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Introduction

The general context of this work that integrate various data sources via a semantic layer
encoded in a Knowledge Representation and Reasoning (KR) language. Such systems
make it possible to build applications in which the tasks to be solved are specified at a
conceptual level, using a high-level vocabulary, while leveraging multiple data sources.
Hence, the knowledge representation layer acts as a mediating layer, able to integrate
data sources. Importantly, this mediating level does not simply integrate data, as a
global database schema would do, since it also provides reasoning capabilities to the
system.

The paradigm known as Ontology-Based Data Access (OBDA) [Poggi et al., 2008],
also called Ontology-Based Data Management [Lenzerini, 2018] is precisely aiming to
integrate data and formalized knowledge in a principled way. In a nutshell, it combines
concepts and techniques coming from both data management and KR, while making a
fundamental distinction between the data and the conceptual levels. An OBDA system
is composed of a data layer, made of one or several data sources that may have been
built for independent purposes, and a conceptual layer, which describes an ontology
using a vocabulary adapted to the intended application and users; declarative map-
pings between both levels allow one to select relevant data and to translate it at the
conceptual level. The conceptual layer is formalised in a KR language, which provides
reasoning capabilities. Queries to an OBDA system are expressed at the conceptual
level, and answers to queries take into account inferences made by the system. More
precisely, query answers are entailed by the logical encoding of the whole OBDA sys-
tem. This paradigm has several advantages. First, it allows a user to formulate queries
using a familiar vocabulary, without knowing how data is actually encoded and stored.
Second, it provides richer answers, since not only the factual assertions directly coming
from the data are considered, but also those that are inferred from both the data and
the ontology. Third, the conceptual vocabulary can act as a mediating layer to integrate
several data sources.

The OBDA paradigm has attracted a lot of interest from the 2010s. Several imple-
mentations are now available, from mature systems [Calvanese et al., 2011,Rodriguez-
Muro et al., 2013, Calvanese et al., 2017] to research prototypes, e.g. [Sequeda et al.,
2014, Buron et al., 2020]. These OBDA systems are all based on semantic web lan-
guages, namely the lightweight OWL 2 QL profile, or RDF Schema and slight exten-
sions of it. Whereas query answering is the fundamental task to be solved, other issues
related to the design and management of OBDA systems have begun to be investigated.
To encompass all these issues, the name Ontology-Based Data Management (OBDM)
has been coined [Lenzerini, 2018].

In this dissertation, we build on this seminal work while using more expressive lan-
guages. Indeed, we consider existential rules [Baget et al., 2009, Calí et al., 2009], an
expressive fragment of first-order logic, which can be used to express both ontological
knowledge and powerful mappings, known as GLAV mappings. More generally, exis-
tential rules can be used as a high-level declarative language to perform knowledge-
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based reasoning, but also various data processing and data quality tasks. A key feature
of these rules is their ability to assert the existence of individuals that may not exist in
the data (or facts), which allows one to do reasoning in open domains, where the set of
relevant individuals is not known in advance, or to create new strutures that make in-
tegration of heterogeneous data easier. Using existential rules for both knowledge and
mappings yields a uniform setting for the whole OBDA specification, which facilitates
its analysis and the development of techniques that need to consider both, as will be
the case in this thesis.

In our setting the conceptual level is not restricted to an ontology and may include
several kinds of rules used for other purposes, hence we prefer to use the more general
term of knowledge, and call our Knowledge-Based Data Management (KBDM). To the best
of our knowlege, the only existing system that implements the KBDM setting in the
framework of existential rules is the research prototype InteGraal [Baget et al., 2023]1.
InteGraal is a highly modular tool specifically designed for coping with a wide range
of applicative scenarios exploiting heterogeneous and federated data sources.

One of the intrinsic difficulties in designing a KBDM system is the need to get a
good understanding of a data source content. This is a prerequisite to being able to select
relevant data sources and craft the mapping to the ontology. Data sources are often
provided with typical queries and integrity constraints from which valuable informa-
tion about their semantics can be drawn, as long as this information is made intelligible
to KBDM designers. This leads to one of our core motivating questions: when is it pos-
sible to translate pieces of information expressed in terms of the data sources into the
ontological language while preserving their semantics? Recently, a line of work has led
to theoretical and algorithmic tools to tackle this question for data queries [Lutz et al.,
2018, Cima et al., 2019, Lenzerini, 2019, Cima, 2020]. In this dissertation, we revisit
and extend the state-of-the-art on the translation of queries, and we also investigate
the translation of integrity constraints, an issue that has been barely studied yet.

Actually, both translation directions may help to bridge the gap between the data
and the ontology layers, hence they can be both of interest in the design of a KBDM sys-
tem. As mentioned above, translating queries or constraints expressed on a data source
to the conceptual level yields a high-level view of data semantics, therefore helping the
designer of a KBDM system to better understand data. On the other hand, the concep-
tual level allows the designer to express high-level queries or constraints in a vocabu-
lary that makes sense to her, and translating these objects to the data level allows her to
check hypotheses on the data. Finally, when several data sources are involved, the on-
tological level allows one to analyse the relationships between the integrity constraints
possibly provided for each source, starting with identifying and resolving mismatches
between sources, which is essential to ensure cohesive and coherent data integration;
this also enables one to export constraints and queries of some data source to another
data source.

Hence, our leading questions can be sketched as follows: When is it possible to

1This is an open-source sofware available at https://gitlab.inria.fr/rules/integraal

https://gitlab.inria.fr/rules/integraal
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translate queries from one level to the other so that answers to queries are preserved?
Similarly, when is it possible to translate constraints from one level to the other while
preserving constraint satisfaction? When a perfectly faithful translation cannot be
achieved, can we still provide a translation with interesting semantic properties? Can
we approximate in some way perfect translations?

As will become clear in what follows, translating objects from the data level to the
ontological level is much more difficult than in the other direction.

Organisation of this thesis

The remainder of this dissertation is organised into six chapters.

Chapter I is devoted to preliminary notions. Knowledge bases and query answer-
ing are introduced. The emphasis is placed on existential rules and the two main tech-
niques for query answering in existential rule knowledge bases, called the chase and
query rewriting, which are related to forward and backward chaining respectively. The
chapter ends with the definition of a KBDM system and the extension of query answer-
ing techniques to this setting.

Chapter II defines a general framework for translating queries and constraints. The
chapter first presents the different kinds of translations, which work in one direction
(from the data to the ontology, or vice-versa) and at a given level of the KBDM speci-
fication (considering solely the mapping, or the whole specification, i.e., the mapping
added with existential rules). Then, the framework for query translation is introduced.
This framework is largely based on the one introduced by [Cima et al., 2019] and [Are-
nas et al., 2010, Pérez, 2011], which notably defines the desired faithfulness proper-
ties of a translation. In a nutshell, a translation should preserve the semantics of the
translated objects; however, since a perfect translation may not always exist, it may be
approximated by a maximally sound translation, which outputs a query that retrieves
a maximal subset of answers to the input query, or a minimally complete translation,
which outputs a query that retrieves all the answers to the input query with a minimal
addition of other answers. To be able to translate constraints, we first need to define
their semantics in a KBDM system, since such a system has to deal with both closed-
world assumption at the data level and open-world assumption at the ontology level.
Following this, we introduce the translation framework for constraints, which is simi-
lar to the one for query translation up to the differences between the semantics of query
answering and constraint satisfaction. A mapping only transfers part of the content of
a data source to the ontological level. We discuss how this part selection performed by
the mapping may impact the existence of a perfect translation. Finally, we illustrate the
interest of constraint translation, with practical examples of uses, notably for designing
a KBDM system and ensuring the quality of the data.

Next, we investigate the translation of fundamental database queries, namely
unions of conjunctive queries (UCQs), and slight extensions of them, as well as fun-
damental classes of integrity constraints. The emphasis is put on the direction from
data sources to ontology, as it is particularly challenging and requires new tools. This
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led us to investigate the issue of rewriting a UCQ (into another UCQ) with disjunctive
existential rules. The results are then exploited for the source-to-ontology translation
of UCQs. Results on the translation of UCQs are in turn used for translating integrity
constraints. The next chapters present the core technical results of this thesis, with the
exception of chapter IV, which reviews results from the literature.

Chapter III is devoted to UCQ rewriting with disjunctive existential rules, includ-
ing disjunctive mappings. These rules are an extension of existential rules (and map-
pings) with disjunction in rule heads. On the one hand, we introduce a novel query
rewriting technique, which allows to compute a UCQ-rewriting of a UCQ when there
exists one. On the other hand, we provide negative results that show the difficulty
of reasoning in this setting. In particular, we show that the problem of determining
whether a UCQ admits a UCQ-rewriting through a disjunctive mapping is undecid-
able.

Chapter IV reviews results from the literature related to UCQ translation. We first
present a slight extension of UCQs, namely UCQC,,, which has the interest of providing
more faithful translations. Then, we present the state of the art concerning source-
to-ontology translations of UCQs. We also present in details the notion of maximum
recovery, which comes from database theory. A maximum recovery is a kind of inverse
mapping, which intuitively allows to "reverse" the transformation on the data made by
a mapping. This notion was not introduced in the context of query translation but in
the context of data exchange. However, we found that it is a key notion for computing
maximally sound source-to-ontology translations of UCQs.

Chapter V provides new results on UCQ translation, mostly in the source-to-
ontology direction. Notably, it introduces several translation techniques for a KBDM
system, extending the work done for OBDA on lightweight description logics ontolo-
gies, which can be seen as specific cases of existential rules. One of our main results
is an algorithm that computes a minimally complete source-to-ontology translation of
a UCQC,, when one exists. The existence of a complete translation and the property
of being minimal are both independent from any specific target query language, i.e.,
we show that when a complete translation of a UCQC,, exists, it can be expressed as a
UCQC,,; then a minimally-complete translation also exists and can be expressed as a
UCQC,,. Interestingly, this result holds whether or not an ontology (i.e. a set of exis-
tential rules) is taken into account in the translation. As another main result, we show
that whenever a maximally sound source-to-ontology translation of a UCQC,, into a
UCQC,, exists, it can be obtained by rewriting the query with a maximum recovery of
the mapping. A maximum recovery of the mapping has the form of a disjunctive map-
ping, hence we can make use of the results from Chapter III. This result holds when the
mapping is considered alone, and we show that it can be extended to take into account
an ontology composed of a subclass of existential rules (so-called parallelisable rules).

Chapter VI is devoted to the translation of constraints. It first presents the fun-
damental kinds of constraints we study, namely negative (aka denial) constraints,
equality-generating dependencies (EGDs) and (disjunctive) tuple-generating depen-
dencies ((D)TGDs). After establishing connections with related work, it leverages the
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results obtained on UCQ translation (Chapter V) to compute perfect, minimally com-
plete or maximally sound translations for these kinds of constraints. Indeed, negative
constraints can be dealt with in the same way as UCQs. We show that a (slightly re-
stricted class of) EGDs can be dealt with in the same way as UCQC,,. Finally, concerning
(a slightly restricted class of) DTGDs, the connection is less direct but we show that we
can also rely on the results obtained for UCQC,,.

Finally, we draw perspectives with Chapter VII.





I - Fundamental notions

In this chapter, we introduce fundamental notions and notations that will be used through-
out the thesis. We first recall basic notions about first-order logic and homomorphisms, then
we introduce knowledge bases and query answering. As knowledge representation and rea-
soning language we use existential rules but we also present some lightweight description
logics dialects, which are in particular useful to understand related work. These dialects
can be translated into specific existential rules. Concerning query answering on knowledge
bases, we introduce the main techniques, based either on forward chaining (or chase) or on
backward chaining (namely, query rewriting). Finally we introduce KBDM systems, which
requires to add mappings to data sources, and we show how the query answering notions and
techniques defined on KBs are extended to KBDM systems. Note that we briefly recall some
useful complexity notions in Appendix C.

I.1 Basic logical notions

In this dissertation, we abstract from a specific knowledge representation formalism
by considering First-Order (FO) logic. Note that we do not consider function symbols
outside constants, which can be seen as nullary function symbols. We recall below
some basic logical notions.

A logical language is of the form L = (P ,C), where P is a finite set of predicates and C
is a (possibly infinite) set of constants. Note that in this dissertation we will also call P a
vocabulary. Each predicate has a fixed number of arguments, called its arity. Moreover,
we assume that given an infinite set of variables V . A term on L is a constant from C or
a variable from V . In our examples, we denote constants by letters at the beginning of
the alphabet (a,b,c,d . . .) and variables by letters at the end of the alphabet (x,y,z,w, . . .).

An atom on L has the form p(t) where p ∈ P is a predicate of arity n and t is a
tuple of terms on L with |t| = n. An atom with predicate p is also called a p-atom. We
consider the classical inductive definition of an FO-formula. Given a formula or a set
of formulas φ, we denote by vars(φ), consts(φ), terms(φ), and predicates(φ) its sets
of variables, constants, terms, and predicates, respectively. We furthermore note φ[x]
to indicate that x is the tuple of free variables in φ; we may also partition this tuple
into several ones, like e.g., in φ[x,y]. We will often see a tuple x of pairwise distinct
variables as a set. An FO-formula is said to be ground if it has no variable.

We first define classical logical interpretations.

Definition I.1 (Classical interpretation)
A (classical) interpretation of a logical language L = (P ,C) is a pair I = (∆, .I ) where
∆ is a (possibly infinite) non-empty set called the interpretation domain and .I is the
interpretation function of the symbols of L such that:

• for each c ∈ C, cI ∈ ∆;

• for each p ∈ P of arity k, pI ⊆ ∆k .

7



8 Chapter I. Fundamental notions

An interpretation I of L is a model of an FO-formula φ built on L if it makes φ
true by considering the classical interpretation of connectives and quantifiers. This is
denoted by I |= φ.

Definition I.2 (Entailment, equivalence)
Given two FO-formulas φ and ψ, we denote by φ |= ψ the classical logical entailment,
i.e., φ |= ψ means that all the models of φ are models of ψ. If we have φ |= ψ and ψ |= φ,
we say that φ and ψ are (logically) equivalent, which is denoted by φ ≡ ψ.

Entailment can also be defined between a possibly infinite set of FO-formulas Φ

and a FO-formula ψ, denoted Φ |= ψ, to mean that any interpretation I that is a model
of all the formulas in Φ is a model of ψ.

In this work, we make the Unique Name Assumption (UNA), which states that dis-
tinct constants denote distinct individuals, hence are interpreted by distinct elements
of a domain. It follows that any domain in an interpretation of L = (P ,C) contains a
subset in bijection with C. To simplify, we consider that each constant is interpreted by
itself, which leads to the following definition.

Definition I.3 (Interpretation with UNA)
A UNA-interpretation of a logical language L = (P ,C) is an interpretation I = (∆, .I ) (in
the sense of Definition I.1) such that:

• C ⊆ ∆;

• for each c ∈ C, cI = c;

In the following, we will consider UNA-interpretations and simply call them in-
terpretations. Note that taking UNA-interpretations instead of general interpretations
does not make any difference in our framework, except for equality constraints (see
Section VI.4).

I.2 Atomsets and homomorphisms

Among the FO-formulas, we will often consider existentially quantified conjunctions
of atoms (to represent an instance, a conjunctive query, the body of a rule, etc.). Such
formulas can be put in so-called prenex form, where all the quantifiers occur in front
of the conjunction of atoms and apply to all the atoms. It is common to think of these
formulas as sets of atoms (with possibly distinguished variables corresponding to the
free variables of the formula), since their semantics depend only on the atoms that
occur in them. In the following, we will use the term atomset to refer to a (possibly
infinite) set of atoms. We will often denote by A an atomset, and by I a finite atomset
(in particular, we will later define instances as atomsets).
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Example I.1: Atomset

Let us consider the existentially closed formula ∃x. (p(a,b)∧ q(a,x,b)∧ r(x)). The
associated atomset is {p(a,b),q(a,x,b), r(x)}.

Given an atomset A, we can define an interpretation that is "isomorphic" to A: the
idea is that the atoms are interpreted by themselves.

Definition I.4 (Isomorphic interpretation)
Given an atomset A on L = (P ,C), its isomorphic interpretation, denoted by I (A), is the
interpretation (∆, .I ) defined as follows:

• ∆ is in bijection with terms(A)∪C;

• The constants are interpreted by themselves, that is, for all c ∈ C, cI = c;

• For each p ∈ P , pI = {(t1, . . . , tn)} | p(t1, . . . , tn) ∈ A}.

Note that the second point is satisfied by definition of a UNA-interpretation. We
state it for the sake of clarity.

To a finite atomset I , we assign the closed formula that is the existential closure of
the conjunction of its atoms. We call it the formula associated with I . Importantly, the
isomorphic interpretation of I is a model of this formula (that is, I (I) |= I).

In addition, we will sometimes have to say that the isomorphic interpretation of
an atomset A is a model of a formula φ, that is, I (A) |= φ. To simplify the notation
while avoiding confusion with A |= φ (which means that every model of the formula
associated with A is a model of φ), we also denote this relation between an atomset and
an FO-formula by A |=1 φ.

So, when we consider a finite atomset I , we can state two relations between I and
an FO-formula φ: the fact that the formula associated with I entails φ, denoted I |= φ,
and the fact that the isomorphic interpretation of I is a model of φ, denoted I |=1 φ. Of
course, I |= φ entails I |=1 φ for any I and φ but the converse is not true.

Definition I.5 (Substitution)
LetX be a set of variables and T be a set of terms. A substitution s ofX by T is a mapping
from X to T . Given an atom α = p(t1, . . . , tn), s(α) is the atom obtained by substituting
each occurrence of the variable x ∈ vars(α)∩X by s(α), that is, s(α) = p(s(t1), . . . , s(tn)).
Given an atomset A, s(A) is the atomset obtained by applying s to each atom of A, that
is, s(A) = {s(α) | α ∈ A}.

Definition I.6 (Homomorphisms)
Given two atomsets A1 and A2, a homomorphism h from A1 to A2 is a substitution of
vars(A1) by terms(A2) such that h(A1) ⊆ A2 (we say that A1 maps to A2 (by h)). A
homomorphism h from A1 to A2 is an isomorphism if h−1 is a homomorphism from A2 to
A1. An endomorphism (respectively automorphism) of an atomsetA1 is a homomorphism
(respectively isomorphism) from A1 to A1.
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When A1 maps to A2 and A2 maps to A1, we say that A1 and A2 are homomorphically
equivalent, which is denoted by ≡.

Example I.2: Equivalence and Isomorphism

Let us consider the atomsets A1 and A2 defined as follows:
A1 = {p(a,b),p(b,b),p(a,x),p(x,y),p(y,b)}
A2 = {p(a,b),p(b,b)}
Since A2 ⊆ A1, A2 maps to A1 by the identity. We also have that A1 maps to A2 by
the homomorphism h = {x 7→ b,y 7→ b}. Hence, A1 ≡ A2. Note, however, that they
are not isomorphic (indeed, h−1 is not a homomorphism). Note also that since
A2 ⊆ A1, h is actually an endomorphism.

It is well known that for finite atomsets I1 and I2, the following holds: I1 maps to
I2 iff I2 |= I1 (and iff I2 |=1 I1). Hence, (the formulas assigned to) I1 and I2 are logically
equivalent if and only if I1 and I2 are homomorphically equivalent.

The concept of homomorphism could be extended to sets of atoms with equality.
Since we will use equality in very specific cases (see Section I.6 about backward chain-
ing) we prefer to avoid adding new definitions. Instead, we assume that when dealing
with atomsets that may contain equalities, we implicitly perform the substitutions as-
sociated with equalities before seeking a homomorphism.

When there is a homomorphism from an atomset A to an atomset B, we also say
that A is more general than B or, conversely, that B is more specific than A.

The notion of homomorphism can also be defined between interpretations:

Definition I.7 (Homomorphism between interpretations)
Let L = (P ,C) be a logical language and I1 = (∆1, .

I1) and I2 = (∆2, .
I2) be two inter-

pretations of L. A homomorphism h from I1 to I2 is a mapping from ∆1 to ∆2 such
that:

• for each p ∈ P and each (t1, . . . , tn) ∈ pI1 , (h(t1), . . . ,h(tn)) ∈ pI2 ;

• for each c ∈ C, h(cI1) = cI2 ;

Then, we can define the notion of closure by homomorphism: a class C of (closed)
formulas is closed by homomorphism if for any formula φ in C, for any interpretations
I1 and I2, if I1 |= φ and I1 maps to I2, then I2 |= φ.

The following properties are immediate but worth mentioning:

• Given two atomsets A1 and A2, there is a homomorphism from A1 to A2 if and
only if there is a homomorphism from I (A1) to I (A2).

• The formulas associated with finite atomsets I are closed under homomorphism.
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Finally, note that we can also define the atomset isomorphic to an interpretation in
a natural way: in this translation, the domain elements that occur in the predicate
interpretations and are not constants are translated into variables. Then we can check
that homomorphic interpretations are translated into homomorphic atomsets.

Definition I.8 (Variable renaming, safe renaming, safe extension)
A variable renaming is an injective substitution whose range is a set of variables. A safe
renaming is a variable renaming to a set of "fresh" variables; a fresh variable x is an
element of a totally ordered infinite set of variables Vf , which is disjoint from the set of
variables used in the input formulas, such that x is strictly greater than all elements of
Vf already introduced in the considered context. A safe extension s+ of a substitution s
from X (to T ) to a set of variables Y ⊇ X is the substitution from Y (to T ∪Vf ) defined
as follows: if x ∈ X, s+(x) = s(x) otherwise s+(x) = x′ where x′ is a fresh variable from Vf .

It is important to note that some atoms within a set of atoms may be redundant, in
the sense that they do not convey additional information. To refer to a minimal subset
equivalent to the whole set, we use the concept of core. Although this concept finds its
roots in graph theory (see [Hell and Nesetril, 2004] for details), it is readily adaptable
to sets of atoms. An atomset is a core if it is not homomorphically equivalent to one of
its strict subsets (that is, it does not map to one of its strict subsets). Next, we define a
core of an atomset.

Definition I.9 (Core)
A core of a set of atoms A is a subset of A that is homomorphically equivalent to A and
inclusion-wise minimal with respect to this property.

In other words, a subset A′ of A is a core of A if A maps to A′ and A′ is a core.

For a finite set of atoms A, there always exists a core of A and all the cores of A
are isomorphic; that is why we can talk of "the" core of A, which we denote by core(A).
However, this does not hold for A an infinite set of atoms: then A may have several
non-isomorphic cores or even no core at all [Carral et al., 2018].

Example I.3: Core of a set of atoms

Consider A1 and A2 from Example I.2: A2 is a core of A1 because A2 ⊆ A1, A1
maps to A2 and A2 is minimal. Here, the atoms p(a,x), p(x,b) and p(x,y) are
redundant in A1.

I.3 Knowledge bases

In general, a knowledge base is composed of an ontology given as a set of axioms that
represent some domain knowledge and a set of facts that represent specific situations.
Two main families of ontology languages have been considered in the literature:
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• Description Logics (DLs), which have been specially designed to represent ontolo-
gies and reason with them [Baader et al., 2007]; they notably underlie the Seman-
tic Web ontological language OWL.

• Existential rules, a more recent family of languages, specifically oriented towards
query answering [Baget et al., 2011, Calí et al., 2009].

I.3.1 Description Logics

A DL ontology essentially contains axioms that express inclusions between concepts
and between binary relations (called roles). More specifically, a concept can be either a
concept name or a complex concept built from concept names using a set of construc-
tors. Similarly, a role can be either a role name or a complex role built from role names
using a set of constructors. Then an axiom is generally a concept inclusion of the form
C1 ⊑ C2, where C1 and C2 are concepts, or a role inclusion of the form r1 ⊑ r2, where r1
and r2 are roles. In some DLs, special axioms furthermore declare some properties of a
role, like transitivity or functionality. The expressiveness of a specific DL depends on
the allowed set of constructors and shape of the axioms.

In general, DLs can be translated into specific fragments of first-order logic for
which classical reasoning tasks (like determining whether a knowledge base is satis-
fiable or whether a ground atom is entailed by the knowledge base) are decidable. The
translation sketchily proceeds as follows: a concept name is seen as a unary predicate
and a role name as a binary predicate. Then a concept C is translated into a formula
φC(x) with free variable x; if C is a concept name, then φC(x) = C(x). Similarly, a role r
is translated into a formula φr(x,y) with free variables x and y; if r is a role name, then
φr(x,y) = r(x,y). Finally, a concept inclusion C1 ⊑ C2 is translated into the formula
∀x (φC1

(x)→ φC2
(x)) and a role inclusion r1 ⊑ r2 into ∀x∀y (φr1(x,y)→ φr2(x,y)).

In this dissertation, we will refer to lightweight DLs that are used in the context of
query answering, as they have good computational properties for this problem. The
axioms in these DLs can be logically translated into existential rules, hence we will
present them in Section I.3.3.

I.3.2 Existential rules

Existential rules can be seen as an extension of function-free Horn rules (aka Datalog)
with existentially quantified variables in rule heads. Next, we call them conjunctive
rules to distinguish them from their extension to disjunctive rules studied in Chap-
ter III. Note that existential rules have the same logical form as very general integrity
constraints that have long been studied in databases, called Tuple Generating Depen-
dencies (TGDs) [Abiteboul et al., 1995].

Definition I.10 (Existential conjunctive rule)
An existential conjunctive rule (or simply a conjunctive rule) is a formula

R = ∀x∀y(B[x,y]→∃zH[y,z])
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where x,y and z are tuples of variables, B = body(R), and H = head(R) are conjunctions
of atoms, respectively, called the body and head of R. The frontier of R, denoted by
fr(R), is the set vars(B) ∩ vars(H) = y. The set of existential variables in R is the set
vars(H) \ fr(R) = z.

Example I.4: Conjunctive rule

Let us consider the conjunctive rule R = ∀x∀y(p(x,y)→∃z q(y,z)). In this disser-
tation, we will omit universal quantifiers and note R = p(x,y)→∃z q(y,z). Here,
p(x,y) is the body of R and q(y,z) is its head; y is the only frontier variable and z
the only existential variable.

Of particular interest is the subclass of rules with an empty set of existential vari-
ables, called Datalog.

We can now define a knowledge base in the existential rule framework. As already
mentioned, a knowledge base is generally composed of a finite set of facts and a finite
set of axioms. In the existential rule framework, the axioms are expressed by existential
rules, and a finite set of facts is often called an instance. This instance may be ground,
in which case we call it a database instance, or it may more generally have existentially
quantified variables, i.e., correspond to an existentially closed conjunction of atoms.

Definition I.11 (Instance, Knowledge base)
An instance is an existential closed conjunction of atoms, which is also seen as a finite
atomset. A database instance is ground. A knowledge base (KB) is a pair K = (I,R) where
I is an instance and R is a set of existential rules.

Note: In the following, we will silently assume that an existential rule does not
introduce a new constant, i.e., for any rule R, consts(head(R)) ⊆ consts(body(R)). This
is to simplify technical developments in Chapters 6 and 7.

I.3.3 Lightweight DLs and existential rules

Lightweight description logics are generally used in the context of data querying, and
this is even more true in the context of ontology-based data access, i.e. in the presence
of mappings. We focus here on two families of lightweight DLs, namely EL [Baader
et al., 2005, Lutz et al., 2009] and DL-Lite [Calvanese et al., 2007b, Artale et al., 2009]
More precisely, for the first family we will define the specific DLs EL, ELH, ELI and
ELHI , and for the second family we will define the specific DLs DL-Litecore, DL-LiteR
and DL-LiteRDFS. Indeed, these DLs are relevant to describe related work.

Answering conjunctive queries with all these DLs can be done in polynomial time in
terms of data complexity (see later). We will point out that these DLs can be translated
into specific existential rule classes (which also feature polynomial time conjunctive
query answering). The DL EL is the simplest member of the EL family. In this DL, the

axioms are concept inclusions C1 ⊑ C2, where the Ci have the following shape:

Ci :=⊤ | A | C1 ⊓C2 | ∃r.C1
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DL-Axiom Translated rule
B⊓C ⊑D B(x)∧C(x)→D(x)
B ⊑ C B(x)→ C(x)
B ⊑ ∃r.C B(x)→∃y r(x,y)∧C(y)
∃r.B ⊑ C r(x,y)∧B(y)→ C(x)

Table I.1: Translation of normal EL-axioms (with implicit universal quantifiers)

with A and r concept and role names, respectively. The extensions to inverse roles and
to role inclusions are indicated by the letters I andH, respectively. This yields the DLs
ELI , ELH and ELHI . Hence, axioms in ELHI are of the form C1 ⊑ C2 and s1 ⊑ s2,
where:

Ci :=⊤ | A | C1 ⊓C2 | ∃s1.C1

si := r | r−

where A and r are names, and r− is the inverse of r.

DLs are usually provided with axioms in a normal form: then, all axioms that can
be expressed can be rewritten as normal axioms, which may require to introduce new
concept and role names, while preserving the semantics (more precisely, the new set of
axioms is a conservative extension in the sense of [Baader et al., 2007]). For example,
∃r.∃s.A ⊑ B1 ⊓ B2 can be rewritten as three normalised axioms: ∃s.A ⊑ B3, ∃r.B3 ⊑ B1
and ∃r.B3 ⊑ B2, where B3 is a fresh concept name. Table I.1 shows a set of normal
axioms for EL and their logical translation (note that universal quantifiers are implicit).
In ELI , r can be a role or its inverse r−, and we have φr−(x,y) = r(y,x). In ELH, role
inclusions are of the form r1 ⊑ r2, which is translated by the rule r1(x,y) ⊑ r2(x,y).
Finally, ELHI combines both extensions.

The most well-known member of the DL-Lite family is DL-LiteR, which underlines
OWL2 QL (a tractable profile of OWL 2). In this DL, axioms have the following shape:

B1 ⊑ B2 B1 ⊑ ¬B2 s1 ⊑ s2 s1 ⊑ ¬s2

where Bi := A | ∃s and si := r | r−, with A and r names. The inclusions without ¬ are
said positive, the others are negative. Note that B1 ⊑ ¬B2 could equivalently be written
B1⊓B2 ⊑ ⊥. And similarly for s1 ⊑ ¬s2. In other words, negative axioms express concept
and role disjointness.

DL-Litecore is the restriction of DL-LiteR to concept inclusions (i.e., the two first
axiom shapes). DL-LiteRDFS is the restriction of DL-LiteR to positive inclusions without
∃r in the right side, i.e., B2 is restricted to a concept name in B1 ⊑ B2.

Table I.2 shows the set of axioms for DL-LiteR and their logical translation.

Clearly, ELHI can be expressed in a fragment of existential rules. More specifically,
the normal axioms given in Table I.1, as well as their extension with inverse roles and
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DL-Axiom Translated rule
A1 ⊑ A2 A1(x)→ A2(x)
A ⊑ ∃r A(x)→∃y r(x,y)
∃r ⊑ A r(x,y)→ A(x)
r1 ⊑ r2 r1(x,y)→ r2(x,y)
A1 ⊑ ¬A2 A1(x)∧A2(x)→⊥
r1 ⊑ ¬r2 r1(x,y)∧ r2(x,y)→⊥

In all the axioms, r(i) can be replaced by its inverse r−(i) (then (x,y) is replaced by (y,x)
in the translation)

Table I.2: Translation of normal DL-LiteR axioms (with implicit universal quantifiers)

role inclusions can be expressed as guarded existential rules, which are existential rules
in which each rule body has an atom – called a guard – that contains all the body
variables (see [Mugnier, 2020] for details).

The positive axioms of DL-LiteR can be translated into the class of linear existential
rules, where the body and the head of rules are restricted to a single atom; the negative
axioms can be translated into so-called negative constraints (see, e.g. [Calí et al., 2009]).
Note that negative axioms play a role in the (un)satisfiability of a KB, but when the KB
is satisfiable they can be ignored in query answering.

I.4 Query answering

Query answering is the fundamental task on databases. It has become one of the main
tasks on knowledge bases with the development of applications making intensive use of
data. However, an important distinction between databases and KBs is the assumption
about the meaning of an instance: in databases, the instance is usually considered as a
complete set of facts, i.e. missing facts are assumed to be false (this is the closed-world
assumption, CWA) while in KBs the instance is only a set of known facts (this is the
open-world assumption, OWA).

In line with this, a Boolean query Q has a positive answer on a database instance
I if (the interpretation isomorphic to) I is a model of Q (i.e., I (I) |= Q), while it has a
positive answer on a KB’s instance I if I entails Q (i.e., I |=Q).

To distinguish between both notions, we will talk about answer and query evalua-
tion for a database instance and of certain answer and query answering for a KB. Note
that in the sequel of this dissertation we will often simply say answer, when it is clear
from the context.

Definition I.12 (FO-query)
A first-order query (in short FO-query) Q is an FO-formula. The free variables in Q are
called answer variables and denoted by ansVars(Q). When convenient, we also denote a
query by Q[x], where x is the set of answer variables. The arity of Q[x] is |x|. A Boolean
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query has no answer variables.

Definition I.13 (Answer)
Given an instance I and a query Q[x], a tuple of constants c with |c| = |x| is an answer
to Q on I if, given the substitution s from x to c that assigns to each variable from x the
constant from c of the same rank, I is a model of s(Q), i.e., I |=1 s(Q). The set of answers
to Q on I is denoted by Q(I).

We also say that the answer to a Boolean query Q on I is positive if Q(I) = {()} (and
it is negative if Q(I) = ∅).

Let us now consider knowledge bases and define query answering.

Definition I.14 (Certain answer)
Given a KB K = (I,R) and a query Q[x], a tuple of constants c with |c| = |x| is a certain
answer to Q if, given the substitution s from x to c that assigns to each variable from x
the constant from c of the same rank, K |= s(Q). The set of certain answers to Q on K is
denoted by certain(Q,K). When K = (I,∅), we simply note certain(Q,I).

In other words, the set of certain answers to Q on K is the intersection of the sets of
answers to Q on all the instances associated with the models of K.

In the following, we will mainly consider the basic database queries, known as
(unions of) conjunctive queries (UCQs). In chapter V, we deal with an extension of
UCQs named UCQC,,.

Definition I.15 (Conjunctive Query, Union of Conjunctive Queries)
A conjunctive query (CQ) q is an FO-query of the form ∃y φ[x,y], where x and y are
disjoint tuples of variables, x are the answer variables, and φ is a finite conjunction of
atoms with vars(φ) = x∪y. In a full CQ, y is empty. An atomic CQ has a single atom. A
union of conjunctive queries (UCQ) is a disjunction of CQs with the same tuple of answer
variables x.

For clarity, we will denote a UCQ by Q and a CQ by q. Note that we will sometimes
consider UCQs with equality atoms whose role is only to ensure that all the CQs in
the UCQ have the same tuple of answer variables. These equality atoms occur only
between answer variables and/or constants of a CQ, in such a way that they can be
removed by substituting variables and yield a CQ as defined above.

It is well known that for UCQs, and more generally all query languages closed by
homomorphism (see Definition I.7), the notions of answers and certain answers co-
incide, in the sense that for any query Q in such language and for any instance I ,
Q(I) = certain(Q,I).

Finally, we formally define the fundamental decision problem of UCQ entailment.

Problem I.5: UCQ Entailment

The UCQ entailment problem takes as input a KB K = (I,R) and a Boolean UCQ
Q, and asks if I,R |=Q.
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This problem has long been known to be undecidable with general existential rules
[Beeri and Vardi, 1981]. However, many decidable subclasses are known, see, e.g.,
[Thomazo, 2013] for a synthesis.

In the following two sections, we will present the main approaches to answer
queries on an existential rule KB. Very roughly, there are two ways of taking rules
into account: either in the instance (this is forward chaining) or in the query (this is
backward chaining). In both cases, this allows to "reduce" the query answering task to
evaluating a UCQ on an instance, provided that the process terminates.

I.5 Query Answering based on Forward Chaining

We now define the fundamental notions related to forward chaining with (conjunctive)
existential rules, also called chase in database theory.

Definition I.16 (Trigger)
Given an instance I and an existential conjunctive rule R, a trigger for R on I is a pair
(R,h) where h is a homomorphism from body(R) to I .

When such a trigger exists, the rule R is said to be applicable on I .

Example I.6: Trigger

Consider the rule R = p(x,y)→ ∃z q(y,z) and the instance I = {p(a,b)}. The only
trigger for R on I is (R,h) with h = {x 7→ a,y 7→ b}.

Definition I.17 (Trigger application)
Given a trigger (R,h) for a rule R on an instance I , the application of this trigger, denoted
by the operator α, is defined as

α(I,R,h) = I ∪ h+(head(R))

We recall that h+ denotes a safe extension of the homomorphism h.

Example I.7: Trigger Application

Consider again the rule R = p(x,y)→ ∃z q(y,z), the instance I = {p(a,b)} and the
trigger (R,h) with h = {x 7→ a,y 7→ b}. Then

α(I,R,h) = I ∪ h+(q(y,z)) = {p(a,b),q(b,z′)}

Here, z′ is the fresh variable introduced by the safe renaming of z.

Definition I.18 (Derivation)
A derivation from an instance I and a set of rules R is a sequence of instances D =
I0, I1, I2, . . . such that I0 = I and, for all i ≥ 1, Ii = α(Ii−1,R,hi) for some trigger (R,hi) on
Ii−1 for R ∈ R.
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Example I.8: Derivation

Let us consider the instance I = {t(a)} and the set of rulesR = {R = t(x)→∃y t(y)∧
q(y,x)}. We can start a derivation with a trigger (R,h) where h = {x 7→ a}. Ap-
plying the trigger gives I1 = α(I,R,h) = I ∪ h+({t(y),q(y,x)}) = {t(a), t(y1),q(y1, a)},
where y1 is a fresh variable introduced by the safe renaming.
We could continue the derivation with another application of R, this time
with h′ = {x 7→ y1}. This results in I2 = α(I1,R,h′) = I1 ∪ h′+({t(y),q(y,x)}) =
{t(a), t(y1),q(y1, a), t(y2),q(y2, y1)}, where y2 is a fresh variable introduced by the
safe renaming.
We can notice here that this derivation is not finite, since we can always ap-
ply a new trigger on what was produced in the previous step. In fact, we have
Ik = α(Ik−1,R,hk = {x 7→ yk−1}) = Ik−1 ∪ h+

k ({t(y),q(y,x)}) for any k > 1. Thus, the
derivation from I and R is the infinite sequence D = I0, I1, I2, . . . .
Also note that, in this example, there is only one trigger to apply at each step and
so there is a unique way to build the derivation. But in the general case, there can
be several ways to build a derivation by choosing different orders of application
of the triggers.

It is convenient to consider a derivation performed in a breadth-first manner, i.e.,
by computing all possible rule applications in parallel at each step. This leads to the
following notion of k-saturation obtained after k parallel steps.

Definition I.19 (Direct saturation, k-Saturation)
Let I be an instance and R be a set of rules. We denote by Π(R, I) the set of triggers for
the rules in R on I : Π(R, I) = {(R,h) | R ∈ R and h maps body(R) to I}.

The direct saturation of I with R is defined as:

α(I,R) = I ∪
⋃

(R,h)∈Π(R,I)
h+(head(R))

The k-saturation of I with R is denoted by αk(I,R) and is inductively defined as
α0(I,R) = I and αi(I,R) = α(αi−1(I,R),R) for i > 0.

Example I.9: k-Saturation

Consider the set of rules R = {R1,R2} where:

• R1 : r(x1, y1)∧ r(y1, z1)→ r(x1, z1);

• R2 : r(x2, y2)∧ q(x2)∧ p(y2)→∃z2 s(x2, y2, z2).

Given the initial instance I = {q(a), r(a,b), r(b,c), r(c, t),p(t)}:

α0(I,R) = I.
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In the first saturation step, we identify the triggers:

(R1,h1) with h1 = {x1 7→ a,y1 7→ b,z1 7→ c}

(R1,h2) with h2 = {x1 7→ b,y1 7→ c,z1 7→ t}

Applying these triggers, we produce:

α1(I,R) = α0(I,R)∪ {r(a,c), r(b, t)}.

In the next saturation step, using the inferred facts from α1(I,R), we can apply
(R1, {x1 7→ a,y1 7→ b,z1 7→ t}). This gives:

α2(I,R) = α1(I,R)∪ {r(a, t)}.

Finally, in the last step, we can apply (R2, {x2 7→ a,y2 7→ t}). This gives

α3(I,R) = α2(I,R)∪ {s(a, t, z′2)}.

After the third iteration, we have reached a point where no new facts can be
derived.
Note that in the first step of the derivation, we applied two triggers at the same
time instead of applying them one after the other like in a derivation (see Exam-
ple I.8).

Definition I.20 (Saturation of a KB)
Let K = (I,R) be a KB. The saturation of K, denoted by α∞(I,R) or α∞(K), is defined as:

α∞(I,R) =
⋃
k∈N

αk(I,R)

In the database literature, the saturation process is called the chase. Therefore,
instead of α∞(I,R), we simply note chase(I,R).

Example I.10: Saturation

Considering again Example I.8 with I = {t(a)} and R = {t(x)→ ∃y t(y)∧ q(y,x)},
we have:

• α0(I,R) = I ,

• α1(I,R) = {t(a), t(y1),q(y1, a)},

• α2(I,R) = {t(a), t(y1),q(y1, a), t(y2),q(y2, y1)}

• . . .
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where each yi is a new element introduced by the safe renaming. The saturation
of I and R is the union of all these sets:

α∞(I,R) =
⋃
k∈N

αk(I,R) = {t(a), t(y1),q(y1, a), t(y2),q(y2, y1), t(y3),q(y3, y2), . . .}

The saturation of a KB has a very nice property: not only its isomorphic interpreta-
tion is a model of the KB, but it furthermore maps by homomorphism to any model of
the KB. It is called a universal model in the database literature.

Definition I.21 (Universal Model)
An interpretation I is a universal model of an instance I and a set of rulesR if it satisfies
the following conditions:

1. I is a model of I and R, which means I satisfies I and all rules in R.

2. For any other model I ′ of I and R, there is a homomorphism from I to I ′.

In the following, we call canonical model of the KB (I,R) the interpretation isomor-
phic to its saturation. To know if a Boolean UCQ Q is entailed by K, it suffices to check
whether the canonical model of K is a model ofQ (note that this is not only true for the
UCQ language, but also for any query language closed by homomorphism).

The next theorem follows form previous definitions.

Theorem I.11: Canonical model and entailment (e.g., [Baget et al., 2011])

Let I be an instance, R be a set of rules and q be a Boolean CQ. The following
properties are equivalent:

1. (I,R) |= q;

2. There exists a homomorphism from q to α∞(I,R);

3. There exists an integer k such that there is a homomorphism from q to
αk(I,R).

Query answering is not decidable with general existential rules, but, obviously, it
becomes decidable when the chase is finite. This observation leads to the notion of
"finite expansion set", which is a set of rules ensuring that, for any instance, there is a
step k such that the possibly infinite saturation is homomorphically equivalent to the
k-saturation.

Definition I.22 (Finite Expansion Set [Baget et al., 2011])
A set of rulesR is said to be a finite expansion set (FES) if and only if, for every instance
I , there exists an integer k such that αk(I,R) ≡ α∞(I,R).
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The problem of determining whether a set of rules is a FES is undecidable [Baget
et al., 2011].

Example I.12: Finite Expansion Set (from [König, 2014])

Consider the instance I = {q(a)} and the set of rules R = {q(x) → ∃y r(x,y) ∧
r(y,y)∧ q(y)}. Applying the rules, we have:

α1(I,R) = I ∪ {r(a,y1), r(y1, y1),q(y1)}
α2(I,R) = α1(I,R)∪ {r(y1, y2), r(y2, y2),q(y2)}
α3(I,R) = α2(I,R)∪ {r(y2, y3), r(y3, y3),q(y3)}
α4(I,R) = . . .

We observe that α∞(I,R) is infinite, yet it is equivalent to α1(I,R). This is because
α1(I,R) ⊆ α∞(I,R), and every set {r(yi , yi+1), r(yi+1, yi+1),q(yi+1)} ⊆ α∞(I,R) can
be mapped to {r(y1, y1),q(y1)} via the homomorphism {yi 7→ y1, yi+1 7→ y1}.

I.6 Query Answering based on Backward Chaining

Historically, backward chaining techniques were first used in logic programming, es-
pecially in Prolog. The aim was to prove that a CQ q is entailed by a logic program P
by showing that P ∧ ¬q cannot be satisfied using resolution. In the context of query
answering with DL-Lite ontologies, this method was divided into two main steps. The
first step, known as "query rewriting", involves turning the initial query into a set of
rewritings, seen as a UCQ. The second step consists of evaluating this UCQ on the
instance [Poggi et al., 2008].

The main reason for this split was to take advantage of the optimisations offered by
relational database systems, assuming that the data are stored that way. This separation
has several additional benefits. It works well when data is scattered across different
databases or when there are limits on editing the facts. Also, backward chaining avoids
problems related to expanding a fact base. The query rewriting process is not affected
by changes in the instance; on the other hand, saturation must be recalculated when
the instance is modified.

When it comes to existing rewriting techniques, they can be classified by the tar-
get query language. Initially, the aim was to rewrite a UCQ into another UCQ [Gottlob
et al., 2011,Chortaras et al., 2011,Rodriguez-Muro et al., 2013,Baget et al., 2011,König,
2014, König et al., 2015]. This framework has been the focus of most studies. Since a
UCQ cannot always be rewritten as a (finite) UCQ, two notions were introduced to de-
fine rule sets that ensure a finite rewriting exists, namely FO-rewritable and FUS (which
we will also name UCQ-rewritable). Even though FO-rewritable seems broader than
FUS, it has been pointed out that they cover the same rule classes. It remains that some
forms of FO-queries are more compact than UCQs, even exponentially smaller in some
cases, as highlighted in [Thomazo, 2013] about so-called unions of semi-conjunctive
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queries. Note however that smaller queries are not always more efficiently evaluated,
since it is important to take properties of the data into account as shown in [Bursztyn
et al., 2015].

Later, other languages than FO-queries were considered for the target query. In
particular, some techniques rewrite the query into a Datalog program, which pro-
vides more expressivity than first-order logic [Pérez-Urbina et al., 2010, Gottlob and
Schwentick, 2011, Eiter et al., 2012, Trivela et al., 2015]. Hence, targeting Datalog
instead UCQs increases the number of cases where a finite rewriting exists. In this
dissertation, we focus on UCQ rewritings.

We first define sound and complete rewritings.

Definition I.23 (Sound and Complete Rewriting)
• Sound Rewriting: A queryQ′ is called a sound rewriting of a queryQwith respect

to a set of rules R if certain(Q′ , I) ⊆ certain(Q, (I,R)) for any instance I .

• Complete Rewriting: Conversely, a query Q′ is called a complete rewriting of a
query Q with respect to a set of rules if R certain(Q, (I,R)) ⊆ certain(Q′ , I) for
any instance I .

Furthermore, when Q′ is a UCQ and a sound and complete rewriting of Q
(with respect to R), we call it a UCQ-rewriting. We recall that when Q′ is a UCQ,
certain(Q′ , I) =Q′(I).

The following example shows that no all UCQs admit a UCQ-rewriting, even with
respect to very simple Datalog rule sets.

Example I.13: Transitivity

Let R = p(x,y) ∧ p(y,z) → p(x,z). The (Boolean) CQ q1 = p(a,b), where a and
b are constants, has no finite rewriting with {R}, while the (Boolean) CQ q2 =
p(u,v) has one, which is {q2}. Indeed, any complete rewriting of q1 is infinite as it
contains all the “paths” of p-atoms from a to b, which are pairwise incomparable
by homomorphism. In contrast, the atom p(u,v) maps by homomorphism to any
path of p-atoms.

Such observations have motivated the following definitions.

Definition I.24 (UCQ-rewritable)
The pair (Q,R) with Q a UCQ and R a set of rules, is said to be UCQ-rewritable if
there exists a UCQ-rewriting of Q with respect to R. Moreover, we say that R is UCQ-
rewritable if every pair (Q,R) is UCQ-rewritable.

In the literature, a UCQ-rewritable rule set is also called a finite unification set (FUS)
[Baget et al., 2011].

Definition I.25 (FO-Rewritable [Artale et al., 2007])
A set of rules R is FO-rewritable if for any UCQ Q, there exists an FO-query Q′ that is a
sound and complete rewriting of Q.
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As pointed out in [Rudolph and Krötzsch, 2013], the concepts of FO-rewritable sets
and FUS (ou UCQ-rewritable sets) actually coincide.

Theorem I.14: [Rudolph and Krötzsch, 2013]

Let R be a set of rules. The following two conditions are equivalent:

1. R is a FO-rewritable set,

2. R is a finite unification set.

It is worth noting that it is undecidable to determine whether a set of rules is a finite
unification set as per [Baget et al., 2011].

We now turn our attention to the computation of sound and complete rewritings.
Using classical logic programming techniques does not work well with existential

rules. Indeed, the usual logic unification on these rules can lead to unsound rewritings.
It follows that existential variables in rule heads have to be dealt with in a special way.
We first explain why the usual unification cannot be used for existential rules.

Definition I.26 (Datalog Unification)
Let q be a CQ and R be a Datalog rule. A Datalog unifier of q with R is a pair µ =
(α,u), where α is an atom of q and u is a substitution, which maps variables from
vars(α)∪ vars(head(R)) to terms(head(R))∪ consts(q), such that the application of u
to α and head(R) results in the same atom, i.e., u(α) = u(head(R)).

