
HAL Id: tel-04393815
https://theses.hal.science/tel-04393815

Submitted on 15 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On deep learning for computational fluid dynamics
Fernando Adan Gonzalez

To cite this version:
Fernando Adan Gonzalez. On deep learning for computational fluid dynamics. Fluid mechanics
[physics.class-ph]. Normandie Université, 2023. English. �NNT : 2023NORMR049�. �tel-04393815�

https://theses.hal.science/tel-04393815
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le diplôme de doctorat

Spécialité MECANIQUE

Préparée au sein de l'Université de Rouen Normandie

Οn deep learning fοr cοmputatiοnal fluid dynamics

Présentée et soutenue par
FERNANDO GONZALEZ

Thèse soutenue le 29/11/2023
devant le jury composé de

M. ERWIN FRANQUET Professeur des Universités, UNIVERSITE COTE D'AZUR Rapporteur du jury

M. SIMON BERNARD Maître de Conférences, Université de Rouen Normandie Membre du jury

M. SYLVAIN CHEVALIER Professeur des Universités, Université Paris-Saclay Membre du jury

M. THOMAS GOMEZ Professeur des Universités, UNIVERSITE LILLE 1 SCIENCES
ET TECHNOLOGIE Membre du jury

M. FLORIAN YGER Maître de Conférences, UNIVERSITE PARIS 9 (Dauphine) Membre du jury

M. PIERRE TRONTIN Professeur des universités (université Française), Université
Claude Bernard Lyon I Président du jury

M. FRANÇOIS-XAVIER DEMOULIN Professeur des Universités, Université de Rouen Normandie Directeur de thèse

Thèse dirigée par FRANÇOIS-XAVIER DEMOULIN (COMPLEXE DE RECHERCHE
INTERPROFESSIONNEL EN AEROTHERMOCHIMIE)

Abstract

Computational Fluid Dynamics (CFD) plays a pivotal role in simulat-
ing and understanding fluid flow phenomena across various domains, in-
cluding aerospace, automotive, environmental science, and biomedical en-
gineering. Traditional CFD methods, predominantly based on numerical
discretization of the governing equations, often face challenges in achiev-
ing high accuracy and computational efficiency, especially for complex
and turbulent flows. Deep Learning (DL), a subfield of artificial intelli-
gence, has emerged as a promising approach to address these challenges
by integrating data-driven techniques with numerical simulations.

This Ph.D. thesis comprehensively explores integrating Deep Learning
techniques into Computational Fluid Dynamics, focusing on enhancing
both accuracy and efficiency in flow simulations. This work is divided
into two parts; the first one is dedicated to the fundamentals of DL and a
literature review of state-of-the-art applications of DL in CFD. The second
part explores the questions of how to develop data-driven surrogate models
of turbulence flow simulations.

The main takeaways of this thesis are the following:

• Chapter 2 introduces fundamental concepts of Machine Learning
that will be used in the work and appear in most of the literature
dedicated to ML for CFD.

• Chapter 3 provides an up-to-date survey of the current advancements
in the application of ML to CFD. In addition, a critical perspective is
provided with the purpose of identifying possible research directions.

• Chapter 4 explores generative modeling with Generative Adversar-
ial Networks (GANs) for synthetic turbulence generation and super-
vised learning for predicting a turbulent flow. The first section evalu-
ates the main difficulties GANs face in generating turbulent flows by
implementing a model for the generation of turbulent signals both in
1D and 2D. The second section implements a framework with an Au-
toencoder for 3D turbulent flows and a Convolutional LSTM model
for temporal prediction using the learned latent representation.

• In chapter 5, we train Neural Operators to learn the solution op-
erator of the Navier-Stokes equation from simulation data. Three
models are trained as surrogate models of the simulations. The
problem of achieving numerical stability for the DL models is also
addressed.

We conclude that Deep Learning provides an interesting set of tools that
will be useful to scientists and engineers working with fluid dynamics.
There are still many open questions that need to be answered so that
Artificial Intelligence becomes part of the standard for the field of CFD.
This work provides a ground-level reference for any CFD practitioner
wanting to start applying DL for their problems or develop new tools to
advance the state-of-the-art for this field.

Keywords— Deep Learning, Computational Fluid Dynamics, Surrogate
Models Turbulence, Neural Operators

i

Résumé

La dynamique des fluides computationnelle (CFD) joue un rôle essen-
tiel dans la simulation et la compréhension des phénomènes d’écoulement
des fluides dans divers domaines, notamment l’aérospatiale, l’automobile,
les sciences de l’environnement et l’ingénierie biomédicale. Les méthodes
traditionnelles de CFD, principalement basées sur la discrétisation numérique
des équations gouvernantes, rencontrent souvent des défis pour atteindre
une haute précision et une efficacité computationnelle, en particulier dans
le cas d’écoulements complexes et turbulents. L’apprentissage profond
(DL), un sous-domaine de l’intelligence artificielle, s’est imposé comme
une approche prometteuse pour relever ces défis en intégrant des tech-
niques axées sur les données avec des simulations numériques.

Cette thèse de doctorat explore de manière approfondie l’intégration
des techniques d’apprentissage profond dans la dynamique des fluides com-
putationnelle, avec un accent sur l’amélioration à la fois de la précision et
de l’efficacité dans les simulations d’écoulement. Ce travail est divisé en
deux parties : la première est dédiée aux fondamentaux de l’apprentissage
profond et à une revue de la littérature sur les applications de pointe de
l’apprentissage profond en CFD. La deuxième partie explore les questions
liées au développement de modèles de substitution basés sur les données
pour les simulations d’écoulement turbulent.

Les idées principales de cette thèse sont les suivantes :

• Le chapitre 2 introduit les concepts fondamentaux de l’apprentissage
automatique qui seront utilisés dans ce travail et qui sont présents
dans la plupart de la littérature consacrée à l’apprentissage automa-
tique pour la CFD.

• Le chapitre 3 propose une revue actualisée des avancées actuelles
dans l’application de l’apprentissage automatique à la CFD. De plus,
une perspective critique est fournie dans le but d’identifier des ori-
entations de recherche possibles.

• Le chapitre 4 explore la modélisation générative avec les réseaux an-
tagonistes génératifs (GAN) pour la génération synthétique de tur-
bulence et l’apprentissage supervisé pour la prédiction d’un écoulement
turbulent. La première section évalue les principales difficultés auxquelles
les GAN sont confrontés lors de la génération d’écoulements turbu-
lents en mettant en place un modèle de génération de signaux tur-
bulents en 1D et 2D. La deuxième section met en œuvre un cadre
avec un autoencodeur pour les écoulements turbulents en 3D et un
modèle Convolutional LSTM pour la prédiction temporelle en util-
isant la représentation latente apprise.

• Dans le chapitre 5, nous formons des opérateurs neuronaux pour ap-
prendre l’opérateur de solution de l’équation de Navier-Stokes à par-
tir de données de simulation. Trois modèles sont formés en tant que
modèles de substitution des simulations. Le problème de l’atteinte
de la stabilité numérique pour les modèles d’apprentissage profond
est également abordé.

ii

Nous concluons que l’apprentissage profond offre un ensemble d’outils
intéressants qui seront utiles aux scientifiques et ingénieurs travaillant
dans le domaine de la dynamique des fluides. Il reste de nombreuses ques-
tions en suspens qui doivent être résolues pour que l’intelligence artificielle
devienne une norme dans le domaine de la CFD. Ce travail constitue une
référence de base pour tout praticien de la CFD souhaitant commencer à
appliquer l’apprentissage profond à ses problèmes ou développer de nou-
veaux outils pour faire progresser l’état de l’art dans ce domaine.

Mots-Clés—Apprentisage Profond, Mécanique des fluides numérique, modèles
de substitution, Turbulence, Operateurs Neuronaux

iii

Acknowledgements

I would like to express my deepest gratitude and appreciation to all those who
have supported me throughout my doctoral journey. Completing this thesis
would not have been possible without many individuals and organizations’ un-
wavering support, guidance, and encouragement.

I am profoundly thankful to my thesis advisors, François-Xavier Demoulin
and Simon Bernard, for their invaluable mentorship and discussions. Their ex-
pertise, insightful feedback, and unwavering support played a pivotal role in
shaping this research. I am truly fortunate to have had the opportunity to work
under their guidance. Besides that, I want to thank them for their trust in
giving me this thesis project, ensuring I have the necessary means to work well,
and for respecting my decisions and ideas.

I extend my heartfelt gratitude to my family: My parents, grandparents,
and brother for their unwavering love, encouragement, and belief in my abilities.
Their continuous support has been my constant source of strength throughout
this journey. Passing the holidays in the Dominican Republic is a source of
energy and inspiration to return to France and give the best of my efforts. I es-
pecially want to dedicate this work to my two grandfathers, Narciso and Adan,
and grandmother, Morena, who are no longer with us. They are present in
some of my fondest memories, and I am sure they will be very happy about this
achievement wherever they are.

I am grateful to my friends and colleagues for their support, camaraderie,
and the many stimulating discussions that enriched my academic experience.
Their friendship has made the challenges of graduate school more bearable and
the successes more enjoyable.

Last but not least, I would like to thank the academic and administrative
staff of the CORIA lab for their assistance and resources, which were indis-
pensable for successfully completing this thesis, particularly coffee. Thanks to
GENCI and the CRIANN for the computational resources used during all these
years, hopefully, no GPUs were harmed in the process.

This journey has been long and arduous, but it has been made immeasurably
more manageable with the support of all those mentioned above. Thank you for
being a part of this endeavor and helping me realize my academic and personal
potential.

iv

Acronyms

Re Reynolds Number. 118, 123, 145, 149, 151

AD Automatic Differentiation. 36

AE Autoencoder. x, 26, 27, 55–58, 63, 101, 103, 106, 107, 109, 115, 116

AI Artificial Intelligence. 11, 22

ANN Artificial Neural Network. 11

AR Autoregressive. 129

BN Batch Normalization. 20, 21, 104, 105

CFD Computational Fluid Dynamics. ix, 1–3, 37, 46, 51, 52, 59, 61, 63–65,
67–71, 118, 123, 124, 128, 130, 132, 133, 137

CNN Convolutional Neural Network. 24–26, 35, 42, 51, 53, 56, 58, 59, 61, 62,
65, 79, 102, 103, 120, 121, 147, 151

ConvLSTM Convolutional LSTM. x, 72, 96, 109–116

CR Compression Ratio. 109

DG Discontinuous Galerkin. 53

DGM Deep Generative Model. 73

DL Deep Learning. 3, 23, 24, 36, 51, 54, 66, 120, 137

DMD Dynamic Mode Decomposition. 55–57

DNN Deep Neural Network. 11

DNS Direct Numerical Simulation. ix, 2, 46, 47, 50–54, 61, 62, 64, 68, 86, 97,
100, 112, 114–116

DW Depth-Wise. 103

FAIR Findable, Accessible, Interoperable, Reusable. 63, 64, 68

FFN Feedforward Neural Network. 13, 25, 34, 38

FFT Fast Fourier Transform. 125

FNO Fourier Neural Operator. 65, 125–128, 131, 136, 137, 139–142, 147–151

FVM Finite Volume Method. 61

v

GAN Generative Adversarial Network. x, 28–30, 51, 63, 67, 71–82, 84, 85, 88,
90, 92–96, 120

GELU Gaussian error linear unit. 15, 128

GN Group Normalization. 21

GNN Graph Neural Network. 60

GP Gradient Penalty. 30

GPU Graphics Processing Unit. 100, 120, 129

GRN Global Response Normalization. 105

HIT Homogeneous Isotropic Turbulence. x, 58, 64, 72, 101, 106–109, 112, 115

HPC High-Performance Computing. 63, 69, 130

INR Implicit Neural Representation. 121

KnW Kolmogorov n-Width. 99, 100

LES Large Eddy Simulation. 2, 46–48, 50, 52–54, 59–61, 68, 77, 118

LN Layer Normalization. 21, 105

LSTM Long Short Term Memory Network. x, 31, 32, 56, 58, 61, 63, 70, 79,
100, 109, 115, 120

MARL Multi-Agent Reinforcement Learning. 53

ML Machine Learning. 1, 2, 7, 8, 10, 11, 15, 23, 26, 33, 36, 39, 43, 45, 46, 49,
54, 55, 58–65, 67–70, 124, 151

MLP Multi-Layer Perceptron. 13, 49, 51

MSE Mean squared error. 7, 92, 94, 109, 132, 141

NN Neural Network. 11, 17, 36, 38, 43, 49, 58, 61, 66, 121, 130, 132, 138

NO Neural Operator. 41

NODE Neural Ordinary Differential Equation. 43

NS Navier-Stokes. 1, 48, 51, 123, 124, 126, 137

ODE Ordinary Differential Equation. 36, 43–45, 55–57, 67

OU Ornstein–Uhlenbeck process. 78

vi

PCA Principal Component Analysis. 57

PDE Partial Differential Equation. 36, 37, 39, 51, 54, 58–60, 66–68, 97, 98,
116, 119, 121, 124, 125, 131, 136, 144, 146

PDF Probability Density Function. 78, 81, 83–85, 93

PINN Physics-Informed Neural Network. 36, 37, 39, 51, 62, 121, 125, 147

POD Proper Orthogonal Decomposition. 42, 55, 57

PPO Proximal Policy Optimization. 53

QKV Query-Key-Value. 33

RAdam Rectified Adam. 19

RANS Reynolds-Averaged Navier Stokes. 2, 14, 37, 46, 48–50, 54, 59, 65, 68,
77, 118

RB Reduced Basis. 98

ReF-ER Remember and Forget Experience Replay. 53

ReLU Rectified linear unit. 14

Rms Root Mean Square. 113

RNN Recurrent Neural Network. x, 27, 30–32, 35, 42, 71, 79–81, 124, 125, 131

ROM Reduced-Order Model. 54–56, 96, 99

RRMSE Relative Root Mean Squared Error. 106, 107, 112, 115, 116

SciML Scientific Machine Learning. 66

SDE Stochastic Differential Equation. 45, 78

SGD Stochastic gradient descent. 15

SGS Sub-Grid Scale. 48, 50–53, 61

SINDY Sparse Identification of Non-Linear Dynamics. 55, 56

SWAG Stochastic Weight Averaging Gaussian. 67

Tanh Hyperbolic Tangent. 14

TBNN Tensor-Basis Neural Network. 49

TKE Turbulent Kinetic Energy. 93, 94, 107, 112, 116, 135, 139, 140, 145–147,
149

vii

U-FNET U - Fourier Network. 128–130, 137–147, 149–151

UDE Universal Differential Equation. 45

UNO U-shaped Neural Operator. 127, 128, 137, 139–142, 150, 151

UQ Uncertainty Quantification. 65–67

VAE Variational Autoencoder. 57, 109

VKP Von-Karman Pao. 90, 92

WENO Weighted Essentially Non-Oscillatory method. 61

WGAN Wasserstein GAN. x, 30, 74–76, 80, 85, 90

viii

Contents

I Fundamentals and Literature Review 1

1 Introduction 1

2 Machine Learning Fundamentals 4
2.1 Preliminaries . 4
2.2 Supervised Learning . 5
2.3 Deep Learning . 9

2.3.1 Motivation: Deep Representation Learning 10
2.4 Neural Networks . 11

2.4.1 Perceptrons . 11
2.4.2 Feedforward Neural Networks 13

2.5 How to train Neural Networks . 15
2.5.1 Learning with Gradient Descent 15
2.5.2 The engine: Automatic Differentiation 16
2.5.3 Improvements to Stochastic Gradient Descent 17
2.5.4 Regularization for Deep Neural Networks 19
2.5.5 Normalization and Data-Augmentation 20

2.6 Limitations of Deep Learning . 22
2.7 Deep Learning Algorithms . 24

2.7.1 Deep Learning for Computer Vision 24
2.7.2 Deep Learning for Sequential Data 30
2.7.3 Deep Learning And Differential Equations 35

3 Machine Learning for Computational Fluid Dynamics 46
3.1 Introduction . 46
3.2 Machine Learning for turbulence modeling 46

3.2.1 The problem of data-driven closure modeling 48
3.2.2 Neural Networks for Reynolds Stress Tensor modeling . . 49
3.2.3 Machine Learning for Sub-grid scale models 50
3.2.4 Reinforcement Learning for turbulence modeling 52

3.3 Machine learning for reduced order and surrogate modeling . . . 54
3.3.1 Machine Learning assisted Reduced Order Models 54
3.3.2 Neural PDE Surrogates 58

3.4 Machine learning accelerated DNS 61
3.5 Fluid Dynamics Benchmarks and Datasets for Data-Driven CFD 63
3.6 Uncertainty Quantification of Machine Learning Methods for Fluid

Dynamics . 65
3.7 Challenges and Perspectives . 67

II Neural Surrogate Models of Turbulent Flows 71

ix

4 Towards Simulating Turbulence with Deep Learning 71
4.1 Introduction . 71
4.2 Generating Turbulence Signals with Generative Adversarial Net-

works . 72
4.2.1 Problem Statement . 72
4.2.2 Improving GAN training with WGAN-GP 74
4.2.3 GAN with statistical and physical constraints 76
4.2.4 The Langevin Equation 78
4.2.5 RNN-GAN for the Langevin Equation 79
4.2.6 Results of RNN - GAN on the Langevin Equation 81
4.2.7 Synthetic Turbulence Generation 86
4.2.8 GAN for generation of 2D slices of synthetic turbulence . 90
4.2.9 Results of GAN on 2D slices of synthetic Turbulence . . . 92
4.2.10 Conclusions on GANs for generating turbulence 94

4.3 Recuded order modeling of Homogenous Isotropic Turbulence
with ConvLSTM . 96
4.3.1 Problem Statement . 97
4.3.2 Background: Model Reduction for Fluid Flow Problems . 98
4.3.3 Homogenous Isotropic Turbulence Dataset 100
4.3.4 Autoencoder for Dimensionality Reduction 101
4.3.5 Latent Space reconstruction with Autoencoder 106
4.3.6 Convolutional LSTM for HIT 109
4.3.7 Results of ConvLSTM on HIT 112

4.4 Conclusions on AE-ConvLSTM for reduced order modeling of
turbulent flows . 115

5 Surrogate Models of Turbulence Simulations with Neural Op-
erators 118
5.1 Introduction . 118
5.2 Problem Statement: Learning to Simulate Turbulence from Data 119
5.3 Background . 120

5.3.1 Deep Learning for Reduced Order Models of Fluid Flows 120
5.3.2 Research Objectives . 122

5.4 Turbulent flow Dataset . 122
5.4.1 2D Kolmogorov Flow . 122

5.5 Methodology . 124
5.5.1 Deep Learning Models . 124
5.5.2 Training methodology . 128
5.5.3 Gradient Loss term . 131
5.5.4 Promoting stability through regularization 131

5.6 Results and Discussion . 132
5.6.1 Evaluation Metrics . 132
5.6.2 Results on 2D Kolmogorov Flow 136
5.6.3 Effect of the loss terms . 141
5.6.4 Learning at a higher Reynolds’ number 145
5.6.5 Zero-Shot Super-Resolution at Re = 100 147

x

5.7 Conclusions on Surrogate Modeling of Turbulence with Neural
Operators . 150

III Epilogue 152

6 Conclusions and Outlook 152

xi

Part I

Fundamentals and Literature
Review

1 Introduction

The field of Computational Fluid Dynamics (CFD) is the study and develop-
ment of numerical methods for solving the Navier-Stokes (NS) equations. The
NS equations are non-linear partial differential equations. They can be for-
mulated in several forms depending on the fluid flow problem, leading to a
big library of numerical methods that are still growing in the quest to tackle
more complex cases, adapt to new computational architectures, and improve
the utilization of resources. Recently, machine learning (ML), which can be
defined as the collection of methods that leverage data to ”teach” an algorithm
to perform a specific task, has been disrupting many fields, such as computer
vision, Natural Language Processing, recommendation systems, marketing, biol-
ogy, autonomous driving, medical imaging, etc. outperforming non-data-driven
methods in several problems in the aforementioned domains. This bloom in
ML has been thanks to the increased data availability and advances in compu-
tational hardware that have allowed the training of deep neural networks with
billions of parameters.

In fluid mechanics, data-driven methods are well established for analyzing
considerable amounts of data from experiments and simulations to understand
complex physical behaviors and validate new models. However, even though
there is ample availability and intensive use of data in fluid mechanics, the im-
plementation of modern ML algorithms is still lagging behind the results that
ML has achieved in other fields.

Machine Learning for Computational Fluid Dynamics (CFD) has gained
significant interest in various academic and research communities. This is evi-
dent from the numerous articles published in leading fluid mechanics journals,
the active involvement of research groups from different universities, workshops
conducted at conferences, and the inclusion of courses dedicated to this sub-
ject. The intersection of Machine Learning and CFD has generated consid-
erable attention and engagement. According to previously published reviews
[28][248][10][54], the attractiveness of ML in CFD is the potential to design
algorithms that require less computational resources enabling the use of high
fidelity models in scenarios that require many function evaluations as optimiza-
tion, control, and design; as well as discovering new models for turbulent or
multi-physic cases. Simulations nowadays produce big amounts of data that
can be leveraged for data-driven modeling and scientific discovery. Although
Computational Fluid Mechanics is a scientific discipline that has been practiced

1

for decades, it still faces some limitations. The first reason is the high cost of
computations; high-fidelity numerical simulations require a considerable amount
of computational resources running for a significant amount of time, which im-
plies big economic expenses and environmental impact for having the machines
running. The complexity of these simulations grows depending on the number
of degrees of freedom proportional to the size of the computational domain and
the degree of turbulence or other multi-scale behavior, making the DNS of in-
dustrial scale flow configurations computationally prohibitive. To overcome this
issue, fluid dynamicists rely on modeling complex physical behavior in math-
ematical forms with lower computational requirements. The main techniques
consist in calculating the time-averaged fluid quantities and modeling the fluctu-
ating parts; this is the case for the Reynold-Averaged Navier Stokes (RANS), or
by computing the biggest scales and modeling the smaller ones, as in the Large
Eddy Simulation (LES) framework. These methods work in many scenarios and
make industrial-scale simulations possible. However, there also appears to be a
second limitation because modeling the unknown ”physics” relies on empiricism
and theory. This limits the applicability of some models since processes such
as turbulence are not fully understood in fluid mechanics. It is not to be taken
lightly what Richard Feynman allegedly said, calling turbulence the most impor-
tant unsolved problem or classical physics or the reason why the demonstration
of existence and smoothness of the Navier-Stokes equations is considered one of
the millennium problems by the Clay Mathematics Institute [62][226].

Machine Learning can help in overcoming the challenges that CFD faces by
using data from experiments and simulations to extract models to close RANS
or LES simulations that could be more precise and generalizable than theoretical
models, which provides a framework for the automatic discovery of these models
making the process of formulating new models more general and accessible across
different scenarios. Another way ML can help CFD is by reducing the computa-
tional cost of simulations. With ML, we can reduce the resolution requirements
of simulations and let an algorithm correct the error produced by coarsening the
computational mesh; the degrees of freedom are reduced, producing a speedup
while retaining accuracy. Alternatively, the size of the domain could be reduced
by substituting parts of a simulation by Machine-Learned Computations of the
flow field like an inflow field generator [278] or by replacing parts of the lin-
ear solvers by ML methods that perform these computations faster or even by
discovering algorithms that perform faster matrix multiplications [61]. ML can
also make CFD more accessible for tasks requiring many function evaluations,
such as control, design optimization, and uncertainty quantification, by learn-
ing the simulation results and making lightweight surrogate models that retain
good accuracy. The advantage of ML for these cases is that once the models are
trained, inference time is much faster than running the numerical solver many
times.

The objective of this Ph.D. project is to introduce the application of Ma-
chine Learning for CFD. Since this thesis is at the intersection of two fields,

2

we will first introduce in Chapter 2 the general concepts of machine learning
and Deep learning, as well as the major applications of Deep Learning, with
methods that will appear later in the thesis. In Chapter 3, we will carry out a
literature review on the applications of Deep Learning to CFD, with the purpose
of assessing and looking for opportunities where DL can help enhance CFD. In
Chapter 4, we will implement a Generative Adversarial Network for the gen-
eration of synthetic turbulence and a data-driven reduced-order model using
supervised learning and neural networks. In Chapter 5, we will implement a
Physics-Inspired model to predict turbulent flows and address the problem of
achieving numerically stable predictions. Finally, in Chapter 6, we will draw
out the general conclusions of the project and future directions.

3

2 Machine Learning Fundamentals

2.1 Preliminaries

Machine Learning can be defined as any computer program that can learn from
experience. Put into a more formal definition [162]:

Definition 2.1 A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P if its performance
at tasks in T , as measured by P , improves with experience E.

Machine learning tasks are how the machine learning system should process
an example. An example is a collection of d feature values measured from an
object or event. Some of the common tasks solved with machine learning are:

• Classification: In this type of task, the computer program is asked to
specify which of k categories an example belongs to.

• Regression: In this type of task, the computer program is asked to
predict a numerical value given an example.

• Clustering: Clustering involves categorizing unlabeled data or data points
into distinct clusters, where data points with similarities are grouped to-
gether, while those that differ from the rest are placed in separate clusters.

• Anomaly detection: In this type of task, the computer program sifts
through a set of examples and flags some as unusual or atypical.

• Density estimation: In the density estimation problem, the machine
learning algorithm is asked to learn a function that can be interpreted as
a probability density function on the space from which the examples were
drawn.

Once the task has been established, a quantitative measure of its perfor-
mance, denoted as P , is required. The specific performance measure depends
on the type of task at hand. In classification problems, accuracy is commonly
utilized. Accuracy is the ratio of correctly predicted outputs to the number of
examples. In the case of density estimation tasks, it is preferable to employ a
metric that assigns a continuous-valued score to each example. For instance,
the average log probability assigned by the model to a set of examples can serve
as such a metric.

Machine learning algorithms can be broadly classified depending on the type
of experience E they have during learning. Two of the most common algorithm
types are Unsupervised and Supervised learning. Unsupervised learning experi-
ences a dataset containing many features and then learns useful properties of the
structure of this dataset. Usually, an unsupervised learning algorithm learns the
probability distribution that generated this dataset. Supervised learning algo-
rithms experience a dataset containing features, but each example is associated

4

with a label or target. The term supervised learning originates from the view of
the target provided by an instructor or teacher who shows the machine learning
system what to do. In unsupervised learning, there is no instructor, and the
algorithm must learn the underlying patterns in the data.

In the following sections, we will start explaining machine learning more in-
depth in the context of supervised learning. We will build from linear model
examples and build Deep Learning, which is the main subject of this work. We
will cover the main components of a Deep Learning algorithm and how to design
and train them.

2.2 Supervised Learning

The goal of supervised learning is to automatically infer a model (hypothesis)
from a set of labeled examples that can make predictions given new unlabeled
data. Let X be the input space where the data is drawn from, and let Y be
the output space that contains the labels or target values. The training set T =
{(xi, yi)}ni=1 is a set of n observations independently and identically distributed
according to an unknown joint distribution P over the space Z = X×Y . When
Y is discrete, we will deal with a classification problem; when Y is continuous,
we have a regression problem. Knowing this, we define a supervised learning
problem as:

Definition 2.2 Supervised Learning is the task of inferring a function, re-
ferred to as hypothesis or model, h : X → Y belonging to some hypothesis class
H from a training sample T , that best predicts any y associated with x.

The hypothesis space we choose should describe, at its very best, the rela-
tionship between the spaces X and Y . For example, if we restrict h to be a
linear model, the set H comprises the space of all possible linear models. In
other words, h should generalize so that for any sample drawn from P , the pre-
diction h(x) should be as close as possible to y. To measure the quality of this
prediction, we define a loss function l : Y ×Y → R that measures the agreement
between h(x) and y. This error between the prediction and labels is associated
with the true risk of the model. Thus, the learning process involves finding the
hypothesis that minimizes this risk. The true risk is defined as follows:

Definition 2.3 True Risk, also called generalization error Rp(h), is defined
as the mathematical expectation of the loss over the domain P :

Rp(h) = E
(x,y)∼P

l(h(x), y)

The best model h∗ is the one that minimizes the true risk. However, we
cannot calculate this risk since the probability P is unknown. Only the empirical
risk can be calculated on the training samples, which is calculated as follows:

5

Definition 2.4 Let T be a training sample. The empirical risk RT (h) of a
hypothesis h over T = {(xi, yi)}ni=1 with respect to a loss function l is the average
loss suffered by h on the instances in T :

RT (h) =
1

n

n∑
i=1

l(h(xi), yi)

The choice of the hypothesis space H should be wide enough to include
hypotheses with small risks but constrained enough to avoid overfitting. Over-
fitting occurs when a model becomes too complex and starts to fit the noise or
random variations in the data rather than the true underlying patterns. Imagine
having a large number of data points, each with some level of inherent variabil-
ity. Suppose we choose a hypothesis space that is overly flexible or complex.
In that case, the model may try to account for every variation in the data,
including the noise or random fluctuations not representative of the underlying
patterns. As a result, the model may perform well on the training data but
fail to generalize to new, unseen data. This is why it is crucial to appropriately
balance and constrain the hypothesis space.

However, finding the right balance is difficult, especially when dealing with
complex data. Complex data exhibits intricate patterns or relationships that
are not easily discernible. In such cases, selecting an appropriate hypothesis
space becomes more challenging. This is where inductive biases come into play.
Inductive biases are assumptions or prior knowledge that guide the learning
process and help the model make more informed predictions.

Inductive biases can be based on various factors, such as the properties of
the data, symmetries, and invariances. Let’s break these down:

1. Data properties: Understanding the properties of the data can provide
valuable insights for selecting an appropriate hypothesis space. For exam-
ple, if the data has a temporal nature, such as time series data, it might
be reasonable to assume that past observations are relevant for predicting
future ones. This bias towards temporal dependencies can be incorporated
into the choice of the hypothesis space, allowing the model to capture the
sequential patterns in the data more effectively.

2. Symmetries: Symmetries refer to the inherent structural or geometric
properties present in the data. For example, if the data exhibits rota-
tional symmetry, where the patterns remain the same even after rotation,
incorporating this bias into the hypothesis space can help the model rec-
ognize and leverage such symmetries. This can lead to more efficient and
accurate representations of the data.

3. Invariances: Invariances are the properties of the data that remain un-
changed under certain transformations. For instance, if the data repre-
sents images, there might be invariances to translation, where shifting an
object within the image does not change its identity. By incorporating the
appropriate inductive biases related to invariances, the hypothesis space

6

can be tailored to capture these properties, enabling the model to make
robust predictions despite such transformations in the data.

By considering inductive biases based on the data properties, symmetries,
and invariances, we can improve the selection of the hypothesis space. These
biases help guide the model towards more relevant and meaningful hypotheses
that are more likely to capture the important aspects of the data. As a result,
the model selection process becomes more effective, leading to better perfor-
mance and generalization capabilities.

Other types of risk minimization that are commonly used are:

Definition 2.5 Structural Risk Minimization. In Structural Risk Mini-
mization, we can use an infinite sequence of hypotheses classes H1 ⊂ H2 ⊂ ...
of increasing size and select the hypothesis that minimizes a penalized version
of the empirical risk that favors ”simple” classes:

hT = argmin
h∈Hc,c∈N

RT (h) + pen (Hc)

Definition 2.6 Regularized Risk Minimization. Regularized risk mini-
mization is easier to implement than SRM. Here, one picks a single, large
hypothesis space H and a regularizer (usually some norm ||h|| and selects a
hypothesis that achieves the best trade-off between empirical risk minimization
and regularization:

hT = argmin
h∈H

RT (h) + λ∥h∥

Where λ is the trade-off parameter, the role of regularization is to penalize
”complex” hypotheses. In a broader sense, regularization is any modification
to a learning algorithm intended to reduce its generalization error but not its
training error. The best model resulting from risk minimization is the one that
can achieve optimal capacity. This is the point where the difference between
test and training error is the lowest (as seen in fig. 1) [74].

To train an ML model in a supervised learning setting, we need a perfor-
mance measure or associated cost we want to minimize. This loss function
depends on the type of task we want to train our model on. Some of the most
common loss functions are:

• Mean squared error (MSE): The mean squared error is often used
for regression problems using neural networks. Using mean-squared error
can be justified as estimating our model’s maximum likelihood. We want
to find the model parameterized by θ that maximizes the probability of
finding the target y ∈ Y given x ∈ X. This can be cast as:

θML = argmax
θ

m∑
i=1

logP
(
y(i) | x(i);θ

)
. (1)

7

Figure 1: Relationship between capacity and error. In the left section of the
graph, training error and generalization error are high; this is the underfitting
regime. As capacity increases, the gap between training and generalization
errors increases, resulting in overfitting. Figure from [74].

For regression we can define p(y|x) = N (y; f(x; θ),Σ2), then maximization
of the conditional log-likelihood becomes:

θML = argmax
θ

m∑
i=1

logP
(
y(i) | x(i);θ

)
= − 1

m

m∑
i=1

∥∥∥f (i)(x; θ)− y(i)∥∥∥2+const.
(2)

Which is equivalent to minimizing the negative of this function:

θML = argmin
θ

1

m

m∑
i=1

∥∥∥f (i)(x; θ)− y(i)∥∥∥2 =MSE (3)

The constant that appears is discarded since it depends on the variance of
the Gaussian distribution and not the model parameters. We can observe
that regression with the mean squared error is equivalent to finding the
model that best predicts the mean of the multi-variate Gaussian over the
training data if this one is i.i.d.

• Cross-Entropy: Minimizing the cross-entropy is equivalent to minimiz-
ing the negative log-likelihood:

l(x, y;θ) = − E
x,y∼p̂data

[log pmodel (y | x)] (4)

We can minimize this cross-entropy without assuming the shape of the
pmodel. This is preferred on classification problems that contain two or
more classes. For problems with C classes where the output of the model
f(x; θ) represent a label prediction:

8

ln = −
N∑
n=1

1∑N
n=1 wyn

wyn log
exp (f(x; θ), yn)∑C
c=1 exp (f(x; θ), c)

(5)

Where wyn is a weight assigned to each class, This function is equivalent
to applying the softmax function to the model’s output and calculating
the negative log-likelihood. For problems with Bernoulli-type output dis-
tributions, the loss is called Binary Cross-Entropy:

ln = − 1

N

N∑
n=1

[yn · log f(x; θ) + (1− yn) · log (1− f(x; θ))] (6)

2.3 Deep Learning

Deep learning is a subfield of machine learning that focuses on training and
building artificial neural networks to learn and make intelligent decisions from
large amounts of data. It is inspired by the structure and functioning of the
human brain, particularly the interconnections of neurons.

Recently, Deep learning has achieved remarkable success in various fields, in-
cluding computer vision, natural language processing, speech recognition, and
reinforcement learning. It has enabled breakthroughs in image classification,
object detection, machine translation, sentiment analysis, etc. The ability of
deep learning models to automatically learn hierarchical representations from
raw data has greatly contributed to their effectiveness in solving complex prob-
lems and surpassing the performance of traditional machine learning approaches.

Being a sub-field of Machine Learning, the aim of Deep Learning remains
still making predictions or taking actions based on data. Still, some fundamental
characteristics make Deep Learning different than other methods:

• Representation of Features: In traditional machine learning, feature engi-
neering plays a crucial role. Human experts manually extract and select
relevant features from the input data, which are then used to train the
machine-learning model. These features are typically handcrafted and re-
quire domain knowledge. On the other hand, deep learning algorithms
automatically learn hierarchical representations of the data through mul-
tiple layers of artificial neurons. Deep learning models have the ability
to learn and extract relevant features from raw or high-dimensional data,
eliminating the need for extensive feature engineering.

• Complexity and Scalability: Deep learning models are typically deeper
and more complex than traditional machine learning models. Deep neural
networks can have numerous layers, each containing many neurons. This
increased complexity allows deep learning models to capture intricate pat-
terns and relationships in the data. However, this complexity also requires

9

more computational resources and data to train effectively. Traditional
machine learning models, in comparison, are often more straightforward
and require less computational power.

• Data Requirements: Deep learning models often require large amounts of
labeled data for training. Since deep learning models learn representations
directly from the data, having sufficient labeled examples is essential to
perform well. In contrast, traditional machine learning models can per-
form well with smaller datasets and may rely more on the quality of the
features provided.

• Interpretability: Traditional machine learning models provide more inter-
pretability and explainability than deep learning models. This is because
the features used in traditional machine learning are often explicitly de-
fined and understood by humans. In deep learning, the learned represen-
tations are more abstract and may be challenging to interpret. However,
efforts are being made to develop techniques for interpreting and under-
standing deep learning models.

• Performance: Deep learning models have demonstrated remarkable perfor-
mance in various domains, such as image and speech recognition, natural
language processing, and playing complex games. They have achieved
state-of-the-art results in many tasks. Traditional machine learning mod-
els are still effective in many scenarios, especially when dealing with smaller
datasets or problems with well-defined features.

2.3.1 Motivation: Deep Representation Learning

In ML, representation learning is the set of techniques that allow the techniques
for learning representations of the data that make it easier to extract useful
information when building classifiers or other predictors from raw data. This
replaces the need for feature engineering for ML algorithms to perform a deter-
mined task.

Deep learning and representation learning are closely interconnected. Deep
learning can be seen as a specific approach to representation learning. Deep
learning, specifically through deep neural networks, can automatically learn hi-
erarchical representations of data by stacking multiple layers of nonlinear trans-
formations. These deep representations capture complex and abstract features
at different levels of abstraction, enabling the model to learn more intricate pat-
terns and structures within the data. Therefore, deep learning can be viewed
as a powerful technique within the broader field of representation learning, as it
enables the automatic discovery and extraction of hierarchical representations
from raw input data.

Several factors characterize a good representation. Good representations
are expressive, meaning a learned representation of reasonable size can capture

10

many possible input configurations. Another desired property is feature reuse;
deep architectures lead to abstract representations that are invariant of local
features of the inputs allowing the re-use of different parts of the architecture.
Finally, the disentanglement of a factor of variation allows us to distinguish
the different elements in the data that interact with each other. For example,
in an image of a face, a disentangled representation would ideally have sepa-
rate dimensions or components that encode the person’s identity, pose, facial
expression, lighting conditions, and other relevant factors. Each component
would capture a single aspect of the input data, enabling more flexible and con-
trollable manipulation of the learned representation [13].

Deep Learning has achieved greater state-of-the-art performance in various
ML tasks. One of the factors of this success is the ability of DNN to learn
semantically rich latent representations for different types of data, which allows
for capturing very complex concepts, which cannot be done through handcrafted
features. The following subsections will show the most relevant algorithms for
diverse data modalities and tasks.

2.4 Neural Networks

At the core of Deep Learning, the hypothesis is represented with a neural net-
work. Neural networks provide a general practical method for learning real-
valued, discrete-valued, and vector-valued functions from examples. Neural
Networks nowadays are the center of many AI breakthroughs because of their
generalization capabilities and the power to adapt to many tasks and problems.
Training NNs on large-scale datasets has also become very efficient on modern
computational hardware, providing fast inference time and easy parallel training
on multiple devices [264]. The following sections will explain neural networks
and how to build and train them.

2.4.1 Perceptrons

The term neural network originates in the attempts to find mathematical rep-
resentations of information processing in biological systems [212]. The study of
NNs has been partly inspired by the observation that biological learning systems
are built of very complex webs of interconnected neurons. Artificial Neural Net-
works (ANN) are built out of a densely interconnected set of simple units, where
each unit takes several real-valued inputs and produces a single real-valued out-
put. While artificial neural networks are loosely motivated by biological neural
systems, there are many complexities to biological neural systems that are not
modeled by ANNs, and many features of the ANNs are inconsistent with bio-
logical systems [162].

11

x2

x1

1

...

xn

∑
w2

w1

w0

...

wn

n∑
i=0

wixi

output =

1 if
n∑
i=0

wixi > 0,

−1 otherwise

Inputs

Weights

Activation Function

Figure 2: A perceptron.

The first NNs were built around units called Perceptrons. A perceptron
takes a vector of real-valued inputs, calculates a linear combination of these
inputs, and then outputs one if the result is greater than some threshold and -1
otherwise. More precisely, given a set of inputs x = {x1, ..., xn} the output of
the perceptron is:

f (x1, . . . , xn) =

{
1 if w0 + w1x1 + w2x2 + · · ·+ wnxn > 0

− 1 otherwise
(7)

A graphical description of the perceptron can be seen in Fig. 2. Each input
vector element is associated with a weight wn aggregated by a linear operator,
in this case, a sum. The output then passes through an activation function.

A single perceptron can be used to represent many boolean functions. For
example, if we assume the values to be 1 (True) and -1 (False), and using a
two input value perceptron, if the weights are w= − 0.8 and w1 = W2 = 0.5
we have the AND function, if we set the value of w0 = 0.3 we have the OR
function. Perceptrons can represent all primitive boolean functions, but some
require more than one perceptron. In fact, The ability of perceptrons to repre-
sent primitive boolean functions means that an interconnected network of these
units can represent every boolean function. This motivates the development
of multi-layer perceptrons or feedforward neural networks, where each network
weight belongs to the set of parameters to be learned during training.

12

a
(0)
1

a
(0)
2

a
(0)
3

a
(0)
4

a
(1)
1

a
(1)
2

a
(1)
3

a
(1)
4

a
(1)
5

a
(2)
1

a
(2)
2

a
(2)
3

a
(2)
4

a
(2)
5

a
(3)
1

a
(3)
2

a
(3)
3

a
(3)
4

a
(3)
5

a
(4)
1

a
(4)
2

a
(4)
3

input
layer

hidden layers

output
layer

Figure 3: Feedforward Neural Network diagram.

2.4.2 Feedforward Neural Networks

Feedforward neural networks (FFN) or multilayer perceptrons (MLP) are among
the most common models or architectures used in Deep Learning. These models
are called feedforward because information flows through the function evaluated
from x, through the intermediate computations used to define f , and finally to
the output y. Feedforward neural networks are called multi-layer perceptrons
because they can be seen as many perceptrons stacked together in a series of
layers. In fact, FFN is a composition of several intermediate functions, and the
length or amount of layers gives the notion of depth of the network. In contrast,
the dimensionality of each layer (how many weights it has) is the width of the
network. The first layer has the dimensionality of the input, and the last layer
(output layer) is the one of the output. The intermediate layers are of higher
width than the input and output layers. They are called hidden layers because
their individual output is not seen or is of particular interest for practical ap-
plications. These parts of a FFN are illustrated in Fig. 3.

Neural networks are non-linear by construction. Neural networks are non-
linear models because of the activation functions used in their neurons. Ac-
tivation functions introduce non-linearity into the computations performed by
the neural network. In a neural network, each neuron receives inputs from the
previous layer, applies a weighted sum to those inputs, and then passes the
result through an activation function. This activation function introduces non-
linearity by mapping the weighted sum to a different range, transforming the
output non-linearly. If neural networks used only linear activation functions,

13

such as the identity function, the network would collapse into a single linear
layer and lose expressiveness. Some of the most common activation functions
used in practice are:

• Rectified linear units (ReLU): rectified linear units use the activation

g(z) = max{0, z}

. The difference between a linear unit and a RANS is that the latter
outputs zero over half its domain. The RANS and its variants are normally
the default choice for hidden layers because they are easier to optimize
using gradient-based optimization methods since its derivative is always
one on the regions the unit is active and the second derivative is 0. Another
type used often is leaky ReLU

g(z) = max{αz, z}

Where α is a small slope on the negative parts.

• Hyperbolic tangent (Tanh): this activation function (g(z) = tanh(z))
was used often before the adoption of ReLU, this function saturates to
a high value when z is very positive, saturate to a low value when z is
very low and is very sensitive when the input is around 0. Although
ReLUs are preferred in most cases because of the lack of saturation, tanh
is suitable when a probabilistic output is expected or for gating operations
in recurrent neural networks (which we will see later).

• Sigmoid Units: This function

f(x) =
1

1 + e−x

is used for output layers when the problem is a binary classification one
when the neural network needs to predict P (y = 1 | x).

• Softmax Units: Softmax units represent a probability distribution over a
discrete variable with n possible values. These are often used as the output
of a classifier to represent the probability distribution over n different
classes. The Softmax function is given by:

softmax(z)i =
exp (zi)∑
j exp (zj)

. Softmax is used almost always as an output activation unit. Still, it has
appeared as the activation on recent neural networks called transformers
to help capture long-range dependencies in data.

• Swish: The swish activation

f(x) = x · sigmoid(βx).

14

was found via an empirical study that consisted on finding better alterna-
tives to ReLUs [200], motivated on improving the training dynamics and
accuracy of deep models.

• Gaussian error linear unit (GELU): The GELU activation is repre-
sented as

GELU(x) = xP (X ≤ x) = xΦ(x) = x · 1
2
[1 + erf(x/

√
2)]

Where ϕ(x) is a cumulative gaussian distribution. This nonlinearity is an
alternative to ReLUs and is a substitute for them when combined with
other methods for stochastic regularization [85]. This improves training
convergence and may improve accuracy in some cases.

2.5 How to train Neural Networks

In this section, we explain how Deep Learning algorithms are trained. The main
goal of training a neural network is to find the optimal set of parameters that
minimize the cost associated with a specific task. Much of the general procedure
is the same as other ML algorithms, having a training dataset for our desired
task, a cost function we want to minimize, and our model, which is the neural
network. We will explain these components, what happens under the hood of
this process, what tools we use, and some considerations that need to be con-
sidered.

2.5.1 Learning with Gradient Descent

Stochastic gradient descent (SGD) and its variants are the prevalent optimiza-
tion algorithms for training most deep learning models. Stochastic gradient
descent is an extension of the gradient descent algorithm. A challenge for deep
learning is that large training datasets are needed for good generalization, but
large training sets are also more computationally expensive. The loss function
used by a machine learning algorithm is often decomposed as a sum over training
examples of a per-example loss function:

J(θ) = E
x,y∼p̂data

l(x, y,θ) =
1

m

m∑
i=1

l
(
x(i), y(i),θ

)
(8)

Where L(x, y,θ) is the per example loss. The problem of finding the best
parameters that define the best ML model corresponding to a dataset is a mini-
mization problem. A classical method to solve this type of problem is Gradient
descent, which requires computing the gradient of the objective function w.r.t.
the parameters:

∇θJ(θ) =
1

m

m∑
i=1

∇θl
(
x(i), y(i),θ

)
(9)

15

The computational cost of this operation is O(m). As the size of the training
set grows to billions of examples, the time to perform a single gradient step
becomes prohibitively long. The insight of SGD is that the gradient is an
expectation. The expectation may be appropriately estimated using a small
set of examples. On each step of the algorithm, we can sample a minibatch of

examples B =
{
x(1), . . . ,x(m

′)
}

drawn uniformly from the training set. The

minibatch m′ is chosen to be relatively small, ranging from 1 to a few hundred
examples. The estimate of the gradient is:

g =
1

m′∇θ

m′∑
i=1

L
(
x(i), y(i),θ

)
(10)

Using examples from the minibatch B, the stochastic gradient descent algo-
rithm then follows the estimated gradient downhill:

θ ← θ − ϵg, (11)

With ϵ being the learning rate [74].

2.5.2 The engine: Automatic Differentiation

When a feedforward neural network is used, information propagates from the
input x through each layer up to the output ŷ, called forward propagation. This
forward propagation continues over training until it produces a scalar cost J(θ).
The back-propagation algorithm [212] allows information from the cost to flow
backward through the network to compute the gradient and to update the pa-
rameters accordingly.

The backpropagation algorithm corresponds to the reverse mode of auto-
matic differentiation. Automatic differentiation is a set of techniques to compute
partial derivatives of a function specified by a computer program. Let f1, ..., fn
be for which we know how to calculate the derivatives. For any composition
of these functions f(x) = fim (· · · (fi1(x)) · · ·), with i1, . . . , im ∈ {1, . . . , n}, we
also know how to compute the derivative of f via the chain rule:

df

dx
=

dfim
dfim−1

· · · dfi2
dfi1

dfi1
dx

(12)

There are mainly two approaches to computing these derivatives using auto-
matic differentiation. Forward-mode auto differentiation, also known as forward
sensitivity, proceeds by recursive computing :

dfiq
dx

=
dfiq
dfiq−1

dfiq−1

dx
(13)

For q = 2, ...,m. Reverse mode auto differentiation or backpropagation
proceeds by recursive computing:

16

dfim
dfq−1

=
dfim
dfiq

dfiq
dfq−1

(14)

For q = m − 1, ..., 1 and supposing that x is a vector and fim outputs a
scalar. As with all hidden layers of an NN outputs vectors, each evaluation
of the forward mode auto differentiation is a matrix-matrix product. At the
same time, the evaluation in reverse-mode auto differentiation is a vector-matrix
product that is computationally cheaper. For this reason, backpropagation is
used to compute the gradients of neural networks [106].

