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Abstract

In the past few decades, robotics research has gained momentum due to robots’ abil-
ity to perform dangerous or monotonous tasks that are difficult for humans. The majority
of the research in this field has focused on manipulating rigid objects that maintain their
shape during the manipulation process. However, there are numerous objects that un-
dergo significant deformation during manipulation, known as deformable objects (DOs).
Our surroundings contain various types of DOs, including human tissue, clothing, ca-
bles, metal sheets, and vegetables. This abundance of DOs presents enormous potential
for developing new robotic applications that could greatly improve our daily lives. How-
ever, the manipulation of DOs presents a considerable number of challenges due to their
highly complex and dynamic nature. To tackle these challenges, two general directions
of research have been introduced and developed: shape tracking and shape servoing of
DOs. Shape tracking involves inferring the current shape of DOs at each instant. Shape
servoing is concerned with controlling DOs’ shape to a desired shape or trajectory.

Over the past few years, researchers have suggested several approaches for tracking
and servoing DOs. However, these methods have significant drawbacks, such as being
limited to a single form of the object, requiring precise mechanical parameters of the
object, being imprecise due to the use of many simplifications, computationally intensive,
and not real-time. Additionally, these methods can be susceptible to sensor noise and
occlusions.

This thesis introduces several new approaches to address the existing challenges of
tracking and servoing DOs. Our proposed approaches cover a wide range of object forms
(linear, thin-shell, volumetric) and geometries, and work with both 2D or 3D sensors.
Firstly, we present two approaches for handling shape tracking and servoing of thin-
shell objects. The proposed shape tracking method is based on monocular 2D vision and
is wide-baseline, real-time (up to 30 fps), robust against occlusions and against video
cuts. The proposed shape servoing approach is based on a geometrical model called
As-Rigid-As-Possible (ARAP), and does not require knowledge of the object’s mechan-
ical characteristics. It is fast and avoids using a Jacobian from data collected while the
robots are in motion that is susceptible to noise. Next, we introduce a novel unified
shape tracking-servoing approach based on 3D vision. In this approach, we form a lat-
tice around the object and bind the lattice to the object using geometrical constraints. We
track and servo the lattice instead of the object. This decouples the runtime complexity
from the object’s geometric complexity, which makes the whole tracking-servoing pro-
cess much faster without requiring any specialized hardware. Using a lattice enables our
approach to generalize to objects of any geometry and form, including linear, thin-shell,
and volumetric objects. The proposed approach incorporates ARAP, and thus does not
require knowledge of the object’s mechanical properties. We validate the efficiency of the
proposed approaches through various experiments with various objects.

Keywords. Shape tracking, shape servoing, elastic deformable objects, ARAP model.
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Résumé

Ces dernières décennies, la recherche en robotique a gagné en importance grâce à la
capacité des robots à effectuer des tâches dangereuses ou monotones pour les humains.
La plupart des recherches dans ce domaine se sont concentrées sur la manipulation
d’objets rigides qui conservent leur forme pendant le processus de manipulation. Cepen-
dant, il existe de nombreux objets qui subissent une déformation significative lors de leur
manipulation. Ces objets sont appelés objets déformables (DO). Notre environnement
contient divers types de DO, tels que les organes humains, les vêtements, les câbles, les
feuilles métalliques et les légumes. Cette abondance de DO présente un énorme poten-
tiel pour développer de nouvelles applications robotiques qui pourraient grandement
améliorer notre vie quotidienne. Cependant, la manipulation de DO présente un nombre
considérable de défis en raison de leur nature hautement complexe et dynamique. Le
suivi de la forme implique de comprendre la forme courante des DOs à chaque instant.
La commande de la forme concerne l’asservissement de la forme des DO vers une forme
ou une trajectoire souhaitée.

Au cours des dernières années, les chercheurs ont proposé plusieurs approches pour
relever les défis de suivi et de commande de la forme des DO. Cependant, ces méth-
odes présentent des inconvénients importants, tels que la limitation à une seule forme de
l’objet, la nécessité de connaître les paramètres mécaniques précis de l’objet, l’imprécision
due à l’utilisation de nombreuses simplifications, le coût calculatoire et la lenteur qui ne
permet pas un traitement en temps réel. De plus, ces méthodes sont sensibles aux bruits
des capteurs et aux occultation.

Dans cette thèse, nous présentons plusieurs nouvelles approches pour relever les dé-
fis liés au contrôle et au suivi des objets déformables (DOs). Nos approches proposées
couvrent une large gamme de formes d’objets (linéaires, à coques minces, volumétriques)
et utilisent à la fois des données issues de capteurs 2D et 3D en entrée. Tout d’abord, nous
présentons deux solutions pour la gestion du suivi et du contrôle de la forme des objets
à coque mince. Le suivi de forme est basé sur une vision monoculaire à large entraxe, en
temps réel (jusqu’à 30 ips), laquelle est robuste contre les occultation et les coupures de
vidéo, et laquelle est facile à utiliser. Notre approche de contrôle de la forme est basée sur
un modèle géométrique appelé « As-rigid-as-possible » (ARAP), qui ne nécessite pas de
connaissance préalable des caractéristiques mécaniques de l’objet. Elle est rapide et évite
d’utiliser une jacobienne qui est vulnérable aux bruits provenant des données collectées
sur une fenêtre temporelle durant laquelle les robots sont en mouvement. Nous intro-
duisons ensuite une approche de suivi et de contrôle de la forme basée sur une vision 3D.
Dans cette approche, nous formons une grille autour de l’objet et nous les contraignions
ensemble à l’aide de contraintes géométriques. Nous suivons et contrôlons la grille au
lieu de l’objet. Cela découple la complexité d’exécution de la complexité géométrique de
l’objet, ce qui rend l’ensemble du processus de suivi et de contrôle beaucoup plus rapide
sans nécessiter l’utilisation de matériel spécialisé. L’utilisation d’une grille rend égale-
ment notre approche capable de généralisation à des objets de toute forme et géométrie,
y compris les objets linéaires, à coque mince et volumétriques. Cette approche intègre
ARAP, et ne nécessite donc pas de connaissance des propriétés mécaniques de l’objet.
Nous validons l’efficacité de nos méthodes par le biais de diverses expériences en simulé
et en réel avec différents objets.

Mots clés. Suivi de forme, contrôle de forme, objets déformables élastiques, modèle
ARAP.
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Chapter 1

Introduction

In recent decades, researchers have taken an interest in robotic manipulation due to the
ability of robots to perform tasks that are dangerous or tedious for humans. Most re-
search in this area has focused on manipulating rigid objects, where the object’s shape
remains constant during manipulation. There are several well-established methods for
addressing the challenges of manipulating rigid objects. These methods have enabled
robots to interact with objects in a stable and predictable manner, allowing for tasks such
as object pick and place, assembly, and tool use. In contrast to rigid objects, there are
many objects that undergo considerable deformation during manipulation. These ob-
jects are referred to as deformable objects (DOs). Our environment is abundant with
different types of DOs, including clothes, human tissue, vegetables, metal sheets, cables,
etc. This abundance of DOs, coupled with the dearth of well-established robotic ma-
nipulation techniques for DOs, creates immense potential for the development of novel
robotic applications that can significantly improve our daily lives. Figure 1.1 showcases
the primary areas where these applications can be utilized to offer effective substitutes
for manual work or to assist human operators. In the following, we will briefly describe
each of these areas.

• Agriculture. In agriculture, crop harvesting requires developing robots that can han-
dle delicate and soft objects, such as fruits and vegetables, without causing damage.

• Surgery. In surgery, robots can help to stabilize and expedite movements while
manipulating organs, blood vessels, and tissues and consequently reduce the risk
of complications, leading to better patient outcomes.

• Production. Robots can enable accurate detection and control of flexible materials,
such as leather and fabric, to ensure accurate positioning and holding during pro-
duction processes such as assembly and sewing.

• Packaging. Robots can pack and transport goods such as food using materials such
as bags and pouches.

• Housework. Robots can help the elderly and disabled individuals with housework
tasks including cleaning, cooking, etc.

• Healthcare. Robots can be used in rehabilitation therapies to help patients regain
control of their limbs.

Despite all these applications, robotic manipulation of DOs presents challenges. Un-
like rigid objects, the shape of DOs can change during manipulation, making DOs more
difficult to track. In addition, DOs often exhibit intricate and unpredictable behaviors,
making it difficult to anticipate their response to external forces and thus to control them.
For instance, when a robot tries to grasp a piece of cloth, the material can easily slip or
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(a) Agriculture (b) Surgery

(c) Production (d) Packaging industry

(e) Housework (f) Healthcare

FIGURE 1.1: DOs manipulation examples

deform, which makes it challenging to maintain a stable grip or achieve a specific defor-
mation. In comparison to the well-established methods for robotic manipulation of rigid
objects, the study of robotic manipulation of DOs is relatively recent. The complexity
of the flexible and ever-changing nature of DOs necessitates the creation of unique and
inventive solutions for their effective manipulation.

The robotic manipulation of DOs is a multifaceted research area, comprising three
key domains: shape modeling, shape tracking, and shape control. In the following, we
describe each area.

• Shape modeling. DOs modeling is an active research area in computer graphics,
computer vision, and robotics. A primary difficulty in this area is the trade-off be-
tween modeling complexity and the computational resources required for real-time
simulation. A realistic DO model based on physical parameters can be computa-
tionally expensive and unsuitable for real-time simulation [MM07]. Consequently,
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researchers in this field often develop simpler models with properties that can ap-
proximate the behavior of DOs. Shape modeling has been used to provide a pri-
mary constraint in tracking and control of DOs.

• Shape tracking. Tracking DOs involves determining the shape of DOs at each in-
stant. Accurately tracking a DO can be challenging due to several factors, including
the high number of degrees of freedom, occlusions, local deformations, and vari-
ations in deformation types [BBH14]. Shape tracking is typically performed using
various sensors, such as cameras, force sensors, and strain sensors among which
2D and 3D cameras are the most widely-used.

• Shape control. Controlling the shape of a DO refers to the process of actively ma-
nipulating the shape of the object toward a specific desired shape using robotic sys-
tems. This process is commonly known as shape servoing in the literature [NAL18].
A precise and robust shape tracking method is crucial for successful shape servo-
ing, as it enables robots to accurately comprehend the object’s shape at each instant
and manipulate it effectively. Controlling the shape of DOs is a complex and chal-
lenging task due to their unpredictable and nonlinear deformation behavior.

In this thesis, we present several approaches for shape tracking and servoing of DOs.
The proposed approaches tackle the current problems in these areas.

Assumptions. The following assumptions are made throughout this thesis:

• Assumption on the deformation type. We focus on elastic deformable objects
(EDOs). An EDO undergoes changes in its shape due to applied external forces
while having the ability to recover its original shape once the external forces are
removed. Common examples of EDOs include tubes, cables, metal sheets, rubber
layers, sponges, and shoe soles. To simplify the terminology, we use the term “de-
formable object (DO)” or “object” to refer to EDO in the rest of the thesis.

• Assumptions on the object forms. We define the object forms as:

– Linear. Objects that have one dimension that is significantly longer than the
other dimensions such as wires, rods, pipes, and cables.

– Thin-shell. Objects with an infinitesimal thickness, such as cloth and paper.

– Volumetric. Objects with non-negligible thickness, such as sponges or cush-
ions.

In the following sections of this chapter, we overview the current status and primary
challenges associated with shape tracking and servoing of DOs. We will then present our
contributions and explain how they address these challenges.

1.1 Shape tracking

1.1.1 Challenges

Shape tracking of DOs is challenging. This stems from the following reasons:

• Non-rigid motion: DOs undergo non-rigid motions. Consequently, different parts of
the object move in different ways.

• Occlusions: DOs can be occluded by itself or by other objects or both.
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• Noise: Most off-the-shelf sensors such as cameras provide noisy measurements.
Furthermore, their calibration typically involves modeling uncertainties.

• Illumination changes: Changes in lighting conditions can affect the appearance of
DOs, making it difficult to track their shape accurately.

• Computational complexity: Shape tracking of DOs is computationally expensive which
makes it difficult to be used in real-time. This limits its usage in many applications.

• Initialization: A good initial estimate of the shape of DOs at the beginning of the
tracking process is crucial for certain shape tracking methods. However, providing
and automating such an estimate is difficult.

Various shape tracking methods have been proposed in the literature. We approach
these methods from two points of view, i.e., convergence and sensor type.

1.1.2 Shape tracking from convergence point of view

From the convergence point of view, shape tracking methods are divided into two main
categories: short-baseline and wide-baseline. In the short-baseline case, the input is a
continuous video sequence. The inferred 3D shape from one frame is used as an initial
guess for the next frame. Although this method makes it easier to track the object, it fails
if the object goes outside the field of view or the initial guess is too different from the
3D shape in the next frame due to large deformation between two consecutive frames.
Furthermore, the tracking process requires an initial known shape, which necessitates
an initialization process. On the other hand, in the wide-baseline case, the input image is
processed individually and the convergence is achieved without an initial guess. This is a
more challenging problem, but it is also more robust as it does not rely on the assumption
of small camera motion and small object deformation with respect to the initial guess.

1.1.3 Shape tracking from sensor type point of view

In terms of the type of sensors used in the tracking process, there are two primary cate-
gories of methods in the literature. The first category relies solely on 2D images captured
by a single 2D camera, known as a monocular camera, to infer the objects’ shapes. The
next category employs the use of 3D sensors, such as 3D cameras, Time-of-Flight (ToF)
cameras, and structured light systems, to gather information about the objects’ shapes.
Both categories have their own advantages and limitations, and the choice of a sensor de-
pends on the specific requirements and constraints of the task at hand. In the following,
we discuss both categories.

1.1.3.1 Shape tracking using a monocular 2D camera

Shape tracking of DOs using a monocular 2D camera requires reconstruction of the shape
at each frame. This is because, using monocular cameras, only a 2D representation of the
object is accessible. In monocular shape reconstruction, the camera’s perspective projec-
tion introduces the challenge of recovering the shape’s depth from a 2D image. This chal-
lenge becomes extremely difficult for DOs. This is because a 2D image only captures the
projection of a 3D object onto the image plane, resulting in an infinite number of possible
3D shapes that could produce the same 2D image. As a result, monocular shape recon-
struction relies heavily on computer algorithms to interpret the depth of the DO from
limited information contained in the 2D images such as shading, texture, silhouettes,
contours, and motion. Additionally, monocular shape reconstruction may be affected by
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factors such as camera viewpoint, perspective distortion, and occlusions, which makes it
even more challenging. To address this problem, two general solutions have been pro-
posed in the literature:

• Shape-from-Template (SfT) [BGC+15] is the generic name for a set of methods that
perform the monocular 3D reconstruction of DOs using a template of the object as
a known data. SfT takes a single image as the input and reconstructs the shape of
the object in 3D.

• Non-Rigid-Shape-from-Motion (NRSfM) [BHB00, DB08, RFA11, THB08, VA12] is
an extension of SfM [HZ03] which is a well-established method used to reconstruct
rigid objects from monocular images. SfM utilizes the inter-image visual motion in-
formation to reconstruct the 3D shape of an object. However, the rigidity assump-
tion in SfM limits its application to DOs as the deformation of the object between
two images cannot be expressed only in terms of the camera rotation and transla-
tion. To address this limitation, NRSfM has been proposed. NRSfM replaces the
rigidity constraint with a deformation model. It takes multiple images as input and
produces the 3D shape of the object for each image [Par17].

In this thesis, we focus on a SfT-based solution. Figure 1.2 provides a visual representa-
tion of SfT.

FIGURE 1.2: A visual representation of SfT [BGC+15].

SfT relies on a template consisting of a 3D reference shape of the object at its rest shape
(such as a triangulated mesh), a texturemap that assigns colors to the mesh’s facets, and
a deformation prior. A 3D scanner, RGB-D sensor, or SfM can be used to obtain the 3D
reference shape and the texturemap. Isometry is the most widely used deformation prior
in SfT [SF09,SMNLF08,PHB11]. Isometry is characterized by the preservation of geodesic
distances between any two points on the object during deformation. This concept can be
viewed as local rigidity, and it is a good approximation for most natural objects that un-
dergo near-isometric deformations. Isometry is relatively easy to model mathematically.
It has been shown that using isometry in SfT can uniquely determine the depth of each
object point [BGC+15].
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The two primary challenges in SfT are registration and 3D shape inference, both of
which should be addressed using a single image as the input. Registration involves es-
tablishing correspondences between the input image and the texturemap, while 3D shape
inference is the process of inferring depth information and reconstructing the object’s
shape in 3D space. Following this, we categorize existing SfT methods into two groups:
shape inference methods and integrated methods. Shape inference methods only ad-
dress the 3D shape inference challenge [SMNLF08,SF09,BGC+15,CPBC16,FBA18,BBH14,
ÖB17,ACRM+20]. In fact, they require other algorithms for handling registration, which
involves finding correspondences between the texturemap and the image. Registration
can be performed at each frame independently or at a series of consecutive frames. In
the former case, correspondences between the texturemap and the image are first found
using feature descriptors such as SIFT [Low04], and then mismatch removal algorithms
are used to remove the wrong correspondences [TCC+12, PB12, FBA18]. In the latter
case, feature tracking algorithms like [Suh09] are used. The majority of 3D shape infer-
ence methods are wide-baseline. However, they barely run in real-time. Furthermore, a
complete solution with registration shall be even slower. In contrast to shape inference
methods, integrated methods address both the registration and 3D shape inference chal-
lenges at the same time [SF10, ÖVNF12, NÖF15, CB15, CBBC16, LYYA+17]. The majority
of integrated methods are short-baseline meaning that they require an initialization close
to the solution. In addition, they often fail against occlusions and fast motions. Once
failed, they need to be reinitialized. In addition to the two mentioned categories of meth-
ods, Deep Neural Network (DNN) based methods, as the third group has been recently
introduced. DNN-based methods address both the registration and 3D shape inference
challenges [PAP+18, GSVS18, SGTS19, FJPCP+22, FJPCP+21]. DNN-based methods are
wide-baseline and run in real-time. However, they are object-specific. They require a
massive amount of training data and proper computational resources for each new ob-
ject. These make them difficult to consider as a general and ready-to-use solution.

1.1.3.2 Shape tracking using a 3D sensor

The use of 3D sensors can provide more accurate and comprehensive information about
the objects’ shapes. This is because 3D sensors provide a richer source of information
compared to monocular cameras. With 3D sensors, the captured data consists of point
clouds that inherently contain depth information. This added dimensionality allows for
more accurate and robust shape tracking since the depth information can be used to cal-
culate the precise location of objects in 3D space. However, the applications may be
limited by the constraints of size, cost, and accuracy of the 3D sensors, specifically, in del-
icate cases such as surgery. Furthermore, the accuracy of these sensors can be affected by
various factors such as lighting conditions, occlusions, and range limitations. 3D cameras
(RGBD) are the mostly-used types of 3D sensors in the literature.

Various methods have been proposed for shape tracking of DOs using 3D cameras.
These methods mainly involve registering the object’s point cloud in 3D to the point
cloud captured by the 3D camera. This registration is performed using regularization
terms to preserve the local geometrical structure and global topology [CR00,CR03,MSCP06,
MS10, TT22], or by using physical models [MT93, SLHA13, PLS15]. The latter approach
is more precise but more computationally complex. In general, shape tracking methods
based on 3D cameras are generally more robust than those using monocular cameras,
but they require specific, powerful hardware and face challenges such as sensor noise.
Additionally, these methods are short-baseline and require precise initialization at the
beginning of the frame series.
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1.2 Shape servoing

1.2.1 Challenges

Shape servoing is a task that poses various challenges. Not only does it inherit the chal-
lenges of shape tracking, which serves as an input to the servoing process, but there are
additional challenges that need to be overcome including:

• Under-actuation: Due to their inherent flexibility, DOs typically have a much larger
number of degrees of freedom than robotic systems, leading to a highly under-
actuated control problem that can be challenging to tackle.

• Non-linearity: The relationship between the shape of an object and its control param-
eters is often nonlinear, making it challenging to derive a precise control strategy.

• Sensitivity to initial conditions: Small errors in the initial shape of the object can lead
to large errors in the final shape, making it challenging to achieve accurate control.

• Computational complexity: Many shape servoing algorithms require significant com-
putational resources, making it difficult to implement them in real-time systems.

• Heterogeneity: The properties of deformable objects vary from one object to another,
making it challenging to design a unified and general controller for all objects.

• Uncertainty: In many real-world scenarios, there is uncertainty about the object’s
shape and properties, making it challenging to design robust control strategies.

Various shape servoing methods have been introduced to address these challenges.
We shortly review these approaches from two points of view, i.e., deformation model and
object form.

1.2.2 Shape servoing from deformation model point of view

Shape servoing approaches can be broadly categorized into three categories: model-
based, model-free, and learning-based. Each category has its advantages and disadvan-
tages. Model-based approaches incorporate a model to anticipate the object deformation
under exerted force or displacement. The majority of these approaches are based on
mechanical deformation models [DBPC18, FMC+18, KFB+21, SMEDC+20]. These shape
servoing approaches are accurate but computationally expensive and require knowl-
edge of mechanical parameters. Model-free approaches [NALRL13, NALRL14, NAL18,
HSP18, ZNF+18, AWH+19, LKM20, ZNAPC21] use online sensor measurements to es-
timate a deformation Jacobian, but are sensitive to sensor noise. Learning-based ap-
proaches [MJD18,HHS+19,SFP+19,JAT20,TCKH21,LK21,HDZAL+22] require high-quality
data and have limited applications.

1.2.3 Shape servoing from object general form point of view

Most of the shape servoing approaches are designed to handle one particular form of the
object, i.e., linear [KFB+21, ZNF+18, LKM20, QMZ+21, BM14, SMBB20, LLJ22, WZZ+22,
AACR+22,AALN+22,APCR+22], thin-shell [Ber13,MDRB20,HSP18,ZNAPC21,HHS+19,
SBAMÖ22], and volumetric [TCKH21, FMC+18, ZNAPC21, HHS+19]. This is due to the
distinct deformation characteristics and particular assumptions and simplifications that
can be made for each one of these object forms. Among all of the presented shape ser-
voing approaches, there are several that can be applied to two or three different forms of
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the object [MDRB20,ZNAPC21,HHS+19]. These approaches, however, are merely tested
on simple scenarios where the initial and desired shapes of the object are almost identi-
cal. In summary, the current literature lacks a shape servoing method that can effectively
handle objects with diverse forms and characteristics.

1.3 Contributions

In this thesis, we present our contributions to both shape tracking and shape servoing of
DOs. We list our contributions as follows:

Contribution 1. In Chapter 3, we present our contributions to the field of monocular
shape tracking, which are summarized as follows:

• Contribution to SfT. We propose ROBUSfT, a complete real-time robust SfT pipeline
for monocular 3D shape tracking of isometrically deforming thin-shell objects with
matchable appearance. With the proposed CPU-GPU architecture, ROBUSfT can
track up to 30 fps using 640 × 480 images on off-the-shelf hardware. It does not re-
quire initialization and implements tracking-by-detection. ROBUSfT is wide-baseline
and robust to occlusions, object being out of field-of-view, large deformations and
fast motions. To apply to a new object, all it needs is a template of that object. It,
thus, does not require any training or fine-tuning and is directly usable in many in-
dustrial applications and research studies. ROBUSfT outperforms the state-of-the-art
methods in challenging datasets.

• Contribution to mismatch removal. In the registration part of SfT, we introduce
myNeighbor, a novel mismatch removal algorithm. It handles deforming scenes
and a large percentage of mismatches. It is lightning fast, reaching 200 fps. It out-
performs the existing mismatch removal algorithms in both performance and exe-
cution speed.

• Contribution to experimental validation. We design a novel type of validation
procedure, called Fake Realistic Experiment (FREX). With just one run, it produces
a large number of synthetic scenes featuring an object undergoing isometric defor-
mation under various conditions. The scenes come with 2D and 3D ground truth,
making it easy to test, evaluate, train and validate new algorithms that deal with
isometrically deforming objects, such as removing mismatches, registering 2D im-
ages and inferring 3D shapes. Unlike other artificially generated scenes of isometri-
cally deforming surfaces, the images generated by FREX are the result of real object
deformations. FREX is very simple to set up. All that is needed is a piece of paper
with a set of Aruco markers printed on it.

• Contribution to public usability. We release ROBUSfT as an out-of-the-box tool,
in the form of a C++ library with a comprehensive tutorial for public use. The
code, the tutorial, and a supplementary video of our experiments can be found at
https://github.com/mrshetab/ROBUSfT.

Contribution 2. In Chapter 4, we present a novel shape servoing approach for thin-shell
DOs based on the As-Rigid-As-Possible deformation model. Compared with existing
model-based shape servoing approaches, we do not use any mechanical model of the
object’s deformation. Instead, we only need to define a geometric mesh that represents
the object’s surface during the task with sufficient accuracy. Our estimated deformation
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Jacobian is not sensitive to sensor noise and does not need initialization as in the model-
free shape servoing approaches. Finally, in contrast to learning-based shape servoing
approach, our approach does not require any training. All it needs is a simple mesh of
the object. In fact, the main advantages of our approach are its simplicity and generality,
meaning that it can be applied to a wide variety of objects without regulating any param-
eters.