Example I.15: Datalog Unification

Consider the following set of Datalog rules:

R1 : parent(x1, y1)→ ancestor(x1, y1),

R2 : parent(x2, z2)∧ ancestor(z2, y2)→ ancestor(x2, y2),

and the Datalog query q = ∃v ancestor(xerces,v).
The Datalog unifiers between q and the rules R1 and R2 are:

• with R1: µ1 = (ancestor(xerces,v),u1) with u1 = {x1 7→ xerces,y1 7→ v}.

• with R2: µ2 = (ancestor(xerces,v),u2) with u2 = {x2 7→ xerces,y2 7→ v}.

We have:

• u1(ancestor(xerces,v)) = u1(head(R1)) = ancestor(xerces,v)

• u2(ancestor(xerces,v)) = u2(head(R2)) = ancestor(xerces,v).

Definition I.27 (Datalog Rewriting)
Given a CQ q and a Datalog rule R, if µ = (α,u) is a unifier of qwith R, then the rewriting
of q according to µ is defined as: q′ = u(B)∪u(q \ {α}).
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Example I.16: Datalog Rewriting

Consider again the set of Datalog rules and the query from Example I.15:

R1 : parent(x1, y1)→ ancestor(x1, y1),

R2 : parent(x2, z2)∧ ancestor(z2, y2)→ ancestor(x2, y2)

and q = ∃v ancestor(xerces,v).
Also take the same unifiers, i.e., µ1 = (ancestor(xerces,v),u1 = {x1 7→ xerces, y1 7→
v}) for R1 and µ2 = (ancestor(xerces,v),u2 = {x2 7→ xerces, y2 7→ v}) for R2.
The following CQs are produced:

• With µ1:

q′ = u1({parent(x1, y1)} ∪u1({ancestor(xerces,v)} \ {ancestor(xerces,v)}))
= ∃v parent(xerces,v)

• With µ2:

q′′ = u2({parent(x2, z2),ancestor(z2, y2)}
∪u2({ancestor(xerces,v)} \ {ancestor(xerces,v)}))

= ∃v,z2 parent(xerces, z2)∧ ancestor(z2,v)

The following example shows one of the issues that arise when we try to use classical
unification with existential rules.

Example I.17: Unsound Datalog Rewriting

Consider the existential rule R = person(x) → ∃y hasParent(x,y), the con-
junctive query q = ∃v,w hasParent(v,w) ∧ dentist(w), and the instance I =
{person(Maria),dentist(Giorgos)}.
We find a Datalog unifier µ = (hasParent(v,w),u) for q and R, where u is a sub-
stitution mapping x to v and y to w.
Following the Datalog rewriting definition, we rewrite q according to µ as fol-
lows:

q′ = u ({person(x)} ∪ ({hasParent(v,w),dentist(w)} \ {hasParent(v,w)}))

= {person(v),dentist(w)}, i.e., ∃v,w person(v)∧dentist(w)

However, while I |= q′ (as Maria is a person and Giorgos is a dentist), we do not
have I,R |= q. This shows that q′ is not a sound rewriting of q with respect to R.
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In the setting of conjunctive existential rules, query rewriting can be performed
using piece-unifiers [Baget et al., 2011]. These are a generalisation of classical unifiers
that handle existential variables in rule heads by unifying sets of atoms instead of single
atoms. To do that, we first need to define some notions about a partition of terms.

A partition P of a set of terms is said to be admissible if no class of P contains two
constants. We associate a substitution u with an admissible partition Pu by selecting one
term in each class with priority given to constants: for each class C in Pu , let ti be the
selected term, then for every tj ∈ C, we set u(tj ) = ti .

Definition I.28 (Separating variables)
Given a Boolean CQ q and a subset q′ of q, a variable v in q′ is a separating variable if it
also appears in q \ q′.

Next, we define piece-unification for a Boolean CQ. We will present later two ways
of extending this to a CQ (with a nonempty set of answer variables).

Definition I.29 (Piece-unifier)
Let q be a CQ and R be a conjunctive existential rule. A piece-unifier of q with R is a
triple µ = (q′ ,H ′ , Pu) with q′ , ∅, q′ ⊆ q, H ′ ⊆ head(R), and Pu is an admissible partition
on terms(q′)∪ terms(H ′) such that:

1. u(q′) = u(H ′), with u a substitution associated with Pu ;

2. If a class C ∈ Pu contains an existential variable (from H ′), then the other terms in
C are non-separating variables from q′.

Example I.18: Piece-unifier

Consider the set of rules R defined as:

R1 : isManager(x)∧ isExperienced(x)→∃y canSupervise(x,y),

R2 : isSeniorStaff(x)→∃y canSupervise(x,y),

R3 : isProjectLead(x)→∃y canDirectlySupervise(x,y),

R4 : worksWith(x,y)→worksWith(y,x),

R5 : canDirectlySupervise(x,y)→ canSupervise(x,y),

and let q be the following Boolean CQ:

q = ∃x1,x2,x3worksWith(x1,x2)∧ canSupervise(x1,x3)∧ canSupervise(x2,x3),

which intuitively asks whether there are x1 and x2 such that x1 works with x2,
and both x1 and x2 are capable of supervising x3.
To illustrate the concept of a piece-unifier, we focus on R2 = isSeniorStaff(x)→
∃y canSupervise(x,y).
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Let q′ = {canSupervise(x1,x3),canSupervise(x2,x3)}, H ′ = {canSupervise(x,y)}.
Consider the partition Pu of terms(q′)∪ terms(H ′) to be {{x1,x2,x}, {x3, y}}.
Notice that Pu is admissible, as no class contains two constants. We associate with
it the substitution u such that u(x1) = u(x2) = u(x) = x1 and u(x3) = u(y) = x3.
Then, we find:

u(q′) = u({canSupervise(x1,x3),canSupervise(x2,x3)})
= {canSupervise(x1,x3)}

u(H ′) = u({canSupervise(x,y)})
= {canSupervise(x1,x3)}

Thus, u(q′) = u(H ′). Furthermore, the class in Pu that contains the existential
variable y contains only the non-separating variable x3 since all the atoms that
contain x3 are in q′.
This shows that µ = (q′ ,H ′ , Pu) is a piece unifier of q with R2.

Definition I.30 (Application of a Piece-unifier)
Let µ = (q′ ,H ′ , Pu) be a piece-unifier of a CQ q with a rule R : B→ H and u be a substi-
tution associated with Pu . The application of µ to q produces a CQ defined as follows:

β(q,R,µ) = u(B)∪u(q \ q′),

The CQ β(q,R,µ) is called the direct query rewriting of q according to µ and R.

Example I.19: Application of a Piece-unifier

Consider the piece-unifier µ = (q′ ,H ′ , Pu) of q with R2 = isSeniorStaff(x) →
∃y canSupervise(x,y) from Example I.18. Recall that:

• q′ = {canSupervise(x1,x3),canSupervise(x2,x3)},

• H ′ = {canSupervise(x,y)},

• Pu is a partition of terms(q′)∪ terms(H ′) given by {{x1,x2,x}, {x3, y}}.

We associated with Pu the substitution u such that u(x1) = u(x2) = u(x) = x1 and
u(x3) = u(y) = x3.
The application of the piece-unifier µ to q according to R2 is given by:

β(q,R2,µ) = u({isSeniorStaff(x)})∪u(q \ q′)
= {isSeniorStaff(x1),worksWith(x1,x1)}
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Definition I.31 (R-Rewriting Sequence)
Given a UCQ Q and a set of rules R, an R-rewriting sequence from Q is defined as a
finite sequence of UCQs (Q0, . . . ,Qk) such that:

• Q0 =Q,

• for each 1 ≤ i ≤ k, there exists a piece-unifier µi of a CQ qi−1 in Qi−1 with Ri ∈ R
such that Qi =Qi−1 ∪ {β(qi−1,Ri ,µi)}.

Definition I.32 (Piece-rewriting)
A piece-rewriting of a UCQ Qwith a (conjunctive) rule setR is a UCQ Qk obtained from
Q by an R-rewriting sequence (Q0 =Q), . . . ,Qk (k ≥ 0).

Theorem I.20: Soundness and Completeness ofR-Rewriting

Let I be an instance,R be a set of existential rules, and Q be a Boolean UCQ. The
following conditions are equivalent:

1. I,R |=Q

2. There exists a piece-rewriting with R from Q to Qk such that I |=Qk .

In other words, a knowledge base (I,R) entails a Boolean UCQ Q if and only if there
exists an R-rewriting sequence that transforms Q into a new query Qk that is entailed
by the instance I .

We now present two ways to handle answer variables in a piece-unifier: with a
special predicate or with a slight modification of the notion of piece-unifier. We detail
these two techniques:

• Special Predicate for Answer Variables: Let q(x) be a CQ, we transform it into
a boolean CQ by adding an atom Ans(x), which contains all the answer variables.
And then, we just have to rewrite this Boolean CQ: we have the guarantee that a
variable in an Ans-atom will never be unified with an existential variable since it
will always be a separating variable when we compute a piece-unification.

• Modification of the Piece-Unifier: Given a CQ q(x), we can refine the notion of
piece-unifier to ensure that no answer variable is in the same class as an exis-
tential variable. Furthermore, if an answer variable x ∈ x is unified with another
answer variable y ∈ x or a constant c, we introduce an equality atom so that the
answer variable still appears in the CQ, that is, we add x = y in the first case or
x = c in the latter. With this approach, we obtain CQs that may contain equalities
(but keep their answer variables, which is important when the set of CQs is seen
as a UCQ).

We now focus on producing a set of CQs that is a sound and complete rewriting.
Although a sound and complete rewriting may be an infinite set, one of its finite subsets
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may still be complete. This is because some queries may be redundant (hence can be
eliminated), a concept captured by the notion of query containment.

Definition I.33 (Query Containment)
Given two queries Q1 and Q2, we say that Q1 is contained in Q2, which is denoted by
Q1 ⊑ Q2, if certain(Q1, I) ⊆ certain(Q2, I) for every instance I . We further more say
that Q1 is strictly contained in Q2, which is denoted by Q1 ⊏Q2, if Q1 ⊑ Q2 and Q2 @Q1.

In the case of CQs, we can characterise query containment with the notion of query
homomorphism.

Definition I.34 (Query Homomorphism)
Given two CQs q1(x1) and q2(x2), a query homomorphism from q1 to q2 is a homomor-
phism h from q1 to q2 such that h(x1) = x2.

It is well known that, for two CQs q1 and q2, we have q1 ⊑ q2 if and only if q2
maps to q1 by a query homomorphism. Moreover, given two UCQs Q1 and Q2, we have
Q1 ⊑ Q2, if and only if for all q1 ∈ Q1, there exists q2 ∈ Q2 such that q1 ⊑ q2; if Q1 and
Q2 are Boolean UCQs, Q1 |=Q2 if and only if Q1 ⊑ Q2.

We can now define the cover of a set of CQs:

Definition I.35 (Query Cover)
Let Q be a set of conjunctive queries. A cover of Q is a set Qc ⊆ Q such that:

1. For any q in Q, there exists q′ in Qc such that q′ ⊑ q,

2. All elements of Qc are pairwise incomparable with respect to ⊑.

Example I.21: Query Containment & Cover

Consider the UCQ

Q =


q1 = ∃x1, y1, z1 p(x1, y1)∧ q(y1, z1),

q2 = ∃x2, y2 p(x2, y2)∧ q(y2, y2),

q3 = ∃x3, y3, z3 p(x3, y3)∧ q(y3, z3)∧ q(u3, z3)

.
Query Containment:
We have the following inclusions: q1 ⊑ q3, q3 ⊑ q1, q1 ⊑ q2 and q3 ⊑ q2.
Query Cover:
A cover of Q could be Q′ = {q1}. This subset is minimal and Q′ ≡ Q as for each
CQ in Q′, there exists a homomorphic image in Q and vice versa. In particular,
Q′ = {q1} seems to be a better choice than Q′ = {q3}, as q1 is simpler than q3, but
both are possible covers of Q.
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Using these notions, we can build a breadth-first rewriting algorithm (Algorithm
1), whose primary objective is to generate a sound and complete rewriting of any given
UCQ Q with respect to any given set of rules R.

The algorithm operates by maintaining two sets: the resulting set QF , which com-
prises all generated CQs up to the current point, and the set of CQs QE to be explored.

While there are still CQs to explore (line 3), we compute all the possible piece-
unifiers (line 7) with all the rules (line 6) and apply them to produce new CQs that are
added to Qt (line 8) that contains the CQs produced in a breadth-first step.

Then, a cover of all the CQs produced (comprising the ones produced in a previ-
ous step and the ones produced during the step) is computed (line 12). The cover is
computed by following a priority scheme that favours queries that have already been
explored. In essence, if two CQs are homomorphically equivalent and only one of them
has already been explored, the function retains the explored CQ and discards the other.
This feature ensures that two equivalent CQs are not explored redundantly, contribut-
ing to the termination guarantee of the algorithm.

Then, we select unexplored queries in the cover to explore them in the next step
(line 13). The algorithm continues these iterations until QE , is empty, at which point
the resulting set QF provides a cover of the set of all the rewritings of the initial UCQ
Q.

Algorithm 1: Breadth-First Rewriting Algorithm
Input : A set of rules R, a union of conjunctive queries Q
Output: A cover of the set of R-rewritings of Q

1 QF ←Q ; // resulting set

2 QE ←Q ; // queries to be explored

3 while QE , ∅ do
4 Qt←∅ ; // queries generated at this rewriting step

5 for qi ∈ QE do
6 for R ∈ R do
7 for µ piece-unifier of qi with R do
8 Qt←Qt ∪ β(qi ,R,µ)
9 end

10 end
11 end
12 Qc← cover(QF ∪Qt) ; // update cover

13 QE ←Qc \QF ; // select unexplored queries from the cover

14 QF ←Qc
15 end
16 return QF

Theorem I.22 states that Algorithm 1 is sound and complete.
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Theorem I.22: Soundness & completeness [König, 2014, Thomazo, 2013]

The output of Algorithm 1 is a sound and complete rewriting of Q.

Note that we talk of a sound and complete rewriting of a UCQ, even when there
is no such finite rewriting, i.e., no UCQ-rewriting. The following notions allow one to
describe a possibly infinite set of CQs that is a sound and complete rewriting.

Definition I.36 (Breadth-first rewriting operator)
The breadth-first rewriting operator W∞, takes as input a UCQ Q and a rule set R, and
returns a possibly infinite set of CQs inductively defined as follows:

• W0(Q,R) =Q

• For i > 0:

Wi(Q,R) =Wi−1(Q,R)∪ {β(Wi−1(Q,R),R,µ) | µ piece-unifier with R ∈ R}

• Finally, W∞(Q,R) =
⋃
i∈N

Wi(Q,R).

Definition I.37 (Rewriting Function)
Let Q be a UCQ and R be a set of rules. The rewriting function, denoted by
rewriting(Q,R), is defined as a function that returns Wk(Q,R) with k the smallest
integer such that Wk(Q,R) ≡Wk+1(Q,R), if such an integer exists, otherwise it returns
W∞(Q,R).

I.7 KBDM systems

One of the objectives of a KBDM system is to provide a high-level access to data from
a variety of sources. Unlike in conventional knowledge-based systems, the knowledge
base instance (or fact base) is not given, but specified by assertions that relate elements
of the data sources with facts at the ontological level. Such set of assertions is called a
mapping. Since mappings are classical objects in database theory (and specially used in
data integration and data exchange), we will first define mappings independently from
a KBDM system.

I.7.1 Mapping

Broadly speaking, a mapping is a (finite) set of mapping assertions, which allow one
to (1) select elements using a source vocabulary and (2) translate them into elements
in a target vocabulary. More specifically, a mapping assertion can be seen as a pair
(QS [x],QT [x]), where QS [x] is a query over the source vocabulary and QT [x] is a query
over the target vocabulary, both queries having the same tuple of answer variables x.
The intuitive meaning of such an assertion is that the answers to QS [x] on a source
instance yield answers to QT [x] on the target instance.
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Most work considers mappings in which assertions are pairs of conjunctive queries:
we call them conjunctive mappings. A conjunctive mapping assertion can thus be seen
as an existential rule such that the body an the head use disjoint sets of predicates. Such
rule is also called a source-to-target (or simply s-to-t) rule.

Definition I.38 (Conjunctive Mapping)
Let VS and VT be two disjoint sets of predicates respectively called source vocabulary
and target vocabulary. A conjunctive mapping (or simply mapping) is a setM of existen-
tial rules, such that each rule R ∈M is source-to-target, that is, predicates(body(R)) ⊆
VS and predicates(head(R)) ⊆ VT .

Different classes of conjunctive mappings have been considered in the literature,
depending on whether the source or target vocabulary is considered as the reference
vocabulary [Lenzerini, 2002]:

• Global As View mappings (GAV) consider the mapping assertions as views over the
sources: each relevant element of the target vocabulary is associated with a query
using the source vocabulary. Formally, a GAV mapping assertion is a Datalog
rule, that is, of the form B[x,y]→ H[y], where H[y] is often restricted to a single
atom.

• Local As View mappings (LAV), on the other hand, consider the mapping asser-
tions as views over the target: each relevant element of the source vocabulary
is associated with a query using the target vocabulary. A LAV mapping asser-
tion is a linear existential rule, that is, of the form p[x,y]→ ∃z H[y,z], where p
is a predicate. Note that existential variables in rule heads allow for asserting
the existence of target entities that may not be present in the source (aka value
invention), which is not the case of GAV mappings.

• Global-Local As View mappings (GLAV) introduce more flexibility by generalising
both GAV and LAV. Their mapping assertions are general existential rules.

Given a database D over VS and a mappingM, one difficulty is to define the result-
ing instance and in relation to this, the answers to a target query (i.e., a query expressed
over VT ). Indeed, the target instance is not completely defined by D andM. Actually,
the target instance can be thought of as the set of all instances that "satisfy"M given
D. This is formalised by the following notion of solution, originally coming from data
exchange, where the aim is to actually build an instance produced from D andM (see,
e.g., [Fagin et al., 2005]).

Let D be a (source) database, i.e., a ground instance on a vocabulary VS , and letM
be a mapping defined from VS to a target vocabulary VT . A solution for D w.r.t. M is
an atomset I on VT such that I (D ∪ I) satisfiesM (where I (D ∪ I) is the interpretation
isomorphic to D∪I , considering that it is an interpretation of the logical language with
set of predicates VS ∪VT and set of constants including those occurring in D andM).
The set of solutions for D w.r.t.M is thus:

solM(D) = {I | I is an atomset on VT and (D ∪ I) |=1M}
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Example I.23: Solutions

Let D = {q(a), r(a), s(b)} be a database andM be a mapping from VS to VT such
that:

M =

q(x) →∃z p(x,z),

r(x) →∃z p(x,z)∧ t(z)

Several instances I over VT = {p(·, ·), t(·)} are solutions for D with respect to M,
among them:

• I1 = {p(a,z0), t(z0)};

• I2 = {p(a,a), t(a)} ;

• I3 = {p(a,a), t(a), p(b,b)};

• I4 = {p(a,z0), p(a,z1), t(z1)}.

We can see that I1 and 4 are homomorphically equivalent and can be mapped to
I2 and I3.

The certain answers to a query QT [x] over a pair (D,M) are then defined as the
answers shared by all the solutions, i.e.,

certainM(QT ,D) =
⋂

I∈solM(D)

QT (I)

I.7.2 KBDM

As in the classical OBDA framework, we distinguish the specification of a KBDM sys-
tem, which only defines the mapping and the ontology, from its instantiation on specific
data sources.
Definition I.39 (KBDM specification)
A KBDM specification Σ = (VO ,RO ,VS ,M) is composed of:

• a finite set of predicates VS ;

• a finite set of predicates VO (disjoint from VS );

• an ontology RO composed of a set of existential rules defined over VO;

• a conjunctive mappingM from VS to VO.

Note that VO plays the role of the target vocabulary. By a slight abuse of notation,
we will write that a component of Σ is an “element” of Σ, e.g. VS ∈ Σ.

Definition I.40 (KDBM system)
A KBDM systemK = (D,Σ) is composed of a database instanceD on VS ∈ Σ and a KBDM
specification Σ = (VO ,RO ,VS ,M).
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The certain answers to a query QO (over VO) over K are defined as:

certainΣ(QO ,D) =
⋂

I∈solM(D)

certain(QO , (I,RO))

We can extend the KBDM framework to consider several data schemas and sources,
which are integrated thanks to the ontological vocabulary. This leads to Integrated
KBDM specifications (IKBDM) ΣI = (VO ,RO ,SI ,MI ) where SI = {VS1

, . . . ,VSn} is a se-
quence of n data source vocabularies and MI = {M1, . . . ,Mn} is a sequence of n map-
pings, each of them defined from VSi toO. Then an IKBDM system is a pairKI = (DI ,ΣI )
where DI = {D1, . . . ,Dn} where each Di is a database on VSi .

From an abstract viewpoint, an IKBDM specification ΣI = (VO ,RO , {VS1
, . . . ,VSn},

{M1, . . . ,Mn}) and an IKBDM system KI = ({D1, . . . ,Dn},ΣI ) can be seen as, respectively, a
KBDM specification and a KBDM system. Indeed, we can define Σ = (VO ,RO ,VS1

∪ . . .∪
VSn ,M1∪ . . .∪Mn) and K = (D1∪ . . .∪Dn,Σ) (where the union is defined in the obvious
way) since we assume the sets of predicates are disjoint. So, all the properties we define
on a KBDM specification / system hold for an IKBDM specification / system. Hence, in
most of the dissertation, we will talk about KBDM specifications and systems and we
will specifically mention IKBDM systems only when it is relevant to do so.

I.7.3 Querying a KBDM system

Since mappings are existential rules, querying a KBDM system with a UCQ can be per-
formed using the forward or backward chaining techniques we have already introduced
for knowledge bases. However, since a mapping describes a translation from a source
to a target, we have to slightly adapt the chase and rewriting procedure by adding a
post-processing that removes the atoms that are not on the expected vocabulary.

Definition I.41 (Mapping Chase)
Let IS be an instance over VS andM be a mapping from VS to VO. The mapping chase
of IS byM, denoted byM−chase(IS ), is defined as follows:

M−chase(IS ) = chase(IS ,M) \ IS

Definition I.42 (Mapping Rewriting Function)
Let QO be a UCQ over VO andM be a mapping from VS to VO. The mapping-rewriting
function of QO byM, denoted byM−rewriting(QO), is defined as follows:

M−rewriting(QO) = {qS | qS ∈ rewriting(QO ,M), and qS is over VS }

Both procedures always terminate since the rules in the mappings are not recursive.
Moreover, since the rule bodies and heads are defined on disjoint vocabularies, a unique
breath-first step is sufficient to compute the result. By applying the mapping chase to
a database D, we obtain an instance on VO that has a "universality" property, similar to
that of a universal model. It is called a universal solution in database theory.
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Definition I.43 (Universal Solution)
Let K = (D,Σ) be a KBDM system with an empty ontology, i.e., Σ = (VO ,∅,VS ,M). An
instance I on VO is a universal solution of K if I ∈ solM(D) and I maps to each solution
in solM(D).

We can thus compute the certain answers to a UCQ QO over a KBDM system K =
(D,Σ = (VO ,∅,VS ,M)) with an empty ontology by evaluating QO onM−chase(D):

Proposition I.24

certainM(QO ,D) =QO(M−chase(D)) for any UCQ QO on VO.

Similarly, with a query rewriting approach:

Proposition I.25

certainM(QO ,D) =M−rewriting(QO)(D) for any UCQ QO on VO.

Example I.26: Query answering with a mapping

Take again Example I.23: let database D = {q(a), r(a), s(b)} be a database and a
M be a mapping from VS to VT such that:

M =

q(x) →∃z p(x,z),

r(x) →∃z p(x,z)∧ t(z)

Several instances I over VT = {p(·, ·), t(·)} are solutions for D with respect to M,
among them:

• I1 = {p(a,z0), t(z0)};

• I2 = {p(a,a), t(a)} ;

• I3 = {p(a,a), t(a), p(b,b)};

• I4 = {p(a,z0), p(a,z1), t(z1)}.

Let QO(u) = ∃v p(u,v) be a UCQ.
On I1, I2 and I4, the only answer to QO(u) is (a). On I3, there is also (b). By
definition, (b) cannot be a certain answer on D w.r.t.M, since it is not an answer
on all the solutions.
We have M−chase(D) = I4, which implies that I4 is a universal solution (note
that I1 is also a universal solution). Then, QO(I4) = certainM(QO ,D) = {(a)}.
And we have QS (u) = M−rewriting(QO) = q(u) ∨ r(u). Then, QS (D) =
certainM(QO ,D) = {(a)}.
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The previous propositions hold for QO a UCQ, and more generally QO expressed
in a query language closed by homomorphism. They can be extended to KBDM with a
non-empty ontology, provided that the chase or query rewriting halts.

Proposition I.27

Let K = (D,Σ = (VO ,RO ,VS ,M)) be a KBDM system where RO is a finite expan-
sion set, and QO be a UCQ on VO. Then:

certainΣ(QO ,D) =QO(chase(M−chase(D),RO))

Proposition I.28

Let K = (D,Σ = (VO ,RO ,VS ,M)) be a KBDM system where RO is a finite unifica-
tion set, and QO be a UCQ on VO. Then:

certainΣ(QO ,D) =M−rewriting(rewriting(QO ,RO))(D)

Note that, when RO is FUS, we can also rewrite QO with RO and evaluate the re-
sulting query onM−chase(D).

Finally, we extend the query containment notation to ontological queries on a
KBDM specification Σ = (VO ,RO ,VS ,M). Let Q1(x) and Q2(x) be two queries over VO,
we note:

• Q1 ⊑M Q2 when certainM(Q1,D) ⊆ certainM(Q2,D) for each database D on VS ;

• Q1 ⊑Σ Q2 when certainΣ(Q1,D) ⊆ certainΣ(Q2,D) for each database D on VS .

The following properties of ⊑M and ⊑Σ follow from the definitions and from the
soundness and completeness of query rewriting.

Proposition I.29

Let Σ = (VO ,RO ,VS ,M) be a KBDM specification and Q1(x) and Q2(x) be two
UCQs over VO:

• Q1 ⊑M Q2 iffM−rewriting(Q1) ⊑M−rewriting(Q2);

• if RO is a finite unification set of rules, Q1 ⊑Σ Q2 iff
M−rewriting(rewriting(Q1,RO)) ⊑M−rewriting(rewriting(Q2,RO)).





II - Translation framework

This chapter is devoted to the presentation of our translation framework. In Section II.1,
we introduce the different kinds of translations in a KBDM system. Section II.2 defines
fundamental notions for the translation of queries. Concerning the translation of constraints,
we first discuss the semantics of constraints in a KBDM system in Section II.3, then we define
fundamental notions in Section II.4. These notions mirror those defined for query translation
up to differences between the semantics of query answering and constraint satisfaction. Then
we formalize the notion of "selected data" through a mapping, which has an impact on the
existence of a perfect translation (Section II.5). Finally, we illustrate potential uses of our
framework on practical scenarios in Section II.6.

Preliminary note. In the literature pertaining to the analysis and transformation of
queries, a multitude of terminologies have been used, such as “direct and reverse
rewriting" [Lenzerini, 2019], “source and target rewriting" [Arenas et al., 2010, Pérez,
2011], as well as “abstraction" [Cima et al., 2020] and “realization” [Lutz et al., 2018]
of a data query in the case of data-to-ontology translation. These terminologies, while
descriptive in their contexts, may introduce ambiguities in the scope of this disserta-
tion, particularly with respect to the term “rewriting” referring to backward chaining
(e.g., Section I.6 and Chapter III). To delineate the specific operation of changing the
vocabulary of a query, which is inherently bidirectional and distinct from the logical
transformation involved in rewriting, we adopt the term "translation". The choice of
this nomenclature is motivated by two main considerations. First, it avoids potential
confusion by distinguishing the vocabulary transformation process from other forms
of rewriting. Second, it aptly conveys the notion of changing vocabulary, drawing an
appropriate metaphor from linguistic translation, where words are transposed from
one language to another while preserving the underlying meaning. Thus, within the
context of this work, "translation" will refer to the process of expressing queries or con-
straints in another vocabulary, while preserving their semantics as well as possible.

II.1 Different kinds of translations

Given a KBDM specification, a translation can be done in each of the two directions,
from the source vocabulary to the ontological vocabulary and vice versa, and may con-
sider two levels of the KBDM specification: either the level of the mappings only, or
the whole KBDM specification, which includes the (existential) rules as well. For con-
venience, we also call translation the result of the translation. We consider here the
translation of queries and integrity constraints.

Moreover, a translation through a KBDM specification goes from a constraint/query
class C to a constraint/query class C′, which we denote by a C-to-C′-translation. For the
sake of clarity, constraint/query classes will be explicitly mentioned only when needed.
When talking only of the target class C, we say that it is a C-translation.

37
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Definition II.1 (S -to-O -translation)
An S-to-O translation w.r.t. a KBDM specification Σ = (VO ,RO ,VS ,M) translates con-
straints/queries from VS to VO.

Definition II.2 (O -to-S -translation)
An O-to-S translation w.r.t. a KBDM specification Σ = (VO ,RO ,VS ,M) translates con-
straints/queries from VO to VS .

In the following we define properties of a translation with respect to the mapping
or to the entire specification. For S-to-O-translations, we talk of an M-translation in
the first case and a Σ-translation in the second case; for O-to-S-translations, we talk of
M−1-translation and Σ−1-translation. These notations are summarized in Table II.1.

Direction with respect toM with respect to Σ

S-to-O M-translation Σ-translation
O-to-S M−1-translation Σ−1-translation

Table II.1: Kinds of translations

In the following, we formally define translations of queries (respectively, of con-
straints) that fulfil some semantic properties.

II.2 Query translation

In this section, we define a general framework for the translation of queries, which
we will apply in particular on UCQs. This framework is largely based on notions in-
troduced in [Cima et al., 2019] and [Arenas et al., 2010, Pérez, 2011]. Translations of
UCQs will be building blocks for the translations of constraints.

We first introduce the concepts of sound and complete translations to characterise
the quality of a translation. A sound translation is one that does not retrieve more an-
swers than the translated query, while a complete translation is one that retrieves all the
answers of the translated query. Finally, a perfect translation is both sound and com-
plete.

Definition II.3 (Sound / complete translation)
Let QS and QO be two queries over vocabularies VS and VO, respectively, Σ =
(VO ,RO ,VS ,M) be a KBDM specification, and X ∈ {M,Σ}. We say that:

• QO is a sound X-translation of QS (and QS is a complete X−1-translation of QO) if
for every database D, certainX(D,QO) ⊆ QS (D).

• QO is a complete X-translation of QS (and QS is a sound X−1-translation of QO) if
for every database D, QS (D) ⊆ certainX(D,QO).

• QO is a perfect X-translation of QS (and QS is a perfect X−1-translation of QO) if it
is both sound and complete.
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The next example illustrates this definition. In particular, it shows that a database
query may have no perfect S-to-O-translation.

Example II.1: Sound, Complete, and Perfect Translations of Queries

Let Σ = (VO ,RO ,VS ,M) be a KBDM specification where:

VS = {s1, s2, s3}
VO = {p, t}
RO = {r(x,y)→∃z.p(y,z)},

M =


s1(x,y) → p(x,y),

s2(x,x) →∃z.r(x,z),
s3(x,y) → p(x,y)

O-to-S-translation:

• Query QO = {∃u,v.p(u,v)} admits:

– a soundM−1-translation: Q1
O→S = {∃u,v.s1(u,v)}

– a perfectM−1-translation: Q2
O→S = {∃u,v.s1(u,v),∃u,v.s3(u,v)}

– a perfect Σ−1-translation:
Q3
O→S = {∃u,v.s1(u,v),∃u,v.s3(u,v),∃u.s2(u,u)}

Note that Q2
O→S is a sound Σ−1-translation but not a complete Σ−1-translation.

Indeed, let D = {s2(a,a)}: then I(D,M) = {∃z.r(a,z)} and chase(I(D,M),O) = I(D,M) ∪
{p(a,z)}, hence D,M,RO |=QO but D ̸|=Q2

O→S .

S-to-O-translation:

• Query Q1
S = {∃u,v.s1(u,v)} admits:

– a complete M-translation: Q1
S→O = {∃u,v.p(u,v)} (hence, Q1

S→O is
also a complete Σ-translation); however, Q1

S→O is not sound. In-
deed, let D = {s3(a,b)}, then I(D,M) = {p(a,b)}, hence I(D,M) |= Q1

S→O,
whereas D ̸|= Q1

S . Actually, the only soundM-translation of Q1
S is the

empty UCQ, equivalent to ⊥. This shows that Q1
S has no perfectM-

translation.

• Query Q2
S = {∃u,v.s2(u,v)} admits:

– a soundM-translation: Q2
S→O = {∃u,w.r(u,w)}, which is however not

complete, as can be checked by taking for instance D = {s2(a,b)}.

Among sound or complete translations, some translations are more "faithful", or
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closer to the meaning of the input query, than others. Intuitively, we prefer complete
translations that lead to fewer additional answers and sound translations that preserve
more answers. To compare different translations with this respect, we rely on the pre-
order on queries defined by query containment. Note that we have to specify the set
of instances to be considered for checking query containment: for queries on VS , we
consider all the databases on VS ; in contrast, for queries on VO we do not consider all
instances on VO, but only the instances on VO that can be produced viaM (orM and
RO), i.e, all I(D,M) (or I(D,Σ)) for D on VS . Hence, we consider classical query contain-
ment (⊑, see Definition I.33) to compare queries over VS , containment w.r.t. M (⊑M)
to compare M-translations, and finally containment w.r.t. to Σ (⊑Σ) to compare Σ-
translations (these two last notations are defined in Section I.7.3). In the following, we
denote by ⊑X one of these three operators, according to the considered translations.

The following notions of minimally complete and maximally sound translations are
adapted from [Cima et al., 2019]:

Definition II.4 (Minimally Complete Translation)
Given two queries Q1 and Q2, over vocabularies V1 and V2, respectively, we say that Q2
is a minimally complete translation of Q1 if (1) Q2 is a complete translation of Q1, and (2)
there is no query Q over V2 such that Q⊏X Q2 and Q is a complete translation of Q1.

Definition II.5 (Maximally Sound Translation)
Given two queries Q1 and Q2 over vocabularies V1 and V2, respectively, we say that Q2
is a maximally sound translation ofQ1 if (1)Q2 is a sound translation ofQ1, and (2) there
is no query Q over V2 such that Q2 ⊏X Q and Q is a sound translation of Q1.

The following proposition states relationships between the notions of (minimally)
complete, (maximally) sound and perfect translations.

Proposition II.2

Let Q1 and Q2 be two queries over two disjoint vocabularies. The following
assertions are equivalent:

1. Q1 is a perfect translation of Q2.

2. Q2 is a perfect translation of Q1.

3. Q1 is a sound and complete translation of Q2.

4. Q1 is a minimally complete and maximally sound translation of Q2.

5. Q1 is a minimally complete translation and a sound translation of Q2.

6. Q1 is a maximally sound translation and a complete translation of Q2.
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Proof. By definition, if Q1 is a sound translation of Q2, Q2 is a complete translation of
Q1, and conversely. This implies that Q1 is a perfect translation of Q2 if and only if Q2
is a perfect translation of Q1, so (1)⇔ (2).

By definition, a perfect translation is a sound and complete translation, thus (1 −
2)⇔ (3). The points (4−6) are all about sound and complete translations, and thus they
imply (1 − 3). To show that (1)⇒ (3 − 6), we show that a perfect translation is always
minimally complete and maximally sound. Assume Q1 is perfect but not minimally
complete. Then, there exists another query Q′1 that is also complete such that there
exists an instance I with Q′1(I) ⊊ Q1(I). This implies that there is an answer to Q1 that
is not an answer to Q2 since Q′1 is also complete, thus contradicting the fact that Q1 is
sound. The argument is similar to prove that Q1 is maximally sound. ■

The following example illustrates the previous notions on the class of UCQs.

Example II.3: Minimally Complete and Maximally Sound Translations

Consider again the KBDM specification Σ = (VO ,RO ,VS ,M) from Example
II.1, where RO = {r(x,y) → ∃z.p(y,z)} and M = {s1(x,y) → p(x,y), s2(x,x) →
∃z.r(x,z), s3(x,y)→ p(x,y)}. Among the various queries we defined or obtained
by translation, the following ones illustrate the notions of minimally complete,
maximally sound, and perfect translations:

O-to-S-translation:

• For the query QO = {∃u,v.p(u,v)}:

– The query Q1
O→S = {∃u,v.s1(u,v)} is not maximally sound as

an M−1-translation, as there exists the M−1-translation Q2
O→S =

{∃u,v.s1(u,v),∃u,v.s3(u,v)}, which is a perfect translation, therefore
both minimally complete and maximally sound.

– The query Q3
O→S = {∃u,v.s1(u,v),∃u,v.s3(u,v),∃u.s2(u,u)}, being a

perfect Σ−1-translation, is both minimally complete and maximally
sound.

S-to-O-translation:

• For the query Q1
S = {∃u,v.s1(u,v)}:

– The query Q1
S→O = {∃u,v.p(u,v)} is a minimally complete (but not

sound) Σ-translation.

• For the query Q2
S = {∃u,v.s2(u,v)}:

– The query Q2
S→O = {∃u,w.r(u,w)} is a maximally sound (but not com-

plete)M-translation.
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When a query Q does not have a perfect translation (in the target query class), it
becomes interesting to identify a pair of queries (Qsound,Qcomp), such that Qsound is a
maximally sound translation of Q, while Qcomp is a minimally complete translation of
Q.

Finally, it is interesting to note that a sound Σ-translation is also a sound M-
translation and a complete M-translation is also a complete Σ-translation, as shown
by the next proposition.

Proposition II.4

Let Σ = (VO ,RO ,VS ,M) be a KBDM specification, a queryQS over VS and a query
QO over VO. We have the following properties:

1. If QO is a sound Σ-translation of QS then QO is a soundM-translation of
QS (or equivalently, if QS is a complete Σ−1-translation of QO then QS is a
completeM−1-translation of QO);

2. If QO is a complete M-translation of QS then QO is a complete Σ-
translation of QS (or equivalently, if QS is a soundM−1-translation of QO
then QS is a sound Σ−1-translation of QO).

Proof. Without loss of generality, we do the proof for Boolean queries.

1. Assume that for all databases D over VS , we have D,M,RO |=QO implies D |=QS .
By the monotonicity of first-order logic, we have D,M |= QO implies D,M,RO |=
QO. And thus D,M |=QO implies D |=QS .

2. Assume that for all databasesD over VS , we have thatD |=QS impliesD,M |=QO.
By the monotonicity of first-order logic, we also have D,M,RO |=QO. ■

II.3 Semantics of constraints

In database systems, (integrity) constraints play a pivotal role in ensuring the consis-
tency and reliability of the stored data. They delineate the set of permissible values
that a database can take, thus serving to maintain the accuracy and quality of the data
by preventing the introduction of incorrect or inconsistent data. Constraints are typ-
ically specified through formulas in first-order logic, acting as a formal tool to define
the conditions that the data in a database must satisfy. However, as we shall see, deter-
mining the appropriate semantics for constraints in a KBDM system poses a significant
challenge.

Traditionally in knowledge representation, the semantics adhere to an open-world
assumption (OWA), a standard that presumes information to be potentially incomplete
and allows for the assimilation of data from varied sources [Poggi et al., 2008,Calvanese
et al., 2017, Kharlamov et al., 2017].
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However, database theory usually applies a closed-world assumption (CWA) when it
comes to interpreting integrity constraints (as well as queries) which states that any
information not explicitly known to be true is false. In other words, if an assertion
cannot be found in the database, then its negation is assumed to be true. This paradigm
serves to establish whether the data set satisfies specific conditions. Representing these
integrity constraints in an ontology language is not completely straightforward due to
this divergence of semantics.

Next, we first define the satisfaction of a constraint on a specific instance, then we
discuss how to take into account the mapping and the ontological rules to define the
satisfaction of a constraint in a KBDM context. Importantly, a constraint in this chapter
is simply any (closed) FO-formula. We study in detail in Chapter VI different syntactic
forms of constraints.
Definition II.6 (Constraint satisfaction / violation)
A constraint C is said to be satisfied by an instance I if I |=1 C and violated otherwise.

One can see that this definition gives a closed-world semantic to the evaluation of
constraints since they are checked on a specific model, which is the one isomorphic to
the instance. When we consider an instance that is a database, the semantics is exactly
the one usually considered in database theory.

Since our aim is to translate constraints through mappings we have to define which
target instance must be considered to define the satisfaction/violation of a target con-
straint given a database D and a mappingM. Indeed, all the solutions in solM(D) do
not have the same status with respect to the satisfaction of a constraint, as illustrated
in the following example.

Example II.5: Solutions & constraint satisfaction

Take again Example I.23: let D = {q(a), r(a), s(b)} be a database and

M =

q(x) →∃z p(x,z),

r(x) →∃z p(x,z)∧ t(z)

. Several instances I on VO = {p(·, ·), t(·)} satisfyM, among them:

• I1 = {p(a,z0), t(z0)};

• I2 = {p(a,a), t(a)} ;

• I3 = {p(a,a), t(a), p(b,b)};

• I4 = {p(a,z0), p(a,z1), t(z1)}.

Let C = p(x,y) → t(y) be a constraint, where universal quantifiers are implicit,
like in a rule.
Concerning the satisfaction of C, we have I1 and I2 both satisfy C, but neither I3
nor I4. Note, moreover, that I1 and I4 are semantically equivalent.
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In a CWA perspective, it seems relevant to select a solution that adds minimal
knowledge, that is an instance I ∈ solM(D) such as there is no J ∈ solM(D) with I |=1 J
and I ̸|=1 J . So, we have to choose I among the universal solutions of (D,M). On the
previous example, only I1 and I4 have this property.

Again, in a CWA perspective, since we consider the isomorphic interpretation of an
instance to check the satisfaction of a constraint, we have to choose, among the univer-
sal solutions, the one that is minimal in terms of cardinality. Indeed such a universal
solution contains a minimal number of variables, and given the UNA, it introduces a
minimal number of individuals in the isomorphic interpretation. On the previous ex-
ample, I1 is the instance to select in order to check C; hence, we conclude that (D,M)
satisfies C.

In other words, the instance to select to check a constraint on the virtual instance
defined from D by a mappingM is the core of anyM−chase(D): we call it the target
instance.

Definition II.7 (Target instance I(D,M))
The instance associated with a database D on VS and a mappingM from VS to VO is
the minimal universal solution of (D,M). It is called target instance and is denoted by
I(D,M).

Definition II.8 (Constraint satisfaction / violation with respect to a mapping)
A constraint CO defined on VO is said to be satisfied by a KBDM system with empty
ontology K = (D,Σ = (VO ,∅,VS ,M)) if I(D,M) |=1 CO; otherwise it is violated.

Now, we should define the satisfaction of a constraint in a KBDM system integrating
an ontology RO. Unfortunately, the choice of the instance on which we should check
the constraint is not as obvious as in the previous case.

An immediate option would be to make the same choice: take the minimal universal
model of I(D,M) and RO, which would be core(chase(I(D,M),RO)). But in some cases
there is no finite universal model, then there may be several minimal universal models
that are not isomorphic or even there may exist no minimal universal model [Carral
et al., 2018] (see example below).

Example II.6: Multiple universal models & constraints

Let (D,Σ) be a KBDM system with D = {p(a)} and Σ = (VO ,RO ,VS ,M) where:

M =

p(u) →∃x, y.s(x,y),

p(v) →∃z,w.s(z,w)

RO =

r(x,y) →∃z.s(y,z),
s(x,y) →∃z.r(y,z)
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Then, the following instances (which are infinite "paths" alternating r- and s-
atoms) are associated with two distinct universal models:

• J1 =
∧
n∈N

s(xn, yn)∧ r(yn,xn+1);

• J2 =
∧
n∈N

r(zn,wn)∧ s(wn, zn+1).

Furthermore, J1 and J2 are homomorphically equivalent but not isomorphic (in
particular, they do not begin with the same atom).
The constraint C1 = s(x,y)→ ∃z.r(z,x) checks if there is an r-atom before every
s-atom. Thus, J1 ̸|=1 C1 (since we have s(x0, y0) but there is no atom of the form
r(_, y0)), while J2 |=1 C1. On the other hand, the constraint C2 = r(x,y)→∃z.s(z,x)
checks if there is a s-atom before every r-atom. Thus, J2 ̸|=1 C2 (since we have
r(x0, y0) but there is no atom of the form s(_, y0)), while J1 |=1 C2.
This example shows that we cannot choose a specific model among the minimal
ones with our criteria since there is no model that minimises the constraints that
are violated.

This example is Example 12 in [Carral et al., 2018] adapted to the KBDM framework.

Note, however, that when RO is a finite expansion set, core(chase(I(D,M),O)) exists
and is unique for any D, up to a bijective variable renaming.

Another way of getting around this difficulty is to focus only on constraints that
behave in the same way on all homomorphically equivalent interpretations. Then, any
universal model, minimal or not, is relevant to check the satisfaction of a constraint.
This class of constraints, that we call equivalence-stable constraints, allows to give a def-
inition of their satisfaction w.r.t. to a general KBDM system.

Definition II.9 (Equivalence-stable)
A constraint C is equivalence-stable if for any pair of homomorphically equivalent inter-
pretations I1 and I2, I1 |=1 C iff I2 |=1 C.

Any constraint whose satisfaction can be checked by a homomorphism on an in-
terpretation belongs to this class. This is in particular the case of database denial (aka
negative) constraints. We study in chapter VI other types of constraint that this class
embraces.

We can now define the satisfaction of such a constraint w.r.t. a KBDM system.

Definition II.10 (Constraint satisfaction / violation with respect to a KBDM system)
An equivalence-stable constraint CO defined on VO is said to be satisfied by a KBDM
system K = (D,Σ = (VO ,RO ,VS ,M)) if chase(I(D,M),RO) |=1 CO and violated otherwise.

Finally, we could also assume that a specific (and not necessarily minimal) universal
model of I(D,M) and RO is chosen and that the satisfaction of an ontological constraint
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is checked on this model. For instance, we could define satisfaction with respect to a
specific deterministic chase (i.e., a chase that ensures that a unique result is obtained for
each input, up to a bijective renaming of fresh variables) such that the oblivious, semi-
oblivious or Skolem, breadth-first restricted (aka standard) chase, etc. See e.g. [Grahne
and Onet, 2018] for a presentation of the main chase variants.

In the general framework presented in this chapter, we simply assume that a uni-
versal model of the KB (I(D,M),RO) is chosen, without further specification. By a slight
abuse of notation, we denote that atomset by I(D,Σ) (even if it is not necessarily an in-
stance, i.e., a finite atomset, as may be suggested by the notation I). We note I(D,Σ) =
chase(I(D,M),RO). In Chapter VI, we will consider constraints that are equivalence-
stable: then, any universal model can be chosen.

II.4 Constraint translation

As discussed in the previous section, we consider the satisfaction of an ontological con-
straint against a KBDM system K = (D,Σ = (VO ,RO ,VS ,M)) either with respect to the
mapping, thus by checking the constraint on I(D,M), or with respect to Σ, by checking
the constraint on I(D,Σ). Next, a set of constraints is logically seen as the conjunction of
its elements, like it is the case for a set of rules.

Our objective is to provide translations that map a set of constraints C1 to a set
of constraints C2 that behave similarly on "corresponding" instances. We first define
the desired properties of constraint translations; these properties mirror those defined
for query translation, modulo the semantic differences between query answering and
constraint satisfaction.

Definition II.11 (Preservation of the satisfaction / violation)
Let Σ = (VO ,RO ,VS ,M) be a KBDM specification and let CS and CO be two constraint
sets respectively defined on VS and VO. We say that:

• CO preserves the satisfaction of CS (or CS preserves the violation of CO) with respect
to Σ if for every database D, when D |=1 CS then I(D,Σ) |=1 CO;

• CO preserves the violation of CS (or CS preserves the satisfaction of CO) with respect
to Σ if for every database D, when I(D,Σ) |=1 CO then D |=1 CS ;

• CO perfectly preserves CS (or CS perfectly preserves CO) with respect to Σ if CO pre-
serves both the satisfaction and the violation of CS , i.e., if for every database D,
D |=1 CS iff I(D,Σ) |=1 CO. We also say that CO is a perfect translation of CS .

In the following, when we write "with respect to M" instead of "with respect to
Σ", we mean that we do not consider the set of rules; in other words, we refer to the
restriction of Σ = (VO ,RO ,VS ,M) to the KBDM specification (VO ,∅,VS ,M).

These notions are illustrated by the next example. This example also shows that, as
in the case of queries, perfect translations do not always exist.
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Example II.7: Translations of constraints

Let Σ = (VO ,RO ,VS ,M) be a KBDM specification, where:

M =


r(x,y)→ p(x,y),

q(x)→ ∃z.p(x,z),

s(x,y)→ t(x,y)

and RO = {p(x,y)→ t(x,y)}.
Consider the following (negative) constraints over VS :

• C1
S = q(x)→⊥

• C2
S = r(x,y)→⊥

• C3
S = s(x,y)→⊥

Let C1
O = p(x,y)→⊥. This constraint preserves the violation of both C1

S and C2
S

w.r.t. M . However, it does not preserve their satisfaction. For example, with
D1 = {r(a,b)} leading to I(D1,M) = {p(a,b)}, we have D1 |=1 C

1
S but I(D1,M) ̸|=1 C

1
O.

Similarly, for D2 = {q(a)}, which yields I(D2,M) = {p(x,z0)}, we have D2 |= C2
S but

I(D2,M) ̸|= C1
O.

