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starting with the reviewers Prof. Véronique Veque, who also served as president
of the jury, as well as Prof. Abed Ellatif Samhat and Prof. Andrzej Duda. I also
extend my gratitude to Dr. Cherifa Boucetta who served as an examiner in the jury.

Additionally, I would like to express my gratitude to my colleagues, Ali, Mouna,
Samar, Ines, Theo, Lea, Omaima, Amani, and Wassim, for enabling a great atmo-
sphere in the office.

i



Abstract

Wireless technologies are used in various applications due to their ease of deploy-
ment, and inherent capabilities to support mobility.Wireless Fidelity (Wi-Fi) is one
of the popular wireless technologies. The rapid growth of Wi-Fi networks, the
increasing demand for network capacity in terms of bandwidth, and the growing
number of users cause the densification of deployed networks. Wi-Fi networks suffer
from deterioration of the Quality of Experience (QoE) in dense deployments. This
thesis examines different ways to improve the performance of Wi-Fi networks. It
focuses, on one hand, on the deployment of Wi-Fi networks taking into account
the capacity of the technology and the needs of the application, and on the other
hand, on Reinforcement Learning (RL) based approaches for adapting the amount
of transmitted data and improving the Carrier Sense Multiple Access with Collision
Avoidance (CSMA/CA)protocol.

As part of this thesis, we first analyze existing rate adaptation algorithms and
their impact on the performance of Wi-Fi networks. Then, we study the best prac-
tices for deploying these networks within the context of smart farming, including
the number of required access points and their location to maximize coverage and
performance in a remote monitoring and control application for mobile agricultural
robots. The deployment technique leverages Wi-Fi features such as beamforming.
In the second part, we exploit reinforcement learning mechanisms to dynamically
adapt application profiles based on network conditions and user requirements. Fi-
nally, we exploit RL mechanisms to improve the CSMA/CA protocol by adapting
the backoff duration to the network state.

Through simulation results, we demonstrate that taking into account the im-
pact of Multiple Input Multiple Output (MIMO) antennas in the Wi-Fi network
deployment strategies reduces the required number of access points and achieves
better coverage. A deployment strategy that takes into account the network capac-
ity results in a trade-off between the number of access points, coverage, required
antennas per access point, and performance. Our reinforcement learning models
bring a significant improvement in Wi-Fi network performance. These models allow
dynamic adaptation of application profiles based on network conditions and user
requirements, resulting in better network throughput and fewer data losses. More-
over, the model used at the CSMA/CA algorithm level has led to fewer access delays,
improved overall throughput, fewer collisions, and better fairness among users.

Through this research work, we demonstrate, using a numerical simulation eval-
uation approach, the effectiveness of reinforcement learning to improve the perfor-
mance of different aspects of a Wi-Fi network. The results show the potential for
significant performance improvements and better user experience in Wi-Fi networks
through the application of these optimization methods. Future work should con-
tinue to explore and refine these techniques to ensure that Wi-Fi networks can meet
the ever-increasing demand for reliable, high-quality wireless connectivity.
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Résumé

Les technologies sans fil sont utilisées dans diverses applications en raison de leur
facilité de déploiement et de leurs capacités inhérentes à prendre en charge la
mobilité. Le Wi-Fi est l’une des technologies sans fil populaires. La croissance
rapide des réseaux Wi-Fi, la demande croissante de capacité de réseau en termes de
bande passante et le nombre croissant d’utilisateurs provoquent une densification
des réseaux déployés. Les réseaux Wi-Fi souffrent de la détérioration de la QoE
dans les déploiements denses. Cette thèse examine différentes façons d’améliorer les
performances des réseaux Wi-Fi. Elle se concentre, d’une part, sur le déploiement
des réseaux Wi-Fi en tenant compte de la capacité de la technologie et des besoins
de l’application, et d’autre part, sur les approches basées sur l’apprentissage par ren-
forcement pour l’adaptation de la quantité de données transmises et l’amélioration
du protocole CSMA/CA.

Dans le cadre de cette thèse, nous analysons d’abord les algorithmes d’adaptation
de débit existants et leur impact sur les performances d’un réseau Wi-Fi. Ensuite,
nous étudions les meilleures pratiques pour le déploiement de ces réseaux au sein
d’une exploitation agricole, notamment le nombre de points d’accès requis et leur
emplacement pour maximiser la couverture et les performances dans le cadre d’une
application de surveillance et de contrôle à distance de robots agricoles mobiles. La
technique de déploiement tire parti des fonctionnalités du Wi-Fi tel que le beam-
forming. Dans une seconde partie, nous exploitons des mécanismes d’apprentissage
par renforcement pour adapter dynamiquement les profils d’application en fonction
des conditions du réseau et des exigences des utilisateurs. Nous exploitons également
les mécanismes de RL afin d’améliorer le protocole CSMA/CA en adaptant la durée
du backoff selon l’état du réseau.

A travers les résultats de simulation, nous démontrons que l’utilisation du MIMO
dans la stratégie de déploiement de réseaux Wi-Fi permet de réduire le nombre
de points d’accès requis et d’obtenir une meilleure couverture. Une stratégie de
déploiement tenant compte de la capacité du réseau aboutit en un compromis entre
le nombre d’antennes, la couverture, les points d’accès requis et les performances.

Nos modèles d’apprentissage par renforcement apportent une nette amélioration
des performances des réseaux Wi-Fi. Ces modèles ont permi une adaptation dy-
namqiue des profils d’application en fonction des conditions du réseau et des exi-
gences des utilisateurs, entrâınant un meilleur débit du réseau et moins de pertes
de données. De plus, le modèle utilisé au niveau de l’algorithme CSMA/CA a en-
trâıné moins de retards d’accès, un débit global amélioré, moins de collisions et une
meilleure équité entre les utilisateurs.

A travers ce travail de recherche, nous démontrons, à travers une démarche
d’évaluation par simulation numérique, l’efficacité de l’apprentissage par renforce-
ment pour améliorer les performances de différents aspects d’un réseau Wi-Fi. Les
résultats montrent le potentiel d’améliorations significatives des performances et
de l’expérience utilisateur des réseaux Wi-Fi grâce à l’application de ces méthodes
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d’optimisation. Les travaux futurs devraient continuer à explorer et à affiner ces
techniques pour s’assurer que les réseaux Wi-Fi puissent répondre à la demande
toujours croissante d’une connectivité sans fil fiable et de haute qualité.
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Résumé iii

List of Acronyms vii

List of Figures ix

List of Tables x

1 Introduction 1
1.1 Context: I-Site CAP 20-25 Project . . . . . . . . . . . . . . . . . . . 1
1.2 Wireless Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Wireless Technologies . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Wi-Fi Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.3 Performance of Wi-Fi Networks . . . . . . . . . . . . . . . . . 4

1.3 Objectives and Research Methodology . . . . . . . . . . . . . . . . . 4
1.4 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Manuscript Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 State of the Art 7
2.1 Wi-Fi Standards and Features . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Evolution of Wi-Fi Standards . . . . . . . . . . . . . . . . . . 7
2.1.2 802.11ac and Beyond . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Modulation and Coding Schemes . . . . . . . . . . . . . . . . 9
2.1.4 Carrier Sense Multiple Access with Collision Avoidance . . . . 10
2.1.5 Beamforming . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Wi-Fi Problems and Limitations . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Congestion in Modern Wi-Fi Applications . . . . . . . . . . . 13
2.2.2 Manufacturer-Specific Features of Wi-Fi . . . . . . . . . . . . 14

2.3 Rate Adaptation Algorithms . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 Explicit Feedback Algorithms . . . . . . . . . . . . . . . . . . 15
2.3.2 Implicit Feedback Algorithms . . . . . . . . . . . . . . . . . . 16
2.3.3 Hybrid Adaptation . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Wi-Fi Channel Modeling . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.1 Propagation Models of Wi-Fi Channels . . . . . . . . . . . . . 18
2.4.2 Wi-Fi Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.3 Wi-Fi Channel Capacity . . . . . . . . . . . . . . . . . . . . . 21

2.5 Wi-Fi Networks Deployment . . . . . . . . . . . . . . . . . . . . . . . 23
2.5.1 Indoor Environments . . . . . . . . . . . . . . . . . . . . . . . 23

xi



CONTENTS xii

2.5.2 Outdoor Environments . . . . . . . . . . . . . . . . . . . . . . 24
2.6 Reinforcement Learning in Wireless Networks . . . . . . . . . . . . . 25

2.6.1 The Core Concept Behind Reinforcement Learning . . . . . . 26
2.6.2 Deep Reinforcement Learning . . . . . . . . . . . . . . . . . . 29
2.6.3 Leveraging Reinforcement Learning to Optimize Wi-Fi Networks 30
2.6.4 Using Network Simulators with Reinforcement Learning for

Wi-Fi Optimization . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Contribution 1 - Wi-Fi Networks Deployment 32
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Selecting the Most Effective Rate Adaptation Algorithm . . . . . . . 32

3.2.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.2 Scenario 1 - Interference Free Network . . . . . . . . . . . . . 34
3.2.3 Scenario 2 - Infrastructure Network . . . . . . . . . . . . . . . 35
3.2.4 Scenario 3 - Ad hoc Network . . . . . . . . . . . . . . . . . . . 38
3.2.5 Lessons Learned . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Wi-Fi Deployment with Beamforming . . . . . . . . . . . . . . . . . . 42
3.3.1 Deployment Technique . . . . . . . . . . . . . . . . . . . . . . 42
3.3.2 Deployment Scenarios . . . . . . . . . . . . . . . . . . . . . . 44
3.3.3 Capacity Aware Deployment . . . . . . . . . . . . . . . . . . . 45

3.4 Performance Evaluation of Deployment Strategies . . . . . . . . . . . 47
3.4.1 Network Performance Evaluation . . . . . . . . . . . . . . . . 47
3.4.2 Empirical Performance Evaluation . . . . . . . . . . . . . . . . 57
3.4.3 Deployment Feasibility Study . . . . . . . . . . . . . . . . . . 58

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 Contribution 2 - Reinforcement Learning in Wi-Fi Networks 62
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2 Algorithm and Implementation . . . . . . . . . . . . . . . . . . . . . 62

4.2.1 Deep Reinforcement Learning Algorithm . . . . . . . . . . . . 62
4.2.2 Implementation of the Training and Evaluation Scenarios . . . 64

4.3 Application Profile Selection Using Deep Reinforcement Learning . . 64
4.3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . 65
4.3.2 Model Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3.3 Model Training . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.3.4 Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4 Intelligent CSMA/CA using Deep Reinforcement Learning . . . . . . 72
4.4.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . 74
4.4.2 Model Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.4.3 Model Training . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.4.4 Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.5 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 Conclusions and Future Directions 81
5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.1.1 Evaluating and Selecting the Best Rate Adaptation Algorithm 81
5.1.2 A Study on Capacity-Aware Deployment . . . . . . . . . . . . 81
5.1.3 Wi-Fi Performance Optimization using Reinforcement Learning 82

5.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.2.1 Potential Contributions to Rate Adaptation Algorithms . . . . 83

xii



CONTENTS xiii

5.2.2 Possible Enhancements to the Capacity-Aware Deployment . . 84
5.2.3 Enhancement of Reinforcement Learning Approaches for Wi-

Fi Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Publications 87

Bibliography 96

xiii



Chapter 1

Introduction

Wireless communication technologies have become an increasingly popular method
for establishing connectivity between connected nodes without requiring extensive
cable deployment. Such technologies are critical for many applications, especially
ones that require mobility, including vehicular networks for Cooperative Intelligent
Transport Systems (C-ITS) [2, 3], mobile-connected engines for precision farming
[4, 5], and a wide range of applications used on mobile phones and that rely on
cellular networks. The development of wireless technologies continues to evolve
to meet the demands of modern applications and maintain acceptable Quality of
Service (QoS) and Quality of Experience (QoE) for end users.

In this chapter, we begin in section 1.1 by introducing the context of this thesis
which is an I-Site CAP 20-25 project. We then provide an overview of wireless
networks, specifically focusing on Wi-Fi networks and their applications, in section
1.2. The main objectives of the thesis and our research methodology are outlined in
section 1.3, followed by a discussion of our contributions in section 1.4. Finally, we
summarize the structure of this manuscript in section 1.5.

1.1 Context: I-Site CAP 20-25 Project

The work done in this thesis is part of a research activity related to smart farming
funded by the I-Site CAP 20-25 Project. One of the building blocks of smart farming
is autonomous robots. These robots are equipped with onboard intelligence, allowing
them to execute tasks on fields autonomously, the fields are of areas that range from
1km2 to 5km2. There are currently 5 functional robots, the number will increase to
20 robots in the short run, and it is expected to reach 100 robots in the long run.
During the task execution, robots send through a wireless communication system
periodical data such as localization, state of the robot, images, and sometimes video
streams. Indeed, in some cases, robots need human intervention to assess specific
situations where their onboard intelligence is not able to make decisions (unexpected
obstacles, faulty behavior, etc.). Human operators are expected to take control of
these robots remotely and guide them through the situation. This task requires a
reliable video stream from the robot to the control stations. In other words, The
communication flow during the remote takeover needs to benefit from a certain level
of QoS that offers a satisfactory QoE. The latter is the main focus of this thesis.

Many wireless technologies currently exist. Each technology has its own technical
characteristics in terms of coverage, cost, energy consumption, throughput, delay,
etc.

1
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1.2 Wireless Networks

Wireless technologies have experienced significant advancements in the past decades,
enabling the creation of highly efficient communication networks. Wi-Fi networks
have emerged as a ubiquitous technology that offers seamless connectivity to the
internet and facilitates communication across a wide range of devices. This section
provides an overview of wireless technologies and Wi-Fi networks. Additionally, we
explore various applications of Wi-Fi networks and discuss their performance.

1.2.1 Wireless Technologies

The field of wireless networks encloses various technologies. In what follows, we list
some of the popular wireless technologies that offer data rates that meet the needs
of smart farming mobile robots applications:

• Cellular networks [6] which represent a crucial component of modern telecom-
munication systems, providing wide connectivity and enabling seamless data
transmission across large areas. Advances in cellular technology, such as the
transition from 4G to 5G, have significantly enhanced network capacity, data
rates, and latency, paving the way for a wide array of emerging applications.
In general, 4G LTE networks can provide speeds of up to 100 Mbps, while 5G
networks can provide speeds of up to 10 Gbps [7].

• Wi-Fi [8] is a popular way to provide wireless communication, offering high-
speed data transfer for various devices. Recent advancements in Wi-Fi stan-
dards, such as the introduction of Wi-Fi 6 and Wi-Fi 7 with data rates up to
30 Gbps, have led to improved network efficiency, increased throughput, and
reduced latency, thereby supporting the growing demands of data-intensive
applications.

• Bluetooth [9] is a widely used wireless technology that enables short-range
communication between devices, such as connecting headphones, speakers, or
wearables to smartphones and computers. Its low power consumption and
ease of use make it ideal for a variety of applications. Bluetooth technology
has seen recent improvements, such as the introduction of Bluetooth 5, which
can achieve a maximum data rate of up to 2 Mbps. [10].

• WiMAX [11] is a wireless technology that provides high-speed connectivity
over a wide area. It can provide data rates of up to 70 Mbps.

• Zigbee [12] is a wireless technology extensively used in home automation and
industrial applications. It operates at low power levels and enables efficient
transmission of small data volumes over short distances, achieving data rates
of up to 250 Kb/s.

• LP WAN (Low-Power Wide Area Network) technologies [13], such as Lo-
RaWAN, have been specifically designed to enable long-range communication
while minimizing power consumption. LoRaWAN offers data rates up to 27
Kb/s. The actual data rates depend on the specific network configuration and
environmental factors.

• Satellite communication [14] enables the transmission of data over vast dis-
tances. The achievable data rates in satellite communication can vary based
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on factors such as the type of satellite system deployed and the frequency band
used reaching up to multiple Gb/s. However, Satelite communications suffers
from delay due to the long distances travelled.

Ongoing advancements in wireless communications have led to the development
of innovative applications, such as the Internet of Things (IoT) [15], which includes
smart homes [16], smart farming [17], and C-ITS [18].

In this work, we decided to focus on Wi-Fi technology because it offers a good
compromise between performance and availability. It is an autonomous system
that can be deployed anywhere without the need for a telecommunication operator
coverage. Furthermore, it offers high data rates that can support a wide range of
modern applications.

1.2.2 Wi-Fi Networks

Wi-Fi is a widely adopted wireless communication technology integral to a variety of
devices. Wi-Fi networks are critical in wireless communication systems by offering
internet connectivity and data transmission capabilities to various devices, including
smartphones, laptops, tablets, and smart appliances. Wi-Fi primarily operates on
multiple frequency bands, such as 2.4 GHz and 5 GHz, presenting a range of channels
to facilitate multiple devices in varying settings. Typically, Wi-Fi networks adhere
to the IEEE 802.11 standards, which have undergone numerous modifications to
improve network efficiency and speed.

Initially introduced in 1997, the first Wi-Fi standard, IEEE 802.11, provided data
rates reaching 2 Mbps. Since then, several subsequent versions have emerged, each
enhancing data rates, coverage, and network effectiveness. Some well-known Wi-
Fi standards include 802.11n, 802.11ac, and 802.11ax. Each standard incorporates
new technologies and methodologies to optimize Wi-Fi network performance, such as
Multiple Input Multiple Output (MIMO), beamforming, and Orthogonal Frequency
Division Multiple Access (OFDMA).

Two primary types of Wi-Fi networks exist infrastructure mode and ad-hoc
mode. Infrastructure mode, the more popular type, involves devices connecting
to an Access Points (AP) responsible for administering the wireless network and
enabling connectivity to the internet. In contrast, ad-hoc mode permits devices to
connect directly, forming a decentralized wireless network without requiring an AP.

The extensive adoption of Wi-Fi networks has generated an increasing demand
for uninterrupted, high-speed, and reliable connectivity. This has led to the creation
of various network management and optimization strategies, such as load balancing,
adaptive channel allocation, and QoS prioritization. These approaches aim to ensure
that Wi-Fi networks can accommodate the growing number of devices and data-
intensive applications while maintaining optimal performance.

Wi-Fi networks have been adopted in many modern applications, which led to
many ongoing research work and development efforts aiming at enhancing network
performance. Emerging technologies that can influence the future of Wi-Fi networks
include Wi-Fi 6E, which extends the Wi-Fi 6 standard to the 6 GHz frequency band,
offering additional channels and increased capacity for Wi-Fi networks. Moreover,
developing next-generation Wi-Fi standards, such as IEEE 802.11be (Wi-Fi 7), seeks
to improve data rates, latency, and network efficiency, paving the way for even more
sophisticated applications and use cases.

3
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1.2.3 Performance of Wi-Fi Networks

Wi-Fi networks have become vital in many applications across various sectors. Smart
farming, in particular, has witnessed significant advancements due to Wi-Fi net-
works, which enable the deployment of cutting-edge technologies for precision agri-
culture [4]. These technologies encompass remote irrigation management, livestock
monitoring, and real-time soil analysis, leading to more efficient resource use, higher
crop yields, and a reduced environmental impact.

In smart cities, Wi-Fi networks facilitate the integration of intelligent systems
that optimize traffic flow, enhance public safety, and improve energy management
[19]. Wi-Fi networks connect devices throughout the urban environment and provide
city planners and administrators with valuable insights to streamline city services
and make more informed decisions.

In the industrial sector, Wi-Fi networks play a crucial role in implementing In-
dustry 4.0 solutions, which involve using interconnected devices, sensors, and robots
for real-time data analysis, predictive maintenance, and automated decision-making,
thereby increasing efficiency and reducing operational costs [20].

Transport systems also benefit from Wi-Fi networks, which provide passengers
with reliable internet connectivity during their journeys, whether on buses, trains, or
airplanes. This enhanced connectivity not only improves the travel experience but
also allows for real-time tracking and communication between vehicles and central
control centers, contributing to greater operational efficiency and safety.

In large venues like stadiums [21], Wi-Fi networks offer attendees high-speed
internet access, enabling them to share live updates, access event information, and
enjoy immersive experiences that enhance their enjoyment of the event.

Wi-Fi technology has been employed in a multitude of domains and applications
across various domains. However, despite their numerous advantages, Wi-Fi net-
works often suffer from performance challenges that can impact the QoS provided
to users. Factors such as network congestion, interference, and the increasing num-
ber of connected devices can lead to reduced data rates, increased delay, and even
connectivity issues. In order to maintain high-performance Wi-Fi networks, opti-
mization strategies are necessary to tackle these challenges effectively. Optimizing
Wi-Fi networks involves various approaches on different network layers, including
data rate adaptation, deployment optimization, QoS prioritization, and congestion
control to ensure reliable connections even in dense network environments.

Many current research works on Wi-Fi networks have been carried out to in-
corporate Machine Learning (ML) principles into their network stacks to provide
reliable communications. ML allows devices to learn to solve problems without be-
ing explicitly programmed. These methods include supervised, unsupervised, and
reinforcement learning. RL has become one of the most important machine learn-
ing research areas as it enables models to achieve specific goals while maximizing
their rewards over time. RL agents can explore, interpret, act, and learn from their
environment through trial and error to optimize their cumulative reward. Wi-Fi
networks have integrated these techniques into their operations to enhance their
performance.