Contribution 3. In Chapter 5, we present a general unified tracking-servoing approach
for DOs that can handle any object form (linear, thin-shell, volumetric) with any geome-
try. Our approach involves simplifying the deformation of objects by considering a lattice
surrounding them and subsequently tracking and servoing the lattice instead of the ob-
ject. The main characteristics of our approach are listed as follows:

• Our approach does not require any mechanical parameter of the object to be known.
Instead, we only use a point cloud that represents the object’s surface with sufficient
accuracy.

• Our approach does not use the texture of the object. It only employs the point cloud
captured in each frame by a 3D camera as the input. This brings the advantage to
our approach that it works with objects without specific textures.

• We present a novel analytical expression of the deformation Jacobian. This avoids
the need for numerical approximations.

• Our approach has full control over the object’s deformation in 3D space. This means
that we can start servoing the object from an initial shape, translate, rotate, and
deform the object toward a desired shape that is characterized by a totally different
visible part of the object in comparison to the visible part of the object at the initial
configuration. To our knowledge, this is the first approach that is proven to handle
such scenarios in practice.

• The idea of using a lattice makes tracking and servoing much faster as we deal
with the deformation equations for the lattice and not the object. This makes the
execution speed of the approach to a high extent independent of the object’s ge-
ometric complexities. As a result, our approach runs fast and is needless of any
specific hardware. The execution speed of our tracking-servoing approach reaches
20-30 FPS during our experiments without any parallelization using only CPU.

• The servoing pipeline can servo the whole or a part of the object. The definition of
the servoed regions of the objects and its implementation in the servoing pipeline
is easy and straightforward.

• Our approach is easily scalable in terms of increasing the number of manipulating
robots. Moreover, increasing the number of robots does not impose considerable
additional execution time on the servoing approach.

1.4 Publications

Journal papers:

As-Rigid-as-Possible Shape Servoing.
Shetab-Bushehri, Mohammadreza and Aranda, Miguel and Mezouar, Youcef and
Özgür, Erol.
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IEEE Robotics and Automation Letters vol.7, no.2, pp.3898–3905, 2022.
doi: 10.1109/LRA.2022.3145960
Video 1: https://www.youtube.com/watch?v=1w2tbgjLrUst=89s
Video 2: https://www.youtube.com/watch?v=2pzof0dEnMst=2s

Lattice-based shape tracking and servoing of elastic objects.
Shetab-Bushehri, Mohammadreza and Aranda, Miguel and Mezouar, Youcef and
Özgür, Erol.
Submitted to IEEE Transaction on Robotics (T-RO), 2022.
Project website: https://sites.google.com/view/tracking-servoing-approach/home
Video: https://www.youtube.com/watch?v=h4A2bgAKrMUt=1s

ROBUSfT: Robust Real-Time Shape-from-Template, a C++ Library.
Shetab-Bushehri, Mohammadreza and Aranda, Miguel and Mezouar, Youcef, and
Bartoli, Adrien, and Özgür, Erol.
Submitted to Image and Vision Computing, 2022.
Video: https://www.youtube.com/watch?v=5tFIf7-eEKg

3-D shape control of linear deformable objects using an adaptive Lyapunov-based
scheme.
Omid Aghajanzadeh, Mohammadreza Shetab-Bushehri, Miguel Aranda, Juan An-
tonio Corrales Ramon, Christophe Cariou, Roland Lenain, and Youcef Mezouar.
Submitted to Control Engineering Practice journal. 2022.
Video: https://www.youtube.com/watch?v=FlEMAy_IcZo

Conference papers:

As-Rigid-as-Possible Shape Servoing.
Shetab-Bushehri, Mohammadreza and Aranda, Miguel and Mezouar, Youcef and
Özgür, Erol.
IEEE International Conference on Robotics and Automation (ICRA), 2022.
Video 1: https://www.youtube.com/watch?v=1w2tbgjLrUst=89s
Video 2: https://www.youtube.com/watch?v=2pzof0dEnMst=2s

Optimal shape servoing with task-focused convergence constraints.
Giraud, Victor H. and Padrin, Maxime and Shetab-Bushehri, Mohammadreza and
Bouzgarrou, Chedli and Mezouar, Youcef and Özgür, Erol.
IEEE International Conference on Intelligent Robots and Systems (IROS), 2022.
Video: https://www.youtube.com/watch?v=7wFasZ7imEY

Workshops:

Offline Reinforcement Learning for Shape Control of Deformable Linear Objects
from Limited Real Data.
Laezza, Rita, Shetab-Bushehri, Mohammadreza, Özgür, Erol, Mezouar, Youcef and
Karayiannidis, Yiannis.
IEEE International Conference on Intelligent Robots and Systems (ICRA), 3rd Work-
shop on Representing and Manipulating Deformable Objects, 2023.

https://www.youtube.com/watch?v=1w2tbgjLrUs&t=89s
https://www.youtube.com/watch?v=2pzof0dEnMs&t=2s
https://sites.google.com/view/tracking-servoing-approach/home
https://www.youtube.com/watch?v=h4A2bgAKrMU&t=1s
https://www.youtube.com/watch?v=5tFIf7-eEKg
https://www.youtube.com/watch?v=FlEMAy_IcZo
https://www.youtube.com/watch?v=1w2tbgjLrUs&t=89s
https://www.youtube.com/watch?v=2pzof0dEnMs&t=2s
https://www.youtube.com/watch?v=7wFasZ7imEY
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Patents:

Système Robotique Bi-Bras de confection de pneumatiques.
Shetab-Bushehri, Mohammadreza and Giraud, Victor and Roca-Filella, Nicolas and
Dettorre, Jean-Marie.

1.5 Thesis outline

This thesis is organized into six chapters. In the first chapter, we provided an overview
of the challenges and solutions related to shape tracking and shape servoing of DOs.
The following chapters will delve into these topics in greater detail. Chapter 2 provides
an overview of the state-of-the-art and limitations in shape tracking and shape servoing
of DOs. Our three contributions are detailed in Chapters 3 (shape tracking), 4 (shape
servoing), and 5 (unified shape tracking-servoing), each with its own notation specific to
that chapter. The thesis concludes in Chapter 6, where we also discuss potential future
research directions.
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Chapter 2

State of the art

2.1 Introduction

This chapter explores the current research on shape modeling, shape tracking, and shape
servoing of DOs. We first review the existing works on shape modeling of DOs. We then
examine the existing shape tracking methods using monocular and 3D cameras. Next,
we review the state-of-the-art studies on shape servoing. Each section concludes with a
discussion on the constraints of each category of methods and opportunities for potential
future enhancements.

2.2 Shape modeling

The goal of shape modeling is to develop efficient and accurate methods for predicting
the deformation of objects in a way that can be simulated, visualized, and analyzed. The
study of modeling DOs has a long history and numerous applications including com-
puter graphics, virtual surgery, and cloth animation [GM97, NMK+06, MM07, BMM15,
ZCD+22]. However, due to the highly dynamic behavior of DOs, it remains a major chal-
lenge to incorporate their physical properties into models suitable for real-time simula-
tion. In robotics, while selecting a suitable model, the most important factors to consider
include computational complexity, physical accuracy, simplicity, and intuitiveness. The
model must be able to be used in real-time perception and manipulation while being
easy to implement [ARGF+20]. Although significant advancements have been made in
the field, it is still challenging to find a comprehensive model that can effectively handle
all the complexities associated with DOs, leading to a variety of models in the literature.
We divide the models into two main categories:

• Physics-based deformation models. Physical laws and mechanical equations gov-
ern the object’s deformation behavior.

• Geometry-based deformation models. Geometric constraints, such as isometry or
inextensibility, govern the object’s deformation behavior.

In the following, we describe each category of models in more detail.

2.2.1 Physics-based deformation models

Physics-based models are based on fundamental mechanical principles and laws. These
models aim to capture the mechanical deformation behavior of DOs under external forces.
The finite element method (FEM) and particle systems are the two most popular ap-
proaches to solve physics-based deformation models. While FEM requires the mechan-
ical parameters of the object to be known, methods based on particle systems require
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one or several parameters to be tuned to match the object’s mechanical properties. We
describe each of these approaches in more detail below.

2.2.1.1 Finite element method

The finite element method (FEM) is the most popular physics-based approach that di-
rectly solves an object’s mechanical equations. This approach can handle a wide range of
material behaviors, such as nonlinearity, anisotropy, and viscoelasticity, with high accu-
racy. FEM divides the object into finite elements and solves the mechanical deformation
equations on these elements. An example is shown in Figure 2.1. FEM has been utilized

FIGURE 2.1: A flexible rod modeled using FEM. The rod is discretized into an irregular tetra-
hedral mesh.

in various robotics tasks, including tracking and manipulation of DOs, due to its ability
to create realistic simulations and predict complex deformations [ESP92,PCLS18,SKM19,
FSS+14]. The quality of the volumetric mesh has a significant impact on the outcome
of FEM. Objects with irregular topology, thin parts, or details can generate ill-shaped el-
ements, which are unstable and reduce the accuracy of the stiffness matrix. Increasing
the mesh resolution is one solution, but it leads to a higher number of elements, which
can decrease performance. Additionally, FEM relies on the mechanical properties of the
object, such as its Young’s modulus, Poisson’s ratio, and friction parameters. FEM can
be computationally intensive, but this can be mitigated by using linear FEM [MSJT08].
However, this approach has the limitation of only being able to simulate small deforma-
tions. Alternatively, co-rotational FEM and other methods can also be used to reduce
computational complexity [MG04].

2.2.1.2 Mass-spring system

The mass-spring systems consist of a group of particles connected by springs. In these
systems, particle movement follows Newton’s second law of motion. The motion of
connected particles is influenced by different forces, including the spring and damping
forces. An example of a system of particles and their interconnections is shown in Figure
2.2.a. The object deformability can be determined by tuning the stiffness and damping
coefficients defined in the system.

Mass-spring systems are a popular method commonly used in predicting and track-
ing object states during robotic manipulation due to their computational efficiency and
intuitive nature [SLHA13]. However, stability is a well-known issue in these methods.
Furthermore, it is difficult to tune the spring constants to obtain the desired deformation
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(a) (b)

FIGURE 2.2: A mass-spring system, (a) the system of particles and their interconnections, (b)
The usage of mass-spring systems in cloth simulation [LBOK13].

behavior according to material properties. To address this tuning problem, learning algo-
rithms and reference solutions have been proposed [BSSH04, MS08, ARW17]. Moreover,
mass-spring systems cannot directly simulate volumetric effects in their basic formula-
tion, such as volume conservation. To address this limitation, other energy formulations
have been introduced [THMG04]. Additionally, the placement of springs affects the be-
havior of a mass-spring systems. To compensate for this effect, virtual springs have
been added [BC00]. Recently, a new method has been proposed that integrates more
complex mechanical behaviors, such as viscoelasticity, non-linearity, and incompressibil-
ity, by introducing extra elastic forces into the traditional mass-spring systems [XLL18].
Mass-spring systems are widely used in computer games and animation, especially for
materials with possible strong stretching resistance and weak bending resistance like
cloth [LBOK13] (see Figure 2.2.b).

2.2.1.3 Position-based dynamics

In the previous section, we explained mass-spring systems which are force-based, i.e.,
based on given forces, the velocities and positions of particles are determined by a time
integration scheme. In contrast, position-based dynamics (PBD) compute the positions
directly by applying geometrical constraints in each simulation step [MHHR07]. In PBD,
the objects are represented by a set of particles and a set of constraints. For each con-
straint, a stiffness parameter is introduced which defines the strength of the constraint in
a range from zero to one. This gives a user more control over the elasticity of a body. In
each simulation step, the predicted particles’ positions are iteratively corrected such that
they satisfy the internal and external position/force constraints. Finally, the corrected
positions are used to update the positions and the velocities.

PBD is highly suitable for interactive environments, owing to its speed, stability, and
controllability. By making minor adjustments to its structure, it can effectively simu-
late a range of physical phenomena, including self-collision, collisions with other bodies,
independent bending and stretching, and tearing. However, PBD is generally not as ac-
curate as FEM but still provides visual plausibility. As a result, the main application
areas of position-based dynamics are virtual reality, computer games, and special effects
in movies and commercials. Figure 2.3 demonstrates several results of PBD simulations.
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(a)

(b)

(c)

FIGURE 2.3: Several results of PBD simulations presented in [MHHR07], (a) a piece of cloth is
torn apart by an attached cube, (b) demonstration of stable self-collision and response, (c) cloth
stripes are attached via one-way interaction to static rigid bodies at the top and via two-way

constraints to rigid bodies at the bottom.

2.2.1.4 Meshless shape matching

Meshless shape matching [MHTG05] can be considered as a particular type of PBD. Here,
we discuss it separately due to its unique structure and applications. This model repre-
sents the object as a set of particles that are not connected to each other. Due to the lack
of connectivity information, when subjected to external forces, the particles tend to rear-
range themselves into a configuration that does not resemble the object’s original shape.
To address this issue, meshless shape matching divides the particles into different clus-
ters. Then, for each cluster of particles, it computes an optimal linear transformation
between the current and original shapes. This transformation is divided into rotational
(rigid) and symmetric (deformation) parts. To adjust the deformability and stiffness of
the model, two hyperparameters can be fine-tuned.

FIGURE 2.4: An example of modeling deformation using meshless shape matching. A beam is
deformed by drawing it from a point at its top. The deformation is simulated while one, two,

and five clusters of particles are considered.

Meshless shape matching has gained popularity due to its simplicity, efficiency, and
scalability in modeling deformable objects without the need for a mesh [MHTG05]. It has
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been used in various interactive graphical applications [TYGP13, MMCK14], including
modeling the deformation of human body parts [ZGZ+08, SM14] and for robotic manip-
ulation tasks [CBEK16, GPIK17]. One key advantage of meshless shape matching is its
ability to simulate volumetric objects while preserving their topological shape, in contrast
to mass-spring systems and PBD, which struggle with volumetric object simulation due
to the high computational cost for large 3D systems of particles and also volumetric con-
straints such as Poisson’s ratio. Figure 2.4 provides an example of modeling deformation
using meshless shape matching.

2.2.2 Geometry-based deformation models

Geometry-based models are based on the geometric properties of an object such as lengths,
angles, and curvatures. As a result, these models do not require the mechanical param-
eters of an object. Compared to physics-based models, geometry-based models are typ-
ically faster but less precise. As such, they are often used in computer graphics and
animation to create visually appealing deformations rather than to precisely simulate
the physical behavior of an object. As-Rigid-As-Possible is a well-known example of
geometry-based models. In the following sections, we will provide a more detailed ex-
planation of this model.

2.2.2.1 As-Rigid-As-Possible

The core idea of As-Rigid-As-Possible (ARAP) [SA07] is to simulate geometrically the
tendency of an object to preserve local rigidity. The model is based on an energy mea-
sure that expresses the deviation from rigidity as the sum of deviations in the local
regions of the object. Stable shapes of the object correspond to the local minima of
that measure. ARAP has proven powerful and popular in diverse applications. It has

FIGURE 2.5: Modeling an Armadillo using ARAP presented in [SA07].

seen widespread use in computer graphics for shape interpolation, editing, and anima-
tion [ACOL00, SA07, LG15]. ARAP has also been employed as deformation constraint in
SfT [CBBC16, PPBC15, FJPCP+22, FJPCP+21] and as regularization prior during tracking
of nonrigid scenes [NFS15,DDF+17]. [HZSP18,HHS+19] have used ARAP for regulariza-
tion and inference of occluded regions during deformable object tracking under robotic
manipulation. [HALN+22] has utilized ARAP to model the deformation of a flexible
sheet carried by multiple robots. An example of modeling movements of an Armadillo
using ARAP is illustrated in Figure 2.5.

2.2.3 Discussion

We highlighted examples of commonly used approaches for simulating DO’s deforma-
tion behavior. Approaches based on physics-based deformation models directly solve
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or simulate the mechanical equations governing the object’s deformation, which results
in high precision but slow computational speed. These approaches require knowledge
of the object’s mechanical parameters or tuning a set of parameters to match them. On
the other hand, approaches based on geometry-based deformation models simulate the
object based on its geometric properties, without requiring knowledge of its mechan-
ical parameters. This results in faster computation but less precision. One point that
should be noted here is selecting an appropriate model should be based on the specific
requirements of the application. For instance, geometry-based models and physics-based
models using particle systems are often used for real-time shape tracking of general ob-
jects [CBBC16, PPBC15, ACRM+20, FJPCP+22, FJPCP+21], whereas FEM is preferred for
accurate tracking of organs in surgical applications [BWG+99].

In this thesis, we utilized PBD in a monocular tracking pipeline in Chapter 3. We also
used ARAP to estimate a deformation Jacobian for shape servoing of DOs in Chapter
4. In Chapter 5, we employed a specific formulation of ARAP for tracking objects of
any shape and derived an analytical expression for the deformation Jacobian to control a
DO’s shape towards a desired shape.

2.3 Shape tracking

Tracking the 3D shape of DOs is essential in various fields such as augmented real-
ity [PLF08,HDBC14], computer-assisted surgery [HPR+09,CCB11,MBC12,CBBC16,LPBM20],
and robotics [LWC+14,FSS+14,ACRM+20]. Here, we categorize the existing shape track-
ing methods based on the type of sensor used, i.e., monocular 2D cameras [BGC+15,
PPBC15,CPBC16,FBA18,ÖB17,ACRM+20,NÖF15,CB15,CBBC16,LYYA+17,PAP+18,GSVS18,
SGTS19,FJPCP+22,FJPCP+21,HXR+18] and 3D cameras [PLS15,TT22,NFS15,TA16,CZLN20].
This categorization is due to the different challenges that arise while using each sensor.
While a 3D camera directly accesses the scene’s depth, depth estimation poses another
challenge in shape tracking using monocular cameras, i.e., estimating depth from 2D fea-
tures. In the following section, we will discuss each category of studies in more detail.

2.3.1 Shape tracking using a monocular 2D camera

In this section, we focus on SfT methods. An overview of SfT methods has been pre-
sented in Section 1.1.3.1. As discussed, SfT is a category of monocular shape registration
and inference methods in which a template of DO is known. The template contains cer-
tain priors and constraints among which the most common ones are the object’s 3D rest
shape, texturemap, deformation law, and camera intrinsics. Furthermore, SfT can be bro-
ken down into two main parts: registration and 3D shape inference. Following this, the
existing SfT methods are divided into two categories: shape inference methods and inte-
grated methods. The former methods only cover the 3D shape inference part [SMNLF08,
SF09,BGC+15,CPBC16,FBA18,BBH14,ÖB17,ACRM+20], while the latter methods cover
both the registration and 3D shape inference parts [SF10,ÖVNF12,NÖF15,CB15,CBBC16,
LYYA+17]. Another category of methods that has been recently introduced is Deep Neu-
ral Network (DNN) based SfT methods [PAP+18,GSVS18,SGTS19,FJPCP+22,FJPCP+21].
These methods cover both the registration and 3D shape inference parts. In the remain-
der of this chapter, we provide a comprehensive review of the different categories of SfT
methods. For each category, we detail the underlying assumptions, key characteristics,
and potential limitations.
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2.3.1.1 SfT-Shape inference methods

These methods cover the 3D shape inference part. They assume the registration was pre-
viously handled [PB12,CMB14,TCC+12,PB12,FBA18,PLF08,FBA18]. The registration in-
volves finding correspondences between the texturemap and the image, which can either
be achieved independently for each frame or tracked over consecutive frames. Feature

FIGURE 2.6: The reconstruction result of the method presented in [FBA18] on a deformed Spi-
derman poster. (a) The image of the deformed Spiderman poster. (b) The visualization of the

error. (c) Estimation. (d) The groundtruth.

descriptors such as SIFT [Low04] are commonly used to find correspondences between
the texturemap and the image. Mismatch removal algorithms are then employed to elim-
inate wrong correspondences [TCC+12, PB12, FBA18]. Additionally, feature tracking al-
gorithms like [Suh09] can be applied when tracking correspondences over consecutive
frames. Three general groups are found in existing 3D shape inference methods; (i) meth-
ods using a convex relaxation of isometry called inextensibility [SMNLF08,SF09,BBH14],
(ii) methods using local differential geometry [BGC+15, CPBC16, FBA18], and (iii) meth-
ods minimizing a global non-convex cost function [BBH14,ÖB17,ACRM+20]. The meth-
ods in (iii) are the most precise ones but also computationally expensive and they require
initialization. The first two groups of methods are often used to provide an initial guess
for the third group.

In the first group, Salzmann et al. [SMNLF08] suggested a closed-form solution to
non-rigid 3D surface registration by solving a set of quadratic equations accounting for
inextensibility. Later, they replaced equality constraints with inequality and thus sharp
deformations could be better recovered [SF09]. Brunet et al. [BBH14] formulated two
shape inference methods based on point-wise and continuous surface models as Second
Order Cone Programs (SOCP).
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In the second group, Bartoli et al. [BGC+15] showed that in addition to keypoint 2D
coordinates in the image, their first-order differential structure can be used to estimate
the depth. Instead of calculating a warp globally, which is time-consuming, Famouri et
al. [FBA18] estimated the depth locally for each match pair with respect to both local
texture and neighboring matches. In each frame, the most recognizable matches were
selected based on offline training. The execution speed of their algorithm is claimed to be
up to 14 fps only for the 3D shape inference. An inferred shape of a deformed Spiderman
poster along with its groundtruth is presented in Figure 2.6.

FIGURE 2.7: The reconstruction result of Particle-SfT presented in [ÖB17]. For all the cases, the
3D reconstructions (black circles) of Particle-SfT are shown with the ground-truth shapes (green
dots). The reconstruction error is written below each case. (a) Cushion dataset with non-planar
template. (b-d) Real elastic datasets. For each case, the left image shows the template image
and the right image shows the input image. (b) A foot size 41 wearing a sock for a foot size
37. (c) A pocket filled by a bottle of water and a magazine. (d) A piece of fabric that has large

lateral stretching and a mild central pushing deformation.

In the third group, Brunet et al. [BBH14] proposed a refining isometric SfT method by
reformulating the isometric constraint and solving it as a non-convex optimization prob-
lem. The method required a reasonably accurate 3D shape of the deforming surface as
the initializing guess. Özgür and Bartoli [ÖB17], developed Particle-SfT, which handles
isometric and non-isometric deformations. A particle system is guided by deformation
and reprojection constraints which are applied consecutively to the particle mesh. Simi-
lar to [BBH14], this algorithm needs an initial guess for the 3D position of the particles,
however, for [ÖB17], sensitivity to this initial guess is very low. The closer the guess to the
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FIGURE 2.8: Shape tracking results presented in [ACRM+20]. Top: three images of a deforming
paper sheet with a checkerboard pattern. Three tracked points are marked in blue in each
image. Bottom: inferred 3D shapes of the images shown on top using all the 80 points (green)

and using only the three tracked points (blue).

true 3D shape, the faster the convergence. The authors in [ÖB17] tested their method in
various real experiments as shown in Figure 2.7. Aranda et al. [ACRM+20] improved this
algorithm in terms of execution speed and occlusion resistance and used that in real-time
shape servoing of isometrically deforming objects. They used the 3D shape estimated
in one frame as the initial guess for the next frame and thus improved the convergence
speed of the algorithm to a great extent. They showed that their algorithm can track
a paper sheet covered with markers being manipulated by a robotic arm. To this end,
they only needed to track a handful of markers. Knowing the 3D coordinates of several
mesh points also has a significant effect on the convergence speed of the algorithm. The
tracking results of this algorithm are illustrated in Figure 2.8.

2.3.1.2 SfT-Integrated methods

These methods handle registration and 3D shape inference at the same time. They mini-
mize a non-convex cost function in order to align the 3D inferred shape with image fea-
tures. These features can be local [ÖVNF12,NÖF15] or at the pixel-level [CB15,CBBC16].

Ostlund et al. [ÖVNF12] and later Ngo et al. [NÖF15] used the Laplacian formulation
to reduce the problem size by introducing control points on the surface of the deforming
object. The process of removing mismatches was performed iteratively during optimiza-
tion by projecting the 3D estimated shape on the image and disregarding the correspon-
dences with higher reprojection errors. Using this procedure, they could reach up to
10 fps using 640 × 480 input images and restricting the maximum number of template
and image keypoints to 500 and 2000, respectively.

As for pixel-level alignment, Collins and Bartoli [CB15] introduced a real-time SfT al-
gorithm which could handle large deformations and occlusions and reaches up to 21 fps.
They combined extracted matches with physical deformation priors to perform shape
inference. The results of this method in two different experiments with real objects are
illustrated in Figure 2.9. Collins et al. [CBBC16] later extended this algorithm and used
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FIGURE 2.9: Shape tracking results presented in [CB15] for a deforming juice bottle and a rugby
ball.

it for tracking organs in laparoscopic videos. For achieving better performance, they also
exploited organ boundaries as a tracking constraint.

In general, integrated methods are fast and can handle large deformation. Their main
drawback, however, is to be short-baseline. In case of tracking failure, they should be
re-initialized precisely with a wide-baseline method. This restricts their usage to video
streams.