In contrast, C1
O perfectly preserves CS = {C1

S ,C
2
S }, i.e., CS = C1

S ∧C
2
S , w.r.t. bothM

and Σ.
Now, let C2

O = t(x,y) → ⊥: it perfectly preserves C3
S w.r.t. to M, but does not

perfectly preserve C3
S w.r.t. Σ. Indeed, consider D1: then I(D1,Σ) = {p(a,b), t(a,b)},

and, while D1 |=1 C
3
S , I(D1,Σ) ̸|=1 C

2
O.

We now introduce a preorder on sets of constraints (defined on the same vocabu-
lary) in order to compare them. Just as for query containment, this preorder has to
consider different sets of instances depending on the context. For constraints on VS ,
these instances are all the databases on VS , while for constraints on VO, these are all the
I(D,Σ) for all D on VS . Next, the set of instances to be considered is called relevant set of
instances.

Definition II.12 (Stronger/weaker constraints)
Let I denote the relevant set of instances. Given two constraints sets C1 and C2 over the
same vocabulary, C1 is said to be stronger than C2 with respect to I (or: C2 is said to be
weaker than C1 with respect to I ) if every instance I ∈ I that satisfies C1 also satisfies C2,
i.e: for all I ∈ I , if I |=1 C1 then I |=1 C2.

Moreover, C1 is strictly stronger than C2 with respect to I (or: C2 is strictly weaker
than C1 with respect to I ) if C1 is stronger than C2 but C2 is not stronger than C1.

Example II.8 illustrates this preorder on constraint sets. As extreme cases, an
always-satisfied constraint set (i.e., semantically equivalent to ⊤) is weaker than any
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other set, and an always-violated constraint set (i.e., semantically equivalent to ⊥) is
stronger than any other set.

Example II.8

Take again the KBDM specification and the constraints over VS of Example II.7:

• C1
S = q(x)→⊥

• C2
S = r(x,y)→⊥

• C3
S = s(x,y)→⊥

We saw that C1
O = p(x,y) → ⊥ preserves the violation of C1

S and C2
S w.r.t. M.

There are other constraints that preserve the violation of C w.r.t. M like C⊥O = ⊥
or C3

O = (t(x,y)→⊥)∧(p(x,y)→⊥). But one can intuitively see that C1
O is the best

one, as it is the weakest constraint that preserves the violation. C⊥O is useless as it
does not give any information about the translated constraint: it is a translation
that preserves the violation of any constraint. C3

O is less "accurate" than C1
O as it

is more frequently violated.
We also saw that C2

O = t(x,y) → ⊥ perfectly preserves C3
S w.r.t. M and so it

preserves satisfaction. There are other constraints that preserve the satisfaction
of C3

S w.r.t. M, such as C⊤O = ⊤ or C4
O = p(x,y)∧ t(x,y)→⊥. C2

O is intuitively the
best one preserving satisfaction as it is the strongest that preserves satisfaction.
C⊤O is useless as it preserves the satisfaction of any translated constraint, and C4

O
is less "accurate" than C2

O as it is more often satisfied.

Similarly to the notions of maximally sound / minimally complete translations for
queries, we now define sets of constraints that maximally preserve satisfaction, which
are the strongest ones that preserve satisfaction, and sets of constraints that minimally
preserve violation, which are the weakest ones that preserve violation.

Definition II.13 (Maximally preserve satisfaction)
Given two constraint sets C1 and C2, over vocabularies V1 and V2, respectively, we say
that C2 maximally preserves satisfaction of C1 if (1) C2 preserves the satisfaction of C1,
and (2) there is no constraint set C over V2 such that C is strictly stronger than C2 and C
preserves the satisfaction of C1.

Definition II.14 (Minimally preserve violation)
Given two constraint sets C1 and C2, over vocabularies V1 and V2, respectively, we say
that C2 minimally preserves violation of C1 if (1) C2 preserves the violation of C1, and (2)
there is no constraint set C over V2 such that C is strictly weaker than C2 and C preserves
the violation of C1.

The relationships between the previous preservation notions can be stated in the
same way as for queries (Proposition II.2):
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Proposition II.9

Let us consider two sets of constraints C1 and C2 over disjoint vocabularies. The
following assertions are equivalent:

1. C1 perfectly preserves C2.

2. C2 perfectly preserves C1.

3. C1 preserves the satisfaction and the violation of C2.

4. C1 minimally preserves the violation and maximally preserves the satisfac-
tion of C2.

5. C1 minimally preserves the violation and preserves the satisfaction of C2.

6. C1 preserves the violation and maximally preserves the satisfaction of C2.

Proof. The proof is similar to that of Proposition II.2 for queries: a (maximally) sound
or (minimally) complete query is replaced by a set of constraints that (maximally) pre-
serves satisfaction or (minimally) preserves violation, respectively. ■

II.5 Impact of selected information

An interesting question is the following: why does a perfect translation of a given query
or constraint not always exist? Obviously, it may already come from the fact that the
mapping selects only part of the data, since a query or constraint may behave differently
on a restricted part of the data and on the whole data.

To describe that, we first define the information from a database D that is selected
by a mappingM, which we call the "selected part" of D. Note that when the body of
a mapping rule is mapped to D, only the database values that are images of frontier
variables are transferred by the mapping. As we will see, the selected part of D is an
instance that yields the same target instance as D.

Definition II.15 (Selected part of the database)
Given a KBDM system (D,Σ = (VO ,RO ,VS ,M)), the selected part of the database D, de-
noted by selected(D,M) is defined as follows:

selected(D,M) = {h′(body(m)) | ∀m ∈M,∀h homomorphism from body(m) to D}

where h′ is defined as follows: if x ∈ fr(m) then h′(x) = h(x) else h′(x) is a fresh variable.

The following example illustrates the consequences of selecting data on the exis-
tence of a perfect translation of a constraint.
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Example II.10

Let K = (D = {p(a,b), r(b,c), s(a,b)}, Σ = (VO ,RO ,VS ,M)) where be a KBDM sys-
tem:

M =

p(x,y) → q(x),

r(x,y) → t(y,x)

Then selected(D,M) = {p(a,y0), r(b,c)}.
Let us define the constraints over VS as:

• C1
S = p(x,y)∧ r(y,z)→⊥;

• C2
S = p(x,y)∧ s(x,y)→⊥.

These two constraints do not have a perfect M-translation. In both cases, it is
due to some information that is not translated into the ontological level:

• We have D ̸|=1 C
1
S but selected(D,M) |=1 C

1
S - we can see with the selected

part of the database that the information that p(a,b) has in its second posi-
tion the same constant as in first position of r(b,c) is not transferred by the
mapping;

• Similarly, for C2
S , we have D ̸|=1 C

2
S and selected(D,M) |=1 C

2
S , but the

situation is even worse: none of the content in s-atoms is transferred to the
ontological level, thus s(−,−) can even not be translated.

Propositions II.11 and II.12 help us to better understand the properties of the se-
lected part of the database.

Proposition II.11

Given a KBDM specification Σ = (VO ,RO ,VS ,M), for every database D,
selected(D,M) maps to D.

Proof. It is easy to see that for each h′(body(m)) ⊆ selected(D,M) (defined in the defi-
nition of selected(D,M)), we can create a substitution h′′ such that h′′(body(m)) ⊆D:

• h′′(x) = h′(x) = h(x) for each x ∈ fr(m);

• h′′(h′(y)) = h(y) for each y ∈ vars(body(m)) \ fr(m).

By aggregating all these h′′, we obtain a homomorphism from selected(D,M) to D. ■
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Proposition II.12

Given a KBDM specification Σ = (VO ,RO ,VS ,M), I(D,M) and I(selected(D,M),M)
1

are isomorphic for every database D.

Proof. It is easy to see that for each h′(body(m)) ⊆ selected(D,M) (defined in the def-
inition of selected(D,M)), the application of the triggers2 (m,h) and (m,h′) produce
equivalent outputs: h+(head(m)) and h′+(head(m)) are isomorphic since existential vari-
ables are bijectively renamed. Since it is true for all triggers on D and selected(D,M),
we have I(D,M) and I(selected(D,M),M) are isomorphic. ■

The following example illustrates Proposition II.12.

Example II.13

Let K1 = (D1,Σ) and K2 = (D2,Σ) be two KBDM systems where Σ =
(VO ,RO ,VS ,M), D1 = {p(a,b)}, D2 = {r(a,b)} and

M =

p(x,y) → t(x,y),

r(x,y) → t(x,y)

We have:

• selected(D1,M) = {p(a,b)};

• selected(D2,M) = {r(a,b)};

• I(D1,M) = I(selected(D1,M),M) = I(selected(D2,M),M) = I(D2,M) = {t(a,b)}.

From the notion of selected part of a database, we can define the notion of a query /
constraint "stable by selection" (Definition II.16), which, obviously, is only relevant for
S-to-O-translation. The main idea behind this notion is that the queries or constraints
should be over the part of the database that the user selects. In other words, the selected
part of a database has to behave like the whole database with respect to these objects.
As we shall see in Proposition II.14, the stability by selection is a necessary condition
to the existence of a perfect S-to-O-translation. Note that this is independent from any
specific input or target query/constraint class.

Definition II.16 (Stability by selection)
1. A query QS over VS is stable by selection (w.r.t. M) if for all databases D over VS ,
QS (D) =QS (selected(D,M)).

1Note that selected(D,M) is not a ground instance. However, we can still define what a universal
model is, so we make a slight abuse of notation.

2See Definition I.17



52 Chapter II. Translation framework

2. A constraint or set of constraints CS over VS is stable by selection (w.r.t. M) if for
all databases D over VS , D |=1 CS if and only if selected(D,M) |=1 CS .

Proposition II.14

Let M be a mapping from VS to VO and QS be a query (respectively CS be a
constraint set) over VS . If QS (resp CS ) is not stable by selection w.r.t. M then it
does not admit a perfect S-to-O-translation.

Proof. If QS is not stable by selection, then, there exists a database D such that QS (D) ,
QS (selected(D,M)). By definition of a perfectM-translationQO ofQS , we would have
QS (D) =QO(I(D,M)) andQS (selected(D,M)) =QO(I(selected(D,M),M)). But we proved in
Proposition II.12 that I(selected(D,M),M) and I(D,M) are isomorphic. So we cannot have
a perfect M-translation, this would lead to a contradiction. The proof is similar for
constraints. ■

Next, we give an operational characterisation of a Boolean UCQ stable by selection.3

This can easily be extended to non-Boolean UCQs.
In the next proposition, we abuse notation and unify a query with a conjunction of

rule bodies. Indeed, this conjunction of rule bodies can be seen as a rule head, in the
sense that we distinguish between frontier variables and the other variables, considered
as existential variables, which allows us to use the notion of piece-unifier.

Proposition II.15: Stability by selection of CQs

A Boolean CQ q is stable by selection if and only if there exists a piece-unifier µ
such that µ unifies the whole q with some conjunction of bodies of rules inM.

Proof. Note that for all databases D, if selected(D,M) |= q then D |= q (because there
is a homomorphism from selected(D,M) to D). For the other direction of the proof,
is implied by Lemma II.16. ■

Lemma II.16

A Boolean CQ q is such that, for all databasesD, D |= q implies selected(D,M) |=
q if and only if there exists a piece unifier µ such that µ unifies the whole of q
with a conjunction of bodies of rules inM.

Proof. For both directions of the proof, we introduce a special mapping that allows
another way to define the selected part of a database. Let us define a mapping built
with bodies of M: MS = {B[x,y]→ ∃z.B̂[x,z] | B[x,y]→ H ∈ M}. The hat means that

3As this is a side result, we prefer to include it here rather than in the chapter devoted to UCQ transla-
tion.
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we rename the predicates in B with a hat on top of their name (that is, a predicate p
is renamed into a predicate p̂). The idea is that I(D,MS ) is just selected(D,M) whose

predicates were renamed: I(D,MS ) ≡ ̂selected(D,M). Then, we introduce a renaming
of the CQ with hats on top of the predicates, which we denote q̂. We have I(D,MS ) |= q̂ if
and only if selected(D,M) |= q if and only if D,MS |= q̂. Moreover, since the heads of
MS are just bodies ofM with renamed predicates, we see that there exists a unifier µ
between bodies ofM and q that covers q if and only if we have a unifier µ̂ (that is, µ but
with renamed predicates) between heads ofMS and q̂ that covers q̂, which is equivalent
toMS−rewriting(q̂) , ∅.

(⇒) "if D |= q then selected(D,M) |= q" implies "if D |= q then I(D,MS ) |= q̂" which
implies "if D |= q then D,MS |= q̂" that implies "if D |= q then D |=MS−rewriting(q̂)"
which implies "if D |= q thenMS−rewriting(q̂) , ∅" and thus "if D |= q then there exists
a unifier µ between bodies ofM and q that covers q".

(⇐) We have that "there exists a piece unifier µ such that µ unifies the whole of q
with a conjunction of bodies of rules inM" implies "MS−rewriting(q̂) , ∅". Note that
D |= q impliesD |=MS−rewriting(q̂) because there is q′ ∈MS−rewriting(q̂) that maps
to q (rewriting with MS consists of removing the hats and replacing some variables
by fresh variables). This is equivalent to "D |= q implies D,MS |= q̂" which is finally
equivalent to "D |= q implies selected(D,M) |= q". ■

Proposition II.15 can be generalised to Boolean UCQs.

Proposition II.17: Stability by selection of UCQs

A Boolean UCQ Q is stable by selection if and only if each CQ q ∈ Q is stable by
selection.

Proof. (⇒) We take the contrapositive: we assume that a CQ q ∈ Q is not stable by
selection and show that it implies that Q is not stable by selection. Without loss of
generality, we assume that there is no CQ in Q that is more general than q. Let Dq be
the database that is q where the variables are replaced by fresh constants. Then, Dq |= q
and thus Dq |= Q. Since q is not stable by selection, selected(Dq,M) ̸|= q. And since
there are no more general CQs than q, we have Dq ̸|= q′ and thus selected(Dq,M) ̸|= q′
(since selected(Dq,M) maps to Dq) for all q′ , q in Q. Therefore selected(Dq,M) ̸|=Q:
Q is not stable by selection.

(⇐) For each database D such that D |= Q, we have q ∈ Q such that D |= q. Since
q is stable by selection, selected(D,M) |= q and thus selected(D,M) |= Q. On the
contrary, for each database D such that D ̸|= Q, we do not have q ∈ Q such that D |= q.
Therefore, since each of them is stable by selection, there are no CQs q ∈ Q such that
selected(D,M) |= q. This implies selected(D,M) ̸|=Q. ■
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II.6 Practical uses of constraint translation

The practical interest of query translation has already been well covered in the litera-
ture, being from the ontology level to the data level (which is the priviledged way of
answering ontological queries in OBDA), or vice-versa (see in particular [Cima et al.,
2023]). In contrast, constraint translation has been much less considered. That is why
in this section we provide some practical scenarios that illustrate the interest of trans-
lating constraints in a KBDM context. These scenarios also illustrate how our transla-
tion framework can be applied.

One could imagine many motivations for translating constraints, whatever the di-
rection. Among them:

1. This can facilitate the user’s understanding of data.

2. This can help improving data quality.

3. This can allow one to detect mismatches between different data sources.

4. This can be used to optimize ontological query rewriting.

Next, we illustrate these different cases.

II.6.1 Facilitate user’s understanding of data

It is often the case that data are provided with integrity constraints. Then, different
kinds of translation may help the user to get a better understanding of data.

A translation of the source constraints that minimally preserves violation helps the
user to understand when the source constraints are satisfied. Since this is equivalent
to saying that the source constraints maximally preserve satisfaction of this transla-
tion, when the translation is satisfied, we are sure that the source constraints are also
satisfied.

Example II.18: Scenario 1

In the scenario, a user has an ontology about plants and a data source and wants
to build a mapping. Given a mapping under construction, translating the con-
straints from the source allows to check if these constraints are consistent with
the semantics of its ontology.
Let Σ = (VO ,RO ,VS ,M) be a KBDM specification about agronomy:

• VO = {Solanaceae,Cucurbitaceae} (all predicates are of arity 1)

• VS contains the following predicates of arity 1:

– S:Solanum_lycopersicuma

– S:Cucurbita_pepob

– S:Cucurbita_maximac
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• The user wants to test a mappingM that contains:

– S:Solanum_lycopersicum(x)→ Solanaceae(x)

– S:Cucurbita_pepo(x)→ Cucurbitaceae(x)

– S:Cucurbita_maxima(x)→ Cucurbitaceae(x)

There is a set of constraints CS over VS that contains two denial constraints:

• S:Solanum_lycopersicum(x)∧ S:Cucurbita_pepo(x)→⊥

• S:Solanum_lycopersicum(x)∧ S:Cucurbita_maxima(x)→⊥

An M-translation of CS that minimally preserves the violation is CO =
Solanaceae(x) ∧ Cucurbitaceae(x) → ⊥. It means that it follows from the data
constraints and the mapping that plants cannot be in both families. This is con-
sistent with scientific knowledge, hence should agree with the ontology. The
translated constraint might be added to the ontology.

aSolanum lycopersicum is the scientific name of the plant that produces tomatoes.
bCucurbita pepo includes a variety of squashes and pumpkins. Zucchini, acorn squash, and

spaghetti squash are some of the plants under this species.
cCucurbita maxima is another species of squash, which includes types like the Hubbard and

buttercup squashes.

If we have a translation of source constraints that preserves satisfaction and con-
sider only legal databases w.r.t. the source constraints, then we have the guarantee that
the translation will always be satisfied at the ontological level. This gives us informa-
tion about consistent databases.

Example II.19: Scenario 2

Take again the KBDM specification from Example II.18. We add the following to
the specification:

• the unary predicate S:heavy_f eeder

• the unary predicate heavy_f eeder to VO;

• the rule S:heavy_f eeder(x)→ heavy_f eeder(x) toM;

We consider the following set of constraints C+
S :

• S:Solanum_lycopersicum(x)→ S:heavy_f eeder(x);

• S:Cucurbita_pepo(x)→ S:heavy_f eeder(x);

• S:Cucurbita_maxima(x)→ S:heavy_f eeder(x).
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An M-translation that maximally preserves the satisfaction of C+
S is C+

O =
{Solanaceae(x)→ heavy_f eeder(x),Cucurbitaceae(x)→ heavy_f eeder(x)}. Then
we know that the properties described by C+

O are always true at the ontological
level. We could use them as rules in the ontology without modifying the answers
to the queries.

A user of the KBDM system may also want to check hypotheses about data. A way
to do that is to allow the user to write constraints using the ontological vocabulary and
then translate them at the data level.

Example II.20: Scenario 3

Take again again the KBDM specification of the example II.18. We add the fol-
lowing:

• the unary predicate S:Edible_f ruit to VS ;

• the constraint C+
S = S:Solanum_lycopersicum(x)→ S:Edible_f ruit(x);

• the unary predicate Edible_f ruit to VO;

• the rule S:Edible_f ruit(x)→ Edible_f ruit(x) toM;

The user may think that all plants in the Cucurbitaceae family pro-
duce edible fruits. To test this hypothesis, he can write the con-
straint CH1

O = Cucurbitaceae(x) → Edible_f ruit(x). A perfect M−1-
translation of CH1

O is the set of constraints CH1
S = {S:Cucurbita_maxima(x) →

S:Edible_f ruit(x),S:Cucurbita_maxima(x)→ S:Edible_f ruit(x)}. Since we can-
not prove CS |= CH1

S , we cannot conclude that the hypothesis is always cor-
rect. We can check if the current database satisfies CH1

S , but, if it does, there
is no guarantee that the hypothesis will remain true if the data changes. As-
sume now that the user hypothesises that the plants in the Solanacee fam-
ily represented in the system all produce edible fruits, writing the constraint
CH2
O = Solanaceae(x) → Edible_f ruit(x)). Here, we can conclude that the hy-

pothesis is always correct, because a perfectM−1-translation of CH2
O is C+

S .

II.6.2 Improve data quality / data cleaning assistance

Users of a KBDM system may want the data to respect specific properties. So, a user
may write a constraint using the ontological vocabulary to assert such property: indeed,
it is much easier for a user to write constraints using his own vocabulary. However, if
the ontological constraint is found to be violated, the user wants to understand what
the cause of the problem is. One can then translate the constraint to the source level: we
obtain a set of constraints and each constraint can be cheked, which allows to identify
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the trouble in the data.

Example II.21: Scenario 4

We take the example of an Integrated KBDM system containing two databases
that use distinct schemas: the first one on music titles in compact discs, the sec-
ond one is about music on an online platform. Let ΣI = (O, {VS1

,VS2
}, {M1,M2})

be an IKBDM specification with:

• O = (VO ,CO) with VO = {T itle,Author,Has_author}
and CO = {T itle(x)→∃z Author(z)∧Has_author(x,z)};

• S1 = (VS1
) with VS1

= {S1 : Compact_Disc,S1 : T itle,S1 : Author,S1 :
Compact_Disc_T itle,S1 : T itle_Author} with the first three predicates of
arity 1 and the two others of arity 2;

• S2 = (VS2
) with VS2

= {S2 : T itle_name,S2 : Author_name,S2 :
T itle_Author} with the first two predicates of arity 1 and the last one of
arity 2;

• M1 contains:

– S1 : T itle(x)→ T itle(x)

– S1 : Author(x)→ Author(x)

– S1 : T itle_Author(x,y)→Has_author(x,y)

• M2 contains:

– S2 : T itle_name(x)→ T itle(x)

– S2 : Author_name(x)→ Author(x)

– S2 : T itle_Author(x,y)→Has_author(x,y)

Let KI = ({D1,D2},ΣI ) be an IKBDM System with:

• D1 contains:

– S1 : Compact_Disc = {Single A}
– S1 : T itle = {Song 1}
– S1 : Author = {John Smith}
– S1 : Compact_Disc_T itle = {(Album A,Song 1)}
– S1 : T itle_Author = {}

• D2 contains:

– S2 : T itle_name = {Melody C}
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Figure II.1: Detect potential mismatches between data sources

– S2 : Author_name = {Emily Johnson}
– S2 : T itle_Author = {(Melody C,Emily Johnson)}

If we evaluate CO on KI , we notice that the constraint is violated, but with-
out knowing why. To know why, we can compute the perfect M−1

1 -translation
and perfect M−1

2 -translation of this constraint (which exist). One of the con-
straints in the perfectM−1

1 -translation is C+
S1

= S1 : T itle(x)→∃z S1 : Author(z)∧
S1 : T itle_Author(x,z), which is violated when evaluated on D1 (Table S1 :
T itle_Author does not give the author of the title "Song 1") and so we know
that D1 leads to the violation of CO . This information can be given to the user to
help him understand the issue and correct it.

II.6.3 Detect mismatches between data sources

In an IKBDM system, we integrate several sources of data. This can lead to some con-
flicting properties between the sources, which is either inherent to their conception or
caused by the mapping or the ontology.

To check if there is such an issue, we can take a constraint C′ from a source schema
S1, translate it at the ontological level, and then translate it back at the schema level
to a source schema S2 to check the compatibility of these schemas. The Figure II.1
summarizes this process.
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Example II.22: Scenario 5

Take again the example II.21. We add binary predicates S1 : Genre, S2 : Genre,
and Genre, respectively, to VS1

, VS2
, and VO to link the title of a song to

its genre. We add the corresponding rules S1 : Genre(x,y) → Genre(x,y) and
S2 : Genre(x,y)→ Genre(x,y) to respectivelyM1 andM2.
We add the constraintC+

S1
= S1 : Genre(x,y)∧S1 : Genre(x,z)→ y = z to CS1

, which
asserts that a title has a single genre. This is not what is assumed in S2. We can
do an M−1

1 -translation, then an M2-translation that both preserve violation to
obtain the constraint C+

S2
= S2 : Genre(x,y)∧ S2 : Genre(x,z)→ y = z. C+

S2
cannot

be proved from the set of constraints CS2
. This allows one to detect that the two

schemas do not make the same hypotheses about the world.

Identifying mismatches between different sources leads to different possibilities of
correction. The first one is to modify the mapping and/or the ontology to take these
into account. The second one is, as seen previously, to use the translated constraints to
help the user to correct the sources, if feasible (in particular the user needs to have the
right to update the data).

II.6.4 Optimize query rewriting

Let us now consider the optimisation of query rewriting with an ontology in the pres-
ence of ontological constraints. There is some work on this subject for DL-Lite ontolo-
gies [Rosati, 2012, Console et al., 2013]. The main idea is that if some axioms in the
ontology (the TBox) are always satisfied by an instance (ABox) that satisfies the on-
tological constraints (called here extensional constraints, EBox), these axioms can be
ignored when rewriting queries.

Example II.23: Query Rewriting with Extensional Constraints

This example comes from [Rosati, 2012].
Let the rule set R = {R1 = Student(x) → Person(x)} and the constraint C1 =
Student(x)→ Person(x).
The CQ q(x) = P erson(x) has a rewriting with respect toR which is a disjunction
of two CQs:

q1(x) = Person(x)

q2(x) = Student(x)

If C1 is taken into account, the rewriting can be restricted to q(x) itself (i.e.,
q1), since all the individuals of class Student are also of class P erson for all the
instances that satisfy C1. Therefore, one can ignore the rule R1 when rewriting
queries.
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In [Console et al., 2013], this technique is extended to OBDA by considering also
constraints in data sources. They translate data constraints into the vocabulary of the
ontology to use them in order to optimise query rewriting of ontological queries.

II.7 Summary

In this chapter, we presented a general framework for translating queries and con-
straints in a KBDM system (D,Σ) with Σ = (VO ,RO ,VS ,M) (Section II.1). More pre-
cisely, we presented:

• A framework for query translation: We first define a framework to describe
query translation and its desired properties (Section II.2). This framework is
mainly based on the notions introduced by Cima et al. extended to our setting.
In particular, we take from that work the fundamental notions of perfect (Defini-
tion II.3), minimally complete (Definition II.4) and maximally sound (Definition
II.5) translations, while distinguishing between translations with respect to the
mapping only or to the whole specification.

• A framework for constraint translation: The main elements of this framework
are the following:

– Constraint satisfaction at the ontological level: Constraint satisfaction
w.r.t. a mapping M is checked against the minimal universal solution of
(D,M), called the target instance and denoted by I(D,M). Constraint satis-
faction w.r.t. a whole specification Σ is checked against a chosen universal
model of (I(D,M),RO) (Section II.3).

– Equivalence-Stable Constraints: The property of equivalence-stability en-
sures that a constraint behaves similarly on all the universal models of
(I(D,M),RO) (Definition II.9). For instance, negative constraints have this
property.

– Desired properties of translations: We consider translations of constraints
from the data source to the ontology, and reciprocally. Since a perfect transla-
tion may not exist, we define the properties of (maximally) preserving satisfac-
tion and (minimally) preserving violation (Definitions II.11, II.13 and II.14).

This chapter also contains:

• A discussion on the impact of the selection performed by the mapping: We for-
malised the notion of selected part of a database (Definition II.15) and defined
the notion of a query / constraint stable by selection (Definition II.16). We also
gave an operational characterization of this notion in the specific case of UCQs.

• An illustration of the interest of constraint translation on concrete use-cases (Sec-
tion II.6).
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Looking Ahead: Our next objective is to apply this general framework to the trans-
lation of specific classes of queries and constraints. We will build on some existing tools
in this endeavour, however the introduction of novel techniques appeared to be neces-
sary. That is why we will first introduce a technique to rewrite (U)CQs with disjunctive
existential rules in Chapter III.





III - Disjunctive rewriting

Looking for techniques to translate constraints from source to ontology, we encountered the
need to rewrite a UCQ into another UCQ through disjunctive rules, and more precisely,
through a disjunctive mapping (see Chapter V, and more precisely Section V.2.3 on the max-
imally soundM-translation of a UCQ). It appeared that there was little work on this subject
(Section III.1). This motivated the development of a novel technique to perform disjunctive
rewriting (Section III.3). Before presenting this technique, we need to introduce the dis-
junctive chase (Section III.2), since in our technique a rewriting step is closely related to
a disjunctive chase step. Then, we explore the possibility of defining classes of disjunctive
rules that are FUS (Section III.4). Finally, we study the specific case of disjunctive mappings
(Section III.5).

Most results presented in this chapter have been published in [Leclère et al., 2023]. A
prototype implementing our disjunctive rewriting technique is available as the library Pie1.

III.1 Introduction

In a nutshell, disjunctive existential rules are an extension of conjunctive existential
rules in which the head of a rule is a disjunction of conjunctive heads. Each conjunctive
head has its own existential variables and its frontier variables form a subset of the
rule’s frontier variables.

Definition III.1 (Disjunctive existential rule, Disjunctive mapping)
A disjunctive existential rule (or simply disjunctive rule) is a rule of the form:

∀x∀y(B[x,y]→
n∨
i=1

∃zi Hi[xi,zi]) with xi ⊆ x

where n ≥ 1, B = body(R) (the body) and Hi = headi(R) (the conjunctive heads) are non-
empty conjunctions of atoms with vars(B) = x∪ y and vars(Hi) = xi ∪ zi; furthermore

x =
n⋃
i=1

xi.

A disjunctive existential rule is a disjunctive s-to-o rule if the vocabulary of the body
is disjoint from the vocabulary of the heads. A disjunctive mapping is a set of a disjunc-
tive s-to-o rules (considered as a mapping).

Example III.1

The following rule says that any entity x who is grandparent of an entity y is

1https://bitbucket.org/guillaume-perution-kihli/pie
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parent of a mother of y or parent of a father of y:

∀x∀y(isGrandParent(x,y)→∃z1 (isParent(x,z1)∧ isMother(z1, y))

∨∃z2 (isParent(x,z2)∧ isFather(z2, y)))

So far, reasoning with disjunctive existential rules has been mainly studied through
the chase. It was shown that decidable classes of (conjunctive) existential rules, based
on the behaviour of the chase, can be generalised to disjunctive rules in a quite natural
way, whether in relation to acyclicity notions [Carral et al., 2017] or based on a prop-
erty called guardedness [Alviano et al., 2012, Gottlob et al., 2012, Bourhis et al., 2016],
although these generalisations come with a huge increase in the complexity of query
answering.

In contrast, query rewriting within UCQs has barely been addressed yet. A notable
exception is the work in [Alfonso et al., 2021], which provides a rewriting technique
based on first-order resolution. We will give details on this technique later in this
section. Furthermore, a large body of work has studied the rewritability of ontology-
mediated queries, i.e., pairs of the form (Q,O) with Q a (U)CQ and O an ontology,
into query languages of various expressivity. However, for ontologies expressed in
fragments of disjunctive existential rules, most studies target expressive rewriting lan-
guages, such as disjunctive Datalog [Bienvenu et al., 2014, Ahmetaj et al., 2018]. As
far as we are aware, the only result directly relevant to our purpose comes from the
fine-grained complexity study in [Gerasimova et al., 2020], which provides syntactic
rewritability conditions for ontology-mediated queries where the ontology is composed
of a single specific disjunctive rule, called a covering axiom (see Section III.4 for more
details).

As we have just mentioned, [Alfonso et al., 2021] is, to the best of our knowledge,
the only previous work that proposes a UCQ rewriting technique for general disjunc-
tive existential rules. This technique is based on a restricted form of first-order res-
olution, where at each step a CQ is unified with a disjunct of a rule head (using a
conjunctive piece-unifier, see Definition I.29), which produces a new disjunctive rule
with fewer disjunctions; when the unified rule is conjunctive (the negation of) a CQ is
produced.

Example III.2

Let R = p(x,y)→ ∃z1 r(x,z1)∨∃z2 r(y,z2) be a disjunctive rule and Q = {q} be a
UCQ with q = ∃u,v s(u)∧ r(u,v).
We have a piece-unifier µ1 = (r(u,v), r(x,z1), {{u,x}, {v,z1}}) between the first dis-
junct of head(R) and q.
A step of rewriting with the disjunctive rule R consists in building a new dis-
junctive rule by removing the unified disjunct from R and adding to its body the
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remaining atoms of the CQ (those that were not unified) and finally applying the
unifier. Here, we obtain the new rule R′ = p(x,y)∧ s(x)→∃z2 r(y,z2).
Then, we can use R′ to rewrite again q. Since R′ is a conjunctive
rule, we obtain (the negation of) a CQ. We have the piece-unifier µ1 =
(r(u,v), r(y,z2), {{u,y}, {v,z2}}), which leads to the CQ q′ = ∃x,y p(x,y)∧ s(x)∧ s(y).

One of the disadvantages of this technique of rewriting is that it produces interme-
diate rules, whereas we are only interested in producing CQs. Clearly, some intermedi-
ate rules may be useless to produce new CQs; furthermore, it is more difficult to study
the properties of a changing set of rules.

Example III.3

Take a variant of Example III.2: let R = p(x,y) → ∃z1 r(x,z1) ∨ ∃z2 t(y,z2) be a
disjunctive rule and Q = {q} be a UCQ with q = ∃u,v s(u)∧ r(u,v).
We have the same piece-unifier with the first disjunct as in Example III.2. We
produce the new rule R′ = p(x,y)∧ s(x)→∃z2 t(y,z2). But there is no unification
of q with the head of R′, so this rule is useless.

In comparison, the main advantages of our proposal, presented in Section III.3, are
the following:

1. A rewriting step directly produces a CQ and not a rule.

2. Intermediate rules, which may not lead to a CQ, are avoided.

3. There is a direct correspondence between a chase step and a rewriting step, which
makes it easier to study the properties of query rewriting, especially as the rule
set is not updated.

III.2 Disjunctive chase

We now introduce the disjunctive chase, which is a generalisation of the chase for con-
junctive rules (Section I.5). The following presentation of this technique is inspired by
the work of [Bourhis et al., 2016, Carral et al., 2017].

A trigger for disjunctive rules is defined similarly to conjunctive rules (Definition
I.16).

Definition III.2 (Disjunctive Trigger)
Let I be an instance and R be a disjunctive rule. A disjunctive trigger on I is a pair (R,h),
where h is a homomorphism from body(R) that maps R to I . When such a trigger exists,
the rule R is said to be applicable on I .
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Example III.4: Disjunctive Trigger

Consider the disjunctive rule R = vertex(x) → green(x) ∨ red(x) (which
says that each vertex can be green or red) and the instance I =
{edge(a,b),vertex(a),vertex(b)} that represents a graph with two vertices a and
b connected by and edge. There are two disjunctive triggers for R on I :

• (R,ha), where ha = {x 7→ a},

• (R,hb), where hb = {x 7→ b}.

This indicates that the disjunctive rule R can be applied to each of the vertices a,
and b separately.

The result of an application of a Disjunctive Trigger (Definition III.4) is not a single
instance, but a set of instances, seen as a disjunction of instances.

Definition III.3 (Set of Instances)
A set of instances, denoted I , is viewed as a disjunction of instances I =

n∨
i=1
Ii , where

each Ii is a conjunction of atoms.

Definition III.4 (Application of a Disjunctive Trigger)
Given a disjunctive rule R and a disjunctive trigger t = (R,h) on an instance I , the
application of t (or: of R according to h) to I produces a set of instances

α∨(I,R,h) = {I ∪ h+i (headi(R)) | 1 ≤ i ≤ n}

α∨(I,R,h) is called an immediate derivation from I . The trigger t is said satisfied by I if
there exists an extension h′ of h with h′(headi(R)) ⊆ I for some i.

Example III.5: Application of a Disjunctive Trigger

Continuing with the same rule R = vertex(x) → green(x) ∨ red(x) and triggers
from example III.4, let us consider the application of (R,ha = {x 7→ a}) on the
instance I = {edge(a,b),vertex(a),vertex(b)}. We obtain a set of two instances de-
fined as follows:

α∨(I,R,ha) = {{edge(a,b),vertex(a),vertex(b), green(a)},
{edge(a,b),vertex(a),vertex(b), red(a)}}

The trigger (R,ha) is satisfied by every instance I ′ ∈ α∨(I,R,ha), because there
exists an extension h′ of ha with h′(headi(R)) ⊆ I ′ for some i.

As for the chase on conjunctive rules, the disjunctive chase procedure iteratively
applies triggers towards a fixpoint. This procedure is often seen as the construction of
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a tree, see, in particular, [Bourhis et al., 2016, Carral et al., 2017]. Next, we formally
define the derivation tree built by a disjunctive chase (Definition III.6), where each
node represents an instance, the root represents the initial instance, and the children
of a nodes are generated by application of a disjunctive trigger. To define it, we need
first to introduce the notion of branch of a tree.

Definition III.5 (Branch of a Tree)
Let T = (V ,E) be a tree where V is the set of vertices and E the set of edges. Let rT be
the root of T . A branch of T is a subset of nodes γ ⊆ V such that:

1. The root node rT is in γ .

2. For any node v ∈ γ , if v is not the root node, then the parent of v is also in γ .

3. Each node in γ either:

• is a leaf node of T (that is, it has no child nodes in V ), or

• has exactly one child node in γ .

The set of all branches of a tree T is denoted by Γ (T ).

This definition captures the intuitive idea of a branch as a maximal path through
the tree: a path that cannot be extended by including more nodes. In particular, each
node on the path has a unique successor, except for the final node, which is a leaf and
has no successors. Note that a branch can also be infinite (in this case, there is no leaf
node in the branch).

Definition III.6 (Derivation Tree)
A derivation tree T for a KB (I,R) is a labelled rooted tree (V ,E,λ), where V is the set
of vertices, E is the set of edges, and λ is a function that labels each vertex v ∈ V by an
instance. The tree is defined inductively as follows:

• For the root r of T , λ(r) = I .

• For each vertex v with children v1, ...,vn, there is a disjunctive trigger (R,h) on λ(v)
with R = B[x,y]→H1[x,z1]∨ . . .∨Hn[x,zn] ∈ R. The restriction of λ to the domain
{v1, ...,vn} forms a bijection with α∨(λ(v),R,h).

A derivation tree (V ,E,λ) is fair if, for each branch γ and each vertex v ∈ nodes(γ),
any disjunctive trigger on λ(v) is satisfied in λ(v′) with v′ ∈ nodes(γ). Finally, a chase
tree is a fair derivation tree.

Example III.6: Derivation Tree

Given a set of rules R composed only of R = vertex(x)→ green(x)∨ red(x), and
a singleton set of instances I = {{edge(a,b),vertex(a),vertex(b)}}, let us build a



68 Chapter III. Disjunctive rewriting

edge(a,b),vertex(a),vertex(b)

v0

(R,ha = {x 7→ a})

green(a)

v1

(R,hb = {x 7→ b})

green(b)

v11

red(b)

v12

red(a)

v2

(R,hb = {x 7→ b})

green(b)

v21

red(b)

v22

Note: to save space, we only put the new atoms in the nodes and not the whole
instances.

Figure III.1: Graphical view of the derivation tree of the example III.6

derivation tree.
At the root of the tree, we have a node v0 labelled with the initial instance
{edge(a,b),vertex(a),vertex(b)}.
We saw in Example III.4 that we have a disjunctive trigger (R,ha = {x 7→ a})
on the instance λ(v0). Applying the rule through this trigger, we obtain
two instances that form the labels for the children nodes of the root: v1 is
labelled with {edge(a,b),vertex(a),vertex(b), green(a)} and v2 is labelled with
{edge(a,b),vertex(a),vertex(b), red(a)}.
Now, we identify another disjunctive trigger using R and a homomorphism hb
that assigns x to b. Applying the rule to the instance at v1, we get two child
nodes of v1: v11 labelled with {edge(a,b),vertex(a),vertex(b), green(a), green(b)}
and v12 labelled with {edge(a,b),vertex(a),vertex(b), green(a), red(b)}. Similarly,
applying the rule to the instance at v2 yields two more child nodes: v21 la-
belled with {edge(a,b),vertex(a),vertex(b), red(a), green(b)} and v22 labelled with
{edge(a,b),vertex(a),vertex(b), red(a), red(b)}.
The obtained derivation tree is shown in Figure III.1. The tree itself has the grey
nodes: we added the triggers for clarity.
In this example, intuitively, we generated all the possible colorations of the graph
represented in the initial instance.



III.2. Disjunctive chase 69

Definition III.7 (Disjunctive chase result)
The result of a disjunctive chase of an instance I by a set of rulesR, denoted chase∨(I,R),
is defined as the set of all atomsets that can be obtained by the union of the labels of
the nodes in every branch of a chase tree T . Formally,

chase∨(I,R) = {
⋃
v∈γ

λ(v) | γ ∈ Γ (T )}

where T is a fair chase tree and λ is its labelling function.

Although each node in the tree has a finite degree (bounded by the maximal number
of disjuncts in a rule head), the tree may contain an infinite number of branches, and
a branch can also be infinite. Consequently, the result of the chase may contain an
infinite number of atomsets, each potentially comprising an infinite number of atoms.
From a logical perspective, the result of a (finite) disjunctive chase is a disjunction of
existentially closed conjunctions of atoms.

Although the chase tree and the chase result might not be unique, they all entail the
same queries.

Example III.7: Disjunctive chase result

Consider a set of rules R = {R} with R = vertex(x) → green(x) ∨ red(x) and an
initial instance I = {edge(a,b),vertex(a),vertex(b)} from Example III.6.
The disjunctive chase result, chase∨(I,R), for this particular set of rules and
initial instance is as follows:

chase∨(I,R) = {{edge(a,b),vertex(a),vertex(b), green(a), green(b)},
{edge(a,b),vertex(a),vertex(b), green(a), red(b)},
{edge(a,b),vertex(a),vertex(b), red(a), green(b)},
{edge(a,b),vertex(a),vertex(b), red(a), red(b)}}

In this example, the chase is finite as the rule cannot be infinitely applied (it
is disjunctive Datalog). Once all vertices are colored (either green or red), no
further applications of the rule are possible.

It is sometimes convenient to consider a linearization of a finite derivation tree,
which we call a disjunctive derivation.

Definition III.8 (Disjunctive derivation)
A disjunctive derivation of an instance I and a set of rules R is a finite sequence of sets

of instances and triggers D = (I0 = I)
t1−→ I1

t2−→ . . .
tk−→ Ik where ti = (R,h) is a trigger of

R ∈ R on an instance Ij ∈ Ii−1 and Ii = (Ii−1 \ Ij )∪α∨(Ij ,R,h), for all 1 ≤ i ≤ k.
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A disjunctive derivation is a linearisation of a finite derivation tree obtained by a
total ordering of the trigger applications associated with the inner vertices in the tree,
which is compatible with the parent-child partial order in the tree.

WhenR is a set of conjunctive rules, a derivation tree is a path and the instances Ii in
a derivation are singletons, then, a disjunctive derivation becomes a regular derivation
(as previously defined for the chase with conjunctive rules, see definition I.18), which
can be viewed as a sequence of instances.

The following theorem provides the formal guarantee that the disjunctive chase is
a sound and complete procedure to determine whether a disjunctive KB entails a given
(Boolean) UCQ. Indeed, a UCQ is entailed by a KB if and only if it is also entailed by
all instances in the result of the disjunctive chase on the KB.

Theorem III.8: from [Bourhis et al., 2016]

Let Q be a (Boolean) UCQ and (I,R) be a disjunctive KB. Then I,R |= Q if and
only if chase∨(I,R) |=Q (that is, Ii |=Q for all Ii ∈ chase∨(I,R)).

Example III.9: Link between models and disjunctive chase

Consider the set of rules R = {R} with R = vertex(x) → green(x) ∨ red(x)
and the initial instance I = {edge(a,b),vertex(a),vertex(b)} from Example III.6,
and a UCQ Q = (∃x1, y1 green(x1) ∧ edge(x1, y1) ∧ green(y1)) ∨ (∃x2, y2 red(x2) ∧
edge(x2, y2)∧ red(y2)). This query Q checks if there exist two adjacent nodes that
have the same colour in the graph.
According to Theorem III.8, I,R |= Q if and only if chase∨(I,R) |= Q, that is,
Ii |=Q for all Ii ∈ chase∨(I,R).
We can examine the instances in chase∨(I,R) from Example III.7:

• Q has an answer in {edge(a,b),vertex(a),vertex(b), green(a), green(b)} and
{edge(a,b),vertex(a),vertex(b), red(a), red(b)},

• but Q has no answer in {edge(a,b),vertex(a),vertex(b), green(a), red(b)} and
{edge(a,b),vertex(a),vertex(b), red(a), green(b)}.

Therefore, the instance I and the set of rules R do not entail the UCQ Q, since
there exist instances in the result of the chase where Q does not have an answer.
This means that the initial graph represented by the instance
I is 2-colorable, as there exists some 2-colorations described
by the instances {edge(a,b),vertex(a),vertex(b), green(a), red(b)} and
{edge(a,b),vertex(a),vertex(b), red(a), green(b)}.
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III.3 A novel technique of disjunctive rewriting

Our generalisation of query rewriting to disjunctive rules is based on a simple idea: a
query Q can be rewritten with a rule R = B → H1 ∨ · · · ∨Hn if each Hi contributes to
partially answer Q. Therefore, a unification step consists of unifying each Hi (using
a piece-unifier) with a safe copy qi of a CQ from Q ; safe copies ensure that the CQs
involved in the unification have pairwise disjoint sets of variables. Note that several
safe copies of the same CQ from Q can be involved. This yields a new CQ made of
body(R) and the remaining parts of the unified CQs, according to some aggregation of
the piece-unifiers. We need a few auxiliary notions to specify this aggregation.

Definition III.9 (Join of partitions)
Let P be a set of partitions (that are not necessarily partitions of the same set). The join
of P , denoted by join(P ), is the partition obtained from P by making the union of the
partitions in P , then merging all non-disjoint classes until a fixed point.

Example III.10: Join of partitions

Given P composed of partitions {{x,u}, {y,v}, {z,w}} and {{x,y,a}, {z′ , t}}, we obtain
join(P ) = {{x,u,y,v,a}, {z,w}, {z′ , t}}.

We say that a set of partitions associated with piece-unifiers is admissible if its join
is an admissible partition (that is, it does not contain a class with two constants).

The following definition generalises the notion of piece-unifiers with a conjunctive
rule to a disjunctive rule.

Definition III.10 (Disjunctive Piece-Unifier and One-step Piece-Rewriting)
Let a rule R = B→H1∨ · · · ∨Hn and a UCQ Q. A disjunctive piece-unifier µ∨ of Q with R
is a set {µ1, . . . ,µn} such that:

• for 1 ≤ i ≤ n, µi = (q′i ,H
′
i , Pui ) is a (conjunctive) piece-unifier of qi , a safe copy of a

CQ from Q, with the (conjunctive) rule B→Hi ;

• and Pu∨ = {Pu1
, . . . , Pun} is admissible.

Given a substitution u∨ associated with join(Pu∨), the application of µ∨ produces the
CQ

β∨(Q,R,µ∨) = u∨(B)∪
⋃

1≤i≤n
u∨(qi \ q′i)

The one-step piece-rewriting of Q with respect to µ∨ is

Q∪ {β∨(Q,R,µ∨)}
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Example III.11

Let the disjunctive rule R = p(x,y) → ∃z1 r(x,z1) ∨ ∃z2 r(y,z2) and the UCQ
Q = {q} with q = ∃u,v s(u)∧ r(u,v) from Example III.2.
First, we make safe copies q1 = ∃u1,v1 s(u1) ∧ r(u1,v1) and q2 = ∃u2,v2 s(u2) ∧
r(u2,v2) of q.
Then, let the disjunctive piece-unifier µ∨ = {µ1,µ2}with µ1 = ({r(u1,v1)}, {r(x,z1)},
{{u1,x}, {v1, z1}}) and µ2 = ({r(u2,v2)}, {r(y,z2)}, {{u2, y}, {v2, z2}}).
Finally, assume that we give priority to the variables from R, that is, we take the
substitution u∨ = {u1 7→ x, v1 7→ z1, u2 7→ y, v2 7→ z2}. Then:

β∨(Q,R,µ∨) = ∃x,y p(x,y)∧ s(x)∧ s(y)

Definition III.11 (Disjunctive Piece-Rewriting)
Given a disjunctive rule setR, a UCQQ′ is a disjunctive piece-rewriting (or simply rewrit-
ing when clear from the context) of a UCQ Q withR if there is a finite sequence (called
disjunctive rewriting sequence) Q = Q0,Q1, . . . ,Qk = Q′ (k ≥ 0), such that for all 0 < i ≤ k,
there is a disjunctive piece-unifier µ∨ of Qi−1 with R ∈ R such that Qi is the one-step
rewriting of Qi−1 with respect to µ∨.

The following lemmas highlight the fundamental properties of α∨ and β∨.

Lemma III.12: Preservation of entailment by α∨ and β∨

Let R be a disjunctive rule.

1. For any instances I1 and I2 such that I2 |= I1: if there is a trigger (R,h1) on
I1 then there is a trigger (R,h2) on I2 such that α∨(I2,R,h2) |= α∨(I1,R,h1).

2. For any UCQsQ1 andQ2 such thatQ2 |=Q1: if there is a (disjunctive) piece-
unifier µ2 of Q2 with R then either β∨(Q2,R,µ2) |=Q1, or there is a (disjunc-
tive) piece-unifier µ1 of Q1 with R such that β∨(Q2,R,µ2) |= β∨(Q1,R,µ1).

The second lemma clarifies the tight relationship between α∨ and β∨ (we recall that
instances and CQs have the same logical form; this is also true of finite sets of instances
and UCQs).

Lemma III.13: Composition of α∨ and β∨

Let R be a disjunctive rule.

1. For any instance I : if there is a trigger (R,h) on I then there is a (disjunctive)
piece-unifier µ of α∨(I,R,h) with R such that I |= β∨(α∨(I,R,h),R,µ).