2.5.3 Improvements to Stochastic Gradient Descent

Stochastic gradient descent can sometimes be slow; the momentum method is
designed to accelerate learning in the face of high curvature, small but consistent
gradients, or noisy gradients [189]. The momentum algorithm accumulates an
exponentially decaying moving average of past gradients and continues to move
in their direction. According to Newton’s laws of motion, momentum derives
from a physical analogy in which the negative gradient is a force moving a
particle through parameter space. Assuming unit mass, the velocity vector is the
particle’s velocity in the momentum algorithm. A hyper-parameter α ∈ [0, 1)
determines how quickly the contributions of previous gradients exponentially
decay. The update rule then is given by [74]:

vn ← αvn−1 − ϵ∇θ

(
1

m

m∑
i=1

L
(
f
(
x(i);θ

)
,y(i)

))
θ ← θ + vn

(15)

A variant of momentum is also used called Nesterov’s momentum [236][175].
The update rule is given in this case by:

v ← αv − ϵ∇θ

[
1

m

m∑
i=1

L
(
f
(
x(i);θ + αv

)
,y(i)

)]
,

θ ← θ + v,

(16)

The difference between Nesterov and standard momentum is where the gra-
dient is evaluated. Nesterov momentum evaluates the gradient after the current
velocity is applied. Nesterov momentum brings the rate of convergence from
O(1/k) to O(1/k2).

The learning rate is one of the most difficult hyperparameters to set because
it significantly impacts model performance. The loss function is often highly
sensitive to some directions in parameter space and insensitive to others. The
momentum algorithm can mitigate these issues but introduces another hyperpa-
rameter to set. Optimization algorithms with adaptive learning rates are often
used in modern machine learning.

17

One of the most popular methods used in Deep Learning is the Adam (adap-
tive moment estimation) algorithm [113]. The Adam algorithm updates expo-
nential moving averages of the gradient (mt) and the raw second-order moment
(vt), which is the gradient squared. The hyperparameters β, β ∈ (0, 1] control
the exponential decay rates of these moving averages. Let ϵ be a small factor
to prevent zero-division, t the time-step, and α the learning rate. The Adam’s
update rule is given by:

gt = ∇θft(θt−1)

mt = β1mt−1 + (1− β1)gt
vt = β2vt−1 + (1− β2)g2t
m̂t = mt/(1− βt1)
v̂t = vt/(1− βt2)

θt = θt−1 − α · m̂t/(
√
v̂t + ϵ)

(17)

Another adaptive learning rate method is Adadelta [279]. Adadelta builds
over two ideas; the first is accumulating the sum of squared gradients over a
fixed window of previous iterations, and the accumulated gradient is used as a
denominator to scale the learning rate. Assuming that at time t the running
average is E

[
g2
]
t
then it is computed:

E
[
g2
]
t
= ρE

[
g2
]
t−1

+ (1− ρ)g2t (18)

Where ρ is a decay constant similar to momentum. The square root of this
quantity is used in order to keep the update rule consistent dimensionally, being
ϵ a constant for better condition and η the learning rate we have the parameter
update as:

RMS[g]t =
√
E [g2]t + ϵ

∆θt = −
η

RMS[g]t
gt

(19)

The second idea is to correct the units of the gradient update. When we
update the parameters using first-order gradients, the dimensions of these are
different than those of the parameters themselves:

units of ∆θ ∝ units of g ∝ ∂f

∂θ
∝ 1

units of θ
(20)

Second-order methods that use Hessian information or an approximation
have correct units:

∆θ ∝ H−1g ∝
∂f
∂θ
∂2f
∂θ2

∝ units of θ (21)

This concept is applied in Adadelta by assuming a diagonal Hessian so it
can be approximated as:

18

∆θ =
∂f
∂θ
∂2f
∂θ2

⇒ 1
∂2f
∂θ2

=
∆θ
∂f
∂θ

(22)

Substituting this in the update rule of eq. 19:

E
[
∆θ2

]
t
= ρE

[
∆θ2

]
t−1

+ (1− ρ)∆θ2t

RMS[∆θ]t =
√
E [∆θ2]t−1 + ϵ

∆θt = −
RMS[∆θ]t−1

RMS[g]t
gt

(23)

Other modern variants of adaptive learning rate methods exist, such as Ad-
aBelief [285], which adapts the learning rate on the ”belief” of the current gra-
dient direction, resulting in faster convergence and improved stability. Another
example is the rectified Adam (RAdam) [150] that rectifies the variance of Adam
algorithm.

Deep Learning optimizers continue to evolve as neural networks get larger
and more complicated to train. Nevertheless, Adam and its variants remain
the default option, and sometimes very little performance improvement can be
seen when using different optimizers. These optimizers are of the type of first-
order optimization techniques since the computation of the Hessian is avoided.
Second-order optimization methods are not used in Deep Learning because they
have high computational and memory costs and are more difficult to implement
for distributed training.

2.5.4 Regularization for Deep Neural Networks

Regularization is the collection of strategies used to reduce the overfitting of
machine learning models. In other words, these strategies aim to reduce the
test error, making the model perform better on new inputs different than the
training data.

Many regularization strategies are based on limiting the model complexity
of models by adding a term Ω(θ) to the objective function J to penalize the
most complex models. The regularized objective function becomes J̃ :

J̃(θ) = J(θ) + λΩ(θ) (24)

Where λ is a hyperparameter that weights the relative contribution of the
norm penalty term Ω relative to the standard objective function J . One of the
simplest kinds of parameter norm penalty is the L2 regularization, commonly
known as weight decay. This makes the regularized loss function using the L2

norm look like this:

J̃(θ) = J(θ) + λ∥θ∥2 (25)

19

Another option is to use the L1 norm:

J̃(θ;X,y) = J(θ;X,y) + λ∥θ∥ (26)

The effect of weight decay is that it makes the neural network’s weights
smaller, preventing overfitting since the result will be a function with less ac-
tive neurons where only the more important weights are active. The difference
between L1 and L2 regularization is sparsity. L1 regularized models will have
weights that are equal to zero. For this reason, L1 regularization is preferred
if we have many features we want to reduce because unimportant features will
be zeroed out. In contrast, L2 regularization will make the contribution of less
important features smaller but not zero, and this is preferred if interdependence
exists between the inputs or our model.

2.5.5 Normalization and Data-Augmentation

Other techniques to improve convergence and generalization are independent
of the optimization algorithm and objective function used. In this section, we
will discuss two of the most used in Deep Networks to mitigate overfitting:
Normalization and Data Augmentation.

• Normalization:
The first method that introduced normalization in deep neural network
layers was Batch Normalization (BN) [93]. Deep models involve the com-
position of several functions or layers. One of the difficulties in training
deep neural networks is that the inputs to each layer are affected by the
parameters of all the preceding layers. This means that (small) changes
in parameter values tend to be amplified as the network becomes deeper.
The change in the distribution of the inputs as they pass through each
layer is a problem because the layers need to adapt to the new distribu-
tion continuously. When the distribution of a learning system changes,
it is said to experience a covariate shift. Batch Normalization reduces a
neural network’s internal covariate shift by fixing the layer inputs’ dis-
tribution x as the training progresses. Batch normalization normalizes
each input feature independently with a mean of zero and variance of 1.
Normalization changes what the input may represent, so two learnable
parameters γ, β are introduced to scale and shift the normalized value.
The Batch Normalization transform is implemented as follows:

20

Figure 4: Difference between BatchNorm and LayerNorm: While batch Norm
computes the statistics of each activation over the batch size, LayerNorm statis-
tics are calculated over all activations for each batch element. Source [9]

µB ←
1

m

m∑
i=1

xi

σ2
B ←

1

m

m∑
i=1

(xi − µB)
2

x̂i ←
xi − µB√
σ2
B + ϵ

yi ← γx̂i + β ≡ BNγ,β (xi)

(27)

Batch Normalization accelerates the training of many neural network mod-
els. However, it doesn’t mean that it will improve every deep learning
architecture. BN depends on the mini-batch size, and in other models like
recurrent models, the statistics also depend on the sequence length and
time-step. A technique to mitigate this issue is Layer Normalization (LN)
[4], which modifies BN by estimating the normalization statistics from the
summed inputs to the neurons within a hidden layer. The main difference
between BN and LN is how the statistics are calculated. BN computes
the mathematical expectations of each feature over the minibatch, and LN
computes the expectations of the hidden features of each layer indepen-
dently of mini-batch size; see Fig. 4 for a graphical explanation.

Another technique inspired by LN is Group Normalization GN [268]. This
method aims to generalize to smaller batch sizes where BN had little effect
by avoiding batch computation. However, unlike LN aggregating all input
features, GN divides the features into groups. This is useful for computer
vision models where groups of features may have similar statistics. The
difference between different normalization methods can be seen in Fig. 5.

• Data-Augmentation: Data-augmentation is a method to approach over-
fitting from the training dataset. This is done under the hypothesis that
augmentations can extract more information from the original dataset.
The purpose of these augmentations is to make the model more robust
to possible transformations to the inputs that they may encounter during

21

Figure 5: Normalization methods. Each cube shows a feature map tensor, with
N as the batch axis, C as the channel axis, and (H,W) as the spatial axes.
The pixels in blue are normalized by the same mean and variance, computed
by aggregating the values of these pixels [268].

operating conditions. Data augmentation can be categorized as warping
augmentations, which consists of applying transformations to the data,
like rotations, scaling, shifting, etc. And oversampling, which consists of
generating additional synthetic data that is similar to the dataset.

2.6 Limitations of Deep Learning

Deep Learning has proven to be a powerful tool in AI, but it still has some
limitations:

1. Data requirements: Deep learning algorithms require large amounts of
data to train, and collecting and annotating this data can be time-consuming
and costly. Since the lack of theoretical knowledge of deep neural net-
works, it is difficult to predict how much data is needed to train a model
to perform a certain task. Theoretical work demonstrated the difficulty
of constructing classifiers in problems with small sample sizes [202][82].
This can be a limitation for applications where data is scarce or difficult
to obtain.

2. Overfitting: Deep learning models tend to overfit the training data, which
means they may perform well on the training data but not on new, un-
seen data. The recent trend in Deep Learning is to use over-parameterized
models. This can be seen in recent large language models that showcase
state-of-the-art performance but contain billions of parameters. Experi-
ence and theory have demonstrated that over-parameterization can im-
prove the model’s performance [60][31]. However, increasing the model
complexity increases the need for data, making the model overfit more
easily when provided with insufficient data samples. This is particularly
a problem when the training data is limited.

3. Lack of interpretability: Interpretability is a concept that is defined differ-
ently by different authors [148][170][201]. Interpretability can be defined as
the property a Machine Learning model has to be explained. Interpretable

22

properties can be classified in terms of transparency and post-hoc expla-
nations [148]. Transparency is the understanding of the mechanisms by
which the model works. Transparency can be considered at different lev-
els: At the level of the entire model (Simulability), at the level of its parts
(decomposability), and at the level of the training algorithm (algorithmic
transparency). Post-hoc explanations refer to explanations provided after
the model is trained. Post-hoc explanations include language explana-
tions, visualization of representations, and explanations by example that
consider examples the model considers to be similar. Interpretability, in
general, is important because it aids in trust, safety, and contestability of
ML models. With an interpretable model, we can assess in which con-
ditions the model will work and when not, also providing the ability to
reject certain decisions it makes.

4. Computational resources: Training and running deep learning models re-
quire significant computational resources, which can be a limitation for
certain applications or organizations with limited budgets. Recent ad-
vances in Deep Learning have been made possible by powerful hardware
configurations, which implies significant economic costs [240]. In fig. 6, a
comparison of the growth of DL model size versus the growth in hardware
performance can be seen.

Figure 6: Computing power used in the largest DL model of the correspondent
year vs. the growth in hardware performance. Picture from [240].

Considering these limitations when applying any ML technique to a problem
of our interest is important. Tackling these issues leads to advancements and
new findings in the field.

23

2.7 Deep Learning Algorithms

2.7.1 Deep Learning for Computer Vision

Convolutional Neural Networks

Convolutional networks, also known as convolutional neural networks or
CNNs, are specialized neural networks for processing data with a known, grid-
like topology. A typical example is image data, which can be considered as a
2D grid of pixels. Convolutional networks have been tremendously successful in
practical applications. The name convolutional neural network indicates that
the network employs a mathematical operation called convolution. Convolution
is a specialized kind of linear operation. Convolutional networks are neural net-
works that use convolution instead of general matrix multiplication in at least
one of their layers.

In its most general form, convolution is a mathematical operation of two
functions, f and g, that produces a third function (f ∗g) that expresses how the
shape of one is affected by the other. The convolution is defined as the integral
of the product of the two functions after one is reflected about the y-axis and
shifted:

(f ∗ g)(t) :=
∫ ∞

−∞
f(τ)g(t− τ)dτ (28)

When we work with images in DL, this data is represented as a discrete
array of values distributed in a uniform grid. In other words, the convolution
for discrete functions of n dimensions is given by:

(f ∗ g)[n] =
∞∑

m=−∞
f [m]g[n−m] (29)

The convolution of two finite sequences is defined by extending the sequences
to finitely supported functions on the set of integers. In the case of image
processing, the functions f and g are discrete functions of 2 dimensions, so their
convolution would be:

(f ∗ g)[n1, n2] =
∞∑

m1=−∞

∞∑
m2=−∞

f [m1,m2]g[n1 −m1, n2 −m2] (30)

Figure 8 shows the convolution operation performed over a discrete-valued
grid.

For processing images, we take f , a matrix with pixel values that represent
an image, and g would be a smaller matrix called kernel that can be used for
blurring, edge detection, or other types of filtering operation. Figure 7 illus-
trates how a convolution operation can result in specific effects on images with

24

a well-chosen kernel (filters).

Figure 7: Effects of kernels on an image. From CS1114: Introduction to com-
puting using MatLab and robotics [47].

The underlying principle of convolutional neural networks (CNN) lies in
their utilization of trainable kernels to detect significant data representations
pertinent to a specific task. A typical convolutional layer has three stages (see
fig.8). In the first stage, the layer performs several convolutions in parallel to
produce a set of feature maps. In the second stage, each linear activation is
run through a nonlinear activation function, such as the rectified linear activa-
tion function. This stage is sometimes called the detector stage. In the third
stage, a downsampling or upsampling function is used to further modify the
layer’s dimensionality. This down/up-sampling can be done implicitly with the
convolution or pooling function. A pooling function replaces the layer’s output
at a certain location with a summary statistic of the nearby outputs. Pooling
helps make the representation approximately invariant to small translations of
the input. Invariance to local translation can be a very useful property if we
care more about whether some feature is present than exactly where it is.

A typical CNN for image classification would have a feature detection stage
that contains a hierarchy of convolutional layers that gradually learn features
at different scales and a classification stage where a FFN produces the desired

25

Figure 8: The components of typical convolutional neural network layer [245]

output based on the learned representations, a classic model that uses this
framework is VGG-16 [229] (see fig. 9). Modern implementations of CNNs
have had great success in solving computer vision tasks such as classification
and object recognition of large image datasets like ResNets [83][238] and image
segmentation like U-Net [208].

Autoencoders

Autoencoders are a ML method belonging to the unsupervised learning al-
gorithms family. In unsupervised learning, we do not need labeled data. The
main goal is to learn a semantic representation. In autoencoders, the objective
is to learn a latent representation of the data, a parsimonious set of variables
that relate to the features present in the image. This latent variable is normally
of less dimensionality than the data. For this reason, autoencoders themselves
are viewed commonly as data compression algorithms. Autoencoders also learn
a latent representation of the governing features of the dataset, meaning that
they can also be used as a denoising method. Last but not least, the latent
representation learned by autoencoders can be used as a component on much
larger models since the latent variables facilitate learning as they represent the
feature density function of the data.

The architecture of AEs comprises two subnetworks: the encoder, which

26

Figure 9: VGG-16 architecture for image recognition [245][229].

encodes the input to the latent variables, and the decoder, which reconstructs
the input data from the latent variables. Being x ⊂ X ∈ Rdx , a sample from the
dataset, E(·; θ) the encoder network with parameters θ and D(·;ψ) the decoder
network with parameters ψ, the latent variable is the output of the encoder
which is:

z = E(x; θ) (31)

Where z ⊂ Z ∈ Rdz . The AEs are trained by minimizing the reconstruction
loss of the Encoder-Decoder pair:

(θ, ψ) = argmin
θ,ψ

||x− x̂||22 (32)

x̂ = (D(·;ψ) ◦ E(·; θ))(x) (33)

The most basic autoencoder is built using feed-forward neural networks. As
seen in Fig. 10, the encoder and decoder networks are neural networks with
layers that change the representation size sequentially. The autoencoder’s goal
is generally that the reconstruction is the same as the input and can generalize
to unseen samples of the same type as the training data. Autoencoders are very
flexible. Modifying the loss function can train them for segmentation, super-
resolution, or denoising. Also, the neural network used can be changed to suit
the inductive biases of the data. For example, one can use convolutional layers
to form convolutional autoencoders (see fig. 11 better suited for image-related
tasks, or we can use RNNs for sequences [232].

27

encoder decoder

input output

latent

Figure 10: Schematic of an autoencoder. The input reduces its size at each layer
until it arrives at a reduced latent representation. From there, the decoder maps
the latent variable to the input space to form a reconstructed output. If training
for reconstruction ideally x ≈ x̂.

Figure 11: Diagram of a simple Convolutional Autoencoder. The encoder uses
convolutions to downsample the image and a final fully connected layer to get
the latent vector. The decoder is a mirrored architecture using deconvolutions
to upsample the latent representation to the original size.

Generative Adversarial Networks

Generative Adversarial Networks (GAN)[75] are a generative model consist-
ing of two neural networks: a generator and a discriminator. The generator
learns to create new data, while the discriminator learns to distinguish the gen-
erated data from real data.

28

The generator network inputs a random noise vector and maps it to a data
space, such as an image, audio, or text. The generator’s goal is to create data
similar to the real data, and it is trained to do so by trying to fool the discrimi-
nator network. Conversely, the discriminator is trained to identify whether the
data it receives is real or generated. It takes in real and generated data and
outputs a probability of the input being real. This process is illustrated in Fig.
12.

Figure 12: Diagram of a GAN: The generator learns to generate a sample that
resembles the training data from random noise. The discriminator is trained
to distinguish real from fake samples. The generator is trained to fool the
discriminator. This process is called ”adversarial” because it is a competition
between the two networks.

During training, the generator and the discriminator are trained simultane-
ously in an adversarial manner. The generator tries to create data that can fool
the discriminator, while the discriminator tries to identify the fake data cor-
rectly. This process continues until the generator creates data indistinguishable
from real data, at which point the GAN is considered to have converged.

The training objective of the GAN is to find the equilibrium between the
generator and the discriminator, which is a min-max training process that tries
to minimize the times the samples from the generator are rejected and maximize
the times the discriminator succeeds in assigning the correct label to real and
fake data. Expressed mathematically, this cost function is:

29

min
G

max
D

V (D,G) = Ex∼pdata (x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (34)

In this function:

• D(x) is the discriminator’s estimate of the probability that real data in-
stance x is real.

• Ex is the expected value over all real data instances.

• G(z) is the generator’s output when given noise z.

• D(G(z)) is the discriminator’s estimate of the probability that a fake in-
stance is real.

• Ez is the expected value over all random inputs to the generator (in effect,
the expected value over all generated fake instances G(z)).

The formula derives from the cross-entropy between the real and generated
distributions. The generator can’t directly affect the log(D(x)) term in the
function, so, for the generator, minimizing the loss is equivalent to minimizing
log(1−D(G(z))).

GANs can generate high-quality samples, but one of the main limitations
of GANs is their training instability and tendency to overfit. Different tech-
niques exist to mitigate these issues: for example, there exists the possibility to
use different loss functions such as with WGAN[3], WGAN-GP[79] and MMD-
GAN [134]; also to improve training stability techniques such as the progressive
growing of training complexity [103], where the GAN is trained first on lower
resolution images then the resolution is increased gradually, or architectural
changes like BigGAN [24]. GANs have had extensive applications in computer
vision [258], time series [25], and other tasks where it is desirable to learn data
samples following a complex distribution with good quality, while there is no
need to have a tractable representation of this distribution.

2.7.2 Deep Learning for Sequential Data

Recurrent Neural Networks

Recurrent Neural Networks (RNN) are neural networks designed for pro-
cessing sequential data, i.e., a sequence of values x(1), x(2), ..., x(n). The main
difference between RNNs and multi-layer neural networks is that the parameters
are shared for multiple time steps. Let f : X ×θ → H be a function representing
an RNN cell (neuron) that takes the inputs x(t) and calculates a hidden state

30

h(t) that is passed for the calculation of the next hidden state. Many RNN mod-
els follow an equation similar to eq. 35. Fig. 13 gives a graphical representation
of a basic RNN unit (compressed and unfolded). In this process, each sequence
step is used as input to calculate the hidden state at that step, along with the
previous hidden state. The hidden state at each step then generates an output,
which can be further utilized as a variable to compute the desired output. The
general form of the output (hidden state) of an RNN cell is given in eq. 35.

h(t) = f
(
h(t−1), x(t); θ

)
(35)

f f f f=f

h0

x0

h1

x1

h2

x2

ht

xt

ht

xt . . .

Figure 13: Representation of a RNN model

One of the problems of RNNs is that they have difficulties learning long-term
dependencies. Suppose the current output depends on an input located many
steps back, for example, when predicting the next word in a long sentence. In
that case, the magnitude of the contextual information may exceed the Recur-
rent Neural Network (RNN) capacity due to long-range correlations, rendering
it challenging to process and make accurate predictions effectively. The basic
problem with these dependencies is that gradients propagated over many stages
tend to either vanish or explode. Even if the recurrent network is stable during
training, the difficulty with long-term dependencies arises from the exponen-
tially smaller weights given to long-term interactions compared to short-term
ones [74].

The first successful solution to this problem has been given with the Long
Short Term Memory Networks (LSTM) [91]. LSTMs are composed of a complex
cell unit that embeds gates (input, output, and forget gates) to regulate the flow
of information into and out of the cell (see fig. 14). This mechanism allows the
cell to remember values over arbitrary time intervals. Gates control the amount
of information that is forgotten in each state. An LSTM cell can be defined
with the following equations:

31

ct

it

ot

ft

Cell

Output Gate

Input Gate

Forget Gate

htxt, ht−1

Figure 14: LSTM cell diagram. The input and previous hidden state pass
through each of the gates in order to calculate the new cell state, which is then
used to produce the next hidden state.

it = σ (Wiixt + bii +Whiht−1 + bhi)
ft = σ (Wifxt + bif +Whfht−1 + bhf)
gt = tanh (Wigxt + big +Whght−1 + bhg)
ot = σ (Wioxt + bio +Whoht−1 + bho)
ct = ft ⊙ ct−1 + it ⊙ gt
ht = ot ⊙ tanh (ct)

(36)

Where ht is the hidden state at time t, ct is the cell state at time t, xt is
the input at time t, ht−1 is the hidden state of the unit at the step t− 1 or the
initial hidden state at the step 0, and it, ft, gt, Ot are the input, forget, cell, and
output gates, respectively. σ is the sigmoid function, and ⊙ is the Hadamard
product.

Recurrent Neural Networks and their variants have played a role in develop-
ing technologies such as speech recognition, sentiment analysis, machine trans-
lation, and weather forecasting, to name a few. Nowadays, they have been sub-
stituted with larger models called transformers (which we present in the next
subsection) based on an attention mechanism, which has shown a much higher
potential for the semantic representation of sequences, especially for texts. Nev-
ertheless, RNNs remain a good architectural choice when a lightweight model
is needed to learn sequential data.

Transformers

The transformer architecture [246] is a more recent deep learning model
that has produced revolutionary results mainly in NLP but has recently been
used in other modalities such as computer vision and speech processing. These
models are a type of neural network that relies on the attention mechanism

32

[6][188]. Before explaining the transformer architecture’s construction, we will
briefly explain what attention is in ML. Taking a NLP task as an example, the
attention mechanism relates a word in a sentence to the other words in the
input. Transformers commonly use self-attention, which means that they use
the inputs to define the queries, keys, and values. This attention model is called
the query-key-value attention model(QKV). Given the matrix representation of
queries Q ∈ RN×Dk , keys K ∈ RM×Dk and values V ∈ RM×Dv , the scaled-dot
product attention used by transformers is:

Attention(Q,K,V) = softmax

(
QK⊤
√
Dk

)
V = AV (37)

Where Dk, Dv denotes the dimension of the keys and values matrix respec-
tively, A is the attention matrix, and softmax is applied row-wise. The dot
products of queries and keys are scaled by

√
Dk to alleviate the softmax func-

tion’s vanishing gradients. Transformers use multi-head attention to project
Q,V , and K into H sets of learned projections. For each ”head” H, the atten-
tion is calculated using equation 37 and concatenates each of the outputs:

MultiHeadAttn (Q,K,V) = Concat (head1, · · · ,headH)WO

where headi = Attention
(
QWQ

i ,KWK
i ,VWV

i

) (38)

Figure 15: Diagram of Self-Attention head.

Being W a learnable parameter matrix. In Fig. 15, a graphical representa-
tion of that attention head can be seen. The original transformer architecture
[246] is an Encoder-Decoder model in which each is a stack of L identical blocks.

33

Each encoder block comprises a multi-head attention module and a position-
wise FFN. For adding depth to the models, a residual connection is used around
each module, followed by layer normalization[4]. In contrast, decoder blocks in-
sert cross-attention modules between the multi-head self-attention modules and
the position-wise FFNs. The self-attention modules in the decoder are adapted
to prevent each position from attending to subsequent positions [146]. The
transformed architecture can be seen in Fig. 16.

Figure 16: Vanilla Transformer architecture from [246].

There are three types of attention depending on the source of queries and
key-value pairs:

• Self-attention. In the transformer encoder, Q = K = V = X, X is the
previous layer’s output.

• Masked Self-attention. In the decoder of the transformer, the self-attention
is restricted such that queries at each position can only attend to all
key-value pairs up to and including that position. In other words, that
means that values beyond that position are hidden or ”masked.” This is
done by applying a mask function to the unnormalized attention matrix

Â = exp
(
Q⊤
√
Dk

)
, where the illegal positions are masked out by setting

34

Âij = −∞ if i < j. This attention type is often called autoregressive or
causal attention.

• Cross-attention. The queries are projected from the outputs of the pre-
vious decoder layer, where the keys and values are projected using the
outputs of the encoder.

Transformers use positional embedding because, unlike RNNs or CNNs, they
do not include a notion of locality, so positional embedding is used to model
position representation. Transformers are more general-purpose architecture,
and even though they were initially designed for NLP tasks, they do not specif-
ically address certain inductive biases. It can be counter-intuitive to think that
a model with no inductive biases has replaced other methods that were previ-
ously state-of-the-art tasks, for they were specifically designed. The advantage
of transformers in this sense is that by not having strong inductive biases like
RNNs and CNNs, they can learn long-range dependencies more effectively from
given enough data. Another property of transformers is that they get better the
bigger they get, meaning that their performance scales up depending on their
number of parameters, at the expense of being more computationally expensive.

There are many types of transformers, with architectural changes or more ef-
ficient computations. Two important variations are the encoder-only transform-
ers with models such as BERT [50], which is used to learn text representations
that then can be used for a variety of downstream tasks and the decoder-only
transformers like GPT [26] that are trained for text generation, given an input
sequence, they try to predict the next ones. Beyond language, transformers
have been used for different tasks such as computer vision [51], high-resolution
image generation [280], learning on graphs [110], multi-modal learning [95], for
predicting chemical reactions [222], predicting the structure of proteins [204],
climate modeling [184][176] and many more.

The main limitation of using transformers is the amount of data and com-
putation they require. This is especially challenging for science since data is
decentralized, and because of the computational expense, training these mod-
els is prohibitive to labs with modest resources. With computational hardware
and algorithms getting more powerful and efficient, and with the increase of
collaborative efforts, the adoption of these models for scientific problems will
grow and bring great capabilities in terms of generalization to complex problems.

2.7.3 Deep Learning And Differential Equations

Differential equations constitute the mathematical modeling tool used in the
natural sciences. Through them, we can encode physical processes, chemical
reactions, stochastic processes, etc. Differential equations serve as an explain-
able modeling tool to understand what is happening behind certain phenomena

35

and predictive models through their solution with numerical methods. The so-
lution of differential equations gets difficult when we encounter problems with
multi-physics/ multi-scale behavior because of the cost of computation, because
of ill-posed problems where some conditions are missing, or when the model is
not accurate enough. In the case of the use of numerical methods for inverse
problems, where we want to infer properties of the system via simulations, or
when want to use them for optimization and control, requires reduced-order
or surrogate models that mimic the system response and are fast to compute
because the direct use of the full-order model is computationally prohibitive.

To improve current modeling approaches in science, integrating data in mod-
els is of particular interest since the availability of data from multiple experi-
ments and simulations is growing every year. Machine learning, particularly DL,
is a promising methodology because of its capability of universal approximation
on the big data regime and automatic feature detection. However, unlike com-
puter vision and NLP, where data is massively available, scientific data presents
other challenges as it is more expensive, presents different types of modalities, is
harder to reproduce, and is dispersed among different research centers, in many
cases restricted to internal use due to confidentiality issues. In addition to that,
the requirements of data-driven methods in science are more constrained be-
cause several properties inherent to the system must be learned as well, making
complex optimization objectives.

For the reasons mentioned above, new machine learning methods have been
developed that exploit the structure of physical systems to make models more
appropriate for scientific applications. These methods are based on the numer-
ical methods used to obtain the solution of partial differential equations (PDE)
and ordinary differential equations (ODE). The first method introduced is the
physics-informed neural network (PINN) [198] that uses the PDE residual as op-
timization objective/constraint, Neural Operators [117] that attempts to learn
operators on functional spaces and neural differential equations [106] that build
neural networks as infinite depth dynamical systems that are solved with an
ODE integrator.

Physics-Informed Neural Networks

Physics-Informed Neural Networks (PINNs) exploit neural networks and au-
tomatic differentiation (AD) to calculate the derivatives relevant to the system
modeled by a PDE and use this PDE as an optimization objective. On the ML
side, PINNs can be seen as a special form of Neural Implicit Representation
[161], which uses coordinate-based neural networks (commonly MLPs) to rep-
resent a signal. In the case of PINNs, the signal the NN represents a function
u(x, t) that satisfies a PDE du

dt = N (x, t, u) for given initial and boundary con-
ditions.

To illustrate better how PINNs work, let’s take, for example, the viscous

36

burgers’ equation:

∂u

∂t
+ u

∂u

∂x
= v

∂2u

∂x2
(39)

We want to solve this equation for a specific initial condition u(x, 0) = u0 and
Dirichlet boundary conditions u(x, t) = f(x), ∀x ∈ ∂Ω, where Ω is the physical
domain of interest, and ∂ω represent its boundaries. The general approach to
solving the PDE is to discretize it to form a system of differential methods and
then solve it with an appropriate numerical method. With the PINN, the neural
network is a parametric function whose weights are determined by optimization.
Assuming we have data of the solution of this equation u(x, t) for a given time
interval t ∈ [0, T] and x ∈ Ω ⊂ R we get the approximated the solution uθ(x, t)
of eq.39 by minimizing:

L = λ1Ldata + λ2Lpde (40)

Ldata =
1

N

N∑
i=0

||u(i)(x, t)− uθ(x, t)||2 (41)

Lpde =
1

Npde

Npde∑
i=0

∥∥∥∥∂uθ∂t + uθ
∂uθ
∂x
− v ∂

2uθ
∂x2

∥∥∥∥2
(xi,ti)

(42)

Where λ1 and λ2 are multipliers that regulate the importance of the terms of
the loss function. In PINNs, these hyperparameters are important as they can
improve the accuracy and convergence of the learning process, which determines
if the PINN will fail or not [253][256]. A diagram of this kind of PINN is shown
in fig.17.

The advantage of PINNs over numerical methods is that they do not rely
on a mesh-based discretization since we use automatic differentiation to com-
pute partial derivatives. With the possibility of using data to optimize the
model, inverse problems, or work on cases with boundary/initial conditions ex-
tracted from observational data. PINNs can work on different types of PDEs like
Navier-Stokes equations [199] and RANS equations [56] used in CFD, stochastic
differential equations [272][43], Poisson equation [156], among several others.

Nevertheless, one of the main limitations of PINNs is their inability to tackle
multi-scale problems like turbulent flows. This is mainly due to a problem
known as spectral bias [196]. This error means neural networks better fit lower-
frequency functions, and the higher frequencies can be neglected or difficult to
learn. This can be mitigated by designing special architectures or methods like
Fourier feature embeddings [239]. This consists of adding an input embedding
based on a sinusoidal representation of the coordinates. Fourier Features help
to learn higher-frequency details, as seen in Fig. 18. Fourier Features are
calculated as follows:

37

Figure 17: Diagram of physics-informed neural network for approximating the
solution to Burgers’ equation. A coordinate-based NN represents the solution
function that satisfies certain IC and BC. The derivatives are calculated through
automatic differentiation, so a computational mesh is not required.

γ(v) = [cos(2πBv), sin(2πBv)]T (43)

Where B is a Gaussian random matrix and v is the vector containing the
input coordinates (x, y, z) for 3D or (x, y) for 2D data.

Figure 18: Passing input points through a Fourier Feature mapping enables an
FFN a) to learn high-frequency functions for different tasks. The network takes
as input the coordinates and outputs the RGB colors or other properties [239].

However, still, for PINNs, this issue is not fully resolved for multi-scale prob-
lems [254], as PINNs require careful selection of Fourier feature embeddings; this

38

is dependent on the nature of the problem and requires domain knowledge. This
is prohibitive to do in cases where some parts of the physics are unknown, and it
hinders generalization for more complex dynamics like turbulence, where these
embeddings have to be re-adjusted when the parameters of the model change.

Another problem of PINNs is their trainability. The loss term comprises
data and PDE residuals, which is a non-convex optimization problem. Some-
times, the data can be noisy or have some errors if it comes from under-resolved
numerical simulations; this may cause competing behavior between loss terms
[253]. Techniques to remedy these issues include special neural network architec-
tures with adaptive activation [96][97], learning rate annealing methods [253],
and adaptive sampling of the data points to ameliorate the convergence [86].
This chooses PINN very hard, depending on the system to be learned. On the
other hand, the computation of derivatives can be a drawback, especially when
high-order derivatives appear, making the optimization process very slow.

Although limitations exist, PINNs continue to develop in theory and ap-
plications. For example, PINNs are being used to develop simulation software
that uses ML to integrate data that can be used for digital twins and inverse
problems, as is the case of NVIDIA modulus [86]. PINNs have been used for
applications such as finding blow-up of solutions to the Euler equation [257]
and for optimal control of PDEs [169]. Another outlook is the combination of
PINNs with other ML methods to make more general models with convergence
guarantees [286][252].

Neural Operators

Neural networks are mappings between finite-dimensional spaces, for exam-
ple, a finite set of images to a finite set of classes. In the real world, many
problems can be modeled as infinite dimensional spaces of functions, for exam-
ple, the prediction of climate events as a function of variables like Temperature
or wind velocity, which are themselves functions that depend on location and
time. Learning the mapping between function spaces has led to the design of
novel deep learning architectures that can be classified as neural operators [117],
which are independent of the discretization of the function space. One example
of the application of a learned operator can be the learning of the solution oper-
ator of a PDE, where the input is a function of the initial condition, boundary
conditions, or coefficients, and the output is the solution function of the PDE.
What is advantageous about this framework is that, in theory, subsampled sets
of these function spaces could be learned and generalized to points not seen dur-
ing training. Another advantage is that the operator could be learned without
knowing the underlying model or parts of it, which allows one to apply them to
data where some parts of the model are unknown or missing.

The goal of neural operators is to learn the mapping between two infinite-
dimensional spaces using a finite set of observations of input-output pairs. Let’s

39

take A and U , Banach spaces of functions defined on bounded domains D ⊂ Rd,
D′ ⊂ Rd′ respectively and G† : A → U be a non-linear mapping. Supposing
we have observations {aj , uj}Nj=1 where aj µ are independent and identically
distributed samples drawn from some probability measure µ supported on A
and uj = G†(aj) is possibly corrupted with noise. The goal is to build an
approximation of G† by constructing a parametric mapping:

Gθ : A → U , θ ∈ Rp (44)

With parameters from the infinite dimensional space Rp and then choosing
θ† ∈ Rp so that Gθ† ≈ G†. We find the parameters by solving the empirical-risk
minimization problem [117]:

min
θ∈Rp

Ea∼µ
∥∥G†(a)− Gθ(a)∥∥2U ≈ min

θ∈Rp

1

N

N∑
j=1

∥uj − Gθ (aj)∥2U (45)

The general framework of a Neural Operator follows these principles: fol-
lowing the definition by [117] let us assume that the input functions a ∈ A are
Rda valued and defined in the bounded domain D ⊂ Rd. In contrast, the output
functions u ∈ U are Rdu valued and defined on the bounded domain D′ ⊂ Rd′ .
The proposed architecture Gθ : A → U has the following overall structure:

1. Lifting: the input is mapped to the first hidden representation in higher
dimensional feature space: {a : D → Rda} → {v0 : D → Rdv0 }, where
dv0 > da.

2. Iterative Kernel Integration: for t = 0, ..., T − 1 map each hidden
representation to the next {vt : Dt → Rdvt} → {vt+1 : Dt+1 → Rdvt+1}
using the sum of a local linear operator, the integral kernel operator and
a bias function composing each layer with non-linearity.

3. Projection: Using a pointwise function, as the lifting step, we project
the hidden representation to the function space of the solution function:
{vT : DT → RdvT } → {u : D′ → Rdu}.

This structure can be represented mathematically as shown in the equation
below:

Gθ := Q ◦ σT (WT−1 +KT−1 + bT−1) ◦ · · · ◦ σ1 (W0 +K0 + b0) ◦ P (46)

Where P : Rda → Rdv0 ,Q : RdvT → Rdu are the local lifting and pro-
jection maps respectively, Wt ∈ Rdvt+1

×dvt are local linear operators, Kt :{
vt : Dt → Rdvt

}
→
{
vt+1 : Dt+1 → Rdvt+1

}
are integral kernel operators, bt :

Dt+1 → Rdvt+1 are bias functions, and σt are fixed activation functions acting
locally as maps Rvt+1 → Rvt+1 in each layer. In this framework, Q,P are point-
wise local operations that do not depend on the discretization of the data. This

40

Figure 19: Diagram illustrating the framework of Neural Operators. A NO layer
is defined as a way of approximating the kernel integral. In the picture, we can
observe the approximation of the kernel integral transform with graph kernel
approximation, low-rank approximation, and the Fourier transform [117].

is what it is meant by local. The idea behind the lifting and projection is that
we can project to higher dimensions where non-local parts can be learned better
[117]. Afterward, the kernel integral layers define the neural operator type to
be implemented. The basic form of the integral kernel is:

(Kt (vt)) (x) =
∫
Dt

κ(t)(x, y)vt(y)dy ∀x ∈ Dt+1 (47)

What happens afterward is that we need a numerical approximation of this
integral kernel to work with, and how we make this approximation defines the
type of architecture to be used (see fig. 19). The kernel can be approximated
via Graph Neural Networks [139][140], Fourier transform [141], Linear approxi-
mation [117], attention mechanism [33][137][114], Chebyshev/Fourier series [59],
wavelets [80], among others.

Neural operators are inspired by the theorem of universal approximation of
continuous functionals [41] and nonlinear operators [42] with neural networks.
The DeepONet (Deep Operator Network) [154] is a special type of neural op-

41

erator directly inspired by these theorems. According to [154], The theorem of
universal approximation for operators reads as follows:

(Universal Approximation Theorem for Operators). Suppose that σ
is a continuous non-polynomial function, X is a Banach Space, K1 ⊂ X,K2 ⊂
Rd are two compact sets in X and Rd, respectively, V is a compact set in
C (K1) , G is a nonlinear continuous operator, which maps V into C (K2). Then
for any ϵ > 0, there are positive integers n, p,m, constants cki , ξ

k
ij , θ

k
i , ζk ∈

R, wk ∈ Rd, xj ∈ K1, i = 1, . . . , n, k = 1, . . . , p, j = 1, . . . ,m, such that:

|G(u)(y)−
p∑
k=1

n∑
i=1

cki σ

 m∑
j=1

ξkiju (xj) + θki

︸ ︷︷ ︸

branch

σ (wk · y + ζk)︸ ︷︷ ︸
trunk

| < ϵ (48)

holds for all u ∈ V and y ∈ K2.

The DeepONet is derived from the theorem in eq.48 by replacing the two
terms in the equation as neural networks. We will have a branch net that eval-
uates the discretized input function at specific sensor locations and a trunk net
that processes the new location where the operator will be evaluated. We can
interpret the output of the DeepONet sub-networks as the trunk net being a
basis function evaluated at specific locations and the branch net being a coeffi-
cient function dependent on the input function’s measurements. In the standard
DeepONet formulation, both the branch net and trunk net are fully connected
MLPs, but they can be other models as CNNs or RNNs for branch nets or POD
basis for the trunk net. Unlike the previous general neural operator formulation,
the DeepONet is limited to discretizing the input function and the number of
sensors since this variable is fixed at the beginning as a hyperparameter. For
different types of operators and problems, different amounts of sensors and mea-
sured features may be needed (see fig.20).

Neural Operators have been used in a wide variety of applications. They
have been used for weather forecasting [184], for simulations of the behavior
of viruses [243], for faster sampling of diffusion models [282], bayesian inverse
problems [101][138], prediction of chaotic dynamics [142][252], solving PDEs
[255][143], solving stochastic PDEs [215], inference of bubble dynamics [145],
and an increasing list of other applications. Neural Operators can be used as
a general framework to infer operators, even when a theoretical formulation of
them doesn’t exist like token mixing for computer vision applications [78].

Neural operators still suffer from limitations in terms of scalability and gen-
eralization. As with PINNs, there are many variations, and they struggle to
achieve small errors on multi-scale problems. Integrating techniques inspired
by large models and incorporating more physical biases on the models can help

42

Figure 20: Diagram of DeepONet. The branch net takes as input the input
function evaluated at fixed sensor locations, and the trunk net evaluates the
operator basis at query locations, which can be arbitrary and discretization-
free.

them tackle the goal of making more accurate, scalable, and general architec-
tures for scientific ML.

Neural Differential Equations

Neural Differential Equations are a family of Deep Learning methods inspired
by interpreting neural networks as a dynamical system where a hidden state
changes with the time/depth of the network. The most simple form is the
neural ordinary differential equation (NODE) [40]:

dh(t)

dt
= f(h(t), t, θ) (49)

The forward pass of the NN becomes the solution to the initial value problem
of finding h(T) at a certain time T starting from an initial hidden state h(0). The
dynamics of the hidden state are solved through numerical integration methods
for solving ODEs. For example, we can interpret residual neural networks as
solving eq.49 with the Euler method [213]:

ht+1 = ht + f(h(t), t, θ) (50)

To train NODEs, we must backpropagate through the numerical ode solver
to calculate its derivative. To do this, we can follow one of these approaches:
discretize-then-optimize, optimize-then-discretize, and reversible ODE solvers
[106].

43

Discretize-then-optimize. This method consists of backpropagating through
the internal operations of the differential equation solver, given it was written
on a framework supporting automatic differentiation. This method is accurate
and fast with the downside of being memory hungry as this scales linearly with
the number of time-steps used in the discretization of the ODE.

Optimize-then-discretise. This method differentiates the continuous model,
thus obtaining the gradients by solving a backward-in-time ODE. This technique
is known as the continuous adjoint method[34][15]. Let h0 ∈ Rd and θ ∈ Rm.
Let fθ : [0, T] × Rd → Rd be continuous in t, uniformly Lipschitz in h, and
continuously differentiable in h. Let h : [0, T]→ Rd be the unique solution to

h(0) = h0,
dh

dt
(t) = fθ(t, h(t)).

Let L = L(h(T)) be some scalar function of the terminal value h(T). Then
dL
dh(t) = ah(t) and dL

dθ = aθ(0), where ah : [0, T] → Rd and aθ : [0, T] → Rm

solve the system of differential equations:

ah(T) =
dL

dh(T)
,

dah
dt

(t) = −ah(t)⊤
∂fθ
∂h

(t, h(t)) (51)

aθ(T) = 0,
daθ
dt

(t) = −ah(t)⊤
∂fθ
∂θ

(t, h(t)) (52)

The advantage of the adjoint method is that the memory cost of the gradient
remains constant independently of the discretization of the differential equation.
The downside of the adjoint method is that it involves solving additional differ-
ential equations, which adds a computational cost that makes the optimization
slower. In addition, the gradient is an approximation itself and depends heavily
on the value of the hidden state at time T . Making convergence and training
stability difficult when using this approach.

Reversible ODE solvers. The forward and backward passes have the same
computational cost with reversible ODE solvers. Examples of reversible ODE
solvers are the reversible Heun’s method [108] and the asynchronous leapfrog
method [171]. These methods are still in their infancy. They provide computa-
tional efficiency and a low memory footprint but have limited stability.

Neural differential equations have been used in many applications such as
image classification [40], continuous normalizing flows [76], irregularly sampled
time-series [210][107][168], generative modeling of continuous time-series [109],
system identification [193], modeling physical systems and reduced order mod-
eling [130][125][164][160].

One interesting application of NDEs is the combination of neural networks
and PDEs to add inductive biases to the machine learning method. This method

44

is called universal differential equation (UDE) [194]. They are called universal
because they can be used with ODEs, PDEs, and SDEs. This approach consists
of substituting parts of the differential equation with an ML approximator, a
neural network. The UDE’s forward pass consists of solving the differential
equation with a numerical method, and in fitting the values with data, the
derivatives are calculated with one of the previously mentioned approaches. The
general form of the UDE is forced stochastic delay partial differential equation:

N [u(t), u(α(t)),W (t), Uθ(u, β(t))] = 0 (53)

Where α(t) is a delay function and W (t) is a Wiener process. UDEs can be
used for symbolic regression (identifying terms of a differential equation), non-
linear regression, reduced order modeling, solving high dimensional equations,
model closure discovery, and other uses since these models are very flexible.

It is likely that the intersection of differential equations and neural networks
will continue to grow in the future, proportional to the growth of ML appli-
cations to scientific problems. Differential equations provide a framework to
transfer domain knowledge to ML models to make them respect physical laws,
which are computationally efficient and more interpretable.

45

3 Machine Learning for Computational Fluid Dy-
namics

3.1 Introduction

After providing an overview of the applications of Deep Learning for Computer
Vision, Sequence Modeling, and Differential Equations, this next chapter is
devoted to the literature review of Deep Learning applied to Computational
Fluid Dynamics. The objectives of this literature review are as follows:

1. Identify the main areas of applications of Machine Learning in CFD.

2. Identify the gaps and main challenges ML applied to CFD faces and con-
centrate on one of these problems for the rest of the Ph.D. project.

Several reviews address the applications of ML and CFD to fluid mechanics
[28][248][11][54][53]. The present review does not attempt to make something
different but rather to update and enrich what currently has been done with
recent information. The literature review is divided into three major appli-
cations: Turbulence modeling, Reduced Order Modeling, and Acceleration of
Direct Numerical Simulations (DNS). The following sections discuss datasets
and Uncertainty Quantification. Lastly, the closing section highlights future
directions and opportunities for the application of ML to CFD.

3.2 Machine Learning for turbulence modeling

The representation of turbulence is a complicated task because of the wide range
of active spatial-temporal scales and the chaotic nature of the flow. Due to the
growth of computational power, Direct Numerical Simulations can now simulate
flows that involve the physics of turbulence to a very precise degree of accuracy
[131]. However, techniques that approximate the turbulent flow behavior are
preferred in most industrial applications because of their reduced computational
cost. The most common of these approaches are RANS (Reynolds-Averaged
Navier Stokes) and LES (Large Eddy Simulation) methods. RANS rely on
modeling approaches to represent turbulence, so, in essence, they cost consid-
erably less than DNS. RANS models are constructed by applying averaging
techniques to the governing equations and require closures to represent the tur-
bulent stresses and scalar fluxes emerging from the averaging process.

The intuition behind RANS is to decompose the quantities of the fluid flow
in a sum of the temporally averaged part and fluctuating part. This is called
Reynolds’ decomposition since it was first proposed by Osborne Reynolds in
[203]. The velocity is decomposed in a mean and fluctuating part: u = ū + u′

where:

46

(a) (b)

Figure 21: a) DNS of homogenous isotropic turbulence b) Filtered DNS with a
box filter of size ∆ = L/32 applied [153].

ū = lim
T→∞

1

T

∫ T

0

u dt

u′ = u− ū

ū′ = lim
T→∞

1

T

∫ T

0

u′ dt = 0

(54)

By substituting eq. 54 into the momentum equation for the case of incom-
pressible flow, the resulting equation for the fluid motion is:

ρūj
∂ūi
∂xj

= ρf̄i +
∂

∂xj

[
−p̄δij + µ

(
∂ūi
∂xj

+
∂ūj
∂xi

)
− ρu′iu′j

]
(55)

In eq. 55 the term ρu′iu
′
j is the Reynolds stress tensor, and this term needs

to be closed via modeling.

The modeling of Reynolds’ stresses has progressed using a combination of
empiricism, intuition, and asymptotic theories and is constrained by require-
ments of numerical stability and computational costs. These assumptions in-
troduce potential accuracy limitations and reduced credibility on the predictive
abilities of the models. Experimental data have been used to calibrate closures
and attempt to improve the accuracy of computations. This has been done
using statistical inference techniques [191].

In LES, the larger three-dimensional unsteady turbulent motions are directly
represented, and the effects of the smaller-scale motions are modeled. The com-
putational cost of LES lies between Reynolds-stress models and DNS. LES is
used for flows in which large-scale unsteadiness is significant.

