidean) optimization is the mathematical field dedicated to find the minimizers of
f : H → R, a real-valued function defined over a real finite dimensional Hilbert space (H, ⟨., .⟩). The
common generic formulation of the problem reads in the literature as

Find xs ∈ H s.t. f(xs) ≤ f(x) for all x ∈ H. (2.1)

A minimizer of f is then defined as a point of H solution of (2.1). Assuming that f is a continuously
differentiable function classically ensures the existence of its associated gradient application ∇f :

H → H as well as its continuity. Beyond its formal role as a representative of the derivative of f ,
∇f is physically directly linked to the notion of slope also and thus naturally provides some crucial
information on the curvature of f . One of the first fundamental result giving a necessary condition for
a point x ∈ H to be a minimizer of f is the following:

Theorem 2.1. (First order optimality condition) Assuming f differentiable, any solution x∗ of (2.1)
satisfies the Euler equation

∇f(x∗) = 0. (2.2)

Any vector satisfying (2.2) is named a stationary point of f . In concrete terms, the stationary
points are those for which the slope of f cancels out and therefore indicate a potential changing of
its variations. Theorem 2.1 thus guarantees that any minimizer of f cancels out its slope. Its proof,
classically using the notion of directional derivatives, appears in several reference books such as [19].
Only under the differentiability of f , the most common approach to solve (2.1) first consists in focusing
on the alternative problem (2.2) reducing to the solution of an equation involving only the gradient
operator. Two strategies then emerge for its resolution.

The first one consists in solving (2.2) in an exact manner by only using mathematical operations.
However, in the vast majority of the problems encountered, such an operation is generally unthinkable
either because of lack of mathematical knowledge or the complexity of the calculation operations
involved. The main limiting factor actually remains the dimension of H. The more dim(H) is large,
the more the complexity of (2.2) and therefore that of (2.1). This phenomenon has more generally been
known since few decades in all the fields of optimization, beyond the differentiable case, as the curse of
dimentionality [16]. One simple example to understand how the space dimension affects the number of
operations to obtain the stationary points of f is to consider the situation where ∇f is affine. Solving
problem (2.2) becomes equivalent to compute the solution of a linear system and generally requires
dim(H)3 operations as an order of magnitude. Although such a number would remains reasonable
regarding academical examples, the great majority of practical minimization problems are encountered
in high-dimensional study spaces.

The second strategy historically that emerged to overcome the limiting factors is known as iterative
resolution [178]. It consists in generating a sequence (xk)k∈N, recursively, in order to approach one
solution of (2.2) in some mathematical sense. In other words, this strategy is based on the conception
of an algorithm in order to ideally asymptotically obtain a stationary point of f . This leads to several
lines of analysis. On the first hand, the governing scheme, i.e. the bunch of all necessary operations
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giving xk+1 from a step k ∈ N (where xk, . . . ,x0 have already been determined) does not require
too high computational complexity, otherwise it runs into the same obstacle as the first strategy.
On the other hand, obtaining convergences guarantees for the algorithm requires the use of specific
mathematical tools and therefore constitutes the major part of the theoretical work with which the
numericist is confronted. It is generally carried out in two stages, first, an asymptotical analysis to, in
the ideal case, prove the convergence of the iterates to a stationary point, and second by looking more
specifically at the speed of convergence of (xk)k∈N or at least of a related alternative sequence, which
is physically similar to an accuracy analysis. On a mathematical aspect, this latter study generally
amounts to investigate on the evolution, in order of magnitude, of an easily interpretable metric, chosen
regarding the results provided by the asymptotical analysis.

In order to present the main principles of unconstrained and differentiable optimization in a ped-
agogical way, our chapter is divided into five sections. Section 2.2 introduces gradient descent min-
imization methods from their relatively intuitive nature. In particular, we try to keep a visual and
geometrical approach for the reader’s understanding. Section 2.3 is more technical in nature and
highlights the need for mathematical tools to judge the quality of a minimization algorithm. This
requires, in particular, the use of classical analytical assumptions that we will detail in section 2.4.
Among these, the convexity assumption is generally considered to be the most powerful as it allows for
efficient technical shortcuts to obtain particularly accurate convergence results. However, it remains
relatively restrictive and cannot be systematically verified by the cost function under consideration. In
such a context, obtaining sufficiently accurate convergence results in the absence of convexity requires
the development of new theoretical tools. We provide a description of these in section 2.5. While
the notion of quasi-convexity remains relatively popular, the theory based on the use of the so-called
Kurdyka-Łojasiewicz property is a recent area of differentiable optimization and gives interesting re-
search perspectives for this thesis.

2.2 The class of descent methods

The most encountered iterative scheme for the research of stationary points and then minimizers of f
(i.e. the resolution of (2.2) and (2.1)) are grouped in the category of so-called descent methods. Their
general structure is

x0 ∈ H,
(∀k ∈ N) xk+1 = xk + αkdk. (2.3)

Descent shemes thus rely on the construction of two sequences ; directions (dk)k∈N ∈ HN and stepsizes
(αk)k∈N ∈

(
R∗
+

)N playing the role of adjustment factors. More specifically, directions (dk)k∈N ∈ HN

are said to be descent directions ; they have to be, in some physical sense, compatible with a minimizer
research by promoting a global decreasing of the sequence of the iterates evaluation, i.e. (f(xk))k∈N.
The rest of this section introduces a general overview of the strategies from literature to construct
sequences (dk)k∈N, (αk)k∈N in a way to obtain a solution of (2.2).

2.2.1 Descent direction computation
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The keypoint for building an interesting direction dk at a given iteration k ∈ N is the second order
Taylor’s Formula applied to xk. It gives an overview of f in a neighborhood of xk. By dispensing with
writing the order 2 residue and taking a generic h ∈ H to have xk + h close to xk, approximation
f(xk+h) ≃ f(xk)+ ⟨∇f(xk),h⟩ remains valid and encourages f(xk+h) ≤ f(xk) under the condition
⟨∇f(xk),h⟩ ≤ 0. As sequence (αk)k∈N is positive, this naturally leads to the following definition of a
descent direction:

Definition 2.1. (Descent direction) Let x ∈ H. A vector d ∈ H is said to be a descent direction at
point x if it satisfies:

⟨∇f(x),d⟩ < 0. (2.4)

The rest of this subsection gives a small bunch of methods from the literature dedicated to build
a relevant descent direction (at a given point xk, k ∈ N).

2.2.1.1 Steepest descent

In the light of Definition 2.1, the most natural (dk)k∈N sequence to adopt seems to be (−∇f(xk))k∈N,
the opposite of the successive gradients. Several justifications are legitimate. One is physical and
only keeps in mind the resolution, in the long-run, of (2.1); to approach a minimizer point without
any prior information on the function f , the simplest and intuitive strategy is actually to head in the
opposite direction to the slope (see figure 2.1). Another one is purely mathematical and focuses on the
resolution of (2.2); any stationary point of f is a fixed-point of the recursive scheme xk+1 = Jt(xk) for
all k ∈ N considering the mapping Jt : x ∈ H 7→ x− t∇f(x) (t > 0) [32, chapter 2.3]. Methods using
−∇f(xk) as descent direction at any iteration k ∈ N are grouped under the so-call gradient descent
(or steepest descent) class of schemes.

Figure 2.1: An illustration of steepest decent in dimension 1. The new direction is always
taken as opposite to the sign the slope at the point considered ; the slope associated to x1

(resp x2) being negative (resp. positive), the new iterate is sought by moving positively (resp.
negatively) along the abscissa.
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2.2.1.2 Newton/Quasi-Newton methods

Many strategies to find a relevant descent direction have been proposed over the last decades. The
most famous one remains the class of Newton’s methods in the case when f is a twice continuously
differentiable function. Historically, Newton’s algorithm was developed by Isaac Newton (1643-1727)
and Joseph Raphson (1648-1715) to find the roots of any polynomial application (see figure 2.2).
Newton’s methods simply adapt this strategy to ∇f in a way of solving (2.2). At every iteration
k ∈ N, the new iterate xk+1 is defined as a zero of the tangent tk of ∇f from xk. The advantage of
such an approach lies in fact the Taylor’s formulas [178] easily give access to the tangent application
at any point x ∈ H. xk+1 is thus a solution of the sub-problem

Find x ∈ H s.t tk(x) := ∇f(xk) +∇2f(xk)(x− xk) = 0, (2.5)

where ∇2f(xk) denotes the Hessian matrix of f at point xk. In the case where the Hessian of f is
definite positive at any point of H (or at least at all the iterates), xk+1 possesses a closed form (i.e.
computable only using the four basic arithmetic operations) which directly conducts to the Newton’s
update formula:

(∀k ∈ N) xk+1 = xk −∇2f(xk)
−1∇f(xk). (2.6)

Equation (2.6) has the advantage of naturally considering dk = −∇2f(xk)
−1∇f(xk) as a new

descent direction at any iteration k ∈ N. Nevertheless and as mentioned in section 2.1, the dimension
of many problems encountered in optimization remains too high to consider an inversion operation for
the Hessian (complexity of O

(
dim(H)3

)
for ∇2f of general form). To overcome such an issue the most

common strategy consists in building successive approximations of ∇2f or its inverse at every step, i.e.
dk = −Hk∇f(xk) for all k ∈ N where Hk ≃ ∇2f(xk)

−1 regarding certain criteria. It is necessary to
keep in mind that the first goal of such approximation is always to dodge the too demanding inversion
of the Hessian operator. The current way to proceed is to generate (Hk)k∈N recursively by only making
small rank modifications. Moreover, in order to get as close as possible to the structure of the Hessian
and to recover some of the curvature properties, (Hk)k>0 is constructed to be symmetric positive
definite and also to verify the same order 2 secant condition as (∇2f)−1 (obtained through Taylor’s
formula):

(∀k ∈ N) Hk+1 (∇f(xk+1)−∇f(xk)) = xk+1 − xk. (2.7)

Without going into too much technical details, let us just mention the most popular update for-
mulas. The first one is called the Symmetric Rank 1 (SR1) method [191]. Starting from a given
k ∈ N, the new approximation Hk+1 is of the form of (notation ⊗ denotes the usual tensor product)
Hk+1 = Hk+σkvk⊗vk, where (σk,vk) ∈ (0,+∞)×H is chosen so as to have, as mentioned previously,
Hk+1 a definite positive operator verifying (2.7). An explicit formula for vk is known (see [84, 178] for
example). The second strategy corresponds to a rank 2 update. It was developed in the early 70s by
Broyden, Fletcher, Goldfarb and Shanno, and carries the initial of its designers (BFGS) [40, 99, 230]:

(∀k ∈ N) Hk+1 =

(
I − sk ⊗ yk

⟨yk, sk⟩

)
Hk

(
I − yk ⊗ sk

⟨yk, sk⟩

)
+

sk ⊗ sk
⟨yk, sk⟩

, (2.8)

where for all k ∈ N we denote sk = xk+1 − xk and yk = ∇f(xk+1) − ∇f(xk). For computational
purpose, formula (2.8) is interesting as it can easily be approximated using low machine memory.
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The resulting algorithm L-BFGS of [156] is an efficient approach for non-linear optimization at a large
scale. Among the rank 2 update formula, we can also mention those of Davidon-Fletcher-Powell (DFP)
[75, 100] linked with BFGS by a duality relation. More generally, the mathematical approaches which
consists in computing a descent direction using an approximation of the Hessian or its inverse are
gathered under the name of Quasi-Newton methods.

Figure 2.2: A graphical illustration of Newton’s method in dimension 1 applied to a generic
function g : R → R. For any k ∈ N, xk+1 is simply sought as the point cancelling the tangent
of g at xk.

2.2.1.3 Orthogonalization-based approaches

The advantage of working on a finite dimensional Hilbert is the existence of a finite attached orthogonal
base. To such an extent, another strategy consists in building successive directions so that they
provide such a base for H. In an ideal situation, (dk)k∈N is thus constructed in a way to obtain
H = V ect

(
d1, . . . ,ddim(H)

)
. Moreover, if the coordinates of x∗, a solution of (2.2), are computable

regarding this base, then the induced algorithm may converge in a finite number of iterations. The most
accessible way to build an orthogonal base of direction consists relies on the Gram-Schmidt process.
However, the natural scalar product ⟨., .⟩ is not necessarily used to the extent it does not take account
of the structure of the problem.

Typically, when ∇f has an affine structure of the form ∇f : x ∈ H 7→ Ax−b with A a symmetric
positive operator and b a given vector of H, it logically seems more interesting to work with the
associated scalar product ⟨., .⟩A = ⟨.,A.⟩. This specific situation is notably at the root of the Conjugate
Gradient (GC) scheme [119]. The directions are updated according the alternative orthogonalization
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process

d0 = −r0 = b−Ax0 (= −∇f(x0)),

(∀k ∈ N) rk+1 = Axk+1 − b (= ∇f(xk+1)), dk+1 = −rk+1 +
⟨rk+1,dk⟩A

∥dk∥2A
dk, (2.9)

so as to verify the conjugate relation ⟨dk,dℓ⟩A = 0 for all k, ℓ ∈ {0, . . . ,dim(H)}2 and k ̸= ℓ.

The GC method has also been extended to the case where ∇f is not necessarily affine. This results
in the following update scheme

d0 = −∇f(x0),

(∀k ∈ N) dk+1 = −∇f(xk+1) + βkdk, (2.10)

where (βk)k∈N is usually a ratio of scalar products involving either the past gradient evaluations or
the previous descent directions. Few choices of (βk)k∈N can be found in literature, we can especially
mentioned those of Fletcher-Reeves (FR), Polak-Ribière (PR) or Hestenes -Stiefel (HS) [101, 187, 119].

2.2.2 Overview on step-size computation strategies

Proceeding in a similar way as previously, we here introduce the most usual class of methods to build a
stepsize sequence (αk)k∈N in a way to obtain interesting convergence guarantees for the minimization
algorithm, i.e. to asymptotically find a solution of the Euler equation (2.2) or at least to have a
decreasing of (f(xk))k∈N. The induced problematic for which we here try to give some responses can
be formulated as follow ; for a given iteration k ∈ N and assuming than x0, . . . ,xk and the new descent
direction dk+1 have already been computed, how to obtain the new stepsize αs as "best" as possible
regarding all the information we possess either on the function or on the past process ?

2.2.2.1 On the necessity of using inexact researches

The first element of response is to consider the terminology of term "best" in a mathematical aspect.
From a purely analytical point of view and to the extent we seek to minimize f , the "best" stepsize α
logically seems to be the one which maximizes the decay, i.e. which is a solution of

Find αs > 0 s.t. f(xk + αsdk) ≤ f(xk + αdk) for all α > 0. (2.11)

The approach consisting of finding αs to verify (2.11) is named the exact step-size research. Solving
(2.11) thus conducts to investigate a minimization sub-problem and finally requires to use one of the two
strategies mentioned in section 2.1; a direct calculation of one solution only relying on the mathematical
properties of f or the construction of a specific search algorithm. In general, none of these two strategies
is adopted to the extent that they relatively time consuming [178]. The most common way of getting
around such an obstacle is based on the use of an alternative approach known as the inexact stepsize
research.

27



2.2.2.2 Verifying the decreasing

Instead of seeking for a solution of (2.11) at any cost, it is required for the new stepsize αs to ensure
a so-call descent condition, less restrictive than (2.11) and simply of the form of

f(xk + αsdk) ≤ f(xk)− ρk(αs), (2.12)

where ρk > 0 is a reduction coefficient. The most popular one is those proposed by Goldstein-Armijo
[6, 178]; ρk : α > 0 7→ −c1α⟨∇f(xk),dk⟩ given a fixed constant c1 ∈ (0, 1). Coefficient c1α acts as
a control factor on the process decay. However, Goldstein-Armijo descent condition as such is not
restrictive enough to be applied as a practical update’s rule; the Taylor’s Formula actually ensures it
is verified for any α > 0 small enough as long as ⟨∇f(xk),dk⟩ < 0:

f(xk + αdk) =
α→0+

f(xk) + α⟨∇f(xk),dk⟩︸ ︷︷ ︸
negative and linear in α

+o(α) ∼
α→0+

f(xk) + α⟨∇f(xk),dk⟩. (2.13)

Typically, when the convergence of (xk)k∈N is established under (αk)k∈N as choice of stepsize, it
still holds if (αk)k∈N is replaced by (α̃k)k∈N, a smaller one (i.e. such that α̃k ≤ αk for all k ∈ N). On a
practical point of view, the limitations are rather based on the evolution speed of the algorithm. The
smaller αs is, the less incidence dk has on the optimization process. The choice of a good stepsize
thus induces a trade-off. On the one hand, the decay of (f(xk))k∈N can only be ensured for relatively
reasonable choices of control values; taking a stepsize as large as possible remains incompatible with
the Goldstein-Armijo descent condition (otherwise it would imply that f is not lower-bounded and
de facto the non existence of a solution for (2.1)). On the other hand, a too small stepsize tends to
compromise the convergence speed of the algorithm, making it difficult to use for practical applications
despite a certain stability.

2.2.2.3 Wolfe conditions

As a response of the dilemma mentioned in the previous paragraph, a second condition, relative to
the curvature of f regarding the process, generally completes (2.12). It imposes for the new stepsize
αs > 0 to be chosen so that dk is a weaker descent direction with respect to the resulting gradient
∇f(xk + αsdk):

⟨∇f(xk + αsdk),dk⟩ ≥ c2⟨∇f(xk),dk⟩, (2.14)

considering some c2 ∈ (0, 1). Relation (2.14) is called in the literature the curvature condition [178].
The latter mostly works in symbiosis with the descent condition considering the rule of Goldstein-
Armijo. Their combination finally leads to the Wolfe conditions [237, 178] ; the stepsize sequence
(αk)k∈N is built so as to verify

(∀k ∈ N) f(xk + αkdk) ≤ f(xk)− c1αk⟨∇f(xk),dk⟩ (2.15)

⟨∇f(xk + αkdk),dk⟩ ≥ c2⟨∇f(xk),dk⟩ (2.16)

Constants c1, c2 are chosen to satisfy 0 < c2 < c1 < 1. Although, it is always possible to find (αk)k∈N
satisfying Goldstein-Armijo inequality (2.15) (under descent condition (2.4) for the directions), its
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counterpart (2.16) is generally more rarely met and also depends on the curvature properties of the
function f . The differentiablity alone cannot guarantee the existence of a stepsize able to verify these
two conditions at any time [178, 32]. Further stepsize rules also exist as those of Goldstein-Price [32]
which imposes the Goldstein-Armijo condition as well as an additional lower-bound constraint on the
process decay. The research of αs to verify Wolfe conditions or one of their derivatives is in practice
carried out via dichotomous processes also called backtracking approaches. Many examples of these
methods have been developed [19, 32] and are based on the principle described on figure 2.3.

Figure 2.3: An example of stepsize reserach in dimension 1 so as to satisfy the two Wolfe
conditions. The green areas representing the set of admissibles values for αs.

2.3 Mathematical tools for asymptotic analysis

The aim of section 2.2 was to give the reader an overview of existing minimization algorithms in
differentiable optimization using a geometric/graphical approach to explain their construction. Here
we change our point of view, this time starting from an optimization algorithm. Our objective is
to present the various theoretical tools that allow us to evaluate its capacity to approach (or not) a
solution of the initial problem (2.1) or at least of the Euler’s equation (2.2).

Throughout this section, we consider an algorithm generating a sequence (xk)k∈N for which we want
to evaluate the ability to construct a solution of (2.2) or even ideally of the minimization problem (2.1).
"Evaluate" here means the establishment of specific mathematical criteria that may or may not be
verified by (xk)k∈N.
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2.3.1 The ideal objective of global convergence

Our starting point is the following: saying that sequence (xk)k∈N approaches a stationary point (of f)
mathematical means that it has a limit, solution of (2.2). There exists x∗ ∈ H such that:

xk −→
k→+∞

x∗ and ∇f(x∗) = 0. (2.17)

This behaviour is generally difficult to obtain to the extent it requires a mathematical background
more or less complex which highly depends on the information available on f . Sufficient strong cur-
vature properties obviously favour the establishment of such a result. In practise, the cost function
f is derived from a model of various kinds (physical, economic, etc.) that cannot be modified. It is
therefore necessary to accept it as such, i.e. with or without some properties. Admitting additional
assumptions on f to typically prove the global convergence (2.17) of sequence (xk)k∈N can mathemat-
ically be acceptable, but may severely compromise the use of the associated algorithm, depending on
the context. In the case where f remains relatively generic (i.e. differentiable but without "much other
requirements"), it is often necessary to deal with less precise convergence results.

2.3.2 Descent condition
Given a function f of any form, the first step relative to the convergence analysis of an optimization
scheme is often based on the research of a monotony induced by the process at stake [188]. In a
minimization context, it consists in finding alternative sequence derived from (xk)k∈N with a decreasing
behavior. If such a sequence exists, it heuristically implies that the initial scheme, by guaranteeing the
decay of a certain quantity of interest all along the iterates, has a certain consistency. We thus define
the fundamental and general notion of (l, r)- descent condition.

Definition 2.2. (Descent condition) Let l : HN → RN be an application (defined on the space of
sequences of H and returning sequences of real numbers) and r = (rk)k∈N a sequence of real non-
negative numbers. A sequence (xk)k∈N ∈ HN verifies a (l, r)-descent condition if there exists k0 ∈ N
for which (lk)k∈N = l ((xk)k∈N) satisfies the descent inequality

(∀k ≥ k0) lk+1 ≤ lk − rk. (2.18)

• In the following, we will commonly speak of a Lyapunov application to name l (relative to (l, r)-
descent condition) and of a residual sequence to mention r (relative to (l, r)-descent condition).

• (xk)k∈N is said to verify a simple descent condition (relative to f) if there exists a residual
r ∈ (R+)

N for which (xk)k∈N verifies a (l, r)-descent condition regarding l : (yk)k∈N ∈ HN 7→
(f(yk))k∈N, i.e. lk = f(xk) for any integer k starting from a certain rank.

The Goldstein-Armijo relation is one academical example of a simple descent condition we have
already met in the previous section (see paragraph 2.2.2.2). Subject to certain assumptions on f , any
sequence (xk)k∈N generated from a gradient descent scheme (2.3) and for which the Wolfe conditions
(2.15), (2.16) are valid is inclined to satisfy a simple descent condition (see subsection 2.4.2). More
generally, in the situation where the decay of sequence (f(xk))k∈N is not ensured, calculation tricks can
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enable to obtain a (l, r)-descent condition [188, chapter 2]. Our Lyapunov designation for application l
initially comes from the link between our optimization field and the dynamical systems theory. Relation
(2.18) can then be seen as a the discrete version of an energy dissipation equation [160]. The reader may
find various examples of Lyapunov applications in [235]. Below is a classical example of (l, r)-descent
condition which is not simple descent condition.

Example 2.1. Let us consider a sequence (xk)k∈N. We assume that we are able to prove the existence of
positive sequences (αk)k∈N, (βk)k∈N which do not depend on (xk)k∈N as well as a non-negative function
g : H 7→ R+ such that

(∀k ∈ N) f(xk+1) ≤ (1 + αk+1)f(xk)− g(xk) + βk+1. (2.19)

Such an inequality can be seen as a relaxed form of a simple descent condition for which the decay of
(f(xk))k∈N is compromised by additional terms (αk)k∈N, (βk)k∈N. However, the following relation can be
turned into a (l, r)-descent condition using the following calculation tricks. Denoting pk =

∏k
i=0(1+αi)

for all k ∈ N and (2.19) is actually equivalent to

(∀k ∈ N) p−1
k+1f(xk+1) ≤ p−1

k+1(1 + αk+1)f(xk)− p−1
k+1g(xk) + p−1

k+1βk+1. (2.20)

With p−1
k+1βk+1 =

∑k+1
i=0 p

−1
i βi −

∑k
i=0 p

−1
i βi, the latter equation can be rewritten as

(∀k ∈ N) p−1
k+1f(xk+1)−

k+1∑
i=0

p−1
i βi ≤ p−1

k+1(1 + αk+1)f(xk)−
k∑
i=0

p−1
i βi − p−1

k+1g(xk), (2.21)

and, using p−1
k+1(1 + αk+1) = p−1

k , this also gives

(∀k ∈ N)

(
p−1
k+1f(xk+1)−

k+1∑
i=0

p−1
i βi

)
≤

(
p−1
k f(xk)−

k∑
i=0

p−1
i βi

)
− p−1

k+1g(xk). (2.22)

Finally, (xk)k∈N verifies a (l, r)-descent condition taking

l : (xk)k∈N 7→

(
p−1
k f(xk)−

k∑
i=0

p−1
i βi

)
k∈N

and (rk)k∈N =
(
p−1
k+1g(xk)

)
k∈N . (2.23)

More complex cases are typically encountered for algorithms whose update makes use, at a given
k ≥ τ (τ > 0), of not only xk but also of a bunch of past iterates xk−1, . . . ,xk−τ . Such a situation
generally conducts to considerate k0 ≥ τ, l : (yk)k∈N ∈ HN 7→ (h(yk,yk−1, . . . ,yk−τ ))k≥k0 where
h : Hτ+1 → R often corresponds to a sum of f with functions having simple structures (typically a
linear combination of norms). Variable τ , in general, is associated to a delay in the process and is
typically encountered in distributed algorithms [227, 76].

In addition of ensuring that sequence (lk)k∈N is a decreasing one, inequality (2.18) ensures its
convergence to a finite limit as soon as l is a lower-bounded function (as a direct consequence of the
basic monotone convergence theorem). In the situation where we can build a simple descent condition
and assuming that f admits at least one minimizer, the associated descent inequality directly leads to
the convergence of the evaluations (f(xk))k∈N to a real limit. As it stands, it is difficult to directly
act on the value of the limit obtained since a monotonicity-based proof of convergence is purely non-
constructive. However, the interest of the (l, r)- descent condition is not limited to such a use. The
residual process r is likely to provide valuable additional information, as we explain hereafter.
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2.3.3 Residual analysis

Sequence r = (rk)k∈N takes relatively varied forms depending on the structure of the studied scheme,
and is willing to precious information. As mentioned previously, the lower-boundedness of l is relatively
common (and even desired) and guarantees the convergence of (lk)k∈N to a finite limit. If such a
situation occurs, denoting by linf the minimal value of l, and using the decay of the derived sequence,
descent inequality (2.18) leads to

(∀k ≥ k0)

k∑
i=k0

ri ≤ lk0 − lk+1 ≤ lk0 − linf ∈ R. (2.24)

Insofar as the upper-bound of (2.24) remains independant from the iterations, the positivity of
(rk)k∈N ensures the convergence of the associated serie, i.e.

∑+∞
k=0 rk < +∞. A particularly interesting

and relatively common case is when the order of magnitude of (rk)k∈N is comparable to that of the
gradient sequence (∇f(xk))k∈N, i.e. there exist n > 1 and a bounded sequence (αk)k∈N ∈ (0,+∞)N

such that
(∀k ≥ k0) rk = αk∥∇f(xk)∥n. (2.25)

We then need to distinguish between two scenarios. The first and easiest one corresponds to the
situation where (αk)k∈N is bounded below by a positive constant. In such a case, with

∑+∞
k=0 rk < +∞,

(2.25) directly ensures that
∑+∞

k=0 ∥∇f(xk)∥n < +∞ and so the convergence of (∇f(xk))k∈N to zero
is obtained. If (αk)k∈N converges to zero, we cannot lead to the same conclusion without additional
assumptions. However, if (αk)k∈N is adopted prior to the minimization scheme, i.e. fixed in advance,
it can be constructed in order to facilitate the emergence of certain asymptotical behaviours. In this
context, the typical strategy is to choose (αk)k∈N so as to verify the following property.

Proposition 2.1. Let (rk)k∈N a summable sequence satisfying inequality (2.25) for given k0 ∈ N and
n > 1. If (αk)k∈N is non-summable, i.e.

∑+∞
k=0 αk = +∞, then:

lim inf
k→+∞

∥∇f(xk)∥ = 0. (2.26)

Proof. Let us assume the contrary. There thus exist ε > 0 and a rank K ∈ N such that ∥∇f(xk)∥ ≥ ε

for any k ≥ K. Relation (2.25) then leads to rk ≥ αkε
n considering every k greater than K. As

(αk)k∈N is non-summable and positive, the latter inequality guarantees that this is also the case for
sequence (rk)k∈N, which contradicts the initial statement.

Following the definition of the limit inferior, any sequence (xk)k∈N verifying the conditions of
Proposition 2.1 thus possesses, at least, a subsequence for which the gradient evaluations sequence
(∇f(xk))k∈N converges to zero. As such, Proposition 2.1 can be seen as a generalisation of the case
where (∇f(xk))k∈N converges to zero given a constant stepsize.
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2.3.4 Making the link between descent condition and global conver-
gence

Although, the limit inferior criterion (2.26) is generally verified for many existing schemes in the
literature, it remains relatively inaccurate. On its own, such a condition does not guarantee the
existence of a limit or even of an accumulation point for the sequence (xk)k∈N. To get closer to a
global convergence behaviour (typically starting from (2.26)), one possibility consists in establishing
the boundedness of the iterates and invoking classical topological results (in finite dimension).

Proposition 2.2. Let (xk)k∈N be a bounded sequence of HN for which we denote by χ∞ its set of
accumulation points. Subject to f being continuously differentiable, we have the followings properties:

(i) χ∞ is non-empty and denoting by dist, the distance application, dist (xk, χ∞) −→
k→+∞

0,

(ii) If (∇f(xk))k∈N converges to zero, χ∞ is contained in zer∇f , the set of stationary points of f ,

(iii) If (xk)k∈N satisfies (2.26), χ∞ contains at least one point of zer∇f ,

(iv) If (xk)k∈N satisfies (2.26) and (f(xk))k∈N converges to a finite limit, the latter necessary belongs
to f(zer∇f).

Proof. (i) The fact that χ∞ is non-empty is directly due to the boundedness of (xk)k∈N in finite
dimension. By contradiction, if the sequence at stake does not converge to 0, then there exist ε > 0

and a subsequence (xψ1(k))k∈N such that

(∀k ∈ N) dist
(
xψ1(k), χ

∞) > ϵ. (2.27)

Since (xk)k∈N is bounded,
(
xψ1(k)

)
k∈N is also bounded. With H a finite dimensional space, the set

of cluster points of
(
xψ1(k)

)
k∈N is non-empty and is basically included in χ∞. Therefore, there exists

another subsequence
(
x(ψ1◦ψ2)(k)

)
k∈N and x′

∞ ∈ χ∞ such that
∥∥x(ψ1◦ψ2)(k) − x′

∞
∥∥ −→
k→+∞

0. Hence,

dist
(
x(ψ1◦ψ2)(k), χ

∞) −→
k→+∞

0, which is contradictory to (2.27) and thus concludes the proof.

(ii) Let x∞ be a point of χ∞ and
(
xψ(k)

)
k∈N be one associated subsequence. The convergence of

(∇f(xk))k∈N to zero directly gives
∇f

(
xψ(k)

)
−→
k→+∞

0, (2.28)

and the continuity of the gradient finally ensures that ∇f (x∞) = 0.

(iii) Following the definition of the limit inferior, there exists a subsequence
(
xψ1(k)

)
k∈N for which

∇f
(
xψ1(k)

)
−→
k→+∞

0. (2.29)

Moreover, the boundedness of (xk)k∈N and thus those of (xψ1(k))k∈N ensures the existence of a subse-
quence (x(ψ1◦ψ2)(k))k∈N converging to a vector x∞ ∈ H and basically x∞ ∈ χ∞. On the one hand, as
the gradient of f is continuous, it follows that

∇f
(
x(ψ1◦ψ2)(k)

)
−→
k→+∞

∇f(x∞). (2.30)
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On the other hand, (2.29) also directly leads to

∇f
(
x(ψ1◦ψ2)(k)

)
−→
k→+∞

0. (2.31)

The uniqueness of the limit finally guarantees that ∇f(x∞) = 0.

(iv) Let us denote f∞, the limit of (f(xk))k∈N, then, continuing the previous proof, we have

f
(
x(ψ1◦ψ2)(k)

)
−→
k→+∞

f∞. (2.32)

As a consequence of f continuity and the convergence
(
x(ψ1◦ψ2)(k)

)
k∈N to x∞ ∈ zer(∇f), we also

deduce that

f
(
x(ψ1◦ψ2)(k)

)
−→
k→+∞

f(x∞). (2.33)

This conducts to f∞ = f(x∞) and ends the proof.

Although Proposition 2.2 remains weaker than the global convergence (2.17), it gives better in-
formation on the asymptotic behavior of the minimization process. In particular, in the case where
f admits a unique stationary point and if the initial minimization problem (2.1) is feasible, then this
same stationary point is the unique minimizer of f . Proposition 2.2 (iv) then ensures that sequence
(f(xk))k∈N converges to the minimal value of f . Concluding on global convergence, i.e. on those of
the iterates (xk)k∈N, here consists in proving that χ∞ is reduced to a unique element which is usually
difficult. To do so, a useful strategy is the use of a connectedness argument when both the bounded-
ness (xk)k∈N and the convergence of differences (xk+1 −xk)k∈N to zero are guaranteed. It is based on
the following theorem whose proof is given by Ostrowski [182, Theorem 26.1] (see figure 2.4 for one
geometrical interpretation).

Theorem 2.2 (Ostrowki). Let (xk)k∈N be a bounded sequence of HN for which xk+1 − xk −→
k→+∞

0.

Then, χ∞, the set of accumulation points of (xk)k∈N is non-empty, closed, and connex.

As a consequence, in a continuously differentiable landscape, any bounded sequence of iterates
(xk)k∈N satisfying (2.26) and the convergence of (xk+1 − xk)k∈N to zero, has a connex set of accumu-
lation points and, from Proposition 2.2 (iii), the latter contains one stationary point of f . Moreover,
if χ∞ turns out to be a finite set, we are able to conclude on the global convergence of (xk)k∈N by the
following keypoint. Since any finite non-empty connex set is a singleton, it immediately follows that
χ∞ possesses a stationary point of f as unique element, and so (xk)k∈N converges to it. Of course this
ideal case is not so easily verifiable in practice and highly depends on the assumptions made on f .
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Figure 2.4: One situation where the Ostrowski’s theorem does not apply. The even terms of
(xk)k∈N belong to compact domain D1 while the odd ones are contained in D2 another compact
separated from its counterpart by a positive distance d(D1, D2). D1 ∪ D2 is not connex as it
made up of two separated "islands". It follows that ∥xk+1−xk∥ ≥ d(D1, D2) for all k ∈ N and,
consequently, the difference of terms sequence cannot converge to zero. Moreover, (x2k)k∈N and
(x2k+1)k∈N being bounded, D1 and D2 each contain at least one accumulation point of (xk)k∈N.
Such a situation thus forces χ∞ to be composed of at least two separated closed set finally
making it non-connex.

2.3.5 About local convergence

Even if the global convergence of (xk)k∈N is not guaranteed, we have seen that a relatively well-
constructed minimization scheme ensures at least one descent condition and thus the convergence of a
certain derived process (subsection 2.3.2). Typically, under a simple descent condition, if the shape of
f promotes the uniqueness of the solution of (2.1) as well as the boundedness of (xk)k∈N, Proposition
2.2 (iv) is able to ensure the convergence of its evaluations to fmin, the f minimum value. To obtain
a more precise behaviour on the algorithm, the research for a convergence rate is appreciated as it
remains an evaluation criterion which can also be used to highlight the interest of the scheme when
compared to other methods. The construction of convergence rates is a very large domain for which
we here cannot present all aspects. We nevertheless give key notions to the reader. Larger overviews
can be found in [178, 32] as well as a detailed one in [181].

The general principle can be summarized as follows. Let (mk)k∈N be a sequence of RN
+ which

supposed to converge to zero. (mk)k∈N describes the evolution of a quantity of interest related to a
minimization sequence (xk)k∈N and so depends on the asymptotical properties the latter is able to
verify. In the case where (xk)k∈N and f satisfy the same conditions as in the last example mentioned
(see first paragraph), (mk)k∈N = (f(xk)− fmin)k∈N appears as the most natural choice of metric to
quantify. Even stronger, if sequence (xk)k∈N itself turns out to converge to a point x∞ ∈ H, the choice
of (mk)k∈N = (∥xk − x∞∥)k∈N makes perfectly sense.
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Generally speaking, building a convergence rate for (mk)k∈N consists in finding a positive sequence
(uk)k∈N, of simpler structure, so as to verify

mk =
k→+∞

O (uk) . (2.34)

The reason for keeping the structure of uk as simple as possible is to facilitate interpretation and,
in particular, evaluation of the algorithm’s performance. In others words, it is necessary to keep
comparison criteria as readable as possible. Typically, having (uk)k∈N of Riemann type (n−α)k∈N (α >

0) or, even better, of a geometrical form (ϵn)k∈N (0 < ϵ < 1) are particularly well-suitable.

When a behavior of the form (2.34) with a simple form for (uk)k∈N is too difficult to obtain, a
common way of getting around such an issue consists in finding a recursive majorization of the form of

(∀k ≥ k1) mk+1 ≤ ûk m
p
k, (2.35)

for a certain p ≥ 1, (ûk)k∈N being a positive sequence from a rank k1 ∈ N. We end this subsection by
mentioning the most encountered regimes:

• If p = 1 and (ûk) ∈ R+ is a constant lying in (0, 1), the convergence is said to be (Quotient)
Q-linear.

• In the situation where p = 1 and (ûk) ∈ R+ tends to zero, the convergence is said to be super-
linear.

• When p = 1 and (ûk) ∈ R+ remains constant, the convergence is said to be quadratic.

In the literature, p is found under the name of order of convergence, the larger it is, the faster the
convergence of sequence (mk)k∈N. In the vast majority of situations and without any prior information
on f , the value of p remains small. In particular, only a few schemes are known to perform a quadratic
convergence rate; the most famous one corresponding to the Newton’s method [178] previoulsy de-
scribed (see subsection 2.2.1.2). However, the use of convergence rates to illustrate performances turns
out to be limited to a mathematical use as it does not take into account the practical complexity of
iterations. For example, the Newton’s method typically requires to proceed to an inversion at every
step and is thus not suited considering a very high dimensional space research. The use of a Quasi-
Newton method instead, with at most a super-linear rate of convergence [178] (therefore lower) remains
often more efficient from a numerical point of view. To get the best possible idea of an algorithm’s
performance in practice (and not only in an optimization setting), a general complexity analysis is
generally recommended. In such a context, we are then interested in the total number of elementary
operations required to achieve a certain level of precision ϵ > 0 in the criterion (mk)k∈N.

2.3.6 Synthesis

Figure 2.5 concludes this section by giving the reader an overview, in schematic form, of the general
strategy presented for conducting the asymptotic study of an optimization scheme in a deterministic
and differentiable framework.
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Figure 2.5: Summary diagram for the convergence study of an optimization algorithm in a
differentiable framework

We notably use the strategy illustrated in figure 2.5 in Chapters 4 and 5 to investigate on the
asymptotical behaviors of the algorithms developped in each of them. Our methodology is thus or-
ganized in various successive stages, the difficulties of each one depending on the mathematical tools
available and, further upstream, on the assumptions we make about the cost function f .

2.4 Curvature properties of the cost function

In this section, we introduce the most frequent analytical properties (i.e. those on the cost function f)
encountered in the differentiable optimization framework. Our aim is to highlight their usefulness, in
particular by explaining the key role they play in the strategies developed in section 2.3.

2.4.1 Coercivity
We start this section with a reminder of the notion of coercivity that is often essential to ensure the
existence of solutions to optimization problems in a continuous landscape.

Definition 2.3. (Coercivity) Function f : H −→ R is said to be coercive if it satisfies

f(x) −→
∥x∥→+∞

+∞. (2.36)

In the field of optimization, although such a definition does not require any curvature knowledge,
it is generally coupled with continuity through the fundamental following theorem:

Theorem 2.3. (Existence of minimizers) If f is a continuous and coercive function, then the latter
admits at least one minimizer.

Proof. Several proofs of this result exist [19, 14] using classical topology arguments. We propose here
a version adapted to our framework.
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Following definition (2.36), there exists M > 0 such that f(x) ≥ f(0) for every x ∈ H satis-
fying ∥x∥ > M . In finite dimension, B(0,M), the closed ball centered at 0 with radius M , is a
compact set and thus the Weierstrass extreme value theorem [208] (f is continuous) guarantees that
infx∈B(0,M) f(x) lies in R as well as the existence of x0 ∈ B(0,M) for which f(x0) = infx∈B(0,M) f(x).
Since 0 ∈ B(0,M), we thus have, for all x ∈ H, f(x) ≥ f(x0) and x0 is a minimizer of f .

Coercivity of f is thus a sufficient condition to the feasibility of the minimization problem (2.1).
In the context of unconstrained optimization (or even more generally when the domain of study is
unbounded), there are no real alternative result of existence. Proving that (2.1) is feasible for a
non-coercive function generally requires a case-by-case approach to the function under study [11].

The notion of coercity is all the more important in convergence analysis of optimization schemes
as it helps to bridge the gap between (l, r)-descent condition (see section 2.3.2) and boundedness.

Proposition 2.3. Suppose that f is coercive and consider (xk)k∈N a sequence of HN. If the evaluations
(f(xk))k∈N converge to a finite limit, (xk)k∈N is bounded.

Proof. A proof of this result is proposed by [14] in the case where the limits of (f(xk))k∈N corresponds
to the minimal value of f . We here give another one in a slightly more general framework but with
similar arguments.

Let us assume the contrary, i.e. (xk)k∈N is unbounded; we can extract (xψ(k))k∈N ∈ HN, a subse-
quence, verifying

∥xψ(k)∥ −→
k→∞

+∞. (2.37)

Moreover, denoting f∞, the limit of sequence (f(xk))k∈N, the coercivity of f ensures the existence of
M > 0 for which any x ∈ H s.t. ∥x∥ ≥ M satisfies f(x) ≥ f∞ + 1. Especially from (2.37), there
exists K ∈ N s.t for every k ≥ K we have ∥xψ(k)∥ ≥ M and thus also f(xψ(k)) ≥ f∞ + 1. From this,
sequence (f(xk))k∈N finally cannot converge to f∞ and here lies the contradiction.

Beyond guaranteeing the existence of a solution for the global optimization problem (2.1), the notion
of coercivity generally improves the knowledge provided by the descent inequality (2.18). Typically,
keeping the same notation as in section 2.3.2 and under a simple descent condition , if f turns out
to be continuous and coercive, it admits a minimizer, (f(xk))k∈N thus converge to a finite limit (by
monotonicity) and sequence (xk)k∈N is finally bounded.

2.4.2 Lipschitz continuity of the gradient

As mentioned in subsection 2.3.2, the satisfaction of a (l, r)-descent condition for an optimization
algorithm is the first step to conduct a study of convergence. The property we present in this subsection
remains very classical in a differentiable framework and naturally promotes the existence of such a
condition for any well-built scheme.

Definition 2.4. (L-Lipschitz continuity of the gradient) Let L > 0. Function f : H −→ R is said to
be L-Lipschitz continuous gradient (or L-smooth) if

(∀x,y ∈ H) ∥∇f(x)−∇f(y)∥ ≤ ∥x− y∥. (2.38)
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More generally, f is said to be Lipschitz continuous gradient if there exists L > 0 for which f L-
Lipschitz continuous gradient.

In addition to being a sufficient condition for gradient continuity, property (2.38) leads to the
following fundamental result below, also named the descent lemma:

Proposition 2.4. (Descent lemma) If f : H −→ R is L-Lipschitz continuous gradient (L > 0), then:

(∀x,y ∈ H) f(y) ≤ f(x) + ⟨∇f(x),y − x⟩+ L

2
∥y − x∥2. (2.39)

The proof directly comes from the integral version of Taylor’s formula and can typically be found
in [19, Appendix A.24]. Proposition 2.4 applied to f , thus guarantees the existence of a simple
descent condition (see Definition 2.2) considering any sequence (xk)k∈N for which the residual quantity
⟨∇f(xk),xk+1 − xk⟩ < −(L/2)∥xk+1 − xk∥2 from a certain rank.

In such a context, the class of descent methods (introduced in section 2.2) is particularly appropriate
to the extent that the computed direction at every step already verifies (2.4). The Lipschitz continuity
of the gradient for f especially conducts to a simple descent condition as long as sequence (xk)k∈N
is generated through scheme (2.3) and (dk)k∈N, (αk)k∈N are chosen to verify the Wolfe conditions
(2.15)+(2.16) [178, Theorem 3.2]. In particular, the associated residual sequence, initially due to
Zoutendijk [250] can be defined as:

(∀k ∈ N) rZk := cos2 θk∥∇f(xk)∥2 with cos θk :=
⟨∇f(xk),dk⟩

∥∇f(xk)∥ ∥dk∥
, (2.40)

and sequence (θk)k∈N thus corresponds to those of angles between the gradient and the current direc-
tion.

2.4.3 Convexity
The notion of convexity remains one of the most essential in differentiable optimization to the extent
it allows to make a strong link between minimizers and stationary points, i.e. between solutions to
(2.1) and those of the Euler equation (2.2).

Definition 2.5. (Convexity) Function f : H −→ R is said to be convex if:

(∀x,y ∈ H)(∀t ∈ [0, 1]) f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y). (2.41)

The reason why the knowledge of a convexity property for f is crucial in solving problem (2.1) is
condensed in the next theorem.

Theorem 2.4. Assuming that f is differentiable and convex, then its set of minimizers coincides with
zer∇f , the set of its stationary points.

Theorem 2.4 therefore provides a partial reciprocal of Theorem 2.1. The latter actually guarantees
that zer∇f contains the minimizers of f while adding the convexity assumption enables to prove the
inverse inclusion. In other terms, if the convexity of f is satisfied, solving problem (2.1) becomes
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equivalent to find its stationary points. It finally follows that any sequence (xk)k∈N ∈ HN converging
to a point x∗ such that ∇f(x∗) = 0 automatically converges to a minimizer of f . More generally and
beyond our unconstrained differentiable framework, convexity is at the root of many subdomains of
optimization in general [204, 90, 172, 38].

We end this subsection by reminding the reader two characterization of convexity relative to f in
the differentiable setting:

Proposition 2.5. Assuming f differentiable, the three following statements are equivalent

(i) f is convex,

(ii) (∀x,y ∈ H) f(y) ≥ f(x) + ⟨∇f(x),y − x⟩,

(iii) (∀x,y ∈ H) ⟨∇f(y)−∇f(x),y − x⟩ ≥ 0.

Statement (ii) therefore means that any point of the graph of f is above its associated tangent
while (iii) indicates that the gradient is a monotone operator [14].

Figure 2.6: Three geometrical interpretations of the notion of convexity. The first one
states that the string connecting two points (x1, f(x1)), (x2, f(x2)) of graph(f) always
lies above the latter (Definition 2.5) The second one simply indicates that epi(f) =
{(x,y) ∈ H × R | y ≥ f(x)} (the blue domain) is a convex set; the segment associated to any
A1,A2 ∈ epi(f) is still contained in epi(f). The last one illustrates characterization (ii) from
Proposition 2.5 for which the tangent at any point x3 minorates the graph of f .

2.4.4 Strict/Strong Convexity
We end this section by introducing two additional properties which can be interpreted as specific
versions of the convexity assumption.
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Definition 2.6. (Strict and strong convexity) Function f : H → R is said to be:

(i) Strictly convex if:

(∀x,y ∈ H)(x ̸= y)(∀t ∈ (0, 1)) f(tx+ (1− t)y) < tf(x) + (1− t)f(y). (2.42)

(ii) µ-strongly convex (µ>0) if f − µ
2∥.∥

2 is convex or equivalently:

(∀x,y ∈ H)(∀t ∈ (0, 1)) f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− µt(1− t)

2
∥x− y∥2. (2.43)

In a more generic way, f is said to be strongly-convex if there exists µ > 0 for which f is
µ-strongly convex.

Strong convexity basically implies strict convexity and similarly strict convexity basically implies
convexity. The following fundamental proposition is particularly noteworthy and its proof can be found
in many optimization books as in [19, Proposition B.10]

Proposition 2.6. If f is strictly convex, f admits at most one global minimizer.

Figure 2.7: f : x ∈ R → |x| is an example of a convex but not strictly-convex function in
dimension 1. The segment connecting (x1, f(x1)), (x2, f(x2)) at the border of convex set epi(f)
is not included in the interior of the latter.

Proposition 2.6 is therefore not a guarantee for f to admit a minimizer but ensures that, if so, the
latter is necessarily unique. With f differentiable and admitting xs as a minimizer, the combination
of this property with Theorem 2.4 notably entails that zer∇f = {xs} every time we place ourselves
in a strictly-convex setting. Such a result is particularly interesting from a topological point of view
when it comes investigating the behavior of an optimization scheme. Typically, if a bounded sequence
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(xk)k∈N and has its attached gradient sequence (∇f(xk))k∈N converging to zero, then χ∞ (i.e. its set
of accumulation points) is non-empty and is included in zer∇f (Proposition 2.2 (ii)). Strong convexity
directly leading to χ∞ = {xs}, the global convergence (xk)k∈N to the (unique) minimizer of f is finally
acted.

By opposition with the Lipschitz continuous gradient property providing a second order upper-
bound for f (via Proposition 2.4), strong-convexity ensures the existence of a second order lower-bound
and even more generally, we have the following classical characterizations

Proposition 2.7. With f differentiable, the three following statements are equivalent

(i) f is µ-strongly convex,

(ii) (∀x,y ∈ H) f(y) ≥ f(x) + ⟨∇f(x),y − x⟩+ µ
2∥y − x∥2,

(iii) (∀x,y ∈ H) ⟨∇f(x)−∇f(y),x− y⟩ ≥ µ∥y − x∥2.

While strict convexity allows to make relevant topological shortcuts and to easily conclude on
the global convergence of an optimization algorithm, strong convexity allows to rule a more precise
convergence analysis thanks to the attached µ parameter [32, 178]. Strong convexity also has the
advantage of ensuring the coercivity of f as a direct corollary of Proposition 2.7 (ii).

Figure 2.8: A dimension 1 example of a coercive and strictly but non-strongly-convex function
f : x ∈ R 7→ −x3 if x < 0, x

√
x otherwise . The non-strongly convexity basically comes from

the fact that f(x)/x2 −→
x→+∞

0.

Geometrically, strongly convex functions are ideal as their curvatures force their unique minimizer
to be an attractive point for any decreasing process. We can reason by analogy by considering a
minimization algorithm such as a ball moving on a gutter (i.e. the graph of the function) with the
form of a pit. Regardless of the starting point of the ball, the latter will always be attracted to the
equilibrium point, i.e. the bottom of the gutter or, mathematically speaking, the minimizer.

42



In view of the potential theoretical guarantees that may result, deciding on the strict/strong con-
vexity or convexity in general, of the problem to be studied, is an essential step before any recourse to
an optimization algorithm. However, the convexity property does not concern the vast majority of the
cost functions encountered. In such a case, deeper theoretical investigations, require the use of specific
tools, still under development at the present time and which are the subject of the last section of this
chapter.

2.5 Dealing with the non-convex world in differentiable
optimization

Our goal is here to introduce to the reader the fundamental theory we use in Chapter 4, 5 and 8 to deal
with optimization problems in a non-convex setting. Historically, the notion of quasi-convexity can be
considered as a natural weakening of those of convexity but still remain restrictive, especially regarding
the number and the nature of the stationary points it imposes for the cost function f . Nowadays, the
most successful theory, at the heart of this section, which is still being improved, is based on the works
successively developed by S. Łojasiewicz and K. Kurdyka.

2.5.1 Convex setting limitations

2.5.1.1 On the set of stationary points in general

We previoulsy enhanced the interest of the notion of convexity in differentiable optimization for which
solving problem (2.1) amounts to finding the stationary points. In the case where such assumption is
not verified, it is therefore legitimate to wander what will happen to the relationship between these
two problems, i.e. between minimizers and stationary points.

To do so, we first need to remind the notion of local extremum.

Definition 2.7. (Local extremum) A point x∗ ∈ H is local extremum of f if there exists a neighborhood
V of x∗ for which one of the two conditions is satisfied

(i) (∀x ∈ V ) f(x∗) ≤ f(x),

(ii) (∀x ∈ V ) f(x∗) ≥ f(x).

More specifically if x∗ verifies (i) (resp. (ii)), the latter is said to be a local minimizer of f (resp. a
local maximizer of f).

In particular, any minimizer of f is a local minimizer considering any neighborhood. The principle
obstacle due to the lack of convexity, relies on the following theorem.