2. For any UCQ Q: if there is a piece-unifier µ of Q with R then there is a
trigger (R,h) on β∨(Q,R,µ) such that α∨(β∨(Q,R,µ),R,h) |=Q.
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I α∨(I,R,h)

Qβ∨(Q,R,µ∨)

α∨

|=

β∨

|=

I α∨(I,R,h)

Qβ∨(Q,R,µ∨)

|=

α∨

|=

β∨

Figure III.2: Correspondences between β∨ (in blue) and α∨ (in red)

The proofs of Lemma III.12 and Lemma III.13 can be found in Appendix A (see
lemmas A.5, A.6, A.7 and A.8). These two lemmas are keys to establish the soundness
and completeness of piece-rewriting, as stated in Theorem III.14.

Theorem III.14: Soundness and completeness of disjunctive piece-rewriting

Let R be a set of disjunctive rules and Q be a UCQ. Then, for any instance I ,
holds I,R |= Q if and only if there is a disjunctive piece-rewriting Q′ of Q such
that I |=Q′.

In the following, we give the main ideas to prove Theorem III.14. The full proof of
the Theorem can be found in Appendix A.

Proof. (Sketch) We show that there is a derivation of ({I},R) leading to an Ii such that
Ii |=Q if and only if there is a rewritingQj ofQwithR such that I |=Qj (with, moreover,
j ≤ i). This equivalence is based on the following two lemmas, which are corollaries of
previous Lemmas III.12 and III.13. Given any Boolean UCQ Q, disjunctive rule R, and
instance I , the following holds (see Figure III.2):

• (Backward-forward Lemma) For any disjunctive piece-unifier µ∨ of Q with R, if
I |= β∨(Q,R,µ∨) then there is a trigger (R,h) on I such that α∨(I,R,h) |=Q;

• (Forward-backward Lemma) For any trigger (R,h) on I , if α∨(I,R,h) |= Q then
either I |= Q or there is a disjunctive piece-unifier µ∨ of Q with R, such that I |=
β∨(Q,R,µ∨).

The (⇒) direction of the theorem is proved by induction on the length k of a derivation
from {I} to Ik such that Ik |= Q, using forward-backward Lemma (which itself follows
from Lemma III.13 (Point 1) and Lemma III.12 (Point 2)). The (⇐) direction is proved
by induction on the length k of a rewriting sequence from Q to Qk such that I |= Qk ,
using backward-forward Lemma (which itself follows from Lemma III.13 (Point 2) and
Lemma III.12 (Point 1)). ■

To actually compute a UCQ-rewriting of Q when one exists, it is convenient to pro-
ceed in a breadth-first manner, that is, extend Q at each step with all the CQs that can
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be generated with (new) disjunctive piece-unifiers. More specifically, we inductively
define the following operator W∨∞.

Definition III.12 (Breadth-first disjunctive rewriting operator)
The breadth-first disjunctive rewriting operator W∨∞ takes as input a UCQ Q and a dis-
junctive rule set R, and returns a possibly infinite set of CQs inductively defined as
follows:

• W∨0 (Q,R) =Q

• For i > 0:

W∨i (Q,R) =W∨i−1(Q,R)∪ {β∨(W∨i−1(Q,R),R,µ∨) | µ∨ piece-unifier with R ∈ R}

• Finally, W∨∞(Q,R) =
⋃
i∈N

W∨i (Q,R).

Proposition III.15: Properties of W∨∞

For any UCQ Q and disjunctive rule set R, the following holds:

1. W∨∞(Q,R) is a complete rewriting of (Q,R).

2. If (Q,R) admits a UCQ-rewriting Q′, then there is i ≥ 0 such that Q′ ≡
W∨i (Q,R).

Proof. (1) Each W∨i (Q,R) is a piece-rewriting of Q with R and, for any piece-rewriting
Q′ of Q with R, there is i such that Q′ ⊆ W∨i (Q,R). Therefore, the union of all the
W∨i (Q,R) is a complete rewriting of Q. (2) If (Q,R) admits a UCQ-rewriting Q′, then
by Theorem III.14 it admits a complete piece-rewriting Q′′, and both are necessarily
equivalent. Then,Q′′ ⊆W∨i (Q,R) for some i and sinceQ′′ is complete,Q′′ ≡W∨i (Q,R).■

We propose a query rewriting algorithm (see Algorithm 2) that mimics the computation
of W∨∞(Q,R), while including two optimisations at each step i > 0.

First, it only considers new disjunctive piece-unifiers, that is, those that involve at
least one CQ generated at step i−1. Second, it removes redundant CQs in the rewriting
under construction by the computation of a cover.

More specifically, Q⋆ denotes the rewriting under construction and Qnew the set of
CQs generated at a given step. The function cover (Lines 1 and 6) returns a cover of the
given set. The function generate (Line 5) takes as input the current rewriting Q⋆ , its
subset Qprev of CQs generated at the previous step, as well as R, and returns the set of
generated CQs, that is, all the β∨(Q⋆ ,R,µ∨) where µ∨ is a new disjunctive piece-unifier.
This yields the set Qnew.

To compute a cover ofQ⋆∪Qnew, priority is given toQ⋆ in case of query equivalence,
for termination reasons. The function removeMoreSpecific takes as input two sets of
CQs and returns the first set minus its queries more specific than a query of the second
set.
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The computation of a cover of Q⋆ ∪Qnew is decomposed into three steps (Lines 6-
8): compute a cover of Qnew; remove from Qnew the queries more specific than a query
from Q⋆ ; and remove from Q⋆ the queries more specific than a query from Qnew. Then,
Qnew is added to Q⋆ (Line 9).

We remind that a query may have rewritings of unbounded size but still a UCQ-
rewriting (see Example I.13), hence the role of the cover computation is not only to
remove redundancies but also to ensure that the algorithm halts when a UCQ-rewriting
has been found.

Algorithm 2: Breadth-First Disjunctive Rewriting
Data: Boolean UCQ Q and set of disjunctive rules R
Result: A sound and complete rewriting of Q

1 Qnew← cover(Q); // new CQs
2 Q⋆ ←Qnew; // result
3 while Qnew , ∅ do
4 Qprev ←Qnew // CQs from the preceding step
5 Qnew← generate(Q⋆ ,Qprev ,R); // new CQs
6 Qnew← cover(Qnew)
7 Qnew← removeMoreSpecific(Qnew,Q⋆)
8 Q⋆ ← removeMoreSpecific(Q⋆ ,Qnew)
9 Q⋆ ←Q⋆ ∪Qnew

10 end
11 return Q⋆

The correctness of the algorithm is based on the soundness and completeness of
the W∨∞ operator, however, attention should be paid to the potential impact of query
removal on completeness (Lines 6 to 8). Indeed, when a CQ q2 is removed because
it is more specific than another CQ q1, we have to ensure that any CQ that could be
generated using q2 is more specific than another CQ already present in the current
rewriting, or than a CQ that can be generated using q1. Fortunately, this property is
ensured by Lemma A.10, considering Q⋆ and Qnew at the end of Line 5, then taking Q2
= Q⋆ ∪Qnew and Q1 =Q2 \ {q2}.

Theorem III.16

Algorithm 2 computes a sound and complete rewriting. Moreover, it halts and
outputs a minimal rewriting when (Q,R) is UCQ-rewritable.

Proof. By induction on the number of iterations of the while loop, we prove the fol-
lowing invariant of the algorithm, using Lemma A.10: after step i, Q⋆ is equivalent to
W∨i (Q,R). Then, soundness and completeness follow from Proposition III.15. Line 7
ensures that Qnew becomes empty when Q⋆ is a complete rewriting. Since a cover of Q⋆
is computed at each step, the output set is of minimal size. ■
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Further remarks on completeness. When it comes to practical implementations, one
may find simpler to rely on (conjunctive) piece-unifiers that unify the smallest possible
subsets of a CQ. Such piece-unifiers are called single-piece [König et al., 2015]. In the
specific case of Datalog, a single-piece-unifier unifies a single atom of a CQ with a rule
head. Piece-rewriting restricted to single-piece-unifiers is complete for conjunctive
rules [König et al., 2015], but it is no longer so with disjunctive rules. This occurs
already in the case of disjunctive Datalog, as illustrated next.

Example III.17

Consider again the colorability example (Example III.4) with R = vertex(x) →
green(x)∨ red(x) and Q = {q1,q2} with q1 = green(u)∧ edge(u,w)∧ green(w)} and
q2 = red(u)∧ edge(u,w)∧ red(w).
With single-piece-unifiers we obtain CQs that have the shape of “chains” with a
green-atom or an red-atom at each extremity. However, there are also rewritings
without any occurrence of green nor red, and the only way of obtaining them is
to unify two query atoms together.
For instance, the CQ {vertex(u), edge(u,u)} is obtained by unifying, on the one
hand both green-atoms of a safe copy of q1 with green(x), and on the other hand
both red-atoms of a safe copy of q2 with red(x).
More generally, using such piece-unifiers, one can produce all the CQs that de-
scribe the odd-length cycles in the graph. Note that these CQs are incomparable
with the CQs generated with single-piece-unifiers. This example also shows that
a UCQ may have no UCQ-rewriting although each of its CQs has one (which is
here the CQ itself).

Similarly as the rewriting function for conjunctive rules (Definition I.37), we define
below a disjunctive rewriting function.

Definition III.13 (Disjunctive rewriting Function)
Let Q be a UCQ and R be a set of disjunctive rules. The disjunctive rewriting function,
denoted by rewriting∨(Q,R), is defined as a function that returnsW∨k (Q,R) with k the
smallest integer such that W∨k (Q,R) ≡W∨k+1(Q,R), if such an integer exists, otherwise it
returns W∨∞(Q,R).

III.4 Is FUS relevant for disjunctive rules?

We now address the question of identifying classes of disjunctive rules that are UCQ-
rewritable.

By extension of the term coined for conjunctive existential rules (Definition I.24),
we also call them FUS. To the best of our knowledge, the only FUS class of disjunctive
rules mentioned in the literature [Alfonso et al., 2021] is actually a slight extension of
FUS conjunctive rules: this class consists of disjunctive rules with an empty frontier
and it is shown that such rules can be safely added to a set of FUS conjunctive rules. As
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a matter of fact, known FUS classes of conjunctive rules do not seem to be extensible to
the disjunctive case. And worse, the straightforward extension of syntactic criteria that
underlie FUS in the conjunctive case seems to easily lead to undecidability of query
answering, as shown for example in [Morak, 2021] for the syntactic restriction called
stickiness [Calì et al., 2010]. At first glance, one may expect nonrecursive (i.e., s-to-
o) disjunctive rule sets to be FUS, as it happens for conjunctive rules. However, it is
not the case, as shown by the next example: a CQ (on unary predicates) may have no
UCQ-rewriting even with a single non-recursive body-atomic (disjunctive) Datalog rule.

Example III.18

Let the rule R = p(x,y)→ t1(x) ∨ t2(y) and the BCQ q = t1(u) ∧ t2(u). Then the
pair ({q}, {R}) has no UCQ-rewriting. Indeed, a complete rewriting contains all
the CQs of the following shape for any n ∈ N:

t2(u0)∧

 n∧
i=1

p(ui−1,ui)

∧ t1(un)

All these queries are pairwise incomparable with respect to homomorphism. Let
us detail the first rewriting step. To unify {q} with R, we have to make two safe
copies of q, let q1 and q2, which are respectively unified with t1(x) and t2(y). This
produces the CQ {t2(x),p(x,y), t1(y)}, isomorphic to {t2(u0),p(u0,u1), t1(u1)}. If we
switch the unified atoms of head(R), we obtain an isomorphic CQ. All subse-
quent rewriting steps lead to longer paths of p-atoms.

A similar observation follows from [Gerasimova et al., 2020], which focuses on a
specific disjunctive rule of the form A(x)→ T (x)∨F(x), called a covering axiom and de-
noted by covA; their complexity results imply that the singleton set {covA} is not FUS2,
which can be checked, for instance, by considering the query Q = {T (u),p(u,v),F(v)}.

Next, we show that such observations can be generalized to almost any source-
to-target disjunctive rule. Evidently, we have to exclude disjunctive rules that are
equivalent to a conjunctive rule, as classes of FUS conjunctive rules are known. We
also exclude disconnected rules, that is, rules R such that body(R) ∪ head(R) is not a
connected set of atoms (where connectivity is defined in the obvious way based on
shared variables). Note that a rule with a head Hi that has an empty frontier is dis-
connected, as well as a rule whose body has a connected component with an empty
frontier. However, a rule with a disconnected body may not be disconnected, since
head atoms may connect several connected components of the body (e.g., a “product”

2That paper studies syntactic conditions on ontology-mediated CQs of the form (Q,covA) that deter-
mine the data complexity of query answering and the rewritability in some target query language. In
particular, it is shown that if a (connected) CQ Q has no term x with both atoms T (x) and F(x) and con-
tains at least one F-atom and one T -atom then answering (Q,covA) is L-hard for data complexity. Since
answering a UCQ-rewritable ontology-mediated query is in AC0 for data complexity, and AC0 ⊂ L, it
follows that no covA is FUS.
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rule like b1(x)∧ b2(y)→ t1(x)∨ t2(y)∨ p(x,y) is not disconnected).

Example III.19: FUS disconnected rule

Let the disconnected rule R = b(x) → t1(x) ∨ ∃z t2(z). R is not equivalent to
a conjunctive rule. Let us check that it is FUS. Given any UCQ Q, let Q2 be the
subset ofQ that contains all the CQs that can be unified with ∃z t2(z). AnyQ ∈ Q2
necessarily contains a disconnected component of the form ∃u t2(u). Moreover,
it is useless to unify Q with t1(x): in such case, let Q2 be the CQ unified with
∃z t2(z), then the obtained rewriting is more specific than Q2. Hence, we can
ignore all the produced CQs that contain a connected component of the form
∃u t2(u). Rewriting Q with {R} amounts to rewriting Q\Q2 with the conjunctive
rule set R = {b(x)∧ (q2 \ {∃u t2(u)})→ t1(x) | q2 ∈ Q2}, which belongs to the FUS
class called domain restricted [Baget et al., 2011].

In the next theorem, we restrict the head of the rule to a disjunction of two atomsets,
to keep the proof simple.

Theorem III.20

Let R = B → H1 ∨ H2 be a source-to-target rule that is not disconnected nor
equivalent to a conjunctive rule. Then, there is a CQ q such that ({q}, {R}) is not
UCQ-rewritable.

Proof. Let R = B[x1,x2,y]→∃z1 H1[x1,z1]∨∃z2 H2[x2,z2], where:

• fr(R) = x1 ∪ x2; x1 and x2 may share variables;

• xi , ∅ (i = 1,2) since R is not disconnected.

We build the following Boolean CQ:

q =H s
1[v1,w1]∧ p(v1,v2)∧H s

2[v2,w2]

where each H s
i [vi,wi] is a safe copy of Hi[xi,zi] and p is a fresh predicate. Note that,

since R is connected, both H1 and H2 have a frontier variable, and frontier variables
being safely renamed in each H s

i , we have v1 ∩ v2 = ∅, hence the arity of p is at least 2.
In p(v1,v2) the order of the variables is important: a fixed order is chosen in xi (hence,
vi) and the tuple v1 comes before the tuple v2. Hence, p(v1,v2) can be seen as “directed”
from v1 to v2. We then proceed in two steps.

1. We show that we can produce an infinite set Q whose element CQs are pairwise
incomparable by homomorphism. Let q0 = q. At each step i ≥ 1, qi is produced
from a safe copy of q unified with H1 and a safe copy of qi−1 unified with H2. The
piece-unifiers unify H s

1 (resp. H s
2) in q (resp. qi−1) according to the isomorphism

from H s
1 (resp. H s

2) to H1 (resp. H2). Any CQ qk in Q is connected and follows
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the “pattern” H s
1.p.(B.p)k .H s

2, where the occurrences of p atoms all have the same
direction; hence, two “adjacent” p-atoms, i.e., that share variables with the same
copy Bi of a B, cannot be mapped one onto the other (by a homomorphism that
maps Bi to itself).

2. We show that no CQ q′ that can be produced by piece-rewriting maps by ho-
momorphism to a CQ from Q, except by isomorphism. When there is no (con-
junctive) piece-unifier that unifies H1[v1,w1] in q with H2[x2,z2] (then, the same
holds if we exchange H1 and H2), all the produced q′ are more specific than (in-
cluding isomorphic to) CQs from Q. Otherwise, assume that a CQ Q′ is produced
by unifyingH1[v1,w1] withH2[x2,z2]. IfQ′ can be mapped by homomorphism to
a Qn ∈ Q, the arguments of any p-atom in Q′ must be pairwise distinct variables.
We show that it leads to have R equivalent to the conjunctive rule B→ Hi (with
i = 1 or i = 2), which contradicts the hypothesis on R.

It follows that Q is a subset of any sound and complete rewriting of {q} with {R}, there-
fore the pair ({q}, {R}) does not admit a UCQ-rewriting.

Details on step 1. We consider the infinite sequence Q0, . . . ,Qi , . . ., where Q0 = {q0 = q}
and for all i > 0, Qi = Qi−1 ∪ {qi}, where qi is obtained by a (disjunctive) piece-unifier
that unifies safe copies of q0 and qi−1, with H1 and H2 respectively, according to the
isomorphism from H s

1 (resp. H s
2) to H1 (resp. H2). By an easy induction on the length k

of the rewriting sequence leading to Qk (k ≥ 0), we check that all the CQs qk are of the
following form:

H s
1[v0

1,w1]∧ p(v0
1,v

0
2)∧

 k∧
i=1

B[vi−1
2 ,vi

1,yi]∧ p(vi
1,v

i
2)

∧H s
2[vk

2 ,w2]

Moreover, qk is connected. Indeed, by hypothesis, R is connected, hence B is con-
nected, or we have vi−1

1 ∩ vi
2 , ∅, for all i > 0, i.e., two p-atoms adjacent to a B share a

variable.
Since the two p-atoms connected to an occurrence of B are “in the same direction”,

they do not fold one onto the other. Hence, if a CQ qi maps to a CQ qj (i , j), it is
necessarily by an injective homomorphism. However, this is impossible because the
“chains” that underlie these CQs are of different length, while the copies of H1 and H2
at their extremities should be mapped one onto the other. Hence, the set Q defined as
the union of all the Qi for i ∈ N, is composed of pairwise incomparable CQs.

Details on step 2. (1) We first consider the case where there is no (conjunctive) piece-
unifier that unifies H1[v1,w1] in q with H2[x2,z2] (then, the same holds if we exchange
H1 and H2) and show that the produced CQs are more specific than (including iso-
morphic to) CQs from Q. Indeed, in this case, all the CQs produced are of the above
general form, except that the p-atoms may be specialized, as well as the B’s on their
frontier (it is the case if we consider more specific unifiers than the ones used to build
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Q). Let us prove it by induction on the length l of a rewriting sequence. This is true
for l = 0. Assume this is true until l = n. For l = n + 1, let Qj and Qk , with (in sim-
plified form) Qj = H s

1.p.(B.p)j .H s
2 unified with H1 and Qk = H s

1.p.(B.p)k .H s
2 unified with

H2. The produced CQ has the form H s
1.p.(B.p)j+k+1.H s

2, hence it is more specific than
qj+k+1, as defined in the step 1 of the proof. (2) Otherwise, let Qk be a CQ produced by
unifyingH s

1[v1,w1] withH2[x2,z2] (if we exchangeH1 andH2, the case is similar). IfQk
can be mapped by homomorphism to a Qn ∈ Q, any p-atom in Qk must have pairwise
distinct variables. Hence, when an atom set of the form H1 is unified with an atom set
of the form H2, the (copies of the) frontier variables in each set have to remain distinct
(i.e., no frontier variable can be unified with another frontier variable in the same set).
From this observation and the fact that two existential variables of H2 cannot be uni-
fied together, there is a homomorphism from H s

1[v1,w1] to H2[x2,z2], with v1 mapped
to x2. Since by construction of the rewriting, an H s

1 is never specialized (by merging
two variables or replacing a variable by a constant), H s

1 is isomorphic to H1 (with fron-
tier variables mapped to frontier variables). Hence, there is a homomorphism h from
H1 to H2, with frontier variables mapped to frontier variables. Now, two cases: either
h(B) maps to B by a homomorphism invariant on the frontier variables of h(B), and
B→ H2 |= B→ H1, hence R is equivalent to the conjunctive rule B→ H2, which is ex-
cluded by hypothesis; or h(B) does not map to B by a homomorphism invariant on the
frontier variables of h(B), and it does not map to a B by a homomorphism from Qk to
Qn, hence there is no homomorphism from Qk to Qn. ■

One interest of the above proof is to provide a general construction that applies to
any rule (fulfilling the conditions of the theorem). Also, the proof can be generalized
to a rule head with k disjuncts, taking q containing a safe copy of each Hi plus a p-
atom that connects these copies through their frontier variables. Given this result, the
notion of FUS disjunctive rules does not seem to be particularly relevant. Studying the
problem of deciding whether a pair (Q,R) is UCQ-rewritable seems more interesting,
although it is known to be undecidable already for (conjunctive) Datalog rules.3 Again,
little is known about classes of disjunctive rules and UCQs for which this problem
would be decidable. Let us point out a few immediate cases of UCQ-rewritable pairs
(Q,R):

• Q is composed of atomic CQs and R is a set of disjunctive linear existential rules
(that is, rules with an atomic body). Indeed, only atomic CQs can be produced,
and there is a finite number of them on a given set of predicates. This case was
already noticed in [Bourhis et al., 2016].

• Q is composed of atomic queries andR is a set of S-to-T rules. The produced CQs
are obtained from the rule bodies by specializing their frontier (that is, merging

3This follows from the undecidability of determining whether a Datalog program is uniformly bounded
[Gaifman et al., 1993]. Indeed, a Datalog program R is uniformly bounded if and only if the pair (q,R)
is UCQ-rewritable for any full atomic query q. In turn, UCQ-rewritability of (q,R) can be reduced to
UCQ-rewritability of (q′ ,R) with q′ a Boolean CQ.
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variables and replacing them by constants occurring inQ and rule heads). Hence,
there is a finite number of them.

• Q is composed of variable-free CQs4 and R is a set of lossless existential rules
(that is, such that all the variables in a rule body are frontier). Then, no variable
is introduced by rewriting, hence the number of terms in a CQ is bounded by
|consts(Q)∪ consts(R)|.

III.5 Disjunctive Mappings

We now consider UCQ-rewritability with (disjunctive) mappings. Let S and T be the
sets of source and target predicates, respectively, and let M be a mapping on (S ,T ).
Given a query on T , the aim is to obtain a complete rewriting with respect to instances
on S . Because S and T are disjoint, CQs that contain atoms on T are useless in a
rewriting. Hence, we define a mapping rewriting as a rewriting on S and use the notation
S-rewriting to distinguish it from a rewriting on S ∪T . An S-rewriting Q′ of a UCQ Q
withM is complete if, for all instance I on S , if I,M |= Q then I |= Q′. A finite complete
S-rewriting is called a UCQ-S-rewriting.

Example III.21: Colorability

We adapt Example III.17 to transform the rule into a mapping. Let S =
{vertex,edge}, T = {t_edge,green, red} andM = {m1,m2}, with:
m1 = edge(x,y)→ t_edge(x,y)
m2 = vertex(x)→ green(x)∨ red(x).
Let Q = {q1,q2} with q1 = green(u) ∧ t_edge(u,w) ∧ green(w) and q2 = red(u) ∧
t_edge(u,w)∧red(w). Any complete S-rewriting of Q contains CQs that describe
all the cycles of odd length (in other words, it defines non-2-colorability). All
the other CQs that can be produced by piece-rewriting contain predicates green
and red, hence are discarded.

Note that a query may have a UCQ-S-rewriting, while it does not have any UCQ-
rewriting (on S ∪T ), as illustrated by the next example.

Example III.22

Let S = {p} and T = {t1, t2}. Consider the (Boolean) CQ q = t1(u)∧ t2(u) and the
rule R = p(x,y)→ t1(x)∨ t2(y) from Example III.18. Although the pair ({q}, {R})
has no UCQ-rewriting, it has a UCQ-S-rewriting, which is empty. In fact, all
CQs that can be obtained by piece-rewriting contain an atom on T .

4If non-Boolean CQs are considered, Q can be extended to a set of full CQs.
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III.5.1 Undecidability of disjunctive mapping rewritability

Let disjunctive mapping rewritability be the following problem: Given a disjunctive map-
pingM on (S ,T ) and a UCQ Q on T , does (Q,M) have a UCQ-S-rewriting ?

Theorem III.23

Disjunctive mapping rewritability is undecidable.

In the following, we give the main ideas to prove Theorem III.23. The full proof of
the Theorem can be found in Appendix B.

Proof. (Sketch) We build a reduction from the following undecidable problem: Given
a (Boolean) CQ q and a set of (conjunctive) Datalog rules R, is the pair ({q},R) UCQ-
rewritable? W.l.o.g. we assume that rules inR have no constants (and an atomic head).
The reduction translates each instance (q,R) defined on a set of predicates P , into an
instance (QQ,R,MQ,R) of the disjunctive mapping rewritability problem, defined on a
pair of predicats sets (S ,T ) such that:

• S = P ∪ {T }, where T is a fresh unary predicate,

• T is the union of: (1) a set of predicates in bijection with S , where p̂ denotes the
predicate obtained from p ∈ S , and (2) a set of fresh predicates in bijection with
R, where pRi denotes the predicate associated with the rule Ri ; the arity of each
pRi is |fr(Ri)|.

Given a conjunction Q (on P ), we denote by QT the conjunction (on S) obtained
fromQ by adding a T -atom on each term; given a conjunctionQ (on S), we denote by Q̂
the conjunction (on T ) obtained fromQ by renaming all the predicates p into p̂. Hence,
Q̂T is obtained by performing the first operation, then the second. Given x = x1, . . . ,xn,
T [x] denotes the conjunction T (x1)∧ · · · ∧ T (xn). Similarly, T̂ [x] = T̂ (x1)∧ · · · ∧ T̂ (xn).

Let q and R = {R1, . . . ,Rn}, where Ri = Bi[xi,yi]→ Hi[xi]. The instance (Qq,R,Mq,R)
is defined as follows:

• Qq,R = {qq} ∪QR with:

qQ = q̂T ,

QR = {qRi = ∃xi,yi (̂Bi)
T [xi,yi]∧ pRi (xi)|Ri ∈ R}

• Mq,R =MR ∪Mtrans with:
MR = {mRi = T [xi]→ pRi (xi)∨ Ĥi(xi) | Ri ∈ R}
Mtrans = {p(x)→ p̂(x) | p ∈ S}

Based on the natural bijection between the CQsQP defined on P and the CQs (QP )T

defined on S , we prove thatQP belongs to a rewriting of {q}withR if and only if (QP )T

belongs to a rewriting of Qq,R withMq,R. Note that set membership is up to isomor-
phism throughout the proof. More specifically, we first prove the following lemmas:
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1. For any CQ Qw in a piece-rewriting of {q} with R, (Qw)T belongs to a piece-
rewriting of Qq,R with Mq,R. Indeed, to each Ri are associated a CQ qRi and a
rule mRi that allow to simulate any rewriting step performed with Ri , using fresh
predicate pRi .

2. Any CQ QS in an S-rewriting of Qq,R withMq,R is of the form QS = (QP )T , with
QP the subset of QS on P .

3. For any CQ of the form (QP )T , with QP on P , that belongs a piece-rewriting of
Qq,R withMq,R, QP belongs to a piece-rewriting of {q} with R⋆ , where R⋆ is the
reflexive and transitive closure ofR by unfolding (that is, rule composition). Note
that R⋆ is logically equivalent to R.

We rely on these lemmas to prove the following: if there is a UCQ-rewriting of
({Q},R) then there is a UCQ-S-rewriting of (Qq,R,Mq,R). The proof of the opposite di-
rection is similar. Let Q be a UCQ-rewriting of ({Q},R). Then there is a piece-rewriting
Qi of {Q} with R such that Qi ≡ Q. By Lemma 1, there is a piece-rewriting Qj of Qq,R

withMq,R that contains all the CQs of the form (Qw)T in bijection with theQw inQi . By
definition, Qj is a finite rewriting of (Qq,R,Mq,R) and the subset QSj of Qj that contains

only the CQs on S is a finite S-rewriting of (Qq,R,Mq,R). Now, assume QSj is not com-

plete, that is, there is a CQ that belongs to an S-rewriting of (Qq,R,Mq,R) but that is not
more specific than a CQ in QSj ; by Lemma 2, such CQ is of the form (QP )T . Then there

is a piece-rewriting Q′j of Qq,R withMq,R that contains a CQ entailed by (QP )T ; hence

such CQ is also on S , and by Lemma 2 it is of the form (Q′P )T . By Lemma 3, Q′P belongs
to a piece-rewriting of {q} with R⋆ . Since R⋆ ≡ R, there is a CQ equivalent to Q′P in
some rewriting of ({Q},R). Since Qi is complete, there is Qc ∈ Qi such that Q′P |= Qc.
Hence, (Q′P )T |= (Qc)T , so (QP )T |= (Qc)T ; by Lemma 1, (Qc)T ∈ Qj , hence (Qc)T ∈ QSj ,

which contradicts the fact that (QP )T is not more specific than a CQ in QSj . ■

III.5.2 Disjunctive mapping rewriting / chase operators

In Chapter V, we will need to rewrite (U)CQs through a disjunctive mapping and do
the chase with such mappings. Therefore, we define the following operators.

Chasing through a disjunctive mapping. The disjunctive mapping chase is a natural
extension of the (conjunctive) mapping chase (Definition I.41).

Definition III.14 (Disjunctive Mapping Chase)
Let I be an instance over VS and M be a disjunctive mapping from VS to VO. The
disjunctive mapping chase of I byM, denoted asM−chase∨(I), is defined as follows: for
each instance J in chase∨(I,M), we remove all atoms of the initial instance I from J .
Formally,

M−chase∨(I) = {J \ I | J ∈ chase∨(I,M)}
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As for the mapping chase, the atoms of the initial instance I are removed from every
instance produced by the chase. This removal does not alter the answers to queries
defined over VO.

The result of the disjunctive mapping chase is always finite. This holds because the
disjunctive mapping consists of nonrecursive rules.

Rewriting through a disjunctive mapping. The disjunctive mapping rewriting op-
eratorM-rewriting∨ is also a direct extension of the standard mapping rewriting as in
Definition I.42.
Definition III.15 (Disjunctive mapping rewriting)
Let Q be a union of conjunctive queries over VS andM be a disjunctive mapping from
VS to VO. The disjunctive mapping rewriting of Q byM, denoted asM-rewriting∨(Q),
is defined by applying the disjunctive rewriting function (Definition III.13) and then
removing all conjunctive queries that contain atoms with predicates over VO. Formally,

M-rewriting∨(Q) = {q | q ∈ rewriting∨(Q,M), and q is over VS }

This process produces a set of queries that only include the new conjunctive queries
that were generated over VS during the rewriting.

Unlike the standard mapping rewriting, this operator is not guaranteed to produce
a finite result, and it remains an open problem to find an algorithm that terminates
when there exists a (finite) UCQ that is aM-rewriting∨.

In addition to the basic form of the operator, there are two optional parameters that
can be used to control the rewriting process. The first optional parameter is the query
inclusion operator, allowing for the computation of a cover for the result that takes into
account either a specific mappingM with ⊑M or a KBDM specification Σ with ⊑Σ.

Definition III.16 (Disjunctive mapping rewriting with special cover)
Let Q be a union of conjunctive queries over VS andM be a disjunctive mapping from
VS to VO. The disjunctive mapping rewriting of Q byM provided with inclusion operator
⊑X , where X ∈ {M,Σ}, denotedM∨-rewriting⊑X∨ (Q), is an inclusion-minimal subset of
M∨-rewriting∨(Q) such that:

1. For any q in M∨-rewriting∨(Q), there exists q′ in M∨-rewriting⊑X∨ (Q) such that
q′ ⊑X q,

2. All elements ofM∨-rewriting⊑X∨ (Q) are pairwise incomparable with respect to ⊑X .

This operator will be useful in Chapter V to compute the maximally sound M-
translation of a UCQ (see Theorem V.25).

The second optional parameter limits the number of steps of rewriting steps, pro-
viding an approximation of the rewriting. Thus, the result is guaranteed to be a UCQ,
although it might not be a complete rewriting. This is denoted asM∨-rewriting∨(Q, k),
where k is the limit on the number of steps.

Finally, we can combine a special cover with a finite number of steps, which we
denoteM∨-rewriting⊑X∨ (Q, k).
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III.5.3 Existence of a non-empty rewriting

We have shown that one cannot decide if a UCQ has a finite sound and complete rewrit-
ing through a mapping. We now show that we can however decide if a UCQ has a
non-empty sound and complete rewriting. This is a corollary of Theorem III.25.

We recall that an empty UCQ is trivially considered a sound rewriting for any UCQ.
There exist certain UCQs for which the only sound rewriting is the empty UCQ, as
illustrated in Example III.24.

Example III.24

LetM = {m = p(x)→ r(x)∨ s(x)} be a disjunctive mapping and QO = ∃u s(u) be
a UCQ. There is no disjunctive piece-unifier between m and QO. Which implies
thatM-rewriting∨(QO) is empty, and thus, QO has no answer for every instance
over S .

As we will later in Theorem V.22 in Chapter V, Theorem III.25 will also be useful
to know whether there exists a nontrivial maximally soundM-translation.

Before stating this theorem, we need to define the notion of the critical instance on
a vocabulary.

Definition III.17 (Critical instance of S )
Let S be a database schema. The critical instance of S over a nonempty set of constants
C is defined as IC = {p(c) | p ∈ predicates(S) of arity k and c ∈ Ck}.

Theorem III.25

Let M be a disjunctive mapping, QT be a Boolean UCQ and C be the set of all
constants that appear inM and QT or C = {c}, with c that is a constant, if they
contain no constant.
Then, there is a non-empty S-rewriting of QT through M if and only if
M−chase∨(IC) |=QT where IC is the critical instance of S over C.

To prove the theorem, we use the following lemma.

Lemma III.26

Let qS be a CQ over S , and a nonempty set of constants C. Then, qS can be sent
by homomorphism into the critical instance IC of S .

Proof. We just have to build a homomorphism h from qS to IC that maps the variables
of qS on any constant of C. ■

We recall that the following assertions are equivalent for any Boolean UCQ q:

• I,M ⊨Q;
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• M−chase∨(I) ⊨Q;

• I |=M-rewriting∨(Q).

Proof of theorem III.25. (⇒) Let qS ∈ M-rewriting∨(QT ) be a BCQ. By the Lemma
III.26, IC |= qS . Since IC |= qS , we have IC |= M-rewriting∨(QT ) and so, we also have
M−chase∨(IC) |=QT .

(⇐) SinceM−chase∨(IC) ⊨QT , we have IC |=M-rewriting∨(QT ), which implies that
M-rewriting∨(QT ) cannot be empty. Indeed, IC |=M-rewriting∨(QT ) implies that there
exists a CQ q ∈ M-rewriting∨(QT ) such that IC |= q which cannot be the case if it is
empty. ■

III.6 Summary

In this chapter, we focused on the issue of rewriting a UCQ into a UCQ with respect to
disjunctive existential rules and disjunctive mappings. Our main contributions are the
following:

• We first define a sound and complete query rewriting operator which has the
advantage of establishing a tight relationship between a chase step and a rewrit-
ing step (Theorem III.14). The associated breadth-first query rewriting algorithm
outputs a minimal UCQ-rewriting when one exists (Theorem III.16).

• We then show that the notion of UCQ-rewritable (or: FUS) ruleset seems to have
little relevance for disjunctive rules. Indeed, we show that, for any “truly dis-
junctive” s-to-o rule, there is a CQ that is not UCQ-rewritable (Theorem III.20).
Hence, studying the problem of whether a pair (Q,R) is UCQ-rewritable seems
more promising. We point out some cases of UCQ-rewritable pairs.

• Finally, considering (disjunctive) mappings, we show that the problem of deter-
mining whether a given UCQ on the target vocabulary admits a UCQ-rewriting
on the source vocabulary is undecidable (Theorem III.23). However, determining
whether a UCQ on the target vocabulary admits a non-empty sound rewriting on
the source vocabulary is decidable (Theorem III.25).

This work leaves open a number of problems that we will list in the concluding
chapter.



IV - Query translation: related background

In this chapter, we present notions about and related to the translation of queries. In Section
IV.1 we present a slight extension of UCQs (in particular, studied by [Arenas et al., 2010,
Pérez, 2011]), which is the query language (for both source and target queries) we use in
this chapter and the next one (Chapter V). Section IV.2 reviews related work on S-to-O-
translation. Finally, in Section IV.3, we introduce the fundamental notion of maximum
recovery, imported from data exchange.

IV.1 Slight extensions of UCQs

In the following, we will consider extensions of UCQs / mappings obtained by adding
some special predicates, as in [Arenas et al., 2010, Pérez, 2011]. This will allow us to
obtain more powerful translations in the context of S-to-O-translation, in the sense
that we can achieve more faithful translations than by just considering nonextended
UCQs.

These special predicates are the following: 1

• C(·): to express that the argument is a constant.

• · , · (inequality predicate): to express that the two arguments are distinct entities
(i.e., , is the negation of equality).

We furthermore denote by C[x] the conjunction
∧
xi∈x C(xi) and by ⊤[x] the con-

junction
∧
xi∈x⊤(xi).

These special predicates are more precisely interpreted as follows. Let I = (∆, .I ) be
any interpretation of a logical language with set of constants C. Then:

• CI = C.

• ,I = {(d1,d2) ∈ ∆2 | d1 , d2}.

We will consider the two following extensions of the UCQ class:

• (U)CQC: the class (U)CQ provided with the C predicate, which may occur in any
term that also occurs in a standard atom. Note that for any constant a, C(a) is true
in any interpretation. Also, adding to a query the atom C(x) for an answer vari-
able x does not change its semantics since an answer variable has to be mapped
to a constant.

• (U)CQ,,C (resp. (U)CQ,): the class (U)CQC (resp. (U)CQ) provided with the ,
predicate, such that the arguments of , are either constants, answer variables or
variables that occur in a C-atom. In other words, the arguments of , are neces-
sarily mapped to constants in a homomorphism from a CQ to a database instance

1Besides, we will refer to the special unary predicate ⊤(·) when reviewing related work in description
logics. In any interpretation I = (∆, .I ), ⊤I = ∆.

87
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(and, more generally, considering a non-ground instance, mapped to terms that
are known to be constants, which also includes variables occurring in a C-atom).

Note that , may make a query inconsistent if the query contains an atom of the
form t , t or if it contains equalities that conflict with the inequalities. More precisely,
we say that a UCQ,,C is consistent if there is an instantiation of its answer variables by
constants that yields a satisfiable Boolean query, otherwise we say that it is inconsistent.
Next, we implicitely assume that queries are consistent.

When needed, to distinguish between the different kinds of atoms in a conjunction
(or set) of atoms, we write it as φ∧C∧ δ∧ η, where:

• C denotes the subset of C-atoms,

• δ denotes the subset of inequalities, and

• η denotes for the subset of equalities,

• φ denotes the subset of other atoms (i.e., standard atoms).

Given a set of atoms or CQ,,C q, we denote by C(q) its C-atoms, δ(q) its inequalities,
η(q) its equalities, and φ(q) its other atoms.

The notion of homomorphism is naturally extended to take the predicates C and ,
into account. We recall we assume that, when dealing with atomsets that may contain
equalities, we implicitly perform the substitutions associated with equalities before
seeking a homomorphism. Given a CQ,,C q1 and an instance I , a homomorphism from
q1 to I is a homomorphism from φ(q1) to I such that:

• for all atom C(t) ∈ q1, h(t) is a constant;

• for all atom t1 , t2 ∈ q1, h(t1) and h(t2) are distinct constants.

In other words, in a homomorphism, special predicates C and , are handled like stan-
dard predicates if we assume that implicit atoms in I are made explicit, that is, for any
constant a, there is an atom C(a) and for any pair of distinct constants (a1, a2), there is
an atom a1 , a2. Note however that, in the following, special predicates never occur
explicitely in an instance.

The notion of query homomorphism is extended similarly, taking into account that
C and , may also occur in the target query: given CQ,,C q1 and q2, a query homomor-
phism from q1 to q2 is a a query homomorphism from φ(q1) to φ(q2) such that:

• for all atom C(t) ∈ q1, h(C(t)) ∈ q2 or h(t) is a constant;

• for all atom t1 , t2 ∈ q1, h(t1 , t2) ∈ q2, or h(t1) and h(t2) are distinct constants.

Now, the question is whether logical entailment can still be based on homomor-
phism. It is not difficult to check that the addition of the C-predicate does not make
any difference: for any Boolean CQC q and instance (or Boolean CQC) I , there is a
homomorphism from q to I if and only if I |= q. In constrast, it is well-known that
inequalities generally make reasoning more complex. However, we consider here a
constrained form of inequalities. Actually, we have to distinguish two cases:
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• Homomorphism from a (Boolean) CQ,,C q to an instance I . If I is a ground
set of atoms (e.g., I is a database instance) and I is a model of q, for any atom
(t1 , t2), t1 and t2 are assigned to distinct domain elements, which are necessarily
constants, hence there is a homomorphism from q to I . If I may contain variables
(e.g., I is an ontological instance obtained by a GLAV mapping), let us consider its
isomorphic modelM = (∆, .M ). IfM |= q, there is an assignment of the variables in
q to ∆ that satisfies the atoms in q. In particular, for an inequality atom (t1 , t2),
t1 and t2 are assigned to distinct elements of ∆, and each ti (i = 1,2) is either a
constant or a variable necessarily assigned to a constant from ∆ because of the
atom C(ti). Hence, the assignment from q to ∆ defines a homomorphism from q
to I . To sum up, for any instance I , if I |= q then there is a homomorphism from q
to I (and reciprocally).

• Homomorphism within (Boolean) CQ,,C: then, entailment does not ensure the
existence of a homomorphism as witnessed by the following example.

Example IV.1: Homomorphism is not complete for CQ,,C

Consider the following CQ,,C queries:
q1 = ∃u,v. p(u,v)∧C[u,v]∧u , v
q2 = ∃x,y,z. p(x,y)∧ p(x,z)∧C[x,y,z]∧ y , z.
Note that all the variables occur in a C-atom, which amounts to allow for in-
equalities between any (distinct) terms. There is no homomorphism from q1 to
q2, however q2 ⊑ q1. Indeed, for any database instance I that answers q2, either x
and y are mapped to distinct constants, and I answers q1, or x and y are mapped
to the same constant, in which case x and z are necessarily mapped to distinct
constants (because of the atom y , z), and I again answers q1.

In fact, it is known that query containment of (Boolean) CQs provided with in-
equalities (that may occur anywhere) is at the second level of the polynomial hierarchy
(precisely, ΠP

2 -complete) [van der Meyden, 1997]. The constraints we enforce in the
class CQ,,C do not simplify the problem because one can add a C-atom on any term
in the queries without changing query inclusion (we remind that database instance are
assumed to be ground), and then the constraints on , are satisfied, as illustrated by
Example IV.1.

IV.2 S-to-O-translation of queries: State of the art

In the landscape of knowledge-based data management, the issue of target (query)
translation has long been overshadowed by the more explored terrain of O-to-S-
translation. While substantial literature has been dedicated to unraveling the com-
plexities of O-to-S-translation, S-to-O-translation has remained a relatively peripheral
area of study. The first glimpses into this subject can be traced back to the works of
Arenas et al. [Arenas et al., 2010] and Perez [Pérez, 2011]. However, these pioneering
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studies were not primarily focused on S-to-O-translation and did not provide formal
algorithms for this purpose. The domain remained largely uncharted until the arrival
of more concentrated efforts, such as those found in the works of Lutz et al. [Lutz et al.,
2018], Lenzerini et al. [Lenzerini, 2019] and Cima [Cima, 2020]. These contributions
mark the beginning of a focused study on S-to-O-translation.

IV.2.1 M-translation

In [Arenas et al., 2010], an algorithm named TargetRewriting computes the perfect
UCQ,,C-to-UCQ,,C M-translation when there exists one. However, this algorithm was
not precisely defined. Indeed, the previous work only mentioned that following a proof
of one of its theorems, there exists an algorithm that is then used has a black box in the
paper. Since the proof is not provided in this work, we have to rely on Pérez’ Phd thesis
dissertation [Pérez, 2011] that contains a description of the algorithm in several parts
mixed in the proofs of lemmas 6.2.3, 6.2.6 and A.2.3. We do not give details about the
algorithm here: the main steps of the algorithm are given in the appendix (section D.1)
and for more details, the reader can read the lemmas from [Pérez, 2011] .

[Arenas et al., 2010, Pérez, 2011] also give us an important property: the class of
queries UCQ,,C is expressive enough to express any perfectM-translation of a query
in UCQ,,C.

Proposition IV.2: [Arenas et al., 2010, Pérez, 2011]

Let M be a mapping specified by a set of rules where inequalities are allowed
in the body, and Q be a UCQ,,C that has a perfectM-translation in some query
language. Then, there exists a query in UCQ,,C that is a perfectM-translation of
Q.

IV.2.2 Σ-translation

In the existing literature on S-to-O-translation, the primary emphasis has been placed
on the context of Ontology-Based Data Access (OBDA). As forM-translation, a perfect
Σ-translation may not always be attainable, since a Σ-translation with an empty on-
tology is the same problem as theM-translation. Thus, [Lutz et al., 2018], one of the
first works on Σ-translation, studies two reasoning problems: checking if a query is a
perfect Σ-translation (Problem IV.3) and the problem of expressibility, that is, checking
if there exists a perfect Σ-translation (Problem IV.4).

Problem IV.3: Verification problem from [Lutz et al., 2018]

Input: OBDA specification Σ = (VO ,RO ,VS ,M), a query QS over VS , a query QO
over VO of the same arity as QS .
Output: Is QO a perfect UCQ-Σ-translation of QS ?
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Problem IV.4: Expressibility problem from [Lutz et al., 2018]

Input: OBDA specification Σ = (VO ,RO ,VS ,M), a query QS over VS .
Output: Is there a perfect UCQ-Σ-translation of QS ?

The study in [Lutz et al., 2018] considers cases where the query class is UCQ and
the mapping is GAV, both restricted to unary and binary predicates. It is shown that
the complexity of both problems is Π

p
2-complete for the main dialects of the DL-LITE

family, CoNExpTime-complete between EL and ELHI when source queries are rooted
(every variable is reachable from an answer variable in the query graph of every CQ),
and 2ExpTime-complete for unrestricted source queries.

[Cima et al., 2019, Cima et al., 2020, Cima et al., 2022] study how to practically
compute Σ-translations.

Minimally complete Σ-translation. The first algorithm proposed only performs a
M-chase of each CQ to obtain a new query that is a minimally complete UCQ: see
Algorithm 3 from [Cima et al., 2019]. The algorithm computes a UCQ-to-UCQ min-
imally complete Σ-translation considering an OBDA framework in which the ontol-
ogy is in DL-LITERDFS and it is assumed that we add rules of the form p(x1, . . . ,xn)→
⊤(x1) ∧ . . . ∧ ⊤(xn) for each predicate p ∈ VS to the mapping. DL-LITERDFS can be
seen as a restriction of DL-LITER which amounts to forbid existential rules in the rule
heads - more specifically, the ontology contains only rules of the form a(x) → b(x),
p(x,y)→ a(x), p(x,y)→ b(x), p(x,y)→ q(x,y) and p(x,y)→ q(y,x).

Algorithm 3: minimally complete UCQ-Σ-translation [Cima et al., 2019]
Input: A KBDM specification Σ = (VO ,RO ,VS ,M) where RO is in DL-LITERDFS

andM also contains rules of the form p(x)→⊤[x] for each predicate
p ∈ VS , a UCQ QS (x) = q1

S (x)∨ . . .∨ qnS (x) over VS
Output: A UCQ QO(x) over VO
QO(x)←

∨n
i=1{M−chase(qiS ) | 1 ≤ i ≤ n};

return QO(x);

We can notice in Algorithm 3 that only the mapping is used, the ontology does not
play any role.

Proposition IV.5: from [Cima et al., 2019]

Given Algorithm 3, the following properties hold:

1. The algorithm computes a minimally complete UCQ-Σ-translation of QS .

2. A minimally complete UCQ-Σ-translation of QS always exists if we add
toM the special rules p(x1, . . . ,xn)→ ⊤(x1)∧ . . .∧⊤(xn) for each predicate
p ∈ VS .

3. If QS is a CQ, then it remains a CQ.
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4. The complexity of Algorithm 3 does not depend on RO and is in PTIME in
the size of QS , and in EXPTIME in the size ofM, as it essentially applies
the chase.

5. An algorithm for computing a minimally complete UCQ-Σ-translations
that is in PTIME in the size of all inputs would imply a PTIME algorithm
for CQ containment. Thus, assuming PTIME , NP, the computation prob-
lem cannot be solved in PTIME.

Let us make comments about these results.
Remark IV.1

1. The point 1 in Proposition IV.5 does not imply that we compute the minimally
complete Σ-translation of QS . It is minimally complete when the target class is
UCQ, otherwise we can have a translation in UCQ,,C that is more minimal (see
Example IV.6).

2. The point 2 in Proposition IV.5 assumes that some special rules are added toM.
In this dissertation, we do not make this assumption because such rules amount
to transfer all the data values at the ontological level, which does not seem in line
with the idea of selecting only relevant data. Hence, we will see later in Section
V.2.1 that a complete translation does not always exist when we consider any
mapping, and we will characterize when it exists.