47

In a more formal sense, we solve the filtered Navier-Stokes equation with
LES, and the cutoff frequencies/scales are modeled. In fig. 21, the effect filtering
has on the solution of the NS equation can be observed. Filtering smaller scales
gives us the fields containing more energy. The velocity vector is decomposed
in a filtered and sub-filtered component, u = û+u′ For incompressible flow, the
filtered NS equation is [55]:

∂û

∂t
+ û · ∇û = −1

ρ
∇p̂+ ν∇2û−∇τSGSij (56)

Where:

τSGS
ij = ûiuj − ûiûj (57)

The term τSGS
ij is the sub-grid scale tensor. The role of a sub-grid scale stress

model is to replace dissipation with the smallest scale eddies. The problem of
turbulence modeling of LES and RANS can be considered the same problem
from an input-output perspective. However, they vary distinctively. For in-
stance, in RANS, the temporal averaging applies, and the resolution of the
equation does not change. In contrast, the LES approach changes depending
on the type of filter used, and the corresponding SGS model reacts to it, so the
model is sensible to the discretization and filter used.

3.2.1 The problem of data-driven closure modeling

Let’s take N (·) as the system of NS equations. When we apply a filter (tem-
poral or spatial) ⟨·⟩, we arrive at an undetermined system ⟨N (·)⟩ result of the
uncertainties introduced by the filtering procedure. The model is represented
as:

⟨N (·)⟩ = N (⟨·⟩) +M(·) (58)

WhereM is the model that depends on a set of independent valuesw and has
a specific functional form P(w). The model also considers a set of coefficients
c that adjust the model to the operating conditions [54]. The model now is:

M(w;P(w); c) (59)

In data-driven modeling, the focus is to calibrate the model according to the
data θ. Additional parameters are introduced, and the discrepancy δ describes
the ability of the model to represent the data. It is a function of the data and a
set of features η. The uncertainty on the data is represented by ϵθ. The general
form of a data-driven model is:

M̃ =M (w;P(w); c(θ); δ(θ,η); ϵθ) (60)

48

The data-driven modeling approach can be done in many ways. We could
bypass the explicit functional form of the model and let the model only de-
pend on data, or we could use ML to determine the coefficients of an already
established closure model.

3.2.2 Neural Networks for Reynolds Stress Tensor modeling

Neural Networks seem to be a good fit for modeling closures of their expres-
siveness and universal function approximation capabilities. Ensuring that the
learned Reynolds stress models preserve rotational invariance is important. We
must ensure that the NN preserves this property by architectural design or op-
timization. This property is important because the output anisotropy tensor
should be rotated by the same angle when the input is rotated. The strategy
is to represent the stress tensor by an invariant set of basis [190]. The eddy-
viscosity model will be Galilean invariant if it satisfies this equation:

τ̃ =

10∑
n=1

c(n)(θ,η)T (n) (61)

Where c(n)(θ, η) are the coefficients to be determined and T (n) are known
functions of the symmetric (R) and anti-symmetric (S) part of the velocity
gradient tensor. In [147], an MLP used these features to learn the coefficients
that would approximate the anisotropy tensor. In fig. 22, we can observe
the neural network designed to approximate the Reynolds stress tensor that
depends on the tensor invariants and tensors derived from the velocity gradients.
In fig. 23, a result of the TBNN model used on a RANS simulation can be
seen. This is an early demonstration that ML approaches for RANS closures
can outperform traditional models by producing more accurate mean velocity
profiles and capturing physics that previous approaches could not have modeled.

Other authors approach the closure problem differently. Instead of using
NNs, they prefer to preserve the algebraic formulation and use symbolic regres-
sion techniques like sparse identification [218] and genetic algorithms [259] to
fit algebraic models from data. These approaches are attractive because they
provide an interpretable algebraic form and are easy to implement to different
flow configurations and solvers. However, they have the limitation that they are
restricted to the prior knowledge of functional forms and variables. Combining
neural networks and symbolic regression is possible, where the NN discovers
the hidden/latent variables and models their interaction to produce the results.
Then, a symbolic regression algorithm is used to find a symbolic expression that
links the latent variables to the output. This has been done by rediscovering
simple classical physics laws [46][132] but could be further explored to extract
equations from more complex data.

49

Figure 22: Tensor-Basis Neural Network proposed by [147].

Figure 23: Streamwise velocity in the wavy wall case. Comparison of linear and
quadratic eddy viscosity models, TBNN and DNS. TBNN captures better the
separation near the wall than other eddy-viscosity models [147].

3.2.3 Machine Learning for Sub-grid scale models

On LES, the closure model must address what happens at the under-resolved
scales belonging to the eddies the computational mesh cannot capture. Since
LES simulations are commonly performed on grids coarser than DNS, the mod-
eled part accounts for what happens inside the computational cells. For this
reason, the closures are called sub-grid scale models (SGS). SGS models aim to
model the interaction between large and smaller eddies. Similar to the approach
of [147] used for RANS, [158] developed an SGS model for two-dimensional tur-

50

Figure 24: 2D slices of the turbulent kinetic energy of homogeneous isotropic
turbulence. On the left is the filtered DNS field, on the center is the field
predicted by the ESRGAN [17], and on the left is the true DNS.

bulence that takes as input to an MLP, invariant quantities of the flow.

Computer vision approaches have been applied because of the spatial nature
of the SGS modeling problem. Convolutional Neural Network approaches for
SGS modeling have been developed by several authors [12][157]. These meth-
ods essentially learn to perform super-resolution by approximating the coarser
flow solutions to ground truth high-fidelity data. These type of problems has
also been tackled by unsupervised methods such as GANs [17] (see fig. 24 for
results) and PINNs [99], although not designed directly for SGS modeling, the
loss used could be the filtered NS and let the PINN learn the mapping between a
first guess of the resolved quantities to the unfiltered terms and corrected values.

The previously seen methods have limitations in data requirements; high
fidelity data is needed to train, which may not always be available and limit
its generalization capabilities. The second issue is that these models rely on
local quantities and may fail on flows with strong long-range correlations across
scales. Lastly, CNN-based methods depend on discretization and the use of
regular grids. This is limiting for CFD since we need the SGS model to work
on different, often unstructured discretizations. One approach that is gain-
ing popularity is adding more inductive biases from the PDE to the models.
There are several ways of adding inductive biases to a DL model (see fig. 25).
One way to do this is by combining the PDE solver with a residual that is a
Machine Learning approximator, like how it is done on Universal Differential
Equations [194]. This approach relies on a differentiable physics solver, which
means we can backpropagate through the numerical method results and use
these gradients to train the closure model end-to-end. By doing this, we need
less high-resolution data, and even the neural networks used don’t need to be
very big as demonstrated it [224](see fig. 26).

51

Figure 25: From low to high inductive biases. Purely data-driven models can
incorporate inductive biases like locality, shift invariance, or roto-translational
equivariance. Differentiable physics models are constrained by known physics,
such as dynamical systems or advective and dissipative terms [224].

Figure 26: Diagram of the training method in [224]. An initial velocity field
is evolved on a DNS-resolved grid and filtered to produce ground truth data.
Using the differentiable physics solver, the same initial condition is filtered and
evolved for the training loop. The gradients of this process are computed to
update the closure term parameters.

3.2.4 Reinforcement Learning for turbulence modeling

SGS models trained with supervised learning have several limitations. To con-
struct the inputs, they are often trained on filtered data from DNS databases.
Then, the model is trained to correct the filtered inputs to match the DNS
values. The problem with the models trained this way is that they have larger
errors when tested on a CFD simulation, even if they were the optimal model for
the filtered DNS cases. This happens mainly because the explicit filtering used
to build the training data does not correspond to the one used on LES, which
can also be implicitly produced by the coarse mesh [12]. These SGS models
have not been trained to compensate for the evolution of discrepancies between
LES and DNS data, and they may be structurally unstable, accumulate high
spatial frequency errors, and diverge from the original trajectory under small

52

Figure 27: Diagram of MARL coupled with the flow solver. The agents compute
dissipation coefficients by sampling a shared policy. The agent’s state is defined
by local variables, including the invariants of the gradients and Hessian of the
velocity field and global variables composed by the energy spectrum. Depending
on the accuracy of the LES simulation, the agents receive a reward [5].

perturbations [265][172].

To tackle these challenges, closure models have been developed using rein-
forcement learning. The idea behind this is that an RL algorithm can actively
control the under-resolved simulation by adapting the coefficients of the closure
model. The advantage of the RL method is that we do not need DNS reference
data to train the model. Instead, the RL agent is trained on a cumulative re-
ward function based on the statistics of the quantities of interest that could be
obtained from DNS or experimental data. Multi-agent reinforcement learning
(MARL) has been used to learn SGS models [178] (see fig. 27). In that paper,
the authors place different agents on an LES simulation that takes as input
local flow variables and the average energy spectrum, and the agents’ action de-
termines the coefficients of the Smagorinky model. The model is trained using
remember and forget experience replay (ReF-ER) [177] and was able to repro-
duce DNS statistics and to generalize to different Reynolds numbers. This same
approach was used later on to produce wall models for LES simulations and
tested on LES simulations of turbulent boundary layers and turbulent channel
flows, demonstrating the flexibility of this method to different cases and objec-
tives.

Another interesting work applied RL to model a LES simulation’s closure us-
ing a high-order discontinuous Galerkin scheme. This type of simulation would
not work with the SL approach using reference filtered DNS data because the
filtering on the DG scheme is a complex one that depends on the numerical
fluxes across element faces [122][124][123]. In this work, the authors used a
policy network based on 3D CNNs, and it was trained using proximal policy
optimization (PPO) [221]. This paper improves the previous approach by only
depending on local quantities, being more data efficient. This method could

53

learn accurate and long-term stable models, beating the analytical models.

Through these examples, we can conclude that RL constitutes a method that
matches many of the desirable properties of an optimal closure model. Further
investigation needs to be done to improve the generalization and scalability of
these methods. As well as other advanced DL approaches for policy models that
integrate more physical properties into account. Finally, these models could be
extended to other problems arising from the solution of PDEs and other com-
plex physics simulations.

3.3 Machine learning for reduced order and surrogate mod-
eling

As seen in previous sections, the cost of simulating fluid flows is reduced by
filtering techniques as done with RANS and LES. These methods have enabled
the study of flows that exhibit high Reynolds numbers, which are relevant to
industrial applications, flows that would be expensive to simulate using DNS.
Even though the cost of simulations has reduced considerably and accurate clo-
sure models are being developed, there are cases where a further reduction in
the inference speed is needed. Tasks such as design optimization, uncertainty
quantification, and control require fast and many evaluations of the flow solver,
and even with the current cost of LES and RANS, if we add them up, we would
finish needing lots of computational hours. Because of this need, the idea of
having surrogate models of these simulations that can reliably estimate quan-
tities of interest for these tasks was born. This section discussed using ML for
surrogate models in ML-assisted reduced-order models that combine machine
learning with other mathematical techniques. Commonly, ML is used to learn a
set of coordinates on a lower dimensional manifold that is used by other meth-
ods to evolve these variables in time, and Neural PDE surrogates, where an
ML method alone, will be trained to learn the solution of PDEs produced by a
numerical solver so they can produce new solutions with other parameters in a
fraction of the time.

3.3.1 Machine Learning assisted Reduced Order Models

In fluid dynamics, reduced order models (ROM) rely on complex flows exhibiting
a few dominant coherent structures that provide coarse but valuable information
about the flow. ROMs describe these structures’ evolution, providing a lower-
dimensional version of the flow, even lower in dimension than RANS or LES.
This makes ROMs suitable candidates for surrogate models that can quickly
estimate flow quantities of interest.

The rationale behind developing a ROM consists of two stages: first, we
find a set of reduced coordinates that describe the most important flow struc-
tures. Second, a differential equation model is identified where the latent co-

54

Figure 28: Diagram comparing classic projection-based ROM and ML-ROM.
A non-linear manifold is obtained using AEs, and then the modes are evolved
using a regression model that can be data-driven too, like DMD or SINDY [248]

ordinates evolve in time. A classic technique for developing a ROM is learning
a low-dimensional basis using proper orthogonal decomposition [14] and then
obtaining a dynamical system for this trial basis using Galerkin projection of
the Navier-Stokes equation onto these modes. This family of methods is called
projection-based ROMs and is classified as ”intrusive” because it requires a nu-
merical implementation to solve the system of ODEs resulting from it. The
other type of ROM is purely data-driven, where a reduced order basis is first
identified, and then a linear model is found that evolves the dynamics in time.
This is the case of dynamic mode decomposition (DMD) [219][220].

Many methods aim to improve the representation of the reduced order coor-
dinates to improve the current state-of-the-art ROM techniques using ML. The
modes obtained by POD exist in a linear subspace that sometimes fails to cap-
ture the non-linearities in the Navier-Stokes equation. This becomes important
on flows that exhibit multi-scale behavior, where the trajectories exist on a lower
dimensional non-linear manifold. One way to obtain a non-linear reduced rep-
resentation of the flow is through auto-encoders. The representation obtained
by auto-encoders can reduce the dimensionality of the flow even further than
POD and, at the same time, have less reconstruction error [63][173].

Projection-based ROMs have been built on non-linear manifolds learned
by autoencoders. In [129], the authors trained a convolutional autoencoder
and used the learned basis on the Galerkin and least-squares Petrov-Galerkin
method. These methods produced lower errors than those that used the basis
obtained by POD, even if they were optimal. introduced further development
of this method [207], Where hyperreduction is achieved using a reduced over-
collocation method and teacher-student training. Another method for achieving
hyper-reduction is employing shallow masked autoencoders [112]. In figure 28,
it can be found the overall difference between projection-based and data-driven
ROMs.

55

Figure 29: CNN-SINDY based ROM from [66]

Projection-based methods are required to solve a system of ODEs. However,
this can be bypassed by learning a regressor that learns the temporal evolution
of the latent variables. One of these methods is the sparse identification of
non-linear dynamics (SINDY) [29]. This method learns a minimalistic model
by fitting observed dynamics to the fewest terms in a library of candidate func-
tions that might describe the dynamics (see Fig. 29). Convolutional AEs were
used to learn a reduced set of coordinates for a flow past a cylinder, then its
evolution equations were discovered using the SINDY algorithm [66].

Another Neural Network is for finding Koopman operators that linearize a
non-linear dynamical system (see fig. 30). The Koopman operator is a linear
infinite-dimensional operator that measures the advancement of a non-linear
dynamical system and its spectral decomposition into eigenvectors and eigen-
values fully characterizes the system [116][30]. Modern data-driven techniques
attempt to find a finite-dimensional approximation of the Koopman operator
mainly through dynamic mode decomposition (DMD) [219]. Obtaining this
linear representation becomes difficult for high dimensional dynamical systems
since they would require optimization on large matrices and many snapshots of
data, which would be computationally untractable. Deep Learning can learn
representations of high dimensional data, and this was done in [155] where the
authors used an autoencoder to learn representations of Koopman eigenfunc-
tions and the linear matrix that evolves the eigenfunctions in time. Koopman-
based frameworks have been compared to LSTMs [57] for learning ROMs of
turbulence, and the results showed similar performances to LSTMs with other
advantages such as less training time and data requirement but at the expense
of loss of generality. Another interesting approach used autoencoders to learn

56

Figure 30: Deep learning framework to identify Koopman eigenfunction ϕ(x).
The autoencoder learns intrinsic coordinates y = ϕ(x) and recovers x = ϕ−1(x).
An auxiliary subnet is trained to identify a linear Koopman model that satisfies
Kϕ(xk) = ϕ(xk+1) [155]

Koopman embeddings. The Koopman operator was approximated with a trans-
former model, increasing the performance of using DMD [72].

Another interesting approach is combining Galerkin projection with differ-
entiable programming. The idea is to approximate the coefficients of a Galerkin
model with a POD basis with neural networks. Then, this model is trained as
an augmented Neural ODE. By doing this, the model retains physical inductive
biases imposed by the differential equation form, so it needs less data and less
deep models than other Neural Networks. Neural Galerkin projection has been
used to learn ROMs of turbulent flows, and it exhibits numerical stability, which
is difficult to achieve for analytical ROMs and fully data-driven models [164].

There are still challenges in developing truly predictive ROMs with good gen-
eralization capabilities. The sub-space of reduced dimensionality is represented
through linear projection techniques such as POD/PCA and the Non-Linear
version with autoencoders. The limitation of AEs is the lack of interpretability
and difficulty applying them to irregular meshes and multi-scale data. Other
techniques are emerging based on Neural implicit representations that learn
a Non-linear representation of data that is mesh-independent [181]. The pa-
rameters of a Neural Network describe the non-linear manifold and can learn
spatiotemporal representations for high-dimensional data. This approach can be
used for Neural Galerkin models making very expressive ROMs for prohibitive
problems with previous methods [27][38]. Other methods attempt to learn in-
terpretable latent spaces with beta VAEs [58] and multi-scale representations
with GNNs [8].

57

3.3.2 Neural PDE Surrogates

The last section discussed hybrid ROMs that combined ML with some prior
mathematical structures. These approaches are convenient in cases with little
but accurate data and well-posed problems where a set of PDEs can describe
the dynamics. We might encounter abundant data in certain situations, but it’s
often incomplete. Alternatively, we may face a challenging scenario where we
lack essential information to formulate a well-posed Partial Differential Equa-
tion (PDE) problem, or there might be no known PDE governing the system’s
behavior. In such cases, employing a framework that utilizes data-driven models
is more suitable. These models learn the system’s dynamics without needing a
specific differential equation structure. They have the advantage of being less
intrusive and can apply to a wide range of physical systems.

Here, we define a Neural PDE surrogate (see fig. 31) as an ML model that
takes as input parameters of a dynamical system like initial state/condition,
boundary conditions, and other physical parameters, and it predicts the evo-
lution of the system in time. It differs from traditional ROMs in that the ML
model is a black box that is not restricted to the governing equations of the
system but instead is a surrogate of the PDE and numerical solver learned from
data. The advantage of this formulation is that we can design our models de-
pending on the degree of expressiveness needed. The model can be entirely
data-driven or with added inductive biases and regularization terms as needed.
This creates a route for crafting models to learn physical systems with greater
generalization.

For learning fluid dynamics simulations, several deep learning models have
been used. The combination of autoencoders and LSTMs appears many times
in the literature to learn simulations of turbulent flows [163][277][57][173][159],
these models use the autoencoder to reduce the complexity of the 3D Homoge-
nous Isotropic Turbulence (HIT) simulation and the LSTM to learn the dynam-
ics of the latent variable. Physics is embedded in the learning process by the
addition of physics-based regularization terms [165].

Other approaches based on Autoregressive CNNs are preferred over the AE-
LSTM framework because they are easier and exhibit more stable training dy-
namics. The idea behind AR-CNNs is that the CNN model is trained to predict
the next step without passing the hidden state to the next prediction or mem-
ory, as in LSTMs, and the predicted output is used as input to predict the next
one in the sequence. Models based on U-Net have been used since they can
learn the multi-scale behavior better than standard CNNs [251][81]. Physics-
based constraints have also been used to overcome data limitations and promote
better accuracy of the predictions [71]. Other authors have demonstrated that
the accuracy of the predictions improves when we learn the difference between
consecutive time steps rather than the prediction of the full state by the NN
(see fig. 32)[233].

58

Figure 31: Diagram of how a Neural PDE works. The ML model emulates the
PDE solver to predict the system dynamics given a set of conditions we would
typically require to solve the equation numerically.

The previous models are fully or partially data-driven. As a consequence,
they require big amounts of data to be trained. Training models this way can
be costly due to the computational cost of generating the simulation data, es-
pecially for complex cases. Physics-informed approaches are attractive Neural
PDE surrogate models since they require less data, can be adapted to many
equations, and do not require a numerical discretization, unlike CNNs. PINNs
have been used for solving the Navier-Stokes equations [199], as well as solu-
tions to the RANS equations [56] and LES simulations [241]. Other approaches
similar to PINNs modify the neural network architecture for better learning.
These examples include the Deep Galerkin Method [230], Deep Petrov-Galerkin
method [223], attention-based neural networks [205] and modified MLPs with
Fourier features for multi-scale problems [254]. PINNs have been integrated
into software packages that facilitate the implementation of ML algorithms for
solving PDEs. Worth mentioning are DeepXDE [154], NVIDIA Modulus [86]
and NeuralPDE.jl [287].

PINNs sometimes suffer from training instability [256] and lack of gener-
alization when we want to cover a family of solutions of PDEs with changing
parameters and initial and boundary conditions. Inspired by the task of learn-
ing the solution operator of PDEs, the Neural Operator models are designed
to learn mappings between function spaces instead of learning a single func-
tion that satisfies the PDE. We can see examples of Neural Operators applied
to CFD like DeepONet applied to learn bubble dynamics [145], Neural Opera-

59

Figure 32: a) Learned Simulator: The model is trained to learn the difference
between the previous and next state. In b), the predictions of the 1D KS
equation can be seen, c) is a case of 2D decaying turbulence, d) is compressible
decaying turbulence, and e) is from a 3D mixing layer [233].

tors for finding solution of Navier-Stokes [141][142][80], applications of LESs for
weather modeling [100][184], stochastic PDEs [215] and physics-informed neural
operators to parameterize PINNs [252][255][143].

Commonly, PDEs are solved on 3D Euclidean space that involves complex
geometries, unstructured grids, or ensembles of particles. Convolutional and
feedforward neural networks have difficulty learning in these complex domains.
For this reason, there are Neural PDE surrogate models based on GNNs. Graph
Networks have been used to learn complex particle fluid simulations [216], learn-
ing operators [140][139], message-passing GNNs [22], geometric Clifford algebra
networks [211][23] and equivariant neural networks that incorporate symmetries
for more data-efficient learning, with applications to Rayleigh-Bénard convec-
tion [250] and predicting the flow around a set of particles [227].

There is still a long road to arrive at predictive and robust surrogate models.
Different problems require different methods, and some work better than others
in certain cases. Considering the cost of generating the data and training for
the performance obtained for applications that require narrow error tolerances
and have high complexity, it would be very hard to arrive at a good surrogate
model. However, as ML advances in techniques and hardware, more opportu-
nities open to implementing better PDE learning frameworks. This requires a
big effort in collecting appropriate data, establishing benchmarks, datasets, and
good verification and uncertainty quantification procedures.

60

3.4 Machine learning accelerated DNS

Direct Numerical Simulation (DNS) enables the finding of high-fidelity solu-
tions to the Navier-Stokes equations. With DNS, turbulent flows where all the
flow structures are resolved can be simulated. For this to be possible, we must
employ fine enough spatial and temporal discretizations to capture all energy-
containing scales. This leads to a high computational cost that is proportional to
the Reynolds number, making the cost of running such simulations prohibitive
after a certain Reynolds Number (Re).

This review’s third use of ML for CFD concerns ”accelerating” the com-
putational time required to perform DNS. This leads to less time to perform
the same calculation, thus representing less cost. The first paradigm consists
of solving the Navier-Stokes equation on a coarser grid. This will introduce
some numerical errors that an ML model will correct. For example, authors
in [284] developed a method for estimating derivatives on a coarse grid with
better accuracy than finite differences. This approach was used for solving a 2D
passive scalar advection equation. It can be trained end-to-end given a differ-
entiable simulator, similar to [244]. In the same manner, neural networks have
been used to improve the results of a fifth-order WENO method by substituting
switch functions in shock-capturing methods by a NN [234]. The same authors
proposed an LSTM network to correct the time-evolving error in finite differ-
ence/finite volume methods [235]. Other authors have worked on improving
the accuracy of FVM simulations as well [98]. Some interesting results were
found on simulations of a 2D Kolmogorov flow, where an ML model was trained
to interpolate coarse-grid DNS to higher resolutions with the desired accuracy
while being able to generalize to higher Re [115]. In fig. 33, It can be observed
how this method works. At each time step, the NN generates a latent vector
at each grid location based on the current velocity field used to output learned
interpolation coefficients to calculate the velocity at the target grid points. This
method of learned interpolation could also be used in LES, even with an ana-
lytical SGS model, to reduce the discretization requirements.

The second paradigm is solving the Poisson equation with deep learning.
The Poisson equation is used in operator-splitting techniques, where first, the
velocity field is advected, resulting in a new velocity field u∗ that doesn’t satisfy
the incomprehensibility constraint. This velocity is used to find the pressure
with the pressure-Poisson equation:

∆t

ρ
∇2p = −∇ · u∗ (62)

That is then plugged into the momentum equation to find the corrected ve-
locity values. This step is commonly the most computationally expensive step
on CFD codes. For this reason, reducing the time required to perform these
computations leads to good savings. Motivated by this problem, authors in [2]
substituted the Poisson solver with a CNN and tested it on a buoyancy-driven

61

Figure 33: Diagram of ML accelerated DNS by [115]. a) plot of accuracy vs.
computational cost. b) Training and validation samples: The model was trained
on forced flow and could generalize to a larger domain, decaying turbulence
(without forcing), and higher Re. c) Single step of the learned interpolation
method.

flow. Having good results at a low Richardson number. Other authors employed
CNNs to infer the solution of the Poisson equation on a cartesian grid [180].
Their approach decomposes the original Poisson problem into a homogenous
Poisson problem and four inhomogeneous Laplace subproblems, which resulted
in errors below 10% of the residual. A recent method used a PINN as a linear
Poisson solver [156].

A third paradigm involves reducing the computational domain of the simu-

62

lation. This is commonly done by the specification of turbulent boundary condi-
tions, which represent the incoming turbulent flow resulting from some previous
physical process. ML models have been used to develop inflow turbulence gen-
erators that produce realistic turbulent flow, methods based on autoencoders
[64], AE-LSTMs [277], GANS [111] and transformers have been implemented.
Nevertheless, these models tend to suffer from instability and generalization
constraints. Other questions have not been addressed properly, such as the cou-
pling with the current CFD code and generalization to complex flows.

Finally, we want to highlight the use of large language models for perform-
ing linear algebra [37] of reinforcement learning for the automatic discovery of
faster algorithms [61]. These methods could assist in the development of faster
linear solvers for the Poisson equation adapted to modern HPC architectures,
develop faster algorithms for the solution of the Navier-Stokes equations alto-
gether, or develop better strategies for using resources on heterogeneous modern
HPC hardware.

3.5 Fluid Dynamics Benchmarks and Datasets for Data-
Driven CFD

One of the most important parts of a machine learning project is the data. Good
data is important since we cannot predict what doesn’t exist in the database. A
good database should contain sufficient statistically independent and identically
distributed samples and be balanced enough not to introduce a bias toward cer-
tain classes or labels. ML has advanced partly thanks to the public availability
of standard datasets used extensively to test different ML algorithms. Bench-
mark datasets such as MNIST [128], CIFAR [120], and Imagenet [49] have been
used to accelerate the iteration of new ideas and compare them to previous
ones. We have discussed before that in fluid dynamics, the cost of data is ex-
pensive in terms of production and storage. Nevertheless, this is a scientific field
with decades of work where experiments and simulations produce lots of data.
The main problem with this type of data is that they are mostly decentralized,
uncurated, and often inaccessible to the outside public due to their sometimes
confidential nature.

The advantage of open access, good quality data would accelerate the ad-
vancement of data-driven approaches for CFD by enabling faster testing of ideas
and having metrics and benchmarks to measure our models. We believe that
a good database for ML for CFD should be based on the FAIR (Findable, Ac-
cessible, Interoperable, Reusable) principles defined in [262]. These principles
are:

• Findable: The first step in (re)using data is to find them. Metadata and
data should be easy to find for both humans and computers. Machine-
readable metadata are essential for the automatic discovery of datasets

63

and services.

1. (Meta)data is assigned a globally unique and persistent identifier.

2. Data is described with rich metadata.

3. Metadata clearly and explicitly include the identifier of the data they
describe.

4. (Meta)data is registered or indexed in a searchable resource.

• Accessible: Once the user finds the required data, she/he/they need to
know how they can be accessed, possibly including authentication and
authorization.

1. (Meta)data is retrievable by their identifier using a standardized com-
munications protocol.

(a) The protocol is open, free, and universally implementable.

(b) The protocol allows for an authentication and authorization pro-
cedure, where necessary.

2. Metadata is accessible, even when the data is unavailable.

• Interporable: The data usually needs to be integrated with other data.
In addition, the data needs to interoperate with applications or workflows
for analysis, storage, and processing.

1. (Meta)data use a formal, accessible, shared, and broadly applicable
language for knowledge representation.

2. (Meta)data use vocabularies that follow FAIR principles.

3. (Meta)data include qualified references to other (meta)data.

• Reusable: FAIR’s ultimate goal is to optimize data reuse. To achieve
this, metadata and data should be well-described to be replicated and/or
combined in different settings.

1. (Meta)data are richly described with a plurality of accurate and rel-
evant attributes.

(a) (Meta)data is released with a clear and accessible data usage
license.

(b) (Meta)data is associated with detailed provenance.

(c) (Meta)data meets domain-relevant community standards.

We have identified a group of datasets for ML for CFD that comply with
the FAIR principles. One of the most widely used databases for turbulence
study is the John Hopkins Turbulence database [186][136] that contains DNS
simulations of forced HIT, turbulent channel flow, boundary layers, and oth-
ers. In the same manner, the Vinuesa Lab at KTH made public a collection of
datasets of fluid simulations [249][247] that contains examples of duct flow, flow

64

over an airfoil, and turbulent boundary layers. Another dataset uses a graph-
based representation of steady-state Navier-Stokes that enables the application
of graph-based methods to these problems [19]. This work also includes bench-
mark metrics based on physical metrics to assess models’ performance. This
dataset is also extensible by users to include more cases. Similarly, authors in
[20] proposed a dataset of 2D RANS simulations over NACA airfoils to test ML
models for turbulence modeling or surrogate modeling. This work also provides
a set of benchmarks well-suited for the tasks. In a more general sense, there are
datasets designed for related problems. PDEBench [237] that has a collection
of simulations of different PDEs, which includes compressible and incompress-
ible Navier-Stokes, and PDEArena [81] that includes data-sets of the 2D Navier
Stokes, shallow water equations and Maxwell Equations. It also includes a col-
lection of pre-trained CNNs and FNOs on these problems. In terms of universal
benchmarks for ML for CFD, there are not many test cases adopted by the
community, relying mainly on physical metrics related to the problem, such
as drag force, turbulence statistics, mean-squared error, energy spectrum, etc.
One of the worth-mentioning efforts is the open challenge in RANS turbulence
modeling by the NASA symposium on turbulence modeling, which includes a
series of cases to test a turbulence model. This constitutes a good test for an
ML model in terms of generalization as it would have to perform across different
flow configurations [1]. Further work would need to be done to establish good
baseline datasets and benchmarks for ML-drive CFD that cover more flow cases
and permit the development of models for different tasks. This will accelerate
the research process and foster more collaborations in the same way that has
been done with ML applied to other areas.

3.6 Uncertainty Quantification of Machine Learning Meth-
ods for Fluid Dynamics

Uncertainty Quantification is the science of quantitative estimation and char-
acterization of uncertainties. In computer simulations, quantifying these un-
certainties is a challenging process. The complexity of the uncertainties of
simulations arises from the imprecision of the inputs (aleatory uncertainties)
and limitations intrinsic in the physics models (epistemic and model-form un-
certainties). The first approach in UQ is identifying sources of uncertainties
and introducing an appropriate description in probabilistic terms, which then is
propagated computationally. UQ aims to determine the confidence interval of
the predictions and how the uncertainties affect the variability of the predictions
of quantities of interest.

Verification, validation, and uncertainty quantification of models are impor-
tant in CFD, but this step is commonly bypassed by ML research for CFD. For
ML, this is difficult as it is difficult to guarantee convergence rates and error
bounds due to the lack of theory of ML models. Also, the interpretation of ML
models is a challenge due to the complexity of the models.

65

In Deep Learning, quantifying uncertainty associated with noisy and limited
data and overparameterization is very important in predicting physical systems.
The most successful family of UQ methods for DL are based on the Bayesian
framework [68][69][127]. Using DL for PDE-related problems also adds the un-
certainties relevant to PDE modeling, making a very complicated scenario in
Fig. 34 we can observe the sources of uncertainties commonly found in SciML
[192].

Figure 34: Total uncertainty describing the contributions of data (missing,
gappy); physical models(misspecification, stochasticity); neural networks (ar-
chitecture, hyperparameters, overparameterization); and posterior inference.
Aleatoric uncertainty is due to noisy data. Epistemic uncertainty is due to
noisy and limited data and NN overparameterization [192].

A big family of methods can be employed for UQ, depending on the nature
of the task. Deep Ensemble methods [126] are good but may require training
a model many times with different initializations, which is expensive. Hamil-
tonian Monte Carlo [174] achieves computational accuracy and efficiency for
problems with small datasets. For big dataset problems, Langevin Dynamics
[260], Mean-field Variational Inference [16], and Monte-Carlo dropout [69] are

66

more computationally efficient. For solving ODE/PDE problems with and with-
out historical data, the use of a Bayesian Neural Network as the generator of a
physics-informed GAN is recommended as surrogate [272][273]. For Neural Op-
erator problems, the physics-agnostic functional prior can be used to quantify
uncertainties caused by incomplete data, a deep ensemble to quantify model un-
certainties. Inference methods such as Hamiltonian Monte-Carlo and Langevin
Dynamics are recommended if the Functional prior is used. Another training
model technique that includes uncertainty estimates is the stochastic weight av-
eraging Gaussian method (SWAG) [94]. This involves training a model multiple
times and using the averaged weights as the most optimal set of parameters.
The SWAG method have been used to Neural PDE problems [283] and surro-
gate models of fluid flow [167] (see fig. 35).

Figure 35: Diagram of SWAG framework for UQ of fluid flow surrogate model
[167].

3.7 Challenges and Perspectives

After reviewing the diverse set of applications of Machine Learning to CFD,
we have identified the following areas that represent current limitations and
opportunities for future work on Machine Learning for CFD:

1. The need for data: Machine learning relies on function approximation
with high dimensional parametric space. For ML to produce reliable esti-
mations with low variance and bias, sufficient data is needed. As discussed
before, CFD data is expensive to produce, and few datasets are available

67

for public use. More public databases that comply with FAIR principles
are needed to reduce ML-CFD research costs and accelerate their advance-
ments. So far, we have datasets covering some canonical turbulence cases
and other types of flows. Datasets for multiphase flows, environmental
fluids, and multiphysics problems would open up the possibilities of what
ML can do for scientific discovery in CFD.

2. Data-Model Consistency: An ML model must be robust against train-
ing and inference data inconsistencies. In CFD, we commonly train on
reference data from DNS, a resolved LES/RANS simulation, or experi-
ments. Then we would like to apply the model in a different context, like
different discretization or numerical methods where the inputs would be
different than those we used to train. Handling this kind of inadaptation
is critical for using ML in CFD. This problem has not been addressed
extensively. Most publications on ML for CFD stop on a priori testing of
the ML model alone without putting it in production for the task they
were designed for with data it may encounter on a CFD application. An
area of further work would be applying domain adaptation techniques to
handle distribution shifts, reinforcement learning, and transfer learning.

3. Data-Efficiency: Due to the complexity of the data, ML models for CFD
need to be able to work on scenarios with sparse and noisy data. Meth-
ods for making data-efficient models are needed. Developing techniques
based on adding physics biases is an important subject for research. As
we have seen, making the NNs regularize with physical laws, differential
programming, and hybrid PDE/ML solvers constitute practical ways to
make models learn better with more accuracy and less data. Incorpo-
rating inductive biases in the form of symmetries to make NNs respect
conservation laws by design is a direction worth exploring, too.

4. Interpretability and Explainability: Knowing what is happening with
our ML model, what is learning, what we can learn, how we can fine-tune
it, and how many parameters we need are important questions with no sat-
isfactory answers yet. The interpretability of ML models is important for
CFD to select the best models for the desired task and verify and validate
the models. Symbolic regression can mitigate the interpretability issue by
providing an algebraic expression for our ML model. This also helps for
easier implementation. Techniques such as disentangling the latent space
and attention maps can help us understand what our ML is learning and
how the features influence the prediction. AutoML methods could help
regarding Neural architecture search for a selected task, facilitating CFD
practitioners who want to apply an ML method to their simulations.

5. Stable Surrogate Models for Multi-Scale and Multi-Physics prob-
lems: Deep Learning is useful for designing surrogate models of fluid
simulations with high accuracy and inference time much lower than the

68

fastest numerical simulation. However, these neural surrogates suffer from
stability issues for multi-scale problems like turbulence. Finding ways to
promote the stability of predictions is an important area of further devel-
opment. The use of Deep Learning for surrogate models for problems that
exhibit another phenomenon, such as combustion, evaporation, multiple
phases, or interaction with structures, has not been tackled too much by
previous research. This also adds another complexity that needs models
designed to consider these multiple scenarios.

6. Generalization: ML models trained for CFD are normally restricted to
some flow configuration, with a limited range of parameters and a certain
spatiotemporal discretization. Ideally, we would want an ML model to
be able to work on different geometries, computational discretization, and
simulation parameters. Models such as GNNs and transformers would be
more adapted to unstructured grids while also being able to capture the
spatiotemporal correlations that would be hard for MLPs. Also, there is
the issue of adapting a model training on certain tasks or datasets into a
different downstream task. Techniques for few-shot learning and test time
optimization can help in this regard and other frameworks mentioned ear-
lier, like transfer learning, reinforcement learning, and domain adaptation.

7. Integration of Machine Learning frameworks and CFD code:
Most CFD software is written on C, C++, or FORTRAN, and some are
not open-source. ML is commonly open-source and done on frameworks
written in Python, but a growing Julia ecosystem also exists. This compli-
cates things further since a bridge between the two languages is needed.
If doing things that require the ML model and CFD code to interact
together, like RL or active learning, the task would become more diffi-
cult. Another limitation is that the support of automatic differentiation is
limited on CFD codes, which is required for tasks requiring backpropaga-
tion through the CFD solver or an adjoint model like Neural Differential
Equations. Integration between CFD code and ML needs to be advanced
further. Also, implementing new solvers on fast languages like Julia would
make the interface between numerical methods and ML easier and faster.

8. Machine Learning for optimizing Scientific Computing: ML can
help improve CFD indirectly by improving how the calculations are done.
ML could be used to automatically discover algorithms that make more ef-
ficient use of hardware, intelligent resource management of HPC clusters,
and guide data acquisition for CFD problems. ML can also make more
efficient algorithms for adaptive step-size computation, adaptive mesh re-
finement, and shock-wave capturing.

9. Integration of experimental data and simulations: In experiments,
we can observe the physical phenomena in real life, but it can be difficult
to extract this information quantitatively. We can have quantitative mea-
surements with great precision with numerical simulations, but obtaining

69

a physically accurate model for complex cases is difficult. Taking into
account experimental data for well-calibrated simulations is essential for
valid predictions. This can be difficult due to the different experimental
and CFD data modalities. With ML, we can do the inverse problem of
obtaining equation or model parameters from experimental data and re-
constructing the flow from it to obtain the information we can’t extract
through conventional quantitative methods. It would be interesting, for
example, to reconstruct the turbulent wind profile on an actual wind farm
using ML and use this information as a realistic inflow boundary condition.
Or, for instance, enhancing visualization techniques for experiments using
ML trained on simulated data. This way, ML can help converge numerical
and experimental techniques, facilitating new scientific discoveries.

From the problems listed above, the rest of this Ph.D. work will focus on the
problem of stable surrogate/reduced-order models of turbulent flows. The next
chapter focuses on implementing and developing a data-driven surrogate model
for turbulent flow simulations. For this purpose, two methods will be evaluated:
Generative Adversarial Networks and a framework based on Autoencoders cou-
pled with LSTM networks. The main goal is to train a model that can simulate
turbulent flow using data coming from high-fidelity simulations. The model
should capture the large-scale eddy behavior and be able to extrapolate outside
the training data in time. If successful, these models could have applications
such as inflow turbulent flow generation, design optimization of systems inter-
acting with these flows, or control.

70

Part II

Neural Surrogate Models of
Turbulent Flows

4 Towards Simulating Turbulence with Deep Learn-
ing

4.1 Introduction

Turbulence is a complex and ubiquitous phenomenon in fluid dynamics, often
characterized by chaotic and unpredictable behavior. Its understanding and ac-
curate simulation have been long-standing challenges in fluid mechanics, which
would significantly impact the design of new technologies and understanding
of natural phenomena. Traditionally, the study of turbulence has relied on ex-
periments and computational fluid dynamics (CFD) techniques, which require
solving the Navier-Stokes equations to capture the intricate details of turbu-
lent flows. However, these methods often suffer from high computational costs
and can reach high accuracy only with appropriate mesh resolution, boundary
conditions, and, if needed, turbulence models. As highlighted in the review of
the previous chapter, there is a potential for Machine Learning to improve the
current techniques for turbulence simulation.

In recent years, advancements in deep learning have shown great promise
in tackling complex and data-intensive tasks. Deep learning techniques, par-
ticularly Generative Adversarial Networks (GANs) [75] and Recurrent Neural
Networks (RNNs) [74] have demonstrated remarkable capabilities in modeling
and generating complex signals like images [103] and weather forecasts [225].
This study explores the potential of leveraging these powerful tools to simulate
and predict turbulence.

The main objective of this research is twofold: firstly, to investigate experi-
mentally the feasibility of using deep learning methods for simulating turbulence
in fluid dynamics, and secondly, to evaluate the performance of these methods
as a substitution for numerical simulation and reduced order modeling methods
based on POD and projection. Specifically, we focus on two different prob-
lems: the first is generating synthetic turbulence, and the second is learning
a surrogate model of a turbulence simulation. In the first part, we explore
predicting synthetic turbulent signals using Generative Adversarial Networks
(GANs). GANs have shown remarkable success in generating realistic and high-
dimensional data by training a generator network to produce synthetic samples
that resemble actual data. We apply GANs to predict turbulent signals by for-
mulating the problem based on the Langevin equation, a stochastic differential
equation commonly used to model particle motion in turbulent flows. We ex-

71

plore the potential of generating synthetic turbulent flow through a dedicated
GAN model and evaluate the results.

The second part of this study revolves around the reduced-order modeling
of Homogeneous Isotropic Turbulence (HIT) using Convolutional Long Short-
Term Memory (ConvLSTM) networks. HIT is a fundamental form of turbulence
that exhibits isotropy and homogeneous properties, making it a suitable target
for analysis. We propose an approach that employs an autoencoder for dimen-
sionality reduction of the turbulent flow data, followed by ConvLSTM networks
to capture spatiotemporal dependencies and simulate the HIT behavior.

Throughout this research, we conduct experiments to evaluate the perfor-
mance of the deep learning-based approaches mentioned. Additionally, we dis-
cuss the advantages, limitations, and potential applications of Generative Mod-
eling and Supervised Learning techniques applied to surrogate modeling of tur-
bulent flows. The main goal is to analyze the potential and limitations of these
methods. In order to pave the way for more efficient and accurate Deep Learn-
ing approaches for turbulence simulation methods in the future.

In the subsequent sections, we present a detailed description of the prob-
lem statements for GAN-based turbulence generation and ConvLSTM-based
reduced-order modeling of HIT. We then discuss the datasets, network archi-
tectures, and evaluation metrics used in our experiments. Finally, we present
the results of these experiments and provide a comprehensive analysis of the
outcomes, leading to meaningful discussions and conclusive remarks.

4.2 Generating Turbulence Signals with Generative Ad-
versarial Networks

4.2.1 Problem Statement

This section aims to use generative methods to generate turbulent flow. The
main idea draws inspiration from the statistical description of turbulence, where
invariant statistical properties such as moments, autocorrelation functions, prob-
ability density functions, and energy spectrum characterize the flow. The meth-
ods used in this study are generative machine learning methods that aim to
learn the underlying distribution of the turbulent flow and then generate new
samples that belong to the distribution and exhibit the same physical and sta-
tistical properties as turbulence. We describe this problem as follows:

Problem Statement 4.1 Being u(t) a turbulent or turbulent signal drawn
from a probability distribution Pdata(u). The goal is to find a model parameter-
ized by θ, that, given a latent variable z drawn from a known prior distribution
Pz(z), commonly a Gaussian, serves as a mapping f(z; θ) = û that maps the

72

latent variable to an output û that belongs to a posterior distribution Pθ(û|z)
that is similar to Pu(u).

In other words, the problem to be solved is finding a generative model that
can generate turbulent flow with similar characteristics as the data it was trained
on. Such a model is trained on a dataset of N samples, {u1, u2, ..., un} that have
a probability distribution Pdata(u). The generative model, as illustrated in Fig.
36, consists of a model parameterized by θ that maps random points of a known
probability distribution to a target distribution that should be as close as possi-
ble to the target distribution. Since the samples generated by the model do not
have a corresponding target in the real data distribution, the parameters of the
model are found by minimizing some distance, like the Kullback-Leibler (KL)
divergence [121] between the known probability distribution and the distribution
of the generated samples.

Figure 36: General diagram of a deep generative model. A generator is trained
to map a sample from a prior distribution into a sample that follows the same
distribution as the training dataset.

There are different types of generative models; since this work focuses on
Deep Learning, the class of models that will be used to solve this problem is
deep generative models (DGM). A DGM is a model that employs a neural net-
work as a generator. DGMs have recently achieved outstanding performance
in the generation of images and text to a very high degree of realism and co-
herence [105][271][195]. A generative model can follow one of these main ap-
proaches: Generative Adversarial Networks, Variational Autoencoders, Normal-
izing Flows, Autoregressive Models, and Diffusion models; some of these models
were described in the previous chapter. The approach selected for this study is
the generative adversarial network (GAN) [75]. The reason for choosing GANs

73

is that they can generate signals with a meager signal-to-noise ratio compared
to VAEs and generally generate a blurry output. GANs possess lower inference
time and require less computation and data for training than diffusion models
[18], making GAN an appropriate choice for the target application, which is
the generation of turbulent flow at a lower computational cost than numerical
methods.

4.2.2 Improving GAN training with WGAN-GP

The model used in the study is a Generative Adversarial Network. As seen
previously, the GAN framework consists of two networks competing until the
process arrives at equilibrium. The generator network G represents a map-
ping from the input noise to the data space. The discriminator network D is
a function that outputs a scalar representing the probability that the sample
comes from pdata rather than the generated distribution. The discriminator D
is trained to maximize the probability of assigning the correct label to train-
ing samples and the samples generated by G. Simultaneously, G is trained to
minimize the probability of the generated sample being classified as fake [75].
This process of two networks trained simultaneously for one beating the other
defines a minimax game with a value function V (G,D):

min
G

max
D

V (D,G) = Eu∼pdata (u)[logD(u)] + Ez∼pz(z)[log(1−D(G(z)))] (63)

In a practical sense, to optimize the two networks, two loss functions are
needed, the discriminator and the generator loss, defined as:

Ldiscriminator =

m∑
i=1

[
logD

(
u(i)

)
+ log

(
1−D

(
G
(
z(i)
)))]

(64)

Lgenerator =
1

m

m∑
i=1

log
(
1−D

(
G
(
z(i)
)))

(65)

For training the model with these losses, the discriminator’s parameters are
updated by maximizing the Ldiscriminator, and then the generator’s parameters
are updated by minimizing the Lgenerator. GANs are known to be unstable in
training, making them hard to tune compared to other Deep Learning methods.
The most common problems that appear during the training of GANs are:

• Non-Convergence: Given the coexistence of two concurrently trained
networks, the challenge of achieving GAN convergence emerged as one of
the earliest and arguably most formidable issues following its inception. In
most cases, attaining the ideal scenario where both networks attain stabil-
ity and consistently yield congruent outcomes is difficult. One plausible

74

explanation for this predicament is rooted in the dynamics of the gen-
erator’s refinement across successive epochs, which inversely impacts the
discriminator’s efficacy. This phenomenon stems from the discriminator
encountering difficulty distinguishing authentic instances from synthetic
ones as the generator’s output quality improves. Should the generator con-
sistently prevail, the discriminator’s accuracy hovers around 50%, akin to
a random coin toss. This dynamic poses a significant impediment to the
overall convergence of the GAN. As the discriminator’s evaluative feed-
back progressively loses significance over subsequent epochs, generating
outputs of equal probability, the generator risks compromising its quality
if it persists in training based on these spurious instructional signals.

• Vanishing Gradients: This occurrence arises when the discriminator’s
performance surpasses the generator’s to a considerable extent. This in-
congruity may result in either imprecise updates applied to the discrimina-
tor or the attenuation of these updates over time. One of the hypothesized
explanations for this phenomenon is attributed to a pronounced penaliza-
tion of the generator, inducing saturation within the value range after the
activation function is applied, ultimately causing the gradient to diminish
and causing the generator to no longer continue learning.

• Mode Collapse: Mode collapse occurs when the generator fails to pro-
vide a variety of outputs covering the whole probability space of the data,
sticking only to one of a few modes, thus generating a low variety of sam-
ples. This happens when the generator gets stuck in local minima. In
other words, it finds the output that would fool the discriminator the
most. Meanwhile, the discriminator will always learn to reject this sample
until the generator finds another nearby point that can fool the discrimi-
nator again. This turns into a never-ending process since the two networks
overfit to exploit the short-term weaknesses of their adversary, making the
networks unable to converge.