2.3.1.3 DNN-based SfT methods

DNN-based SfT methods have been introduced in recent years, which coincides with
the tendency to use deep learning to solve many computer vision problems. These
methods are wide-baseline, fast, and cover both the registration and 3D shape infer-
ence parts [PAP+18, GSVS18, SGTS19, FJPCP+22, FJPCP+21]. We group these methods
based on their type of output, which may be sparse or dense. The methods of the
first group represent the SfT solution as the 3D coordinates of a regular mesh with a
predefined size [PAP+18, GSVS18, SGTS19]. The usage of these methods is limited to
thin-shell objects with rectangular shapes. The second group of methods gives a pixel-
level depthmap as output [FJPCP+22,FJPCP+21]. They also apply a post-processing step
based on ARAP [SA07] to the resulting depthmap. This step recovers the whole ob-
ject, including the occluded parts, as a mesh. The method in [FJPCP+22] reconstructs
the shape of the object with different geometries and texturemaps that the network was
trained for. Several results of this method are presented in Figure 2.10. In [FJPCP+21],
the proposed method can be applied to objects with new texturemaps unseen to the net-
work. The geometry of the objects is, nevertheless, limited to flat paper-like shapes. All
the aforementioned methods in this category are object-specific. This means that they
merely work for the object that they were trained for. An exception is [FJPCP+21], as
it works for unseen texturemaps but the applicability is still limited to flat rectangular
objects. On the other hand, in order to use the DNN-based methods for a new object, the
network should be fine-tuned for it. This demands proper computational resources and
potentially a huge amount of training data, which are challenging to collect for DOs.
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FIGURE 2.10: Shape reconstruction results of three different objects (a paper, a doll, and a shoe)
presented in [FJPCP+22]. The network was trained specifically for these objects.

2.3.1.4 Shape tracking using a 3D camera

When using 3D cameras for shape tracking, the captured data consists of point clouds
and images. The problem of tracking objects from point clouds involves assigning corre-
spondence between two point clouds and finding the transformation between them. The
challenge that might occur in this registration is that the object perceived by 3D cameras
is usually represented by a point cloud, which lacks distinguishable features and thus it
would be difficult to have explicit correspondence between the captured point cloud and
the object point cloud. For objects with identifiable appearances, such as specific colors or
rich textures, the captured image by the 3D camera can be utilized to aid in the registra-
tion process. This can be achieved through filtering the background’s point cloud (using
the object’s color) or by establishing correspondences between the object’s texturemap
and the captured image. Shape tracking using a 3D camera can be further complicated
by other common issues such as hardware limitations and occlusions, which can result
in missing point clouds and noise in the captured data.

The registration of rigid objects has been extensively studied, with Iterative Closest
Point (ICP) [BM92] being a well-known solution that assigns binary correspondence be-
tween two point sets by the closest distance criterion. To adapt this approach to DOs,
the deformation of the object must be taken into account. This has been handled by
proposing one-to-many relaxations and utilizing Gaussian mixture models (GMM) to
calculate correspondence by probability distribution [CR00]. Thin plate spline-robust
point matching (TPS-RPM) registration [CR03] and coherent point drift (CPD) regulariza-
tion [MSCP06, MS10] are examples of approaches that parameterize the non-rigid trans-
formation. Later, [TT22] introduced the structure-preserved registration (SPR) algorithm
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FIGURE 2.11: Shape tracking results presented in [TT22] for (a) a rope and (b) a t-shirt.

which further improves tracking robustness. The proposed method includes regulariza-
tion terms to preserve local structure and global topology, and a parallel simulation step
where an impedance controller drives a virtual object to approach the estimated shape. A
series of real-time tracking experiments on linear and thin-shell objects were performed.
The results are shown in Figure 2.11.

FIGURE 2.12: Shape tracking results presented in [PLS15] for (a) a pizza-like and (b) a cylindri-
cal bar object.

Physical models have also been incorporated into registration methods to improve
accuracy, such as a second-order dynamic model for multi-body objects [MT93] and the
use of physics engines to minimize bending energy [SLHA13]. Finally, [PLS15] used
FEM for tracking elastic objects. Figure 2.12 presents the result of their real-time tracking
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method on a pizza-like and a cylindrical bar object. To solve the FEM equations in real-
time, the code runs on a GPU.

2.3.1.5 Discussion

We provided an overview of the existing studies on shape tracking of DOs. Our dis-
cussion was divided into two main categories based on the type of sensor used, i.e.,
monocular or 3D cameras, and we highlighted the advantages and disadvantages of each
category.

On monocular camera solutions. Typically, monocular cameras are utilized for shape
tracking when the object being tracked is well-textured, and 3D sensors cannot be used
due to task conditions. In the context of shape tracking using monocular cameras, we
focused on SfT methods. SfT methods comprise two main challenges: registration and 3D
shape inference. We thus categorized SfT methods based on each of the challenges they
aim to tackle. Additionally, we explored a third category of SfT methods that is based on
DNN. A summary of the main features of SfT methods in each category is presented in
Table 2.1. Typically, SfT methods do not encompass the complete tracking pipeline and

Category Method Registration Real-time Wide-baseline
General

geometry

Needless of
training for
new objects

Public access
code

Shape inference methods

Salzmann et al. [SMNLF08] × NA ✓ ✓ ✓ ×
Brunet et al. [BBH14] × × ✓ ✓ ✓ ✓

Bartoli et al. [BGC+15] × NA ✓ ✓ ✓ ✓
Ozgur et Bartoli [ÖB17] × × ✓ ✓ ✓ ×
Famouri et al. [FBA18] × ✓ ✓ ✓ ✓ ✓

Aranda et al. [ACRM+20] × ✓ ✓ ✓ ✓ ×

Integrated methods

Ostlund et al. [ÖVNF12] ✓ ✓ × ✓ ✓ ×
Ngo et al. [NÖF15] ✓ ✓ × ✓ ✓ ×

Collins and Bartoli [CB15] ✓ ✓ × ✓ ✓ ×
Collins et al. [CBBC16] ✓ ✓ × ✓ ✓ ×

DNN-based methods

Pumarola et al. [PAP+18] ✓ × ✓ × × ×
Golyanik et al. [GSVS18] ✓ ✓ ✓ × × ×

Fuentes-Jimenez et al. [FJPCP+22] ✓ ✓ ✓ ✓ × ×
Shimada et al. [SGTS19] ✓ ✓ ✓ × × ×

Fuentes-Jimenez et al. [FJPCP+21] ✓ ✓ ✓ × ✓ ×

TABLE 2.1: A comparison between the state-of-the-art monocular SfT methods.

often rely on other algorithms. While some SfT methods do cover the entire pipeline, they
are either short-baseline or primarily based on deep neural networks. The DNN-based
SfT methods are object-specific, necessitating the retraining of the network for each new
object. The substantial data required for this process is particularly challenging to obtain
for DOs.

On 3D camera solutions. As for shape tracking methods using 3D cameras, the main
challenge reduces to point registration since we have access to point clouds that include
depth information. Besides, the possible distinct appearance of the object (specific color
or rich texturemap) along with the captured image can also be employed to improve this
registration. Consequently, these methods are generally more robust than those using
monocular cameras. However, the downside of these methods is that they usually require
specific, powerful hardware for analyzing the point cloud. Furthermore, filtering the
point cloud belonging to the object can be challenging due to various factors such as
noise from 3D cameras, occlusions and self-occlusions, and the presence of other objects
in the scene.
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On the limitations of shape tracking in robotic applications. Despite the significant
progress made in shape tracking of DOs, the application of shape tracking methods in
the robotic field has been limited for which we can list several reasons:

• The codes of the deformable object tracking methods in the literature are not open
access, or if they are, they are challenging to adapt to a new problem.

• These methods are primarily object-specific, meaning that plenty of adjustments
should be made to apply them to a new object. In the case of methods based on
physics-based models, these adjustments might include setting or tuning the me-
chanical parameters of the object [FBA18,CB15,NÖF15,CBBC16,PLS15]. Regarding
the neural-network-based methods, these adjustments include creating a new syn-
thetic dataset of the new object of interest and training the whole network from
the beginning with that new synthetic dataset, followed by a possible fine-tuning
step [PAP+18, GSVS18, SGTS19, FJPCP+22, FJPCP+21].

• Many of the presented tracking methods in the literature are specified to a par-
ticular object form including linear [TT22] or thin-shell [BGC+15, CPBC16, FBA18,
HXR+18,NFS15,TA16]. As a result, they cannot be used as a general tracking solu-
tion to different object forms.

• As these tracking methods are presented in the field of computer vision, they have
not exploited the common priors existing in the field of robotics that can be con-
siderably helpful throughout the tracking period, such as the known coordinates of
the robotic grippers.

As a result of the mentioned challenges, researchers in the field of robotics have
turned to track a simplified representation of objects instead of the whole shape. This sim-
plified representation can be a handful of points on the surface of the object [NALRL13,
NALRL14, FMC+18, SFP+19, ACRM+20, MDRB20, AALN+22] or the point cloud of the
visible part of the object that remains almost the same throughout the manipulation
[HSP18, HHS+19, TCKH21].

On novelty of the thesis in shape tracking. This thesis introduces two shape tracking
methods: ROBUSfT (Chapter 3), based on a monocular camera, and lattice-based shape
tracking (Chapter 5), based on a 3D camera. ROBUSfT overcomes many challenges of
existing monocular shape tracking methods, such as incomplete coverage of the pipeline,
being short baseline, and the need for object-specific training. ROBUSfT is also released
as a user-friendly C++ library. Lattice-based shape tracking simplifies object deformation
by considering a lattice around the object. This results in lower execution complexity and
eliminates the need for specialized hardware. It is also capable of handling various forms
of objects. Furthermore, both proposed shape tracking methods in this thesis offer several
features that make them suitable for robotics applications. With these methods, there is
no need for any specific ad-hoc adjustment to work with a new object. Furthermore, both
proposed methods support constraints regarding known grippers’ coordinates, making
them well-suited for robotic applications. More details on these features will be provided
in Chapters 3 and 5.
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2.4 Shape servoing

This section provides a review of the state-of-the-art shape servoing approaches. We
categorize these approaches into model-based, model-free, and learning-based. Model-
based approaches use a model to facilitate shape servoing, leveraging knowledge of ob-
jects’ behavior under deformation. These models were discussed in Section 2.2. On the
other hand, model-free shape servoing does not require any prior information on object
deformation. Finally, learning-based shape servoing exploits learning techniques for per-
forming the servoing tasks. The following subsections discuss these categories in detail.

2.4.1 Model-based shape servoing

Deformation models play a crucial role in shape servoing of DOs by providing knowl-
edge of the objects’ behavior under deformation. Physics-based and geometry-based
models are among the most commonly used deformation models in the literature of
shape servoing. Physics-based models offer high precision and provide an accurate
model for shape servoing in delicate situations. Geometry-based models, on the other
hand, are computationally efficient and can handle the real-time requirements of robotic
shape servoing.

Shape servoing based on physics-based models. As for shape servoing based on physics-
based models, FEM is the most widely used in the literature [DBPC18,FMC+18,KFB+21,
SMEDC+20]. In this context, [DBPC18] presented an open-loop simulation-based con-
trol methodology wherein the desired deformations are directly mapped to joint angle
commands. [FMC+18] used FEM in an open-loop control approach for in-hand soft ob-
ject manipulation. The approach involves constructing an FEM model of the object and
updating it in real-time to account for changes in the object’s shape due to manipulation.
The FEM model is used to estimate the deformation of the object in response to external
forces and the resulting deformation is used to control the manipulation of the object. The
approach is validated through experiments on a robotic manipulator performing grasp-
ing and twisting tasks. This is shown in Figure 2.13. [KFB+21] introduced a closed-loop
controller employing a computationally-efficient FEM that exploits a partition of mesh
nodes. The authors applied their approach to a linear object. This is illustrated in Figure
2.14. In [SMEDC+20], the authors used only force feedback along with FEM to servo a
volumetric object. [LLJ22] presented a dynamic model that simulated stretching, bend-
ing, and twisting deformation in linear objects. The authors exploited this model to de-
ploy a linear object onto a plane using both single-arm and dual-arm setups. They utilize
a model-based predictive control (MPC) approach to track a desired trajectory for a linear
object. The control objective is to minimize the difference between the desired and actual
positions and velocities of the linear object. The MPC controller takes into account the ob-
ject’s dynamic model, constraints on the end effector’s motion, and actuator limitations.
The proposed approach is evaluated through simulations and experiments.

Shape servoing based on geometry-based models. Unlike physics-based models, geometry-
based models simulate object deformation considering only geometrical constraints. This
makes these models independent of the mechanical parameters of the object. [ACRM+20]
drove the object toward the desired shape by defining intermediary shapes. The inter-
mediary shapes were calculated by applying PBD [MHHR07] as the deformation model.
This approach has been tested in a single-arm servoing scenario with a piece of paper.
This is illustrated in Figure 2.15. In Chapter 4, we propose to employ ARAP to calculate
a deformation Jacobian for full shape servoing of thin-shell objects. Later, [GPSB+22,
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FIGURE 2.13: Shape servoing results presented in [FMC+18]. A comparison between the de-
sired deformation planned in the Sofa environment scene and the deformation controlled on

the real object is shown.

APCR+22] exploited the same deformation Jacobian with an optimal controller. Re-
cently, [AALN+22] proposed a novel offline Jacobian to be used in servoing linear objects
in 2D space. This Jacobian was based on the As-Similar-As-Possible (ASAP) deformation
model which is a simplified version of ARAP. In this deformation model, the object has
a tendency to preserve its original shape up to a similarity transformation of that shape.
In Chapter 5, we introduce a novel shape servoing approach called Lattice-based shape
servoing, which is based on ARAP. This approach works by servoing a lattice around the
object towards the desired shape instead of the object itself. This approach can provide a
generalized solution that can work with objects of any form and geometry.

2.4.2 Model-free shape servoing

Model-free shape servoing can be considered as the most studied category of approaches
in the literature. In contrast to model-based shape servoing, in model-free shape ser-
voing, no prior information on the object’s deformation is required. We divide these
approaches into two main categories: sensor-based deformation Jacobian, and geometric
heuristics.

Shape servoing with sensor-based deformation Jacobian. As for the first category of
approaches, online sensor measurements are employed to estimate a deformation Jaco-
bian used for shape servoing [NALRL13, NALRL14, NAL18, HSP18, ZNF+18, AWH+19,
LKM20, ZNAPC21]. These sensor measurements are taken by a 2D or 3D camera while
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FIGURE 2.14: Shape servoing results presented in [KFB+21]. Two points on a linear object are
derived toward their desired positions.

FIGURE 2.15: Shape servoing results presented in [ACRM+20]. Left to right: the initial image,
an intermediate image, the final image, and RMS of the estimated shape servoing error.

the object is manipulated by robots. This Jacobian is then used to control a simplified
representation of the object, i.e., several sampled points on object’s surface [NALRL13,
NALRL14,HSP18,AWH+19], or object’s contour [NAL18,ZNF+18,ZNAPC21] in the im-
age space. Two examples are presented in Figure 2.16. In general, requiring the robot’s
motion for calculating the Jacobian makes these approaches more complex, and sensitive
to noise.

Shape servoing with geometric heuristics. While many approaches in the literature
use sensor-based deformation Jacobian, only a few studies have explored the use of ge-
ometric heuristics [Ber13, MDRB20]. These approaches rely on a heuristic called dimin-
ishing rigidity to estimate the deformation Jacobian. While this approach is fast and has
shown promise in simulation and real experiments with simple deformations, its lack of
a deformation model limits its practicality in more complex scenarios.

2.4.3 Learning-based shape servoing

In recent years, the field of deformable object manipulation has been aligned with the
growing trend toward using learning-based approaches. Different studies have been con-
ducted in this field [MJD18,HHS+19,SFP+19,JAT20,TCKH21,LK21,HDZAL+22] among
which Reinforcement Learning (RL) was the most widely-used approach [MJD18, JAT20,
LK21, HDZAL+22]. Despite the relative success of these approaches, they still suffer
from significant limitations. First, they are specified to a particular type of object such
as linear [LK21, HDZAL+22] or thin-shell [MJD18, SFP+19, JAT20] or just a surface of a
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(a)

(b)

(c)

FIGURE 2.16: (a) Shape servoing using contours presented in [NAL18], (b)-(c) dual-arm manip-
ulation of a thick and a thin rope presented in [ZNF+18].

volumetric object [HHS+19,TCKH21]. Furthermore, they have been mostly tested in sim-
ulation, and if in real, the deformations have been simple [HHS+19, SFP+19, TCKH21].
Except in [HHS+19] where an online learning process was used to train the agent (i.e.,
robot) in real, the other studies trained their agents in simulation with objects of specific
mechanical parameters. This makes them suffer from the well-known sim-to-real gap. In
addition, training the agent for a new object requires a lot of data to provide, which is a
tedious task for deformable objects.

2.4.4 Discussion

We discussed different categories of servoing approaches. Model-based shape servoing
incorporates a model to anticipate the object deformation under manipulation. Shape
servoing approaches based on mechanical models are reliable for predicting object de-
formation, but they can be computationally expensive and depend on the intrinsic me-
chanical properties of the object, which vary from one object to another. Shape servoing
approaches based on geometrical models, on the other hand, can handle a large range
of objects and are fast enough to meet the real-time requirements of robotic shape ser-
voing. Model-free shape servoing approaches do not require prior knowledge of object
deformation, but they are prone to sensor noise. Learning-based shape servoing is a re-
cent category that requires high-quality data to perform servoing tasks and has limited
applications so far.

One point that should be noted here is that most of the approaches in the literature
can merely servo the DOs to the shapes not that different from the initial shape and thus
cannot handle large deformations. To overcome this in [LKM20], intermediary shapes
were defined to guide the object toward the desired shape which is largely different from
the initial shape. This is shown in Figure 2.17.
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(a)

(b)

FIGURE 2.17: Dual-arm manipulation of a rope presented in [LKM20]. (a) A failed case due to
the large deformation of the desired shape, (b) A successful case by defining multiple interme-

diary desired shapes.

Another point is that, as discussed in Section 1.2, the existing shape servoing ap-
proaches have mainly focused on one form of DOs, i.e., linear [KFB+21,ZNF+18,LKM20,
QMZ+21, BM14, SMBB20, LLJ22, WZZ+22, AACR+22, AALN+22, APCR+22], thin-shell
[Ber13,MDRB20,HSP18,ZNAPC21,HHS+19,SBAMÖ22], and volumetric [TCKH21,FMC+18,
ZNAPC21, HHS+19], due to their distinct deformation characteristics and specific as-
sumptions. While some shape servoing methods have been tested on two or three object
forms [MDRB20, ZNAPC21, HHS+19], they are limited to simple scenarios with almost
aligned initial and desired shapes. Indeed, the literature lacks a general shape servoing
approach capable of being exploited as a universal solution for all forms of DOs and hav-
ing full control over the whole object in 3D space. In Chapter 5, we introduce a novel
approach to shape servoing that overcomes this limitation by forming and servoing a
lattice around the object.
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Chapter 3

ROBUSfT: a Real-Time Monocular
Shape-from-Template pipeline

3.1 Introduction

In this chapter, we focus on the monocular shape tracking of DOs, particularly SfT meth-
ods. As discussed in Section 2.3.1, SfT methods in the literature suffer from one or sev-
eral limitations including not addressing both challenges of monocular shape tracking
(namely, registration and shape inference), being short-baseline, failing against occlu-
sions and video cuts, being limited to small deformations, being slow, and being object-
specific. In addition, the state-of-the-art SfT methods in the literature either have not
provided their codes or if they have, their code is difficult to use. This is because these
codes are not presented as out-of-the-box tools, depend on many prerequisite libraries,
and need plenty of adjustments to be used. Furthermore, the existing SfT methods do
not consider the robotic-related constraints which limits their usage in robotic cases.

These limitations are our motivation for the work in this chapter. We propose ROBUSfT,
a complete SfT pipeline for monocular 3D shape tracking of isometrically deforming thin-
shell DOs. As discussed in Section 1.1.3.1, isometry is the most widely used deformation
prior in SfT [SF09, SMNLF08, PHB11]. We thus use this prior as many natural objects
around us deform isometrically, such as paper and cloth.

Our proposed pipeline, ROBUSfT, overcomes all the existing limitations of the state-
of-the-art. It addresses both registration and shape inference challenges efficiently. It
works in real-time (up to 30 fps) and handles large deformations, partial occlusions, and
discontinuity in video frames. ROBUSfT outperforms existing methods in precision and
execution speed, as shown in our experiments. To apply to a new DO, all it needs is a
template of that DO. Therefore, it does not require any training or fine-tuning, and its
application is instantaneous. ROBUSfT is the result of putting existing and novel algo-
rithms together under a novel CPU-GPU architecture. The choice of the algorithms and
their distribution between the two processing units are performed in order to optimize
efficiency. We release ROBUSfT as a publicly available out-of-the-box C++ library. The
code, a tutorial on how to use it, and a supplementary video of the experiments can be
found at https://github.com/mrshetab/ROBUSfT.

In the registration part of ROBUSfT, we proposed myNeighbor, a novel mismatch re-
moval algorithm. It works based on the preservation of the local topology modeled by
the neighborhood structure of matches. myNeighbor runs very fast (up to 200 fps) and
shows high performance even with a high percentage of mismatches and outperforms
the existing methods.

As the final contribution presented in this chapter, we introduce Fake Realistic Ex-
periment (FREX), a novel experimental validation framework. A single execution of FREX
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provides a large collection of synthetic scenes of an isometrically deforming DO in vari-
ous conditions, with known 2D and 3D ground truth which can be used to evaluate, com-
pare, train, and validate new algorithms regarding isometrically deforming DOs such as
mismatch removal, 2D image registration, and 3D shape inference. In contrast to other
artificially generated scenes of an isometrically deforming surface, the generated images
in FREX are the result of real object deformations. It is also extremely easy to set up. All it
needs is a paper on which a set of Aruco markers are printed.

Chapter outline. We explain ROBUSfT in Section 3.2. This includes describing the struc-
ture of the pipeline, i.e., offline and online parts, key steps, and implementation archi-
tecture. Section 3.3 presents FREX. Section 3.4 describes myNeighbor, conducts a series of
experiments, and evaluates the results of myNeighbor in comparison to previous work.
We validate ROBUSfT in Section 3.5. This is done through FREX and real data experiments
and comparing the results with previous work. Finally, Section 3.6 concludes and sug-
gests future work.

3.2 ROBUSfT

3.2.1 Overview of the pipeline

The overview of our pipeline is presented in Figure 3.1. The pipeline is divided into two
sections: offline and online. The offline section focuses on the creation of the template,
while the online section involves four key steps: keypoint extraction and matching, mis-
match removal, warp estimation, and 3D shape inference. The input for the first step is
the image obtained directly from the camera. Keypoints are extracted and matched with
those previously extracted from the template’s texturemap. The mismatch removal algo-
rithm, myNeighbor, is then applied to detect and eliminate mismatches. The list of correct
matches is used to estimate a warp between the template’s texturemap and the image.
This warp transforms the registered mesh of the template to the image space, which is
used as input for the 3D shape inference algorithm. This process is repeated for each
image, allowing for tracking-by-detection. The offline and online sections of the pipeline
will be discussed in further detail and a fast implementation of the pipeline will also be
provided.

3.2.2 Offline section: creating a template

We create a template for the surface of the deforming object that we want to track. We
call this surface the tracking surface. The template of the tracking surface consists of the
following elements:

• MT: the triangular mesh covering the tracking surface at rest shape.

• P : the texturemap of the tracking surface.

• M: the alignment of MT to P .

The first step in creating the template is to generate the 3D model of the tracking surface.
The 3D model is in fact the textured 3D geometry of the tracking surface in real dimen-
sions in rest shape. We form MT by triangulating this 3D geometry. The resolution of MT
should be high enough to be well aligned to the shape of the tracking surface. The next
step is to take an image from the 3D model of the tracking surface while it is positioned
perpendicular to the camera’s optical axis in a simple texture-less background. In this
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FIGURE 3.1: Overview of ROBUSfT.

image, P is formed by the projection of the texture of the tracking surface and M by the
projection of MT. For simple rectangular thin-shell objects like a piece of paper, the whole
process is straightforward. For other objects, including thin-shell objects with arbitrary
shape, such as a shoe sole, and also volumetric objects, 3D reconstruction software like
Agisoft Photoscan [Agi] can be used.

Next, we extract keypoints on P . These keypoints will be matched with the ones that
will be extracted from the input image in the online section. We use SIFT [Low04] for
extracting keypoints but any other feature descriptor could be swapped in. As the final
step, we initialize the pose of MT in 3D space. This initial pose can be arbitrarily chosen
as it will be used only once by Step 4 of the online section of the pipeline for the first
input image. It will then be replaced by the inferred 3D shape in the next images.
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3.2.3 Online section: shape tracking

Step 1: keypoint extraction and matching. The first step of the online section of the
pipeline is to extract keypoints in the input image I . To do so, we use the PopSift li-
brary [GCH18], which is a GPU implementation of the SIFT algorithm. We then match
these keypoints with the ones that were previously extracted from P by comparing de-
scriptors, using winner-takes-all and Lowe’s ratio test. Inevitably, a number of mis-
matches will be formed between P and I . The mismatch points in I can be located
on the surface of the deforming object or even in the background. This is shown as red
lines in the Matching step of Figure 3.1. These mismatches will be eliminated in Step 2
thanks to myNeighbor which can cope with a large percentage of mismatches. As a result,
in this step, the images coming from the camera can be used directly without pretraining
either on the image for segmenting the object from the background, or on the matches for
preselection of the most reliable ones.