Example IV.6: Result of Algorithm 3 is not minimally complete

Let VS = {A(·, ·),B(·)} and VO = {S(·, ·),U (·)}, and consider the mappingM from VS
to VO such that:

M =


A(x,y) → S(x,y),

B(x) → S(x,x),

A(x,x) →U (x).

Let QS = ∃x,y.A(x,y). Algorithm 3 returns QO = ∃x,y.S(x,y). QO is a UCQ-
minimally complete Σ-translation of QS . It is not perfect because it is not sound
(taking the database D = {B(a)}, we have I(D,M) = {S(a,a)}, and thus D ̸|= QS but
I(D,M) |=QO).
However, it can be shown that the UCQ,,C Q = (∃x,y.S(x,y) ∧ x , y ∧ C(x) ∧
C(y))∨ (∃x.U (x)) is a perfect Σ-translation of QS . Thus, since Q is perfect, it is
more minimal than QO with respect to completeness.

This example comes from example 32 in [Pérez, 2013].

A variant of Algorithm 3 is proposed in [Cima et al., 2020], with the aim of com-
puting a complete Σ-translation that is more minimal than with UCQs. It uses a more
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expressive target query class, namely EQL-LITE(UCQ) (see [Calvanese et al., 2007a] for
more information on this query language). The principle of the algorithm is similar,
as it is also based on the chase. But in addition, the epistemic modal operator K sur-
rounds the UCQ that would be produced in Algorithm 3. Intuitively, K checks if “a
fact is known to be true". Its main role, in this context, is to ensure that the variables
can only be mapped to constants. This can also be done with the special predicate C,
so with much less expressive language. In the context of their work, this allows one
to filter out some answers that we couldn’t have on a database which contains only
constants. Example IV.7 illustrates this algorithm.

Example IV.7

Take again the mapping and the CQs from Example IV.6:
Let VS = {A(·, ·),B(·)} and VO = {S(·, ·),U (·)}, and consider the mappingM from VS
to VO such that:

M =


A(x,y) → S(x,y),

B(x) → S(x,x),

A(x,x) →U (x).

Let QS = ∃x,y.A(x,y). We have a specification Σ = (VO ,∅,VS ,M).
Then, a minimally complete EQL-LITE-Σ-translation, as described in [Cima
et al., 2020], is QO = ∃x,y.K(S(x,y)).

Another work ( [Cima et al., 2022]) proposes another variant of the two previous
algorithms, whose target class is non-recursive Datalog rules with the epistemic opera-
tor K and ,-atoms in the body (we denote that by non-recursive DatalogK,,). Algorithm
4 takes all the "specializations" of the CQs in the input (that is, we do all the possible
partitioning of the variables of the CQs and create new CQs for each partition, in which
we add inequalities atoms between each pair of variables that are not in the same class
of the partition) and then do a M-chase on the resulting CQs. Finally, the operator
K is used to surround the result that is then transformed into a Datalog program (the
CQs become the body of the Datalog rules, and a target predicate "Ans" is put on the
head). The result of this algorithm is proved to be a minimally complete monotone-Σ-
translation (that is, there exists no other monotone query that is strictly more minimal
with respect to completeness). Example IV.8 illustrates this algorithm.

Example IV.8

Take again the mapping and the CQs from Example IV.6:
Let VS = {A(·, ·),B(·)} and VO = {S(·, ·),U (·)}, and consider the mappingM from VS
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to VO such that:

M =


A(x,y) → S(x,y),

B(x) → S(x,x),

A(x,x) →U (x).

Let QS = ∃x,y.A(x,y). We have a specification Σ = (VO ,∅,VS ,M).
Then, a minimally complete monotone-Σ-translation, as described in [Cima
et al., 2022], is:

QO =

K(S(x,y)∧ x , y) → Ans(),

K(U (x)) → Ans()

Algorithm 4: Non-recursive DatalogK,,-Minimally Complete Σ-translation
[Cima et al., 2022]

Input: OBDM specification Σ = (VO ,RO ,VS ,M) with RO a DL-LITERDFS
ontology andM also contains rules of the form p(x)→⊤[x] for each
predicate p ∈ VS , UCQ QS over VS

Output: Non-recursive DatalogK,,-Minimally Complete Σ-translation of QS
foreach qi = {x | ∃y.φ[x,y]∧ δ[x,y]} in SaturateQ(QS ) do

rqi ←K (∃z.⊤[x]∧M−chase(φ[x,y])∧ δ[x,y′])→ Ans(x);
end
return {rq1

, . . . , rqn};
function SaturateQ(QS);
Q′S ←∅;
foreach disjunct qS = ∃y.φ[x,y] of QS do

foreach unifier µ on x∪ y such that µ(x) ∈ x for each x ∈ x do
q′S ← µ(qS );
foreach pair of distinct variables t1, t2 in q′S do

q′S ← q′S ∪ {t1 , t2};
end
Q′S ←Q

′
S ∪ {q

′
S };

end
end
return Q′S ;

Maximally sound Σ-translation. In the study of Σ-translations of UCQs, a surpris-
ing finding was obtained: a maximally sound UCQ-Σ-translation does not always ex-
ist, even when considering an empty ontology. [Cima et al., 2019] gives a case where
there is always a maximally sound UCQ-Σ-translation as described in Proposition IV.9.
Proposition IV.10 gives cases where there is no maximally sound UCQ-Σ-translation.
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To see an illustration, read Example V.27 in Section V.2.3.
Before introducing the two next propositions, we need to define the notions of pure

GAV mapping and UCQJFE. A GAV mapping is a pure GAV if the head of all its rules is
composed of a (binary) atom without constant nor repeated variables (that is, an atom
of the form p(x) or p(x,y)). A UCQJFE is a union of CQJFEs (Conjunctive Queries with
Join-Free Existential variables). A CQJFE is a CQ whose existential variables are not
repeated more than once.

Proposition IV.9: from [Cima et al., 2019]

Let Σ = (VO ,RO ,VS ,M) be a KBDM specification where the ontology is DL-
LITERDFS ,M is pure GAV and QS is a UCQJFE over VS .
There is always a UCQ-maximally sound Σ-translation ofQS , in which CQs have
fewer atoms than the following bound:

bound(M,QS ) =
size(QS )∑
i=0

|M|i ,

where size(QS ) is the total number of atoms in QS , and |M| the total number of
rules inM.

In [Cima et al., 2019], an algorithm is proposed in the restricted setting introduced
in Proposition IV.9. Algorithm 5 finds a translation using a generate-and-test approach:
it generates all the possible CQs of a size less than bound(M,QS ) and then checks if it
is a sound Σ-translation of the UCQJFEQS in the input. To check that a CQ q is a sound
Σ-translation ofQS , we just need to test if q ⊑Σ QS (which is decidable in this case since
the ontology is in DL-LITERDFS , so it is a FUS).

Algorithm 5: Compute maximally sound UCQ-Σ-translation of a UCQJFE
[Cima et al., 2019]

Input: A KBDM specification Σ = (VO ,RO ,VS ,M) where RO is DL-LITERDFS
andM is pure GAV, a (U)CQJFE QS over VS

Output: QO over VO
QO←⊥;
for each CQ q over VO with at most bound(M,QS ) atoms, including constants from
QS andM only do

if q is a sound Σ-translation of QS then
QO←QO ∨ q;

end
end
return QO;

Slight modifications of the restricted setting introduced in Proposition IV.9 can lead
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to the nonexistence of a maximally sound UCQ-Σ-translation, as presented in Proposi-
tion IV.10.

Proposition IV.10: from [Cima et al., 2019]

Let Σ = (VO ,RO ,S ,M) be a KBDM specification where the ontology is DL-
LITERDFS ,M is pure GAV and QS be a UCQJFE over VS . The UCQ-maximally
sound Σ-translations ofQS may not exist if we extend this restricted setting with
any of the following features:

1. disjointness axioms in the ontology RO;

2. inclusion axioms with ∃R as right-hand side in the ontology RO;

3. LAV mapping assertions, even without joins involving existential variables
in the right-hand side;

4. non-pure GAV mapping assertions;

5. QS in a fragment of CQs going beyond CQJFEs.

Another algorithm is proposed in [Cima et al., 2020] which computes an EQL-
LITE(UCQ)-Σ-translation of a UCQ: the class EQL-LITE(UCQ) is powerful enough to
represent a maximally sound Σ-translation for every UCQ (that is, there always ex-
ists one in this class). But it comes with the price of a non-monotone class of queries.
The main idea of this algorithm is to compute a minimally complete EQL-LITE(UCQ)-
Σ-translation QO of a UCQ QS and then add relevant negations to remove unwanted
answers that are not sound. To do that, for every CQ qO ∈ QO that is not sound, qO is
rewritten to obtain a UCQ QO→S over VS . Then, for each qi ∈ QO→S that is such that
qi @ QS , a minimally complete Σ-translation q′i is computed. Finally, qO is replaced by
a query of the form qO ∧ ¬K(q′i) which allows one to remove unwanted answers. For
more details on this process, see [Cima et al., 2020].

The last known work on this subject is about computing monotone-maximally
sound Σ-translation [Cima et al., 2022], again in the context of a DL-LITERDFS on-
tology. The target language is a set of disjunctive rules using the epistemic operator K
and ,-atoms in the body, and can contain existential variables in the head (we denote it
R∨K,,). The idea is to compose the mapping and the ontology to obtain a new mapping,
then invert it, and put it in a rule set.

This result extends considerably the preceding ones. Indeed, all maximally sound
Σ-translation are captured. However, their inversion of the mapping is rather intricate
and seems very close to the already known notion of maximum recovery (introduced
in [Arenas et al., 2009a] and detailed next). So, here, we do not give more detail about
their computation of an inverse mapping and refer the reader to the appendix where
the main algorithms are given (Appendix D.2). For more details, see [Cima et al., 2022].



IV.3. A key notion: maximum recovery 97

Proposition IV.11: from [Cima et al., 2022]

Given a KBDM specification Σ = (VO ,RO ,VS ,M) whereRO is a DL-LITERDFS on-
tology and a UCQQS over VS , the algorithm M-MaxSound in [Cima et al., 2022]2

terminates and returns the unique (up to Σ-equivalence) maximally sound R∨K,,-
Σ-translation of QS .

Perfect Σ-translation. Two notable works in the literature have considered this prob-
lem, each computing a perfect translation with different target query languages.

The first technique, presented by [Cima et al., 2019], uses a two-step process to
compute a UCQ as the target query. The algorithm first computes a UCQ-minimally
complete Σ-translation (Algorithm 3) of a UCQ QS , denoted as QO. Subsequently, it
verifies whether QO is also a sound Σ-translation of QS . If the answer is affirmative,
QO is returned as the perfect translation; otherwise, it reports that there is no perfect
translation.

The second technique, as described in [Cima et al., 2022], works with R∨K,, rules.
But it uses the same ideas: it computes the R∨K,,-minimally complete query and then
check whether it is sound.

Algorithm 6 summarises the main ideas of these two techniques to compute a per-
fect K−1-translation.

Algorithm 6: C-Perfect Sound Σ-translation
Input: KBDM specification Σ, Source query QS
Output: C-Perfect translation QO, that is a query of class C, or a failure report
QO← C-Compute-Minimally-Complete(QS); // Algorithm 3 or 4

if Check-Soundness(QO, QS ,Σ) then
return QO;

else
return "No perfect translation exists for the target class C";

end

IV.3 A key notion: maximum recovery

The concept of maximum recovery has not originally been presented in the context of
query translation but for data exchange [Arenas et al., 2008]. However, we will see in
Section V.2.3.1 its relevance and utility: notably, we will use the notion of maximum
recovery to compute maximally sound S-to-O translations of UCQs.

Before defining a maximum recovery, we need to introduce the notion of abstract
mapping. Usually, we define mappings as a set of nonrecursive rules from one vocab-
ulary to another. But we can have a more abstract view of mappings. We can describe
a mapping M as a binary relation from a set of instances over the source to a set of

2Algorithm 20 in the apprendix.
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instances over the target, such that for each pair of instances (I, J) in the relation, we
have I ∪ J |=1M. It is with this notion of mapping that a maximum recovery is defined.

Definition IV.1 (Abstract mapping [Pérez, 2011])
An abstract mappingMA from a set of predicates V1 to a set of predicates V2 (which we
will simply call an abstract mapping from V1 to V2) is a non-empty subset of inst(V1)×
inst(V2) (where inst(VP ) is the set of all instances that we can build on a set of predicates
VP ).

We say that a mappingM composed of rules is a specification of an abstract mapping
MA from V1 to V2 if for each pair (I, J) where I is an instance over V1 and J is an instance
over V2, we have (I, J) ∈ MA if and only if I ∪ J |=1 M. Note that a specification in the
form of conjunctive or disjunctive rules does not always exist.

Since abstract mappings are simply binary relations on sets of instances, the com-
position of abstract mappings can be defined by considering the classical definition of
composition of binary relations. Given abstract mappingsM12

A from V1 to V2 andM23
A

from V2 to V3, the composition ofM12
A andM23

A , denoted byM12
A •M

23
A , is defined as

M12
A •M

23
A = {(I1, I3) | ∃I2 : (I1, I2) ∈ M12

A and (I2, I3) ∈ M23
A } [Melnik, 2004, Fagin et al.,

2004].
The domain of an abstract mappingMA, denoted dom(MA), is the set of instances I

over its source such that there exists (I, J) ∈MA, that is, dom(MA) = {I | (I, J) ∈MA}.

We now extend the notions of solutions and certain answers to abstract mappings
as in [Arenas et al., 2009a]. Given an abstract mapping MA from V1 to V2 and I an
instance over V1, we say that an instance J over V2 is a solution for I under MA, if
(I, J) ∈ MA. The set of solutions for I under MA is denoted by solMA(I). Given a
source instance I , the set of certain answers of Q over I underMA, is the set of tuples
that belong to the evaluation of Q over every solution in solMA(I). We denote this set
by certainMA(Q, I). Thus, certainMA(Q, I) =

⋂
J∈solMA (I)Q(J). Note that these notions

coincide with those on the specification of a mapping: certainMA(Q, I) = certainM(Q, I)
and solM(I) = solMA(I) withM a specification ofMA.

A recovery is a kind of inverse mapping. Intuitively, an inverse of a mapping M
serves as a reverse mapping that undoes the application ofM. The essential require-
ment for a recovery mapping is soundness, which ensures that only information that
was originally present before the exchange is restored.

Definition IV.2 (Recovery Mapping [Arenas et al., 2009a])
An abstract mappingM′A is a recovery mapping ofMA if and only if for all instances I
over VS and all queries Q, it holds that:

certainMA•M′A(Q, I) ⊆ Q(I).

We do not only want to recover sound information from the source, but ideally, we
would like to recover all the sound information that it is possible to recover: this is
performed by a maximum recovery.
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Definition IV.3 (Maximum Recovery [Arenas et al., 2009a])
A recoveryM′A is considered maximum if, for every other recoveryM′′A ofMA, we have
for every instance I over VS and every query Q,

certainMA•M′′A(Q, I) ⊆ certainMA•M′A(Q, I).

In other words, a mappingM′A is maximum if no other recovery allows one to recover
more sound information from the original data. It guarantees the most extensive re-
covery possible while preserving soundness.

Next Proposition IV.12 gives properties that will be useful in some proofs that in-
volve a maximum recovery. This proposition uses the notion of reduced recovery: an
abstract mappingM′A is a reduced recovery ofMA ifM′A is a recovery ofMA and for
every (I1, I2) ∈MA •M′A, we have I2 ∈ dom(MA).

Proposition IV.12: From [Arenas et al., 2009b]

LetMA andM′A be abstract mappings. Then the following conditions are equiv-
alent:

1. M′A is a maximum recovery ofMA.

2. M′A is a reduced recovery ofMA andMA =MA •M′A •MA.

3. M′A is a recovery ofMA and for every (I1, I2) ∈MA •M′A, it is the case that
∅⊊ solMA(I2) ⊆ solMA(I1).

IV.3.1 Maximum recoveries in practice

We defined the notion of maximum recovery on abstract mappings, but in practice we
do not use abstract mappings. One can ask the question: when we have a mapping
composed of conjunctive rules, can we specify a maximum recovery with a set of rules,
and if so, what kind of rules? Proposition IV.13 answers this question.

Proposition IV.13: From [Arenas et al., 2009b]

LetMA be an abstract mapping andM′A be a maximum recovery ofMA. If the
domain of MA contains only databases (that is, ground instances) and MA is
specified by conjunctive rules, thenM′A can be specified with disjunctive rules
with special predicate C occurring in rule bodies and equalities occurring in rule
heads.

Remark IV.2
1. Proposition IV.13 does not hold if we assume that the source instance is not

ground: to manage such a case, the notion of maximum extended recovery was
introduced in [Fagin et al., 2011], but, as far as we know, the question of whether
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a maximum extended recovery can be specified by a set of rules remains an open
problem.

2. Since we consider only databases in the domain ofMA in Proposition IV.13, and
every solution to a maximum recovery ofMA is in the domain ofMA by Proposi-
tion IV.12, we have that each solution in a maximum recovery ofMA is a database.

3. In the general case, not only can we specify a maximum recovery with the kind
of rules described in Proposition IV.13, but we cannot rely on a less expressive
class. Indeed, we need disjunctive rules and the special predicate C [Arenas
et al., 2009b]. Intuitively, we need disjunction because the content transferred
into a predicate at the ontological level can be from different set of atoms from
the database; and the predicate C is used to ensure that a term comes from the
database, i.e., was not created from an existential variable of a rule. As we shall
see, the equalities in the head can be replaced with inequalities in the body, but
one of the two is necessary to specify the maximum recovery of a conjunctive
mapping [Arenas et al., 2009a].

To compute a maximum recovery of a mapping M, the main idea is to rewrite
through M all the heads H of the rules in M, to create, for each head H , a rule of
the form H →M−rewriting(H); note that H is seen as a UCQ whose answer variables
are the rule frontier. Intuitively, since the rewriting is sound and complete, this will
capture back all the information transferred via the heads of the rules. Algorithm 7
from [Arenas et al., 2009b] uses this principle.

Algorithm 7: MaximumRecovery(M) [Arenas et al., 2009b]
Input: A conjunctive mappingM
Output: A disjunctive mappingM′ that is a maximum recovery ofM; Rules in

M′ may contain head equalities
M′←∅;
for B[x]→H[x,y] inM do

α(x)←M−rewriting(H[x,y](x)) ; // α(x) is a UCQ with equality

M′←M′ ∪ {H[x,y]∧C[x]→ α(x)};
end
returnM′;

Example IV.14 illustrates Algorithm 7.
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Example IV.14: Maximum Recovery

Let us consider the mapping:

M =


m1 = s1(x) →∃y p(x,y)

m2 = s2(x,y) → p(x,y)

m3 = s3(x) → r(x,x)

m4 = s4(x,y) → r(x,y)

Algorithm 7 outputs the following maximum recovery:

M′ =


m′1 = p(x,y)∧C(x) → s1(x)∨∃z.s2(x,z)

m′2 = p(x,y)∧C(x)∧C(y) → s2(x,y)

m′3 = r(x,y)∧C(x)∧C(y) → (s3(x)∧ x = y)∨ s4(x,y)

m′4 = r(x,x)∧C(x) → s3(x)

Indeed, to obtain the rules inM′, we have performed the following:

• m′1: let q1(x) = ∃y p(x,y), we have α1(x) = M−rewriting(q1(x)) = s1(x) ∨
∃z.s2(x,z), we set q1(x)∧C(x) as the body and α1(x) as the head;

• m′2: let q2(x,y) = p(x,y), we have α2(x,y) = M−rewriting(q2(x,y)) =
s2(x,y), we set q2(x,y)∧C(x)∧C(y) as the body and α2(x,y) as the head;

• m′3: let q3(x,y) = r(x,y), we have α3(x,y) =M−rewriting(q3(x,y)) = (s3(x)∧
x = y)∨ s4(x,y), we set q3(x,y)∧C(x)∧C(y) as the body and α3(x,y) as the
head;

• m′4: let q4(x) = r(x,x), we have α4(x) =M−rewriting(q4(x)) = s3(x), we set
q4(x)∧C(x) as the body and α4(x) as the head.

IV.3.2 Maximum recovery without equalities

In this dissertation, we will do rewritings through a maximum recovery, but we have
not defined how to manage rules with equality in a disjunctive rewriting. Fortunately,
we can find algorithms in the literature to remove equalities in a maximum recovery.
Here, we use the algorithm EliminateEqualities from [Arenas et al., 2009a], pro-
vided in Algorithm 8. By combining Algorithm 8 and Algorithm 7, we obtain a third
one that computes a Maximum Recovery without equalities (Algorithm 9). In a nut-
shell, to remove head equalities, we add inequalities in the body of rules and create
a maximum recovery that may have an exponential size compared to the maximum
recovery with equalities.
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Algorithm 8: EliminateEqualities(M′)
Input: A disjunctive mappingM′ where a rule head may contain equalities
Output: A disjunctive mappingM′′ where a rule body may contain C-atoms

and inequalities, and equality does not occur in rules.
M′′←∅;
for m = B[x]∧C[x]→H1[x]∨ . . .∨Hk[x] ∈M′ do

if m does not contain equalities in the head then
M′′←M′′ ∪ {m};

else
for every substitution s from x to x do

H∨←⊥;
Let δs be the inequalities induced by s;
for i from 1 to k do

if the equalities in Hi[s(x)] are consistent with δs then
drop the equalities in Hi[s(x)] and add the resulting formula
as a disjunct in H∨;

end
end
if H∨ ,⊥ then
M′′←M′′ ∪ {B[s(x)]∧C[s(x)]∧ δs→H∨};

end
end

end
end
returnM′′;

Algorithm 9: MaximumRecoveryWithoutEqualities(M)
Input: A conjunctive mappingM
Output: A disjunctive mappingM′′ where a rule body may contain C-atoms

and inequalities, and equality does not occur in rules.
M′←MaximumRecovery(M);
M′′← EliminateEqualities(M′);
returnM′′;

Example IV.15 illustrates Algorithm 9.
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Example IV.15: Maximum Recovery without equalities

Take again the mapping from Example IV.14:

M =


m1 = s1(x) →∃y.p(x,y)

m2 = s2(x,y) → p(x,y)

m3 = s3(x) → r(x,x)

m4 = s4(x,y) → r(x,y)

Algorithm 7 outputs the following maximum recovery:

M′ =


m′1 = p(x,y)∧C(x) → s1(x)∨∃z.s2(x,z)

m′2 = p(x,y)∧C(x)∧C(y) → s2(x,y)

m′3 = r(x,y)∧C(x)∧C(y) → (s3(x)∧ x = y)∨ s4(x,y)

m′4 = r(x,x)∧C(x) → s3(x)∨ s4(x,x)

Algorithm 9 will remove the equality fromm′3 by considering that either x = y or
x , y. A new rule is created for each case. For the first case, we obtain exactly the
rule m′4, so we do not add this new rule. We just create a new rule for the case
x , y and we obtain the following maximum recovery:

M′′ =


m′1 = p(x,y)∧C(x) → s1(x)∨∃z.s2(x,z)

m′2 = p(x,y)∧C(x)∧C(y) → s2(x,y)

m′′3 = r(x,y)∧ x , y ∧C(x)∧C(y) → s4(x,y)

m′4 = r(x,x)∧C(x) → s3(x)∨ s4(x,x)

IV.3.3 CQ-maximum recovery

One could ask the question: if we restrict the class of queries considered over the target,
can we have a specification of a maximum recovery that does not use disjunctive rules
? There is some work on this topic in [Arenas et al., 2009a] about a notion of maximum
recovery called CQ-maximum recovery, that is specific to conjunctive queries and that
can be specified with conjunctive rules. It would have given very nice properties to the
M-translation of CQs but, unfortunately, the results of [Arenas et al., 2009a] are not
correct, as shown in Example V.27.

We first explain what a CQ-Maximum Recovery is and then show with a counterex-
ample why it is a recovery that is not maximum. This requires to define the Cartesian
product of queries.

Definition IV.4 (Cartesian Product of Queries [Arenas et al., 2009a])
Let q1 and q2 be two n-ary conjunctive queries with tuple of answer variables x. The
Cartesian product of q1 and q2, denoted by q1 × q2, is a k-ary conjunctive query with
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k ≤ n, constructed by defining a one-to-one function f (·, ·) from pairs of variables to
variables, satisfying:

1. f (x,x) = x for every variable x in x,

2. f (y,z) is a fresh variable (i.e., not occurring in q1 nor q2) in any other case.

Then, for every pair of atoms R(y1, . . . , ym) in q1 and R(z1, . . . , zm) in q2, the atom
R(f (y1, z1), . . . , f (ym, zm)) belongs to q1 × q2. The free variables of q1 × q2 are those of x
that still occur in q1 × q2.

Example IV.16: Cartesian Product of Queries [Arenas et al., 2009a]

Consider the following CQs:

q1(x1,x2) = P (x1,x2)∧R(x1,x1),

q2(x1,x2) = ∃y(P (x1, y)∧R(x2,x2)),

Their product q1 × q2 is the following CQ:

(q1 × q2)(x1) = ∃z1∃z2(P (x1, z1)∧R(z2, z2)).

The above definition, inspired by the standard notion of Cartesian product of
graphs [Hell and Nesetril, 2004], plays a key role in the following algorithm that elim-
inates disjunctions in a disjunctive mapping (Algorithm 10), which is then used in the
algorithm that computes a CQ-Maximum Recovery (Algorithm 11).

Algorithm 10: Eliminate Disjunctions
Input: A disjunctive mapping as output by Algorithm 8.
Output: A conjunctive mappingM⋆ (with C-atoms and inequalities in rule

bodies and no occurrence of equality)
M⋆ ←∅;
for ψ[x]∧C[x]∧ δ[x]→H1[x]∨ . . .∨Hk[x] inM′′ do

if H1[x]× . . .×Hk[x] , ∅ then
M⋆ ←M⋆ ∪ {ψ[x]∧C[x]∧ δ[x]→H1[x]× . . .×Hk[x]};

end
end
returnM⋆ ;

We have first to point out that the use of the Cartesian product of queries in Algo-
rithm 10 is not correct. Indeed, according to Definition IV.4, the resulting arity of the
Cartesian product can be strictly smaller than the arity of the involved original queries.
This becomes problematic when chaining Cartesian products of queries, which are all
supposed to be of the same arity. Since an intermediate result may have a strictly lower
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Algorithm 11: Compute CQ-Maximum Recovery
Input: A conjunctive mappingM
Output: A conjunctive mappingM⋆ (with C-atoms and inequalities in rule

bodies and no occurrence of equality)
M′←MaximumRecovery(M) ; // Algorithm 7

M′′← EliminateEqualities(M′) ; // Algorithm 8

M⋆ ← EliminateDisjunctions(M′′) ; // Algorithm 10

returnM⋆ ;

arity, the subsequent behaviour of the Cartesian product of queries becomes undefined.
Fortunately, in Algorithm 10, we can consider that the disjuncts within the head of a
disjunctive rule are Boolean queries, while preserving the desired properties of the
cartesian product.

More fundamentally, contrarily to its claim, Algorithm 11 does not compute a CQ-
Maximum Recovery. And worse, there are conjunctive mappings for which no CQ-
maximum recovery is conjunctive. This is stated in the next proposition.

Proposition IV.17

Algorithm 11 does not compute a CQ-Maximum Recovery. Furthermore, there is
a conjunctive mappingM that does not admit any CQ-maximum recovery that
is conjunctive.

Proof of Proposition IV.17. Let us consider the following mapping:

M =


s1(x) → q(x),

s2(x)∧ s5(x) → t(x),

s1(y)∧ s3(x,y) → p(x,y),

s2(x)∧ s4(x,y) → p(x,y).

Its maximum recoveryM′ is as follows :

M′ =


m′1 : q(x)∧C(x) → s1(x),

m′2 : t(x)∧C(x) → s2(x)∧ s5(x),

m′3 : p(x,y)∧C(x)∧C(y) → (s1(y)∧ s3(x,y))∨ (s2(x)∧ s4(x,y)).

Let qS = s1(u)∧ s2(u) be the CQ from the same example.
Algorithm 11 computes a disjunctive mappingM⋆ that is the same asM′ but with-

out the last rule. Indeed, as part of its computation, the algorithm first derives M′
based on the given input. As there are no equalities present, we directly getM′′ =M′.
Subsequently, Algorithm 10 (EleminateDisjunctions) retains the rules m′1 and m′2, while
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discarding the rule m′3. This is due to the fact that the Cartesian product of the dis-
juncts in the head of m′3 is empty. Thus, the final computed disjunctive mappingM⋆

consists of {m′1,m
′
2}.

Consider a database D = {s1(a), s2(a), s4(a,b), s2(b), s5(b)}. The mapping chase on D
yields:M−chase(D) = {q(a), t(b),p(a,b)}. We then obtain:

M′−chase∨(M−chase(D)) = { I1 = {s1(a), s2(b), s5(b), s1(b), s3(a,b)},
I2 = {s1(a), s2(b), s5(b), s2(a), s4(a,b)}},

M⋆−chase∨(M−chase(D)) = { I3 = {s1(a), s2(b), s5(b)}}.

Now, let us analyze the behavior of these objects w.r.t. the entailment of qS :

• D |= qS , as we can map qS to D with the homomorphism h = {u 7→ a}.

• M′−chase∨(M−chase(D)) |= qS , as we can map qS to I1 with the homomorphism
h1 = {u 7→ b} and to I2 with the homomorphism h2 = {u 7→ a}.

• M⋆−chase∨(M−chase(D)) ̸|= qS as we cannot find any homomorphism that maps
qS to I3.

This proves thatM⋆ is not maximum sinceM′ recovers strictly more answers than
M⋆ , soM⋆ is not a maximum recovery.

Now, we claim that there is no conjunctive mapping that can be a CQ-Maximum
Recovery of M. This is a consequence of Theorem V.25, stated later in this chapter.
Theorem V.25 shows that we can obtain a maximally soundM-translation of a CQ by
rewriting it through a maximum recovery. However, we previously saw that a CQ may
not have a finite maximally sound M-translation. If we could compute a maximum
recovery that is a conjunctive mapping for such CQ, we would have a contradiction:
indeed, the rewriting through a conjunctive mapping is always finite. ■

IV.4 Summary

Let us briefly review the content of this chapter.

• Extension of UCQs: We have chosen to study translations within a slight exten-
sion of UCQs, as considered in the work of [Arenas et al., 2008, Pérez, 2011],
yielding (U)CQC,, (Section IV.1).

• State of the art of S-to-O-translation: We reviewed existing techniques related
to S-to-O translation (Section IV.2).

• Maximum recovery: We then bring into the framework the notion of maximum
recovery, which was introduced for other purposes in the literature on data ex-
change. In passing, we exhibit a wrong claim in the literature IV.3.3, namely that
all CQs admit a maximum recovery that is a conjunctive mapping.
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In this chapter, we apply the query translation framework defined in Chapter II.2 to UCQs
and UCQC,,. Section V.1 is devoted to O-to-S translations within UCQs. Then, in Section
V.2, we present new techniques for O-to-S translations of UCQC,,.

V.1 O-to-S-translation of UCQs

We first consider theM−1-translation of a UCQ, then its Σ−1-translation.

One of the most direct approaches to M−1-translate a UCQ into another UCQ
through a conjunctive mappingM, is by using well-known query rewriting techniques.
These techniques are introduced in Section I.6 and can be easily applied for this pur-
pose. In particular, theM-rewriting operator (Definition I.42) always produces a per-
fectM−1-translation.

Theorem V.1: Soundness and Completeness ofM-Rewriting

Let QO be a UCQ over VO and M be a mapping from VS to VO. Then,
M−rewriting(QO) is a perfectM−1-translation of QO that is also a UCQ.

Proof. It is a direct consequence of the fact that theM-rewriting operator is sound and
complete, and that it always produces a finite set of CQs. ■

Unlike M−1-translation, where existing techniques can be directly used, the com-
putation of a Σ−1-translation brings about substantial complexity and novel challenges.

We remind the reader that the question of whether a given UCQ admits a UCQ-
rewriting with a given set of existential rules is not decidable, but it is semi-decidable,
in the sense that an algorithm exists that, given a pair (Q,R) produces a UCQ-rewriting
of (Q,R) when one exists. See, for instance, Algorithm 1. Note that this algorithm
always halts if the set of rules R is FUS.

In contrast, one cannot find any generic algorithm in the literature to tackle the
problem of computing a perfect Σ−1-translation of a UCQ into another UCQ for a spec-
ification Σ, that is, when taking into account existential rules. In fact, there is a good
reason for that: we show below that there does not exist any algorithm that computes
a perfect Σ−1-translation and terminates when such finite translation exists. More pre-
cisely, even when we know that a finite perfect Σ−1-translation exists for a pair (QO ,Σ),
we are not able to compute it.

We first define the computation problem and then demonstrate that the associated
function is not computable.

107
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Problem V.2: Computing a UCQ-Σ−1-translation when we know its existence

Input: A KBDM specification Σ−1 and a (U)CQ QO over VO, such that QO has a
perfect Σ−1-translation as a UCQ
Output: A UCQ that is a perfect Σ−1-translation of QO

Note that, in Problem V.2, we know that the input has a perfect Σ−1-translation
which is a UCQ. However, as stated in Theorem V.3, we cannot compute this UCQ.

Theorem V.3: Impossibility of generic UCQ-Σ−1-translation

There exists no algorithm that can compute the output of Problem V.2.

To prove Theorem V.3, we introduce two decision problems; the first one is known
to be undecidable, and we show that it can be reduced to the second one, which is thus
undecidable as well; then we show that the second problem is decidable if there exists
an algorithm that can compute the output of Problem V.2.

Problem V.4: Entailment 1

Input: A set of conjunctive rules R, a CQ q, a set of predicates V , such that
(R,q,V ) is UCQ-rewritable, that is, there exists a finite, sound and complete
rewriting of q with R over V , and a database D on V .
Question: Does D,R |= q hold?

It is known that there is no algorithm that can solves the Problem V.4, it is not even
semi-decidable1.

Problem V.5: Entailment 2

Input: A KBDM system K = (D,Σ) with Σ = (VO ,RO ,VS ,M), a (U)CQ QO over
VO such that QO has a finite perfect Σ−1-translation
Question: Does I(D,M),RO |=Q hold?

Lemma V.6

Problem V.5 is undecidable.

Proof of lemma V.6. The proof is done by reducing Problem V.4 to Problem V.5. To do
that, we take VO in bijection with the set of predicates occurring in D,R and q: we note
p̂ the predicate assigned to p. Then, RO = R̂, that is, we rename all predicates in the
rules with a hat, and similarly Q = {q̂}. Then, we build a mapping that simulates the
restriction of the vocabulary: M = {p(x)→ p̂(x) | p ∈ V }. We then have I(D,M),RO |= Q

1Personal communication from David Carral, June 2023
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if and only if D,R |= q. Since we know that there exists a UCQ Q′ on V such that for
every database D, D |= Q′ if and only if D,R |= q, we also have D |= Q′ if and only if
I(D,M),RO |= Q. Therefore, Q′ is a finite perfect Σ−1-translation of Σ if and only if it is a
rewriting of q throughR. Thus, since there is no algorithm for Problem V.4, then there
is no algorithm for Problem V.5 ■

Proof of Theorem V.3. If we can compute a perfect Σ−1-translation QS of QO, then, we
are able to solve Problem V.5 since D |=QS if and only if I(D,M),R |=QO. But we proved
in Lemma V.6 that this problem is undecidable, so there is no algorithm to compute a
Σ−1-translation. ■

This result may seem strange, as, in the idea, we could just use a rewriting algo-
rithm throughRO and then throughM, then the rewriting would be finite if it is finite
through RO. However, the point is that there are cases where a query has no finite
rewriting with RO but a UCQ-perfect Σ−1-translation. The next example illustrates
that.

Example V.7: Finite Σ−1-translation with Non-FUS Rules

Consider the KBDM specification Σ = (VO ,RO ,VS ,M) where we have:

• RO = {p(x,y)∧ p(y,z)→ p(x,z)} and VO = {p}.

• M = {s1(x)∧ s2(y)→ p(x,y)}.

The rule inRO is a classical example of a non-FUS rule, as it defines the transitive
closure of a predicate.
Let q(u,v) = p(u,v) be a CQ and let us check that it has a finite perfect Σ−1-
translation. More generally, any CQ has a finite Σ−1-translation.

1. By rewriting q(u,v) with the only rule in RO, we obtain a set of pairwise
incomparable CQs, composed of q and CQs of the following form:

qn(u,v) = p(u,y0)∪

 ⋃
i∈[1,n]

p(yi−1, yi)

∪ p(yn,v), for n ∈ N.

2. Rewriting any CQ qn(u,v) or the initial CQ q(u,v) with M replaces each
occurrence p(x,y) by s1(x)∧ s2(y). So, if we remove the redundancies, we
obtain the following result:

M−rewriting(qn(u,v)) = {s1(u)∧ s2(v)} , for n ∈ N.

M−rewriting(q(u,v)) = {s1(u)∧ s2(v)} .

So, the Σ−1-translation contains only one CQ that is qS (u,v) = s1(u)∧ s2(v).
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In this example, although RO is not FUS, the Σ−1-translation is finite due to
the structure of the mappingM. Rewriting through RO creates CQs that form
chains, but subsequent rewriting throughM destroys these chains, resulting in a
finite set of CQs. This is not only true for the CQ in our example but for any CQ
over VO, since the rewriting throughM can only produce connected components
of the shape s1(x)∧ s2(x), s1(x) or s2(x).

Although Theorem V.3 is a strong negative result, this does not mean that we can
never compute Σ−1-translations of UCQs. If we consider a KBDM specification where
RO is a finite unification set, then we can rely on the usual rewriting techniques. In
fact, it is the classical setting of an OBDA framework, where most of the time a light
Description Logic ontology is used to ensure termination of CQ rewriting . The Σ−1-
translation of a UCQ in this context can be computed with Algorithm 12.

Algorithm 12: Algorithm for Σ−1-translation with Finite Unification Set
Input: KBDM specification Σ = (VO ,RO ,VS ,M) with RO a finite unification set,

UCQ QO
Output: Perfect Σ−1-translation of QO
Q′O← rewriting(QO ,RO) ; // Rewrite QO through RO
QK←M−rewriting(Q′O) ; // Rewrite result through mapping M
return QK

Proposition V.8: Termination of Algorithm 12 when the ontoogy is FUS

Let Σ = (VO ,RO ,VS ,M) be a KBDM specification where RO is a finite unifica-
tion set, and QO be a union of conjunctive queries. Then Algorithm 12 always
terminates on such an input and produces the Σ−1-translation of QO.

Proof. It is a direct consequence that the rewriting with RO terminates because it is
a finite unification set and the rewriting through a conjunctive mapping also always
terminates. The result is a perfect Σ−1-translation since the rewriting algorithms used
are sound and complete. ■

Note that Algorithm 12 is not optimal in the sense that rewriting through RO can
produce some CQs that cannot be rewritten throughM (that is, when rewriting such a
CQ throughM, we obtain an empty UCQ).

V.2 Novel techniques for S-to-O-translation of UCQs

In this section, we present new methods developed to tackle the problem of S-to-O-
translation. Our contributions are mainly as follows:
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• We extend the results of Cima and al. with existential existential rules instead of
DL-LITE.

• We identify the conditions under which a (minimally) complete rewriting exists
in this extended setting (Theorem V.11, Section V.2.1).

• We introduce an algorithm to compute a minimally complete M/Σ-translation
within the target class UCQ,,C. Although this class is less expressive than some
of the query languages seen in Section IV.2, it is still able to express any minimally
complete Σ-translation (Algorithm 14, Section V.2.1).

• We propose an algorithm to compute a set of CQ,,C that constitutes a maximally
soundM-translation. However, this set may be infinite, hence it is not necessarily
a UCQ,,C (Theorem V.21, Section V.2.3.1).

• We characterise the existence of a non-trivial sound M-translation (Theorem
V.22, Section V.2.3.1).

• We generalise the algorithm from [Cima et al., 2022] that computes a maximally
sound monotone-Σ-translation2 (see Proposition IV.11 as well as Appendix D.2).
We propose an algorithm that outputs a set of disjunctive rules that constitutes a
maximally sound Σ-translation when the set of rules is parallelisable. These rules
are more precisely disjunctive rules with special predicates C and , in their body.
Instead of using an "ad hoc" notion of inverse mapping, we use the already-known
notion of maximum recovery (Section V.2.3.2).

V.2.1 Minimally complete S-to-O-translation

In this section, we discuss the results about minimally complete translation. Here we
treat both M and Σ-translation since we will see that we can use exactly the same
algorithm.

On the Absence of Minimally Complete S-to-O-translations We saw in Section
IV.2.2 that in [Cima et al., 2019, Cima et al., 2020, Cima et al., 2022], to ensure the
existence of complete S-to-O-translations, special rules of the form p(x1, . . . ,xn) →
⊤(x1)∧ . . .∧⊤(xn) are added to the mapping for each predicate p ∈ VS . In this work,
we do not allow ourselves to alter the user’s mapping. Indeed, the aim of the mapping
is precisely to select relevant data: so, we do not import all data values. Therefore, in
our framework, there is not always a complete translation: see Example V.9. Moreover,
these special rules can lead to outcomes that are not informative and disconnected from
the original query: see Example V.10.

2A maximally sound monotone-Σ-translation is a query which is a Σ-translation maximally sound in
the class of monotone queries.
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Example V.9: Why do complete translations not always exist?

Let VS = {s-cat(·), s-owner(·, ·)} be a database schema about cats and their owners,
and consider a KDBM specification Σ = (VO ,∅,VS ,M) with an empty ontology
and a mappingM = {s-cat(x)→ cat(x)}.
Now, let qS (x) = s-cat(Felix)∧s-owner(Felix,x) be a CQ, which retrieves the own-
ers of a cat named Felix.
In this example, since the data in the second column of the relation owner(·, ·) are
not transferred by mapping to the ontology, it is impossible to retrieve the own-
ers of Felix since we know none of the owners at the ontological level. Therefore,
there is no a complete translation.

Example V.10: Result of adding special rules in mapping

Take the same KBDM specification and CQ as in Example V.9. If we add to
the mapping the special rule s-owner(x,y)→ ⊤(x)∧⊤(y) to M, we would have
the minimally complete S-to-O-translation qO(x) = cat(Felix) ∧ ⊤(x), which is
very odd. In fact, as soon as a cat named Felix would exist in the database, all
constants in the database would be answers to qO, hence this would not give
any relevant information about the original query and would have no utility in
practice.

Our approach avoids producing translations that lack utility or a coherent connec-
tion with the original query. Users still have the flexibility to include these special rules
if they prefer to ensure the existence of complete translations.

We characterise the conditions under which a complete translation exists. Briefly,
each answer variable in a CQ must be the target of a frontier variable from a rule of the
mapping by a homomorphim from the body of this rule to the CQ.

Theorem V.11: Existence of a completeM-translation of a UCQ,,C

Let Σ = (VO ,RO ,VS ,M) be a KBDM specification andQS (x) be a UCQ,,C over VS .
There exists a completeM-translation of QS (x), which is a UCQ,,C, if and only
if for all qi ∈ QS and for all x ∈ x, there existm ∈M and a homomorphism h from
body(m) to qi such that x ∈ h(fr(m)).

We first do the proof for a CQ,,C, then we extend the proof to UCQ,,C.
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Lemma V.12: Existence of a completeM-translation of a CQ,,C

Let Σ = (VO ,RO ,VS ,M) be a KBDM specification and qS (x) be a CQ,,C over VS .
There exists a completeM-translation of qS (x), which is a CQ,,C, if and only if
for all x ∈ x there are m ∈M and a homomorphism h from body(m) to qS (x) such
that x ∈ h(fr(m)).

Proof. (⇒) We have a query qS (x) and we know that there exists a complete M-
translation qO(x). Since qO(x) is complete, we have that, for all databases D, qS (D) ⊆
qO(I(D,M)). We denote by f reeze a substitution that replaces each variable x by a fresh
constant cx. Let t = f reeze(x) and DqS = f reeze(φ(qS ))3. t is an answer tuple in qS (DqS )
and so it is also in qO(I(DqS ,M)). Let q′S (x) =M−rewriting(qO). Since q′S (x) is a sound
and complete rewriting of qO (Theorem I.20), we know that t ∈ q′S (DqS ). Thus there
exists a homomorphism from q′S (x) to DqS that sends x to t. Since DqS is the query qS (x)
that was frozen, we have a query homomorphism h from q′S (x) to qS (x) that is the iden-
tity on x. By construction, q′S (x) is a conjunction of the specialisations of the bodies
of rules ofM and, in addition, all answer variables in q′S (x) can only be from frontier
variables of these rules since a variable of a body that is not in the frontier of a rule can
only become an existential variable in a rewriting. Thus, we have a homomorphism h′

from these rules’ bodies to q′S (x) that covers all the answer variables with frontier vari-
ables. By the transitivity of the homomorphism, we have a homomorphism h′′ = h′ ◦ h
that sends these bodies to qS (x), and for all x ∈ x, there exists a frontier variable y in
these bodies such that h(y) = x.

(⇐) Let q′(x) = φ(qS ) be a CQ. We have qS ⊑ q′, so a complete M-translation of
q′ will also be a completeM-translation of qS . Let qO(x) =M−chase(q′(x)). It follows
from the second part of the theorem that all the answer variables of q′ are transferred to
qO(x). If qO(x) is empty (which can happen if it is Boolean), it is equivalent to ⊤ (and so
is complete). Otherwise, there exists a conjunctive query qO→S (x) obtained by a finite
sequence of rewriting steps from qO, such that there exists a query homomorphism h
from qO→S (x) to q′ (Theorem III.14). Therefore, we have qS ⊑ q′ ⊑ qO→S ⊑ qO. Hence,
qO(x) is a completeM-translation of qS (x). ■

Proof of theorem V.11. We just have to apply the lemma V.12 on each CQ,,C in QS . ■

The syntactic impossibility of constructing an empty CQ of arity different from 0
makes it impossible to define a non-Boolean UCQ whose answer set includes all tuples
of constants from the considered instance. Consequently, any complete translation of
a non-Boolean UCQ is informative in the sense that if it has no answer, the original
query does not either. However, this is no longer true for Boolean UCQs. Moreover, a
Boolean UCQ always has a complete translation, since it always satisfies the conditions
of Theorem V.11. In the following theorem, we characterise Boolean UCQs that only

3We recall that φ(qS ) is the set of atoms in qS which do not use special predicates (Section IV.1))
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have complete translation containing an empty CQ. In this case, it is unnecessary to
attempt to compute a complete translation.

Theorem V.13

Let Σ = (VO ,RO ,VS ,M) be a KBDM specification and QS (x) be a boolean UCQ,,C

over VS . Any UCQ,,C-complete translation of QS is a UCQ,,C containing the
empty CQ if and only if there is a CQ qi ∈ QS such that there is no trigger from a
rule inM to qi .

Proof. We prove the contrapositive: For all CQ qi ∈ QS , there exists a trigger from a
rule inM to qi if and only if there exists a UCQ,,C-complete translation that does not
contain the empty CQ.

(⇒) As a consequence of Theorem V.11, we will have no empty CQ in the complete
M-translation, since we have at least one trigger from each CQ.

(⇐) As we shall see in Theorem V.14, there exist triggers from each CQ in QS that
allow one to compute this translation.

Now, we turn our attention to the computation of a minimally complete translation.
Using Theorem V.11, the algorithm TargetRewriting from [Pérez, 2011] (Section IV.2.1)
and Algorithm 4, we can build a new algorithm that computes a minimally complete
M-translation of a UCQ,,C.

Algorithm 14 systematically explores every specialisation of a given conjunctive
query (CQ) within a UCQ. To do that, it uses Algorithm 13 that computes specialisa-
tions of the CQs in input by applying all possible substitutions from the variables to
the terms of the CQs. It preserves the answer variables by introducing equalities. It
adds inequalities between all distinct terms and special predicates C on all variables.
This process transforms each CQ into a series of specialisations such that the union of
all these specialisations is equivalent to the original CQ when considering only ground
instances. Then, when chasing each CQ, Algorithm 14 achieves a minimally complete
translation.

Theorem V.14: Minimally CompleteM-translation of a UCQ,,C

Let Σ = (VO ,RO ,VS ,M) be a KBDM specification and QS (x) be a UCQ,,C over
VS . Algorithm 14 computes a Minimally CompleteM-translation of QS (x) into
a UCQ,,C query QO(x) over VO, if a completeM-translation exists.

Before doing the proof of Theorem V.14, we need to prove that Algorithm 13 returns
a UCQ,,C that has the same answers as the one in input when considering ground
databases.
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Algorithm 13: Specialise UCQ,,C

Data: A UCQ,,C QS
Result: UCQ,,C specialised versions of the CQs within QS that are consistent
Q′S ←∅ ;
foreach qi[x] in QS do

foreach substitution s from vars(qi) to terms(qi) such that
s(ansVars(qi)) ⊆ ansVars(qi) do
q′i[x]← s(qi);
if q′i is consistent then

foreach distinct pair of terms t1, t2 in terms(s(qi)) do
q′i ← q′i ∧ t1 , t2;

end
foreach x ∈ ansVars(qi) such that x < vars(s(qi)) do

q′i ← q′i ∧ x = s(x);
end
q′i ← q′i ∧C[vars(q′i)];
Q′S ←Q

′
S ∪ q

′
i ;

end
end

end
return Q′S

Algorithm 14: Minimally CompleteM-translation of UCQ,,C

Input: KBDM specification Σ = (VO ,RO ,VS ,M), UCQ QS over VS
Output: Consistent UCQ,,C query QO over Σ if a complete translation exists
QO←∅;
// specialise is Algorithm 13

foreach qi in specialise(QS ) do
// The following if test the condition of Theorem V.11

if qi has a completeM-translation then
qO←M−chase(qi);
Remove in qO every ,-atom and C-atom that contains a variable that
does not appear in φ(qO);
QO←QO ∪ {qO};

else
return QS has no complete translation

end
end
return QO;
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Lemma V.15

Let QS be a UCQ,,C over VS and let Q′S = specialise(QS ) be the result of Algo-
rithm 13. For any database D over VS , QS (D) =Q′S (D).