To overcome these problems, several methods have been implemented to im-
prove the training and performance of GANs. One way is to use a different
loss function that may prevent one of the aforementioned failure modes. In
this study, we will train the GAN using the 1-Wasserstein distance, also called
WGAN, to differentiate it from the original GAN formulation [3]. The Wasser-
stein distance, also known as the Earth-mover distance, can be defined as the
minimum cost of transporting mass to transform the distribution q into the
distribution p, the cost equal to the mass times the transport distance. The
WGAN value function is defined as:

min
G

max
D

V (D,G) = min
G

max
D∈D

E
u∼Pdata

[D(u)]− E
z∼Pz

[D(G(z)))] (66)

75

Where D is the set of 1-Lipschitz functions, the WGAN metric is continuous
and differentiable almost everywhere, making it possible to train the discrimi-
nator until optimality. In this case, the better the discriminator gets, the more
reliable it gets and can continue to make the generator learn even when the dis-
criminator is more robust. The main benefits of the WGAN are that it improves
the stability of the training process, preventing mode collapse, and the WGAN
metric correlates with the generator’s convergence and sample quality [3]. One
of the limitations of the WGAN is that it requires the discriminator to satisfy
the Lipschitz constraint. To enforce this condition, the procedure proposed is to
clip the network’s weights in a compact bound by c, making the discriminator
parameters bounded in w ∈ (−c, c). This makes the network sensitive to the
hyperparameter c, where a wrong choice of this value leads to unstable train-
ing. The weight clipping also constrains the discriminator to simple functions,
limiting the model’s capability for learning complex distributions. A better
way to enforce the Lipschitz constraint is by gradient penalty. A differentiable
function is 1-Lipschitz if and only if it has gradients with the norm at most 1
everywhere. A method to enforce this property is to add a gradient penalty
regularizer that constrains the norm of the gradient of the discriminator with
respect to its inputs [79]. The loss of the discriminator then becomes:

L = E
z∼Pz

[D(G(z)))]− E
u∼Pdata

[D(u)] + λ E
û∼Pû

[
(∥∇ûD(û)∥2 − 1)

2
]

(67)

Where λ is the strength of the penalty, generally set to 10. The gradient
penalty term is calculated based on a random sample û ∼ Pû. This sampling
distribution is defined by sampling uniformly along straight lines between pairs
of points sampled from the data distribution Pdata and the generator distri-
bution Pg. The motivation for this choice is that the optimal discriminator
contains straight lines with gradient norm 1 connecting coupled points from the
two distributions. The GANs implemented in the experiments will employ the
WGAN-GP loss formulation.

4.2.3 GAN with statistical and physical constraints

Complex systems may encounter two distinct kinds of properties: determinis-
tic and statistical. To illustrate, the Navier-Stokes equations that depict the
behavior of incompressible fluid motion arise from mass and momentum preser-
vation, constituting deterministic constraints in this context. Nonetheless, the
solutions and characteristics of these partial differential equations (PDEs) reveal
intricate patterns and statistics due to the complex dynamics they represent.
For instance, turbulent flows exhibit non-Gaussian distributions in their veloc-
ity increments, and the kinetic energy spectrum of turbulence follows a decay
rate of -5/3 within a universal range of wavenumber space. These statistical
constraints pertain to the attributes of a collection of system states rather than
an individual state.

76

Generative models for fluid flows have diverse practical applications, in-
cluding expediting the creation of animated scenes in computer graphics and
providing input conditions for simulations of turbulent flows using various meth-
ods like direct simulations, large eddy simulations (LES), or hybrid LES/RANS
simulations. The primary motivation for this study comes from the current uti-
lization of GANs to generate input conditions for LES and hybrid LES/RANS
simulations. The quality of turbulence in the input flow significantly affects the
performance of LES simulations, potentially even surpassing the importance of
sub-grid scale models in LES. Such input flows are often generated through
precursor simulations involving LES in a periodic domain, which can be com-
putationally intensive and introduce artificial periodic behavior. GANs offer a
promising approach to generating these input flows. They could also find appli-
cations in hybrid LES/RANS simulations, where turbulence fluctuations with
specific mean fields and statistics are needed in transitional areas.

The domain knowledge can be incorporated into GANs through additional
regularization terms added into the Generator loss function. Studies on enforc-
ing statistical and physical constraints have been done before, and they proved
to make the GANs produce more accurate predictions of complex systems that
are governed by PDEs such as turbulent flow [266][274]. To enforce statistical
constraints, the GAN loss function becomes:

Lc(D,G) = L(D,G) + λd
(
Σ (pdata) ,Σ

(
pG(z)

))
(68)

Σ(p) denotes the covariance structure of a given distributing p, and d(., .)
is the distance between the two covariance structures. Different distances, such
as the KL divergence or the Riemannian norm, could be used. In this case,
the Froebenius norm is used since it is simpler to compute and provides better
stability during training [266]:

F (Σ1,Σ2) =
∥∥Σ (pdata)−Σ

(
pG(z)

)∥∥
F

(69)

Deterministic constraints are added similarly. For example, let u be a quan-
tity that is conserved, according to a certain conservation law in the form:

N (u) = f (70)

A GAN will be trained to emulate this physical system. To train this GAN,
a regularization term is added to the generator loss:

LC(D,G) = L(D,G) + λCphys

with Cphys = EZ∼pz(Z)[max(H(G(Z)), 0)],
(71)

Being H the physical constraint functional. For the conservation law pre-
sented above, the physical constraint can be computed as the norm of the resid-
ual of the equation 70:

Cphys = EZ∼pz(Z)∥N (G(z))− f∥2 (72)

77

Finally, these constraints are applied to the Generator’s loss because they
help the networks arrive faster at an equilibrium. When the discriminator ar-
rives at an optimum, the gradients of the generator loss are weak, and the
physical and statistical constraints help provide additional gradients that push
the learning further.

4.2.4 The Langevin Equation

To primarily assess the GAN in chaotic signals turbulence, a more simple prob-
lem is tackled. In the first test, a GAN will be trained to learn a 1D stochastic
process. The Langevin equation is a stochastic differential equation used to de-
scribe Brownian motion. It was proposed by the French physicist Paul Langevin
in 1908. The stochastic process generated by the Langevin equation is the
Ornstein-Uhlenbeck (OU) process, and its PDF evolves by the Fokker-Planck
equation. In consideration of the case of homogeneous isotropic turbulence, the
mean velocity is zero, and all fluid particles are statistically identical. Consid-
ering only one velocity component, denoted by U(t) is sufficient. The Langevin
equation is the SDE:

dU(t) = −U(t)
dt

TL
+

√(
2σ2

TL

)
dW (t) (73)

Where Tl and σ2 are positive constants. This equation can be computed
through a finite difference method called the Euler-Maruyama method, which
is the Euler method with the addition of a normal random variable in place of
the dW(t) that represents a Wienner stochastic process.

U(t+∆t) = U(t)− U(t)
∆t

TL
+

√(
2σ2∆t2

TL

)
ξ(t) (74)

Where ξ(t) is a normalized Gaussian random variable that is independent of
itself at different times and which is independent of U(t) at past times, in eq.74
The deterministic drift term (−U(t) dtTL

) causes the velocity to relax toward zero
on the timescale TL, whereas the diffusion term adds a zero-mean random in-

crement of standard deviation σ
√

2dt
TL

.

U(t) is a statistically stationary Gaussian Markov process in which continu-
ous sample paths are nowhere differentiable. As a stationary Gaussian process,
it is characterized by its mean, variance, and auto-correlation function, which
is:

ρ(s) = exp (−|s|/TL) (75)

If ρ(s) is the Lagrangian velocity auto-correlation function, then the La-
grangian integral timescale is defined by:

78

TL =

∫ ∞

0

ρ(s)ds (76)

We could verify that eq. 75 is consistent with this definition, so the coeffi-
cient TL in the Langevin equation is indeed the integral timescale of the process
[191]. A dataset is built using three Tl = [0.05, 0.1, 1]s to train the GAN. The
dataset contains 5000 Langevin processes realizations for each Tl for a duration
of T = 4Tl and with a ∆t = Tl/52. An example of the signal of the Langevin
equation can be seen in Fig. 37.

Figure 37: Sample trajectory obtained from the numerical solution of the
Langevin equation.

4.2.5 RNN-GAN for the Langevin Equation

This section describes the architectural details of the GAN used to generate
solutions for the Langevin equation. For the generator, an RNN model is used.
This choice was made for the ability of RNNs to model sequential problems.
The model used is an LSTM since it is designed to learn long-range correlations.
The LSTM consists of a single LSTM cell with a hidden dimension of 256. The
output of the cell is passed to a linear layer. This model can be seen in figure 38.

The discriminator is based on a CNN. It takes a sequence and outputs a
score. The discriminator uses 1D convolution with a kernel of size 3 and a
stride of size 2. The input layer has 256 hidden dimensions, and the following
layers have [128, 64, 32]. The output layer is linear, and LeakyReLU activation

79

Figure 38: Generator of the RNN-GAN for the Langevin equation.

is used with a negative slope 0.2. The discriminator architecture is seen in figure
39.

Figure 39: Discriminator of the RNN-GAN for the Langevin equation.

The generator and discriminator are trained using the WGAN-GP frame-
work. The loss functions to be optimized are:

80

Ldisc = E[D(G(z))]− E[D(u)] + λgp∥∇ûD(û)− 1∥2 (77)

Lgen = −E[D(G(z))] + λµLµ + λΣLΣ + λγ1Lγ1 + λKurtLKurt (78)

Where the constraint is based on the different order moments between the
real signal u and the generated signal û = G(z):

Mean : Lµ = ∥µu − µû∥2

Covariance : Lcov = ∥Σ(u)− Σ(û)∥2

Skewness : Lγ1 = ∥γ1(û)∥2

Kurtosis : LKurt = ∥Kurt(u)−Kurt(û)∥2

(79)

The mean is the first order statistical moment defined as E(u), the autoco-
variance function is calculated as:

Σ(X) =
E [(Xt − µ) (Xt+τ − µ)]

σ2
(80)

The skewness and the kurtosis are third and fourth-order moments, respec-
tively. The skewness quantifies the symmetry of the distribution. In this case,
the skewness is enforced to be zero since the PDF of the Langevin signal is a
Gaussian. The kurtosis measures the tailedness of a probability distribution of
a real-valued random variable. Bothe skewness and kurtosis are computed as
follows:

γ1 = E

[(
X − µ
σ

)3
]
=
µ3

σ3
=

E
[
(X − µ)3

]
(E [(X − µ)2])3/2

=
κ3

κ
3/2
2

(81)

Kurt[X] = E

[(
X − µ
σ

)4
]
=

E
[
(X − µ)4

]
(E [(X − µ)2])2

=
µ4

σ4
(82)

The GAN is optimized using the Adam optimizer with β1 = 0, β2 = 0.9, and
a learning rate equal to 0.0001. The batch size is 300, and the model is trained
for 160 epochs. The discriminator is trained for every 5 iterations of the gener-
ator’s update. The values of the regularization terms are λgp = 10 and λcov = 1.

4.2.6 Results of RNN - GAN on the Langevin Equation

The results of the RNN-GAN trained on the Langevin equations are presented
in this section. As previously highlighted, the RNN-GAN is trained to predict
the Langevin equation for different temporal scales. Figure 40 shows a sample of
the generated signals. Since the solution to the Langevin equation is a stochastic
process, it is difficult to assess it qualitatively from human visual perception. A

81

Better method to quantify the accuracy of the predictions is through statistics.
In fig. 41, the mean and variance of the real and generated signal. This picture
shows that the generated signal’s variance follows a similar behavior to the real
one and converges to the target values, σ = 0.10.

(a)

(b)

Figure 40: Comparison between the solution of the a) Langevin equation and
the b) GAN generated.

The second quantity to evaluate is the autocorrelation function calculated
as:

R̂(τ) =
1

(n− τ)σ2

n−τ∑
t=1

(Xt − µ) (Xt+τ − µ) (83)

The autocorrelation function of the generated and actual signal and the
probability density function are seen in Fig. 42. The time scale is calculated
for the autocorrelation functions as their integral. The table 1 shows the gener-
ated signal’s time scale and target. The relative mean-absolute-error is around
3 − 5% for the three τl, meaning the networks’ generator is well balanced and
does not suffer from mode collapse.

The next test for the GAN is to try to generate a signal for a longer time

82

Figure 41: Mean and variance for Langevin signal.

Tl GAN(s) T l(s) r-MAE
0.052 0.05 0.04
0.105 0.10 0.05
1.028 1.00 0.03

Table 1: Integral time-scale and their relative mean absolute error.

(a)

(b)

Figure 42: a) Autocorrelation function and b) PDF of the Langevin signal.

83

horizon. The trained generator predicts a Langevin signal with Tl = 0.05 for
ten times the autocorrelation time. A sample of this result is shown in figure
43 and its mean and variance in fig. 44. The autocorrelation function and PDF
are shown in figure 45, and it demonstrates that the functions do not deform,
meaning the model can extrapolate, producing a signal with consistent statistics
that could be a solution to the Langevin equation.

Figure 43: Langevin signal generated by the GAN up to T = 10Tl

Figure 44: Mean and variance for Langevin signal generated for T = 10Tl.

The discriminator and generator loss are monitored during training to de-
termine whether the GAN has fully converged, as seen in figure 46a. The loss of
the Discriminator is the 1-Wasserstein distance; if this measure is 0, it indicates
that the two distributions, the one of the GAN and the one obtained by solv-
ing the Langevin equation, are the same. The generator’s loss is not bounded,
but the expected behavior is that it is centered around some value, indicating

84

(a) (b)

Figure 45: a) Autocorrelation function and b) PDF of the Langevin signal at
T = 10Tl.

(a) Training Loss of the Discriminator
and Generator.

(b) Frechet’s Distance during training.

Figure 46: Training loss and evaluation metric.

convergence. The WGAN loss also correlates with the quality of the generated
samples. To assess this, Frechet’s distance is computed., which is used in GANs
to measure the quality of generated images [88]. The Frechet’s distance between
two multivariate Gaussians is:

FID = ∥µu − µû∥2 +Tr(Σu +Σû − 2(ΣuΣû)
1/2) (84)

It can be observed in figure 46b that Frechet’s distance correlates with the
WGAN loss. When the Discriminator loss converges, the quality score drops
and is maintained close to the minimum. The values of the WGAN loss and
FID are reported in the table 2, the mean after convergence is reported plus its
standard deviation.

Disc. Loss FID
−0.07± 0.17 0.37± 0.11

Table 2: 1-Wasserstein distance (left) and Frechet’s distance (right) during
GAN’s training.

85

4.2.7 Synthetic Turbulence Generation

After evaluating the feasibility of Generative Adversarial Networks in generat-
ing pseudo-turbulent 0D trajectories governed by the Langevin equation, the
next step is to use generative models to generate synthetic turbulent fields.
Synthetic turbulence generation has been used before DNS to study particle
dispersion and acoustic propagation in Homogenous Isotropic Turbulence. Ex-
amples of this can be found in the Literature by Kraichnan [118], who developed
a method to generate a divergence-free synthetic turbulence field using a sum
of random Fourier Modes. This technique has continued to be used on many
applications for initializing DNS simulations [206] and generating inflow bound-
ary conditions [267]. This study will use a technique derived from the original
Kraichnan approach to generate instantaneous synthetic turbulence data and
train a Generative Adversarial Network designed to substitute this method. The
Goal for this is not to propose a new method for synthetic turbulence genera-
tion but to take advantage of the relatively low cost of obtaining synthetic data
to assess the capacity of generative models to infer new turbulent flows from
scratch so that they could be applied later on turbulent flow data pertinent to
realistic applications.

As stated earlier, the method used to generate the training data extends
the Kraichnan approach. When applied to discrete grids, Kraichnan’s method
originally had a mass conservation issue. This problem was alleviated by Saad
et al. [214], and it is the method used to generate the data. Given a spatially
varying velocity field u(x, y, z) ≡ (u, v, w), its Fourier series representation at
point x is:

u(x) = 2

M∑
m=1

qm cos
(
κmk̂m · x+ ψm

)
σ̂m (85)

Where M is the number of modes, qm is the amplitude, km is the mth wave
number, k̂m ≡ (kx,m, ky,m, kz,m) is the unit direction vector associated with
km and σ̂m ≡ (σx,m, σy,m, σz,m) is a unit direction vector and ψm is a phase
angle. The method aims to generate a series of M modes at an arbitrary point
in space; the method samples a random k̂m and ψm with m being drawn from
the energy spectrum where qm =

√
E (κm)∆κ. The remaining unknown is

the direction vector σ̂m that can be obtained by imposing the divergence-free
condition. In the Kraichnan approach, the continuous divergence-free condition
is used to compute σ̂m:

∇ · u = −2
∑
m

qmκmk̂m · σ̂m sin
(
κmk̂ · x+ ψm

)
= 0; ∀m ∈ {0, 1, . . . ,M}

(86)

This constraint can be satisfied by defining the vectors k̂m and σ̂m to be
orthogonal:

86

k̂m · σ̂m = 0, ∀m ∈ {0, 1, . . . ,M} (87)

This condition is valid only if the discretization is fine enough so the Fourier
Series approximation is close to the continuous limit. For coarser grids, this
model leads to divergent velocity fields. To promote the discrete divergence-free
constraint, first, the discrete divergence equation is considered in a staggered
grid:

∇d · u =
ui+1/2,j,k − ui−1/2,j,k

∆x
+
vi,j+1/2,k − vi,j−1/2,k

∆y

+
wi,j,k+1/2 − wi,j,k−1/2

∆z

(88)

Where:

ui+1/2,j,k = u

(
x+

∆x

2
, y, z

)
= 2

M∑
m=1

qm cos

[
κmkx,m

(
x+

∆x

2

)
+ κmky,my + κmkz,mz + ψm

]
σx,m

(89)

After substitution, the following was obtained:

∇d · u = −2
M∑
m=1

qmσ̂m · k̃m sin (km · x+ ψm) (90)

Where:

k̃m ≡
(
k̃m,x, k̃m,y, k̃m,z

)
=

[
2

∆x
sin

(
1

2
κmkx,m∆x

)
,

2

∆y
sin

(
1

2
κmky,m∆y

)
,
2

∆z
sin

(
1

2
κmkz,m∆z

)] (91)

To enforce the divergence-free condition, the following equation is used as a
constraint:

σ̂m · k̃m = 0, ∀m ∈ {0, 1, . . . ,M} (92)

This is accomplished by setting the modal direction vector to be:

σ̂m =
ζ̂ × k̃

|ζ̂ × k̃|
(93)

Where ζ̂ is randomly drawn from a uniform distribution. In the end, if
the grid spacing approaches zero, k̃m will approach κmk̂m yielding the correct
infinitesimal limit condition. The step-by-step procedure to generate a synthetic
turbulent velocity field is described in algorithm 1.

87

Algorithm 1: Algorithm for generating Synthetic Turbulence on a 3D

grid

Input: M, (Lx, Ly, Lz), (Nx, Ny, Nz), E(k), Input data in respective

order: number of modes, Domain’s dimension, Grid resolution,

and Input Spectrum.

Output: Velocity field u(x, y, z)

κ0 ←max
(

2π
Lx
, 2π
Ly
, 2πLz

)
/* Compute minimum wave number */

κmax ←max
(
π
∆x ,

π
∆y ,

π
∆z

)
/* Compute Maximun Wave number */

κm ←κ0 + κmax−κ0

M (m− 1) /* Generate a list of M equidistant

modes */

foreach κm do

/* With φm = U(0, 2π) and θm = cos−1(t) being t = U(−1, 1).
*/

kx,m = sin (θm) cos (φm) ; ky,m = sin (θm) sin (φm) ;

kz,m = cos (θm)

k̃m =

[
2

∆x
sin

(
1

2
κmkx,m∆x

)
,

2

∆y
sin

(
1

2
κmky,m∆y

)
,
2

∆z
sin

(
1

2
κmkz,m∆z

)]
ζx,m = sin (θm) cos (φm) ; ζy,m = sin (θm) sin (φm) ;

ζz,m = cos (θm)

σ̂m = ζ̂×k̃

|ζ̂×k̃|
ψm = U(−π/2, π/2)

end

return u(x) = 2
∑M
m=1 qm cos

(
κmk̂m · x+ ψm

)
σ̂m

The dataset that will be used to train the GAN is generated using the
procedure described in algorithm 1. The spectrum that will be used is the Von-
Karman Pao spectrum [7]. For this spectrum, 500 boxes of isotropic turbulence
are generated with a size of L = 9 2π

100 and a resolution of 1283 using 1000 Fourier
modes, a sample of this velocity field can be observed din Fig. 47.

88

Figure 47: Sample velocity field generated with the proposed synthetic turbu-
lence method.

89

4.2.8 GAN for generation of 2D slices of synthetic turbulence

The first test of the GAN for synthetic turbulence is to try to generate 2D slices
of the 3D velocity field, and this problem is slightly different than the one of
the Langevin equation since the goal is to generate instantaneous velocity fields
without time dependence. For this reason, the methods that will be presented
here are drawn from image generation techniques. Training data for this task
will be selected from one of the turbulence spectrums. The VKP spectrum
will be used in this case. The GAN architecture will be inspired by one of
the models that have achieved good results in image generation tasks. The
generator and discriminator architectures are built using the guidelines of the
”progressive growing of GANs” paper [103]. This GAN uses a convolutional
Generator and Discriminator. The core idea is that the Generator network
starts with the first layer generating a 4 × 4 feature tensor and progressively
increases the resolution by a factor of 2. With progressive low-resolution layers
being trained first, and as training progresses, the other layers are added; this
makes training easier and more stable because more time is spent on learning
larger structures, and then the last stage of learning is devoted to refining the
details of the image. The Discriminator does the process of the Generator
inverted by reducing the resolution through each layer; the last layer uses a
standard deviation layer where the mini-batch standard deviation is added as
an additional feature map to the last convolutional layer. This layer increases the
variation of the generated samples and prevents the GAN from generating only
a subset of the training dataset. In progressive growing, the layers are added
step by step, but we opt to train all the layers simultaneously for simplicity,
and we found no difference in convergence; discarding progressive training has
also improved the results for image generation tasks [104]. The activation used
is the LeakyReLU activation with a negative slope of 0.2, and the Generator
network uses a pixel-wise normalization layer; this prevents the values of the
inner representations of the Generator and Discriminator from blowing up. The
pixel-wise normalization is implemented as follows:

bx,y = ax,y/

√√√√ 1

N

N−1∑
j=0

(
ajx,y

)2
+ ϵ (94)

In this equation, N is the number of features, ax,y is the unnormalized fea-
ture vector, and ϵ = 10−8 is a value to prevent numerical errors. The networks
are trained using the Adam optimizer with a learning rate of α = 2× 10−4 and
β1 = 0.0, β2 = 0.99. The GAN is trained using the WGAN-GP loss as in the
previous section. Figure 48 describes the Generator and Discriminator archi-
tectures. The resolution is upsampled using nearest-neighbor interpolation, and
the downsampling is done by average pooling.

90

(a) (b)

Figure 48: Diagram of a) Generator and b) Discriminator used to generate 2D
slices of Synthetic Isotropic Turbulence.

91

4.2.9 Results of GAN on 2D slices of synthetic Turbulence

The GAN for 2D synthetic turbulence was trained on slices of the 3D velocity
field. 500 velocity fields generated with the VKP spectrum were split on the z
axis. These slices are used during training, resulting in a collection of 64, 000
2D velocity fields with a resolution of 1282. The model took around 300, 000
iterations to arrive at the convergence of the loss functions. Once the model is
trained, the Generator can be used to sample random velocity fields, as shown
in Fig 49.

Figure 49: Samples of synthetic turbulence corresponding to a VKP spectrum
generated by the GAN.

To characterize the performance of the GAN, we cannot compute a metric
like a reconstruction MSE between the velocity fields due to the randomness of
the generation process. We chose to evaluate the performance in terms of statis-
tics of the generated turbulent velocity fields. First, the kinetic energy spectrum
is computed along one axis. This is done by taking the Fourier transform of the
velocity spatial correlation tensor:

Rij(r) ≡ ⟨ui(x, yi)ui(x+ r, yi)⟩

ϕij(kx) =
1

2π

∫
Rij(r)e

−ikxrdr

E(kx) ≡ 2πk2x
∑
i

Φii(kx)

(95)

Since the flow is supposed to be isotropic, the statistics are the same in all
directions, so the energy spectrum is then averaged over all the spatial locations
in y. In Fig. 50 it can be observed the kinetic energy spectrum compared be-
tween the GAN and the ground truth data 50. From the spectrum, it can be
observed that the GAN well represents the scales present at the resolution stud-
ied, and the relative MSE between spectrums is computed, yielding a value of

92

0.45. An error of 45% may be a large value for the results observed; however,
this error could be explained by the oscillations seen in the spectrum of the
velocities produced by the synthetic method. In this case, the GAN generates
a velocity field with a smoother energy spectrum, but the energy distribution
through the scales seems perceptually the same. For this reason, other metrics
need to be used to evaluate the performance further.

Figure 50: Kinetic energy spectrum for the GAN and synthetic turbulent flow.
”Sim” corresponds to the flow spectrum obtained with synthetic turbulence sim-
ulation, and ”GAN” corresponds to the spectrum of the velocity field sampled
by the Generator network.

Next, to describe the turbulent velocities in statistical terms, we compute
the estimation of the probability density functions of the velocity. The PDFs
of the generated u and the training data can be seen in Fig. 51. There is a
slight offset of the PDF of the generated velocities. To quantify this shift, the
Wasserstein distance is calculated, which intuitively can be interpreted as the
minimum cost of turning one probability into another by transporting points
from one to the other. For this case, the Wasserstein distance between the two
PDFs is 0.043.

Finally, the turbulent kinetic energy is computed, which is the total energy
produced by the fluctuating part of each component of the velocity:

u′i = ui − ūi
TKE = 1/2

∑
i

u′2i
(96)

93

Figure 51: PDFs of velocity field generated by GAN and synthetic turbulence
generator.

The relative MSE between the ground truth’s TKE (0.1658) and the gener-
ated velocities (0.1852) is 0.01. The summary of metrics evaluating the GAN
performance in the performance of generating 2D turbulence is summarized in
table 3.

Metric Ground Truth GAN Error
E(kx) - - 0.45
WD - - 0.043
TKE 0.1658 0.1852 0.01

Wall Time 5.5 s 5.0 ms -

Table 3: Summary of metrics for evaluating GAN on synthetic turbulence gen-
eration.

4.2.10 Conclusions on GANs for generating turbulence

We have built and tested GANs for the task of generating turbulent signals,
first in 0D with a dataset obtained by solving the Langevin equation. This is
similar to the signal that results from measuring the velocity of a point inside
a turbulent flow and then on 2D slices of synthetic turbulence obtained by the
Fourier method. Through the experiments, it could be verified that GANs are
good at learning complex distributions and sampling from them in an efficient

94

manner. The GANs used in the study were able to capture complex features
present on the high wave number frequencies, which correspond to the smaller
scale structures of turbulence, something that is difficult for neural networks
to do when trained on pixel-wise-based norms in supervised learning. Due to
the approach’s stochastic nature, evaluation metrics based on statistics were
employed to characterize its performance. This verified that the GAN could
correctly generate new samples unavailable in the training dataset with the
same statistical properties.

However, despite its learning capabilities, GANs have some limitations that
hinder their applicability to the problem of fluid flow simulation. The main
drawback lies in the difficulty of training; many configurations have to be tried
before arriving at one that converges, and this convergence can only be assessed
by observing that the values of the losses don’t change for a period of time, and
by observation of the generated samples which should be in agreement with the
domain knowledge. Another one is that since the training is a min-max process,
the training dynamics are more complex than supervised learning methods in
that the loss values can often arrive at a plateau for a given period of time and
then suddenly improve; this makes it hard to define a general early stopping
strategy and is heavily problem-dependent. In addition, GANs can fall into
failure modes like mode collapse, which greatly affect the model’s generaliza-
tion. Regarding computational cost, GAN sampling can be very efficient once
the model is trained, as seen in table 3. Producing 128 2D slices takes around
5.5 ms while the same takes 5.5 s using the synthetic turbulence approach. The
main drawback in this sense is the training cost the model requires. First, there
is the cost of obtaining the data in the case of turbulent flows; this data needs to
be produced either by experiments or numerical methods. Second, GANs need
a large amount of data, which may be prohibitive for cases relevant to engineer-
ing applications or the scientific community’s interest. Third, training can be
a lengthy process; for the case of 2D synthetic turbulence, 64,000 samples were
used for training and took 300,000 iterations for a duration of around 4 days,
being trained using 4 NVIDIA V100 GPUs. In addition, the time it consumes to
tune the network hyperparameters has to be considered, which adds overhead
in computing hours. This is a significant computational cost that limits the
range of applications of this method. This is bad news for generalization since
we dealt only with a distribution that belonged to one spectrum; if one wanted
to generate synthetic turbulence for arbitrary spectrums, it would require more
data and, thus, more time.

For these reasons, we do not proceed with generative modeling of turbulent
flows in 3D and space-time since this would add an additional layer of complex-
ity that has not been achieved for generative models; this could be part of an
exciting research direction. Recent advances in GANs like StyleGAN [105] and
new generative models based on diffusion processes [90] open new possibilities
that could be explored for the generative modeling of turbulence, for example,
diffusion probabilistic models have already been employed for generating tra-

95

jectories of lagrangian turbulence, similar to the Langevin equation [135]. For
the moment, these questions are left open for future work. In the next part,
we will tackle the problem of reduced-order modeling of a turbulent flow using
supervised learning. This is a problem that, due to the dimensional complexity
and data availability, would be difficult to solve using GANs or other generative
approaches. We will employ Autoencoders to learn a latent representation and
a recurrent neural network model to learn the temporal evolution of the flow.

4.3 Recuded order modeling of Homogenous Isotropic Tur-
bulence with ConvLSTM

The interest in reducing the computational complexity of the models used to
simulate turbulent flows is rooted in the prohibitive costs of the full-order mod-
els. Predicting the evolution of the fluid state requires finer temporal and spatial
discretizations as the Reynolds number increases. This results in large linear sys-
tems with many degrees of freedom requiring important computational power.
For many applications, applying direct numerical simulations is unfeasible for
the time and money this implies and because more than one simulation is often
required to explore the design space and assess risk. Model order reduction is
the set of techniques designed to reduce the complexity of the full-order models.
These methods can predict the quantities of interest of the physical system at
the degree of accuracy needed for the targeted application, with fewer compu-
tational resources, while respecting the system’s conservation laws and other
properties. Projection-based reduced order modeling techniques are a family
of methods used for this task. Since these methods consist of projecting the
system’s equations onto a lower dimensional space previously identified from
solutions of the full-order model, they ensure that the ROM inherits the physi-
cal properties of the equations. However, there are still two important challenges
for projection-based Reduced-order-models (ROMs): one is the identification of
the lower-order basis for advection-dominated problems such as turbulent flows,
and the other is related to their intrusive nature, meaning that the system that
results from applying the equations to the lower dimensional space should be
solvable.

Machine Learning allows the designing of non-intrusive reduced order mod-
els for advection-dominated problems. This can be achieved by learning from
data from a non-linear lower-dimensional manifold. Instead of projecting the
equations into this new subspace, a second model learns the system’s dynamics.
The following sections assess the advantage of using neural networks to learn to
simulate turbulent fluid flows. This question has been treated previously in pub-
lications that applied Deep Learning techniques to learn flow simulations with
a reduced complexity [163][63][129]; the purpose of this work is not to provide a
new method to accomplish the aforementioned objective but to study through
the reproduction the challenges and limitations of applying Deep Learning tech-
niques originally designed for computer vision and Natural Language Processing

96

for the reduced order modeling of turbulent flows. The task that will be studied
is the reduced-order modeling of a Homogeneous Isotropic Turbulence simula-
tion; given limited data obtained from a DNS simulation, the goal for the ML
model is to generate new data that conserves the system’s physical properties.

4.3.1 Problem Statement

The problem is the reduced-order modeling of turbulence simulations using su-
pervised learning methods. The first stage is the learning of a model that
projects the full-order solution to a non-linear reduced-order space:

Problem Statement 4.2 Being U a set of solutions of a given PDE, dU
dt =

F(U, x) with specific initial and boundary conditions solved in a domain D ⊂
Rdu . The goal is to find a model f parameterized by θ that projects this solution
to a set of latent variables V that exist on a lower dimensional space D′ ⊂ Rdv ,
being dv << du. The model should be able to project points from the latent
space to the full-order space through an inverse mapping f−1 : V× θ → U. The
parameters of this model are found through empirical risk minimization of the
reconstruction error:

θ = argmin
θ

E
[
∥U− f−1(V; θ)∥

]
(97)

The second stage is finding the model that learns the system’s dynamics on
the latent space:

Problem Statement 4.3 Being U a set of solutions of a given PDE, dU
dt =

F(U, x) with specific initial and boundary conditions solved in a domain D ⊂
Rdu . This set of solutions is sampled at regular time intervals ∆t. A model that
can learn the system’s dynamics in the latent space V obtained by the model f
must be found. This model, denoted by g, learns to predict the next state of the
system given the previous one:

V̂t+k = g(Vt;ω) (98)

The model’s parameters are found by empirical risk minimization of the re-
construction errors of the predicted trajectories:

ω = argmin
ω

E
[
∥Ut − Ût∥

]
(99)

Where Ut = {U0, U1, ..., UN} is the ordered collection of samples in time

and Û = f−1(V̂t) is the projection of the trajectory in the latent space to the
full-order space.

97

4.3.2 Background: Model Reduction for Fluid Flow Problems

Reduced order modeling is essential in many numerical workflows. One popu-
lar approach for reducing the computational complexity of problems governed
by parametric PDEs is reduced basis (RB) methods. Reduced basis methods
consist of finding a subspace where the solutions of the PDEs exist but its di-
mensions are considerably smaller than the full-order model. Although they
may require an intensive offline phase where the basis is learned from data, they
need less computational resources during the online stage, where the model is
used in substitution of the numerical method that approximates the PDE [179].

One of the most common ways to obtain a reduced basis of a fluid flow
problem is by decomposing the flow field into a set of modes. The quantities of
interest, such as the velocity field, are discretized and assembled into a vector
x(t) ∈ Rn, called the state vector. Let us consider a set of a linearly independent
set of modes {v1, . . . ,vr}, where vj ∈ Rn. These modes span a r-dimensional
subspace S so x(t) can be expressed as a linear combination of these modes:

x(t) =

r∑
j=1

aj(t)vj (100)

Or written in matrix form:

x(t) = Va(t) (101)

Where V is a rectangular matrix of dimensions n × r, with n >> r. The
state also evolves in time with dynamics given by:

d

dt
x(t) = f(x(t)) (102)

Even though x(t) lies in S, the equation’s right-hand side does not necessarily
lie in it. We need to define the dynamics in S. This is done by projecting the
right-hand side into the sub-space. The vector in S that is the closest to x(t) is
give by the orthogonal projection Px(t), with:

P = V
(
VTV

)−1
VT (103)

If the modes are orthonormal, this becomes P = VVT . The dynamics can
also be projected with a non-orthogonal projection onto the subspace S, being
W, a vector subspace of the same dimensions of S. This projection is defined
as:

p̂ = V
(
WTV

)−1
WT (104)

If the sets {vj} and {wj} form a bi-orthogonal set (the inner product
⟨vj ,wk⟩ = δjk)), then the projection becomes P = VWT . Inserting the equa-

tion x(t) = Va(t) into the projected dynamics ẋ = P̂f(x), we obtain:

98

d

dt
a(t) = WT f(Va(t)) (105)

The equation 105 is a reduced-order model. It consists of r equations
that describe the evolution of a(t), from which the state can be reconstructed
x(t) = Va(t). When r << n, this can potentially reduce computational cost. If
W = V, the projection is orthogonal, and this procedure is called Galerkin pro-
jection. If W is different from V, this is called Petrov-Galerkin projection [209].

One of the key challenges in model reduction is finding the subspaces to
project the dynamics. Most techniques for model reduction involve projecting
the governing equations onto a linear subspace within the original state space.
These subspaces are typically determined using methods like balanced trunca-
tion, rational interpolation, the reduced-basis method, and proper orthogonal
decomposition (POD), including other variants of POD. However, a significant
drawback of constraining the state to evolve within a linear subspace is that
it inherently limits the accuracy of the resulting reduced-order model. Linear-
subspace ROMs can only achieve high accuracy in low-dimensional models when
the problem exhibits a fast-decaying Kolmogorov n-width, such as in diffusion-
dominated problems. Unfortunately, many issues of interest have a slowly de-
caying Kolmogorov n-width, particularly advection-dominated problems [129].

The Kolmogorov n-width (KnW) is a classical concept of approximation
theory as it describes the error arising from a projection onto the best possible
space of a given dimension N ∈ N. This error is measured for a class M of
objects because the worst error over M is considered. Let M be a subset
M ⊂ H, where H is some Banach space or Hilbert space with norm ∥ · ∥H .
Then, the Kolmogorov n-width is defined as:

dN (M) := inf
VN⊂H;

dimVN=N

sup
u∈M

inf
vN∈VN

∥u− vN∥H (106)

Where VN are linear subspaces. For certain linear problems that arise
from parametric PDEs, the Kolmogorov n-width decays exponentially fast (for
demonstrations, see [179]):

dN (M) ≤ Ce−βN (107)

With some constants C < ∞ and β > 0. Problems with fast decay allow
selecting a N that allows fewer degrees of freedom than the full-order model
while achieving low approximation errors [77]. Advection-dominated problems
that exhibit strong non-linearities have a slow decaying KnW, as stated earlier,
which includes most of the solutions of the Navier-Stokes equation. Reduced
order models for fluid mechanics will work better if the dynamics are projected
into non-linear subspaces instead. The literature employs extensions of lin-
ear methods to find such non-linear subspaces but requires careful tuning and

99

doesn’t generalize well [209].

On the contrary, the non-linear representations learned by Deep Learning
can overcome the KnW limitation [129]. For this reason, an Autoencoder model
is implemented in the following subsection to learn a non-linear latent space of
reduced dimensions where the dynamics can be learned by another Neural Net-
work, in this case, a Convolutional LSTM.

4.3.3 Homogenous Isotropic Turbulence Dataset

The dataset will be used for the learning problem, is built from a DNS of forced
homogenous isotropic turbulence from the John Hopkins Turbulent dataset
[186]. The simulations are performed on a 10243 periodic grid using a pseudo-
spectral parallel code. The simulation solves the incompressible Navier-Stokes
equation on the cube:

∂u

∂t
+ u · ∇u = −∇p+ ν∇2u,

∇ · u = 0
(108)

Where u is the velocity vector, p is the pressure, and ν is the kinematic vis-
cosity. The time integration of the viscous term is done analytically using an in-
tegrating factor, and the other terms are integrated using a second-order Adams-
Bashforth scheme. The nonlinear term is written in vorticity form [32]. The
simulation is de-aliased using phase-shift and 2

√
2/3 truncation [185]. The En-

ergy is injected in the simulation by keeping constant the total energy in modes
so that their wave-number magnitude is less or equal to 2. The divergence-free
condition is satisfied due to the spectral representation of the derivatives. The
divergence-free condition is satisfied when the velocities are computed from the
vorticity. The data in the database is stored after the simulation reaches a
statistically stationary state. It contains 5028 data frames, including the three
components of the velocity vector and the pressure field. The duration of the
stored data is about five large-eddy turnover times.

This dataset is too large to be used for Neural Network training. Because
of its high dimensionality (3D + time), it is difficult to fit one time-step of
this data on a single GPU, as the memory required for computing the network’s
gradients scales with the input’s dimensions. For this reason, the dataset created
is a subsample of this dataset. The resolution is reduced from 10243 to 1283

by filtering the original velocity and pressure fields using a box filter of width
∆ = 9. 3, 000 snapshots like this are collected from the database. The dataset
information is summarized in table 4. Samples from this dataset are shown in
Fig. 52.

100

HIT dataset sheet
Nt (number of time-steps) 3000

Resolution 1283

L (dimensions) 2π
δt (time-step between stored fields) 0.002 s

Reλ (Taylor-scale Reynolds 418
TL (Large eddy turnover time) 1.99 s

Table 4: Dataset for 3D Homogenous Isotropic Turbulence.

(a) u (b) v

(c) w (d) P

Figure 52: Velocity components and pressure of a sample of the filtered HIT
dataset.

4.3.4 Autoencoder for Dimensionality Reduction

The first stage in building the ML-based ROM is to find a reduced dimensional-
ity representation that permits the learning of the dynamics in it. Autoencoders
(AEs) are Machine Learning models used extensively for lossy data compres-
sion and dimensionality reduction [166][89]. There is a significant amount of
work that has used Convolutional Autoencoders for the dimensionality reduc-
tion of fluid flow problems [173][67][58][270]. Convolutional Autoencoders can
learn representations that yield lower reconstruction errors and higher reduc-
tion rates that approaches based on Principal Components Analysis. However,
most of this work has focused on fluid problems in 2D at a low resolution,
which permits having large amounts of data and using deep networks. The
problem that will be tackled in this work is predicting turbulence in 3D; this
limits the amount of data available and the scalability of the models due to

101

memory constraints. A naive solution to this problem is replacing the standard
2D convolutions in CNNs with 3D convolutions. Still, this has a downside: the
number of parameters of the convolutional layers grows cubically. For example,
a 2D CNN layer with 64 and 3× 3 kernel has 576 learnable weights, and the 3D
counterpart will have 1728. This will limit the depth of the networks that can be
used, thus reducing the learning capacity and increasing the computational cost.

One way to increase the performance of 3D CNNs without increasing the
computational cost is by making the convolution operation more efficient. Depth-
wise separable convolutions are designed with this purpose in mind. It has been
observed that trained CNNs contain many redundant weights. The idea behind
separable convolutions is to reduce this by factorizing the convolution operation
into separable convolution followed by pointwise multiplication [228]. Depth-
wise separable convolutions have been used in modern CNN architectures such
as Xception [44], and MobileNet [92], which is a CNN designed to fit on module
devices with limited capabilities. As stated in the MobileNet paper, Depthwise
Separable Convolutions can reduce the computational cost of convolutions by
8-9 times while keeping almost the same accuracy. In 2D, a standard convolu-
tional layer is parameterized by a kernel K of size DK ×DK ×M × N where
DK is the spatial dimension of the kernel, and M is the number of input chan-
nels, and N is the number of output channels. The output feature map of a
convolution assuming stride one is calculated as:

Gk,l,n =
∑
i,j,m

Ki,j,m,n · Fk+i−1,l+j−1,m (109)

Depthwise separable convolutions use one filter per input channel, and then
the features are combined using a 1 convolution to generate new features. This
is computed as:

Ĝk,l,m =
∑
i,j

K̂i,j,m · Fk+i−1,l+j−1,m (110)

The cost of the standard convolutional layer depends multiplicatively on the
parameters of the convolution operation:

DK ·DK ·M ·N ·DF ·DF (111)

Where the cost of the Depthwise separable convolution is the sum of the
1X1 convolution and the depthwise convolution:

DK ·DK ·M ·DF ·DF +M ·N ·DF ·DF (112)

From these expressions, the reduction in computation can be expressed as:

DK ·DK ·M ·DF ·DF +M ·N ·DF ·DF

DK ·DK ·M ·N ·DF ·DF

=
1

N
+

1

D2
K

(113)

102

Figure 53: Standard convolutional layer with a 3 × 3 kernel, 3 input channels
and 2 output channels.

So, for a Depthwise separable convolution with kernel 3 × 3, the compu-
tational cost is 9 times less than the standard convolution. To illustrate this
further, refer to Fig. 54 for a diagram of an example of a 2D standard convolu-
tional layer and to Fig. 53 for its Depthwise separable equivalent. For this case,
it can be observed that the standard convolutional layer possesses 54 learnable
weights, whereas the Depthwise separable convolution has 33, 61% of the num-
ber of parameters the regular convolution has. The same concept of depthwise
separable convolutions is applied for 3D; this has been done before for recon-
struction tasks [275]. The 3D Depthwise convolution is represented graphically
in Fig. 55.

The next step is designing the decoder and encoder architectures that will be
used for the problem at hand. As a reminder, a Convolutional Autoencoder is a
neural network model that integrates two subnetworks: an encoder E that maps
the input U to the latent space z, and a decoder network D that maps the latent
space to the original dimension. The output of the AE is the reconstruction:

Û = (D ◦ E)(U) (114)

The encoder and decoder networks are based on the ConvNeXt architecture
[151]. ConvNeXt is one of the most recent CNN models; it surpasses other
CNNs and Vision Transformers on computer vision tasks while requiring less
data and computational resources than their attention-based counterparts. The
network uses an initial ”patchify” layer that is a convolution with kernel size
4× 4× 4. After, it is followed by a series of ConvNext residual blocks that are
composed of a Depthwise convolution with a kernel size 7×7×7; this kernel size
is considered large compared to the regular kernels of width 3 using in other
CNNs, but it has been proved to increase performance without adding more
computational strain. After the DW convolution, there are two dense layers;
the first increases the number of features by a factor of 4, and the second reduces

103

Figure 54: Depthwise separable convolutional layer with a 3× 3 kernel, 3 input
channels and 2 output channels.

Figure 55: 3D Depthwise Separable Convolution. The input feature map is
divided into c feature maps corresponding to each input feature; a convolution
is applied to each one with its respective kernel. The output of each convolution
is concatenated and then passed to a pointwise convolution.

it back to the output feature size. The structure of the ConvNeXt block can be
seen in Fig. 56.

The activation function used is the GELU activation, a smoother version of
the ReLU activation used in transformer architectures like BERT [50] and Vision
Transformers [51]. GELU showed improvement in the accuracy of Imagenet in
the ConvNeXt paper. Regularly, Batch Normalization (BN) is used in CNNs; in

104

Figure 56: Diagram of a ConvNeXt block.

this case, Layer Normalization substitutes it. LN does not affect performance, is
simpler to implement, has no trainable parameters, and does not introduce the
problems sometimes BN can [269]. After the GELU activation in the ConvNeXt
layer, there is a Global Response Normalization (GRN) layer. The objective of
GRN is to prevent feature collapse, which means that there are learned feature
maps that are either dead or saturated, not contributing to the global output
[263]. Given a spatial feature map Xi the response normalization function is:

N (∥Xi∥) := ∥Xi∥ ∈ R →
∥Xi∥∑

j=1,...,C ∥Xj∥
∈ R (115)

Where ∥Xi∥ is the L− 2 norm of the i−th channel. This response normal-
ization can be interpreted as the relative importance of a feature with respect to
all other channels. The original input response is calibrated using the computed
feature normalization score:

Xi = Xi ∗ N (∥Xi∥) ∈ RW×H×L (116)

To facilitate the optimization, two learnable parameters, γ and β, are added
and zero-initialized. A residual connection is also used between the input and
output of the GRN layer. This sets the GRN layer to first be an identity function
at the beginning of training and then adapt as it is necessary:

Xi = γ ∗Xi ∗ N (∥Xi∥) + β +Xi (117)

The overall structure of the Encoder and Decoder networks is a 3D Con-
vNeXt model with three stages. Each stage has 1, 2, 1 ConvNeXt blocks, re-
spectively. Between each stage, there is a downsampling or upsampling block,
depending on whether the network is the encoder or the decoder. For spatial
downsampling, there is a 2×2×2 Conv layer with a stride of 2, and for upsam-
pling, a transposed convolution is used with the same parameters, LN is used

105

before each down/up-sampling layer. The features of the encoder at each stage
is (16, 32, 64) and for the decoder (64, 32, 16). The output layer is a 1 × 1 × 1
convolution. The AE diagram is seen in Fig 57.

Figure 57: Diagram of Autoencoder for 3D HIT fields.

4.3.5 Latent Space reconstruction with Autoencoder

In this section, the results obtained from the trained Autoencoder are analyzed.
The model is trained on 2, 500 snapshots of 3D filtered HIT fields containing 4
variables: three velocity components and pressure. The errors metrics to asses
performance are:

• Relative Root-Mean-Squared error: to quantify the percentage of
reconstruction fidelity or loss of information. this is computed as:

RRMSE =

N∑
i=1

√
∥Ui − Ûi∥2

N∑
i=1

√
∥Ui∥2

(118)

• Turbulent Kinetic Energy error: This error measures the difference
between the turbulent kinetic energy spectrum of the ground truth turbu-
lence data and the reconstruction by the AE. The turbulent kinetic energy

106

spectrum indicates the amount of energy the flow carries at a certain wave
number. The energy spectrum in homogenous isotropic turbulence is an
invariant statistic and does not change in time, rotations, shifts, or re-
flections of the flow field [191]. Thus, it is an appropriate measure to
asses if the auto-encoder preserves the structures present in the turbulent
flow. The kinetic energy spectrum is the integral in wave space of the
velocity spectrum function, which is the Fourier transform of the velocity
autocorrelation in space:

ϕi,j(k) =
1

(2π)3

∫∫∫
Ri,j(r)e

−ik.rdr, Ri,j(r) =
1

V

∫∫∫
uj(x)ui(x+r)dx.