1.3 Objectives and Research Methodology

This thesis aims to enhance certain aspects of Wi-Fi networks for better QoS in
the context of smart farming with dense scenarios as part of the I-Site CAP 20-25
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project. Our main research objectives are listed below:

• Enhance Wi-Fi deployments through various deployment strategies by leverag-
ing Wi-Fi features such as beamforming. We aim to improve network efficiency
while minimizing deployment complexity and cost.

• Enhance Wi-Fi communication protocols, especially in terms of throughput,
in order to offer the required QoS that meets the QoE of the users.

We selected a simulation-based evaluation approach to evaluate our contribu-
tions. Simulation offers ease of control of the simulation environment parameters
and yields valuable results. Due to the unavailability and complexity of experimental
equipment, conducting experiments can take time and effort. By simulating various
scenarios, we were able to assess the effectiveness of our proposed solutions in a
controlled environment, providing us with comprehensive data and insights into the
performance of our proposals. This approach allowed us to refine and improve all
our contributions and to train our RL models, leading to a more accurate evaluation
of our proposed solutions.

1.4 Thesis Contributions

The contributions of this thesis investigate techniques to optimize Wi-Fi network
performance. In what follows, we list our main contributions, note that the first
and second contributions are combined into a single chapter in the manuscript due
to their strong correlation:

1. In the first step of the thesis, we studied rate adaptation algorithms that
adjust the data rate on the lower layers of Wi-Fi. Various algorithms have
been proposed over the years, each utilizing unique strategies to determine the
optimal data rate. We categorized the algorithms according to the way they
behave. Then, we picked and evaluated four algorithms from the literature
to determine their performance in terms of throughput and packet loss under
different network conditions. We listed their strengths and weaknesses and the
lessons learned from the study. Finally, we select the most effective algorithm
based on our results. This contribution has been published in a journal paper
[22].

2. In the second step of the thesis, we conducted a comparison study of the perfor-
mance of Wi-Fi networks using MIMO and SISO systems. We also investigated
the main objective of the study, which is the impact of beamforming on cov-
erage and capacity. To optimize network performance for users, we explored
deployment concerns such as equipment selection and access point placement
strategies. We evaluated various deployment configurations through simula-
tion and an empirical model that we developed. Our findings have been sub-
mitted to a journal for publication, and we are currently awaiting the outcome
of the review process.

3. In the last step of the thesis, we employed deep reinforcement learning to opti-
mize Wi-Fi network performance in two contexts. First, we designed a model
to learn the most suitable application profiles for optimal network performance
in dense Wi-Fi networks, where network saturation can lead to significant per-
formance degradation. We evaluated the model through simulation compared
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to the baseline rate and another work from the literature. This work has been
published in a conference paper [23]. Second, we used deep reinforcement
learning to optimize the random backoff decision of the Carrier Sense Multiple
Access with Collision Avoidance (CSMA/CA) protocol, which manages access
to the wireless medium in Wi-Fi networks. The model was trained and evalu-
ated in the simulator. This work has been submitted to a journal, and we are
currently awaiting the outcome of the review process.

1.5 Manuscript Structure

The manuscript is structured into five main chapters. Chapter 1 provides an
overview of wireless networks, with a focus on Wi-Fi networks, and summarizes
the thesis methodology and contributions. In chapter 2, a literature review is
presented, which covers the Wi-Fi standards, features, and limitations, as well as
literature directly related to the thesis contributions. Chapter 3 is devoted to our
first contribution, which explores Wi-Fi network deployment, including the evalu-
ation and selection of the most effective rate adaptation algorithm and a study on
capacity-aware deployment. In chapter 4, we delve into our second contribution,
which concentrates on employing reinforcement learning in Wi-Fi networks, com-
prising application profile selection using deep reinforcement learning and intelligent
Carrier Sense Multiple Access with Collision Avoidance (ICSMA/CA) using deep
reinforcement learning. Chapter 5 concludes the manuscript and suggests possible
future research directions.
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Chapter 2

State of the Art

In this chapter, we explore various aspects of Wi-Fi networks and their features
that are relevant to our thesis. We commence with section 2.1, outlining Wi-Fi
standards along with their features such as Modulation and Coding Scheme (MCS),
MIMO, CSMA/CA, and others that significantly influence the performance and
reliability of Wi-Fi networks. Section 2.4 delves into Wi-Fi channel modeling in
outdoor environments. We discuss the challenges and limitations of Wi-Fi networks
in section 2.2. In section 2.3, we examine rate adaptation algorithms from existing
literature and classify them based on their behavior. Section 2.5 evaluates indoor
and outdoor deployment strategies found in the literature. Finally, we provide a
comprehensive explanation of reinforcement learning types and their functioning, as
well as their applications in Wi-Fi networks.

2.1 Wi-Fi Standards and Features

Wireless Fidelity (Wi-Fi) has undergone rapid changes since its initial standard was
released in 1997. Over time, the evolution of Wi-Fi standards has been driven by
the need to support increasing data rates and devices. To achieve these goals, new
modulation techniques, frequency bands, and technologies have been added to each
new Wi-Fi standard. Moreover, the standards had to adapt to changes in the wireless
environment, such as interference from other wireless devices and the demand for
supporting various advanced applications and use cases. In the following section,
we will explore the major Wi-Fi standards.

2.1.1 Evolution of Wi-Fi Standards

Wi-Fi standards form the basis of Wi-Fi technology and define the specifications
and requirements for Wireless Local Area Networks (WLANs). These standards are
maintained by the Institute of Electrical and Electronics Engineers (IEEE) and are
commonly referred to as IEEE 802.11 standards [24].

The first Wi-Fi standard, 802.11, was introduced in 1997 and provides data rates
of up to 2 Mbps. Although initially designed for business and scientific use, as the
demand for wireless connections grew, the Wi-Fi Alliance was created in 1999 to
develop commercial Wi-Fi standards.

In 1999, Wi-Fi 1, also known as the 802.11b standard [25], was introduced by the
Wi-Fi Alliance [26]. Wi-Fi 1 uses Direct Sequence Spread Spectrum/Complementary
Code Keying (DSS/CCK) modulation schemes for data transmissions. It provides
support for different speeds up to 11 Mbps. This standard quickly became popular
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and the default choice for wireless networking, utilizing the 2.4 GHz frequency band
with good coverage in indoor environments.

Wi-Fi 2, also known as the 802.11a standard, was introduced as another extension
of the original 802.11 standard in 1999 [27]. It uses the 5 GHz frequency band with
Orthogonal frequency-division multiplexing (OFDM) transmissions and offers data
rates of up to 54 Mbps. Although not backward compatible with 802.11b, it provided
better performance in environments with significant interference.

Wi-Fi 3, also known as the 802.11g standard, was released in 2003 [28]. It
provides backward compatibility with 802.11b and faster data rates of up to 54
Mbps. Although still utilizing the 2.4 GHz frequency band, it uses a more efficient
multi-carrier modulation scheme for improved performance.

Wi-Fi 4, also known as the 802.11n standard, was introduced in 2006 [29]. Wi-
Fi 4 was a significant improvement over previous standards due to the employment
of MIMO, 40 MHz channels in the physical layer, and frame aggregation in the
Medium Access Layer (MAC) layer. Channel width of 40 MHz provides double the
data rate of a single 20 MHz channel of Wi-Fi 3. Wi-Fi 4 allows for up to four
spatial streams, with a maximum theoretical throughput of 600 Mbps. The mod-
ulation and coding schemes available in this standard include Binary Phase Shift
Keying (BPSK), Quadrature Phase Shift Keying (QPSK), 16Quadrature Amplitude
Modulation (QAM), and 64QAM. Moreover, Frame aggregation enables the combi-
nation of multiple MAC Service Data Unit (MSDU)s or MAC Protocol Data Unit
(MPDU)s to reduce overheads and increase the application level data rate across
multiple frames. Additionally, Wi-Fi 4 is compatible with previous standards.

In 2013 and 2019, two significant advancements in wireless networking were in-
troduced: 802.11ac [30] and 802.11ax [31]. These standards represented a significant
improvement over previous standards and brought with them several features and
enhancements, which we will explore in the next subsection.

2.1.2 802.11ac and Beyond

In 2013, Wi-Fi 5, also known as 802.11ac, was a major improvement over the previ-
ous Wi-Fi standards. Wi-Fi 5 operates exclusively in the 5 GHz band and offers data
transfer speeds of up to 3.5 Gbps, which is more than double the speed of Wi-Fi 4.
Wi-Fi 5 includes wider bandwidth of up to 160 MHz, more MIMO spatial streams
of up to 8, downlink Multi-User MIMO (MU-MIMO) up to 4 clients leading to re-
duced network congestion and better performance in dense areas, and high-density
modulation of up to 256QAM at 3/4 and 5/6 coding rates. Wi-Fi 5 uses Beamform-
ing, which allows the antenna to transmit radio signals in a specific direction to a
particular device, strengthening the signals in that region and resulting in a more
robust and stable connection, especially at longer distances.

WiFi 6, also known as 802.11ax, was introduced in 2019. It operates on both
the 2.4 GHz and 5 GHz frequency bands. Wi-Fi 6 uses a denser modulation scheme,
namely the 1024QAM, to provide data rates of up to 9.6 Gbps, which is nearly three
times faster than WiFi 5. Additionally, WiFi 6 uses the OFDMA technology, which
divides the wireless channel into smaller sub-channels, leading to more efficient use of
the wireless spectrum. Moreover, WiFi 6 enhances downlink MU-MIMO technology,
allowing up to 8 simultaneous user connections per access point, which is useful in
dense areas. Wi-Fi 6E expands the existing Wi-Fi 6 standard and allows access to
a new 6 GHz band. Finally, Wi-Fi 6E (wave 2) introduces uplink MU-MIMO.

WiFi 7, also known as 802.11be, was introduced in 2023 [32]. The new standard
will operate on the 6 GHz frequency band. This standard offers data rates of up to
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30 Gbps and support channels that are up to 320 MHz wide. Additionally, WiFi
7 introduces improved MU-MIMO technology, improved multi-access point coor-
dination, 4096QAM, 16 spatial streams, and other features to boost performance,
efficiency, and security.

Figure 2.1 summarizes the main features of the most recent Wi-Fi standards.

Wi-Fi 4

Wi-Fi 5

Wi-Fi 6

Wi-Fi 7

5 GHz

5 GHz

2.4 and 5 GHz

2.4, 5, and 6 GHz

Beamforming

4 spatial streams

8 spatial streams
Data rate up to 3.5 Gbps

Data rate up to 600 Mbps
20 and 40 Mhz channel width 

MIMO
64 QAM modulation
Frame Aggregation

Downlink  MU-MIMO (4 users)

up to 160 Mhz channel width 

Uplink MU-MIMO
Data rate up to 9.6 Gbps

up to 160 Mhz channel width 

16 spatial streams
Data rate up to 30 Gbps

up to 320 Mhz channel width 

Multi-link operation

4096 QAM modulation

Downlink MU-MIMO (8 users)
1024 QAM modulation

OFDMA

256 QAM modulation

Figure 2.1: A summary of the main features of various Wi-Fi standards.

In the following subsections, we will delve into several fundamental features of
Wi-Fi that are frequently improved upon in Wi-Fi standards and have a significant
impact on the performance of Wi-Fi networks. Namely, the MCS, CSMA/CA, and
beamforming.

2.1.3 Modulation and Coding Schemes

Modulation and coding schemes are fundamental components of Wi-Fi that enable
wireless signals to be transmitted and received through the air. Modulation involves
the conversion of digital data into an analog signal that can be transmitted over the
air, while coding involves the addition of error correction codes to digital data to
ensure accurate reception and decoding by the receiver. The selection of modulation
and coding schemes used in Wi-Fi is crucial in determining the data rates, range,
and reliability of wireless connections.

The MCS used in Wi-Fi technology is defined by IEEE 802.11 standards. The
earliest Wi-Fi standards, such as 802.11g, used relatively simple modulation schemes
such as BPSK and QPSK, which enabled data rates of up to 54 Mbps. However,
their low data rates and susceptibility to interference restricted their practical ap-
plications. In contrast, more recent Wi-Fi standards, such as 802.11n, 802.11ac, and
802.11ax, use more sophisticated modulation schemes like 64-QAM and 256-QAM,
enabling data rates of up to 1 Gbps, 9.6 Gbps, and 10 Gbps, respectively. These
schemes offer higher data rates, but they are more complex than earlier schemes.
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Aside from modulation schemes, Wi-Fi also employs various coding schemes to
ensure the accuracy and reliability of wireless transmissions. One of the commonly
used coding schemes in Wi-Fi is Convolutional Coding (CC), which adds redundancy
to transmitted data, allowing errors in the received signal to be corrected. More
recent Wi-Fi standards use advanced coding schemes like Low-Density Parity Check
(LDPC) coding[33] and Turbo coding[34]. LDPC coding is a highly efficient scheme
that can achieve reasonable error correction performance, while Turbo coding can
achieve even higher data rates than LDPC coding.

The combination of MCS used in Wi-Fi determines the achievable data rates,
range, and resistance to interference. More complex MCS generally offer higher
data rates but require stronger and more stable wireless signals. As a result, Wi-
Fi devices using advanced MCS may have shorter ranges and be more sensitive to
interference than those using simpler schemes.

The choice of MCS used in Wi-Fi has a significant impact on the performance and
reliability of wireless connectivity. As the Wi-Fi technology evolves, the development
of new MCS plays a vital role in enhancing the performance of wireless networks.

In the following subsection, we will delve into the CSMA/CA method in Wi-Fi
responsible for the multiple access to the Wi-Fi medium.

2.1.4 Carrier Sense Multiple Access with Collision Avoid-
ance

In a Wi-Fi network, multiple devices compete for airtime to transmit data. CSMA/CA
is a method used in Wi-Fi networks to avoid collisions between multiple devices try-
ing to communicate over the same wireless channel [35].

A device using CSMA/CA listens to the wireless channel before transmitting
any data packet. The device listens for a Distributed Interframe Space (DIFS)
duration to ensure that the channel is idle. If the channel remains idle, the device
generates a random backoff in the range of [0, CWmin]. The random backoff duration
corresponds to the number of slots the device should wait before transmitting its
packet. The backoff mechanism is used to reduce the probability of multiple devices
sending their packets at the same time, causing collisions. Note that each Wi-Fi
standard defines the slot duration. The device decrements its backoff duration in
each slot if the channel remains idle and freezes the countdown if the channel is
sensed busy. At the end of the backoff duration, the device transmits its packet.

CSMA/CA does not prevent collisions completely. It is possible for multiple
devices to complete their backoff duration countdowns simultaneously and transmit
their packets, resulting in a collision. To mitigate this issue, the Contention Win-
dow (CW) is doubled after each collision, which widens the range of the random
backoff duration selected by each device, making another collision less probable.
This process continues until the data is successfully transmitted or the maximum
number of re-transmissions is reached. Figure 2.2 shows an example functionality of
CSMA/CA. While device 1 is transmitting the packet, device 2 senses the channel as
busy and waits until the transmission ends. After successfully receiving the packet,
the receiver waits for a Short Interframe Space (SIFS) duration and sends back an
Acknowledgements (ACK). Then, device 1 senses the channel as idle for DIFS and
then generates a random backoff duration. At the same time, device 2 continues its
backoff duration countdown. The two devices transmit their packets at the same
moment since the backoff durations countdown reaches zero in the same time slot.
Thus, a collision occurs and each device picks a new random duration from a double
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size CW.

Device 1

Device 2

Packet

Packet

PacketACK

Medium Busy

Remaining 
Backoff

SIFS DIFS
Generate Backoff

 [0, CW]
Generate Backoff 

[0, 2xCW]

Double 
Contention Window

Generate Backoff 
[0, 2xCW]

Double 
Contention Window

Collision

Figure 2.2: An example illustrating how CSMA/CA operates.

One of the main advantages of CSMA/CA is that it allows multiple devices to
share the same wireless channel without requiring central coordination. This makes
Wi-Fi networks flexible and easy to set up, as devices can join and leave the net-
work at any time without requiring any manual configuration. CSMA/CA is often
combined with other techniques such as channel bonding, beamforming, and QoS
to further improve the reliability and efficiency of Wi-Fi networks. Channel bond-
ing allows devices to use multiple channels simultaneously to increase the available
bandwidth, while beamforming uses multiple antennas to direct the wireless signals
toward the intended receivers, reducing interference and improving the signal qual-
ity. QoS prioritizes traffic based on the application type, ensuring that high-priority
data such as voice and video data are transmitted with minimal delay and packet
loss. CSMA/CA can also be optionally supplemented by the exchange of Request
to Send (RTS) packet to the receiver. The RTS packet includes the length of the
data to be transmitted and the time duration required for the transmission. If the
receiver is ready to receive the data, it responds with a Clear to Send (CTS) packet.
The CTS packet also shows how long the data is and how long the transmission
needs to take. With the RTS/CTS exchange, a device can take over the wireless
channel for a certain amount of time and stop other devices from sending data.

In the following subsection, we will explore the concept of beamforming and the
benefits it offers to Wi-Fi networks.

2.1.5 Beamforming

Beamforming is a sophisticated signal processing technique in modern Wi-Fi com-
munication systems to improve wireless performance, coverage, and capacity [36]. It
involves the adaptive control of antenna radiation patterns, enabling the transmis-
sion of radio signals in a targeted direction to maximize the received signal strength
at the receiver while minimizing interference with other devices. Beamforming is
achieved by employing multiple antennas at the transmitter and receiver. The trans-
mitted signals from each antenna element are weighted and combined, exploiting the
constructive and destructive interference of the radio waves to form a focused beam
toward the receiver. The weights applied to each antenna element can be adjusted to
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steer the main lobe of the radiation pattern toward the desired direction, optimizing
Signal to Interference and Noise Ratio (SINR) and overall link quality. Figure 2.3
shows the basic functionality of beamforming where a main lobe is directed from a
transmitter toward a receiver. The rest are low-energy undesired sidelobes called
backlobes.

Beamforming techniques have been integrated into various Wi-Fi standards. Wi-
Fi 5 introduced standardized beamforming techniques called explicit and implicit
beamforming. Explicit beamforming requires explicit feedback from the receiver,
which provides information about the channel state to the transmitter. The trans-
mitter then adjusts the signal accordingly to optimize the beamforming process.
Implicit beamforming, on the other hand, relies on the transmitter’s observation of
the received signal without any explicit feedback from the receiver.

Beamforming offers several benefits in Wi-Fi, such as increased signal strength
and range, improved throughput, reduced interference, and energy efficiency. By fo-
cusing the signal toward the intended receiver, beamforming increases the received
signal strength, thereby improving the overall range and coverage of the Wi-Fi net-
work. The enhanced SINR resulting from beamforming allows for higher data rates
and increased network throughput. By directing the main lobe of the radiation pat-
tern toward the desired user, beamforming helps minimize interference with other
devices in the network. Lastly, beamforming allows for more efficient use of the trans-
mitted power, as the energy is concentrated towards the intended receiver, reducing
overall energy consumption and prolonging the battery life of wireless devices.

Figure 2.3: An example illustrating how beamforming operates.

According to [37], the gain of a MIMO system that uses beamforming can be
expressed as:

Gt = Gt0 + 10 log10 (nt)
Gr = Gr0 + 10 log10 (nr)

(2.1)

where nt and nr are the number of transmit and receive antennas respectively,
Gt0 and Gr0 are the gains of a single transmit and receive antenna respectively. Thus
using 2 antennas provides a gain of around 3 dB, and using 4 antennas, a gain of
around 6 dB.
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Wi-Fi standards are subject to regulations regarding transmit power [38]. When
MIMO was first introduced, regulators imposed a limit based on the antenna array
gain. Regulatory rules are typically a cap on Effective Isotropic Radiated Power
(EIRP). EIRP includes the array gain in both the US and Europe [37].

The gain achieved when using beamforming results in a significant improvement
in the coverage area of the wireless network. Thus, it becomes essential to take into
account the benefits of beamforming during the deployment of Wi-Fi networks.

Over the years, Wi-Fi standards have introduced numerous features and en-
hancements. Despite these advancements, certain problems and limitations persist
in how these features are defined and function. In the following section, we will
discuss some of these problems and limitations.

2.2 Wi-Fi Problems and Limitations

The availability of Wi-Fi access points has become a necessity in any public, busi-
ness, or commercial place. The growing number of Wi-Fi devices and the growing
number of places where Wi-Fi networks are used have led to a significant increase
in the density of wireless networks, making performance problems harder to solve.
Hence, Wi-Fi faces increasing challenges regarding the QoS. Understanding these
problems is crucial for applications that rely on Wi-Fi, and addressing these chal-
lenges enhances the speed and reliability of the Wi-Fi network. In the following
section, we will explore common Wi-Fi problems and limitations.

2.2.1 Congestion in Modern Wi-Fi Applications

Wi-Fi networks are facing a significant challenge in the form of increased demand
for high bandwidth data transmissions while the capacity of the wireless spectrum
remains limited. Congestion has become a common issue among Wi-Fi applications
due to this. It occurs when the number of devices attempting to communicate over
a wireless channel exceeds its capacity, causing data packets to become lost, de-
layed, or dropped. This can lead to slower data rates, increased latency, and even
disconnections. For instance, Streaming high-quality videos can consume a lot of
bandwidth, slowing down the speeds of other devices in the network. Additionally,
smart home devices, such as security cameras, require an internet connection. As
more of these devices are added to a network, they can consume significant band-
width, increasing the congestion.