To prove Lemma V.15, we use another Lemma from [Lembo et al., 2015].

Lemma V.16: from [Lembo et al., 2015]

Let D be a database, and let Q be a UCQ,. Then, Q(D) = Saturate(Q)(D) where
Saturate outputs the same result as Algorithm 13 but without the special predi-
cate C.

Proof of Lemma V.15. Note that adding the predicate C on variables of a CQ that is over
VS is without loss of generality since we consider only databases over VS , which are
ground instances. Since it is the only difference with the algorithm Saturate in [Lembo
et al., 2015], we can conclude from Lemma V.16 that QS (D) =Q′S (D). ■

Now, we can prove Theorem V.14.

Proof of Theorem V.14. (Termination) Trivial.
(Completeness) We want to prove that, for every database D over VS , QS (D) ⊆

QO(I(D,M)), that is, for every tuple of constants c ∈ QS (D), we also have c ∈ QO(I(D,M)).
By Lemma V.15, we have Q′S = specialise(QS ) such that for all databases D over VS ,
Q′S (D) = QS (D). This implies that, for each tuple of constants c ∈ QS (D), there ex-
ists a CQ,,C qi ∈ Q′S such that c ∈ qi(D). So, we have a homomorphism h from
qi to D. As seen in the proof of Lemma V.12, we have that qiO = M−chase(φ(qi))
is a complete M-translation of qi . We should now prove that by adding inequali-
ties and C-atoms to qiO, it remains a complete M-translation of qi . First, note that
qiO = {h+

j (H) | (hj ,B→ H) ∈ Π(M,qi)} (where Π is the set of all triggers (of the rules in
M on qi) as defined in Definition I.19) by the definition of a mapping rewriting. Let
qi,cO = {(h ◦ hj )+ | (h ◦ hj ,B→ H) ∈ Π(M,D)}. By construction, there exists a homomor-

phism h′ from qiO to qi,cO and c ∈ qi,cO (I(D,M)) due to a homomorphism h′′. Let hc = h′′ ◦h′.
Clearly, it is a homomorphism from qiO to I(D,M) such that hc(x) = c. Moreover, for each
x , y ∈ qi such that x,y ∈ vars(qiO), we have hc(x) and hc(y) are two distinct constants
in I(D,M) since these two variables were already sent on two distinct constants by h and
that applying a trigger does not merge two terms together. And for each C(x) ∈ qi such
that x ∈ vars(qiO) we have that hc(x) is a constant since h maps x to a constant of D.
This means we can define the CQ,,C qO with φ(qO) = qiO, to which we add all the in-
equalities and C-atoms to qiO having the property of having their variables in vars(qiO)
without losing the answer c. And since qO ∈ QO by construction, QO is a complete
M-translation.

(Minimality) We now prove that QO is a minimally completeM-translation of QS ,
that is, for each query (irrespective of its class) Q′O that is a complete M-translation,
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we have QO ⊑M Q′O. We prove this by contradiction. Let Q be a complete M-
translation such that Q ⊏M QO. Then, there exists a database D over VS such that
c ∈ certainM(QO ,D) =QO(I(D,M)) but c < certainM(Q,D).

We prove that Q is, in fact, not complete. Since c ∈ QO(I(D,M)), there is qiO ∈ QO such
that c ∈ qiO(I(D,M)) - and so we have a homomorphism hi from qiO to I(D,M) such that
hi(x) = c. qiO was obtained by chasing a CQ,,C qiS withM. Let D i = f reeze(hi(φ(qiS (c))).
Then c ∈ qiS (D i) and considering that qiO is a completeM-translation of qiS , we also have
c ∈ qiO(I(D i ,M)).

Moreover, there exists a homomorphism h from I(D i ,M) to I(D,M). Indeed, I(D i ,M) is,
by construction, isomorphic to hi(qiO) and we have hi(qiO) ⊆ I(D,M).

This implies solM(D) ⊆ solM(D i). Indeed, for each J such that D∪J |=1M, we have
I(D,M) that can be mapped into J (because its isormophic interpretation is a universal
model). Thus, I(D i ,M) can be mapped to J by the transitivity of the homomorphism.
Therefore, D i ∪ J |=1 D

i ∪ I(D i ,M) |=1M.
Since c < certainM(Q,D), we have an instance in solM(D) such that c is not an

answer to Q, which is also an instance in solM(D i). Therefore, c < certainM(Q,Di) but
c ∈ QS (D i): Q is not a completeM-translation of QS . ■

The following proposition extends the first point of Proposition II.4 to the case
where the ontological query is monotone.

Proposition V.17: Link between completeM and Σ-translation

Let Σ = (VO ,RO ,VS ,M) be a KBDM specification. If QO(x) is a monotone query
and a completeM-translation of a query QS (x) over VS with respect to Σ, then
QO(x) is also a complete Σ-translation of QS (x).

In other words, the complete translation with respect to a set of mappings M re-
mains complete when taking into account the entire KBDM specification.

Proof. Let QO(x) be a complete M-translation of a query QS (x) with respect to Σ =
(VO ,RO ,VS ,M). We want to show that QO(x) is also a complete Σ-translation of QS (x).

Since QO(x) is a complete M-translation, it captures all the answers that can be
obtained by applying the rules inM.

Now, consider the entire KBDM specification, including RO. Taking into account
these rules can only add answers to the query. It cannot remove answers, since the rules
in RO only allow one to deduce new facts and QO(x) is monotone, the set of answers
can only grow when new facts are added to an instance. Thus, for every database D, we
have QS (D) ⊆ certainM(QO ,D) ⊆ certainΣ(QO ,D).

Hence, QO(x) remains complete when taking into account the entire KBDM specifi-
cation, and so it is a complete Σ-translation of QS (x). ■

Moreover, the result of Algorithm 14 is not only a minimally complete M-
translation, it is also a minimally complete Σ-translation.
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Theorem V.18: Minimally Complete Σ-translation of a UCQ,,C

Let Σ = (VO ,RO ,VS ,M) be a KBDM specification andQS (x) be a UCQ,,C over VS .
Algorithm 14 computes a Minimally Complete Σ-translation of QS (x) (for any
class of query), that is a UCQ,,C queryQO(x) over VO, if a complete Σ-translation
exists.

To do the proof, we use an extension of the notion of solutions to a mapping to an
entire KBDM specification: solΣ(D) = {I | I is an atomset on VT and (D∪I) |=1M∪RO}.

Proof. (Completeness) It is just a consequence of Proposition V.17.
(Minimality) We do a proof similar to the proof of Theorem V.14: we prove that

QO is a minimally complete Σ-translation of QS , that is, for each query (irrespective
of its class) Q′O that is a complete Σ-translation, we have QO ⊑Σ Q′O. We prove this
by contradiction. Let Q be a complete Σ-translation such that Q ⊏Σ QO. Then, there
exists a database D over VS such that c ∈ certainΣ(QO ,D) = QO(α∞(I(D,M),RO)) but
c < certainΣ(Q,D).

We prove that Q is, in fact, not complete. Since c ∈ QO(α∞(I(D,M),RO)), there is
qiO ∈ QO such that c ∈ qiO(α∞(I(D,M),RO)) - and so we have a homomorphism hi from
qiO to α∞(I(D,M),RO) such that hi(x) = c. qiO was obtained by chasing a CQ,,C qiS with
M. Let D i = f reeze(hi(φ(qiS (c))). Then c ∈ qiS (D i) and considering that qiO is a complete
M-translation of qiS , we also have c ∈ qiO(I(D i ,M)).

Moreover, there exists a homomorphism h from I(D i ,M) to α∞(I(D,M),RO). Indeed,
I(D i ,M) is, by construction, isomorphic to hi(qiO) and we have hi(qiO) ⊆ α∞(I(D,M),RO).

This implies solΣ(D) ⊆ solΣ(D i). First, note that for every J ∈ solΣ(D), we have
J |=RO (sinceRO uses only the same vocabulary as J). Moreover, for each J such thatD∪
J |=1M∪RO, we have α∞(I(D,M),RO) that can be mapped to J (because its isormophic
interpretation is a universal model). Thus, I(D i ,M) can be mapped to J by the transitivity
of the homomorphism. Therefore, D i ∪ J |=1 D

i ∪ I(D i ,M) |=1M. And since we know that
J |=1 RO, we have D i ∪ J |=1M∪RO.

Since c < certainΣ(Q,D), we have an instance in solΣ(D) such that c is not an
answer to Q, which is also an instance in solΣ(D i). Therefore, c < certainΣ(Q,D i) but
c ∈ QS (D i): Q is not a complete Σ-translation of QS . ■

V.2.2 Perfect S-to-O-translation

We already introduced how to compute a perfect S-to-O-translation with Algorithm 6.
In this algorithm, we first compute a minimally complete S-to-O-translation and then
we check its soundness. Algorithm 15 and Algorithm 16 can respectively be used to
check the soundness of aM-translation and Σ-translation in which the set of rules is
FUS.
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Algorithm 15: Checking the Soundness of aM-translation

Input: UCQ,,C QS ,M-translation QO, MappingM
Output: true if QO is a soundM-translation of QS , false otherwise
returnM−rewriting(QO) ⊑ QS ;

Algorithm 16: Checking the Soundness of a Σ-translation

Input: KBDM specification Σ = (VO ,RO ,VS ,M) with RO being FUS, UCQ,,C

QS , Σ-translation QO
Output: true if QO is a sound Σ-translation of QS , false otherwise
returnM−rewriting(rewriting(QO ,RO)) ⊑ QS ;

Corollary V.19

If there exists a perfectM-translation of a UCQ,,C query, then Algorithm 6 com-
putes it, taking Algorithm 14 to compute a minimally completeM-translation.

Proof. Assume that there exists a perfect targetM translation for a given UCQ,,C query.
First, from Algorithm 14, we know that it computes the minimally complete M-

translation.
Now, suppose for contradiction that Algorithm 14 does not compute the perfect

S-to-O-translation when it exists. Since a perfect translation is, by Proposition II.2,
minimally complete, it would mean that it is more minimal than the result of Algorithm
14. This leads to a contradiction.

Thus, the existence of a perfect targetM translation ensures that Algorithm 6, used
with Algorithm 15 and Algorithm 14, indeed computes it. ■

The previous corollary can be easily extended to the case where the set of rules in a
KBDM specification is FUS.

Corollary V.20

If there exists a perfect Σ-translation of a UCQ,,C query, then Algorithm 6 com-
putes it, taking Algorithm 14 to compute a minimally complete Σ-translation.

Proof. The proof is the same as V.19, but with Algorithm 15 instead of Algorithm 16.■

V.2.3 Maximally sound S-to-O-translation

In this section, we will exploit the connection between a maximally sound S-to-O-
translation and disjunctive mapping rewriting through a maximum recovery. We will
see how this helps to understand some odd properties of this kind of translation and
what are the remaining challenges to obtain an algorithm that computes a UCQ that is
a maximally sound S-to-O-translation when there exists one.
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V.2.3.1 M-translation

By a slight abuse of notation, we use "maximally soundM-translation" to talk about a
query that is not always a UCQ but can be an infinite set of CQs (seen as an infinite
union, that is, like with UCQs, the answers to the set of CQs is the union of all the
answers to the CQs in the set).

Theorem V.21

Let QS be a (U)CQ over VS ,M be a conjunctive mapping from VS to VO, andM′
be a specification of a maximum recovery ofM. Then, QO =M′-rewriting∨(QS )
is a maximally soundM-translation of QS throughM (for any query class).

Proof. LetMA andM′A be the abstract mappings specified, respectively, byM andM′.
(Soundness) By definition of a maximum recovery, we have, for all databases D,

certainMA•M′A(QS ,D) ⊆ QS (D). So, to prove that we have certainMA(QO ,D) ⊆ QS (D)
for all databases D (that is, QO is a soundM-translation of QS ), we just have to prove
certainMA•M′A(QS ,D) = certainMA(QO ,D).

For all databases D ∈ dom(MA):

certainMA•M′A(QS ,D) =
⋂

(D,D ′)∈MA•M′A

QS (D ′) (by definition of certain answers)

=
⋂

(D,J)∈MA and (J,D ′)∈M′A

QS (D ′) (by definition of composition)

=
⋂

(D,J)∈MA

 ⋂
(J,D ′)∈M′A

QS (D ′)

 (by definition of intersection)

=
⋂

(D,J)∈MA

certainM′A(QS , J) (by definition of certain answers)

=
⋂

(D,J)∈MA

QO(J) (since it is a sound and complete rewriting)

= certainMA(QO ,D)

(Maximality) We do the proof by contradiction. We assume that there exists
a query Q′O, which is a sound M-translation of QS and there exists a database
D such that certainMA(QO ,D) ⊊ certainMA(Q′O ,D). This implies there is c ∈
certainMA(Q′O ,D) such that c < certainMA(QO ,D). And since we previously proved
that certainMA•M′A(QS ,D) = certainMA(QO ,D), we have c < certainMA•M′A(QS ,D).
This implies there exists (D,D ′) ∈MA •M′A such that c <QS (D ′). By Proposition IV.12,
we have solMA(D ′) ⊆ solMA(D). Thus, certainMA(Q′O ,D) ⊆ certainMA(Q′O ,D

′). But
since Q′O is a soundM-translation of QS , we also have certainMA(Q′O ,D

′) ⊆ QS (D ′).
Therefore, certainMA(Q′O ,D) ⊆ QS (D ′), which contradicts c ∈ certainMA(Q′O ,D)

and c <QS (D ′). ■
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It can happen that the only sound translation of a UCQ is the empty UCQ. Although
this translation is sound, it provides no information about the translated query, since
it never admits any answer (in the case of a Boolean query, it will always be false). The
following theorem characterises the queries that have a non-empty sound translation.
When this is not the case, it is unnecessary to try to compute a (non-empty) maximally
sound translation.

Theorem V.22

Let QS be a (U)CQ over VS andM be a conjunctive mapping from VS to VO and
M′ be a maximum recovery ofM. Let C be the set of all constants that occur in
M′ and QS , or C = {c}, with c a constant, if no constant occur inM′ and QS .
Then, there exists a soundM-translation of QS that is not the empty UCQ if and
only if QS can be mapped toM′−chase∨(IC) where IC is the critical instance of
VO over C.

Proof. It is a consequence of Theorem V.21 and Theorem III.25. ■

If this link between maximum recovery and maximally soundM-translation is in-
teresting, it does not allow to compute a finite maximally soundM-translation (when
it exists) by naively computing a disjunctive mapping rewriting through the maximum
recovery.

Theorem V.23

There exist a mappingM from VS to VO and a CQ q on VS such that there exists
a finite maximally soundM-translation of q but there exists no UCQ-rewriting
of q throughM′ whereM′ is a maximum recovery ofM.

Proof. Let a mapping be

M =


s1(x) → q(x),

s2(x) → t(x),

s1(y)∧ s3(x,y) → p(x,y),

s2(x)∧ s4(x,y) → p(x,y)

A maximum recovery ofM is the mapping

M′ =


q(x)∧C(x) → s1(x),

t(x)∧C(x) → s2(x),

p(x,y)∧C(x)∧C(y) → (s1(y)∧ s3(x,y))∨ (s2(x)∧ s4(x,y))

■

Let q() = s1(u)∧s2(u) be a CQ. Then, a maximally soundM-translation of q is qO() =
q(u)∧ t(u)∧C(u) but we have:

QO =M′-rewriting∨(q) =
n∨
i=0

q(u0)∧

 i∧
j=1

p(uj−1,uj ))

∧ t(un)∧C[u0, . . . ,un].
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Indeed, we can map the only CQ in M−rewriting(q) to each CQ in
M−rewriting(qi), for each qi ∈ QO. For example, we can see for i = 1:

Q1 =M−rewriting(q)

= s1(u0)∧ s2(u0)∧C(u0)

Q2 =M−rewriting(q(u0)∧ p(u0,u1)∧ t(u1)∧C(u0)∧C(u1))

=

s1(u0)∧ s2(u1)∧ s1(u1)∧ s3(u0,u1)∧C(u0)∧C(u1)

s1(u0)∧ s2(u1)∧ s2(u0)∧ s4(u0,u1)∧C(u0)∧C(u1)

Thus, QO ⊑M qO (in fact, they are evenM-equivalent).

Note that this observation does not contradict Theorem V.21 since the disjunctive
rewriting throughM′ is effectively a maximally soundM-translation throughM but it
can be an infinite set of CQs, even when there exists a UCQ that is a maximally sound
M-translation. This is due to an improper way of computing the cover of the result.
We need not compute the cover with the classical query containment, but with the
M-query containment.

Proposition V.24

LetM be a conjunctive mapping. If a set of queriesQ1 isM-equivalent to a UCQ
Q2, then Q1 admits a finiteM-cover (i.e., anM-equivalent finite subset).

Proof. The UCQ Q2 has a finiteM-rewriting sinceM is conjunctive and non-recursive.
If Q1 and Q2 are M-equivalent, then M−rewriting(Q1) and M−rewriting(Q2) are
equivalent (by Proposition I.29).

SinceM-rewriting∨(Q2) is finite, it has a finite cover, andM-rewriting∨(Q1) has a
finite cover of the same size (Theorem 1 from [König et al., 2015]).

Let C1 be a finite cover ofM-rewriting∨(Q1). Each CQ in C1 is (equivalent to a CQ)
obtained by rewriting a CQ of Q1 (e.g., by piece-rewriting). Let Q′1 be the finite subset
of Q1 defined in this way, that is, such thatM-rewriting∨(Q′1) is equivalent to C1.

SinceM-rewriting∨(Q′1) is equivalent toM-rewriting∨(Q1), Q′1 isM-equivalent to
Q1. Therefore, Q1 admits a finiteM-cover. ■

Next Theorem V.25 uses the notion of disjunctive mapping rewriting with a special
cover, denoted byM∨-rewriting⊑X∨ (Q) in Definition III.16: this is an inclusion-minimal
subset of M∨-rewriting∨(Q) w.r.t. ⊑X . Here, we specifically use the containment re-
lation ⊑M. The theorem states two key results: (1) one can still obtain a maximally
soundM-translation through the maximum recovery ofM when considering theM-
cover of the rewriting, (2) thisM-cover ensures that we get a finite maximally sound
M-translation if and only if there exists one in UCQ,,C.
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Theorem V.25

Let QS be a (U)CQ over VS ,M be a conjunctive mapping from VS to VO andM′
be a maximum recovery without equalities ofM. Then:

1. M′-rewriting⊑M∨ (QS ) is a maximally soundM-translation of QS .

2. If there exists a maximally sound M-translation of QS in UCQ,,C, then
M′-rewriting⊑M∨ (QS ) is a UCQ,,C.

Proof. This theorem is a direct consequence of the previous ones. By Theorem V.21, we
know that QO =M′-rewriting∨(QS ) is a maximally soundM-translation of QS through
M. Additionally, Proposition V.24 shows that the M-cover computation is properly
handled. ■

The following examples illustrate the previous theorem. We saw, in the example
used in the proof of Theorem V.23, a case where we were not able to compute the
finite maximally sound translation: Example V.26 shows that with the M-cover, we
can compute this finite maximally sound translation. Example V.27 illustrates that,
as we can expect, there are still cases where we cannot have a finite maximally sound
translation.

Example V.26

We take the example of the proof of Theorem V.23:

M =


s1(x) → q(x),

s2(x) → t(x),

s1(y)∧ s3(x,y) → p(x,y),

s2(x)∧ s4(x,y) → p(x,y).

(V.1)

A maximum recovery ofM is the following mapping:

M′ =


q(x)∧C(x) → s1(x),

t(x)∧C(x) → s2(x),

p(x,y)∧C(x)∧C(y) → (s1(y)∧ s3(x,y))∨ (s2(x)∧ s4(x,y)).

(V.2)

Let qS = s1(u)∧ s2(u) be a CQ. Then, a maximally soundM-translation of qS is
qO() =M′-rewriting⊑M∨ (qS ) = q(u)∧ t(u)∧C(u).
In this example, there is a finite maximally soundM-translation.
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Example V.27

We take again the mapping of the example of the proof of Theorem V.23 but
with a slight modification: we add s5(x) to the body of s2(x) → t(x) - we this
modification, we will have an infinite number of incomparable CQs with respect
toM in the rewriting.

M =


s1(x) → q(x),

s2(x)∧ s5(x) → t(x),

s1(y)∧ s3(x,y) → p(x,y),

s2(x)∧ s4(x,y) → p(x,y).

A maximum recovery ofM is the mapping

M′ =


q(x)∧C(x) → s1(x),

t(x)∧C(x) → s2(x)∧ s5(x),

p(x,y)∧C(x)∧C(y) → (s1(y)∧ s3(x,y))∨ (s2(x)∧ s4(x,y)).

Let qS = s1(u) ∧ s2(u) be a CQ. Then, there exists no UCQ that is a maximally
soundM-translation of qS . We can only describe it with the infinite set of CQs:

QO =M′-rewriting⊑M∨ (q) =
∞∨
i=0

q(u0)∧

 i∧
j=1

p(uj−1,uj )

∧ t(ui)∧C[u0, . . . ,ui].

If we take the two first CQs, we can see why they are incomparable with respect
toM:

Q1 =M−rewriting(q(u0)∧ t(u0)∧C(u0))

= s1(u0)∧ s2(u0)∧ s5(u0)∧C(u0)

Q2 =M−rewriting(q(u0)∧ p(u0,u1)∧ t(u1)∧C(u0)∧C(u1))

=

s1(u0)∧ s2(u1)∧ s5(u1)∧ s1(u1)∧ s3(u0,u1)∧C(u0)∧C(u1)

s1(u0)∧ s2(u1)∧ s5(u1)∧ s2(u0)∧ s4(u0,u1)∧C(u0)∧C(u1)

We can see that because of s5(u0), we cannot map the CQ in Q1 into all the CQ
that are in Q2 and thus the answers to Q2 are not included in the answers to Q1.
This example illustrates a case where the maximally soundM-translation cannot
be finite.

Now, we propose a solution to approximate a maximally soundM-translation. Our
approach is presented in Algorithm 17, which takes as input a UCQ,,C QS , a mapping
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M, and an integer k serving as a depth limit.

The algorithm works in two main steps. First, it computes the maximum recovery of
M without equalities, denoted byM′. Then, it applies the disjunctive mapping rewrit-
ingM′-rewriting⊑M∨ (QS , k) up to a depth of k, allowing us to compute an approximation
of the maximally soundM-translation in the form of a UCQ,,C.

The value of k can be adjusted to control the trade-off between precision and com-
putational complexity. A higher value for k leads to an approximation that is closer to
a maximally soundM-translation but at the potential cost of increased computational
time. Thanks to Theorem V.25, the algorithm ensures that the returned UCQ is a sound
M-translation and that the closer k is to its maximum value, the closer the result is to a
maximally sound one.

Algorithm 17: Approximation of a Maximally SoundM-translation

Input: A UCQ,,C QS , a mappingM, an integer k
Output: A UCQ UCQ,,C that is a soundM-translation
M′←MaximumRecoveryWithoutEqualities(M) ; // Algorithm 9

QO←M′-rewriting⊑M∨ (QS , k) ; // Limit the rewriting to k steps

return QO;

Finally, we propose a solution to always compute a finite maximally sound M-
translation. Our approach is described in Algorithm 18, where we use the class of R∨,,C
rules (that is disjunctive rules with , and C in the body) to form the desired translation.

The algorithm first computes a Maximum Recovery without equalities from the
given mapping M (using Algorithm 9). Then, it constructs the desired rule set by
adding queries from the UCQ to the Maximum Recovery. The result is an R∨,,C rule set
that provides a maximally soundM-translation.

This solution presents a slight improvment of the algorithm in [Cima et al., 2022]
that computes a R∨K,,-Maximally SoundM-translation (where R∨K,, is a set of disjunc-
tive rules that can contain the operator K and the predicate , in their body) of a UCQ
(see Algorithm 20 in the appendix D.2). Our method does not require the creation
of a new kind of inverse mapping, but instead uses the existing concept of maximum
recovery. Moreover, our approach forgoes the use of the epistemic modal operator K
and instead employs only the special predicate C to test if a term is a constant. This
simplification offers a more practical and implementable solution. To evaluate such a
rule set, we only need to use the disjunctive mapping chase, that is always finite. The
answers will be the tuples in the atoms with the special predicate Ans.
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Algorithm 18: Compute R∨,,C-Maximally SoundM-translation

Input: A mappingM, UCQ QS = {q1
S , . . . , q

n
S } over VS

Output: R∨,,C rule set R
R←MaximumRecoveryWithoutEqualities(M) ; // Algorithm 9

for i = 1 to n do
R←R∪{qiS (xi)→ Ans(xi)};

end
return R;

Alghough this algorithm always halts and outputs a solution, its interest in practice
might be questioned. Indeed, the target query class of the translation is not the same as
the source class and it is even not in the class of first-order queries, which means that
(1) we can doubt the aid it provides in terms of understanding for a user accustomed to
relational queries, and (2) it will not help to translate classical constraints as introduced
in Chapter II.

V.2.3.2 Maximally sound Σ-translation

To compute maximally sound Σ-translations, a possible technique is to compose the
rules of the ontology with the mapping to create a new mapping that allows to "forget"
part of the ontology. A simple version of this technique was introduced for DL-liteR
ontologies and GAV mappings under the name T -mapping [Rodriguez-Muro et al.,
2013,Sequeda et al., 2014]. In [Buron et al., 2020], a similar technique is used for RDFS
ontologies and GLAV mappings. In a nutshell, the heads of the mapping assertions are
saturated with the axioms ofRO that are Datalog, i.e., do not introduce fresh variables.
Then, the Datalog rules of RO can be ignored when a query QO is rewritten with RO.
When RO is RDFS, the whole query rewriting step with RO can be skipped. However,
this works only for simple Datalog rules (where a rule body is restricted to an atom on
variables that occur only once). Note that, as presented in Section IV.2.2, this technique
is also used to compute maximally sound Σ translations with a DL-LiteRDFS ontology
in [Cima et al., 2022].

This idea of compiling the ontology into the mappings has been generalized in
[Buron et al., 2021]. In that paper they define the class of parallelisable existential rules,
which ensure the following property: for any parallelisable (finite) rule set R, for any
instance I , there is a finite rule set R⋆ (that can be obtained by composing rules of R)
such that chase(I,R) is equivalent to chase1(I,R⋆), i.e., saturation1(I,R⋆).

Hence, when M∪RO is parallelisable, one can replace the two sets by a single
set of mappings, sayM⋆ , and replace the KBDM specification Σ = (VO ,RO ,VS ,M) by
Σ′ = (VO ,∅,VS ,M⋆).

Thus, whenM∪RO is parallelisable, we can compute a Σ-translation by composing
RO withM to obtain a mappingM⋆ and then compute aM⋆-translation. We assume
that we have an algorithm Compile that composes the rules RO withM to create a new
mappingM⋆ equivalent toM∪RO where equivalence is with respect to possible input
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databases, that is, for all D, I(D,M⋆ ) ≡ chase(I(D,M),RO).

Algorithm 19 computes a Σ-translation whenM∪RO is parallelisable.

Algorithm 19: Maximally Sound Σ-translation for parallelisable rules
Input: KBDM specification Σ = (VO ,RO ,VS ,M) withM∪RO parallelisable, a

UCQ QS
Output: Maximally sound Σ-translation of the input query

M⋆ ← Compile(M,RO) ; // Compose RO with M to create M⋆

equivalent to M∪RO
QO←MaximallySoundMInverseTranslation(M⋆ ,QS ) ; // Compute a

maximally sound M⋆-translation

return QO;

V.3 Summary

Let us briefly review the content of this chapter and highlight our main contributions.

• O-to-S-translation: Using classical rewriting techniques, a perfect M−1-
translation can always be computed (Theorem V.1). This can be extended in the
obvious way to a perfect Σ−1-translation if the rules are FUS (Proposition V.8).
Our original contribution here is to show that, for given KBDM specification Σ

and CQ q, even when we know that a perfect Σ−1-translation of q exists, it is com-
putationally infeasible to produce this translation (Theorem V.3). Note that our
proof relies on an unpublished result by David Carral.

• S-to-O-translation:

– We have stated in Theorem V.18 that the class UCQC,, is able to express any
minimally complete (M or Σ)-translation of a UCQ (and UCQC,,).

– We found that a maximum recovery is exactly the notion required to com-
pute S-to-O-translations.

– In our framework, a complete M/Σ-translation does not always exist. We
give syntactic conditions that characterise when there is one (Theorem V.11)
and when there is one that is not the UCQ containing the empty CQ (Theo-
rem V.13). Note that this is independent from the target query language.

– In contrast, a soundM/Σ-translation always exists, but it may be trivial. We
show that it is decidable to check if a nontrivial soundM-translation exists
(Theorem V.22).

– We provide an algorithm that computes a minimally complete M/Σ-
translation of a UCQC,,, when a complete translation exists (Theorems V.14
and V.18). The property of being minimally complete is independent from
the target query language.
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– We show that when a maximally sound M-translation of a UCQC,, exists,
it can be obtained by its mapping-rewriting with a maximum recovery of
M (Theorems V.21 and V.25). Note that a maximum recovery is a disjunc-
tive mapping, as studied in Chapter III. Two fundamental problems remain
open: first, is the problem of determining whether a pair (Q,M) has a maxi-
mally soundM-translation decidable? We conjecture that it is not, since de-
termining whetherQ has a finite mapping-rewriting with a disjunctive map-
ping is an undecidable problem. Second, we have no algorithm that halts
when a (finite) maximally soundM-translation exists. However, by limiting
the number steps of the mapping rewriting algorithm (Section III.5.2), we
can still approximate a maximally soundM-translation: the more steps al-
lowed, the closer we get to a maximally soundM-translation (Theorem V.25
and Algorithm 17).

– We then consider maximally sound Σ-translations in the case of parallelis-
able rules. When the union of the mapping and the rule set of a KBDM
specification is parallelisable, these can be composed to create a mapping
equivalent to this union. This allows us to apply the techniques defined for
theM-translation (Algorithm 19).

Finally, the following tables indicate whether translations are computable or not,
for the different kinds of translations and input/target query classes studied in this
chapter. Sometimes computability is known up to a restriction. The parentheses in the
notation of target query classes indicate that, when the input class is a subclass, the
result remains in this subclass: UCQ(C,,) means that the result is a UCQ if the input is
a UCQ, and (U)CQ means that the result is a CQ if the input is a CQ.

Ontology Source Translation Computable

UCQC,, UCQ(C,,) perfect yes

Table V.1:M−1-translation

Ontology Source Translation Restriction Computable

UCQC,, UCQ(C,,) perfect RO FUS yes

UCQC,, UCQ(C,,) perfect A perfect translation exists no

Table V.2: Σ−1-translation
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Source Ontology Translation Computable

UCQ (U)CQ minimally complete UCQ4 yes

UCQC,, UCQC,, minimally complete yes

UCQC,, set of CQC,, maximally sound no

UCQC,, UCQC,, sound yes

UCQC,, UCQ(C,,) perfect yes

Table V.3:M-translation

Source Ontology Translation Restriction Computable

UCQ (U)CQ minimally complete UCQ4 yes

UCQC,, UCQC,, minimally complete yes

UCQC,, set of CQC,, maximally sound parallelisable no

UCQC,, UCQC,, sound parallelisable yes

UCQC,, UCQ(C,,) perfect RO FUS yes

Table V.4: Σ-translation

4from [Cima et al., 2019]





VI - Translation of constraints

In this chapter, we apply the constraint translation framework defined in Section II.4 to sev-
eral classes of constraints commonly used in database theory and KR. To achieve this, we rely
on the techniques of UCQ translation defined in Chapter V. In Section VI.1, we present the
different types of constraints that are considered. Section VI.2 includes a review of existing
literature on the translation of constraints. Then, we study the translation of constraints
that are equivalence-stable (Definition II.9). We consider the translation of negative con-
straints (Section VI.3), a restricted kind of equality-generating dependency (Section VI.4)
and a restricted kind of (disjunctive) tuple-generating dependency (Section VI.5).

VI.1 Considered classes of constraints

In this section, we delve into the specific classes of constraints that we will consider.
These are negative constraints (denoted C−), Tuple-Generating Dependencies (TGD)
(denoted CTGD ), Equality-Generating Dependencies (EGD) (denoted C=), and lastly,
Disjunctive Tuple-Generating Dependencies (DTGD) (denoted CDTGD ).

In Chapter VI, we will present results about the following translations: C−-to-C−,
C(D)TGD-to-C(D)TGD , and C=-to-C=.

Intuitively, a negative constraint specifies some contradiction, something that
should not happen in the data or facts. This type of constraint is also known as de-
nial constraints in database theory.

Definition VI.1 (Negative constraint)
A negative constraint C is a closed formula of the form

∀x(B[x]→⊥)

where the body of C, B[x], is a conjunction of atoms.

Note that, in examples, we leave universal quantifiers implicit, just as we do for
rules.

Example VI.1: Negative constraint

LetC− = cat(x)∧dog(x)→⊥. This negative constraint specifies that an individual
cannot be both a cat and a dog. Equivalently, we can write ∀x (cat(x)→¬dog(x))
(a cat cannot be a dog) or ∀x (dog(x)→¬cat(x)) (a dog cannot be a cat).

Intuitively, the following types of constraints specify mandatory information that
should be in the data or facts.

Definition VI.2 (Tuple-Generating Dependency)
A Tuple-Generating Dependency (TGD) is a conjunctive rule (Def. I.10) that has the
semantics of a constraint.

131
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Example VI.2: Tuple-Generating Dependency

Let C+ = pet(x)→∃y hasName(x,y). This constraint states that, in our base, each
pet must have a name.

The class of Tuple-Generating Dependencies has several important subclasses well
studied in database theory. One of them is the class of inclusion dependencies (ID), which
are TGDs of the form p(x,y) → q(x,y), with x , ∅ and such that there is no repeated
variable in the head and in the body. Intuitively, an ID describes the inclusion of some
positions in the relation used in the body to some other positions of the relation used in
the head. Inclusion dependencies can be used in particular to describe class hierarchies
and foreign keys.

Example VI.3: Inclusion dependency

Let C+
1 = pet(x) → animal(x) and C+

2 = hasName(x,y) → pet(x). The constraint
C+

1 states that every pet is an animal (the class of pets is included in the class
of animals) and C+

2 describes that the first position of hasName must come from
the first position of pet.

Another important class of positive constraints is the class of Equality-Generating
Dependencies, which enforce that some values must be equal.

Definition VI.3 (Equality Generating Dependency)
An Equality-Generating Dependency (EGD) is a rule of the following form:

∀x∀y∀z(B[x,y,z]→ x = y)

Example VI.4: Equality Generating Dependency

Let C= = hasName(x,y)∧ hasName(x,z)→ y = z. This constraint states that an
individual in the base cannot have two names.

One common class of EGD is the class of functional dependencies. A functional
dependency (FD) is an EGD of the form p(x,y)∧ p(x,y)→ y = z with y ∈ y and z ∈ z. A
common FD in databases is the key dependency.

The last class we consider is a generalisation of TGDs that allows for disjunction in
the head.
Definition VI.4 (Disjunctive Tuple-Generating Dependency)
A Disjunctive Tuple-Generating Dependency (DTGD) is a closed formula of the form:

∀x∀y(B[x,y]→
n∨
i=1

∃zi Hi[xi,zi]) with xi ⊆ x

where n ≥ 1, B and Hi are non-empty conjunctions of atoms with vars(B) = x∪ y and

vars(Hi) = xi ∪ zi; furthermore x =
n⋃
i=1

xi.
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Note that DTGDs are identical to the disjunctive existential rules (Definition III.1)
that we will consider in Chapter III, but they have the semantics of constraints.

VI.2 Related work

In this section, we give some connections to related work on constraint translation.
In many studies, the database schema includes constraints, hence only the database

instances that satisfy these constraints are considered. Indeed, we can assume that a
source satisfies its own constraints.

Definition VI.5 (Legal instance)
A database D is a legal instance for a KBDM specification Σ = (VO ,RO ,VS ,M) and a set
of source constraints CS if D |=1 CS .

As illustrated in Section II.6.4, [Console et al., 2013] gives techniques of constraint
translation in order to produce constraints that allow to optimise query rewriting. The
idea is that we want constraints that will always be satisfied when considering only
legal databases: these constraints can then help us to discard some rules when rewriting
queries. This motivates the notion of valid constraints.

Definition VI.6 (Valid constraints)
For a given KBDM specification Σ = (VO ,RO ,VS ,M), a set of constraints CO on VO is
said to be valid if for every legal instance D, I(D,M) |=1 CO;

There is a direct link with the notion of the preservation of the satisfaction in our
framework.

Theorem VI.5: Valid constraints & preservation of the satisfaction

Let Σ = (VO ,RO ,VS ,M) be a KBDM specification, and CS be a constraint sets on
VS . A constraint sets CO over VO preserves the satisfaction of CS with respect to
M if and only if it is valid with respect toM.

Proof. (⇒) Since CO preserves the satisfaction of CS with respect to M, we have, for
each database D over VS , D |=1 CS implies I(D,M) |=1 CO. In other words, CO is satisfied
for every legal database, which is the definition of valid constraints.

(⇐) Since CO is valid, we have for all legal databases D, I(D,M) |=1 CO. Since a
database is legal, we have D |=1 CS implies I(D,M) |=1 CO, which is the definition of
preservation of satisfaction. ■

The source constraints considered in [Console et al., 2013] are (foreign) key depen-
dencies? and the mapping is GAV. The target class of constraints is the set of axioms
expressible in a DL-Lite dialect (namely, DL-LITEA). They propose an algorithm to
translate source constraints into valid constraints; their translation preserves satisfac-
tion but not maximally.
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Another related work is [Nikolaou et al., 2019]. This work considers axioms ex-
pressed in DL-LiteR or in Datalog, and constraints expressed in different subclasses
of TGDs. It defines a semantics for constraints in an OBDA framework and stud-
ies two problems, respectively called source-to-target and target-to-source implication
(defined next: Problem VI.6. VI.7).

The semantics they give to constraints is not exactly the same as in this dissertation.
They also select a unique interpretation on which satisfaction of constraints is checked,
but this interpretation is the minimal model of the mapping and the ontology after
skolemization (i.e., existential variables in rules heads are replaced by skolem functions
whose arguments are the frontier variables). If we restrict the considered constraints
to equivalence-stable constraints, the constraints are satisfied by a universal model of
the mapping and ontology if and only if they are satisfied by the minimal model of the
skolemized mapping and ontology.

Problem VI.6: Source-to-target constraint implication

Let Σ = (VO ,RO ,VS ,M) be an OBDA specification with M and RO containing
only skolemized rules, and RO is composed of DL-LITER axioms. We say that
a constraint set CS defined on VS implies a constraint CO defined over VO with
respect toM andRO if for every database D and minimal modelM of Σ, it holds
that M |=1 CO whenever D |=1 CS .

Problem VI.7: Target-to-source constraint implication

Let Σ = (VO ,RO ,VS ,M) be an OBDA specification with M and RO containing
only skolemized rules, and RO is composed of DL-LITER axioms. We say that
a constraint CO defined on VO implies a constraint set CS defined over VS with
respect toM andRO if for every database D and minimal modelM of Σ, it holds
that D |=1 CS whenever M |=1 CO.

Constraint implication is tightly related to our notion of constraint satisfaction
preservation, again when considering equivalence-stable constraints, as stated next.

Theorem VI.8: Constraint implication & preservation of satisfaction

Let CS be a constraint over VS , a set of constraints CS over VS , an equivalence-
stable constraint CO over VO and a set of equivalence-stable constraints CO over
VO. We have:

1. CS implies CO if and only if CO preserves the satisfaction of CS ;

2. CO implies CS if and only if CS preserves the satisfaction of CO.

Proof. 1. The definition of “CS implies CO" is “it holds that D |=1 CS whenever M |=1
CO", which, when considering equivalence-stable constraints, is equivalent to “it
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holds that D |=1 CS whenever I(D,Σ) |=1 CO", which is exactly the preservation of
the satisfaction of CS by CO.

2. The definition of “CO implies CS " is “it holds that M |=1 CO whenever D |=1 CS ",
which, when considering equivalence-stable constraints, is equivalent to “it holds
that I(D,Σ) |=1 CO whenever D |=1 CS ", which is exactly the preservation of the
satisfaction of CO by CS . ■

The above work also determines the complexity of the problem of implication. Ta-
ble VI.1 summarises the complexity of checking if a target constraint (i.e. a constraint
over VO) is implied by a source constraint (i.e., a constraint over VS ), depending on
several classes of constraints and rules. Table VI.2 does the same for the complexity of
checking if a source constraint is implied by a target constraint. As a corollary of The-
orem VI.8, these complexities also apply to the problem of checking whether a source
(resp. ontological) constraint preserves the satisfaction of an ontological (resp. source)
constraint.

Ontology Target constraint Source constraints Complexity

DL-LITER DTGD

Frontier-guarded TGDs1 2EXPTIME-COMPLETE2

Full TGDs3 EXPTIME-COMPLETE2

Linear TGDs4 PSPACE-COMPLETE2

FDs ΠP
2 -COMPLETE5

Datalog rules full TGD3 FDs Undecidable5

For all the lines, the mapping is GAV.

Table VI.1: Source-to-target constraint implication complexities [Nikolaou et al., 2019]

Mapping Source constraint Target constraints Complexity

Fr. guarded1 Fr. guarded DTGD1 Fr. guarded DTGDs1 3EXPTIME

Trivial6 ID Guarded TGDs7 2EXPTIME-HARD

LAV Linear TGD4 Full3 & linear4 TGDs 2EXPTIME-HARD

Fr. guarded1 Fr. guarded DTGD1 IDs 2EXPTIME-COMPLETE

Fr. guarded1 Full TGD3 Full TGDs3 Undecidable8

For all the lines, the ontology is full DL-LITER, and the mapping is GAV.

Table VI.2: Target-to-source constraint implication complexities [Nikolaou et al., 2019]

1A (D)TGD / rule is frontier-guarded if an atom in the body contains all the frontier variables.
2Hardness holds even for a trivial mapping6 and an empty ontology.
3A full TGD does not have existential variables, i.e., it is a Datalog rule seen as a constraint.
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VI.3 Negative constraints

In this section, we present how to translate negative constraints and which type of
constraints is produced for each type of translation.

How to translate negative constraints We have a direct link with the translation of
UCQs: one can reduce the translation of a negative constraint to a translation of a
Boolean CQ.

Theorem VI.9

Let I be an instance, C− be a negative constraint , and q = body(C−) be a Boolean
CQ . I |=1 C

− if and only if I ̸|= q.

Proof. (⇒) If I |=1 C
−, then we know that there is no homomorphism from body(C−) to

I . Therefore, there is no homomorphism from q to I : I ̸|= q.
(⇐) If I ̸|= q, then there is no homomorphism from q = body(C−) to I . Thus, I |=1

C−. ■

In the following, we call CQ associated with a negative constraintC−, which we denote
qC
−
, the Boolean CQ body(C−).
A corollary of Theorem VI.9 is that negative constraints are equivalence-stable (Def-

inition II.9).

Corollary VI.10

Every negative constraint C− is equivalence-stable.

Proof. It is a direct consequence of Theorem VI.9: since for each pair of equivalent
instances (I1, I2), we have qC

−
(I1) = qC

−
(I2), then we have I1 |=1 C

− if and only if I2 |=1
C−. ■

If we consider a set of negative constraints as a whole instead of translating nega-
tive constraints one by one, we may get a "more faithful" translation, as illustrated in
Example VI.11. Therefore, it seems relevant to consider the translation from a set of
negative constraints to another set of negative constraints.

4A (D)TGD is linear if its body is atomic.
5Hold even for a trivial mapping6 and an empty ontology.
6A mapping is trivial if it is injective and contains only rules of the form p(x)→ q(x).
7A TGD is guarded if one atom of its body contains all the variables of the body.
8Hold even if the mapping is LAV.
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Example VI.11: Translation of a set of negative constraints

Let C−S = {p(x) → ⊥,q(x) → ⊥} be a set of negative constraints over VS and a
mappingM = {q(x)→ t(x),p(x)→ t(x)}.
There exists no perfectM-translation of any constraint in C−S (and each transla-
tion that preserves satisfaction is trivial). However, C−O = {t(x)→ ⊥} is a perfect
M-translation of the entire set C−S .

We call UCQ associated with a set of negative constraints C−, the UCQ composed of
the CQs associated with the negative constraints in C−, that is, QC− = {qC− | C− ∈ C−}.

We can generalise the result of Theorem VI.9 to a set of negative constraints.

Theorem VI.12

Let us consider a set of negative constraints C−. For any instance I , I |=1 C− if and
only if I ̸|=1 QC

−
.

Proof. (⇒) If I |=1 C−, then, for each negative constraint C− ∈ C−, I |=1 C
−. Thus, by

Theorem VI.9, we know that I ̸|=1 q
C− . Therefore, there exists no CQ q ∈ QC− such that

I |=1 q which implies I ̸|=1 QC
−
.

(⇐) The arguments are exactly the same but in the other direction. ■

A corollary of Theorem VI.9 is that sets of negative constraints are equivalence-
stable as well.

Corollary VI.13

Every set of negative constraints C− is equivalence-stable.

Proof. It is a direct consequence of Theorem VI.12: since for each pair of equivalent
instances (I1, I2), we have QC−(I1) = QC−(I2), then we have I1 |=1 C− if and only if I2 |=1
C−. ■

Corollary VI.13 allows one to use the techniques defined in Chapter V since the
semantics of negative constraints is the same on all the universal models (hence any of
them can be chosen).

As we saw in Chapter V, there does not always exist a perfect translation of a (U)CQ.
The following proposition clarifies the link between minimally complete/maximally
sound translation of a CQ and translation of a negative constraint that maximally pre-
serves satisfaction/minimally preserves violation.
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Theorem VI.14

Let C−S be a set of negative constraints on a vocabulary VS and C−O be a set of
negative constraints on a vocabulary VO disjoint from VS . For X ∈ {M,Σ}, we
have that:

1. C−O maximally preserves satisfaction of C−S wrt X if and only if QC−O is a
maximally sound X-translation of QC−S ;

2. C−S minimally preserves violation of C−O wrt X if and only if QC−S is a mini-
mally complete X−1-translation of QC−O ;

3. C−O minimally preserves violation of C−S wrt X if and only if QC−O is a mini-
mally complete X-translation of QC−S ;

4. C−S maximally preserves satisfaction of C−O wrt X if and only if QC−S is a
maximally sound X−1-translation of QC−O ;

Proof. First, note that, by definition, (1) and (2) are equivalent, and (3) and (4) are also
equivalent. So, we prove them together.

(1) & (2) (⇒) By definition of maximally preserving the satisfaction, we have that for each
instance D over S , if D |=1 C−S implies I(D,Σ) |=1 C−O and there is no strictly stronger
constraint that preserves satisfaction. By Theorem VI.12, we know that “D |=1
C−S implies I(D,Σ) |=1 C−O" is equivalent to D ̸|=1 QC

−
S implies I(D,Σ) ̸|=1 QC

−
O whose

contrapositive is I(D,Σ) |=1 QC
−
O implies D |=1 QC

−
S . Then, since I(D,Σ) is a universal

model, we have QC−O is a sound translation of QC−S . Also, we know that there exists
no constraint C− that preserves satisfaction of C−S that is strictly stronger than C−O.
That is, there is no translation C− that preserves satisfaction such that there exists
a database D2 with I(D2,Σ) ̸|=1 C− and I(D2,Σ) |=1 C−O. By Theorem VI.12, there is no
QC− such that there exists a database D2 with I(D2,Σ) |= QC

−
and I(D2,Σ) ̸|= QC

−
O , that

is, QC−O ⊏Σ QC
−
. We can conclude that QC−O is a maximally sound translation of

QC−S .

(⇐) By definition of a maximally sound X-translation, we have that for each in-
stance I over S , if I(D,Σ) |= QC

−
O implies D |= QC−S , and there is no other sound

X-translation that brings more answers. By Theorem VI.12, we know that if
“I(D,Σ) |= QC

−
O implies D |= QC−S " then I(D,Σ) ̸|=1 C−O implies D ̸|=1 C−S whose con-

trapositive is D |=1 C−S implies I(D,Σ) |=1 C−O, which the definition of preserving the
satisfaction. Also, we know that there exists no UCQ Q that is a sound transla-
tion of QC−S such that QC−O ⊑Σ Q. That is, there is no sound translation Q such that
there exists a database D2 with I(D2,Σ) ̸|=1 Q and I(D2,Σ) |=1 QC

−
O . By Theorem VI.12,

there exists no C− (with QC− = Q) such that there exists an instance I(D2,Σ) with
I(D2,Σ) |=1 C− and I(D2,Σ) ̸|=1 C−O. We can conclude that C−O is a translation of C−S that
maximally preserves its satisfaction.
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(3) & (4) The proof is the same as before but with the notions of minimally preserves vio-
lation and minimally complete translation. ■

Thanks to Theorem VI.14, all we need to translate negative constraints is to use the
techniques of translation presented in chapter V.