(119)

Directional information is removed in the Fourier space by integrating over

all wavenumbers k of magnitude k = ∥k∥ =
√
k2x + k2y + k2z . This is ex-

pressed as the surface integral over the sphere S(k) in wave number space
centered at the origin with radius k. The energy spectrum is calculated
then as:

E(κ) =

∮
1

2
Φii(κ)dS(κ) (120)

The TKE spectrum error is calculated as the RRMSE between the ground
truth data and the reconstruction by the AE.

• Divergence of the velocity: The divergence-free condition (∇ · U) is
a property that should be satisfied for incompressible fluid flows. This
quantity is computed to asses still if the field reconstructed by the AE
still satisfies this property.

The errors are reported in table 5. What can be observed is that the model
can recover the most important flow structures with an error of 0.1221 and a
spectrum error of 0.0620. The spectrum error is lower than the RRMSE, which
means that the model fits the higher-energy-containing scales correctly, and the
errors reside on smaller scale fluctuations, which contribute less to the overall
behavior of the fluid. This is qualitatively observed in figure 59. A sample
of the Autoencoder reconstruction can be observed in Fig. 58. These results
correspond to the Energy spectrum where the larger structures are conserved
in the reconstruction.

Results of AE on HIT reconstruction
RRMSE TKE error Divergence
0.1221 0.0620 0.0021

Table 5: Results of AE for 3D Homogenous Isotropic Turbulence.

107

Figure 58: Slice of a turbulent field from the HIT dataset. Ground truth data
and reconstruction by Autoencoder.

Figure 59: Turbulent Kinetic Energy Spectrum of the HIT flow field. Compar-
ison of the ground truth data and the Autoencoder.

As a final note, the purpose of the Autoencoder here is that of dimensionality
reduction. The compression ratio of the autoencoder can be calculated as the
relation between the input tensor field dimensions and the dimensions of the
latent variable. In this case, it will be:

108

CR =
1283 × 4

83 × 64
= 4096 (121)

Compared to related work, Mohan et al. [163] used a similar AE network for
HIT at a resolution of 1283. They achieved similar performance but a compres-
sion rate of 125. Other works have implemented AEs for finding a reduced-order
representation of turbulent flow [67][58]. These works tackled 2D slices of turbu-
lent flows, so they did not tackle the memory constraint faced when learning in
3D. For example, the β − V AE used in [58] reported a reconstruction accuracy
based on the relative MSE around 88%, this error is computed as:

Ek =

(
1−

〈∑n
i=1(u− ũ)2∑n

i=1 u
2

〉)
× 100, (122)

Where < . > is the ensemble average, and u is the velocity field. The 3D
CAE achieves Ek = 99.5% accuracy using the previous metric definition. It
is worth noting that the objective of β − V AE is different than the standard
AE formulation capabilities, which cannot generate new samples and are not
regularized to learn disentangled representations.

4.3.6 Convolutional LSTM for HIT

After learning the lower dimensional representation, the following step is to
learn how these latent variables evolve over time. This problem is formulated as
a sequence modeling problem, where the goal is that the model can predict the
next state of the latent variable given only the previous state of it. For this task,
an LSTM model will be used. LSTMs have been used before for performing spa-
tiotemporal prediction of fluid flows [163][277][65]. Even though other models
for sequence models exist that have better performance, like transformers and
Neural ODEs, recurrent neural networks, in general, are easier to train since
they require less data. The implementation is easy due to pre-built modules in
the most used deep learning frameworks and have simpler training algorithms.
This might explain the reason why, for the fluid mechanics community, it has
been an entry model in the development of data-driven surrogate models of fluid
flows, and in this study, the same steps will be followed.

The model used will be a Convolutional LSTM (ConvLSTM). The configura-
tion of this model is similar to an LSTM, with the difference that Convolutional
layers replace the linear layers in the cell. The ConvLSTM has been used for
action recognition, video prediction, and precipitation forecasting [225]. It is
appropriate for spatiotemporal sequence problems because the convolutional
kernels help preserve spatial correlations present in the problem while also re-
ducing memory costs associated with fully connected layers present in the orig-
inal LSTM formulation [91]. Being ∗ the convolution operation, the operations
inside a ConvLSTM cell are:

109

it = σ (Wxi ∗ Xt +Whi ∗ Ht−1 +Wci ◦ Ct−1 + bi)

ft = σ (Wxf ∗ Xt +Whf ∗ Ht−1 +Wcf ◦ Ct−1 + bf)

Ct = ft ◦ Ct−1 + it ◦ tanh (Wxc ∗ Xt +Whc ∗ Ht−1 + bc)

ot = σ (Wxo ∗ Xt +Who ∗ Ht−1 +Wco ◦ Ct + bo)

Ht = ot ◦ tanh (Ct)

(123)

Figure 60: Diagram of a ConvLSTM cell.

This equations are illustrated graphically in Fig. 60. The ConvLSTM model
that will be used consists of two stacked ConvLSTM cells with 128 hidden fea-
tures. The network will use 3D convolutions with 33 kernels in this case. The
ConvLSTM will operate on the latent representation learned previously by the
Autoencoder, reducing computational and memory costs. The Autoencoder is
coupled to the ConvLSTM by separating the encoder and decoder network.
The encoder is frozen during training using the pre-trained parameters, acting
as a pattern recognition module. The ConvLSTM predicts the next step in
the sequence for the latent variables, and the decoder projects the prediction
to the original feature space. The decoder is fine-tuned during the ConvLSTM
training but at a 1× 10−6 learning rate. This aims to make the decoder robust
to possible errors the ConvLSTM might produce in its predictions. The Con-
vLSTM is trained with the Adam optimizer with a 1× 10−4 learning rate and
cosine learning rate decay with warmup [152]. The model is trained to minimize
the mean-squared error between the predicted time step and the ground truth.
Teacher forcing is used, meaning that the model is fed the ground-truth input
to make the next time step prediction, and this is discarded to predict the next
time step. An additional second term allows the model to unroll the predictions
for several time steps. For inference, the model is let to generate the next time
steps in an autoregressive way. This is shown in Fig. 61.

110

(a)

(b)

Figure 61: Training and Inference of ConvLSTM: a) Teacher forced training b)
Unrolled predictions

The loss function used for training is the combination of teacher-forced pre-
dictions and unrolled training:

L(θ) = ∥u− ûtf∥+ ∥u− ûut∥ (124)

111

4.3.7 Results of ConvLSTM on HIT

The dataset is split into shorter sequences for training the ConvLSTM. ConvL-
STM was trained on sequences of the flow field containing 20 time steps. The
time time-step ∆t used for training corresponds to 100δt of the DNS, which is
0.002s. The total duration of the sequence is 4s, which corresponds approxi-
mately to 2 Large-Eddy turnover times. After training, the model achieves an
RRMSE averaged over time of 0.1305. Samples of the predicted velocity com-
ponents and pressure can be observed in Figs. 62 - 65. The figure shows that
the predictions contain similar structures, but they diverge from the ground
truth as they get unrolled.

Figure 62: Sample of a prediction made by the ConvLSTM: u

Similarly, the TKE spectrum is computed and averaged over time, as shown
in Fig. 66a. From the spectrum, it can be inferred that the ConvLSTM predicts
a flow containing the more energetic modes while approximating the smaller
scales. The RRMSE of the TKE spectrum is 0.1358; it is higher than the TKE
error obtained by the Autoencoder alone. This is because the predictions dete-
riorate proportional to the number of time steps. The velocity autocorrelation
function can characterize the flow’s temporal behavior, as shown in Fig. 66b.
The Autocorrelation deviates from the ground truth, and its RRMSE is 0.1974.

The turbulent flow predicted by the ConvLSTM is characterized statistically
by calculating invariant statistics averaged over time. The following properties
will be used:

• Total Kinetic energy:

Etot =
1

2
⟨uiui⟩ (125)

112

Figure 63: Sample of a prediction made by the ConvLSTM: v

Figure 64: Sample of a prediction made by the ConvLSTM: w

• Rms velocity:
u′ =

√
(2/3)Etot (126)

• Integral scale:

L =
π

2u′2

∫
E(k)

k
dk (127)

• Large eddy turnover time:

TL = L/u′ (128)

113

Figure 65: Sample of a prediction made by the ConvLSTM: P

(a) (b)

Figure 66: a) Turbulent Kinetic Energy Spectrum for the ConvLSTM predic-
tions. and b) Autocorrelation of u for the ConvLSTM predictions.

Statistical Characteristics of turbulence
Property DNS Data ConvLSTM ϵDNS ϵdata
Etot 0.695 0.662 0.636 0.085 0.039
u′ 0.681 0.664 0.651 0.044 0.020
L 1.376 1.457 1.516 0.102 0.041
TL 2.02 2.19 2.33 0.153 0.062

Table 6: Statistical characteristic of the turbulent flow.

The predicted turbulent flow by the ConvLSTM preserves the statistical
properties if compared to the statistics of the dataset and those of the DNS; the
comparison of values can be seen in table 6. From the different statistics, the
one with the highest error is the large eddy turnover time; this may indicate

114

Figure 67: RRMSE with respect to time between Ground truth HIT field and
the ConvLSTM prediction.

that the biggest deviation is in the temporal behavior. What is observed in the
experiments is that the error keeps increasing as the ConvLSTM advances in
time. If one tries to extrapolate for longer sequences bigger than the one used
in training, the velocity will stop changing or get stuck in an oscillating state,
or the values will blow up. The evolution of the error for 20∆t is shown in Fig.
67. This error may be a symptom of overfitting, where the model gets stuck
predicting closer time steps or an average value that gives a low error for the
overall predictions. This problem could be mitigated by adding more data, but
it increases the cost of training. Or a simpler model could be used at the risk
of losing accuracy in the results.

4.4 Conclusions on AE-ConvLSTM for reduced order mod-
eling of turbulent flows

Using Deep Learning, we have implemented a data-driven, non-intrusive, reduced-
order model for a turbulent flow. The framework utilizes a convolutional Au-
toencoder for dimensionality reduction and a Convolutional LSTM to learn the
spatiotemporal evolution of the flow state in the latent space. The target task
was to predict the evolution of Homogenous Isotropic Turbulence. The data
used comes from a database built from high-fidelity DNS simulation. This task
presented important technical challenges; one is to be able to learn from data
with very high dimensions and complexity. To solve this issue, we relied on two
approaches: the first approach consists of data selection; we filtered the DNS
simulation from a 10243 into a 1283 grid and split the simulation contained
in the database in sequences of 10 time steps in order to be more manageable

115

during training. The second approach is to reduce the memory requirements of
the Deep Learning architectures by using Depthwise Convolutions for the 3D
tensors. The AE model implemented in this study exhibited good performance
in agreement with the physical properties of the flow. The model also per-
forms similarly to state-of-the-art dimensionality reduction methods regarding
reconstruction fidelity. Even though this AE was designed with the purpose of
learning a latent representation in mind, it could be used for other tasks like
data compression to save storage space and facilitate file transfer of big turbu-
lence databases. This would require improvements in the error by employing
other super-resolution models in order to recover as much fidelity as possible,
which is needed for the study of turbulence. In the second stage of training,
a ConvLSTM was implemented to learn the flow dynamics in the latent space.
The ConvLSTM model was selected because it is more convenient in this case
because it learns the spatial correlations at the same time as it learns the tem-
poral dependence of the steps in the sequence. The model was trained to make
predictions with a time step equivalent to 100 simulation δt, roughly equal to
1/10th of the large eddy turnover time. If a smaller time step is used, the model
may not be able to learn the flow dynamics in short sequences since the time
steps contained in the sequence will be highly correlated. The ConvLSTM could
make predictions with a distribution of spatial scales in good agreement with
that of the ground truth data. The TKE spectrum could verify this. The predic-
tions also had statistical properties close to the dataset and the DNS. However,
the temporal behavior diverges from what is expected for this kind of flow, as
seen in the autocorrelation function, large eddy turnover time, and the evolution
of the RRMSE. The model is probably overfitting in the short-term predictions,
unable to generalize to long sequences. This may indicate we need more data
to train such a model, which is costly, or that it is not the most appropriate
model fit for this task. Another limitation of this approach is the computational
cost, even if we have reduced it using the depthwise separable convolutions in
the autoencoder. Going beyond the resolution used in the study or training
on longer sequences requires much more memory that may not be available on
current GPUs. The training of the ConvLSTM model requires around 20h on 4
NVIDIA V100 GPUs, and tuning the hyperparameters requires extensive train-
ing iterations. Another major disadvantage we could observe is that the model
does not extrapolate well for predicting many time steps. Since implementing
this model, other deep learning approaches, especially transformers for sequence
problems and Neural Operators for PDE-related tasks, have gained popularity
and state-of-the-art results in their respective category. In the next chapter,
Neural Operators will be explored to tackle the problem of the spatiotempo-
ral forecasting of turbulent flows. As a physics-inspired method designed to
tackle problems related to PDEs, the hypothesis is that it has inductive biases
that can leverage more properties from the data, increasing the generalization
capabilities. The main interest is to evaluate if these models can achieve nu-
merically stable turbulence predictions over a long period. It is worth noting
that is possible to go the other way and explore transformer-inspired methods
for the prediction of turbulent flows as has been done for weather prediction

116

[184][176], with great promise for generalization and accuracy. However, this is
left as a perspective since it will require more data and computational resources.

117

5 Surrogate Models of Turbulence Simulations
with Neural Operators

5.1 Introduction

Computer simulations are essential for studying turbulence and designing engi-
neering systems interacting with flows exhibiting this behavior. Simulating tur-
bulent flows to the highest degree of accuracy possible requires computational
meshes that capture up to the smallest energy-containing eddy. The amount of
active scales on a turbulent flow is proportional to its Reynolds number (Re),
so as the Re increases, the computational mesh required becomes finer. This
makes, for instance, certain configurations, such as atmospheric flows, where the
Re can reach orders of (107) computationally prohibitive to calculate. For in-
dustrial applications, it is more common to see filtered Navier-Stokes equations
such as LES or RANS, which are cheaper to compute and have a mathemati-
cal model to compensate for unknown or unfiltered fluctuations. Nevertheless,
these simulations remain costly for tasks requiring many functional evaluations
of the numerical solution, such as control, design optimization, and uncertainty
quantification.

To perform the aforementioned tasks, it is preferred to use surrogate models
that can predict quantities of interests of these flows with a required degree
of accuracy but in a fraction of the time needed for a CFD method to calcu-
late it. Recently, the use of Deep Learning for developing surrogate models
has attracted scientists and engineers because of the capabilities of Deep Learn-
ing to capture complex non-linear relationships that are present in turbulence,
overcoming limitations that may be present in techniques that rely on linear
projection.

This chapter formally describes learning surrogate models of turbulent flow
simulations from data, a spatiotemporal regression problem. Afterward, we will
discuss the common challenges of learning a predictive reduced-order turbu-
lence model. From the literature, we identify mainly two issues: the conser-
vation of physical laws and numerical stability. We have studied so far GANs
and Autoencoders with LSTMs for the prediction of turbulent flows. In the
literature, many examples can be found that attempt to learn fluid flow simu-
lations. Still, most of these methods work for a narrow set of cases, and there
is not much success in generalization outside the training data distribution.
Recently, Physics-Inspired Machine Learning has been gaining interest due to
the fact that including physical concepts in the design and the learning pro-
cess can ameliorate the performance and generalization capabilities of Neural
Networks; examples of this can be found in Diffusion models [90], equivariant
neural networks [45], hyperbolic/parabolic CNNs [213], Graph Neural Diffusion
[35], among others. One of the methods that appeared recently is the Neural
Operator [117], which focuses on learning the mapping between function spaces.

118

This section will explore using Neural Operators to learn the solution operator
of the NS equation. Neural Operators, specifically the Fourier Neural Operator
(FNO), have been used for learning problems arising from fluid flow simulations
[138]. The main objective is to explore using FNO in different configurations
to effectively learn the Operator that evolves the fluid flow state in time. The
second objective is to propose a framework to train models that can mitigate
the issue of numerical stability that appears when trying to extrapolate in time
outside the training domain in order to perform long-time prediction of the fluid
flow and test them on different Neural Operator models. We train and test the
models on 2D Kolmogorov Flow [36] and evaluate if the proposed methodology
can overcome the numerical stability issues. The question of whether the Neural
Operators can extrapolate to a higher Reynolds number and are invariant to
discretization is also addressed. This chapter closes with the conclusions of the
proposed methods and draws some perspectives for further inquiry.

5.2 Problem Statement: Learning to Simulate Turbulence
from Data

The subject of this chapter is the study of Deep Learning architectures for
learning to replicate turbulent flow simulations. The goal for the Deep Learning
model here is that given a set of initial conditions and/or other parameters, it
can predict the next states of the turbulent flow as a numerical solver would do.
We define the problem set as follows:

Problem Statement 5.1 Being u(x, t) the solution or family of solutions of
a non-linear PDE in the form du

dt = N (u), where N is a non-linear operator,
with boundary conditions x ∈ Ω ⊂ Rd and initial conditions u(x, 0) = u0, where
u0 ∼ P (u0). We want to find an approximation û of this solution discretized
on spatio-temporal grid {xi ∈ [0, Li]} and {ti ∈ [0, T)} given a ∆x and ∆t
respectively. This approximation is parameterized by a Neural Network û =
f(η; θ) with parameters θ, that takes as input a set of features η, and whose
parameters are found by solving the optimization problem

θ = argmin
θ

E
[
L(u(i)(xi, ti), û

(i)(xi, ti),)
]

Where L is a loss function that measures the difference between the data
and its approximation, the ground-truth values u(i)(xi, ti) are drawn uniformly
from a data set built from the results of a simulation. In the present study, we
want to find a model that approximates solutions of the Navier-Stokes equation
exhibiting turbulence. To do so, we will remove the explicit time dependence
of the Neural Network approximation by employing an auto-regressive model,
where the time dependence is implicitly modeled because it takes the previous
state of the solution as input features. Its output is the next stage of this one:

ût+∆t(x) = f (ût(x); θ) (129)

119

In a supervised learning setting, we find the parameters that minimize the
mean-squared error between the predicted outputs and their target value. Given
a data-set of N samples composed of discrete trajectories of u of length T with
a given ∆t, the constrained risk minimization objective is:

θ = argmin
θ

N∑
i=1

T−1∑
tj=1

∥∥∥u(i)tj+1
− f(u(i)tj ; θ)

∥∥∥+ λ · Lconstraints (130)

Where λ ·Lconstraints is a term for enforcing physical, statistical, or stability
properties to the model predictions, as we will see later.

5.3 Background

5.3.1 Deep Learning for Reduced Order Models of Fluid Flows

Deep learning is an interesting approach to achieve lower computational require-
ments of simulations because of their capability of learning non-linear represen-
tations that can overcome the limitations of projection-based reduced order
models for problems with slowly decaying Kolmogorov n-widths (advection-
dominated problems or problems with other strong non-linearities) [129]. One
DL approach, inspired by reduced order modeling frameworks, consists of two
stages: first, a latent representation for the fluid flow is learned, normally
through a Convolutional Autoencoder; then, the evolution of these latent vari-
ables is learned with an LSTM model [163][173]. To enforce the model to respect
conservation laws, optimization constraints related to desired physical proper-
ties can be added [277] or by the addition of layers that enforce divergence-free
predictions if the flow is incompressible [165]. A similar approach was used
for fluid simulations for computer graphics [261]. In this case, the autoencoder
and temporal prediction network (also used an LSTM) are trained end-to-end
to have a temporally coherent latent space simultaneously. The latent space is
divided as well between vector and scalar fields. LSTMs have also been used in
an unsupervised learning setting where a GAN is trained to generate fluid flow
from a random variable. In this case, the generator is an LSTM that generates
a temporal latent space sequence at the first stage at a second stage; a convo-
lutional decoder projects this latent space to the flow field [111].

One of the disadvantages of this approach is that LSTMs are hard to train
and struggle to capture long-range interactions. This translates into difficulty
maintaining numerical stability when T →∞. Models that have shown promise
in overcoming this issue are transformers. Transformers have been employed for
learning fluid simulations and can be combined with Autoencoders [278][231].
Autoregressive CNNs have been used to learn fluid simulations in the quest for
more scalable options with better training dynamics. This bypasses the stage of
learning a latent space first, and instead, the model is trained to predict the next
time step, similar to what numerical methods do. These models have a lower
computational footprint restricted only by GPU memory, which depends on the

120

dimensionality of the fluid flow state. Auto-regressive U-NETs [251][81] and
ResNets [233] have been used to learn a variety of fluid flows. Neural operators
[117] are methods inspired by the problem of learning on infinite dimensional
spaces, intending to learn forward and inverse problems that arise from PDEs
in a discretization invariant way. Neural operators have outperformed CNNs in
learning the solution of PDEs [138][143].
Models based on CNNs are restricted to structured grids, but many fluid sim-
ulations are performed on unstructured meshes. Models using Graph Neural
Networks have been applied to learn lagrangian fluid simulations [217] and sim-
ulations on unstructured meshes [187][22].

Physics-Informed Neural Networks (PINNs) can also be used to learn fluid
simulations [102]. The advantage of PINNs is that they are suitable for learning
from ill-conditioned problems with limited, sparse, and incomplete data. How-
ever, the learning of the solution of PDEs using NNs and gradient descent can
present training instabilities and convergence issues [256][119][254][253]. PINNs
use the weights of a NN to represent the solution function of a differential
equation, this can be categorized as a specific application of implicit neural rep-
resentation (INR), which are neural networks that are used to represent complex
signals on arbitrary dimensions [161][182]. INRs are interesting because they
are not attached to a specific resolution. They are learned continuous functions
that can be sampled at arbitrary resolutions. This is attractive to PDE-related
problems since the computational requirement remains constant and invariant
to the desired discretization. One drawback of PINNs is that they do not nec-
essarily represent a reduced computational power because they often fail to
predict the dynamics outside their training data. An alternative approach is
using the INR as a learned non-linear manifold that can be projected using an
ODE solver. This permits the construction of non-linear and continuous ROMs
[276][39][149][181]. However, these types of methods have some difficulties too.
We must train a neural network for a single instance of a PDE solution; thus,
its generalization capabilities are difficult. This can be overcome with meta-
learning methods or hypernetworks, but further study needs to be done in this
area.

The model selected for the study in the rest of this chapter is the Fourier
Neural Operator [138]. The main advantages of the Fourier Neural Operator
over the other Networks that we exposed previously are:

1. Invariance to Discretization: Can be evaluated at any point in the
output domain and accepts any number of points of the input domain.
The accuracy of the learned operator converges to the continuum opera-
tor, even without re-training.

2. Universal Approximation: Neural Operators can approximate any
continuous operator defined on a compact set of a Banach space. The main

121

difference between Neural Operators and other Neural Networks classes
is that they are expressive enough to learn from different input-output
function spaces, are not restricted to learning on a fixed grid represen-
tation, and can learn long-range interactions between features. However,
the models studied here are evaluated on a uniform grid because of the
use of the Fast Fourier Transform. These models could be extended to
non-uniform discretizations, but this is left for further work.

5.3.2 Research Objectives

After summarizing the state-of-the-art applications of Deep Learning for the
development of new methods of reduced order modeling of fluid flows, several
research questions arise:

• What model can we use in each situation?

• What amount of data is needed to learn a reduced representation of a fluid
flow?

• What is the accuracy we can get with Deep Learning models?

• How we can train Neural Surrogate Models that are stable and physically
accurate.

• What are the generalization capabilities of Deep Learning models when
applied to fluid dynamics?

The following sections will address these questions by studying different Deep
Learning architectures and training them to reproduce turbulent flow simula-
tions. The key contributions of this chapter are the following:

1. A comparison of Neural Operators for learning turbulent flows in terms of
accuracy.

2. A training methodology to promote extrapolation capabilities for predic-
tions outside the time domain contained in the data.

3. Assessment of the limitations of the studied models and guidelines to
overcome them possibly.

5.4 Turbulent flow Dataset

5.4.1 2D Kolmogorov Flow

The Kolmogorov flow [36] comes from solving the Navier-Stokes equation with
a sinusoidal forcing:

∂u∗

∂t∗
+ u∗ ·∇∗u∗ +

1

ρ
∇∗p∗ = ν∇∗2u∗ + χ sin (2πny∗/Ly) x̂

∇∗ · u∗ = 0

(131)

122

Where ρ is the density, η the kinematic viscosity, n an integer describing the
scale of the Kolmogorov force, and χ is the forcing amplitude per unit mass of
fluid over a doubly periodic domain [0, Lx] × [0, Ly], ∗ indicates a dimensional
quantity. The system is non-dimensionalized by the length-scale Ly/2π and

time scale
√
Ly/2πχ, then the equations become:

∂u

∂t
+ u ·∇u+∇p =

1

Re
∇2u+ sin(ny)x̂,

∇ · u = 0
(132)

Where the Reynolds number is:

Re :=

√
χ

v

(
Ly
2π

)3/2

(133)

This equation is solved using doubly periodic boundary conditions in the
velocity-vorticity formulation, which is obtained by taking the curl to the mo-
mentum equation:

∂ω

∂t
= ẑ · ∇ × (u× ωẑ) + 1

Re
∇2ω − n cos(ny) (134)

Where ωẑ := ∇ × u. This term is reduced to −u · ∇ω since the vortex
stretching is null in two dimensions (ω · ∇u = 0). To solve this equation in two
dimensions, the stream function Poisson equation is used to link the velocity to
vorticity:

u = ∇× ψ(x, y)ẑ
−∇2ψ = ω

(135)

Equations (134) and (135) constitute the Stream-vorticity formulation of
NS, and solving these yields an incompressible 2D flow.

For building the dataset, the equation is solved using a pseudo-spectral
method implemented in Python using the pseudospectral module of the JAX-
CFD package [21][52], where the Poisson equation is solved to find the veloc-
ity field. The vorticity is differentiated, and the non-linear term is computed
in physical space after it is dealised, then, time is advanced using a Crank-
Nicholson scheme update. The data is generated on a 256 × 256 uniform
(0, 2π)2 grid and downsampled to 128 × 128 for learning, the forcing is set
to f(x,y) = 4 cos (4(y)). Each trajectory is initialized with a Gaussian Ran-
dom field to represent the initial velocity, where the maximum velocity is set to
7m/s. To build the dataset, solutions are recorded at each t = 1s after the flow
becomes stationary, and two datasets are built for different Re:

The Reynolds number quantifies how turbulent the flow is. The higher the
number, the more flow exhibits chaotic behavior and is harder to predict. Each
dataset is subdivided into sequences of 10-time steps for training, and 10% is

123

ν (viscosity) N (number of trajectories) T (time-steps) Re (Reynolds’ Number)
10−2 1000 200 100

2× 10−3 1000 200 500

Table 7: Datasets for 2D Kolmogorov Flow.

saved for validation, which means we will have for each problem 18, 000 trajec-
tories for training and 2, 000 for testing.

5.5 Methodology

5.5.1 Deep Learning Models

The simulations that the neural networks will learn are 2D CFD simulations or
2D slices of simulations in 3D. The models are trained with a fixed time step
∆t and fixed resolution Nx ×Ny. As stated in Section 2, we want the model to
learn how to predict future fluid flow states given only an initial condition. This
problem can be classified in ML terms as a spatiotemporal regression problem.
In this case, we have a dataset of solutions to the NS equation defined in R2

that evolves in time. In other words, given an initial condition u(x, t0), it is
necessary to find a model parameterized by θ that models the solution operator
of the NS equation. In many numerical methods, predicting the next time step
depends on the solution at one or more previous time steps. This means the
model should learn the conditional probability:

Pθ(u) =

Nk∏
t=0

Pθ(ut|u0, u1, ..., ut−1) (136)

To be used in downstream applications, the learned model should:

• Extrapolate to time horizons that are not present in the dataset.

• Retain the same degree of physical accuracy for all the predictions.

• Generalize to unseen initial conditions.

Many models can be used to model the solution of a PDE. However, ob-
taining a model that performs with these characteristics for turbulent flow data
is challenging. Recurrent Neural Networks (RNN) are initially discarded be-
cause they are generally unstable to train due to vanishing/exploding gradients,
and they struggle to learn long-range dependencies [74][277]. Physics-informed
neural Networks are discarded too, even though they can learn a discretization
invariant representation of the solution of a time-dependent PDE, they also
present learning difficulties: they usually learn a solution of a PDE for a given
set of initial and boundary conditions [199], they present problems in represent-
ing multi-scale phenomenon such as turbulence [254][253]. It can be difficult

124

to generalize to log time horizons [119]. Another critical aspect of the learned
models is their data efficiency. RNNs and PINNs lack inductive biases. While
PINNs achieve this through the PDE constraints, it results in an objective func-
tion that is challenging to optimize. To exploit the inductive bias of the data
and to be able to predict solutions for an arbitrary duration, the models selected
for this study are Autoregressive models based on Convolutions and Neural Op-
erators.

Neural Operators

Neural Operators are models designed to learn the mapping between function
spaces. In the learning setting of this study, the objective is to learn the operator
that maps elements from the initial condition function space to the solution
function space. By definition, these function spaces are infinite, so if the optimal
neural operator learns effectively, the solution operator of a PDE can generalize
to arbitrary initial conditions. As we mentioned earlier, a Neural Operator layer
is characterized by an integral transform [117]:

(Kt (vt; θ)) (x) =
∫
Dt

κ
(t)
θ (x, y)vt(y)dy ∀x ∈ Dt+1 (137)

Where κ
(t)
θ is a learnable kernel function parameterized by a neural network,

one way to parameterize a Neural Operator integral transform is by solving
the integral in Fourier space. First, it is assumed that the kernel depends on
the distance between y and x, kθ(x, y) = kθ(x − y), so the integral transform
becomes a convolution. Then, this convolution is performed in the Fourier
domain, yielding the Fourier Neural Operator architecture (FNO) [138]. In
the FNO layer, the inputs are lifted to Fourier space using the Fast Fourier
Transform algorithm (FFT). Afterward, the Fourier modes are filtered by being
multiplied by a learnable kernel matrix. Then, the inverse FFT transforms these
outputs back to real space. Let F denote the Fourier transform of a function
v : D → Cn and F−1 its inverse:

(Fv)j(k) =
∫
D

vj(x)e
−2iπ⟨x,k⟩dx(

F−1v
)
j
(x) =

∫
D

vj(k)e
2iπ⟨x,k⟩dk

(138)

For j = 1, ..., n where i =
√
−1 is the imaginary unit and < ·, · > denotes

the Euclidean inner product on Rd. By assuming that the kernel is invariant to
translation: k(x, y) = k(x− y) for some k : D → Cm×n then the integral kernel
transform becomes a convolution that can be calculated in Fourier space:

(K(vt))(x) = F−1(F(κ) · F(v))(x) ∀x ∈ D. (139)

Then k is parameterized by its Fourier coefficients:

125

Figure 68: Diagram of an FNO architecture. The input tensor is lifted to a
higher dimensional feature space. The FNO layer transforms its input to the
Fourier domain, which is filtered and then transformed back to the original
domain. This operation is repeated T times before passing to the projection
layer that gives the output the dimensionality of the target function space.

(K(vt))(x) = F−1 (Rϕ · F(v)) (x) ∀x ∈ D (140)

A graphic illustrating the FNO architecture can be seen in figure 68. The
complex-valued tensor Rϕ has dimensions kmax × dv × dv and represents a col-
lection of Fourier modes where kmax is the maximal number of modes that are
truncated from the Fourier series expansion, this is a parameter set up before
training the model. Neural networks tend to learn first low-frequency modes
and later learn the higher-frequency modes during training [196]. This behavior
is known as implicit spectral bias. As the FNO model performs the linear oper-
ation in Fourier space, the frequency strength of each frequency mode is related
to the spectrum of the resulting model. The FNO also presents spectral bias as
it is a property of models trained by first-order learning algorithms. However,
learning lower-frequency modes is important because these frequencies represent
larger scales that have higher magnitudes than high-frequency parts for dissipa-
tive systems such as the Navier-Stokes equation. In an ideal setting, we should
choose the maximum number of frequencies learned by the model depending
on the smallest scales present in the target NS equation solution. Hence, this
requires knowledge of the task and hyperparameter tuning. If the value of k is
too small, the model may be unable to capture higher frequency components,
leading to overfitting. On the contrary, if the value of k is too large, this may
lead the model to overfit.

126

Increasing the maximum frequency and depth in an FNO can lead to a
substantial increase in model size, which translates into an increase in the com-
putational cost of the training stage. One way to increase the network capacity
while keeping the memory overhead small is by changing the design of the Neu-
ral Operator itself. Following the guidelines presented in [197], an FNO can be
designed following the architecture of a U-NET [208]. This model called UNO
(U-shaped Neural Operator), is built of an encoder branch that progressively
maps the input function to functions defined on smaller domains. And a decoder
branch that reverses this operation to generate an appropriate output function
with skip connections from the encoder. This encoder-decoder design allows for
better multi-scale learning while reducing the computational cost (see fig. 69).

Figure 69: Diagram of the UNO architecture. Each decoder block is an FNO
whose output is in a domain smaller than the previous. The inverse is the case
for the decoder by adding a skip connection that connects each decoder block
to the activations of corresponding encoder blocks. The middle processor layer
is a standard FNO layer on the reduced domain.

Another variation we will use for this study is a modified U-NET architec-
ture. The hypothesis is that convolutions may be just what we need to learn
fluid dynamics simulations. As seen in previous works [64] [233] [251] [81],
variations of ResNETs and U-NETs were implemented to learn fluid flow sim-
ulations. The reason convolutions are effective is that they tend to learn local
spatial information. Our implementation consists of using convolutional layers
on the upsampling and downsampling paths and using Fourier Neural Operator
layers in the networks’ middle section. Since the FNO layers will operate on
a reduced dimensional space, they will be easier to train since there are fewer
frequencies to learn. Thus, the size of the filter can be smaller.

127

In summary, the parameters for the architectures that will be used for this
study are:

• Fourier Neural Operator (FNO): Following their original implemen-
tation, the FNO used for learning problems has 4 layers, each with 24
Fourier modes. The lifting layer is a fully connected layer with 32 fea-
tures. The exact number of features is kept along all layers. The Swish
activation function is used. This network’s total parameters is 9.4M.

• U-shaped Neural Operator (UNO): The UNO model used has 3 en-
coder and decoder blocks and 1 processor block. The lifting and projection
layers are Fully connected layers with 32 output features. The output
layer is a linear layer that outputs to the target variable corresponding
number of features. The encoding path reduces the spatial dimension by
3/4 and increases the number of features by 3/2, and the inverse applies
to the decoding path. We have three FNO layers for the decoder with
[48, 72, 108] features, respectively. The processor layer is just one FNO
layer without dimension or feature scaling. The output of each encoder
block is skip-connected via concatenation to each decoder block. Every
FNO layer in this model has a kmax = 12 mode. The Gaussian error Lin-
ear unit (GELU) is used as activation, and Layer Normalization is used.
This model’s total parameters is 28M.

• Fourier U-NET (U-FNET): This network follows a encoder-processor-
decoder framework [217][233]. This standard U-NET model has interme-
diate FNO layers between the encoder and decoder. The encoder and
decoder blocks are built with residual blocks (see fig. 70) with two con-
volutional layers of a kernel of size 3× 3, one of the convolutions is zero-
initialized, GroupNorm with 1 group, and the GELU activation is used.
The down and upsampling is performed using bilinear interpolation. Each
block scales the dimensions by a factor of 2. The processor layer is an FNO
with 3 layers and kmax = 8 modes. The output layers are a 3 × 3 con-
volutional layer followed by a linear, fully connected layer. The encoding
path multiplies the features by [2, 4, 16]. The model designed this way has
25.9M parameters.

5.5.2 Training methodology

Spatio-temporal sequences are being predicted utilizing autoregressive image-to-
image models within our study. The process involves training a neural network
to discern the subsequent time step in the sequence based on its preceding in-
puts. Employing the one-step strategy, we exclusively forecast a single time-step,
given solely the previous one. This methodology resembles the incremental na-
ture of computational fluid dynamics (CFD) solvers, whereby the system’s state
is computed step-wise using numerical integration techniques.

128

Figure 70: Downsampling and upsampling blocks for the U-FNET architecture.

The models are trained in a supervised setting, wherein the projected se-
quence is compared to the target sequence using mean squared error. Regular-
ization terms are added to enforce physical accuracy and numerical stability,
and these terms are modulated by a constant multiplier λ (see algorithm 2).
Due to the datasets consisting of lengthy sequences, complete training on an
entire sequence is constrained by the available GPU memory. Moreover, these
autoregressive models are susceptible to error propagation as time steps are un-
folded during prediction and training, potentially leading to instability. Another
technical inconvenience spatiotemporal data faces is that the GPU memory fills
up quickly for long sequences. To address this issue, we propose dividing the
sequences into shorter lengths. In our investigation, sequences consisting of
10-time steps have proven to strike a favorable balance between memory re-
quirements and stability. This decision can be justified assuming our datasets
exhibit ergodicity and statistical stationarity over time. Consequently, we can
treat the more minor sequences as independent realizations, thereby enhancing
the overall robustness of the model.

Another consideration for training AR neural networks is whether to train
the Neural Networks to predict the next state of the solution entirely or to
predict the difference between time steps. In previous work, it has been demon-
strated that learning the update instead of the complete state in some cases
results in better results [217][233]. Also, there is a link with numerical inte-
grators, where the AR model can be seen as an Euler discretization of the
dynamics:

129

Algorithm 2: AutoRegressive NN training

Data: {(Un(x, y, t))}Ndata
n=1 , a dataset of spatiotemporal fields from a

CFD simulation.

Input: θ, The initial parameters of the NN.

Output: θ̂, trained parameters of the NN.

Hyperparameters: lr, learning rate, Nepochs ∈ N ∈ (0,∞)

for i = 1, 2, ..., Nepochs do

for n = 1, 2, ..., Ndata do

Û t0n ← (Ut0n ; θ);

foreach U tn, t ∈ (0, T) do

Û t+1
n ←Gθ(U

t
n);

end

loss(θ)

←1/NT
∑
||Un − Ûn||2 + λ1Lpde(Un, Ûn) + λ2Lstability(Un, Ûn);

θ ← Adam(θ, ∇loss(θ));
end

end

return θ̂ = θ

dU

dt
= Gθ(U)

U ti − U ti−1

∆t
= Gθ(U ti−1)

U ti = U ti−1 + Gθ(U ti−1)

(141)

The Euler discretization will be used for this study, but that does not mean
other update rules could also be applied. This method was used with the U-
FNET to differentiate between networks trained to predict the update or the
full state. We will call them U-FNET-Euler and U-FNET. Regarding the op-
timization used, the Adam optimizer was used with gradient clipping with a
norm of 1 to prevent exploding gradients [183]. This was observed to be useful
during the first stages of learning and allowed the use of a learning rate of 0.001.
The models were implemented using JAX [21], flax [84], and optax libraries [87].
The training was carried out on 4 NVIDIA Tesla V100 GPUs with a batch size
of 32. This work was granted access to the HPC resources of IDRIS under the
allocation 2023-AD011013548R1 made by GENCI.

130

5.5.3 Gradient Loss term

The multi-scale behavior of turbulent flows is a significant characteristic wherein
features across both high and low-frequency ranges hold importance. It should
be noted that Neural Networks encounter difficulties when attempting to learn
functions with high fluctuations. The Fourier Neural Operator (FNO) has been
developed to address this limitation, enabling more effective learning of non-
local features. However, suppose optimization solely focuses on the L2 loss
using first-order optimization methods. In that case, the learning process may
predominantly capture large-scale behavior, while smaller scales may require
more time or may not be learned at all, resulting in noise within this range.

To mitigate this issue, an approach is proposed wherein derivative infor-
mation is incorporated into the loss function. Including derivative information
reduces the errors associated with smaller scales, improving physical approxi-
mation. Some researchers have referred to this approach as Sobolev training, as
described in the work by Czarnecki et al. (2017) [48]. It is worth noting that
this methodology shares similarities with physics-informed loss, as presented by
Raissi et al. (2019) [198]. However, in Sobolev training, the focus is on the par-
tial derivatives and relaxing the constraint on the partial differential equations
(PDEs) while operating within the supervised learning framework.

For the construction of the Sobolev loss, we consider temporal and spa-
tial derivatives up to the second order, as these derivatives are inherent in the
Navier-Stokes equations:

Lpde = E

∥∥∥∥∥∇Û −∇U +∇2Û −∇2U +
dU

dt
− dÛ

dt

∥∥∥∥∥
2
 (142)

5.5.4 Promoting stability through regularization

Turbulent flows are characterized by their chaotic nature, rendering them chal-
lenging to predict due to their high sensitivity to perturbations. Even a minor
deviation from the expected trajectory can result in a significantly different fu-
ture path, commonly called the butterfly effect. Predicting chaotic systems’
evolution poses difficulties for numerical methods due to the rapid propagation
of small numerical errors, leading to non-physical outcomes. To address this
issue, numerical schemes typically employ robust time-integration techniques
and minimize the time step (∆t) to maintain accuracy. On the other hand,
numerical methods achieve numerical stability by their numerical dissipation
properties that can be inherent to the method or enforced.

Similarly, Neural Networks encounter obstacles when attempting to predict
chaotic behavior. Previous studies have utilized Recurrent Neural Networks
(RNNs) for predicting attractors in dynamical systems with finite-dimensional
state spaces or lower complexity Partial Differential Equations (PDEs) [133][73][70].

131

However, since understanding neural networks’ numerical properties is limited,
it is unsure whether a NN can exhibit numerical dissipation or be numerically
stable for arbitrary time-series data.

Temporal stability has been a critical concern in training Neural Networks
for predicting solutions to the Navier-Stokes and Euler equations, as highlighted
in other research papers [216][22][144]. What these papers do essentially is to try
to learn dissipative dynamics through regularization. This is similar to training
for denoising. The inputs are perturbed with adversarial attacks coming from
a different probability distribution. Then, the model is taught to mitigate or
suppress this noise by minimizing the distance of the prediction with the added
perturbation ϵ and the target state. A stability term is introduced into the loss
function following the formulation:

Lstability = E[L(Gθ(Uk + ϵ), Uk+1)]

Lstability =
1

Ndata

1

Nt

Ndata∑
n=1

Nt∑
i=1

∥∥U tin − Gθ(U ti−1
n + ϵ)

∥∥2 (143)

The next step consists of determining how to add the perturbations to the
inputs of our model. There are mainly two approaches that have been used to
promote stability in Autoregressive Neural Networks. The first method adds
Gaussian noise to the inputs with a constant variance [216]. This study uses
Gaussian Noise of σ = 0.01. The other method to add the perturbations is to
let the model do unrolled predictions for a small amount of the time steps and
then only backpropagate to the last time step. This is called the pushforward
method [22], (see fig. 71).

This work will use pushforward and denoising training methods to promote
stability. First, models are trained with the pushforward method. When the re-
sults converge regarding the training MSE, the stability loss is switched with the
denoising method to help enforce numerical dissipation further. In this work,
combining both techniques bears a more accurate result than exclusively using
one of these losses.

5.6 Results and Discussion

5.6.1 Evaluation Metrics

The evaluation of computational fluid dynamics (CFD) models plays a cru-
cial role in assessing the performance and accuracy of numerical simulations.
Deep Learning models used to predict fluid flow also need to be evaluated in a
similar rigorous way, beyond the commonly used metrics used in Machine Learn-
ing. However, evaluating these deep learning-based CFD models’ effectiveness
requires carefully selecting and applying appropriate evaluation metrics. The
evaluation metrics serve as quantitative measures to assess the quality and re-
liability of the predictions made by the deep learning models. They provide

132

Figure 71: Training strategies. One-step training predicts only the next time
step. Unrolled training predicts a whole sequence given only an initial time step.
The model is unrolled N times in pushforward training but only backpropagates
to the last time step.

valuable insights into the model’s ability to capture flow dynamics, accurately
simulate complex fluid behavior, and generalize well to unseen data. Moreover,
these metrics facilitate the comparison of different models, helping researchers
and practitioners make informed decisions regarding model selection and opti-
mization strategies.

In the context of deep learning for CFD, the choice of evaluation metrics is
particularly important due to the unique challenges posed by fluid flow simu-
lations. CFD models must accurately represent a wide range of flow features,
such as turbulent eddies, vortices, and shock waves, while also capturing the
influence of boundary conditions and complex geometries. Furthermore, deep
learning models introduce additional considerations, including the impact of
architectural choices, training strategies, and regularization techniques on the
overall predictive performance. This section aims to provide a comprehensive
overview of the evaluation metrics employed in analyzing the models that serve
as surrogate models of the fluid simulations object of this work. The metrics
used here attempt to measure the accuracy of flow predictions, the ability to
capture complex features, and the generalization performance on unseen data.
By understanding and utilizing appropriate evaluation metrics, researchers and
practitioners in deep learning for CFD can effectively assess their models’ perfor-
mance, identify improvement areas, and contribute to the ongoing advancement
of accurate and reliable fluid flow simulations. This section will be valuable
for evaluating and benchmarking deep learning models in computational fluid

133

dynamics, ultimately enhancing our understanding of complex fluid behaviors
and their practical applications.

The following evaluation metrics were used to assess the performance of the
neural networks used in this work:

• Relative Root Mean Squared Error: This measure is used to quantify
the degree of accuracy in the physical space. It quantifies the degree of
fidelity the deep learning model has in predicting the next state of the
fluid flow given the previous time step. This error is calculated in the
following way:

RRMSE =
1

Ndata

1

Nt

Ndata∑
n=1

Nt∑
i=1

√√√√∥∥∥U tin − Gθ(U ti−1
n)

∥∥∥2
∥U tin ∥2

(144)

• Autocorrelation Function: In turbulent flow, the autocorrelation func-
tion provides insights into a particular flow variable’s temporal correlation
or persistence. Chaotic and irregular fluctuations in velocity, pressure, and
other flow properties characterize turbulence. These fluctuations occur
over various spatial and temporal scales, challenging analyzing and pre-
dicting turbulent behavior. The autocorrelation function quantifies the
correlation between a flow variable at a given point in time and its values
at different time lags. It measures the similarity or relationship between
the variable’s past and future values. By examining the autocorrelation
function, researchers can gain valuable information about the temporal
patterns and organization of turbulent flow phenomena. Mathematically,
the autocorrelation function for a flow variable, such as velocity or pres-
sure, is calculated as the normalized covariance between the variable at
a specific time instant and its values at different time lags. The covari-
ance represents the statistical measure of how two variables vary together.
Normalizing the covariance provides a correlation coefficient ranging from
-1 to 1, where 1 indicates a perfect positive correlation, -1 represents a
perfect negative correlation, and 0 suggests no correlation. In the case of
turbulent flow, the autocorrelation function helps understand fluctuations’
temporal behavior. For instance, a high autocorrelation at a specific time
lag suggests that the flow variable exhibits a persistent pattern or trend
over time. On the other hand, a low autocorrelation indicates that the
flow variable’s past values do not indicate its future behavior, suggesting
randomness or lack of correlation between consecutive values. The auto-
correlation function is widely used in turbulence research to study various
aspects of flow dynamics, such as turbulence intensity, characteristic time
scales, and the presence of coherent structures. It provides a quantitative
measure of how long it takes for the flow variable to lose its correlation
with past values, allowing researchers to identify dominant time scales and
capture important flow features.

134

In a general sense, the autocorrelation is given by:

Rff (τ) =

∫ ∞

−∞
f(t+ τ)f(t)dt =

∫ ∞

−∞
f(t)f(t− τ)dt (145)

Where τ is the time-lag, and f represents the complex conjugate of the
signal that, in the cases studied, is the same signal since it is real. The
autocorrelation integral is a convolution and can be calculated with its
corresponding algorithms. For the discrete case, the autocorrelation of
the velocity or vorticity fluctuations is computed as:

R̂uu(τ) =
1

(n− τ)σ2

n−τ∑
t=1

(
U t − µ

) (
U t+τ − µ

)
(146)

• Turbulent Kinetic Energy (TKE) spectrum: The kinetic energy
spectrum is a fundamental concept in turbulent flow analysis. It provides
valuable insights into energy distribution across different spatial scales
within the flow. It characterizes how the kinetic energy of turbulent mo-
tion is distributed as a function of the wavenumber or spatial frequency.
In turbulent flows, energy is transferred from large scales to more minor
scales through a process known as the energy cascade. This cascade trans-
fers kinetic energy from the larger eddies or structures to smaller eddies,
resulting in a range of spatial scales with varying energy levels. The kinetic
energy spectrum quantifies this energy distribution across scales and pro-
vides information about the dominant energy-containing structures and
their interactions. The kinetic energy spectrum is typically obtained by
performing a Fourier analysis of the velocity field in a turbulent flow. The
velocity field is decomposed into different spatial frequencies or wavenum-
bers, representing the different scales of motion present in the flow. The
Fourier transform of the velocity field yields the kinetic energy spectrum,
which describes how much kinetic energy is associated with each wavenum-
ber. The spectrum is often presented in a graph, with the wavenumber on
the x-axis and the kinetic energy (or its normalized form) on the y-axis.
In an isotropic turbulent flow, where the energy distribution is uniform in
all directions, the kinetic energy spectrum exhibits a characteristic shape
known as the ”Kolmogorov’s -5/3 law” or the ”inertial range.” According
to this law, the energy spectrum follows a power-law behavior for a range of
intermediate scales with a slope of -5/3. This power-law range represents
the range of scales where the energy cascade dominates, and the flow ex-
hibits self-similarity and universal behavior. The kinetic energy spectrum
provides valuable information about the energy-containing structures and
their contribution to the overall flow dynamics. The high-energy scales
correspond to the larger eddies or coherent structures that transfer en-
ergy to more minor scales. The low-energy scales represent the dissipative
scales, where energy is dissipated into heat due to molecular viscosity. For
the 2D case, the one-dimensional TKE spectrum is computed as:

135

Ũ(kx, ky) =

∫ ∞

−∞

∫ ∞

−∞
U(x, y)e−i2π(xkx+yky)dxdy (147)

EU (k) =

∫ kmax

0

(∫ ∫
Ωk

Ũ(kx, ky) · dΩk
)
dk (148)

• Divergence: In the context of fluid dynamics, the divergence is a funda-
mental concept that describes the behavior of a vector field, including the
velocity field in a turbulent flow. The divergence represents the spatial
variation or convergence/divergence of flow velocities at a given point in
the flow field. Mathematically, the divergence of a vector field is calculated
as the scalar quantity obtained by taking the dot product of the velocity
vector field with the gradient operator:

Div(U) = ∇ · U (149)

It represents the flux of the vector field across an infinitesimal control
volume centered at a particular point in the flow. The divergence pro-
vides information about the flow’s expansion or contraction behavior at
that point. In the case of turbulent flow, the divergence is particularly
relevant as it reflects the local changes in flow rates and volumetric flow
in different regions. Positive divergence indicates an outward flow or ex-
pansion, while negative divergence suggests an inward flow or contraction.
Zero divergence signifies a state of incompressible flow where the flow
rates remain constant within the control volume. The divergence field can
vary significantly in turbulent flows due to vortices, eddies, and other flow
structures. These turbulent features introduce complex flow patterns, re-
sulting in positive and negative divergence regions. The distribution and
magnitude of divergence in a turbulent flow field can provide insights into
flow behavior, such as the presence of flow separation, recirculation zones,
or areas of high flow convergence. The divergence is chosen as a property
that has to be respected by the prediction of our model and maintained
for long-time horizons when extrapolating to times outside the training
data distribution. If the prediction is divergence-free, it is a measure of
physical accuracy since the flows studied are incompressible.