Wi-Fi channel access management is a major issue in Wi-Fi. When a device
wants to send data over the network, it must first listen for other devices transmitting
on the same channel. Transmission can be delayed if many devices are trying to
access the network simultaneously. The CSMA/CA protocol allows multiple devices
to share the same wireless channel while avoiding collisions. However, it is imperfect,
and collisions can still occur, especially in dense networks. This can slow down the
network because devices must wait a random amount of time before sending data.
CSMA/CA has limitations and challenges, such as the hidden node problem and the
exposed node problem. The hidden node problem occurs when two devices cannot
detect the transmissions of each other, leading to collisions when they both try to
transmit data simultaneously. The use of RTS/CTS can solve this problem, but it
also introduces additional overhead on the performance of the network. The exposed
node problem occurs when a device refrains from transmitting data, even though the
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channel is idle, because it detects ongoing transmissions from other devices. This
leads to inefficient use of the available bandwidth.

Interference from other Wi-Fi devices can delay channel access. Neighboring Wi-
Fi networks and Wi-Fi devices can all cause interference, making it more difficult
for devices to assess an idle channel and access the network. These issues and
limitations are essential to consider as they impact the QoS in Wi-Fi networks. To
overcome some of these challenges, it is possible to enhance specific features without
implementation specified in the standard. We explore some of these features in the
following subsection.

2.2.2 Manufacturer-Specific Features of Wi-Fi

Despite the standardization efforts, there are still some features of Wi-Fi that are
left for the manufacturer to decide. These features are not specified in the standard,
and each manufacturer can implement them as they want. The variety of imple-
mentations leads to a varying performance of Wi-Fi among devices. We list some of
the manufacturer-specific features:

• Wi-Fi standards define QoS mechanisms for prioritizing different types of traf-
fic, such as voice or video. However, the exact implementation of these mech-
anisms is left up to the manufacturer. Some manufacturers may implement
additional QoS mechanisms or prioritize traffic differently than others.

• Wi-Fi standards do not specify algorithms for selecting which channel to use.
Different manufacturers may use different algorithms or have different settings
for channel selection. The algorithm is responsible for selecting the optimal
channel for the Wi-Fi network, taking into account factors such as interference
from other wireless networks, signal strength, and available bandwidth. If the
channel selection algorithm is not effective, it can lead to channel congestion
and poor network performance.

• Wi-Fi standards specify power management functions for Wi-Fi devices, but
it does not specify algorithms or techniques that manufacturers should use to
conserve power. Manufacturers can implement their own power management
strategies to optimize battery life and reduce power consumption. Manufac-
turers must find a balance between conserving battery power and providing
reliable and efficient data transmission and reception.

• Rate adaptation algorithm determines the data rate at which devices can trans-
mit data over the Wi-Fi network. Based on the measured network conditions,
the algorithm switches between different MCS values, channel width values,
and spatial streams. Different manufacturers use different algorithms to adapt
to the network conditions and optimize the data rate for better performance.

Manufacturer-specific features play a critical role in the performance of Wi-Fi
networks, and there is always room for improvement, one of the most important
features are the rate adaptation algorithms. RAAs help us understand the ways in
which Wi-Fi networks adapt to changing network conditions and how they optimize
their performance. These algorithms are critical components of Wi-Fi networks and
play a key role in determining the data rates that can be achieved under various
network conditions. By understanding these algorithms, we can gain insights into
how Wi-Fi networks operate and how they can be optimized for specific applications
and use cases. In the following section, we will discuss these algorithms in detail.
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2.3 Rate Adaptation Algorithms

RAA is an important feature of Wi-Fi that is not specified in the standard but is
left for the manufacturer to decide. These algorithms are responsible for adjusting
the data rate of a Wi-Fi transmission based on the channel conditions. In other
words, RAA determine the maximum speed at which data can be transmitted over
a wireless link.

The objective of RAA is to achieve the highest possible throughput while main-
taining a stable and reliable wireless connection. The algorithms are designed to
take into account the capabilities of the devices involved in the communication, such
as the MCS values, channel widths, number of spatial streams, and guard interval
lengths supported by the devices.

The implementation of RAA can have a significant impact on the performance of
Wi-Fi devices. A poorly designed algorithm can result in low throughput, frequent
re-transmissions, and unstable connections, leading to a frustrating user experience.
On the other hand, a well-designed algorithm can achieve high throughput, low
latency, and stable connections, improving the user experience and enhancing the
overall performance of the network.

RAAs can be classified into various categories according to the metrics that they
use to evaluate the channel or link quality, such as frame loss and SINR in [39],
or consecutive transmission count, frame loss ratio, transmission time, throughput,
SINR, bit error rate, and combined metrics in [40]. We chose to classify RAAs into
three categories:

• Explicit Feedback: RAAs base their adaptation on the feedback of the receiver

• Implicit Feedback: RAAs base their adaptation on the information available
on the sender side

• Hybrid: which is a category that combines information from the feedback of
the receiver and information available to the sender

In what follows, we will describe each of these categories by selecting representative
RAAs of each category. Table 2.1 summarizes the information about the different
RAA algorithms presented in this section.

2.3.1 Explicit Feedback Algorithms

Explicit Feedback is a receiver-driven rate adaptation scheme where the receiver
makes a decision based on its estimation of the channel conditions and relays it
back to the sender via different approaches using control frames, such as CTS and
ACK.

On-Demand Feedback Rate Adaptation (OFRA) [41] is a receiver-based RAA,
where the channel quality is estimated at the receiver based on SINR values. The
receiver selects the optimal bit rate from a lookup table created previously. It con-
tains a set of thresholds at which data rates should be changed. This information
is returned to the sender on demand while using ACK frames. In the case of ACK-
less traffic, OFRA uses a specially designed feedback frame. OFRA presents some
limitations, such as modifying the ACK frame that violates the standard and intro-
ducing additional overhead with the special feedback frame sent at the lowest data
rate.
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SNR-aware Intra-frame Rate Adaptation (SIRA) [42] selects two rates for a single
Aggregate MAC Protocol Data Unit (Aggregated MAC Protocol Data Unit (A-
MPDU)) transmission. It finds the starting symbol “I” when the rate should be
changed. When the condition SINRi <SINRth is met, the symbol “I” is found.
SINRth is the minimum SINR at which the theoretical Bit Error Rate (BER) of
the primary rate is less than 10−4. Subsequently, “I” is fed back to the sender via
the BlockAck. The main drawback of SIRA is that it only determines two rates for
an aggregated frame, which may not be enough for a fast-changing channel.

An Ideal RAA is implemented in the famous network simulator NS-3. This RAA
initially creates a table of SINR and MCS pairs. The SINR thresholds in this table
ensure selecting an MCS that leads to a Bit Error Rate (BER) below a certain value.
For example, the default value is 10−5, and the SINR is fed back from the receiver
to the transmitter via a perfect out-of-band mechanism. The main drawback of this
mechanism is the use of an out-of-band channel for sending back the feedback, which
is not available in the Industrial, Scientific, and Medical (ISM) bands used by IEEE
802.11.

2.3.2 Implicit Feedback Algorithms

Implicit Feedback is a sender-driven rate adaptation scheme usually based on Packet
Error Rate (PER). The main idea is for the sender to select an appropriate data
rate based on the PER observed on his side. This mainly requires ACK to enable
the sender to calculate PER.

STandard-compliant and mobility aware PHY RAte and A-MPDU LEngth adap-
tation (STRALE) [43] jointly adapts the physical rate and A-MPDU length. After
receiving a BlockAck, it calculates the optimal A-MPDU length for the highest
throughput of the last A-MPDU transmission. Subsequently, the next A-MPDU
length of the next transmission is determined using the Exponential Weighted Mov-
ing Average (EWMA). The difference between the latest and the newly calculated
A-MPDU length is compared to a certain threshold. If it is greater than the thresh-
old, STRALE decides on MCS and A-MPDU length after checking if the throughput
with one lower MCS index using the latest A-MPDU length is better than staying
at the same MCS index with the newly calculated A-MPDU length. The main
drawback of STRALE is that it does not consider interference.

Minstrel-HT [44] relies on three parameters: channel width, guard interval, and
several streams to create group rates. Each group contains eight different data
rates represented by the MCS index. Minstrel uses probing to determine the best
data rate. This process consists of two periods: sampling and non-sampling peri-
ods. During the sampling period, Minstrel-HT selects a random data rate from all
the available data rates in each group. If a data rate results in higher throughput
than the previous one, it is used for subsequent MPDU transmissions. Otherwise,
Minstrel-HT keeps using the previous data rate. Throughput is calculated based
on Frame Loss Rate (FLR) while considering EWMA. Minstrel-HT collects three
data rate options at the end of the sampling period: best throughput, second best
throughput, and highest probability of successful transmission. Subsequently, in
the non-sampling period, MPDUs are sent using the best data rate until the max-
imum number of re-transmissions is reached in the case of packet loss. Then, the
second-best data rate is used. Similarly, the best probability data rate is used if
the second-best data rate experiences packet loss. The evaluation in [44] showed
that in some conditions, Minstrel-HT fails to enhance throughput, especially in a
non-fading channel when the quality of the channel changes back from bad to good.
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MIMO Rate Adaptation (MiRA) [45] is a rate adaptation used for MIMO chan-
nels. It overcomes MPDU loss by applying a zigzag rate adaptation between intra-
mode and inter-mode. MiRA first performs probing on the rate in MIMO intra-
mode. If goodput is not increased in intra-mode, MiRA zigzags to inter-mode
MIMO. The probing mechanism only starts if significant changes occur in the mea-
sured moving average goodput of the current rate. The probing interval of MiRA
is also adapted, which limits the probing number when goodput is low. MiRA also
considers frame aggregation and Block Acknowledgement schemes when performing
the best data rate probing. It also includes a collision-aware mechanism where the
sender detects collision if it satisfies the condition that the aggregate frame has ex-
perienced at least one retry. The loss ratio of its sub-frames is less than 10%. If
collision exists, it triggers the adaptive RTS/CTS mechanism. The main drawback
of MiRA is the introduction of overhead when using the RTS/CTS mechanism.

Rate Adaptation for Multi-Antenna System (RAMAS) [46] is a credit based ap-
proach. The data rates are grouped into two groups: modulation and enhancement
groups. The modulation group consists of different MCS values. The enhancement
group consists of spatial stream, guard interval, and channel width. RAMAS uses
credit-based algorithms, which rely on the packets’ success and failure statistics, to
adapt these groups independently of each other and combine the results together
to decide the overall feature set. In each group, different rules are applied to in-
crease or decrease the data rate sequentially. The main drawback of RAMAS is
that it performs poorly because its credit-based scheme is conservative in adapting
the number of streams and aggressive in adapting the MCS. This mismatch causes
RAMAS to often operate at sub-optimal settings with single stream and high MCS
values leading to higher losses and reduced performance, as shown in the evaluations
in [47].

Damysus [48] addresses 802.11ax exploiting the Basic Service Set (BSS) Color
Scheme. It increases transmission opportunities by using adaptive Overlapping Ba-
sic Service Set (OBSS)/Preamble-Detection (PD) thresholds, leading to a higher
contention inside a BSS and jointly adjusting the transmit power level. A statistical
study is done during an interval of 100ms and a cycle of 1 second, where packet
transmissions’ success and failure are recorded and compared to the success and
failure thresholds. Depending on the statistical results collected, it is then decided
whether to increase or decrease either the rate, the OBSS/PD threshold, or the
transmission power. The main drawback of Damysus is relying on packet loss ra-
tio thresholds. In [49], several experiments were done to verify that no single best
Packet Loss Ratio (PLR) threshold can help achieve the maximum throughput.

2.3.3 Hybrid Adaptation

In Mutual Feedback (MutFed) [50], the SINR is measured on the receiver side. After
10 frames, a new rate selection decision is made to stay at the same rate or change
the rate. This decision is based on a table that maps SINR threshold ranges to
rates. The newly selected rate is fed back to the sender by sending an ACK with
the proposed rate. On the transmitter side, if two frame transmissions fail, the
transmitter automatically lowers the MCS for the following transmission. The main
drawback of MutFed is relying on a static threshold to lower MCS values which can
frequently occur in a dense network.

EasiRA [51] measures the link quality by two means. First, it calculates the FLR
and combines it with mobility and other sensor information. Secondly, it obtains the
Environmental Signal Strength (ESS) information to help differentiate the causes of
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packet loss. When a packet cannot be successfully received due to bit errors, the
receiver sends a special control frame, named ”Non-Acknowledgements (NACK)”, to
the transmitter to inform it that it may suffer a collision. If the transmitter does not
receive an ACK or a NACK, it reduces the rate. Finally, it combines the random
and deterministic rate adaptation mechanisms together. The main drawback of
EasiRA is that it tries to identify collisions while using external information, such
as sensor-hints and ESS, which may not be available on all devices.

RAAs play a crucial role in adjusting the data rate between access points and
users based on channel conditions. Many of these algorithms use metrics such as
SINR information to make decisions on MCS. Maintaining a high SINR is essential
to achieve high data rates. Thus, effective WiFi deployments could consider metrics
like SINR as a significant design parameter. In the following section, we will explore
channel modeling, which is considered a step before deployment that takes into
account SINR based on the MCS requirement of the application.

2.4 Wi-Fi Channel Modeling

Wi-Fi channel modeling plays a crucial role in predicting and analyzing the per-
formance of Wi-Fi networks during the planning phase of Wi-Fi deployments. It
provides a mathematical representation of how radio signals propagate through dif-
ferent environments, both indoor and outdoor. Channel models aid in determining
the optimal placement of access points, estimating coverage and capacity, and pre-
dicting the quality of service for users. In this section, we will explore the propaga-
tion model equations of Wi-Fi channels in an outdoor environment. We will examine
the effects of this model on both coverage and capacity, taking into account SINR
constraints based on the application requirements.

2.4.1 Propagation Models of Wi-Fi Channels

Channel modeling is one of the key parts when planning Wi-Fi deployments, as it
plays an important role in its performance. Before confirming the planning of the
system, accurate propagation characteristics of the environment should be known.
Signals transmitted over the Radio Frequency (RF) channel are subject to losses
due to fading, scattering, and penetration, among others. The inaccuracy of the
estimated Received Signal Strength Indicator (RSSI) values can be reduced if the
propagation characteristic of the channel can be predicted using an appropriate
model that best suits the environment of the area of interest.

A propagation model is a set of mathematical equations used for representing
the characteristics of an RF signal of a given scenario and environment. These
mathematical equations are used for estimating the received signal strength in a
particular environment. The models are usually designed for distinct scenarios due
to factors such as the distance between the transmitter and receiver, obstacles, or
weather conditions. An understanding of the path loss in a given geographical
area provides better network planning, it is important for determining the best
access points locations as well as estimating their coverage area based on link budget
calculations.

Path loss is the decrease of an electromagnetic wave power density as it spreads
or travels through a medium, and it is given by [52]:

Lp = L0 + 10α log10(d) + X (2.2)
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Table 2.1: Summary of existing RAA.

Name Category Metrics Pros Cons Modify
Stan-
dard

Ideal Explicit
Feedback

SINR Instantaneous feed-
back and rate decision

Uses perfect out-of-
band mechanism for
feedback

Yes

OFRA Explicit
Feedback

SINR Feedback is sent only
when a new rate is se-
lected

Additional frame is
sent for feedback at
the lowest rate

Yes

SIRA Explicit
Feedback

SINR Uses 2 rates for a
single A-MPDU trans-
mission to adapt with
channel changes

In a fast-changing
channel, we may need
more than 2 rates
for a single A-MPDU
transmission to adapt
to channel changes

No

STRALE Implicit
Feedback

Throughput Prefers to use an op-
timal A-MPDU length
instead of decreasing
the rate

Does not consider in-
terference

No

Minstrel-
HT

Implicit
Feedback

Throughput It can select a high
rate with a significant
FLR as long as it
can achieve the best
throughput

In some conditions, it
fails to enhance the
throughput [44]

No

MiRA Implicit
Feedback

Throughput Collision-based de-
cision making and
probing interval adap-
tation

Introduces over-
head when using the
RTS/CTS mechanism

No

RAMAS Implicit
Feedback

PLR It is efficient in MIMO
where it selects be-
tween different values
of transmission met-
rics

Slow in adapting the
number of streams
and premature MCS
adaptation

No

Damysus Implicit
Feedback

PLR Performs well in dense
environments in in-
frastructure mode

Is not applicable in Ad
Hoc mode

No

MutFed Hybrid SINR,FLR Distinguishes the
cause of frame loss
combined with SINR
decision

In a dense environ-
ment many frame
losses cause the algo-
rithm to send at lower
rates

Yes

EasiRA Hybrid ESS,PLR Combines external
sensors and ESS to
detect collisions and
uses this information
with the PLR for rate
selection

It tries to identify col-
lisions using external
information, such as
sensor-hints and ESS
which may not be
available in all the de-
vices

No
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where Lp is the path loss for a position p, d is the distance at which we are
calculating the path loss, L0 is the power loss at a reference point in the coverage
field of the antenna at a small distance d0 from the transmitting antenna, α is the
path loss exponent, and X is the fading component.

The link budget is the analysis of signal loss/gain factors during signal prop-
agation. It is the calculation of all the gains and losses that occur during signal
transmission through a wireless medium. It expresses the attenuation in transmit-
ted signal power caused by propagation losses and antenna gains. The link budget
equation can be expressed as:

Pr = Pt + Gt + Gr − Lp (2.3)

where Pr is the received power, Pt is the transmitted power, Gt and Gr are the
antenna gains at the transmitter and receiver respectively, and Lp is the path loss.

In Wi-Fi deployment planning, one has to comply with the application needs,
such as minimum data rate and maximum latency. These constraints affect the
deployment of access points and the choice of technology used. A minimum SINR
has to be available at the receiver to offer the required data rate. The SINR equation
is expressed as:

SINR =
Pr

N
(2.4)

Where N represents the noise and interference at a given time and position, Pr

is the received power expressed as RSSI.
SINR is an important parameter in the selection of the MCS index, which de-

pends on the modulation type, the coding rate, the number of spatial streams, the
channel width, and the guard interval. A combination of these parameters repre-
sents a unique MCS index. Table 2.2 shows a part of the MCS lookup table, which
is used to find at which data rate two devices can communicate based on minimum
SINR thresholds and RSSI values.

MCS Modulation Coding
40 MHz

Data Rate (Mbps) Min.
SINR

Min. RSSI
(dBm)800 ns 400 ns

0 BPSK 1/2 13.5 15 5 -79
1 QPSK 1/2 27 30 8 -76
2 QPSK 3/4 40.5 45 12 -74
3 16-QAM 1/2 54 60 14 -71
4 16-QAM 3/4 81 90 18 -67
5 64-QAM 2/3 108 120 21 -63
6 64-QAM 3/4 121.5 135 23 -62
7 64-QAM 5/6 135 150 28 -61
8 256-QAM 3/4 162 180 32 -56
9 256-QAM 5/6 180 200 34 -54

Table 2.2: 802.11ac MCS lookup table [1].

2.4.2 Wi-Fi Coverage

In a deployment where we need to guarantee a minimum data rate, a minimum
SINR value should be considered as a target. Interference level is a factor that
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cannot be controlled because we are dealing with Industrial, Scientific, and Medical
(ISM) frequency bands. The estimation for reaching the target SINR is done based
on the propagation model. Hence the SINR constraint can be written as:

SINR ≥ sth (2.5)

where sth is the minimum (target) SINR sufficient for using a MCS, which makes
it possible to send data at the minimum data rate required by the application
specifications.

Using equations 2.2, 2.3, and 2.4 we get:

log10(d) ≤ Pt + Gt + Gr − L0 −N − sth
10α

(2.6)

where d is the maximum coverage distance of an access point that ensures having
the data rate requirement at the edge of a coverage cell.

2.4.3 Wi-Fi Channel Capacity

Channel capacity gives an upper bound on the data rate for reliable communication,
as stated by Shannon’s theorem [53]. It is the maximum attainable mutual infor-
mation between the transmitter and the receiver. The network is capable of serving
more users and higher data rates per user when its capacity increases. In the case
when the channel is not deterministic, each time the channel is used employs an
independent realization of the mutual information matrix H [54].

It should be noted that capacity is a limit to the error-free bit rate that is
provided by information theory. Any wireless system can only achieve a bit rate
that is only a fraction of that capacity. For a channel without shadowing, fading, or
inter-symbol interference, Shannon proved that the maximum possible bit rate on a
given channel of bandwidth B is given by [55]:

C = B log2(1 + SINR) (2.7)

Consider a channel shown in figure 2.4 with:

y = gx + n (2.8)

Figure 2.4: A channel with input x and noise n.

where g is the channel response, it reduces the SINR as the signal loses power
while propagating through the channel. The capacity equation of a Single Input
Single Output (SISO) system in equation 2.7 becomes:

C = B log2

(
1 + SINR|g|2

)
(2.9)

MIMO systems consist of different correlated sub-channels. However, different
techniques can be used to decompose the MIMO channel into m parallel independent
sub-channels, as shown in figure 2.5, such as singular value decomposition [56].

Hence the capacity of each sub-channel becomes:
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Figure 2.5: A MIMO channel decomposed into s parallel independent subchannels.