Step 2: mismatch removal. To remove the possible mismatches introduced in Step 1, a
new mismatch removal algorithm, myNeighbor, was developed. The main principle used
in this algorithm is the preservation of the neighborhood structure of correct matches
on a deforming object. In other words, if all of the matches were correct, by deforming
the object, the neighbor matches of each match should be preserved. On the contrary,
mismatches lead to differences in the neighboring matches of each matched point in I in
comparison to P . This was used as a key indication to detect and remove mismatches.
The whole process of myNeighbor is explained in Section 3.4.

Step 3: warp estimation. We use the estimated correct matches to estimate a warp W
between P and I . We then use W to transfer M to I and form M̂. The mesh points
in M̂ will be used as sightline constraints in the 3D shape inference algorithm in Step
4. The precision of warping depends on the number of matches, their correctness, and
their distribution all over P . Warp W can be estimated in the most precise way if all
the matches are correct between P and I . However, due to the smoothing nature of
the warping algorithms, the transferring process can cope with a small percentage of
mistakenly selected mismatches. It should be noted that W cannot be extremely precise
in areas without matches. As a result, in these areas, the shape of M̂ might not be aligned
well to the shape of the deforming object in I . This is worse when the matchless area is
located near the boundaries of P as the alignment cannot be guided by the surrounding
matches. Hence, in order to use just well-aligned transferred mesh points of M̂ as the
input for the 3D shape inference step, an assessment is performed over all of the mesh
points and only the qualified ones are passed to Step 4. For this, we check M cell-by-cell.
Only the mesh vertices for cells containing at least one correct match will be qualified
as salient mesh points. The indices of these mesh points and their coordinates in M̂ are
passed to Step 4. The other mesh points are disregarded.

Representing and estimating W can be done with two well-known types of warp, the
Thin-Plate Spline (TPS) [Boo89] and the Bicubic B-Spline (BBS) warps [RSH+99], which
we both tested. The former is based on radial basis functions while the latter is formu-
lated on the tensor-product. Having the same number of matches as input, the TPS warp
proved to be more precise than the BBS warp; nevertheless, its execution time rises ex-
ponentially with increasing number of matches. The execution time, however, remains
almost constant for the BBS warp regardless of the number of matches. Thus, considering
the criterion of fast execution of the code, the BBS warp was chosen as the warp function
in this step and also in the mismatch removal step discussed in Section 3.4.

Step 4: 3D shape inference. We use Particle-SfT [ÖB17]. We particularly use the version
improved for real-time shape tracking presented in [ACRM+20]. In this algorithm, a
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particle system is defined from the points and edges in MT. Then, the sightline and
deformation constraints are applied consecutively on the particles until they converge
to a stable 3D shape. As described in [ACRM+20], in order to increase the convergence
speed of the algorithm, the stable 3D shape for an image is used as the initial guess for
the next image. It should be noted that Particle-SfT can work even without a close initial
guess. If the object is invisible in one or several images, the last inferred 3D shape can be
used as the initial guess for the upcoming frame containing the object. This results in a
slightly longer computation time in that image. For the next upcoming images the normal
computation time is resumed. This capability brings about two of the major advantages
of our pipeline, which are being wide-baseline and robust to video discontinuities.

As mentioned in [ACRM+20], one of the optional input data that can significantly
improve the convergence of Particle-SfT is the existence of 3D known coordinates of one
or several particles. This is shown in Figure 3.1. The known 3D coordinates can be fixed
in space, or can move on a certain trajectory. The latter happens when the deforming
object is manipulated by tools with known poses in 3D space like robotic grippers.

3.2.4 Implementation

In order to optimize the implementation of ROBUSfT, it was coded in C++ in two parallel
loops: one on the GPU, and one on the CPU. The GPU loop handles keypoint extraction
in the images. These keypoints are transferred to the CPU loop where the rest of the
steps of the pipeline are taken. This is shown in Figure 3.2. We also provide a pure
CPU implementation of the library. Any arbitrary resolution can be considered for the
captured images, nevertheless, we obtained the best performance by using 640 × 480
images. The code is tested on a Dell laptop with an Intel Core i7 2.60 GHz CPU and a
Quadro T1000 GPU. The code, a tutorial on how to use it, and a supplementary video of
our experiments are provided at https://github.com/mrshetab/ROBUSfT.

3.3 Fake Realistic Experiment (FREX)

We introduce a novel experimental protocol, which we used for evaluating myNeighbor

and ROBUSfT in comparison to the state-of-the-art methods. A single execution of this
protocol provides a large collection of scenes of an isometrically deforming object in var-
ious conditions, with known 2D and 3D ground truth. This collection can be used to
evaluate, compare, train, and validate new algorithms regarding isometrically deform-
ing objects such as mismatch removal, 2D image registration, and isometric 3D shape
inference. In contrast to other artificially generated scenes of an isometrically deforming
surface, the generated images in our protocol are the result of real object deformations.
Being formed of successive images with continuous deformation, it can also be used for
algorithms which exploit feature and shape tracking. In addition, object occlusion and
invisibility can be easily simulated, by dropping frames or pasting an occluder.

The protocol flowchart is shown in Figure 3.3. First, we form the Aruco template by
randomly distributing a set of Aruco markers all over a blank image. We then print the
Aruco template on a standard A4 paper. These markers should be big enough to be rec-
ognizable by the user’s camera in the desired distance. In order to improve recognition,
there should be white space between the markers on the paper. In our experiments, we
used 100 markers with a width of 1.4 cm. The OpenCV library was used to identify the
markers. These markers were recognizable by a 720p RGB camera from an approximate
distance of 0.6m. The next step is to deform the printed Aruco template in front of the
camera. In each frame, the 2D and 3D coordinates of the markers’ centers are estimated.
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FIGURE 3.2: Implementation of ROBUSfT on the CPU and GPU. A pure CPU implementation is
also provided.

Because each marker has its own unique id, they can be used as correspondences be-
tween the Aruco template and each image of the video. We exploit the 2D coordinates of
these recognized correspondences to estimate a warp with which we can transfer an ar-
bitrary texturemap to the video image space. This is done firstly by resizing the arbitrary
texture to the size of the Aruco template. In order to keep the aspect ratio of the arbitrary
texturemap, white margins can also be added before resizing. Then, an inverse warping
process with bilinear interpolation is used to transfer the pixel color information from the
arbitrary texturemap to their corresponding pixels in the video images. The whole pro-
cedure results in a scene with the arbitrary texturemap being deformed exactly on top of
the Aruco template. It is also possible to add further modifications; for instance, one can
transfer the arbitrary texturemap to another scene with any different background. Be-
sides, as in [VSSF12], an artificial lighting can also be added to form different variations
of the scene.

For evaluating algorithms, one can use the 2D and 3D ground truth estimated in each
frame of the video. Regarding the 2D ground truth, the estimated warp can be used
to identify the 2D corresponding point of each pixel of the arbitrary texturemap in the
image. As for the 3D ground truth, one can exploit the 3D estimated coordinates of the
Aruco markers in each frame which can be achieved using the OpenCV library.
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FIGURE 3.3: Flowchart of FREX.

3.4 myNeighbor

We describe myNeighbor, our novel mismatch removal algorithm. It works based on two
main principles:

• Given a sample set of correct matches between an image of a textured surface and
another image of that surface undergoing a deformation, one can estimate a suffi-
ciently accurate transfer function between the images such that the correctness of
all the matches can be judged. Consequently there is no need to remove all the
mismatches.

• This sample set of correct matches can be extracted from the images considering
that in reality, under a deformation, the neighborhood structure among the points
on a deforming surface is preserved.

We show that by using these two principles, the mismatches can be detected and re-
moved in a fast and efficient way. The proposed algorithm is illustrated in Figure 3.4. It
consists of three steps. First, a set of matches which are highly probable to be correct are
selected. This selection is done by forming two triangulations using match points, one in
P and one in I , and then choosing matches with high similarity in the list of their neigh-
bors. Second, a small percentage of possible mismatches among the selected matches are
identified and removed. This is done by transferring the selected match points from P to
I and then removing those with large distances from their correspondences in I . Third,
we transfer all the match points from P to I using a warp estimated based on the clean
set of selected matches from the second step. The distance between the transferred tem-
plate match points and their correspondences in I is used as the criterion to distinguish
estimated mismatches from estimated correct matches.

In order to analyze the performance of myNeighbor and calibrate the parameters in
the different steps, we used synthetic data experiments. In the following section, we
describe the design of these experiments. Afterwards, we describe in detail the different
steps of myNeighbor.
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FIGURE 3.4: Flowchart of myNeighbor.

3.4.1 Synthetic data experiments for calibrating parameters

These experiments are conducted by synthetically forming two images of a mesh MT
and a series of matches between the two images. The first image shows MT in its flat
rest shape with all its keypoints on it. We call this image IF. In IF, the keypoints can
be considered as the extracted keypoints from P and the 2D mesh is equivalent to M.
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FIGURE 3.5: Two sample results of the steps for synthetic data experiments. The first row is
an experiment with 100 matches and a mismatch percentage of 30%. The second row is an ex-
periment with 1000 matches and a mismatch percentage of 30%. The first and second columns
represent IF and I with correct matches in green and mismatches in red. The third column
is the result of Step I. The wrongly chosen mismatches are shown in red. The fourth column
is the result of Step II. The mismatches along with a small percentage of correct matches are
removed. The fifth column is the separation of the estimated correct matches and the estimated
mismatches from Step III. The transferred meshes M̂1, M̂2, and M̂3 are shown in orange, yellow,

and cyan for the three steps.

The second image simulates I and shows MT having undergone a random 3D deforma-
tion. We call this deformed mesh MG. The keypoints in this image can be positioned in
their correct locations on the mesh (correct matches) or being displaced in the image area
(mismatches).

We consider MT as a regular triangular mesh with 10 × 6 points in 3D space. In
order to deform MT, we use the same method as in [ACRM+20]. This is done by ap-
plying two 3D deformations containing random translations and rotations to two mesh
cells at both sides of MT. The deformation is calculated in an iterative process based on
PBD [MHHR07, BMO+14]. As for generating keypoints, we first randomly place key-
points in the inner area of M in IF. In order to create the matches between IF and I , we
then transfer the keypoints from IF to I using a three-step process: calculating barycen-
tric coordinates of the keypoints in M, transferring the keypoints to the 3D deformed
mesh using the barycentric coordinates and the new 3D mesh points of the deformed
MT, and eventually projecting the transferred keypoints to I . To generate mismatches,
an arbitrary percentage of the transferred keypoints were corrupted by randomly dis-
tributing them all over the area of I . Two samples of the generated images for 100 and
1000 matches each with 30% mismatches can be observed in the two first columns of
Figure 3.5.
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3.4.2 Methodology

The algorithm myNeighbor is applied on Nm matches denoted as Cp ↔ Cq between P and
I , with:

Cp = {p1, ..., pNm}, pi = (xi, yi) (3.1)

Cq = {q1, ..., qNm}, qi = (ui, vi) (3.2)

A pair (pi, qi) of points with the same index forms a match pi ↔ qi. We define the set
of correct matches Sin as the collection of matches pi ↔ qi where pi and qi point to the
same location on the deforming surface in P and I . On the contrary, when the pointing
locations of the match points are different, they are categorized as mismatches Sout. The
goal of myNeighbor is to form and remove the subsets Op ⊂ Cp and Oq ⊂ Cq which have
the largest possible number of matches belonging to Sout and smallest possible number
of matches belonging to Sin. We explain the steps of our algorithm to fulfill this goal.

3.4.2.1 Step I – Neighbor-based correct match selection

We select subsets Cps ⊂ Cp and Cqs ⊂ Cq which are highly probable to form correct
matches. We start by defining WG as the ground truth warp between P and I that can
transfer all the match points Cp from P to their correct locations in I . With this definition,
we have the set of correct matches Sin as:

Sin = {(pi, qi) | i ∈ R}, (3.3)

where:
R = {i | ∥WG(pi)− qi∥ < ϵ}, (3.4)

where ϵ is a very small positive number. Warp WG is an unknown composition of isomet-
ric deformation and perspective projection mappings. The isometric deformation map-
ping preserves the geodesic distances among the points and their topological structure
on the object’s surface. However, with the addition of perspective projection mappings,
only the topological structure of points remains preserved in visible areas. This implies
that by applying WG, the neighborhood structure among the points on the object in P
and I should be preserved. We exploit this characteristic of WG to estimate R̂ as the set
of indices of highly probable correct matches Cps ↔ Cqs . To do so, first, we form two
Delaunay triangulations, Tp = D(Cp) in P , and Tq = D(Cq) in I . Then, for each match
i, we calculate two sets of first-order neighbors Qp(i) and Qq(i) in P and I , respectively.
We then define the Mismatch Factor (MF) criterion for match i as:

MF(i) =
|Qp(i) ∪ Qq(i)− Qp(i) ∩ Qq(i)|

|Qp(i) ∪ Qq(i)|
× 100 (3.5)

For each match, MF represents the difference in the neighbor points between P and I
as a percentage. Ideally, we expect that for all the matches MF = 0, which implies that
there is no difference in the neighbors of each match during a deformation. However, in
practice, there are two reasons which rather put MF values in a range from 0 to 100: the
presence of mismatches and variations in triangulation. The presence of mismatches can
affect the value of MF in two ways. First, when the match point i in I is a mismatch and
thus located in a wrong location. And second, when the match point i in I is a correct
match but one, several, or all of its neighbors are mismatches. Both of these cases result
in different neighbors in I in comparison to P . As for the two triangulations, it should be
noted that even in the absence of mismatches, the neighborhood structures in Tp and Tq
do not necessarily coincide. This is because of surface deformation, change in viewpoint,
and occlusions.
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Calculating MF for all the matches, we can have a fair estimation regarding the state
of the matches. The lower values of MF(i) indicate that the match i is surrounded by
similar matches in P and I and has a higher probability to be placed in its correct loca-
tion and thus be a correct match. On the contrary, the higher values of MF(i) can stem
from the wrong location of the match i in comparison to its neighbors which strengthens
the possibility of it being a mismatch. The basic idea in this step is to form Cps ↔ Cqs by
selecting pairs of highly probable correct matches ps ↔ qs. This is done by choosing the
matches with lower values of MF. We examined the validity of this reasoning by eval-
uating three different synthetic data experiments, each with 1000 matches and different
rates of correct matches (30%, 60%, and 90%). Figure 3.6 shows the histogram of MF for
each case. We observe that the dispersion of MF spans a wider range as the value of the
correct match rate grows. For higher numbers of correct matches, there are more similar-
ities in the neighbor lists of each match and, consequently, MF decreases. Furthermore,
regardless of the values of the correct match rate, the majority of the mismatches are ac-
cumulated in the top bins of the graphs that correspond to higher values of MF. This is
shown in more detail for the case with the correct match percentage of 30% by expand-
ing the last two bins of the graph in Figure 3.6.a. This validates our prior reasoning that
by selecting the matches with MF below a certain threshold MFth, we can have a set of
matches which are highly probable to be correct. To quantify the appropriateness of this
selection, we define two criteria, based on the following two quantities. The first quan-
tity is ns, which is the percentage of the selected matches compared to the total number
of matches:

ns =
|Cs|
Nm

× 100, (3.6)

where Cs = {(pi, qi) | i ∈ R̂} is the set of selected matches. The second quantity is AoS,
which is the Accuracy of Selection, defined as:

AoS =
|Cs ∩ Sin|

|Cs|
× 100. (3.7)

Our goal is to choose the value of MFth in the way that we have both of these criteria
to be as high as possible, which means selecting a high percentage of matches with high
accuracy. However, practically, these two criteria work in reverse. By choosing a higher
value for MFth, more matches are selected (higher ns) but with less accuracy (lower AoS)
and vice versa. In order to choose the proper value for MFth, we analyzed the behavior
of these two criteria for a series of synthetic data experiments.

We consider three scenarios for these experiments based on the number of matches,
i.e., Dense, Moderate, and Sparse with in turn 1000, 200, and 50 total number of matches.
The experiments were done in a wide range of correct match percentages (10% to 100%)
for each scenario. Two different values of the criterion MFth were studied; mean and
0.9 × mean where mean is the mean of all MF values in each experiment. The results
are presented in Figure 3.7.a and 3.7.b. Each point in the graph is the average result
of 1000 trials. The first point that should be noted here is that, generally, the proposed
match selection method in this step is more reliable as the number of total matches grows.
This can be deduced by comparing the higher values of AoS in the Dense case with the
ones in the Moderate and Sparse cases. As for choosing MFth, it should be noted that
setting MFth = 0.9 × mean leads to higher values of AoS in comparison to the case with
MFth = mean. Nevertheless, as shown in Figure 3.7.a, this sacrifices a high percentage
of matches by dropping ns significantly, which is undesirable. Hence, in this step, we
choose mean as the value of MFth and form R̂ as the set of indices of probable correct
matches. While this choice implies a higher number of selected mismatches (lower AoS),
we note that these mismatches can be removed in Step II.
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FIGURE 3.6: Histogram of MF values for three sample synthetic data experiments with 1000
matches and 30%, 60% and 90% of correct matches.

As the final operation in this step, we estimate the warp W1 between P and I using
the selected matches Cps ↔ Cqs . We then exploit this warp to transfer M to I . We call
this new mesh M̂1. As can be seen in the third column of Figure 3.5, the mesh M̂1 (shown
in orange) may not be totally faithful to the deformation of MG in I , which is due to
the inaccuracies in the calculation of the warp W1. This stems from two main reasons; the
existence of mismatches in our selection (shown as red dots), and the insufficient number
of correct matches in some areas. In the next step, we exploit the transferred mesh M̂1 to
remove the possible remaining mismatches from the selected matches.
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3.4.2.2 Step II – Removing mismatches from the list of selected matches

We remove the possible mismatches from the selected matches Cps ↔ Cqs . We first form
the set Cq̂s by transferring Cps to I . This is done by finding the barycentric coordinates of
each selected match psi ∈ Cps with respect to M and applying them on the transferred 2D
mesh M̂1 from Step I. We then use the following decision criterion to identify and remove
possible mismatches one by one from the selected matches Cps ↔ Cqs :∣∣∣d2(i)− median

(
{d2(j)}

)∣∣∣ ⩾ 2.5 MAD, (3.8)

where d2(i) = ∥q̂si − qsi∥ with i ∈ R̂. MAD (Median of Absolute Deviations from Median)
is calculated as:

MAD = k median
({∣∣∣d2(i)− median

(
{d2(j)}

)∣∣∣}), (3.9)

where k = 1.4826 is a constant number. The values of d2 are relatively larger for mis-
matches in comparison to correct matches. This stems from two reasons. First, the small
percentage of mismatches compared to the great majority of correct matches coming from
Step I and thus smaller influence of mismatches in the estimation of warp W1. Second, the
inconsistent location of mismatches in P and I . The decision criterion in equation (3.8)
is chosen due to the distribution type of d2, with the presence of just a small percentage
of large values among the majority of small values. Figure 3.7.c and d illustrate the result
of this step. As can be seen, unlike the previous strategy of choosing a smaller MFth,
this method results in improvement of AoS without losing a considerable percentage of
selected matches. This can be clearly observed by comparing ns in Figures 3.7.a and c.

As the last operation in this step, warp W2 is calculated using the purified selected
matches Cps ↔ Cqs . This warp is then used to transfer M to the image space and form M̂2.
The result of removing possible mismatches in this step along with the transferred mesh
M̂2 are shown in the fourth column of Figure 3.5. As can be observed, in comparison to
M̂1, M̂2 has a better compliance to MG.

3.4.2.3 Step III – Extracting mismatches from the list of all the matches

In this step, we exploit the transferred mesh M̂2 to extract the mismatches Op ↔ Oq from
the total matches Cp ↔ Cq. The process is similar to Step II except that this time all of the
matches are checked. We first transfer the template match points Cp to the image space
and form the set Cq̂. This is done by calculating barycentric coordinates of all the match
points Cp with respect to M and applying them on the new transferred mesh M̂2. We
define the following decision criterion to detect and remove mismatches:

d3(i) = ∥q̂i − qi∥ ⩾ d3th (3.10)

Unlike Step II where we used the MAD criterion to remove just a small rate of mis-
matches, this time we use a constant threshold d3th . This is due to the higher percentage
of mismatches compared to Step II. In order to make this distinction method more robust,
we consider d3th as the multiplication of a sample length ls and a constant coefficient αs.
The sample length ls is a measure of the size of the object in the image in pixels and is cal-
culated as the average distance between all the mesh points in the transferred mesh M̂2.
To choose a proper value for the constant coefficient αs, a series of synthetic data exper-
iments with the same three scenarios as before (Dense, Moderate, and Sparse) and four
different correct match rates was performed. The results are presented as ROC (Receiver
Operating Characteristic) curves in Figure 3.8.a-c. Each point represents the average TPR
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FIGURE 3.7: Results of applying the first two steps of the algorithm myNeighbor in synthetic
data experiments in three different scenarios; Dense (1000 matches), Moderate (200 matches),
and Sparse (50 matches). Each curve is the average result of 1000 trials. The first row gives ns
and AoS from Step I for two different values of MFth. The second row gives the results of Step

II in comparison to the results of Step I with MFth = mean(MF).

FIGURE 3.8: ROC curves resulting from the algorithm myNeighbor in synthetic data exper-
iments in three scenarios; Dense (1000 matches), Moderate (200 matches), and Sparse (50
matches). Each point is the average result of 1000 trials calculated with a specific value of

d3th .
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FIGURE 3.9: Performance evaluation of our mismatch removal method myNeighbor in compar-
ison to the state-of-the-art methods using the FREX protocol. The first row shows the Aruco
template and three selected images (14, 47, 60) of the deformation of the printed Aruco tem-
plate. The following rows show five datasets of generated scenes with the texturemap in the
first column, three generated images corresponding to the first row in the next columns, and
the ROC curves of the mismatch removal algorithms in the last column. For each of the images

M̂3 from myNeighbor is overlaid.

(True Positive Rate) versus the average FPR (False Positive Rate) computed in 1000 trials
using a specific value of αs in the range of [0, 1]. TPR is calculated as the number of se-
lected true mismatches over the number of all true mismatches, and FPR is calculated as
the number of true correct matches mistakenly selected as mismatches over the number
of all true correct matches. Ideally, all the mismatches should be discarded (TPR=100%)
without discarding any correct matches (FPR=0%). Hence, the most favorable αs in a
single ROC curve is the one that results in the maximum possible TPR leaving the FPR
below a reasonable value. We choose αs = 0.15 which keeps TPR above 90% while FPR
remains below 10% for most of the cases. The last column of Figure 3.5 illustrates the
estimated correct matches (in green) and the estimated mismatches (in red) for each case.
We also use the estimated correct matches to estimate warp W3 and transfer M to I and
form M̂3 (shown in cyan). As can be seen, there is a high compliance between M̂3 and
MG. It should be noted that estimating W3 and M̂3 is not necessary in myNeighbor and
we merely estimate them just to visually present the effectiveness of the algorithm in re-
moving the mismatches. However, considering myNeighbor as a step in ROBUSfT, due
to the fact that the final estimated correct matches are passed from this step to Step 3 of
ROBUSfT which is warping, W3 and M̂3 can also represent W and M̂ in the warping step,
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respectively.

3.4.3 Mismatch removal results

In this section, we demonstrate the efficiency of myNeighbor by evaluating its perfor-
mance through various tests. We first compare the results of the algorithm with the
state-of-the-art algorithms in the literature by testing them through FREX. The experi-
ment includes 60 frames of continuous deformation of the Aruco template in front of the
camera. Five datasets were generated in this experiment each with an arbitrary texture
with a challenging pattern. Three different types of backgrounds were also considered
for these five cases, specifically two original backgrounds, two white backgrounds, and
a background with a pattern similar to one of the texturemaps. We apply all the mis-
match removal algorithms on all datasets. For each dataset, the corresponding arbitrary
texture was used as the texturemap for the mismatch removal algorithms. The matches
between the texturemap and each image of the dataset are extracted using SIFT. The re-
sults are presented in Figure 3.9. The first row illustrates the Aruco template and also
three selected original images of its deformation in front of the camera. The lower rows
represent the five datasets generated by FREX. Each row shows the arbitrary texture of
the dataset in the first column, the three selected generated images, and eventually the
resulting ROC curves for all the mismatch removal algorithms on the dataset. In the
ROC curves, for a certain algorithm and a certain dataset, each point is the average value
of TPR and FPR over all 60 images of that dataset using a specific value for the thresh-
old used in the algorithm. As can be seen, in all cases, our algorithm outperforms the
other algorithms. In order to show the performance of our algorithm visually, for each
dataset, we overlaid M̂3 for the three selected frames. As can be observed, the transferred
meshes are visually well-aligned to the 2D deformed shape of the object. In some cases, a
small number of irregularities can be observed in certain areas (for example in the Matrix
poster). This is because of the presence of a small number of mismatches in our list of
estimated correct matches and the lack of matches in those areas. As for comparing the
execution speed of different mismatch removal algorithms, the process run-times for all
the frames of all datasets were averaged and tabulated in Table 3.1. It shows that our
algorithm is faster than the others. It should be however noted that our algorithm is
implemented in C++ while the others are in Matlab.