Theorem 2.5. (First order optimality condition 2) Assuming only that f is differentiable, then its
local extrema are also its stationary points, i.e. they verify (2.2).
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In a non-convex setting, the characterization of the minimizers of f via the stationary points is
therefore lost. On an algorithmic aspect, and in a very pessimistic situation, a sequence (xk)k∈N con-
verging to a stationary point of f is potentially prone to converge to a local maximum. However, such
a situation generally cannot be met for a well-built algorithm, as stated in the following proposition.

Proposition 2.8. Let (xk)k∈N be a sequence of points from H for which the evaluations (f(xk))k∈N
are strictly decreasing. If (xk)k∈N converges to a limit, the latter is not a local maximizer.

Proof. Again, we reason by contradiction assuming that x∗, the limit of (xk)k∈N, is a local maximizer;
there exits r > 0 s.t. f(x∗) ≥ f(x) for any x ∈ H satisfying ∥x−x∗∥ ≤ r. On the one hand, following
the definition of the limit, there exists K ∈ N for which ∥xK − x∗∥ ≤ r. On the other hand, the
continuity of f ensures that (f(xk))k∈N converges to f(x∗) and the strict decay of the latter sequence
finally leads to f(x∗) < f(xK). With ∥xK −x∗∥ ≤ r, this finally contradicts the initial statement.

Proposition 2.8 thus ensures that any algorithm satisfying a simple descent condition (with a pos-
itive residual sequence (rk)k∈N) cannot converge to a local maximizer. The most challenging situation
finally remains the one where the limit point, cancelling the gradient, is a saddle point, i.e. a stationary
point that is not a local extrema (Theorem 2.5 only ensuring that the set of local extrema is included
in those of stationary points).

2.5.1.2 Quasi-convexity

As we have already seen, any local minimizer is contained in the set of stationary point (Theorem
2.5). Then, in a convex framework, for which the latter matches with those of minimizers, it thus
follows that any local minimizer is actually a minimizer. The concept of quasi-convexity we briefly
introduce in this subsection allows to preserve such a property in a less strict framework. Several
possible definitions can be found in the literature [190, 114], we here give one of a geometrical nature.

Definition 2.8. (Quasi-convexity) f is said to be quasi-convex if, for all c ∈ R, the sub-level set
{x ∈ H | f(x) ≤ c} is convex.

Especially, it remains easy to verify that the convexity of f implies its quasi-convexity. The
advantage of such a notion relies on the fact that it does not break the connection between local
minimizers and minimizers.

Proposition 2.9 ([190]). If f is quasi-convex, each of its local minimizers is a minimizer whenever f
is non-constant on all its associated neighborhoods.

This characterization of quasi-convexity is particularly useful when the graph of f has neither
a plateau nor a saddle point. Then, any well-built algorithm (in the sense of Proposition 2.8) which
globally converges has its limit point as a solution to the initial problem (2.1). However, quasi-convexity
also reduces the nature of the points that zer∇ may contain in the following way:

Proposition 2.10. If f is quasi-convex, its set of stationary points zer∇f does not contain any strict
local maximizer, i.e. a point x∗ ∈ H for which inequality (ii) from Definition 2.7 is strict as soon as
x ∈ V − {x∗}.
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Proof. We reason by contradiction another time by assuming the existence of (x∗, r) ∈ H as well
as r > 0 for which every x ∈ B(x∗, r) − {x∗} verifies f(x∗) > f(x). Let us consider the continuous
function φ : t ∈ [−1, 1] 7→ f(x∗+tr) with φ(−1) ≤ φ(1) to set the ideas, the two cases being symmetric.
Since x∗+ tr ∈ B(x∗, r) for all t ∈ [−1, 1], φ admits a unique maximizer in t = 0 and the intermediate
value theorem then states the existence of t0 ∈ [−1, 0] s.t. φ(t0) = φ(1) (also because φ(1) ≥ φ(−1)).
Vectors x∗ + t0r and x∗ + r thus belong to {x ∈ H | f(x) ≤ φ(1)} and, due to the quasi-convexity
of f , so it is for x∗ = λ(x∗ + t0r) + (1− λ) (x∗ + r) with λ = (1 − t0)

−1 ∈ [0, 1]. It follows that
φ(0)(= f(x∗)) ≤ φ(1) which contradicts the fact that 0 is the unique maximizer of φ.

Figure 2.9: A classical example of a quasi-convex but non-convex function in dimension 1; the
level sets of f : x →

√
|x|2 are all convex while its epigraph (i.e. the domain above graph(f) is

not a convex set.

2.5.1.3 The challenge imposed by the very generic non-convex framework

Mild assumptions on f such as coercivity and Lipschitz continuity gradient, promote the existence
of a sequence (xk)k∈N able to ensure a (l, r)-descent condition (see Definition 2.2) and then to be
bounded (see Proposition 2.3). However, linking the consequences of the descent condition and global
convergence remains a considerable challenge, when considering a generic framework. Although the
analysis of the residual (rk)k∈N tends to promote preliminary interesting links between accumulations
points of (xk)k∈N and stationary points of f (see proposition 2.2), immediate convergence guarantees
are generally only accessible considering a convex or, at least, a quasi-convex setting for which the
structure of zer∇f possesses strong properties (absence of bumps, reduction to a singleton in the
strictly convex case etc). In general, χ∞ possesses a very complex structure and the only easily
accessible guarantee, from a simple descent condition, is based on the next proposition.
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Proposition 2.11. Assume that (xk)k∈N is such that the evaluations (f(xk))k∈N converges to a finite
limit, then f is constant on χ∞.

Proof. The arguments invoked are closed to those used in the proof of Proposition 2.2 (iii). The
result is basically true by convention if χ∞ is empty. Otherwise, for any x∞ ∈ χ∞, the convergence of
(f(xk))k∈N and f continuity simply ensure that f(x∞) = f∞, denoting f∞ the limit of (f(xk))k∈N.

2.5.2 Kurdyka-Łojasiewicz theory

2.5.2.1 Initial approach

An alternative strategy to obtain the global convergence of a sequence (xk)k∈N consists in proving that
the latter is Cauchy, using the finiteness of its length i.e.

+∞∑
k=0

∥xk+1 − xk∥ < +∞. (2.44)

Of course, the limiting point, at the origin of the theory we introduce here, lies in the fact that (xk)k∈N
is not ensured to satisfy (2.44) even though it turns out to be bounded and to satisfy a (l, r)-descent
condition. Instead of considering a theoretical counter-example, we prefer introducing to the reader
a geometrical situation for which such a behavior cannot be verified. To do so, let us start from the
simple example of steepest descent scheme we presented in section 2.2.1.1. One possible interpretation
that we have not discussed so far is related to the proximity of our field with dynamical systems theory.
Every sequence (xk)k∈N generated using the steepest gradient scheme is actually none other than the
discrete analogue of a trajectory, (x(t))t≥0, solution of the gradient flow equation

x(0) ∈ H,
(∀t > 0) ẋ(t) = −∇f(x(t)),

and thus remaining orthogonal to any level set of f encountered. In particular, there exist non-trivial
categories of differentiable functions f for which (f(x(t)))t≥0 is decreasing and (x(t))t≥0 bounded but
without converging. The most famous one, represented in figure 2.10, is the "Mexican hat" proposed
by [132, 3]. Level sets of f are such that (x(t))t≥0 describes a spiral shape starting from x(0) and
revolving the unit circle without reaching it.

The goal of this subsection is thus to introduce some analytical tools, historically developed in
[159, 141], able to promote the global convergence of a sequence (xk)k∈N under mild assumptions as
those of (l, r)-descent condition or boundedness.

2.5.2.2 Łojasiewicz inequality

Keeping the analogy with the study of gradient flow problem, proving (2.44) for a generic (xk)k∈N
generated through steepest descent, amounts to showing, in the continuous case, that the arc associated
to (x(t))t≥0 is finite, i.e. ∫ +∞

0
∥ẋ(t)∥ dt < +∞.
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In such a context, a fundamental tool, especially satisfied, in the real case, for any analytical function,
relies on an identity initially proposed by Łojasiewicz in the early 60s, [159]. It can be stated as follows:

Definition 2.9. (Łojasiewicz inequality) Let x∗ be a stationary point of f . f verifies the Łojasiewicz
(L)-inequality (at x∗) if there exist θ ∈ (0, 1/2], κ > 0 and a neighborhood V of x∗ s.t. identity
κ∥∇f(x)∥ ≥ |f(x)− f(x∗)|1−θ is satisfied for any x ∈ V .

Regarding our discussion in section 2.3.3, this latter property is particularly well-suited to our
topological framework. Using a few operations to relate f to l, the Lyapunov function, a (l, r)-descent
condition is generally enough to prove the convergence of (f(xk))k∈N to a finite limit and also, in many
scenarios, the existence of a converging subsequence

(
xψ(k)

)
k∈N for which the gradient tends to zero

(e.g. through Proposition 2.2 (iii)). As a consequence, if (L)-inequality proves be to verified on the
set zer∇f , those of stationary points of f , it follows that the identity attached to Definition 2.9 will
be satisfied with an infinite number of iterates of (xk)k∈N. In such a situation, (L)-inequality thus
indicates that the decay of the gradient subsequence

(
∇f(xψ(k))

)
k∈N will remain "moderate" with

those of
(
f(xψ(k))

)
k∈N. Constants (θ, κ) acting as two control parameters.

Following the startegy adopted in [129, Theorem 1.1], the usefulness of (L)-inequality in proving
the finite length of (x(t))t≥0 lies in the fact that it allows to upper-bound its associated arc by those
of
(
fθ(x(t))

)
t≥0

every time the same (x(t))t≥0 is a decreasing and convergent process. The example of
the gradient flow was notably covered in [142, 3]. It is therefore advisable to adapt such an approach
to a discrete framework with the aim of obtaining (2.44) and finally a global convergence result.

Figure 2.10: An example of function f , the Mexican hat, taken from [3] (left figure), whose
associated gradient flow x(t)t≥0 satisfies ∇f(x(t)) −→

t→+∞
0 but with a non-finite curvature

length. Every orbit of x(t)t≥0 spinning infinitely around the unit circle (right figure).

2.5.2.3 The Kurdyka extension

Although, (L)-inequality does not possess a complex structure, it remains quite restrictive on the
smoothness of f as it generally assumes that the latter is analytic. In response to this obstacle, Kurdyka
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in [141] was able to propose an alternative identity satisfied by a much larger class of functions.

Definition 2.10. (Kurdyka-Łojasiewicz property) f verifies the Kurdyka-Łojasiewicz KL-property at
x̂ ∈ H if there exist ζ ∈ (0,+∞], V a neighborhood of x̂ and φ : [0, ζ) → [0,+∞) s.t.

(i) φ(0) = 0,

(ii) φ is continuously differentiable on (0, ζ) and continuous at 0,

(iii) φ is a concave function on [0, ζ) for which φ′(u) > 0 for all u ∈ (0, ζ),

(iv) ∥∇f(x)∥φ′ (f(x)− f(x̂)) ≥ 1 for any x ∈ V satisfying f(x̂) < f(x) < f(x̂) + ζ.

More specifically, considering E ⊂ H, f is said to satisfy the KL-property on E, if f satisfies the
KL-property at every point of E.

KL-property is of local nature but tends to generalize the initial version of Łojasiewicz. Identity
of Definition 2.9 can actually be recovered considering the situation where E = {x∗} for x∗ ∈ zer∇f ,
ζ = +∞ and φ : u ∈ [0,+∞) 7→ κθ−1uθ. In his very generic framework [141], Kurdyka managed to
show that KL-property is satisfied for any function f definable through an o-minimal structure [229]
including, in the real case (i.e. H = RN (N ≥ 1)), those which are semi-algebraic. The definition we
propose is not the original of [73] but rather a characterization due to [21].

Definition 2.11. (Real semi-algebraicity) Considering H = RN (N ≥ 1), function f : RN → R is said
to be (real) semi-algebraic if its graph can be expressed as a finite combination of unions/intersections
formed by polynomial domains, i.e. there exist I, J ≥ 1 and a family {pi,j , qi,j | 1 ≤ i ≤ I, 1 ≤ j ≤ J}
of 2× I × J polynomials defined on RN+1 for which

graph(f) =
{
(x, f(x)) | x ∈ RN

}
=

I⋃
i=1

J⋂
j=1

{
x ∈ RN+1 | pi,j(x) = 0, qi,j(x) > 0

}
. (2.45)

In particular, any set of this form is said to be semi-algebraic.

Since the class of semi-algebraic sets is stable considering the most usual operations [21] (finite
intersection or union, complement, Cartesian product and orthogonal projection), semi-algebraic func-
tions logically possess similar advantages. More specifically, they form a ring (regarding operation
+,×) endowed with the composition stability property [72]. In addition, the attached function in
KL-property can be taken under the form of φ : u ∈ (0, ζ) 7→ cu1−θ where θ lies in (0, 1) and c > 0.
Nevertheless, the estimation of exponent θ remains a difficult challenge which hardly depends on the
involved function [149, 241].

2.5.2.4 Back to global convergence

By even adapting the Kurdyka-Łojasiewicz theory to a non-differentiable framework, H. Attouch and
J. Bolte were the first to prove the global convergence of some optimization schemes in non-convex
settings using finite length arguments [8, 9]. As such, the exploitation of KL-property as introduced
in Definition 2.10 is not easy to handle, due to its extreme local nature. Parameter ζ and function
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φ actually depend on the point we decide to stand and typically, in a sequential context for which
(f(xk))k∈N converges, we expect to have a different KL-inequality for each accumulation point of
(xk)k∈N. One of the major contribution of [8, 27] in such a context relies on the construction of a so-
call uniformization theorem derived from Definition 2.10, allowing a choice of ζ and φ which remains
uniform for a specific category of H subsets. We shall retain the general theorem from [27]:

Theorem 2.6. (Uniformized KL property) Let C be a non-empty compact set of H. If f is constant
on C and satisfies the KL property on this same subset, then there exists (ζ, ε) ∈ (0,+∞)2 and φ :

[0, ζ) → R+ satisfying i), ii) and iii) of Definition 2.10 s.t. ∥∇f(x)∥φ′ (f(x)− f(x)) ≥ 1 for any
(x,x) ∈ H × C satisfying dist(x, C) < ε and f(x) < f(x) < f(x) + ζ.

Theorem 2.6 thus promotes the existence of uniform KL parameters over a given subset C as soon
as the latter is compact and with a constant image by f . In the context of building global convergent
algorithms, the set of accumulation point χ∞ of a bounded sequence (xk)k∈N, for which (f(xk))k∈N
converges to a finite limit, easily verifies such conditions (see Proposition 2.2). From this, a strategy to
obtain the global convergence of (xk)k∈N can be summarized as follows: using the concavity of φ and
assuming that the descent inequality of (xk)k∈N is permissive enough, Theorem 2.6 allows to majorize
the gradient sequence (∥∇f(xk)∥)k∈N or even ideally (∥xk+1 − xk∥)k∈N by those of the difference
(lk+1 − lk)k∈N keeping the notations of Definition 2.2. We here propose a short application example to
clarify our point and give to the reader an taste of the KL-based resolution strategy.

Example 2.2. Let us consider a sequence (xk)k∈N ∈ HN verifying a simple descent condition starting
from a rank k0 ∈ N and whose residual can be chosen of the form of (2.25) with n = 2, i.e. there exists
a positive sequence (αk) s.t.

(∀k ≥ k0) f(xk+1) ≤ f(xk)− αk∥∇f(xk)∥2. (2.46)

Assuming f is coercive, (f(xk))k∈N converges to a finite limit f∞ ∈ R while (xk)k∈N is basically
bounded (Proposition 2.3) and as seen in Proposition 2.11, f remains constant on χ∞. Moreover, the
boundedness of (xk)k∈N also ensures χ∞ is a non-empty compact set for which sequence (dist(xk, C))k∈N
converges zero (Proposition 2.2). Let us then consider two cases.

• If f(xk) = f∞ for a certain K ≥ k0, descent inequality forces (f(xk))k∈N to be equal to f∞
starting from this same rank and positivity of (αk)k∈N ensures that ∇f(xk) = 0 for any k ≥ K

which roughly leads to
∑+∞

k=0 αk∥∇f(xk)∥ < +∞.

• In the opposite case, i.e. f(xk) > f∞ for any k ≥ k0, Theorem 2.6 can be applied considering
C = χ∞ and

KC := min {l ≥ k0 | ∀k ≥ l, f∞ < f(xk) < f∞ + ζ, d(xk, C) < ε} , (2.47)

is finite denoting ζ, ε, φ the attached KL parameters. We therefore have

(∀k ≥ KC) ∥∇f(xk)∥φ′ (f(xk)− f∞) ≥ 1. (2.48)

The next keypoint of the proof is then based on φ concavity; as a differentiable function on (0, ζ),
Proposition 2.5 ensures that φ verifies:

(∀k ≥ KC) φ(f(xk)− f∞)− φ(f(xk+1)− f∞) ≥ φ′ (f(xk)− f∞) (f(xk)− f(xk+1)) (2.49)
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and due to descent inequality (2.46), we also deduce that

(∀k ≥ KC) φ(f(xk)− f∞)− φ(f(xk+1)− f∞) ≥ αkφ
′ (f(xk)− f∞) ∥∇f(xk)∥2. (2.50)

The use the uniform KL inequality (2.48) finally leads to

(∀k ≥ KC) φ(f(xk+1)− f∞)− φ(f(xk)− f∞) ≥ αk∥∇f(xk)∥. (2.51)

The left term of (2.51) being telescopic with (f(xk))k∈N converging to f∞, its attached sum
(starting from KC) is finite and equal to φ(f(xKC

)−f∞)−φ(0)(= φ(f(xKC
)−f∞)due to φ(0) =

0). Since every term involved in (2.51) is positive, we even obtain the existence of quantity∑+∞
k=KC

αk∥∇f(xk)∥ with
∑+∞

k=KC
αk∥∇f(xk)∥ ≤ φ(f(x0) − f∞) and so again we deduce that∑+∞

k=0 αk∥∇f(xk)∥ < +∞.

In both cases, we finally concluded that sequence (αk∥∇f(xk)∥)k∈N is summable. Obtaining more
specifically (2.44) depends on the initial structure of the adopted scheme. Considering the steepest
descent methods (see 2.2.1.1), (2.44) is basically satisfied by (xk)k∈N since, independently of (αk)k∈N
(in that case this corresponds to the stepsize), we simply have (αk∥∇f(xk)∥)k∈N = (∥xk+1 − xk∥)k∈N.

2.6 Conclusion

Throughout this chapter, we have provided an introduction to the field of unconstrained differentiable
optimization that we hope will be as didactic as possible. Although sections 2.2 and 2.4 introduce very
classical notions, those of 2.3 and 2.5 are generally less encountered and a good understanding of the
different tools and strategies exposed is necessary to fully grasp the interest of the different works we
present in the rest of this manuscript. All the theoretical reasoning in deterministic terms is actually
first based on the results of section 2.3 and then refined by applying those of section 2.5. The notions
recalled in sections 2.2 and 2.3 nevertheless remain essential to set the scene for Chapter 3, dedicated
to Quadratic Majorization-Minimization methods.
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3.1 Outlines

The goal of this chapter is to introduce an important class of differentiable methods, generated from
the Quadratic Majorization-Minimization (QMM) schemes and at the root of this thesis. Although the
latter is related to gradient descent approaches, our presentation differs from the one of Chapter 2 as
we first focus, in section 3.2, on the so-called Majorization-Minimization (MM) principle. Section 3.3
then introduces the QMM class of methods whose updates rules are based on the existence of specific
surrogates of f : H → R, the cost function, we call quadratic-tangent majorization approximations.
The usual construction strategies of such objects are detailed in section 3.4. The update rules of
basic QMM schemes involving too costly operations in high dimension, it is generally appropriate to
incorporate additional steps into the resulting algorithms for the purposes of complexity reduction. In
such a context and in section 3.5, we speak more specifically about subspaces steps (or techniques), the
most widespread in our field nowadays. Section 3.6 aims to highlight the robustness of QMM schemes,
with subspaces incorporations or not, by showing their ability to verify a simple descent condition. On
the one hand, it allows us to make the link with the theoretical notions discussed in Chapter 2, which we
use throughout this manuscript. On the other hand, it provides a clear mathematical background for
our further theoretical analysis in Chapter 4,5 and 7. Section 3.7 finally gives few words of conclusion.

3.2 Motivations

As already discussed, working in a differentiable setting does not necessary imply that the minimiza-
tion of f is easy. When f possesses a complex structure, a reasonable strategy consists in studying
an approximation of it, constructed in regards with the available information. In such a context,
Majoration-Minimization (MM) principle assumes, at each point x ∈ H, the existence of a surro-
gate application having a graph always above that of f , and merged with this latter at x. This is
mathematically referred to as tangent majorization approximation of f at point x.

Definition 3.1. (Tangent majorization approximation) A bi-component function h : H2 → H is said
to be a tangent majorization approximation (or surrogate) (of f on H) if the two following conditions
are verified:

(∀(x,y) ∈ H2)

{
f(y) ≤ h(y,x),

f(x) = h(x,x).
(3.1)

The next step consists in building a sequence (xk)k∈N whose updates simply relies on successive
minimizations of h at current iterates:

x0 ∈ H,
(∀k ∈ N) xk+1 ∈ argmin

x∈H
h(x,xk). (3.2)

Implicitly, the tangent majorization approximation h should remain relatively easy to handle. Oth-
erwise, the use of an approximation as structurally complex as the original function would be of low
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interest. The construction of an algorithm based on the minimization of successive majorization sur-
rogates was historically proposed in [181]. However, the article that popularised such an approach
is probably [81]. The latter proposed a new statistical method, known as Expectation-Maximization
(EM), to deal with robust parameters estimation, when considering incomplete observation data. Ex-
plicit denomination (3.2) was formulated in the early 2000s in [125, 144].

As such, update rule (3.2) necessary leads to the decay of the evaluations of the iterates, the tangent
majorization behavior of h, (Definition 3.1) ensuring that

(∀k ∈ N) f(xk+1) ≤ h(xk+1,xk) ≤ h(xk,xk) = f(xk).

The resulting scheme has therefore the advantage of naturally possessing a certain stability when
minimizing the differentiable function f . Indeed, (xk)k∈N follows a simple descent condition in every
situation (at worst case with a zero residual sequence). Convergence and stability of scheme (3.2) have
notably been investigated in [127], considering generic tangent majorization approximations.

As mentioned, to build a relevant update rule, it becomes necessary to assemble tangent majoriza-
tion approximations that are also relatively easy to minimize. More specifically, we will see in the next
section that the class of quadratic functions is a good candidate to meet such a requirement.

Figure 3.1: A simple graphical illustration of MM principle. Here we consider a non-convex
fonction possessing a local minimizer x∗. For a well-built tangent majorization approximation
of f , the MM sequence (xk)k∈N is expected to converge to x∗.

3.3 Quadratic Majorization-Minimization approach

Similarly with second degree polynomials in real analysis, quadratic functions are fundamental tools
in differentiable optimization. They appear implicitly in a large number of minimization methods.
The use of quadratic functions to build tangent majorization approximations gave birth to a specific
version, known as quadratic, of the MM algorithm. This approach is used in a majority of situations
due to its simplicity and efficiency.
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3.3.1 Quadratic optimization reminder

Before going further, we need to introduce few useful notations we use throughout this chapter.

We denote by S(H), the set of (bounded) self-adjoint linear operators of H and S(H)∗ = S(H)−{0}.
S++(H) then corresponds to the set of elements of S(H) that are definite positive. In such a case, we
remind that for all M ∈ S++(H), λmin(M) and λmax(M), the smallest and biggest eigenvalues of M ,
verify λmin(M) > 0 and λmin(M)∥x∥2 ≤ ⟨Mx,x⟩ ≤ λmax(M)∥x∥2 for any x ∈ H. More specifically,
a mapping A : H → S++(H) is said to be uniformly-bounded if there exist µ, µ ∈ (0,+∞) for which
inequalities µ∥y∥2 ≤ ⟨A(x)y,y⟩ ≤ µ∥y∥2 are satisfied for any x,y ∈ H.

Definition 3.2. ((M , b, c)-Quadratic function) Let M ∈ S∗(H), b ∈ H and c ∈ R. A function
q : x ∈ H → R is said to be (M , b, c)-quadratic (on H) if it can be written as:

(∀x ∈ H) q(x) =
1

2
⟨Mx,x⟩ − ⟨b,x⟩+ c. (3.3)

More generally, q is said to be quadratic if there exists (M , b, c) ∈ S∗(H) × H × R for which q is
(M , b, c)-quadratic.

The advantage of such functions lies in simple form for which the associated operator M concen-
trates the curvature information:

Proposition 3.1. Let (M , b, c) ∈ S∗(H) × H × R and q : H → R be a (M , b, c)-quadratic function
(on H):

(i) q is convex (resp. strictly convex) if and only if M is positive (resp. definite positive).

(ii) If M is definite positive, q is coercive, M is invertible and q admits M−1b as unique minimizer.

Proof. These results are classical and their respective proofs can easily be found in a majority of
differentiable optimization courses. Here is a reminder.

(i) q is differentiable as a polynomial function with gradient ∇q : x ∈ H 7→ Mx− b. Proposition
2.5 (iii) then means that q is convex if and only if ⟨M(x − y),x − y⟩ ≥ 0 for all x,y ∈ H which is
equivalent for M to be positive. The same reasoning applies for the strictly convex case.

(ii) If M is definite positive, denoting λmin(M) its smallest eigenvalue, we have λmin(M) > 0 and
then Cauchy-Schwarz inequality leads to

(∀x ∈ H) q(x) ≥ λmin(M)∥x∥2 − ∥b∥∥x∥+ c.

λmin(M) positivity directly ensures that q(x) −→
∥x∥→+∞

+∞ and hence q coercivity. According to (i),

function is also a strictly convex and therefore admits a unique minimizer x∗ which is also its unique
stationary point i.e. Mx∗ − b = 0 or, equivalently, x∗ = M−1b using M invertibility.
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3.3.2 Quadratic MM (QMM) scheme
The great strength of quadratic functions lies in their omnipresence in the interpretation of gradient-
descent approaches. As Example 3.1 below highlights, any well-conditioned scheme of the form of (2.3)
can be interpreted as the minimization of successive quadratic functions whose order 0 and 1 terms
coincide with the first order Taylor expansion of f around the current iterate. More generally, the
approach based on quadratic approximations tends to promote monotonicity of the resulting process
[24] and may easily lead to simple descent conditions (typically as those of Zoutendijk mentioned in
section 2.4.2).

Example 3.1. Let us consider (Hk)k∈N a family of S++(H). As a consequence of Proposition 3.1, the
update of any sequence (xk)k∈N generated from a descent scheme (2.3) (see section 2.2), whose descent
directions are (dk)k∈N := (−Hk∇f(xk))k∈N, can be rewritten, using Proposition 3.1 for all k ∈ N, as

xk+1 − xk = −αkHk∇f(xk) = argmin
x∈H

qk(x− xk),

where qk is ((αkHk)
−1 ,∇f(xk), f(xk))-quadratic, i.e.

(∀x ∈ H) qk(x) = f(xk) + ⟨∇f(xk),x⟩+
1

2
⟨α−1

k H−1
k ,x⟩.

In a similar way, for what we are interested in next, one can refine the notion of tangent majorization
approximation (see section 3.2) within a quadratic setting.

Definition 3.3. (A-quadratic tangent majorization approximation). Let A : H → S++(H) be a
uniformly-bounded mapping. A tangent majorization approximation hq : H2 → H (of f on H) is said
to be an A-quadratic tangent majorization approximation (or surrogate) (of f on H) if for all x ∈ H,
function y ∈ H 7→ hq(x+ y,x) is (A(x),∇f(x), f(x))-quadratic, i.e.

(∀x,y ∈ H) f(y) ≤ hq(y,x) = f(x) + ⟨∇f(x),y − x⟩+ 1

2
⟨A(x)(y − x),y − x⟩. (3.4)

• More generally, f is said to be quadratic tangent majorizable if there exists a mapping A : H →
S++(H) for which f admits an A-quadratic tangent majorization approximation.

• A uniformly-bounded mapping A : H → S++(H) for which f possesses an A-quadratic tangent
majorization approximation is said to be a majorization mapping (for f).

This new class of quadratic surrogates thus induces a specific MM scheme that we name Quadratic
MM (QMM), relying on the existence of a majorization mapping A : H → S++(H) for f . According to
Proposition 3.1 (ii), the general update formula (3.2), in that case, can be rewritten under a closed-form
expression as

(∀k ∈ N) xk+1 = argmin
x∈H

hq(x,xk) = xk −A−1
k ∇f(xk), (3.5)

where Ak := A(xk).

Update rule (3.5) can be intrepreted as an alternative descent scheme for which directions (dk)k∈N
are taken as dk = −A−1

k ∇f(xk) for all k ∈ N, and stepsize is fixed to one. Contrary to the class
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of Quasi-Newton type updates, it is not required for sequence (Ak)k∈N to accurately account for
the second-order information of f in the neighborhood of the current iterate. As a majorization
mapping, the primary role of A always consists in preserving the majorization inequality (3.4) and
thus guaranting a theoretical stability through (f(xk))k∈N decreasing (see subsection 3.2). As we
will see in the next section, a large choice of majorization mappings is generally possible and even
desired to take A as accurate as possible so that the curvature to the associated surrogate at stake
hq(.,xk) (k ∈ N) remains closed to that of f .

3.4 Majorization mappings construction strategies

In this section, we present a range of different analytical strategies for the explicit construction of
quadratic tangent majorization approximations.

3.4.1 Existence results
As such, the possibility or not of constructing quadratic tangent majorization approximations for a
given f , remains the first factor limiting the use of QMM approaches. Nevertheless, the existence of
such approximations is ensured under mild assumptions, typically the Lipschitz continuous gradient
property, on the cost function.

Proposition 3.2. If f is L-Lipschitz continuous gradient, A : x ∈ H 7→ LI ∈ S++(H) is a majoriza-
tion mapping for f .

Proof. This result is a straightforward consequence of descent lemma (see Proposition 2.4). The fact
that f is L-Lipschitz gradient continuous leads to

(∀x,y ∈ H) f(y) ≤ f(x) + ⟨∇f(x),y − x⟩+ L

2
∥x− y∥2. (3.6)

i.e. f admits a (LI,∇f(x), f(x))-quadratic tangent majorization approximation at every x ∈ H,
which directly ends the proof.

More generally, there exists an analytic characterization of functions possessing a majorization
mapping.

Proposition 3.3. The two following items are equivalent:

(i) There exists β > 0 s.t. ⟨∇f(y)−∇f(x),y − x⟩ ≤ β∥y − x∥2 for all x,y ∈ H,

(ii) f is quadratic tangent majorizable.

Proof. Implication (i) =⇒ (ii) is a direct consequence of [127, Lemma 3.3 (a)]. This simply implies
that the constant mapping x ∈ H 7→ βI is a majorization one for f . If (ii) holds then there exists a
majorization mapping of f , A and µ > 0 such that ⟨A(x)y,y⟩ ≤ µ∥y∥2 for any x,y ∈ H. Let us now
fix x,y two vectors of H. Using the quadratic majorization property (3.4), we then deduce that

f(y) ≤ f(x) + ⟨∇f(x),y−x⟩+ 1

2
⟨A(x)(y−x),y−x⟩ ≤ f(x) + ⟨∇f(x),y−x⟩+ µ

2
∥y−x∥2 (3.7)
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and symmetrically

f(x) ≤ f(y) + ⟨∇f(y),x− y⟩+ µ

2
∥y − x∥2. (3.8)

Summing (3.7) with (3.8) directly leads to

⟨∇f(y)−∇f(x),y − x⟩ ≤ µ∥y − x∥2. (3.9)

Relation (3.9) being verified for generics x,y ∈ H, (i) is thus obtained simply taking β = µ.

As condition (i) is satisfied by any Lipschitz continuous gradient function, the latter characterization
can be seen as an extension of the existence result that Proposition 3.2 guarantees. Beyond ensuring
the existence of majorization mappings for a certain class of differentiable functions. Proposition 3.3
conversely can be used to identify those which do not possess any.

Example 3.2. Let us consider f : x ∈ H 7→ ∥x∥2r where r > 1 and whose gradient is ∇f : x ∈ H 7→
2r∥x∥2r−2x. f does not satisfy (i) of Proposition 3.3 and thus is not quadratic tangent majorizable.

Otherwise, there exists β > 0 for which for any x ∈ H, x ̸= 0, taking y = 0, ⟨∇f(x),x⟩ ≤ β∥x∥2
i.e. 2r∥x∥2r ≤ β∥x∥2. This conducts to ∥x∥2r−2 ≤ (2r)−1β for all x ∈ H, and thus x 7→ ∥x∥2r−2 is a
bounded function, hence the contradiction with r > 1.

3.4.2 A key construction lemma

Taking A = LI as the majorization mapping for f (L the Lipschitz constant), the associated scheme
(3.5) becomes equivalent to the steepest descent considering L−1 as constant stepsize. Although such
a choice always guarantees a certain stability, it remains quite pessimistic and tends to generate poor
approximations of f taking only very little account of its curvature properties. Wherever possible, a
most appropriate choice would consist in taking A : x 7→ ∇f2(x). The resulting quadratic tangent
majorization surrogates involved in the algorithm then would exactly match with the second order
Taylor expansion of f at the current iterates. Such a framework remains quite restrictive and the
latter point especially generally implies for f to be strongly convex. However, there exists intermediary
approaches which typically promotes the existence of non-constant majorization mappings without
making use of the Lipschitz constant, that we describe below.

Lemma 3.1. Let u : t ∈ R 7→ R be a differentiable function satisfying the following conditions,

(i) u is even,

(ii) u is increasing on [0,+∞),

(iii) u(
√
.) is concave on [0,+∞),

(iv) Function w : t ∈ (0,+∞) 7→ u′(t)
t is positive and admits a positive continuous extension to 0.

Then, the following inequality holds

(∀(s, t) ∈ R2) u(t) ≤ u(s) + u′(s)(t− s) +
1

2
w(|s|)(t− s)2 (3.10)

and s ∈ R 7→ w(|s|) ∈ R is a majorization mapping of u if w is uniformly bounded on [0,+∞).
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Proof. Set s ∈ R∗ and t ∈ R. Function u(√.) is derivable on (0,+∞) with u′(√.)/(2√.) as derivative.
We then apply (iii) considering point t2 and s2. The characterization of concavity in the differentiable
case (Proposition 2.5(ii)), directly leads to:

u
(√

t2
)
≤ u

(√
s2
)
+
u′
(√

s2
)

2
√
s2

(t2 − s2). (3.11)

Since u is even, we have u
(√

t2
)
= u(|t|) = u(t), u

(√
s2
)
= u(|s|) = u(s). Then, introducing function

w, relation (3.11) can be rewritten as

u (t) ≤ u (s) +
w(|s|)

2
(t2 − s2), (3.12)

or equivalently

u (t) ≤ u (s)+u′(s)(t−s)+ w(|s|)
2

(t−s)2+
(
w(|s|)

2
(t2 − s2)− u′(s)(t− s)− w(|s|)

2
(t− s)2

)
. (3.13)

We then need to simplify the term of (3.13) between parenthesis. Since u is even, its derivative u′ is
odd and we can deduce that u′(|s|) = u′(s) |s|s (s ̸= 0), i.e. u′(s) = w(|s|)s. This gives:

w(|s|)
2

(t2 − s2)− u′(s)(t− s)− w(|s|)
2

(t− s)2 =
w(|s|)

2

(
(t2 − s2)− 2(ts− s2)− (t− s)2

)
= 0. (3.14)

(3.10) is thus verified for all (s, t) ∈ R∗ × R. As w admits a continuous extension in 0, the latter
remains true for s = 0 passing to the limit. Finally, since u is increasing, u′ is positive and so it is
for w. Mapping w(|.|) is thus positive and straightforwardly uniformly bounded, every time this is the
case for w.

In our context, Lemma 3.1, initially derived from [124, Lemma 8.3], is a key result which enables
to build majorization mappings of f when the latter possesses a half-quadratic structure [108, 109, 5].
We illustrate its use in the academical Example 3.3 below. Such a technique is used extensively in
Chapters 4,5 and 7 for the construction of quadratic tangent majorization approximations for our test
functions.

Example 3.3. Let H = RN (N ≥ 1) and consider f : RN → R of the half-quadratic form of [5] for
which we aim to build a quadratic tangent majorization approximation i.e.

(∀x ∈ RN ) f(x) = f1(x) + f2(x) with f1(x) =
1

2
∥Hx− z∥2 and f2(x) =

C∑
c=1

u([V x]p), (3.15)

considering z ∈ RM (M ≥ 1), H ∈ RM×N ,V ∈ RC×N (C ≥ 1) and u : R → R a differentiable
function.

First of all, using academic algebra, f1 can be rewritten so as to be (H⊤H,Hz, ∥z∥2)-quadratic.
Basically, it is a H⊤H-quadratic tangent majorization approximation of itself. Quadratic tangent
majorization property being preserved by summation, it remains to build a majorization mapping for
f2. Of course, such a construction depends on the available information on u. Let us display two
important cases.
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• ([108]): If u is β-Lipschitz continuous gradient(β > 0), the descent lemma (Proposition 2.4)
ensures that f2 admits β−1V ⊤V as a constant majorization mapping. The resulting majorization
mapping for f is then Geman-Yang one

x ∈ RN 7→ AGY (x) := H⊤H + β−1V ⊤V . (3.16)

• ([109]): If u verifies all conditions of Lemma 3.1, the latter allows to choose non constant ma-
jorization mapping x ∈ RN 7→ V ⊤Diag1≤c≤C

(
u′(|[V x]c|)
|[V x]c|

)
V for f2. The resulting majorization

mapping for f is then the Geman-Reynolds one

x ∈ RN 7→ AGR(x) := H⊤H + V ⊤ Diag
1≤c≤C

(
u′(|[V x]c|)
|[V x]c|

)
V . (3.17)

Given the diversity of differentiable optimization problems, many other construction techniques
have been developed recently. Typically, [102] proposed a generalization of Geman-Yang/Geman-
Reynolds constructions in the complex framework notably in the case where f1 (keeping notations of
Example 3.3) is non-necessary quadratic. At the same time, [64] promoted quadratic majorization
techniques for functions f of the form of f2.

3.5 Subspace strategies

Once the methods for constructing quadratic tangent majorization approximations have been pre-
sented, the implementation of sufficiently accurate QMM algorithms, i.e. with a non-necessary trivial
majorization mapping, becomes possible for a large class of functions. However, in a large-scale op-
timization context, such an implementation is usually easily compromised by the dimension of the
problem under consideration. One way improvement, almost systematically used today in the MM
field for this kind of setting, relies on a subspace technique.

3.5.1 Limitations of the QMM algorithm

Considering A as a definite positive majorization mapping of f , the associated scheme (3.5) possesses
a relatively simple structure but requires to be able to compute the inverse of operator Ak := A(xk)

for every iteration k ∈ N. The degree of difficulty of such an operation being strongly dependents on
H dimension, the latter shall not be recommendable and is even impossible in a large-scale framework.
Contrary to Quasi-Newton method (see 2.2.1.2), one cannot generally express sequence

(
A−1
k

)
k∈N

under a recursive process (as it is typically the case for SR1 or BFGS methods [178]) to the extent
that every Ak (k ∈ N) here strictly results of the evaluation of mapping A at a certain point of H.
Moreover, since the construction of a quadratic tangent majorization surrogates may also require the
use of complex analytical tools, there is nothing to suggest that the structure of the Ak operator is
any simpler and that it will therefore be relatively easy to invert.
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3.5.2 Subspace Quadratic MM (SQMM) scheme

The necessity of computing the inverse of operator Ak at any iteration k ∈ N comes from the fact we aim
to minimize, on the whole space H, the corresponding quadratic tangent majorization approximation
hq(.,xk). Logically, the larger the dimension of H , the greater the number of directions to investigate.

One way to overcome such an issue consists in adopting a so-called subspace acceleration strategy;
the new iterate xk+1 (k ∈ N) is chosen so as to minimize hq(.,xk) no longer on the whole space but along
Mk, a fixed number of directions d1

k, . . . ,d
Mk
k ∈ H. Starting from xk, the next iterate xk+1 is thus of the

form of xk+dk where dk lies in subspace Vk := Vect(d1
k, . . . ,d

Mk
k ). With dim(Vk) ≤Mk = dim(RMk),

we consider a linear transformation Dk : RMk → H for which im(Dk) = Vk and the search for dk
amounts to finding a vector uk ∈ RMk verifying dk = Dkuk. The incorporation of a subspace research
into the QMM update (3.5) thus leads to the Subspace QMM (SQMM) scheme:

(∀k ∈ N) xk+1 = xk +Dkuk, (3.18)

with uk ∈ argmin
u∈RMk

hq(xk +Dku,xk) := f(xk) + ⟨∇f(xk),Dku⟩+
1

2
⟨AkDku,Dku⟩.

The following proposition ensures the latter scheme is well-defined.

Proposition 3.4. Let A : H → S++(H) be a uniformly bounded mapping and assume that f admits
hq : H2 → H, as a A-quadratic tangent majorization approximation. Let also M ≥ 1 and consider
D : RM → H a linear operator. Then, for any x ∈ H, the set argmin

u∈RM

hq(x+Du,x) is not empty.

Proof. Let x be a vector of H. We denote Ex :=
{
hq(x+Du,x) | u ∈ RM

}
and µx := inf(Ex) ∈

[−∞,+∞) (Ex is obviously non-empty).

Following Definition 3.3, y ∈ H 7→ hq(x + y,x) is (A(x),∇f(x), f(x))-quadratic with A(x) ∈
S++(H) and Proposition 3.1 (ii) ensures the coercivity of such a function. Set {hq(x+ y,x) | y ∈ H}
thus admits a minimum (Theorem 2.3). To the extent that Ex ⊂ {hq(x+ y,x) | y ∈ H}, Ex is
bounded below and thus µx(:= inf(Ex)) ∈ R. In addition, by inf characterization, there exists a
sequence (vk)k∈N of vector lying in RM s.t.

hq(x+Dvk,x) −→
k→+∞

µx. (3.19)

Decomposition H = ker(D) ⊕ ker(D)⊥ being always valid in finite dimension, there also exist two
sequences (v1

k)k∈N, lying in ker(D), and (v2
k)k∈N, lying in ker(D)⊥, s.t. vk = v1

k + v2
k for all k ∈ N.

Considering this, behaviour (3.19) can be rewritten as:

hq(x+Dv2
k,x) −→

k→+∞
µx. (3.20)

Denoting D the adjoint operator of D, with v2
k ∈ ker(D)⊥ = ker(D∗D)⊥ for any k ∈ N, the Courant-

Fischer minoration leads to

(∀k ∈ N) ∥Dv2
k∥2 = ⟨D∗Dv2

k,v
2
k⟩ ≥ λ+min(D

∗D)∥v2
k∥2, (3.21)
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where λ+min(D
∗D) denotes the smallest positive eigenvalue of the (positive) bounded self-adjoint op-

erator D∗D. Moreover, coercivity of y 7→ hq(x+y,x) guarantees that (∥Dv2
k∥)k∈N does not converge

to +∞ (the contrary would contradict (3.20) since µx ∈ R). As a consequence, there exist B > 0 as
well as a subsequence

(
v2
ψ1(k)

)
k∈N

for which
(∥∥∥Dv2

ψ1(k)

∥∥∥)
k∈N

is uniformly bounded by B. Inequality

(3.21) then leads to

(∀k ∈ N)
∥∥∥v2

ψ1(k)

∥∥∥2 ≤ (λ+min(D∗D)
)−1 ∥Dv2

ψ1(k)
∥2 ≤

(
λ+min(D

∗D)
)−1

B2, (3.22)

and thus guarantees the boundedness of
(
v2
ψ1(k)

)
k∈N

. RM being of finite dimension, we can finally

extract a convergent subsequence
(
v2
(ψ1◦ψ2)(k)

)
k∈N

. Denoting v∗ its attached limit, (3.20) and conti-

nuities of y 7→ hq(x +Dy,x) finally conduct to hq(x +Dv∗,x) = µx and so argmin
u∈RM

hq(x +Du,x)

contains v∗.

In particular, considering D∗
k, the adjoint of Dk (k ∈ N), elementary algebraic manipulation are suf-

ficient to prove that function u :∈ RMk 7→ hq(xk+Dku,xk) is basically (D∗
kAkDk,D

∗
k∇f(xk), f(xk))-

quadratic and more specifically D∗
kAkDk has the advantage of always being positive. Considering this,

let us make the distinction between two cases.

• If operator D∗
kAkDk is invertible, then the latter is definite positive and, in virtue of Proposition

3.1 (ii), u :∈ RMk 7→ hq(xk +Dku,xk) thus admits a unique minimizer whose closed-form is

uk = (D∗
kAkDk)

−1D∗
k∇f(xk). (3.23)

Note that, it is necessary for directions d1
k, . . . ,d

Mk
k to be linearly independant for such a situation

to occur.

• If D∗
kAkDk is not invertible, choice

uk = (D∗
kAkDk)

†D∗
k∇f(xk), (3.24)

is, by default, retained. Notation † corresponds here to the Moore-Penrose inversion.

In both cases, the inversion step of Ak : H → H, of expected complexity close to dim(H)3 (by
analogy with the real space), is replaced by the inversion (or the pseudo-inverse computation) of
operator D∗

kAkDk : RMk → RMk of complexity of order M3
k and so much less costly.

3.5.3 Choice of subspace directions
As seen, the great advantage of the subspace method lies in its ability to highly reduce the complexity
of the update step when Mk is chosen to be very small compared to dim(H). Remark that taking
Mk = dim(H) and directions dk, . . . ,d

Mk
k so as to form a basis of H makes (3.18) equivalent to (3.5).

Historically and strictly speaking, [164] is the first article mentioning subspace strategies for gradi-
ent descent schemes. In the latter, the authors built subspace Vk (k ∈ N) by only retaining two com-
ponents (i.e Mk = 2); d1

k = −∇f(xk) to fully capture the first order information and d2
k = xk − xk−1
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in a way to preserve those brought by the past iterate xk−1 (with convention x−1 = 0 if k is negative).
In the real case (H = RN (N ≥ 1)) for which Dk can basically be assimilated to its representative
matrix in the canonical basis, Dk = [−∇f(x),xk − xk−1] is usually find under the name of the mem-
ory gradient matrix [58]. Let us also underline the fact that the subspace technique using these two
directions appears naturally for some classical algorithms as the non-linear conjugate gradient one [55].

Other choices of search subspaces have also been proposed. This typically includes some generalized
versions of memory acceleration as those of [74], collecting more differences of past iterates in the hope of
preserving even more information. Most of the time, the directions are chosen by reasoning by analogy
with already existing schemes in the literature or by interpreting them as naturally accelerated [242].
As an example, the Fletcher-Reeves conjugate gradient algorithm [101] (see 2.2.1.3) is simply equivalent
to a memory gradient strategy incorporated in the steepest descent procedure (see 2.2.1.1) in the case
where f is quadratic [46]. The incorporation of subspace techniques into the QMM algorithm was
initially proposed by Chouzenoux et al in [58].

3.6 Existing asymptotical results

As mentioned, the theoretical study of the generic scheme (3.2) was conducted in [127]. Without any
assumption on the structure of the quadratic tangent majorization surrogates, the results highlighted
in [127] are mainly of a topological nature and similar as those of section 2.3.3. In this section, we
mainly exhibit an overview of the existing assumptions and theorems promoting the existence of simple
descent inequalities (see Definition 2.2) for QMM schemes. The structure of the resulting quadratic
tangent majorization approximations allowing to obtain recurrence relations on (f(xk))k∈N quite easily.

3.6.1 Descent inequality for QMM scheme with stepsize

In the literature, the QMM (3.5) procedure is generally studied under a slightly more general form
with the advantage of incorporating an additional stepsize sequence (αk)k∈N:

(∀k ∈ N) xk+1 = xk − αkA
−1
k ∇f(xk). (3.25)

The following theorem stipulates the existence of a simple descent condition for scheme (3.25) every
time the stepsize is wisely chosen:

Theorem 3.1. (Quadratic MM descent condition) Let A : H → S++(H) be a majorization mapping
of f and denote by ν the constant attached to its uniform upper-bound (see notations at the beginning
of subsection 3.3.1). Also assume that there exist α, α ∈ (0, 2) for which α ≤ αk ≤ 2 − α for every
k ∈ N. Then, sequence (xk)k∈N, satisfies the following simple descent condition,

(∀k ∈ N) f(xk+1) ≤ f(xk)− αν−1

(
1− α

2

)
∥∇f(xk)∥2. (3.26)

Moreover, (f(xk))k∈N admits a finite limit and (∇f(xk))k∈N converges to zero if f is bounded-below.
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Proof. Let us set k ∈ N, we first use the fact that f admits an A-quadratic tangent majorization
approximation:

f(xk+1) ≤ f(xk) + ⟨∇f(xk),xk+1 − xk⟩+
1

2
⟨Ak(xk+1 − xk),xk+1 − xk⟩. (3.27)

With xk+1 − xk = −αkA−1
k ∇F (xk) and Ak self-adjoint, (3.27) can be turned to:

f(xk+1) ≤ f(xk+1)− αk

(
1− αk

2

)
⟨A−1

k ∇f(xk),∇f(xk)⟩. (3.28)

Since Ak is definite positive and ν-bounded, passing to the inverse ensures that A−1
k is definite positive

and bounded-below by ν−1 and so
〈
A−1
k ∇f(xk),∇f(xk)

〉
≥ ν−1∥∇f(xk)∥2. As αk ∈ [α, α] ⊂ (0, 2),

we deduce that the residual term of (3.28) is positive and

αk

(
1− αk

2

)
⟨A−1

k ∇F (xk),∇f(xk)⟩ ≥ αν−1

(
1− α

2

)
∥∇f(xk)∥2, (3.29)

which directly gives (3.26). Adding the fact that f is lower-bounded classically ensures that (f(xk))k∈N
converges to a finite limite f∞ (see 2.3.3). With a residual of the form (2.25) (taking n = 2 and (γk)k∈N

positively constant),
+∞∑
k=0

∥∇f(xk)∥2 < +∞ follows and finally ensures the convergence of (∇f(xk))k∈N
to zero.

The arguments invoked in the previous proof can notably be found in the convergence analysis of
[5]. The reader may also consult [55, Chapter 4] to have an extension of Theorem 3.1 with a vectorized
version of the stepsize.

3.6.2 Descent inequality for SQMM scheme
Let us start this section by a technical definition which will be useful to conduct our convergence proof.

Definition 3.4. (Uniformed gradient related directions) Let (xk)k∈N be a sequence of H

(i) A sequence of directions (dk)k∈N ∈ HN is said to be uniformly gradient related to (xk)k∈N (re-
garding f) if there exist c1, c2 > 0 s.t.

(∀k ∈ N)


dk = 0 if and only if ∇f(xk) = 0,

⟨∇f(xk),dk⟩ ≤ −c1∥∇f(xk)∥2,
∥dk∥ ≤ c2∥∇f(xk)∥.

(3.30)

(ii) A sequence of linear operator (Dk)k∈N is said to be uniformly gradient related to (xk)k∈N (re-
garding f) if there exists a sequence (dk)k∈N ∈ HN uniformly gradient related to (xk)k∈N and s.t.
dk ∈ im(Dk) for any k ∈ N.

Theorem 3.2. (SQMM descent condition) Let A : H → S++(H) be a majorization mapping of f
and denote once again by ν, the constant attached to its uniform upper-bound. Consider also (xk)k∈N
a process following the SQMM update rule (3.18) (associated to A) and for which subspace sequence
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(Dk)k∈N is uniformly gradient related to (xk)k∈N given constants c1, c2 > 0. Then, (xk)k∈N verifies
the simple descent condition:

(∀k ∈ N) f(xk+1) ≤ f(xk)−
1

2ν

(
c1
c2

)2

∥∇f(xk)∥2. (3.31)

Moreover, (f(xk))k∈N admits a finite limit and (∇f(xk))k∈N converges to zero, if is bounded-below.

Proof. Let us set k ∈ N. According to Definition 3.4, there exist (dk, ûk) ∈ H∗ × RMk for which
Dkûk = dk and (3.30) is satisfied. Moreover, as uk minimize u ∈ RMk 7→ hq(x+Dku,xk), it follows
that, for any t ∈ R,

f(xk+1) = hq(xk+1,xk) = hq(xk +Dkuk,xk) ≤ hq(xk +Dk t ûk,xk) = hq(xk + tdk,xk). (3.32)

If dk = 0 then hq(xk + tdk,xk) = f(xk) and inequality (3.31) holds.