Cm = log2

(
1 + s2m

Pm

N

)
(2.10)

where sm is the channel response of the mth sub-channel and Pm is the power
allocated to the mth transmitting antenna. The objective is to maximize the overall
capacity by the optimal power allocation over the sub-channels. Channel estimation
becomes handy here to extract the Channel State Information (CSI). CSI represents
the effect of the channel, such as scattering, fading, and power decay with distance.
In case CSI is not known, the power is distributed equally over all the transmitting
antennas:

P1 = · · · = PS =
P

N
(2.11)

In case the CSI information is known at the transmitter, we allocate power
to maximize the capacity given by equation 2.12, considering that the sum of all
transmitting power does not exceed a Plimit:

C =
S∑

m=1

(Cm) (2.12)

P1 + · · · + PS = Plimit (2.13)

Plimit is the maximum power allowed according to the regulations of the country.
The water-filling algorithm is one of the best solutions for such a problem [57]. In
this algorithm, the transmitter allocates more power to the stronger sub-channels
and less or no power to the ones with worse channel conditions [58]. Solving the
above problem with water filling gives:

Pm = max

(
µ− N

s2m
, 0

)
(2.14)

where µ is selected to satisfy the condition in equation 2.13.
Figure 2.6 is an example of capacity enhancement when using a MIMO system

with spatial multiplexing under different SINR conditions.
Wi-Fi channel modeling is essential to understanding how Wi-Fi signals propa-

gate and the expected performance of the Wi-Fi networks. Coverage and capacity
study based on application requirements drive the planning for Wi-Fi deployment.
In the following section, we will review the available Wi-Fi deployment strategies
from the literature.
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Figure 2.6: Comparison between the capacity of SISO and MIMO systems.

2.5 Wi-Fi Networks Deployment

Wi-Fi APs are the backbone of any Wi-Fi network deployment, responsible for
transmitting and receiving wireless signals. APs are typically installed in specific
locations throughout an indoor or outdoor location, allowing users to connect to
the network from anywhere within range. APs can be deployed in a variety of
configurations based on the environment and expected user density. The deployment
of APs is critical to ensuring acceptable coverage and performance of Wi-Fi networks.

Indoor Wi-Fi networks are typically deployed in buildings such as offices, homes,
schools, and hospitals, where there is a high demand for wireless connectivity. How-
ever, outdoor Wi-Fi networks are deployed in public spaces, ranging from high-
density stadiums and campuses to agricultural fields. In this section, we will review
previous AP deployment strategies in indoor and outdoor environments.

2.5.1 Indoor Environments

Authors in [59] investigate the network performance in a targeted building and
propose an optimization plan for deploying AP devices based on received power and
path loss parameters obtained from Wireless InSite software [60]. The investigation
took into account the effect of building materials and frequency sensitivity. The
initial analysis of network coverage and performance showed discouraging results in
covering the entire building, driving the proposal of an optimization plan that uses
a different model with AP devices of higher power and antenna gain. The proposed
plan reduces the number of devices needed from 13 to 8, increases received power,
reduces path losses, minimizes interference effects, and expands coverage area at a
lower implementation cost.

Authors in [61] proposed a decision support tool as a solution for WLANs deploy-
ment optimization in indoor settings. Genetic algorithm and simulated annealing
were used to determine the optimal number and placement of APs for optimal net-
work coverage. Parameters used in the study were antenna type, channels, wall
structures, and throughput. The authors claim that this approach is superior to
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traditional trial-and-error methods and can improve WLANs performance signifi-
cantly.

Authors in [62] used a multi-objective genetic algorithm with the aim of minimiz-
ing the number of APs while maximizing coverage over a whole planning area. The
developed algorithm is integrated into an engineering tool called WiFiSim, which
allows for the investigation of complex issues related to the design of WLANs. The
tool is compared with a previous approach based on a mono-objective genetic al-
gorithm, and the results show that the multi-objective genetic algorithm achieves
better performance. The paper concludes that the developed algorithm and tool can
provide an efficient and scalable solution for the design and optimal deployment of
WLANs, saving time and cost for network technicians.

Authors in [63] use a central controller with sensors deployed in different locations
inside the area of interest that measure RSSI values. The central controller analyzes
the measurements and updates the configuration of the APs. The simulation results
showed that the proposed solution can effectively identify and solve coverage prob-
lems related to interference and coverage holes. The authors concluded that their
method improves coverage robustness and saves the cost of human intervention.

Mono-objective and multi-objective Tabu searches were used in [64] to optimize
the number, transmit power, and location of the access points in an indoor setup
with the help of constraints concerning coverage, interference, and QoS. Results
show the mono-objective search performs better in terms of computational time
but requires several launches to achieve the desired trade-off. However, the multi-
objective search is promising but comes with more complexity in terms of time and
computation.

In [65], the authors developed a mathematical model to determine the optimal
number and location of APs WLANs. They used the Discrete Gradient optimization
algorithm to solve the problem, with the objective of minimizing the average path
loss and maximum path loss received by any receiver. The results showed that the
size of the design area and the number and locations of users affect the location and
number of APs needed. However, the authors concluded that some manual tuning
of the algorithm parameters is needed to produce better results.

2.5.2 Outdoor Environments

Authors in [66] focus on the coverage problem in outdoor wireless network design
and propose methods for near-optimal coverage using greedy algorithms based on
RSSI. The study compares various wireless network coverage planning scenarios in
an imaginary town subdivided into areas. APs are switched between on and off
by the proposed algorithm. The authors conclude that the proposed algorithm is
simple, fast, and provides good sub-optimal solutions.

Authors in [67] provide an analysis of the Wi-Fi network in a large university
campus. The study involves coverage predictions and statistical analysis of data
from existing APs. The results show areas with weak or no Wi-Fi signal coverage
and over-crowded access points. Based on these findings, the paper recommends
installing new access points in some widely used locations around the campus to
improve signal quality. The paper also discusses the disparity between theoretical
and real-world aspects of WLANs deployment, including the maximum number of
clients per access point and the ideal placement of access points that depends, in
their opinion, on the applications used by the users and the co-channel interference.

Authors in [68] combine predictive models and geospatial analysis to aid in the
design and placement of Wi-Fi APs in an outdoor environment. The study com-
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pares different geospatial analysis techniques and signal strength prediction models
based on RSSI. RSSI values were used to predict the coverage of the APs. Authors
developed an empirical model to assist in predicting the coverage of APs for better
deployment.

The work in [69] discusses the use of beamforming to improve the performance of
WLANs in outdoor environments. The study focuses on the performance of adaptive
antenna array beamforming in a real-life outdoor environment. The tests showed
that beamforming can significantly improve throughput rates and increase range in
near-line-of-sight situations. In addition, beamforming can enable communication
in non-line-of-sight situations where it would otherwise not be possible. Accord-
ing to the authors, the gain in throughput depends on the radio conditions and
the implementation of the beamforming algorithm. Moreover, they conclude that
beamforming can counteract degradations and improve WLANs deployment.

Authors in [70] explore the deployment of WLANs in an outdoor environment
where multiple APs form a cluster and are connected through wireless repeaters.
The paper proposes using the Mixed-integer nonlinear programming (MINLP) op-
timization approach to determine the optimal number of APs in a cluster and the
best separation distance between them to maximize the throughput between the
APs and mobile devices. The paper compares uniform spacing to the increasing
spacing deployment strategies and concludes that the increasing spacing strategy
outperforms the uniform spacing strategy in terms of throughput achieved.

The literature presents numerous studies that have analyzed the deployment
of Wi-Fi networks using various techniques, such as evolutionary algorithms and
nonlinear programming, and based on commonly used metrics such as RSSI. The
impact of beamforming was also assessed in these studies. The main objective of
these studies was to enhance the capacity and coverage of WLANs while reducing
the number of access points required. However, optimizing the placement of access
points is not enough to fully optimize the performance of Wi-Fi networks, and vari-
ous other features of Wi-Fi still have room for improvement. One promising modern
technique for achieving this optimization is the use of ML techniques, particularly
Reinforcement Learning (RL). In the following section, we will discuss the added
value of ML, with a specific focus on RL in addressing the challenges faced by Wi-Fi
networks.

2.6 Reinforcement Learning inWireless Networks

ML is a branch of artificial intelligence that involves making algorithms and models
that allow computers to learn from data and make decisions or predictions with-
out being explicitly programmed. The goal of ML is to develop algorithms that
can automatically identify patterns and relations in data and use them to make
predictions or decisions. The process of learning usually requires the algorithm to
be trained using a substantial collection of data, either labeled or unlabeled. La-
beled data is characterized by annotations or tags associated with specific classes
or categories, whereas unlabeled data lacks any predefined labels. Machine learning
includes supervised, unsupervised, semi-supervised, and reinforcement learning.

• Supervised learning requires a dataset with labels to train a model to predict
outcomes on new data. If there is prior knowledge about the wireless network
environment and the data can be labeled, supervised learning algorithms can
be used for solving network problems such as resource allocation [71], local-
ization [72], and security [73].
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• Unsupervised learning involves finding patterns or structures in an unlabeled
dataset. The learner is provided only with inputs without the outputs, while
learning is performed by finding similarities in the input data. It has been used
in the wireless networking domain for data aggregation [74], node clustering
in Wireless Sensor Network (WSN) [75], and data clustering [76].

• Semi-supervised learning combines labeled and unlabeled data. It is employed
when there is a small quantity of data that has been labeled and a large
amount of unlabeled data. This type of learning is useful because it can help
reduce the expenses associated with creating a fully labeled training dataset,
particularly in situations where labeling every instance is impossible. Many
challenges has been addressed using semi-supervised learning in areas such as
anomaly detection [77], signal recognition [78], and security [79].

• RL involves training an agent to make decisions in an environment and learn-
ing from rewards and punishments. The agent observes the state space of
the environment and takes action. Over time, the agent learns actions that
maximize its rewards. RL has been applied to a wide range of challenges
in wireless networks, such as resource management [80], rate adaptation [81],
channel access [82].

In scenarios involving wireless optimization problems, the environment can ex-
hibit complexity, and finding the optimal solutions can depend upon numerous fac-
tors that are challenging to model explicitly. In such instances, relying on pre-
existing datasets and employing supervised, unsupervised, or semi-supervised learn-
ing techniques may prove ineffective. Moreover, RL agents can learn from their
interactions with the environment without prior knowledge of its dynamics, and it
can handle a large set of states by employing Deep Learning (DL). Deep learning
is a branch of machine learning that involves a neural network architecture. These
networks aim to learn from data sets. A neural network takes an input and processes
it through hidden layers, and produces an output.

RL is often preferred over supervised/unsupervised/semi-supervised learning in
this context since it involves learning through trial-and-error interactions with an
environment. This trial-and-error process enables the agent to discover actions that
maximize the reward. Furthermore, RL can handle scenarios where actions have de-
layed effects on the rewards, making it well-suited for optimizing wireless networks,
where actions taken at a particular time may significantly impact future network per-
formance. RL is capable of rapidly solving a variety of optimization issues. It offers
computation-efficient solutions to a wide range of optimization problems, including
Markov Decision Process (MDP) and non-convex optimization problems that are
difficult to solve. RL does not rely on precise environment modeling. Through ex-
perimenting in an interactive environment, RL agents can learn indirect information
about network dynamics from raw high-dimensional data. By doing so, RL can then
learn correlations between different factors, such as network metrics [83].

In this section, we will explore the concept behind RL, the methods of training
and evaluation, and examples of leveraging RL in Wi-Fi networks.

2.6.1 The Core Concept Behind Reinforcement Learning

RL is a machine learning approach where an agent acquires behavior in an environ-
ment by taking actions and receiving feedback in the form of rewards or penalties.
The fundamental concept behind RL is to empower the agent to learn from its own
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experiences rather than depending on a predetermined set of rules. RL allows the
agent to learn appropriate behavior through iterative experimentation. RL consists
of the following components:

• Environment: The environment is the external world in which the agent op-
erates. It can be anything from a simulation to a physical environment, like
a robot in an agricultural field. The environment provides the agent with
observations and rewards based on its actions.

• Agent: The agent is the entity that interacts with the environment. The agent
performs actions in the environment based on its observations and receives
rewards or penalties based on the outcome of its actions.

• State: The state is the current environment situation that the agent observes.

• Action: The action is the decision made by the agent based on its current
state. It is the output of the agent’s decision-making process and determines
the next state of the environment.

• Reward: The reward is the feedback the agent receives from the environment
based on its actions. It is a scalar value that indicates the quality of the action
taken by the agent.

Figure 2.7 shows an illustration of the basic RL functionality.

Agent

Environment

ActionState

reward = f(state,action)

Figure 2.7: An illustration of the basic RL functionality.

The goal of reinforcement learning is for the agent to learn a policy, a function
that maps states to actions. The policy determines the actions of the agent in
each state to maximize its cumulative reward over time. The expected cumulative
reward, which is the total rewards the agent has gained over time, represents the
quality of the current policy. The policy is updated based on the rewards received
after each action. RL algorithms use various techniques to update the policy, such
as value-based, policy-based, and actor-critic methods:

• Value-based methods rely on the estimation of the state-action value function,
which is a function that estimates the expected cumulative reward for taking
a particular action in a particular state. This value is known as Q-Value. The
agent updates its policy by selecting the action with the highest state-action
value, which is known as the Q-Value. Some examples of value-based methods
are Q-Learning and Deep Q-Networks (DQN). What follows is a list of the
pros and cons of value-based methods:

– They can learn in continuous action spaces by using function approxima-
tion methods, such as neural networks, to represent the Q-function, such
as in DQN.
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– They are not suitable for handling large state and action spaces as they
can lead to high memory requirements and computational costs.

– They can suffer from overestimation or underestimation of Q-values,
which can lead to sub-optimal policies.

• Policy-based methods optimize the policy function by adjusting its parameters
to maximize the expected cumulative reward. These methods typically use
gradient descent to update the policy iteratively. Some examples of policy-
based methods are REINFORCE and Deterministic Policy Gradient (DPG).
What follows is a list of the pros and cons of policy-based methods:

– They can handle stochastic policies, which are policies that output a
probability distribution over actions rather than deterministic actions.

– They can converge to a global optimum under certain conditions, such
as when the policy is continuously differentiable and the optimization
problem is convex.

– They can be computationally expensive, especially when using high-
dimensional state and action spaces and complex policy representations.

• Actor-critic methods combine value-based and policy-based methods by us-
ing separate networks to estimate the state-action value and the policy func-
tion. The actor-critic method learns to improve the policy by using the state-
action value function as a baseline. Some examples of policy-based methods
are Advantage-Actor-Critic (A2C) and Deep Proximal Policy Optimization
(PPO). What follows is a list of the pros and cons of actor-critic methods:

– They can converge faster than policy-based or value-based methods be-
cause they learn both the policy and the value functions simultaneously.

– They can incorporate prior knowledge of the environment by initializing
the value function with a pre-existing estimate or using transfer learning
techniques.

– It can be difficult to tune hyperparameters, such as the learning rate and
the discount factor, which can affect the stability and convergence of the
algorithm.

– The actor can overfit the current policy if the hyperparameters are not
tuned correctly.

The hyperparameters mentioned earlier are a set of parameters that define the
learning algorithm and that need to be specified by the developer. They have a big
impact on the performance and convergence of the method. Here are some examples
of hyperparameters:

• Learning rate: it controls the step size of the updates to the model during
learning. Increasing the learning rate can help in converging faster, but it may
also lead to instability and oscillations.

• Discount factor: it determines the importance of future rewards. A higher
discount factor favors future rewards more than immediate rewards. This
parameter can have a big impact on finding the optimal value. If badly tuned,
it will converge to a local optimum instead of finding the global optimum.
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• Exploration rate: it determines how much the agent should explore the action
space instead of exploiting the current values that maximize the reward. A
high exploration rate can help the agent better fine-tune the policy but can
also lead to inefficient learning and slow convergence.

• Neural network architecture: in deep reinforcement learning, the neural net-
work architecture can significantly affect the performance of the learning algo-
rithm. The number of layers, the number of units per layer, and the activation
functions are examples of hyperparameters that can be tuned.

• Replay buffer size: in deep reinforcement learning, a replay buffer is a memory
that stores the experiences of the agent in the form of transitions, which consist
of the current state, action taken, next state, and reward received. The size
of the replay buffer is a hyperparameter that can affect the sample efficiency,
the memory requirements, the learning stability, and the convergence of the
algorithm.

• Batch size: it determines the number of experiences sampled from the replay
buffer at each iteration of training. Large batch size can lead to more stable
learning but requires more memory and computational capacities.

RL enables machines to learn and adapt to complex environments in a way
that was previously not possible. However, reinforcement learning is still an active
area of research, and many challenges need to be addressed. The integration of
deep learning with reinforcement learning has led to the development of a new field
known as DRL, which has emerged as a major advancement in the RL domain.

2.6.2 Deep Reinforcement Learning

RL has several limitations that can make applying it in complex and high-dimensional
environments challenging. One of the main limitations of traditional RL is the ”curse
of dimensionality”, which refers to the exponential increase in the number of possi-
ble states and actions as the dimensionality of the problem increases [84]. This can
make it difficult for an RL agent to explore the environment and learn an optimal
policy. Deep Reinforcement Learning (DRL) can help address this limitation by
using deep neural networks as a function approximator to build on the ideas of RL.
This lets the agent learn from high-dimensional input data, like images or sounds,
and apply its knowledge to new situations.

The exploration-exploitation trade-off is another limitation of traditional RL.
The main difference between exploration in RL and DRL is the complexity of the
exploration strategies. Traditional RL methods use simple exploration strategies
like epsilon-greedy or softmax exploration [85], in which the agent chooses actions
randomly with a certain probability of success. These strategies for exploring are
easy to use and work well in simple settings with clear action spaces. On the
other hand, DRL algorithms can use more sophisticated exploration strategies that
take advantage of the power of deep neural networks. They can use uncertainty
estimation to guide exploration, where the agent chooses uncertain actions or high
variance in their predicted value [86]. For example, the agent may choose to explore
a new part of the state space if it is uncertain about the value of the current state
or if the value of the current state is highly variable across different deep neural
network predictions. DRL algorithms can also use intrinsic motivation [87] and
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curiosity-based [88] approaches to encourage the agent to explore novel parts of the
environment.

DRL has been used to overcome challenges in Wi-Fi networks. Wi-Fi channels
are known to be highly unstable, and numerous promising DRL solutions have been
proposed in the literature as many modern DRL algorithms, such as Proximal Policy
Optimzation (PPO) [89] and Trust Region Policy Optimization (TRPO) [90] were
designed to work in unstable environments. In the following subsection, we will
discuss some of these DRL solutions.

2.6.3 Leveraging Reinforcement Learning to Optimize Wi-
Fi Networks

The work of [91] proposes a solution for power control in Wi-Fi using distributed
DRL by adapting the transmit power based on the observed states of each mo-
bile node in a multi-hop Wi-Fi network. The observed states include the transmit
power, link quality, and signal strength. The Deep Q-Learning (DQL) model was
trained offline and evaluated using the Alfa AWUS036NHA USB wireless adapter.
Evaluation tests showed that the DRL-based power control achieved significant im-
provements in energy efficiency (up to 24%) and throughput (up to 22%) compared
to fixed power allocation schemes.

Double DQL was used for rate adaptation on the physical layer of Wi-Fi networks
in [92]. The state representation included metrics such as MCS and RSSI. The agent
relied on the goodput to calculate the reward and select a new triplet (MCS, channel
width, number of spatial streams) predefined profiles. The authors used online
training in which the model continues to learn even after deployment. The agent
was deployed on Intel 802.11ac Network Interface Cards (NICs). It outperformed
the Intel and Linux default rate adaptation algorithms by more than 200%.

Authors in [93] used DQL to enhance the performance of CSMA/CA in dense
WLANs by observing the backoff values, performing actions to increase or decrease
them, and learning from a reward calculated based on the probability of collisions.
The DQL model was trained offline and evaluated using the Network Simulator 3
(NS-3) simulator. Results showed enhancement in terms of throughput, channel
access delay, and fairness compared to other mechanisms in the literature.

Authors in [94] used DQL to check if clients actually benefit from participating
in MU-MIMO. The metrics used in the offline training were CSI and SINR. Experi-
mental results using a commodity AP showed that the additional implementation of
the pre-screening algorithm alone, without otherwise modifying MU-MIMO client
grouping or link parameter selection algorithms, can improve system throughput
by up to 40% when half of the clients are mobile and to maintains throughput
improvement of around 20% when 50% to 75% of the clients are mobile.

In [95], authors improve the data rate obtained by Wi-Fi clients using a client-
AP association scheme based on DQL. The proposed method takes into account
the application demands of the user and link capacity. The offline training and
evaluation were performed in a homemade simulation environment developed with
Python. Results showed improvements over standard signal strength-based associ-
ation regarding throughput and ensuring application requirements.

The complexity of deployment and limited availability of equipment has led to
a limited number of studies testing DRL models on real hardware. Instead, the
majority of research in the literature has used network simulators for training and
evaluating DRL models.
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2.6.4 Using Network Simulators with Reinforcement Learn-
ing for Wi-Fi Optimization

Network simulators help to emulate the way a network operates. They do this by
defining modules that represent network protocols, radio interfaces, and wireless
channels. They are one of the leading evaluation methods in wireless networks
and have an important place in academia and industry [96]. The simulation tools
and results create an environment where those concerned in these fields can test,
compare, and improve their proposals. Authors in [97] show some overviews of the
most popular network simulators for modeling wireless network technologies.