After validating the efficiency of myNeighbor in comparison to the state-of-the-art al-
gorithms in the literature, we evaluate its performance in real cases. To this end, we
applied our algorithm to four real deforming objects as shown in Figure 3.10. We chose
these cases in such a way that each one is challenging in a special way. The cases in-
clude a cushion with non-smooth surface and severe deformation, a Spiderman poster
deformed in a scene with background covered with almost the same posters, a shoe sole
with an almost repetitive texture, and a shirt with elastic deformation. The texturemaps
are shown in the first column of Figure 3.10. The second to fourth columns show the
results of Step I to Step III of myNeighbor. In each step, the alignment of the correspond-
ing transferred mesh to the 2D shape of the deforming object can be considered as an
indication of the correctness and abundance of the estimated correct matches. Like in the
synthetic data experiments, this alignment improves progressively in different steps of
our algorithm. One point that should be noted here is that the shirt (the last case in Fig-
ure 3.10) is elastic. We exert a non-isometric deformation on it by pulling from both sides,
and myNeighbor still works. This is due to the fact that we did not make any assump-
tion regarding isometry. In fact, the only assumption that we made is the preservation of
neighborhood structure in the deforming object. As a result, myNeighbor also works with
non-isometric deformations which preserve neighborhood structure.
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Method Average run-time (s)

myNeighbor 0.0139
Tran et al. [TCC+12] 0.0206
Pizarro et al. [PB12] 1.8925

Famouri et al. [FBA18] 0.0171

TABLE 3.1: Comparison of the average run-time of the mismatch removal algorithms for pro-
cessing all the images of all the datasets.

FIGURE 3.10: Applying myNeighbor on four real cases: a cushion, a Spiderman poster, a shoe
sole, and an elastic shirt. The first column shows the texturemaps. The second column shows
Step I. All the matches are shown in this column while the selected matches in Step I are shown
in green. These selected matches are transferred to column three that shows Step II. In this
column, those matches which are chosen as possible mismatches are shown in red. The last
column is the distinction between the estimated correct matches (in green) and the estimated
mismatches (in red) in Step III. The meshes M̂1, M̂2, and M̂3 are overlaid to illustrate the com-

puted warps.

3.5 Experimental Results

We evaluate the performance of ROBUSfT on different deforming objects in various con-
ditions. We divide this section into two main parts; first, comparing the results with the
state-of-the-art methods and then evaluating ROBUSfT in several other challenging cases.
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FIGURE 3.11: Comparing the accuracy of the 3D shape inference methods with Particle-
SfT with three datasets obtained by FREX. The 3D shape inference methods are Brunet et
al. [BBH14], Chhatkuli et al. [CPB14], Bartoli et al. [BGC+15], Ostlund et al. [ÖVNF12], and

Salzmann et al. [SF10].

3.5.1 Comparison to the state-of-the-art methods

We compare ROBUSfT with the state-of-the-art methods through two different tests. The
first test is conducted among the shape inference methods (G1). The second test is carried
out among the integrated methods (G2) and the DNN-based methods (G3).

Comparison to G1 methods. We use FREX to conduct the first test. To this end, the
same 60 images of deforming Aruco marker paper sheet are used. We create three dif-
ferent datasets using three arbitrary texturemaps and apply a white background to all
the scenes. The arbitrary texturemaps include a painting, the Joker poster, and a paper
sheet filled with basic geometric shapes. These images are shown in Figure 3.11. In each
dataset, we compare the result of the last two steps of ROBUSfT (warp estimation and
3D shape inference) with five other shape inference methods from Brunet et al. [BBH14],
Chhatkuli et al. [CPB14], Bartoli et al. [BGC+15], Ostlund et al. [ÖVNF12], and Salzmann
et al. [SF10]. A similar comparison was made in [ÖB17] on another dataset. However,
in [ÖB17], a random 3D shape was used as the initial guess for Particle-SfT algorithm in
each image of the video; in contrast, we use the 3D inferred shape of the object in each
image as the initial guess for the next image. In each dataset, the matches between P
and each image are extracted using SIFT. We then separate the correct matches and use
them as the input for all the methods. If required by a shape inference method, a BBS
warp is estimated based on these correct matches and used as the input to that shape
inference method. The results for all three datasets are presented in Figure 3.11 as the av-
erage 3D error between the 3D inferred shapes and the ground truth. As can be observed,
Particle-SfT provides the lowest value of 3D error in comparison to the other methods.
This is more apparent in the datasets with lower number of matches. In the last dataset,
there are several discontinuities in the 3D error graph of state-of-the-art methods. This
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is due to the failure of shape inference in those images of the video by those methods.
Particle-SfT, however, succeeds to infer the 3D shape of the object in all of the images
with a reasonable error.

Comparison to G2 and G3 methods. For the second test, we ran ROBUSfT on the public
dataset provided in [VSSF12]. The dataset includes the 2D correspondences as well as 3D
Kinect data of 193 consecutive images of a deforming paper. The paper is planar and no
occlusion appears in the series of images. We compared our results with the integrated
and DNN-based methods. This is shown in Figures 3.12 and 3.13, and Table 3.2. The inte-
grated methods include Famouri et al. [FBA18] and Ngo et al. [NÖF15]. Here, we use the
results of applying these methods on all the dataset frames provided in [FBA18]. As can
be observed in Figure 3.12, ROBUSfT is more precise in most of the frames. It is also faster
than the compared methods. It should be noted that ROBUSfT used directly images as the

FIGURE 3.12: Comparison between the results of applying ROBUSfT and the integrated meth-
ods, i.e., Famouri et al. [FBA18] and Ngo et al [NÖF15] on the public dataset provided
in [VSSF12]. (a) Mean absolute 3D error between the inferred shape and the ground truth.

(b) Execution time in milliseconds.

input and covered the whole process from extracting keypoints to 3D shape inference.
In contrast, the two integrated methods used the already available correspondences in
the dataset. Next, we compare ROBUSfT with two deep object-generic monocular recon-
struction methods, i.e., DenseDepth [AW18] and BTS [LHKS19]. The importance of these



52 Chapter 3. ROBUSfT: a Real-Time Monocular Shape-from-Template pipeline

FIGURE 3.13: Comparison between the depth map resulted from applying ROBUSfT and
the deep object-generic monocular reconstruction methods, i.e., DenseDepth [AW18] and
BTS [LHKS19], on one frame of the dataset provided in [VSSF12]. To make a fair comparison,
the depth RMSE is calculated using the pixels from the segmentation mask. This segmentation

mask is estimated in the registration step of ROBUSfT.

methods is that, similar to ROBUSfT, they do not need to be trained for any new object.
For both methods, we use the model pre-trained with the NYUDepth dataset [SHKF12],
which is a collection of RGB-D images from indoor scenes with various common ob-
jects. We compare the resulting depth maps from ROBUSfT and these two methods. This
comparison is shown for one frame of our test dataset in Figure 3.13. To make a fair
comparison, the depth error is computed only for the object’s surface and not the whole
scene. This is done by considering the pixels from the segmentation mask which is es-
timated in the registration step of ROBUSfT. As can be observed, the deep object-generic
monocular reconstruction methods are unable to predict the depth of the object. This is
also discussed in [FJPCP+22] as they showed that these methods require fine-tuning to
be able to estimate the deformation of specific objects. Another issue with these methods
is the lack of registration. In other words, these methods only provide the depth map
and not the shape of the object in 3D space. Consequently, an additional registration
method should be used to register the object to the depth map so that the 3D shape of
the object can be estimated. Our last comparison is with the DNN-based SfT methods. In
contrast to the deep object-generic monocular reconstruction methods, DNN-based SfT
methods are trained for specific objects using synthetic and real datasets and are capable
of handling both registration and reconstruction. The compared methods include HDM-
Net [GSVS18], IsMo-GAN [SGTS19], DeepSfT [FJPCP+22], and RRNet [FJPCP+21]. The
comparison is shown in Table 3.2. We compare the average errors of applying these meth-
ods on 50 frames of the dataset [VSSF12] presented in [FJPCP+21] to the average error
of applying ROBUSfT on the same frames. As can be seen, ROBUSfT is more precise than
DNN-based SfT methods. One point that should be noted here is that these results are
achieved while, as it is explained in [FJPCP+21], the DNN-based SfT methods are already
trained on this dataset. ROBUSfT, however, does not need any prior training. In terms of
execution speed, several of the DNN-based SfT methods are faster than ROBUSfT. We,
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Method Average error (mm) Average execution time (ms)

ROBUSfT 3.56 50
HDM-Net [GSVS18] 17.92 40
IsMo-GAN [SGTS19] 15.91 96
DeepSfT [FJPCP+22] 6.97 49
RRNet [FJPCP+21] 8.63 16

TABLE 3.2: Comparison between the average 3D error resulted from applying ROBUSfT and the
DNN-based SfT methods, i.e., HDM-Net [GSVS18], IsMo-GAN [SGTS19], DeepSfT [FJPCP+22],

and RRNet [FJPCP+21] on 50 frames of the public dataset provided in [VSSF12].

however, note that in this test, we use a serial CPU-GPU architecture instead of a parallel
one. This is done to make sure that the captured image that we analyze and the ground
truth that we compare to are for the same image. This consequently reduces the execu-
tion speed of our code compared to the parallel architecture. In conclusion, considering
generalizability, efficiency, and execution speed, ROBUSfT achieves better performance in
comparison to the state-of-the-art methods.

3.5.2 Evaluation of ROBUSfT

Evaluation on daily objects. We first evaluate the efficiency of ROBUSfT in three real
cases. These cases are shown in Figure 3.14. The tested objects are a Spiderman poster, a
chopping mat, and a t-shirt. In each case, the object is deformed in front of a 3D camera
with which we capture both RGB image and the depth of each point on the object. We use
the measured depth as ground truth for evaluating the reconstructed 3D shape. We use
the Intel RealSense D435 depth camera and built-in libraries for aligning the depth map
to the RGB image. For each case, four images of the experiment are shown in Figure 3.14.
In the first case, we set the resolution of the camera to 640 × 480. In the second and
third cases, we increased it to 1280 × 720 due to the insufficient number of detected key-
points using the previous resolution. Below each image, the reconstructed 3D shape of
the deforming object along with the 3D coordinates of the estimated correct matches (red
particles) as well as their ground truth (green particles) are shown. The 3D coordinates of
the estimated correct matches are estimated by calculating their barycentric coordinates
in P with respect to M and applying these coordinates on the 3D reconstructed mesh of
the object. The number written below each frame is the median distance between the re-
constructed 3D coordinates of the estimated correct matches and their ground truth. The
median is chosen due to the probable existence of mismatches among the list of estimated
correct matches. In 3D space, the ground truth of these mismatches can be located in the
background and not on the object itself. This significantly increases the 3D shape error.
Using the median gives a better estimate of the 3D shape error considering the existence
of this small percentage of mismatches with large 3D errors.

As can be observed, the pipeline succeeds to infer the 3D shape of the object in all of
the cases. This success is more visible in the second and third cases due to the relative
scarcity of keypoints and existence of repetition in their patterns. Regarding the Spider-
man poster case, it should be noted that there are self-occlusions in the first and third
illustrated images. In these images, the 3D shape of the object in the occluded areas is
estimated by the deformation constraints implemented in Particle-SfT. These constraints
preserve the geodesic distance between each pair of mesh points as its initial value in MT.
Regarding the runtime, using the parallel architecture and 640 × 480 captured frames as
the input (as in the Spiderman poster case), the execution speed reaches 30 fps.
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FIGURE 3.14: Evaluating ROBUSfT in three real data experiments; a Spiderman poster, a chop-
ping mat, and a t-shirt. The texturemaps of the templates are shown in the first column. For
each case, four images are shown. Below each frame, the reconstructed 3D shape of the deform-
ing object with the estimated 3D coordinates of the estimated correct matches (red particles) as
well as their ground truth (green particles) are shown. The 2D projections of the 3D inferred
shapes are also overlaid on the image. For each image, the median Euclidean distance between
the estimated 3D coordinates of the estimated correct matches and their ground truth is given

below the reconstructed shape.
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FIGURE 3.15: Evaluating ROBUSfT in a real data experiment with two robotic arms; soft con-
straints are applied to bind the constrained mesh points to the grippers. Each row shows three
images: the original camera view, the projection of the 3D reconstructed mesh on the camera

view, and the 3D reconstructed mesh with the robots in the RViz environment.

Evaluation on a robotic use case. The last experiment is a practical use case with robots.
The experiment aims at highlighting the advantage of using known 3D coordinates in
ROBUSfT. As mentioned in Step 4 and shown in Figure 3.15, these known coordinates are
an optional input to the last step of ROBUSfT. Their usage can increase the robustness
of the tracking process. The setup of this experiment is the same as in Chapter 4 of this
thesis, where we applied ROBUSfT in a robotic case, specifically, controlling the shape of
deformable objects. The setup consists of two robotic arms grasping and manipulating
the Spiderman poster from both sides and a top camera facing the manipulation area.
The 3D positions of the two robotic grippers are known in camera coordinates thanks to
the known pose of each gripper in the robots’ coordinate frames and also the external
calibration between the robots and the camera. For each gripper, we consider the closest
mesh point to the gripper as a constrained mesh point. These mesh points should be
bound to their corresponding gripper and move with it. This binding is performed using
a soft constraint. In this soft constraint, for each gripper, a sphere with a small radius cen-
tered at the gripper’s 3D position is considered. Then, in each iteration of Particle-SfT,
if the corresponding mesh point is outside this sphere, it will be absorbed to the closest
point on the sphere surface. This soft constraint has two main advantages over rigidly
binding the constrained mesh points to the grippers: first, it lets the position-based dy-
namic equations in Particle-SfT that preserve the distances between the mesh points be
applied on the constrained mesh points, which leads to a smoother reconstructed shape.
Second, it allows us to cope with small possible errors in robot-camera calibration. In
fact, a wrong robot-camera calibration leads to a wrong transfer of the grippers’ 3D coor-
dinates to the camera coordinate frame which eventually results in wrong coordinates of
the constrained mesh points. By using the soft constraint and considering a sphere rather
than a rigid bind, we give a certain degree of flexibility to the constrained mesh points
to move in close proximity to the gripper’s coordinates. This can compensate for slightly
inaccurate coordinates of the grippers.
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3.6 Conclusion and future work

We have proposed ROBUSfT, a publicly available C++ library that can effectively track the
3D shape of an isometrically deforming object using a monocular 2D camera. ROBUSfT

outperforms the state-of-the-art methods. The proposed pipeline addresses the well-
known challenges in this area. These challenges include ambiguities in inferring the 3D
shape of the deforming object from a single 2D image and real-time implementation. We
have introduced myNeighbor, a novel mismatch removal algorithm for deforming objects,
which works based on the preservation of the neighborhood structure of matches. We
validated the efficiency of myNeighbor in comparison to the state-of-the-art algorithms in
numerous experiments. In order to compare ROBUSfT and myNeighbor with the state-of-
the-art methods in the literature, we have presented a novel type of experimental protocol
called FREX (Fake Realistic Experiment). This protocol is executed once, but it provides
a large number of resulting scenes of an isometrically deforming object in various condi-
tions with 2D and 3D ground truth. This collection can be used to evaluate, compare, and
validate algorithms regarding isometrically deforming objects. In addition, the provided
2D and 3D ground truth may be used for training learning-based algorithms. In contrast
to other artificially made scenes of an isometrically deforming surface, the generated im-
ages in our protocol are the result of real isometric deformations.

Possible directions for future work include exploiting the silhouette of the object in
the image for improving 3D shape inference in challenging cases such as weakly-textured
objects and extending ROBUSfT to volumetric objects.
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Chapter 4

As-Rigid-As-Possible Shape
Servoing

4.1 Introduction

In the previous chapter, we proposed an SfT method for shape tracking of isometrically
deforming thin-shell DOs. In this chapter, we focus on shape servoing. Specifically, we
propose a shape servoing approach based on ARAP for thin-shell DOs. In this approach,
we use ARAP to estimate a deformation Jacobian. We then propose a control scheme
based on this Jacobian. The proposed scheme drives the object to a desired 3D shape
using as feedback the object’s measured current 3D shape. The scheme is simple to im-
plement, and it avoids some typical requirements in existing work: specifically, we do
not need to know the object’s mechanical deformation parameters, and we avoid using a
Jacobian that is computed from data collected over a time window while the robots are
in motion, as this approach is known to be susceptible to noise. We test the proposed
scheme in bi-arm shape servoing experiments with a variety of deformable objects of
different material (paper, rubber, plastic). Tracking of the deformable object’s surface in
our experiments is performed using ROBUSfT from Chapter 3. The experimental results
validate the practicality of our scheme. A video of our experiments can also be found at
https://youtu.be/1w2tbgjLrUs.

Chapter outline. We present the problem formulation and main assumptions in Section
4.2. The process of computing the deformation Jacobian including the usage of ARAP
is described in Section 4.3. Section 4.4 describes the control law based on this Jacobian
and discusses the stability. The shape tracking method used in the experiments is ex-
plained in Section 4.5. We validate our control scheme in Section 4.6. Finally, Section 4.7
concludes this chapter and suggests future directions.

4.2 Problem formulation

The shape servoing problem we address consists of manipulating a DO in a feedback
control loop to drive it to a desired shape. A flowchart of our proposed solution can be
found in Figure 4.1. We consider a set of robots M = {1, ..., m} whose grippers grasp
the object. A sensor (2D camera) viewing the object is used to provide the feedback. We
assume the relative poses of the camera frame and robots’ frames are all known, as well
as the robots’ kinematic models. We want to design a control scheme that will compute
a 6-DOF velocity input associated with every gripper frame: vi = [υT

i , ωT
i ]

T, where we
stack the velocities for all in a column vector of length 6m: v = [vT

1 , ..., vT
m]

T.
We define the shape of the object as the shape of its surface. We use a triangular

surface mesh to represent this shape. The resolution of the mesh is chosen such that
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FIGURE 4.1: Flowchart of the proposed shape servoing scheme. Online components in solid
blue lines, offline components in dashed orange lines.

it represents with sufficient accuracy the geometry of the surface both in its initial and
desired shapes. We call the set of mesh nodes N = {1, ..., n}. Henceforth, by shape we
refer to the 3D positions of the nodes of the chosen mesh. These positions are expressed
in the camera frame. We define different shapes to be used in the control scheme:

• Current shape, s.

• Desired shape, s∗, which defines the control goal.

• Undeformed shape, su, used in the ARAP model.

• Initial shape, s0 = s(t = 0).

Each of them has size 3n × 1 and is a stacking of the node positions. More precisely, the
current position of node i is named si, and we define s = [sT

1 , ..., sT
n ]

T (analogously for
the other shapes). s∗ and su are assumed to be known before starting the servoing task.
The measurement of s obtained from the camera at every time instant is available to the
control scheme. We formulate the shape servoing task in terms of the following error:

e = s − s∗. (4.1)

Driving this error to zero means the task has been completed.

4.2.1 Assumptions on object and robots

We assume the following regarding the object’s behavior and its interaction with the
robots:

• The robot controller can set exactly the 6-DOF velocity at which the grippers move
at every instant. The grippers grasp the object firmly throughout the task. The
object’s shape stays statically stable (i.e., in quasi-static equilibrium), and reacts
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smoothly to the robot motions; i.e., infinitesimally, the change of shape under grip-
per displacements can be modeled by a deformation Jacobian JO(s) [Ber13,NAYW+16,
NAL18]. Therefore, the following relation holds:

ṡ = JO(s)v. (4.2)

• The object has a tendency to resist deformation and to maintain local rigidity, to
the extent allowed by the external forces acting on it. This corresponds to an elastic
(not plastic) behavior.

• The desired shape is a shape that the object can take (i.e., it is feasible). It is also
reachable, (i) with the available actuation (i.e., for the number of grippers used and
for their specific placement on the object) in the robots’ shared workspace, and (ii)
by a monotonic decrease of the shape error e, starting from the initial shape.

4.3 Deformation Jacobian computation

Our idea is to compute, using the ARAP model, an approximation of the unknown Jaco-
bian at the current shape JO(s). Specifically, we compute numerically a Jacobian JA(s) by
simulating the ARAP model. The procedure is described next.

4.3.1 Finite-difference estimation

To compute the Jacobian, we need to link the robot gripper frame with the ARAP mesh.
To do this, for each robot i we define a rigid set Si ⊂ N , with |Si| = nSi such that the nodes
contained in Si are rigidly coupled with i’s gripper. A simple way, which we used in our

FIGURE 4.2: Definition of a rigid set coupled with the gripper. The four mesh nodes forming
the rigid set are encircled in yellow.

tests, to define Si is to choose it as the set of nearest neighbors: i.e., the four nodes that
surround the gripper i (see an illustration in Figure 4.2). This set can be identified from
the knowledge of s0 and the gripper position in 3D. As Si contains at least three nodes
whose positions are not aligned, we can associate a Cartesian frame, Fi, to it. To do so,
let us define the positions of the nodes in Si as sSi ∈ R

3nSi . Then, we establish a mapping
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fi : R
3nSi → SE(3). This mapping gives the frame’s pose ξi = fi(sSi ). Conversely, the

positions of the nodes for the frame’s pose are obtained as: sSi = f−1
i (ξi).

We parameterize the motion of Fi by 6 DOF (3 translational, 3 rotational). Starting
from the current shape s, we simulate a perturbation of one DOF. This is the standard
first step in finite-difference estimation. It gives us a new ξi. We compute the positions of
the nodes sSi = f−1

i (ξi), and run the simulation of ARAP (see Section 4.3.2). This gives
the new stable shape of the object after the perturbation. Using this new stable shape we
apply standard forward finite differences to estimate the column of JA(s) corresponding
to the perturbed DOF using equation 4.2. Repeating this procedure for all DOF (6 for
every Si) gives the full matrix. Figure 4.3 presents a summary of estimating procedure of
JA(s).

FIGURE 4.3: A summary of estimating procedure of JA(s).

In experiments, we also test a reduced, translation-only, Jacobian. This is computed
by considering a single mesh node (i.e., a rigid set having only one element), and the 3
translational DOF only. This has the advantage of greater simplicity and is appropriate
when the object’s region moving rigidly with the gripper is small (e.g., a small contact
area on a slack object). Section 4.6 includes more details.

4.3.2 ARAP simulation

We implemented ARAP following the algorithm of Sorkine and Alexa [SA07]. ARAP
relies on an energy E that expresses the deviation from rigidity. A cell is defined for each
node in the mesh, comprising its first-order neighbors. We call this neighborhood Ni
for cell i. Then the global energy is formulated as the sum of energies over all cells, i.e.,
E = ∑i∈N Ei, where:

Ei = ∑
j∈Ni

wij||si − sj − Ri(su
i − su

j )||2. (4.3)

Each wij is a scalar encoding the connection between nodes i and j in the mesh. Ei ex-
presses the deviation from rigidity (i.e., from the undeformed shape) of the cell i. This is
because Ri is computed as the optimal rotation that minimizes Ei for given su, s. There-
fore, Ei measures only the non-rigid component of the difference between the two cell
shapes. ARAP works by computing a shape for the full object that corresponds to a min-
imum of E. This is explained next.

4.3.2.1 Optimal rotations

ARAP requires computing the optimal rotation Ri for every cell i ∈ N . For this we define
eij = si − sj, eu

ij = su
i − su

j , and the covariance matrix:

Si = ∑
j∈Ni

wijeu
ije

T
ij = Pu

i DiPT
i , (4.4)
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where Pu
i and Pi contain respectively eu

ij and eij, arranged in columns for j ∈ Ni, and Di is
a diagonal matrix that contains the wij for j ∈ Ni. Then one computes the Singular Value
Decomposition (SVD) of the matrix, i.e., Si = UiΣiV

⊺
i . From this, the optimal rotation is

obtained:
Ri = Vi diag(1, 1, det(ViU

⊺
i )) U⊺

i . (4.5)

Due to the requirement of computing an SVD for each Ri, this is the most computation-
ally expensive part of our implementation. We avoid some unnecessary calculations by
realizing that after perturbing a given DOF of a given rigid set (Section 4.3.1), Ri changes
only for the cells i that contain a node in the rigid set that has been perturbed. Therefore,
for the remaining cells, Ri only needs to be computed once, for the current shape s before
perturbation.