For the rest of the proof, let us assume that dk ̸= 0, (and so ∇f(xk) ̸= 0). The fact that Ak is
definite positive with dk ̸= 0 ensures that function t ∈ R 7→ hq(xk+tdk,xk) := f(xk)+t⟨∇f(xk),dk⟩+
t2

2 ⟨Akdk,dk⟩ is second order polynomial whose dominant term ⟨Akdk,dk⟩ is positive. It thus admits
a unique minimizer tmin which can be expressed under the closed form

tmin = −⟨∇f(xk),dk⟩
⟨Akdk,dk⟩

. (3.33)

Since (3.32) is verified for any t ∈ R, it is satisfied at t = tmin, and

f(xk+1) ≤ hq(xk + tmindk,xk) = f(xk)−
⟨∇f(xk),dk⟩2

2⟨Akdk,dk⟩
. (3.34)

With Ak is spectrum-bounded by ν, ⟨Akdk,dk⟩ ≤ ν∥dk∥2 and we deduce that

f(xk+1) ≤ f(xk)−
⟨∇f(xk),dk⟩2

2ν∥dk∥2
. (3.35)

Finally, the use of (3.30) leads to:

f(xk+1) ≤ f(xk)−
c21∥∇f(xk)∥4

2νc22∥∇f(xk)∥2
= f(xk)−

1

2ν

(
c1
c2

)2

∥∇f(xk)∥2, (3.36)

and so to inequality (3.31). The end of the proof is similar to those of Theorem 3.2.

The tools we used to conduct our proof was initially proposed in [58]. In the latter and in the case
where H = RN (N ≥ 1), the authors considered the specific case where the gradient related direction is
the first column of the the subspace matrix Dk (k ∈ N). Moreover, their framework differs somewhat
from ours to the extent they allow the incorporation of a stepsize research in their update rule [55].
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3.6.3 Bridging the gap with global convergence
The strategies of proof we applied for Theorem 3.1-3.2 remain in fact relatively close to those invoked
to study usual descent gradient schemes [178]. The main difference relies on the fact that we use
the quadratic tangent majorization property (3.4) as a substitute to classical descent lemma 2.4. Of
course, the access to extra curvatures properties on f would logically allow finer results. For instance,
the coercivity of f typically ensures boundedness of (xk)k∈N and thus allows the use of Proposition
2.2 for better investigations.

In a non-convex framework, the construction of proof strategies based on KL theory (see Chapter
2 section 2.5.2) have been considered over the past few years. The use of such tools in a way to
establish the global convergence of a QMM type scheme was made for the first time in [59]. In the
latter, the authors conducted a similar line of reasoning as those we exhibited in Example 2.2. Their
convergence investigation remains rather adapted to the situation where f is semi-algebraic insofar as
the KL function is specifically taken as a power of θ ∈ (0, 1). Another interest of the KL theory in
this context may lie in its ability to construct convergence rates. Although their setting is somewhat
different from the QMM one, [66] actually highlighted the fact that θ exponent may play a crucial role
in the estimation convergence speed of the iterates. Up to our knowledge, only [61] was able to exhibit
a convergence rate for QMM schemes.

3.7 Conclusion

The presented chapter can thus be considered as a specific literature review, on the central subject
of this thesis, i.e. the QMM methods. Our main goal being here the setting up of a sufficiently clear
theoretical framework which will constitute, in all the continuation, an essential working base to really
determine the interest of the new methods which we present in Chapters 4, 5 and finally in Chapter 7
once our stochastic framework is introduced.
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Chapter 4

Convergence analysis of block
majorize-minimize subspace approach

In this chapter, we consider the minimization of a differentiable Lipschitz gradient but non necessarily
convex, function F defined on RN . We propose an accelerated gradient descent approach which
combines three strategies, namely (i) a variable metric derived from the majorization-minimization
principle ; (ii) a subspace strategy incorporating information from the past iterates ; (iii) a block
alternating update. Under the assumption that F satisfies the Kurdyka-Łojasiewicz property, we give
conditions under which the sequence generated by the resulting block majorize-minimize subspace
algorithm converges to a critical point of the objective function, and we exhibit convergence rates for
its iterates.

This work is based on our article: E. Chouzenoux and J-B. Fest, Convergence analysis of block
majorize-minimize subspace approach, that we submitted to Optimization Letters in 2022 (now under
minor revisions).
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4.1 Introduction

Our work focuses on the resolution of
minimize

x∈RN
F (x), (4.1)

with F : RN → R is a differentiable Lipschitz gradient function which is not assumed to be convex.
Instead, we address the case when F satisfies the Kurdyka-Łojasiewicz (KL) inequality [141, 25].

In the case of large scale optimization problems, one major concern is to find an optimization
algorithm able to deliver reliable numerical solutions in a reasonable time. Numerous works have been
devoted to accelerate the first order gradient descent technique. These methods aim to increase the
convergence rate while preserving theoretical guarantees and limited computational cost/memory bur-
den per iteration. Three main families of acceleration strategies can be distinguished in the literature.
The first approach, adopted for example in the well-known L-BFGS [156] and non-linear conjugate
gradient [101] methods, relies on subspace acceleration [243, 231]. The convergence rate is improved
by using information from past iterates for the construction of new estimates. Another efficient way to
accelerate the convergence of a minimization algorithm is based on a variable metric (i.e., precondition-
ing) strategy [28, 103]. The underlying metric is modified at each iteration thanks to a preconditioning
matrix, which may incorporate structural second-order information about the function to minimize.
The third technique to limit the dependence of an optimization algorithm on the dimension of the
problem, is to adopt a block alternating scheme where, at each iteration, only a subset of the variables
are updated [27].

Among various choices for preconditioning first-order methods, an important class of techniques
rely on the principle of Majorization-Minimization (MM) [223, 246]. At each iteration, a quadratic
convex surrogate function majorizing F is constructed. The inverse of its curvature (i.e., Hessian)
matrix then serves to define a weighted Euclidean metric used for updating the next iterate. This idea
is at the core of the half-quadratic algorithm [203, 5] for image restoration. It has also been exploited
in [64] to build an accelerated proximal gradient method for non smooth optimization, with guaranteed
convergence of the iterates to a stationary point, in the non-convex case. The latter result has been then
extended in [66], where block alternating updates are introduced. Block alternating MM approaches
have also been explored in [122, 215, 128], although without established convergence guarantees on
their iterates in the non-convex setting. MM metrics are also well suited to the construction of efficient
subspace optimization methods [58, 59, 61, 223]. In [58], subspace acceleration is employed to reduce
the complexity of an MM algorithm in large scale image processing problems, and in [59], convergence
guarantees are obtained on the iterates under the KL assumption. This algorithm has recently been
extended in [60] to the resolution of convex constrained optimization problems.

In this chapter, we propose to bridge the gap between the theoretical analysis from [64] and [58].
We introduce the Block MM Subspace (B2MS) algorithm to solve (4.1), that incorporates the three
aforementioned catalyzing effects, namely (i) MM-based preconditioning, (ii) subspace acceleration,
(iii) block alternating update. We show the convergence of its iterates to a critical point of F . We
furthermore perform its convergence rate analysis, relying on the KL exponent properties from [8].

The chapter is organized as follows. Section 4.2 introduces the notation, the proposed B2MS
algorithm, and the considered assumptions. Section 4.3 provides technical descent lemmas essential to
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our analysis. Section 4.4 presents our main contribution, namely the proof of convergence for B2MS,
and a study of its convergence rate. Section 4.5 discusses the advantages of B2MS acceleration features
through an ablation study on a practical problem of sparse signal blind deconvolution. Section 4.6
concludes the work.

4.2 Block MM subspace algorithm

4.2.1 Notation

We consider the Euclidean space RN , endowed with the scalar product ⟨·|·⟩ and norm ∥·∥. IN states for
the identity matrix of RN . For any A ∈ RN×N symmetric definite positive (SDP), we also introduce the
weighted norm ∥ · ∥A =

√
⟨·|A·⟩. Let S ⊂ {1, . . . , N} ≜ J1, NK with cardinal |S| and complementary

set S ≜ J1, NK/S. For all x = (xn)n∈J1,NK ∈ RN , we denote x(S) ≜
(
xi
)
i∈S ∈ R|S|. Similarly, the

restriction to block S of the gradient of F , at some x ∈ RN reads ∇F (S)(x) ∈ R|S|. For any x ∈ RN ,
we finally introduce function F (S)(. ,x) : v ∈ R|S| 7→ F (u) where u(S) = v and u(S) = x(S).

4.2.2 B2MS scheme

The proposed B2MS algorithm solves (4.1) through a block alternating minimization approach. Let
S a family of C ≥ 1 nonempty subsets of J1, NK (not necessarily disjoints). Let x0 ∈ RN . At every
iteration k ∈ N, the entries of the current iterate xk within a selected block Sk ∈ S are updated using
one iteration of the MM subspace algorithm [58] on the restriction of F to the k-th block F (Sk)(·,xk).
The entries of xk within the complementary set Sk remain constant.

To implement the MM subspace update, we first build the following quadratic majorization ap-
proximation [223] of F (Sk)(·,xk) at xk,

(∀v ∈ R|Sk|) Q(Sk)(v,xk) ≜ F (xk) + ⟨∇F (Sk)(xk),v − x
(Sk)
k ⟩+ 1

2
∥v − x

(Sk)
k ∥2

A(Sk)(xk)
, (4.2)

where A(Sk)(xk) ∈ R|Sk|×|Sk| is an SDP matrix such that:

(∀v ∈ R|Sk|) F (Sk)(v,xk) ≤ Q(Sk)(v,xk). (4.3)

Second, we choose a subspace acceleration matrix Dk ∈ R|Sk|×Mk [243]. The block update x
(Sk)
k+1 is then

defined as a minimizer of Q(Sk)(·,xk) within the vectorial subspace spanned by the columns of Dk.
Iterating the above procedure in a block alternating fashion yields Algorithm (4.4):

(B2MS)

Initialize x0 ∈ RN .
For k = 0, 1, 2, . . .

Choose Sk ∈ S and Dk ∈ R|Sk|×Mk

uk ∈ argmin
u∈RMk

Q(Sk)
(
x
(Sk)
k +Dku,xk

)
x
(Sk)
k+1 = x

(Sk)
k +Dkuk

x
(Sk)
k+1 = x

(Sk)
k

(4.4)
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If S = {J1, NK} (so C = 1), we retrieve the MM subspace algorithm from [58, 59]. When Dk = I|Sk|,
the above approach can be viewed as a particular case of the BSUM scheme [122, 195] using quadratic
surrogates, or of the approach from [66] using a null proximal term.

4.2.3 Assumptions
Assumption 4.1.
Family S verifies

⋃
S∈S

S = J1, NK. Moreover, there exists K ∈ N∗ such that, for all k ∈ N, every S ∈ S

belongs to {Sk, . . . ,Sk+K−1}.

Assumption 4.2.
F is C1 and coercive on RN .

Assumption 4.3.
(i) For all k ∈ N, Dk has full column rank.
(ii) There exists (γ0, γ1) > 0 such that, for all k ∈ N,

(dk)
⊤∇F (Sk)(xk) ≤ −γ0∥∇F (Sk)(xk)∥2, (4.5)

∥dk∥ ≤ γ1∥∇F (Sk)(xk)∥, (4.6)

with dk ∈ R|Sk| the first column of Dk.

Assumption 4.4.
(i) For every k ∈ N, there exists an SDP matrix A(Sk)(xk) such that inequality (4.3) holds.
(ii) There exists (η, ν) > 0 such that

(∀k ∈ N) ηI|Sk| ⪯ A(Sk)(xk) ⪯ νI|Sk|. (4.7)

Assumption 4.5.

F is Lipschitz differentiable on every bounded subset of RN . In other words, for each bounded
E ⊂ RN , there exists β(E) > 0 such that

(∀(x,y) ∈ E2) ∥∇F (x)−∇F (y)∥ ≤ β(E)∥x− y∥. (4.8)

Assumption 4.6. For ξ ∈ R and any bounded E ⊂ RN , there exists (κ, ζ, θ) ∈ R∗
+ × R∗

+×]0, 1[ such
that, for all x ∈ E with |F (x)− ξ| ≤ ζ,

∥∇F (x)∥ ≥ κ |F (x)− ξ|θ . (4.9)

Assumption 4.1, also adopted in [64], implies that every set of S is updated at least once during
any K-length cycle. It is also known as quasi-cyclic or acyclic rule [128], the cyclic rule being a
special case of it. Assumption 4.2 ensures the existence of a minimizer for F . Assumption 4.3(ii) is
equivalent to imposing a gradient-related condition [19] on the first column of Dk. This is satisfied
by a large number of typical subspace acceleration matrices [58][Tab. I]. In particular, setting Dk =
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[−∇F (xk)|xk − xk−1] ∈ RN×2 for k ∈ N∗ yields the memory gradient subspace [164, 102] which has
strong connections with the non-linear conjugate gradient method [46]. Assumption 4.4 is rather mild,
and inherent to the well-posedness and stability of quadratic MM schemes [58, 64]. Assumption 4.5 is
a standard smoothness assumption, also considered in [25]. Finally, Assumption 4.6 is usually refereed
to as the KL inequality [141, 25], and arises from the literature of non-smooth analysis. It is satisfied
by a large variety of functions, non necessarily convex, such as semi-algebraic or analytical functions,
to name a few. Its use has become popular in the last decade, as it provides a key tool for establishing
convergence of iterates for descent methods in the non convex setting [8, 66, 103].

4.3 Technical lemmas

This section presents technical lemmas that turn out to be essential to our convergence analysis.

Lemma 4.1. Under Assumptions 4.1-4.2-4.3-4.4(i), (F (xk))k∈N converges to a finite limit and se-
quence (xk)k∈N is bounded. Moreover, under Assumptions 4.1-4.2-4.3-4.4, the B2MS sequence (xk)k∈N
satisfies:

(∀k ∈ N) F (xk)− F (xk+1) ≥
γ20

2γ21ν
∥∇F (Sk)(xk)∥2, (4.10)

+∞∑
k=0

∥∇F (Sk)(xk)∥2 < +∞, (4.11)

(∀k ∈ N) ∥xk+1 − xk∥2 ≤
1

η2
∥∇F (Sk)(xk)∥2, (4.12)

(∀k ∈ N) ∥∇F (Sk)(xk)∥2 ≤
γ21ν

2

γ20
∥xk+1 − xk∥2. (4.13)

Proof. Consider k ∈ N. Since xk+1 is the concatenation of x(Sk)
k+1 and x

(Sk)
k , the use of the majorizing

inequality (4.3) (Assumption 4.4(i)) gives,

F (xk+1) = F (Sk)(x
(Sk)
k+1 ,xk) ≤ Q(Sk)

(
x
(Sk)
k+1 ,xk

)
= Q(Sk)

(
x
(Sk)
k +Dkuk,xk

)
. (4.14)

Let e = (1, 0, . . . , 0)⊤ ∈ RMk . Since uk minimizes Q(Sk)
(
x
(Sk)
k +Dk . ,xk

)
, any t ∈ R satisfies

Q(Sk)
(
x
(Sk)
k +Dkuk,xk

)
≤ Q(Sk)

(
x
(Sk)
k +Dkte,xk

)
= Q(Sk)

(
x
(Sk)
k + t dk,xk

)
.

Moreover, t 7→ Q(Sk)
(
x
(Sk)
k + t dk,xk

)
is scalar quadratic with F (xk) −

⟨∇F (Sk)(xk),dk⟩2
2∥dk∥2

A(Sk)(xk)

as minimal

value. Hence, Assumptions 4.3 leads to

Q(Sk)
(
x
(Sk)
k +Dkuk,xk

)
≤ F (xk)−

〈
∇F (Sk)(xk),dk

〉2
2∥dk∥2A(Sk)(xk)

≤ F (xk)−
γ20∥∇F (Sk)(xk)∥2

2∥dk∥2A(Sk)(xk)

. (4.15)
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Combining (4.15) and (4.14) ensures that (F (xk))k∈N is a decreasing sequence. The coercivity of F in
Assumption 4.2 both guarantees that (F (xk))k∈N converges to a finite limit F∞ and that (xk)k∈N is
bounded, which concludes the first part of the proof. Using now Assumption 4.4(ii) and (4.15) leads
to

Q(Sk)
(
x
(Sk)
k +Dkuk,xk

)
≤ F (xk)−

γ20
2γ21ν

∥∇F (Sk)(xk)∥2. (4.16)

Combination of (4.16) with (4.14) directly gives (4.10) in Lemma 4.1. Moreover,

+∞∑
k=0

∥∇F (Sk)(xk)∥2 ≤
2γ21ν

γ20
(F∞ − F (x0)) , (4.17)

so that (4.11) in Lemma 4.1 is obtained. Since function Q(Sk)
(
x
(Sk)
k +Dk . ,xk

)
is quadratic, we also

deduce that its minimizer uk satisfies:(
∇F (Sk)(xk)

)⊤
Dkuk = −∥Dkuk∥2A(Sk)(xk)

. (4.18)

Equality Dkuk = xk+1 − xk, and Assumption 4.4(ii), lead to

Q(Sk)
(
x
(Sk)
k +Dkuk,xk

)
= F (xk)−

1

2
∥Dkuk∥2A(Sk)(xk)

≥ F (xk)−
ν

2
∥xk+1 − xk∥2. (4.19)

Equation (4.13) of Lemma 4.1 then comes by plugging (4.19) into (4.16). Using again the expression
of uk as a minimizer of a quadratic form, we can rewrite one iteration of B2MS scheme as

xk+1 − xk = −Bk ∇F (Sk)(xk), (4.20)

with Bk ≜ Dk

(
D⊤
k A

(Sk)(xk)Dk

)−1
D⊤
k . Remark that Assumption 4.3(i) ensures that Bk is a well-

defined symmetric definite positive matrix. Then, by Assumption 4.4(ii),

Bk ⪯
1

η
Dk

(
D⊤
k Dk

)−1
D⊤
k ⪯ 1

η
I|Sk|. (4.21)

Plugging (4.21) into (4.20) and taking the squared norm of the quantities gives (4.12).

Lemma 4.2. Let (uk)k∈N, (vk)k∈N two sequences of positive real. If there exists k∗ ≥ K such that

(∀k ≥ k∗) uk ≤ ρ

k−1∑
i=k−K

ui + vk−1, (4.22)

if ρ < 1
K and

+∞∑
k=0

vk < +∞ , then
+∞∑
k=0

uk < +∞.

Proof. Summing (4.22) from k∗ to n ≥ k∗ leads to

n∑
k=k∗

uk ≤ ρ
n∑

k=k∗

k−1∑
i=k−K

ui +
n∑

k=k∗

vk−1, (4.23)
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with
n∑

k=k∗

k−1∑
i=k−K

ui =

n∑
k=k∗

K∑
i=1

uk−i =

K∑
i=1

n−i∑
k=k∗−i

uk ≤
K∑
i=1

n∑
k=0

uk. (4.24)

Plugging (4.24) into (4.23), yields

n∑
k=k∗

uk ≤ ρK

n∑
k=k∗

uk +

(
ρK

k∗−1∑
k=0

uk +

n∑
k=k∗

vk−1

)
≤ ρK

n∑
k=k∗

uk +

(
ρK

k∗−1∑
k=0

uk +

+∞∑
k=0

vk

)
, (4.25)

that is (1−ρK)
∑n

k=k∗ uk ≤ ρK
∑k∗−1

k=0 uk+
∑+∞

k=0 vk. With 0 < 1−ρK < 1, we deduce the summability
of (uk)k∈N.

Lemma 4.1 gathers the different inequalities and descent properties which result from B2MS scheme
(4.4). Equations (4.10)-(4.11) can be interpreted as a generalized block version of [58, Theorem 1].
Lemma 4.2 is an alternative of [34, Lemma 3], [76, Lemma 5.1].

4.4 Asymptotical behaviour

For the sake of clarity, our presentation for the convergence analysis of scheme (4.4) is divided into
three parts. First, we establish the convergence of the gradient of the B2MS iterates to zero, under
Assumptions 4.1-4.5. Second, under the additional Assumption 4.6 (i.e., KL inequality), we show the
convergence of the iterates of B2MS to a stationary point. Third, we establish a convergence rate
result involving the KL exponent θ of function F .

4.4.1 Global convergence

Theorem 4.1. Let (xk)k∈N the B2MS sequence. Under Assumptions 4.1-4.5, sequence (∥∇F (xk)∥)k∈N
converges to 0. Moreover, there exists x∗, a stationary point of F , such that F (xk) −→

k→+∞
F (x∗).

Proof. Let k ≥ K. For all S ∈ S, Assumption 4.1 ensures that {t ∈ Jk −K, k − 1K / St = S} is a
non-empty set. We can thus rewrite every set of S as S = STS

k
with

TS
k ≜ max {t ∈ Jk −K, k − 1K / St = S} . (4.26)

The application of k − TS
k Jensen’s inequalities on ∥∇FS(xk)∥2 leads to

∥∇F (S)(xk)∥2 ≤
k−1∑
i=TS

k

2k−i∥∇F (S)(xi+1)−∇F (S)F (xi)∥2 + 2k−T
S
k ∥∇F (S)F (xTS

k
)∥2. (4.27)

We now majorize both parts of the right term of (4.27). According to Lemma 4.1, the iterates belong
to a bounded set that we denote E. Using Assumption 4.5, we apply inequality (4.8), using the short
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notation β ≜ β(E), and then apply (4.12). The latter part of (4.27) is handled by using S = STS
k

and
noticing that k − i ∈]0,K[ for i ∈ JTS

k , k − 1K. It yields

∥∇F (S)(xk)∥2 ≤
2Kβ2

η2

k−1∑
i=TS

k

∥∇F (Si)(xi)∥2 + 2K∥∇F
(S

TS
k
)
(xTS

k
)∥2,

≤ 2K
(
β2

η2
+ 1

) k−1∑
i=TS

k

∥∇F (Si)(xi)∥2,

≤ 2K
(
β2

η2
+ 1

) k−1∑
i=k−K

∥∇F (Si)(xi)∥2. (4.28)

Then from (4.11) we have ∥∇F (S)(xk)∥2 −→
k→+∞

0 . Since J1, NK =
⋃
S∈S

S (by Ass. 4.1) and S finite,

∥∇F (xk)∥2 ≤
∑
S∈S

∥∇F (S)(xk)∥2 −→
k→+∞

0. (4.29)

According to Lemma 4.1, (F (xk))k∈N converges to a finite limit denoted F∞. The boundedness of
(xk)k∈N guarantees the existence of x∗ ∈ Rn, an accumulation point of (xk)k∈N. As ∥∇F (xk)∥ −→

k→+∞
0

and ∇F is continuous (by Ass. 4.2), ∇F (x∗) = 0 directly follows, so that x∗ is a stationary point of
F . Moreover, F∞ = F (x∗) since F is continuous, which concludes our proof.

Theorem 4.1 shows a classical behaviour for a descent method applied to a non-convex Lipschitz
differentiable objective function [178].

4.4.2 Sequence convergence

This part is dedicated to refine the result of Theorem 4.1, when we additionally introduce Assump-
tion 4.6. We first state a technical inequality giving a direct relation between the gradient at the
current iterate and the differences of past iterates over a cycle (i.e a K-length period)

Proposition 4.1. Let (xk)k∈N the B2MS sequence. Under Assumptions 4.1-4.5, for all k ≥ K,

∥∇F (xk)∥2 ≤ 2KC

(
β2 +

γ21
γ20
ν2
) k−1∑
i=k−K

∥xi+1 − xi∥2. (4.30)

Proof. Let k ≥ K. The beginning of the proof is identical to that of Theorem 4.1 until Eq.(4.27). We
then derive a new majoration for the quantity involved in the right term of (4.27). We first majorize
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using Ass. 4.2 combined with S = STS
k
. We then use (4.13) of Lemma 4.1. This yields:

∥∇F (S)(xk)∥2 ≤ 2Kβ2
k−1∑
i=TS

k

∥xi+1 − xi∥2 + 2K∥∇F
(S

TS
k
)
(xTS

k
)∥2,

≤ 2Kβ2
k−1∑
i=TS

k

∥xi+1 − xi∥2 + 2K
ν2γ21
γ20

∥xTS
k +1 − xTS

k
∥2,

≤ 2K
(
β2 +

γ21
γ20
ν2
) k−1∑
i=TS

k

∥xi+1 − xi∥2,

≤ 2K
(
β2 +

γ21
γ20
ν2
) k−1∑
i=k−K

∥xi+1 − xi∥2. (4.31)

We then sum (4.31) over S (of cardinal C). The right term being independent from S, it is simply
multiplied by C. Then, noting that ∥∇F (xk)∥2 ≤

∑
S∈S

∥∇F (S)(xk)∥2 concludes our proof.

Remark that an alternative proof of Theorem 4.1 could be obtained from Prop. 4.1. However,
inequality (4.28) is more direct to demonstrate than (4.30).

We finally state our main theoretical result, namely the convergence of the iterates of B2MS scheme.

Theorem 4.2. Let (xk)k∈N the B2MS sequence. Under Assumptions 4.1-4.6,

+∞∑
k=0

∥xk+1 − xk∥ < +∞. (4.32)

Moreover, (xk)k∈N converges to a stationary point of F .

Proof. Following the same notations as those of Theorem 4.1, let us apply (4.9) to set E = {xk / k ∈ N},
which is a bounded set by Lemma 4.1, and ξ = F∞. Then, by KL inequality (Ass. 4.6), there exists
(κ, ζ, θ) ∈ R∗

+ × R∗
+×]0, 1[ such that for every k ∈ N verifying |F (xk)− F∞| ≤ ζ,

∥∇F (xk)∥ ≥ κ |F (xk)− F∞|θ . (4.33)

Using (4.13) and (4.10) gives, for every k ∈ N,

∥xk+1 − xk∥2 ≤
2γ21ν

γ20η
2
(F (xk)− F (xk+1)) =

2γ21ν

γ20η
2
[(F (xk)− F∞)− (F (xk+1)− F∞)] . (4.34)

Let us now invoke the convexity of v ∈ R+ 7→ v
1

1−θ . It follows that for all v, w ∈ R+ with v ≤ w

w − v ≤ (1− θ)−1wθ
(
w1−θ − v1−θ

)
. (4.35)

Plugging (4.35) in (4.34) with w = F (xk)− F∞ and v = F (xk+1)− F∞ yields, for every k ∈ N,

∥xk+1 − xk∥2 ≤
2γ21ν

γ20η
2(1− θ)

[F (xk)− F∞]θ∆k, (4.36)

76



with ∆k ≜
(
F (xk)− F∞)1−θ − (F (xk+1)− F∞)1−θ. Since F (xk) −→

k→+∞
F∞, there exists k0 ≥ K

such that
(∀k ≥ k0) |F (xk)− F∞| ≤ ζ. (4.37)

Thus, using (4.33),
(∀k ≥ k0) ∥∇F (xk)∥ ≥ κ |F (xk)− F∞|θ . (4.38)

Combining (4.38) and (4.36) leads to

(∀k ≥ k0) ∥xk+1 − xk∥2 ≤
2γ21ν

γ20η
2κ(1− θ)

∥∇F (xk)∥∆k. (4.39)

We now rely on the majoration of Proposition 4.1, to obtain

(∀k ≥ k0) ∥xk+1 − xk∥2 ≤ Λ

√√√√ k−1∑
i=k−K

∥xi+1 − xi∥2 ∆k ≤ Λ
k−1∑

i=k−K
∥xi+1 − xi∥ ∆k, (4.40)

with Λ ≜ 2
K
2 +1

κ(1−θ)
γ21ν

γ20η
2

√
C

√
β2 +

γ21
γ20
ν2. We extract the square root of (4.40) and invoke the inequality

√
ab ≤ a

c +
bc
4 with a =

k−1∑
i=k−K

∥xi+1 − xi∥, b = ∆k and some c > 0. Then,

(∀k ≥ k0) ∥xk+1 − xk∥ ≤
√
Λ

c

k−1∑
i=k−K

∥xi+1 − xi∥+
c

4

√
Λ∆k. (4.41)

(∆k)k∈N is summable and
√
Λ/c ∈]0, 1/K[ for c >

√
ΛK, we apply Lemma 4.2 with k∗ = k0. Finally,

(∥xk+1 − xk∥)k∈N is summable and (xk)k∈N is a Cauchy sequence possessing x∗ as an accumulation
point. Sequence (xk)k∈N thus converges to x∗.

4.4.3 Convergence rate

As highlighted above, Theorem 4.2 guarantees the convergence of sequence (xk)k∈N to x∗, a station-
ary point of function F . Our last contribution lies in characterizing the convergence rate for B2MS
algorithm. Here again, KL inequality (Ass. 4.6) is an anchor point of our analysis.

Theorem 4.3. Let (xk)k∈N the B2MS sequence. Under Assumptions 4.1-4.6, the following holds.

(i) if θ ∈]1/2, 1[, then ∥xk − x∗∥ =
k→+∞

O
(
k−

1−θ
2θ−1

)
;

(ii) If θ ∈]0, 1/2], then there exists ε ∈]0, 1[ such that ∥xk − x∗∥ =
k→+∞

O
(
εk
)
.

Proof. Keeping the same notations as previously, let c > 0 and k ≥ k0. We sum (4.41) from kK

Γk ≤
√
Λ

c

+∞∑
j=kK

j−1∑
i=j−K

∥xi+1 − xi∥+
c

4

√
Λ

+∞∑
j=kK

∆j , (4.42)
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with Γk ≜
∑+∞

j=kK ∥xj+1 − xj∥. On the one hand,

+∞∑
j=kK

j−1∑
i=j−K

∥xi+1 − xi∥ =
+∞∑
j=kK

K−1∑
i=0

∥xi+j−K+1 − xi+j−K∥,

=

K−1∑
i=0

+∞∑
j=kK

∥xi+j−K+1 − xi+j−K∥ ≤ KΓk−1. (4.43)

On the other hand, using F (x)− F (x∗) −→
k→+∞

0, (4.33) and Proposition 4.1, yields

[F (xkK)− F (x∗)]1−θ ≤ κ
θ−1
θ ∥∇F (xkK)∥

1−θ
θ ≤ Λ

′

 kK−1∑
j=(k−1)K

∥xj+1 − xj∥2
 1−θ

2θ

,

≤ Λ
′

 kK−1∑
j=(k−1)K

∥xj+1 − xj∥

 1−θ
θ

,

= Λ
′
(Γk−1 − Γk)

1−θ
θ , (4.44)

with Λ
′
≜ κ

θ−1
θ

(
2KC

(
β2 +

γ21
γ20
ν2
)) 1−θ

2θ . Plugging (4.43), (4.44) in (4.42), with c = 2
√
ΛK and

+∞∑
j=kK

∆j = [F (xkK)− F (x∗)]1−θ gives

Γk ≤
1

2
Γk−1 +

1

2
KΛΛ

′
(Γk−1 − Γk)

1−θ
θ . (4.45)

By multiplying (4.45) by 2 and removing Γk from each side,

Γk ≤ (Γk−1 − Γk) +KΛΛ
′
(Γk−1 − Γk)

1−θ
θ . (4.46)

Since (Γk)k∈N is a positive decreasing sequence to zero, we can apply [8, Theorem 2].

• If θ ∈]1/2, 1[, there exists λ > 0 such that

(∀k ≥ k0) Γk ≤ λk−
1−θ
2θ−1 . (4.47)

Denoting q(k), r(k) the quotient and remainder of the Euclidean division of k by K, leads to

∥xk − x∗∥ = ∥xq(k)K+r(k) − x∗∥ ≤ Γq(k). (4.48)

Combining (4.48) with (4.47) gives, for k large enough,

∥xk − x∗∥ ≤ λq(k)−
1−θ
2θ−1 = λ

(
k − r(k)

K

)− 1−θ
2θ−1

≤ λ

(
k

K
− 1

)− 1−θ
2θ−1

, (4.49)

with λ
(
k
K − 1

)− 1−θ
2θ−1 =

k→+∞
O
(
k−

1−θ
2θ−1

)
.
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• If θ ∈]0, 1/2], there exist µ > 0 and δ ∈]0, 1[ such that

(∀k ≥ k0) Γk ≤ µ δk. (4.50)

Similarly with the previous case, for k large enough,

∥xk − x∗∥ ≤ µ δq(k) = µ δ
k−r(k)

K ≤ µ δ
k
K . (4.51)

Conclusion is obtained by taking ε = δ
1
K ∈]0, 1[.

One can notice the dependency of the convergence rate with the KL exponent θ. This result is
similar to the one in [66], though with a more direct proof following naturally from our global conver-
gence Theorem 4.2. We also notice that the gradient Lipschitz property (see Assumption 4.5) entails
that the convergence rate obtained for (∥xk − x∗∥)k∈N also holds for the sequence (∥∇F (xk)∥)k∈N.

4.5 Numerical illustration

The numerical part of this chapter arises from previous works conducted by Emilie Chouzenoux and
Jean-Christophe Pesquet, which has not been submitted for publication until now.

4.5.1 Problem formulation
Let us illustrate numerically the benefits of each acceleration features introduced in B2MS. To do so,
we focus on the signal processing problem of sparse signal blind deconvolution [118]. Let y ∈ RP ,
P ≥ 1, a vector of observations, related to a sought signal z ∈ RP through the model

y = h ∗ z + e, (4.52)

with h ∈ RL, L ≥ 1, a blur kernel, ∗ the 1D discrete convolution operator with zero-padding as-
sumption, and e ∈ RP a realization of an i.i.d. zero-mean Gaussian distribution. Blind deconvo-
lution amounts to retrieving estimates (z̃, h̃) of (z,h) from y under some structural assumptions.
Namely here, we consider a sparse signal z, with few non-zero entries within the range [zmin, zmax],
−∞ < zmin < zmax < +∞, and a blur kernel with bounded energy and entries within the range
[hmin, hmax], −∞ < hmin < hmax < +∞. Under these specifications, we propose to solve (4.1) where

(∀x = (z,h) ∈ RP+L)

F (x) =
1

2
∥h ∗ z − y∥2 + λ SOOT(z) +

ρ

2
d2[zmin,zmax]P

(z) +
ξ

2
d2[hmin,hmax]L

(h) +
ζ

2
∥h∥2, (4.53)

with (λ, ρ, ξ, ζ) > 0 some penalization weights. Hereabove, SOOT denotes the smoothed ℓ1-over-ℓ2
sparsity promoting penalty introduced in [196], defined as

(∀z ∈ RP ) SOOT(z) = log

(
ℓ1,α(z) + β

ℓ2,η(z)

)
(4.54)
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where

(∀z = (zp)p∈J1,P K ∈ RP ) ℓ1,α(z) =

P∑
p=1

(√
(zp)2 + α2 − α

)
, ℓ2,η(z) =

√√√√ P∑
p=1

(zp)2 + η2. (4.55)

Function (4.54) is non-convex and Lipschitz-differentiable on RP (see [53, Prop.2] with p = 1 and
q = 2). The scalars (α, β, η) > 0 act as smoothing hyper-parameters so that the penalty term (4.54)
can be viewed as a smoothed non-convex proxy of the norm ratio ℓ1 over ℓ2. SOOT penalty was shown
in [196] to suitably enhance the restoration of sparse signals in the context of blind deconvolution,
when compared to standard ℓ1-based formulation. It was later on generalized in [53, 247] to tackle
signal processing tasks arising in chemistry, and hereagain showed superior results when compared to
various state-of-the-art sparsity priors. Function dC denotes the Euclidean distance to a set C. If C
is non-empty and convex, function 1

2d
2
C is convex and 1-Lipschitz differentiable [14]. The two distance

terms in (4.53) act as smoothed exterior penalty terms, weighted by (ρ, ξ) favoring the fulfillment
of the considered range constraints. Finally, the quadratic penalty term weighted by ζ controls the
boundedness of the estimated kernel energy.

4.5.2 B2MS implementation
Let us discuss the practical application of the proposed B2MS scheme to the minimization of function
(4.53). The latter is C1 and coercive on RP+L so Assumption 4.2 holds. Moreover, it satisfies the
Lipschitz condition from Assumption 4.5. A similar analysis than in [196] leads to the fulfillment of
Assumption 4.6. We define the family

S = {J1, P K, JP + 1, P + LK}, (4.56)

with the aim to build a B2MS scheme alternating between updates on the signal variable z and the
kernel variable h. We adopt a quasi-cyclic strategy

(∀k ∈ N) Sk =

{
JP + 1, P + LK if (k ≡ K) = 0,

J1, P K otherwise,
(4.57)

with ≡ the modulo operation, and K ≥ 1 a predefined value of the number of updates on variable
z before processing again (and a single time) the variable h. Definitions (4.56)-(4.57) satisfy by
construction Assumption 4.1. Let H ∈ RP×P the Toeplitz operator such that h ∗ z = Hz, and
Z ∈ RL×L the correlation operator such that h ∗ z = Zh. We define

(∀x = (z,h) ∈ RP+L)

A(J1,P K)(x) = H⊤H +
9λ

8η2
IP +

λ

ℓ1,α(z) + β
Diag

(
(((zp)2 + α2)−1/2)p∈J1,P K

)
+ ρIP , (4.58)

and
(∀x = (z,h) ∈ RP+L) A(JP+1,P+LK)(x) = Z⊤Z + (ξ + ζ)IL. (4.59)

Using [196, Prop.2], the descent lemma [14] and the block definitions (4.56)-(4.57) allows to show that
the majorizing condition (4.3) holds for every k ∈ N. Hence, Assumption 4.4(i) holds. Regarding the
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subspace choice, we adopt unless specified otherwise the memory gradient subspace from [164, 59],
which reads in the block alternating case as ([43]):

(∀k ∈ N) Dk = [−∇F (Sk)(xk) | x
(Sk)
k − x(Sk)

ιk
] ∈ R|Sk|×2, (4.60)

where, for every k ∈ N, ιk ∈ J0, k− 1K is the largest index when the same block Sιk = Sk was updated
(with default choice ιk = 0). This choice of subspace trivially meets Assumption 4.3. In a nutshell,
Assumption 4.1 to Assumption 4.4(i) hold, so that, by Lemma 4.1, the B2MS iterates are bounded.
This allows to deduce, through a straightforward analysis of (4.58)-(4.59), that Assumption 4.4(ii)
holds. Furthermore, Assumptions 4.5 and 4.6 hold so that our convergence Theorems 4.1 and 4.2
apply.

4.5.3 Numerical results

We now present our numerical results. We rely on the same dataset and model implementation than
in the SOOT Matlab toolbox1. The ground truth signal/kernel (z,h) have size P = 784 and L = 41.
We set the range values (zmin, zmax, hmin, hmax) to the ground truth minimal and maximal values of the
sought quantities. The SOOT parameters (λ, α, β, η) and the initialization (z0,h0) are kept unchanged
with respect to the toolbox implementation. A rough grid search is used to set the hyper-parameters
(ρ, ξ, ζ) = (10−1, 10−1, 10−2) so as to reach an accurate restoration. Example of observed signal
y, ground truth signal/kernel vectors (z,h) and estimated ones (z̃, h̃) are displayed in Figure 4.1.
Running times displayed in the forthcoming sections are for a Matlab 2021a implementation on a x64
Dell Destop with 11th Gen Intel(R) Core(TM) i7-1185G7 @ 3.00GHz with 32 Go RAM.

4.5.3.1 Role of quasi-cyclic rule

The rule (4.57) corresponds to the standard cyclic (i.e., Gauss Seidel) rule whenK = 1. When K > 1, a
quasi-cyclic rule is obtained, when B2MS iterates several times on the signal before updating (once) the
kernel. Our theoretical analysis encompasses such choice. To illustrate the benefit for such versatility,
we display on Figure 4.2 the computational time required to satisfy

∥zk − z̃∥1 ≤ 10−4, and ∥hk − h̃∥1 ≤ 10−4, (4.61)

as a function of K in (4.57), with (z̃, h̃) the B2MS iterate after a very large number of iterations
(typically 104). One can observe that the minimal running time is not obtained for K = 1 (i.e.,
cyclic rule) but for a larger value of K, here around 100. This shows the advantage of adopting
Assumption 4.1 instead of the standard cyclic update requirement. This phenomenon was already
observed in the study in [196] but for another block alternating scheme. The setting K = 100 is
retained for our next experiments.

1https://www.mathworks.com/matlabcentral/fileexchange/50481-soot-l1-l2-norm-ratio-sparse-blind-
deconvolution
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Figure 4.1: Observed signal y (top). Ground truth (black continuous line) and restored (blue
dashed line) signal (middle) and kernel (bottom). Reconstruction errors ∥z− z̃∥1 = 3.4× 10−3

and ∥h− h̃∥1 = 1.7× 10−2.

4.5.3.2 Ablation study on B2MS

In order to assess the role of both subspace and MM acceleration in B2MS, we perform an ablation
study. To that aim, we implement three ablated versions of B2MS, where we removed either one or
both aforementioned features. Namely, we can remove subspace acceleration (B2MS-NoSub) by simply
setting

(∀k ∈ N) Dk = −∇F (Sk)(xk) ∈ R|Sk|. (4.62)

We can also remove the effect of the MM preconditioner (B2MS-NoPrec) by setting, for every x =

(z,h) ∈ RP+L, A(J1,P K)(x) = B(h)IP and A(JP+1,P+LK)(x) = B(z)IL, with (B(h), B(z)) ∈]0,+∞[2

some upper bounds on the spectra of (4.58)-(4.59). For every x = (z,h) ∈ RP+L, a straightforward
analysis leads to

(∀h ∈ RL) B(h) = ∥|H|∥2 + 9λ

8η2
+

λ

αβ
+ ρ, (4.63)

(∀z ∈ RP ) B(z) = ∥|Z|∥2 + ξ + ζ, (4.64)

with ∥| · |∥ the spectral norm. We display in Figure 4.3 the evolution of the gradient norm and the esti-
mation error along time for the four tested methods. A first observation is that the methods not using
the MM preconditioner (i.e., B2MS-NoPrec, B2MS-NoPrec-NoSub) exhibit very slow convergence, in
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Figure 4.2: Computational time in seconds required for B2MS iterates to satisfy stopping
criterion (4.61) as a function of K.
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Figure 4.3: Evolution of the gradient norm of F (left), of the estimation error on the signal
(middle) and of the estimation error on the kernel (right) along time in seconds for B2MS and
its ablated versions. B2MS-NoPrec-NoSub and B2MS-NoPrec plots are almost superimposed.

comparison with the two others. This shows the crucial role of the MM acceleration technique, espe-
cially in this example when the bounds (4.64) reach very high values (typically of the order of 108).
As an additional remark, note that (4.64) requires to recompute, at each iteration, spectral norms of
large operators which is cumbersome. Second, using the memory gradient subspace instead of a basic
gradient descent search improves the convergence speed of B2MS, as can be seen when comparing
B2MS and B2MS-NoSub plots. In a nutshell, both MM preconditioning and subspace catalyzers are
essential in this problem.

4.5.3.3 Comparison with state-of-the-art

We conclude our analysis by comparing B2MS with several non alternating minimization schemes from
the state-of-the-art. Namely, we implemented the nonlinear conjugate gradient (NLCG) algorithm with
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Figure 4.4: Evolution of the gradient norm of F (left), of the estimation error on the signal
(middle) and of the estimation error on the kernel (right) along time in seconds for B2MS and
its competitors.

either Hestenes-Stiefel (HS) or Fletcher-Reeves (FR) conjugacy formula [119, 101] and a linesearch
satisfying strong Wolfe conditions [178]. We also tested the quasi-Newton LBFGS approach [156]
combined with an Armijo backtracking linesearch [178]. The linesearch and memory parameters were
manually tuned to reach the best performance of each competitor. Note that, up to our knowledge,
neither NLCG nor LBFGS possess any theoretical guarantees on the convergence of their iterates, in
this example, due to the non-convexity of F . No major numerical instabilities were observed in our
experiments. Figure 4.4 shows the convergence plots in terms of gradient norm and restoration error.
One can observe the fast convergence of B2MS. In contrast, the three competitors do not seem to reach
a convergent point (see Fig. 4.4(left)). Moreover, they lead to solutions with higher estimation error
(see Fig. 4.4(middle-right)). This shows again the advantage of the proposed scheme which benefits
from sounded convergence and good practical behavior.

4.6 Conclusion

This chapter introduces a block alternating MM subspace algorithm and provides its convergence
analysis in the non-convex case. Numerical experiments illustrate the performance of the proposed
method on a practical problem of blind signal restoration. When combined with a memory gradient
subspace (see, for e.g., [102]), the proposed method can be viewed as a convergent preconditioned block
alternating non linear conjugate gradient algorithm for non-convex large scale optimization. Future
work will be dedicated to building a distributed implementation for B2MS, for instance by adopting
an asynchronous approach [215] where block updates are spread among core machines with possible
update delay.
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Chapter 5

Block delayed majorize-minimize
subspace algorithm for large scale

image restoration

In this chapter, we propose an asynchronous Majorization-Minimization (MM) algorithm for solving
large scale differentiable non-convex optimization problems. The proposed algorithm runs efficient
MM memory gradient updates on blocks of coordinates, in a parallel and possibly asynchronous man-
ner. We establish the convergence of the resulting sequence of iterates under mild assumptions. The
performance of the algorithm is illustrated on the restoration of 3D images degraded by depth-variant
3D blur, arising in multiphoton microscopy. Significant computational time reduction, scalability and
robustness are observed on synthetic data, when compared to state-of-the-art methods. Experiments
on the restoration of real acquisitions of a muscle structure illustrate the qualitative performance of
our approach and its practical applicability.

This chapter arises from the article: M. Chalvidal, E. Chouzenoux, J-B. Fest and C. Lefort. Block
delayed Majorize-Minimize subspace algorithm for large scale image restoration, published in Inverse
Problems, volume 39, 2023.
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5.1 Introduction

Large-scale optimization algorithms, benefiting from fast convergence, capable of utilizing modern
computing infrastructures, and dealing with distributed datasets are becoming compulsory for solving
inverse problems in modern imaging [68]. The ever-growing need for fast processing solutions that can
operate on high-dimensional problems (i.e implying a huge number of variables) calls for the develop-
ment of parallel methods harnessing the power of distributed computational architectures. In addition,
the expansion of IoT systems and remote highly parallel computing induce new network issues with
specific constraints. For instance, instabilities may occur whenever the volume of data dwarfs the mem-
ory capacity of a single agent or when the processing power is shared (potentially unevenly) between
devices [139]. Several classes of so-called distributed optimization methods, have been investigated
under various assumptions on the computing scenario and on the optimization problem itself, that we
review hereafter (see also [248, 240]).

Distributed optimization approaches inherit from block alternating methods. In the latter, at each
iteration, only a subset of the variables are updated, by minimizing the objective function with respect
to only those variables, the others being fixed. The blocks are selected sequentially following a cyclic
(or quasi-cyclic) order or a random rule. Exact minimization with respect to a given block of variables
is rarely possible in a closed form. It is not even desirable as it may lead to convergence issues [226].
More efficient and stable block alternating schemes rely on a so-called Majorization-Minimization
(MM) strategy [128]. It consists in building, at each iteration, a majorizing approximation for the
objective function within the active block of variables, whose minimizer has a more tractable form.
Many powerful algorithms fall within this framework, such as BSUM [121], PALM [27], multiplicative
methods for NMF [146], to name a few. By exploiting the structure of the objective function, block
alternating MM methods can reach fast convergence rates [196, 98, 174, 179] while offering theoretical
guarantees in non-convex cases [27, 65, 29].

When the problem size increases, as in 3D microscopy imaging [147] and astronomy [180, 192],
running block alternating methods gets inefficient. Parallel implementations have been devised, where
the block updates are performed simultaneously, allowing to distribute computations on different nodes
(or machines) [43, 222, 200]. Implementation on parallel architecture requires to pay attention to com-
munication cost. The latter can be reduced by resorting to an asynchronous parallel implementation,
yielding the so-called distributed optimization approach. Each computation node has now its own it-
eration loop, so local variables are updated without the need to wait for distant variables update. This
however raises challenging questions, in terms of convergence analysis, as the communication delays
may introduce instabilities. A plethora of recent works have focused on proposing distributed opti-
mization algorithms with assessed convergence, based on stochastic proximal primal [115, 155, 165]
or primal-dual [185, 117, 245, 54, 180, 1] techniques. Recent contributions in the field of federated
learning are also highly related [123, 158, 232]. However, as the aforementioned works rely on specific
fixed-point analysis tools involving Fenchel-Rockafellar duality [14], the proposed algorithms are lim-
ited to convex (sometimes even strongly convex) optimization and often require specific probabilistic
assumptions on the block update rule difficult to meet in practice. In the context of MM algorithms,
although the need for distributed implementation strategies is crucial (see the discussion in [121] and
the specific examples in [228, 94]), theoretical results regarding convergence guarantees of MM tech-
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nique in a distributed context are rather scarce. Let us first mention the work of [76, 77], that proposes
an asynchronous version of PALM, with proven convergence of the iterates in non-convex case, and
good practical behaviour [225]. The convergence of distributed MM methods was also explored in the
recent works [45, 154]. However, the analysis of [154] is limited to the convex case. In [45], the analysis
covers non-convex terms in the objective function, but it only shows the convergence of the sequence
of objective function values, and not the convergence of the iterates themselves (thus, the results is
weaker than the one of [76]).

In this chapter, we aim at solving a smooth optimization problem of the form

minimize
x∈RN

f(x), (5.1)

where f : RN 7→ R is (Fréchet) differentiable but non necessarily convex. In the context of inverse
problems in imaging, f typically reads as the sum of a data fidelity term (e.g., a least-squares term)
measuring the discrepancy between an acquired, degraded (e.g., blurry, noisy) image, and its estimate
(usually, through a linear observation operator), and a regularization term incorporating prior infor-
mation on the sought solution [68, 17] (see also our Section 5.5). We introduce the block delayed MM
memory gradient (BD3MG) algorithm for the resolution of Problem (5.1). BD3MG is a distributed
MM algorithm designed for an efficient implementation on a multi-CPU computing architecture, such
as a high performance calculation unit. Our contributions are:

• Introduction of the BD3MG algorithm, that implements an advanced distributed asynchronous
update rule within the block alternating MM method we recently proposed in [56].

• Proof for the convergence of BD3MG iterates to a stationary point of f under mild assumptions
(in particular, no convexity is assumed), using recent tools of Lyapunov analysis [235].

• Illustration of the performance of BD3MG by means of various experiments on a real inverse
problem of 3D image restoration arising in the context of multiphotonic miscroscopy.

The chapter is organized as follows. Section 5.2 introduces our notations, recalls the principle of MM
schemes and finally presents our proposed algorithm. Section 5.3 states our mathematical assumptions
for the convergence analysis and presents preliminary technical propositions and lemmas. Section 5.4
presents our main theoretical contribution, dedicated to the convergence analysis of the proposed
BD3MG scheme. Section 5.5 illustrates the qualitative and computational performance of BD3MG in
the applicative context of 3D image deblurring in the presence of a depth-variant 3D blur. Section 5.6
concludes the chapter.

5.2 Proposed algorithm

5.2.1 Notations

Throughout this chapter, we consider the euclidean space RN endowed with the usual scalar product
⟨·|·⟩ (or, equivalently, ·⊤·) and the norm ∥·∥. 0N is the vector with null entries of RN . IN is the identity
matrix of RN . We use the short notation [[1, N ]], to denote {1, 2, . . . , N}, i.e. the set of integers from
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1 to N . SN denotes the set of symmetric matrices of RN×N , and SN+ (resp. SN++) the set of positive
(resp definite positive) symmetric matrices. Given some M ∈ SN++, we denote by ∥ · ∥M the induced
weighted euclidean norm, such that, for all v ∈ RN , ∥v∥2M = v⊤Mv. We use the Loewner orders
symbols ≺ and ⪯, to compare real symmetric matrices (A,B) ∈ (SN )2 i.e., A ⪯ B (resp. A ≺ B) is
verified when difference B −A belongs to SN+ (resp. SN++).

Let us introduce extra notations, that will be useful to present block coordinate optimization
strategy. Most notations hereafter are reminiscent from [56]. Let S ⊂ [[1, N ]].