When it comes to RL, network simulation tools can be used to represent the
environment that the agent interacts with to learn. The learning accuracy of the
model will depend on how well the network simulators can make the agent behaves
realistically. Simulation tools offer great flexibility in enabling the agent to interact
with any type and use case of the environment. Whether during (1) Offline train-
ing, where the model does not undergo any further modifications after the training
is done. (2) Online training, where the model continues to learn even after being
deployed, to explore states it did not encounter during its initial training. Objec-
tive Modular Network Testbed (OMNeT++) and NS-3 are among the most used
simulators in the literature.

The introduction of tools such as NS-3 Gym has simplified the integration of re-
inforcement learning with network simulators. NS-3 Gym [98] provides a flexible and
convenient interface between NS-3 simulator and reinforcement learning algorithms,
allowing researchers to easily explore and optimize network protocols. Similarly,
Tensorflow [99] has a C++ Application Programming Interface (API), which en-
hances the OMNeT++ simulator with machine learning capabilities by offering a
framework that can incorporate various ML algorithms.
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Chapter 3

Contribution 1 - Wi-Fi Networks
Deployment

3.1 Introduction

This chapter presents our initial contribution toward enhancing Wi-Fi deployment
in the context of smart farming. We concentrate on two interconnected topics: rate
adaptation algorithms and Wi-Fi access point deployment strategies. In section 3.2,
we examine and test rate adaptation algorithms found in the literature. We re-
fine the ”Ideal Rate Adaptation Algorithm” to ensure compatibility with the Wi-Fi
standard and discuss the lessons learned. In section 3.3, we propose Wi-Fi access
point deployment based on beamforming technology while considering the data rate
requirements of the application. We utilize the modified ideal rate adaptation al-
gorithm selected in section 3.2 in this section. In section 3.4, we evaluate through
simulation our deployment strategies in various scenarios with distinct application
requirements. Subsequently, we create an empirical model and compare its results
to the simulation results. Finally, we conclude this chapter in section 3.5.

3.2 Selecting the Most Effective Rate Adaptation

Algorithm

Several rate adaptation algorithms have been proposed and implemented over the
years, ranging from simple fixed-threshold methods to more complex machine learn-
ing based approaches. These algorithms employ different strategies to determine the
optimal data rate, such as monitoring the number of successful or failed transmis-
sion attempts and estimating the channel conditions based on SINR or RSSI. In this
section, we evaluated four different rate adaptation algorithms from the literature.
The primary focus of this analysis was to determine their performance in terms of
throughput and packet loss across various network conditions. These algorithms,
which represented a range of approaches to rate adaptation, were tested to help us
understand their relative strengths and weaknesses and select the most effective one.
We then discuss the lessons learned from the results of this evaluation.

3.2.1 Simulation Setup

In this subsection, we assess the performance of representative algorithms from each
RAA category (implicit, explicit, and hybrid) under mobility scenarios. The algo-
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rithms include Ideal, Strale[43], MinstrelHT[44], and MutFed[50]. Each algorithm
represents a different category. Minstrel-HT and STRALE are implicit feedback al-
gorithms, with Minstrel-HT being a commonly used algorithm implemented in the
Linux kernel. It aimed to select a sampling rate resulting in the highest through-
put and probability of successfully delivering frames. On the other hand, STRALE
could serve as an extension algorithm to Minstrel-HT, enhancing its performance by
adapting the number of MPDUs in aggregated frames without reducing the transmis-
sion rate. To our knowledge, STRALE had not been tested in a dense environment.
Among the few hybrid RAAs in the literature, MutFed was the most generic algo-
rithm compared to the other hybrid algorithms proposed for specific scenarios. The
idea behind MutFed was promising since it could distinguish the reason for packet
loss and relied on SINR. These algorithms offer a comprehensive understanding of
RAAs as they rely on various metrics and approaches commonly used in the litera-
ture. We used the NS-3 network simulator to compare and evaluate the performance
of the algorithms. Ideal and Minstrel-HT algorithms were already implemented in
the simulator. We modified the original implementation of the Ideal algorithm in
the simulator to ensure a fair comparison among the selected algorithms. We in-
cluded feedback in the reserved bits of the BlockAck[100], which was sent back to
the transmitter on the same communication channel. We assumed all nodes had
only one communication channel for data and control traffic exchange.

We implemented Strale and MutFed algorithms and selected specific metrics to
evaluate their performance, including throughput, selected MCS values, FLR based
on MPDUs, and FLR based on A-MPDUs.

• Throughput: provides a global view of the achieved performance and is calcu-
lated at the physical layer.

• Selected MCS index: gives insight into the different choices made by RAAs
and their impact on performance.

• FLR (MPDU): provides an overview of overall lost MPDUs using the BlockAck
information.

• FLR (A-MPDU): relies on the number of times the transmitter needed to
retransmit the whole A-MPDU frame.

Table 3.1 presents the different modulation and coding schemes of IEEE 802.11ac.
We evaluated all of these performance metrics based on the number of nodes in

the network. To achieve this, we increased the number of nodes while keeping the
deployment surface constant. This node increase resulted in higher traffic load and
interference levels, allowing us to assess how the algorithms behaved under increased
interference conditions.

We evaluated the algorithms in three different scenarios:

• Interference-free network: highlights the impact of link degradation on RAAs
due to mobility. In this scenario, a mobile node is moving away from a static
access point. This allowed us to evaluate the efficiency of RAAs in adapting
the rate according to RSSI values without interference.

• Infrastructure network: represents the most commonly used deployment mode.
In this scenario, we evaluate the behavior of RAAs in a standard deployment
with one access point through which all network traffic needs to pass to be
relayed to a wired network. There is only one receiver, and the SINR values
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Table 3.1: Modulation and coding schemes.

MCS index Modulation Type Coding Rate

0 BPSK 1/2
1 QPSK 1/2
2 QPSK 3/4
3 16-QAM 1/2
4 16-QAM 3/4
5 64-QAM 2/3
6 64-QAM 3/4
7 64-QAM 5/6
8 256-QAM 3/4
9 256-QAM 5/6

for each link with the other mobile nodes in the network vary based on their
mobility patterns.

• Ad Hoc network: the most complex deployment in terms of interference where
the receivers are randomly spread throughout the network, and interference
levels are highly unstable due to mobility. All nodes need to adapt their rates
depending on the channel conditions and network dynamics, such as node
density and mobility.

In the infrastructure and ad hoc scenarios, direct connectivity was ensured for the
duration of the simulation to avoid routing protocol impact. This allowed us to
concentrate on interference and mobility impacts on RAAs. Each simulation result
presented is the mean value of 50 simulations, with the bars in the graphs represent-
ing the standard deviation. Table 3.2 summarizes the network parameters of the
simulation. A simulation duration of 30 seconds was sufficient to ensure randomness
in the movement in the nodes within the square boundaries and for the selected algo-
rithms to converge. We used Log-distance and Nakagami-m loss models to make the
simulations more realistic regarding link quality and stability. We preferred UDP
to TCP for traffic generation to avoid TCP overhead and its rate adaptation. As
for packet size and mobility speed, we did not study their impacts, and the chosen
values were representative of average to big-sized frames and relatively fast-moving
nodes.

3.2.2 Scenario 1 - Interference Free Network

In this scenario, we consider a simple network configuration with only one com-
munication link. One stationary AP and one mobile station moved away from the
AP at a speed of 6 m/s, as stated in Table 3.2. The primary purpose of this sce-
nario was to evaluate the efficiency of RAAs under the influence of mobility in an
interference-free network.

We measured the throughput of the four algorithms as the station moved pro-
gressively away from the AP. As shown in Figure 3.1, although the results of all
tested algorithms were similar, the Ideal and MutFed RAAs performed slightly bet-
ter than the MinstrelHT and Strale algorithms. The Ideal algorithm detected chan-
nel changes faster than other algorithms and adapted the rate accordingly due to
its fast feedback and decision-making capabilities. MutFed had a slightly lower
throughput than Ideal due to the algorithm taking decisions every ten frames. As
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Table 3.2: Summary of simulation parameters.

Parameter Value

Simulation time 30 s
Runs 50
WLAN standard IEEE.802.11ac
Path loss model Log-distance
Fast fading loss model Nakagami-m
Traffic UDP
Packet size 1500 Bytes
Data Rate 60 Mbps (Application Layer)
Mobility model Random Walk 2d Mobility Model
Mobility speed 6 m/s
Topology size Square of boundaries ( 100, 100, −100, 100)

a result, when channel conditions deteriorated, the decision was not made immedi-
ately, resulting in frame losses. Minstrel-HT and STRALE achieved lower through-
put as these algorithms take some time to lower the rate when needed, as their
decision-making process relies on random probing, FLR in the case of MinstrelHT,
and A-MPDU size adaptation in the case of Strale.
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Figure 3.1: Throughput of a station moving away from an access point at a speed
of 6 m/s.

3.2.3 Scenario 2 - Infrastructure Network

In this scenario, we consider an infrastructure mode network, with a stationary
access point positioned at the center of a square field, and all stations moving ran-
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domly while sending constant traffic of 60 Mb/s to the access point. The number of
stations is gradually increased from 5 to 50.
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Figure 3.2: Overall throughput received at the access point.
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Figure 3.3: MAC Protocol Data Unit (MPDU) Frame Loss Ratio.
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Figure 3.4: A-MPDU Frame Loss Ratio.
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Figure 3.5: Mean value of the modulation and coding schemes (MCS) used by the
nodes.

The physical throughput received at the access point is shown in Figure 3.2. The
Ideal RAA performed better than the other algorithms due to its quick reaction to
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changes in channel conditions. The two implicit feedback algorithms (Strale and
Minstrel-HT) take longer to recover after channel conditions change. The Strale
algorithm performed slightly better than Minstrel-HT because it seeks an optimal
A-MPDU size instead of reducing the rate.

FLR based on MPDU losses and A-MPDU losses are shown in Figures 3.3
and 3.4, respectively. High MPDU FLR values are observed because all stations
are within the transmission range of each other, increasing interference as node den-
sity increases. A-MPDU FLR is a false-positive rate increase in a fast-changing
channel, which can occur when the transmitter increases the rate. However, the
channel conditions deteriorate before sending the frame. Figure 3.5 shows the av-
erage MCS index values selected by the stations. Ideal RAA selected higher MCS
index values with almost the same MPDU FLR and lower A-MPDU FLR, leading to
higher achieved throughput. MutFed had the worst performance among the tested
algorithms due to the frequent rate reduction caused by frame losses.

Figure 3.4 indicates that as node density increases (>20, for instance), causing
the interference level to rise, the A-MPDU FLR gap between SINR-reliant and other
RAAs also widens. This is because SINR values better reflect the channel condition.

3.2.4 Scenario 3 - Ad hoc Network

In this scenario, we consider an Ad hoc network with randomly placed nodes in a
square field. The nodes move randomly at 6 m/s and change their direction every 3
seconds. Half of the nodes are traffic generators, and the other half are sink nodes,
with a constant UDP traffic rate of 60 Mb/s flowing toward the sink nodes. We
gradually increase the number of nodes from 5 to 50 to evaluate the performance of
the rate adaptation algorithms under increasing node density and interference.

Figure 3.6 presents the overall average physical throughput achieved by all the
sink nodes, while Figures 3.7 and 3.8 show the FLR based on MPDU losses and
A-MPDU losses, respectively. Figure 3.9 shows the selected MCS values by the
stations.

The stations using the Ideal RAA achieve the highest throughput among the
studied algorithms, thanks to its fast adaptation to the changing channel conditions.
However, in scenarios where frame losses occur, the lack of feedback from the receiver
prevents the transmitter from adapting the rate, leading to more frame losses until
the channel conditions improve. False-positive MCS rate decisions can also result
in more A-MPDU frame losses in some cases, as seen in scenario 2.

We also observe that the average MCS values in Ad hoc mode are slightly lower
than in infrastructure mode, which explains the lower throughput achieved in Ad
hoc mode. Additionally, the FLR results suggest a high interference level in this
scenario, leading to higher MPDU FLR values. The A-MPDU FLR results also
show that using SINR values for rate adaptation improves performance in high
interference-level scenarios.
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Figure 3.6: Average throughput of sink nodes in an Ad hoc network.
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Figure 3.7: MPDU Frame Loss Ratio.
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Figure 3.8: A-MPDU Frame Loss Ratio.
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Figure 3.9: Mean value of the MCS selected by sender nodes.

It is important to note that in scenarios 2 and 3, all nodes are in in the commu-
nication range of each other, causing the interference level to increase with each new
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sender node added to the network. As a result, we observe high FLR values in both
scenarios. Specifically, the FLR based on MPDUs counted in BlockAck reaches over
80% in both scenarios when the number of nodes exceeds 20. The FLR based on
A-MPDUs also increases gradually with the number of nodes in the network.

3.2.5 Lessons Learned

In this subsection, we share the lessons learned from our study of the existing rate
adaptation algorithms and the simulation results.

Explicit Feedback

Most explicit feedback approaches rely on physical layer metrics, mainly SINR, as
seen in Chapter 2. However, for such an approach to be used on real devices, several
conditions must be met, such as having hardware that provides SINR values and
a method for relaying the feedback to the transmitter that does not violate the
standard.

Furthermore, the simulation results indicate that more than relying solely on
SINR values for decision-making may be required. In some cases, the lack of feedback
may result in multiple frame losses until the channel quality is suitable for the current
rate. One possible solution to this issue may be implemented on the transmitter
side.

Although explicit feedback algorithms, such as Ideal RAA, outperformed other
algorithms in a dense environment in both ad hoc and infrastructure modes, much
work remains to minimize FLR and achieve better overall performance. Combining
the current explicit approach with implicit approaches, such as changing A-MPDU
size, which results in lower channel occupancy, and collecting statistical information
at the transmitter that aids in the decision-making of future transmissions, may be
considered to reduce FLR.

Implicit Feedback

The implicit feedback algorithms commonly use frame loss ratio and probing rates
different from the selected rate. However, caution must be exercised when using
random probing rates due to the risk of excessive frame losses. This may result in
slow convergence of the algorithm towards the optimal rate.

Although implicit feedback algorithms have shown promising results in a mobile,
collision-free environment, their performance has not been found to be superior to
other categories. To improve their performance, it may be useful to detect the degree
of mobility and investigate its direct effects on frame transmission results. In dense
environments, it is essential for RAAs to accurately estimate the cause of frame
loss and rely on different metrics to make more precise rate decisions. Additionally,
a rate-changing method should be implemented to increase the rate when channel
conditions improve and decrease it when they deteriorate. However, achieving this is
a challenging task, as the algorithm needs to have real-time estimates of conditions
such as SINR.

Hybrid Approach

The simulation results indicated that decreasing the rate after failed transmissions
in a dense environment can result in longer transmission times, reduced throughput,
and increased channel occupation time, which affects all nodes in the network. One
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possible solution to this problem is to use a sliding window approach that can predict
future channel conditions and adjust transmission accordingly.

Designing an efficient hybrid approach has proven to be a challenging task, with
few existing studies focused on it. The simulation results showed that the Mutfed
hybrid algorithm performed worse than other algorithms, mainly due to its method
of decreasing the bit rate, which leads to decreased throughput, increased interfer-
ence, and frame loss. Ideally, a hybrid algorithm could be built on top of an explicit
algorithm by incorporating additional metrics, such as collecting statistics on frame
loss ratio, to adapt the number of MPDUs in an A-MPDU.

Based on our performance evaluation results, we decided to use the modified ideal
rate adaptation algorithm as the RAA in the rest of our work since it outperformed
the rest of the algorithms in the literature. This contribution was published in a
journal paper [22].

An in-depth understanding of rate adaptation algorithms offers valuable insights
into the performance and adaptability of Wi-Fi networks in different network con-
ditions. This knowledge can help optimize Wi-Fi networks for specific applications
and use cases, and drive the deployment of Wi-Fi networks in accordance with
application requirements by considering MCS and SINR requirements. In the fol-
lowing section, we will focus on the deployment of Wi-Fi networks using MIMO
and beamforming in the context of smart farming, taking into account the specific
requirements of the application.

3.3 Wi-Fi Deployment with Beamforming

Our study focuses on the comparison of the performance of WLANs between MIMO
and SISO systems. We investigate the impact of beamforming in terms of coverage
and capacity. Deploying Wi-Fi networks involves a range of techniques and consid-
erations, including equipment selection and access point placement. In this section,
we discuss the different techniques for Wi-Fi deployment, our Wi-Fi deployment sce-
narios, and the factors involved in calculating the number of access points, taking
into account coverage and capacity based on the application requirements.

3.3.1 Deployment Technique

Inspired by the deployment techniques used in cellular networks, mainly the grid
approach such as in [101], we investigate the efficiency of a grid-based deployment
with and without considering a target data rate. An access point has a coverage
range R. The grid cell size is selected depending on R in a way that the coverage
of the access point completely covers the grid cell, as shown in figure 3.10. This
ensures complete radio coverage at any point inside the grid cell. Note that in real
deployment, the coverage of the access points is not a perfect circle due to many
factors, such as environmental factors and antenna radiation patterns.

The radius of coverage of an access point which determines the grid cell size is
dynamic and depends on the target data rate of the application. Our deployment
approach follows 4 steps:

• We determine a target SINR value based on the target data rate of the appli-
cation.

• We calculate the coverage radius of the access point based on this target SINR
value.
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Figure 3.10: Grid Deployment.

Figure 3.11: Deployment of the access points at the edge of the field.
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• We calculate the grid cell size.

• We fill the area of interest with cells horizontally and vertically until the area
of interest is completely covered.

Note that, in this study, we can install access points at the desired positions. In
real life, this might not be possible due to obstacles. Nevertheless, we can easily
include constraints for positioning access points depending on the field for a specific
deployment.

3.3.2 Deployment Scenarios

In this study, we consider 3 different deployment scenarios: data rate independent,
data rate dependent, and edge deployment.

Our first scenario covers the use case of sending at 1Mbits/s from any point in
the field. We call this scenario data rate independent deployment. The aim is to
deploy the necessary number of access points that ensures coverage of the whole
area by applying a grid positioning.

In the second scenario, we consider a data rate dependent deployment where the
required data rate is taken into consideration. In this scenario, we apply a grid
positioning of the access points. The number of required access points is based on
the range calculated in equation 2.6.

The installation of access points inside a field is not a simple task. It requires
a power source and network cables for every access point. Additionally, placing
the access points introduces additional obstacles in the field for mobile robots that
are performing tasks that may dynamically change. Hence a special deployment
technique is studied in the third scenario, which we call edge deployment, where
APs are deployed at the edge of the area as shown in figure 3.11.

A human operator from its control station may decide at any time to monitor
a the actions of a robot in real-time or intervene when a problem occurs: when a
robot is stuck or when some faulty behavior is detected, for example. The quality
of the video may be critical in some operations that require a clear vision of the en-
vironment. The maximum quality of the video can be determined during the design
phase since it is related to the hardware being installed and the type of application.
Thus, for each of the scenarios, two main use cases are studied considering an in-
tervention with medium and high quality video requirements. We used the ”CCTV
Calculator” [102] to calculate the minimum data rate needed for high and medium
quality video streaming. The video parameters used in the following sections are
shown in table 3.3.

Parameter Value
Resolution 1920 x 1080
Compression Type MPEG4
Frame Rate 30
Data Rate - High Quality 95.7 Mbits/s
Data Rate - Medium Quality 25.4 Mbits/s

Table 3.3: Video parameters.
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3.3.3 Capacity Aware Deployment

Using the MCS table 2.2, we can determine the minimum SINR achievable at the
receiver, which allows sending at an MCS providing the data rate required by the
application.

We developed a small graphical tool using Unity[103] to calculate the number of
required access point and visualize their deployment as shown in figure 3.12. The
tool takes into account transmit power, number of antennas and antenna gain, noise
power, pathloss exponent, target SINR, field dimensions, overlapping percentage
between access points, and whether to use beamforming or not.

Figure 3.12: A graphical tool used to calculate the number of required access points
and visualize the deployment

Two 1x1, one 2x2, and one 4x4 MIMO access points are needed to cover the area
allowing a minimum data rate of 1Mbits/s. Our deployment strategy considers a
minimum SINR of 5 at any point in the field, allowing robots to use ”MCS index =
0”.

For the two other scenarios, both are data rate dependent. We considered a
minimum SINR value of 8 for the medium-quality use case and a minimum SINR of
21 for the high-quality use case. These SINR values allow robots to send a data rate
that respects the application needs, 25.4 Mbits/s and 95.7 Mbits/s, respectively.
Note that these SINR values are related to the use of a channel width of 40 MHz.
Other values are required for other channel widths.

Using this information, and based on equation 2.6, we calculate the required
number of access points for deployment. The required number of access points in
the first scenario is found to be close in both the SISO and MIMO cases. Hence,
no significant improvement in using beamforming when sending at low data rates:
two SISO access points are required to cover the area, whereas only one access point
with 2x2 or 4x4 MIMO antennas is sufficient to cover the same area.