5.6.2 Results on 2D Kolmogorov Flow

In this section, the performance of the models is evaluated on the 2D Kol-
mogorov Flow. First, the errors for a 1-step model prediction can be observed.
Table 8 presents the RRMSE and the PDE loss values calculated on test data
not used during training. From this, it can be inferred that the models with the
U-NET structure have better accuracy than the standard FNO. However, this
measures only how close the model is to the ground truth, so it is not enough

136

Model RRMSE Lpde
FNO 0.2771 0.0020
UNO 0.2966 0.0132

U-FNET 0.19850 0.0138

Table 8: Errors for each model for 1-step prediction of the 2D Kolmogorov flow.

to assess the numerical stability and physical accuracy of the model.

The next step in the evaluation procedure is to assess qualitatively the pre-
dictions made by the models. From fig. 72, it can be seen samples of unrolled
predictions made by the neural networks, starting only from an initial solution
of the NS equation, the models are let to predict a whole sequence of 200 time
steps. The three models exhibit numerical stability up to some extent. Even
though there are still errors in the smaller scales, the models can dissipate these
errors and not propagate them. As explained earlier, the Neural operator mod-
els were trained using the pushforward method and denoising to achieve this
stability. The predictions were unrolled for three time steps during the push-
forward training phase. The numerical stability was not achieved if the model
was trained only on the one-step loss without regularization. After the Neu-
ral Operator models, the U-FNET model was implemented and trained. The
U-FNET-Euler was trained to predict the update to the fluid flow state using
a forward Euler discretization, whether the other models were to approximate
the full solution operator. At first, it seemed the U-FNET-Euler was not stable
for longer time horizons, but it was observed that the training could be pushed
further than the FNO and UNO models, but convergence is slow in comparison.
The U-FNET-Euler remained stable for the 200 time steps. Still, the errors
started amplifying beyond this time horizon, whether methods trained to pre-
dict the full state instead of the residual don’t exhibit this behavior.

One thing that can be observed from the vorticity plots is that after some
time steps, the trajectory diverges from the ground truth but still looks like
turbulence. It is needed to assess if the predictions by these neural networks are
still a plausible fluid flow with the same properties and structures as the one
that emulates. An important property to validate is that the flow predicted by
the neural network exhibits the same temporal behaviors. This is done with the
autocorrelation function. In figure 73, the plots compare the autocorrelation
function of the flow fields predicted by the model and the one from the CFD
code. From these pictures, it can be assessed that the DL models’ predictions
are close to the original flow data. Still, they produce slightly different turbulent
structures in terms of time scale, corresponding to the qualitative comparison
in fig.72. To quantify this error, the integral time-scale is calculated, which
is the integral of the autocorrelation function. The relative mean absolute er-
ror is calculated between the time-scale of the simulated flow by the numerical
method and the flow predicted by the neural networks. According to table 9,

137

Figure 72: Predictions made by the models on the 2D Kolmogorov flow at
Re = 100.

the U-FNET achieves lower error in the temporal correlation.

The RRMSE indicates an error in the predictions made by the NN, but it

138

Model τl(s) r-MAE
Sim 2.15 –
FNO 1.75 s 0.185
UNO 2.31 0.073

U-FNET-Euler 2.07 0.038
U-FNET 2.13 0.012

Table 9: Integral time-scale and their relative mean absolute error.

Figure 73: Autocorrelation functions of the vorticity predicted by the different
models.

does not give too much information about the statistical and physical properties
of the flow. For this reason, the turbulent kinetic energy spectrum is calculated
at different time steps to verify that the model has the same distribution of
scales. In figure 74 it can be seen the TKE spectrum at 4 different time steps
under the 200 available in the dataset: [t = 10∆t, 72∆t, 134∆t, 196∆t]. The
three figures show that the model correctly predicted all the turbulent length
scales for the lower time steps. But afterward, the errors amplify, and the mod-
els overestimate the smaller length scales’ values. The mean absolute error is
calculated for lower and higher frequencies. As reported in table 10, the U-
FNET retains better accuracy in the lower frequencies, but the error of UNO is
lower on the higher frequencies. The cutoff point of higher-lower frequencies is
determined as the point at which the spectrum curve starts detaching from the
spectrum of the real flow.

Another important property the model should be able to retain is the zero

139

Model r-MAE-low r-MAE-high
FNO 0.1475 79.23
UNO 0.1820 02.95

U-FNET-Euler 0.0793 20.15
U-FNET 0.0901 08.24

Table 10: TKE error for the different models.

Figure 74: 1D Energy Spectrum of model predictions at different time steps for
2D Kolmogorov flow at Re = 100.

divergence of the velocity field. This property is present in incompressible flows
and comes from the principle of mass conservation. Since the models are trained
using vorticity, the velocities are calculated from the stream function, which is
computed from the predicted vorticity:

∇2ψ = −ω
ψ = −(∇2)−1ω

U = ∇× ψ =

(
u =

∂ψ

∂y
, v = −∂ψ

∂x

)
∇ ·U =

∂u

∂x
+
∂v

∂y

(150)

140

Learning the vorticity field and getting the velocities from the stream func-
tion means learning a divergence-free prediction by definition. The stream func-
tion is defined for incompressible flows. The stream function is the volume flux
through the curve element between two arbitrary points (AP). Considering
a fluid element (see fig. 75) within a Cartesian coordinate system, continuity
states that if the flow is incompressible, the flow into the infinitesimally small
element must be equal to the flow out of that element. In this element, u is the
velocity parallel to the x−axis, and v is the velocity parallel to the y−axis. The
total flow into and out of the element is:

δψin = uδy + vδx

δψout =

(
u+

∂u

∂x
δx

)
δy +

(
v +

∂v

∂y
δy

)
δx

(151)

Having δψin=δψout we get:

uδy + vδx =

(
u+

∂u

∂x
δx

)
δy +

(
v +

∂v

∂y
δy

)
δx

∂u

∂x
+
∂v

∂y
= 0

(152)

Which means that the flow field has zero divergences. In fig. 76, the diver-
gence plots for the predicted flow by the different models can be observed. From
the figures, it can be inferred that the only models able to predict and maintain
divergence-free flow are the UNO and U-FNET models. FNO and U-FNET-
Euler can predict divergence-free flow, but at some points, they introduce errors
that are not physical, resulting in exploding values of the divergence.

5.6.3 Effect of the loss terms

This section compares the different loss terms’ influence on the final result. The
U-FNET model is trained on the 2D Kolmogorov flow dataset for this task. In
the following three different configurations:

1. U-FNET-D: This model is trained only on the mean-squared error (MS)
between the one-step prediction and the data in physical space. No addi-
tional regularization term is used.

2. U-FNET-G: This model is trained using the MSE in physical space and
uses gradient information with the gradient loss term. No stability term
is used.

3. U-FNET-S: This model is trained using the MSE in physical space and
uses the stability term with the pushforward method with 3 time steps.
The gradient loss term is not used here.

It can be seen from Fig. 77, 78 and 84 that the model used to promote dissi-
pation/stability is very important to learning a flow with proper time correlation

141

Figure 75: Fluid square element in Cartesian coordinates

(a) (b)

(c) (d)

Figure 76: Divergence predicted by a) FNO, b) UNO, and c) U-FNET-Euler d)
U-FNET.

and energy distribution along scales. Just training on data is not enough, and
the model predicts a highly correlated flow that is not turbulent. The numerical
instability problem doesn’t improve when adding the gradient term, but some
high-frequency fluctuations are dampened. When the stability term is used for
training, the model predicts stable fluid flow with a one-step RRMSE of 0.2204
as reported in table 11, just slightly higher than the U-FNET trained with all
the regularization terms and less than the FNO or UNO. The model trained

142

(a)

(b)

(c)

Figure 77: Vorticity samples predicted by a) U-FNET-D, b) U-FNET-G, and
c) U-FNET-S.

143

Model RRMSE Lpde
Data-only 0.2048 0.0269
Data+PDE 0.1819 0.0179

Data+Stability 0.2204 0.0296

Table 11: Errors for each model for 1-step prediction of the 2D Kolmogorov
flow by U-FNET trained with different regularization.

Figure 78: Comparison of Autocorrelation functions for predictions made by
U-FNET trained with different regularization.

Model τl(s) r-MAE
Sim 2.15 –

Data-only 1.67 s 0.185
Data+PDE 1.44 0.328

Data+Stability 1.97 0.084
All 2.13 0.012

Table 12: Integral time-scale and their relative mean absolute error.

with the stability loss can recover similar spectral error to the model trained
with the gradient loss term, as seen in figure 84 and table 13. However, the
model without the stability term performs poorer in learning the appropriate
temporal structure. From these results, it can be concluded that the stability
term is necessary for learning models that behave closer to numerical solvers.
the contribution of gradient regularization or Sobolev training is to reduce the
error further, but it alone does not ensure stability.

144

Figure 79: 1D Energy Spectrum of model predictions by U-FNET trained with
different regularization.

5.6.4 Learning at a higher Reynolds’ number

The next question is which model can predict turbulence at a higher Reynolds
number. In the experiments, the only model able to converge was the U-FNET.
The other models got stuck at a point where no turbulent fluctuations were
produced. To train the U-FNET, transfer learning was used, meaning that the
weights of the trained model at Re = 100 were used as the initial weights for
teaching the model at Re = 500. The relative root mean squared error and the
gradient loss are seen in table 14.

Next, autocorrelation (fig. 81b), and TKE spectrum fig. 81a are presented.
There is good agreement with the simulation data, with errors in values and
time scale close to the ones of the U-FNET at a lower Re as it can be seen in
tables 14 and 15. However, the errors in the energy spectrum are higher, as seen
in table 16. This might be because the flow contains more energy in a bigger
range of scales, so the learned frequencies are not enough to compensate for the
behavior of higher wave numbers. There is no clear reason why only this model
worked for this problem. Being the only difference in the convolutional layers, it
can be concluded that this is possibly the reason because the convolutions learn
representations based on local features that make learning in the Fourier space
easier. This needs further investigation but is a sign that embedding inductive

145

Model r-MAE-low r-MAE-high
Data-only 0.1591 198.32
Data+PDE 0.1136 57.43

Data+Stability 0.1528 41.02
All 0.0907 8.24

Table 13: TKE error for the different models.

Model RRMSE Lpde
U-FNET 0.1614 0.0343

Table 14: Errors for U-FNET predictions at Re = 500.

Figure 80: Samples of vorticity predictions by U-FNET at Re = 500

biases in the models can help learn complex features.

(a) Energy spectrum at Re = 500.
(b) Autocorrelation function of vortic-
ity at Re = 500

146

Model τl(s) r-MAE
Sim 1.23 –

U-FNET 1.22 0.010

Table 15: Integral time-scale and their relative mean absolute error.

Model r-MAE-TKE-low r-MAE-TKE-high
U-FNET 0.6020 112.27

Table 16: Errors for U-FNET predictions at Re = 500.

5.6.5 Zero-Shot Super-Resolution at Re = 100

One property of Neural Operators is discretization invariance. For a model
to be discretization-invariant, it must work for any input function discretiza-
tion, can be evaluated at any point of the output function, and converge to a
continuum operator as the discretization is refined [117]. Other types of neural
networks aren’t discretization-invariant because they generally take their inputs
and outputs as finite-dimensional vectors. Coordinate-based NNs, such as those
based on Implicit Neural Representations and PINNs, satisfy the property that
they can work on any domain discretization. Still, they fail to approximate
between function spaces. Thus, they have limited generalization capabilities.
CNNs aren’t discretization-invariant because they do not converge with grid
refinement due to the change in the receptive field when applied to different
resolutions. A common approach to achieving super-resolution using Neural
Networks is to include some form of interpolation or upsampling, which bounds
the model to a deterministic number of upscaling factors. In the model U-FNET
studied here, we use Convolutional Residual blocks with interpolation as layers
of the Encoder and Decoder part. This makes the model, not a Neural Operator
even though the FNO layers are used in the middle.

In this section, we evaluate the models at a higher input resolution. The
models were trained on a downscaled version of the input with a resolution of
(128 × 128) and are now being evaluated on a grid of (256 × 256) that is the
one the flow generated was generated on. Only the FNO could correctly predict
the fluid flow at a higher resolution out of the models studied. In addition, the
metrics improved compared to its predictions at a lower resolution, as seen in
tables 17, 18 and 19. This means that FNO gets closer to the solution operator
as the discretization gets refined, satisfying the properties of a discretization-
invariant operator.

In Fig. 82, it can be seen the samples of the predicted vorticity for 200
steps look qualitatively as Kolmogorov flow. The autocorrelation function is in
good agreement with the ground truth, as seen in Fig. 83a, and the error of the

147

Model RRMSE Lpde
FNO 0.2683 0.0016

Table 17: Errors FNO predictions at Re = 100 on a (256× 256) grid.

integral time scale is 0.011. One interesting behavior of the FNO is that it can
sustain stable predictions when predicting at a finer resolution. This is reflected
in the divergence of the predicted fields, as shown in Fig. 83b, where the flow
is kept divergence-free after 200 time steps.

Figure 82: Samples of vorticity predictions by FNO at Re = 100 on a (256×256)
grid.

Model τl(s) r-MAE
Sim 2.15 –
FNO 1.92 0.011

Table 18: Integral time-scale and their relative mean absolute error.

The turbulent kinetic energy spectrum at different time steps is shown in
Fig. 84. The spectrum starts almost identical to the ground truth, and the
errors amplify as the predictions are unrolled until they plateau. Like other
Neural Networks trained on gradient descent, FNOs exhibit spectral bias dur-
ing learning. They tend to fit the lower frequency modes first and learn the
higher frequency ones in a later stage or can converge, leaving some of them
out. For the data studied, the lower frequency modes are the ones that con-
tain the largest quantity of energy, so learning them is more important. In this
case, the model learns to predict the accurate solution fitting these modes and

148

(a) Autocorrelation functions of the
vorticity predicted by FNO at Re =
100 on a (256× 256) grid.

(b) Divergence of the predictions by
FNO at Re = 100 on a (256 × 256)
grid.

dissipates the error in the higher frequency components, preventing the accu-
mulation of errors and achieving numerical stability. For this reason, the data
used for training FNO must contain the most significant number of modes pos-
sible, and the FNO itself must be expressive enough to capture these modes.
This might be why the FNO couldn’t learn the flow at a higher Re in the ex-
periments. To solve this issue, the FNO layers would need to be wider to learn
more frequencies, or the model could be trained at a higher resolution. This is a
limitation because as the problem complexities, it increases the computational
cost of the model because it needs to be bigger and use higher-dimensional data.

Model r-MAE-TKE-low r-MAE-TKE-high
FNO 0.1910 41.04

Table 19: Errors for U-FNET predictions at Re = 500.

149

Figure 84: 1D Energy Spectrum of model predictions by FNO at Re = 100 on
a (256× 256) grid.

5.7 Conclusions on Surrogate Modeling of Turbulence with
Neural Operators

Neural Operators have been implemented and trained to predict turbulent flows
over a long time horizon. We studied configurations based on the Fourier Neural
Operator, considered one of the state-of-the-art models in Operator Learning for
physics and scientific problems. From the results presented, it can be concluded
that training these models to predict spatiotemporal phenomena with chaotic
behavior is not an easy task. Three neural network architectures were studied:
FNO, UNO, and U-FNET, which mixes encoder-decoder convolutional paths
with an FNO processor in the middle. The models were trained on a dataset
built with a pseudo-spectral simulation of 2D Kolmogorov flow simulated on a
2562 uniform grid on a (2π, 2π) periodic domain, with one dataset containing
trajectories at Re = 100 and other one at Re = 500. Regularization based on
gradient information and a stability term to enforce numerical dissipation were
used to promote accuracy and numerical stability. The experiments showed that
the standard FNO exhibited good accuracy but could not be numerically stable
when extrapolating outside the temporal domain present in the training data
when predicting at lower resolution. The models with a U-NET-like structure,
UNO and U-FNET, could predict longer time horizons without exploding at
the training resolution. Out of these two models, the U-FNET reported better

150

accuracy and could learn more complex flow at a higher Re number. It is in-
teresting to know the mechanisms that produce numerically stable data-driven
surrogate models based on neural operators. To clarify this issue, the effect of
the regularization terms is investigated by training a U-FNET with different
configurations of them: one only trained on l2 norm, a second one with the ad-
dition of the gradient term, and a third one with that addition of the stability
term. Through these tests, it was confirmed that the stability term is, in fact,
necessary to ensure that the models can extrapolate to longer-range predictions.
This property is essential for the development of surrogate models since it al-
lows the collection of data on smaller temporal domains, training the models,
and use them to predict the quantities of interest far ahead in the future, thus
reducing the computational requirements in different applications that rely on
costly computer simulations. However, FNO has an interesting property that
CNN models lack: discretization invariance, meaning they can predict at differ-
ent resolutions. The prediction improves as this discretization is refined. Unlike
U-FNET, FNO and UNO couldn’t learn the flow at Re = 500. We assume
it is mainly because the resolution used during training does not contain the
most representative modes in terms of frequency. This is a limitation for FNO
because it will be challenging to learn from sparse and noisy data, and having
high-fidelity data for training can be computationally prohibitive for many com-
plex problems. Future work should aim at improving these limitations. Very
recent work has been oriented towards this, introducing incremental spectral
learning [281] and factorized FNO that scales the architecture [242]

This study opened more questions regarding the limitations of these models
and ways to improve them. The flow configuration used for training is relatively
simple and not found in nature. The use of these models on more complex
physics like multiphase and turbulence in 3D has been very modest, and it can
be assumed that this would require different models and training strategies to
tackle the higher dimensionality of these problems. Another important aspect
for these models to be useful is the capability to generalize to non-uniform grids
and temporal discretization. This problem needs to be addressed in the future
to know the resolution limit in relation to the complexity of the data that these
models can accomplish. Another important aspect regarding the generalization
of neural operators is their robustness for predicting transient phenomena. The
models tested here were used on data assumed to be statistically stationary and
ergodic. Many problems in physics exhibit transient behavior, which can be
more difficult to predict accurately by the same model since there is a change in
the data distributions as it advances in time. This could be relevant to apply-
ing these models to predict phenomena such as weather, where extreme events
drastically change the course of the predictions. Future work, we believe, should
be oriented towards models and training methods that can tackle more com-
plex flows with better generality to different parameters, that incorporate more
physical knowledge as well as appropriate benchmarking metrics that quantify
the trustworthiness of ML as a substitution of numerical methods that are going
to be used in practical cases.

151

Part III

Epilogue

6 Conclusions and Outlook

As this thesis ends, restating the research questions that ignited this work is
worthwhile. Given the recent advancements in artificial intelligence technol-
ogy, thanks greatly to using algorithms based on Neural Networks. The central
question of this work is how Deep Learning can then improve the study of Com-
putational Fluid Dynamics. An ongoing and thorough critical assessment of the
literature has been carried out for this task. In this review, which is contained
in chapter 3 of the manuscript, the applications of ML to CFD have been cat-
egorized in three major areas, also in accordance with other reviews found in
the literature [28][248]. In addition, we have added a section on the Uncertainty
Quantification of ML, an area touched very little by other reviews. Uncertainty
quantification is already a scientific field with many applications for determin-
ing the reliability of other engineering systems. The research of UQ in ML is
growing since it is a tool that helps build trustworthy and safe AI. This will be
important for CFD applications because it will measure how reliable the predic-
tions of the state of a fluid flow made by an ML algorithm are. Then, different
points addressing the concurrent challenges of applying Machine Learning to
enhance CFD were addressed. From the points highlighted in the review, we
chose to work on the problem of building data-driven surrogate models of turbu-
lent flows using Deep Learning. The reason for choosing this problem was that
turbulent flows are present in many applications, and their simulation requires
significant computational resources. By training Deep learning algorithms to
simulate these flows, these costs will be reduced and could open pathways to
other applications. The main questions behind this work were, first, to deter-
mine which models work best at learning the complex multi-scale behavior of
turbulence. Second, how can these models be trained to be numerically stable
and not propagate errors? Third, what are the capabilities of these models to
generalize to other conditions, such as different resolutions and higher Reynolds
numbers?

In Chapter 4, we explored some Deep Learning methods that could be used
as surrogate models of turbulent flows. We started implementing a GAN to
generate samples from the solution given by the Langevin equation, which is a
stochastic model of the motion of a particle in a turbulent media. Afterward,
we implemented another GAN to generate 2D slices of synthetic turbulence.
GANs could effectively learn the complex distribution of turbulence, and the
samples generated were of high fidelity. However, GANs present difficulties in

152

training and huge data requirements. For this reason, it was not possible to scale
to more complex cases. After the GAN, supervised learning of turbulent flow
simulations was explored using a framework based on an Autoencoder plus a
Convolutional LSTM model. An AE was implemented and trained to reduce the
problem’s dimensionality and learn a latent representation of the flow field. The
model was trained on 3D homogenous isotropic turbulence fields coming from
a DNS. The AE built was based on the ConvNext models that use Depthwise
convolutions with the purpose of reducing the memory requirements of using
3D data, which is an important technical challenge for learning to simulate tur-
bulent flows. The performance of the AE is comparable to other AEs found in
the literature designed to learn latent representations of fluid flow fields. How-
ever, our work is one of the few that addresses turbulence in 3D. Then, the
trained AE was used in the ConvLSTM framework to reduce the dimensions of
the spatiotemporal sequences to ease the learning and alleviate the associated
costs. The ConvLSTM could predict the turbulent flows for a few time steps
and maintain the turbulent statistical properties. However, the model suffered
from instability as the predictions were unrolled. Even though we tried to min-
imize the computational requirements for training this model to achieve better
predictions that could learn the proper temporal dynamics and be able to gen-
eralize to longer time steps, it would require more data, which is costly to obtain.

This lead us in Chapter 5 to explore physics-inspired methods tailored to
learn from problems that arise from the solution of partial differential equations,
in this case, Neural Operators. We focused mainly on how to train Neural Oper-
ators in order to achieve numerically stable predictions over long-time horizons.
We employed a strategy based on regularization and obtained good results for
the 2D Kolmogorov flow. In some scenarios, the models could generalize to a
higher resolution and learn a higher Reynolds number using transfer learning.
However, Neural Operators still present limitations. One limitation is still the
data requirements of these models. In order to work on cases that represent
a bigger range of scales, Fourier Neural Operators need to be scaled up in the
number of parameters in order to capture these multi-scale relationships. This
increases the model parameters and associated memory costs. In the same line,
we found that the more complex the case, the higher the data resolution needs
to be. The other constraint of the FNO is that it works on problems on a uni-
form grid, making it difficult to learn from data with irregular geometries and
unstructured meshes.

Before drawing the final curtain on this study, it is worthwhile to reflect
on the research methodologies employed and the main challenges of this work.
This research project originated at a moment when fast-paced advancements
in Artificial Intelligence were being and continue to be made. As a result, this
work evolved simultaneously with the literature. At the moment of carrying
out this research and writing this thesis, it is possible that some other group of
researchers have already or are on the verge of making a contribution that out-
performs the methods exposed here or solves the open issues we have discussed.

153

At the beginning of the Ph.D. project, only a few examples could be found that
successfully applied DL to CFD, and those that did it stayed on relatively sim-
ple configurations, even simpler than those exposed here. Now, a much bigger
array of techniques can be used for different types of problems for CFD, and
the community is now considering more possibilities. Still, in the current state,
there is significant work to be done for Deep Learning to be applied to prob-
lems pertinent to complex real-life applications with fluids and fluid mechanics
problems of interest for physicists. Aside from the findings made through the
experiments, the real contribution of this work, being one of the first of its kind
in our research group, which opened the collaboration between two different
research fields. The work presented here could serve as a baseline that opens a
path that could be followed by present and future researchers belonging to our
own research group and the exterior and my own line of work. If we now turn
our attention to future directions, a direct continuation of this work would be:

1. Extension to more complex cases: Implementing neural operators that can
handle more complex cases like canonical turbulent flows such as Homoge-
nous Isotropic Turbulence and Channel Flow, and learning data-driven
surrogate models of atomization and spray simulations.

2. Develop other methods to ensure numerical stability: As it has been ob-
served, numerical stability was achieved through regularization but is still
tied to the capacity of the model to represent the target fluid flow. Other
methods could be investigated, like designing more robust architectures
to noise or auxiliary super-resolution models to refine the predictions.

3. General model for synthetic turbulence generation: using modern gen-
erative modeling techniques, a synthetic turbulence generator could be
developed that generates velocity fields for a wider range of conditions
such as energy spectrum, turbulence intensity, inlet geometries, and other
parameters.

In a more general sense, we could anticipate what would be some of the next
steps for ML + CFD:

• Physics-Inspired Models: Model that leverages physics knowledge to
have inductive biases that boost the expressiveness and learning capabili-
ties for fluid flow problems.

• More integrations with CFD solvers: There are a few examples where
a neural network is part of CFD software and helps boost its performance.
Not only will the network help the numerical method, but it could also
learn from it in a continual way by making the solver part of the training
loop, where the simulations constitute an environment that keeps feeding
the model new information as new cases are simulated. In this scenario,
Reinforcement Learning could play a critical role in the control of these
simulations.

154

• Generalization through Foundation Models: One thing made clear
in all the examples given in this work is that generalization is hard for
fluid flows. One approach that has had great success in DL is using large
models called foundation models, which are trained on a big corpus of
data and then can be fine-tuned for different downstream tasks. This
could also be done for fluid mechanics, where foundation models designed
for fluid dynamics and trained on high-quality data of canonical fluid flows
can learn representations that uncover the fundamental physical laws that
govern these phenomena. For then, to be adapted for different tasks and
configurations through fine-tuning.

• More benchmarks and datasets: This is self-explanatory; having eas-
ily accessible datasets and benchmark problems for different tasks that
help evaluate the performance of new models would greatly help the speed
of the research.

Finally, I would like to thank you, the reader, for your attention until this
point. We hope to have conveyed the potential Deep Learning has for Fluid
Dynamics and have sparked curiosity for the open research questions available
in this field. It is with a high degree of certainty that AI will be a valuable tool
at the disposal of scientists to help them make new findings and democratize
the use of CFD to a bigger number of practitioners who don’t have access to big
computational facilities and at the same time, being able to reduce the carbon
footprint of these ones. All of this makes a small contribution to the goal of
driving humanity to attain a more sustainable future.

155

References

[1] 2022 Symposium on Turbulence Modeling: Roadblocks, and the Potential
for Machine Learning. url: https://turbmodels.larc.nasa.gov/
turb-prs2022.html (visited on 03/01/2023).

[2] Ekhi Ajuria Illarramendi et al. “Towards an hybrid computational strat-
egy based on Deep Learning for incompressible flows”. In: AIAA AVI-
ATION 2020 FORUM. AIAA AVIATION Forum. American Institute of
Aeronautics and Astronautics, June 2020. doi: 10.2514/6.2020-3058.
url: https://arc.aiaa.org/doi/10.2514/6.2020-3058 (visited on
02/28/2023).

[3] Martin Arjovsky, Soumith Chintala, and Léon Bottou.Wasserstein GAN.
arXiv:1701.07875 [cs, stat]. Dec. 2017. doi: 10.48550/arXiv.1701.
07875. url: http://arxiv.org/abs/1701.07875 (visited on 01/24/2023).

[4] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer Nor-
malization. arXiv:1607.06450 [cs, stat]. July 2016. url: http://arxiv.
org/abs/1607.06450 (visited on 04/05/2023).

[5] H. Jane Bae and Petros Koumoutsakos. “Scientific multi-agent reinforce-
ment learning for wall-models of turbulent flows”. In: Nature Commu-
nications 13.1 (Mar. 2022). arXiv:2106.11144 [physics], p. 1443. issn:
2041-1723. doi: 10.1038/s41467-022-28957-7. url: http://arxiv.
org/abs/2106.11144 (visited on 02/21/2023).

[6] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural Ma-
chine Translation by Jointly Learning to Align and Translate. arXiv:1409.0473
[cs, stat]. May 2016. doi: 10.48550/arXiv.1409.0473. url: http:
//arxiv.org/abs/1409.0473 (visited on 02/03/2023).

[7] Christophe Bailly and Daniel Juve. “A stochastic approach to compute
subsonic noise using linearized Euler’s equations”. In: 5th AIAA/CEAS
Aeroacoustics Conference and Exhibit. Aeroacoustics Conferences. Amer-
ican Institute of Aeronautics and Astronautics, May 1999. doi: 10.2514/
6.1999-1872. url: https://arc.aiaa.org/doi/10.2514/6.1999-
1872 (visited on 09/18/2023).

[8] Shivam Barwey, Varun Shankar, and Romit Maulik. Multiscale Graph
Neural Network Autoencoders for Interpretable Scientific Machine Learn-
ing. arXiv:2302.06186 [physics]. Feb. 2023. doi: 10.48550/arXiv.2302.
06186. url: http://arxiv.org/abs/2302.06186 (visited on 02/16/2023).

[9] Batch Normalization & Layer Normalization batchnormalization AI -CSDN.
url: https://blog.csdn.net/xwd18280820053/article/details/
70237664 (visited on 07/10/2023).

[10] Andrea Beck and Marius Kurz. “A Perspective on Machine Learning
Methods in Turbulence Modelling”. In: arXiv:2010.12226 [cs] (Oct. 2020).
arXiv: 2010.12226. url: http://arxiv.org/abs/2010.12226 (visited
on 05/17/2021).

156

https://turbmodels.larc.nasa.gov/turb-prs2022.html
https://turbmodels.larc.nasa.gov/turb-prs2022.html
https://doi.org/10.2514/6.2020-3058
https://arc.aiaa.org/doi/10.2514/6.2020-3058
https://doi.org/10.48550/arXiv.1701.07875
https://doi.org/10.48550/arXiv.1701.07875
http://arxiv.org/abs/1701.07875
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1607.06450
https://doi.org/10.1038/s41467-022-28957-7
http://arxiv.org/abs/2106.11144
http://arxiv.org/abs/2106.11144
https://doi.org/10.48550/arXiv.1409.0473
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://doi.org/10.2514/6.1999-1872
https://doi.org/10.2514/6.1999-1872
https://arc.aiaa.org/doi/10.2514/6.1999-1872
https://arc.aiaa.org/doi/10.2514/6.1999-1872
https://doi.org/10.48550/arXiv.2302.06186
https://doi.org/10.48550/arXiv.2302.06186
http://arxiv.org/abs/2302.06186
https://blog.csdn.net/xwd18280820053/article/details/70237664
https://blog.csdn.net/xwd18280820053/article/details/70237664
http://arxiv.org/abs/2010.12226

[11] Andrea Beck and Marius Kurz. “A perspective on machine learning
methods in turbulence modeling”. en. In:GAMM-Mitteilungen 44.1 (2021).
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/gamm.202100002,
e202100002. issn: 1522-2608. doi: 10 . 1002 / gamm . 202100002. url:
https : / / onlinelibrary . wiley . com / doi / abs / 10 . 1002 / gamm .

202100002 (visited on 09/26/2023).

[12] Andrea D. Beck, David G. Flad, and Claus-Dieter Munz. “Deep Neural
Networks for Data-Driven Turbulence Models”. In: Journal of Compu-
tational Physics 398 (Dec. 2019). arXiv:1806.04482 [physics], p. 108910.
issn: 00219991. doi: 10.1016/j.jcp.2019.108910. url: http://
arxiv.org/abs/1806.04482 (visited on 02/20/2023).

[13] Yoshua Bengio, Aaron Courville, and Pascal Vincent. “Representation
Learning: A Review and New Perspectives”. In: IEEE Transactions on
Pattern Analysis and Machine Intelligence 35.8 (Aug. 2013). Conference
Name: IEEE Transactions on Pattern Analysis and Machine Intelligence,
pp. 1798–1828. issn: 1939-3539. doi: 10.1109/TPAMI.2013.50.

[14] G Berkooz, P Holmes, and J L Lumley. “The Proper Orthogonal Decom-
position in the Analysis of Turbulent Flows”. In: Annual Review of Fluid
Mechanics 25.1 (1993). eprint: https://doi.org/10.1146/annurev.fl.25.010193.002543,
pp. 539–575. doi: 10.1146/annurev.fl.25.010193.002543. url:
https://doi.org/10.1146/annurev.fl.25.010193.002543 (visited
on 02/23/2023).

[15] L. Bittner. “L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E.
F. Mishechenko, The Mathematical Theory of Optimal Processes. VIII +
360 S. New York/London 1962. John Wiley & Sons. Preis 90/–”. en. In:
ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für
Angewandte Mathematik und Mechanik 43.10-11 (1963). eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/zamm.19630431023,
pp. 514–515. issn: 1521-4001. doi: 10.1002/zamm.19630431023. url:
https : / / onlinelibrary . wiley . com / doi / abs / 10 . 1002 / zamm .

19630431023 (visited on 02/02/2023).

[16] Charles Blundell et al.Weight Uncertainty in Neural Networks. arXiv:1505.05424
[cs, stat]. May 2015. doi: 10.48550/arXiv.1505.05424. url: http:
//arxiv.org/abs/1505.05424 (visited on 03/01/2023).

[17] Mathis Bode et al. “Deep learning at scale for subgrid modeling in turbu-
lent flows”. In: arXiv:1910.00928 [physics] (Oct. 2019). arXiv: 1910.00928.
url: http://arxiv.org/abs/1910.00928 (visited on 10/20/2020).

[18] Sam Bond-Taylor et al. “Deep Generative Modelling: A Comparative Re-
view of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregres-
sive Models”. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 44.11 (Nov. 2022). arXiv:2103.04922 [cs, stat], pp. 7327–
7347. issn: 0162-8828, 2160-9292, 1939-3539. doi: 10 . 1109 / TPAMI .

2021.3116668. url: http://arxiv.org/abs/2103.04922 (visited
on 08/08/2023).

157

https://doi.org/10.1002/gamm.202100002
https://onlinelibrary.wiley.com/doi/abs/10.1002/gamm.202100002
https://onlinelibrary.wiley.com/doi/abs/10.1002/gamm.202100002
https://doi.org/10.1016/j.jcp.2019.108910
http://arxiv.org/abs/1806.04482
http://arxiv.org/abs/1806.04482
https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1146/annurev.fl.25.010193.002543
https://doi.org/10.1146/annurev.fl.25.010193.002543
https://doi.org/10.1002/zamm.19630431023
https://onlinelibrary.wiley.com/doi/abs/10.1002/zamm.19630431023
https://onlinelibrary.wiley.com/doi/abs/10.1002/zamm.19630431023
https://doi.org/10.48550/arXiv.1505.05424
http://arxiv.org/abs/1505.05424
http://arxiv.org/abs/1505.05424
http://arxiv.org/abs/1910.00928
https://doi.org/10.1109/TPAMI.2021.3116668
https://doi.org/10.1109/TPAMI.2021.3116668
http://arxiv.org/abs/2103.04922

[19] Florent Bonnet et al. “An extensible Benchmarking Graph-Mesh dataset
for studying Steady-State Incompressible Navier-Stokes Equations”. en.
In: Apr. 2022. url: https://openreview.net/forum?id=rqUUi4-kpeq
(visited on 03/01/2023).

[20] Florent Bonnet et al. “AirfRANS: High Fidelity Computational Fluid
Dynamics Dataset for Approximating Reynolds-Averaged Navier–Stokes
Solutions”. en. In: Jan. 2023. url: https://openreview.net/forum?
id=Zp8YmiQ_bDC (visited on 03/01/2023).

[21] James Bradbury et al. JAX: composable transformations of Python+NumPy
programs. 2018. url: http://github.com/google/jax.

[22] Johannes Brandstetter, Daniel Worrall, and MaxWelling. “Message Pass-
ing Neural PDE Solvers”. In: arXiv:2202.03376 [cs, math] (Feb. 2022).
arXiv: 2202.03376. url: http://arxiv.org/abs/2202.03376 (visited
on 02/09/2022).

[23] Johannes Brandstetter et al. Clifford Neural Layers for PDE Model-
ing. arXiv:2209.04934 [physics]. Sept. 2022. doi: 10 . 48550 / arXiv .

2209.04934. url: http://arxiv.org/abs/2209.04934 (visited on
09/13/2022).

[24] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large Scale GAN
Training for High Fidelity Natural Image Synthesis. arXiv:1809.11096
[cs, stat]. Feb. 2019. url: http://arxiv.org/abs/1809.11096 (visited
on 01/24/2023).

[25] Eoin Brophy et al. Generative adversarial networks in time series: A
survey and taxonomy. arXiv:2107.11098 [cs]. July 2021. url: http://
arxiv.org/abs/2107.11098 (visited on 01/24/2023).

[26] Tom B. Brown et al. Language Models are Few-Shot Learners. arXiv:2005.14165
[cs]. July 2020. doi: 10.48550/arXiv.2005.14165. url: http://arxiv.
org/abs/2005.14165 (visited on 02/03/2023).

[27] Joan Bruna, Benjamin Peherstorfer, and Eric Vanden-Eijnden. Neural
Galerkin Scheme with Active Learning for High-Dimensional Evolution
Equations. Number: arXiv:2203.01360 arXiv:2203.01360 [cs, math, stat].
May 2022. doi: 10.48550/arXiv.2203.01360. url: http://arxiv.
org/abs/2203.01360 (visited on 06/23/2022).

[28] Steven L. Brunton, Bernd R. Noack, and Petros Koumoutsakos. “Ma-
chine Learning for Fluid Mechanics”. en. In: Annual Review of Fluid
Mechanics 52.1 (Jan. 2020), pp. 477–508. issn: 0066-4189, 1545-4479.
doi: 10.1146/annurev-fluid-010719-060214. url: https://www.
annualreviews.org/doi/10.1146/annurev-fluid-010719-060214

(visited on 10/28/2020).

158

https://openreview.net/forum?id=rqUUi4-kpeq
https://openreview.net/forum?id=Zp8YmiQ_bDC
https://openreview.net/forum?id=Zp8YmiQ_bDC
http://github.com/google/jax
http://arxiv.org/abs/2202.03376
https://doi.org/10.48550/arXiv.2209.04934
https://doi.org/10.48550/arXiv.2209.04934
http://arxiv.org/abs/2209.04934
http://arxiv.org/abs/1809.11096
http://arxiv.org/abs/2107.11098
http://arxiv.org/abs/2107.11098
https://doi.org/10.48550/arXiv.2005.14165
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2005.14165
https://doi.org/10.48550/arXiv.2203.01360
http://arxiv.org/abs/2203.01360
http://arxiv.org/abs/2203.01360
https://doi.org/10.1146/annurev-fluid-010719-060214
https://www.annualreviews.org/doi/10.1146/annurev-fluid-010719-060214
https://www.annualreviews.org/doi/10.1146/annurev-fluid-010719-060214

[29] Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. “Discover-
ing governing equations from data by sparse identification of nonlinear
dynamical systems”. en. In: Proceedings of the National Academy of Sci-
ences 113.15 (Apr. 2016). Publisher: National Academy of Sciences Sec-
tion: Physical Sciences, pp. 3932–3937. issn: 0027-8424, 1091-6490. doi:
10.1073/pnas.1517384113. url: https://www.pnas.org/content/
113/15/3932 (visited on 06/09/2021).

[30] Steven L. Brunton et al. Modern Koopman Theory for Dynamical Sys-
tems. arXiv:2102.12086 [cs, eess, math]. Oct. 2021. url: http://arxiv.
org/abs/2102.12086 (visited on 02/24/2023).

[31] Alon Brutzkus and Amir Globerson. “Why do Larger Models General-
ize Better? A Theoretical Perspective via the XOR Problem”. en. In:
Proceedings of the 36th International Conference on Machine Learn-
ing. ISSN: 2640-3498. PMLR, May 2019, pp. 822–830. url: https://
proceedings.mlr.press/v97/brutzkus19b.html (visited on 07/10/2023).

[32] Nianzheng Cao, Shiyi Chen, and Gary D. Doolen. “Statistics and struc-
tures of pressure in isotropic turbulence”. In: Physics of Fluids 11.8 (Aug.
1999), pp. 2235–2250. issn: 1070-6631. doi: 10.1063/1.870085. url:
https://doi.org/10.1063/1.870085 (visited on 08/24/2023).

[33] Shuhao Cao. “Choose a Transformer: Fourier or Galerkin”. In: arXiv:2105.14995
[cs, math] (Nov. 2021). arXiv: 2105.14995. url: http://arxiv.org/
abs/2105.14995 (visited on 11/23/2021).

[34] Yang Cao, Shengtai Li, and Linda Petzold. “Adjoint sensitivity analy-
sis for differential-algebraic equations: algorithms and software”. en. In:
Journal of Computational and Applied Mathematics. Scientific and En-
gineering Computations for the 21st Century - Me thodologies and Ap-
plications Proceedings of the 15th Toyota Conference 149.1 (Dec. 2002),
pp. 171–191. issn: 0377-0427. doi: 10.1016/S0377-0427(02)00528-
9. url: https://www.sciencedirect.com/science/article/pii/
S0377042702005289 (visited on 09/01/2022).

[35] Benjamin Paul Chamberlain et al. “GRAND: Graph Neural Diffusion”.
In: arXiv:2106.10934 [cs, stat] (June 2021). arXiv: 2106.10934. url:
http://arxiv.org/abs/2106.10934 (visited on 06/22/2021).

[36] Gary J. Chandler and Rich R. Kerswell. “Invariant recurrent solutions
embedded in a turbulent two-dimensional Kolmogorov flow”. en. In:
Journal of Fluid Mechanics 722 (May 2013). Publisher: Cambridge Uni-
versity Press, pp. 554–595. issn: 0022-1120, 1469-7645. doi: 10.1017/
jfm.2013.122. url: https://www.cambridge.org/core/journals/
journal - of - fluid - mechanics / article / invariant - recurrent -

solutions-embedded-in-a-turbulent-twodimensional-kolmogorov-

flow/78CC6B29A670F84CBC79D29408DC2674 (visited on 09/10/2021).

[37] François Charton. Linear algebra with transformers. arXiv:2112.01898
[cs]. Nov. 2022. doi: 10.48550/arXiv.2112.01898. url: http://
arxiv.org/abs/2112.01898 (visited on 02/28/2023).

159

https://doi.org/10.1073/pnas.1517384113
https://www.pnas.org/content/113/15/3932
https://www.pnas.org/content/113/15/3932
http://arxiv.org/abs/2102.12086
http://arxiv.org/abs/2102.12086
https://proceedings.mlr.press/v97/brutzkus19b.html
https://proceedings.mlr.press/v97/brutzkus19b.html
https://doi.org/10.1063/1.870085
https://doi.org/10.1063/1.870085
http://arxiv.org/abs/2105.14995
http://arxiv.org/abs/2105.14995
https://doi.org/10.1016/S0377-0427(02)00528-9
https://doi.org/10.1016/S0377-0427(02)00528-9
https://www.sciencedirect.com/science/article/pii/S0377042702005289
https://www.sciencedirect.com/science/article/pii/S0377042702005289
http://arxiv.org/abs/2106.10934
https://doi.org/10.1017/jfm.2013.122
https://doi.org/10.1017/jfm.2013.122
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/invariant-recurrent-solutions-embedded-in-a-turbulent-twodimensional-kolmogorov-flow/78CC6B29A670F84CBC79D29408DC2674
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/invariant-recurrent-solutions-embedded-in-a-turbulent-twodimensional-kolmogorov-flow/78CC6B29A670F84CBC79D29408DC2674
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/invariant-recurrent-solutions-embedded-in-a-turbulent-twodimensional-kolmogorov-flow/78CC6B29A670F84CBC79D29408DC2674
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/invariant-recurrent-solutions-embedded-in-a-turbulent-twodimensional-kolmogorov-flow/78CC6B29A670F84CBC79D29408DC2674
https://doi.org/10.48550/arXiv.2112.01898
http://arxiv.org/abs/2112.01898
http://arxiv.org/abs/2112.01898

[38] Peter Yichen Chen et al. Model reduction for the material point method
via an implicit neural representation of the deformation map. Number:
arXiv:2109.12390 arXiv:2109.12390 [cs, math]. Apr. 2022. doi: 10.48550/
arXiv.2109.12390. url: http://arxiv.org/abs/2109.12390 (visited
on 06/23/2022).

[39] Peter Yichen Chen et al. CROM: Continuous Reduced-Order Modeling of
PDEs Using Implicit Neural Representations. arXiv:2206.02607 [physics].
Mar. 2023. url: http : / / arxiv . org / abs / 2206 . 02607 (visited on
05/22/2023).

[40] Ricky T. Q. Chen et al. Neural Ordinary Differential Equations. arXiv:1806.07366
[cs, stat]. Dec. 2019. doi: 10.48550/arXiv.1806.07366. url: http:
//arxiv.org/abs/1806.07366 (visited on 08/11/2022).

[41] T. Chen and H. Chen. “Approximations of continuous functionals by
neural networks with application to dynamic systems”. In: IEEE Trans-
actions on Neural Networks 4.6 (Nov. 1993). Conference Name: IEEE
Transactions on Neural Networks, pp. 910–918. issn: 1941-0093. doi:
10.1109/72.286886.

[42] Tianping Chen and Hong Chen. “Universal approximation to nonlinear
operators by neural networks with arbitrary activation functions and
its application to dynamical systems”. In: IEEE Transactions on Neural
Networks 6.4 (July 1995). Conference Name: IEEE Transactions on Neu-
ral Networks, pp. 911–917. issn: 1941-0093. doi: 10.1109/72.392253.

[43] Xiaoli Chen et al. “Solving Inverse Stochastic Problems from Discrete
Particle Observations Using the Fokker-Planck Equation and Physics-
informed Neural Networks”. In: arXiv:2008.10653 [physics, stat] (Aug.
2020). arXiv: 2008.10653. url: http://arxiv.org/abs/2008.10653
(visited on 03/18/2021).

[44] François Chollet. Xception: Deep Learning with Depthwise Separable Con-
volutions. arXiv:1610.02357 [cs]. Apr. 2017. doi: 10 . 48550 / arXiv .

1610.02357. url: http://arxiv.org/abs/1610.02357 (visited on
08/24/2023).

[45] T. S. Cohen. “Equivariant convolutional networks”. en. In: (2021). url:
https://dare.uva.nl/search?identifier=0f7014ae-ee94-430e-

a5d8-37d03d8d10e6 (visited on 11/24/2021).

[46] Miles Cranmer et al. “Discovering Symbolic Models from Deep Learning
with Inductive Biases”. In: arXiv:2006.11287 [astro-ph, physics:physics,
stat] (June 2020). arXiv: 2006.11287. url: http://arxiv.org/abs/
2006.11287 (visited on 11/10/2020).

[47] CS1114 Spring 2010 - Introduction to Computing using Matlab and Robotics.
url: https://www.cs.cornell.edu/courses/cs1114/2011sp/ (vis-
ited on 07/10/2023).