▷ We denote by S its complementary set [[1, N ]]\S, |S| its cardinal and
(
R|S|, ⟨·, ·⟩

)
the resulting

euclidean space (with a slight abuse of notation). Moreover, we also denote by S|S|,S|S|+ , S|S|++

respectively the set of symmetric, symmetric positive, and symmetric definite positive matrices
of R|S|×|S|.

▷ Let x = (xn)n∈[[1,N ]] ∈ RN . We denote x(S) = (xi)i∈S ∈ R|S| the vector gathering the entries of
x with indexes within the set S of coordinates.

▷ Let x ∈ RN . ∇f(x) is the gradient of f evaluated at x. Moreover, ∇(S)f(x) = ([∇f(x)]i)i∈S ∈
R|S| denotes the partial gradient of f with respect to the coordinates with indexes in S, evaluated
at x.

▷ Let M ∈ SN . We denote the (symmetric) sub-matrix M(S) = (Mi,j)(i,j)∈S2 ∈ S|S|. If M(S) ∈
S|S|+ , we define the induced weighted Euclidean norm as ∥ · ∥M(S)

.

▷ For any x ∈ RN , we introduce the restriction of f to the block S and vector x as the function
f(S)(. ,x) : v ∈ R|S| 7→ f(u) where u is related to (v,x) through the relations u(S) = v and
u(S) = x(S).

5.2.2 Block MM principle

MM approach to the resolution of Problem (5.1) is a generic iterative procedure where each iteration
amounts to minimizing (exactly or not) a surrogate for f satisfying a majorizing property [223, 246, 128,
126]. The theoretical and practical properties of an MM algorithm greatly depend on (i) the family
of considered surrogates, (ii) the procedure to minimize it. In this chapter, we focus on quadratic
MM techniques, where f is such that it can be upper bounded by quadratic functions (typically, f is
Lipschitz differentiable). In such context, the inner step of an MM algorithm amounts to minimizing
a quadratic function on RN or, otherwise stating, to invert an N × N system. In the large scale
context, this is not desirable and various approaches have been proposed to cope with the curse of
dimensionality in MM quadratic methods [58, 59, 63, 121, 43, 222, 56]. In particular, to limit the
dependence of the MM algorithm on the dimension of the problem, block alternating approaches have
been developed. In these schemes, at each iteration only a subset of the variables are updated [121],
giving rise to so-called block MM algorithms, that we describe hereafter.

Define a partition T of [[1, N ]]. The block MM approach requires to build a majorizing surrogate
for the restriction f(S)(·,x) for any x ∈ RN and block index S ∈ T. Let us assume the existence of a
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mapping A : x ∈ RN 7→ A(x) ∈ SN++ such that for all S ∈ T, v ∈ R|S| and x ∈ RN

QS(v,x) = f(x) + ⟨∇(S)f(x),v − x(S)⟩+
1

2

∥∥v − x(S)
∥∥2
A(S)(x)

, (5.2)

fulfills the majorizing condition

QS(v,x) ≥ f(S)(v,x). (5.3)

Note that, by (5.2),

QS(x(S),x) = f(S)(x(S),x). (5.4)

The existence of such mapping A can be ensured under mild assumptions. For instance, it is satisfied
as soon as f is Lipschitz differentiable. Morever, [65, Remark 2.4] shows that, as soon as the above
mapping holds for S = RN , it stays valid for any block subset S ⊂ [[1, N ]]. Examples of constructions
of majorization mappings have been extensively discussed in [223, 59, 222] for optimization problems
arising in the fields of inverse problems, image processing and telecommunication.

Once the block majorization approximations (5.2) satisfying (5.3) are built, the block MM (B2M)
algorithm reads [128] (also called BSUM in [121]):

(∀k ∈ N)


Choose Sk ∈ T,
xk+1
(Sk)

∈ argmin
v∈R|Sk|

QSk(v,xk),

xk+1

(Sk)
= xk

(Sk)
.

(B2M)

Hereabove,
(
Sk
)
k∈N is a sequence of subsets (i.e., blocks) chosen in the predefined partition T. The

most current strategy is to adopt a cyclic rule, where each element of T is selected sequentially until
the end of the partition list, and then the loop is repeated until convergence of the algorithm. A more
flexible option is to adopt a so-called quasi-cyclic (or acyclic) rule where each S ∈ T must be updated
at least once per K iterations period.

The interest of scheme (B2M) and more generally block coordinate methods notably lies in the
large scale context involving a very huge N , for which dealing with all the coordinates of the current
iterate may be too high time consuming and even infeasible due to memory limitations. However, block
MM methods require a sequential update of the blocks and thus, by construction, might require many
iterations to reach convergence. To limit this issue, (block) diagonal mappings have been considered
for instance in [222, 43]. The underlying idea is to choose the mapping so that the inner minimization
problem in (B2M) is separable, and thus can be performed in parallel over the entries of the selected
block. This yields the so-called block parallel MM schemes that take advantage of recent technological
advances in parallel computing on multicore architectures. In particular, these methods can tailor
the number of available processors to the computational load. However, such block diagonal structure
may be detrimental to the approximation quality of the surrogates, and thus reduce again the practical
convergence rate. In the present chapter, we opt for not making any extra structural assumption on the
majorization mapping, thanks to the introduction of two catalizers into (B2M), namely (i) a subspace
acceleration approach, (ii) a distributed asynchronous update strategy, that we describe hereafter.
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5.2.3 Subspace acceleration

Our first catalyst is to introduce a subspace acceleration [223], in (B2M). This strategy has been
initially introduced for full-batch MM algorithms (i.e., without any block coordinate strategy) in [58].
Convergence analysis can be found in [59, 57, 63, 62, 60] under various situations. We recently extended
this strategy to cope with block coordinate updates with the form of (B2M) [56], leading to the B2MS
(Block MM Subspace) scheme that we present hereafter.

Starting with the (B2M) iteration, the subspace acceleration consists in performing the minimiza-
tion of the majorization function within the current block Sk in a constrained vectorial subspace
spanned by a small number Mk ≥ 1 of search directions. This reads:

(∀k ∈ N)



Choose Sk ∈ T,
Choose Dk ∈ RMk×|Sk|,

vk ∈ argmin
v∈RMk

QSk(xk(Sk)
+Dkv,xk),

xk+1
(Sk)

= xk
(Sk)

+Dkvk,

xk+1

(Sk)
= xk

(Sk)
,

. (B2MS)

Hereabove, for every k ∈ N, Dk ∈ RMk×|Sk| is the so-called subspace matrix. It stacks, row-wise,
Mk ≥ 1 vectors of dimension |Sk|, spanning a vectorial subspace within which we seek for a minimizer
of the majorization function QSk(. ,xk) (i.e., our next iterate). The advantage is to reduce again
the dimensionality of the inner MM problems, without jeopardizing the convergence rate [62]. Several
choices for the subspace matrix are discussed in [58, 63, 60]. Intensive comparisons in the fields of inverse
problems, image processing and machine learning (e.g., [102, 57]), have shown the superiority of the
so-called memory gradient subspace which seems to reach the best compromise between simplicity and
efficiency. In the context of (B2MS), this amounts to defining, for every k ∈ N, the memory gradient
matrix Dk =

[
∇(Sk)f(x

k),xk
(Sk)

− xk−1
(Sk)

]
(with the convention x−1 = 0N ), so that Mk = 2. When

combined with a block diagonal majorization mapping, (B2MS) becomes equivalent to the BP3MG
method considered in [49] for 3D image deblurring. The convergence properties of (B2MS) have
recently been studied in [56].

5.2.4 Block Delayed Majorize-Minimize Memory Gradient (BD3MG)
The second catalyst we introduce is the main contribution of this chapter, namely the introduction
of a distributed asynchronous update rule within (B2MS). Our motivation is to make the algorithm
well suited to an implementation on a multi-core / multi-processor architecture, while not being en-
dangered by potential communication delays within the computing units. Let us consider a computing
architecture with C units (or cores), each of them being able to communicate (i.e., send or receive)
information to a master node. The architecture thus considered is forming a star graph as presented in
Figure (5.1c). The two other graph topologies are discarded from this present study (see, for example,
[1] for an efficient distributed method running on a generic hypergraph topology).

The proposed method BD3MG is presented in Algorithms 5.1-5.2, describing the iterations of the
master (i.e., node 0) and a given worker/node c ∈ [[1, C]], respectively. Let us describe these two
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(a) Complete graph (b) Connected graph (c) Star graph

Figure 5.1: Examples of graph topologies. The graph in (c) is encompassed by our framework.

algorithms. Each computation node c ∈ [[1, C]] updates (independently from the other nodes) a subset
of coordinates Sc ∈ T (which can change over the process) by applying an MM iteration including a
memory gradient acceleration and thus “books” its running block Sc so that no other worker overwrites
the associated coordinates. Conversely, any other S ∈ T\{Sc} remains free to be updated by other
workers. Communication steps are performed in order to maintain convergence to a minimizer of the
globally shared objective function f and to control the propagation of errors. Basically, even if the
other workers are still busy on their tasks, every time a worker c ∈ [[1, C]] ends one MM iteration on
its running block Sc, it sends a feedback to the master. As a response, the latter updates it with most
recent available information, and assigns it a new task.

We denote (xk)k∈N the sequence of iterates gathered by the master loop. For any given node index
c ∈ [[1, C]] and k ∈ N, Skc denotes the block of coordinates processed by worker c during step k. We
impose, by construction, that two nodes do not update the same block of coordinates at the same time,
so that we ensure the no-overlap condition

(∀k ∈ N) (∀(c, c′) ∈ [[1, C]]2, c ̸= c′) Skc ∩ Skc′ = ∅. (5.5)

At iteration k ∈ N, worker ck ∈ [[1, C]], updates the block of coordinates Sk
ck

and sends to the master a
vector dk of size

∣∣Sk
ck

∣∣. The corresponding indexes of variable xk within block Sk
ck

are then incremented
with dk while the others remain unchanged, thus defining xk+1. The master then defines a new set of
coordinates Sk+1

ck
to be treated by worker ck, so as to satisfy the non-overlap rule. The master informs

worker ck of this new running set of coordinates, and sends him the most recent information xk+1 and
the difference (xk+1−xk)(Sk+1

ck
). Meanwhile, the other workers keep processing their allocated indexes.

The master then waits until a new worker (possibly the same one) sends a new increment.
Let us now make a focus on the worker loop described in Algorithm 5.2. Remark that, even if

worker c has access to some properties of function f (i.e., the expression for its gradient and for its
majorizing approximation (QS)S∈S), it is not informed about the work done by the master or those of
the other workers . It can only rely on the data the master sends to it to perform its local task. From
the viewpoint of the worker, a triplet set (x,S,d) ∈ RN × T × R|S| is received from the master and
must be used to perform its MM update with memory gradient acceleration. The worker is in charge
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Algorithm 5.1. BD3MG algorithm - Master loop

Initialization.

(a) Set k = 0 and x0 ∈ RN .

(b) Set S0
1 , ...,S0

C ∈ T such that ∀(c, c′) ∈ [[1, C]]2, S0
c ∩ S0

c′
= ∅.

(c) 0-th transmission: For every c ∈ [[1, C]], send
(
x0,S0

c , 0|S0
c |
)

to worker c

While a stopping criterion is not met:

(Wait for a feedback from a worker)

(a) (k + 1)-th reception: Receive dk from a worker ck.

(b) Update xk+1

(Sk
ck
)
= xk

(Sk
ck
)
+ dk and xk+1(

Sk
ck

) = xk(
Sk
ck

).
(c) Set Sk+1

1 , . . . ,Sk+1
C ∈ T such that

Sk+1
ck

∈ T\{Skc }c ̸=ck and, (∀c ∈ [[1, C]]\ck), Sk+1
c = Skc .

(d) (k + 1)-th transmission: Send
(
xk+1,Sk+1

ck
, (xk+1 − xk)(Sk+1

ck
)

)
to worker ck.

(e) k = k + 1

End While

Output. Vector xk.

of first building the new memory gradient matrix

D(x,S,d) = [−∇(S)f(x) | d] ∈ R|S|×2. (5.6)

and then compute the MM increment d
′ ∈ R|S| defined as

d
′
= D(x,S,d)u (5.7)

with u ∈ argmin
v∈R2

QS(x+D(x,S,d)v,x). (5.8)

Note that the uniqueness of the solution for problem (5.7)-(5.8) is not guaranteed in general. To
overcome such an obstacle, we follow the strategy in [58], and retain the pseudo-inverse solution given
by

u = −
(
D(x,S,d)⊤A(S)(x) D(x,S,d)

)†
D(x,S,d) ∇(S)f(x), (5.9)

where † referes to the Moore-Penrose pseudo-inverse. Such solution notably verifies the normal equation〈
∇(S)f(x),D(x,S,d)u

〉
= −∥D(x,S,d)u∥2A(S)(x)

. (5.10)
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Algorithm 5.2. BD3MG algorithm - Worker loop

(Wait for a feedback from the master)

(a) Receive (x,S,d) from Master.

(b) D(x,S,d) = [−∇(S)f(x) | d].

(c) Compute ∇(S)f(x) and A(S)(x).

(d) u = −
(
D(x,S,d)⊤A(S)(x) D(x,S,d)

)†
D(x,S,d) ∇(S)f(x).

(e) Send d′ = D(x,S,d)u to the Master.

5.2.5 Distributed structure of BD3MG

We first have to make an important remark, regarding the communication load in terms of memory,
in between the master and the workers. Consider a worker associated to the block index S. According
to Algorithm 5.2, the worker receives three quantities, namely x of N real values, the set of integer
indexes S with cardinality |S| and the vector d of |S| real values. The sent vector d′ is again made
of |S| real values. Clearly, the main memory load is related to the reception of vector x. One should
however notice that the worker only uses x to compute ∇(S)f(x) and A(S)(x). In most situations
encountered in inverse problems of imaging, f shows some inherent separable structure, so that both of
these quantities only depend on a subset of entries of vector x that can be of small cardinality compared
to N . The practical implementation of Algorithm 5.2 should account for this specific situation, in order
to avoid memory saturation and important communication delays. We give a detailed analysis for this
aspect, in the case of our experimental example, in the Section 5.5.1.4.

The proposed distributed structure of BDM3G follows a star graph. Practically, it means that one
of the computing unit has a higher load, in terms of memory, since it must process the full vector x of
size N , while the memory load of the workers is limited, as we discussed hereabove. This can be viewed
as a limitation for the proposed method. The extension of our analysis to the case of a hypergraph
distributed framework would require to be more specific about the structure of function f (in the line
of the study of [1]), which might reduce the versatility of the algorithm. Up to our knowledge, this
analysis is not straightforward and is thus left as future work.

5.2.6 Equivalent form for BD3MG

The way we introduced our scheme BD3MG in the previous subsection was “implementation-oriented”.
In order to study its convergence behaviour, we must exhibit an equivalent form of it, mimicking the
one of its non distributed counterpart, (B2MS). To do so, it is necessary to formalize the information
gap between the master and the workers during the iterative process.
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As we have already mentioned, all the information available to a worker (except those on f and
(QS)S∈T) is sent to it by the master only after it produces a feedback. For a given k ∈ N, worker ck does
not receive any information between the (k + 1)-reception and the previous one it made. During this
time, its counterparts c ∈ J1, CK\{ck} may have performed additional updates to the master without
ck being informed. This results in an information mismatch, that we propose to formalize through a
vector xιk where

(∀k ∈ N) ιk =

{
0 if k = 0,

max
({
ℓ ∈ [[1, k]] | cℓ−1 = ck

}
∪ {0}

)
, otherwise.

(5.11)

This vector corresponds to the iteration index of the working variable of worker ck, which does not
necessarily matches with the vector xk manipulated by the master.
Let us list herebelow some situations of interest given the value of ιk at some iteration k ∈ N:

• If ιk = 0, and k > 0, it means that
{
ℓ ∈ [[1, k]] | cℓ−1 = ck

}
is an empty set. Hence, the worker

ck never returned any feedback to the master before the iteration k. Note that ι0 = 0 by
construction.

• If ιk = k, we thus have ck−1 = ck. Hence, worker ck was in charge of the two most recent
updates, namely the (k + 1)-th and the k-th ones. As a consequence, to prepare the (k + 1)-th
update, worker ck received vector xk from the master.

• More generally, if ιk > 0, it follows that worker ck at least returned one feedback to the master
before iteration k. And we have the relation cιk−1 = ck.

Moreover, the non-overlap rule translates into

(∀k ∈ N) xιk
(Sk

ck
)
= xk

(Sk
ck

)
. (5.12)

For instance, if ιk = k − 1 for some k > 1, this indicates that ck−2 = ck and ck−1 ̸= ck. The worker ck

thus proceeded to the (k − 1)-th and (k + 1)-th reception of the master while the k-th was made by
another c̃k who received the vector xk (from the master). However, since worker ck was still processing
block Sk−1

ck
, the master was not able to update the associated coordinate for computing xk from xk−1

for worker ck, i.e xk−1
(Sk

ck
)
= xk

(Sk
ck

)
, which is typical from an asynchronous scheme.

More generally, when it comes to dealing with asynchronous algorithms, the use of a specific indexes
with similar roles than our ιk (k ∈ N) is often necessary to build a theoretical delay model and thus
to formulate an equivalent scheme being more compact and easier to analyse [76].

With this aim in mind, let us introduce the shorter notations

(∀k ∈ N)

{
Bk = Sk

ck
,

Dk = D
(
xιk ,Bk,

(
xιk − xιk−1

)
(Bk)

)
,

(5.13)
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and Dk = D
(
xιk ,Bk,

(
xιk − xιk−1

)
(Bk)

)
with convention x−1 = 0N . Then, the master/worker

BD3MG loops from Algorithms 5.1-5.2 can be rewritten equivalently in a single compact scheme as:

(∀k ∈ N)



Let ck ∈ [[1, C]],

uk = −
(
(Dk)⊤A(Bk) (x

ιk)Dk
)†

(Dk)⊤∇(Bk)f(x
ιk),

xk+1
(Bk)

= xk
(Bk)

+Dkuk,

xk+1

(Bk)
= xk

(Bk)
,

(5.14)

where we noticed that (5.12) now reads (using (5.13))

(∀k ∈ N) xιk
(Bk)

= xk(Bk). (5.15)

For every k ∈ N, according to (5.14), uk still reads (5.9) and thus verifies (5.10) with Dk = xk+1
(Bk)

−xk
(Bk)

.
The optimality equation can be rewritten as:

(
∇(Bk)f(x

ιk)
)⊤ (

xk+1
(Bk)

− xk(Bk)

)
= −

∥∥∥xk+1
(Bk)

− xk(Bk)

∥∥∥2
A

(Bk)
(xιk )

. (5.16)

The two next Sections are dedicated to establish the convergence of the iterates produced by (5.14).

5.2.7 Link with existing works

Let us discuss the links between our proposed scheme BD3MG and existing methods from the liter-
ature. When ιk = k for any k ∈ N in BD3MG, the algorithm identifies with our block alternating
scheme B2MS [56] where the blocks of variables were updated sequentially in a non parallel (thus, not
asynchronous) manner. This present chapter can thus be viewed as an extension of the framework and
of the convergence analysis of [56] to the distributed setting. Other related methods are [76, 45, 154],
and our convergence analysis relies on similar tools than the one from [76]. Assuming zero-valued non-
smooth terms in [76, 45, 154] (i.e., the objective function is differentiable), these methods identify with
particular instances of BD3MG that (i) would not implement any subspace acceleration (i.e., Dk = IN
in (5.14)), (ii) would rely on the simple Lipschitz-based majorization metric (i.e., A(Bk)(x

ιk) = LI|Bk|
in (5.14)) in the case of [76]. As a consequence, assuming differentiability of all terms, our convergence
analysis presented in the next section thus also covers the schemes of [76, 45, 154]. Up to our knowledge,
this chapter is the first to show convergence of the iterates of a distributed MM algorithm involving
generic quadratic surrogates and subspace acceleration, in the non-convex setting. Finally, we would
like to point out that the 3MG update performed in Alg. 5.2 identifies with a non-linear conjugate
gradient (NLCG) update, for a specific (and closed form) pair of stepsize and conjugacy parameters
(see discussion in [60, Sec. 1]). Therefore, the work in this chapter can also be understood as the first
convergence analysis of a distributed NLCG method in the non-convex setting. A comparative study
will be conducted in our experimental section to illustrate the superiority of BD3MG with respect to
the aforementioned existing methods in terms of convergence speed.
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5.3 Assumptions and preliminary results

5.3.1 Assumptions

In order to analyse the asymptotic behaviour of the sequence (xk)k∈N generated by scheme (5.14), we
introduce technical assumptions both on function f and on the parameters of BD3MG method.

Assumption 5.1. Function f is coercive, continuously differentiable on RN , and has a L-Lipschitzian
gradient with L > 0, i.e.

(∀(x,y) ∈ (RN )2) ∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥. (5.17)

Assumption 5.1 ensures the existence of solutions for Problem (5.1) (by coercivity). Moreover,
(5.17) in Assumption 5.1 guarantees the existence of a quadratic function (5.2) satisfying (5.3), setting
A : x 7→ LIN . Another direct consequence is

(∀S ∈ T)(∀(x,y) ∈ (RN )2) ∥∇(S)f(x)−∇(S)f(y)∥ ≤ L∥x− y∥, (5.18)

since ∥∇(S)f(x)−∇(S)f(y)∥ ≤ ∥∇f(x)−∇f(y)∥ for all S ∈ T and (x,y) ∈ (RN )2.

Assumption 5.2. (Boundedness of delay) For every k ∈ N, and every worker ck ∈ [[1, N ]], the set Skc
is not empty and there exists τ ∈ N∗ such that

(∀k ≥ τ) [[1, N ]] =
k−1⋃
j=k−τ

Bj , (5.19)

using the notation in (5.13).

Assumption 5.2 gives an upper bound on the delay τ . Each of the block of variables should
be updated within a time frame of at most τ iterations and thus the workers must follow a certain
regularity. Such a condition follows a similar goal than quasi-cyclic rule frequently assumed in block
coordinate methods [56, 121]. From Assumption 5.2, we deduce the following Proposition, which
appears fundamental for the rest of our convergence study. It guarantees that, for a given k ∈ N, the
vector treated by worker ck before its feedback (i.e the (k + 1)-th master’s reception) is not “too old”
compared to the iteration index.

Proposition 5.1. Under Assumption 5.2, for every k ≥ τ , the index ιk given in (5.11) belongs to
[[k − τ + 1, k]].

Proof. Let k ≥ τ , where τ > 0 is defined in Assumption 5.2. Inequality ιk ≤ k directly comes from
Definition (5.11). We prove the lower bound on ιk by contradiction. Let us suppose that ιk ≤ k − τ .
Two situations may arise.

Case 1: ιk = 0. By definition, c0, . . . , ck−1 ̸= ck and an easy induction gives S0
ck

= . . . = Sk
ck

.
Non-overlap rule (5.5) with c0, . . . , ck−1 ̸= ck yields

(∀j ∈ [[0, k − 1]]) Sj
ck

∩ Sj
cj

= Skck ∩ Bj (5.20)

= ∅. (5.21)
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Since Sk
ck

is non empty by Assumption 5.2, condition (5.20) ensures the existence of some ik ∈

[[1, N ]] verifying ik /∈
k−1⋃
j=0

Bj contradicting
k−1⋃
j=k−τ

Bj = [[1, N ]], as k ≥ τ .

Case 2: ιk > 0. We have cιk−1 = ck and a finite induction leads to

(∀j ∈ [[ιk, k]]) Sιk
ck

= Sιk
cιk−1 = Sj

cιk−1 = Sj
ck
. (5.22)

Majoration ιk ≤ k − τ implies that

(∀j ∈ [[k − τ, k]]) Sιk
ck

= Sj
ck
. (5.23)

Non-overlap rule (5.5) with ck−τ , . . . , ck−1 ̸= ck then gives

(∀j ∈ [[k − τ, k − 1]]) Sj
ck

∩ Sj
cj

= Sιk
ck

∩ Bj (5.24)

= ∅. (5.25)

Since Sιk
ck

is non empty, Condition (5.24) thus ensures the existence of ik ∈ [[1, N ]] verifying

ik /∈
k−1⋃
j=k−τ

Bj which contradicts
k−1⋃
j=k−τ

Bj = [[1, N ]].

Assumption 5.3. (Curvature of majorizing matrix)

(i) The mapping A : x ∈ RN 7→ A(x) ∈ SN++ is such that (5.3) holds. Moreover, there exists ν > 0

such that, for all S ∈ T and v ∈ R|S|,

0 ≺ A(S)(v) ⪯ νI|S|. (5.26)

(ii) There exists ν > 0 such that, for all k ∈ N,

Γkc = A(Bk)(x
ιk)− 1

2
A(Bk)(x

k) ⪰
(
L
√
τ(1 + τ)

2
+ ν

)
I|Bk|. (5.27)

Assumption 5.3(i) is standard in optimization literature dealing with MM methods involving
quadratic surrogates [58]. Assumption 5.3(ii) assumes that the spectrum of the difference between
delayed and exact majorizing matrices of the partial quadratic majoring functions is strictly greater
than a certain constant. This hypothesis controls the length of the MM increments performed by each
worker. It aims at ensuring consistency between the asynchronous updates, by directly relating the
worst-case curvature of the function f (parameterized by the Lipschitz constant L) and the worst-case
communication delay (parameterized by the constant τ). Condition (5.27) is key to ensure a condition
descent for the general process generated by BD3MG scheme (see subsection 5.4.1). Assumption 5.3(ii)
becomes redundant with Assumption 5.3(i) in the case when no delay occurs (i.e., τ = 0). A detailed
constructive example on how to meet Assumption 5.3(ii) will be provided in our experimental Section
5.5.
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5.3.2 Technical lemmas
We conclude this section by presenting some preliminary results that will be useful for our convergence
analysis.

Lemma 5.1. Under Assumption 5.2, for every k ≥ τ ,

∥∥∥xk − xιk
∥∥∥2 ≤ τ

k∑
j=k−τ+1

∥∥xj − xj−1
∥∥2 . (5.28)

Proof. Let k ∈ N. If ιk = k, inequality (5.28) is trivial. For the rest of the proof we thus suppose
ιk ≤ k − 1. According to the definition of the euclidean norm we have

∥∥∥xk − xιk
∥∥∥2 = N∑

n=1

(
xkn − xιkn

)2
. (5.29)

Then, for all n ∈ J1, NK, the Jensen’s inequality leads to

(
xkn − xιkn

)2
=

 k∑
j=ιk+1

(
xjn − xj−1

n

)2

≤ (k − ιk)
k∑

j=ιk+1

(
xjn − xj−1

n

)2
. (5.30)

Moreover, Proposition 5.1 ensures that ιk belongs to Jk − τ + 1, kK. As a consequence

(∀n ∈ J1, NK)
(
xkn − xιkn

)2
≤ τ

k∑
j=k−τ+1

(
xjn − xj−1

n

)2
. (5.31)

We then replace (5.31) in (5.29), which yields

∥∥∥xk − xιk
∥∥∥2 ≤ τ

k∑
j=k−τ+1

N∑
n=1

(
xjn − xj−1

n

)2
. (5.32)

Relation (5.28) directly comes from the identification of the inner sum of (5.32) as
∥∥xj − xj−1

∥∥2 for
all j ∈ Jk − τ + 1, kK.

Lemma 5.1 provides a bound on the residual between xk and the delayed vector xιk updated by
worker ck at iteration k ∈ N. The right term in (5.28) can be understood as the extra information
available to the master, when compared to the one available to worker ck. This Lemma will allow to
establish a descent condition on the BD3MG process in the next Section.

Lemma 5.2. Under Assumptions 5.1 and 5.3(i), for every k ∈ N,

∥∇(Bk)f(x
ιk)∥2 ≤ ν2∥xk+1 − xk∥2. (5.33)

Proof. Let k ∈ N. Let us analyse the quantity f(xιk)−QBk(xk+1
(Bk)

,xιk).
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On the one hand, function Ψk : α ∈ R 7→ QBk(xk(Bk)
−Dkαe,xιk) with e = (1, 0)⊤ is a second degree

convex polynomial with a unique minimizer that reads

α̂k =
∥∇(Bk)f(x

ιk)∥2

∥∇(Bk)f (x
ιk) ∥2A

(Bk)
(xιk )

. (5.34)

Since uk is a minimizer of QBk(x
ιk
(Bk)

+ Dk.,xιk) = QBk(xk(Bk)
+ Dk.,xιk), with xιk

(Bk)
= xk

(Bk)
by

Equation (5.11), we deduce that

QBk(xk+1
(Bk)

,xιk) ≤ Ψk(α̂k) = f(xιk)− 1

2
α̂k∥∇(Bk)f(x

ιk)∥2. (5.35)

From Assumption 5.3(i), α̂k verifies α̂k ≥ ν−1. Equation (5.35) can thus be rewritten as

f(xιk)−QBk(xk+1
(Bk)

,xιk) ≥ 1

2ν
∥∇(Bk)f(x

ιk)∥2. (5.36)

On the other hand, using (5.15) from Definition (5.2), and Equation (5.16) yield

f(xιk)−QBk(xk+1
(Bk)

,xιk)

=
〈
∇(Bk)f(x

ιk) , xk+1
(Bk)

− xιk
(Bk)

〉
+

1

2

∥∥∥xk+1
(Bk)

− xιk
(Bk)

∥∥∥2
A

(Bk)
(xιk )

=
〈
∇(Bk)f(x

ιk) , xk+1
(Bk)

− xk(Bk)

〉
+

1

2

∥∥∥xk+1
(Bk)

− xk(Bk)

∥∥∥2
A

(Bk)
(xk)

=
1

2

∥∥∥xk+1
(Bk)

− xk(Bk)

∥∥∥2
A

(Bk)
(xιk )

. (5.37)

The combination of (5.36) and (5.37) leads to

∥∇(Bk)f(x
ιk)∥2 ≤ ν

∥∥∥xk+1
(Bk)

− xk(Bk)

∥∥∥2
A

(Bk)
(xιk )

. (5.38)

Finally, Equation (5.33) comes using Assumption 5.3(i), and in particular,∥∥∥xk+1
(Bk)

− xk(Bk)

∥∥∥2
A

(Bk)
(xιk )

≤ ν
∥∥∥xk+1

(Bk)
− xk(Bk)

∥∥∥2 (5.39)

= ν∥xk+1 − xk∥2. (5.40)

Lemma 5.2 generalizes the decreasing behavior of standard MM schemes [59, 56] to the asyn-
chronous context. It is not directly invoked in our main convergence proof but serves as an intermediary
to show the following technical result.
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Lemma 5.3. Under Assumptions 5.1 and 5.3(i), for all k ≥ 2τ ,

∥∇f(xk)∥ ≤ Lτ
k∑

j=k−2τ+1

∥xj − xj−1∥+ ν
k∑

j=k−τ
∥xj+1 − xj∥. (5.41)

Proof. Let k ≥ 2τ . Assumption 5.2 allows us to bound the gradient of f at xk, as

∥∇f(xk)∥2 ≤
k−1∑
ℓ=k−τ

∥∇(Bℓ)f(x
k)∥2 ≤

(
k−1∑
ℓ=k−τ

∥∇(Bℓ)f(x
k)∥

)2

. (5.42)

Let us extract the root of the above terms, and use triangular and gradient-Lipschitz inequalities,
leading to

∥∇f(xk)∥ ≤
k−1∑
ℓ=k−τ

∥∇(Bℓ)f(x
k)−∇(Bℓ)f(x

ιℓ)∥+
k−1∑
ℓ=k−τ

∥∇(Bℓ)f(x
ιj )∥

≤ L
k−1∑
ℓ=k−τ

∥xk − xιℓ∥+
k−1∑
j=k−τ

∥∇(Bj)f(x
ιj )∥. (5.43)

For all ℓ ∈ Jk − τ, k − 1K, by Proposition 5.1, ιℓ ≥ ℓ− τ + 1 ≥ k − 2τ . Thus,

∥xk − xιℓ∥ ≤
k∑

j=k−2τ+1

∥xj − xj−1∥. (5.44)

The right term of (5.44) does not depend on index ℓ. Using (5.44) and inequality (5.33) finally proves
the result.

Lemma 5.3 is useful as it provides a bound on the gradient at step xk only depending on the 2τ +1

past iterates xk, . . . ,xk−2τ .

Lemma 5.4. Let (uk)k∈N and (vk)k∈N be two sequences of positive real numbers. If there exists P ∈ N
and k∗ ≥ P such that

(∀k ≥ k∗) uk ≤ r

k−1∑
j=k−P

uj + vk−1, (5.45)

with r < 1/P and
+∞∑
k=0

vk < +∞ , then
+∞∑
k=0

uk < +∞.

Proof. Summing (5.45) from k∗ to n ≥ k∗ leads to

n∑
k=k∗

uk ≤ r
n∑

k=k∗

k−1∑
j=k−P

uj +
n∑

k=k∗

vk−1, (5.46)
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with
n∑

k=k∗

k−1∑
j=k−P

uj =

n∑
k=k∗

P∑
j=1

uk−j =

P∑
j=1

n−j∑
k=k∗−j

uk ≤
P∑
j=1

n∑
k=0

uk. (5.47)

Plugging (5.47) into (5.46), yields

n∑
k=k∗

uk ≤ rP
n∑

k=k∗
uk +

(
rP

k∗−1∑
k=0

uk +
n∑

k=k∗

vk−1

)
≤ rP

n∑
k=k∗

uk +

(
rP

k∗−1∑
k=0

uk +
+∞∑
k=0

vk

)
, (5.48)

that is (1−rP )
∑n

k=k∗ u
k ≤ rP

∑k∗−1
k=0 uk+

∑+∞
k=0 v

k. With 0 < 1−rP < 1, we deduce the summability
of
(
uk
)
k∈N.

Lemma 5.4 is a technical result to ensure the convergence of some real series. Several variants
of inequality (5.45) have been used to prove the finite length of iterative processes and then their
convergence [76, 27].

5.4 Convergence results

Let us now state our main theoretical results, that relate to the convergence properties of BD3MG
iterates. Our proof line is reminiscent of [76, 27] and follows similar steps that we summarize hereafter.
First, starting from the majoration property (5.3) and using Lemma 5.1, we will establish a descent
inequality. The latter is the key point of the rest of the proof. In particular, it will allow to show
convergence of (f(xk))k∈N. Then, Lemma 5.3 will ensure that (∇f(xk))k∈N converges to 0N , and usual
topological properties will serve to show that the set of cluster points C(xk)k∈N) of (xk)k∈N lies in the
set of stationary point of f . Finally, we will exhibit a Lyapunov function from our descent inequality
and will resort to the Kurdyka-Łojasewicz (KL) inequality [27] to prove our main theorem, showing
the convergence of the BDM3G iterates and providing a rate of convergence.

5.4.1 Descent inequality

Proposition 5.2. Under Assumptions 5.1-5.2-5.3, there exists a positive sequence (νk)k≥τ such that

(∀k ≥ τ) f(xk+1) + νk+1 ≤ f(xk) + νk − ν∥xk+1 − xk∥2. (5.49)

Proof. By definition of the majorization function (5.3), for every k ∈ N,

f(xk+1) ≤ f(xk) +
〈
∇(Bk)f(x

k), xk+1
(Bk)

− xk(Bk)

〉
+

1

2
∥xk+1

(Bk)
− xk(Bk)∥

2
A

(Bk)
(xk). (5.50)

Decomposing the scalar product term then yields, for every k ∈ N,

f(xk+1) ≤ f(xk) +Rk +
〈
∇(Bk)f(x

ιk), xk+1
(Bk)

− xk(Bk)

〉
+

1

2
∥xk+1

(Bk)
− xk(Bk)∥

2
A

(Bk)
(xk), (5.51)

with Rk =
〈
∇(Bk)f(x

k)−∇(Bk)f(x
ιk), xk+1

(Bk)
− xk(Bk)

〉
.
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Let τ defined as in Assumption 5.2. A majoration of Rk for every k ≥ τ comes by using successively
Cauchy-Schwartz inequality, L gradient-Lipschitz inequality from Assumption 5.1, and Lemma 5.1:

(∀k ≥ τ) Rk ≤ L∥xk − xιk∥ ∥xk+1
(Bk)

− xk(Bk)∥

≤ L
2
√
τ
∥xk − xιk∥2 + L

√
τ

2
∥xk+1

(Bk)
− xk(Bk)∥

2,

≤ L
√
τ

2

k∑
j=k−τ+1

∥xj − xj−1∥2 + L
√
τ

2
∥xk+1

(Bk)
− xk(Bk)∥

2. (5.52)

We then set, for all k ≥ τ , νk =
L
√
τ

2

k∑
j=k−τ+1

(j−k+ τ)∥xj −xj−1∥2. Since xk+1
(Bk)

−xk
(Bk)

= xk+1−xk,

(5.52) also reads

(∀k ≥ τ) Rk ≤ νk − νk+1 +
Lτ

√
τ

2
∥xk+1

(Bk)
− xk(Bk)∥

2 +
L
√
τ

2
∥xk+1

(Bk)
− xk(Bk)∥

2,

= νk − νk+1 +
L
√
τ(1 + τ)

2
∥xk+1

(Bk)
− xk(Bk)∥

2. (5.53)

Moreover, Equation (5.16) ensures that

(∀k ≥ τ)
〈
∇(Bk)f(x

ιk), xk+1
(Bk)

− xk(Bk)

〉
= −∥xk+1

(Bk)
− xk(Bk)∥

2
A

(Bk)
(xιk ). (5.54)

Replacing both (5.53) and (5.54) in (5.51) gives, for all k ≥ τ ,

f(xk+1) + νk+1 ≤ f(xk) + νk +
L
√
τ(1 + τ)

2
∥xk+1

(Bk)
− xk(Bk)∥

2 − ∥xk+1
(Bk)

− xk(Bk)∥
2
Γk
c

= f(xk) + νk − ∥xk+1
(Bk)

− xk(Bk)∥
2

Γk
c−

L
√
τ(1+τ)
2

I|Bk|
, (5.55)

with Γkc defined in Assumption 5.3(ii). (5.49) is a direct consequence of Assumption 5.3(ii) remarking
that ∥xk+1

(Bk)
− xk

(Bk)
∥ = ∥xk+1 − xk∥.

5.4.2 General behaviour
We now state our first convergence Theorem for BD3MG algorithm.

Theorem 5.1. Under Assumptions 5.1-5.2-5.3, sequence
(
f(xk)

)
k∈N generated by BD3MG converges

to a finite limit f∞. Moreover,
(
∇f(xk)

)
k∈N converges to 0N .

Proof. Coercivity of f (Assumption 5.1) and (5.49) guarantee that
(
f(xk) + νk

)
k∈N is a decreasing

and lower-bounded sequence. It is thus converging to a real value f∞. Equation (5.49) then directly
leads to

∑+∞
k=0 ∥xk+1 −xk∥2 < +∞. On the first hand, using the same notation (νk)k∈N introduced in

our proof of Proposition 5.2, we have

(∀k ≥ τ) νk ≤
Lτ

√
τ

2

+∞∑
j=k−τ+1

∥xj − xj−1∥2. (5.56)
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Thus, the sequence (νk)k∈N converges to 0 and so, by Proposition 5.2,
(
f(xk)

)
k∈N goes to f∞. On the

other hand, Lemma 5.3 gives

(∀k ≥ 2τ) ∥∇f(xk)∥ ≤ Lτ
+∞∑

j=k−2τ+1

∥xj − xj−1∥+
+∞∑

j=k−τ
∥xj+1 − xj∥, (5.57)

which enables to conclude that
(
∇f(xk)

)
k∈N converges to 0N .

Proposition 5.3. Under Assumptions 5.1-5.2-5.3, C
(
(xk)k∈N

)
, defined as the set of accumulation

points of
(
xk
)
k∈N, is non empty , compact and is a subset of the set of stationary points of f . Moreover,

f takes value f∞ on C
(
(xk)k∈N

)
.

Proof. Coercivity of f (by Assumption 5.1) and convergence of
(
f(xk)

)
k∈N to f∞ (by Theorem 5.1)

show that
(
xk
)
k∈N is a bounded sequence and C

(
(xk)k∈N

)
is non empty and compact. Convergence

of
(
∇f(xk)

)
k∈N to 0N (by Theorem 5.1) guarantees that every point x∗ ∈ C

(
(xk)k∈N

)
is a stationary

point of f . Moreover, using again
(
f(xk)

)
k∈N converging to f∞ yields f∞ = f(x∗) for every x∗ ∈

C
(
(xk)k∈N

)
which concludes the proof.

5.4.3 Lyapunov-based asymptotical analysis
In order to establish the convergence of the iterates of BD3MG, we will follow an analysis relying on
the use of a Lyapunov function. Such proof technique has also been used in [76, 244, 235]. The idea
is to exhibit a function, related to the loss function f but non necessarily equals to it, that decreases
monotonically along the iterative process. Given (5.49), a natural choice is

L : Z =

Z0
...
Zτ

 ∈ R(τ+1)N 7→ f(Z0) +
L
√
τ

2

τ∑
ℓ=1

(τ − ℓ+ 1)∥Zℓ −Zℓ−1∥2. (5.58)

Let us denote, for every k ≥ τ , Zk =

 xk

...
xk−τ

 ∈ R(τ+1)N , with xk the k-th BD3MG iterate. Then,

the descent condition from Proposition 5.2 can be rewritten as

(∀k ≥ τ) L(Zk+1) ≤ L(Zk)− ν∥xk+1 − xk∥2. (5.59)

The structure of L allows to build an upper bound of its gradient norm along the iterates, where
the bound depends only on the differences of the past iterates:

Lemma 5.5. There exists ρ > 0 such that

(∀k ≥ τ) ∥∇L(Zk)∥ ≤ ρ

k∑
j=k−2τ+1

∥xj − xj−1∥. (5.60)
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Proof. Function L is differentiable. The expression of its gradient is

(
∀Z ∈ R(τ+1)N

)
∇L(Z) = g0 + L

√
τ

τ∑
ℓ=1

(τ − ℓ+ 1)gℓ, (5.61)

where g0 =

(
∇f(Z0)
0τN

)
and (∀ℓ ∈ J1, τK) gℓ =


0(ℓ−1)N

Zℓ−1 −Zℓ

Zℓ −Zℓ−1

0(τ−ℓ)N

 . (5.62)

Let us apply twice the Jensen inequality for the square of the norm and then the majoration τ−ℓ+1 ≤ τ

for 1 ≤ ℓ ≤ τ . This yields

(
∀Z ∈ R(τ+1)N

)
∥∇L(Z)∥2 ≤ 2∥g0∥2 + 2(Lτ)2

τ∑
ℓ=1

(τ − ℓ+ 1)2∥gℓ∥2

= 2∥∇f(Z0)∥2 + 4(Lτ)2
τ∑
ℓ=1

(τ − ℓ+ 1)2∥Zℓ −Zℓ−1∥2

≤ 2∥∇f(Z0)∥2 + 4L2τ4
τ∑
ℓ=1

∥Zℓ −Zℓ−1∥2. (5.63)

Using
√
a2 + b2 ≤ a+b for the two quantities at the right of (5.63) and then standard norm majoration

inequalities, we get:

(
∀Z ∈ R(τ+1)N

)
∥∇L(Z)∥ ≤

√
2∥∇f(Z0)∥+ 2Lτ2

τ∑
ℓ=1

∥Zℓ −Zℓ−1∥. (5.64)

The application of (5.64) to sequence (Zk)k∈N leads to

(∀k ≥ τ) ∥∇L(Zk)∥ ≤
√
2∥∇f(xk)∥+ 2Lτ2

k∑
j=k−τ+1

∥xj − xj−1∥. (5.65)

By Lemma 5.3 and (5.65), we finally deduce that

(∀k ≥ 2τ) ∥∇L(Zk)∥ ≤
√
2Lτ

k∑
j=k−2τ+1

∥xj − xj−1∥+
√
2ν

k∑
j=k−τ

∥xj+1 − xj∥

+ 2Lτ2
k∑

j=k−τ+1

∥xj − xj−1∥

≤
(√

2Lτ +
√
2ν + 2Lτ2

) k∑
j=k−2τ+1

∥xj − xj−1∥, (5.66)

which concludes the proof taking ρ =
√
2Lτ +

√
2ν + 2Lτ2.
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The following analysis makes use of recent theoretical results around the KL inequality [9, 27] that
we recall hereafter. For every ζ > 0, we denote by Φζ the set of concave functions φ : [0, ζ) 7→ R+

verifying :

• φ(0) = 0.

• φ ∈ C1((0, ζ)) and is continuous in 0.

• ∀s ∈ (0, ζ), φ′(s) > 0.

We are then ready to introduce the so-called KL property. [9, 27]

Definition 5.1. [KL property] A differentiable function g : Rd → R, with d ≥ 1, satisfies the Kurdyka-
Łojasiewicz (KL) property on E ⊂ Rd if, for every z ∈ E and every bounded neighborhood V of z,
there exist ζ > 0 and φ ∈ Φζ such that every x ∈ E ∩ {x s.t. |g(x)− g(z)| < ζ},

∥∇g(x)∥φ′(|g(x)− g(z)|) ≥ 1. (5.67)

We also recall the following Lemma:

Lemma 5.6. [Uniform KL property [27, Lemma 6]] Let C a compact set of Rd and g : Rd → R a
differentiable function satisfying KL property on C and constant on the latter. Then, there exist ϵ, ζ > 0

and φ ∈ Φζ such that every x ∈ C and all x ∈ Rd satisfying both d(x, C) < ϵ, 0 < g(x) − g(x) < ζ,
we have

∥∇g(x)∥φ′(|g(x)− g(x)|) ≥ 1. (5.68)

Proposition 5.4. Under Assumptions 5.1-5.2-5.3, if L defined in (5.58) fulfills the KL property on
R(τ+1)N then, considering g = L, C = C

(
(Zk)k∈N

)
with L(C) = {f∞}, there exists ϵL, ζL and

ϕL ∈ ΦζL such that L satisfies (5.68).

Proof. This is a direct consequence of Lemma 5.6. Continuity of L is clear. We still have to verify the
compactness of C

(
(Zk)k∈N

)
and that L is constant valued on that set. C

(
(Zk)k∈N

)
is closed. Moreover,

it is straightforward to show that this set is included in the Cartesian product
[
C
(
(xk)k∈N

)]τ+1, where
C
(
(xk)k∈N

)
is compact. C

(
(Zk)k∈N

)
is thus bounded and, finally, it is compact.

Let Z ∈ C
(
(Zk)k∈N

)
. We have L(Zk) = f(xk) + νk for all k ∈ N. From our proof of Theorem 5.1, it

follows that sequence
(
L(Zk)

)
k∈N converges to f∞. Continuity of L finally ensures that f∞ = L(Z).

This proves that f is constant valued on C
(
(Zk)k∈N

)
(and equals to f∞).

5.4.4 Convergence of the iterates

We are now ready to state our second convergence Theorem for BD3MG algorithm, characterizing the
convergence of (xk)k∈N.
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Theorem 5.2. Let assume that Assumptions 5.1-5.2-5.3 hold. Assume furthermore that the Lyapunov
function L in (5.58) satisfies the KL property on R(τ+1)N . Then, sequence (xk)k∈N is of finite length,
i.e :

+∞∑
k=0

∥xk+1 − xk∥ < +∞, (5.69)

and converges to a stationary point of f .

Proof. Let us start considering the case when there exists some k0 ∈ N where L(Zk0) = f∞. Since(
L(Zk)

)
k∈N is decreasing sequence converging to f∞ (see proof of Proposition 5.4), it follows that

L(Zk) = f∞ for all k ≥ k0. (5.59) then gives

(∀k ≥ k0) ∥xk+1 − xk∥2 ≤ ν−1
(
L(Zk)− L(Zk+1)

)
= 0, (5.70)

ensuring that (xk)k∈N has a finite length and xk, k ≥ 0, is a stationary point of f .

We now suppose that, for all k ∈ N, L(Zk0) ̸= f∞. We aim at exhibiting a uniform KL inequality
on sequence

(
L(Zk)

)
k∈N. To do so, let us peruse the quantities ϵL, ηL, φL arising from Proposition 5.4.

On the one hand, the decrease of
(
L(Zk)

)
k∈N implies that, for all k ∈ N, L(Zk) > f∞. The set

C
(
(xk)k∈N

)
is non empty (see proof of Proposition 5.3), so is the set C

(
(Zk)k∈N

)
. Let Z ∈ C

(
(Zk)k∈N

)
an element of such set i.e., a cluster point of (Zk)k∈N. From Proposition 5.4, L(Z) = f∞. Hence,
L(Zk)− L(Z) > 0 for all k ∈ N.
On the other hand,

(
L(Zk)

)
k∈N converges to f∞ = L(Z). The boundedness of (xk)k∈N also ensures

this of (Zk)k∈N.
We deduce the existence of some k1 ≥ 2τ such that

(∀k ≥ k1) 0 < L(Zk)− L(Z) < ηL, d
(
Zk, C

(
(Zk)k∈N

))
< ϵL. (5.71)

From Proposition 5.4, the uniform KL property on L holds i.e.,

(∀k ≥ k1) ∥∇L(Zk)∥
(
φL
)′ (

L(Zk)− L(Z)
)
≥ 1. (5.72)

Moreover, setting ∆k = φL
(
L(Zk)− L(Z)

)
− φL

(
L(Zk+1)− L(Z)

)
for all k ∈ N, concavity of φL

and (5.59) ensure that

(∀k ≥ k1) ∆
k ≥

(
φL
)′ (

L(Zk)− L(Z)
)(

L(Zk)− L(Zk+1)
)

≥ ν∥xk+1 − xk∥2
(
φL
)′ (

L(Zk)− L(Z)
)
. (5.73)

The combination of the latter with (5.72) leads to

(∀k ≥ k1) ∥xk+1 − xk∥2 ≤ ν−1∆k∥∇L(Zk)∥. (5.74)

By Lemma 5.5, we can upper bound the gradient term in (5.74). This gives

(∀k ≥ k1) ∥xk+1 − xk∥2 ≤ ρν−1∆k
k∑

j=k−2τ+1

∥xj − xj−1∥. (5.75)
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Passing to the root and using the classical identity
√
ab ≤ a/c+ bc/4, with a =

k∑
j=k−2τ+1

∥xj − xj−1∥

for all k ≥ k1, b = ∆k, both positive for all k ≥ k1 and some c > 0 is generic, leads to

(∀k ≥ k1) ∥xk+1 − xk∥ ≤
√
ρν−1/2

c

k∑
j=k−2τ+1

∥xj − xj−1∥+
c
√
ρν−1/2

4
∆k. (5.76)

Since (∆k)k∈N is summable (as a telescopic sequence), we can apply Lemma 5.4 with some c >

2τ
√
ρν−1/2 so that 2τ

√
ρν−1/2

c < 1. This shows that sequence (xk)k∈N has a finite length.

This finite length property entails that (xk)k∈N is a Cauchy sequence and thus a converging one.
The final conclusion directly comes from Proposition 5.1, ensuring that every accumulation point of
(xk)k∈N is a stationary point of f .

5.4.5 Discussion

Under the KL condition for the Lyapunov function L defined in (5.58), we were able to demonstrate the
convergence of sequence (xk)k∈N to a stationary point of f . Let us notice that f satisfying KL property
does not necessary imply that L does. Still, our assumption on L can be verified in practice for a wide
class of functions f . For instance, following the discussion in [76, section 6], if f is semi-algebraic
[23, 27], then the required condition on L in Theorem 5.2 is satisfied, with function φL = κ(.)1−θ for
a some (κ, θ) ∈ R∗

+ × (0, 1). Such situation will be met in our experimental settings in Section 5.5.
Extending Theorem 5.2 to any KL function f would be an interesting avenue for future work but up
to our knowledge, it does not seem straightforward.

5.5 Application to 3D image restoration

5.5.1 Problem statement

5.5.1.1 Observation model.

We focus on the inverse problem of restoring a vectorized 3D volume x of size N = NX × NY × NZ

given blurry and noisy observation y ∈ RN . We consider a depth-variant 3D blur operator H ∈ RN×N

associated to kernels with support size M = MX ×MY ×MZ, and additive i.i.d. Gaussian noise with
standard deviation σ > 0, so that the observed volume is related to x through,

y = Hx+ b, (5.77)

with vector b ∈ RN accounting for the noise. The goal is to solve the inverse problem of estimating
x given y and H. Depth-variant blurs are commonly encountered in 3D microscopy [193, 116,
136, 130], due to optical aberrations. They are particular cases of spatially-variant blurs [48, 170].
The degradation operator H raises specific challenges due to its high computational cost. Several
strategies have been investigated in the case of 2D spatially variant blur maps encountered for instance
in astronomical imaging [82, 83, 93]. The extension to 3D maps of these methods is however not covered
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up to our knowledge. This motivates the use of a distributed optimization approach for solving the
inverse problem (5.77).