4.3.2.2 Linear system solution

ARAP divides the nodes into two groups: handled and free. The handled nodes are those
whose position is fixed directly by external constraints. The main idea of ARAP is that the
object will remain as rigid as possible under these externally fixed positions. Concretely,
the stable shape of the object in quasi-static equilibrium after the motion will be at a local
minimum of the energy E. For this, one enforces the gradient ∂E/∂si for every free node
i to be zero. This results in this equation for a free node i:

∑
j∈Ni

wij(si − sj) = ∑
j∈Ni

wij

2
(Ri + Rj)(su

i − su
j ). (4.6)

On the other hand, the positions of the handled nodes are defined as fixed. In our case,
the handled nodes are the nodes belonging to the rigid sets being perturbed. We fix their
positions as those computed after perturbation (see Section 4.3.1), which we call ci of
size nSi × 3 for rigid set i. Considering the equations for all nodes gives a linear system
expression: Lsm = b, where L is an n × n size Laplacian matrix, sm is the shape to be
computed (i.e., the new stable shape after perturbation), expressed in n × 3 format, and
b contains the right-hand side of (4.6). The handled node constraints are included as
rowsSi(sm) = ci for every rigid set i. The linear system expression consists of an individ-
ual system for each of the three coordinates. Since our meshes are relatively small (tens
of nodes), solving this linear system does not have a relevant effect on the overall compu-
tation time. We employ a standard least-squares solution method via the pseudoinverse
of the system matrix.

ARAP uses an alternating minimization strategy where the shape that locally mini-
mizes E is found by iterating the described procedure: i.e., the optimal rotations (Section
4.3.2.1) are recomputed with the new s and the linear system is solved again. In [SA07],
2-3 iterations of the alternating minimization are used for a scenario where a user interac-
tively moves the handled nodes in a visualization application. In our case, we use small
motions of the handled nodes to estimate the Jacobian. For this reason, we use a single
iteration. That is to say, we run each of the two steps (computation of optimal rotations
and solution of linear system) once. In practice, this provides accurate enough results
and a fast computation time.

4.3.3 Discussion

An interesting fact to highlight is that we compute the Jacobian using only the current
shape s, with no need for dynamic estimators. Moreover, the ARAP model is perfectly
suited to the quasi-static scenario we consider because this model computes the new
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stable shape directly without having to simulate, and keep track of, velocities of the mesh
nodes. The Jacobian computation is fast enough for real-time shape servoing: our non-
optimized implementation runs at 20 Hz or more, for two robots (12 DOFs), with meshes
ranging from 24 to 70 nodes. More details are given in Section 4.6.

4.4 Control law

We propose the following proportional control law, based on the ARAP Jacobian com-
puted as explained in Section 4.3:

v = −λ J†
A(s) e, (4.7)

where λ is a positive scalar gain and J†
A(s) is the pseudoinverse of the ARAP Jacobian.

Note that JA(s) was computed with respect to motions of Fi ∀i ∈ M, which are Cartesian
frames defined to represent the object’s rigid sets. Therefore v are velocities to be applied
to these rigid set frames. We transform for each robot i the velocity of the rigid set frame
to the velocity of the gripper frame rigidly coupled with it (Section 4.3.1). Note that for
every robot i the poses of these two frames are known at each instant. The resulting
gripper Cartesian velocities are sent to the robots. We assume the rigid sets are fixed (i.e.,
a robot is coupled with the same region of the object throughout the task). However, note
that we do not assume a specific fixed geometry of the coupling between the gripper and
the object. Therefore, an important fact to highlight is that our control scheme is robust to
minor changes, such as moderate slippage, of the grasping conditions during servoing.

4.4.1 Stability discussion

The control law (4.7) is a classical one in visual servoing. Our control scheme is un-
deractuated. For typical mesh sizes the number of features to be controlled (3n) clearly
exceeds the number of actuated degrees of freedom (6m). Therefore, global stability (i.e.,
convergence to the desired shape from any initial condition) cannot be guaranteed when
using (4.7). As discussed in, e.g., [CH06], with this control law the system is stable locally
around the equilibrium s∗ if J†

A(s) and JO(s) have full rank and the product J†
A(s) JO(s) is

a positive definite matrix.
Two important facts to note are: (i) J†

A(s) JO(s) can be positive definite as long as
JA(s) approximates JO(s) not too coarsely [CH06]. Therefore, precise knowledge of the
Jacobian JO(s) is not needed. (ii) We are just approximating the object’s instantaneous
reaction to forces, not its behavior over a long time horizon. Doing the latter would be
challenging without knowledge of a deformation model for the specific object being ma-
nipulated. Considering these two facts and under the assumptions made (Section 4.2.1),
it is reasonable to use ARAP to represent, via JA(s), the object’s instantaneous tendency to
preserve rigidity when subjected to forces. ARAP’s principle is to approximate geomet-
rically the behavior of real physical objects, and its ability to do so has been extensively
validated in diverse applications. We verify the stability and suitability of the scheme in
our experiments.

4.5 Shape tracking

To measure s, we employ ROBUSfT from Chapter 3. We use su as the 3D template of the
object. We also use an overhead photo of each object while being undeformed as the
template’s texturemap. The known 3D positions of the grippers, which are coupled with
the object, are used as constraints in the inference of s. As explained in Chapter 3, this
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makes the inference more precise and robust. The process of applying these constraints is
to first identify in the camera image, the closest mesh node to each gripper. Then, during
tracking, the 3D position of that node can be defined as equal to the known 3D position
of that gripper in the camera frame. However, due to the possible errors in robot-camera
relative calibration, we use a soft constraint instead. In this soft constraint, for each grip-
per, we consider a sphere with a small radius centered at the 3D position of the gripper.
The constraint is that if the corresponding mesh node is outside this sphere, it will be
absorbed to the closest point on the surface of the sphere. As explained in Chapter 3, the
tracking process is performed at a high frame rate (around 30 fps) to be used with our
servoing scheme in real-time. It should be noted that shape tracking and shape servoing
are executed on two separate computational units in a parallel architecture (see Section
4.6.1).

4.6 Experiments

In this section, we present the experimental results. A video of our experiments can also
be found at https://youtu.be/1w2tbgjLrUs.

4.6.1 Experimental setup

We validate the effectiveness of our proposed scheme through different tasks conducted
with two Franka Emika robot arms each with 7 DOF. s would be equal to the 3D shape
of the deformed object inferred by ROBUSfT. The input for ROBUSfT is provided by a
calibrated Logitech C270 webcam installed on top of the two robots facing downward.
We also externally calibrate the camera with the two robots using Moveit Hand-eye cal-
ibration plugin. The entire setup is shown in Figure 4.4. Both the shape tracking and

FIGURE 4.4: View of our experimental setup during testing of bi-arm visual shape servoing of
a rubber tire tread with an overhead monocular camera.

shape servoing codes were written in C++ and run on a Dell laptop with an Intel Core
i7 CPU, an NVIDIA Quadro T1000 GPU and 16GB RAM. The shape tracking and shape
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TABLE 4.1: Parameters of the shape servoing tasks.

Task 1 2 3 4 5 6 7

Mesh Type (Regular/Irregular) R R R R R R I
Mesh Nodes 7x10 4x6 6x8 6x8 6x8 6x8 40

Control Computation (Hz) 20 30 24 24 24 24 26

servoing are implemented as two separate ROS nodes that communicate in parallel with
each other. We also implement the control of the robots in ROS using Cartesian velocity
control.

4.6.2 Shape servoing tasks

We report the results of 7 shape servoing tasks involving 4 distinct objects: a Spiderman
poster, a place mat, a piece of tire tread and a shoe sole. The general information of each
task including the tested object, initial, desired, and final shapes of the object, several
snapshots of the evolution of the task, and finally the error (RMS of e) graph are shown
in Figure 4.5. The process of each task starts by firstly setting the desired shape of the
object. This is done by manually moving the two arms while grasping the object. We
infer and store this desired shape using our shape tracking pipeline. This desired shape
is indicated as a red mesh in the RViz visualization shown in Figure 4.5. Afterwards, we
manually move the two robot arms to set the deforming object in its initial shape. We then
start the task. This current shape is indicated as a blue mesh with green nodes in the RViz
representation. In order to avoid reflexes (which abort the motion) in the robots caused by
sudden and non-smooth movements, we increase the gain progressively at the beginning
of the robots’ movement. Moreover, we saturate the translational and rotational velocities
sent to the robots.

To validate the generality of the proposed scheme, the defined tasks cover diverse
materials with different stiffness, various deformations, and several mesh sizes. We also
evaluate the behavior under effects such as uncertainty of the grasping and unstable
shape tracking conditions, as described below. The main parameters of each task are
tabulated in table 4.1. In the following, we explain the tasks in more detail.

Task 1. This task aims to deform a Spiderman poster printed on an A4 paper by just
applying translation to the robot grippers without any rotation (see Section 4.3.1). To
this end, in each side of the paper, we select only one mesh node as rigid set. As a
result, ARAP shape servoing controller merely updates the translational velocity of the
robots. In order to achieve a reasonably low error at the end of task, we tried to keep
the rotational pose of the grippers unchanged during setting both the desired and initial
shapes of the Spiderman poster.

Task 2. This task is conducted with a place mat that is made out of plastic which is
stiffer than paper. In this task, in contrast to Task 1, we start from a highly deformed
initial shape to a slightly deformed desired shape. The desired shape is both translated
and rotated in different directions with respect to the initial shape.

Task 3. This task is carried out with the place mat but with a downward-curved desired
shape and a denser mesh. This illustrates that the servoing scheme is not tied to a specific
mesh for a given object. One can use different meshes as long as they capture the object’s
geometry precisely enough.
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Task 4. This task is also performed with the place mat with almost the same initial
and desired shapes as Task 2. The major change that we made is displacing grippers
at the initial shape with respect to their locations when the desired shape was formed.
Specifically, we displaced each gripper to its neighbor rigid set on the place mat in inverse
directions with respect to each other. We then run the control scheme and try to reach the
desired shape using these two new rigid sets.

Task 5. The object used in this task is a piece of tire tread from a heavy vehicle. In order
to make it recognizable by our shape tracking pipeline, we added some texture on its
surface by writing on it using a white marker.

Task 6. This task is also performed with the tire tread but with an upward-curved de-
sired shape.

Task 7. The shoe sole made of rubber used in this task is the stiffest among our deform-
ing objects. We use an irregular triangular mesh to represent this object in both shape
tracking and shape servoing algorithms. In order to make the shoe sole detectable by our
shape tracking pipeline, we highlighted the available grooves on it and also drew some
new lines on its surface using a black pen.

4.6.3 Results and Discussion

The proposed ARAP shape servoing scheme is able to accurately accomplish all the tasks
covering different materials, desired shapes, and mesh sizes. As shown in the RViz rep-
resentations in Figure 4.5, in each task, the controller moves the robots gradually to con-
form the shape of the deforming object to the desired shape. The shape RMS error for
each task is illustrated in the last column of the Figure 4.5. As can be observed, some
noise is present in a few of the shape RMS error graphs. This noise is introduced by
the shape tracking pipeline. One could apply a temporal averaging to the positions of
the object mesh nodes between consecutive frames in the shape tracking pipeline. This
could diminish the noise and provide a more stable 3D inferred shape. However, our
goal here is to show that our ARAP shape servoing scheme is robust against these noises
and converges successfully in their presence.

Another point that should be noted is that the control scheme can be robust to changes
of the grasping configuration. To clarify this, we illustrate in Figure 4.6 the pose of the
grippers in the desired and final shapes of Task 4 and Task 5 with green and red dashed
lines, respectively. In Task 4, the relative poses of the grippers and their corresponding
rigid sets are changed manually before starting the task. In Task 5, in turn, the right
gripper rotated due to the slippage during the task while remaining in the same rigid set.
Despite these changes in the relative pose of the grippers with respect to their grasping
points, the shape servoing scheme managed to accomplish both tasks thanks to guiding
the rigid sets under a closed control loop. As long as the grippers remain coupled with
the guiding rigid sets, the deforming object can converge to the desired shape.

We note that if the desired shape is unreachable or infeasible, the scheme converges
to a shape corresponding to a local minimum of the error. Finally, we compare the pre-
diction capability of our ARAP deformation Jacobian and the diminishing rigidity (DR)
Jacobian used in [Ber13, MDRB20]. For this we use some of the less noisy data from our
servoing tasks. As comparison metric we use the cosine similarity between the measured
ṡ vector and each of the two predicted ones. The closer the values of this metric to 1,
the better the alignment between the two vectors. From table 4.2, the ARAP Jacobian
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FIGURE 4.5: Results for the seven tasks. For each we show, from left to right: image of the
undeformed object; initial, desired and final shape (camera images on top, images from an
external camera on bottom); initial, intermediate and final shapes represented in RViz; and

evolution of error (RMS of e) over time.

TABLE 4.2: Performance evaluation of shape change prediction.

Task 1 3 5

Jacobian Avg Std Avg Std Avg Std
ARAP 0.839 0.045 0.816 0.052 0.890 0.029

DR 0.663 0.388 0.822 0.144 0.728 0.273

exhibits better accuracy (higher averages, Avg) and stability (lower standard deviations,
Std) overall.
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FIGURE 4.6: Comparison between the poses of the grippers in the desired (green lines) and the
final (red lines) shapes in Tasks 4 (top) and 5 (bottom). In Task 4 the grippers were displaced

manually. In Task 5, the right gripper rotated due to slippage during the task.

4.7 Conclusion and future work

The proposed shape servoing scheme based on ARAP is effective and simple, without
requiring any prior knowledge of the mechanical parameters of the object. Our experi-
ments have shown that it works well with a wide range of DOs. However, this approach
has its limitations. For example, the servoing is limited to thin-shell objects or surfaces of
volumetric objects. Moreover, the effect of gravity is not considered in this work, which
may be necessary for low-stiffness objects like cloth. To extend this work, in the next
chapter, we introduce lattice-based shape servoing, which is a novel approach that can
handle any form and geometry of DOs. We also address the issue of partial shape servo-
ing, where only a specific part of the object needs to be controlled to achieve the desired
shape.
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Chapter 5

Lattice-based shape tracking and
servoing

5.1 Introduction

In Chapter 3, we proposed a monocular shape tracking method for isometrically deform-
ing thin-shell DOs, and in Chapter 4, we introduced a shape servoing approach based
on ARAP for thin-shell DOs. However, these methods suffer from the limitation of being
applicable only to thin-shell DOs. In fact, this is a well-known limitation in the literature
of DOs, as most shape tracking and servoing studies are focused on a specific form of
DO, i.e., linear, thin-shell, or volumetric. This is due to the different deformation charac-
teristics and simplifications made for each object form. While some approaches handle
multiple object forms, they are often limited to simple scenarios with small deforma-
tions [MDRB20, ZNAPC21, HHS+19]. This is our motivation for this work. In this chap-
ter, we propose a novel general unified tracking-servoing approach that overcomes this
limitation by addressing different forms of DOs. The approach is composed of a tracking
pipeline and a servoing pipeline. The tracking pipeline tracks the shape of the DO in 3D
at every instant. The servoing pipeline employs the tracking data to drive the object to a
desired shape. Our approach is general as it can handle linear, thin-shell and volumetric
DOs, not being limited to a specific form of object. It is unified as we solve jointly the two
problems, tracking and servoing.

The central idea of our approach is to form a 3D lattice around the object. This lattice
is bound to the object by geometrical constraints. We track and servo this lattice instead
of the object itself. This is done by applying visual and deformation constraints on the
lattice. We use ARAP as the deformation model. We present an analytical expression
of the deformation Jacobian of the ARAP model. This deformation Jacobian, which we
use on our lattice, is our model of how the robot motions deform the lattice. We obtain
the Jacobian’s expression by rearranging the ARAP deformation equation and exploiting
modeling tools presented in [SCOL+04, KFB+21, AALN+22]. Our Jacobian expression is
directly applicable to both the whole object (full shape), or a region of it (partial shape).
This gives us the useful ability to perform both full or partial shape servoing. We propose
a robotic control law based on this Jacobian. Using this control law, we servo the lattice
and thus the object toward the desired shape. The inputs to our approach are the point
cloud of the object’s surface in its rest shape and the point cloud captured by a 3D camera
in each frame.

The idea of exploiting a lattice to manage object’s deformation has been previously
utilized in manipulating shapes in computer graphics when the shape’s representative
mesh is too high-resolution to be directly manipulated [ZSGS12]. We use the same idea
to transfer the object’s deformation to the lattice and simplify the deformation. This is
reasonable as for many objects, despite all the details on their surface (which are repre-
sented by a detailed mesh), the object cannot be deformed in more than several mostly
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simple ways. These deformations can, thus, be effectively represented by the lattice en-
capsulating the object. In fact, we solve the deformation equations for the lattice instead
of the object. At the same time, we use geometrical constraints between the lattice and the
object as binding constraints. This, concretely, decouples the runtime complexity of the
approach from the objects’ geometric complexity and makes the whole tracking-servoing
process run much faster. Furthermore, using a lattice makes our approach capable of be-
ing generalized for any form of the object (linear, thin-shell, volumetric). This is due to
the fact that we develop our tracking-servoing approach for a 3D lattice that is formed in
the same way for any object geometry.

The experimental results validate the practicality of our proposed shape tracking-
servoing approach for a large variation of DOs. The videos of our experiments are avail-
able at https://sites.google.com/view/tracking-servoing-approach.

Chapter outline. We start with a general description of our approach and the notation
used in Section 5.2. The tracking pipeline and all its steps are detailed in Section 5.3.
We then derive the analytical formulation of the Jacobian and explain its usage in the
shape servoing control law in Section 5.4. The effectiveness of our approach is validated
through a series of experiments, presented in Section 5.5, where we also compare our
results with those of ARAP shape servoing from Chapter 4. We also showcase a failed
case of our approach and propose a solution for addressing it. Finally, we conclude this
chapter in Section 5.6 and suggest future research directions.

5.2 The approach description and notation

The problem that we address is tracking a DO with any general form (linear, thin-shell,
and volumetric) and manipulating it by robotic arms in a feedback control loop so that
its shape gradually conforms to a desired shape. To formulate this problem, we use the
following notation throughout the chapter:

• Scalars: italic lower-case letters.

• Vectors: bold lower-case letters.

• Matrices: bold upper-case letters.

• Sets: calligraphic letters.

Note that for some developments we represent vectors of points as two-dimensional ar-
rays (i.e., with one column for each spatial dimension), following references [ZSGS12,
SA07]. We also define flattening a vector as transposing the rows of the vector and stack-
ing them together in a one-column vector. For example, given a vector w of dimension
m × n, we define the flattened w as wf of dimension mn × 1.

We start by considering a set of robots M = {1, 2, ..., m} that firmly grasp the object
during manipulation. We also assume that the forward kinematic models of the robots
are known. We use a 3D camera as the sensor providing the input point cloud data.
The relative poses between the camera and the robots are assumed to be known. Our
goal is to track the object at each instant and introduce a control scheme that computes
the 6-DOF velocity vectors associated with all the robots’ grippers stacked in a column
vector of length 6m: v = [v⊺

1 , ..., v⊺
m]

⊺. Figure 5.1 illustrates the flowchart of our proposed
approach. In the following sections, we will provide a comprehensive explanation of
each component in this figure.

We use a point cloud of the object’s surface to represent the object’s shape. This point
cloud is generated when the object is undeformed, i.e., at its rest shape. We use the
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FIGURE 5.1: Flowchart of the proposed shape tracking-servoing approach. In each frame, the
tracking pipeline takes the captured point cloud in the current frame and s (and thus p) from
the previous frame as the input and estimates sc (and thus pc) in the current frame. sc and Ro

i
are sent to the servoing pipeline where an analytical expression for a deformation Jacobian is
obtained. We use this Jacobian in a control law to send proper commands to the robots to guide

sc toward s∗ and consequently pc toward p∗.

n × 3 vector p to represent this point cloud. The resolution of this point cloud should be
fine enough to represent the object’s geometry with sufficient accuracy throughout the
tracking period. This will be explained more in Sec. 5.3. We, then, define the lattice s, a
nl × 3 vector, encapsulating p where nl is the total number of lattice nodes. The lattice
s contains p. Specifically, the metric length of the lattice s in each spatial dimension
is chosen slightly larger than the length of the object p. As the lattice will represent
the deformation of the object, its orientation should be set in a way that the lattice axes
be aligned with the principal axes that the object bends around (as an example see the
lattice around the shoe sole in Figure 5.1). Furthermore, the resolution of s is selected
high enough in each direction to be able to represent the deformation of the object in
that direction effectively. Typically nl can be chosen much smaller than n, i.e., the lattice
is a compact representation of the object that allows for faster processing. We generate
a tetrahedral mesh over the lattice nodes in s. An example of the formed lattice and the
tetrahedral mesh around a shoe sole is illustrated in Figure 5.2. We form the set Tj for each
point pj in p as the indices of lattice nodes belonging to the tetrahedral cell encapsulating
pj. We can, then, express pj as a linear combination of lattice nodes in Tj using barycentric
coordinates αi,j as follows:

∑
∀i∈Tj

αi,jsi = pj. (5.1)

This equation serves as a geometrical constraint between p and s. In the rest of the chap-
ter, by the shape of object and lattice, we refer to the 3D coordinates of the points in p and
s, respectively. We also define the following superscripts that will henceforth be used to
specify the state of different shapes:

• Current shape c

• Desired shape ∗
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FIGURE 5.2: Lattice s encapsulating the point cloud p of a shoe sole at its rest shape. We also
generate a tetrahedral mesh over the lattice nodes.

• Undeformed shape u

In the following sections, we describe the proposed tracking and servoing pipelines.

5.3 Tracking pipeline

Our proposed tracking pipeline is able to track a 3D DO in real-time. It comprises 4 steps,
namely: capturing and filtering point cloud, rigid registration, finding corresponding
points, and finally, applying the deformation model. The first three steps of the pipeline
are inspired by [PLS15]. Figure 5.3 illustrates the results of different steps of the tracking
pipeline in tracking a shoe sole.

The pipeline tracks the shape of the object in each frame from a known initial shape in
3D space. Knowing the initial shape of the object at the beginning of tracking is common
in the state-of-the-art [CB15, PLS15, NÖF15, TT22]. We set the object and lattice initial
shapes (pc and sc) by rigidly transforming pu (and thus su) to an initial pose (i.e., a ref-
erence shape) in 3D space visible from the camera. For starting the tracking pipeline,
we approximately align the object with the reference shape and trigger tracking. The
alignment can be done by hand or by robots while grasping the object. To facilitate the
process of alignment, we visualize the reference shape in 3D space and its projection in
2D. It should be noted that this alignment only needs to be partially consistent. This
means that even if the real object is slightly displaced and deformed with respect to the
reference shape, the tracking pipeline is able to infer a correct pc after several frames.
This is mainly thanks to the second step of our pipeline, i.e., rigid registration. We will
explain this further in Section 5.3.2. An example of this alignment is illustrated in Figure
5.4.

5.3.1 Step 1: Capturing and filtering point cloud

The pipeline starts by capturing and filtering the point cloud from a 3D camera in each
frame. The purpose of filtering is to remove the points in the point cloud that do not
belong to the object but to the surroundings including background, other objects in the
scene, and grippers. The presence of these points in the point cloud might lead to disrup-
tion of the tracking pipeline, especially in Section 5.3.3 where correspondences will be
found between the object and the captured point cloud. We perform filtering by merely
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FIGURE 5.3: The results of different steps of the tracking pipeline in one frame of tracking a shoe
sole. pc and sc are shown as green and cyan dots. The dark blue lines represent the tetrahedral

mesh over sc.

considering the point cloud inside a bounding box around p from the previous frame.
In our experiments, we consider the dimensions of the bounding box to be 1 cm larger
than the dimensions of p in each direction. We call this filtered point cloud d f . We also
reduce the size of d f by sampling the points on a 5 mm square grid. In addition to using
a bounding box to filter the captured point cloud, one can use 2D image filters. This is
optional but can be advantageous when there is a significant difference between the pixel
characteristics of the object and its surroundings, e.g., a dark object in a light background.

5.3.2 Step 2: Rigid registration

In this step, we rigidly register the points on the visible surface of pc, namely pc
v, to

the points in d f . To this end, we exploit a classical rigid iterative closest point (ICP)
algorithm. The output of this registration is rigid translation and rotation transformations
that are applied on both pc and sc. This step is essential to deal with rapid movements
of the objects as it compensates for the rigid non-alignment between pc and d f in each
frame. This is necessary to have a fair initialization for executing the next step of the
tracking pipeline (i.e., finding corresponding points). pc

v is determined in each frame
through a two-step process. First, the normals of pc are calculated. Second, the points in
pc with an angle of more than 90 degrees between the normal of that point in pc and the
sightline passing through that point are selected. With this procedure, the selected points
are in the visible surface of the object. After rigidly registering the object, we update pc

v
to be used in the next step of the tracking pipeline.
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FIGURE 5.4: Aligning the object with the reference shape at the beginning of tracking. To facil-
itate the process of alignment, we visualize the reference shape in 3D space and its projection
in the 2D image. Top row: partially consistent alignment before starting tracking, bottom row:

inferring the correct shape after several frames after triggering the tracking pipeline.