160

https://doi.org/10.48550/arXiv.2109.12390
https://doi.org/10.48550/arXiv.2109.12390
http://arxiv.org/abs/2109.12390
http://arxiv.org/abs/2206.02607
https://doi.org/10.48550/arXiv.1806.07366
http://arxiv.org/abs/1806.07366
http://arxiv.org/abs/1806.07366
https://doi.org/10.1109/72.286886
https://doi.org/10.1109/72.392253
http://arxiv.org/abs/2008.10653
https://doi.org/10.48550/arXiv.1610.02357
https://doi.org/10.48550/arXiv.1610.02357
http://arxiv.org/abs/1610.02357
https://dare.uva.nl/search?identifier=0f7014ae-ee94-430e-a5d8-37d03d8d10e6
https://dare.uva.nl/search?identifier=0f7014ae-ee94-430e-a5d8-37d03d8d10e6
http://arxiv.org/abs/2006.11287
http://arxiv.org/abs/2006.11287
https://www.cs.cornell.edu/courses/cs1114/2011sp/

[48] Wojciech Marian Czarnecki et al. Sobolev Training for Neural Networks.
Tech. rep. arXiv:1706.04859. arXiv:1706.04859 [cs] type: article. arXiv,
July 2017. doi: 10.48550/arXiv.1706.04859. url: http://arxiv.
org/abs/1706.04859 (visited on 05/24/2022).

[49] Jia Deng et al. “ImageNet: A large-scale hierarchical image database”.
In: 2009 IEEE Conference on Computer Vision and Pattern Recognition.
ISSN: 1063-6919. June 2009, pp. 248–255. doi: 10.1109/CVPR.2009.
5206848.

[50] Jacob Devlin et al. BERT: Pre-training of Deep Bidirectional Transform-
ers for Language Understanding. arXiv:1810.04805 [cs]. May 2019. doi:
10.48550/arXiv.1810.04805. url: http://arxiv.org/abs/1810.
04805 (visited on 02/03/2023).

[51] Alexey Dosovitskiy et al. An Image is Worth 16x16 Words: Transformers
for Image Recognition at Scale. arXiv:2010.11929 [cs]. June 2021. doi:
10.48550/arXiv.2010.11929. url: http://arxiv.org/abs/2010.
11929 (visited on 02/03/2023).

[52] Gideon Dresdner et al. Learning to correct spectral methods for simulating
turbulent flows. arXiv:2207.00556 [physics]. July 2022. doi: 10.48550/
arXiv.2207.00556. url: http://arxiv.org/abs/2207.00556 (visited
on 05/30/2023).

[53] Karthik Duraisamy. “Perspectives on Machine Learning-augmented Reynolds-
averaged and Large Eddy Simulation Models of Turbulence”. In: arXiv:2009.10675
[physics] (Jan. 2021). arXiv: 2009.10675. url: http://arxiv.org/abs/
2009.10675 (visited on 05/17/2021).

[54] Karthik Duraisamy, Gianluca Iaccarino, and Heng Xiao. “Turbulence
Modeling in the Age of Data”. en. In: Annual Review of Fluid Mechanics
51.1 (Jan. 2019). arXiv: 1804.00183, pp. 357–377. issn: 0066-4189, 1545-
4479. doi: 10.1146/annurev-fluid-010518-040547. url: http://
arxiv.org/abs/1804.00183 (visited on 11/19/2020).

[55] P A Durbin and B A Pettersson-Reif. Statistical Theory and Modeling
for Turbulent Flows; Second Edition. en. John Wiley & Sons, 2010.

[56] Hamidreza Eivazi et al. “Physics-informed neural networks for solving
Reynolds-averaged Navier$\unicode{x2013}$Stokes equations”. In: arXiv:2107.10711
[physics] (July 2021). arXiv: 2107.10711. url: http://arxiv.org/abs/
2107.10711 (visited on 11/24/2021).

[57] Hamidreza Eivazi et al. “Recurrent neural networks and Koopman-based
frameworks for temporal predictions in a low-order model of turbulence”.
en. In: International Journal of Heat and Fluid Flow 90 (Aug. 2021),
p. 108816. issn: 0142-727X. doi: 10.1016/j.ijheatfluidflow.2021.
108816. url: https://www.sciencedirect.com/science/article/
pii/S0142727X21000461 (visited on 05/18/2021).

161

https://doi.org/10.48550/arXiv.1706.04859
http://arxiv.org/abs/1706.04859
http://arxiv.org/abs/1706.04859
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.48550/arXiv.1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.48550/arXiv.2010.11929
http://arxiv.org/abs/2010.11929
http://arxiv.org/abs/2010.11929
https://doi.org/10.48550/arXiv.2207.00556
https://doi.org/10.48550/arXiv.2207.00556
http://arxiv.org/abs/2207.00556
http://arxiv.org/abs/2009.10675
http://arxiv.org/abs/2009.10675
https://doi.org/10.1146/annurev-fluid-010518-040547
http://arxiv.org/abs/1804.00183
http://arxiv.org/abs/1804.00183
http://arxiv.org/abs/2107.10711
http://arxiv.org/abs/2107.10711
https://doi.org/10.1016/j.ijheatfluidflow.2021.108816
https://doi.org/10.1016/j.ijheatfluidflow.2021.108816
https://www.sciencedirect.com/science/article/pii/S0142727X21000461
https://www.sciencedirect.com/science/article/pii/S0142727X21000461

[58] Hamidreza Eivazi et al. “Towards extraction of orthogonal and parsi-
monious non-linear modes from turbulent flows”. In: arXiv:2109.01514
[physics] (Sept. 2021). arXiv: 2109.01514. url: http://arxiv.org/abs/
2109.01514 (visited on 09/21/2021).

[59] V. Fanaskov and I. Oseledets. Spectral Neural Operators. Number: arXiv:2205.10573
arXiv:2205.10573 [cs, math]. May 2022. doi: 10.48550/arXiv.2205.
10573. url: http://arxiv.org/abs/2205.10573 (visited on 06/23/2022).

[60] Cong Fang, Hanze Dong, and Tong Zhang. “Mathematical Models of
Overparameterized Neural Networks”. In: Proceedings of the IEEE 109.5
(May 2021). Conference Name: Proceedings of the IEEE, pp. 683–703.
issn: 1558-2256. doi: 10.1109/JPROC.2020.3048020.

[61] Alhussein Fawzi et al. “Discovering faster matrix multiplication algo-
rithms with reinforcement learning”. en. In: Nature 610.7930 (Oct. 2022).
Number: 7930 Publisher: Nature Publishing Group, pp. 47–53. issn:
1476-4687. doi: 10.1038/s41586-022-05172-4. url: https://www.
nature.com/articles/s41586-022-05172-4 (visited on 02/28/2023).

[62] Charles L Fefferman. “EXISTENCE AND SMOOTHNESS OF THE
NAVIER–STOKES EQUATION”. en. In: ().

[63] Kai Fukami, Koji Fukagata, and Kunihiko Taira. “Assessment of su-
pervised machine learning methods for fluid flows”. en. In: Theoretical
and Computational Fluid Dynamics 34.4 (Aug. 2020), pp. 497–519. issn:
1432-2250. doi: 10.1007/s00162-020-00518-y. url: https://doi.
org/10.1007/s00162-020-00518-y (visited on 03/03/2021).

[64] Kai Fukami et al. “Synthetic turbulent inflow generator using machine
learning”. In: Physical Review Fluids 4.6 (June 2019). Publisher: Amer-
ican Physical Society, p. 064603. doi: 10 . 1103 / PhysRevFluids . 4 .
064603. url: https://link.aps.org/doi/10.1103/PhysRevFluids.
4.064603 (visited on 10/20/2020).

[65] Kai Fukami et al. “Model Order Reduction with Neural Networks: Appli-
cation to Laminar and Turbulent Flows”. en. In: SN Computer Science
2.6 (Sept. 2021), p. 467. issn: 2661-8907. doi: 10.1007/s42979-021-
00867- 3. url: https://doi.org/10.1007/s42979- 021- 00867- 3
(visited on 09/14/2023).

[66] Kai Fukami et al. “Sparse identification of nonlinear dynamics with low-
dimensionalized flow representations”. en. In: Journal of Fluid Mechan-
ics 926 (Nov. 2021). Publisher: Cambridge University Press, A10. issn:
0022-1120, 1469-7645. doi: 10.1017/jfm.2021.697. url: https://
www.cambridge.org/core/journals/journal-of-fluid-mechanics/

article/sparse-identification-of-nonlinear-dynamics-with-

lowdimensionalized-flow-representations/B0A6BC75E087EE8F7B8100CF1185F29A

(visited on 02/23/2023).

162

http://arxiv.org/abs/2109.01514
http://arxiv.org/abs/2109.01514
https://doi.org/10.48550/arXiv.2205.10573
https://doi.org/10.48550/arXiv.2205.10573
http://arxiv.org/abs/2205.10573
https://doi.org/10.1109/JPROC.2020.3048020
https://doi.org/10.1038/s41586-022-05172-4
https://www.nature.com/articles/s41586-022-05172-4
https://www.nature.com/articles/s41586-022-05172-4
https://doi.org/10.1007/s00162-020-00518-y
https://doi.org/10.1007/s00162-020-00518-y
https://doi.org/10.1007/s00162-020-00518-y
https://doi.org/10.1103/PhysRevFluids.4.064603
https://doi.org/10.1103/PhysRevFluids.4.064603
https://link.aps.org/doi/10.1103/PhysRevFluids.4.064603
https://link.aps.org/doi/10.1103/PhysRevFluids.4.064603
https://doi.org/10.1007/s42979-021-00867-3
https://doi.org/10.1007/s42979-021-00867-3
https://doi.org/10.1007/s42979-021-00867-3
https://doi.org/10.1017/jfm.2021.697
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/sparse-identification-of-nonlinear-dynamics-with-lowdimensionalized-flow-representations/B0A6BC75E087EE8F7B8100CF1185F29A
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/sparse-identification-of-nonlinear-dynamics-with-lowdimensionalized-flow-representations/B0A6BC75E087EE8F7B8100CF1185F29A
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/sparse-identification-of-nonlinear-dynamics-with-lowdimensionalized-flow-representations/B0A6BC75E087EE8F7B8100CF1185F29A
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/sparse-identification-of-nonlinear-dynamics-with-lowdimensionalized-flow-representations/B0A6BC75E087EE8F7B8100CF1185F29A

[67] Kai () Fukami, Taichi () Nakamura, and Koji () Fukagata. “Convolu-
tional neural network based hierarchical autoencoder for nonlinear mode
decomposition of fluid field data”. In: Physics of Fluids 32.9 (Sept. 2020).
Publisher: American Institute of Physics, p. 095110. issn: 1070-6631. doi:
10.1063/5.0020721. url: https://aip.scitation.org/doi/full/
10.1063/5.0020721 (visited on 12/10/2020).

[68] Yarin Gal. “Uncertainty in Deep Learning”. en. In: (), p. 174.

[69] Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian Approxima-
tion: Representing Model Uncertainty in Deep Learning. arXiv:1506.02142
[cs, stat]. Oct. 2016. doi: 10.48550/arXiv.1506.02142. url: http:
//arxiv.org/abs/1506.02142 (visited on 03/01/2023).

[70] Maximilian Gelbrecht, Niklas Boers, and Jürgen Kurths. “Neural partial
differential equations for chaotic systems”. en. In: New Journal of Physics
23.4 (Apr. 2021), p. 043005. issn: 1367-2630. doi: 10.1088/1367-2630/
abeb90. url: https://iopscience.iop.org/article/10.1088/1367-
2630/abeb90 (visited on 01/17/2022).

[71] Nicholas Geneva and Nicholas Zabaras. “Modeling the dynamics of PDE
systems with physics-constrained deep auto-regressive networks”. en. In:
Journal of Computational Physics 403 (Feb. 2020), p. 109056. issn: 0021-
9991. doi: 10.1016/j.jcp.2019.109056. url: https://www.sciencedirect.
com/science/article/pii/S0021999119307612 (visited on 06/09/2021).

[72] Nicholas Geneva and Nicholas Zabaras. “Transformers for Modeling Phys-
ical Systems”. In: arXiv:2010.03957 [physics] (Jan. 2021). arXiv: 2010.03957.
url: http://arxiv.org/abs/2010.03957 (visited on 01/25/2021).

[73] William Gilpin. “Chaos as an interpretable benchmark for forecasting
and data-driven modelling”. In: arXiv:2110.05266 [nlin] (Oct. 2021).
arXiv: 2110.05266. url: http://arxiv.org/abs/2110.05266 (visited
on 10/13/2021).

[74] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
MIT Press, 2016. url: http://www.deeplearningbook.org.

[75] Ian J. Goodfellow et al.Generative Adversarial Networks. arXiv:1406.2661
[cs, stat]. June 2014. url: http://arxiv.org/abs/1406.2661 (visited
on 01/23/2023).

[76] Will Grathwohl et al. FFJORD: Free-form Continuous Dynamics for
Scalable Reversible Generative Models. arXiv:1810.01367 [cs, stat]. Oct.
2018. url: http://arxiv.org/abs/1810.01367 (visited on 09/01/2022).

[77] Constantin Greif and Karsten Urban. “Decay of the Kolmogorov N-width
for wave problems”. en. In: Applied Mathematics Letters 96 (Oct. 2019),
pp. 216–222. issn: 0893-9659. doi: 10.1016/j.aml.2019.05.013.
url: https : / / www . sciencedirect . com / science / article / pii /

S0893965919301983 (visited on 05/09/2023).

163

https://doi.org/10.1063/5.0020721
https://aip.scitation.org/doi/full/10.1063/5.0020721
https://aip.scitation.org/doi/full/10.1063/5.0020721
https://doi.org/10.48550/arXiv.1506.02142
http://arxiv.org/abs/1506.02142
http://arxiv.org/abs/1506.02142
https://doi.org/10.1088/1367-2630/abeb90
https://doi.org/10.1088/1367-2630/abeb90
https://iopscience.iop.org/article/10.1088/1367-2630/abeb90
https://iopscience.iop.org/article/10.1088/1367-2630/abeb90
https://doi.org/10.1016/j.jcp.2019.109056
https://www.sciencedirect.com/science/article/pii/S0021999119307612
https://www.sciencedirect.com/science/article/pii/S0021999119307612
http://arxiv.org/abs/2010.03957
http://arxiv.org/abs/2110.05266
http://www.deeplearningbook.org
http://arxiv.org/abs/1406.2661
http://arxiv.org/abs/1810.01367
https://doi.org/10.1016/j.aml.2019.05.013
https://www.sciencedirect.com/science/article/pii/S0893965919301983
https://www.sciencedirect.com/science/article/pii/S0893965919301983

[78] John Guibas et al. “Adaptive Fourier Neural Operators: Efficient Token
Mixers for Transformers”. In: arXiv:2111.13587 [cs] (Nov. 2021). arXiv:
2111.13587. url: http://arxiv.org/abs/2111.13587 (visited on
11/30/2021).

[79] Ishaan Gulrajani et al. Improved Training of Wasserstein GANs. arXiv:1704.00028
[cs, stat]. Dec. 2017. doi: 10.48550/arXiv.1704.00028. url: http:
//arxiv.org/abs/1704.00028 (visited on 01/24/2023).

[80] Gaurav Gupta, Xiongye Xiao, and Paul Bogdan. Multiwavelet-based Op-
erator Learning for Differential Equations. arXiv:2109.13459 [cs, math].
Oct. 2021. url: http : / / arxiv . org / abs / 2109 . 13459 (visited on
06/16/2023).

[81] Jayesh K. Gupta and Johannes Brandstetter. Towards Multi-spatiotemporal-
scale Generalized PDE Modeling. arXiv:2209.15616 [cs]. Nov. 2022. doi:
10.48550/arXiv.2209.15616. url: http://arxiv.org/abs/2209.
15616 (visited on 02/27/2023).

[82] Trevor Hastie, Jerome Friedman, and Robert Tibshirani. The Elements
of Statistical Learning. en. Springer Series in Statistics. New York, NY:
Springer New York, 2001. isbn: 978-1-4899-0519-2 978-0-387-21606-5.
doi: 10.1007/978-0-387-21606-5. url: http://link.springer.
com/10.1007/978-0-387-21606-5 (visited on 07/10/2023).

[83] Kaiming He et al.Deep Residual Learning for Image Recognition. arXiv:1512.03385
[cs]. Dec. 2015. doi: 10.48550/arXiv.1512.03385. url: http://arxiv.
org/abs/1512.03385 (visited on 01/18/2023).

[84] Jonathan Heek et al. Flax: A neural network library and ecosystem for
JAX. 2020. url: http://github.com/google/flax.

[85] Dan Hendrycks and Kevin Gimpel.Gaussian Error Linear Units (GELUs).
arXiv:1606.08415 [cs]. July 2020. url: http://arxiv.org/abs/1606.
08415 (visited on 03/27/2023).

[86] Oliver Hennigh et al. “NVIDIA SimNetˆ{TM}: an AI-accelerated multi-
physics simulation framework”. In: arXiv:2012.07938 [physics] (Dec. 2020).
arXiv: 2012.07938. url: http://arxiv.org/abs/2012.07938 (visited
on 02/10/2021).

[87] Matteo Hessel et al. Optax: composable gradient transformation and op-
timisation, in JAX! 2020. url: http://github.com/deepmind/optax.

[88] Martin Heusel et al. GANs Trained by a Two Time-Scale Update Rule
Converge to a Local Nash Equilibrium. arXiv:1706.08500 [cs, stat]. Jan.
2018. doi: 10.48550/arXiv.1706.08500. url: http://arxiv.org/
abs/1706.08500 (visited on 08/10/2023).

[89] G. E. Hinton and R. R. Salakhutdinov. “Reducing the Dimensionality
of Data with Neural Networks”. In: Science 313.5786 (July 2006). Pub-
lisher: American Association for the Advancement of Science, pp. 504–
507. doi: 10.1126/science.1127647. url: https://www.science.
org/doi/10.1126/science.1127647 (visited on 08/24/2023).

164

http://arxiv.org/abs/2111.13587
https://doi.org/10.48550/arXiv.1704.00028
http://arxiv.org/abs/1704.00028
http://arxiv.org/abs/1704.00028
http://arxiv.org/abs/2109.13459
https://doi.org/10.48550/arXiv.2209.15616
http://arxiv.org/abs/2209.15616
http://arxiv.org/abs/2209.15616
https://doi.org/10.1007/978-0-387-21606-5
http://link.springer.com/10.1007/978-0-387-21606-5
http://link.springer.com/10.1007/978-0-387-21606-5
https://doi.org/10.48550/arXiv.1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://github.com/google/flax
http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/2012.07938
http://github.com/deepmind/optax
https://doi.org/10.48550/arXiv.1706.08500
http://arxiv.org/abs/1706.08500
http://arxiv.org/abs/1706.08500
https://doi.org/10.1126/science.1127647
https://www.science.org/doi/10.1126/science.1127647
https://www.science.org/doi/10.1126/science.1127647

[90] Jonathan Ho, Ajay Jain, and Pieter Abbeel. “Denoising Diffusion Proba-
bilistic Models”. In: Advances in Neural Information Processing Systems.
Vol. 33. Curran Associates, Inc., 2020, pp. 6840–6851. url: https://
proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-

Abstract.html (visited on 09/21/2023).

[91] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory”.
In: Neural Computation 9.8 (Nov. 1997), pp. 1735–1780. issn: 0899-7667.
doi: 10.1162/neco.1997.9.8.1735. url: https://doi.org/10.1162/
neco.1997.9.8.1735 (visited on 09/29/2022).

[92] Andrew G. Howard et al. MobileNets: Efficient Convolutional Neural
Networks for Mobile Vision Applications. arXiv:1704.04861 [cs]. Apr.
2017. url: http://arxiv.org/abs/1704.04861 (visited on 08/24/2023).

[93] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift. arXiv:1502.03167
[cs]. Mar. 2015. url: http://arxiv.org/abs/1502.03167 (visited on
04/05/2023).

[94] Pavel Izmailov et al. “Averaging Weights Leads to Wider Optima and
Better Generalization”. In: arXiv:1803.05407 [cs, stat] (Feb. 2019). arXiv:
1803.05407. url: http://arxiv.org/abs/1803.05407 (visited on
06/28/2021).

[95] Andrew Jaegle et al. Perceiver: General Perception with Iterative At-
tention. arXiv:2103.03206 [cs, eess]. June 2021. doi: 10.48550/arXiv.
2103.03206. url: http://arxiv.org/abs/2103.03206 (visited on
08/01/2022).

[96] Ameya D. Jagtap and George Em Karniadakis. “Adaptive activation
functions accelerate convergence in deep and physics-informed neural
networks”. In: arXiv:1906.01170 [physics] (June 2019). arXiv: 1906.01170.
doi: 10.1016/j.jcp.2019.109136. url: http://arxiv.org/abs/
1906.01170 (visited on 10/29/2020).

[97] Ameya D. Jagtap et al. “Deep Kronecker neural networks: A general
framework for neural networks with adaptive activation functions”. In:
arXiv:2105.09513 [cs] (May 2021). arXiv: 2105.09513. url: http://
arxiv.org/abs/2105.09513 (visited on 09/02/2021).

[98] Joongoo Jeon and Sung Joong Kim. “FVM Network to Reduce Compu-
tational Cost of CFD Simulation”. en. In: (2021).

[99] Chiyu Max Jiang et al. “MeshfreeFlowNet: A Physics-Constrained Deep
Continuous Space-Time Super-Resolution Framework”. In: arXiv:2005.01463
[physics, stat] (Aug. 2020). arXiv: 2005.01463. url: http://arxiv.org/
abs/2005.01463 (visited on 11/25/2020).

[100] Peishi Jiang et al. “Digital Twin Earth – Coasts: Developing a fast and
physics-informed surrogate model for coastal floods via neural opera-
tors”. In: arXiv:2110.07100 [physics] (Oct. 2021). arXiv: 2110.07100.
url: http://arxiv.org/abs/2110.07100 (visited on 11/03/2021).

165

https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1803.05407
https://doi.org/10.48550/arXiv.2103.03206
https://doi.org/10.48550/arXiv.2103.03206
http://arxiv.org/abs/2103.03206
https://doi.org/10.1016/j.jcp.2019.109136
http://arxiv.org/abs/1906.01170
http://arxiv.org/abs/1906.01170
http://arxiv.org/abs/2105.09513
http://arxiv.org/abs/2105.09513
http://arxiv.org/abs/2005.01463
http://arxiv.org/abs/2005.01463
http://arxiv.org/abs/2110.07100

[101] Sebastian Kaltenbach, Paris Perdikaris, and Phaedon-Stelios Koutsoure-
lakis. Semi-supervised Invertible DeepONets for Bayesian Inverse Prob-
lems. arXiv:2209.02772 [physics, stat]. Sept. 2022. doi: 10.48550/arXiv.
2209.02772. url: http://arxiv.org/abs/2209.02772 (visited on
09/10/2022).

[102] George Em Karniadakis et al. “Physics-informed machine learning”. en.
In: Nature Reviews Physics 3.6 (June 2021), pp. 422–440. issn: 2522-
5820. doi: 10.1038/s42254-021-00314-5. url: http://www.nature.
com/articles/s42254-021-00314-5 (visited on 11/15/2021).

[103] Tero Karras et al. Progressive Growing of GANs for Improved Quality,
Stability, and Variation. arXiv:1710.10196 [cs, stat]. Feb. 2018. doi: 10.
48550/arXiv.1710.10196. url: http://arxiv.org/abs/1710.10196
(visited on 01/24/2023).

[104] Tero Karras et al. Analyzing and Improving the Image Quality of Style-
GAN. arXiv:1912.04958 [cs, eess, stat]. Mar. 2020. url: http://arxiv.
org/abs/1912.04958 (visited on 07/26/2023).

[105] Tero Karras et al. “Alias-Free Generative Adversarial Networks”. en. In:
(), p. 31.

[106] Patrick Kidger. On Neural Differential Equations. arXiv:2202.02435 [cs,
math, stat]. Feb. 2022. url: http://arxiv.org/abs/2202.02435
(visited on 02/02/2023).

[107] Patrick Kidger et al. “Neural Controlled Differential Equations for Ir-
regular Time Series”. In: arXiv:2005.08926 [cs, stat] (Nov. 2020). arXiv:
2005.08926. url: http://arxiv.org/abs/2005.08926 (visited on
08/18/2021).

[108] Patrick Kidger et al. Efficient and Accurate Gradients for Neural SDEs.
arXiv:2105.13493 [cs, math, stat]. Oct. 2021. doi: 10.48550/arXiv.
2105.13493. url: http://arxiv.org/abs/2105.13493 (visited on
02/03/2023).

[109] Patrick Kidger et al.Neural SDEs as Infinite-Dimensional GANs. arXiv:2102.03657
[cs]. May 2021. url: http://arxiv.org/abs/2102.03657 (visited on
02/03/2023).

[110] Jinwoo Kim et al. Pure Transformers are Powerful Graph Learners.
arXiv:2207.02505 [cs]. July 2022. doi: 10.48550/arXiv.2207.02505.
url: http://arxiv.org/abs/2207.02505 (visited on 08/10/2022).

[111] Junhyuk Kim and Changhoon Lee. “Deep unsupervised learning of tur-
bulence for inflow generation at various Reynolds numbers”. en. In: Jour-
nal of Computational Physics 406 (Apr. 2020), p. 109216. issn: 0021-
9991. doi: 10.1016/j.jcp.2019.109216. url: http://www.sciencedirect.
com/science/article/pii/S0021999119309210 (visited on 10/20/2020).

166

https://doi.org/10.48550/arXiv.2209.02772
https://doi.org/10.48550/arXiv.2209.02772
http://arxiv.org/abs/2209.02772
https://doi.org/10.1038/s42254-021-00314-5
http://www.nature.com/articles/s42254-021-00314-5
http://www.nature.com/articles/s42254-021-00314-5
https://doi.org/10.48550/arXiv.1710.10196
https://doi.org/10.48550/arXiv.1710.10196
http://arxiv.org/abs/1710.10196
http://arxiv.org/abs/1912.04958
http://arxiv.org/abs/1912.04958
http://arxiv.org/abs/2202.02435
http://arxiv.org/abs/2005.08926
https://doi.org/10.48550/arXiv.2105.13493
https://doi.org/10.48550/arXiv.2105.13493
http://arxiv.org/abs/2105.13493
http://arxiv.org/abs/2102.03657
https://doi.org/10.48550/arXiv.2207.02505
http://arxiv.org/abs/2207.02505
https://doi.org/10.1016/j.jcp.2019.109216
http://www.sciencedirect.com/science/article/pii/S0021999119309210
http://www.sciencedirect.com/science/article/pii/S0021999119309210

[112] Youngkyu Kim et al. “A fast and accurate physics-informed neural net-
work reduced order model with shallow masked autoencoder”. en. In:
Journal of Computational Physics 451 (Feb. 2022), p. 110841. issn: 0021-
9991. doi: 10.1016/j.jcp.2021.110841. url: https://www.sciencedirect.
com/science/article/pii/S0021999121007361 (visited on 02/23/2023).

[113] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic
Optimization”. In: arXiv:1412.6980 [cs] (Jan. 2017). arXiv: 1412.6980.
url: http://arxiv.org/abs/1412.6980 (visited on 04/13/2022).

[114] Georgios Kissas et al. “Learning Operators with Coupled Attention”. In:
arXiv:2201.01032 [physics] (Jan. 2022). arXiv: 2201.01032. url: http:
//arxiv.org/abs/2201.01032 (visited on 02/01/2022).

[115] Dmitrii Kochkov et al. “Machine learning accelerated computational fluid
dynamics”. In: arXiv:2102.01010 [physics] (Jan. 2021). arXiv: 2102.01010.
url: http://arxiv.org/abs/2102.01010 (visited on 02/02/2021).

[116] B. O. Koopman. “Hamiltonian Systems and Transformation in Hilbert
Space”. In: Proceedings of the National Academy of Sciences 17.5 (May
1931). Publisher: Proceedings of the National Academy of Sciences, pp. 315–
318. doi: 10.1073/pnas.17.5.315. url: https://www.pnas.org/doi/
abs/10.1073/pnas.17.5.315 (visited on 02/24/2023).

[117] Nikola Kovachki et al. “Neural Operator: Learning Maps Between Func-
tion Spaces”. In: arXiv:2108.08481 [cs, math] (Sept. 2021). arXiv: 2108.08481.
url: http://arxiv.org/abs/2108.08481 (visited on 09/08/2021).

[118] Robert H. Kraichnan. “Diffusion by a Random Velocity Field”. In: The
Physics of Fluids 13.1 (Jan. 1970), pp. 22–31. issn: 0031-9171. doi: 10.
1063/1.1692799. url: https://doi.org/10.1063/1.1692799 (visited
on 09/08/2023).

[119] Aditi S. Krishnapriyan et al. “Characterizing possible failure modes in
physics-informed neural networks”. In: arXiv:2109.01050 [physics] (Nov.
2021). arXiv: 2109.01050. url: http://arxiv.org/abs/2109.01050
(visited on 03/29/2022).

[120] Alex Krizhevsky. “Learning Multiple Layers of Features from Tiny Im-
ages”. en. In: ().

[121] S. Kullback and R. A. Leibler. “On Information and Sufficiency”. In:
The Annals of Mathematical Statistics 22.1 (Mar. 1951). Publisher: In-
stitute of Mathematical Statistics, pp. 79–86. issn: 0003-4851, 2168-8990.
doi: 10.1214/aoms/1177729694. url: https://projecteuclid.org/
journals/annals-of-mathematical-statistics/volume-22/issue-

1/On-Information-and-Sufficiency/10.1214/aoms/1177729694.

full (visited on 08/08/2023).

167

https://doi.org/10.1016/j.jcp.2021.110841
https://www.sciencedirect.com/science/article/pii/S0021999121007361
https://www.sciencedirect.com/science/article/pii/S0021999121007361
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/2201.01032
http://arxiv.org/abs/2201.01032
http://arxiv.org/abs/2102.01010
https://doi.org/10.1073/pnas.17.5.315
https://www.pnas.org/doi/abs/10.1073/pnas.17.5.315
https://www.pnas.org/doi/abs/10.1073/pnas.17.5.315
http://arxiv.org/abs/2108.08481
https://doi.org/10.1063/1.1692799
https://doi.org/10.1063/1.1692799
https://doi.org/10.1063/1.1692799
http://arxiv.org/abs/2109.01050
https://doi.org/10.1214/aoms/1177729694
https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-22/issue-1/On-Information-and-Sufficiency/10.1214/aoms/1177729694.full
https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-22/issue-1/On-Information-and-Sufficiency/10.1214/aoms/1177729694.full
https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-22/issue-1/On-Information-and-Sufficiency/10.1214/aoms/1177729694.full
https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-22/issue-1/On-Information-and-Sufficiency/10.1214/aoms/1177729694.full

[122] Marius Kurz, Philipp Offenhäuser, and Andrea Beck. “Deep Reinforce-
ment Learning for Turbulence Modeling in Large Eddy Simulations”. In:
International Journal of Heat and Fluid Flow 99 (Feb. 2023). arXiv:2206.11038
[physics], p. 109094. issn: 0142727X. doi: 10.1016/j.ijheatfluidflow.
2022.109094. url: http://arxiv.org/abs/2206.11038 (visited on
02/21/2023).

[123] Marius Kurz et al. “Deep reinforcement learning for computational fluid
dynamics on HPC systems”. en. In: Journal of Computational Science
65 (Nov. 2022), p. 101884. issn: 1877-7503. doi: 10.1016/j.jocs.2022.
101884. url: https://www.sciencedirect.com/science/article/
pii/S1877750322002435 (visited on 02/22/2023).

[124] Marius Kurz et al. “Relexi — A scalable open source reinforcement
learning framework for high-performance computing”. en. In: Software
Impacts 14 (Dec. 2022), p. 100422. issn: 2665-9638. doi: 10 . 1016 /

j . simpa . 2022 . 100422. url: https : / / www . sciencedirect . com /
science/article/pii/S2665963822001063 (visited on 02/22/2023).

[125] Zhilu Lai et al. “Structural identification with physics-informed neural
ordinary differential equations”. en. In: Journal of Sound and Vibra-
tion 508 (Sept. 2021), p. 116196. issn: 0022-460X. doi: 10.1016/j.
jsv.2021.116196. url: https://www.sciencedirect.com/science/
article/pii/S0022460X21002686 (visited on 08/18/2021).

[126] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Sim-
ple and Scalable Predictive Uncertainty Estimation using Deep Ensem-
bles. arXiv:1612.01474 [cs, stat]. Nov. 2017. doi: 10 . 48550 / arXiv .

1612.01474. url: http://arxiv.org/abs/1612.01474 (visited on
03/01/2023).

[127] Jouko Lampinen and Aki Vehtari. “Bayesian approach for neural net-
works—review and case studies”. en. In: Neural Networks 14.3 (Apr.
2001), pp. 257–274. issn: 0893-6080. doi: 10.1016/S0893- 6080(00)
00098-8. url: https://www.sciencedirect.com/science/article/
pii/S0893608000000988 (visited on 03/01/2023).

[128] Y. Lecun et al. “Gradient-based learning applied to document recogni-
tion”. In: Proceedings of the IEEE 86.11 (Nov. 1998). Conference Name:
Proceedings of the IEEE, pp. 2278–2324. issn: 1558-2256. doi: 10.1109/
5.726791.

[129] Kookjin Lee and Kevin T. Carlberg. “Model reduction of dynamical sys-
tems on nonlinear manifolds using deep convolutional autoencoders”. en.
In: Journal of Computational Physics 404 (Mar. 2020), p. 108973. issn:
0021-9991. doi: 10.1016/j.jcp.2019.108973. url: https://www.
sciencedirect.com/science/article/pii/S0021999119306783 (vis-
ited on 04/13/2021).

168

https://doi.org/10.1016/j.ijheatfluidflow.2022.109094
https://doi.org/10.1016/j.ijheatfluidflow.2022.109094
http://arxiv.org/abs/2206.11038
https://doi.org/10.1016/j.jocs.2022.101884
https://doi.org/10.1016/j.jocs.2022.101884
https://www.sciencedirect.com/science/article/pii/S1877750322002435
https://www.sciencedirect.com/science/article/pii/S1877750322002435
https://doi.org/10.1016/j.simpa.2022.100422
https://doi.org/10.1016/j.simpa.2022.100422
https://www.sciencedirect.com/science/article/pii/S2665963822001063
https://www.sciencedirect.com/science/article/pii/S2665963822001063
https://doi.org/10.1016/j.jsv.2021.116196
https://doi.org/10.1016/j.jsv.2021.116196
https://www.sciencedirect.com/science/article/pii/S0022460X21002686
https://www.sciencedirect.com/science/article/pii/S0022460X21002686
https://doi.org/10.48550/arXiv.1612.01474
https://doi.org/10.48550/arXiv.1612.01474
http://arxiv.org/abs/1612.01474
https://doi.org/10.1016/S0893-6080(00)00098-8
https://doi.org/10.1016/S0893-6080(00)00098-8
https://www.sciencedirect.com/science/article/pii/S0893608000000988
https://www.sciencedirect.com/science/article/pii/S0893608000000988
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1016/j.jcp.2019.108973
https://www.sciencedirect.com/science/article/pii/S0021999119306783
https://www.sciencedirect.com/science/article/pii/S0021999119306783

[130] Kookjin Lee and Eric J. Parish. “Parameterized Neural Ordinary Differ-
ential Equations: Applications to Computational Physics Problems”. In:
arXiv:2010.14685 [physics] (Oct. 2020). arXiv: 2010.14685. url: http:
//arxiv.org/abs/2010.14685 (visited on 08/18/2021).

[131] Myoungkyu Lee and Robert D. Moser. “Direct numerical simulation of
turbulent channel flow up to”. en. In: Journal of Fluid Mechanics 774
(July 2015). Publisher: Cambridge University Press, pp. 395–415. issn:
0022-1120, 1469-7645. doi: 10.1017/jfm.2015.268. url: https://
www.cambridge.org/core/journals/journal-of-fluid-mechanics/

article/direct-numerical-simulation-of-turbulent-channel-

flow-up-to-mathitreittauapprox-5200/3AE84A5A48F83AF294F6CB042AF92DA8

(visited on 02/16/2023).

[132] Pablo Lemos et al. Rediscovering orbital mechanics with machine learn-
ing. arXiv:2202.02306 [astro-ph]. Feb. 2022. url: http://arxiv.org/
abs/2202.02306 (visited on 12/01/2022).

[133] Mathias Lesjak and Nguyen Anh Khoa Doan. “Chaotic systems learning
with hybrid echo state network/proper orthogonal decomposition based
model”. en. In: Data-Centric Engineering 2 (2021). Publisher: Cam-
bridge University Press. issn: 2632-6736. doi: 10.1017/dce.2021.17.
url: https://www.cambridge.org/core/journals/data-centric-
engineering/article/chaotic-systems-learning-with-hybrid-

echo - state - networkproper - orthogonal - decomposition - based -

model/636D2CB1BA6EC278427271CE624F29B2 (visited on 10/27/2021).

[134] Chun-Liang Li et al. MMD GAN: Towards Deeper Understanding of Mo-
ment Matching Network. arXiv:1705.08584 [cs, stat]. Nov. 2017. url:
http://arxiv.org/abs/1705.08584 (visited on 01/24/2023).

[135] Tianyi Li et al. Synthetic Lagrangian Turbulence by Generative Diffusion
Models. arXiv:2307.08529 [cond-mat, physics:nlin, physics:physics]. July
2023. doi: 10.48550/arXiv.2307.08529. url: http://arxiv.org/
abs/2307.08529 (visited on 09/21/2023).

[136] Yi Li et al. “A public turbulence database cluster and applications to
study Lagrangian evolution of velocity increments in turbulence”. In:
Journal of Turbulence 9 (Jan. 2008). Publisher: Taylor & Francis eprint:
https://doi.org/10.1080/14685240802376389, N31. doi: 10.1080/14685240802376389.
url: https : / / doi . org / 10 . 1080 / 14685240802376389 (visited on
01/22/2021).

[137] Zijie Li, Kazem Meidani, and Amir Barati Farimani. Transformer for
Partial Differential Equations’ Operator Learning. arXiv:2205.13671 [cs].
Oct. 2022. url: http : / / arxiv . org / abs / 2205 . 13671 (visited on
02/01/2023).

[138] Zongyi Li et al. “Fourier Neural Operator for Parametric Partial Differ-
ential Equations”. In: arXiv:2010.08895 [cs, math] (Oct. 2020). arXiv:
2010.08895. url: http://arxiv.org/abs/2010.08895 (visited on
10/31/2020).

169

http://arxiv.org/abs/2010.14685
http://arxiv.org/abs/2010.14685
https://doi.org/10.1017/jfm.2015.268
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/direct-numerical-simulation-of-turbulent-channel-flow-up-to-mathitreittauapprox-5200/3AE84A5A48F83AF294F6CB042AF92DA8
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/direct-numerical-simulation-of-turbulent-channel-flow-up-to-mathitreittauapprox-5200/3AE84A5A48F83AF294F6CB042AF92DA8
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/direct-numerical-simulation-of-turbulent-channel-flow-up-to-mathitreittauapprox-5200/3AE84A5A48F83AF294F6CB042AF92DA8
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/direct-numerical-simulation-of-turbulent-channel-flow-up-to-mathitreittauapprox-5200/3AE84A5A48F83AF294F6CB042AF92DA8
http://arxiv.org/abs/2202.02306
http://arxiv.org/abs/2202.02306
https://doi.org/10.1017/dce.2021.17
https://www.cambridge.org/core/journals/data-centric-engineering/article/chaotic-systems-learning-with-hybrid-echo-state-networkproper-orthogonal-decomposition-based-model/636D2CB1BA6EC278427271CE624F29B2
https://www.cambridge.org/core/journals/data-centric-engineering/article/chaotic-systems-learning-with-hybrid-echo-state-networkproper-orthogonal-decomposition-based-model/636D2CB1BA6EC278427271CE624F29B2
https://www.cambridge.org/core/journals/data-centric-engineering/article/chaotic-systems-learning-with-hybrid-echo-state-networkproper-orthogonal-decomposition-based-model/636D2CB1BA6EC278427271CE624F29B2
https://www.cambridge.org/core/journals/data-centric-engineering/article/chaotic-systems-learning-with-hybrid-echo-state-networkproper-orthogonal-decomposition-based-model/636D2CB1BA6EC278427271CE624F29B2
http://arxiv.org/abs/1705.08584
https://doi.org/10.48550/arXiv.2307.08529
http://arxiv.org/abs/2307.08529
http://arxiv.org/abs/2307.08529
https://doi.org/10.1080/14685240802376389
https://doi.org/10.1080/14685240802376389
http://arxiv.org/abs/2205.13671
http://arxiv.org/abs/2010.08895

[139] Zongyi Li et al. “Multipole Graph Neural Operator for Parametric Par-
tial Differential Equations”. In: arXiv:2006.09535 [cs, math, stat] (Oct.
2020). arXiv: 2006.09535. url: http://arxiv.org/abs/2006.09535
(visited on 11/03/2020).

[140] Zongyi Li et al. “Neural Operator: Graph Kernel Network for Partial Dif-
ferential Equations”. In: arXiv:2003.03485 [cs, math, stat] (Mar. 2020).
arXiv: 2003.03485. url: http://arxiv.org/abs/2003.03485 (visited
on 11/03/2020).

[141] Zongyi Li et al. “Fourier Neural Operator for Parametric Partial Differ-
ential Equations”. In: arXiv:2010.08895 [cs, math] (May 2021). arXiv:
2010.08895. url: http://arxiv.org/abs/2010.08895 (visited on
07/06/2021).

[142] Zongyi Li et al. “Markov Neural Operators for Learning Chaotic Sys-
tems”. In: arXiv:2106.06898 [cs, math] (June 2021). arXiv: 2106.06898.
url: http://arxiv.org/abs/2106.06898 (visited on 08/17/2021).

[143] Zongyi Li et al. “Physics-Informed Neural Operator for Learning Partial
Differential Equations”. en. In: arXiv:2111.03794 [cs, math] (Nov. 2021).
arXiv: 2111.03794. url: http://arxiv.org/abs/2111.03794 (visited
on 11/15/2021).

[144] Zongyi Li et al. Learning Dissipative Dynamics in Chaotic Systems.
arXiv:2106.06898 [cs, math]. Sept. 2022. url: http://arxiv.org/abs/
2106.06898 (visited on 04/13/2023).

[145] Chensen Lin et al. “A seamless multiscale operator neural network for in-
ferring bubble dynamics”. en. In: Journal of Fluid Mechanics 929 (Dec.
2021). Publisher: Cambridge University Press. issn: 0022-1120, 1469-
7645. doi: 10.1017/jfm.2021.866. url: https://www.cambridge.org/
core/journals/journal-of-fluid-mechanics/article/seamless-

multiscale- operator- neural- network- for- inferring- bubble-

dynamics/D516AB0EF954D0FF56AD864DB2618E94 (visited on 11/24/2021).

[146] Tianyang Lin et al. A Survey of Transformers. arXiv:2106.04554 [cs].
June 2021. doi: 10.48550/arXiv.2106.04554. url: http://arxiv.
org/abs/2106.04554 (visited on 02/03/2023).

[147] Julia Ling, Andrew Kurzawski, and Jeremy Templeton. “Reynolds av-
eraged turbulence modelling using deep neural networks with embedded
invariance”. en. In: Journal of Fluid Mechanics 807 (Nov. 2016). Pub-
lisher: Cambridge University Press, pp. 155–166. issn: 0022-1120, 1469-
7645. doi: 10.1017/jfm.2016.615. url: https://www.cambridge.org/
core/journals/journal-of-fluid-mechanics/article/reynolds-

averaged-turbulence-modelling-using-deep-neural-networks-

with-embedded-invariance/0B280EEE89C74A7BF651C422F8FBD1EB (vis-
ited on 02/17/2023).

170

http://arxiv.org/abs/2006.09535
http://arxiv.org/abs/2003.03485
http://arxiv.org/abs/2010.08895
http://arxiv.org/abs/2106.06898
http://arxiv.org/abs/2111.03794
http://arxiv.org/abs/2106.06898
http://arxiv.org/abs/2106.06898
https://doi.org/10.1017/jfm.2021.866
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/seamless-multiscale-operator-neural-network-for-inferring-bubble-dynamics/D516AB0EF954D0FF56AD864DB2618E94
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/seamless-multiscale-operator-neural-network-for-inferring-bubble-dynamics/D516AB0EF954D0FF56AD864DB2618E94
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/seamless-multiscale-operator-neural-network-for-inferring-bubble-dynamics/D516AB0EF954D0FF56AD864DB2618E94
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/seamless-multiscale-operator-neural-network-for-inferring-bubble-dynamics/D516AB0EF954D0FF56AD864DB2618E94
https://doi.org/10.48550/arXiv.2106.04554
http://arxiv.org/abs/2106.04554
http://arxiv.org/abs/2106.04554
https://doi.org/10.1017/jfm.2016.615
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/reynolds-averaged-turbulence-modelling-using-deep-neural-networks-with-embedded-invariance/0B280EEE89C74A7BF651C422F8FBD1EB
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/reynolds-averaged-turbulence-modelling-using-deep-neural-networks-with-embedded-invariance/0B280EEE89C74A7BF651C422F8FBD1EB
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/reynolds-averaged-turbulence-modelling-using-deep-neural-networks-with-embedded-invariance/0B280EEE89C74A7BF651C422F8FBD1EB
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/reynolds-averaged-turbulence-modelling-using-deep-neural-networks-with-embedded-invariance/0B280EEE89C74A7BF651C422F8FBD1EB

[148] Zachary C. Lipton. The Mythos of Model Interpretability. arXiv:1606.03490
[cs, stat]. Mar. 2017. doi: 10.48550/arXiv.1606.03490. url: http:
//arxiv.org/abs/1606.03490 (visited on 07/10/2023).

[149] Burigede Liu et al. “A learning-based multiscale method and its applica-
tion to inelastic impact problems”. en. In: Journal of the Mechanics and
Physics of Solids 158 (Jan. 2022), p. 104668. issn: 0022-5096. doi: 10.
1016/j.jmps.2021.104668. url: https://www.sciencedirect.com/
science/article/pii/S0022509621002982 (visited on 06/23/2022).

[150] Liyuan Liu et al. On the Variance of the Adaptive Learning Rate and
Beyond. arXiv:1908.03265 [cs, stat]. Oct. 2021. url: http://arxiv.
org/abs/1908.03265 (visited on 04/05/2023).

[151] Zhuang Liu et al. A ConvNet for the 2020s. arXiv:2201.03545 [cs]. Mar.
2022. url: http://arxiv.org/abs/2201.03545 (visited on 08/25/2023).

[152] Ilya Loshchilov and Frank Hutter. SGDR: Stochastic Gradient Descent
with Warm Restarts. arXiv:1608.03983 [cs, math]. May 2017. doi: 10.
48550/arXiv.1608.03983. url: http://arxiv.org/abs/1608.03983
(visited on 09/15/2023).

[153] Hao Lu, Christopher J. Rutland, and Leslie M. Smith. “A priori tests of
one-equation LES modeling of rotating turbulence”. In: Journal of Tur-
bulence 8 (Jan. 2007). Publisher: Taylor & Francis eprint: https://doi.org/10.1080/14685240701493947,
N37. doi: 10.1080/14685240701493947. url: https://doi.org/10.
1080/14685240701493947 (visited on 07/10/2023).

[154] Lu Lu, Pengzhan Jin, and George Em Karniadakis. “DeepONet: Learn-
ing nonlinear operators for identifying differential equations based on
the universal approximation theorem of operators”. In: Nature Machine
Intelligence 3.3 (Mar. 2021). arXiv:1910.03193 [cs, stat], pp. 218–229.
issn: 2522-5839. doi: 10.1038/s42256- 021- 00302- 5. url: http:
//arxiv.org/abs/1910.03193 (visited on 02/01/2023).

[155] Bethany Lusch, J. Nathan Kutz, and Steven L. Brunton. “Deep learning
for universal linear embeddings of nonlinear dynamics”. en. In: Nature
Communications 9.1 (Nov. 2018). Number: 1 Publisher: Nature Publish-
ing Group, p. 4950. issn: 2041-1723. doi: 10.1038/s41467-018-07210-
0. url: https://www.nature.com/articles/s41467-018-07210-0
(visited on 02/24/2023).

[156] Stefano Markidis. The Old and the New: Can Physics-Informed Deep-
Learning Replace Traditional Linear Solvers? arXiv:2103.09655 [physics].
July 2021. url: http : / / arxiv . org / abs / 2103 . 09655 (visited on
08/08/2022).

[157] Mitsuaki Matsuo et al. “SUPERVISED CONVOLUTIONAL NETWORKS
FOR VOL- UMETRIC DATA ENRICHMENT FROM LIMITED SEC-
TIONAL DATA WITH ADAPTIVE SUPER RESOLUTION”. en. In:
(2021), p. 5.