5.5.1.2 Objective function

We adopt a variational strategy, which consists in seeking for an estimate of x that minimizes a
penalized least squares criterion f . A hybrid regularization term is employed incorporating prior
knowledge on the smoothness and the range of the sought solution. The objective function reads:

(∀x ∈ RN ) f(x) =
S∑
s=1

fs(Lsx), (5.78)

where, for every s ∈ {1, . . . , S}, Ls ∈ RPs×N , Ps ∈ N∗, and fs is a function from RPs to R. f1 ◦ L1

represents the data fidelity term while the other terms are regularization terms. Here, we set S = 4

and

• P1 = N , L1 = H, f1 = 1
2∥ · −y∥2,

• P2 = N , L2 = IN , f2 = η d2
[xmin,xmax]N

,

• P3 = 2N , L3 = [(V X)⊤ (V Y)⊤]⊤, f3 = λ
N∑
n=1

√
[.]2n + [.]2N+n + δ2,

• P4 = N , L4 = V Z, f4 = κ∥ · ∥2.

Hereabove, (η, λ, δ, κ) ∈ (0,+∞)4 are hyper-parameters. The linear operators V X,V Y,V Z ∈ RN×N

are discrete gradient operators along X (horizontal), Y (vertical), and Z (longitudinal) directions of
the 3D volume. Function d2

[xmin,xmax]N
states for the squared distance to set [xmin, xmax]

N ⊂ RN , with
(xmin, xmax) ∈ R2 minimal and maximal bounds on the sought intensity values. The later term can be
viewed as an exterior penalty function [60]. 1.

5.5.1.3 majorization mapping.

In order to implement BD3MG, we must build a majorization mapping ensuring the majorization
condition (5.3). First, let us notice that, according to (5.78), the gradient of f reads

(∀x ∈ RN ) ∇f(x) =
S∑
s=1

L⊤
s φs(Lsx), (5.79)

with, for every s ∈ {1, . . . , S}, φs : RPs → RPs the gradient operator of fs. Then, function f fits
within the class of half-quadratic majorizing constructions initially introduced in [108, 109] and later
analysed in [176, 5, 58]. A general structure for the majorization mapping of (5.78) is thus

(∀x ∈ RN ) A(x) =
S∑
s=1

L⊤
s Diag

1≤p≤Ps

{[ωs(Lsx)]p}Ls, (5.80)

1Function x ∈ RN 7→ d2E(x) is 2-Lipschitz differentiable a soon as E is non-empty closed and convex set [14].
Denoting by pE the orthogonal projection operator, its gradient then corresponds to x ∈ RN 7→ 2(x− PE(x)).
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where, for every s ∈ {1, . . . , S}, ωs : RPs →]0,+∞[Ps is a majorizing potential that depends on the
properties of (fs)1≤s≤S [63, Tab. I]. In our case, for every s ∈ {1, . . . , 4}, each of these terms is fs is
βs-Lipschitz differentiable with 

β1 = 1,

β2 = 4η,

β3 = λδ−1,

β4 = 2κ.

(5.81)

Then, from descent lemma [19], a valid choice is ωs(·) = αβs1Ps with some α ≥ 1 [58]. We adopt this
simple strategy for functions f1, f2 and f4, which yields

ω1(·) = α1N
ω2(·) = 4αη1N
ω4(·) = 2ακ1N .

(5.82)

Regarding function f3, a more sophisticated majorization is adopted, inherited from half-quadratic
strategies [5, 176]:

(∀v ∈ R2N ) ω3(v) = λ


(
1/
√
v2n + v2N+n + δ2

)
1≤n≤N(

1/
√
v2n + v2N+n + δ2

)
1≤n≤N

 . (5.83)

A quadratic majorization function satisfying (5.3) for a given block S ∈ T can then be obtained using
(5.2) with (5.79) and (5.80).

5.5.1.4 Distributed implementation

We implement BD3MG algorithm as presented in Section 5.2.4. Our code is available at [50]. We split
the 3D volume into 2D slices along the depth axis z ∈ {1, . . . , NZ}, and consider each 2D slice as an
individual block upon which workers can compute an update. Assuming a lexicographic ordering of
the voxels, this means that the following partition is adopted:

T = { J(i− 1)NXNY + 1, iNXNYK | 1 ≤ i ≤ NZ } . (5.84)

BD3MG is implemented on a star graph of workers with a specific master aggregating the current
solution. For a given number of active cores Ctot = C + 1 of the computer (or of the cluster), one
is used as the master process to manage the computation split between the workers while all the
C(= Ctot − 1) others, are computing updates asynchronously on planar blocks (i.e., Algorithm 5.2).
We initially set, for every c ∈ {1, . . . , C}, S0

c corresponding to the index set of the ((c− 1)⌊NZ
C ⌋+1)-th

2D slice in the volume. Then, at each iteration k, the master requires worker ck to process the 2D slice
with index set Sk+1

ck
, by applying a first-in, first-out basis. The worker ck hence computes the update

for the 2D slice that has been modified the longest time ago, assuming it is available (i.e., not processed
in the same time by another worker). A cyclic block update is used as default choice, if several blocks
are available (this typically arises in the first iterations). Furthermore, the master controls that each
slice has been updated at least once every τ iterations. Regarding data exchange, as emphasized in
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Section 5.2.5, in practice, it is not necessary to share the full vector x with all the workers. Consider
a worker update associated to the block S ∈ T. The worker has to compute ∇(S)f(x) and A(S)(x).
Because of the structure of (5.78), these quantities actually only depend on a subpart of vector x,
defined by (xn)n∈VS , with VS ⊂ [[1, N ]] a set which has low cardinality compared to the full volume
size N . Let us explicit this set for our practical example. The key ingredients to account for are (i) the
presence of null entries in the linear operators (Ls)1≤s≤S , (ii) the (almost) separability of operators
(φs, ωs)1≤s≤S . We introduce the following sets, for every s ∈ {1, . . . , S},

(∀n ∈ {1, . . . , N}) coln,s = {p ∈ {1, . . . , Ps} s.t. (Ls)p,n ̸= 0} , (5.85)

(∀p ∈ {1, . . . , Ps}) rowp,s = {n ∈ {1, . . . , N} s.t. (Ls)p,n ̸= 0} , (5.86)

Moreover the separable structures of (φs, ωs)1≤s≤S ensure that for every s ∈ {1, . . . , S} and p ∈
{1, . . . , Ps}, there exists a subset Vs,p ⊂ [[1, Ps]] as well as two functions φ̃s,p : R|Vs,p| → R and
ω̃s,p : R|Vs,p| → (0,+∞) such that

(∀v ∈ RPs)

{
[φs(v)]p = φ̃s,p(v(Vs,p)),

[ωs(v)]p = ω̃s,p(v(Vs,p)).
(5.87)

Considering this, we can now rewrite the expressions ∇(S)f(x) and A(S)(x) as

(∀x ∈ RN ) ∇(S)f(x) = ([∇f(x)]i)i∈S , (5.88)

with, for every i ∈ S,

[∇f(x)]i =
S∑
s=1

[
L⊤
s φs(Lsx)

]
i
, (5.89)

=

S∑
s=1

Ps∑
p=1

(Ls)p,i [φs(Lsx)]p , (5.90)

=
S∑
s=1

∑
p∈coli,s

(Ls)p,i [φs(Lsx)]p , (5.91)

=

S∑
s=1

∑
p∈coli,s

(Ls)p,iφ̃s,p([Lsx](Bs,p)
), (5.92)

=
S∑
s=1

∑
p∈coli,s

(Ls)p,iφ̃s,p

[ N∑
n=1

(Ls)ℓ,nxn

]
ℓ∈Vs,p

 , (5.93)

=
S∑
s=1

∑
p∈coli,s

(Ls)p,iφ̃s,p


 ∑
n∈rowℓ,s

(Ls)ℓ,nxn


ℓ∈Vs,p

 , (5.94)

Similar computation shows that, for every (i, j) ∈ S2,

[A(x)]i,j =

S∑
s=1

∑
p∈coli,s∩colj,s

(Ls)p,i(Ls)p,jω̃s,p


 ∑
n∈rowℓ,s

(Ls)ℓ,nxn


ℓ∈Vs,p

 . (5.95)
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Hence, (5.94)-(5.95) reflect the fact that the only coordinates of the vector x that are manipulated to
compute the gradient and majorization mapping related to block S, belong to VS where

VS =
⋃
i∈S

⋃
s∈{1,...,S}

⋃
p∈coli,s

⋃
ℓ∈Vs,p

rowℓ,s. (5.96)

Since matrices (Ls)1≤s≤S are very sparse and functions (φs, ωs)1≤s≤S close to separable ones, the
cardinality of the involved sets in (5.96) is small so that the memory load for each communication in
between master and worker is limited.

5.5.1.5 Validity of Assumptions.

Let us discuss the validity of Assumptions 5.1, 5.2 and 5.3 for the considered problem and implemen-
tation.

5.5.1.5.1 Assumption 5.1. Function f in (5.78) is differentiable. Moreover, it has a L-Lipschitzian
gradient with L =

∑S
s=1 βs|||Ls|||2, where ||| · ||| denotes the spectral norm over matrices and (βs)1≤s≤S

were given in the previous subsection. According to [203, Prop. 2.5], a sufficient condition for f to be
coercive is ker(H) = {0N}. This latter is verified in our experiments, since H is a full-rank operator.
Thus, Assumption 5.1 holds.

5.5.1.5.2 Assumption 5.2. This assumption relates to the practical implementation of BD3MG
and requires every subset of variables to be updated within a finite number of iterations. In practice,
we introduced a safety check in the master loop, that introduces an idle time if a slice has not been
updated within the last τ iterations with τ a predefined value. In our implementation, each worker is in
average in charge of NZ

C 2D slices, of the volume. We thus set τ = 2
⌈
NZ
C

⌉
, that is each worker is allowed

to spend, in average twice more time to update one slice than another. Given our block selection rule,
with balanced computational load per slide, and relying on first-in, first-out, this situation could only
arise if a worker experienced a major delay, which never occurred in our experiments.

5.5.1.5.3 Assumption 5.3. This assumption relates to the majorization mapping. To check
this assumption, we proceed in three steps. On the one hand, we have,

(∀x ∈ RN ) A(x) ⪰ L⊤
2 Diag

1≤p≤P2

{ω2(L2x)}L2 ⪰ αηIN . (5.97)

On the other hand, according to definition (5.80) and those of ω1, . . . , ω4

(∀x ∈ RN ) A(x) ⪯

(
S∑
s=1

|||Ls|||2 max
1≤p≤Ps

[ωs(Lsx)]p

)
IN ⪯ νIN , (5.98)

with

ν = α

(
S∑
s=1

βs|||Ls|||2
)
. (5.99)

112



Considering (5.97), (5.98)-(5.99) and the fact that any sub-matrix M(S) (S ⊂ J1, NK) of a (symmetric)
positive matrix M remains positive, the chosen mapping A thus respects conditions imposed by
Assumption 5.3(i). Moreover, for all (x,y) ∈ (RN )2,

A(x)− 1

2
A(y)

=
S∑
s=1

(Ls)
⊤ Diag

1≤p≤Ps

{(
[ωs(Lsx)]p −

1

2
[ωs(Lsy)]p

)}
Ls (5.100)

=
α

2

∑
s∈{1,2,4}

(Ls)
⊤Ls + (L3)

⊤ Diag
1≤p≤P3

{(
[ω3(L3x)]p −

1

2
[ω3(L3y)]p

)}
L3

⪰ α

2
L⊤

2 L2 + (L3)
⊤ Diag

1≤p≤P3

{(
[ω3(L3x)]p −

1

2
[ω3(L3y)]p

)}
L3

⪰ η(α)IN with η(α) =
α

2
− 8λ

2δ
, (5.101)

as |||L3|||2 = 8. Under the same previous remark on the block positivity preservation, Assumption
5.3(ii) is verified considering α large enough (i.e so as for η(α) to strictly exceed bound L

√
τ(1+τ)
2 ). In

practice, we opt for α = 1.1×
(
L
√
τ(1 + τ) + 8λ

δ

)
. The associated ν in (5.27) is ν = η(α)− L

√
τ(1+τ)
2 ).

5.5.1.5.4 Convergence result In a nutshell, Assumptions 5.1-5.2-5.3 are fulfilled in our exper-
iments, so that Theorem 5.1 holds. Moreover, function f is semi-algebraic, hence so is the Lyapunov
function L (see discussion in Sec. 5.4.5). Thus, Theorem 5.2 holds.

5.5.2 Comparative analysis on a controlled scenario

We first set x as the 3D microscopic image FlyBrain [194] with sizeN = NX×NY×NZ = 256×256×57.
The linear operator H models a 3D depth-varying Gaussian blur. For each depth z ∈ {1, . . . , NZ}, the
blur kernel is characterized by different variance and rotation parameters (σX(z), σY(z), σZ(z), φY(z), φZ(z)),
following the model from [236]. In practice, the values of these five parameters are chosen randomly
through a uniform distribution over [0, 3]×[0, 3]×[0, 4]×[0, 2π]×[0, 2π], sampled independently for every
z. The support of the blur is then truncated to reach a kernel size of M =MX×MY×MZ = 5×5×11,
which appears large enough to avoid spurious ringing effects. A zero-mean white Gaussian noise
with standard deviation σ = 4 × 10−2 is then added to the blurred volume. The regularization pa-
rameters (λ, δ, κ, η) = (1, 1, 10−1, 10−3) are chosen empirically so as to maximize the Signal-to-Noise
Ratio (SNR) of the restored volume. Moreover, we set (xmin, xmax) = (0, 1), equal to the range of the
ground truth image. In order to illustrate the acceleration induced by the proposed BD3MG, we run a
comparative analysis between different versions of the optimization scheme, in the spirit of an ablation
study. Namely, we propose to compare BD3MG with three methods listed hereafter.

• The 3MG algorithm [58, 59] is considered as the baseline. At each iteration, this algorithm
builds the majorization mapping as in Sec. 5.5.1.3 and computes memory gradient updates on
the full volume, without any parallelization.
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• The Asynchronous Block Gradient Descent (ABGD) algorithm implements the method from
[177]. It performs parallel asynchronous gradient descent updates over the slices of the volume.
We adopt here the same parallelization settings as for our BD3MG. Updates correspond to
the standard gradient descent on the selected planar blocks, using a fixed step-size µ ensuring
convergence of the iterative scheme, namely µ = 0.99/(1 + κ+ 2λ/δ + 2κ).

• The BP3MG algorithm from [43, 56] runs a synchronous version of BD3MG algorithm. The
master process carries out the main loop of [43, Alg 4.3]. At each iteration k ∈ N, it selects
C block indices (following a cyclic rule) and sends to each worker c ∈ J1, CK the required
data allowing it to update Skc , the associated block. Workers process their block in parallel,
wait for each other to finish their tasks, combine their respective updates into a unique vector
(xj)j∈Sk

1∪...∪Sk
C

and finally send the latter to the master. The majorization mapping is set as a
block diagonal matrix, allowing synchronous parallel updates, as described in [43]. This approach
could be interpreted as a special case of BD3MG with a single worker (potentially composed
of several subworkers) sending its update (potentially composed of several sub-updates) to the
central process Sk = {Skc }c∈C . Thanks to the specific structure of the majorization mapping
in BP3MG, there is no mismatch in information between central process and workers in this
synchronous version, the delay vector ik always equals k. Nonetheless, the block diagonal form
of the majorization mapping of BP3MG is at the price of a lower quality of approximation of
the cost function, which might result in slower convergence.

All methods are implemented in Python using the built-in Multiprocessing library as well as Numpy
and Scipy for both data manipulation and scientific computing. The experiments of this section are
conducted on an Intel® Xeon(R) W-2135 CPU with Ctot = 12 cores clocked at 3.70GHz. All the
versions were initialized with x0 = 0N leading to an initial value f(x0) = 91292.92. For every iteration
k ∈ N∗, we monitor the cost function f(xk), the normalized increment ∥xk+1 − xk∥/∥xk∥, the signal
to noise ratio (SNR, in dB) defined as

SNR = 20 log10

(
∥x∥

∥x− xk∥

)
, (5.102)

and the reconstruction error ∥x − xk∥. The evolution of these metrics along time for the tested
algorithms is displayed on Figure 5.2. We then set a stopping criterion ∥xk+1 − xk∥ ≤ ε̃∥xk∥. The
obtained solution is denoted as xf . We display in Table 5.1 the metrics for the stopping criterion
threshold ε̃ = 10−3. Table 5.1 and Figure 5.2 show that BD3MG exhibits a faster practical convergence
than its competitors. Both BD3MG and ABGD are asynchronous distributed schemes, and the former
implements an accelerated version of the gradient descent involved in the latter. The MM metric
and the subspace scheme in BD3MG act as catalizers, improving the convergence rate compared
to ABGD which relies on a simple steepest descent with fixed stepsize. BP3MG and BD3MG are
based on the same inherent optimization scheme 3MG. However, BP3MG uses a simplified block
diagonal majorization mapping, and imposes synchronous updates, which might yield idle times. These
differences can explain why BD3MG converges faster than BP3MG. Finally, 3MG does not exploit the
multicore structure of the computing architecture, and thus shows higher computational time.

Slices of the reconstructed volume are displayed in Figure 5.3, revealing fine details of the image
recovered by the restoration procedure.
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Figure 5.2: Evolution of quantitative metrics along time (in seconds), for algorithms 3MG
(blue), ABGD (orange), BP3MG (green) and BD3MG (red), for FlyBrain restoration. Evo-
lution of reconstruction error ∥xk − x∥ (left), relative increment ∥xk+1 − xk∥/∥xk∥ (middle),
and SNR in dB (right).

Version // Asy. MM SNR (dB) f(xf) Error Time (× Acc.)
3MG ✗ ✗ ✓ 14.72 1266.04 79.28 1683.79 (1)

ABGD ✓ ✓ ✗ 15.11 1268.80 76.73 305.76 (5.51)
BP3MG ✓ ✗ ✓ 15.21 1264.08 75.33 489.99 (3.44)
BD3MG ✓ ✓ ✓ 15.26 1261.59 74.72 147.16 (11.44)

Table 5.1: Characteristics and performances of compared algorithms on the Flybrain restora-
tion task, for reaching the stopping criterion with ε̃ = 10−3. “//" = Parallel, “Asy." = Asyn-
chronous, “MM" = Majorize-Minimize scheme. Time is in seconds and “× Acc." is the accel-
eration ratio with respect to 3MG running time.

5.5.3 Effect of an imbalanced computing power

In order to further demonstrate the advantages of BD3MG over its synchronous counterpart BP3MG,
we tested the methods under different computing environments by synthetically modeling stochastic
delays in the computing loop of workers. More specifically, the same restoration task and computer
characteristics than in the previous section is considered, again with Ctot = 12 active cores. We
introduce artificial perturbation in the computing environment by randomly “freezing" some worker
processes for a certain amount of time (i.e., delay) following the three scenarios below:

• Type I: One of the workers is consistently affected by a delay that follows a uniform distribution
U([0, 1]) (in sec.). The other cores are not affected by any delay.

• Type II: Two worker cores are not affected by any delay while the others 9 agents are delayed
in the following fashion:

3 cores hold a delay following a uniform distribution U([0, 1]).

3 cores hold a delay following a uniform distribution U([0, 0.5]).
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Figure 5.3: Restoration results of Flybrain: ground truth volume (top), degraded version
(middle), and results of BD3MG restoration (bottom). Visual comparisons along the X− Z axis
(left) the X− Y axis (middle) and zoomed details (right). The optimization process recovers
fine details of the original volume that were lost in its degraded version.

3 cores hold a delay following a uniform distribution U([0, .25]).

• Type III: All worker cores are affected by a delay that follows a uniform distribution U([0, 1]).
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Method (Scenario) SNR (dB) f(xf ) Time (s.)
3MG (no delay) 18.132 1247.01 1683.79

BP3MG (Type I) 17.941 1247.14 623.07
BD3MG (Type I) 18.679 1246.04 211.34

BP3MG (Type II) 17.941 1247.14 707.92
BD3MG (Type II) 18.681 1246.03 220.65

BP3MG (Type III) 17.941 1247.14 752.83
BD3MG (Type III) 18.670 1246.02 219.90

Table 5.2: Performances of BP3MG and BD3MG under imbalanced computed power, for reach-
ing the stopping criterion with ε̃ = 5× 10−4 for Flybrain restoration. We additionally provide
results for the vanilla 3MG algorithm for sake of comparison.

Figure 5.4: Numerical comparisons between BD3MG and BP3MG for FlyBrain restoration
under imbalanced computing power: evolution of the relative increment ∥xk+1 − xk∥/∥xk∥
along time (in sec.) for each of the three experimental settings in log-log scale (left), and
averaged ratio of workers CPU idle time over the entire optimization process for each scenario
(right).

The results are summarized in Table 5.2 and Figure 5.4. We also report the results of a plain, not
delayed, 3MG implementation, for the sake of comparison. In all three scenarios, BD3MG outperforms
its synchronous version BP3MG, in terms of computation time while reaching similar final criterion
value and SNR. The criteria decrease is faster for BD3MG which can be explained by two main
differences with BP3MG. First, the majorization mapping of BD3MG performs a tighter approximation
of the cost function than BP3MG, thus leading intrinsically to improved convergence rate. Second,
BD3MG is asynchronous by essence and thus it is resilient to communication delays as soon as they
are bounded, as shown by our convergence analysis. In contrast, BP3MG simply waits for all workers
to finalize their update, to force the synchronicity, which yields slowdown in case of delayed workers. A
more efficient and dynamic handling of the workload is performed in BD3MG, as shown in Figure 5.4
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where CPU idle time is consistently lower for BD3MG than for BP3MG. We note that in asymmetric
settings such as (Type II) and (Type III), BD3MG proved to be particularly efficient in reducing the
synchronicity constraint of BP3MG for “fast" workers. The comparable results for BD3MG on all three
scenarios further suggest that the proposed algorithm is robust to an imbalance in the computing power
of workers. Moreover, despite the delayed feedbacks of the workers, both BP3MG and BD3MG remain
competitive with respect to the vanilla 3MG, which shows the great interest of a parallel friendly
algorithmic structure in this context.

5.5.4 Scalability assessment.
In order to assess the scalability properties of BD3MG, we further analyse the speed-up generated by
the number of cores available. We consider the restoration problem of the 3D image Aneurysm [140]
of size N = NX × NY × NZ = 256 × 256 × 154, under the same degradation operator and noise
level than in the previous example. Figure 5.5 presents the acceleration ratio between the required
computation time for a single active worker versus the computation time of up to 30 active workers
in reaching the stopping criterion with ε̃ = 10−3. The regularization parameters are set empirically
to (λ, δ, κ, η) = (1, 1, 10−1, 10−3) to maximize the final SNR and the same blur kernel than in the
previous subsection is used. The computations were performed using HPC resources from the Oscar
- Ocean State Center for Advanced Resources of the Center for Computation and Visualization, black
University. The hardware is an Intel Corei9 CPU with up to 48 physical cores at 3.3 GHz GHz and
300G of RAM. Results found in Figure 5.5 illustrate the great potential of scalability of the proposed
algorithm. As the number of core increases, a mild saturation effect is observed (in agreement with
Amdahl’s law [183]).

5.5.5 Application to real data from multiphoton microscopy
We finally illustrate the performance of BD3MG on a restoration task of real multiphoton microscopy
data specifically acquired for this experiment. Multiphoton microscopy is an interesting solution for the
3D and submicrometric characterization of biomedical structures, it is label-free and contactless [113].
Such a solution takes advantage of optical sectioning, an optical property resulting from the nonlinear
optical processes involved. 3D images are produced with sub-micrometer resolution without slicing the
sample. We use an instrumental acquisition pipeline relying on a commercial system from Olympus
(BX61WI) coupled with a multiphoton water immersion objective (Olympus XLPLN25XWMP, 25×,
NA 1.05). A laser system, emitting femtosecond pulses centred at 810 nm with 10 nm of spectral band-
width, is used for production of the nonlinear phenomena of second harmonic generation (SHG) and
two-photon fluorescence (TPF). The biomedical sample is made of a whole mouse muscle, the Extensor
digitorum longus (EDL), isolated from tendon to tendon. Sub-micrometric fluorescent microspheres
emitting in the green range are included into the EDL and spread homogeneously all along the whole
muscle structure. Under such an experimental protocol, the production of two 3D images is obtained.
The first channel contains the SHG from the myosin of the muscle and the second channel displayed the
TPF of microspheres used for calibrating the instrumental PSF. A hundred of 2D image slices of SHG
and TPF are produced, with 0.1 µm resolution along depth axis Z and 0.049µm×0.049µm resolution
over X− Y horizontal-vertical axis. The acquisition recording starts 140 µm under the sample surface
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Figure 5.5: Speed-up ratio of the computation time for 1 to 30 cores for BD3MG for the
restoration of Aneurysm.

for a total sample thickness of 180 µm. For this range of depth, the imaging of biological samples is de-
graded by scattering effects. Both raw volumes (i.e., SHG and TPF) dimension have 2048×2048×100

voxels, from which we extract a subpart with size N = NX × NY × NZ = 256 × 256 × 100 voxels for
the purpose of our study.

We follow the computational pipeline FAMOUS previously introduced in [147]. We estimate a
depth-variant Gaussian PSF field within the 3D microscopic volume by applying the 3D Gaussian fit-
ting algorithm FIGARO from [67] to volume of interests extracted from the second image channel, dis-
playing fluorescence of calibrated microbeads. Each volume of interest is selected through an automatic
search of connected components within a filtered and binarized version of the observed volume. Then,
FIGARO method is ran, yielding parameters (i.e., mean, covariance, scaling, shift) of a 3D Gaussian
shape. This allows to build, through a simple interpolation strategy, a model for a depth-variant PSF
with truncated support of size M =MX×MY×MZ = 21× 21× 21 (see more details in [147, Sec.2.4]).
Since no ground truth is available, the regularization parameters (λ, δ, κ, η) = (102, 2, 10, 10−3), are
selected by retrospective visual inspection. The reconstruction shown in Figure 5.6 exhibits clear con-
trasts and sharpness properties. Comparative videos of the original and restored volume are available
at [50]. The native signal from the raw image was presenting a high level of noise and blur due to
the presence of scattering elements all along the 140 µm of sample depth. Thanks to the proposed
restoration strategy, the localisation of the myosin in the muscle sample is made possible, and the
spatial organization of this protein into the down side of the EDL is revealed. The volume restoration
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Figure 5.6: Slices (12, 5µm × 12, 5µm) for depths z = 5, 25 and 70 (from top to bottom) of
the original acquisition (left) and after restoration (right). The comparisons show that the
definition of the muscular structure has been enhanced by the reconstruction.

took 305 seconds and ∼ 2000 iterations on a Ctot = 12 cores setting, when setting ε̃ = 10−3.

5.6 Conclusion

In this chapter, we have presented a new block distributed Majorize-Minimize algorithm, BD3MG, de-
vised to tackle large-size differentiable optimization problems met in a wide range of applications. Our
main contribution lies in a distributed asynchronous formulation that allows for delays in the current
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solution computed between workers, while securing convergence guarantees under mild assumptions.
Our new algorithm BD3MG has been tested in the context of 3D image restoration with depth-variant
blur. Experimental results underlined the speedup potential of this method and its concrete appli-
cability in the field of fluorescence microscopy. Future work will be dedicated to extension to more
general distributed graph topologies.
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6.1 Introduction

The complexity of most natural or even artificial phenomena requires infinitely precise knowledge to
be perfectly controlled and reproducible. On a human scale and whatever the tools used, the access to
such sources of information is impossible and it is therefore necessary to admit the existence of so-call
random events which escape any form of prediction. In a way, the introduction of the notion of chance
is based on a failure: human beings have neither the time nor the means to deal with all the problems
they face using a deterministic approach.

On a mathematical viewpoint and similarly with a black box model, the random behaviours in-
terfering with the problem of interest are grouped behind the veil of a probability space (Ω,F ,P). In
more concrete terms, σ-algebra F is associated to all the necessary information we shall consider for
the study to be conducted while probability measure P : F → [0, 1] acts as a quantification tool on
the latter. An event, i.e. an element of F , corresponds more precisely to a grouping of elementary
productions ω ∈ Ω. The field of Euclidean probabilistic unconstrained optimization, more commonly
known as Euclidean stochastic (unconstrained) optimization, is thus dedicated to find a minimizer of
a cost function F : H → R defined on a real-finite dimensional Hilbert space H by using an algorithm
whose outputs are likely to change even though the operating conditions set by the user (initial point,
stepsize...) are identical. More specifically, we aim to solve the generic problem

Find xs ∈ H s.t. F (xs) ≤ F (x) for all x ∈ H, (6.1)

using an approximation sequence (xk)k∈N. In contrast to the deterministic case, the terms of (xk)k∈N
are no longer vectors of H but random variables xk : ω ∈ Ω 7→ xk(ω) ∈ H (k ∈ N) defined on probability
space (Ω,F ,P) with values in the Borel space (H,B(H)). A sequence of random variables as (xk)k∈N is
generally found under the name of stochastic process in the literature. Instead of focusing on a simple
sequence of HN as we previously made, the mathematical objects we study here thus group together the
set of so-call trajectories, i.e. of elementary productions (xk(ω))k∈N ∈ HN (ω ∈ Ω). Historically, the
theory of stochastic process naturally follows the one from Kolmogorov on probabilities [134, 86] and
its application to optimization initially comes from the more general field of stochastic approximation
whose origins trace back to the works of H. Robbins and S. Monro [201].

Example 6.1. Let v be a random variable defined on (Ω,F ,P) with values in a measurable space
(E,A), j : H×E → R be a measurable application for which j(x,v) is integrable for every x ∈ H and
consider the minimization of function F : x 7→ E(j(x,v)).

In the case where j is differentiable regarding its first variable, denoting by ∇j(1) its partial gradient
and assuming that the conditions for applying Leibniz integral rule derivative are met [214], F is
differentiable and its gradient can be written as ∇F : x ∈ H → E

(
∇j(1)(x,v)

)
. When the distribution

of v is unknown, the curvature information on F therefore cannot be known in an exact manner and
shall require the use of stochastic framework. The construction of an attached stochastic process in a
way to approximate a solution of (6.1) can be made using multiple strategies, most of which will be
described throughout this chapter.

The presentation we propose follows a similar structure to those of Chapter 2 to facilitate the
reader’s understanding and to better highlight the existing analogies and differences between proba-
bilistic and deterministic frameworks. To such an extent, we introduce in section 6.2 the most usual
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family of algorithms to deal with stochastic differentiable optimization, the stochastic gradient one.
Section 6.3 proposes a review of the classical mathematical tools to conduct asymptotic analysis con-
sidering a generic stochastic algorithm. Section 6.4 gives the conclusion of this chapter.

6.2 The class of stochastic gradient methods

Similarly to the deterministic differentiable optimization field with the general class of descent methods,
those of probabilistic differentiable optimization also possesses its family of algorithms widely described
in the literature. The latters are grouped under the name of stochastic gradient methods. By contrast
with formulation (2.3) which is able to encompass the largest part of deterministic existing methods,
it is quite challenging to find a unique analog formulation for the stochastic setting. Most of those
proposed are mainly based on the even more general field of the stochastic approximation [201, 89].
For presentation purposes, we consider in this section processes (xk)k∈N generated through a scheme
of the form of

x0 = x0 ∈ H,
(∀k ∈ N) xk+1 = xk − αkgk, (6.2)

where (gk)k∈N is a process of directions of H intended to approximate those of the true gradient
(∇F (xk))k∈N. In the same way as (2.3), (αk)k∈N is a deterministic positive stepsize sequence. The
latter is also regularly found under the name of learning rate in the machine learning community [169].

6.2.1 Overview on stochastic gradient approximation constructions

6.2.1.1 Gradient approximation models through sampling strategies

Beyond the scope of optimization, sampling approximation field is initially dedicated to identify some
properties (distribution, moments...) of a given random variable v of (Ω,F ,P) from several realiza-
tions of the latter. To such an extent, the Law of Large Numbers (LLN) [22] is classically the most
fundamental result of this theory:

Theorem 6.1. (Law of Large Number, strong version) Let (vk)k∈N be an stochastic process of integrable
independant and identically distributed random variables of (Ω,F ,P). Then

P

({
ω ∈ Ω | 1

k + 1

k∑
i=0

vk(ω) −→
k→+∞

E(v0)

})
= 1. (6.3)

LLN stipulates that the "vast" majority of trajectories (we will notably speak about almost-sure
convergence in the rest of this manuscript) here associated to the empirical mean process converges
to a common deterministic quantity, E(v0), namely the expectation associated with the common
law of (xk)k∈N family. Applied to an optimization context, Theorem 6.1 is first and foremost an
approximation tool to build a relevant process (gk)k∈N in various scenarios depending from the nature of
the stochasticity. Two situations are under the scope of the most recent works; the first one corresponds
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to those when the cost function F is of probabilistic nature (Example 6.2) while, in the second one, F
admits a deterministic closed-from but with a too complex structure to be itself or its gradient exactly
computed (Example 6.3).

Example 6.2. (Expected Risk) We place ourselves in the situation of Example 6.1 where we aim to
minimize the differentiable function F : x 7→ E(j(x,v)) with ∇F : x 7→ E(∇j(1)(x,v)) as associated
gradient. Then, for any x ∈ H, LLN makes natural the use of approximation of the form of

∇F (x) ≃ 1

P

P∑
p=1

∇j(1)(x,vp) (P ≥ 1). (6.4)

As a consequence and if the distribution of v is known, one can build the process (gk)k∈N as

(∀k ∈ N) gk :=
1

Pk

Pk∑
p=1

∇j(1)(xk,vk,p) (Pk ≥ 1), (6.5)

where vk,1, . . . ,vk,Pk
correspond to a sample of v (i.e. a family of independant random variables

following the distribution of v) of a given size Pk. Estimation (6.4) is generally referred in the literature
as a Stochastic Average Approximation (SAA) whose theoretical aspect are typically detailed in [219].

Example 6.3. (Empirical Risk) We here consider F : x 7→ 1
M

∑M
i=1 fi(x) written as a sum of M

functions (fi)i≤M (M ≥ 1). To the extent the computation of the true gradient ∇F : x 7→ 1
M

∑M
i=1 fi(x)

requires to calculate those of every fi function, it may therefore be highly time-consuming depending on
the value of M . To overcome such an issue, one strategy consists in adopting a so-call "mini-batch"
approach [36] at a given iteration k ∈ N, indices i ∈ {1, . . . ,M} to be consider only belong to a randomly
chosen subset (i.e. a batch) Ik ⊂ {1, . . . ,M}. Considering this, (∇F (xk))k∈N is thus approximated as
(gk)k∈N, where:

(∀k ∈ N) gk :=
1

|Ik|
∑
i∈Ik

∇fi(xk), (6.6)

the size of |Ik| generally remaining small compared with M . In practice, the consideration of a unique
sample (i.e. |Ik| = 1 for all k ∈ N) may promote interesting theoretical guarantees as soon as it
is chosen following a distribution (typically a uniform one) which intuitively ensures the data of any
∇fi (1 ≤ i ≤ N) being regularly taken into account all along the process [18, 212].

Since sampling approximation only uses partial gradient information, it is expected for the resulting
stochastic algorithm to converge slower in term of number of iterations than its deterministic coun-
terpart using directly ∇F instead. Typically, in the strongly convex case and considering a constant
stepsize, the convergence speed of steepest descent method remains linear while the use of a mini-batch
approach with a unique sample (see example 6.3) only gives a sublinear rate in expectation [35]. In
fact, a deterministic algorithm would be more efficient regarding the number of total required iterations
by contrast with a stochastic approach possessing a smaller cost-per-iteration ; intuitively it is always
more economical to settle for an approximation of an object instead of the whole object itself . As a
consequence, the interest of sampling gradient approximation techniques especially lies in a large scale
optimization context for which a simple computation of the full gradient may be too energy consuming
to be correctly proceeded.
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6.2.1.2 Generic Additive model

For first-order methods, the information provided by F being concentrated in the algorithm only
through the gradient term, a noise model adapted to a general framework, working with a generic
structure of cost function, is of the additive type:

(∀k ∈ N) gk := ∇F (xk) + ϵk. (6.7)

Otherwise stated, (ϵk)k∈N is the process which simply corresponds the approximation error between the
estimate (gk)k∈N and the true gradient (∇F (xk))k∈N. Such a probabilistic framework is the original
one at the root of stochastic approximation theory [201, 135, 143]. Historically, [201] built this kind of
algorithm in a way of finding the unique zero of a regression function while [135] applied this approach
to an optimization context, considering the latter regression function as a gradient object whose zeros
are sought for. The interest of decomposition (6.7) mainly lies in its simplicity which enables to conduct
theoretical reasoning in a relatively easy way. The gradient term is here "deterministic" in the sense
that it is entirely dependent on the current state of the process; considering k ∈ N, all the uncertainty
is concentrated in (ϵk)k∈N and ∇F (xk) simply remains σ(xk)-measurable.

6.2.2 Stepsize choice

Similarly with the deterministic setting, the ways of adjusting the stepsize (αk)k∈N are numerous
and depend on the information available on the curvature of F (Lipschitz continuity of the gradient,
convexity, strongly convexity...). In general, such a setting follows a relatively uniform pattern and
(αk)k∈N is constructed so as to verify

+∞∑
k=0

αk = +∞,

+∞∑
k=0

α2
k < +∞. (6.8)

Rule (6.8) can be justified considering two points of view. The first one is purely physical and makes
the link with differential equations field [104]. In such a context, (αk)k∈N can be interpreted as a time
increments sequence (Tk+1 − Tk)k∈N and so (6.8) indicates that the evolution time (Tk)k∈N tends to
infinity and is of finite energy. The second one is directly relative to the structure of (6.2) ; (αk)k∈N
plays the role of a control term so as to compensate the stochasticity effect of (gk)k∈N. (6.8) is thus
the result of a trade-off. On the one hand, condition

∑+∞
k=0 α

2
k < +∞ ensures, to a certain extent, the

decay of (αk)k∈N and its convergence to zero to attenuate the noise fluctuations. On the other hand,
(αk)k∈N should not be too small otherwise too little evolution of the process would be observed.

Condition
∑+∞

k=0 α
2
k < +∞ does not appear as the most natural way to balance the noise effect

contrary with αk −→
k→∞

0. However, it has revealed to promote easier asymptotical properties in view

of the evolution of the theoretical material of stochastic optimization [202, 89]. More recent works
have started to only consider αk −→

k→∞
0 in their assumptions as a relaxed alternative and are able to

promote interesting asymptotical guarantees [104]. Finally, when the stepsize is not chosen to decrease
to zero but constant equal to α > 0 instead, [186, 85] highlighted the fact that the convergence of
(xk)k∈N to a stationary point remains very challenging due to the Markovian nature of scheme (6.2).
Typically in a strongly convex setting, (xk)k∈N tends to oscillate around xs, the unique minimizer of
F , according to a certain distribution and with an amplitude of

√
α as order of magnitude.
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6.2.3 Acceleration techniques

6.2.3.1 Variance reduction strategies

Most of the recent works on stochastic gradient methods have directly based their asymptotical studies
on the analysis of quantities

(
E[∥xk − xs∥2]

)
k∈N or (E[F (xk)− F (xs)])k∈N considering xs as a solution

of (6.1). In other words, the theoretical performances of an algorithm are mainly judged on the rate
of convergence of its attached variance.

To best meet this evaluation criterion, variance reduction-based strategies consist in tuning the
parameters of (6.2), even if it requires changing its structure so that E

[
∥xk − xs∥2

]
and/or E[F (xk)−

F (xs)] ≤ ε (k ∈ N, ε > 0) are reached with a complexity Cε as small as possible. This kind of approach
relies on two different levels:

• The assumptions on F . In the case where F admits multiple global minimizers, it generates an
ambiguity on xs to consider and thus on the variance to adopt. More generally, if F admits
multiple stationary points, the convergence of the variance to zero may be compromised. In
order to overcome such issues, variance reduction algorithms generally required to work in a
convex or even strongly convex setting [171].

• The choice of stepsize. Obtaining a precision on the variance as small as desired after a finite
number of iterations already implies the variance to converge to zero. The strong convexity
assumption makes possible to achieve such a result but it also requires for the stepsize to converge
to zero not to slowly in which case it would risk completely masking the behaviour of the variance.
In general (αk)k∈N is taken as proportional to (n−γ)k∈N where γ ∈ [0, 1] [168].

In some works the term of variance considered differs from the one we previously introduce. For in-
stance, they involve (xk)k∈N =

(
1/(k + 1)

∑k
i=0 xi

)
k∈N

the Ruppert-Polyak averaging sequence instead

of directly (xk)k∈N for accuracy purposes [189, 12].

Due to the necessity of manipulating high-dimensional data in the field of statistical learning, most
of the usual algorithms have been developped to deal with functions F under the form of an empiri-
cal risk (see Example 6.3). Their updates generally remain of the form of (6.2) but the corresponding
sequence (gk)k∈N is no longer dedicated to directly approximate (∇F (xk))k∈N at every iteration. Typi-
cally, the class of stochastic averaging methods build process (gk)k∈N exploiting part of the information
of the current state (i.e. those of k ∈ N), but also of some previous states (i.e. relative to k−1, k−2, ...).
While [173, 238] initially used the information of all past gradients ∇F (xk), . . . ,∇F (x0), most recents
works instead focus on updating a single component with a known expectation at each iteration [78].
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Method Criterion (k ∈ N) Stepsize Convergence rate Cε/ dim(H)
GD [172] E[F (xk)− F (xs)]

2
L+µ

O
(
exp(− µ

Lk
)
)

LM
µ

log(1
ε
)

SGD E[F (xk)− F (xs)]
1
Lk

O
(
L
µk

)
L
εµ

SAG [206] E[F (xk)− F (xs)]
1

16L
O
([

1−min( 1
8n
, µ
16L

]k) (
L
µ
+M

)
log(1

ε
)

SVRG [131] E[F (xk)− F (xs)] α > 0 O
([

1
µα(1−2Lα)

+ 2Lα
1−2Lα

]k) (
L
µ
+M

)
log(1

ε
)

SAGA [78] E[∥xk − xs∥] 1
3L

O
([

1−min( 1
4n
, µ
3L

]k) (
L
µ
+M

)
log(1

ε
)

Table 6.1: Performances of some usual variance-reduction methods for the minimization of a
L-Lipschitz continuous gradient and µ-strongly convex empirical risk F : x 7→ 1

M

∑M
i=1 fi(x).

Deterministic steepest descent and SGD serving here as baseline algorithms. As introduced
previously, xk (k ∈ N) denotes the Polyak-Ruppert average while Cε corresponds to the com-
plexity required to have a criterion smaller than ε (ε > 0).

As a way of illustration, Table 6.1 highlights the interest of variance-reduction techniques in the
strongly-convex setting. They allow to reduce the complexity from a linear to a logarithmic scale despite
only capturing partial information on the full gradient. In addition to the algorithms mentioned, we
can add those of [79, 218] possessing similar convergence rates and complexities but considering a
criterion with a little more elaborated structure.

6.2.3.2 Preconditioned method

A popular class of gradient-based stochastic algorithms is those incorporating a preconditioning step:

x0 = x0 ∈ H,
(∀k ∈ N) xk+1 = xk − αkBkgk. (6.9)

Their update remains similar of those of (6.2) in the sense they involve a gradient approximation
process as well as a stepsize but also requires the use of an additionnal process (Bk)k∈N of linear
operators in a way to better capture information on the curvature of F . The ways for building the
preconditioners are numerous and we here try to give an overview of the most popular approaches.

The first category encompasses those considering (Bk)k∈N as an approximation of the second order
information of F . Their use is motivated by the encouraging results obtained by their deterministic
counterparts. When F is twice continuously differentiable, it is natural to build (Bk)k∈N in a way to
approximate the Hessian process

(
∇2F (xk)

)
k∈N be it through sub-sampling techniques [41, 36] or by

extension of the non-probabilistic framework [42, 213].

To the extent the computation of second order objects generally tends to highly increase the
per-iteration cost of an algorithm [36], another strategy consists in restricting (Bk)k∈N to a process of
diagonal operators which amounts to only re-scale the direction process (gk)k∈N. The greatest challenge
of re-scaling algorithms relies in the choice of the information to preserve. While some works prefer
keeping the true [15] or an estimation [33] of the diagonal curvature of the Hessian, others privilege
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techniques putting the algorithm progress on a same equal footing in every direction. The latters have
notably become relatively popular among supervised deep learning community for which the linear
operators under study are easily near singular [36]. Let us mention ADAGRAD [87], RMSprop [120]
and ADAM [137], probably the most widespread approaches in this field. Their re-scaling steps are
all based on a normalization of the second moment of (gk)k∈N using its magnitude component by
component. ADAM differs from its two counterparts as it also incorporates an additional moment step
in the computation of (gk)k∈N in a way of bias reduction.

6.3 Theoretical background to deal with stochastic setting

This section can be considered as the stochastic counterpart of section 2.4 of Chapter 2. As the
notion of supermartingale generalizes that of decreasing sequence in the probabilistic framework, it
becomes possible to extend that of descent condition (see Chapter 2 subsection 2.3.2) in a similar way.
Moreover, since the theory of martingales leads quite naturally to almost-sure convergence results [86],
various asymptotic properties based on this mode of convergence follow logically from this and are now
regarded as essential elements of the stochastic literature.

6.3.1 On convergence of stochastic schemes in general
Whether it is deterministic or stochastic, the primary objective of a minimization process always
remains the same, namely to restore a global minimizer or at least a stationary point x∗ of the cost
function considered, as precise as possible. In the case where the process at stake is deterministic and
is in fact similar to a sequence of vectors of H, global convergence can be seen as a natural performance
criterion. Since a stochastic process no longer involves deterministic vectors but random variables, the
notion of global convergence becomes inappropriate in a probabilistic setting and shall be redefined to
remain consistent with the mathematical objects manipulated. Since a stochastic process is no more
than a family of trajectories, the most intuitive way to extent the global convergence definition is to
use the general notion of almost-sure convergence instead.

Definition 6.1. (Almost-sure convergence) A stochastic process (xk)k∈N of random variables xk : Ω →
H (k ∈ N) is said to converge almost-surely (a.s.) to a random variable x∞ : Ω → H if

P
({

ω ∈ Ω | xk(ω) −→
k→+∞

x(ω)

})
= 1. (6.10)

If so, x∞ is named the almost-sure limit of (xk)k∈N.

More generally, (xk)k∈N is said to converge almost-surely if there exists a random variable to which
the latter converges a.s..

The measurability being preserved by passing to the simple limit, a process (xk)k∈N converges
almost-surely every time the set of ω ∈ Ω for which trajectory (xk(ω))k∈N admits a finite limit is of
probability one. The rest of our study is dedicated to the exhibition of a theoretical toolbox in order
to obtain convergence results of this nature. As we shall see in the following, this choice is especially
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motivated by the close proximity of our framework to that of discrete-time martingales [234]. However,
we recall for the reader the most common modes of convergence encountered in the literature.

Definition 6.2. A stochastic process (xk)k∈N is said to converge to a random variable x∞ : Ω → H

(i) In Lp norm (p ≥ 1) if E(∥xk − x∞∥p) −→
k→+∞

0.

(ii) In probability if P ({ω ∈ Ω | ∥xk(ω)− x∞(ω)∥ ≥ ε}) −→
k→+∞

0 for all ε > 0.

(iii) In distribution if E(g(xk)) −→
k→+∞

E(g(x∞)) for all g : H → R continuous and bounded function.

In particular, Lp and almost-sure convergences, separately, imply convergence in probability and
convergence in probability implies convergence in distribution. There also exist some partial reciprocals
that we will not go into in detail as this would take us away from the initial discussion. We invite the
curious reader to consult the reference book [22] for more details on this topic.

6.3.2 Probabilistic version of descent concept

We introduced in Chapter 2 (subsection 2.4.2) the notion of (l, r)-descent condition for a deterministic
sequence. The goal of this subsection is to propose an alternative version so as to remain consistent
with the stochastic framework.

6.3.2.1 Almost-Sure vs In Expectation approaches

The first intuitive approach would be to rely on a definition of (l, r)-descent condition directly based on
the trajectories of the process thus keeping the analogy with almost-sure convergence. In such a way,
(xk)k∈N may said to satisfy a (l, r)-descent condition if the set of ω ∈ Ω for which (xk(ω))k∈N verify an
(l, r)-descent condition is a probability-one event. However, such an approach faces a major obstacle,
namely the ω-dependence of the Lyapunov function and the residual. This disadvantage is relatively
compromising insofar as these two objects live in spaces with relatively complex topological structures
(l is an application from HN to RN while r lies in RN) and in fact obtaining even their measurability is
relatively delicate (this typically requires to define a σ-algebra on the space of applications from HN to
RN). Even if the latter property is ensured, the structure of the resulting random variables will make
them difficult to manipulate anyway.

A second approach, the opposite of the first, would consist in only focusing on behaviour of the
process at stake in average; instead on directly investigating on the trajectories of (xk)k∈N, only the
evolution of the first moment information, i.e. of the expectation, is scrutinised here. Although this
approach has the advantage of ensuring the decay of l in expectation, it does not allow to make the link
with what we are really looking for, i.e. the setting up of almost sure type behaviours. More generally,
the transition to expectation tends to mask a large part of the stochastic information we need.

In a nutshell, the two introduced approaches induce the use of a quantity of information that is far
too unbalanced, either in excess (for the first approach, by taking an interest in all the trajectories)
or in default (for the second approach, by using only the first moment) for the use that one wishes to
make of it. It is therefore necessary to adopt an alternative strategy with a better theoretical trade-off.
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6.3.2.2 Stochastic (l, r)-descent condition as a first step

In contrast to the expectation operator which reduces the properties of a random variable to a scalar
quantity, the conditional expectation one appears to be more flexible insofar as it sends back an estimate
of the said variable with respect to a certain quantity of the observed information [22]. For such a
reason, it stands as a legitimate tool to build probabilistic version of the (l, r)-descent condition.

Definition 6.3. (Stochastic descent condition) Consider (Fk)k∈N a filtration defined on probability
space (Ω,F ,P). Let l : HN → RN be an application (defined on the space of sequences of H and with
values in that of sequences of R) and r := (rk)k∈N a Fk-measurable non-negative process. A stochastic
process (xk)k∈N on H verifies a (l, r)-descent condition (regarding (Fk)k∈N) if there exists k0 ∈ N for
which (Lk)k∈N = l ((xk)k∈N) is an integrable process and satisfies

(∀k ≥ k0) E[Lk+1|Fk] ≤ Lk − rk a.s.. (6.11)

• In such a context, we will commonly speak of a Lyapunov application to name l (relative to (l, r)-
descent condition) and of a residual sequence to mention r (relative to (l, r)-descent condition).

• (xk)k∈N is said to verify a simple descent condition (relative to f) if there exits a Fk-measurable
residual process r for which (xk)k∈N verifies a (l, r)-descent condition regarding l : (yk)k∈N ∈
HN 7→ (F (yk))k∈N, i.e. lk = F (xk) a.s. for any k starting from a certain rank.

Filtration (Fk)k∈N attached to a (l, r)-descent accounts for all past information of the process. We
can make a parallel with a gambling game situation. Considering (Lk)k∈N as a player ressource, descent
inequality (6.11) simply indicates that it is expected for the latter and from a fixed turn, to suffer in
average from an impoverishment whose amounts (rk)k∈N only depends on the past of the game. In
technical terms, (6.11) induces that Lyapunov process (Lk)k∈N follows a supermartingale behaviour
and thus, in the case where the latter is almost-surely non-negative, the Doob’s "Forward" convergence
theorem [234] ensures its almost-sure convergence to an almost-sure finite random variable. Even more
precisely, the following result also provides valuable information on the residual process (rk)k∈N.

Proposition 6.1. Let (xk)k∈N be a stochastic process following a (l, r)-descent condition regarding a
filtration (Fk)k∈N and for which the attached Lyapunov process (Lk)k∈N is almost-surely non-negative.
Then, (Lk)k∈N almost-surely converges to an almost-sure finite random variable and

∑+∞
k=0 rk < +∞

almost surely.