The number of access points required for the medium-quality video use-case is
shown in figure 3.13. Four 1x1 access points are required to cover the field, while
only one 4x4 access point is sufficient to ensure complete coverage of the field and
allow a robot at any point in the field to use MCS = 1, which is enough to send at
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a data rate of 25.4 Mbits/s. The difference in the number of access points can be
translated into a cheaper and less complex deployment.
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Figure 3.13: Grid deployment: number of access points inside the field for a medium
and high quality video intervention.

1x1 2x2 4x4
0

2

4

6

8

10

12

14
Medium Quality High Quality

Antennas

N
um

be
r 

of
 A

cc
es

s 
Po

in
ts

Figure 3.14: Edge deployment: number of access points inside the field for a medium
and high quality video intervention.

In the third scenario, where APs are deployed on the edge of the field for a
medium-quality video intervention requirement, the number of access points is shown
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in figure 3.14. The access points cover the whole field when using SISO and MIMO
technologies, with a slight difference in the required number of access points. The
non-covered area is 0%, which means that even though the access points are de-
ployed around the field, robots can send the required MCS from any point inside
the field without needing a relay node. This is not the case when a high-quality
video intervention is required. We can see a big difference in the number of access
points required when using each technology. Eleven access points are required to
cover the area for 1x1, while 12.63% of the total area is not covered. Seven access
points are needed for the 2x2 MIMO system, with 3.63% of the area not covered.
Four 4x4 MIMO access points are enough to maintain full coverage of the whole
field.

In the following section, we will present the simulation results of the Wi-Fi
networks deployment.

3.4 Performance Evaluation of Deployment Strate-

gies

The number of access points for deployment is an essential criterion in respecting
the required data rate. In real scenarios, a network includes multiple robots. Hence,
a performance evaluation is necessary to help understand the impact of mobility
and interference on the quality of communication.

In this section, we evaluate the deployment techniques outlined in 3.3 within the
context of a specific application use case involving mobile robots in a Smart Farming
scenario. We conduct our tests through simulation and derive an empirical model
by offering a generalization of our approach for any field size and comparing it to
simulation results.

3.4.1 Network Performance Evaluation

We conduct a performance study for each deployment scenario. We compare the
achieved performance with data rate-independent and data rate-dependent deploy-
ments. In the data rate-independent deployment, we use the maximum coverage
range of access points without considering the application or the required data rate
for reliable video streaming. This means that the considered range only guarantees
to send data at the minimum MCS value (MCS index = 0). The number of access
points deployed is the same as the ones calculated in the first case (1 Mbits/s). In
the case of data rate-dependent deployment, the access points coverage is calcu-
lated according to equation 2.6, considering the minimum SINR value to send at
the required data rate.

Extension of the available Wi-Fi module in NS-3

Our evaluation procedure is based on a simulation study. We used NS-3 simulator
which offers a detailed module for Wi-Fi but lacks important aspects needed in our
study. In this section, we discuss the features we implemented in the simulator
for the sake of our study, namely the beamforming procedure, handover, and MCS
negotiation.

Beamforming is not implemented in the current version of the NS-3 simulator
and, according to our knowledge, is not on the timetable of the designers yet. Thus,
we decided to implement a beamforming behavior in the simulator. In a single
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data exchange, a transmitter called the beamformer starts to measure the quality
of the channel used to communicate with the receiver, known as the beamformee.
The result of the measurement, which is called the sounding procedure, is used to
direct the energy toward the receiver. In a Single User MIMO (SU-MIMO), the
main lobe represents the total energy transmitted in the direction of the receiver
while no energy (depending on the accuracy of the hardware) is transmitted in other
directions. This main lobe has a beamwidth that depends on the type of antenna
used.

What follows is a brief summary of the features that we added to the NS-3
Simulator:

• A beamforming transmission behavior. The transmission consists of a main
lobe of a triangular shape directed toward the receiver with no energy in other
directions.

• A handover procedure allowing the robots to switch to the access point pro-
viding a better SINR than the currently associated access point.

• Replace the beamforming sounding procedure by the airtime it takes, which
is around 500 microseconds[37].

• Integration and use of the Modified Ideal Rate Adaptation Algorithm[22].

Description of Simulation Scenarios

We consider that robots are sending video streams for 30% of the time. In the
remaining 70%, robots send 1 Mbits/s of data. This proportion is chosen to emulate
a real intervention. Indeed, this emulates the event where the robot is taken over
by a human operator taking into consideration the time needed to remotely solve
the issue. Multiple robots are deployed in an outdoor environment. Each robot is
deployed at a random position and follows a random path. In a real-life scenario, a
robot will have a predefined trajectory. Knowing the trajectories in advance would
help optimize further the positioning and the number of deployed APs. However,
we adopted random trajectories as a worst-case scenario.

Each scenario is repeated 40 times with different initial positions and random
paths. The number of robots deployed is increased gradually from 4 to 20 in each
scenario. Note that, in a typical scenario, only a limited number of robots are
deployed in one field (1 to 4 robots). In this study, we focus on the challenges that
will occur due to interference and channel overload in case more robots are deployed.

We consider a wired link between the APs and the control station. Multiple
simulations of different scenarios were carried out while varying the number of mobile
robots. The simulation parameters are shown in Table 3.4.

In the following sub-sections, we investigate the impact of the number of APs
and their configurations on throughput and delay depending on the number of users
in the network. The investigation includes using SISO and MIMO with a different
number of antennas. The scenarios are classified according to different applica-
tion requirements (high and medium-quality video streaming) and different field
sizes. We evaluate two access points deployment strategies for each scenario, one
considering the application’s data rate requirement and the other being a classical
deployment (which does not take into account application requirements). The num-
ber of access points in each simulation scenario is based on the analytical results of
previous section.
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Parameter Value
Simulation Time 60 seconds
Runs 40
WLAN Standard IEEE.802.11ac
Path Loss Exponent 2.5
Antenna Gain 6 dbi
Channel Width 40 MHz
Noise Level -120 dBm
Reference Loss 46.6 dB
Fading Factor random(0, 2dB)
Mobility Model Random Walk 2d Mobility Model
Mobility 6 m/s
Topology Size 1km2

Table 3.4: Simulation parameters table for the capacity-aware deployment.

Medium Quality Video Streaming Application

Figure 3.15 shows the throughput obtained in a data rate independent deployment
scenario. The throughput obtained in SISO is higher than that of MIMO with
beamforming. Two main reasons explain this result. First, the number of APs
is larger in the SISO case (2 APs), which leads to fewer packet losses and more
channel access time for each robot, as depicted in figure 3.16. Second, a data rate
of 25 Mbits/s requires a low SINR value at the receiver, as indicated in table 2.2.
Thus, robots maintain connectivity most of the time since the MCS requirement is
low.

The significant difference in the throughput between the 2x2 and 4x4 antenna
APs is due to the beamforming gain. When using the 4x4 system, we have a gain
of approximately 6 dBs (equation 2.1), while in the 2x2 system, the gain is around
3 dBs. This gain difference has a direct impact on the power received. This means
that data can be received at a higher SINR when using a 4x4 system for a given
relative position between the transmitter and the receiver. Thus, a higher MCS
value can be selected at certain locations, which explains the better throughput
obtained in the 4x4 system case.

Note the impact of interference on the performance of the network when the num-
ber of robots increases. Additional robots increase the traffic load and thus increase
the interference rate and collision probabilities. Thus, a decrease in throughput
occurs when the number of robots increases.

Figure 3.17 shows the throughput obtained in a data rate dependent deployment
scenario. The 1x1 system provides better throughput than the 2x2 and 4x4 systems.
This explains the need for multiple APs to handle the increased density of robots.
The same applies to the edge deployment scenario due to the full coverage and
the close number of APs. The throughput results of the edge deployment scenario
are shown in figure 3.19. However, the difference in the number of access points
between the two scenarios is seen in the lower delay for the 2x2 and 4x4 systems as
shown in figures 3.18 and 3.20 due to more channel access time combined with the
beamforming gain. Beamforming gain leads to receiving stronger signals allowing
the use of higher MCS values.

A larger number of access points allows a better distribution of the robots among
them. Results show that the beamforming gain may not have a significant added
value in applications with medium data rate requirements compared to SISO sys-
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Figure 3.15: Scenario 1 (data rate independent deployment): Throughput and num-
ber of access points needed for a medium quality stream.
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Figure 3.16: Scenario 1 (data rate independent deployment): End-to-End delay for
a medium quality stream.
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Figure 3.17: Scenario 2 (data rate dependent deployment): Throughput and number
of access points needed for a medium quality stream.
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Figure 3.18: Scenario 2 (data rate dependent deployment): End-to-End delay for a
medium quality stream.
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Figure 3.19: Scenario 3 (edge deployment): Throughput and number of access points
for medium quality stream.
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Figure 3.20: Scenario 3 (edge deployment): End-to-End delay for a medium quality
stream.
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tems. Furthermore, The results show no significant difference in the number of de-
ployed APs between different systems, as seen in figure 3.13. Thus, A cost-capacity
study should be made to further aid in the choice of the technology of the deployed
APs.

High Quality Video Streaming Application

This section presents results for the use-case of high quality video streaming ap-
plication requirements. Figure 3.21 shows the throughput obtained in a data rate
independent deployment scenario. The robots are far from reaching the required
data rate since they cannot use the target MCS in many parts of the deployment
field. Although the required data rate cannot always be achieved in such deploy-
ment, the impact of beamforming and its gain is notable as it extends the range in
which the MCS requirement can be satisfied. This explains the better throughput
achieved by the 4x4 and 2x2 systems over the 1x1 system.

The impact of beamforming on the end-to-end delay is shown in figure 3.22. 2x2
and 4x4 systems have the same number of deployed access points but the 4x4 system
achieves a lower delay due to the selection of higher MCS values.
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Figure 3.21: Scenario 1 (data rate independent deployment): Throughput and num-
ber of access points needed when sending a high-quality stream.

In a data rate dependent deployment (scenario 2), the field is fully covered by the
access points complying with the SINR requirement, hence, as shown in throughput
results of figure 3.23. With the presence of a few robots, the performance of SISO
and MIMO is close due to having a large number of access points relative to the
number of robots and an SINR-dependent coverage zone of each access point. As
the number of robots increases, We observe a difference in the obtained throughput
due to the difference in the number of access points. More access points mean fewer
robots are associated with each access point. Thus, better load balancing between
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Figure 3.22: Scenario 1 (data rate independent deployment): End-to-End delay for
a high quality stream.

access points. The significant difference in the number of access points between the
SISO and MIMO systems leads to a lower end-to-end delay in the SISO case, as
shown in figure 3.24 due to lower channel occupancy as we increase the number of
robots. The impact of a large number of access points overcomes, in this case, the
impact of the beamforming gain on the end-to-end delay.

In the third scenario, access points deployed at the edge of the field, figure 3.25
shows the enhancement obtained from the usage of beamforming on the network
performance. The network with beamforming outperformed the SISO deployment
due to the difference in the non-covered area. In this type of deployment, the larger
number of access points did not result in better throughput. Certain areas in the
field do not allow sending at the application required MCS due to low SINR, which
is the case of 2x2 and 1x1 systems. The end-to-end delay results are presented in
figure 3.26. We have a lower delay for the 2x2 system over the 4x4 and the SISO
systems due to the larger number of access points and the beamforming gain. Based
on these results and the ones shown in figure 3.24, we conclude that as the number
of access points is closer in different systems, the beamforming gain impact becomes
more significant. This causes a less end-to-end delay for MIMO systems with a
larger number of antennas. Note that one of the added values of beamforming is
reducing interference, especially with multiple access points deployed at the edge of
the field.

The better performance in 1x1 over 2x2 over 4x4 systems comes at a cost. The
large gap between the number of access points required means a more expensive
deployment cost for the SISO over the MIMO systems. This cost is not limited to
the price of the access points but also to the increased complexity of the deployment
in terms of cables and additional obstacles in the field. We should note that the
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Figure 3.23: Scenario 2 (data rate dependent deployment): Throughput and number
of access points when sending a high-quality stream.
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Figure 3.24: Scenario 2 (data rate dependent deployment): End-to-End delay for a
high quality stream.
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Figure 3.25: Scenario 3 (Edge deployment): Throughput of the system in the special
deployment with high quality streaming.
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Figure 3.26: Scenario 3 (edge deployment): End-to-End delay for a high quality
stream.
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theoretical beamforming gain may not be achievable in real-life scenarios due to the
hardware manufacturer’s design and implementation of the technology.

Note that our application targets Smart Farming, where only a few robots are
present in a field with predefined tasks. But if the number of nodes increases, more
access points should be added to increase the capacity of the network. Another
solution would be to adapt several network metrics to optimize access to the channel.

3.4.2 Empirical Performance Evaluation

Based on the results obtained previously, we derived an empirical model to estimate
the performance of the deployment relative to the field size and the number of
deployed access points. This study is useful for a similar deployment strategy given
a different field size. In what follows, we considered a grid data rate-dependent
deployment strategy. We introduce a parameter I which represents the impact of
the interference on the performance of the network. It is the ratio of the throughput
obtained over the transmission data rate, also known as an offered load. I is given
by the following equation:

I =

(
1 − thpt sim

D

)
(3.1)

where thptsim is the throughput obtained through simulation, D is the transmis-
sion data rate of the application.

The deployment performance can be estimated using equation 3.1 if we decide to
keep the same number of robots and the number of access points intact while only
changing the field size. This can be done by dividing the interference impact by the
area fraction Areanew/Areasimulation so that it decreases when the area of the field
increases and vice versa.

In reality, we have to change the number of access points when changing the
field size, this will directly affect the interference impact. For instance, adding more
access points will reduce interference by decreasing the density of robots per access
point. To consider this change, we ran multiple simulations with the same field size
and number of robots while changing the number of access points, the impact of the
change in the results obtained is introduced in the following equation:

Inew = Ioriginal − αδNAPs (3.2)

where Inew is the interference impact in the new scenario after changing the
number of access points, Ioriginal is the interference impact in the original scenario,
δNAPs is the difference in the number of access points between both scenarios and
α is the factor calculated through multiple runs which were found to be related
to the number of robots in the field as shown in figure 3.27. As the number of
robots increases, the improvement in the performance is less significant when adding
additional access points, this can be seen from equation 3.2. As α decreases (when
more robots are introduced in the field), more access points are needed to reduce
the interference impact.

Using equations 3.1 and 3.2, and the values of α obtained through simulations,
we tested our model for fields of areas 2km2 and 5km2. The estimated performance
is compared to simulation results for medium-quality video streaming. Figures 3.28
and 3.29 show the estimation and the simulation results, respectively for the 2km2

field. Simulation results include the minimum and maximum throughput values
obtained throughout 40 runs. Results show that the estimation using our empirical
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Figure 3.27: Impact of the number of access points on the interference versus the
number of robots in the field for a 2x2 system.

model is close to the simulation results and falls within the min-max simulation
throughput range.

We extended the area further and tested our model with a 5km2 field. Results
are shown in Figures 3.30 and 3.31. The main difference between the 5km2 and the
2km2 fields is the number of access points. The estimation presented in the figures
is a result of the calculation of the α factor per number of robots. The graphs
show that the impact of additional access points is well addressed in the empirical
model. These results make performance evaluation quicker, easier, and closer to
the real performance of any similar study with the same deployment strategy and
application use cases.

3.4.3 Deployment Feasibility Study

The design phase in Wi-Fi deployment is crucial for ensuring good quality of commu-
nication in the deployed network. The planning has to be realistic. In other words,
one should consider the complexity of the deployment in terms of the software and
the hardware availability and implementation. The deployment technique used in
our study does not require any complex processing but solving simple mathematical
equations. One can determine the number and the location of the access points
needed to satisfy the data rate requirement of the application beforehand. Meaning
that the process does not require real-time communication and the optimization
could be done offline during the pre-deployment study. Increasing the number of
antennas is a good enhancement to the network as it enhances the coverage and the
quality of the communication, but it comes at a cost. For example:(1) the beam-
forming implementation differs from one vendor to another, this impacts the quality
of the beamforming in terms of the expected range, the accuracy of the beams, and
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Figure 3.28: Throughput obtained through estimation for a field of area 2km2.
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Figure 3.29: Throughput obtained through simulation for a field of area 2km2.
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Figure 3.30: Throughput obtained through estimation for a field of area 5km2.
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Figure 3.31: Throughput obtained through simulation for a field of area 5km2.
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the beam generation time. Also, (2) the cost of MIMO access points becomes higher
as we increase the number of antennas in the system.

3.5 Conclusion

In this chapter, we have presented our initial contribution. We began by assessing
representative rate adaptation algorithms from existing literature in dense networks,
focusing on metrics such as throughput and packet loss. Subsequently, we chose
the best-performing algorithm and refined it to meet the standard requirements.
Rate adaptation algorithms are essential as they adapt data rates over the network
and greatly influence network performance. The chosen rate adaptation algorithm
(Modified Ideal Rate Adaptation Algorithm) serves as the default RAA for all our
contributions.

In the context of autonomous robots for smart farming, we explored deployment
strategies that utilize beamforming to enhance communication range and quality.
Our strategy involved determining the required number of access points for different
MIMO systems across two deployment types (grid and edge deployments). The
deployment types took into account the challenges associated with deployment in
specific fields. Additionally, we evaluated, through simulation, our deployments for
different application requirements to emulate a control station taking control of a
robot in the field. After gathering simulation results, we developed an empirical
model to obtain results for any field size, and the simulation result demonstrated
the accuracy of the model.

Our study highlighted the trade-offs between deployment cost and complexity
versus network performance. While deciding on a deployment plan is crucial, there
remains potential for improvement across various layers of the Wi-Fi network, tar-
geting specific challenges in Wi-Fi networks as outlined in section 2.2. Tackling these
challenges is the objective of our second contribution, which will be introduced in
the upcoming chapter.
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Chapter 4

Contribution 2 - Reinforcement
Learning in Wi-Fi Networks

4.1 Introduction

This chapter details our second contribution to optimizing the performance of Wi-
Fi networks. We tackle two aspects of optimisation: (i) adapting the application
data rate depending on the state of the network in order to avoid overloading the
network, and (ii) adapting the backoff duration of the CSMA/CA algorithm taking
into consideration the state of the network. One technique for achieving these adap-
tations is the employment of machine learning. In this chapter, we employ deep
reinforcement learning, a branch of machine learning, to optimize the performance
of Wi-Fi network.

In section 4.2, we present the DRL algorithm used in our contribution and some
of the technical details of the implementation. In section 4.3, we explore the po-
tential of DRL in enhancing application profile selection within congested Wi-Fi
networks, where performance can deteriorate significantly due to saturation. We
develop and assess a DRL mechanism to identify the most suitable application pro-
files for achieving optimal network performance under any given network condition.
In section 4.4, we investigate the application of deep reinforcement learning to im-
prove the performance of the CSMA/CA protocol responsible for managing access
to the wireless medium in Wi-Fi networks. We develop and evaluate a DRL mecha-
nism through simulation. In section 4.5, we discuss the complexity of the produced
DRL models. Finally, we conclude this chapter in 4.6.

4.2 Algorithm and Implementation

This section aims to provide a comprehensive understanding of the DRL algorithm
employed in our contribution and the implementation of the communication interface
between the DRL module and the network simulator.

4.2.1 Deep Reinforcement Learning Algorithm

Multiple machine learning techniques exist in the literature to tackle various prob-
lems in different domains. However, in our context, reinforcement learning has been
chosen over other machine learning approaches due to its inherent ability to incor-
porate an agent that can actively explore and interact with the environment. This
interaction enables the agent to learn the most effective actions and strategies based
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on feedback from the environment, such as rewards. In contrast, supervised learning
requires a large dataset of labeled examples for training, which may not always be
readily available or representative of the dynamic nature of Wi-Fi networks. Ad-
ditionally, supervised learning methods may struggle to generalize well to unseen
network conditions, as they primarily focus on minimizing errors in the training
dataset [104]. On the other hand, unsupervised learning seeks to find patterns or
structures in data without labeled examples. While unsupervised methods can help
identify underlying patterns, they might need to be more effective at providing ac-
tionable insights or guiding an agent to optimize network performance [104]. As a
result, the reinforcement learning approach is better suited for dynamic and complex
scenarios often encountered in Wi-Fi networks.

There are various existent DRL algorithms that fall into different categories (on-
policy, off-policy, model-free, model-based, etc.) [105]. In our use case, the agent
will explore the environment. We have to evaluate the policy that the agent is using
for its decision-making. We employ an on-policy approach based on the actor-critic
framework, namely, PPO with the clipping surrogate technique [89]. We picked
PPO for its stability as it constrains policy updates so the learning does not diverge
or fall to a local optimum. Note that we do not claim that PPO is the best DRL
approach, various DRL approaches may also be suitable in our context. However,
the choice of the algorithm falls into the category of algorithms that have similar
behavior in constraining policy updates.

The actor-critic framework consists of two neural networks: the actor-network
and the critic network. The actor-network is responsible for the action selection. It
takes the state as an input and outputs a probability vector of the possible actions.
The critic network is the value function. It takes a state as an input and outputs
the expected return. The critic network decides if the policy (actor) is improving or
deteriorating. In what follows, we explain how PPO works:

In the first step of training, we initialize the hyperparameters and the network
weights of the actor and the critic networks, θ and ϕ, respectively. Then, we iterate
through multiple episodes of training. At the beginning of each episode, we initialize
an empty batch B that will hold the (state, action, reward) tuples. The tuples are
used to update the actor and the critic networks at the end of each episode. When
the simulation starts, the agent observes the environment by collecting the states.
A reward is then calculated based on the collected states. Then, the previous state,
the action taken in the previous state, and the newly calculated reward are added
to B. The actor-network is then used to predict an action for the current state.