5.3.3 Step 3: Finding corresponding points

In this step, we find correspondences between the points in pc
v and d f . We use the

ICP-like algorithm suggested in [PLS15]. In this algorithm, first, by employing K-d tree
searches, nearest neighbor correspondences are determined, both from pc

v to d f and vice
versa. Then, using these two sets of correspondences, a corresponding point in 3D space
is computed for each point in pc

v. To better understand, we graphically depict this process
in Figure 5.5 for two points in pc

v (shown in blue) and several points in d f surrounding
them (shown in green). The process comprises two steps: first, we average the coordi-

FIGURE 5.5: A graphical representation of the ICP-like algorithm in [PLS15] for two points in
pc

v (shown in blue) and several points in d f (shown in green) surrounding them. Each red point
is the corresponding point of a point in pc

v in 3D space.

nates of all the points in d f having the same nearest neighbors in pc
v. In our example, this

divides the points in d f in two groups which are shown inside two dashed contours. The
resulting averaged coordinates of these two groups of points are shown as two purple
points in Figure 5.5. Second, we average the resulting coordinates from the first step (the
purple points) and the coordinates of the points in d f which are the nearest neighbors
of each point of pc

v (the green points with the black outline). The result of the second
step is shown as two red points in Figure 5.5. In this stage, we remove the points in pc

v
(the blue points) whose distance from their corresponding point (the corresponding red
point) is more than a specific threshold. This threshold is determined based on the mean
value and the standard deviation of the whole set of point-to-point distances. We name
the vector of 3D coordinates of these remaining points in pc

v (the blue points) as pc
a and
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the vector of their corresponding 3D coordinates (the red points) in 3D space as p′c
a. We

indicate the number of points in pc
a and p′c

a with na.

5.3.4 Step 4: Applying deformation

In this step, we apply deformation to the inferred shape. This deformation is applied to
the lattice and not to the object and the visual constraints related to the object are imposed
as the constraints to this deformation. This way, we solve for the lattice shape sc and not
pc, which is a faster process as nl is normally much smaller than n. It should be noted
that sc and pc remain connected due to the spatial constraints in (5.1). We deform sc by
solving the following linear system, which is a modified version of the one suggested
by [ZSGS12]:

(ΓL + B⊺B) sc = Γb + B⊺t. (5.2)

Two series of constraints are considered in this equation:

• ARAP constraints. These constraints ensure that sc and consequently pc try to keep
their local rigidity. These constraints are imposed by matrix L on the left-hand and
vector b on the right-hand side of (5.2). L is the nl × nl Laplacian matrix of the
tetrahedral mesh formed on the lattice, and b is a nl × 3 vector whose ith row is:

bi = ∑
j∈Ni

wij

2
(Ri + Rj)(su

i − su
j ), (5.3)

In this equation, Ni is defined as the set containing the first-order neighbors of
node i in s, wij is a scalar encoding the connection between nodes i and j in s, and
Ri is the optimal rotation matrix that conforms the nodes of the set Ni in su to the
same nodes in sc with least-squares error. Ri is computed using the singular value
decomposition (for more details see [SA07]).

• Object visual constraints. These constraints try to minimize the error between the
points in pc

a and their corresponding points in p′c
a. They are imposed by B⊺B on the

left-hand and B⊺t on the right-hand side of (5.2). t is a na × 3 vector containing the
3D coordinates in p′c

a as rows. B is a na × nl matrix containing the constraints from
(5.1) as rows for each row of t.

We adjust the effectiveness of these two constraints using Γ. We consider Γ as a diagonal
matrix with the size of nl × nl to attribute different values to each node of sc. This is
concerned with the ARAP constraints as they strongly try to rigidly maintain the shape
of sc and consequently pc. We, thus, set two different values for each diagonal element
of Γ; 0.1 for the nodes of sc belonging to a tetrahedral cell that surrounds a point of
pc

a, and 1 for other nodes. As a result, the nodes in sc being subject to deformation by
object visual constraints can flexibly move, and thus the points in pc

a can be absorbed to
their corresponding points in p′c

a. At the same time, the other nodes in sc keep the local
rigidity, and thus the general shape of the lattice can be maintained. Solving for sc is not
possible through a one-step solution. Instead as explained in [ZSGS12], an iterative flip-
flop solution is used. In each flip-flop iteration: we calculate Ri (that is a function of sc)
and use that in solving the linear system of (5.2) for sc. We consider (5.2) converged when
the difference between the two successive calculated sc is smaller than a certain value. In
our experiments, the solution converges in 5-8 iterations. As B is sparse, we solve (5.2) for
sc using the conjugate gradient solver of Eigen library for sparse least-square problems.
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Similar to the ARAP shape servoing method presented in Chapter 4, known coordi-
nates of robotic grippers can also be incorporated into the shape tracking process. As ex-
plained, this enhances the robustness of tracking in robotic applications. In our approach,
these constraints can be implemented within the tracking pipeline by using the known
3D coordinates of several lattice nodes. The indices of these lattice nodes are determined
manually by the user before starting the tracking pipeline or automatically by selecting
the closest lattice nodes to the known point in 3D space at the beginning of tracking. In
both cases, at the beginning of the tracking pipeline, the relative 3D coordinates of the
selected lattice nodes with respect to their corresponding 3D known points are saved.
These relative coordinates along with the coordinates of the known points at each instant
give us the 3D coordinates of the selected lattice nodes. As for the grippers, their poses in
the camera frame can be computed knowing the configuration of the robot and the cali-
bration between the robots and the camera. The implementation of this constraint can be
performed by modifying (5.2) before solving it. This is done by removing corresponding
rows and columns from the left-hand side and recalculating the right-hand side with the
known 3D coordinates of the relevant lattice nodes. The use of these constraints is op-
tional; they make tracking more precise and robust, specifically in scenarios with large
deformations or the presence of self or external occlusions.

5.4 Servoing pipeline

In this section, we explain our shape servoing pipeline. The same as in ARAP shape
servoing presented in Chapter 4, we use the ARAP deformation model to obtain a defor-
mation Jacobian. The control law we propose, then, is based on this Jacobian. In Chapter
4, we computed the Jacobian numerically, by simulating perturbations in every DOF of
the grippers that grip the object. In contrast, here we use an analytical expression of the
Jacobian. The advantages of this are: the Jacobian we compute does not involve any nu-
merical approximation, and its computation is fully scalable as the number of grippers
grows. Another main difference is that we derive the formulation for the lattice and not
the object. This not only generalizes the servoing formulation for any form of the object,
but also decouples the runtime complexity of the servoing from the objects’ geometric
complexity. We use this Jacobian to propose a control law. Finally, we apply the control
law on the lattice to guide sc toward s∗ and consequently pc toward p∗ thanks to the spa-
tial constraints between the lattice and the object in (5.1). We present the different steps
of the servoing pipeline in the following.

5.4.1 ARAP deformation Jacobian

The main ingredient of our shape servoing pipeline is the Jacobian that expresses how
the infinitesimal gripper motions change the shape of the object, namely deformation Ja-
cobian. Most shape servoing works [Ber13, NALRL14, NAL18, HSP18, DBPC18, KFB+21,
ZNAPC21,SBAMÖ22,AALN+22] assume that the object’s shape changes quasi-statically
and that this change can be represented by such deformation Jacobian. In this chapter,
we also make the same assumption. As in Chapter 4, the main principle of our servoing
pipeline is approximating the true deformation Jacobian of the object by the deformation
Jacobian of the ARAP model of the object. In particular, we present an analytic deriva-
tion of the deformation Jacobian of the ARAP model. We start with the main ARAP linear
system

Ls = b, (5.4)
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which is (5.2) with only deformation constraints. The principle of ARAP’s modeling
[SA07] is that the object’s shape (in our case the lattice’s shape s) in quasi-static equi-
librium minimizes the ARAP deformation energy. In particular, this energy is at a local
minimum under the existing constraints (e.g., regions of the object that are grasped and
moved by a robot). The gradient of this energy with respect to s has the following form:

g = Ls − b, (5.5)

omitting multiplicative constants that are irrelevant to our purpose. b contains the bi for
each node i in s, which can be written as in (5.3). As the stable shape s is a local minimum,
one makes the gradient zero to find s: this is what (5.4) expresses. In the standard ARAP
formulation, the optimal rotations Ri in (5.3) depend on s via SVD. Note that in this
section s represents any shape in the neighborhood of sc. This is because what we want
to do is to compute the deformation Jacobian at sc. Then, our insight is that the optimal
rotations for s will also be in the neighborhood of the optimal rotations for sc. Therefore,
we can express the relative rotation between them as an infinitesimal rotation. We will
show that this infinitesimal rotation can be parameterized as a linear function of the node
positions, avoiding the SVD. With this linear parameterization, we will transform (5.5) in
an expression where the dependency on s is fully linear. From this expression we will
derive the deformation Jacobian.

We start by writing the rotation matrix Ri in (5.3) as the multiplication of a general
rotation matrix Ro

i and an infinitesimal rotation matrix Rs
i :

Ri = Rs
i R

o
i . (5.6)

Ro
i is the optimal rotation matrix that best conforms the nodes of the set Ni in su to the

same nodes in sc. Note that this rotation matrix Ro
i is known for us: it is the last optimal

rotation matrix computed by our tracking pipeline. We are computing the Jacobian for
changes of shape in the neighborhood of the current shape. Therefore, for the Jacobian
computation, Ro

i is considered a fixed matrix. Rs
i , the infinitesimal rotation matrix, can

be expressed as a linear function of si using the estimation suggested by [SCOL+04].
According to [SCOL+04], when si is in the local neighborhood of sc

i , one can write an
approximation for the transformation matrix Ti between sc

i and si that is a linear function
of si. The transformation matrix Ti is a 4 × 4 matrix including translation, rotation, and
scale. Here, what we need is the rotation part of this transformation. We, consequently,
isolate the rotation part of the Ti formulation presented in [SCOL+04] and use it as Rs

i .
We can thus write Rs

i as the following infinitesimal rotation matrix:

Rs
i =

 1 −hi3 hi2
hi3 1 −hi1
−hi2 hi1 1

 . (5.7)

As this is a least-squares optimal rotation, hi1 , hi2 , and hi3 can be computed from:hi1
hi2
hi3

 = (A⊺
i Ai)

−1A⊺
i wi. (5.8)

We consider that the reference shape for this least-squares computation is sc. Therefore,
Ai and wi can be written as:

Ai =


0 sc

kz
−sc

ky

−sc
kz

0 sc
kx

sc
ky

−sc
kx

0
...

...
...

 , k ∈
{

i
}
∪Ni, (5.9)
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and

wi =


skx

sky

skz
...

 , k ∈
{

i
}
∪Ni. (5.10)

Ai is a known 3di × 3 matrix (di is the number of elements in
{

i
}
∪Ni) composed of the

elements from the current shape, and wi is a 3di × 1 vector of unknowns comprising si
and its first-order neighbors. By putting (5.9) and (5.10) in (5.8) and then in (5.7) we can
have Rs

i as:

Rs
i =

 1 −Mi3,∗wi Mi2,∗wi
Mi3,∗wi 1 −Mi1,∗wi
−Mi2,∗wi Mi1,∗wi 1

 , (5.11)

where Mi = (A⊺
i Ai)

−1A⊺
i is a 3 × 3di matrix and the subscript (k, ∗) indicates the kth row

of the matrix Mi. We rearrange Rs
i as the following:

Rs
i = I +

 03di wi −Mi3,∗wi Mi2,∗wi
Mi3,∗wi 03di wi −Mi1,∗wi
−Mi2,∗wi Mi1,∗wi 03di wi

 , (5.12)

where I is a 3 × 3 identity matrix, and 03di is a row vector of zeros with the length of 3di.
Replacing (5.12) in (5.6) and then in (5.3) and rearranging the terms we have:

bi = ∑
j∈Ni

wij

2
I(Ro

i + Ro
j )(s

u
i − su

j ) + ∑
j∈Ni

qiwi + ∑
j∈Ni

qjwj (5.13)

where qi and qj are known 1× 3di and 1× 3dj vectors that can be written as the following:

qi =
wij

2
(ui[1](Mi3,∗ − Mi2,∗)+

ui[2](Mi1,∗ − Mi3,∗)+

ui[3](Mi2,∗ − Mi1,∗)),

(5.14)

qj =
wij

2
(uj[1](Mj3,∗ − Mj2,∗)+

uj[2](Mj1,∗ − Mj3,∗)+

uj[3](Mj2,∗ − Mj1,∗)).

(5.15)

In these equations ui = Ro
i (s

u
i − su

j ) and uj = Ro
j (s

u
i − su

j ) are both 3 × 1 vectors, and [k]
signifies the kth element of vector u.

On the right-hand side of (5.13), the first sum is a known and constant vector, while
the second and third sums are linear functions of wi and wj. One point that should
be noted is that for solving the original formulation of ARAP in (5.4), as described in
Section 5.3.4, a flip-flop solution is used. This solution comprises two steps: calculating
optimal rotations and solving the ARAP linear system. In calculating optimal rotations,
the directions of x, y, and z are dependent in the SVD. In solving the ARAP linear system,
however, having the optimal rotation matrices calculated, one can solve (5.4) for each
direction independently regardless of the other directions. In our new formulation of
b in (5.13), we propagate the dependency between these directions (coming from the
second and third sums) into the equation. This dependency stems from the usage of the
estimation for rotation matrices (see equations (5.7) to (5.10)). In order to integrate this
dependency with other terms in the original formulation of ARAP, we rewrite each term
in (5.4). This is done by:
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• (i) We define s′ with the size of 3nl × 1 as the flattened form of s.

• (ii) We define L′ as a 3nl × 3nl matrix such that L′ = L⊗ I where I is a 3× 3 identity
matrix and ⊗ denotes the Kronecker product.

• (iii) We define b′ as the following:

b′ = c + Qs′. (5.16)

In this equation, b′ with the size of 3nl × 1 is the flattened form of b with the size of
nl × 3. c is a 3nl × 1 vector that represents the general form of the first sum of (5.13)
consisting of nl vectors of all lattice nodes (each of size 3× 1) concatenated together.
The multiplication of Qs′ includes all the elements in the second and third sums in
(5.13). The same as in (i), s′ with the size of 3nl × 1 is the flattened form of s. Q is
a 3nl × 3nl known matrix that is initially filled with zeros and then the values from
qi and qj will be added to their corresponding elements. Each consecutive three
rows in Q belong to three directions of one lattice node. We set these three rows
identical. This comes from the fact that we apply the constraints from the second
and the third sums in (5.13) that depend on the three directions to each one of the
directions identically. Each consecutive three columns of Q are dedicated to the
three directions of each lattice node. The elements in qi and qj are summed with
the elements in the rows corresponding to ith lattice node at their corresponding
columns regarding their indices and their directions. The process of filling Q can
be formulated by the following equation:

Q(3(i − 1) + r, 3(K[k]− 1) + c) = ∑
j∈Ni

q[3(k − 1) + c], (5.17)

where q ∈
{

qi, qj
}

, i ∈ {1, ..., nl}, r, c ∈ {1, 2, 3} and

{
k ∈ {1, ..., di} ,K = i ∪Ni, if q = qi
k ∈

{
1, ..., dj

}
,K = j ∪Nj, if q = qj

(5.18)

Using flattening and (5.16), we can write (5.5) as:

g′ = L′s′ − b′ = Hs′ − c, (5.19)

where g′ with the size of 3nl is the flattened form of g, and H = L′ − Q is a known
3nl × 3nl matrix. We will define the deformation Jacobian in terms of velocities (i.e., time
variations). Note that for this Jacobian computation, H and c are constant, as they depend
on fixed quantities. Therefore, by taking derivative from (5.19) with respect to time, we
have Hṡ′ = ġ′.

The final step of our derivation is to obtain the deformation Jacobian from this equa-
tion. For this, we apply on our ARAP model an approach that is based on node parti-
tioning. This approach has been previously applied in [KFB+21] on an FEM model, and
in [AALN+22] on an offline geometrical model. In [KFB+21, AALN+22] this approach
was defined for linear objects deforming in 2D; here, we widen that scope as we consider
objects of arbitrary form (linear, thin-shell, volumetric) which deform in 3D.

We, first, categorize the nodes of the lattice into three sets; free, servoed, and gripped,
having in turn n f , ns, and ng elements such that n f + ns + ng = nl . Accordingly, we
divide the flattened position vector of the lattice nodes s′ into s′f ∈ R3n f , s′s ∈ R3ns , and
s′g ∈ R3ng . Likewise, we partition matrix H. Under ARAP modeling, the gripped nodes
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are moved externally, but the motions of the free and servoed nodes are determined only
by the ARAP deformation energy. As the object is always in quasi-static equilibrium,
its shape corresponds to a locally minimum energy. Therefore, for the free and servoed
nodes the ARAP energy gradient has to be always zero. Hence, the time derivative of the
gradient is also zero. Therefore, the expression Hṡ′ = ġ′ above takes the following form:Hgg Hgs Hg f

Hsg Hss Hs f
H f g H f s H f f

ṡ′g
ṡ′s
ṡ′f

 =

ġ′
g

0
0

 (5.20)

From (5.20), we can obtain the following expression linking the velocities of the gripped
and the servoed nodes:

ṡ′s = Jsgṡ′g, (5.21)

where
Jsg = −(Hss − Hs f H−1

f f H f s)
−1(Hsg − Hs f H−1

f f H f g). (5.22)

As in [KFB+21, YZL21, IMH05, AALN+22], we assume the matrices that have to be in-
verted are full-rank. This stems from the initial made assumption that the shape is fully
constrained by the grippers. Thus, Jsg is the ARAP deformation Jacobian, which we have
obtained analytically from the knowledge of the current shape sc, the optimal rotations
Ro, and the ARAP model parameters.

5.4.2 Control law for shape servoing

We use Jsg to propose a proportional control law to drive the positions of the servoed
nodes of the lattice toward their desired values. We, first, define the servoing error as:

es = s′cs − s′∗s . (5.23)

Using (5.21) and (5.23) we can write our proportional control law as the following:

vg = −kgJ†
sges, (5.24)

where kg is a positive gain, † signifies the pseudoinverse, and vg is the vector of trans-
lational velocities to be applied to the gripped lattice nodes. In a common robotic appli-
cation, the object is controlled by a robotic gripper with 6 DOFs. Hence, we transfer the
calculated translational velocities of the gripped lattice nodes to the 6-DOF velocities of
their corresponding grippers. Note that the grippers firmly hold the object and, thus, are
coupled with the lattice due to the constraints in (5.1). We categorize the gripped nodes
corresponding to each gripper in the sets G such that ∑m

l=1 |Gl | = ng where |.| signifies
the number of nodes in the set. We can, then, write the following equation between vpl ,
the 6 × 1 velocity vector of the gripper l, and vgl , the velocity vectors of the nodes in Gl
stacked together.

vgl = Ggpl vpl , (5.25)

where Ggpl is the grasp matrix of the gripper l and can be written as:

Ggpl =


1 0 0 0 rl jz −rl jy
0 1 0 −rl jz 0 rl jx
0 0 1 rl jy −rl jx 0
...

...
...

...
...

...

 , j ∈ Gl , (5.26)
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where rl j represents the vector from the gripper l to the lattice node j at each instant.
We extend (5.26) to write a general equation for all the grippers and their corresponding
lattice nodes:

vg = Ggpvp, (5.27)

where vg is a 3ng × 1 vector containing the translational velocities of all the gripped nodes
of the lattice stacked together, vp is a 6m × 1 vector containing the velocities of all the
grippers stacked together, and Ggp is the total grasp matrix with the size of 3ng × 6m
assembled from all the grasp matrices Ggpl :

Ggp =


Ggp0 0 · · · 0

0
. . .

... Ggpl

0
. . .

 , l ∈ M. (5.28)

We finally define the control law:

vp = −kpJ†
spes (5.29)

where Jsp = JsgGgp is the Jacobian that relates the lattice servoed nodes to the grippers,
and kp is an arbitrary positive gain that can be the same or different from kg. One can
use a diagonal gain matrix instead of kp to weight differently translation and rotation
velocities.

In Chapter 4, we carried out shape servoing with a numerically computed Jacobian-
based proportional control law. On the contrary, our new control law in (5.29) is based on
an analytic formulation of the deformation Jacobian, is applicable on objects of all forms,
and can be used for both full and partial shape servoing. This new control law allows
an exponential decrease of the shape servoing error es towards zero if the ARAP defor-
mation Jacobian approximates the object’s true deformation Jacobian well. The practical
performance of the control law is illustrated and discussed in detail in the experiments
section.

5.5 Experiments

In this section, we validate the effectiveness of our approach through a diverse set of ex-
periments covering various forms and materials of DOs. A video of these experiments
can be found at https://sites.google.com/view/tracking-servoing-approach. The
objects of interest comprise a linear object, i.e., a cable, two thin-shell objects including a
sheet of A4 paper and a convoluted foam, and two volumetric objects including a shoe
sole and a foam octagonal cylinder. We apply large deformations and do both full and
partial shape servoing. Full shape servoing is when we servo all the lattice nodes (except
for the gripped nodes), i.e., n f = 0. Partial shape servoing is, however, when we servo
a portion of the lattice nodes, i.e., n f ̸= 0. The ability to perform partial shape servo-
ing is interesting in practice (e.g., for tasks where a specific part of the object has to be
assembled on another object), and it highlights the versatility of our approach.

5.5.1 Experimental setup

The experiments are conducted using a dual-arm setup made of two Franka Emika robots
each with 7 DOFs. A RealSense D435 camera facing the manipulation area provides
the input for the tracking pipeline. We use the camera resolution 424 × 240 in all the
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experiments except for the ones with linear objects in which we double this resolution
to apply image filters (see Section 5.5.2). We use MoveIt Hand-eye calibration plugin to
externally calibrate the camera with the robots. The setup is shown in Figure 5.6. The
whole code is written in C++ and runs on a single ROS node on a Dell laptop with a 9th
generation Intel Core i7 CPU. No parallelization is employed to run the ROS node. Our
approach calculates the grippers’ velocities and sends them to a Cartesian velocity control
ROS node that controls each robot. We use Point Cloud Library (PCL) for handling point
clouds.

FIGURE 5.6: Our experimental setup with two Franka robots manipulating a foam octagonal
cylinder. An overhead 3D camera provides the input for our approach.

Depending on the complexity of the objects’ geometry, we form the undeformed point
cloud of each object pu either by scanning them (using a Kinect and Skanect software) or
by drawing simple shapes in Blender. We, then, form the lattice su around each object
point cloud. In all cases, we consider the size of the lattice to be 1 cm larger than the size
of the object in each direction. We rigidly transform the created pu, as the initial shape
pc, somewhere in front of the camera where it is reachable by the robots. We, then, align
the object with the initial shape pc while being grasped by the robots. Note that a partial
alignment is sufficient (see Sect. 5.3).

We, then, trigger the tracking pipeline. After the tracking pipeline successfully starts
tracking the shape of the object, we activate the use of grippers’ 3D coordinates in the
tracking pipeline. We select the eight closest lattice nodes to each gripper as the lattice
nodes with known coordinates to be used in the tracking pipeline. In this stage, we
also select the gripped lattice nodes in the servoing pipeline. We use the same selected
lattice nodes with the known coordinates in the tracking pipeline as the gripped lattice
nodes. Next, we set the lattice desired shape s∗. To this end, we manually deform the
object by moving the robotic arms while grasping the object. This is a natural way of
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TABLE 5.1: Parameters of the shape servoing tasks.

Task Object Type Object
Template
creation

Object point
cloud size

Lattice
Dimension

Full/partial
shape servoing

Main feature

T1.1
Linear Cable Blender 1734 15×3×3

f In-plane deformation, large deformation
T1.2 p In-plane deformation
T1.3 f Out-of-Plane deformation
T2.1

Thin-shell
A4 Paper Blender 1024 8×8×3

f Large deformation
T2.2 p Separated servoing regions
T2.3 p Only translation
T2.4 p Changing grippers’ positions on the object
T2.5

Convoluted foam Scan 5535 8×8×3
f Only translation, large deformation

T2.6 p Only translation, small separated servoing regions
T3.1

Volumetric
Shoe sole Scan 502 8×4×4

f Large deformation
T3.2 f Severe rotation, change of view
T3.3

Foam octagonal cylinder Blender 2352 8×4×4
f Twist

T3.4 f Twist + Bending deformation

defining the desired shape. One can also define the desired shape without the robots
holding the object; our approach does not have any constraint in this respect. We store
the lattice desired shape s∗ which is corresponding to the object’s desired shape p∗. The
next step is to manually move the robots to set the initial shapes of the lattice and the
object. This is done in the same way as setting the desired shapes. Finally, we start the
servoing pipeline to drive the lattice (and thus the object) from its initial shape to the
desired shape. As a common occurrence in research robots, the robots’ movement might
be aborted by reflex errors. This is mainly due to sudden and non-smooth movements. To
avoid these reflexes, we gradually increase the gain (from zero to a final constant value)
at the beginning of the servoing tasks. We also saturate the velocities (translational and
rotational) sent to the robots.

In total, we define thirteen tasks, each with specific features and challenges. Table 5.1
presents the main parameters of each task. We categorize the tasks based on the general
form of the object under manipulation. The tasks’ results are presented in Figures 5.7 to
5.12. In each figure, the elements corresponding to the current and desired shapes are
visualized with green and red colors, respectively. Furthermore, the sections of the object
or lattice belonging to the servoed regions are indicated in brighter colors while the ones
belonging to the free regions (which are present in partial shape servoing) are indicated
in darker colors. Finally, for each task, an RMSE graph (RMS of es) illustrates the servoing
error during the task. We set the control gain kp as 0.1 in full shape servoing tasks and
0.05 in partial shape servoing tasks. We tune these gain values empirically. They allow us
to obtain good performance while avoiding reflex errors, which cause the robots to stop
moving. In the following, we explain the tasks in more detail.