Proof. As mentioned, the first point is a direct consequence of Doob’s "Forward" convergence theorem
[234]. To also obtain the almost-sure summability of (rk)k∈N, we need to refine the latter result by
considering process (L′

k)k∈N such that

(∀k ≥ 1) L′
k := Lk +

k−1∑
i=0

ri. (6.12)

Descent inequality (6.11) ensures that rk ≤ |Lk|+ |E[Lk+1|Fk]| and rk is thus integrable for all k ≥ k0.
The use of conditional expectation to rk (k ≥ k0) is then legitimate and E[rk|Fk] = rk due to its
Fk-measurability. By linearity and using (L′

k)k∈N, (6.11) can be rewritten as

(∀k > k0) E[L′
k+1|Fk] ≤ L′

k a.s.. (6.13)
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(L′
k)k∈N therefore also follows a supermartingale behaviour and since it is basically non-negative, we

deduce its almost-sure convergence to an almost-sure finite random variable. The latter point combined
with definition (6.12) and non-negativity of (Lk)k∈N finally conduct process

(∑k−1
i=0 ri

)
k≥1

to admit a

finite limit almost-surely which concludes the proof.

Proposition 6.1 can be seen as the stochastic analog of the deterministic result discussed in sub-
section 2.3.3. In such a case, a monotone convergence argument was sufficient to conclude about the
summability of the residuals while here it is necessary to use more general tools.

Example 6.4. We aim to minimize F using the stochastic gradient scheme xk+1 = xk − αgk (α > 0)

for all k ∈ N. Considering canonical filtration (Fk)k∈N = (σ(x0, ...xk))k∈N we admit that (gk)k∈N
is a conditionally unbiased gradient approximation whose conditional variance is bounded w.r.t the
exact derivative, i.e. for any k ∈ N, E[gk|Fk] = ∇F (xk) and E[∥gk∥2|Fk] ≤ C∥∇F (xk)∥2 (C > 0)

almost surely. Then, (xk)k∈N follows a simple descent condition as soon as F is L-Lipschitz continuous
gradient and stepsize α chosen so as to verify α < 2/(LC2):

(∀k ∈ N) E[F (xk+1)|Fk] ≤ F (xk)− α

(
1− αLC2

2

)
∥∇F (xk)∥2 a.s.. (6.14)

The proof of (6.14) relies on the usual descent Lemma 2.4 and can be found in [212]. If F is bounded
below and considering positive process (F (xk)− Finf )k∈N (where Finf is the minimal value of F ),
Proposition 6.1 can be invoked; (F (xk))k∈N converges almost surely while (∇F (xk))k∈N converges al-
most surely, more precisely, to zero, due to

∑+∞
k=0 ∥∇F (xk)∥2 < +∞a.s..

6.3.2.3 Quasi-supermartingale

The previous subsection highlighted the importance of conditioning theory for the asymptotical study
of stochastic algorithms. Although the relative simplicity of stochastic descent inequality (6.11) has
the advantage of being very easily interpretable in term of convergence guarantees (typically through
Proposition 6.1), it also remains quite restrictive to the extent that only few schemes are likely to verify
such a behavior. One of the main reason is that manipulating objects of probabilistic nature actually
tends to promote occurrences of additional or multiplicative specific terms which highly complicate
the structure of the Lyapunov function l to be considered. Such an issue invites to propose a relaxed
alternative of the initial stochastic descent condition through the almost-supermatingale concept of
H.Robbins and D.Siegmund [202] .

Definition 6.4. (Almost-supermartingale) Consider a filtration (Fk)k∈N defined on probability space
(Ω,F ,P). Let l : HN → RN be an application and three non-negative Fk- measurable processes u :=

(uk)k∈N,v := (vk)k∈N,w := (wk)k∈N. A stochastic process on (xk)k∈N of H is said to be a (l,u,v,w)-
almost-supermartingale (regarding (Fk)k∈N) if there exists k0 ∈ N for which (Lk)k∈N = l ((xk)k∈N) is
an integrable process and satisfies

(∀k ≥ k0) E(Lk+1|Fk) ≤ (1 + uk)Lk + vk −wk a.s.. (6.15)

• In such a context, we will commonly speak of a Lyapunov application to name l and of a residual
sequence to mention w.
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• (xk)k∈N is said to be a simple almost-supermartingale (relative to f) if there exist three non-
negative Fk-measurable processes u,v,w for which (xk)k∈N is a (l,u,v,w)-almost-supermartingale
with l : (yk)k∈N ∈ HN 7→ (F (yk))k∈N, i.e. Lk = F (xk) a.s. for any k starting from a certain
rank.

The class of (l,u,v,w)-almost-supermartingale processes especially encompasses those following
a (l, r)-descent condition in the particular situation where w = r and u,v can be chosen as zero
almost surely. Similarly with Proposition 6.1 for stochastic descent condition, there exists a key
asymptotical result associated to the very notion of almost-supermatingale. This can be seen as the
most fundamental almost-sure convergence theorem in the field of stochastic approximation:

Theorem 6.2. (Robbins-Siegmund) Let (xk)k∈N be a non-negative (l,u,v,w)-almost-supermartingale
for which

∑+∞
k=0 uk < +∞ and

∑+∞
k=0 vk < +∞ almost surely. Then, the attached Lyapunov process

(Lk)k∈N almost surely converges to a random variable L∞. Moreover, L∞ and
∑+∞

k=0wk are finite
almost-surely.

Proof. The proof strategy relies on the same argument as those considered to establish Proposition 6.1
writing (6.15) under a supermartingale form. The complete proof can be found in its original version
in [202] or more recently in [89].

As such, Robbins-Siegmund Theorem 6.2 can be interpreted as a relaxed version of Proposition
6.1 stipulating that the addition or multiplication of summable "spurious term" (u,v) in the descent
condition finally does not compromise the almost-sure convergence of the Lyapunov function as well as
the summability of the residual. The construction of a generalization of the descent condition (6.11)
was historically conducted in intermediate steps. In this context, Theorem 6.2 can be seen as an
extension of the work of [112] which was the first one to take into consideration terms of type of u,v
(but of deterministic nature) interfering in a stochastic descent.

Example 6.5. Our goal is here to minimize a differentiable function F admitting a stationary point
x∗ which the monotonic relation ⟨∇F (x),x − x∗⟩ < 0 for all x ∈ H. To do so, we here consider a
scheme of the form of xk+1 = xk − αkgk (αk > 0) for all k ∈ N and similarly with Example 6.4, we
suppose that (gk)k∈N is a conditionally unbiased gradient approximation regarding canonical filtration
(Fk)k∈N = (σ(x0, . . . ,xk))k∈N, i.e. E[gk|Fk] = ∇F (xk) almost surely for any k ∈ N. Moreover, we
place ourselves in the situation where the second order conditional moment verifies for all k ∈ N,
E[∥gk−∇F (xk)∥2|Fk] ≤ C(1+∥xk−x∗∥2) almost surely. Following the proof of [89, Theorem 1.4.26],
process (xk)k∈N satisfies:

(∀k ∈ N) E
[
∥xk+1 − x∗∥2|Fk

]
≤ (1 + Cα2

k)∥xk − x∗∥2 + Cα2
k + 2αk⟨∇F (xk),xk − x∗⟩ a.s. (6.16)

and is therefore a (l,u,v,w)-almost-supermartingale taking l : (yk)k∈N 7→
(
∥yk − x∗∥2

)
k∈N, process

u,v here deterministic as u = v :=
(
Cα2

k

)
k∈N and r := (2αk⟨∇F (xk),xk − x∗⟩)k∈N. Especially, we

easily observe that condition
∑+∞

k=0 α
2
k < +∞ is a sufficient one to legitimate the use of Theorem 6.2.
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6.3.3 Making the link between almost-sure convergence of the iterates
One of the advantage of "almost-sure" notion lies in its ability of promoting the most natural extension
of deterministic behaviors. In such a context, the strategy of proof follows a common path. When
one aims to demonstrate that a property Q is satisfied almost surely starting from another one P

verified almost-surely, the easiest approach consists in starting from the existence of a probability-one
set Λ ∈ F for which P(ω) is true for all ω ∈ Λ and therefore to reason from a deterministic point of
view fixing every ω ∈ Λ. It can then be deduced that P(ω) implies Q(ω) for all ω ∈ Λ and finally
that P implies Q almost-surely keeping in mind that P(Λ) = 1. We will regularly use this strategy
throughout the two next chapters and, in particular, to prove a stochastic version of Proposition 2.2.

However, this same approach also presents some disadvantage in some specific contexts. When
property Q implies some mathematical objects, the latters always become dependent from ω-variable
and are thus in turn random variables (subject to measurability, which is not always obvious). A case
of particular interest to us is the one relative to the Kurdyka-Łojasiewicz theory. As seen in section
2.5 of Chapter 2, analyzing convergence of the iterates in the deterministic non-convex framework can
be done through the uniform KL Property 2.6 involving the existence of three objects ζ, ε ∈ (0,+∞)

and φ : [0, ζ) → R+. If we use our previous strategy, Property 2.6 is still verified almost-surely but if
so ζ, ε, φ fatally become ω-variables making the rest of the convergence proof highly challenging. As
a response to this issue, our Chapter 8 is especially dedicated to build an alternative version of the
uniform KL property so as to be better adapted to a stochastic setting and for which the ω-dependencies
of ζ, ε, φ are alleviated.

6.4 Conclusion

As a mirror of Chapter 2, Chapter 6 was devoted to introducing the stochastic methods commonly
found in the literature, as well as the theoretical background that we will use to conduct our analysis
in Chapters 7 and 8. In particular, the main convergence results explained therein will each time be
based on the establishment of a stochastic descent condition, more specifically with respect to the cost
function itself in Chapter 7 (i.e. a simple stochastic descent condition) and on a particular Lyapunov
function in Chapter 8. As mentioned, one of the aims of this thesis is to refine the properties outlined
in section 6.3 so as ideally to obtain direct results on the almost-sure convergence of process (xk)k∈N
itself. Although such results are obtained under a convexity assumption in Chapter 7, this will no
longer be the case in Chapter 8.
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Chapter 7

Sabrina: A stochastic subspace
majorization-minimization algorithm

A wide class of problems involves the minimization of a coercive and differentiable function F on RN

whose gradient cannot be evaluated in an exact manner. In such context, many existing convergence
results from standard gradient-based optimization literature cannot be directly applied and robustness
to errors in the gradient is not necessarily guaranteed. This work is dedicated to investigating the
convergence of Majorization-Minimization (MM) schemes when stochastic errors affect the gradient
terms. We introduce a general stochastic optimization framework, called SABRINA (StochAstic
suBspace majoRIzation-miNimization Algorithm) that encompasses MM quadratic schemes possibly
enhanced with a subspace acceleration strategy, as introduced in Chapter 3. New asymptotical results
are built for the stochastic process generated by SABRINA. Two sets of numerical experiments in the
field of machine learning and image processing are presented to support our theoretical results and
illustrate the good performance of SABRINA with respect to state-of-the-art gradient-based stochastic
optimization methods.

This work is based the our article: E. Chouzenoux and J-B. Fest. SABRINA: A Stochastic Subspace
Majorization-Minimization Algorithm, published in Journal of Optimization Theory and Applications,
vol. 195, pp. 919-952 2022.
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7.1 Introduction

We consider the problem:
minimize

x∈RN
F (x), (7.1)

where F : RN → R is a coercive and differentiable function on RN . We focus on the case when the
gradient of F is altered by stochastic errors during the iterative optimization process. This problem
has been widely studied in the optimization literature, starting from seminal works [92, 201], and has
known a renewed interest in the last decade with applicative challenges arising in supervised learning
on large scale datasets [13, 35]. The stability properties of gradient-based stochastic schemes are also
of high interest in approximate Bayesian inference, where stochastic gradient steps are often used to
improve the exploration capacities of the samplers [91, 184, 148, 239].

Probably the most relevant gradient-based stochastic optimizer is the stochastic gradient descent
(SGD) algorithm, studied in [92, 20, 201]. Extension of SGD to non-differentiable case using proximal-
based tools can be found in [70, 7, 4, 138]. Few convergence studies made in the deterministic case
extend straightforwardly to the stochastic case. All the aforementioned works are grounded on specific
probabilistic tools such as [202, 89]. SGD is rather simple but can exhibit slow convergence. Therefore,
many recent works have focused on deriving accelerated variants of it. Two main families of acceleration
strategies can be distinguished in the literature. The first approach, adopted for example in [105, 137,
175, 88, 157], relies on subspace (i.e., momentum) acceleration. The convergence rate is improved
by using information from past iterates for the construction of new estimates. The second approach
to accelerate the convergence of SGD is based on a variable metric strategy [87, 47]. The underlying
metric is modified at each iteration thanks to a preconditioning matrix, which may incorporate second-
order information about the function to minimize. These acceleration techniques give rise to promising
practical results.

This work proposes a novel SGD-based scheme to solve Problem (7.1), by combining the two
aforementioned acceleration strategies. To do so, we rely on the so-called Majorization-Minimization
(MM) principle [246, 223].

At each iteration of an MM algorithm, a surrogate function majorizing the problem cost function
is constructed. The next iterate is then obtained by minimizing the latter surrogate. By construction,
MM method produces a sequence of iterates that decreases the cost function monotonically. MM
algorithms benefit from assessed convergence properties in the convex and non-convex settings [128,
26, 59]. The extension of MM methodology to the stochastic context has been studied recently in [80,
161, 63] in restricted scenarios. The method proposed by [80] is dedicated to introducing stochastic
errors into the expectation-minimization approach, a special case of MM. The MISO approach from
[161] combines an MM scheme with constraining averaging rules both over surrogates and iterates to
reach convergence. The work of [63] studies a scheme close to the one proposed in our chapter, but limits
the analysis to the specific case of a penalized least-square criterion whose gradient is evaluated using a
recursive least-squares implementation [97]. In this present work, we introduce a versatile MM scheme
relying on quadratic majorization surrogates for F and allowing for subspace acceleration [58, 199]. In
a nutshell, the resulting algorithm benefits from a simple structure that can be understood as an SGD
method with both preconditioning and momentum-based term, and has minimal parameter tuning.
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For the proposed scheme, our contributions are:

• almost sure convergence results for non necessarily convex F ;

• convergence rate analysis in the strongly convex case;

• illustration of the performance and comparison with state-of-the-art on two numerical examples.

The rest of this chapter is organized as follows. Section 7.2 states notations and introduces the
considered MM stochastic optimization scheme. Assumptions and some technical lemmas, essential for
our theoretical study, are presented in Section 7.3. Our main contribution is concentrated in Section 7.4
presenting our convergence results and convergence rate analysis. Numerical experiments are provided
in Sections 7.5 and 7.6. Finally, we conclude the chapter in Section 7.7.

7.2 Background and proposed formulation

7.2.1 Notations

We classically denote by ∥·∥ = ⟨·|·⟩ the euclidean norm of RN , and ||| · ||| the spectral norm (i.e., largest
singular value) of elements of RM×N . If M is a symmetric definite positive matrix of RN×N , ∥.∥M
corresponds to ⟨.|M .⟩. Moreover, we will use the Loewner’s order ⪯ between two symmetric matrices
M1, M2 of RN×N , where relation M1 ⪯ M2 holds if and only if difference M2 −M1 is (symmetric)
positive. IN states for the identity matrix of RN , 0N the zero vector of size N , and ON the null matrix
of RN×N . Bold symbols are used for matrix and vectors. Italic style is retained for deterministic
quantities.

For every v ∈ R, the level set of F relative to v will be denoted:

lev=v F :=
{
x ∈ RN | F (x) = v

}
.

Subject to existence, x̃ will state for a stationary point of F . Moreover, zer∇F will denote the set of
stationary points of F . We will write x∗ a global minimizer for F and define F ∗ := F (x∗).

7.2.2 Quadratic MM (QMM) approach

MM algorithm solves Problem (7.1) iteratively by generating a sequence (xk)k∈N of elements of RN ,
where the step from the iterate xk to its successor xk+1 is achieved through the minimization of
h(·,xk), a quadratic tangent majorization surrogate of F around xk, i.e.

(∀x ∈ RN ) h(x,xk) ≥ F (x) and h(xk,xk) = F (xk). (7.2)

An efficient strategy consists in resorting to a quadratic tangent majorization function, structurally
analogous to a second-order Taylor’s expansion of F :

h : (x,y) 7→ F (y) +∇F (y)⊤(x− y) +
1

2
∥x− y∥2A(y). (7.3)
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Hereabove, for every y ∈ RN , A(y) is a symmetric positive definite matrix of RN×N chosen so as to
ensure (7.2). The latter, called the majorization metric matrix, yields a complete description of h(·,y)
and thus influences the approximation quality of F by this same surrogate. Several techniques for
building suitable majorization metric matrices can be found for a wide class of problems encompassing
image restoration, telecommunication or supervised learning in [246, 223, 59].

As a consequence of the invertibility of A(xk), for every k ∈ N, we obtain the generic Quadratic
MM (QMM) scheme [223]:

(∀k ∈ N) xk+1 = argminx∈RN h(x,xk),

= xk −A−1
k ∇F (xk) (7.4)

with Ak := A(xk) and x0 ∈ RN . The QMM update (7.4) can be shown to map with the half-quadratic
algorithm [108] when F is a penalized least-squares function. By construction, the sequence (xk)k∈N
built by (7.4) guarantees a monotonic decrease of (F (xk))k∈N. Convergence of (xk)k∈N to a stationary
point of F can be shown under suitable technical assumptions on F and (Ak)k∈N [5].

7.2.3 Subspace acceleration

When using update (7.4), one needs to invert an N×N matrix. Such an operation is undesirable when
N is large. The authors from [58] proposed to integrate a so-called subspace acceleration procedure
[199, 242] into (7.4) leading to:

(∀k ∈ N) xk+1 = argmin
x∈ran(Dk)

h(x,xk)

= xk +Dkuk, (7.5)

with
(∀k ∈ N) uk ∈ argmin

u∈RMk

h(xk +Dku,xk), (7.6)

and x0 ∈ RN . The key ingredient of the above method is the introduction of a matrix Dk ∈ RN×Mk

with N ≥Mk ≥ 1, whose range ran(Dk) (i.e., vectorial space spanned by the columns of Dk) imposes
a subspace to search for the new iterate xk+1. Taking Mk = N and Dk = IN , the identity matrix
of RN , (7.5) goes back to scheme (7.4). In practice, only a few degrees of freedom are actually
required to reach good convergence speed (see [62] for a detailed analysis of the convergence rate of
scheme (7.5) as a function of Dk and Ak), so Mk is typically retained as very small compared to
N . Interesting choices can be found in [58, Tab.1]. Setting Dk = [−∇F (xk) | xk − xk−1] (with
convention x−1 = x0) brings notably to the so-called MM Memory Gradient (3MG) method whose
great performances have been illustrated in [102, 58, 217]. Other choices for the subpace matrix can
be found in [199, 164, 220, 249]. It is worth noting that the minimization scheme (7.5) shares strong
connections with non-linear conjugate gradient algorithm [178], low-memory quasi-Newton approaches
such as L-BFGS [178, 156], trust-region strategies [2], and momentum-based methods [224]. In contrast
with these aforementioned works, the MM subspace scheme presents the key advantage of a simple
linesearch procedure (7.6) associated with sounded convergence guarantees. Indeed, assuming, without
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loss of generality that Dk has full column rank, the quadratic structure of h(·,xk) allows to obtain an
analytical solution to sub-problem (7.6).

(∀k ∈ N) uk = −
(
D⊤
k AkDk

)−1
D⊤
k ∇F (xk). (7.7)

The interest lies here in the fact that D⊤
k AkDk is an Mk ×Mk matrix making its inversion far easier

computable than the inversion of Ak, as soon as Mk is small. Convergence properties of (7.5)-(7.6)
have been established in the convex setting in [58], and extended to the non-convex setting in [59] using
recent tools of non smooth analysis. The catalizing effect of the subspace acceleration for practical
convergence speed of MM methods has been acknowledged in the survey chapter [223]. We also refer
the reader to [49, 110, 43] for practical implementation of MM subspace approaches on modern high
performance computing tools.

7.2.4 SABRINA, a stochastic subspace MM algorithm
We are now ready to introduce the algorithm studied in this chapter. We focus on the stability
of the optimization scheme (7.5)-(7.6) when the gradient of F is affected by an additive stochastic
perturbation at each iteration k ∈ N, so that only the approximate value gk, defined below, is available:

(∀k ∈ N) gk = ∇F (xk) + ek. (7.8)

Hereabove, (ek)k∈N corresponds to a zero-mean stochastic process with a bounded variance in a sense
that will be specified in Section 7.3.2. Formulating the stochastic counterpart of (7.5)-(7.6) requires
to introduce the concept of inexact majorization function. For every k ∈ N, the majorization function
h(·,xk) will be substituted by a new function ĥk with the following expression:

ĥk : u ∈ RN 7→ F (xk) + g⊤
k (u− xk) +

1

2
∥u− xk∥2Ak

. (7.9)

In analogy with the deterministic formulation from Section 7.2.3, the update at iteration k ∈ N will be
grounded on the search of a minimizer of ĥk along the directions spanned by the columns of a matrix
Dk ∈ RMk×N .

Let us also introduce a positive stepsize sequence (γk)k∈N in order to promote stability of the
iterates. This finally leads us to our stochastic minimization scheme called SABRINA (StochAstic
suBspace majoRization mINimization Algorithm):

(∀k ∈ N) xk+1 = xk + γkDkuk, (7.10)

with
(∀k ∈ N) uk = −

(
D⊤
kAkDk

)−1
D⊤
k gk, (7.11)

and x0 ≡ x0 ∈ RN , a deterministic quantity.

Remark 7.1. For the sake of clarity, throughout the chapter, we distinguish deterministic and ran-
dom quantities, with italic and non-italic styles, respectively. In particular, since the noise (ek)k∈N is
random, the quantities (gk,xk,Dk,uk)k∈N are too. The probabilistic notations (i.e., probability space,
filtration), useful for our theoretical analysis, will be made explicit in Sec. 7.3.1.
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7.2.5 Link with stochastic preconditioned gradient algorithm

It is straightforward to rewrite SABRINA iterations (7.10)-(7.11) under the compact form:

(∀k ∈ N) xk+1 = xk − γkBkgk, (7.12)

with

(∀k ∈ N) Bk = Dk

(
D⊤
kAkDk

)−1
D⊤
k . (7.13)

The above formulation is interesting as it highlights similarities between SABRINA and the pre-
conditioned gradient scheme with inexact gradient term, studied for instance in [42, 33]. The main
distinction is that the symmetric matrix Bk ∈ RN×N involved in (7.12) gathers information brought
by the majorization matrix Ak and by the retained subspace Dk, as described in (7.13). The for-
mulation above suggests that controlling the behaviour of (xk)k∈N requires studying the properties of
(Bk)k∈N, which raises two main theoretical challenges that we plan to tackle in this chapter: (i) Bk is
a random matrix with non necessarily full rank, (ii) F is not assumed to be a convex function. Up to
our knowledge, the general scheme (7.12) has never been analysed under these two restrictions.

7.3 Preliminary Lemmas

In this section, we introduce our probabilistic notations. We present and discuss our assumptions.
Finally, we prove three technical lemmas that appear essential for establishing our main convergence
results presented in Section 7.4.

7.3.1 Probabilist framework

In the remainder of the chapter, we consider (Ω,F , P ) a probability space to which we associate the
filtration (Fk)k∈N where F0 = {Ω, ∅} and for all k ≥ 1, Fk = σ (e0,x1, ..., ek−1,xk) corresponds to the
sub-sigma algebra generated by the family {e0,x1, ..., ek−1,xk} of random variables. For each k ∈ N,
Fk gathers all the information available from the origin of the process to iteration k. A mathematical
property will be said to be verified almost surely or a.s. if it holds on a probability-one set belonging
to F . We also remind that an element of F is negligible if it is a probability-zero one. For a given
k ∈ N and subject to existence, we will denote E(.|Fk), the conditional expectancy operator associated
to Fk.

7.3.2 Assumptions

The following assumptions will guide us throughout the rest of the study.

Assumption 7.1. F is coercive and β-Lipschitz differentiable on RN , i.e. there exists β > 0 such
that:

(∀(x,y) ∈ (RN )2) ∥∇F (x)−∇F (y)| ≤ β ∥x− y∥. (7.14)
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Assumption 7.2. There exists (η, ν) > 0 such that:

(∀k ∈ N) ηIN ⪯ Ak ⪯ νIN a.s.. (7.15)

Assumption 7.3. For every iteration k ∈ N,

(i) rank(Dk) =Mk a.s.,

(ii) gk ∈ ker(D⊤
k )

⊥ a.s..

Assumption 7.4. The stochastic noise process (ek)k∈N fulfills:

(i) (∀k ∈ N) E (ek|Fk) = 0 a.s.,

(ii) There exists C ∈ (0, Cmax) with Cmax = 1
2

(
(1 + 4η

ν )
1
2 − 1

)
such that:

(∀k ∈ N) E
(
∥ek∥2|Fk

)
≤ C2∥∇F (xk)∥2 a.s.. (7.16)

Assumption 7.5. (γk)k∈N is a sequence of strictly positive scalars satisfying:

γk −→
k→+∞

0 and
+∞∑
k=0

γk = +∞.

7.3.3 Discussion on the assumptions

Assumption 7.1 is rather standard in the analysis of stochastic gradient-based methods [111, 161]. It
is worth noting that the knowledge of the Lipschitz constant of ∇F is not necessary for the practical
implementation of the method.

Assumption 7.2 is essential for ensuring convergence of MM methods involving quadratic majoriza-
tion functions, as it ensures that the majorization metric matrices remain well-conditioned. Let us
remark that the existence of such matrices is guaranteed by the descent lemma, since one can set
Ak ≡ βIN , with β the Lipschitz constant of ∇F (see Assumption 7.1). For such choice, SABRINA
identifies with SGD with specific MM-based closed-form formulas for the stepsize and the momentum
weight. As we will show in our experimental tests, it is however usually worthy to search for more so-
phisticated choices for (Ak)k∈N, leading usually to faster practical convergence (See also [5, Sec.IV],[62]
for the role of majorization mappings in the convergence speed of quadratic MM methods).

Assumptions 7.3(i) and 7.3(ii) work as a peer, and control the validity of the subspace construction.
These requirements are standard in subspace-based optimization methods [242, 58, 199]. Assumption
7.3(i) ensures the non-redundancy of the information within the subspace. Assumption 7.3(ii) enhances
some descent properties of the algorithm. Note that the latter Assumption is verified as soon as one
of the columns of Dk identifies with −gk (i.e. the SGD direction). Interestingly, for Dk ≡ −gk,
SABRINA reads as a preconditioned SGD algorithm, with MM-based preconditioner.
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Assumption 7.4(i) is often required for studying the stability of gradient-based optimization schemes
in the presence of stochastic errors [85, 111]. Assumption 7.4(ii) corresponds to a second order moment
property and can be seen as a particular case of [35, Assumption 4.3.c]. It states that uncertainty ek
should remain reasonable with respect to the norm of the (true) gradient of F at xk. The larger
condition number η/ν of the majorization metrics, the more permissive upper bound Cmax is. The
maximum theoretical bound

√
5−1
2 ≃ 6.18 × 10−1 is reached if and only if η ≡ ν. Such a situation

occurs for instance when Ak equals to a positive constant times identity. Typical choice would be
Ak ≡ βIN , but, as already mentioned, this choice might be detrimental to the convergence speed. In
contrast, one can easily show that Cmax ∼ η/ν for η/ν → 0+, which means that poorly conditioned
majorization mappings would demand a high level of tolerance on the gradient’s uncertainty. This
suggests that a compromise must be achieved between the convergence speed and the requirements in
terms of stability to noise.

Assumption 7.5 is a relaxed version of the classical σ-sequence hypothesis [104]. In particular, a
main feature of our study is that it is not necessary to impose the usual condition

∑+∞
k=0 γ

2
k < +∞.

Assumption 7.5 allows to choose a stepsize (γk)k∈N with a slow convergence to 0 (e.g., an inverse
logarithmic one).

7.3.4 Properties of the preconditioning matrices

As mentioned in Section 7.2.5, the behaviour of SABRINA iterates depends on the properties of
(Bk)k∈N expressed in (7.13). We derive some useful technical properties for these matrices, gathered
in the lemma below.

Lemma 7.1. Under Assumptions 7.2 and 7.3(i), for all k ∈ N, Bk is almost surely well-defined and
satisfies:

Dkuk = −Bkgk, (7.17a)

ON ⪯ Bk ⪯
1

η
IN , (7.17b)

(∀x ∈ ker(D⊤
k )

⊥) x⊤Bkx ≥ 1

ν
∥x∥2. (7.17c)

Proof. Let k ∈ N.

Matrix D⊤
kAkDk is symmetric. Using Loewner’s order property and Assumption 7.2, we almost

surely have
ηD⊤

kDk ⪯ D⊤
kAkDk ⪯ νD⊤

kDk. (7.18)

Assumption 7.3(i) ensures that Dk is an injective operator. It follows that D⊤
kDk is a symmetric

definite positive matrix and according to (7.18) and η > 0, so is D⊤
kAkDk. This ensures that Bk, as

defined in (7.13), exists. Then, (7.17a) directly comes from (7.10) and (7.12).

Moreover, since the three terms in (7.18) are invertible matrices, we have:

1

ν
(D⊤

kDk)
−1 ⪯ (D⊤

kAkDk)
−1 ⪯ 1

η
(D⊤

kDk)
−1, (7.19)
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so that
1

ν
Dk(D

⊤
kDk)

−1D⊤
k ⪯ Bk ⪯

1

η
Dk(D

⊤
kDk)

−1D⊤
k . (7.20)

Let us denote:
Pk = Dk(D

⊤
kDk)

−1D⊤
k . (7.21)

Pk ∈ RN×N is an orthogonal projection operator since it is symmetric and verifies P2
k = Pk. It follows

that:
ON ⪯ Pk ⪯ IN . (7.22)

(7.17b) is then directly obtained by replacing (7.22) in (7.20).

As an orthogonal projection matrix, Pk satisfies

(∀x ∈ ker(Pk)
⊥) Pkx = x. (7.23)

Combining (7.23) with the left inequality of (7.20) yields:

(∀x ∈ ker(Pk)
⊥) x⊤Bkx ≥ 1

ν
x⊤Pkx =

1

ν
∥x∥2. (7.24)

There remains to prove the relation ker(D⊤
k ) = ker(Pk). Inclusion ker(D⊤

k ) ⊂ ker(Pk) is straightfor-
ward. Since x ∈ ker(Pk), from the expression of Pk and left multiplication by x⊤, we have

x⊤Dk(D
⊤
kDk)

−1D⊤
k x = 0. (7.25)

Since D⊤
kDk is definite positive matrix, its inverse is too, so that D⊤

k x = 0, i.e. x ∈ ker(D⊤
k ) which

concludes the proof of (7.17c).

Relation (7.17c) brings light into our interpretation of Assumption 7.3(ii) as a descent condition.
Indeed, taking x = −gk in (7.17c) leads to the gradient-related inequality [19] considered for instance
in the analysis of [58, 59]. Relation (7.17c) will actually play a key role in the asymptotical analysis of
Section 7.4.

7.3.5 Two additional technical lemmas
The next lemma is essential as it guarantees the integrability of all the probabilistic quantities we will
manipulate in our convergence analysis. It especially validates the use of the conditional expectation
operator and of its associate properties in every situation encountered in our proofs.

Lemma 7.2. Under Assumptions 7.1, 7.2, 7.3(i) and 7.4(ii), for every k ∈ N, xk, ∇F (xk), ek and
gk are square-integrable random vectors of RN . Moreover, F (xk) is an integrable random variable of
R.

Proof. First, according to Assumption 7.1, F is a differentiable and coercive function on RN , which
ensures the existence of a global minimizer x∗ satisfying ∇F (x∗) = 0N . Let us denote by F ∗ the
minimal value of F on RN , i.e. F ∗ = F (x∗).
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We start by proving the desired property for sequence (xk)k∈N. We here proceed by induction.
The case k = 0 is straightforward as x0 is a deterministic variable.
Assume that xk is square-integrable for a given k ∈ N. Then almost surely, and using Lemma 7.1,

∥xk+1∥2 = ∥xk − γkBkgk∥2,
≤ 2∥xk∥2 + 2γ2k∥Bkgk∥2,

≤ 2∥xk∥2 + 2
γ2k
η2

∥gk∥2. (7.26)

with

∥gk∥2 = ∥∇F (xk) + ek∥2,
≤ 2∥∇F (xk)∥2 + 2∥ek∥2. (7.27)

Hereabove, the positivity of all the manipulated random variables makes possible to take the conditional
expectations. Since ∇F (xk) is Fk-measurable, the next inequalities follow by using Assumptions 7.1
and 7.3(i), almost surely

E(∥gk∥2|Fk) = E(∥∇F (xk) + ek∥2|Fk),
≤ 2 E(∥∇F (xk)∥2|Fk) + 2 E(∥ek∥2|Fk),
= 2∥∇F (xk)∥2 + 2 E(∥ek∥2|Fk),
≤ 2(1 + C2)∥∇F (xk)∥2,
≤ 2β2(1 + C2)∥xk − x∗∥2,
≤ 4β2(1 + C2)(∥xk∥2 + ∥x∗∥2). (7.28)

Taking the expectations yields

E
[
∥gk∥2

]
= E

[
E(∥gk∥2|Fk)

]
,

≤ 4(1 + C2)β2(E
[
∥xk∥2

]
+ ∥x∗∥2). (7.29)

By the induction hypothesis, we have E
[
∥xk∥2

]
< +∞, so that using (7.26)-(7.29)

E[∥xk+1∥2] ≤ 2 E
[
∥xk∥2

]
+ 8β2

γ2k
η2

(1 + C2)
(
E
[
∥xk∥2

]
+ ∥x∗∥2

)
< +∞, (7.30)

which concludes this part of the proof.

We now focus on gk. The developments above shown that E
[
∥gk∥2

]
is upper-bounded by a positive

affine function of E
[
∥xk∥2

]
, itself being strictly lower than +∞. Consequently, E

[
∥gk∥2

]
< +∞.

Regarding ∇F (xk), we almost surely have

∥∇F (xk)∥2 ≤ β2∥xk − x∗∥2,
≤ 2β2(∥xk∥2 + ∥x∗∥2). (7.31)

The right member in the above equation is integrable, and so is the same for ∥∇F (xk)∥2.
The integrability of ∥ek∥2 arises directly from Assumption 7.4(ii), passing directly to the expecta-

tion.
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The descent lemma applied to F , which is a β-Lipschitz differentiable function of RN according to
Assumption 7.1, leads to

F (xk)− F ∗ ≤ β

2
∥xk − x∗∥2,

≤ β

2
(∥xk∥2 + ∥x∗∥2). (7.32)

The integrability of the right member of the above inequality yields the integrability of F (xk).

We end this section with one last technical result which provides a rational for the expression of
the bound Cmax introduced in Assumption 7.4.

Lemma 7.3. For every C ∈ (0, Cmax), there exists ρ0 > 0 such that Pρ0 is strictly negative on [0, C]

where for all ρ > 0, Pρ refers to the polynomial

Pρ(X) =

(
1 +

νρ

2η

)
X2

η
+
X

η
+

(
νρ

2η2
− 1

ν

)
. (7.33)

Proof. For all ρ > 0, Pρ is a second order polynomial whose discriminant ∆ρ is

∆ρ =
1

η2
+

4

η

(
1 +

νρ

2η

)(
1

ν
− νρ

2η2

)
. (7.34)

Taking ρ ∈
(
0, 2 (η/ν)2

)
, it follows that ∆ρ is strictly positive. Thus, Pρ admits two distinct roots

wρ,1 = −
η2
√

∆ρ + η

νρ+ 2η
< 0, and wρ,2 =

η2
√
∆ρ − η

νρ+ 2η
. (7.35)

Taking the limit for vanishing ρ yields:

lim
ρ→0+

wρ,2 =
η
√

1
η2

+ 4
ην − 1

2
,

=
1

2

(√
1 +

4η

ν
− 1

)
,

= Cmax. (7.36)

Using C < Cmax and (7.36) ensures the existence of ρ0 ∈
(
0, 2 (η/ν)2

)
such that wρ0,2 > C. Moreover,

the second degree coefficient of Pρ0 is strictly positive, so that Pρ0 is strictly negative on (wρ0,1, wρ0,2) ⊃
[0, C] which completes the proof.
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7.4 Asymptotical Analysis of SABRINA

7.4.1 Stochastic majoration of (F (xk))k∈N
Proposition 7.1. Under Assumptions 7.1-7.4, the following majoration holds almost surely:

(∀k ∈ N) E [F (xk+1)|Fk] ≤ F (xk) + γk∥∇F (xk)∥2Pγk(C), (7.37)

where Pγk is the polynomial quantity defined in Lemma 7.3.

Proof. Let k ∈ N. We start by using the majoration property (7.2)-(7.3) of h(.,xk) on F at xk+1

F (xk+1) ≤ F (xk) +∇F (xk)⊤(xk+1 − xk) +
1

2
∥xk+1 − xk∥2Ak

,

≤ F (xk) +∇F (xk)⊤(xk+1 − xk) +
ν

2
∥xk+1 − xk∥2 a.s., (7.38)

where (7.38) is a direct consequence of Assumption 7.2.
Using scheme (7.12) and the definition (7.8), inequality (7.38) can be written:

F (xk+1) ≤ F (xk)− γk∇F (xk)⊤Bkgk +
ν

2
∥xk+1 − xk∥2,

= F (xk)− γk g⊤
k Bkgk + γk e⊤kBkgk +

ν

2
∥xk+1 − xk∥2,

= F (xk)− γk g⊤
k Bkgk + γk e⊤kBk∇F (xk) + γk e⊤kBkek

+
ν

2
∥xk+1 − xk∥2 a.s.. (7.39)

On the one hand, Assumption 7.3(ii) guarantees that gk ∈ ker(D⊤
k )

⊥ almost surely. Hence, the
left inequality (7.17c) of Lemma 7.1 yields

g⊤
k Bkgk ≥

1

ν
∥gk∥2 a.s.. (7.40)

On the other hand, the use of Cauchy-Schwarz inequality and relation (7.17b) from Lemma 7.1 gives

e⊤kBk∇F (xk) ≤
1

η
∥∇F (xk)∥ ∥ek∥ a.s.. (7.41)

Moreover, (7.17b) also leads to:

e⊤kBkek ≤
1

η
∥ek∥2 a.s.. (7.42)

And, again as a consequence of (7.17b),

∥xk+1 − xk∥2 = γ2k∥Bkgk∥2,

≤
γ2k
η2

∥gk∥2 a.s.. (7.43)

Plugging (7.40)-(7.43) into (7.39) leads to:

F (xk+1) ≤ F (xk)−
γk
ν
∥gk∥2 +

γk
η
∥∇F (xk)∥ ∥ek∥+

γk
η
∥ek∥2 +

νγ2k
2η2

∥gk∥2 a.s.. (7.44)
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Thanks to Lemma 7.2, we can take the conditional expectation in (7.44) and use the fact that
it is a linear operator. Moreover, accounting for Fk-measurability of F (xk) and ∇F (xk), we obtain

E [F (xk+1)|Fk] ≤ F (xk) − γk
ν

E
[
∥gk∥2|Fk

]
+
γk
η

∥∇F (xk)∥ E [∥ek∥ |Fk]

+
γk
η

E
[
∥ek∥2|Fk

]
+
νγ2k
2η2

E
[
∥gk∥2|Fk

]
a.s.. (7.45)

The end of the proof aims at finding an upper bound of the last four terms in (7.45), depending
only on ∇F (xk).

First, Definition (7.8) and the parallelogram identity give

E
[
∥gk∥2|Fk

]
= ∥∇F (xk)∥2 + 2 E

[
∇F (xk)⊤ek|Fk

]
+ E

[
∥ek∥2|Fk

]
a.s.. (7.46)

Since ∇F (xk) is Fk-measurable, and using Assumption 7.4(ii), we have

E
[
∇F (xk)⊤ek|Fk

]
= ∇F (xk)⊤E [ek|Fk] ,

= 0 a.s., (7.47)

which leads to the conditional equality

E
[
∥gk∥2|Fk

]
= ∥∇F (xk)∥2 + E

[
∥ek∥2|Fk

]
a.s.. (7.48)

Using Assumption 7.4(ii) we then deduce the following bounds for ∥gk∥2

∥∇F (xk)∥2 ≤ E
[
∥gk∥2|Fk

]
≤
(
1 + C2

)
∥∇F (xk)∥2 a.s.. (7.49)

Second, the following stochastic majoration of E [∥ϵk∥ |Fk] is obtained by Jensen’s inequality and
Equation (7.16)

E [∥ek∥ |Fk] ≤
√
E [∥ek∥2|Fk],

≤ C∥∇F (xk)∥ a.s., (7.50)

where (7.50) arises from Assumption 7.4(ii).
Finally, Inequalities (7.16), (7.49), (7.50) combined with (7.45) give the desired result

E [F (xk+1)|Fk] ≤ F (xk) + γk∥∇F (xk)∥2
[(

1 +
νγk
2η

)
C2

η
+
C

η
+

(
νγk
2η2

− 1

ν

)]
a.s.. (7.51)

Proposition 7.2. Under Assumptions 7.1-7.5, for every ρ > 0, there exists kρ such that

(∀k ≥ kρ) E [F (xk+1)|Fk] ≤ F (xk) + γk∥∇F (xk)∥2Pρ(C) a.s.. (7.52)
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Proof. By Assumption 7.5, γk −→
k→+∞

0, which ensures the existence of kρ such that γk ≤ ρ for all

k ≥ kρ. Thus,

Pγk(C) =

[(
1 +

νγk
2η

)
C2

η
+
C

η
+

(
νγk
2η2

− 1

ν

)]
,

≤
[(

1 +
νρ

2η

)
C2

η
+
C

η
+

(
νρ

2η2
− 1

ν

)]
= Pρ(C). (7.53)

Inequality (7.52) directly follows from (7.37) of Proposition 7.1.

7.4.2 General convergence theorem
We start with the following theorem which gives a general result for SABRINA without any convexity

hypothesis:

Theorem 7.1. Under Assumptions 7.1-7.5, sequence (F (xk))k∈N converges a.s. to an almost surely
finite random variable. Moreover, (xk)k∈N is such that

+∞∑
k=0

∥xk+1 − xk∥2 < +∞ a.s., (7.54a)

lim inf
k→+∞

∥∇F (xk)∥ = 0 a.s.. (7.54b)

Proof. From Lemma 7.3, there exists ρ0 > 0 for which Pρ0 is strictly negative on [0, C]. Applying
Proposition 7.2 with ρ = ρ0, yields the existence of kρ0 such that

(∀k ≥ kρ0) E [F (xk+1)|Fk] ≤ F (xk) + γk∥∇F (xk)∥2Pρ0(C) a.s.. (7.55)

Subtracting F ∗, the minimal value of F on each side of (7.55) yields

(∀k ≥ kρ0) E [F (xk+1)− F ∗|Fk] ≤ [F (xk)− F ∗] + γk∥∇F (xk)∥2Pρ0(C) a.s.. (7.56)

All random variables involved in (7.56) are positive and integrable. Moreover, we have Pρ0(C) < 0

(since Pρ0 is strictly negative on [0, C]). Thus, we can invoke Robbins-Siegmund’s lemma [202]. The
a.s. convergence of (F (xk) − F ∗)k∈N to an a.s. finite random variable is guaranteed, and so it is for
(F (xk))k∈N. Moreover again from Robbins-Siegmund’s lemma, we have the following property

+∞∑
k=0

γk∥∇F (xk)∥2 < +∞ a.s.. (7.57)

First, using (7.12), (7.17b) and then (7.49), yields

+∞∑
k=0

E
[
∥xk+1 − xk∥2|Fk

]
≤

+∞∑
k=0

γ2k
η2

E[∥gk∥2|Fk],

≤ 1 + C2

η2

+∞∑
k=0

γ2k∥∇F (xk)∥2 a.s.. (7.58)
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By Assumption 7.5, (γk)k∈N is positive and converges to 0. Thus, γ2k∥∇F (xk)∥2 ≤ γk∥∇F (xk)∥2
from a certain range k. It follows that the right term in (7.58) is a finite random variable and, as a

consequence,
+∞∑
k=0

E
[
∥xk+1 − xk∥2|Fk

]
< +∞. Positivity of sequence

(
∥xk+1 − xk∥2

)
k∈N finally allows

us to apply [111, Prop.1] which gives (7.54a).

Our proof of (7.54b) is similar to the one of Zoutendijk condition for gradient-based optimiza-
tion methods [32], adapted to a stochastic framework. To do so, we stand on complementary set{
ω ∈ Ω | lim inf

k→+∞
∥∇F (xk(ω))∥ > 0

}
and prove that it is of zero probability.

For all ω ∈ Ω such that lim inf
k→+∞

∥∇F (xk(ω))∥ > 0, following the definition of lim inf, there exists

ε(ω) > 0 and a range k0(ω) ∈ N for which for all k ≥ k0(ω), ∥∇F (xk(ω))∥ ≥ ε(ω). Thus

(∀k ≥ k0(ω)) γk∥∇F (xk(ω))∥2 ≥ γkε(ω)
2. (7.59)

Summing (7.59) from k0(ω) to +∞, and using Assumption 7.5, we deduce

+∞∑
k=k0(ω)

γk∥∇F (xk(ω))∥2 ≥ ε(ω)2
+∞∑

k=k0(ω)

γk,

= +∞. (7.60)

This leads to inclusion{
ω ∈ Ω | lim inf

k→+∞
∥∇F (xk(ω))∥ > 0

}
⊂

{
ω ∈ Ω |

+∞∑
k=0

γk∥∇F (xk(ω))∥2 = +∞

}
. (7.61)

The term in the right side of (7.61) is a negligible set according to (7.57). As a consequence, the left
side of (7.61) is also a negligible set and (7.54b) holds by taking the complement.

Result (7.54a) ensures that sequence (xk)k∈N has a finite length [59]. Although some recent works
consider (7.54b) as a sufficient convergence criterion [111], its scope remains limited since it only holds
for a given subsequence of (xk)k∈N. In the following, we make use of topological arguments to derive
useful corollaries of Theorem 7.1.

Corollary 7.1. Under Assumptions 7.1-7.5, the set χ∞ of accumulation points of sequence (xk)k∈N is
almost surely non empty, compact and connex. Moreover, it contains at least one element of zer∇F .

Proof. Since Theorem 7.1 holds a.s., there exists a set Λ ⊂ Ω of probability one set where, for all
ω ∈ Λ,

lim
k→+∞

F (xk(ω)) < +∞, (7.62a)

+∞∑
k=0

∥xk+1(ω)− xk(ω)∥2 < +∞ (7.62b)

lim inf
k→+∞

∥∇F (xk(ω))∥ = 0. (7.62c)
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Inequality (7.62a) implies that (F (xk(ω)))k∈N is a bounded sequence. The coercivity of F , in
Assumption 7.1, ensures this same property for (xk(ω))k∈N. It follows that the set of cluster points
χ∞(ω) is non empty and bounded. Moreover, it is compact due to its closure (in finite dimension).

Moreover, (7.62b) leads to:

xk+1(ω)− xk(ω) −→
k→+∞

0N . (7.63)

Equation (7.63), and the boundedness of (xk(ω))k∈N enables the use of Ostrowski’s theorem [182,
26.1]) which directly gives the connexity of χ∞(w).

From the boundedness of (xk(ω))k∈N, and (7.62c), we deduce that there exists a convergent sub-
sequence

(
xφ(k)(ω)

)
k∈N such that

∇F (xφ(k)(ω)) −→
k→+∞

0N . (7.64)

Let us denote by x∞(w) the limit point of
(
xφ(k)(ω)

)
k
. By construction, x∞(ω) belongs to χ∞(ω).

Since F is gradient-Lipschitz, by Assumption 7.1, its gradient is continuous and we finally obtain:

∇F (x∞(ω)) = 0N . (7.65)

Corollary 7.1 provides us an overview of the distribution formed by the accumulation points of
sequence (xk)k∈N. In order to refine the convergence theorem, we must introduce extra assumptions
on the level sets of function F (see 7.2.1 for useful notations). We then propose an result, when F is
convex with isolated stationary points.

Corollary 7.2. Under Assumptions 7.1-7.5, if F is convex with isolated stationary points i.e.,

(∀v ∈ R) Card(lev=v F ∩ zer∇F ) < +∞, (7.66)

then (xk)k∈N converges almost surely to a (global) minimizer of F .

Proof. On the one hand, by Theorem 7.1 and Corollary 7.1, there exists a probability-one set Λ ⊂ Ω

for which ω ∈ Λ, (F (xk))k possesses a finite limit F∞
w . Moreover, χ∞(ω) is connex and possess a point

x̃(ω) which also belongs to zer∇F . On the other hand, the convexity of F induces that the set of its
(global) minimizer maps with zer∇F (by Fermat’s rule). It follows that x̃(ω) is a global minimizer of
F , that we will denote x∗(ω) (following notations from Sec. 7.2.1). By continuity of F ,

(∀x ∈ RN ) F (x) ≥ F (x∗(ω)) = F∞
ω . (7.67)

Moreover, again by continuity of F , for all x ∈ χ∞(ω), F (x) = F∞
ω = F (x∗(ω)). Thanks to

(7.67), we deduce that every x ∈ χ∞(ω) is a (global) minimizer of F and then one of its stationary
point. This yields the inclusion:

χ∞(ω) ⊂
(
lev=F (x∗(ω)) F ∩ zer∇F

)
. (7.68)

Since all stationary points of F are assumed to be isolated, set lev=F (x∗(ω)) F ∩ zer∇F is finite, and
so is set χ∞(ω). Moreover, set χ∞(ω) is non empty and connex, so we obtain χ∞(ω) = {x∗(ω)} which
completes the proof.
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7.4.3 Convergence rate analysis
We provide here our second main theoretical result, regarding the convergence rate of SABRINA, in
the case when F satisfies a strong convexity property.

Theorem 7.2. If F is α-strongly convex (i.e., F − α
2 ∥ · ∥2 is convex) and Lipschitz differentiable

function on RN then, under Assumptions 7.2-7.5, there exist Dα > 0 and a sequence (rk)k∈N such
that, for k sufficiently large,

ln (E [F (xk+1)− F ∗]) ≤ rk. (7.69)

Moreover,

rk ∼
k→+∞

Dα ×

(
−

k∑
i=0

γi

)
. (7.70)

Proof. First, let us notice that Assumption 7.1 holds, since F is supposed to be α-convex and Lipschitz
differentiable. Since Assumptions 7.2-7.5 also hold, we can thus come back to (7.56) (from the proof
of Theorem 7.1, and using the same notations), and take the expectation to obtain:

(∀k ≥ kρ0) E [F (xk+1)− F ∗] ≤ E [F (xk)− F ∗] + γkPρ0(C) E
[
∥∇F (xk)∥2

]
a.s.. (7.71)

Let us make use of [35, Eq. (4.12)] related to strongly convex functions, which reads:

(∀k ∈ N) ∥∇F (xk)∥2 ≥ 2α(F (xk)− F ∗). (7.72)

Substituting (7.72) in (7.71) then leads to:

(∀k ≥ kρ0) E [F (xk+1)− F ∗] ≤ (1 + γ̂k)E [F (xk)− F ∗] , (7.73)

with
γ̂k = 2αPρ0(C)γk < 0 (since Pρ0(C) < 0). (7.74)

Moreover, by Assumption 7.5, (γk)k∈N converges to 0 so that there exists k1 > kρ0 such that:

(∀k ≥ k1) 1 + γ̂k ∈ (0, 1). (7.75)

Then, by induction, it follows that for all k ≥ k1 + 1,

E [F (xk)− F ∗] ≤ E [F (xk1)− F ∗]
k−1∏
i=k1

(1 + γ̂i) . (7.76)

Taking the logarithm in (7.76), by virtue of Condition (7.75), then yields:

ln (E [F (xk)− F ∗]) ≤
k−1∑
i=k1

ln (1 + γ̂i) + ln (E [F (xk1)− F ∗]) . (7.77)

The end of the proof consists in searching for an asymptotic equivalent of the right member of (7.77).
Convergence of (γk)k∈N to 0 (by Assumption 7.5) ensures:

ln(1 + γ̂k) ∼
k→+∞

γ̂k. (7.78)
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Sequences (ln(1 + γ̂k))k≥k1 , (γ̂k)k≥k1 are both negative. Moreover, Assumption 7.5 yields:

+∞∑
i=k1

γ̂i = −∞. (7.79)

We can thus deduce:

k−1∑
i=k1

ln(1 + γ̂i) ∼
k→+∞

k−1∑
i=k1

γ̂i,

= 2αPρ0(C)
k−1∑
i=k1

γi. (7.80)

Since the series
k−1∑
i=k1

ln(1 + γ̂i) diverges to −∞, it follows that

k−1∑
i=k1

ln (1 + γ̂i) + ln (E [F (xk1)− F ∗ ]) ∼
k→+∞

2αPρ0(C)

k−1∑
i=k1

γi,

∼
k→+∞

2αPρ0(C)

k∑
i=0

γi. (7.81)

Hereabove, (7.81) arises from the convergence of (γk)k∈N to 0 (Assumption 7.5). The desired conclusion
is reached by setting Dα = −2αPρ0(C).