To check if the algorithm is improving or deteriorating, we calculate the advan-
tage function at the end of each episode shown in (4.1). It indicates how beneficial
each action was when using the current policy. It is a comparison between the return
when taking action in a state and the expected return of the state using the previous
policy. The advantage function provides insight into the impact of the action of the
agent on the return of the state.

Aπ
t (s, a) = rt + γ ∗ V π(st+1) − V π(st) (4.1)

Where V π(st) is the critic network that gives the expected return of a state and γ
is the discount factor to determine the importance of future rewards in comparison
to the immediate reward. The advantage function is then used to update the ϕ
parameters of the critic network by performing gradient descent with respect to the
loss function (4.2). We update the critic network parameters so that its predictions
match the return of the policy.
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L(ϕ) = E[A2
t ] (4.2)

The θ parameters of the actor-network are updated by performing gradient ascent
with respect to the loss function shown in (4.3) where rθ is the probability ratio
shown in (4.4). rθ will be greater than 1 when the action is more probable for the
current policy than it was for the old policy, it will be between 0 and 1 otherwise.
Clipping is done based on ϵ, a hyperparameter in the loss function, used to avoid
cases where the actions between policies have a larger probability difference. Thus,
it prevents taking big gradient steps when updating the policy. The update of the
actor parameters makes the actions that resulted in a better return more probable
in the new policy.

L(θ) = Et[min(rθ ∗ At, clip(rθ, 1 − ϵ, 1 + ϵ)At)] (4.3)

rt(θ) =
πθ(at | st)
πθold(at | st)

(4.4)

The actor and critic networks are updated until their losses become negligible.
The critic loss becomes negligible when the new policies have no more advantage over
the old ones. The actor loss becomes negligible when the policies produce almost
no difference in the predicted action probabilities for the different states. Thus the
training is finished. A DRL model is then produced and ready for evaluation.

4.2.2 Implementation of the Training and Evaluation Sce-
narios

Implementing the DRL algorithm involves using two main modules: The network
simulator NS-3 and Python. NS-3 is used to create the simulation scenarios, while
Python is used to develop the DRL model and its training and evaluation logic.
However, since the DRL model needs to interact with NS-3, we incorporate an
asynchronous messaging library called ZeroMQ (ZMQ) [106]. ZMQ facilitates the
exchange of information between independent applications. The relevant metrics
from all the robots in NS-3 are collected periodically and encoded in JSON format.
This information is transmitted to the DRL model in Python via ZMQ. Upon re-
ceiving the JSON formatted object in Python, the necessary metrics are extracted
as the state of the DRL model. Then, The DRL model generates the required ac-
tions from the extracted metrics, which are then encoded in JSON format and sent
back to NS-3 via ZMQ. This process continues until the DRL model completes its
training or evaluation. The whole process is depicted in figure 4.1 where normal-
ized throughput and application profile are examples of metrics and decisions being
exchanged between the two modules. The implementation of this approach allowed
for a seamless exchange of information between NS-3 and the DRL model written
in Python, which facilitates the training and evaluation of our DRL models.

4.3 Application Profile Selection Using Deep Re-

inforcement Learning

In this section, we examine the training and evaluation of our DRL mechanism,
which is used to enhance goodput in dense Wi-Fi networks and address performance
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PythonNS-3 [
 {
  robotId: 1,
  normalizedThroughput: 0.3,
  .
  .
 }
 {
  robotId: 2,
  .
  .
 }
]

[
 {
  robotId: 1,
  applicationProfile: 2.5,
  .
  .
 }
 {
  robotId: 2,
  .
  .
 }
]

ZeroMQ

DRL Model

Figure 4.1: Communication between NS-3 and the DRL model

degradation in high offered load situations. We present several scenarios with vary-
ing levels of saturation to demonstrate how Wi-Fi performance deteriorates under
high offered loads. Subsequently, we demonstrate how our DRL model effectively
improves performance in dense scenarios.

4.3.1 Problem Formulation

Modern applications are more and more demanding in terms of network needs.
Thus, more bandwidth is required by each Wi-Fi node in order to transmit/receive
data while maintaining the satisfaction of users. Studies on Wi-Fi performance have
shown a significant decrease in the overall network throughput as the network size
increases [107]. The deterioration of the network performance is caused mainly by
2 reasons. First, (i) the increase in the Offered load: when each node increases
the amount of data, the overall offered load per second becomes greater than the
reception capacity of the access point. This leads to the latter not being able to
handle all the transmitted data. Thus, the goodput obtained at each node decreases,
reducing the QoE. Second, (ii) the use of a random access protocol (CSMA/CA) in
the Medium Access Control (MAC) layer: after transmitting a data packet, a node
waits for an acknowledgment from the receiver, if no acknowledgment is received,
the node backs off and waits for a random number of time slots before accessing the
channel again. At each new attempt to retransmit the packet, the probability of
choosing a longer backoff duration is increased. This mechanism causes significant
access delays and collisions, especially in dense networks [?].

These two problems occur in dense deployments with high offered loads. Indeed,
the probability of collisions increases due to the number of nodes attempting to
send at the same time. Furthermore, the amount of data transmitted by each node
leads to longer transmission times. This results in longer access delays, reducing the
goodput, and increasing the packet loss. In other words, the random access protocol
combined with the high offered load causes degradation in the QoE.

In what follows, we propose a DRL mechanism that reduces the offered load
per node in an attempt to enhance the QoE. We assume that the application layer
offers the possibility to adapt its requirements in terms of offered load. We call
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an application profile a specific set of requirements in terms of offered load. For
example, in a video streaming application, profiles can be defined based on the frame-
per-second requirement or the definition of the generated frame, or a combination
of both. Given these profiles, we propose a dynamic mechanism that selects the
most suitable profile depending on the current state of the network in terms of
observed QoE. For example, under high contention conditions, a node preserves
the satisfaction of the user by selecting an application profile with a low data rate
requirement. Indeed, the maximum amount of data a node can transmit at a specific
time is decided by the current MCS value at the physical layer. Lowering the
application profile will result in less channel utilization time. This, in turn, will
decrease network congestion and enhance the overall goodput.

4.3.2 Model Design

The optimization problem can be framed as an MDP consisting of (i) an agent
exploring the environment, (ii) a set of states S, (iii) a set of actions A, (iv) a
reward function R, (v) a transition probability T, and (vi) a reward discount factor
γ ∈ [0,1].

The agent is an application installed on the Wi-Fi node. The application pos-
sesses multiple profiles with different data rate requirements. The agent sends data
toward an access point over an interval of time and observes the state s ∈ S of the
environment. The state is expressed as the goodput (g) and the packet loss (pl) of
the transmissions in the previous interval [g, pl]. The agent then takes an action a
∈ A by selecting an application profile based on a policy (π). The policy is a neural
network that provides a set of probabilities, each of which corresponds to an action.
Based on the policy, the agent samples an action and decides whether to keep using
the current application profile or select a new one. The reward r is then calculated
as the difference between the goodput and the packet loss, as shown in (4.5).

r = α ∗ g − β ∗ pl (4.5)

Note that the goodput is normalized to the range of [0,1] by dividing it by the
maximum expected goodput (based on the maximum application profile). α and
β parameters help to fine-tune the reward to be compliant with the requirements
of the application. For instance, increasing β will drive the agent to favor learning
how to reduce the packet loss more than increasing the goodput. In this case,
selecting a lower application profile would be the most probable decision. It leads to
less transmission time and less data queued for transmission. Thus, the contention
between nodes is decreased, which reduces the probability of collisions but does not
necessarily increase the goodput.

The immediate reward may not be sufficient to determine the proper decision
in the current state. The decision at any state has an impact on the future series
of events. The discount factor γ ∈ [0, 1] is used to determine the importance of
future rewards in comparison to the immediate reward. This is represented by the
cumulative reward equation (4.6). It predicts how much reward is expected in the
future after taking action in a certain state. For instance, choosing a low value of γ
means favoring short-term rewards. For example, when streaming a live video, we
care more about short-term rewards.

r = rt + γ ∗ rt+1 + γ2 ∗ rt+2 + · · · + γT ∗ rt+T (4.6)
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Our aim is to reach a policy in which, for any observed network conditions, it
selects the application profile that maximizes the return (cumulative reward) of the
agent. Since we will be training our agent through simulation, we can create any
scenario with any network conditions. Thus, Our approach is split into two phases:
Offline-training and Exploitation. During the Offline-training phase, the agent ex-
plores the environment through different simulation scenarios until converging to a
policy based on our reward design. At the end of the training, we save the model
that contains our final policy to use in the next phase. During the Exploitation
phase, we deploy the generated model in scenarios where the agent is able to pick
with a certain degree of confidence the best application profile given a state. The
complete training algorithm is presented in algorithm (1), and figure 4.2 shows the
complete structure of the proposed approach.

Algorithm 1 Offline Training

1: Set the hyperparameters and initialize the actor and critic network parameters
(θ0, ϕ0) respectively

2: for episode: 1,. . . ,E do
3: Initialize an empty batch B
4: for second: 1,. . . ,S do
5: Get the state of each node: st1 , . . . , stN ,

where stn = [goodput, packetloss]
6: for node: 1,. . . ,N do
7: Calculate rtnode

(4.5)
8: Add (s(t−1)node

, at−1node
, rtnode

) to B
9: atnode

= Sample(πθ(stnode
))

10: end for
11: end for
12: Calculate the cumulative rewards r (4.6)
13: Calculate At (4.1) from B and the critic predictions
14: Update ϕ by a gradient method w.r.t L(ϕ) (4.2)
15: Update θ by a gradient method w.r.t L(θ) (4.3)
16: if L(θ) is negligible then
17: Save the model
18: End training
19: end if
20: end for

4.3.3 Model Training

To start the training process, we prepare a simulation scenario with a varying num-
ber of nodes. The total duration of the simulation is set to 180 seconds of NS-3
simulation seconds. We chose to do the training phase on scenarios that do not
involve mobility. We start the simulation with 10 nodes, and we split each simula-
tion scenario into 3 phases of 60 seconds. After each phase, we add 10 nodes to the
scenario. The number of nodes is chosen in order for the model to explore a variety
of states in different network conditions.

Our training reward design of equation 4.5 is set to favor improving the goodput
over the packet loss α > β. Note that the packet loss seen by the application can
be caused not only by collisions but also by the buffer overflow. Indeed, in high
offered load scenarios, nodes will not be able to access the medium due to channel
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Figure 4.2: The structure of the proposed approach using the PPO algorithm
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activity. This will generate an accumulation of traffic in the buffer of the MAC
layer. Thus, this will increase the overall packet loss both dSNRue to collisions and
buffer overflow. In an attempt to reduce the number of packet losses, we included
it in the reward equation.

During training, each NS-3 simulation sends to the DRL module the unique
identifier and the state of each node. Then, the DRL module predicts an application
profile for each node based on the states and calculates the corresponding rewards.
The list of available application profiles are [0.7 Mb/s, 1.5 Mb/s, 2.5 Mb/s, 3.5
Mb/s] corresponding to different video resolutions as used in [108]. In fact, selecting
an application profile of 0.7 Mb/s in a dense environment leads to less transmission
time and less contention. The predicted application profile for each node is sent
back to NS-3. Each node starts transmitting with the corresponding profile for an
interval of time which is set to 250 milliseconds. This duration allows the nodes
to interact with the environment multiple times, providing a better vision of the
environment than a single transmission. Depending on the fault tolerance of the
application, a shorter or longer monitoring duration can be used. At the end of the
simulation (Episode), the losses of the actor and the critic networks are calculated.
The actor and critic networks are then updated accordingly. The training process
is marked as done when the losses become stable and the return is not increasing
anymore.

Figure 4.3 shows the actor and critic losses during the training process. The
value of the actor loss oscillates during the first few episodes marking significant
changes in the policy. The critic loss decreases gradually in the first few episodes.
When the critic loss reaches its minimum value, this means that new policies have
no significant advantage over the old ones. The model is updated at the end of
each episode and is used in the next one. After around 35 episodes, the loss values
become stable.
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Figure 4.3: Actor and critic losses during the training phase of the DRL model
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Figure 4.4 depicts the return values. It shows that the return increases until it
reaches a maximum value of almost 1 and stabilizes after 35 episodes. When the
return reaches its maximum value and remains stable, we consider that the training
is finished.
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Figure 4.4: Return (cumulative reward)

4.3.4 Model Evaluation

The offline training produces an optimized model that maximizes the return. The
goal of our model is to adapt the application profile to enhance the performance of
the network. We validate the model, which was trained in a few static scenarios, in a
larger space of scenarios, including mobile scenarios. The validation aims at testing
the ability of the model to generalize and adapt to scenarios it has not previously
encountered.

For the validation phase, we start by evaluating the performance of Wi-Fi using
the same application profile for all nodes. This helps us identify the limitations of
using a single application profile. We performed simulations by varying the number
of nodes from 1 to 100. Each node is transmitting using the same application profile
toward the same access point. Note that, in these scenarios, nodes are static in order
to eliminate the impact of mobility on the results. The simulation parameters are
presented in table 4.1.

Figure 4.5 depicts the aggregated goodput obtained in the network averaged
over 50 runs with the standard deviation. During simulation, the network becomes
saturated for a certain number of nodes depending on the application profile for
each scenario. When more nodes are introduced to the network, the aggregated
goodput drops from the saturation value and keeps decreasing. This is mainly due
to the probabilistic behavior of the CSMA/CA algorithm used by Wi-Fi, which does
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Table 4.1: Simulation parameters table for the application profile optimization.

Parameter Value

Simulation time (Training) 180 seconds
Simulation time (Validation) 60 seconds
Runs 50
WLAN standard IEEE 802.11ac
Path loss model Log-distance
Fading factor random(0, 2dB)
Traffic UDP
Channel Width 20 MHz
Packet size 1500 Bytes
Mobility model Random Walk 2d Mobility Model
Mobility speed 4 m/s
Topology size Square of boundaries (-30, 30, -30, 30)
α 0.8
β 0.2
Learning rate 0.001

not guarantee access to the medium, especially in high offered load scenarios [109].
Optimizations have been studied to enhance the performance of CSMA/CA [110],
but this can only be done by updating the specifications of the 802.11 standard.
Hence, our proposal is situated on the application level and can benefit any device
without requiring modifications to the standard.

In what follows, we will compare our DRL model with E2E-MAC [108] and the
highest application profile. Papers dealing with the same problem as ours often lack
details about the proposed model, such as hyperparameters, simulation time, and
the environment. This makes producing the same models for comparison almost
impossible. Thus we decided to compare our approach with [108]. The algorithm
combines throughput measurements with the number of re-transmissions on the
MAC layer to improve the QoE of users. In our approach, the DRL model adapts
the application profile to improve the overall performance of the network. First,
we perform scenarios with mobility to make our simulation more realistic and to
test our model in dynamic situations. During the scenarios, the density of nodes is
increased from 1 to 100, which covers the decrease in goodput for most application
profiles. Nodes adapt their application profiles using the trained model. Then, each
node uses the selected application profile to transmit during a time interval. Finally,
the model selects a new application profile based on the newly observed state.

Figures 4.6 and 4.7 show the goodput and the ratio of collisions respectively
averaged over 50 runs and include the standard deviations. When we only have a
few nodes in the network, nodes face relatively low contention during transmission,
hence, a low probability of collision. Therefore, goodput achieved by using the DRL
model, E2E-MAC, and the 3.5 Mb/s profile is close.

When the number of nodes is increased, nodes using our DRL model and E2E-
MAC adapt their application profiles according to the network state. Nodes that
are dynamically adapting their offered load using the trained DRL model and E2E-
MAC were able to maintain a higher goodput and lower collisions than nodes using
the fixed 3.5 Mb/s application profile. Our trained DRL model maintained a higher
goodput than E2E-MAC but with more collisions. With the introduction of new
nodes, the number of collisions increases due to high contention. Thus, the number
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Figure 4.5: The goodput of nodes transmitting using a single application profile.

of re-transmissions increases, causing E2E-MAC to select lower data rates which
explains the lower goodput and number of collisions obtained.

In certain situations, the data rate requirement of an application profile can be
higher than the physical data rate. In these cases, the DRL model selects application
profiles with lower data rate requirements which can be lower than the current
physical data rate. This is done without the knowledge of the underlying physical
data rate. It is based on local observations for each node. Nodes suffering from
bad network performance are more likely to choose lower application profiles. This
kind of decision has a double impact: First, they are generating less traffic and
thus suffering from less data loss, second they are occupying the channel less often,
meaning that other nodes can profit from a lower overall contention and increase
their application profile if their performance feedback suggests so.

This contribution was published in a conference paper [23].

4.4 Intelligent CSMA/CA using Deep Reinforce-

ment Learning

In this section, we propose a DRL mechanism, Intelligent CSMA/CA (ICSMA/CA),
to dynamically adapt the backoff duration of CSMA/CA algorithm in dense Wi-Fi
environments. We train and evaluate our DRL model. Finally, we show the results
in terms of the overall throughput of the network, fairness among the users, and
channel access delay.

72



4.4. INTELLIGENT CSMA/CA USING DEEP REINFORCEMENT LEARNING73

0 20 40 60 80 100
0

10

20

30

40

50

60

70
DRL Mechanism
E2E-MAC
3.5 Mb/s

Number Of Nodes

G
oo

dp
ut

 (M
b/

s)

Figure 4.6: Overall goodput obtained in the network using the trained DRL model,
E2E-MAC, and single application profile.
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Figure 4.7: Ratio of collisions obtained in the network using the trained DRL model,
E2E-MAC, and single application profile.
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4.4.1 Problem Formulation

Wi-Fi standards use the CSMA/CA protocol with exponential backoff to control
access to the wireless medium. In CSMA/CA, a station monitors the channel before
transmission. If the medium is sensed idle for a time equal to DIFS, the station
sends the packet. However, if the medium is sensed busy during this interval, a
random backoff duration is picked from the interval [0, CW ]. The station has to
wait for the channel to remain idle during the entire backoff before it transmits
the packet. Upon receiving a packet, the receiver waits for SIFS before sending an
acknowledgment to the transmitter. The absence of an acknowledgment marks the
loss of the packet. One of the reasons for packet loss is collisions. Collisions occur
when multiple stations attempt to access the channel at the same time after sensing
it as idle, and a common neighbor station receives these packets. A station doubles
its CW after every packet lost, leading to longer backoff durations.

When the backoff duration is long, stations may wait for more time even after
the channel has become idle. Thus, the idle time wasted before sending a packet
increases. This can be especially problematic in time-sensitive applications, such as
real-time video streaming, where a short delay can ruin the experience. Additionally,
Long backoff durations can lead to fairness issues in the network because some
stations may have to wait longer than others to access the channel [111]. This can
be challenging in high-density networks, where many stations compete for the same
channel.

In the following sections, we introduce our DRL mechanism Intelligent Car-
rier Sense Multiple Access with Collision Avoidance (ICSMA/CA) to improve the
CSMA/CA protocol in dense Wi-Fi environments.

4.4.2 Model Design

The optimization problem can be framed as a Markov Decision Process (MDP)
consisting of an agent, a set of states S, a set of actions A, a reward function R, a
transition probability T, and a reward discount factor γ ∈ [0,1].

The agent is installed in a Wi-Fi node. It sends data toward an access point
over an interval of time and observes the state s ∈ S of the environment. The state
is expressed as the throughput and the backoff duration. Given a state, the agent
takes an action a ∈ A by selecting a backoff duration based on a policy (π). The
policy is a neural network that provides a set of probabilities, each corresponding
to an action. Based on the policy, the agent samples an action corresponding to a
new backoff duration. The reward r is then calculated as the overall throughput in
the network Ttotal in an attempt to enhance the overall performance of the network.

Throughput is normalized to the range of [0,1] by dividing it by the maximum
expected throughput. It is considered the maximum achieved data rate in our
configuration.

In our work, we are targeting a generic application. However, for other specific
applications, such as video streaming, other metrics can be added to the reward
function, such as buffer size or access delay. Note that the fairness issue and energy
consumption are out of the scope of our approach, although fairness is just analyzed.

The aim of the model is to select the backoff duration that maximizes the return
(cumulative reward) of the agent. During the Offline-training phase, the agent
explores the environment through different simulation scenarios until converging to
a policy based on our reward design. At the end of the training, we save the model
that contains our final policy to use in the next phase.
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During the Exploitation phase, we deploy the generated model in new scenarios
(different than the ones used in the Offline-training phase) where the agent is able
to pick with a certain degree of confidence the most suitable backoff duration given
a state. Our training method is presented in the next subsection. The technical
part is presented in the evaluation subsection.

4.4.3 Model Training

During training, we iterate through multiple episodes. At the beginning of each
episode, we initialize an empty batch B that will hold the (s, a, r) tuples. The
tuples are used to update the actor and the critic networks at the end of each
episode, where the simulation environment is restarted. When the simulation starts,
the agent observes the environment by collecting the state of each Wi-Fi node. A
reward is then calculated based on the collected states. Next, the previous state,
the action taken in the previous state, and the newly calculated reward are added
to B. The actor-network is then used to predict an action for the current state.