Example VI.15: Translation of negative constraints

Take again Example II.3: let Σ = (VO ,RO ,VS ,M) be a KBDM specification de-
fined as below:

RO = {r(x,y)→∃z.p(y,z)},

M =


s1(x,y) → p(x,y),

s2(x,x) →∃z.r(x,z),
s3(x,y) → p(x,y)

We take the CQs of Example II.3 and transform them into negative constraints
(i.e., a CQ q yields q→⊥):

O-to-S-translation:

• The set of negative constraints CO = {p(u,v)→⊥} can be translated into:

– anM−1-translation that preserves satisfaction:
C1
O→S = {s1(u,v)→⊥}

– a perfectM−1-translation:
C2
O→S = {s1(u,v)→⊥, s3(u,v)→⊥}

– a perfect Σ−1-translation:
C3
O→S = {s1(u,v)→⊥, s3(u,v)→⊥, s2(u,u)→⊥}

S-to-O-translation:

• The set of negative constraints C1
S = {s1(u,v)→⊥} can be translated into:

– anM-translation that minimally preserves violation:
C1
S→O = {p(u,v)→⊥}

(which is also a Σ-translation that minimally preserves violation),
but the only translation preserving satisfaction is Q2

S→O = {}, which
equates to ⊥.

• The set of negative constraints C2
S = {s2(u,v)→⊥} can be translated into:

– anM-translation that maximally preserves satisfaction:
C2
S→O = {r(u,w)→⊥}
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Class of the result of the translation In the following table (Table VI.3), we sum-
marise the types of constraints produced by using the different techniques of UCQ-
translation presented in Chapter V. We use C− to denote the class of negative con-
straints (that is the class from which we translate) and C−C,, to denote negative con-
straints that can contain the predicates , and C presented in Section IV.1 (with the
same restrictions as in UCQC,,).

UCQ-translation type Result Constraint translation type Restriction

PerfectM−1 C− PerfectM−1

Perfect Σ−1 C− Perfect Σ−1 RO FUS

UCQ-minimally completeM C− C−-Minimally preserve violation wrtM
Minimally completeM C−C,, Minimally preserve violation wrtM

SoundM C−C,, preserve satisfaction wrtM

PerfectM C−C,, PerfectM

UCQ-minimally complete Σ C− C−-minimally preserve violation wrt Σ

Minimally complete Σ C−C,, Minimally preserve violation wrt Σ

Sound Σ C−C,, Preserve satisfaction wrt Σ Parallelisable

Perfect Σ C−C,, Perfect Σ RO FUS

Table VI.3: Result of the translation with different techniques of UCQ-translation

Stability by selection. The stability by selection of negative constraints can be char-
acterised thanks to the characterisation of the stability by selection of UCQs.

Corollary VI.16

Let Σ = (VO ,RO ,VS ,M) be a KBDM specifcation.

1. A negative constraint CS = B→⊥ over VS is stable by selection if and only if
there exists a piece unifier µ such that µ unifies the whole of B with rules
bodies inM.

2. A set of negative constraints CS over VS is stable by selection if and only if
every negative constraint CS ∈ CS is stable by selection.

Proof. 1. It is a corollary of Proposition II.15.

2. It is a corollary of (1) and Proposition II.17. ■

Existence of an "informative" translation. We saw in chapter V that a translation of
a UCQ could be not informative. That is the case when the only complete translations
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of a UCQ are UCQs containing an empty CQ or when the only sound translation is the
empty UCQ. Here, we extend this to negative constraints.

Corollary VI.17

Let Σ = (VO ,RO ,VS ,M) be a KBDM specifcation.

1. A set of negative constraints C−S over VS is an always-true set of constraints if
and only if QC−S is the empty UCQ.

2. A set of negative constraints C−S over VS is an always-false set of constraints if
and only if QC−S contains the empty CQ.

Proof. It is a corollary of Theorem VI.14. ■

VI.4 Equality generating dependencies

In the following, we use the special predicates C and , introduced in Section IV.1.
We propose translation techniques for a restricted kind of EGDs only. These are

EGDs where x1 and x2 can only be constants, i.e., EGDs of the form:

B[x1,x2,y]∧C(x1)∧C(x2)→ x1 = x2

Note that this restriction does not cause any loss of generality when considering
constraints defined on the source schema, since we consider only ground instances.

This kind of constraint can be reformulated as a negative constraint:

B[x1,x2,y]∧C(x1)∧C(x2)∧ x1 , x2→⊥

Note that the terms that appear in the ,-atom also appear in a C-atom: thus, the body
of this negative constraint is a CQC,,, which was one of the classes of CQs treated in
Chapter V.

Subsequently, the properties of the translation defined for negative constraints can
be applied to such EGDs. The idea is that we can translate them as negative constraints
to obtain another set of negative constraints. These negative constraints will still con-
tain the ,-atoms since they cannot be rewritten. This allows us to transform these
negative constraints into EGDs, and so we obtain a set of EGDs as a result of the trans-
lation.

The following corollary is a direct consequence of the fact that we can reduce this
kind of EGDs to negative constraints.

Corollary VI.18

An EGD of the form C= = B[x1,x2,y] ∧C(x1) ∧C(x2) → x1 = x2 is equivalence-
stable.
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Proof. SinceC= ≡ B[x1,x2,y]∧C(x1)∧C(x2)∧x1 , x2→⊥, which is a negative constraint,
we can conclude from Corollary VI.13 that C= is equivalence-stable. ■

Note that some techniques to translate the UCQs from Chapter V can introduce
more inequalities in the translation. Negative constraints with several inequalities in
their body can be transformed into an equivalent set of EGDs that still contain in-
equalities in their bodies or into disjunctive EGDs (that is, EGDs whose head can be a
disjunction of equalities).

Example VI.19

Take again Example IV.6 with slight modifications: let VS = {A(·, ·),B(·),D(·, ·)}
and VO = {S(·, ·),T (·, ·),U (·)}, and consider the mapping M from VS to VO with
the rules:

A(x,y)→ S(x,y),

B(x)→ S(x,x),

A(x,x)→U (x),

D(x,y)→ T (x,y).

Let C=
S = {A(x,y)∧D(x,z)∧C[y,z]→ y = z} be a set of EGDs. It is equivalent to

the set of negative constraints C−S = {A(x,y)∧D(x,z)∧ y , z∧C[y,z]→⊥}.
A perfectM-translation of C−S is:

C−O =

S(x,y)∧ T (x,z)∧ y , z∧ x , y ∧C[x,y,z] →⊥
U (x)∧ T (x,z)∧ y , z∧C[x,z] →⊥

Note that we have two inequalities in the first negative constraint of C−O. We can
move one into the head to obtain an equivalent set of constraints that are EGDs
that can possibly contain inequalities in their body. The following set is a perfect
M-translation of C=

S in the class of EGDs with inequalities:

C=
O =

S(x,y)∧ T (x,z)∧ x , y ∧C[x,y,z] → y = z

U (x)∧ T (x,z)∧C[y,z] → y = z

The other possibility is to move both inequalities into the head, and we obtain
disjunctive EGDs:

C=,∨
O =

S(x,y)∧ T (x,z)∧C[x,y,z] → y = z∨ x = y

U (x)∧ T (x,z)∧C[y,z] → y = z
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Remark VI.1
One may think that we could avoid to reduce to negative constraints to do the transla-
tion. Indeed, since the inequality put in the body is never rewritten, we could keep the
equality in the head and rewrite only the body, the result would be the same. But this
does not work in the general case for sets of EGDs, since there are cases where we have
to translate several constraints at the same time. See Example VI.20.

Example VI.20

Let VS = {A(·, ·),B(·, ·)} and VO = {S(·, ·)}, and consider the mappingM from VS to
VO with the rules:

A(x,y)→ S(x,y),

B(x,y)→ S(x,y).

Let C=
S = {A(x,y)∧C[x,y]→ x = y, B(x,y)∧C[x,y]→ x = y} be a set of EGDs. The

only constraint that preserves the satisfaction of these two EGDs, when consid-
ered separately, is the always-true constraint. In fact, let C=

O = {S(x,y)∧C[x,y]→
x = y}. The set C=

O preserves violation of both constraints in C=
S , but not their

satisfaction when considered independently. But it is a perfect rewriting of the
whole set.
Let us reduce the EGDs in C= to negative constraints:

C−S =

A(x,y)∧ x , y ∧C[x,y] →⊥,
B(x,y)∧ x , y ∧C[x,y] →⊥

We can do a perfectM-translation of C−S :

C−O = {S(x,y)∧ x , y ∧C[x,y]→⊥}

Finally, we transform it into the set of EGDs C=
O given above.

We can see that this reduction allows us to translate a set of EGDs.

Class of the result of the translation In the following table (Table VI.4), we sum-
marise the types of constraints produced by using the different techniques of UCQ-
translation presented in Chapter V. We use C=

C to denote the restricted class of EGDs
we consider, and C=

C,, to denote EGDs that can contain the predicates , and C pre-
sented in Section IV.1 (with the same restrictions as in UCQC,,).

VI.5 (Disjunctive) tuple generating dependencies

The translation of (D)TGDs is much more difficult than the kinds of constraints seen
previously. This comes from the fact that they are not monotone, that is, when we add
atoms to an instance, a violated constraint may become satisfied, which is not the case
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UCQ-translation type Result Constraint translation type Restriction

PerfectM−1 C=
C PerfectM−1

Perfect Σ−1 C=
C Perfect Σ−1 RO FUS

UCQ-minimally completeM C=
C C=

C-Minimally preserve violation wrtM
Minimally completeM C=

C,, Minimally preserve violation wrtM

SoundM C=
C,, Preserve satisfaction wrtM

PerfectM C=
C,, PerfectM

UCQ-minimally complete Σ C=
C C=

C-minimally preserve violation wrt Σ

Minimally complete Σ C=
C,, Minimally preserve violation wrt Σ

Sound Σ C=
C,, Preserve satisfaction wrt Σ Parallelisable

Perfect Σ C=
C,, Perfect Σ RO FUS

Table VI.4: Result of the translation with different techniques of UCQ-translation

for the two previous kinds of constraints. Obviously, we cannot have a simple reduction
to the translation of one UCQ, since UCQs are monotone queries.

Example VI.21: Non-monotonicity of TGDs

Let C+ = p(x)→ q(x) be simple TGD and I = p(a) be an instance.
Obviously, I ̸|=1 C

+ since q(a) < I .
However, for I ′ = I ∪ {q(a)}, we have I ′ |=1 C

+.

One problem that arises is about existential variables that occur in the mapping or
the rules. Indeed, one could naively think that we could translate the body and head as
a Boolean CQ and a Boolean UCQ, respectively. However, as seen in Example VI.22, it
is not that simple.

Example VI.22: Naive way to translate DTGDs

Let Σ = (VO ,RO ,VS ,M) be a KBDM specification where:

M =

p(x) →∃y r(x,y),

s(x) → t(x)

Let C+ = r(x,y)→ t(y) be a TGD. Then we could translate the body and head of
C+ as if they were Boolean CQs. We obtain the perfectM−1-translations ∃x p(x)
and ∃y s(y) respectively for the body and head of C+. Therefore, we could think
that C+

S = p(x)→ ∃y s(y) is a perfectM−1-translation of C+. But this is not the
case. Let D = {p(a), s(b)}. Clearly, D |=1 C

+
S . But I(D,M) = {t(b), r(a,y0)} and thus

I(D,M) ̸|=1 C
+. This proves that C+

S is not a perfectM-translation of C+.
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As can be seen in Example VI.22, the problem is that in the translation process of
the body and head of the TGD, we lose a frontier variable because it is unified with
an existential variable of a rule during the translation. In the following, we consider a
restricted kind of (D)TGDs that consists of enforcing that frontier variables are neces-
sarily mapped to constants.

Also, to simplify the presentation of the following, we restrict ourselves to DTGDs
with a head where all the disjuncts share exactly the same frontier variables. More
formally:

B[x,y]∧C[x]→
n∨
i=1

∃zi.Hi[x,zi]

The goal of this restriction is to allow us to represent this DTGD as an inclusion of
the answers of a CQ on a particular instance into the answers of a UCQ on the same
instance (Theorem VI.23).

Theorem VI.23

Let C+ = B[x,y]∧C[x]→
n∨
i=1
∃zi.Hi[x,zi] be a restricted DTGD.

Then, for any instance I , I |=1 C
+ if and only if q(I) ⊆ Q(I), where q and Q are the

queries defined as follows:

• q(x) = ∃y.B[x,y];

• Q(x) =
n∨
i=1
qi(x) with qi(x) = ∃zi.Hi[x,zi].

Proof. (⇒) Assume for any instance I , I |=1 C
+. For each homomorphism h that maps

B[x,y]∧C[x] into I , we know that:

• h(x) is a tuple of constants;

• there exists 1 ≥ i ≥ n and an extension hi of h such that hi(Hi[x,zi]) ⊆ I .

First, note that we have h(B[x,y]∧C[x]) ⊆ I if and only if h(x) is an answer to q on I .
Indeed, q is composed of the body of C+, without C-atoms, but the answer variables
must be sent into constants, and the answer variables are exactly the frontier variables
of the rule.

Then, we have hi which is a homomorphism fromHi[x,zi] to I and since hi(x) = h(x),
h(x) is also an answer to qi ⊆ Q and thus to Q. We can conclude that, for each h(x) that
is an answer to q, it is also an answer to Q.

(⇐) Assume for any instance I , q(I) ⊆ Q(I). Then, when there exists a homomor-
phism h that maps B[x,y] to I , we have that there also exists a homomorphism hi from
qi = ∃zi .H[x,zi] ∈ Q to I such that h(x) = hi(x).
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To satisfy C+, either we need that there exists no homomorphism from its body to
I , but in this case, there is no answer to q. Or, if there exists a homomorphism from
the body to I , we have to find an extension that maps its head to I . Take h previously
defined: it is a homomorphism from the body of C+ into I if and only if it is a homo-
morphism that maps q to I (it effectively maps the variables in C-atoms to constants
because it maps the answer variables of q to constants).

Then, let h′i = h+hi . We can see that it is an extension of h to the disjunct Hi[x,zi] of
the head of C+ such that it maps it to I . Thus, we can conclude that, when q(I) ⊆ Q(I),
the constraint is satisfied on I . ■

In the following, given a DTGD C+ = B[x,y]∧C[x]→
n∨
i=1
∃zi.Hi[x,zi], we denote the

CQ associated to the body of C+ by qC
+
B (x) = ∃y.B[x,y] and the UCQ associated to the head

of C+ as QC+
H (x) =

n∨
i=1
∃zi.Hi[x,zi].

Note that we could remove the restriction on the frontier variables (that is, all the
frontier variables must appear in all the disjuncts in the head). In fact, a DTGD C+ =
B → H1 ∨ · · · ∨Hn can be seen as a disjunction of TGDs: C+ ≡ (C+

1 = B → H1) ∨ · · · ∨
(C+
n = B→ Hn). Thus, we could apply the previous Theorem on each TGD C+

i in the
disjunction. And so, we have that C+ is satisfied by an instance I if and only if there is
C+
i such that qC

+
i,B(I) ⊆ QC

+
i,H (I).

A corollary of Theorem VI.23 is that the restricted DTGDs we consider are
equivalence-stable.

Corollary VI.24

A DTGD of the form C+ = B[x,y]∧C[x]→
n∨
i=1
∃zi.Hi[x,zi] is equivalence-stable.

Proof. It is a direct consequence of Theorem VI.23: since for each pair of equivalent
instances (I1, I2), we have qC

+
B (I1) = qC

+
B (I2) andQC+

H (I1) =QC+
H (I2), then we have I1 |=1 C

+

if and only if I2 |=1 C
+. ■

Note that, in contrast to the previous kinds of constraint, we do not consider trans-
lation from a set of constraints but only from one constraint, since the method of trans-
lation we provide works only for an isolated (D)TGD.

To translate a DTGD C+, the rough idea is that we will translate qC
+
B (x) and QC+

H (x)
using the techniques defined in Chapter V. But we need to determine which type of
UCQ translation (sound or complete) allows us to obtain a translation of C+ that pre-
serves its satisfaction or its violation. Intuitively, to preserve satisfaction, we should
have a translation that does not add answers to qC

+
B (x) (sound translation) and keep all

answers to QC+
H (x) (complete translation): this would guarantee that the inclusion of

answers will still hold. And conversely, for the preservation of the violation: we should
do a complete translation of qC

+
B (x) and sound translation of QC+

H (x).
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Let Σ = (VO ,RO ,VS ,M) be a KBDM specification. In the two theorems that follow
(Theorems VI.25 and VI.27), we abstract away from the direction of the translation to
simplify the statements of the theorems and the proofs. The vocabularies V1 and V2 can
be VS and VO or VO and VS respectively. For an instance over a vocabulary V1 = VS and
a database D on S , we say that I(D,Σ) is the associated instance over V2 = VO. Conversely,
if V1 = VO, the instance associated with I(D,Σ) on V2 = VS is D. In the proofs, we will
simply refer to the associated instance without specifying the direction, as the proofs
are exactly the same in both directions.

Theorem VI.25

Let Σ = (VO ,RO ,VS ,M) be a KBDM specification and C+ be a DTGD over a vo-
cabulary V1, a vocabulary V2 distinct from V1, a maximally sound translation
QBV2

of qC
+
B over V2 and a minimally complete translation QHV2

of QC+
H over V2.

Then, C+
V2

= {body(qBV2
) ∧ C[ansVars(qBV2

)] → body(QHV2
) | qBV2

∈ QBV2
} is a DTGD

over V2 that maximally preserves satisfaction of C+.

Proof. First, we demonstrate that C+
V2

is a translation of C+ that preserves its satisfac-

tion. Since QBV2
is a sound translation of qC

+
B , then, for every instance I on V1 and

instance J associated with I over V2, we have QBV2
(J) ⊆ qC+

B (I). Similarly, since QHV2
is a

complete translation of qC
+
H , for every instance I over V1 and instance J associated with I

over V2, we haveQC+
H (I) ⊆ QHV2

(J). Since the satisfaction ofC+ is equivalent to q(I) ⊆ Q(I)
for every I , for every associated instance J over V2, we haveQBV2

(J) ⊆ q(I) ⊆ Q(I) ⊆ QHV2
(J).

This implies that, when C+ is satisfied, C+
V2

is also satisfied.
In addition, C+

V2
is maximal (in this class). Assume that this is not the case. Then,

either there exists another sound translation QB′V2
such that, for every instance J over

V2, QB′V2
(J) ⊆ QBV2

(J), or there exists another complete translation QH ′V2
such that for every

instance J over V2 QHV2
(J) ⊆ QH ′V2

(J). In the first case, that would mean that QBV2
is not

a maximally sound translation and in the latter case that QHV2
(J) is not a minimally

complete translation. This leads to a contradiction. ■

Example VI.26 illustrates Theorem VI.25.

Example VI.26

Let Σ = (VO ,RO ,VS ,M) be a KBDM specification where, as in Example II.3:

M =


s1(x,y) → p(x,y),

s2(x,x) →∃z.r(x,z),
s3(x,y) → p(x,y)

Consider the TGD C+ = s2(u,v)∧C(u)→∃w.s1(u,w) on VS .
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Its satisfaction on an instance D over VS is equivalent to qC
+
B (D) ⊆ QC+

H (D) where
qC

+
B (u) = ∃v.s2(u,v) and QC+

H (u) = ∃w.s1(u,w).
We have QCBO (u) = ∃z.r(u,z) which is a maximally sound M-translation of qC

+
B

and QCHO (u) = ∃w.p(u,w) is a minimally completeM-translation of QC+
H .

Thus, the TGD r(u,z) ∧C(u) → ∃w.p(u,w) is a M-translation of C+ that maxi-
mally preserves its satisfaction.

Theorem VI.27

Let Σ = (VO ,RO ,VS ,M) be a KBDM specification and C+ be a DTGD over a vo-
cabulary V1, a vocabulary V2 distinct from V1, a minimally complete translation
QBV2

of qC
+
B over V2 and a maximally sound translation QHV2

of QC+
H over V2. Then,

C+
V2

= {body(qBV2
)∧C[ansVars(qBV2

)]→ body(QHV2
) | qBV2

∈ QBV2
} is a DTGD over V2

that minimally preserves violation of C+.

Proof. The proof uses exactly the same ideas as in the proof of Theorem VI.25. ■

Example VI.28 illustrates Theorem VI.27.

Example VI.28

Take again the KBDM specification Σ = (VO ,RO ,VS ,M) from Example VI.26
where:

M =


s1(x,y) → p(x,y),

s2(x,x) →∃z.r(x,z),
s3(x,y) → p(x,y)

Consider the TGD C+ = s1(u,w)∧C(u)→∃v.s2(u,v) (we exchanged the body and
the head compared to Example VI.26) on VS .
Its satisfaction on an instance D over VS is equivalent to qC

+
B (D) ⊆ QC+

H (D) where
qC

+
B (u) = ∃w.s1(u,w) and QC+

H (u) = ∃v.s2(u,v).
We have QCBO (u) = ∃w.p(u,w) which is a minimally complete M-translation of
qC

+
B and QCHO (u) = ∃z.r(u,z) is a maximally soundM-translation of QC+

H .
Thus, the TGD p(u,w)∧C(u)→∃z.r(u,z) is aM-translation of C+ that minimally
preserves its violation.

Note that in Theorem VI.25 and Theorem VI.27, the constraints in C+
V2

are not neces-
sarily in exactly the same class as C+. Indeed, depending on the translation techniques
used to translate the body and head, if C+ is a TGD, it is not guaranteed that C+

V2
will be

a set of TGDs, it can be a set of DTGDs. Moreover, C+
V2

can contain special predicates C
and ,, including in the head, even when C+ does not contain these predicates.
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Class of the result of the translation. In table VI.5, we summarise the types of
constraints produced by using the different UCQ-translation techniques presented in
Chapter V. We use C(D)TGD

B(C) to denote the restricted class of (D)TGDs we consider. We
denote by B([special predicates]) and H([special predicates]) the special predicates that
appear in the body and in the head of a DTGD, respectively. For example, CDTGDB(C,,),H(C)
denotes the class of DTGDs that can contain C and , in the body and C in the head. We
recall that the predicates , and C were presented in Section IV.1 (we use them with the
same restrictions as in UCQC,,).

Body translation Head translation Result Restriction

PerfectM−1-translation

perfect perfect CDTGDB(C)

Perfect Σ−1-translation

perfect perfect CDTGDB(C) RO FUS

M-translation preserving satisfaction

sound UCQ-minimally complete C(D)TGD
B(C,,)

sound minimally complete CDTGDB(C,,),H(C,,)

M-translation preserving violation

UCQ-minimally complete sound CDTGDB(C),H(C,,)

minimally complete sound CDTGDB(C,,),H(C,,)

PerfectM-translation

perfect perfect CDTGDB(C,,),H(C,,)

Σ-translation preserving violation

UCQ-minimally complete sound CDTGDB(C),H(C,,) parallelisable

minimally complete sound CDTGDB(C,,),H(C,,) parallelisable

Perfect Σ-translation

perfect perfect CDTGDB(C,,),H(C,,) RO FUS

Table VI.5: Summary of translations of DTGD

VI.6 Summary

Let us briefly review the content of this chapter and highlight the main contributions:

1. Related work: We establish some links between our framework and other notions
from the literature (Section VI.2).
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2. Application of the constraint framework: we applied the translation framework
presented in Chapter II on three classes of constraints, that are all equivalence-
stable:

(a) Negative constraints: A negative constraint can be represented as (the nega-
tion of) a Boolean CQ, and a set of negative constraints as (the negation
of) a Boolean UCQ). This allows one to directly use techniques of UCQ-
translation presented in Chapter V.

(b) EGDs: We consider a restricted kind of EGDs where the frontier variables
must be mapped to constants (which is without loss of generality for con-
straints over the data source). This restriction allows us to transform EGDs
into negative constraints that we can translate in our framework. And so, all
the results obtained for negative constraints can be applied to this restricted
kind of EGDs.

(c) (D)TGDs: We consider a restricted kind of (D)TGDs where the frontier vari-
ables must be mapped to constants (as for EGDs, it is without loss of gen-
erality for constraints over the source). This allows one to represent such
a (D)TGD as a pair of queries such that for any instance I , the answers on
I to the first query are included in the answers on I to the second query if
and only if the (D)TGD is satisfied on I . This representation allows us to use
again UCQ-translation techniques on both queries. Finally, we show which
techniques of UCQ-translation have to be used for each query to obtain a
translation that maximally preserves satisfaction or minimally preserves vi-
olation.

For each class of constraints, we provide tables that indicate the UCQ translations
associated with the desired type of constraint translation, and well as the constraint
class of the result.



VII - Conclusion

In this dissertion, we investigated issues related to the translation of constraints in
a Knowledge-Based Data Management system. We specially focused on translations
from the data level to the ontology level, as this direction is more challenging and has
been less investigated.

This study involved exploring two related topics: query translation, especially in
the language of UCQs, and rewriting UCQs with disjunctive rules. Exploring the first
topic was expected, as CQs are a basic building block for most types of constraints.
The second topic was prompted by the notion of maximum recovery studied in the
field of data exchange, which appeared to be a crucial notion and takes the form of a
disjunctive mapping in our context.

Our contributions are summarised at the end of each chapter. In this conclusion,
we will rather focus on perspectives.

Query rewriting with disjunctive rules. We have shown that FO-rewritability (or,
equivalently, UCQ-rewritability) of a set of disjunctive rules seems to cover very few
rule classes. It seems more promising to study the UCQ-rewritability of a pair (Q,R).
We list here some interesting open problems related to this notion:

1. Clarify the boundary between decidability and undecidability for the problem of
determining whether a pair (Q,R) is UCQ-rewritable, according to specific classes
of rules (and queries). In particular, UCQ-rewritability is decidable for guarded
conjunctive rules and some of their generalizations [Barceló et al., 2018], does
this extend to the disjunctive case?

2. We have shown that the UCQ-S-rewritability of a pair (Q,M) is undecidable. Is
it still the case for a pair ({Q},M) where Q is a CQ?

3. Our undecidability proof for UCQ-S-rewritability exploits the fact that rewrit-
ings are restricted to predicates in S . If we consider instead UCQ-rewritings with
source-to-target rules, we know that the problem can only be simpler, as we can
easily reduce UCQ-rewritability with S-to-T -rules to UCQ-S-rewritability with
mappings: one simply has to add a mapping rule per target predicate to give it an
existence at the source level. Is the UCQ-rewritability of a pair (Q,R) decidable
when R is a set of S-to-T rules?

4. Given a pair (Q,R), our query rewriting outputs a UCQ-rewriting when one ex-
ists. However, whenR is replaced by a disjunctive mappingM, a pair (Q,M) may
have a UCQ-S-rewriting (where S is the source vocabulary) even when it has no
UCQ-rewriting. Is it possible to build an algorithm that, given a pair (Q,M),
outputs a UCQ-S-rewriting for this pair when one exists?

151
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Query translation. As pointed out in the summary of Chapter V, two fundamental
problems remain open concerning maximally sound S-to-O translations:

1. Is the problem of determining whether a pair (Q,M) has a maximally soundM-
translation decidable? We conjecture that it is not, since it seems close to the
UCQ-S-rewritability problem mentioned above, which we have shown to be un-
decidable. Note however that when UCQ-S-rewritability is decidable for a UCQ
Q, determining whether (Q,M) has a maximally soundM-translation is also de-
cidable.

2. Is it possible to build an algorithm that outputs a (finite) maximally sound M-
translation when one exists? Again, this seems similar to the issue of building a
UCQ-S-rewriting when one exists (and when we can build a UCQ-S-rewriting,
we can build a maximally soundM-translation).

Also, concerning the computation of a maximally sound Σ-translation of a UCQ, we
have only dealt with the case where the union of the mapping and the rules is paral-
lelisable: it would be interesting to handle more general FUS classes.

Constraints translation. First, the general framework itself could be further inves-
tigated. While our primary focus has been on equivalence-stable constraints, how to
extend the framework to constraints that do not have this property, e.g., unrestricted
EGDs and (D)TGDs, is an open question. Note, however, that EGDs and (D)TGDs on
a database always fulfil the restriction, and their translations produce restricted EGDs
and (D)TGDs at the ontological level. Hence, the restriction is only effective for con-
straints defined at the ontological level (and not: obtained by translation from the data
level).

Still about the general framework, we chose to check constraint satisfaction at the
ontological level on a single target instance (more precisely, in the case of equivalence-
stable constraints, we consider any universel solution). Could we consider a set of
target instances, i.e., a strict subset of universal solutions? How would this broaden the
applicability of our framework?

Second, in the time allotted for a Ph.D. thesis (three years), we could only start to
apply our framework to specific classes of constraints. Given the vast landscape of
constraints in database theory, it would be useful to explore translations for other pairs
of constraint classes. Furthermore, one noticeable aspect we have yet to dive into is
the complexity of the core problems of interest, applied to specific classes of queries,
mappings, rules and constraints.

Lastly, the practical implications of constraint translation, especially in the realms
of design and optimization of KBDM systems, remain largely uncharted. This is an
area for future work.



A - Proofs of Section III.3

To prove Theorem III.14, we first need the following lemmas and propositions. In the
proofs, we reuse some notations and results from [Baget et al., 2011] and [König et al.,
2015], which recall below.

Let h : X −→ T and h′ : X ′ −→ T ′ be two substitutions such that, ∀x ∈ X ∩X ′ ,h(v) =
h′(v). Then we note h+ h′ : X ∪X ′ −→ T ∪ T ′ the substitution defined by: if x ∈ X, (h+
h′)(x) = h(x), otherwise (h+ h′)(x) = h′(x).

Proposition A.1: Proposition 23 in [Baget et al., 2011]

Let I be a instance, q be a CQ, x ⊆ vars(q), {q1, . . . , qk} be a partition of the atoms
of q such that
vars(qi)∩ vars(qj ) ⊆ x for all qi and qj with i , j, and h1, . . . ,hk homomorphisms
from qi to I such that ∀t ∈ x,∀1 ≤ i ≤ j ≤ k,hi(t) = hj(t); then the substitution
h1 + · · ·+ hk is a homomorphism from q to I .

Given a partition P on a set of terms, we denote by P [t] the class of P that contains
the term t.

Definition A.1 (Partition induced by a substitution)
A partition P on terms T induced by a substitution s is such that for every t, t′ ∈ T , if
s(t) = s(t′) then t′ ∈ P [t] (that is, P [t] = P [t′]) and P is the thinnest partition with this
property. Let C be a class of P , we call selected element of C, which we denote tC , the
unique element of C such that s(tC) = tC .

The next three propositions are immediate.

Proposition A.2

Let I be a set of set of instances and Q be a UCQ: I |= Q if and only if for each
I ∈ I , there exists a Q ∈ Q such that Q maps to I .

Proposition A.3

A partition induced by a substitution is admissible.

Proposition A.4

Let I and I ′ be two instances and s a substitution from I to I ′ such that s(I) = I ′.
Then, any substitution us associated with Ps, the partition induced by s, on the
terms of I and I ′, is such that us(I) = us(I ′).

The following lemmas A.5 and A.6 correspond to Lemma III.12 (Point 1 and Point
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2, respectively) in Chapter III. Figures A.1 and A.2 depict lemmas A.5 and A.6, respec-
tively.

Lemma A.5

Let I1, I2 be two instances such that I1 |= I2 and a disjunctive rule R such that
there exists a trigger (R,h2) on I2. Then, there exists a trigger (R,h1) on I1 such
that α∨(I1,R,h1) |= α∨(I2,R,h2).

I1 α∨(I1,R,h1)

I2 α∨(I2,R,h2)

α∨

|=

α∨

|=

Figure A.1: Preservation of entailment by α∨ (Lemma A.5)

Proof. Let R = B→ H1 ∨ · · · ∨Hn be a disjunctive rule. Since I1 |= I2, we have a homo-
morphism h from I2 to I1. Moreover, (R,h2) being a trigger on I2, taking h1 = h ◦ h2, we
have (R,h1) being a trigger on I1

and α∨(I2,R,h2) = {I i2 = I2 ∪ h
+i·2
2 (Hi) | 1 ≤ i ≤ n} and α∨(I1,R,h1) = {I i1 = I1 ∪ (h ◦

h2)+i·1(Hi) | 1 ≤ i ≤ n}. Let us build a homomorphism hi from I i2 to I i1, for 1 ≤ i ≤ n. For
each i, we first consider the homomorphism hHi from h+i·2

2 (Hi) to (h◦hα)+i·1(Hi), defined
as follows:

∀t ∈ vars(h+i·2
2 (Hi)):

• if t ∈ h2(fr(R)), then hHi (t) = h(t);

• otherwise, hHi (t) = .+i·1((.+i·2)−1(t)).

h and hHi satisfy the conditions of Proposition A.1 (with x = hHi (fr(R))). As a con-
sequence, hi = h+ hHi is a homomorphism from I i2 to I i1.

Thus, α∨(I1,R,h1) |= α∨(I2,R,h2). ■

Lemma A.6

Let Q1 and Q2 be UCQs such that Q2 |=Q1, and let R be a disjunctive rule. Then,
for any disjunctive piece-unifier µ2

∨ of Q2 with R:

1. either β∨(Q2,R,µ
2
∨) |=Q1;

2. or, there is a piece-unifier µ1
∨ of Q1 with R such that β∨(Q2,R,µ

2
∨) |=

β∨(Q1,R,µ
1
∨).
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Q1β∨(Q1,R,µ
1
∨)

Q2β∨(Q2,R,µ
2
∨)

|=

β∨

β∨

|=

Figure A.2: Preservation of entailment by β∨ (Lemma A.6)

Proof. Let R = B→H1∨ · · · ∨Hn be a disjunctive rule. Let q1
2, . . . , q

n
2 be the safe copies of

CQs in Q2 of which subsets q1′
2 , . . . , q

n′
2 are unified with, respectively, H ′1, . . . ,H

′
n, subsets

of, respectively, H1, . . . ,Hn, to define µ2
∨ = {(q1′

2 ,H
′
1, P

2
u1

), . . . , (qn
′

2 ,H
′
n, P

2
un)} the disjunctive

piece-unifier of Q2 with R. Let Pu2
∨

= join({P 2
u1
, . . . , P 2

un}) be a partition and let u2
∨ be the

substitution associated with Pu2
∨
. Let h1, . . . ,hn be the homomorphisms associated with

each qi2, that map a qi1 in Q1 to qi2 (note that since each qi2 is a safe copy of a CQ in Q2
then there exists a CQ qi1 in Q1 that maps on it).

We consider two cases:

• Either, one of the qi1 maps by hi to the non-rewritten part of qi2, so this qi1 maps
to the CQ added to the Q2 by the one-step piece-rewriting, that is, there exists
1 ≤ i ≤ n and qi1 ∈ Q1 such that hi(q

i
1) ⊆ (qi2 \ q

i′
2 ), then u2

∨ ◦ hi is a homomorphism
from qi1 to u2

∨(qi2 \ q
i′
2 ) ⊆ β∨(Q2,R,µ

2
∨). Thus, β∨(Q2,R,µ

2
∨) |= qi1 |=Q1.

• Otherwise, for each 1 ≤ i ≤ n, we now consider that qi1 is a safe copy of the CQ
in Q1 that maps to qi2 and hi is the homomorphism (extended by considering this
safe renaming) from qi1 to qi2. Let qi

′

1 be the maximal subset of qi1 that maps to qi
′

2
by hi , that is, qi

′

1 ⊆ q
i
1, hi(q

i′
1 ) ⊆ qi′2 and hi(q

i
1 \ q

i′
1 )∩ qi′2 = ∅.

Let H ′′i be the maximal subset of H ′i which is unified by u2
∨ with the subset hi(Q

i′
1 )

of Qi
′

2 , that is, H ′′i ⊆ H
′
i , u

2
∨(H ′′i ) = u2

∨(hi(q
i′
1 )) and u2

∨(H ′i \H
′′
i )∩ u2

∨(hi(q
i′
1 )) = ∅. Let

P 1
ui be the partition induced by u2

∨ ◦ hi on terms(H ′′i ∪ q
i′
1 ). By construction, µ1

i =
(qi

′

1 ,H
′′
i , P

1
ui ) is thus a piece-unifier between qi1 and Hi . Since for each 1 ≤ i < j ≤ n,

qi
′

1 and qj
′

1 does not share any variable, then we can define h = h1 + · · ·+hn. We find
that u2

∨ ◦ h is a homomorphism from q1′
1 ∧ · · · ∧ q1′

n to u2
∨(H ′′1 ∧ · · · ∧H ′′n ). Let Pu1

∨
be

the partition induced by u2
∨ ◦ h on terms(q1′

1 ∧ · · · ∧ q1′
n )∪ terms(H ′′1 ∧ · · · ∧H ′′n ): it

is admissible, since it is built from a substitution (Proposition A.3). Moreover, we
have Pu1

∨
= join(Pu1

, . . . , Pun) and thus µ1
∨ is a disjunctive unifier of Q1 with R.

We now prove that β∨(Q2,R,µ
2
∨) |= β∨(Q1,R,µ

1
∨).

We build a substitution s from the selected elements of the classes in Pu1
∨

which
are variables, to the selected elements of the classes in Pu2

∨
as follows: for any class

C ∈ Pu1
∨
, if tC is a variable of a H ′′i , then s(tC) = u2

∨(tC), otherwise s(tC) = u2
∨(h(t))
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(t occurs in a q1′
i ). Note that for any term t in Pu1

∨
, we have s(u1

∨(t)) = u2
∨(h(t)).

We now build a substitution h′ from vars(β∨(Q1,R,µ
1
∨)) to terms(β∨(Q2,R,µ

2
∨))

by considering three cases according to the part of β∨(Q1,R,µ
1
∨) in which the vari-

ables occurs (in a q1
i but not in q1′

i , in body(R) but not in H ′′i , or in the remaining
part corresponding to the images of vars(qi

′

1 )∩ vars(qi1) by u1
∨):

– if x ∈ vars(qi1) \ vars(qi
′

1 ), h′(x) = h(x);

– if x ∈ vars(body(R)) \ vars(
⋃n
i=1H

′′
i ), h′(x) = u2

∨(x);

– if x ∈ u1
∨(
⋃n
i=1(vars(qi

′

1 ) ∩ vars(qi1))) (or alternatively x ∈ u1
∨(fr(R) ∩

vars(
⋃n
i=1H

′′
i ))), h′(x) = s(x).

We conclude by showing that h′ is a homomorphism from β∨(Q1,R,µ
1
∨) =

u1
∨(body(R))∪

⋃n
i=1u

1
∨(qi1\q

i′
1 ) to β∨(Q2,R,µ

2
∨) = u2

∨(body(R))∪
⋃n
i=1u

2
∨(qi2\q

i′
2 ) with

two points:

– h′(u1
∨(body(R))) = u2

∨(body(R)). Indeed, for any variable x of body(R):

∗ either x ∈ vars(body(R))\vars(
⋃n
i=1H

′′
i ), so h′(u1

∨(x)) = h′(x) = u2
∨(x) (be-

cause u1
∨ is a substitution from vars(

⋃n
i=1(qi

′

1 ∪H
′′
i )));

∗ or x ∈ fr(R)∩ vars(
⋃n
i=1H

′′
i )), so h′(u1

∨(x)) = s(u1
∨(x)) = u2

∨(h(x)) = u2
∨(x)

(because h is a substitution from vars(
⋃n
i=1 q

i
1) and recall that for any

term t in Pu1
∨
, s(u1

∨(t)) = u2
∨(h(t))).

– h′(u1
∨(q1

i \ q
1′
i )) ⊆ u2

∨(qi2 \ q
i′
2 ) for each 1 ≤ i ≤ n. In fact, we will show that

h′(u1
∨(qi1 \ q

i′
1 )) = u2

∨(h(qi1 \ q
i′
1 )) and since h(qi1 \ q

i′
1 ) ⊆ qi2 \ q

i′
2 we will be able to

conclude. To show that h′(u1
∨(qi1 \ q

i′
1 )) = u2

∨(h(qi1 \ q
i′
1 )), just see that for any

x ∈ vars(qi1 \ q
i′
1 ):

∗ either
x ∈ (vars(qi

′

1 )∩ vars(qi1)), then h′(u1
∨(x)) = s(u1

∨(x)) = u2
∨(h(x)) ;

∗ or x ∈ (vars(qi1) \ vars(qi
′

1 )), then h′(u1
∨(x)) = h′(x) = h(x) = u2

∨(h(x)) (be-
cause u1

∨ is a substitution from vars(
⋃n
i=1(qi

′

1 ∪H
′′
i )) and u2

∨ is a substi-
tution from variables of

⋃n
i=1(qi

′

2 ∪H
′
i ) and h(x) < vars(

⋃n
i=1(qi

′

2 ∪H
′
i ))).

■

The following lemmas A.7 and A.8 correspond to Lemma III.13 (Point 1 and Point
2, respectively) in Chapter III. Figures A.3 and A.4 depict lemmas A.7 and A.8, respec-
tively.

Lemma A.7

Let I be an instance, a disjunctive rule R, a trigger (R,h) on I and let Q be the
UCQ α∨(I,R,h). Then there exists a disjunctive piece-unifier µ∨ of Qwith R such
that I |= β∨(Q,R,µ∨).
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I

Q = α∨(I,R,h)β∨(Q,R,µ∨)

α∨

β∨

|=

Figure A.3: Corresponding application of β∨ to the UCQ obtained by α∨ is entailed by
the original factbase (Lemma A.7)

Proof. Let Q = α∨(I,R,h) = {qi = I ∪ h+i (headi(R)) | 1 ≤ i ≤ n} be a UCQ. We build µ∨ =
{µ1, . . . ,µn} a disjunctive piece-unifier as follows: for 1 ≤ i ≤ n, µi = (q′i ,headi(R), Pui )
with q′i = ρi ◦h+i (headi(R)) (ρi being a safe renaming of qi) and Pui the partition induced
by ρi ◦ h+i on terms(q′i)∪ terms(headi(R)).

First, we show that each µi is a piece-unifier of ρi(qi) with body(R)→ headi(R):

• q′i ⊆ ρi(qi) because h+i (headi(R)) ⊆ qi and q′i = ρi(h+i (headi(R));

• Pui the partition induced by ρi ◦ h+i is admissible (thanks to Proposition A.3);

• any ui associated with Pui is such that ui(headi(R)) = ui(q′i) (thanks to Proposition
A.4);

• for each existential variable z from headi(R) we have Pui [z] = {z,ρi ◦ h+i (z)} and
ρi ◦ h+i (z) is not a separating variable because z is safely renamed twice, first by
.+i and secondly by ρi .

Then, we show that the partition Pu∨ = join({Pu1
, . . . , Pun}) is admissible.

Since each Pui is admissible, the non-admissibility of their join would be only due
to a variable that appears in two classes with different constants from two partitions.
The only variables that can be shared between two partitions of a set of piece-unifiers
built from safe copies of CQs are the frontier variables of the considered disjunctive
rule. But if a frontier variable shared by two headi(R) is mapped to a constant, then it
is mapped to the same constant because each Pui is induced by ρi ◦ h+i and only h can
send a variable to a constant.

µ∨ is therefore a disjunctive piece-unifier of Q with R. Let u∨ be a substitution
associated with Pu∨ .

Let I ′ = β∨(Q,R,µ∨) = u∨(B) ∪
⋃

1≤i≤n
u∨(ρi(qi) \ q′i) = u∨(B) ∪

⋃
1≤i≤n

u∨(ρi(I ∪

h+i (headi(R))) \ (ρi ◦ h+i )(headi(R))) ⊆ u∨(B)∪
⋃

1≤i≤n
u∨(ρi(I)) (note that this inclusion is

not a simple equality because I ∩ h+i (headi(R)) can be nonempty).
We just have to observe that ρ−1

1 + · · · + ρ−1
n + h is a homomorphism from u∨(B) ∪⋃

1≤i≤n
u∨(ρi(I)) to I :
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• (ρ−1
1 + · · ·+ ρ−1

n + h)(u∨(ρi(I))) = I , indeed:

– If I contains only constants, it is straightforward;

– If I contains some variables, then they were renamed in ρi(I). u∨ can only
map variables into two distinct sets of terms:

∗ Assume that a variable of ρi(I) is mapped to a variable in terms(q′i).
Then, ρ−1

i allows to recover the initial variable that was in I (because no
variable of I can be in the same class of Pui as an existential variable of
R and the other variables come from the application of ρi);
∗ Otherwise, assume it is mapped to a variable in terms(headi(R)). Then,
h allows us to recover the initial variable in I (since these variables can
only appear in qi through the frontier variables of R thanks to the appli-
cation of h on headi(R)).

• (ρ−1
1 + · · ·+ ρ−1

n + h)(u∨(B)) = h(B) ⊆ I , indeed, by a similar reasoning:

– Assume that a variable in B is sent by u∨ to a variable in terms(q′i), then ρ−1
i

allows to recover the variable in I to which h maps this variable from B;

– Assume it is mapped by u∨ to a variable in terms(headi(R)), then we simply
have a variable in the domain of h since it can only be a frontier variable. ■

Since I ′ ⊆ u∨(B)∪
⋃

1≤i≤n
u∨(ρi(I)), it follows that ρ−1

1 + · · ·+ ρ−1
n + h maps I ′ to I .

Lemma A.8

Let Q be a UCQ, R be a disjunctive rule, µ∨ be a disjunctive piece-unifier of Q
with R and I be the instance β∨(Q,R,µ∨). Then, there exists a trigger (R,h) on I
such that α∨(I,R,h) |=Q.

I = β∨(Q,R,µ∨) α∨(I,R,h)

Q

α∨

|=β∨

Figure A.4: Corresponding application of α∨ to the CQ obtained by β∨ entails the orig-
inal UCQ (Lemma A.8)

Proof. Let µ∨ = {µ1, . . . ,µn} be a disjunctive unifier, and let u∨ be a substitution as-
sociated with join({Pu1

, . . . , Pun}) with each Pui being the partition in each µi . (R,u∨)
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is a trigger on I = β∨(Q,R,µ∨) since u∨(body(R)) ⊆ I . Let I ′ = α∨(I,R,u∨) = {I ′i =
I ∪ u+i

∨ (headi(R)) | 1 ≤ i ≤ n}.
To prove that I ′ |= Q, we will show that for each I ′i , the CQ qi that is a safe copy of

a CQ in Q and was unified by µi with headi(R) maps to I ′i by the homomorphism u+i
∨ .

Then, let ρi be the renaming substitution that produced qi from a CQ Q ∈ Q, we will
have u+i

∨ ◦ ρi is a homomorphism from this Q to I ′i . Thus, by Proposition A.2, we can
conclude that I ′ |=Q.

Let us now show that u+i
∨ maps qi to I ′i :

• u∨ maps qi \ q′i into u∨(qi \ q′i) ⊆ I ⊆ I
′
i and since u+i

∨ is an extension of u∨ to the
existential variables of R, u+i

∨ (qi \ q′i) = u∨(qi \ q′i), so u+i
∨ maps qi \ q′i into I ′i .

• u+i
∨ maps q′i to u+i

∨ (headi(R)) ⊆ I ′i because first u∨ unifies q′i and H ′i ⊆ headi(R),
that is, u∨(q′i) = u∨(H ′i ), and second .+i maps u∨(headi(R)) to u+i

∨ (headi(R));

Lemma A.9: Backward-forward Lemma

Let I be an instance, Q be a UCQ and R be a disjunctive rule. For any disjunctive
piece-unifier µ∨ of Q with R, if I |= β∨(Q,R,µ∨) then there is a trigger (R,h) on I
such that α∨(I,R,h) |=Q.

I α∨(I,R,h)

Qβ∨(Q,R,µ∨)

α∨

|=

β∨

|=

Figure A.5: Correspondences between β∨ (in blue) and α∨ (in red) - Lemma A.9

Proof. Thanks to Lemma A.8, we know that there is a trigger (R,h) on I2 = β∨(Q,R,µ∨)
such that α∨(I2,R,h) |= Q. Then, from Lemma A.5, we know that if I |= I2, then we have
α∨(I,R,h) |= α∨(I2,R,h). Thus α∨(I,R,h) |=Q, which we wanted to prove. ■

Lemma A.10: Forward-backward Lemma

Given any trigger (R,h) on I , if α∨(I,R,h) |= Q then either I |= Q or there is a
disjunctive piece-unifier µ∨ of Q with R, such that I |= β∨(Q,R,µ∨).

Proof. Thanks to Lemma A.7, we know that there is a disjunctive piece-unifier µ2
∨ of

Q2 = α∨(I,R,h) with R such that I |= β∨(Q2,R,µ
2
∨). Then, from Lemma A.6, we know
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I α∨(I,R,h)

Qβ∨(Q,R,µ∨)

|=

α∨

|=

β∨

Figure A.6: Correspondences between β∨ (in blue) and α∨ (in red) - Lemma A.10

that if Q2 |= Q, either β∨(Q2,R,µ
2
∨) |= Q or there exists µ∨ such that β∨(Q2,R,µ

2
∨) |=

β∨(Q,R,µ∨). Since I |= β∨(Q2,R,µ
2
∨), we either have I |= Q or I |= β∨(Q,R,µ∨), which was

what we wanted to prove. ■

Corollary A.11: Corollary of Lemma A.10

Let I be a set of instances, I ∈ I , R a disjunctive rule and (R,h) a trigger on I . Let
I1 be the set of instances obtained by the immediate derivation of (I ,R) by the
trigger (R,h), that is, I1 = I \{I}∪α∨(I,R,h). Then, if I1 |=Q, either I |=Q or there
exists a unifier µ∨ of Q with R such that I |= {β∨(Q,R,µ∨)} ∪Q.