Theorem 7.2 guarantees an ℓ1 convergence to F ∗ for sequence F (xk)k∈N generated by SABRINA.
Although sequence (rk)k∈N share the same asymptotical behaviour than the stepsize sequence, it does
not necessarily ensure the same situation for (F (xk)k∈N − F ∗) since passing to exponential does not
preserve the speed of convergence. It should be emphasized that the choice of (γk)k∈N that ensures
convergence is rather permissive due to Assumption 7.5. One interesting practical choice thus consists
in setting (γk)k∈N as a sequence converging to zero as slow as allowed by Assumption 7.5. As a result,
relation (7.70) ensures that the logarithmic expectation in (7.69) tends quickly to −∞.

7.4.4 Link to existing works

Our “liminf" convergence criterion (7.54b) is probably the most encountered one in optimization [32,
chapter 1.4] among those introduced in Theorem 7.1. Similar result is also obtained in [111, 105] con-
sidering a stochastic context. The aforementioned works focused on an method closed to ADAM [137],
that has been quite notorious in the field of deep learning this last decade. To a certain extent,
the scheme in [111, 105] can be interpreted as a specific case of ours without using MM metric (i.e.,
Ak ≡ IN ) and where subspace acceleration is replaced by momentum weights combining with a man-
ually tuned stepsize. By including an MM approach in a non-convex situation, the MISO algorithm
from [161] shares common features with the one we develop here. The asymptotical result from [161,
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Prop.3.3] is also expressed as a “liminf" condition but, up to our knowledge, might appear harder to in-
terpret than (7.54b). Our result (7.54a) is not as common in the litterature of stochastic optimization,
as its counterpart (7.54b), probably since it is slightly less tractable. It shares structural similarities
with the finite length condition stated in [59, Theo.3] studying the MM subspace algorithm without
noisy gradient. When considering noisy gradient, we manage here to show (7.54a), which is weaker
in the sense that the square norm summation does not ensure necessarily that (xk)k∈N is a Cauchy
sequence, and thus does not allow to easily conclude on its almost sure convergence.

More generally, Robbins-Siegmund’s lemma [202] is a widely used tool to deduce asymptotical prop-
erties of stochastic approximation schemes [89, 105]. Our use of Ostrowski’s theorem [182, Theo.26.1]
and the connexity argument to obtain Corollary 7.1 is reminiscent from [63]. However, in contrast with
the aforementioned work, we use the convexity hypothesis only at the very end in Corollary 7.2. The
idea of using level-set as an alternative arises from [104].

The supervised learning context has highly promoted studies relative to speed estimation of stochas-
tic algorithms and especially for gradient methods both in a convex [175, 104, 35] and more recently in
a non-convex setting [96]. [42, 33] also focus on quasi-Newton approximation approaches and obtain an
ℓ1 behaviour. Their approach can actually be seen to a particular subspace choice within our method,
although no MM metric/stepsize are taken into consideration in [42, 33].

7.5 Application to Binary Classification

As a first illustrative example, we focus on a supervised binary classification problem. We consider
M feature vectors (vm)1≤m≤M ∈ RN , with their associated labels (ym)1≤m≤M ∈ {−1, 1} as a training
dataset. In a linear classification context, one possibility to estimate parameter model x∗ ∈ RN consists
in searching the best linear classifier through the minimization of the log-loss penalized empirical risk
[39]:

(∀x ∈ RN ) F (x) =
1

M

M∑
m=1

log (1 + exp (−[Hx]m)) + µ

N∑
n=1

log

(
1 +

x2n
δ2

)
. (7.82)

Matrix H = Diag{(ym)1≤i≤M}[v1, ...,vM ]⊤ ∈ RM×N involved in the so-called data-fidelity term,
gathers the information brought by the training dataset. The second term in (7.82) is a regularization
term weighted by µ > 0, which aims at promoting the sparsity of the estimated model so as to limit
overfitting issues. The retained regularization is a coercive, continuous but non-convex approximation
of the ℓ0 norm, which is at the core of re-weighted ℓ1 schemes [44, 197]. Function (7.82) is Lipschitz
differentiable on RN and coercive. However, it is non convex due to the regularization term.

7.5.1 Majorization mapping and convergence guarantees
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First, using the properties from [37, 63], we are able to exhibit the following majorization mapping
A(·) for the objective function (7.82) :

(∀x ∈ RN ) A(x)

= H⊤Diag {(ϑ([Lx]m)1≤m≤M}H + µDiag

{(
2

x2n + δ2

)
1≤n≤N

}
+ τIN , (7.83)

with ϑ : u 7→ 1
u

(
1

1+exp(−u) −
1
2

)
extended by continuity in 0. Moreover, τ is a strictly positive constant

ensuring the fulfilment of Assumption 7.2. For such choice of mapping, Assumption 7.2 holds with:

η = τ, ν = τ +
1

4M
|||H|||2 + 2

µ

δ2
. (7.84)

We propose to implement SABRINA by considering two choices for the subspace, namely Dk =

IN , and Dk = [−gk | xk − xk−1]. Both satisfy Assumption 7.3 and respectively yield the so-called
SABRINA-I and SABRINA-MG algorithms. If Assumptions 7.4 and 7.5 hold, sequences generated
by these two algorithms verify Theorem 7.1 and Corollary 7.1. Otherwise stated, for suitable stepsize
and noise perturbation settings, our theoretical analysis ensures an almost sure convergence to a
stationary point of F for a subsequence of (xk)k∈N. Function F is non convex and does not have finite
level sets, so that the stronger convergence results established in our study cannot be applied.

7.5.2 Numerical settings
When using the SABRINA-I scheme, the majorization function minimization requires to invert an
N × N system, which is performed using the linear solver from [221]. The gradient perturbation is
simulated by applying a multiplicative noise following a uniform law centered in 0 on every component
of the gradient at each iteration that is, for every k ∈ N,

ek = C × Diag{(un,k)1≤n≤N}∇F (xk), (7.85)

where each entry of uk = (un,k)1≤n≤N ∈ RN is an independant realization of a uniform law between
[−1, 1]. By construction, Condition (7.16) holds since, for every k ∈ N:

E
[
∥ek∥2|Fk

]
≤ C2E [∥Diag{(un,k)1≤n≤N}uk∥∞|Fk] ∥∇F (xk)∥2,
= C2∥∇F (xk)∥2. (7.86)

Equation (7.86) also guarantees the integrability of ek. Moreover, uk is zero-mean so that Assump-
tion 7.4(i) also holds. We set the decreasing step-size γk = 1/(k + 1)0.01, for k ∈ N, thus satisfying
Assumption 7.5. Performance of SABRINA are evaluated against those of state-of-the-art stochastic
gradient-based schemes from the machine learning field, namely SGD [20], ADAGRAD [87] and RM-
Sprop [120]. The parameter tuning for these methods (e.g., learning rate, momentum weight) was
made empirically, following recommendations from [207], to obtain best possible practical convergence
behaviours.

Datasets rcv1 and a8a are extracted from LIBSVM library [52]. Table 7.1 lists properties of these
datasets and the retained hyperparameters µ, δ and τ . The latter has been manually chosen to ensure
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a satisfying compromise between a good conditioning of the majorization mapping (and then, a wide
range of values for C, see Sec. 7.3.3) and a fast convergence rate.

Dataset Train M Test Features N |||H|||2/(4M) µ δ τ Cmax

rcv1 20242 677399 47236 5.5× 10−3 10−1 1 1 0.54
a8a 9865 22696 122 1.6 10−2 1 0.5 0.2

Table 7.1: Dataset properties and hyperparameter settings

7.5.3 Experimental results
In Fig. 7.1, we illustrate the efficiency of every competitor through the evolution of the gradient norm
of their iterates along time for a Matlab 2020a code ran on a desktop computer equipped with an
Intel Core i7 3.2 GHz pro and 16 GB RAM. For this figure, we set C = 0.95 × Cmax, so as to meet
the conditions imposed by Assumption 7.4(ii) and then convergence of SABRINA is ensured in the
sense of Theorem 7.1 and Corollary 7.1. It is noticeable that both SABRINA variants reach the best
performance when compared to their competitors. Moreover, for both datasets, the interest of subspace
acceleration is visible, as SABRINA-MG reaches faster convergence than SABRINA-I. Finally, let us
emphasize that SABRINA implementation does not impose any tedious manual learning/momentum
rate tuning, as it was the case for the other methods. Table 7.2 lists classification scores obtain by
SABRINA-MG at convergence for both datasets.
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Figure 7.1: Evolution of the gradient norm along time for various algorithms, on dataset rcv1
(left) and a8a (right). Noise amplitude C = 0.95× Cmax.

Dataset Accuracy AUC Precision Recall
rcv1 9, 2× 10−1 9, 7× 10−1 9, 3× 10−1 9, 1× 10−1

a8a 8, 4× 10−1 8, 9× 10−1 7, 5× 10−1 5, 2× 10−1

Table 7.2: Classification scores after running SABRINA-MG for 60 s.

Fig. 7.2 illustrates the evolution of the gradient norm along SABRINA-MG iterations for various
levels of noise on the gradient term, when considering the rcv1 example. Increasing the noise level
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obviously slows down the convergence of the method. Moreover, one can see that SABRINA-MG
starts showing some oscillating behaviour when C ≥ Cmax. Considering an order of magnitude ten
times higher than Cmax, one can observe a change of regime where the convergence of the algorithm
seems compromised. Such phenomenons suggest that the bound Cmax involved in Assumption 7.4 is
consistent and not over pessimistic in this example for ensuring practical stability of the algorithm.
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Figure 7.2: rcv1: Evolution of the gradient norm along time for various noise amplitudes
affecting the gradient term in SABRINA-MG.

7.6 Application to Robust Blur Kernel Identification

We now consider a problem of robust blur kernel identification. The problem is reminiscent from the
one studied in [63]. We seek for solving the inverse problem

y = Hx+ n. (7.87)

y ∈ RM corresponds to the vectorized version (in lexicographic order) of an original image z ∈ RM ,
degraded by an unknown blur kernel x ∈ RN to be determined, and an additive noise n ∈ RM . The
blur operation corresponds to a 2D discrete convolution (with circulant-padding assumption) between z

and x, that is rewritten equivalently as the application of the linear Hankel-block operator H ∈ RM×N

(related to z) on the kernel x. We consider a more challenging noise scenario than in [63], where outliers
can arise in the observed data. Specifically, n ∈ RN is the realization of a Gaussian mixture noise
with standard deviations (σ1, σ2) > 0 and mixing rate ϱ ∈]0, 1[, where typically σ1 ≪ σ2. An efficient
strategy for solving (7.87) consists in minimizing a penalized criterion:

(∀x ∈ RN ) F (x) = L(x) +R(x), (7.88)

where L plays the role of the data fidelity term, accounting for the mixture noise model, and R is a
regularization function promoting desirable prior assumption on the sought x.
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Due to the presence of outliers in the noise, we opt for the Huber data fidelity term, well suited for
robust inverse problem resolution

(∀x ∈ RN ) L(x) =
M∑
m=1

ℓm([Hx]m]), (7.89)

with

(∀m = 1, . . . ,M)(∀t ∈ R) ℓm(t) =

{
1
2(t− ym)

2 if |t− ym| ≤ p

p|t− ym| − 1
2p

2 otherwise.
(7.90)

Moreover, we choose to promote smoothness of the restored kernel, by setting:

(∀x ∈ RN ) R(x) =
N∑
n=1

ψ(∥∆nx∥). (7.91)

Hereabove, for every n ∈ {1, . . . , N}, ∆n ∈ R2×N corresponds to the discrete vertical and horizon-
tal gradient operators applied to the n-th pixel of the 2D reshaped kernel x. Moreover, ψ : u 7→
λ
√
1 + u2/κ2 is the hyperpolic penalty with smoothness parameter κ > 0. Function (7.91) can thus

be viewed as a smoothed version of the classical total-variation norm widely used in image processing.
Parameter λ > 0 is a regularization parameter.

The resulting function (7.88) is convex and Lipschitz differentiable on RN . Moreover, according to
[203, Proposition 2.5], F is coercive if and only if

ker(H) ∩ ker(∆1) ∩ . . . ∩ ker(∆N ) = {0N}, (7.92)

which actually holds for our practical choices for H and ∆1, . . . ,∆N [63].

7.6.1 Majorization mappings and convergence guarantees

The Huber potential terms (ℓm)1≤m≤M satisfy the assumptions from [58, Sec.III] so that we can build
the following majorization mapping:

(∀x ∈ RN ) AL(x) = H⊤Diag (ζm([Hx]m]))H, (7.93)

with

(∀m = 1, . . . ,M)(∀t ∈ R) ζm(t) =

{
1 if |t− ym| ≤ p

p
|t−ym| otherwise.

(7.94)

Function ψ satisfies the properties of [58, Sec.III], allowing us to build a majorization matrix for
penalization (7.91):

(∀h ∈ RN ) AR(x) = ∆⊤Diag(ρ(x))∆, (7.95)

with ∆ = [∆⊤
1 | . . . | ∆⊤

N ]
⊤ ∈ R2N×N . Moreover,

(∀x ∈ RN ) ρ(x) =


ω(∥∆1x∥)

[
1
1

]
...

ω(∥∆Nx∥)
[
1
1

]
 ∈ R2N , (7.96)
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with ω : u 7→ (1 + u2/κ2)−1/2. Studying the variations of function ω allows to deduce:

(∀x ∈ RN ) ON ⪯ AR(x) ⪯ λ
|||∆|||2

κ2
IN . (7.97)

In a nutshell, AR +AL would constitute a valid majorization mapping for function F . However,
it does not necessarily satisfy Assumption 7.2 since no strictly positive lower-bound is guaranteed for
such mapping. We thus hereagain use the corrected mapping:

(∀x ∈ RN ) A(x) = AL(x) +AR(x) + τIN , (7.98)

with τ > 0. We can thus deduce from (7.97) and (7.93) that the mapping (7.98) satisfies Assumption
7.2 with:

η = τ, ν = τ + |||H|||2 + λ
|||∆|||2

κ2
. (7.99)

We focus on the minimization of (7.88) using the proposed SABRINA scheme for various choices
of subspace matrices. We discard the choice Dk ≡ IN , that appears to be not well suited with such
large dimension problem. Instead, we focus on the so-called super-memory gradient subspace family
[220], where:

(∀k ∈ N) Dk = [−gk |xk − xk−1 | . . . |xk−Mk+1 − xk−Mk
] ∈ RN×Mk , (7.100)

with the convention xi = 0N for i < 0, and Mk ≥ 1 a memory size parameter. The resulting algorithms
are denoted SABRINA-SMG-Mk. When Mk = 1, we retrieve the gradient direction Dk = −gk, while
for Mk = 2 we obtain the memory gradient subspace Dk = [−gk |xk − xk−1], so that SABRINA-
SMG-2 identifies with SABRINA-MG considered in our previous experimental example. Subspace
(7.100) satisfies Assumption 7.3 for any Mk ≥ 11. Thus, Theorem 7.1 and Corollary 7.1 hold under a
moderate gradient noise (see Assumption 7.4). Assuming than F has isolated stationary points would
yield the applicability of Corollary 7.2, which would guarantee the almost sure convergence of (xk)k∈N
to a global minimizer of F . Although it is not possible to show the fulfilment of this technical condition,
we did not observe any convergence instability on the sequence (xk)k∈N.

7.6.2 Presentation of the data and settings

The original image z is the satellite image SanDiego of size M = 1024×1024 pixels. The blur kernel is
a non-uniform motion blur with size N = 21×21. The noise parameters are σ1 = 5×10−4, σ2 = 200σ1
and ϱ = 0.1, so that the signal to noise ratio of the observed image is 13.3 dB. The original image, its
degraded version y and the blur kernel to reconstruct are displayed in Fig. 7.3.

1Here, it is assumed that, for every k ∈ N, columns of Dk that would be co-linear to the first column −gk

are removed and Mk adjusted, so as to satisfy Assumption 7.3(i).
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Figure 7.3: (Left) Original image z ; (Middle) Blurred and noisy image y ; (Right) Original
blur kernel x.

The numerical experiments are performed on the same computer with the same software details
as for the example of Section 7.5. We use the same uniform multiplicative noise (see Sec. 7.5.2) for
the gradient perturbations in our proposed method, so as to satisfy Assumption 7.4. Once again we
set k = 1/(k + 1)0.01 as the step-size for every k ∈ N. Finally, the hyperparameters are tuned through
gridsearch so as to minimize the relative mean square error (RMSE) on the kernel estimation, to
(p, λ, κ) = (1, 10, 10).

7.6.3 Calculation of Cmax

The ratio between bounds (η, ν) involved in (7.99) allows to compute the allowed tolerance on the
gradient uncertainty, following Assumption 7.4(ii). However, in the particular problem of blur identi-
fication, |||H|||2 may be very large so that η/ν ≪ 1 and thus Cmax ≪ 1. Typically, in our example,
we obtain a theoretical Cmax close to 8 × 10−9 which is very constraining in term of gradient noise.
Actually, the difficulty lies in the over pessimistic lower bound η = τ in (7.99). Let us first point out
that, according to (7.93),

(∀k ∈ N) (τ + min
1≤m≤M

ζm ([Hxk]) |||H|||2)IN ⪯ Ak. (7.101)

We computed the actual values for min
1≤m≤M

ζm ([Hxk]) along iterations, in our practical experiment,

and observed that this quantity actually goes rapidly to 1 after few iterations. This leads us to consider

η̃ = τ + |||H|||2 (7.102)

as an empirical lower bound. Note that such bound gets valid as long as p is large enough, with respect
to the absolute value of the entries of vector Hx− y. We denote:

C̃max =
1

2

(
(1 +

4η̃

ν
)
1
2 − 1

)
, (7.103)

and express the gradient perturbation level C used in the experiment, as a function of C̃max. Note
that, in the present experiment, C̃max = 6.18× 10−1, which is closer to the best case bound mentioned
in Section 7.3.3.
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7.6.4 Numerical results
We first compare the performance of SABRINA with classical stochastic algorithms. We also include
ADAM method [137], as it shows rather good performance in that example. The gradient perturbation
is set to C = 0.25× C̃max. The methods are compared in terms of RMSE between the current iterate
and the sought kernel x.
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Figure 7.4: (Left) Evolution of the RMSE along time for various algorithms ; (Right) Estimated
kernel using SABRINA-SMG-2, RMSE = 4.4× 10−4. Noise amplitude C = 0.25× C̃max, and
starting point x0 = 0N .

Fig. 7.4(left) shows that SABRINA-SMG-2 is the fastest of the algorithms to reach convergence.
The other choices of memory size, for the super-memory gradient subspace, appear less competitive,
which is in accordance with the observations from [58, 63]. The RMSE of the reconstructed kernel,
displayed in Fig. 7.4(right), is equal to 4.4× 10−4 for an estimated computational time of 600 s.
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Figure 7.5: Evolution of the RMSE along time for various noise amplitudes affecting the gradient
term in SABRINA-SMG-2.

For the setting of Fig. 7.4(left), the value of C actually exceeds the maximal numerical tolerance
Cmax, but is chosen lower than C̃max which appears sufficient in practice to reach convergence for all
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SABRINA variants tested here. In Fig. 7.5, we now present the evolution of the RMSE along time
for SABRINA-SMG-2, when its gradient term is affected by various levels of noise C. One can notice
that our corrected bound C̃max clearly maps with the delineation of two regimes for the convergence of
SABRINA-SMG-2. As soon as C is sufficiently low compared to C̃max, convergence is fast. On the
contrary, a too high C seems to compromise the behaviour of the method, as expected and divergence
can even be observed for large C.

7.7 Conclusion

The work in this chapter provides new insights into the stability of MM schemes suffering from stochas-
tic noise perturbations on their gradient evaluation. New asymptotical results and convergence rate
analysis are demonstrated under reasonably mild assumptions, and in the challenging scenario of a non
necessarily convex cost function. Two numerical experiments in the fields of machine learning and im-
age processing illustrate the high relevancy of the considered MM schemes compared to several classical
competitors both regarding their speed of convergence and their robustness to noise. In particular, the
experimental results emphasize the impressive performance of MM algorithm associated to a memory
gradient subspace, already assessed in some previous works [58, 63]. It is remarkable to notice that, for
such subspace choice, our contribution can be understood as providing novel theoretical guarantees on
a stochastic non-linear conjugate gradient method with MM-based formula for stepsize and conjugacy
parameters. One avenue for future work would be to extend our convergence rate analysis to a larger
class of function by alleviating the strong convexity condition.
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Chapter 8

A Kurdyka-Łojasiewicz property for
stochastic optimization algorithms in a

non-convex setting

Stochastic differentiable approximation schemes are widely used for solving high dimensional problems.
Most of existing methods satisfy some desirable properties, including conditional descent inequalities
[202, 112], and almost sure (a.s.) convergence guarantees on the objective function, or on the involved
gradient [209, 111]. However, for non-convex objective functions, a.s. convergence of the iterates, i.e.,
the stochastic process, to a critical point is usually not guaranteed, and remains an important challenge.
In this chapter, we develop a framework to bridge the gap between descent-type inequalities and a.s.
convergence of the associated stochastic process. Leveraging a novel Kurdyka-Łojasiewicz property, we
show convergence guarantees of stochastic processes under mild assumptions on the objective function.
We also provide examples of stochastic algorithms benefiting from the proposed framework and derive
a.s. convergence guarantees on the iterates.

This work relies on the article: E. Chouzenoux, J-B. Fest and A. Repetti. A Kurdyka-Lojasiewicz
property for stochastic optimization algorithms in a non-convex setting, available at the following adress
https://arxiv.org/abs/2302.06447.

This research work has been done in collaboration with Audrey Repetti (Heriot-Watt University,
Edinburgh, UK).
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8.1 Introduction

In this chapter, we aim at solving problem

minimize
x∈H

F (x), (8.1)

where F : H → R is a continuously differentiable function defined on a finite-dimensional real Hilbert
space H. We consider a generic stochastic process (xk)k∈N to solve (8.1) on a probabilistic space
(Ω,F ,P). Generating (xk)k∈N typically results from a stochastic approximation scheme [201, 89]. Cel-
ebrated examples are often based on stochastic gradient descent (SGD) algorithms, where (xk)k∈N
arises from a gradient descent scheme with the gradient of F being replaced by stochastic approxima-
tions.

The objective of the work of this chapter is to develop a new framework, based on Kurdyka-
Łojasiewicz (KL) theory [141, 25], to derive almost sure (a.s.) convergence guarantees of the stochastic
process (xk)k∈N, when F is not convex.

When (8.1) is solved using a deterministic scheme, the main advantage of KL condition lies in
its ability to promote interesting asymptotic behavior when F is non-necessarily convex. In this
context, KL has been used to prove convergence of proximal point algorithms [9, 10], of simple splitting
algorithms such as the forward-backward algorithm and its variants [10, 64, 27, 103, 66, 198, 30, 31],
as well as other algorithms based on the majorization-minimization principle [59, 56, 51]. A natural
question is to investigate the transfer of the proof techniques from the deterministic setting, to the
stochastic setting, for asymptotic analysis including a.s. convergence of stochastic processes. Such an
extension is quite challenging, mainly due to the dynamics of the functions involved in KL conditions,
that cannot be controlled in a stochastic environment. Although KL inequality has already been
invoked for L1 or L2 convergences of some stochastic schemes [106], to the best of our knowledge, no
generalized KL inequality has been developed yet in this context.

Hence, no asymptotic analysis including a.s. convergence of the stochastic processes has been
properly formalized and completed. In particular, the authors of [152] mention that a stochastic
formulation of the KL inequality would enable to study the accumulation points of the process, without
however providing any theoretical results.

In this chapter, we investigate the conditions that a stochastic process (xk)k∈N minimizing F

must satisfy to ensure its a.s. convergence to a critical point, under the KL inequality. To this aim,
we design a new KL condition for differentiable functions, that can be used in a stochastic setting.
Using this new framework, we furthermore derive conditions to ensure the convergence of processes
generated by a few generic stochastic schemes based on SGD and proximal iterations. In particular,
we show that our conditions enable to ensure the convergence of some state-of-the-art SGD algorithms
[212, 71, 162], stochastic proximal-gradient algorithms (also known as forward-backward) [71, 107, 151],
and stochastic proximal algorithms [210].

The remainder of the chapter is organized as follows. Our general stochastic framework is described
in section 8.2. In this section, we introduce general assumptions, and give preliminary results, including
a first convergence result in a simplified setting. In section 8.3 we provide a deterministic extension
of the uniformized KL property introduced in [9, Lemma 6]. We then use this extension to design
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a KL condition that can be used in a stochastic setting. In section 8.4, using the stochastic KL
inequality introduced in section 8.3, we show the a.s. convergence of a family of stochastic processes
(xk)k∈N to a critical point. Finally, in section 8.5 and section 8.6, we apply the results of section 8.4
to exhibit conditions for convergence of SGD and stochastic proximal-based algorithms, respectively,
in a non-convex context.

8.1.0.0.1 Notation Let (H, ⟨·|·⟩) be a finite dimensional Hilbert space. ∥·∥ denotes the canonical
norm associated with H. For any subset E ⊂ H, the distance function to this set is denoted by
dist(·, E) = infx∈E ∥ · −x∥. Bold letters as x are used for deterministic vectors, while straight bold
letters as x are used for stochastic vectors. Similarly, x is used for denoting a deterministic scalar
variable, while straight x denotes a stochastic scalar variable. Upper-case letters are used for functions.
The variable F (x) denotes the stochastic value of function F evaluated at the stochastic variable x.
We work on the probability space (Ω,F , P ). We remind that a condition holds almost surely (a.s.) if
it holds on a probability-one event of F . We denote by E[·] the expectation operator, and E[·|G] the
conditional expectation operator regarding a generic sub sigma-algebra G ⊂ F .

Let ∇F be the gradient of F . Then we denote by zer∇F the set of zeros of ∇F , i.e., the set of
critical points of F . Finally, we introduce χ∞, the set of accumulation points of sequence (xk)k∈N. So
χ∞ is a random variable from Ω to the set of subsets of H.

8.2 General assumptions and preliminary results

In this section, we introduce the probabilistic setting and assumptions used in the remainder of this
chapter.

8.2.1 Assumptions
The following generic assumptions will guide us throughout the remainder of this chapter.

Assumption 8.1. F is coercive and continuously differentiable.

Assumption 8.2. Let (xk)k∈N be a stochastic process.

(i) The sequence (F (xk)k∈N)k∈N converges a.s. to a random variable F∞. In addition, F∞ is finite
a.s.

(ii) (∇F (xk))k∈N almost surely converges to 0N .

These assumptions are very common, and are satisfied by a wide range of stochastic algorithms.
The first assumption is standard in the field of differentiable optimization and notably ensures

that F admits at least one global minimizer [19]. Assumption 8.2 is usually satisfied by classical
schemes. Indeed, convergence of (F (xk)k∈N)k∈N and (∇F (xk))k∈N are often obtained easily in both
deterministic [178], and stochastic [202, 89] settings. Note that Assumption 8.2(ii) necessitates the
almost sure convergence of the gradient to zero. This condition is verified in particular by stochastic
schemes with a conditional strong growth condition, see for instance [212, 150].
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8.2.2 Preliminary results
We will now give some preliminary results, with the aim to link the different sets related to convergence
of (xk)k∈N and (F (xk))k∈N.

Proposition 8.1. Under Assumption 8.1 and Assumption 8.2, we have

(i) (xk)k∈N is a.s. bounded.

(ii) χ∞ is a.s. non empty and compact.

(iii) χ∞ ⊂ zer∇F a.s.

(iv) (dist(xk, χ
∞))k∈N converges a.s. to 0.

Proof. According to Assumption 8.2, there exists a set Λ ⊂ Ω of probability one where, for all ω ∈ Λ,

lim
k→+∞

F (xk(ω)) < +∞, (8.2a)

lim
k→+∞

∥∇F (xk(ω))∥ = 0. (8.2b)

Inequality (8.2a) implies that (F (xk(ω)))k∈N is a bounded sequence. According to Assumption 8.1,
F being coercive, (xk(ω))k∈N is also bounded. It follows that the set of cluster points χ∞(ω) is non
empty, bounded and closed in H, hence compact.

Let ω ∈ Λ. We will now show that χ∞(ω) ⊂ zer∇F . Let x∞ ∈ χ∞(ω). There exists a subsequence(
xψ(k)(ω)

)
k∈N converging to x∞. Moreover, from (8.2b), (∇F (xψ(k)(ω)))k∈N converges to 0N . Since,

according to Assumption 8.1, the gradient of F is continuous, we thus obtain ∇F (x∞) = 0N , and
hence x∞ ∈ zer∇F .

We now show that (iv) holds. By contradiction, if (dist(xk(ω), χ∞(ω))k∈N does not converge to 0,
then there exist ε > 0 and a subsequence (xψ1(k)(ω))k∈N such that

(∀k ∈ N) dist
(
xψ1(k)(ω), χ

∞(ω)
)
> ϵ (8.3)

Since (xk(ω))k∈N is bounded, (xψ1(k)(ω))k∈N is also bounded. So the set of cluster points of (xψ1(k)(ω))k∈N
is non-empty and included in χ∞(ω). Thus, there exists another subsequence (x(ψ1◦ψ2)(k)(ω))k∈N and
x′
∞ ∈ χ∞(ω) such that

∥∥x(ψ1◦ψ2)(k)(ω)− x′
∞
∥∥ −→
k→+∞

0.

Hence, dist
(
x(ψ1◦ψ2)(k)(ω), χ

∞(ω)
)

−→
k→+∞

0, which contradicts (8.3) and thus concludes the proof.

Proposition 8.2. Under Assumption 8.1 and Assumption 8.2,
{
ω ∈ Ω

∣∣
F∞(ω) ∈ F (zer∇F )

}
is a probability-one set.

Proof. According to Assumption 8.2 and Proposition 8.1, there exists a set Λ
′ ⊂ Ω of probability one

where, for every ω ∈ Λ
′ , lim
k→+∞

F (xk(ω)) = F∞(ω), χ∞(ω) ̸= ∅, and χ∞(ω) ⊂ zer∇F .

Then, for every ω ∈ Λ
′ , there exist a vector x∞ ∈ χ∞(ω) and a subsequence

(
xψ(k)(ω)

)
k∈N such

that xψ(k)(ω) −→
k→+∞

x∞, and F (xψ(k)(ω)) −→
k→+∞

F∞(ω). In addition, since F is continuous, we deduce

that F (xψ(k)(ω)) −→
k→+∞

F (x∞).
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Hence F∞(ω) = F (x∞) ∈ F (χ∞). Using the fact that χ∞(ω) ⊂ zer∇F , we then obtain F∞(ω) ∈
F (zer∇F ), which concludes the proof.

The next theorem is a first convergence result occurring in the particular case when zer∇F is at
most countable, i.e., if it is either countable or finite.

Theorem 8.1. Assume that Assumption 8.1 Assumption 8.2 are verified and that (∥xk+1 − xk∥)k∈N
converges a.s. to 0. If zer∇F is at most countable, then sequence (xk)k∈N almost surely converges to
a point belonging to this set.

Proof. Since χ∞ is compact a.s. and (∥xk+1 − xk∥)k∈N converges a.s. to 0, then, according to the
Ostrowski’s Lemma [182, 26.1], we can deduce that χ∞ is connex a.s..

Moreover, χ∞ is a.s. non empty, and at most countable as contained in zer∇F . We thus deduce
that χ∞ is a.s. reduced to a singleton {x∗}, where x∗ ∈ zer∇F . Since (xk)k∈N is a.s. bounded, it
converges a.s. to x∗, hence concluding the proof.

8.3 KL theory as a baseline of improvement

When zer∇F is neither countable nor finite, there is a lack of information on the curvature of F to
ensure the convergence of the general stochastic scheme to a critical point. The use of non-convex func-
tions has encouraged the development of alternative theoretical tools, in particular in a deterministic
context. One of the most famous is the class of KL inequalities [141, 25] enabling interesting gradient
properties.

To this aim, we first need to introduce some notation.
For every ζ ∈ (0,+∞], we denote by Φζ the set of concave functions φ : [0, ζ) 7→ R+ such that

φ(0) = 0, φ is continuous in 0, φ ∈ C1((0, ζ)), and, for every s ∈ (0, ζ), φ′(s) > 0.
The link between Φζ (for ζ > 0) and Φ+∞ is described through the following proposition.

Proposition 8.3. Let ζ ∈ (0,+∞). Any function φ of Φζ admits a bounded extension φ̃ belonging to
Φ+∞.

Proof. Let φ ∈ Φζ . Since φ′ is positive, it follows that φ is an increasing function. Then l1 =

lims→ζ− φ(s) exists and lies in [0,+∞]. Moreover the concavity and differentiability of φ with φ(0) = 0

ensure that, for every s ∈ (0, η), φ(s) ≤ sφ′(0). Passing to the limit thus gives l1 ≤ ηφ′(0) and then
l1 < +∞.

Moreover, since φ′ is decreasing on (0, ζ) (due to the concavity of φ) and positive, we conclude
that l2 = lims→ζ− φ

′(s) exists and lies in [0,+∞).
Finally, we deduce that there exists a function φ̃ : [0,+∞) → R+ defined as (see figure 8.1)

(∀s ∈ [0,+∞)) φ̃ =

{
φ(s) if s ∈ [0, ζ),

l1 + l2ζ
(
1− ζ

s

)
otherwise.

(8.4)

φ̃ belongs to Φ+∞ and is bounded.
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Figure 8.1: Graphical representation of the proof of Proposition 8.3, φ̃ is a C1 extension of φ
and especially admits l1 + ζl2 as a limit to +∞.

8.3.1 Extension of the uniformized KL theorem

In this section we extend classical KL results for differentiable functions. To this aim, we first recall
the generic definition of differentiable functions satisfying KL, as introduced in, e.g., [9, 27].

Definition 8.1. [KL inequality] A differentiable function f : RN → R satisfies the Kurdyka-Lojasiewicz
property on E ⊂ H, if for every x̃ ∈ E, there exists a neighbourhood V of x̃, ζ > 0 and φ ∈ Φζ such
that ∥∇f(x)∥φ′(f(x)− f(x̃)) ≥ 1, for every x ∈ V satisfying 0 < f(x)− f(x̃) < ζ.

One major result following the KL inequality is the uniformized KL property introduced in [27,
Lemma 6]. This extended KL condition has been used to prove convergence of deterministic algorithms
in a non-convex setting, especially when considering block alternating approaches [27, 76].

Theorem 8.2. [Uniformized KL property] Let C be a compact set in H and f : H → R be a differ-
entiable function constant on C, satisfying the KL property on C. Then, there exist (ε, ζ) ∈ (0,+∞)2

and φ ∈ Φζ such that

(∀x ∈ C)(∀x ∈ H) ∥∇f(x)∥φ′(f(x)− f(x)) ≥ 1, (8.5)

when dist(x, C) < ε and 0 < f(x)− f(x) < ζ.

We propose an extension of Theorem 8.2 to apply KL on a finite union of compact sets, for functions
that are piecewise constant on this union. This result will be instrumental to prove a.s. convergence of
stochastic processes. To this aim, we introduce an additional notation. Let C be a non-empty subset
of H and f : H → R be a function that is constant on C. Then we denote by fC the value taken by f
on C, i.e., for every x ∈ C, f(x) = fC .

171



Theorem 8.3. [Extended uniformized KL property] Let C =
⋃I
i=1Ci be a union of I ∈ N∗ non-empty

disjoint and compact subsets (Ci)1≤i≤I of H, and f : H → R be a differentiable function satisfying the
KL property on C. We also suppose that f is constant on every Ci, for i ∈ {1, . . . , I}, with respective
values fC1 , . . . , fCI

. Then, there exist (ε, ζ) ∈ (0,+∞)2 and φ ∈ Φζ such that

(∀i ∈ {1, . . . , I})(∀x ∈ H) ∥∇f(x)∥φ′(f(x)− fCi) ≥ 1 (8.6)

with dist(x, C) < ε and 0 < f(x)− fCi < ζ.

Proof. Without loss of generality we consider that fC1 ̸= · · · ≠ fCI
.

We start by applying the uniform KL property to C1, . . . , CI . For every i ∈ {1, . . . , I}, there
exist (εi, ζi) ∈ (0,+∞)2 and φi ∈ Φζi such that for every x ∈ H verifying dist(x, Ci) < εi and
0 < f(x)− fCi < ζi we have

∥∇f(x)∥φ′
i(f(x)− fCi) ≥ 1. (8.7)

Let ζ̃ = υminj ̸=i |fCi −fCj | with υ ∈]0, 1/2[. We have ζ̃ > 0. In addition, using the continuity of f , for
every i ∈ {1, . . . , I}, there exists ε̃i ∈]0, εi[ such that, for every x satisfying dist(x, Ci) < ε̃i, we have

|f(x)− fCi | < ζ̃. (8.8)

Let δ ∈]0, 1[ and ε = δmin1≤i≤I ε̃i. Then

{x ∈ H | dist(x, C) < ε} ⊂
I⋃
i=1

{x ∈ H | dist(x, Ci) < ε̃i} . (8.9)

We now show that (8.6) is satisfied for ε as defined above, ζ = min(ζ1, . . . ζI , ζ̃) and φ =
∑I

i=1 φi ∈
Φζ . Let x ∈ H and i ∈ {1, . . . , I} be such that dist(x, C) < ε and 0 < f(x) − fCi < ζ. For every
j ∈ {1, . . . , I} \ {i}, since ζ ≤ ζ̃, using the definition of ζ̃, we have 0 < |f(x) − fCi | ≤ v|fCi − fCj |.
Since that v ∈]0, 1/2[, we obtain

|f(x)− fCj | = |(f(x)− fCi) + (fCi − fCj )|,
≥
∣∣ |fCi − fCj | − |f(x)− fCi |

∣∣ = |fCi − fCj | − |f(x)− fCi |,
≥ (1− v)|fCi − fCj | > v|fCi − fCj |,

≥ ζ̃. (8.10)

Then dist(x, Cj) ≥ ε̃j (otherwise this contradicts the continuity property of f in (8.8)). So, as
dist(x, C) < ε, (8.9) necessarily implies that x belongs to the union of sets⋃I
j=1 {x ∈ H | dist(x, Cj) < ε̃j}. This leads to dist(x, Ci) < ε̃i and we finally deduce that dist(x, Ci) <

εi (since ε̃i ≤ εi). In addition, since ζ ≤ ζi, we have 0 < f(x) − fCi < ζi, and we can apply once
more the uniform KL property at Ci (i.e., (8.7) is verified). Since φ′

1, . . . , φ
′
I are all positives, we thus

deduce that

∥∇f(x)∥φ′(f(x)− fCi) = ∥∇f(x)∥
I∑
j=1

φ′
j(f(x)− fCi)

≥ ∥∇f(x)∥φ′
i(f(x)− fCi) ≥ 1.

This completes the proof.
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8.3.2 A stochastic KL property
Motivated by the results presented in the previous subsection, we make the following assumption on
function F .

Assumption 8.3.

(i) F satisfies the KL property on zer∇F , the set of critical points of F .

(ii) There exist I ∈ N∗ non-empty disjoint compact subsets C1, . . . , CI of H, such that zer∇F =⋃I
i=1Ci.

Note that assuming that F satisfies the KL property on zer∇F (i.e., Assumption 8.3(i)) is common
in non-convex optimization. As emphasized, e.g., in [25], the KL inequality is satisfied for a wide class
of functions, and in particular by real analytic, semi-algebraic1 and log-exp functions. In addition,
Assumption 8.3(ii) is a condition that will be used for the a.s. convergence of (xk)k∈N, through the
existence of a uniformized KL function with respect to all the trajectories of the process.

Let
Π = lim inf

k→+∞
{ω ∈ Ω | F (xk(ω)) > F∞(ω)} . (8.11)

We then deduce the following properties.

Proposition 8.4. Assume that Assumption 8.1, Assumption 8.2 and Assumption 8.3 hold. Then,
over the set Π, there exist a bounded φ ∈ Φ+∞ and an a.s. finite positive discrete random variable K

such that, for every k > K, ∥∇F (xk)∥φ′(F (xk)− F∞) ≥ 1 a.s.

Proof. Let us consider
C =

⋃
ω∈Θ∩Π

χ∞(ω) (8.12)

where

Θ =
{
F (xk) →

k→+∞
F∞

}⋂{
χ∞ ⊂ zer∇F

}
⋂{

dist(xk, χ
∞) →

k→+∞
0
}⋂{

F∞(Ω) ⊂ F (zer∇F )
}

(8.13)

is a probability-one set, owing to Assumption 8.2, Proposition 8.1 and Proposition 8.2. The continuity
of ∇F (Assumption 8.1) also ensures that zer∇F is closed and then C ⊂ zer∇F , where C denotes
the closure of set C. Considering J =

{
i ∈ {1, . . . , I} | C ∩ Ci ̸= ∅

}
, it follows that C = C ∩ zer∇F =⋃

i∈J C ∩ Ci,
where, for every i ∈ J, the set C ∩Ci is non-empty, bounded and closed. Moreover, for every i ∈ J,

we have F (C ∩ Ci) = {FCi}.
According to Assumption 8.3, since F satisfies the KL property on zer∇F , we can apply Theorem

8.3. As a consequence there exist εC > 0, ζC > 0 and φC ∈ ΦζC , such that, for every x ∈ H and i ∈ J
satisfying dist(x, C) < εC and 0 < F (x)− FCi < ζC ,

∥∇F (x)∥ φ′
C(F (x)− FCi) ≥ 1. (8.14)

1A function is semi-algebraic if its graph is a finite union of sets defined by a finite number of polynomial
inequalities.
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According to Proposition 8.3, φC has a bounded extension φ̃C belonging to Φ+∞. Then, φ̃C also
satisfies, for any x ∈ H and i ∈ J such that dist(x, C) < εC and 0 < F (x)− FCi < ζC ,

∥∇F (x)∥ φ̃′
C(F (x)− FCi) ≥ 1. (8.15)

Considering this, we now define the positive discrete random variable

K = min
{
l ∈ N∗ | (∀p ≥ l) dist(xp, C) ≤ εC and 0 < F (xp)− F∞ < ζC

}
. (8.16)

The latter is finite over Θ ∩ Π. In addition, according to Assumption 8.3, for every ω ∈ Θ ∩ Π, there
exists i ∈ J such that F∞(ω) = FCi , and (8.15) finally leads to

(∀ω ∈ Θ ∩Π) (∀k > K(w)) ∥∇F (xk(ω))∥ φ̃′
C (F (xk(ω))− F∞(ω)) ≥ 1. (8.17)

The fact that P(Θ ∩Π) = P (Π) concludes the proof.

In [152, Assumption 3.9, C.2], the authors have highlighted that the construction of a stochastic
KL inequality was based on the set C as introduced in (8.12) without however going further in the
reasoning. In addition, in [152, 95], the authors assumed the existence of a uniformized function with
respect to all trajectories to enable their convergence results to hold.

8.4 An almost sure convergence result based on KL theory

In this section, we give conditions that a stochastic process must satisfy to ensure its convergence to a
critical point of F . To this aim, we introduce additional notations that will be used in the remainder of
this chapter. We associate the initial probabilistic space (Ω,F ,P) with a filtration (Fk)k∈N. Moreover,
for a given k ∈ N and subject to existence, we denote by E(.|Fk) the conditional expectation operator
associated with the sub sigma-algebra Fk. We also denote by F ∗ the minimal value of F .

8.4.1 Main assumption and summability criterion
The following assumption is the backbone of our convergence theorem, given in subsection 8.4.2.

Assumption 8.4. Let (xk)k∈N be a stochastic process.

(i) (F (xk))k∈N and
(
∥∇F (xk)∥2

)
k∈N are two Fk-measurable and integrable processes.

(ii) There exist (uk)k∈N, (vk)k∈N, (rk)k∈N, (sk)k∈N, (tk)k∈N five non-negative deterministic sequences
and (wk)k∈N a non-negative Fk-measurable integrable process, such that

+∞∑
k=0

uk < +∞, inf
k∈N

vk > 0,
+∞∑
k=0

rk < +∞,
+∞∑
k=0

tk < +∞,
+∞∑
k=0

wk < +∞ a.s., (8.18)

and such that, for every k ∈ N, we have

E[F (xk+1)− F ∗|Fk] ≤ (1 + uk)(F (xk)− F ∗)− vk∥∇F (xk)∥2 +wk a.s., (8.19)

and
E[∥xk+1 − xk∥ | Fk] ≤ rk

√
F (xk)− F ∗ + sk∥∇F (xk)∥+ tk a.s.. (8.20)
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Assumption 8.4(i) is a common assumption, satisfied in particular when the randomness appearing
at iteration k ∈ N is independent from what happened during the previous iterations. In Assumption
8.4(ii), condition (8.19) ensures that (F (xk))k∈N is a quasi-supermartingale [202]. Additionally, (8.20)
ensures that the norm difference between consecutive iterates is upper bounded, relatively to the norm
of the gradient of F . In practice, these two inequalities often imply an underlying assumption on the
nature of the stochastic phenomenon at stake. Note that Assumption 8.4 is slightly stronger than
Assumption 8.2, as emphasized by the next proposition.

Proposition 8.5. If Assumption 8.1 and Assumption 8.4 are satisfied, then Assumption 8.2 holds.

Proof. Condition (8.19) and the fact that F is bounded from below (since it is coercive) allows us to
invoke the Robbins-Siegmund Lemma [202] which directly ensures that Assumption 8.2 is verified with∑+∞

k=0 vk∥∇F (xk)∥2 < +∞ a.s..
The fact that inf

k∈N
vk > 0 then directly gives lim

k→+∞
∥∇F (xk)∥ = 0 a.s..

Before going further, we need to introduce additional notation. Let (pk)k∈N be the positive sequence
defined by

(∀k ∈ N) pk =

k∏
i=0

(1 + ui), (8.21)

where (ui)i∈N is defined in Assumption 8.4(ii). Let, for very k ∈ N∗,

Lk : H× Rk → R
(x, w0, . . . , wk−1) 7→ (F (x)− F ∗)p−1

k−1 −
∑k−1

i=0 wip
−1
i

(8.22)

Defining such a function enables to handle a supermartingale where the conditional decrease is only
relative to the gradient, instead of the quasi-supermartingale appearing in condition (8.19).

In this context, for every k ∈ N∗ and (w0, . . . , wk−1) ∈ Rk, Lk(·, w0, . . . , wk−1) plays the role of a
Lyapunov function which can be use to get an equivalent formulation of (8.19).

Lemma 8.1. Let (xk)k∈N be a stochastic process, and let (wk)k∈N be an integrable Fk-measurable
non-negative process satisfying (8.18). Let also (vk)k∈N be a non-negative deterministic sequence sat-
isfying (8.18), and let (pk)k∈N be the sequence defined in (8.21). Condition (8.19) is equivalent to

(∀k ∈ N∗) E[Lk+1(xk+1,w0, . . . ,wk)|Fk]

≤ Lk(xk,w0, . . . ,wk−1)−
vk
pk

∥∇F (xk)∥2 a.s.. (8.23)

Proof. For every k ≥ 1, x ∈ H and (w0, . . . , wk−1) ∈ Rk, we have

F (x)− F ∗ = pk−1

(
Lk(x, w0, . . . , wk−1) +

k−1∑
i=0

wip
−1
i

)
.
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Using this equality, for every k ≥ 1, (8.19) is then equivalent to

pk

(
E[Lk+1(xk+1,w0, . . . ,wk)|Fk] +

k∑
i=0

wip
−1
i

)
≤ (1 + uk)pk−1

(
Lk(xk,w0, . . . ,wk−1) +

k−1∑
i=0

wip
−1
i

)
− vk∥∇F (xk)∥2 +wk a.s..

Dividing this inequality by pk = pk−1(1 + uk) > 0, we obtain

E[Lk+1(xk+1,w0, . . . ,wk)|Fk]

≤ Lk(xk,w0, . . . ,wk−1)−
( k∑
i=0

wip
−1
i −

k−1∑
i=0

wip
−1
i

)
− vk
pk

∥∇F (xk)∥2 +wkp
−1
k a.s. (8.24)

The equivalence between (8.24) and (8.23) then follows from the fact that
∑k

i=0wip
−1
i −

∑k−1
i=0 wip

−1
i =

wkp
−1
k .

Remark 8.1. Let k ∈ N∗ and (wi)0≤i≤k−1 be defined as in Assumption 8.4(ii). If the a.s. finite limit
F∞ of (F (xl))l∈N exists, then the a.s. finite limit Lk,∞ of process (Lk(xl,w1, . . .wk−1))l∈N exists as
well, and is given by

Lk,∞ = (F∞ − F ∗)p−1
k −

k−1∑
i=0

wip
−1
i . (8.25)

In the case when F∞ exists, we define, for every γ > 0, the following set of events:

Ξγ =

{
ω ∈ Ω

∣∣∣∣ (∀k ≥ 1) F∞(ω) < F (xk(ω))

and
∣∣Lk,∞ − E[Lk+1,∞|Fk]

∣∣ ≤ γ
vk
pk

∥∇F (xk(ω))∥2
}
. (8.26)

In the remainder, to obtain summability and convergence results, we will assume that there exists
γ ∈ (0, 1) such that P(Ξγ) = 1. Intuitively, this assumption means that F∞ must a.s. be a lower bound
of process (F (xk))k∈N.

The second inequality in (8.26) indicates that, at iteration k ∈ N, the error on the identification of
Lk,∞ (equivalently, of F∞) is upper bounded by the squared norm of ∇F .

Proposition 8.6. Suppose that Assumption 8.1, Assumption 8.3 and Assumption 8.4 hold. Moreover,
assume that

(
skpkv

−1
k

)
k∈N is a non-increasing sequence and that there exists γ ∈ (0, 1) such that

P(Ξγ) = 1. Let φ ∈ Φ+∞ be a bounded function, and

Γφ :=
+∞∑
k=1

skpk
vk

(
φ
(
Lk(xk,w0, . . . ,wk−1)− Lk,∞

)
− φ

(
E [Lk+1(xk+1,w0, . . . ,wk)|Fk]− E[Lk+1,∞|Fk]

))
. (8.27)

Then Γφ < +∞ a.s..

176



Proof. According to Proposition 8.5, Assumption 8.2 holds, so, for every k ∈ N∗, Lk,∞, the a.s. limit
of process (Lk(xl,w0, . . . ,wk−1))l∈N∗ exists and is given by (8.25).

According to Assumption 8.3 and Assumption 8.2, F∞ belongs to a finite set. In addition,
according to Assumption 8.4, (F (xk))k∈N and (wk)k∈N are integrable. Thus, for every k ∈ N∗,
Lk+1(xk+1,w0, . . . ,wk) and Lk+1,∞ are integrable, and hence E [Lk+1(xk+1,w0, . . . ,wk)|Fk] and E[Lk+1,∞|Fk]
are well-defined.