5.5.2 Linear objects

For the experiments with linear objects, we use an electric cable with the length of 70 cm.
As for creating pu, we form a cylinder with the same dimension as the cable. However,
instead of considering the whole point cloud on the surface of this cylinder, we consider
merely half of the points, i.e., a semi-cylinder. This is done to prevent the inferred object
shape and the lattice from rotating around the longitudinal axis during tracking due to
axial symmetry. We form a 15 × 3 × 3 size lattice around pu in a way that the lattice
direction with 15 nodes is in line with the length of the cable. The cable is manipulated
from its two ends by the two Franka robots. We define three tasks with this cable: two
in-plane, and one out-of-plane. We put a board between the two robots on which we lay
the cable. This board serves two purposes; first, the in-plane manipulations take place
on the surface of this board, and second, we employ the difference in colors of the board
and the cable to filter out unwanted captured point cloud coming from the board. The
results of the tasks can be found in Figures 5.7 and 5.8. In Figure 5.7, the plotted points
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represent the mean coordinates of the lattice nodes belonging to the cross-sections of the
lattice along the cable length. In the following, we explain the tasks in more detail.

• T1.1. In this task, we fully servo the cable toward a shape with a large in-plane
deformation. In order to make sure that the deformation remains in-plane, while
setting the initial and the desired shapes, we keep the robots’ grippers parallel to
the board at a slight distance above the surface of the board. Furthermore, during
servoing, we only send the velocity elements to the robots that keep the robot in the
same distance with respect to the board, i.e., two translational velocities parallel to
the board and the rotational velocity perpendicular to the board.

• T1.2. This task is similar to T1.1. The main difference is that we partially servo the
cable. To this end, we divide the cable into 5 sections along its length and select the
three middle sections as the servoed region of the object. We then select the lattice
nodes encapsulating this region as the servoed nodes of the lattice.

• T1.3. This experiment aims to servo the cable through an out-of-plane deformation.
To this end, we remove the constraints regarding keeping the grippers’ relative pose
with respect to the board. This is done by setting the grippers higher in comparison
to the board’s surface while defining the desired shape. This can be observed in
Figure 5.8. We also send the full translational and rotational velocities to the robots.

FIGURE 5.7: Tasks with a cable and in-plane deformations. The plotted points represent the
mean coordinates of the lattice nodes belonging to the cross-sections of the lattice along the
cable length. Green nodes: current lattice shape, red points: desired lattice shape. Top row: full

shape servoing, bottom row: partial shape servoing.

FIGURE 5.8: Task with a cable and out-of-plane deformations. Green: cable’s current shape,
red: cable’s desired shape.

5.5.3 Thin-shell objects

The next experiments are conducted with thin-shell objects. Our objects of interest are a
blank A4 paper and a convoluted foam. For both objects, we form a 8 × 8 × 3 size lattice
where the 8 × 8 side is aligned with the surface of the objects and the direction with 3
nodes is in line with the width of the objects. We start with the paper. We define four
tasks which are explained in the following. Figure 5.9 presents the results of these tasks.

• T2.1. In this task, we fully servo the paper toward a desired shape with large defor-
mation.
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• T2.2. This task aims to do partial servoing with the paper. To this end, similarly
to T1.2, we divide the paper into five sections along its longer dimension. We,
then, select the lattice nodes encapsulating the second and the fourth sections of
the paper as the servoed lattice nodes.

• T2.3. This task is similar to T2.2. There are, however, two main differences: first,
the servoed region is smaller, i.e., one-fourth of the object, and second, we merely
apply translation to the robots’ grippers without any rotation. The latter is done by
updating only the translational velocities of the robots.

• T2.4. In this task, we do partial shape servoing with two-fourths middle region
of the paper as the servoed region. The important change in this task is that we
significantly displace the grippers on the paper while setting the initial shape (each
in the opposite corner of the paper) in comparison to the desired shape (both in
the middle of the paper). We also update the grasped lattice nodes after setting
the initial shape. This task is performed with a slightly thicker A4 paper so that
the corners of the paper do not entirely loosen due to the large distance from the
grippers.

FIGURE 5.9: Tasks with a thin-shell object: an A4 paper. Top row: task with full shape servoing
toward a desired shape with large deformation. Second row: task with partial shape servoing.
Two separated regions (one-fifth of the paper) are servoed. Third row: task with partial shape
servoing. One forth of the A4 paper is servoed. Only translational velocities of the robots are
updated. Fourth row: task with partial shape servoing with a slightly thicker A4 paper. Two-
fourths middle part of the object is servoed. The grippers are displaced while setting the initial

shape.

The next series of experiments are with a convoluted foam that is widely used in
packaging industry. The goal is to demonstrate that the surface of the thin-shell object
should not necessarily be flat. This is thanks to the generality that using the lattice brings
to our approach as we can track and servo objects of any geometry. Another point is that
as the convoluted foam is thin and has a low stiffness, it does not follow the rotations
of the grippers. We, thus, similarly to T2.3, update merely the translational velocities of
the robots. We define two tasks with the convoluted foam which are described in the
following. Figure 5.10 presents the results of these tasks.

• T2.5. In this task, we conduct full shape servoing toward a desired shape with a
large deformation with respect to the initial shape.
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FIGURE 5.10: Tasks with a thin-shell object: a convoluted foam. Top row: task with full shape
servoing. Bottom row: task with partial shape servoing. Two small separated regions of the

foam are servoed.

• T2.6. This task aims to conduct a partial shape servoing with two small separated
servoed regions of the convoluted foam. To this end, we initialy select the same ser-
voed regions as in T2.2 and then inversely halve each region relative to the center-
line of the convoluted foam. In contrast to the previous tasks, we define the servoed
regions’ desired shapes in a way that makes the convoluted foam undeformed at
the end of the task.

5.5.4 Volumetric objects

The final set of experiments is carried out with two volumetric objects: a bulky shoe sole,
and a foam octagonal cylinder. For both objects, we form an 8 × 4 × 4 size lattice where
the direction with eight nodes is in line with the longer direction of the objects. We start
with the shoe sole. We define two tasks with the shoe sole which are explained in the
following. Figure 5.11 presents the results of these tasks.

• T3.1. In this task, we fully servo the shoe sole toward a desired shape with a large
deformation.

• T3.2. This task is similar to T3.1. The main difference is that the desired shape is
defined with a severe rotation with respect to the initial shape. This can be observed
in Figure 5.11. In fact, the shoe sole should be deformed and flipped during the
servoing. Consequently, the part of the shoe sole that is visible in the desired shape
is considerably different from the one in the initial shape.

FIGURE 5.11: Tasks with a volumetric object; a bulky shoe sole. Top row: task with large
deformation. Bottom row: task with a desired shape with a considerably different view of the
object with respect to the initial shape. In this task, the object is rotated and flipped by the shape

servoing approach.

As the last set of experiments, we define two tasks with the foam octagonal cylinder.
These tasks include twisting the foam. Hence, in order to ensure that the foam follows
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the rotations of the grippers, we select the foam to be relatively dense. This applies an
intense rotational force to the robots during the servoing. We, thus, considerably decrease
the saturation values of the grippers’ velocities to avoid reflex errors in the robots. We
also paint the foam lengthwise to better illustrate the applied twist. Figure 5.12 presents
the results of these tasks. The defined tasks are described in the following.

• T3.3. In this task, the desired shape is set by applying a pure twist to the foam.

• T3.4. In this task, we apply twist and bending deformation at the same time.

FIGURE 5.12: Tasks with a volumetric object; a foam octagonal cylinder. Top row: task with
merely twist. Bottom row: task with twist and bending deformation at the same time.

5.5.5 Results and Discussion

As shown through various experiments, our proposed unified tracking-servoing approach
is able to track different forms of the objects and fully and partially servo them toward
largely deformed desired shapes. The servoing error graphs in the rightmost side of the
Figures 5.7 to 5.12 verify the efficiency of our approach in different scenarios. The variety
of objects’ materials employed in these experiments confirms the robustness of our pro-
posed approach in dealing with many of the elastic deformable objects around us without
having a knowledge of their mechanical parameters. Using a 3D lattice makes it possible
to use the same tracking and servoing approach for an object with any form. Further-
more, as shown, our approach can handle tasks with partial shape servoing with one or
multiple servoed regions. Defining servoed regions is quite straightforward and is done
by just specifying the corresponding servoed lattice nodes encapsulating the object’s ser-
voed regions. Another point that should be noted here is that our approach provides full
3D control over the shape of the object; i.e., the object can be simultaneously deformed,
rotated and translated. This can be particularly observed in T3.2 where the visible side
of the shoe sole in its desired shape is totally different in comparison to the one in its
initial shape. Applying twist and bending deformation in T3.3 and T3.4 is another man-
ifestation of this full 3D control. To the best of our knowledge, no approach in the
literature possesses this feature. The servoing can be even performed in the existence
of some noise in the tracking as can be seen in T3.4. Note that the perturbations seen
in the middle part of this task are due to tracking noise, and not related to the servoing
performance. Next, we discuss several more specific aspects of the implementation and
performance of our proposed approach.
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Unreachable shapes. There might be cases where the desired shape is unreachable.
This can be due to three main reasons: (i) the intrinsic properties of the desired shape,
i.e., it is not reachable by the current shape of the object from the current grasping points,
(ii) the existing movement constraints in the robots, e.g, the desired shape is defined out
of the shared workspace of the robots, and (iii) manipulation constraints, i.e., the interac-
tion between the grippers and the DO is in a way that one or several degrees of freedom
are practically lost. An example of the latter is when the object is too soft to follow ro-
tations (T2.5 and T2.6). When dealing with these cases, our proposed servoing pipeline
drives the object toward a shape with a small residual error that corresponds with a local
minimum. This can be observed in T2.3, T2.5, and T2.6.

To better illustrate the behavior of our servoing approach when the desired shape is
unreachable, we conduct two simulations. In these simulations, two robot grippers at
both ends of the lattice servo the lattice towards the desired shape. In each time step, we
simulate the lattice shape by solving equation 5.2 using ARAP deformation constraints
and known 3D coordinates of gripped lattice nodes, without considering any object vi-
sual constraints. In the first simulation, we servo the lattice towards a desired shape with
different dimensions, resulting in a non-zero residual error. This is shown in Figure 5.13.
The simulated current and desired lattices are shown in blue and red, respectively, and
tetrahedral meshes are added for better visualization. The second simulation involves

FIGURE 5.13: The simulated experiment where our servoing approach drives the lattice (in
blue) towards a desired shape (in red). The desired shape is an unfeasible shape with different

dimensions.

reaching a desired lattice shape using translations and rotations. In this configuration,
the lattice’s shape adapts well to the desired shape. We then attempt to reach the same
shape using only translations, resulting in a non-zero residual error. This is shown in
Figure 5.14.

Rigid motion. Our servoing pipeline does not make a distinction between rigid and
nonrigid components of the shape servoing error. This is the common approach in the
state-of-the-art [DBPC18, NAL18, Ber13]. Our extensive experiments are carried out in
scenarios close to those of interest in real-world industrial applications, and they involve
simultaneous rigid and nonrigid object motions. As our experimental results demon-
strate, our servoing pipeline performs with efficiency and accuracy in these scenarios. In
cases with a very large rigid motion of the object between the initial and desired shapes,
it may be interesting to distinguish rigid from nonrigid components of the shape servo-
ing error. This could enable finer control over the robotic arm motions and the evolution
of the object’s shape. In this respect, we see no hurdles to combining our approach with
a specific module for rigid-body motion handling (which is a well-studied problem).

Computational cost. Regarding the execution speed of our approach, during the exper-
iments, we reached 20-30 FPS for the whole process (tracking and servoing) without any
parallelization using only CPU. This range is the same as in ARAP shape servoing from
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FIGURE 5.14: The simulated experiment where the shape servoing approach drives the lattice
(in blue) to a desired shape (in red) with the same dimensions; once with rotation and once

without rotation.

Chapter 4. The main difference is that our approach handles both tracking and servoing
at the same time while in Chapter 4, the execution speed is reported only for servoing,
and tracking is performed by a separate approach. One point that should be noted here
is that in calculating the analytical Jacobian, the inversion of matrices in equation 5.22
would be costly when applied to a very large mesh. In our approach, however, this does
not cause a problem as we calculate the deformation Jacobian for the lattice whose shape
has much smaller size than the object.

Non-convex object geometries. In our experiments, we only considered objects with
convex geometries, and we formed a uniform lattice around them. If the object has a
non-convex geometry, using a uniform lattice can result in unnecessary geometric con-
straints between different parts of the object that are not directly connected. For instance,
in the case of a doll toy, such constraints may arise between the hands and legs, leading
to unrealistic deformations where the movement of one hand affects the position of a leg.
To overcome this challenge, a method proposed in [ZSGS12] can be used, where unnec-
essary links in the lattice are disregarded. This can be achieved by creating a uniform
lattice around the non-convex object and then removing all tetrahedral cells and their
corresponding lattice nodes that lie entirely outside the input geometry. An example is
illustrated in Figure 5.15. We note that our approach can be applied to the non-uniform

FIGURE 5.15: Uniform lattice vs non-uniform lattice over the geometry of a dinosaur [ZSGS12].

lattice without any modifications. To demonstrate it, we conducted a simulated experi-
ment with a non-uniform lattice. To create a non-uniform lattice, we removed the middle
part of a uniform lattice. Figure 5.16 displays snapshots of this experiment throughout
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time. The results demonstrate the success of our approach in accomplishing the shape
servoing task using the non-uniform lattice.

FIGURE 5.16: Servoing a concave lattice toward the desired shape.

5.5.6 Comparison with state-of-the-art

In this section, we compare our shape servoing pipeline with ARAP shape servoing from
Chapter 4 through an experiment. Here we call ARAP shape servoing ARAP-SS for short.
We design two identical tasks for the two approaches with the thick A4 paper from T2.4.
The initial and the desired shapes are considered the same for the two tasks as can be
seen in Figure 5.17. This is done by storing the robots’ configuration for both initial and
desired shapes and keeping the grippers’ poses on the object unchanged in the two tasks.

FIGURE 5.17: Comparison between ARAP-SS and our proposed shape servoing pipeline. Left:
initial and desired shapes which are identical for both approaches. Right: shape servoing RMS

error over time belonging to both approaches.

ARAP-SS was designed for thin-shell objects, as it was based on a surface (not vol-
umetric) deformation model. Thus, we use only the nodes and interconnections on the
outer surface of the lattice as the template to ARAP-SS. We thus servo only these lat-
tice nodes from the initial to the final shape. In order to have a fair comparison, we do
a partial shape servoing with the same outer lattice nodes with our proposed servoing
pipeline. We also use the same gripped nodes and control gains in both approaches.
Similarly to the previous tasks, we saturate the translational and rotational velocities
sent to the robots. In the right side of Figure 5.17, the shape servoing errors of the two
approaches are compared. As seen, no significant difference can be observed between
these graphs. This validates the precision of our servoing approach in comparison to the
precision (which is state-of-the-art) of ARAP-SS. This precision, along with other features
of our proposed approach, including the analytical expression for Jacobian, having full
3D control over the object, and scalability, privilege our approach with respect to other
existing approaches.
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5.5.7 Failed cases

In this section, we present a failed case of our approach. Our failed case concerns driv-
ing the object through its singular shape, i.e., deforming it from an upward-curved to a
downward-curved shape or vice versa. In general, this is a complicated task as it requires
certain techniques that might differ from one object to another. We show this difficulty by
defining tasks with the thick A4 paper from T2.4. These tasks can be observed in Figure

FIGURE 5.18: Tasks for driving a thick A4 paper through its singular shape, i.e., a flat shape.
First row: successful task, deforming the paper from an upward-curved shape to a downward-
curved shape. Second row: unsuccessful task, deforming the paper from a downward-curved
shape to an upward-curved shape (deforming against gravity). Two last rows: successful task,

defining two intermediary desired shapes for performing the failed task of the second row.)

5.18. We start with a task in which the initial shape is upward-curved, and the desired
shape is downward-curved. This is shown in the first row of Figure 5.18. As indicated,
the shape servoing pipeline can successfully drive the object through the flat shape, i.e.,
the singular shape. It should be noted that, for this task, the direction of gravity is favor-
able throughout the servoing. In order to make the task more challenging, this time, we
try to start from a downward-curved shape and drive the object to an upward-curved
shape. This is shown in the second row of Figure 5.18. As seen, despite the severe ro-
tations applied to the paper by the robots, the paper cannot pass through the flat shape.
This continues until the robots reach their rotational limits. We show that it is possible to
solve this problem using a planning strategy. In particular, this can be done by firstly un-
wrapping the paper to a certain extent and then applying the required rotation to drive
the paper through its singular shape. We applied this approach by defining two inter-
mediary desired shapes for the paper: one nearly unwrapped downward-curved shape,
and one nearly unwrapped upward-curved shape. We switch from one desired shape to
the next one when the shape servoing RMS error becomes smaller than 15 mm. The last
two rows of Figure 5.18 present this process. As seen, using this solution, the task can
successfully be carried out.

5.6 Conclusion and future work

In this chapter, we presented a general unified shape tracking-servoing approach that is
capable of deforming DOs toward a desired shape. Our approach has full control over
the objects of any form (linear, thin-shell, volumetric) and geometry. Next, we mention
several limitations of our approach. For objects with low stiffness (like a cloth), it might
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be required to incorporate gravity which is not considered in our approach. Besides, reli-
ably driving the object through a singular shape requires additional techniques. Further-
more, handling contact with the environment is not included in our approach. Finally,
as we used our Jacobian with a Cartesian velocity controller, there is no guarantee that
the robots will always maintain comfortable or safe configurations during the task. This
might lead to the failure of the task. A direction for future work is to employ additional
constraints for alleviating the last limitation. Considering contact with static objects in
the scene is another possible direction of future work. Furthermore, as we use a 3D lat-
tice for any object, it is possible to transfer deformation from one lattice to another and
consequently from one object to another. This feature can be useful in motion transfer
applications concerning DOs. We also consider using the idea of employing a lattice for
improving generalization in reinforcement learning for DOs of any form. An interesting
direction for future research would be to apply our proposed approach to control the
deformation of an interior region of a volumetric object by deforming its surface. In our
current work, we performed all experiments by considering both the interior and surface
regions of the object as the servoing regions which were visible throughout the manipu-
lation. However, our approach can be adapted for scenarios where the servoed region of
the object is located completely in the interior and is not visible. An example is in sur-
gical applications where an organ needs to be deformed by a tool to drive a non-visible
tumor to a particular location. To validate this approach for such cases, specialized track-
ing techniques capable of tracking the interior region of the object would be needed. A
phantom that is transparent and enables the visualization of its interior, with colored
tumors embedded inside, could be a potential setup for validating this idea.
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Chapter 6

Conclusion and perspectives

In this thesis, we presented solutions for both shape tracking and servoing of DOs. Specif-
ically, we proposed two tracking solutions: one based on monocular vision and another
using a 3D camera, and two servoing solutions: one for thin-shell objects and one for
objects of any form and geometry, both based on the ARAP deformation model. We
conclude this thesis in two sections: shape tracking and shape servoing. We highlight
contributions and discuss limitations and possible future work for each section.

6.1 Shape tracking

We proposed two shape tracking methods: ROBUSfT, a complete SfT pipeline for monoc-
ular 3D shape tracking of isometrically deforming thin-shell objects, and lattice-based
shape tracking (linked with lattice-based shape servoing) based on 3D camera.

Chapter 3 presents ROBUSfT, a novel CPU-GPU architecture that outperforms exist-
ing SfT methods in precision and execution speed. It works in real-time (up to 30 fps),
handles large deformations, partial occlusions, and discontinuity in video frames. It is
a wide-baseline method that requires only a template of the object, making it instanta-
neous and not requiring training or fine-tuning. However, ROBUSfT has limitations, such
as requiring rich texture and being limited to thin-shell objects.

Possible improvements for ROBUSfT include leveraging object silhouettes in the image
to improve 3D shape inference for weakly-textured objects, and exploring new deforma-
tion models to extend the approach to volumetric objects. The current PBD model used
in ROBUSfT slows down when used with dense meshes. Meshless shape matching is a
potential candidate for this thanks to its fast execution speed for modeling volumetric
objects. Another direction for future work in SfT methods is to exploit Deep Neural Net-
works in a more efficient way. As discussed in Chapter 3, the current DNN-based meth-
ods are based on classical convolutional neural networks with the input of a single image
of the object being deformed. These works require to be thoroughly retrained for a new
unseen object [PAP+18, GSVS18, SGTS19, FJPCP+22, FJPCP+21]. One solution proposed
in [FJPCP+21] is to feed the texturemap of the object into the network, making it agnostic
to the texture and work for unseen texturemaps. However, this method is limited to a
specific object form, such as an A4 paper. A possible direction for extending this work
is to feed the 3D mesh of the object into the network and train it with many 3D meshes,
making it agnostic to the shape of the object. This can be done using Graph Neural Net-
work (GNN) based methods. Using these networks it is possible to consider the object
as a mesh and employ the connections between the mesh nodes in the learning process.
GNN-based methods show promising results in simulating complex physics using this
mechanism [SGGP+20].

To overcome the limitation of being restricted to well-textured thin-shell objects, we
proposed lattice-based shape tracking using 3D vision in Chapter 5. Lattice-based shape
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tracking is a general method that can handle linear, thin-shell, and volumetric objects.
The lattice-based approach decouples the runtime complexity from the geometric com-
plexity of objects, resulting in faster tracking without the need for specialized hardware
(running on CPU at around 30 fps). However, lattice-based shape tracking is currently
short-baseline and requires initialization for tracking. Future work could involve inte-
grating 2D vision to address the initialization problem and also handle more complex
shapes and deformations such as an axisymmetrical cylinder.

6.2 Shape servoing

In Chapter 4, we proposed a simple and robust shape servoing approach for thin-shell
DOs called ARAP shape servoing. Unlike existing work, our approach does not require
knowledge of the object’s mechanical deformation parameters or computation of Jaco-
bian from data collected over a time window, which is prone to noise. We demonstrated
the effectiveness of our approach in bi-arm shape servoing experiments involving vari-
ous deformable objects made of different materials, including paper, rubber, and plastic.

Chapter 5 presented the lattice-based shape servoing approach, which inherits the ad-
vantages of ARAP shape servoing while addressing its limitations. Lattice-based shape
servoing can handle objects of any form (linear, thin-shell, volumetric) and geometry. It
also supports partial shape servoing. Unlike ARAP shape servoing, the computation of
the Jacobian in lattice-based shape servoing does not involve any numerical approxima-
tion, making it more accurate and reliable. Additionally, the approach is fully scalable
and can accommodate any number of grippers. We validated the efficacy of lattice-based
shape servoing in various experiments involving objects of different forms, geometries,
and materials.

Regarding the limitations of our proposed shape servoing approaches, for objects
with low stiffness (like a cloth), it might be required to incorporate gravity which is not
considered in our approaches. Another potential future direction is to consider han-
dling contact with the environment, which is not currently addressed in our proposed
approaches. Additionally, reliably driving the object through a singular shape may re-
quire additional techniques. For example, directly deforming a curved paper from a
downward-curved to an upward-curved shape is not always possible, as the paper may
get stuck in a flat shape. We address this issue in our experiments with a planning so-
lution. Employing learning-based approaches to learn these techniques near the singu-
lar shapes can be another possible solution. Following this, we, in collaboration with
the Chalmers University of Technology, employed offline reinforcement learning (RL) to
servo a slack rope toward desired shapes, particularly to pass it through the flat shape.
We used the setup shown in Figure 6.1 to collect data, and train and test the network. The
rope is deformed on a table from its two ends using two grippers of the Yumi robot. We
used our tracking pipeline from Chapter 5 to track the rope. We compared our approach
with the shape servoing approach proposed by Berenson et al. [Ber13] for ten random
downward-curved and upward-curved shapes. Our offline RL approach does a better
job than [Ber13] in inverting the direction of the rope and driving it toward the desired
shapes as it is shown in Figure 6.2. While the results presented in this work were not
optimal, our learning-based approach provides a promising direction for future work to
address the challenge of reliably driving DOs through singular shapes. Further research
in this area could lead to improved techniques for deforming DOs, particularly in scenar-
ios where conventional shape servoing methods may not suffice.

The last point that we discuss here is that the role of gripper positioning on the ob-
ject is often overlooked in the literature of shape servoing. In most of the existing work,
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FIGURE 6.1: Dual-arm ABB YuMi robot manipulates a rope on a table. A fixed Intel RealSense
camera provides a top-view of the workspace. The field of view of the camera is shown in the
top right corner, with the overlay of the current shape tracking in green and the desired shape

in red.

FIGURE 6.2: Comparison between final and desired shapes. Note how the offline RL policy
succeeded in inverting the curvature, while the shape servoing appraoch [Ber13] remained at a

local minimum.

the gripper positions are predefined and given as input to the shape servoing problem.
However, a poor gripper setup may render the deformation task non-feasible. On the
contrary, a proper gripper positioning can not only improve the shape servoing perfor-
mance but may also be decisive for the task’s success [CZLNA22, DFTSM22]. Therefore,
it is crucial to consider the gripper positioning along with shape servoing approaches to
guarantee the success of the task. This aspect could be a promising direction for future
research in the field of shape servoing.
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