Proof. Since I \{I} |=Q, we just have to prove that either I |=Q or I |= β∨(Q,R,µ∨), which
is exactly Lemma A.10. ■

We extend the notion of disjunctive chase result to any derivation tree or derivation
sequence. So we call derivation tree result the set of instances res(T ) = {

⋃
v∈nodes(γ)

λ(v) | γ ∈

Γ (T )}where T is any derivation tree and λ its labelling function. Also, we call derivation
sequence result the set of instances res(D) = In where In is the last set of instances in the
derivation D.

Note that if T is finite, we have res(T ) ≡ res(D) for any derivation D that we can
assign to T . Indeed, for each finite sequence Dn of length n, In corresponds exactly
to the labels of the leaves of a derivation tree built from the same trigger applications:
hence, In is isomorphic to res(T ).

Lemma A.12

Let q be a CQ, T = (V ,E,λ) be a derivation tree, γ be a branch of T and Iγ ∈ res(T )
the set of facts associated with γ , that is, Iγ =

⋃
v∈nodes(γ)

λ(v). If a homomorphism

h maps q to Iγ , then there is a vertex v ∈ γ such that λ(v) |= q.

Proof. To each atom of Iγ , we give a rank that corresponds to the depth1 of the vertex of

1The depth of a vertex v is defined as the length of the path from the root to v.
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γ where it was produced. Since h(q) is finite, let k be the maximum rank of the atoms
in h(q). Let v be the vertex at depth k in γ , we have h(q) ⊆ λ(v), so λ(v) |= q. ■

Theorem A.13

Let Q be a UCQ, a set of disjunctive rulesR and a instance I . Then chase(I,R) |=
Q if and only if there exists a finite derivation tree T of (I,R) such that res(T ) |=
Q.

Proof. (⇐) We only need to extend the derivation tree T , in a fair way, to add what
is missing in the tree. Indeed, by the definition of the result of a derivation tree /
disjunctive chase, each instance of chase(I,R) includes at least one instance of res(T ),
so chase(I,R) |= res(T ) and thus chase(I,R) |=Q.

(⇒) Let TC = (V ,E,λ) be the fair derivation tree used to define chase(I,R), that is,
chase(I,R) = {Iγ =

⋃
v∈nodes(γ)

λ(v) | γ ∈ Γ (TC)}. For each Iγ ∈ chase(I,R), let Qγ ⊆ Q be

the set of CQs that maps to Iγ (Qγ contains at least one CQ, cf. Proposition A.2). By
Lemma A.12, for each CQ in Qγ there is a vertex v ∈ γ such that λ(v) |= qγ . In each
branch γ , we select vγ the highest of these vertices in γ .

These selected vertices are called terminal vertices. We build the subtree T ′ of TC
by removing from TC all vertices that are the successors of a terminal vertex. Thus,
every branch of T ′ is finite. We show that (1) T ′ is still a derivation tree and (2) it is
finite.

1. By construction, each node in T ′ is either a terminal node (in which case it is a
leaf), or we did not erase any of its children (and so its children still correspond
to the result of applying a trigger). Thus, T ′ is still a derivation tree.

2. Since each rule is finite, each node in a derivation tree has a finite number of
children (it is locally finite). According to König’s infinity lemma [Kőnig, 1927],
“an infinite, locally finite rooted tree has an infinite branch”. Its contrapositive is
“a locally finite rooted tree without infinite branch is finite”. Thus, T ′ is finite. ■

Corollary A.14: Corollary of Theorem A.13

I,R |= Q if and only if there exists a finite derivation tree T of (I,R) such that
res(T ) |= Q. Equivalently, I,R |= Q if and only if there exists a derivation D from
I with R such that res(D) |=Q.

We can finally prove Theorem III.14.

Theorem III.14: Let R be a set of disjunctive rules and Q be a UCQ. Then, for any
instance I , holds I,R |= Q if and only if there is a disjunctive piece-rewriting Q′ of Q
such that I |=Q′.
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Proof of Theorem III.14. We show that there exists a derivation of ({I},R) leading to an
Ii such that Ii |=Q if and only if there exists a piece-rewriting Q′ of Q withR such that
I |=Q′.

(⇒) We prove the first direction by induction on the number of rule applications in
a derivation sequence D such that Qmaps to res(D) (such a tree / derivation exists: see
Corollary A.14).

At rank 0, the property is trivially true taking Q′ = Q. Let us assume that it is true

at rank n. Let D = (I0 = {I})
t1−→ . . .

tn−→ In
(R,h)
−−−−→ In+1 be a derivation with Q that maps to

In+1. By using the Corollary A.11, we have either:

1. In |=Q;

2. or there exists µ∨ such that In |= {β∨(Q,R,µ∨)} ∪Q.

In both cases, we have a UCQ that maps to In. Let us name it Qn. By the induction
hypothesis, there exists a piece-rewriting Q′ of Qn such that I |=Q′. By definition, Qn is
a one-step piece-rewriting of Q, and thus Q′ is also a piece-rewriting of Q.

(⇐) We prove the opposite direction by induction on the length of the rewriting
sequence producing Q′ from Q and relying upon Lemma A.9. The property is trivially
true at rank 0 taking I0 = {I}. Let us assume that it is true at rank n. Assume that Qn+1
is obtained from Q by a rewriting sequence Q =Q0,Q1, . . . ,Qn,Qn+1 = β∨(Qn,R,µ∨)∪Qn
of length n+ 1, and I |= Qn+1. So, there is a CQ q in Qn+1 such that I |= q. We have two
cases:

1. q ∈ Qn: then, by induction hypothesis, there exists Ii such that Ii |= q, thus Ii |=Qn
and also Ii |=Qn+1.

2. q = β∨(Qn,R,µ∨): then, by Lemma A.9, there exists I1 = α∨(I,R,h) such that I1 |=
Qn. So, we have that for each Im ∈ I1, Im |= Qn. And by the induction hypothesis,
we see that for each Im, there exists a derivation of ({Im},R) leading to a Im such
that Im |= Q and thus we have a derivation from I1 that produces Ii (that is the
union of all Im) such that Ii |=Q. ■



B - Proofs of Section III.5

Recall that disjunctive mapping rewritability is the following problem: Given a set of
disjunctive S-to-T -rulesM and a UCQ Q on T , does the pair (Q,M) admit a UCQ-S-
rewriting?

Theorem III.23: Disjunctive mapping rewritability is undecidable.

To prove it, we build a reduction from the following problem: Given a Boolean CQ q
and a set of (conjunctive) datalog rules R, does the pair (q,R) admit a UCQ-rewriting?
This problem is undecidable, which follows from the undecidability of determining
whether a datalog program is uniformly bounded [Gaifman et al., 1993]. Indeed, a dat-
alog program R is uniformly bounded if and only if the pair (q,R) is UCQ-rewritable
for any full atomic query q, that is, in which all the variables are answer variables. Since
there is a finite number of non-isomorphic atomic CQs to consider, it follows that de-
termining if a pair (q,R) is UCQ-rewritable for q an atomic CQ is also undecidable. In
turn, this problem can be reduced to the problem of determining whether a pair (q′ ,R)
is UCQ-rewritable for q′ a Boolean CQ. To build q′, we just add to q an atom with spe-
cial predicate answer which contains all the variables of q. This ensures that the answer
variables are properly considered when comparing two generated CQs.

W.l.o.g. we assume that datalog rules have no constants (and an atomic head).

Our reduction translates each instance (q,R) of the conjunctive datalog UCQ-
rewriting problem, defined on a set of predicates P , into an instance (QQ,R,MQ,R)
of the disjunctive mapping rewritability problem, defined on a pair of predicats sets
(S ,T ) such that:

• S = P ∪ {T }, where T is a fresh unary predicate,

• T is the union of: (1) a set of predicates in bijection with S , where each predicate
is topped with a hat (e.g. p̂ is obtained from p), and (2) a set of fresh predicates in
bijection with R, where we denote by pRi the predicate associated with the rule
Ri ; the arity of each pRi is |fr(Ri)|.

We also denote by T [x] the conjunction of atoms T (xi) for each xi ∈ x, i.e. T [x] =
T (x1)∧ · · · ∧ T (xn) where |x| = n. Similarly, T̂ [x] = T̂ (x1)∧ · · · ∧ T̂ (xn). Let Q be any CQ (
or set of atoms) on S , we denote by Q̂ the CQ (or set of atoms) Q whose predicates have
all been renamed with a hat, Q̂ is therefore on T . Let Q be any CQ, we denote by QT

the CQ Q completed with a T atom on each term. Then, Q̂T is the CQ obtained from Q̂

by adding its T atoms. Finally, Q̂T is obtained from QT by substituting each predicate
p (including T ) by p̂.

Definition of the reduction Let q = ∃xq Bq[xq] be a CQ and a datalog rule set R =
{R1, . . . ,Rn} with each Ri = Bi[xi,yi]→Hi[xi]. We define the UCQ Qq,R and the disjunc-
tive datalog mappingMq,R associated with Q and R as follows:

163
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• Qq,R = {qq} ∪QR with

qQ = ∃xq.B̂q[xq]∧ T̂ [xq], i.e., qQ = q̂T ,
QR = {qRi = ∃xi,yi.B̂i[xi,yi]∧ pRi (xi)∧ T̂ [xi,yi] | Ri ∈ R}

• Mq,R =MR ∪Mtrans with
MR = {mRi = T [xi]→ pRi (xi)∨ Ĥi(xi) | Ri ∈ R}
Mtrans = {p(x)→ p̂(x) | p ∈ S}

Let us comment on the reduction. The UCQ Qq,R is built from Q and, for every
Ri ∈ R, a CQ qRi . Each qRi is composed of the conjunction of body(Ri) and a special
atom pRi (xi), where pRi is a fresh predicate associated with Ri and xi is the frontier of Ri .
The idea is that pRi (xi) will be unifiable (and thus erasable) only with a corresponding
mapping assertion mRi , which moreover enforces to have a CQ containing an atom
unifiable with head(Ri). Then, for each term t in a CQ, one adds a unary atom T (t).
The set of rulesMq,R is built by creating, for each rule Ri , a disjunctive rule mRi with
a body that contains a T (x) atom for each frontier variable x of Ri , and a head with
the special atom associated with Ri as first disjunct, and head(Ri) as second disjunct.
Finally, the predicates from S of each atom in Qq,R or in the head of disjunctive rules in
Mq,R are turned into target predicates (i.e., renamed with a “hat"), and a set of atomic
S-to-T rulesMtrans is added to translate the source predicates into target predicates.

Note that there is a natural bijection (up to variable renaming) between the CQs
defined on P and the CQs defined on S that have a T -atom on each term: to Qw on
P we assign the CQ QTw composed of Qw (or any CQ isomorphic to Qw) completed by
T -atoms on each term.

Then the correctness of the reduction is proved thanks to three lemmas:

• We prove in Lemma B.2 that for any CQ Qw belonging to a piece-rewriting of {q}
with R, a CQ isomorphic to QTw belongs to a piece-rewriting of Qq,R withMq,R.

• We prove in Lemma B.1 that any CQ QS belonging to an S-rewriting of Qq,R with
Mq,R is of the form QS = (QP )T where QP is a set of atoms on P .

• We prove in Lemma B.5 that for any CQ of the form (QP )T , with QP on P , be-
longing to a piece-rewriting of Qq,R withMq,R, a CQ isomorphic to QP belongs
to a piece-rewriting of {q} with R⋆ , where R⋆ is the reflexive and transitive clo-
sure of R by unfolding. This lemma is established by showing that any CQ in a
piece-rewriting of Qq,R withMq,R “corresponds” either to a rule fromR⋆ , or to a
piece-rewriting of {q} with R⋆ .

Furthermore, the proof implicitly uses the following observations:

1. Let Q be a finite rewriting of {Q}withR. Then there is a piece-rewriting Qi of {Q}
with R such that Q |=Qi .
Proof : For every complete rewriting Q′ of {Q} withR, we have Q |=Q′ (indeed, let
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M be a model ofQ and h be a witnessing homomorphism from a CQQ′ inQ toM.
Let I = h(Q′) be an instance. Since I |= Q and Q is sound, we have R, I |=Q, hence
I |= Q′ because Q′ is complete. Hence, M is a model of Q′). Since piece-rewriting
is a complete procedure, there is a complete set of CQs Qi produced by a possibly
infinite sequence of piece-rewritings. Then, Q |= Qi . This means that for each CQ
Q′ ∈ Q, there is a CQ Qj ∈ Qi such that Q′ |= Qj . We can restrict Qi to these Qj
while keeping the entailment from Q.

2. LetQ be a UCQ-rewriting of {Q}withR. Then there is a complete piece-rewriting
Qi of {Q} with R such that Qi ≡ Q.
Proof : Let Qi be a complete set of CQs obtained by a possibly infinite sequence of
piece-rewritings of {Q} withR. As previously, we consider a model M of Qi and I
a (finite)-witnessing subset ofM. SinceQi is sound, we haveR, I |=Q, hence I |=Q
because Q is complete. Hence, M is a model of Q and Qi |= Q. We do the same
reasoning by considering a model of Q to conclude that Q |= Qi . We can restrict
Qi to an equivalent finite subset because Q is finite and equivalent to Qi (see e.g.,
Theorem 1 in [König et al., 2015]).

Proof of Theorem III.23. We prove that there exists a UCQ-rewriting of ({Q},R) iff there
exists a UCQ-S-rewriting of (Qq,R,Mq,R).

(⇒) Let Q be a UCQ-rewriting of ({Q},R). Then there exists a piece-rewriting Qi of
{Q} with R such that Qi ≡ Q. By Lemma B.2, there is a piece-rewriting Qj of Qq,R with
Mq,R that contains a subset of CQs in natural bijection with those in Qi . Let QSj be the

subset of Qj that contains only the CQs on S . QSj is a finite S-rewriting of (Qq,R,Mq,R).

SupposeQSj is not a complete S-rewriting. Then, by Lemma B.1, there is a CQ (QP )T

which belongs to an S-rewriting of (Qq,R,Mq,R) but which is not more specific than any
of the CQs in QSj . Then there is a CQ (Q′P )T that belongs to a piece-rewriting Q′j of Qq,R

with Mq,R such that (QP )T |= (Q′P )T . Then by Lemma B.5, Q′P is isomorphic to a CQ
belonging to a piece-rewriting of {q} with R⋆ , hence to a rewriting of ({Q},R). Since Qi
is a UCQ-rewriting, there is a Qc in Qi such that Q′P |= Qc. Hence, (Q′P )T |= (Qc)T (and
thus (QP )T |= (Qc)T ) and, since (Qc)T belongs to QSj , this contradicts the assumption

that (QP )T is not more specific than a CQ in QSj .

(⇐) Let QS be a UCQ-S-rewriting of (Qq,R,Mq,R). Then there exists a piece-
rewriting Qi of Qq,R with Mq,R such that QS |= Qi (i.e., for each CQ Q′ in QS , there
is a CQ Q′′ in Qi such that Q′ |=Q′′).

Consider QSi the subset of Qi that contains only the CQs on S . We still have QS |=
QSi . Since QS is complete w.r.t. S , so is QSi . Thus QS ≡ QSi . By Lemma B.1, any CQ in
QSi is of the form (QP )T as required in Lemma B.5. So, by Lemma B.5, there is a piece-
rewriting Qj of {q} with R⋆ that contains all the CQs in natural bijection with those in
QSi . So Qj is a finite rewriting of {q} withR⋆ . SinceR⋆ ≡R (see also Proposition B.4), it
is also a finite rewriting of {q} with R.
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Suppose Qj is not complete. Then there is a CQ QP that belongs to a rewriting of
({q},R) and is not more specific than any of the CQs in Qj . Then there is a CQ Q′P that
belongs to a piece-rewriting of {q} with R such that QP |= Q′P . Then by Lemma B.2,
(Q′P )T is isomorphic to a CQ belonging to a piece-rewriting of Qq,R withMq,R. Since
QSi is complete w.r.t. S , there is a (Qc)T in QSi such that (Q′P )T |= (Qc)T . We also have
Q′P |= Qc (hence QP |= Qc) and, since Qc belongs to Qj , this contradicts the assumption
that QP is not more specific than a CQ in Qj . ■

Proofs of the three lemmas

We first point out the following.

• Thanks to the mapping assertionsMtrans, we can always “remove the hats" from
any predicate (except the pRi special predicates) in any CQ Qw belonging to a
piece-rewriting of Qq,R withMq,R; we just have to extend the rewriting sequence
by using the rules inMtrans. Moreover, if Qw does not contain any special atom
pRi (xi), this extended rewriting is on S , hence belongs to an S-rewriting of Qq,R
withMq,R.

• Another property of any CQQw belonging to a piece-rewriting of Qq,R withMq,R

is that each of its terms appears in a T or T̂ atom. Indeed, since the CQs in Qq,R
have a T̂ atom for each term and all the variables of the rules inMq,R are frontier
variables, no rewriting step introduces a new term without a T̂ , and the only rule
that can rewrite a T̂ atom replaces it with a T atom.

As an immediate consequence of the previous observations, we have the following
lemmas.

Lemma B.1

Let Q be a CQ, R be a set of datalog rules and QS be a CQ belonging to an S-
rewriting of Qq,R withMq,R. Then, QS is of form (QP )T , where QP is a CQ on
P .

Lemma B.2

Let Q be a CQ, R be a set of datalog rules and Qw be a CQ belonging to a piece-
rewriting of Q with R. QTw is isomorphic to a CQ belonging to a piece-rewriting
of Qq,R withMq,R.

This lemma can be proved by induction thanks to the following proposition.
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Proposition B.3

Let Q be a CQ, R be a set of datalog rules, Ri ∈ R, and let Qw = β(Q,Ri ,µ) be a
CQ where µ is a piece-unifier of Q with Ri . Let QRi and mRi be, respectively, the
CQ and S-to-T rule associated with Ri as defined in the reduction. There exists a
disjunctive piece-unifier µ∨ of {QRi , Q̂

T }withmRi such that Q̂Tw is isomorphic to a
CQ belonging to a piece-rewriting of {β∨({QRi , Q̂

T },mRi ,µ∨)} with {T (x)→ T̂ (x)}.

Proof. Let Ri = Bi[xi,yi] → Hi(xi) be a conjunctive rule. Since µ is a piece-unifier of
Q with Ri , there is at least one atom with predicate Hi in Q, i.e., Q = ∃u,v.Hi(u) ∧
D[u,v] whereD is any conjunction of atoms, andQw = ∃u,v,yi.Bi[u,yi]∧D[u,v]. By the
reduction, we obtain qRi = ∃xi,yi.B̂i[xi,yi]∧pRi (xi)∧T̂ [xi,yi] andmRi = T [xi]→ pRi (xi)∨
Ĥi(xi). We consider µ∨ = {µpRi , µ̂} where µpRi is the piece-unifier unifying pRi (xi) ∈ QRi
and head1(mRi ), and µ̂ is the piece-unifier “isomorphic” to µ between Q̂ and head2(mRi ).
More formally, given µ = (Q′ ,H ′ , Pu) and Q̂s a safe copy of Q̂, µ̂ = ((Q̂′)s, Ĥ ′ , P su) where .s

is the renaming function of the variables of Q̂. Clearly, the join of the partitions in µ∨
is admissible since there is no constant. Since Q̂ ⊆ Q̂T , µ̂ is a piece-unifier of Q̂T with
the rule T [xi]→ Ĥi(xi), associated with head2(mRi ). Let u and uµ∨ be the substitutions
associated with µ and µ∨, respectively. Then;

β∨({qRi , q̂
T },mRi ,µ∨) = uµ∨(T [xi]∪ B̂i[xi,yi]s ∪ T [xi,yi]s ∪ (q̂T \ q̂′)s) = uµ∨(B̂i[xi,yi]s ∪

(q̂ \ q̂′)s)T
which is isomorphic to u(B̂i[xi,yi]∪ (q̂ \ q̂′))T = q̂Tw.

Since the partition associated with µpRi does not merge any frontier variables from
mRi , no classes of µ̂ are merged in the join of the partitions of µpRi and µ̂. Hence, the

joined partition is in bijection with P su , and thus with Pu . As a consequence, u(B̂i[xi,yi]∪
(q̂ \ q̂′))T is isomorphic to uµ∨(B̂i[xi,yi]s ∪ (q̂ \ q̂′)s)T . ■

Proof of Lemma B.2. By induction on the length k of the rewriting sequence from {Q}
producing Qk in which Qw is generated, we first prove that (Q̂w)T is isomorphic to a
CQ belonging to a piece-rewriting of Qq,R withMq,R:

• (k=0) Qw = Q; since QQ = Q̂T ∈ Qq,R, we can produce Q̂T = Q̂Tw by a rewriting
sequence using the rule T (x)→ T̂ (x).

• (k+1) Let Qk+1 = Qk ∪ {Qw}. Assume Qw is generated in Qk+1 by a piece-unifier
of Qk ∈ Qk with R ∈ R. By induction hypothesis, (Q̂k)T is isomorphic to a CQ
belonging to a piece-rewriting ofQq,R withMq,R. Then, by Proposition B.3, (Q̂w)T

is isomorphic to a CQ belonging to a piece-rewriting of {β∨({QR, (Q̂k)T },mR,µ∨)}
with {T (x)→ T̂ (x)}, hence a piece-rewriting of Qq,R withMq,R.

Finally, we can “remove the hats" from any CQ belonging to a piece-rewriting of Qq,R
withMq,R. We just have to extend the rewriting sequence by some rewriting steps with
Mtrans. Thus, since (Q̂w)T is isomorphic to a CQ belonging to a piece-rewriting of Qq,R
withMq,R, so is QTw. ■
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Next, we denote by R⋆ the set of all the rules that can be obtained by composing
rules from a datalog rule setR. Composing two datalog rules is also known as “unfold-
ing a rule by another”. Given two datalog rules R1 = B1→H1 and R2 = B2→H2, and a
(most general) classical unifier u of an atom A in B2 with the atom in H1, the unfolding
of R2 by R1 is the rule R2 ◦R1 = u(B1)∪ u(B2 \ {A})→ u(H2). Starting from R, one can
build R⋆ by repeatedly unfolding a rule from R⋆ by a rule from R, until a fixpoint is
reached (if any). Clearly, R1,R2 |= R2 ◦R1. Hence, R⋆ is logically equivalent to R.

Proposition B.4

Let Q be a CQ and R be a set of rules. Any UCQ Q is a complete rewriting of Q
with R iff it is a complete rewriting of Q with R⋆ .

Proof. For all instance I and CQ Q, one has I,R |= Q iff I,R⋆ |= Q. Let Q be a complete
rewriting of Q with R. Then, for all I , I |= Q iff I,R |= Q iff I,R⋆ |= Q, thus Q is a
complete rewriting of Q with R⋆ . Similarly, any complete rewriting Q of Q with R⋆ is
a complete rewriting of Q with R. ■

Lemma B.5

Let Q be a CQ, R be a set of datalog rules and QP be a CQ on P such that (QP )T

belongs to a piece-rewriting of Qq,R throughMq,R. Then, QP is isomorphic to a
CQ belonging to a piece-rewriting of Q with R⋆ .

To prove the lemma, we first prove some properties of the piece-rewritings of Qq,R
withMq,R.

Proposition B.6

Let Qw be a piece-rewriting of Qq,R withMq,R, Qw can be partitioned into two
sets: QwM the subset of CQs without any pRi -atom, and QwP the subset of CQs
with exactly one pRi -atom. Furthermore, QwP is a rewriting of QR (the subset
of Qq,R containing only the queries associated with the rules from R), and any
S-rewriting of Qw withMtrans is a rewriting of QwM withMtrans.

Proof. We first show that any CQ in Qw contains at most one pRi atom:

• it is the case for Qq,R;

• piece-rewriting with a renaming mapping assertion inMtrans does not add a pRi
atom;

• piece-rewriting with a disjunctive mapping assertionmRi removes a pRi atom (and
does not add one), thus there remains at most one pRj atom in the produced query.
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Thus QwM +QwP =Qw.
When we use a CQ without atom pRi in a piece-rewriting step, the produced query

does not have such an atom either. So, we only have to consider the queries in QR to
generate QwP .

Since pRi predicates do not belong to S and no rule in Mtrans allows to rewrite a
pRi -atom, only the queries in QwM can generate queries on S usingMtrans. ■

Definition B.1 (Reverse function)
Let Qw be any rewriting of Qq,R with Mq,R. We define a “reverse" function, noted
reverse, from Qw to a set of CQs plus a set of conjunctive datalog rules, both on P , as
follows:

• for any Q ∈ QwM , reverse(Q) = Qr where Qr is the query obtained from Q by re-
moving the “hats" on the predicates, then deleting the T atoms;

• for anyQ ∈ QwP , letQ = (∃x,y.pRi (x)∧C[x,y]). Note that C is a conjunction without
any pRj -atom. Then: reverse(Q) = Cr [x,y] → Hi(x) where Cr is the conjunction
obtained from C by removing the “hats" on the predicates, then deleting the T
atoms, andHi(x) is obtained from the head of Ri ∈ R by substituting each frontier
variable with the corresponding term in pRi (x).

Proposition B.7

Let Qw be a piece-rewriting of Qq,R withMq,R. For any Qw ∈ QwP , reverse(Q) ∈
R⋆ .

Proof. By induction on the length k of the sequence of piece-rewriting steps generating
Qw :

• (k = 0) Recall that QwP = Qq,RP = QR. Now, observe that for each query QRi ∈ QR,
we have reverse(QRi ) = Ri which belongs to R.

• (k + 1) Any query Qw ∈ QwP is either obtained in at most k piece-rewriting steps
and thus reverse(Qw) ∈ Rk by induction hypothesis, or there are two cases (by
Proposition B.6):

– Qw is generated by a piece-rewriting step from a CQ Qk with a pRi -atom and
a rule inMtrans. Then reverse(Qw) = reverse(Qk) and since Qk is generated
in at most k piece-rewriting steps, by the induction hypothesis reverse(Qk) ∈
R⋆ .

– Qw is generated by a piece-rewriting step from two queries Q1 =
(∃x1,y1.pR1

(x1)∧ Ĉ1[x1,y1]) and Q2 = (∃x2,y2.pR2
(x2)∧ Ĉ2[x2,y2]) with a dis-

junctive rule having one of the two special predicates pR1
or pR2

. Assume
that the rule is mR1

= T [x] → pR1
(x) ∨ Ĥ1(x) associated with R1. Let µ∨ =
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{µ1 = (pR1
(x),pR1

(x1), P1), µ2 = (Ĉ′2, Ĥ
′
1, P2)} be the disjunctive piece-unifier

that has produced Qw = uµ∨(T ∧ Ĉ1 ∧ pR2
∧ (Ĉ2 \ Ĉ′2)). Then, reverse(Qw) =

uµ∨(C1 ∧ (C2 \C′2))→ uµ∨(H2).
By definition, reverse(Q1) = C1 → H1 and reverse(Q2) = C2 → H2. Let .s be
the safe renaming of Q2 used in µ2. Thus we see that µ′2 = (C′2,H

′
1, (P2)s

−1
)

is a piece-unifier between C2, the body of reverse(Q2), and H1, the head of
reverse(Q1). It follows that reverse(Q2) ◦ reverse(Q1) = uµ′2(C1 ∧ (C2 \C′2))→
uµ′2(H2).

By the induction hypothesis, reverse(Q1) and reverse(Q2) belong to R⋆ , so
reverse(Q2) ◦ reverse(Q1) belongs to R⋆ . Since reverse(Qw) is isomorphic to
reverse(Q2) ◦ reverse(Q1), it belongs to R⋆ . ■

Proposition B.8

Let Qw be a piece-rewriting of Qq,R withMq,R. For any Qw ∈ QwM , reverse(Qw) is
isomorphic to a CQ that belongs to a piece-rewrite of {q} with R⋆ .

Proof. By induction on the length k of the sequence of piece-rewriting steps generating
Qw :

• (k = 0) QwM =Qq,RM = {QQ} and reverse(QQ) =Q.

• (k + 1) Any query Qw ∈ QwM is either obtained in at most k piece-rewriting steps,
hence, by induction hypothesis, reverse(Qw) is isomorphic to a CQ belonging to a
piece-rewriting of Q with R⋆ , or there are two cases:

– Qw is generated by a piece-rewriting step from a CQ Qk without pRi atom
and a rule in Mtrans. Then reverse(Qw) = reverse(Qk) and, since Qk is
generated in at most k piece-rewriting steps, by the induction hypothesis
reverse(Qk) is isomorphic to a CQ belonging to a piece-rewriting of Q with
R⋆ .

– Qw is generated by a (disjunctive) piece-rewriting step from a CQ Qm = (Ĉ∧
T̂ )T ∈ QwM , a CQ QR = (B̂R ∧ pRi )

T and the rule mRi = pRi ∨ Ĥi . Let µ∨ =
{µi = (pRi ,pRi , Pi), µ2 = (Ĉ′ , Ĥ ′i , P2)} be the disjunctive piece-unifier that has
produced Qw. Therefore, we have Qw = β∨({Qm,QR},mRi ,µ∨) = uµ∨(B̂R ∧ (Ĉ \
Ĉ′)∧ T̂ )T , hence reverse(Qw) = uµ∨(BR ∧ (C \C′)).
By Proposition B.7, reverse(QR) = (BR → Hi) ∈ R⋆ , and by the induction
hypothesis, reverse(Qm) = C is isomorphic to a CQ belonging to a piece-
rewriting of Q with R⋆ . Let µ′2 be obtained from µ2 by replacing each
predicate p̂ with p (that is, removing the hats). Then, µ′2 is a piece-unifier
of reverse(Qm) with reverse(QR) (up to a bijective variable renaming) and
β(reverse(Qm), reverse(QR),µ′2) = uµ′2(BR ∧ (C \C′)).
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With the same arguments about the join of the partitions of µ∨ and µ′2 as at
the end of the proof of Proposition B.3, we conclude that uµ′2(BR∧ (C \C′)) is
isomorphic to uµ∨(BR ∧ (C \C′)). Thus, reverse(Qw) is isomorphic to a piece-
rewriting of {q} with R⋆ . ■

Proof of Lemma B.5. Assume (qP )T belongs to a piece-rewriting of Qq,R withMq,R.
Since (qP )T is on S , it belongs to QwM . Hence, by Proposition B.8, reverse((qP )T ) = qP

is isomorphic to a CQ belonging to a piece-rewriting of {q} with R⋆ . ■





C - Complexity

C.1 Common complexity classes

In this dissertation, we mention various complexity classes for decision problems. Al-
though not all necessary technical concepts are defined here, we present the class defi-
nitions, ordered by increasing complexity.

Definition C.1 (AC0)
A problem is part of the AC0 class if it can be solved by a limited depth Boolean circuit,
using a polynomial number of AND and OR gates.

Definition C.2 (NLogSpace (NL))
A problem belongs to NL if it can be resolved by a non-deterministic Turing machine
that only uses a working tape of logarithmic space relative to the input.

Definition C.3 (Polynomial Time (PTime))
A problem is classified as P if it can be solved by a deterministic Turing machine run-
ning in polynomial time with respect to the input.

Definition C.4 (Non-deterministic Polynomial Time (NP) / coNP)
A problem is categorized as NP if it can be solved by a nondeterministic Turing ma-
chine running in polynomial time relative to the input. A problem is in coNP if it
complement is in NP.

Definition C.5 (Polynomial Space (PSpace))
A problem is solved in PSpace if it can be solved by a Turing machine that only uses
a tape of polynomial space in relation to the input. Note that it has been demon-
strated that non-deterministic polynomial space is equivalent to deterministic poly-
nomial space.

In the following definitions, an oracle for a problem is a hypothetical device that is
capable of solving that problem instantly. When a Turing machine is augmented with
an oracle, it can consult the oracle at any time and use the answer provided by the
oracle.

Definition C.6 (ΣP
n )

A problem is classified as ΣPn if it can be solved by a nondeterministic Turing machine
running in polynomial time augmented by an oracle for a problem that is complete for
ΣPn−1, where ΣP0 = P.

Definition C.7 (ΠP
n )

A problem falls under ΠP
n if it is the complement of a problem that can be solved by a

nondeterministic Turing machine running in polynomial time augmented by an oracle
for a problem that is complete for ΣPn−1, where ΣP0 = P.

173
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Definition C.8 (∆P
n )

A problem is part of ∆Pn if it can be solved by a deterministic Turing machine running
in polynomial time with an oracle augmented by a problem that is complete for ΣPn−1,
where ΣP0 = P.

The classes ΣPn , ΠP
n , and ∆Pn are part of a hierarchy of complexity classes known as

the polynomial hierarchy. Each subsequent class in this hierarchy represents problems
that are intuitively harder than the previous classes. However, all these problems are
solvable in polynomial time if given an oracle for a problem from the appropriate lower
class.

Definition C.9 (Exponential Time (ExpTime))
A problem belongs to ExpTime if it can be solved by a deterministic Turing machine
operating in simple exponential time relative to the input.

Definition C.10 (Double Exponential Time (2ExpTime))
A problem is solved in 2ExpTime if it can be solved by a deterministic Turing machine
running in double exponential time relative to the input.

Definition C.11 (Triple Exponential Time (3ExpTime))
A problem is solved in 3ExpTime if it can be solved by a deterministic Turing machine
running in triple exponential time relative to the input.

In these definitions, double and triple exponential time refer to the time complexi-
ties 22n and 222n

, respectively, where n is the input size.
A problem P is considered hard for a given complexity class C if any problem in-

stance from C can be transformed into an instance of P through a process called a
reduction. This reduction must be an "adapted" reduction. This typically means that
the reduction itself can be computed in polynomial time, although for certain lower
complexity classes (like PTime and below), the reduction must use only logarithmic
space.

In detail, the idea of a reduction is a way of formalising the intuition that one prob-
lem is at least as hard as another problem. If we can efficiently transform any instance
of problem A into an instance of problem B, then problem B is at least as hard as prob-
lem A. If B can be solved, then A can also be solved by transforming it into an instance
of B and solving that. This transformation process is what we refer to as a reduction.

Finally, a problem P is considered complete for a given complexity class C if it be-
longs to the class C and is hard for C. In other words, P is as hard as the hardest
problems in C. If there is a way to solve P efficiently (in polynomial time, for instance),
then every problem in C can be solved efficiently. Conversely, if P cannot be solved effi-
ciently, then no problem in C can be solved efficiently. This is why complete problems
are very important in the study of computational complexity: they represent the upper
bound of difficulty within their complexity class.
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C.2 Types of Computational Complexity

In the context of computational complexity, we often consider the cost of a problem
in terms of two different aspects: the size of the input data and the size or complexity
of the problem’s expression or query. This leads to three notions of complexity: data
complexity, expression complexity, and combined complexity [Abiteboul et al., 1995].

Definition C.12 (Data Complexity)
The data complexity of a problem is the computational complexity of solving the prob-
lem as a function of the size of the input data, keeping the expression or query fixed.

Definition C.13 (Expression Complexity)
The expression complexity of a problem is the computational complexity of solving the
problem as a function of the size of the expression or query, keeping the input data
fixed.

Definition C.14 (Combined Complexity)
The combined complexity of a problem is the computational complexity of solving the
problem as a function of the size of both the input data and the expression or query.

These concepts are particularly useful in areas such as database theory, where we
often differentiate between the complexity of a query (expression complexity), the com-
plexity of processing a database (data complexity), and the complexity of the overall
task (combined complexity). In many practical scenarios, we are often more interested
in data complexity because the query can be considered fixed and small, while the
database can be very large. On the contrary, when developing query optimisation tech-
niques or considering the impact of changes to the query, one might be more interested
in expression complexity.





D - Supplementary algorithms

D.1 Main steps of the algorithm TargetRewriting

Here are the main steps of the algorithm TargetRewriting from [Pérez, 2011] - for more
details and explanations, see Lemmas 6.2.3, 6.2.6, and A.2.3 in [Pérez, 2011]):

1. Input:

• A mappingM composed of rules where the inequalities are allowed in the
body.

• A query QS (x) in UCQ, over VS that is target-rewritable underM (that is,
we know that there exists a perfectM−1-translation of QS (x)).

2. Converting to a Monotone Query over CM:

(a) Let CM = {M−rewriting(H[x]) | B[x]→H[x] ∈M}
(b) Transform QS (x) to obtain a logically equivalent formula which is a mono-

tone query over CM, that is, we obtain a query only composed of conjunc-
tions of conjunctive queries in CM (according to the dissertation, it is always
possible):

i. Break down QS (x) into a finite disjunction of formulas, following these
constraints1:

• Separate x into two disjoint sets x′ and x′′.
• Form θ(x′ ,x′′) as a conjunction of equalities respecting the inequal-

ities in QS (x) and such that for every u ∈ x′′ we have that θ(x′ ,x′′)
contains an equality u = v with v ∈ x′.

• Define γ(x′ ,y) as a subset of the conjuncts of QS (x), with replace-
ments according to θ(x′ ,x′′).

• Form δ(x′ ,y) as a conjunction of inequalities for each pair of distinct
variables in (x′ ,y).

ii. The result is a disjunction with disjuncts of the following form:

∃y (γ(x′ ,y)∧ δ(x′ ,y)∧θ(x′ ,x′′))

3. Build disjuncts of the translation:
For every disjunct ∃y (γ(x′ ,y)∧ δ(x′ ,y)∧θ(x′ ,x′′)):

(a) For each conjunction α(u) ∈ γ(x′ ,y) such that α(u) ∈ CM, we know that it is
the rewriting of a head H[x]: add H[u] to γ⋆(x′ ,y′)2.

1The previous work does not give more details about how to do that.
2This part looks very similar to a chase of γ withM.
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(b) Include the corresponding disjunct in the translation QO(x):

∃y′
(
γ⋆(x′ ,y′)∧ δ(x′ ,y′)∧C(x′ ,y′)∧θ(x′ ,x′′)

)
4. Output:

• A query QO(x) in UCQ,,C over VO that is a M−1-translation of QS (x), such
that, if an inequality x , y occurs in one of its CQs, we also have in it the
atoms C(x) and C(y).

D.2 Algorithm that computes a R∨
K,,-Maximally Sound

Σ-translation

This section contains algorithms from [Cima et al., 2022]. Algorithm 20 is the algorithm
in [Cima et al., 2022] that computes a R∨K,,-Maximally Sound Σ-translation of a UCQ
when considering an ontology with DL-LITERDFS .

Algorithm 20: Compute R∨K,,-Maximally Sound Σ-translation

Input: OBDM specification Σ = (O,S ,M) where O is a DL-LITERDFS ontology,
UCQ QS = {q1

S , . . . , q
n
S } over VS

Output: R∨K,, rule program QO
M′← InvMap(Σ) ; // Algorithm 21

for i = 1 to n do
M′←M′ ∪ {qiS (xi)→ Ans(xi)};

end
QO← rename(M′);
return QO;
function rename(M′);
foreach predicate s ∈ VS do

Create a fresh copy ŝ of predicate s;
foreach rule in m ∈M′ do

Replace the predicate s by ŝ in m;
end

end
returnM′;

We give below the main steps of the algorithm InvMap (Algorithm 21).
The InvMap algorithm is an algorithm that computes the inverse of a given GLAV

mappingM with respect to an ontology O in DL-LITERDFS . The algorithm works with
a KBDM specification and outputs a set of R∨K,, rules. Intuitively, the main steps are:

1. Preprocessing: Merge the ontology with the mapping and then transform the
original GLAV mapping into a saturated form using the Saturate phase (Algo-
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rithm 23), which is not a chase, but a phase where we add inequalities in the
bodies of the rules.

2. Split: For each mapping assertion, compute all possible splittings around vari-
able sets to break down the relational atoms into connected components (Algo-
rithm 24).

3. Compute Generators and calculate supports: For each split component, com-
pute the generators with respect to the given mapping (Algorithm 25). Derive
the supports for the generators, introducing necessary restrictions and equalities
(Definition D.3). The supports act as the structural framework connecting differ-
ent generators.

4. Formulate R∨K,, Rules: Based on the supports and generators, form an R∨K,, rule.

Algorithm 21: Inversion of mapping to obtain a R∨K-mapping

Input: KBDM specification Σ = (O,S ,M) with O a DL-LITERDFS ontology
Output: Set R of R∨K rules
M′←merge(Σ) ; // Algorithm 22

M′← SaturateM(M′) ; // Algorithm 23

R← ∅;
foreach m : φ(x,y)∧ ξ(x)→∃z.ψ(x,z) ∈M′ do

Γ ←∅;
foreach (U,V ) ∈ Partitions(z) do

Let Sψ← Split(ψ,U ) ; // Algorithm 24

// See Algorithm 25 for Gens

foreach G ∈ Gens(Sψ ,M′ ,V ∪ x) do

// See Definition D.2 for η
[x]
G

if (x,x′) < η[x]
G for each x,x′ ∈ x s.t. x , x′ then

Let σx
G be the x-support of G ; // Definition D.3

Γ ← Γ ∪ {σGx };
end

end
end
inv(m)← (K (∃z.ψ(x,z)∧ ξ(x))→

∨
γ∈Γ γ);

R←R∪{inv(m)};
end
return R;

Definition D.1 (Relation ηG)
Let G = ⟨g1, . . . , gn⟩ be a tuple in Gens(A,M,V ) with gi = ⟨hi ,mi⟩ for each i = 1, . . . ,n,
and a tuple of renamings ⟨ρ1, . . . ,ρn⟩ for the variables ofM whose images are pairwise
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Algorithm 22: Merging GLAV Mapping with DL-LITERDFS Ontology
Input: OBDM specification Σ = (O,S ,M), with O a DL-LITERDFS ontology
Output: Equivalent mappingM′
M′←∅;
foreach m = ∀x.∀y.φ(x,y)→∃z.ψ(x,z) ∈M do
M′←M′ ∪ {∀x.∀y.φ(x,y)→∃z.chase(ψ(x,z)),RO)};

end
foreach n-ary predicate s ∈ VS do
M′←M′ ∪ {∀x1, . . . ,xn.s(x1,x2, . . . ,xn)→⊤(x1)∧⊤(x2)∧ . . .∧⊤(xn)};

end
returnM′;

disjoint. Define βi = ρi(r-body(mi)) for i = 1, . . . ,n, and σG =
∨
i ρi(r-body(mi)). Intu-

itively, each βi represents a set of relational source atoms that is needed to generate a
homomorphic image of hi(Ai) using mi .

In order to connect together the different hi(Ai) to form an image of A, we define
the binary relation ηG over Var(σG) as follows:

ηG =
{(
ρi(hi(v)),ρj(hj(v))

)
| i, j = 1, . . . ,n, v ∈ V

}
These relations impose restrictions on the variables of σG, taking the form of equalities,
to ensure the connectivity of the image of A.

Definition D.2 (Relations η[x] and η[x]
G )

Given a binary relation ηG over vars(σG) defined Definition D.1, and a set x ⊆ V , let
η[x] be the relation denoted by:

η[x] =
{
(x,ρi(hi(x))) | i = 1, . . . ,n, x ∈ x

}
This binary relation extends ηG with specific elements from x.

Finally, the relation η[x]
G is defined as the reflexive and transitive closure of ηG∪η[x]:

η
[x]
G = closure(ηG ∪ η[x])

Definition D.3 (x-support of G)
Given a tuple G, a set x ⊆ V , and the relations ηG and η[x]

G defined in Definitions D.1
and D.2, we define the x-support as follows:

For each equivalence class E of ηG, select an element s(E) ∈ E as representative; if E
contains elements of x, require s(E) ∈ x. Given v ∈ Var(σG), we use v ∼G,x to denote the

equivalence class of η[x]
G that contains v.

Finally, define the x-support σ [x]
G of G as the formula:

σ
[x]
G = ∃w.η[x]

G (σG)
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Algorithm 23: Saturating a GLAV Mapping
Input: GLAV mappingM
Output: Saturated GLAV mapping
SaturatedMapping←∅;
foreach m = ∀x.∀y.φ(x,y)→∃z.ψ(x,z) ∈M do

foreach possible unifier µ between variables in x do
m′← µ(m);
foreach pair of distinct variables x1,x2 ∈ µ(x) do

Add the inequality atom x1 , x2 in the body of m′;
end
SaturatedMapping← SaturatedMapping∪ {m′};

end
end
return SaturatedMapping;

Algorithm 24: Splitting a set of relational atoms around a set of variables
Input: Set of relational atoms A, Set of variables U
Output: Set of subsets of A that form connected components of GUA
Initialize GUA as an empty graph with nodes representing atoms in A;
foreach atom α ∈ A do

add the node α to GUA ;
end
foreach pair of nodes α1,α2 ∈ A do

if there exists z ∈U such that z occurs in both α1 and α2 then
Add edge between α1 and α2 in GUA ;

end
end
result←∅;
foreach atom α ∈ A do

if α < result then
C←∅;
foreach atom α′ ∈ A reachable from α in GUA do

C← C ∪ {α′};
end
result← result ∪ {C};

end
end
return result;
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where η[x]
G (σG) is obtained from σG by replacing each variable v ∈ Var(σG) with s(v ∼G,x),

and w are the variables of η[x]
G (σG) not occurring in x.

Algorithm 25: Generators of a Saturated GLAV Mapping
Input: Tuple of sets of atoms A = (A1, . . . ,An), Saturated GLAV mappingM, Set

of variables V ⊆ vars(A1)∪ . . .∪ vars(An)
Output: Set of tuples of V -distinguished generators G
G←∅;
foreach Ai ∈ A do

foreach m ∈M do
foreach homomorphism h from Ai to head of m do

if h(v) is a frontier variable of m for each v ∈ V and h(u) is not a frontier
variable of m for each u < V then

Create a generator g = (h,m);
Add g to the corresponding Gi for Ai ;

end
end

end
foreach tuple G′ = (g1, . . . , gn) such that gi ∈ Gi , for each i = 1, . . . ,n;
do

// See the definition D.4 for the meaning of V-distinguished

if G′ satisfies the conditions of being V -distinguished then
Add G′ to G;

end
end

end
return G;

Definition D.4 (V-distinguished Generator)
Let g = (h,m) be a generator, where h is a homomorphism from a set of atoms A to the
head of m, where m is a source-to-target rule. Let V ⊆ vars(A) be a set of variables.
Then, the generator g is called V -distinguished if the following conditions are met:

• For each v ∈ V , h(v) is a frontier variable of m.

• For each u < V , h(u) is not a frontier variable of m.
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Abstract

The general context of this work is the issue of designing high-quality systems that integrate multiple
data sources via a semantic layer encoded in a knowledge representation and reasoning language.
We consider knowledge-based data management (KBDM) systems, which are structured in three
layers: the data layer, which comprises the data sources, the knowledge (or ontological) layer, and
the mappings between the two. Mappings and knowledge are expressed within the existential rule
framework. One of the intrinsic difficulties in designing a KBDM is the need to understand the
content of data sources. Data sources are often provided with typical queries and constraints, from
which valuable information about their semantics can be drawn, as long as this information is made
intelligible to KBDM designers. This motivates our core question: is it possible to translate data
queries and constraints at the knowledge level while preserving their semantics?

The main contributions of this thesis are the following. We extend previous work on data-to-
ontology query translation with new techniques for the computation of perfect, minimally complete,
or maximally sound query translations. Concerning data-to-ontology constraint translation, we de-
fine a general framework and apply it to several classes of constraints. Finally, we provide a sound
and complete query rewriting operator for disjunctive existential rules and disjunctive mappings, as
well as undecidability results, which are of independent interest.

Keywords: Data Quality, Ontology Based Data Access, Existential Rules, Knowledge based data
management, Query rewriting, Constraint translation

Résumé

Le contexte général de ce travail concerne le problème de la conception de systèmes de haute qualité
qui intègrent plusieurs sources de données via une couche sémantique codée dans un langage de
représentation et de raisonnement des connaissances. Nous considérons les systèmes de gestion de
données basés sur les connaissances (KBDM), qui sont structurés en trois couches : la couche de
données, qui comprend les sources de données, la couche de connaissances (ou ontologique) et les
mappings entre les deux. Les mappings et les connaissances sont exprimés dans le cadre des règles
existentielles. L’une des difficultés intrinsèques à la conception d’un système KBDM est la nécessité
de comprendre le contenu des sources de données. Les sources de données sont souvent fournies
avec des requêtes et des contraintes typiques, à partir desquelles des informations précieuses sur leur
sémantique peuvent être tirées, tant que ces informations sont rendues intelligibles aux concepteurs
d’un système KBDM. Cela motive notre question principale : est-il possible de traduire les requêtes
et contraintes sur les données au niveau ontologique tout en préservant leur sémantique ?

Les principales contributions de cette thèse sont les suivantes. Nous étendons les travaux précé-
dents sur la traduction de requêtes des données vers l’ontologie avec de nouvelles techniques pour le
calcul de traductions de requêtes parfaites, minimalement complètes ou maximalement adéquates.
Concernant la traduction de contraintes des données vers l’ontologie, nous définissons un cadre gé-
néral et l’appliquons à plusieurs classes de contraintes. Enfin, nous fournissons un opérateur de
réécriture de requête adéquat et complet pour les règles existentielles disjonctives et les mappings
disjonctifs, ainsi que des résultats d’indécidabilité, qui sont d’intérêt indépendant.

Mots-clés : Qualité des données, Accès aux données médiatisé par une ontologie, Règles exis-
tentielles, Gestion des données basée sur des connaissances, Ré-écriture de requête, Traduction de
contraintes
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