On the one hand, there exists γ ∈ (0, 1) such that P(Ξγ) = 1. Using the definition of Ξγ , we
therefore have E[Lk+1,∞|Fk]− Lk,∞ ≥ −γ vkpk ∥∇F (xk)∥

2 a.s..
Combining this inequality with (8.23), we obtain, for every k ≥ 1,

Lk(xk,w0, . . . ,wk−1)− Lk,∞

−
(
E [Lk+1(xk+1,w0, . . . ,wk)|Fk]− E[Lk+1,∞|Fk]

)
≥ (1− γ)

vk
pk

∥∇F (xk)∥2 a.s.. (8.28)

Since 1− γ > 0, we deduce that

(∀k ∈ N) Lk(xk,w0, . . . ,wk−1)− Lk,∞

≥ E [Lk+1(xk+1,w0, . . . ,wk)|Fk]− E[Lk+1,∞|Fk] a.s.. (8.29)

On the other hand, following the definitions (8.22) and (8.25) with P(Ξγ) = 1, for every k ∈ N∗, the
two random variables in (8.29), (Lk(xk,w0, . . . ,wk−1) − Lk,∞) and (E [Lk+1(xk+1,w0, . . . ,wk)|Fk] −
E[Lk+1,∞|Fk]) are a.s. non-negative. Let φ ∈ Φ+∞ be bounded. Then, the function φ can be applied to
the a.s. positive random variables (Lk(xk,w0, . . . ,wk−1)−Lk,∞) and (E [Lk+1(xk+1,w0, . . . ,wk)|Fk]−
E[Lk+1,∞|Fk]).

Furthermore, φ being an increasing function, (8.29) leads to

(∀k ∈ N) φ
(
Lk(xk,w0, . . . ,wk−1)− Lk,∞

)
≥ φ

(
E [Lk+1(xk+1,w0, . . . ,wk)|Fk]− E[Lk+1,∞|Fk]

)
a.s., (8.30)

and consequently Γφ is a.s. well-defined, non-negative as an infinite sum of a.s. non-negative terms. We
can subsequently take the expectation of these quantities, and use the monotone convergence theorem
[145] to obtain

E [Γφ] =

+∞∑
k=1

skpk
vk

E
[
φ
(
Lk(xk,w0, . . . ,wk−1)− Lk,∞

)
− φ

(
E [Lk+1(xk+1,w0, . . . ,wk)|Fk]− E[Lk+1,∞|Fk]

)]
. (8.31)

Since φ is bounded, we can use the linearity of the expectation, leading to

E [Γφ] =
+∞∑
k=1

skpk
vk

E
[
φ
(
Lk(xk,w0, . . . ,wk−1)− Lk,∞

)]
− skpk

vk
E
[
φ
(
E [Lk+1(xk+1,w0, . . . ,wk)|Fk]− E[Lk+1,∞|Fk]

)]
. (8.32)
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Using the inverse conditional Jensen’s inequality [145] applied to φ gives

φ
(
E [Lk+1(xk+1,w0, . . . ,wk)|Fk]− E[Lk+1,∞|Fk]

)
,

= φ
(
E [Lk+1(xk+1,w0, . . . ,wk)− Lk+1,∞|Fk]

)
≥ E

[
φ
(
Lk+1(xk+1,w0, . . . ,wk)− Lk+1,∞

)
|Fk
]
. (8.33)

Taking the expectation E of these quantities leads to

E
[
φ
(
E [Lk+1(xk+1,w0, . . . ,wk)|Fk]− E[Lk+1,∞|Fk]

)]
,

≥ E
[
E
[
φ
(
Lk+1(xk+1,w0, . . . ,wk)− Lk+1,∞

)
|Fk
]]

= E
[
φ
(
Lk+1(xk+1,w0, . . . ,wk)− Lk+1,∞

)]
. (8.34)

Combining (8.32) with (8.34), and since
(skpk
vk

)
k∈N

is non-increasing, we obtain

E [Γφ] ≤
+∞∑
k=1

skpk
vk

E
[
φ
(
Lk(xk,w0, . . . ,wk−1)− Lk,∞

)]
− skpk

vk
E
[
φ
(
Lk+1(xk+1,w0, . . . ,wk)− Lk+1,∞

)]
,

≤
+∞∑
k=1

skpk
vk

E
[
φ
(
Lk(xk,w0, . . . ,wk−1)− Lk,∞

)]
− sk+1pk+1

vk+1
E
[
φ
(
Lk+1(xk+1,w0, . . . ,wk)− Lk+1,∞

)]
. (8.35)

From (8.35), since φ is an increasing and bounded function on R+, we deduce that

0 ≤ E [Γφ] ≤
s1p1
v1

E
[
φ
(
L1(x1,w0)− L1,∞

)]
< +∞. (8.36)

Hence Γφ admits a finite expectation and consequently is a.s. finite.

8.4.2 Main result

Theorem 8.4. Under Assumption 8.1, Assumption 8.3 and Assumption 8.4, if
(
skpkv

−1
k

)
k∈N is a

non-increasing sequence and if there exists γ ∈ (0, 1) such that P(Ξγ) = 1, then

(i)
∑+∞

k=1 ∥xk+1 − xk∥ < +∞ a.s.,

(ii) the sequence (xk)k∈N converges a.s. to a critical point of F .

Proof. According to Proposition 8.5, Assumption 8.2 holds. In addition, since Ξγ ⊂ Π, where Π is
defined in (8.11), and P(Ξγ) = 1, we have P(Π) = 1. Thus Proposition 8.4 can be applied, and there
exist φ ∈ Φ+∞ and an a.s. finite non-negative discrete random variable K such that

(∀k > K) ∥∇F (xk)∥φ′(F (xk)− F∞) ≥ 1 a.s.. (8.37)
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According to the definitions of Lk and Lk,∞ in (8.22) and (8.25), respectively, we have

(∀k ∈ N∗) F (xk)− F∞ = pk−1

(
Lk(xk,w0, . . . ,wk−1)− Lk,∞

)
, (8.38)

where (w0, . . . ,wk−1) are defined in Assumption 8.4(ii). Hence (8.37) rewrites

(∀k > K) ∥∇F (xk)∥φ′
(
pk−1

(
Lk(xk,w0, . . . ,wk−1)− Lk,∞

))
≥ 1 a.s.. (8.39)

According to (8.21), (pk)k∈N is lower-bounded by 1. Then, since φ is concave, hence φ′ is decreasing,
and we have

(∀k > K) ∥∇F (xk)∥φ′(Lk(xk,w0, . . . ,wk−1)− Lk,∞
)
≥ 1 a.s.. (8.40)

In addition, owing to the concavity of φ, for every (a, b) ∈ R2, we have φ(a) − φ(b) ≥ φ′(a)(a − b).
So, for every k > K, taking a = Lk(xk,w0, . . . ,wk−1)− Lk,∞ and b = E [Lk+1(xk+1,w0, . . . ,wk)|Fk]−
E[Lk+1,∞|Fk] in (8.40), we obtain

φ (Lk(xk,w0, . . . ,wk−1)− Lk,∞)

− φ (E [Lk+1(xk+1,w0, . . . ,wk)|Fk]− E[Lk+1,∞|Fk])
≥ φ′(Lk(xk,w0, . . . ,wk−1)− Lk,∞)

×
(
Lk(xk,w0, . . . ,wk−1)− Lk,∞

−
(
E [Lk+1(xk+1,w0, . . . ,wk)|Fk]− E[Lk+1,∞|Fk]

))
a.s. (8.41)

Since Proposition 8.6, holds, we can use inequality (8.28). Hence, injecting successively (8.28) and
(8.40) in (8.41) leads, for every k > K, to

φ
(
Lk(xk,w0, . . . ,wk−1)− Lk,∞

)
− φ

(
E [Lk+1(xk+1,w0, . . . ,wk)|Fk]− E[Lk+1,∞|Fk]

)
,

≥ (1− γ)
vk
pk

∥∇F (xk)∥2φ′ (Lk(xk,w0, . . .wk−1)− Lk,∞) ,

≥ (1− γ)
vk
pk

∥∇F (xk)∥ a.s.. (8.42)

Combining (8.20) with (8.42) almost surely gives, for every k > K,

E[∥xk+1 − xk∥|Fk] ≤ (1− γ)−1v−1
k skpk

(
φ
(
Lk(xk,w0, . . . ,wk−1)− Lk,∞

)
− φ

(
E [Lk+1(xk+1,w0, . . . ,wk)|Fk]− E[Lk+1,∞|Fk]

))
+ rk

√
F (xk)− F ∗ + tk. (8.43)

Using Proposition 8.6, the summability of (rk)k∈N and (tk)k∈N, and the fact that(√
F (xk)− F ∗

)
k∈N a.s. converges to

√
F∞ − F ∗, the right hand side term in (8.43) is a.s. summable.

Then, since K is also a.s. finite, we can deduce that
∑+∞

k=1 E[∥xk+1−xk∥|Fk] < +∞ a.s.. Finally, since
(∥xk+1 − xk∥)k∈N is a positive sequence, we can apply Levy’s sharpening of Borel-Cantelli Lemma
[163, Ch.1, Th.21], leading to

∑+∞
k=1 ∥xk+1 − xk∥ < +∞ a.s.. It then follows that (xk)k∈N is a.s. a

Cauchy sequence. Moreover, according to Proposition 8.1, (xk)k∈N a.s. has a critical point of F as an
accumulation point. Hence (xk)k∈N a.s. converges to this critical point.
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8.5 Stochastic gradient schemes

In the previous sections we have presented a general framework to show convergence of the iterates
of stochastic schemes for solving (8.1) in a non-convex context, when F satisfies Assumption 8.1
and Assumption 8.3. In this section we give examples of stochastic gradient algorithms satisfying
Assumption 8.4, hence with convergence guaranteed by Theorem 8.4.

A wide class of stochastic gradient schemes for solving (8.1) are of the form of

(∀k ∈ N) xk+1 = xk − αkUkfk, (8.44)

where, for every k ∈ N, fk ∈ H usually denotes a stochastic approximation of the gradient of F at xk,
αk ∈ (0,+∞) is the step-size (also called learning rate), and Uk : H → H is a stochastic self-adjoint
linear operator usually used as preconditioner (e.g., stochastic Newton or quasi-Newton schemes).
Algorithms of the form of (8.44) include variants of the popular SGD [212, 206, 87, 137] as well as
schemes incorporating second-order information like stochastic Hessian approximations [233, 162], or
more generally preconditioned SGD algorithms [153].

8.5.1 Conditions on the approximated gradient

Let (Fk)k∈N be the canonical filtration, i.e., for every k ∈ N we have Fk = σ(x0, . . .xk).
For every k ∈ N, fk in (8.44) aims at approximating the true gradient ∇F (xk). In general, it

is assumed to be integrable, and that there exist three non-negative deterministic sequences (ak)k∈N,
(bk)k∈N, and (ck)k∈N such that

E[∥fk∥2 | Fk] ≤ ak(F (xk)− F ∗) + bk∥∇F (xk)∥2 + ck a.s.. (8.45)

This condition is very generic, and is satisfied by multiple schemes from the literature. For instance,
in [216, 133], condition (8.45) is satisfied when (ak)k∈N, (bk)k∈N, and (ck)k∈N are constant, equal to
a ≥ 0, b ≥ 0 and c ≥ 0, respectively.

When, in particular a = 0, and c = 0, condition (8.45) is equivalent to the conditional strong
growth condition [212]:

(∀k ∈ N) E[∥fk∥2 | Fk] ≤ b∥∇F (xk)∥2 a.s.. (8.46)

A relaxed case, only assuming a = 0, has also been investigated in [20, 36]. Finally, condition (8.45)
also extents those of [71], in the differentiable case, where, for every k ∈ N, ak = 0, but without
assuming that (bk)k∈N and (ck)k∈N are constant.

8.5.2 Conditions on the step-size

In (8.44), (αk)k∈N is a positive sequence playing the role of step-sizes. When they are chosen to be
constant, it has been shown in [212] that Assumption 8.4 is verified if the unknown gradients (fk)k∈N
satisfy the strong growth condition (8.46). If this condition is not satisfied, in particular for non-
constant step-sizes, but a more general condition holds (e.g., (8.45)), (αk)k∈N must be decreasing to
ensure the robustness of the perturbation on the induced variance [36].
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8.5.3 Conditions on the preconditioning operator

In (8.44), (Uk)k∈N is a sequence of stochastic preconditioning self-adjoint linear operators, with an a.s.
uniformly bounded spectrum, i.e., there exist two positive sequences (µk)k∈N and (νk)k∈N such that

(∀k ∈ N)(∀x ∈ H) µk∥x∥2 ≤ ⟨x | Ukx⟩ ≤ νk∥x∥2 a.s.. (8.47)

The most famous class of preconditioning matrices for gradient descent schemes is the Quasi-Newton
one. In this context, for every k ∈ N, Uk is chosen to be an approximation of the Hessian of F evaluated
at the current iterate xk (assuming that F is twice-differentiable). The celebrated quasi-Newton BFGS
method is one of them. The convergence behavior of (F (xk))k∈N has been studied in [233] in a non-
convex and stochastic setting. However, to the best of our knowledge, the a.s. convergence of the
sequence of iterates (xk)k∈N has not been studied yet in the literature.

8.5.4 A general framework for convergence of SGD algorithms in a
non-convex context

In this section, we link the noisy gradient condition (8.45) to the descent conditions of Assumption
8.4. In particular, we show that under mild conditions on the parameters involved in (8.44), (8.45)
and (8.47), Theorem 8.4 holds.

Proposition 8.7. Let F be a β-Lipschitz differentiable function, for some β > 0, and let (xk)k∈N be
a process verifying (8.44), (8.45), and (8.47) with respect to (Fk)k∈N. Assume that

inf
k∈N

µk > 0,
+∞∑
k=0

αkνka
1/2
k < +∞,

+∞∑
k=0

αkνkc
1/2
k < +∞, (8.48)

and that one of the two following statement holds:

(i) The sequence (fk)k∈N is conditionally unbiased, i.e., for every k ∈ N, E[fk|Fk] = ∇F (xk) a.s.;
and

inf
k∈N

αk

(
µk −

αkβν
2
kbk

2

)
> 0. (8.49)

(ii) The sequence (fk)k∈N verifies

+∞∑
k=0

αkν
2
k

µk
∥E[fk|Fk]−∇F (xk)∥2 < +∞ a.s. (8.50)

and there exists ϱ ∈ (0, 1) such that

inf
k∈N

αk

(
ϱµk −

αkβν
2
kbk

2

)
> 0. (8.51)

If the sequence (Uk)k∈N is chosen to be adapted to (Fk)k∈N (i.e., for every k ∈ N, Uk is Fk-measurable),
then (xk)k∈N satisfies Assumption 8.4.

181



Proof. Following a similar proof as for [57, Lemma 2], it can be shown that the conditional expectations
of all manipulated random variable are well-defined and satisfy Assumption 8.4(i). To show that
Assumption 8.4(ii) is satisfied, we need to show that both conditions (8.19) and (8.20) hold. To this
aim, we will first derive generic inequalities. F being β-Lipschitz differentiable, we can apply the
descent lemma [19], and we obtain

(∀k ∈ N) F (xk+1) ≤ F (xk)− αk⟨∇F (xk) | Ukfk⟩+
α2
kβ

2
∥Ukfk∥2. (8.52)

Subtracting F ∗ in (8.52), and passing to the conditional expectation lead to

(∀k ∈ N) E[F (xk+1)− F ∗ |Fk],

≤ E
[
F (xk)− F ∗ − αk⟨∇F (xk) | Ukfk⟩+

α2
kβ

2
∥Ukfk∥2

∣∣∣ Fk] a.s.,

= F (xk)− F ∗ − αk⟨∇F (xk) | UkE[fk|Fk]⟩+
α2
kβ

2
E
[
∥Ukfk∥2|Fk

]
a.s., (8.53)

where the equality is obtained using the linearity of the conditional expectation, and the Fk-measurability
of F (xk), ∇F (xk) and Uk, for all k ∈ N.

Moreover, from (8.45) and (8.47), it follows that, for every k ∈ N,

E
[
∥Ukfk∥2|Fk

]
≤ ν2kE

[
∥fk∥2|Fk

]
,

≤ ν2kak
(
F (xk)− F ∗)+ ν2kbk∥∇F (xk)∥2 + ν2kck a.s.. (8.54)

Injecting (8.54) in (8.53) gives, for every k ∈ N,

E[F (xk+1)− F ∗|Fk] ≤
(
1 +

α2
kβν

2
kak

2

)(
F (xk)− F ∗)

− αk⟨∇F (xk) | UkE[fk|Fk]⟩
α2
kβν

2
kbk

2
∥∇F (xk)∥2 +

α2
kβν

2
kck

2
. (8.55)

We will now first show that condition (8.20) is verified in both cases (i) and (ii). We will then show
that (8.19) is also satisfied, using separately case (i) or case (ii).

According to the scheme in definition (8.44), we have

(∀k ∈ N) E[∥xk+1 − xk∥2|Fk] = α2
kE[∥Ukfk∥2|Fk]. (8.56)

Hence, injecting (8.56) in (8.54), we obtain for all k ∈ N

E[∥xk+1 − xk∥2|Fk] ≤ α2
kν

2
kak(F (xk)− F ∗) + α2

kν
2
kbk∥∇F (xk)∥2 + α2

kν
2
kck a.s.. (8.57)

Using the conditional version of Jensen’s inequality [145] leads to

(∀k ∈ N) E[∥xk+1 − xk∥|Fk],

≤
√

E[∥xk+1 − xk∥2|Fk],

≤
√
α2
kν

2
kak(F (xk)− F ∗) + α2

kν
2
kbk∥∇F (xk)∥2 + α2

kν
2
kck

≤ αkνka
1/2
k

√
F (xk)− F ∗ + αkνkb

1/2
k ∥∇F (xk)∥+ αkνkc

1/2
k a.s.. (8.58)
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Let, for every k ∈ N, rk := αkνka
1/2
k , sk = αkνkb

1/2
k , and tk = αkνkc

1/2
k . Sequences (rk)k∈N, (sk)k∈N,

(tk)k∈N are non-negative, and the summabilities of (rk)k∈N and (tk)k∈N are due to (8.48). Hence (8.20)
is satisfied.

We now distinguish case (i) from case (ii) to show that condition (8.20) is also satisfied.
Case (i): Since (fk)k∈N is conditionally unbiased in (8.55), we obtain, for every k ∈ N,

E[F (xk+1)− F ∗|Fk],

≤
(
1 +

α2
kβν

2
kak

2

)(
F (xk)− F ∗)

− αk⟨∇F (xk) | Uk∇F (xk)⟩+
α2
kβν

2
kbk

2
∥∇F (xk)∥2 +

α2
kβν

2
kck

2
,

≤
(
1 +

α2
kβν

2
kak

2

)(
F (xk)− F ∗)

− αkµk∥∇F (xk)∥2 +
α2
kβν

2
kbk

2
∥∇F (xk)∥2 +

α2
kβν

2
kck

2
,

=

(
1 +

α2
kβν

2
kak

2

)(
F (xk)− F ∗)

− αk

(
µk −

αkβν
2
kbk

2

)
∥∇F (xk)∥2 +

α2
kβν

2
kck

2
a.s., (8.59)

where majoration of ⟨∇F (xk) | Uk∇F (xk)⟩ directly comes from (8.47). Majoration in (8.59) has the
same structure as in (8.19), where, for every k ∈ N,

uk :=
α2
kβν

2
kak

2
, vk := αk

(
µk −

αkβν
2
kbk

2

)
, wk :=

α2
kβν

2
kck

2
. (8.60)

Moreover, thanks to (8.48) and (8.49), we deduce that (uk)k∈N, (vk)k∈N, (wk)k∈N are non-negative
sequences, and that

∑
k uk < +∞, infk vk > 0, and

∑
k wk < +∞. Hence condition (8.19) is satisfied

under condition (i).
Case (ii): Using (8.47) and the Cauchy-Schwarz inequality, we have, for every k ∈ N,

⟨∇F (xk) | UkE[fk|Fk]⟩,

= ⟨∇F (xk) | Uk∇F (xk)⟩+
〈
∇F (xk) | Uk

(
E[fk|Fk]−∇F (xk)

)〉
,

≥ µk∥∇F (xk)∥2 −
∥∥∇F (xk)∥∥ ∥∥Uk

(
E[fk|Fk]−∇F (xk)

)∥∥,
≥ µk∥∇F (xk)∥2 − νk∥∇F (xk)∥ ∥E[fk|Fk]−∇F (xk)∥. (8.61)

We consider inequality ab ≤ a2c+ b2/(4c), that holds for any a ≥ 0, b ≥ 0 and c > 0. Let k ∈ N, and
take a = ∥∇F (xk)∥, b = ∥E[fk|Fk]−∇F (xk)∥, c = (1− ϱ)µkν

−1
k . Then, for every k ∈ N, we have

∥∇F (xk)∥ ∥E[fk|Fk]−∇F (xk)∥

≤ (1− ϱ)µk
νk

∥∇F (xk)∥2 +
νk

4(1− ϱ)µk
∥E[fk|Fk]−∇F (xk)∥2. (8.62)
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Combining this inequality with (8.61) leads to

(∀k ∈ N) ⟨∇F (xk) | UkE[fk|Fk]⟩

≥ ϱµk∥∇F (xk)∥2 −
ν2k

4(1− ϱ)µk
∥E[fk|Fk]−∇F (xk)∥2. (8.63)

Injecting (8.63) in (8.55), we obtain

E[F (xk+1)− F ∗|Fk]

≤
(
1 +

α2
kβν

2
kak

2

)(
F (xk)− F ∗)− αk

(
ϱµk −

αkβν
2
kbk

2

)
∥∇F (xk)∥2

+
αkν

2
k

4(1− ϱ)µk
∥E[fk|Fk]−∇F (xk)∥2 +

α2
kβν

2
kck

2
a.s.. (8.64)

Let, for every k ∈ N, uk =
α2
kβν

2
kak

2 , vk = αk

(
ϱµk −

αkβν
2
kbk

2

)
, and wk =

α2
kβν

2
kck

2 +
αkν

2
k

4µk(1−ϱ)∥E(fk|Fk)−
∇F (xk)∥2.

According to (8.48) (8.50) and (8.51), (uk)k∈N, (vk)k∈N, (wk)k∈N are non-negative sequences, such
that

∑
k uk < +∞, infk vk > 0, and

∑
k wk < +∞ a.s. Hence (8.19) is satisfied under condition (ii).

8.5.5 Application to some state-of-the-art algorithms

In this section we review a few state-of-the-art SGD algorithms of the form of (8.44), those convergence
in a non-convex setting is ensured by Proposition (8.7).

8.5.5.1 SGD with constant stepsize from [212]

The algorithm proposed in [212] consists of an SGD scheme of the form of (8.44), with constant stepsize.
Precisely, for every k ∈ N, αk = α, with α > 0, and without preconditioning matrix, i.e.,

(∀k ∈ N) xk+1 = xk − α fk. (8.65)

The a.s. convergence of the iterates (8.65) can be shown using Proposition 8.7. First, the authors
in [212] show that scheme (8.65) verifies a descent condition in a non-necessary convex setting assuming
that (8.45) holds with, for every k ∈ N, ak = ck = 0 and bk = b, for some b > 0. This ensures
the convergence of (F (xk))k∈N. Second, condition (8.47) is directly satisfied with, for every k ∈ N,
µk = νk = 1. Finally, to the extent that the gradient approximations (fk)k∈N are unbiased, condition (i)
of Proposition 8.7 holds for α ∈

(
0, 2/(Lb)

)
. Hence, according to Proposition 8.7, Assumption 8.4 is

satisfied and the a.s. convergence of (xk)k∈N to a critical point is ensured by Theorem 8.4.

8.5.5.2 SGD from [71]

In [71], the authors provide a stochastic version of the forward-backward algorithm for minimizing the
sum of a Lipschitz-differentiable function, with constant β > 0, and a non-necessarily smooth function,
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both being convex. Assuming that the non-smooth function is zero, then this algorithm boils down to
an SGD algorithm of the form of (8.44), without preconditioning matrices, i.e.,

(∀k ∈ N) xk+1 = xk − λkγkfk, (8.66)

where, for every k ∈ N, λk ∈]0, 1] and γk ∈ (0, 2/β). By contrast with the usual SGD algorithms, in
[71] the sequence of approximated gradients (fk)k∈N is not supposed to be unbiased, but to verify the
following relaxed condition :

+∞∑
k=0

√
λk∥E[fk|Fk]−∇F (xk)∥ < +∞ a.s.. (8.67)

The a.s. convergence of (xk)k∈N to a minimizer of F is ensured by [71, Thm. 2.1], under few technical
assumptions (including F convex).

Under the same assumptions, using Proposition 8.7 and Theorem 8.4, we can show that (xk)k∈N
a.s. converges to a critical point of F , without needing F to be convex. Indeed, first, [71, Thm. 2.1 -
cond. (c)] ensures that (8.45) is satisfied, where ak ≡ 0, (bk)k∈N is a bounded sequence, and (ck)k∈N
satisfies

∑+∞
k=0 λkck < +∞. Second, condition (8.47) is satisfied with, for every k ∈ N, µk = νk = 1.

Finally, if infk∈N λk > 0, as in [71, Thm. 2.1 - cond. (f)], then (8.67) implies condition (8.50), hence
condition (ii) in Proposition 8.7 holds. Consequently, according to Proposition 8.7, Assumption 8.4
is satisfied and the a.s. convergence of (xk)k∈N to a critical point is ensured by Theorem 8.4. This
result is novel, up to our knowledge. Actually, almost-sure convergence based on sequence (xk)k∈N
for stochastic gradient schemes remains scarcely studied in the non-convex case. Recent results in
[105, 57] proposed an alternative proof technique without KL inequality by constraining the topology
of the stationary points of F .

8.5.5.3 Stochastic quasi-Newton with constant stepsize from [162]

In the case where F is twice differentiable, the author of [162] proposed an alternative version of the
usual stochastic Quasi-Newton algorithm [233] of the form

(∀k ∈ N) xk+1 = xk − ηUkfk, (8.68)

where η > 0 is a constant stepsize. In [162], the authors show that any process generated by scheme
(8.68) satisfies Assumption 8.1. Under the same assumptions, we can show that (xk)k∈N a.s. converges
to a critical point of F , using Proposition 8.7 and Theorem 8.4. First, the authors of [233] assume that
the gradients (fk)k∈N are unbiased and satisfy (8.45), with, for every k ∈ N, ak = ck = 0 and bk = b,
for some b > 0. Second, condition (8.47) is satisfied with, for every k ∈ N, µk = µ > 0 and νk = ν > 0,
since the preconditioning matrix Uk is built to approximate the Hessian of F at xk and to have a
uniformly bounded spectrum. Finally, (i) in Proposition 8.7 is verified when α ∈

(
0, 2µ/(βbν2)

)
.
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8.6 Stochastic proximal-gradient schemes

In this section, we will give examples of stochastic proximal algorithms from the literature satisfying
Assumption 8.4, hence benefiting from the convergence guarantees given in Theorem 8.4. Similarly to
section 8.5, we will present a general framework for investigating convergence of stochastic proximal
schemes in a non-convex setting.

We consider the case where problem (8.1) can be written as

minimize
x∈H

F (x) = G(x) +H(x), (8.69)

where F : H → R verifies Assumption 8.1 and Assumption 8.3, and is expressed as the sum of two
functions G : H → R and H : H →] − ∞,+∞], where G is assumed to be differentiable, and H

is assumed to be convex, proper and lower semi-continuous. In this context, a suitable scheme to
solve (8.69) is to consider a proximal-gradient algorithm (also known as forward-backward, or ISTA).
It alternates, at each iteration, between a gradient-descent step on the differentiable function and a
proximal step on the non-smooth function. The proximity operator of a proper, lower semi-continuous,
convex function H at a point x ∈ H is denoted by proxH(x), and is defined as the unique minimizer
of H + 1

2γk
∥x− ·∥2 on H [167, 14].

A stochastic proximal-gradient algorithm can be expressed as

(∀k ∈ N) xk+1 = xk + λk (Pk(xk − γkgk)− xk), (8.70)

where for every k ∈ N, gk ∈ H is a stochastic approximation of the gradient of G at xk, γk and λk are
two positive stepsizes, and Pk : H → H is a stochastic approximation of the proximity operator of H
computed at the output of the gradient descent step (xk − γkgk).

The stochastic approximations of the proximity operators can be useful in the context when the
computation of the proximity operator itself is too demanding, e.g., due to the structure of H (for
instance where H is a sum of a very large number of components). A typical example of operators
(Pk)k∈N is the one encountered in federated algorithms [210]. In this context, H reads as a convex
combination H =

∑I
i=1 ωiHi, where I > 1, (ωi)1≤i≤I ∈ (0, 1)I with

∑I
i=1 ωi = 1, and, for every

i ∈ {1, . . . , I}, Hi : H →] − ∞,+∞]. Then, the most common choice consists in adopting, at every
iteration k ∈ N, Pk =

∑
i∈Ik ωi proxγkHi

, where Ik is a random subset of {1, . . . , I}. Another popular
choice of approximation relies on the (deterministic) notion of ϵ-subdifferentiability [211].

Scheme (8.70) can be seen as a stochastic gradient scheme by rewriting it as

(∀k ∈ N) xk+1 = xk − γkλkfk, (8.71)

where, at each iteration k ∈ N, fk = γ−1
k (xk −Pk(xk − γkgk)). Thus, fk can be interpreted as an

estimation of the gradient of the whole function ∇F (xk). In the literature, this viewpoint is adopted
to prove the convergence of some versions of the standard stochastic proximal algorithm (i.e., when,
for every k ∈ N, λk = 1) [166].

8.6.1 Conditions on the approximations
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Let (Fk)k∈N be the canonical filtration as defined in subsection 8.5.1. Let y be an integrable ran-
dom variable from Ω to H. We assume that approximation sequences (gk)k∈N and

(
Pk(y)

)
k∈N are

conditionally unbiased, i.e.,

(∀k ∈ N) E[gk|Fk] = ∇G(xk) and E[Pk(y)− proxγkH(y)|Fk] = 0, (8.72)

and that there exist two deterministic sequences (dk)k∈N and (ek)k∈N such that

(∀k ∈ N) E
[
∥gk −∇G(xk)∥2|Fk

]
≤ dk∥∇F (xk)∥2 + ek, (8.73)

E
[
∥Pk(y)− proxγkH(y)∥

2|Fk
]
≤ dk∥∇F (xk)∥2 + ek. (8.74)

8.6.2 A general framework for convergence of differentiable proximal-
gradient algorithms in a non-convex context

In this section we introduce a result to enable the convergence study of proximal-gradient based
methods, for non-convex minimization problems. In order to use the results developed in section
8.3 and section 8.4, we will consider differentiable functions G and H.

Proposition 8.8. Let F be of the form of (8.69), where G and H are Lipschitz-differentiable functions,
with respective constants βG > 0 and βH > 0, and H is convex. Let (xk)k∈N be a process generated by
(8.70), satisfying conditions (8.72), (8.73), and (8.74), with respect to (Fk)k∈N. Assume that

inf
k∈N

λkγk > 0, sup
k∈N

λk ≤ 1, sup
k∈N

γk < 1/βH ,
+∞∑
k=0

e
1/2
k < +∞. (8.75)

Let β = βG + βH , and (ρk)k∈N, (σk)k∈N be two sequences defined as

(∀k ∈ N) ρk = (1− βHγk)
−1 and σk =

γkρk
2

(
(
√
2 + 1)βH + 4βλkρk

)
, (8.76)

with
sup
k∈N

σk + dk

(
σk + λkγ

−1
k β

)
< 1. (8.77)

Then (xk)k∈N verifies Assumption 8.4.

Proof. To prove that Assumption 8.4 holds, we will use the equivalent form (8.71) of the proximal-
gradient scheme (8.70). Hence the proof will be very similar to the one of Proposition 8.7. Precisely,
we consider scheme (8.44), where, for every k ∈ N, αk = γkλk and Uk = I, and the sequence (fk)k∈N
is an approximation of (∇F (xk))k∈N given by

(∀k ∈ N) fk = dk +∆k, (8.78)

dk = γ−1
k

(
xk − proxγkH(xk − γkgk)

)
, (8.79)

∆k = γ−1
k

(
proxγkH(xk − γkgk)−Pk(xk − γkgk)

)
. (8.80)
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The first step of the proof consists in giving a majoration of the approximated gradient sequence
(fk)k∈N as a function of the true gradient and the error terms involved in the assumptions.

Since H is differentiable, according to the Fermat’s rule [14] we have

(xk − γkgk)− proxγkH(xk − γkgk) = γk∇H
(
proxγkH(xk − γkgk)

)
. (8.81)

Combining (8.79) and (8.81), it follows that

dk = gk +∇H
(
proxγkH(xk − γkgk)

)
= gk +∇H(xk − γkdk). (8.82)

Since ∇F = ∇G + ∇H, using the triangular inequality, and the fact that H has a βH -Lipschitzian
gradient

∥dk∥ = ∥∇F (xk) + (gk −∇G(xk)) +∇H(xk − γkdk)−∇H(xk)∥,
≤ ∥∇F (xk)∥+ ∥gk −∇G(xk)∥+ βHγk∥dk∥. (8.83)

According to the definition of ρk in (8.76), this leads to

∥dk∥ ≤ ρk (∥∇F (xk)∥+ ∥gk −∇G(xk)∥) . (8.84)

Combining (8.78) and (8.84) gives

∥fk∥ ≤ ρk (∥∇F (xk)∥+ ∥gk −∇G(xk)∥) + ∥∆k∥. (8.85)

Moreover, passing to the square, we also deduce that

∥fk∥2 ≤ 4ρ2k
(
∥∇F (xk)∥2 + ∥gk −∇G(xk)∥2

)
+ 2∥∆k∥2. (8.86)

The second step of the proof aims at establishing stochastic descent properties for the scheme at
stake, to show that conditions (8.19) and (8.20) hold.

First, we apply the descent Lemma [20] to G, using the fact that xk+1 − xk = −γkfk,

G(xk+1) ≤ G(xk)− γkλk⟨∇G(xk) | fk⟩+
βGγ

2
kλ

2
k

2
∥fk∥2, (8.87)

Then, adding H(xk+1) on both sides of (8.87) gives

F (xk+1) ≤ G(xk)− γkλk⟨∇G(xk) | fk⟩+H(xk+1) +
βGγ

2
kλ

2
k

2
∥fk∥2. (8.88)

Since H is convex and differentiable, using again xk+1 − xk = −γkfk, we also have

H(xk+1) ≤ H(xk)− γkλk⟨∇H(xk+1) | fk⟩. (8.89)

Combining (8.88) and (8.89) gives a descent inequality, given by, for every k ∈ N,

F (xk+1) ≤ F (xk)−
(
γkλk⟨∇G(xk) +∇H(xk+1) | fk⟩ −

βGγ
2
kλ

2
k

2
∥fk∥2

)
. (8.90)
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Note that, for every k ∈ N, we have

γkλk⟨∇G(xk) +∇H(xk+1) | fk⟩,
= γkλk⟨∇F (xk) | fk⟩ − γkλk⟨∇H(xk)−∇H(xk+1) | fk⟩,
≥ γkλk⟨∇F (xk) | fk⟩ − γkλk

∥∥∇H(xk)−∇H(xk+1)
∥∥ ∥fk∥, (8.91)

≥ γkλk⟨∇F (xk) | fk⟩ −
βHγ

2
kλ

2
k

2
∥fk∥2, (8.92)

where (8.91) is obtained using the Cauchy-Schwarz inequality, and (8.92) using the Lipschitz continuity
of ∇H and (8.71). Hence, since β = βG + βH , we have

γkλk⟨∇G(xk) +∇H(xk+1) | fk⟩ −
βGγ

2
kλ

2
k

2
∥fk∥2 ≥ γkλk⟨∇F (xk) | fk⟩ −

γ2kλ
2
kβ

2
∥fk∥2. (8.93)

On the one hand, using (8.86), we obtain

−
γ2kλ

2
kβ

2
∥fk∥2 ≥ −γ2kλ2kβ

(
∥∆k∥2 + 2ρ2k

(
∥∇F (xk)∥2 + ∥gk − ∇G(xk)∥2

))
. (8.94)

On the other hand, using the definition of fk in (8.78), equation (8.82), and the fact that ∇F =

∇G+∇H, we have

⟨∇F (xk) | fk⟩ = ⟨∇F (xk) | dk +∆k⟩,
= ⟨∇F (xk) | ∇F (xk)−∇G(xk)−∇H(xk) + gk +∇H

(
xk − γkdk

)
+∆k⟩,

= ∥∇F (xk)∥2 −
〈
∇F (xk) | ∇H(xk)−∇H

(
xk − γkdk

)〉
+ ⟨∇F (xk) | gk −∇G(xk) + ∆k⟩. (8.95)

Using the Cauchy-Schwarz inequality and the Lipschitz continuity of ∇H, we obtain

⟨∇F (xk) | fk⟩ ≥ ∥∇F (xk)∥2 − βHγk∥∇F (xk)∥∥dk∥,
+ ⟨∇F (xk) | gk −∇G(xk) + ∆k⟩,

≥ ∥∇F (xk)∥2 − βHγkρk∥∇F (xk)∥
(
∥∇F (xk)∥+ ∥gk −∇G(xk)∥

)
+ ⟨∇F (xk) | gk −∇G(xk) + ∆k⟩, (8.96)

=
(
1− βHγkρk

)
∥∇F (xk)∥2 − βHγkρk∥∇F (xk)∥ ∥gk −∇G(xk)∥

+ ⟨∇F (xk) | gk −∇G(xk) + ∆k⟩. (8.97)

where (8.96) is obtained using (8.84). For any (a, b, c) ∈ R3
+, we have ab ≤ ca2 + b2/(4c). Taking

a = ∥∇F (xk)∥, b = ∥gk −∇G(xk)∥, c = (
√
2− 1)/2, we obtain

⟨∇F (xk) | fk⟩ ≥
(
1− βHγkρk

√
2 + 1

2

)
∥∇F (xk)∥2

− βHγkρk

√
2 + 1

2
∥gk −∇G(xk)∥2 + ⟨∇F (xk) | gk −∇G(xk) + ∆k⟩. (8.98)
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Combining (8.93), (8.94), and (8.98), we obtain

γkλk
〈
∇G(xk) +∇H

(
xk+1) | fk

〉
−
βGγ

2
kλ

2
k

2
∥fk∥2,

≥ γkλk

(
1− βHγkρk

√
2 + 1

2

)
∥∇F (xk)∥2 − βHλkγ

2
kρk

√
2 + 1

2
∥gk −∇G(xk)∥2

+ γkλk⟨∇F (xk) | gk −∇G(xk) + ∆k⟩

− γ2kλ
2
kβ

(
∥∆k∥2 + 2ρ2k

(
∥∇F (xk)∥2 + ∥gk −∇G(xk)∥2

))
. (8.99)

Using the definition of (σk)k∈N given in (8.76) we thus obtain

γkλk⟨∇G(xk) +∇H(xk+1) | fk⟩ −
βGγ

2
kλ

2
k

2
∥fk∥2,

≥ γkλk (1− σk) ∥∇F (xk)∥2 − γkλkσk∥gk −∇G(xk)∥2

− γ2kλ
2
kβ∥∆k∥2 + γkλk⟨∇F (xk) | gk −∇G(xk) + ∆k⟩. (8.100)

Since, for every k ∈ N, ∥∇F (xk)∥2 is Fk-measurable, passing to conditional expectation in (8.100)
and using successively (8.72), (8.73) and (8.74) gives

E
[
γkλk⟨∇G(xk) +∇H(xk+1) | fk⟩ −

βGγ
2
kλ

2
k

2
∥fk∥2

∣∣Fk] ,
≥ γkλk (1− σk) ∥∇F (xk)∥2 − γkλkσk E

[
∥gk −∇G(xk)∥2

∣∣Fk]− γ2kλ
2
kβ E

[
∥∆k∥2

∣∣Fk],
≥ γkλk (1− σk) ∥∇F (xk)∥2 − γkλkσk

(
dk∥∇F (xk)∥2 + ek

)
− λ2kβ

(
dk∥∇F (xk)∥2 + ek

)
,

= γkλk

(
1− σk

(
1 + dk

)
− λkγ

−1
k βdk

)
∥∇F (xk)∥2 − γkλkek

(
σk + λkγ

−1
k β

)
a.s.. (8.101)

Taking the conditional expectation in (8.90), combining it with (8.101), we obtain

E
[
F (xk+1)

∣∣Fk] ≤ F (xk)− γkλk

(
1− σk

(
1 + dk

)
− λkγ

−1
k βdk

)
∥∇F (xk)∥2

+ γkλkek

(
σk + λkγ

−1
k β

)
a.s.. (8.102)

Let, for every k ∈ N, uk = 0, vk = γkλk

(
1−σk

(
1+dk

)
−λkγ−1

k βdk

)
, and wk = γkλkek

(
σk+λkγ

−1
k β

)
.

We have
∑

k uk < +∞, according to (8.75) and (8.77) we have infk vk > 0, and
∑

k wk < +∞. Then,
inequality (8.102) is of the form of (8.19).

It remains to show that (8.20) holds. According to (8.71) and (8.85), and using Jensen’s inequality,
for every k ∈ N, we have almost-surely

E[∥xk+1 − xk∥ |Fk],

≤ γkλkρk

(
∥∇F (xk)∥+ E

[
∥gk −∇G(xk)∥

∣∣Fk]+ γkλkE
[
∥∆k∥

∣∣Fk],
≤ γkλkρk

(
∥∇F (xk)∥+

√
E
[
∥gk −∇G(xk)∥2

∣∣Fk])+ γkλk

√
E
[
∥∆k∥2

∣∣Fk]. (8.103)
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According to conditions (8.73) and (8.74), we then obtain

E[∥xk+1 − xk∥ |Fk],

≤ γkλkρk

(
∥∇F (xk)∥+

√
dk∥∇F (xk)∥2 + ek

)
+ γkλk

√
dk∥∇F (xk)∥2 + ek,

≤ γkλk

(
ρk + ρkd

1/2
k + d

1/2
k

)
∥∇F (xk)∥+ γkλk(ρk + 1)e

1/2
k a.s., (8.104)

where the last majoration is obtained using identity
√
a+ b ≤

√
a +

√
b, that holds for any a, b ≥ 0.

Let, for every k ∈ N, rk = 0, sk = γkλk

(
ρk + ρkd

1/2
k + d

1/2
k

)
, and tk = γkλk(ρk + 1)e

1/2
k . We have∑

k rk < +∞ and, according to (8.75) and (8.76),
∑

k tk < +∞. Hence, (8.104) is of the form of
condition (8.20).

Hence we conclude that Assumption 8.4 holds.

8.6.3 Application to some state-of-the-art algorithms

The stochastic aspect of process (8.70) enables two types of uncertainties. First, it takes into account
uncertainty arising from stochastic approximations of the gradient of G. Second, it can handle uncer-
tainty resulting from the use of an approximation of the proximity operator of H. The combination of
these two types of uncertainties in a single scheme has been taken into account in some works in the
literature.

8.6.3.1 Stochastic FB scheme

The authors of [70, 71] show the a.s. convergence of the iterates of a stochastic FB scheme of the form
of (8.70), assuming that G is convex, and considering the following error on true proximity operator,
i.e.,

(∀k ∈ N)(∀u ∈ H) Pk(u) = proxγkHk
(u) + pk, (8.105)

where (Hk)k∈N are successive convex approximations of H and (pk)k∈N is a conditionally summable
sequence. The latter study generalises those of [205] for which no error term on the proximal operator
was considered.

It is worth noticing that, up to our knowledge, the a.s. convergence of the iterates when G is non-
convex has only been studied when λk = 1 and without any error on the proximal mapping [107, 151],
i.e.,

(∀k ∈ N)(∀u ∈ H) Pk(u) = proxγkH(u). (8.106)

Hence, the general results we presented in subsection 8.6.2 ensuring the a.s. convergence of the
iterates when G is non-convex, and allowing stochastic approximations of the proximity operator of
H, appear to be new.

8.6.3.2 Stochastic proximal scheme

Let, for every k ∈ N, λk = 1, γk = 1, and let G = 0, and H =
∑I

i=1 ωiHi, where (ωi)1≤i≤I ∈]0, 1[I
with

∑I
i=1 ωi = 1 and, for every i ∈ {1, . . . , I}, Hi Lipschitz-differentiable. Then scheme (8.70) boils
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down to a stochastic proximal algorithm of the form of

(∀k ∈ N) xk+1 = Pk(xk). (8.107)

Such algorithm is very similar to the federated-prox algorithm introduced in [69, 210]. In particular,
in [69, 210], the authors propose to choose

(∀k ∈ N)(∀u ∈ H) Pk(u) = prox∑
i∈Sk

ωiHi
(u), (8.108)

where, for every k ∈ N, Sk is a subset of {1, . . . , I}. The authors show that, assuming the functions
(Hi)1≤i≤I satisfy some bounded dissimilarity condition, the expectation of the global objective function
conditionally to the subsets of indices, decreases at each iteration.

The results presented in subsection 8.6.2 provide stronger convergence guaranties than in [210], at
the price of slightly stronger assumptions on the choice of (Pk)k∈N.
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Chapter 9

Conclusion

9.1 Summary of contributions

This thesis has been devoted to extent the knowledge of quadratic MM algorithms, both theoretically
and numerically, particularly when facing large-scale problems. Our developments in the stochastic
framework have also led us to move beyond this initial topic and to address more general schemes for
non-convex stochastic optimization.

Chapters 2 and 6, relatively similar in their structure, were intended to offer the reader a pedagog-
ical approach to differentiable optimization in the deterministic and the then stochastic settings. Our
objectives were to describe and explain various tools that we have used over this PhD to carry out
our various theoretical investigations. Our contributions in these two chapters are therefore didactic
in nature. Although the scientific content presented was already available in the literature, we have
endeavoured to redefine certain implicitly known notions, in particular that of descent (determinis-
tic or stochastic) conditions, in order to provide a more versatile strategy for studying optimization
algorithms asymptotically.

The basis for our work on quadratic MM (QMM) algorithms was introduced in Chapter 3 through
a general overview on the existing methods adopting such a principle. Two points in particular were
highlighted. The first one concerns the flexibility of these algorithms from a structural point of view
as they can be redesigned to incorporate acceleration strategies, remaining essential to deal with very
high dimensional problems. The second one emphasises their main advantage, namely their natural
stability independently of any convexity assumption, and which subsequently motivated a great part
of this PhD work. Finally, it should also be noted that some results, although sometimes already
used in the past, are explained and demonstrated for the first time in this chapter. In particular for
the first time, we exhibited a sufficient and necessary condition for the existence of quadratic tangent
majorization approximations, and a justification enabling the use of subspace quadratic MM (SQMM)
scheme.

Chapter 4 and 5 naturally follow Chapter 3. They constitute our main contributions on MM
algorithms to handle large-scale optimization problems. Chapter 4 aimed to formalize the convergence
analysis of a block version of the SQMM algorithm, named B2MS. In particular, we use the strategy of
proof introduced in Chapter 2 based on the Kurdyka-Łojasiewciz theory to overcome the non-convexity
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of the cost function. In Chapter 5, we proposed a distributed version of the B2MS scheme under
the acronym BD3MG. This enabled asynchronous data processing by dividing tasks between several
machine cores without wasting any information. On the one hand, we were able to combine theoretical
results from Chapter 2 and 3 with those of [76] to prove the global convergence of the latter algorithm
and to exhibit some convergence rates always in a non-convex framework. On the other hand, several
numerical experiments in a large-scale context, were conducted to show the interest of our method for
image reconstruction, both on academic data and on real samples, coming from two-photons excitation
microscopy acquisitions.

In Chapter 7, we introduced the scheme SABRINA as a new stochastic extension of the SQMM
scheme. The core of our theoretical analysis presented was the establishment of a quasi-supermartingale
simple descent condition verified by any Lipschitz continuous gradient but non-necessary convex cost
function. We also provided more precise results under additional assumptions and especially, a conver-
gence rate in the strongly-convex case. In order to illustrate the numerical interest of our work, we also
presented two sets of numerical experiments. The first one, in line with statistical learning, presents an
academical supervised binary classification problem while, the second one, about blur identification,
lies within the field of inverse problems for image processing.

Our last contribution, presented in Chapter 8, stepped beyond the MM framework by proposing a
new methodology for analysing the convergence of stochastic algorithms for non-convex problems. More
specifically, by means of a new probabilistic version of the uniform Kurdyka-Łojasiewicz inequality,
our proof strategy can be seen as a generalization of the one presented in Chapter 2 section 2.5.2
for the deterministic setting. Chapter 8 gathered our most recent work, and we hope it will opens
several ways for improvement. Especially, its last two sections constituted a preliminary benchmark,
identifying several algorithms in the literature for which our proof methodology could be applied.

9.2 Perspectives

In view of the works presented throughout this manuscript, a number of promising avenues of explo-
ration are conceivable and discussed hereafter.

Relaxing the stepsize in SABRINA algorithm

Because of its structure, the SABRINA scheme can be considered as a stochastic gradient extension
which would have been conditioned by a majorization matrix sequence (Ak)k∈N combined with a
stepsize incorporation. The convergence of the latter to zero acts as an additional condition and is
imposed in order to control the noise variance and thus to ensure a certain robustness of the resulting
algorithm. In our case, however, this constraint tends to dominate the MM aspect of our scheme to the
point of almost completely masking it during the asymptotic analysis phase. The convergence of the
stepsize to zero makes it easier to obtain classical convergence results via the descent condition, but
without really using the majorizing character of (Ak)k∈N (actually, we only used the fact that it has a
uniform bounded spectrum). One possibility would thus be to relax the stepsize constraint by typically
assuming that it is bounded. Obtaining behaviours such as convergence of the gradient to zero in the
sense of (at least) a subsequence would be trickier to obtain, but would undoubtedly make full use of
the majorization property. This would be an advantage over the usual stochastic gradient methods,
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which generally do not easily allow to work with such a flexible stepsize, and it may be possible, in
the longer term, to obtain convergence rates even in a non-convex setting. The difficulty that would
be added to this relaxation would then reside in the nature of the noise likely to affect the gradient.
This leads to the new problematic: will the only majorization property be enough to ensure similar or
even better convergence guarantees without restricting the nature of the noise ?

Combining BD3MG and SABRINA to create a new distributed stochastic algorithm.

The algorithms we have presented and analyzed in this manuscript can be divided according to
whether or not they are stochastic or asynchronous. SABRINA algorithm presented in Chapter 7
bridges a first gap between the usual deterministic method and stochastic approximation algorithms.
However, its structure does not easily allow for a distributed implementation. Let us stress out that
our developments on SABRINA method were done in the beginning of this thesis, and no asynchronous
extension was envisioned at that stage. In view of our recent progresses around BD3MG, we feel that
it would be feasible to propose an asynchronous version of SABRINA, in the spirit of the stochastic
PALM [76]. On a theoretical point of view, the proof for stochastic descent condition may be similar
of the one used in [76] and the majorization property might serve to build a relaxed assumption either
on the cost function or on the statistics of the noise. As a second step and for deeper investigation,
one might consider the proof methodology from Chapter 8, to obtain almost-sure convergence to a
stationary point. Of course, this future work would greatly depend on the feasible progresses around
the novel stochastic KL theory.

Investigating alternative assumptions for convergence of stochastic algorithms in a
non-convex setting.

In a very general way, the cornerstone of Chapter 8 is the construction of a new method to improve
convergence guarantees of stochastic process (xk)k∈N, supposed well-built enough to verify elementary
asymptotical properties, as the convergence of its gradient to zero or those of F (xk)k∈N to a finite limit.
In this respect, we felt it was particularly appropriate to work on a new version of the KL property,
as it is currently one of the most highly developed tools in the deterministic literature for overcoming
non-convexity obstacles. The stochastic extension we are proposing allows to obtain a convergence
theorem for iterates, albeit under (almost-sure) monotonicity assumptions which may appear relatively
restrictive, particularly in the stochastic framework. Such limitations are from technical order and are
directly related to the inner structure of KL inequality. More precisely the non-derivability of the φ
function at zero reveals to be a very challenging obstacle. It typically prevents from building a concave
extension of φ over all R, that would make it possible to remove the monotonicity conditions we were
forced to impose. As things stand, it is difficult to say whether this non-derivability constraint can
be lifted, as this would require further developments of the KL theory itself beyond an optimization
framework. If results were to be obtained in this direction, the monotonicity assumptions could be
attenuated or even eliminated, and a convergence theorem will be obtained that is even more generic,
and ultimately applicable to a larger number of stochastic algorithms especially SABRINA or even one
of its eventual asynchronous extension.

Investigating the non-differentiable case.
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It should also be noted that, in this thesis, all our results have been established in a differentiable
optimization framework. However, it turns out that the original KL theory, in this sense, is more
flexible because it allows us to work not only with gradients but more generally with subdifferential
[27] sets. This aspect could not be addressed in depth during this work but, at first sight, it appears to
be relatively accessible and does not seem to raise major technical obstacles. The resulting convergence
theorems could thus be applied to algorithms of the proximal stochastic type or even more generally
employing monotone operators [70].
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