Figure 4.8 shows a detailed representation of the DRL model training in IC-
SMA/CA.
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Figure 4.8: A detailed representation of ICSMA/CA training phase

The DRL model is trained offline over multiple node densities (low, medium,
high) to ensure exploring various network conditions. In NS-3, the initial placement
and movement directions of the nodes are random. Nodes are placed in a bounded
area in which connectivity is guaranteed. Each node sends a flow of 3.5 Mb/s
of data packets to a fixed access point. This data rate is sufficient for an HD
video transmission [108]. A time interval is set to collect metrics based on multiple
transmissions from multiple nodes for two reasons: (1) It allows the calculation of
the overall throughput used in our DRL model training. (2) Averaging multiple
transmission metrics provides a broader understanding of the performance of the
current backoff duration setting. At the end of each interval, the overall throughput
is calculated in the simulator based on the acknowledged packets at each node.
Then, the overall and node throughput are sent to the DRL module. The current
backoff duration and the calculated node throughput of each node are fed to the
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neural network of the DRL model as input. The overall throughput is used as the
reward. Then, the model sends NS-3 a new backoff duration corresponding to each
node. This DRL model is made possible in a simulated network where all data is
available to the model. Note that during the exploitation phase, the model only
relies on local information for backoff selection.

During the Offline-training phase, we rely on global information obtained from
the simulation tool. Indeed, this is the main advantage of training in the simulated
environment, where we can access all data we need to describe the state of the
system. Namely, in our DRL model, we used the global throughput of the network
as input data for our model. Nevertheless, during the Exploitation phase, which is
supposed to be emulating a real-life test, we only use locally available data on each
node, namely backoff values and local throughput.

The actor and critic losses are calculated at the end of each episode. The model
finishes training when the losses become stable. Figure 4.9 shows the actor and
critic losses during the training of the model.
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Figure 4.9: Actor and critic losses during the training phase of the ICSMA/CA

4.4.4 Model Evaluation

We validate the trained DRL model in multiple scenarios, each corresponding to a
different number of nodes. In each scenario, we fix the number of nodes and conduct
50 rounds of 60-second simulations. In each round, We set a different run number in
NS-3 to cover a wide variety of network conditions. The nodes are placed at random
locations at the beginning of each round. The results are collected and averaged over
all rounds. Finally, we compare the results obtained using the ICSMA/CA model
to the standard baseline using the default CSMA/CA access mechanism. Results
in terms of network capacity, ratio of collisions, access delay (time needed for a
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node to be able to send the frame one it is de-queued at the Medium Access Control
sublayer), and fairness are shown. Note that for each result, we varied the number of
nodes from 1 to 100 with a step size of 5 nodes. In the graphs, the x axis represents
the total amount of traffic generated by all nodes in the network. The simulation
parameters are shown in table 4.2.

Table 4.2: Simulation parameters table for the CSMA/CA optimization.

Parameter Value

Simulation time (Validation) 60 seconds
Runs 50
WLAN standard IEEE 802.11ac
Data Rate 3.5 Mb/s
Path loss model Log-distance
Fading factor random(0, 2dB)
Traffic UDP
Time interval 400 ms
Channel Width 20 MHz
Packet size 1500 Bytes
Mobility model Random Walk 2d Mobility Model
Mobility speed 4 m/s
Topology size Square of boundaries (-30, 30, -30, 30)
α 0.8
β 0.2
Learning rate 0.001

Figure 4.10 shows the normalized throughput in the network in terms of offered
load. Normalized throughput is the ratio of the overall throughput divided by the
maximum achievable data rate in the 802.11ac for an MCS (Modulation and Coding
Scheme) index 8 with 20 MHz channel width: 86.7 Mb/s [1]. The overall throughput
is calculated based on what the access point has correctly received. Note that this
is also applicable to Wi-Fi 6 and any other version of Wi-Fi using CSMA/CA.
Both the baseline and the ICSMA/CA achieve close results before the network
saturation. However, ICSMA/CA achieves higher capacity utilization as the offered
load increases. The standard CSMA/CA saturation point is reached at around
100 Mb/s achieving 65% of the network’s capacity. At the same offered load value,
ICSMA / CA reaches 80% of network capacity. As we continue increasing the offered
load, standard CSMA/CA experiences degradation, and its total capacity reaches
around 50% for an offered load of 250 Mb/s, whereas our ICSMA/CA maintains its
80% capacity results for offered loads between 100 and 350 Mb/s.

In the standard CSMA/CA mechanism, the contention window doubles after
each collision, then a backoff duration is selected randomly. However, the IC-
SMA/CA is trained to directly select a backoff duration that maximizes the overall
throughput of the network. The improvement in capacity utilization over standard
CSMA/CA is due to the ability of ICSMA/CA to reduce collisions and access delay,
making access to the channel more efficient. These results are shown in Figures 4.11
and 4.12, respectively.

The collision rate of ICSMA/CA remains lower than that of the baseline for
all tested scenarios. The access delay is directly related to the number of repeti-
tions that each frame has to undergo before the access point receives it correctly.
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Figure 4.10: Normalized throughput in the network in terms of the offered load in
Mb/s.
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Figure 4.11: Collisions in the network in terms of the offered load in Mb/s.
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Figure 4.12: Access Delay (ms) in the network in terms of the offered load in Mb/s.

Fewer collisions lead to fewer repetitions which leads to less access delay. It can be
seen from both figures that the number of collisions and the access delay are very
correlated.

Access delay increases whenever we introduce new nodes to the network. Upon
reaching around 200 Mb/s of offered load, the access delay does not change due to
the equilibrium reached in the network.

Figure 4.13 shows the fairness in channel utilization among the nodes. Fairness
is calculated using Jain’s fairness index [112]. Although fairness is not the aim of
our model, using ICSMA/CA improved fairness among the users compared to that
of the baseline. The ability of our model to refrain from selecting random large
backoff durations and to reduce the access delay optimized the channel utilization
among the nodes.

4.5 Complexity

Our DRL models are trained completely offline inside the simulator. The time
complexity of training can vary depending on the specifications of the device used for
simulation. Since the resulting model may be deployed on end devices with limited
computational power and memory, we are interested in both the time complexity
and memory footprint of the DRL model. Thus, we measured the Random Access
Memory (RAM) usage of the model during inference, which was found to be less
than 1 Kilobyte. Additionally, the average time consumed during inference was
found to be 8 microseconds per step, which is less than the slot duration in 802.11ac
(9 microseconds) [37].
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Figure 4.13: Fairness in the network in terms of the offered load in Mb/s

4.6 Conclusion

In this chapter, we proposed two DRL mechanisms to improve the performance
of Wi-Fi networks under high offered load situations. First, we proposed a DRL
mechanism to adapt application-level data rates based on the locally observed net-
work state. The proposed mechanism learns to choose the most suitable data rate
dynamically and is trained offline using network simulation. We evaluated the pro-
duced DRL model through simulation. Results showed that the proposed mecha-
nism achieved better goodput performance during network saturation compared to
a similar approach from the literature and the baseline.

In the second part, we proposed another DRL mechanism to enhance the multiple
access method CSMA/CA by selecting the most suitable backoff duration based on
the state of the network. We evaluated the DRL model produced by the proposed
mechanism (ICSMA/CA). Results showed that the proposed mechanism improved
the overall throughput of the network, reduced access delay, and increased fairness
among the nodes.
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Chapter 5

Conclusions and Future Directions

5.1 Conclusions

In this thesis we provided a comprehensive study of Wi-Fi networks in the context of
smart farming, addressing their underlying technologies, challenges, and limitations
and offering novel solutions by leveraging machine learning techniques, specifically
deep reinforcement learning. The primary contributions of this thesis are summa-
rized in this section.

5.1.1 Evaluating and Selecting the Best Rate Adaptation
Algorithm

Rate adaptation algorithms help wireless networks achieve better performance by
selecting the most suitable MCS value, depending on the channel state. These algo-
rithms are rarely specified in wireless standards, and they are left for the constructors
to implement. In our work, we have presented several rate adaptation algorithms
and grouped them into different categories according to how they function. We also
provided an analysis of these algorithms highlighting their pros and cons. We im-
plemented algorithms of different categories in the NS-3 simulator and performed a
comparison study for Ad hoc and infrastructure modes to select the best-performing
one.

This study provided insights into how the assessment technique of the quality of
the wireless channel impacts the performance of Wi-Fi networks and how to improve
the data transmission rate to enhance throughput and reliability. Once an appro-
priate rate adaptation algorithm is selected based on the performance evaluation, it
can be deployed in Wi-Fi access points.

5.1.2 A Study on Capacity-Aware Deployment

When it comes to guaranteeing a certain level of QoS in a Wi-Fi network, deploy-
ment optimization should take into account the requirements and constraints of the
applications. The deployment study involves using the right number of access points
and their positioning to reach the needed network performances. Beamforming is
one of the most efficient techniques for enhancing performance in a Wi-Fi network.
It allows increasing coverage and data rate.

We investigated the impact of beamforming on the performance of Wi-Fi net-
works that monitor and control mobile robots in Smart Farming applications. We
showed how the coverage area of an access point is calculated and the enhancement
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that beamforming brings to the coverage and capacity of a Wi-Fi network. A deploy-
ment strategy inspired by cellular networks grid deployment was used, and multiple
simulation scenarios were tested using the NS-3 simulator, taking into considera-
tion different application data rate requirements. We also presented a deployment
strategy that would be less complex by placing access points on the edge of the
area of interest. Based on a scenario inspired by the use of autonomous mobile
robots in Smart Farming, we conducted a comparison between different deployment
strategies.

In our study, we found that a balance between deployment cost, complexity,
and network performance must be achieved. While it is crucial to decide on a
deployment plan, we also recognized the potential for improving various layers of
the Wi-Fi network to address additional challenges that can affect Wi-Fi network
performance.

5.1.3 Wi-Fi Performance Optimization using Reinforcement
Learning

Wi-Fi networks suffer from performance degradation under high offered load sit-
uations. We explored different saturation situations, showing how Wi-Fi achieves
low goodput under high offered loads. Then, we proposed two DRL mechanisms
to tackle this issue on the application and MAC layers. The DRL models were
trained and evaluated in NS-3, a cost-free approach that can be done before real
deployments. The scenarios included mobility and fading to simulate a real wireless
environment.

On the application layer, we investigated application-level data rate adaptation
using DRL, which allows for adapting the offered load depending on the locally ob-
served network state. The proposed DRL mechanism considers the current perfor-
mance of the network to choose the most suitable application data rate dynamically.
We demonstrated how the training achieved better results in terms of goodput under
network congestion compared to a similar learning approach and baseline cases.

On the MAC layer, we tackled the degradation of the performance in dense net-
works caused by the random CSMA/CA protocol. We proposed a DRL mechanism
to enhance CSMA/CA in Wi-Fi. Standard CSMA/CA does not have a way to
choose the best backoff duration for a particular network condition. Instead, the
backoff duration is randomly picked from a contention window and doubled after
each collision. Our proposed DRL model enhances CSMA/CA by selecting the most
suitable backoff value depending on the state of the network. The DRL model was
evaluated in different situations with varying node densities and compared to the
standard CSMA/CA.

While our results were promising, there is still significant potential and consid-
erable scope for improving the performance of Wi-Fi networks.

5.2 Future Directions

The contributions of this thesis can be extended in several directions, which are
listed in this section.
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5.2.1 Potential Contributions to Rate Adaptation Algorithms

We primarily focused on evaluating existing rate adaptation algorithms rather than
developing our own. Our objective was to identify the most effective algorithm
to incorporate into our primary thesis target, given that rate adaptation plays a
critical role at the bottom of the network stack and significantly impacts network
performance. Our literature review found that there is still scope for enhancing rate
adaptation algorithms. Therefore, we have identified several areas for improvement
that can be explored in future research.

Wi-Fi channel characteristics differ for the uplink and downlink directions, which
poses a significant challenge for designing effective rate adaptation algorithms. For
instance, calculating the SINR of the ACK frames from the transmitter side does not
necessarily reflect SINR as seen from the receiver side. In order to address this issue,
it might be necessary to combine metrics from both the transmitter and receiver
sides to obtain a more comprehensive view of the network conditions. Metrics from
the transmitter side, such as packet loss and throughput, can provide information
about the channel from the point of view of the transmitter. In contrast, metrics
from the receiver side, such as SINR, can provide information about the quality
of the received signal. Combining these metrics can make it possible to develop
more robust rate adaptation algorithms that consider metrics as seen from both the
transmitter and receiver. These algorithms may not necessarily only use traditional
statistical methods to analyze the metrics and make decisions.

Incorporating machine learning can help identify the optimal combination of
metrics for a novel rate adaptation algorithm. This involves, for instance, employ-
ing reinforcement learning to dynamically adjust various network metrics such as
MCS values, channel widths, and guard intervals in real time based on changing
network conditions. Such an approach can result in more efficient and effective rate
adaptation decisions, enhancing network performance. Furthermore, future research
may consider factors such as the type of data being transmitted, its priority level,
and the application data rate requirements to improve the algorithm further.

These techniques would lead to further improvement in the performance of Wi-
Fi devices, but it is also important to consider energy consumption, especially in
domains where communication nodes are battery-powered. Rate adaptation al-
gorithms that prioritize performance over energy consumption may lead to faster
battery drain and reduced battery life of the Wi-Fi device. This requires a trade-off
between performance and energy consumption. Such rate adaptation algorithms
must consider the current battery level and transmission power to balance perfor-
mance and energy consumption. One significant option in this context could be to
deploy RAAs and collect information about the difference in battery consumption
of Wi-Fi devices between different RAA solutions from real deployments.

Furthermore, real hardware testing can investigate the effectiveness of rate adap-
tation algorithms in real-world scenarios. While simulations are useful for under-
standing the behavior of rate adaptation algorithms, they do not always accurately
reflect the complexity and dynamic nature of Wi-Fi network conditions. Real hard-
ware testing allows the evaluation of the performance of rate adaptation algorithms
under real-world conditions and identifies any potential issues or defects in simu-
lations. Note that experimental evaluations requires hardware that gives access to
the metrics involved in the rate decision such as the SINR which is available in the
ath10k wireless driver [113], but not in other devices such as the raspberry pi and
Esp32.
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5.2.2 Possible Enhancements to the Capacity-Aware De-
ployment

Our work focused on the deployment of Wi-Fi networks for the use-case of mon-
itoring and remote control of autonomous mobile robots in Smart Farming. We
evaluated the usage of beamforming in various deployment techniques. Although
the benefits of beamforming are promising, we assumed that beamforming is per-
fectly implemented and optimal on both sides of the transmission link. In real Wi-Fi
deployments, the beamforming gain may not reach the theoretical gain shown in our
work due to hardware limitations and the environmental impact, this gain will be
less in terms of dBs. We have identified several areas for improvement that can be
explored in future research:

To improve the accuracy of beamforming simulations, a more realistic model
could be developed in the simulator that better reflects the functionality of beam-
forming in real-world deployments. This would involve mathematical modeling,
the collection of deployment coverage graphs for reference, and the accurate imple-
mentation of the model inside the simulator. Furthermore, The enhancement of the
performance of Wi-Fi devices is not only limited to leveraging only the beamforming
technology.

The employment of spatial multiplexing to improve network throughput and re-
duce collisions could be investigated. Spatial multiplexing can significantly improve
network throughput by allowing the transmission of multiple data streams simul-
taneously. However, using spatial multiplexing in dense scenarios can be complex,
as the number of antennas required can increase significantly, and interference can
be a significant challenge. Therefore, The trade-offs between the benefits of spatial
multiplexing and the complexity of its implementation in dense scenarios could be
explored. Also, the combination of beamforming and spatial multiplexing could be
looked into. One could also possibly attempt to reduce the cost of deployment of
complex access points with the ability to combine spatial multiplexing and beam-
forming by using multi-hop networks.

Multi-hop networks can reduce the number of access points required to cover a
given area, resulting in cost savings and simplifying network management. Addi-
tionally, robots can be used as relay nodes to extend the coverage area and provide
additional connectivity in areas that are difficult to reach. However, robots in multi-
hop networks may bottleneck the throughput due to various factors, such as distance
and obstacles. Therefore, trade-offs between the benefits of multi-hop networks and
the drawbacks that come with this approach could be explored. Studying the opti-
mal placement of access points and the work area of robots are equally important
considerations in this context.

In our work, we used fixed configurations for deployment (edge and grid de-
ployments). However, using optimization techniques such as genetic algorithms to
optimize the placement of access points can be looked into in the future. These
techniques automate selecting the optimal placement of access points by evaluat-
ing various combinations of access point locations and configurations depending on
the size and geometry of the field. By using genetic algorithms, one can develop
more effective deployment strategies that are optimized for the specific needs and
requirements of Wi-Fi networks. Additionally, this approach can help identify the
most suitable type of access point for each location and the best possible configu-
ration settings, providing optimal performance, coverage, and user experience while
minimizing the costs of deployment.

The deployment optimization study can be extended to include other perfor-
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mance criteria in the objective function. While our current study focused on op-
timizing throughput based on the application requirements as the primary target,
other metric constraints, such as latency, greatly impact the QoE in certain appli-
cations. By incorporating these metrics into the objective function of deployment
optimization, more effective deployment strategies could be developed.

5.2.3 Enhancement of Reinforcement Learning Approaches
for Wi-Fi Optimization

While the proposed reinforcement learning mechanisms in this thesis have signifi-
cantly enhanced the performance of Wi-Fi networks, there is still considerable room
for improvement, along with several issues that must be addressed. These issues
include real-world applications and testing, additional design objectives and met-
rics, and cross-layer mechanisms. In what follows, we outline some potential future
directions to address these challenges:

Our work focused on certain metrics, including goodput and packet loss on the
application layer and throughput on the physical layer. However, the analysis could
be extended to include additional metrics that are also related to the tackled prob-
lem, such as access delay. Furthermore, using cross-layer metrics could provide a
more comprehensive view of network conditions and performance across multiple
layers of the network stack. Additionally, using more realistic applications would
be an added value to this study. For instance, modern applications, such as video
streaming, involve more complex processes than adjusting the data rate. For ex-
ample, Dynamic Adaptive Streaming over HTTP (DASH) [114] incorporates buffer
management and network congestion control, as well as adaptation algorithms, on
top of the Wi-Fi network stack. To more accurately simulate video streaming and
evaluate its performance, video streaming protocols such as DASH could be inte-
grated into the study.

In addition to adding more metrics to the study, more objectives could be added
to the RL mechanism. The quality of the RL model heavily relies on the reward
function, which defines the objective of the model. Typically, RL approaches define
a reward function based on the application objective. However, a multi-objective
reward design could be implemented to account for additional objectives, such as
fairness. This approach would enable the investigation of the trade-off between
maximizing metrics, such as throughput, while maintaining an acceptable level of
user fairness. Furthermore, creating a good reward design is not enough, as RL
algorithms usually need different hyperparameters that should be set differently for
distinct applications and use cases.

Hyperparameter tuning has an enormous impact on the accuracy of the trained
models. Tuning these parameters can make RL models more reliable for wireless
environments, which are dynamic by nature. While automatic tuning of hyperpa-
rameters was not considered in our work due to the time consumed, it can be a
useful approach for optimizing RL models. However, NS-3 simulations with a large
number of nodes can be time-consuming, particularly with multiple runs. Therefore,
hyperparameter tuning could be initially considered for a smaller number of nodes
to generate potentially better results while minimizing the time and computational
resources required.

In this study, we evaluated a DRL algorithm from the actor-critic family. How-
ever, conducting a comparative study between multiple RL algorithms from differ-
ent categories could provide a more comprehensive understanding of their respective
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advantages and disadvantages for Wi-Fi optimization. This approach would allow
the identification of the most suitable RL algorithm for a given Wi-Fi optimiza-
tion problem based on factors such as performance, complexity, and computational
requirements.

Testing DRL models only in simulations has limitations, and conducting real-
world testing provides several benefits. Real-world testing offers an opportunity to
validate the performance of DRL models under real conditions, which may differ
from simulation scenarios, and provide a more accurate assessment of their perfor-
mance. Additionally, real-world testing can help evaluate the robustness of the DRL
model and identify areas for optimization and improvement that may not have been
encountered in simulations.
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Certain contributions of this thesis have been published in international journal
articles and in an international peer-reviewed conference:

• Sammour I, Chalhoub G. Evaluation of Rate Adaptation Algorithms in IEEE
802.11 Networks. Electronics. 2020; 9(9):1436. [22]

• Sammour I, Chalhoub G., Application-Level Data Rate Adaptation in Wi-
Fi Networks Using Deep Reinforcement Learning. 2022 IEEE 96th Vehicular
Technology Conference (VTC2022-Fall), London, United Kingdom, 2022, pp.
1-7. [23]

• André, G., Bachelet, B., Battistoni, P. et al. LambdAgrIoT: a new architecture
for agricultural autonomous robots’ scheduling: from design to experiments.
Cluster Comput (2022). [115]

Other contributions were submitted to international journals, and we are cur-
rently awaiting the outcome of the review process:

• Sammour I., Chalhoub G., De Sousa G. Capacity Aware Wi-Fi Networks De-
ployment.

• Sammour I., Chalhoub G. Intelligent CSMA/CA for Wi-Fi networks.

• Ergun S., Sammour I., Chalhoub G. A Survey on How Network Simulators
Serve Reinforcement Learning in Wireless Networks.
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