171

https://doi.org/10.48550/arXiv.1606.03490
http://arxiv.org/abs/1606.03490
http://arxiv.org/abs/1606.03490
https://doi.org/10.1016/j.jmps.2021.104668
https://doi.org/10.1016/j.jmps.2021.104668
https://www.sciencedirect.com/science/article/pii/S0022509621002982
https://www.sciencedirect.com/science/article/pii/S0022509621002982
http://arxiv.org/abs/1908.03265
http://arxiv.org/abs/1908.03265
http://arxiv.org/abs/2201.03545
https://doi.org/10.48550/arXiv.1608.03983
https://doi.org/10.48550/arXiv.1608.03983
http://arxiv.org/abs/1608.03983
https://doi.org/10.1080/14685240701493947
https://doi.org/10.1080/14685240701493947
https://doi.org/10.1080/14685240701493947
https://doi.org/10.1038/s42256-021-00302-5
http://arxiv.org/abs/1910.03193
http://arxiv.org/abs/1910.03193
https://doi.org/10.1038/s41467-018-07210-0
https://doi.org/10.1038/s41467-018-07210-0
https://www.nature.com/articles/s41467-018-07210-0
http://arxiv.org/abs/2103.09655

[158] R. Maulik et al. “Subgrid modelling for two-dimensional turbulence using
neural networks”. en. In: Journal of Fluid Mechanics 858 (Jan. 2019).
Publisher: Cambridge University Press, pp. 122–144. issn: 0022-1120,
1469-7645. doi: 10.1017/jfm.2018.770. url: http://www.cambridge.
org/core/journals/journal-of-fluid-mechanics/article/abs/

subgrid-modelling-for-twodimensional-turbulence-using-neural-

networks/10EDED1AEAA52C35F3E3A3BB6DC218C1 (visited on 12/08/2020).

[159] Romit Maulik, Bethany Lusch, and Prasanna Balaprakash. “Reduced-
order modeling of advection-dominated systems with recurrent neural
networks and convolutional autoencoders”. In: Physics of Fluids 33.3
(Mar. 2021). Publisher: American Institute of Physics, p. 037106. issn:
1070-6631. doi: 10.1063/5.0039986. url: https://aip.scitation.
org/doi/full/10.1063/5.0039986 (visited on 06/08/2021).

[160] Romit Maulik et al. “Time-series learning of latent-space dynamics for
reduced-order model closure”. en. In: Physica D: Nonlinear Phenomena
405 (Apr. 2020), p. 132368. issn: 0167-2789. doi: 10.1016/j.physd.
2020 . 132368. url: https : / / www . sciencedirect . com / science /

article/pii/S0167278919305536 (visited on 08/18/2021).

[161] Lars Mescheder et al. Occupancy Networks: Learning 3D Reconstruc-
tion in Function Space. Number: arXiv:1812.03828 arXiv:1812.03828 [cs].
Apr. 2019. doi: 10.48550/arXiv.1812.03828. url: http://arxiv.
org/abs/1812.03828 (visited on 06/23/2022).

[162] Tom M. Mitchell. Machine Learning. en. McGraw-Hill series in computer
science. New York: McGraw-Hill, 1997. isbn: 978-0-07-042807-2.

[163] Arvind Mohan et al. “Compressed Convolutional LSTM: An Efficient
Deep Learning framework to Model High Fidelity 3D Turbulence”. In:
arXiv:1903.00033 [nlin, physics:physics] (Mar. 2019). arXiv: 1903.00033.
url: http://arxiv.org/abs/1903.00033 (visited on 10/20/2020).

[164] Arvind T. Mohan, Kaushik Nagarajan, and Daniel Livescu. Learning
Stable Galerkin Models of Turbulence with Differentiable Programming.
Number: arXiv:2107.07559 arXiv:2107.07559 [nlin, physics:physics]. July
2021. doi: 10.48550/arXiv.2107.07559. url: http://arxiv.org/
abs/2107.07559 (visited on 06/23/2022).

[165] Arvind T. Mohan et al. “Embedding Hard Physical Constraints in Neu-
ral Network Coarse-Graining of 3D Turbulence”. In: arXiv:2002.00021
[physics] (Feb. 2020). arXiv: 2002.00021. url: http://arxiv.org/abs/
2002.00021 (visited on 11/26/2020).

[166] Masaki Morimoto et al. “Convolutional neural networks for fluid flow
analysis: toward effective metamodeling and low-dimensionalization”. In:
arXiv:2101.02535 [physics] (Jan. 2021). arXiv: 2101.02535. url: http:
//arxiv.org/abs/2101.02535 (visited on 03/03/2021).

172

https://doi.org/10.1017/jfm.2018.770
http://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/abs/subgrid-modelling-for-twodimensional-turbulence-using-neural-networks/10EDED1AEAA52C35F3E3A3BB6DC218C1
http://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/abs/subgrid-modelling-for-twodimensional-turbulence-using-neural-networks/10EDED1AEAA52C35F3E3A3BB6DC218C1
http://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/abs/subgrid-modelling-for-twodimensional-turbulence-using-neural-networks/10EDED1AEAA52C35F3E3A3BB6DC218C1
http://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/abs/subgrid-modelling-for-twodimensional-turbulence-using-neural-networks/10EDED1AEAA52C35F3E3A3BB6DC218C1
https://doi.org/10.1063/5.0039986
https://aip.scitation.org/doi/full/10.1063/5.0039986
https://aip.scitation.org/doi/full/10.1063/5.0039986
https://doi.org/10.1016/j.physd.2020.132368
https://doi.org/10.1016/j.physd.2020.132368
https://www.sciencedirect.com/science/article/pii/S0167278919305536
https://www.sciencedirect.com/science/article/pii/S0167278919305536
https://doi.org/10.48550/arXiv.1812.03828
http://arxiv.org/abs/1812.03828
http://arxiv.org/abs/1812.03828
http://arxiv.org/abs/1903.00033
https://doi.org/10.48550/arXiv.2107.07559
http://arxiv.org/abs/2107.07559
http://arxiv.org/abs/2107.07559
http://arxiv.org/abs/2002.00021
http://arxiv.org/abs/2002.00021
http://arxiv.org/abs/2101.02535
http://arxiv.org/abs/2101.02535

[167] Masaki Morimoto et al. “Assessments of epistemic uncertainty using
Gaussian stochastic weight averaging for fluid-flow regression”. en. In:
Physica D: Nonlinear Phenomena (July 2022), p. 133454. issn: 0167-
2789. doi: 10 . 1016 / j . physd . 2022 . 133454. url: https : / / www .

sciencedirect.com/science/article/pii/S0167278922001828 (vis-
ited on 07/26/2022).

[168] James Morrill et al. “Neural Rough Differential Equations for Long Time
Series”. In: arXiv:2009.08295 [cs, math, stat] (June 2021). arXiv: 2009.08295.
url: http://arxiv.org/abs/2009.08295 (visited on 08/19/2021).

[169] Saviz Mowlavi and Saleh Nabi. “Optimal control of PDEs using physics-
informed neural networks”. In: arXiv:2111.09880 [physics] (Nov. 2021).
arXiv: 2111.09880. url: http://arxiv.org/abs/2111.09880 (visited
on 11/23/2021).

[170] W. James Murdoch et al. “Definitions, methods, and applications in
interpretable machine learning”. In: Proceedings of the National Academy
of Sciences 116.44 (Oct. 2019). Publisher: Proceedings of the National
Academy of Sciences, pp. 22071–22080. doi: 10.1073/pnas.1900654116.
url: https://www.pnas.org/doi/10.1073/pnas.1900654116 (visited
on 07/10/2023).

[171] Ulrich Mutze. An asynchronous leapfrog method II. arXiv:1311.6602 [math].
Apr. 2016. url: http : / / arxiv . org / abs / 1311 . 6602 (visited on
02/03/2023).

[172] B. T. Nadiga and D. Livescu. “Instability of the perfect subgrid model
in implicit-filtering large eddy simulation of geostrophic turbulence”. In:
Physical Review E 75.4 (Apr. 2007). Publisher: American Physical So-
ciety, p. 046303. doi: 10.1103/PhysRevE.75.046303. url: https:
//link.aps.org/doi/10.1103/PhysRevE.75.046303 (visited on
02/21/2023).

[173] Taichi () Nakamura et al. “Convolutional neural network and long short-
term memory based reduced order surrogate for minimal turbulent chan-
nel flow”. In: Physics of Fluids 33.2 (Feb. 2021). Publisher: American In-
stitute of Physics, p. 025116. issn: 1070-6631. doi: 10.1063/5.0039845.
url: https://aip.scitation.org/doi/full/10.1063/5.0039845
(visited on 03/03/2021).

[174] Radford M. Neal. MCMC using Hamiltonian dynamics. arXiv:1206.1901
[physics, stat]. May 2011. doi: 10.1201/b10905. url: http://arxiv.
org/abs/1206.1901 (visited on 03/01/2023).

[175] Y. Nesterov. “A method of solving a convex programming problem with
convergence rate mathcal {O}(1/kˆ {2})”. In: Sov. Math. Dokl. Vol. 27.
1986.

[176] Tung Nguyen et al. ClimaX: A foundation model for weather and climate.
arXiv:2301.10343 [cs]. Jan. 2023. doi: 10.48550/arXiv.2301.10343.
url: http://arxiv.org/abs/2301.10343 (visited on 02/03/2023).

173

https://doi.org/10.1016/j.physd.2022.133454
https://www.sciencedirect.com/science/article/pii/S0167278922001828
https://www.sciencedirect.com/science/article/pii/S0167278922001828
http://arxiv.org/abs/2009.08295
http://arxiv.org/abs/2111.09880
https://doi.org/10.1073/pnas.1900654116
https://www.pnas.org/doi/10.1073/pnas.1900654116
http://arxiv.org/abs/1311.6602
https://doi.org/10.1103/PhysRevE.75.046303
https://link.aps.org/doi/10.1103/PhysRevE.75.046303
https://link.aps.org/doi/10.1103/PhysRevE.75.046303
https://doi.org/10.1063/5.0039845
https://aip.scitation.org/doi/full/10.1063/5.0039845
https://doi.org/10.1201/b10905
http://arxiv.org/abs/1206.1901
http://arxiv.org/abs/1206.1901
https://doi.org/10.48550/arXiv.2301.10343
http://arxiv.org/abs/2301.10343

[177] Guido Novati and Petros Koumoutsakos. Remember and Forget for Ex-
perience Replay. arXiv:1807.05827 [cs, stat]. May 2019. doi: 10.48550/
arXiv.1807.05827. url: http://arxiv.org/abs/1807.05827 (visited
on 02/22/2023).

[178] Guido Novati, Hugues Lascombes de Laroussilhe, and Petros Koumout-
sakos. “Automating turbulence modelling by multi-agent reinforcement
learning”. en. In: Nature Machine Intelligence 3.1 (Jan. 2021). Number:
1 Publisher: Nature Publishing Group, pp. 87–96. issn: 2522-5839. doi:
10.1038/s42256- 020- 00272- 0. url: https://www.nature.com/
articles/s42256-020-00272-0 (visited on 02/12/2021).

[179] Mario Ohlberger and Stephan Rave. Reduced Basis Methods: Success,
Limitations and Future Challenges. arXiv:1511.02021 [math]. Jan. 2016.
doi: 10.48550/arXiv.1511.02021. url: http://arxiv.org/abs/
1511.02021 (visited on 05/05/2023).

[180] Ali Girayhan Özbay et al. “Poisson CNN: Convolutional neural net-
works for the solution of the Poisson equation on a Cartesian mesh”. en.
In: Data-Centric Engineering 2 (2021). Publisher: Cambridge University
Press, e6. issn: 2632-6736. doi: 10.1017/dce.2021.7. url: https:
//www.cambridge.org/core/journals/data-centric-engineering/

article/poisson-cnn-convolutional-neural-networks-for-the-

solution - of - the - poisson - equation - on - a - cartesian - mesh /

8CDFD5C9D5172E51B924E9AA1BA253A1 (visited on 02/28/2023).

[181] Shaowu Pan, Steven L. Brunton, and J. Nathan Kutz. Neural Implicit
Flow: a mesh-agnostic dimensionality reduction paradigm of spatio-temporal
data. Number: arXiv:2204.03216 arXiv:2204.03216 [cs]. Apr. 2022. doi:
10.48550/arXiv.2204.03216. url: http://arxiv.org/abs/2204.
03216 (visited on 06/23/2022).

[182] Jeong Joon Park et al. DeepSDF: Learning Continuous Signed Distance
Functions for Shape Representation. arXiv:1901.05103 [cs]. Jan. 2019.
doi: 10.48550/arXiv.1901.05103. url: http://arxiv.org/abs/
1901.05103 (visited on 05/22/2023).

[183] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of
training Recurrent Neural Networks. arXiv:1211.5063 [cs]. Feb. 2013. doi:
10.48550/arXiv.1211.5063. url: http://arxiv.org/abs/1211.5063
(visited on 06/14/2023).

[184] Jaideep Pathak et al. “FourCastNet: A Global Data-driven High-resolution
Weather Model using Adaptive Fourier Neural Operators”. In: arXiv:2202.11214
[physics] (Feb. 2022). arXiv: 2202.11214. url: http://arxiv.org/abs/
2202.11214 (visited on 04/19/2022).

[185] G. S. Patterson and Steven A. Orszag. “Spectral Calculations of Isotropic
Turbulence: Efficient Removal of Aliasing Interactions”. en. In: The Physics
of Fluids 14.11 (Nov. 1971), pp. 2538–2541. issn: 0031-9171. doi: 10.
1063/1.1693365. url: https://pubs.aip.org/pfl/article/14/11/

174

https://doi.org/10.48550/arXiv.1807.05827
https://doi.org/10.48550/arXiv.1807.05827
http://arxiv.org/abs/1807.05827
https://doi.org/10.1038/s42256-020-00272-0
https://www.nature.com/articles/s42256-020-00272-0
https://www.nature.com/articles/s42256-020-00272-0
https://doi.org/10.48550/arXiv.1511.02021
http://arxiv.org/abs/1511.02021
http://arxiv.org/abs/1511.02021
https://doi.org/10.1017/dce.2021.7
https://www.cambridge.org/core/journals/data-centric-engineering/article/poisson-cnn-convolutional-neural-networks-for-the-solution-of-the-poisson-equation-on-a-cartesian-mesh/8CDFD5C9D5172E51B924E9AA1BA253A1
https://www.cambridge.org/core/journals/data-centric-engineering/article/poisson-cnn-convolutional-neural-networks-for-the-solution-of-the-poisson-equation-on-a-cartesian-mesh/8CDFD5C9D5172E51B924E9AA1BA253A1
https://www.cambridge.org/core/journals/data-centric-engineering/article/poisson-cnn-convolutional-neural-networks-for-the-solution-of-the-poisson-equation-on-a-cartesian-mesh/8CDFD5C9D5172E51B924E9AA1BA253A1
https://www.cambridge.org/core/journals/data-centric-engineering/article/poisson-cnn-convolutional-neural-networks-for-the-solution-of-the-poisson-equation-on-a-cartesian-mesh/8CDFD5C9D5172E51B924E9AA1BA253A1
https://www.cambridge.org/core/journals/data-centric-engineering/article/poisson-cnn-convolutional-neural-networks-for-the-solution-of-the-poisson-equation-on-a-cartesian-mesh/8CDFD5C9D5172E51B924E9AA1BA253A1
https://doi.org/10.48550/arXiv.2204.03216
http://arxiv.org/abs/2204.03216
http://arxiv.org/abs/2204.03216
https://doi.org/10.48550/arXiv.1901.05103
http://arxiv.org/abs/1901.05103
http://arxiv.org/abs/1901.05103
https://doi.org/10.48550/arXiv.1211.5063
http://arxiv.org/abs/1211.5063
http://arxiv.org/abs/2202.11214
http://arxiv.org/abs/2202.11214
https://doi.org/10.1063/1.1693365
https://doi.org/10.1063/1.1693365
https://pubs.aip.org/pfl/article/14/11/2538/942698/Spectral-Calculations-of-Isotropic-Turbulence
https://pubs.aip.org/pfl/article/14/11/2538/942698/Spectral-Calculations-of-Isotropic-Turbulence

2538/942698/Spectral- Calculations- of- Isotropic- Turbulence

(visited on 08/24/2023).

[186] Eric Perlman et al. “Data exploration of turbulence simulations using
a database cluster”. In: SC ’07: Proceedings of the 2007 ACM/IEEE
Conference on Supercomputing. Nov. 2007, pp. 1–11. doi: 10 .1145 /
1362622.1362654.

[187] Tobias Pfaff et al. Learning Mesh-Based Simulation with Graph Net-
works. arXiv:2010.03409 [cs]. June 2021. doi: 10.48550/arXiv.2010.
03409. url: http://arxiv.org/abs/2010.03409 (visited on 04/13/2023).

[188] Mary Phuong and Marcus Hutter. Formal Algorithms for Transformers.
arXiv:2207.09238 [cs]. July 2022. doi: 10.48550/arXiv.2207.09238.
url: http://arxiv.org/abs/2207.09238 (visited on 08/19/2022).

[189] B. T. Polyak. “Some methods of speeding up the convergence of iteration
methods”. en. In: USSR Computational Mathematics and Mathematical
Physics 4.5 (Jan. 1964), pp. 1–17. issn: 0041-5553. doi: 10.1016/0041-
5553(64)90137-5. url: https://www.sciencedirect.com/science/
article/pii/0041555364901375 (visited on 03/28/2023).

[190] S. B. Pope. “A more general effective-viscosity hypothesis”. en. In: Jour-
nal of Fluid Mechanics 72.2 (Nov. 1975). Publisher: Cambridge Uni-
versity Press, pp. 331–340. issn: 1469-7645, 0022-1120. doi: 10.1017/
S0022112075003382. url: https://www.cambridge.org/core/journals/
journal-of-fluid-mechanics/article/more-general-effectiveviscosity-

hypothesis/86456F12CB23C8D2D9A2021CBB7FB732 (visited on 02/20/2023).

[191] Stephen B. Pope. Turbulent Flows. Cambridge: Cambridge University
Press, 2000. isbn: 978-0-521-59886-6. doi: 10.1017/CBO9780511840531.
url: https://www.cambridge.org/core/books/turbulent-flows/
C58EFF59AF9B81AE6CFAC9ED16486B3A.

[192] Apostolos F. Psaros et al. Uncertainty Quantification in Scientific Ma-
chine Learning: Methods, Metrics, and Comparisons. arXiv:2201.07766
[cs]. Jan. 2022. url: http://arxiv.org/abs/2201.07766 (visited on
08/29/2022).

[193] Alessio Quaglino et al. “SNODE: Spectral Discretization of Neural ODEs
for System Identification”. In: arXiv:1906.07038 [cs] (Jan. 2020). arXiv:
1906.07038. url: http://arxiv.org/abs/1906.07038 (visited on
08/18/2021).

[194] Christopher Rackauckas et al. “Universal Differential Equations for Sci-
entific Machine Learning”. In: arXiv:2001.04385 [cs, math, q-bio, stat]
(Nov. 2021). arXiv: 2001.04385. url: http://arxiv.org/abs/2001.
04385 (visited on 01/17/2022).

[195] Alec Radford et al. “Improving Language Understanding by Generative
Pre-Training”. en. In: (), p. 12.

175

https://pubs.aip.org/pfl/article/14/11/2538/942698/Spectral-Calculations-of-Isotropic-Turbulence
https://pubs.aip.org/pfl/article/14/11/2538/942698/Spectral-Calculations-of-Isotropic-Turbulence
https://pubs.aip.org/pfl/article/14/11/2538/942698/Spectral-Calculations-of-Isotropic-Turbulence
https://doi.org/10.1145/1362622.1362654
https://doi.org/10.1145/1362622.1362654
https://doi.org/10.48550/arXiv.2010.03409
https://doi.org/10.48550/arXiv.2010.03409
http://arxiv.org/abs/2010.03409
https://doi.org/10.48550/arXiv.2207.09238
http://arxiv.org/abs/2207.09238
https://doi.org/10.1016/0041-5553(64)90137-5
https://doi.org/10.1016/0041-5553(64)90137-5
https://www.sciencedirect.com/science/article/pii/0041555364901375
https://www.sciencedirect.com/science/article/pii/0041555364901375
https://doi.org/10.1017/S0022112075003382
https://doi.org/10.1017/S0022112075003382
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/more-general-effectiveviscosity-hypothesis/86456F12CB23C8D2D9A2021CBB7FB732
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/more-general-effectiveviscosity-hypothesis/86456F12CB23C8D2D9A2021CBB7FB732
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/more-general-effectiveviscosity-hypothesis/86456F12CB23C8D2D9A2021CBB7FB732
https://doi.org/10.1017/CBO9780511840531
https://www.cambridge.org/core/books/turbulent-flows/C58EFF59AF9B81AE6CFAC9ED16486B3A
https://www.cambridge.org/core/books/turbulent-flows/C58EFF59AF9B81AE6CFAC9ED16486B3A
http://arxiv.org/abs/2201.07766
http://arxiv.org/abs/1906.07038
http://arxiv.org/abs/2001.04385
http://arxiv.org/abs/2001.04385

[196] Nasim Rahaman et al. “On the Spectral Bias of Neural Networks”. en.
In: Proceedings of the 36th International Conference on Machine Learn-
ing. ISSN: 2640-3498. PMLR, May 2019, pp. 5301–5310. url: https://
proceedings.mlr.press/v97/rahaman19a.html (visited on 08/28/2023).

[197] Md Ashiqur Rahman, Zachary E. Ross, and Kamyar Azizzadenesheli. U-
NO: U-shaped Neural Operators. Number: arXiv:2204.11127 arXiv:2204.11127
[cs]. May 2022. doi: 10.48550/arXiv.2204.11127. url: http://arxiv.
org/abs/2204.11127 (visited on 06/23/2022).

[198] M. Raissi, P. Perdikaris, and G. E. Karniadakis. “Physics-informed neu-
ral networks: A deep learning framework for solving forward and in-
verse problems involving nonlinear partial differential equations”. en. In:
Journal of Computational Physics 378 (Feb. 2019), pp. 686–707. issn:
0021-9991. doi: 10.1016/j.jcp.2018.10.045. url: http://www.
sciencedirect.com/science/article/pii/S0021999118307125 (vis-
ited on 10/20/2020).

[199] Maziar Raissi, Alireza Yazdani, and George Em Karniadakis. “Hidden
Fluid Mechanics: A Navier-Stokes Informed Deep Learning Framework
for Assimilating Flow Visualization Data”. In: arXiv:1808.04327 [physics,
stat] (Aug. 2018). arXiv: 1808.04327. url: http://arxiv.org/abs/
1808.04327 (visited on 10/28/2020).

[200] Prajit Ramachandran, Barret Zoph, and Quoc V. Le. “Searching for
Activation Functions”. In: arXiv:1710.05941 [cs] (Oct. 2017). arXiv:
1710.05941. url: http://arxiv.org/abs/1710.05941 (visited on
11/27/2020).

[201] Gabrielle Ras et al. Explainable Deep Learning: A Field Guide for the
Uninitiated. arXiv:2004.14545 [cs, stat]. Sept. 2021. url: http://arxiv.
org/abs/2004.14545 (visited on 07/10/2023).

[202] S. J. Raudys and A. K. Jain. “Small sample size effects in statistical pat-
tern recognition: recommendations for practitioners and open problems”.
English. In: IEEE Computer Society, Jan. 1990, pp. 417, 418, 419, 420,
421, 422, 423–417, 418, 419, 420, 421, 422, 423. doi: 10.1109/ICPR.
1990.118138. url: https://www.computer.org/csdl/proceedings-
article/icpr/1990/00118138/12OmNyKa64x (visited on 06/30/2023).

[203] Osborne Reynolds. “IV. On the dynamical theory of incompressible vis-
cous fluids and the determination of the criterion — Philosophical Trans-
actions of the Royal Society of London. (A.)” In: (1895). url: https:
//royalsocietypublishing.org/doi/10.1098/rsta.1895.0004 (vis-
ited on 12/23/2022).

[204] Alexander Rives et al. “Biological structure and function emerge from
scaling unsupervised learning to 250 million protein sequences”. In: Pro-
ceedings of the National Academy of Sciences 118.15 (Apr. 2021). Pub-
lisher: Proceedings of the National Academy of Sciences, e2016239118.
doi: 10.1073/pnas.2016239118. url: https://www.pnas.org/doi/
10.1073/pnas.2016239118 (visited on 02/03/2023).

176

https://proceedings.mlr.press/v97/rahaman19a.html
https://proceedings.mlr.press/v97/rahaman19a.html
https://doi.org/10.48550/arXiv.2204.11127
http://arxiv.org/abs/2204.11127
http://arxiv.org/abs/2204.11127
https://doi.org/10.1016/j.jcp.2018.10.045
http://www.sciencedirect.com/science/article/pii/S0021999118307125
http://www.sciencedirect.com/science/article/pii/S0021999118307125
http://arxiv.org/abs/1808.04327
http://arxiv.org/abs/1808.04327
http://arxiv.org/abs/1710.05941
http://arxiv.org/abs/2004.14545
http://arxiv.org/abs/2004.14545
https://doi.org/10.1109/ICPR.1990.118138
https://doi.org/10.1109/ICPR.1990.118138
https://www.computer.org/csdl/proceedings-article/icpr/1990/00118138/12OmNyKa64x
https://www.computer.org/csdl/proceedings-article/icpr/1990/00118138/12OmNyKa64x
https://royalsocietypublishing.org/doi/10.1098/rsta.1895.0004
https://royalsocietypublishing.org/doi/10.1098/rsta.1895.0004
https://doi.org/10.1073/pnas.2016239118
https://www.pnas.org/doi/10.1073/pnas.2016239118
https://www.pnas.org/doi/10.1073/pnas.2016239118

[205] Ruben Rodriguez-Torrado et al. “Physics-informed attention-based neu-
ral network for solving non-linear partial differential equations”. In: arXiv:2105.07898
[cs] (May 2021). arXiv: 2105.07898. url: http://arxiv.org/abs/2105.
07898 (visited on 08/18/2021).

[206] R S Rogallo and P Moin. “Numerical Simulation of Turbulent Flows”. In:
Annual Review of Fluid Mechanics 16.1 (Jan. 1984). Publisher: Annual
Reviews, pp. 99–137. issn: 0066-4189. doi: 10.1146/annurev.fl.16.
010184.000531. url: https://www.annualreviews.org/doi/10.
1146/annurev.fl.16.010184.000531 (visited on 05/31/2021).

[207] Francesco Romor, Giovanni Stabile, and Gianluigi Rozza. “Non-linear
Manifold Reduced-Order Models with Convolutional Autoencoders and
Reduced Over-Collocation Method”. en. In: Journal of Scientific Com-
puting 94.3 (Mar. 2023), p. 74. issn: 0885-7474, 1573-7691. doi: 10.
1007/s10915-023-02128-2. url: https://link.springer.com/10.
1007/s10915-023-02128-2 (visited on 02/15/2023).

[208] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-Net: Convolu-
tional Networks for Biomedical Image Segmentation”. In: arXiv:1505.04597
[cs] (May 2015). arXiv: 1505.04597. url: http://arxiv.org/abs/1505.
04597 (visited on 11/12/2020).

[209] Clarence W. Rowley and Scott T.M. Dawson. “Model Reduction for Flow
Analysis and Control”. en. In: Annual Review of Fluid Mechanics 49.1
(Jan. 2017), pp. 387–417. issn: 0066-4189, 1545-4479. doi: 10.1146/
annurev-fluid-010816-060042. url: https://www.annualreviews.
org/doi/10.1146/annurev-fluid-010816-060042 (visited on 05/05/2023).

[210] Yulia Rubanova, Ricky T. Q. Chen, and David Duvenaud. Latent ODEs
for Irregularly-Sampled Time Series. arXiv:1907.03907 [cs, stat]. July
2019. doi: 10.48550/arXiv.1907.03907. url: http://arxiv.org/
abs/1907.03907 (visited on 09/01/2022).

[211] David Ruhe et al.Geometric Clifford Algebra Networks. arXiv:2302.06594
[cs]. Feb. 2023. url: http://arxiv.org/abs/2302.06594 (visited on
02/15/2023).

[212] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. “Learn-
ing representations by back-propagating errors”. en. In: Nature 323.6088
(Oct. 1986). Number: 6088 Publisher: Nature Publishing Group, pp. 533–
536. issn: 1476-4687. doi: 10.1038/323533a0. url: https://www.
nature.com/articles/323533a0 (visited on 03/27/2023).

[213] Lars Ruthotto and Eldad Haber. “Deep Neural Networks Motivated by
Partial Differential Equations”. In: arXiv:1804.04272 [cs, math, stat]
(Dec. 2018). arXiv: 1804.04272. url: http://arxiv.org/abs/1804.
04272 (visited on 02/04/2022).

177

http://arxiv.org/abs/2105.07898
http://arxiv.org/abs/2105.07898
https://doi.org/10.1146/annurev.fl.16.010184.000531
https://doi.org/10.1146/annurev.fl.16.010184.000531
https://www.annualreviews.org/doi/10.1146/annurev.fl.16.010184.000531
https://www.annualreviews.org/doi/10.1146/annurev.fl.16.010184.000531
https://doi.org/10.1007/s10915-023-02128-2
https://doi.org/10.1007/s10915-023-02128-2
https://link.springer.com/10.1007/s10915-023-02128-2
https://link.springer.com/10.1007/s10915-023-02128-2
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1505.04597
https://doi.org/10.1146/annurev-fluid-010816-060042
https://doi.org/10.1146/annurev-fluid-010816-060042
https://www.annualreviews.org/doi/10.1146/annurev-fluid-010816-060042
https://www.annualreviews.org/doi/10.1146/annurev-fluid-010816-060042
https://doi.org/10.48550/arXiv.1907.03907
http://arxiv.org/abs/1907.03907
http://arxiv.org/abs/1907.03907
http://arxiv.org/abs/2302.06594
https://doi.org/10.1038/323533a0
https://www.nature.com/articles/323533a0
https://www.nature.com/articles/323533a0
http://arxiv.org/abs/1804.04272
http://arxiv.org/abs/1804.04272

[214] Tony Saad et al. “Scalable Tools for Generating Synthetic Isotropic Tur-
bulence with Arbitrary Spectra”. In: AIAA Journal 55.1 (Aug. 2016).
Publisher: American Institute of Aeronautics and Astronautics, pp. 327–
331. issn: 0001-1452. doi: 10.2514/1.J055230. url: https://arc.
aiaa.org/doi/10.2514/1.J055230 (visited on 02/01/2021).

[215] Cristopher Salvi and Maud Lemercier. “Neural Stochastic Partial Differ-
ential Equations”. In: arXiv:2110.10249 [cs] (Oct. 2021). arXiv: 2110.10249.
url: http://arxiv.org/abs/2110.10249 (visited on 11/03/2021).

[216] Alvaro Sanchez-Gonzalez et al. Learning to Simulate Complex Physics
with Graph Networks. arXiv:2002.09405 [physics, stat]. Sept. 2020. url:
http://arxiv.org/abs/2002.09405 (visited on 01/11/2023).

[217] Alvaro Sanchez-Gonzalez et al. “LEARNINGGENERAL-PURPOSE CNN-
BASED SIMULA- TORS FOR ASTROPHYSICAL TURBULENCE”.
en. In: (2021), p. 12.

[218] Martin Schmelzer, Richard P. Dwight, and Paola Cinnella. “Discovery of
Algebraic Reynolds-Stress Models Using Sparse Symbolic Regression”.
en. In: Flow, Turbulence and Combustion 104.2 (Mar. 2020), pp. 579–
603. issn: 1573-1987. doi: 10.1007/s10494-019-00089-x. url: https:
//doi.org/10.1007/s10494-019-00089-x (visited on 02/17/2023).

[219] Peter J. Schmid. “Dynamic mode decomposition of numerical and exper-
imental data”. en. In: Journal of Fluid Mechanics 656 (Aug. 2010). Pub-
lisher: Cambridge University Press, pp. 5–28. issn: 1469-7645, 0022-1120.
doi: 10.1017/S0022112010001217. url: https://www.cambridge.
org/core/journals/journal-of-fluid-mechanics/article/dynamic-

mode-decomposition-of-numerical-and-experimental-data/AA4C763B525515AD4521A6CC5E10DBD4

(visited on 08/02/2022).

[220] Peter J. Schmid. “Dynamic Mode Decomposition and Its Variants”. In:
Annual Review of Fluid Mechanics 54.1 (2022). eprint: https://doi.org/10.1146/annurev-
fluid-030121-015835, pp. 225–254. doi: 10.1146/annurev-fluid-030121-
015835. url: https://doi.org/10.1146/annurev-fluid-030121-
015835 (visited on 07/20/2022).

[221] John Schulman et al. Proximal Policy Optimization Algorithms. arXiv:1707.06347
[cs]. Aug. 2017. doi: 10.48550/arXiv.1707.06347. url: http://arxiv.
org/abs/1707.06347 (visited on 02/22/2023).

[222] Philippe Schwaller et al. “Molecular Transformer: A Model for Uncertainty-
Calibrated Chemical Reaction Prediction”. In: ACS Central Science 5.9
(Sept. 2019). Publisher: American Chemical Society, pp. 1572–1583. issn:
2374-7943. doi: 10.1021/acscentsci.9b00576. url: https://doi.
org/10.1021/acscentsci.9b00576 (visited on 02/03/2023).

[223] Yong Shang, Fei Wang, and Jingbo Sun. Deep Petrov-Galerkin Method
for Solving Partial Differential Equations. arXiv:2201.12995 [cs, math].
Jan. 2022. url: http : / / arxiv . org / abs / 2201 . 12995 (visited on
07/19/2022).

178

https://doi.org/10.2514/1.J055230
https://arc.aiaa.org/doi/10.2514/1.J055230
https://arc.aiaa.org/doi/10.2514/1.J055230
http://arxiv.org/abs/2110.10249
http://arxiv.org/abs/2002.09405
https://doi.org/10.1007/s10494-019-00089-x
https://doi.org/10.1007/s10494-019-00089-x
https://doi.org/10.1007/s10494-019-00089-x
https://doi.org/10.1017/S0022112010001217
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/dynamic-mode-decomposition-of-numerical-and-experimental-data/AA4C763B525515AD4521A6CC5E10DBD4
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/dynamic-mode-decomposition-of-numerical-and-experimental-data/AA4C763B525515AD4521A6CC5E10DBD4
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/dynamic-mode-decomposition-of-numerical-and-experimental-data/AA4C763B525515AD4521A6CC5E10DBD4
https://doi.org/10.1146/annurev-fluid-030121-015835
https://doi.org/10.1146/annurev-fluid-030121-015835
https://doi.org/10.1146/annurev-fluid-030121-015835
https://doi.org/10.1146/annurev-fluid-030121-015835
https://doi.org/10.48550/arXiv.1707.06347
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://doi.org/10.1021/acscentsci.9b00576
https://doi.org/10.1021/acscentsci.9b00576
https://doi.org/10.1021/acscentsci.9b00576
http://arxiv.org/abs/2201.12995

[224] Varun Shankar, Romit Maulik, and Venkatasubramanian Viswanathan.
Differentiable Turbulence. arXiv:2307.03683 [physics]. July 2023. url:
http://arxiv.org/abs/2307.03683 (visited on 07/10/2023).

[225] Xingjian Shi et al. “Convolutional LSTM Network: A Machine Learn-
ing Approach for Precipitation Nowcasting”. In: arXiv:1506.04214 [cs]
(Sept. 2015). arXiv: 1506.04214. url: http://arxiv.org/abs/1506.
04214 (visited on 12/15/2020).

[226] A. Shnirelman. “On the nonuniqueness of weak solution of the Euler
equation”. en. In: Communications on Pure and Applied Mathematics
50.12 (1997). eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/%28SICI%291097-
0312%28199712%2950%3A12%3C1261%3A%3AAID-CPA3%3E3.0.CO%3B2-
6, pp. 1261–1286. issn: 1097-0312. doi: 10.1002/(SICI)1097-0312(199712)
50:12<1261::AID-CPA3>3.0.CO;2-6. url: https://onlinelibrary.
wiley.com/doi/abs/10.1002/%28SICI%291097- 0312%28199712%

2950%3A12%3C1261%3A%3AAID- CPA3%3E3.0.CO%3B2- 6 (visited on
07/04/2023).

[227] B. Siddani, S. Balachandar, and R. Fang. “Rotational and reflectional
equivariant convolutional neural network for data-limited applications:
Multiphase flow demonstration”. In: Physics of Fluids 33.10 (Oct. 2021).
Publisher: American Institute of Physics, p. 103323. issn: 1070-6631.
doi: 10.1063/5.0066049. url: https://aip.scitation.org/doi/10.
1063/5.0066049 (visited on 10/27/2021).

[228] Laurent Sifre. “Rigid-Motion Scattering For Image Classification”. PhD
thesis. CMAP - Ecole Polytechnique, 2014.

[229] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. arXiv:1409.1556 [cs]. Apr. 2015.
url: http://arxiv.org/abs/1409.1556 (visited on 06/23/2023).

[230] Justin Sirignano and Konstantinos Spiliopoulos. “DGM: A deep learn-
ing algorithm for solving partial differential equations”. In: Journal of
Computational Physics 375 (Dec. 2018). arXiv: 1708.07469, pp. 1339–
1364. issn: 00219991. doi: 10.1016/j.jcp.2018.08.029. url: http:
//arxiv.org/abs/1708.07469 (visited on 02/12/2021).

[231] Alberto Solera-Rico et al. β-Variational autoencoders and trans-
formers for reduced-order modelling of fluid flows. arXiv:2304.03571 [physics].
Apr. 2023. url: http : / / arxiv . org / abs / 2304 . 03571 (visited on
04/13/2023).

[232] Nitish Srivastava, Elman Mansimov, and Ruslan Salakhutdinov. Unsu-
pervised Learning of Video Representations using LSTMs. arXiv:1502.04681
[cs]. Jan. 2016. doi: 10.48550/arXiv.1502.04681. url: http://arxiv.
org/abs/1502.04681 (visited on 01/20/2023).

179

http://arxiv.org/abs/2307.03683
http://arxiv.org/abs/1506.04214
http://arxiv.org/abs/1506.04214
https://doi.org/10.1002/(SICI)1097-0312(199712)50:12<1261::AID-CPA3>3.0.CO;2-6
https://doi.org/10.1002/(SICI)1097-0312(199712)50:12<1261::AID-CPA3>3.0.CO;2-6
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0312%28199712%2950%3A12%3C1261%3A%3AAID-CPA3%3E3.0.CO%3B2-6
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0312%28199712%2950%3A12%3C1261%3A%3AAID-CPA3%3E3.0.CO%3B2-6
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0312%28199712%2950%3A12%3C1261%3A%3AAID-CPA3%3E3.0.CO%3B2-6
https://doi.org/10.1063/5.0066049
https://aip.scitation.org/doi/10.1063/5.0066049
https://aip.scitation.org/doi/10.1063/5.0066049
http://arxiv.org/abs/1409.1556
https://doi.org/10.1016/j.jcp.2018.08.029
http://arxiv.org/abs/1708.07469
http://arxiv.org/abs/1708.07469
http://arxiv.org/abs/2304.03571
https://doi.org/10.48550/arXiv.1502.04681
http://arxiv.org/abs/1502.04681
http://arxiv.org/abs/1502.04681

[233] Kimberly Stachenfeld et al. Learned Coarse Models for Efficient Turbu-
lence Simulation. arXiv:2112.15275 [physics]. Apr. 2022. doi: 10.48550/
arXiv.2112.15275. url: http://arxiv.org/abs/2112.15275 (visited
on 09/19/2022).

[234] Ben Stevens and Tim Colonius. “Enhancement of shock-capturing meth-
ods via machine learning”. In: Theoretical and Computational Fluid Dy-
namics 34.4 (Aug. 2020). arXiv:2002.02521 [physics], pp. 483–496. issn:
0935-4964, 1432-2250. doi: 10.1007/s00162-020-00531-1. url: http:
//arxiv.org/abs/2002.02521 (visited on 02/28/2023).

[235] Ben Stevens and Tim Colonius. FiniteNet: A Fully Convolutional LSTM
Network Architecture for Time-Dependent Partial Differential Equations.
arXiv:2002.03014 [physics, stat]. Feb. 2020. doi: 10 . 48550 / arXiv .

2002.03014. url: http://arxiv.org/abs/2002.03014 (visited on
02/28/2023).

[236] Ilya Sutskever et al. “On the importance of initialization and momen-
tum in deep learning”. en. In: Proceedings of the 30th International
Conference on Machine Learning. ISSN: 1938-7228. PMLR, May 2013,
pp. 1139–1147. url: https://proceedings.mlr.press/v28/sutskever13.
html (visited on 03/28/2023).

[237] Makoto Takamoto et al. PDEBENCH: An Extensive Benchmark for Sci-
entific Machine Learning. arXiv:2210.07182 [physics]. Feb. 2023. doi: 10.
48550/arXiv.2210.07182. url: http://arxiv.org/abs/2210.07182
(visited on 03/01/2023).

[238] Mingxing Tan and Quoc V. Le. EfficientNetV2: Smaller Models and
Faster Training. arXiv:2104.00298 [cs] version: 3. June 2021. url: http:
//arxiv.org/abs/2104.00298 (visited on 01/18/2023).

[239] Matthew Tancik et al. “Fourier Features Let Networks Learn High Fre-
quency Functions in Low Dimensional Domains”. In: arXiv:2006.10739
[cs] (June 2020). arXiv: 2006.10739. url: http://arxiv.org/abs/
2006.10739 (visited on 02/11/2021).

[240] Neil C. Thompson et al. The Computational Limits of Deep Learning.
arXiv:2007.05558 [cs, stat]. July 2022. url: http://arxiv.org/abs/
2007.05558 (visited on 07/10/2023).

[241] Yifeng Tian et al. Lagrangian Large Eddy Simulations via Physics In-
formed Machine Learning. arXiv:2207.04012 [physics]. Aug. 2022. doi:
10.48550/arXiv.2207.04012. url: http://arxiv.org/abs/2207.
04012 (visited on 02/21/2023).

[242] Alasdair Tran et al. Factorized Fourier Neural Operators. Number: arXiv:2111.13802
arXiv:2111.13802 [cs]. Nov. 2021. doi: 10.48550/arXiv.2111.13802.
url: http://arxiv.org/abs/2111.13802 (visited on 06/16/2022).

180

https://doi.org/10.48550/arXiv.2112.15275
https://doi.org/10.48550/arXiv.2112.15275
http://arxiv.org/abs/2112.15275
https://doi.org/10.1007/s00162-020-00531-1
http://arxiv.org/abs/2002.02521
http://arxiv.org/abs/2002.02521
https://doi.org/10.48550/arXiv.2002.03014
https://doi.org/10.48550/arXiv.2002.03014
http://arxiv.org/abs/2002.03014
https://proceedings.mlr.press/v28/sutskever13.html
https://proceedings.mlr.press/v28/sutskever13.html
https://doi.org/10.48550/arXiv.2210.07182
https://doi.org/10.48550/arXiv.2210.07182
http://arxiv.org/abs/2210.07182
http://arxiv.org/abs/2104.00298
http://arxiv.org/abs/2104.00298
http://arxiv.org/abs/2006.10739
http://arxiv.org/abs/2006.10739
http://arxiv.org/abs/2007.05558
http://arxiv.org/abs/2007.05558
https://doi.org/10.48550/arXiv.2207.04012
http://arxiv.org/abs/2207.04012
http://arxiv.org/abs/2207.04012
https://doi.org/10.48550/arXiv.2111.13802
http://arxiv.org/abs/2111.13802

[243] Anda Trifan et al. Intelligent Resolution: Integrating Cryo-EM with AI-
driven Multi-resolution Simulations to Observe the SARS-CoV-2 Replication-
Transcription Machinery in Action. en. Pages: 2021.10.09.463779 Sec-
tion: New Results. Oct. 2021. doi: 10.1101/2021.10.09.463779. url:
https://www.biorxiv.org/content/10.1101/2021.10.09.463779v1

(visited on 02/01/2023).

[244] Kiwon Um et al. “Solver-in-the-Loop: Learning from Differentiable Physics
to Interact with Iterative PDE-Solvers”. In: arXiv:2007.00016 [physics]
(June 2020). arXiv: 2007.00016. url: http://arxiv.org/abs/2007.
00016 (visited on 10/20/2020).

[245] Understanding Convolutional Neural Networks: A Complete Guide. en-
US. Jan. 2023. url: https : / / learnopencv . com / understanding -

convolutional-neural-networks-cnn/ (visited on 06/23/2023).

[246] Ashish Vaswani et al. “Attention Is All You Need”. In: arXiv:1706.03762
[cs] (Dec. 2017). arXiv: 1706.03762. url: http://arxiv.org/abs/1706.
03762 (visited on 11/10/2020).

[247] R. Vinuesa et al. “Turbulent boundary layers around wing sections up to
Rec=1,000,000”. en. In: International Journal of Heat and Fluid Flow 72
(Aug. 2018), pp. 86–99. issn: 0142-727X. doi: 10.1016/j.ijheatfluidflow.
2018 . 04 . 017. url: https : / / www . sciencedirect . com / science /
article/pii/S0142727X17311426 (visited on 03/01/2023).

[248] Ricardo Vinuesa and Steven L. Brunton. The Potential of Machine Learn-
ing to Enhance Computational Fluid Dynamics. Tech. rep. arXiv:2110.02085.
arXiv:2110.02085 [physics] type: article. arXiv, Oct. 2021. doi: 10.48550/
arXiv.2110.02085. url: http://arxiv.org/abs/2110.02085 (visited
on 05/20/2022).

[249] Ricardo Vinuesa, Philipp Schlatter, and Hassan M. Nagib. “On minimum
aspect ratio for duct flow facilities and the role of side walls in generating
secondary flows”. In: Journal of Turbulence 16.6 (June 2015). Publisher:
Taylor & Francis eprint: https://doi.org/10.1080/14685248.2014.996716,
pp. 588–606. doi: 10.1080/14685248.2014.996716. url: https://doi.
org/10.1080/14685248.2014.996716 (visited on 03/01/2023).

[250] Rui Wang, Robin Walters, and Rose Yu. “Incorporating Symmetry into
Deep Dynamics Models for Improved Generalization”. In: arXiv:2002.03061
[cs, math, stat] (Mar. 2021). arXiv: 2002.03061. url: http://arxiv.
org/abs/2002.03061 (visited on 04/19/2021).

[251] Rui Wang et al. “Towards Physics-informed Deep Learning for Turbu-
lent Flow Prediction”. In: Proceedings of the 26th ACM SIGKDD In-
ternational Conference on Knowledge Discovery & Data Mining. KDD
’20. New York, NY, USA: Association for Computing Machinery, Aug.
2020, pp. 1457–1466. isbn: 978-1-4503-7998-4. doi: 10.1145/3394486.
3403198. url: https://doi.org/10.1145/3394486.3403198 (visited
on 10/20/2020).

181

https://doi.org/10.1101/2021.10.09.463779
https://www.biorxiv.org/content/10.1101/2021.10.09.463779v1
http://arxiv.org/abs/2007.00016
http://arxiv.org/abs/2007.00016
https://learnopencv.com/understanding-convolutional-neural-networks-cnn/
https://learnopencv.com/understanding-convolutional-neural-networks-cnn/
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://doi.org/10.1016/j.ijheatfluidflow.2018.04.017
https://doi.org/10.1016/j.ijheatfluidflow.2018.04.017
https://www.sciencedirect.com/science/article/pii/S0142727X17311426
https://www.sciencedirect.com/science/article/pii/S0142727X17311426
https://doi.org/10.48550/arXiv.2110.02085
https://doi.org/10.48550/arXiv.2110.02085
http://arxiv.org/abs/2110.02085
https://doi.org/10.1080/14685248.2014.996716
https://doi.org/10.1080/14685248.2014.996716
https://doi.org/10.1080/14685248.2014.996716
http://arxiv.org/abs/2002.03061
http://arxiv.org/abs/2002.03061
https://doi.org/10.1145/3394486.3403198
https://doi.org/10.1145/3394486.3403198
https://doi.org/10.1145/3394486.3403198

[252] Sifan Wang and Paris Perdikaris. “Long-time integration of parametric
evolution equations with physics-informed DeepONets”. In: arXiv:2106.05384
[physics] (June 2021). arXiv: 2106.05384. url: http://arxiv.org/abs/
2106.05384 (visited on 08/17/2021).

[253] Sifan Wang, Yujun Teng, and Paris Perdikaris. “Understanding and mit-
igating gradient pathologies in physics-informed neural networks”. In:
arXiv:2001.04536 [cs, math, stat] (Jan. 2020). arXiv: 2001.04536. url:
http://arxiv.org/abs/2001.04536 (visited on 12/01/2020).

[254] Sifan Wang, Hanwen Wang, and Paris Perdikaris. “On the eigenvector
bias of Fourier feature networks: From regression to solving multi-scale
PDEs with physics-informed neural networks”. In: arXiv:2012.10047 [cs,
stat] (Dec. 2020). arXiv: 2012.10047. url: http://arxiv.org/abs/
2012.10047 (visited on 04/23/2021).

[255] Sifan Wang, Hanwen Wang, and Paris Perdikaris. “Learning the solu-
tion operator of parametric partial differential equations with physics-
informed DeepOnets”. In: arXiv:2103.10974 [cs, math, stat] (Mar. 2021).
arXiv: 2103.10974. url: http://arxiv.org/abs/2103.10974 (visited
on 04/23/2021).

[256] Sifan Wang, Xinling Yu, and Paris Perdikaris. “When and why PINNs fail
to train: A neural tangent kernel perspective”. en. In: Journal of Com-
putational Physics 449 (Jan. 2022), p. 110768. issn: 0021-9991. doi: 10.
1016/j.jcp.2021.110768. url: https://www.sciencedirect.com/
science/article/pii/S002199912100663X (visited on 01/30/2023).

[257] Yongji Wang et al. “Asymptotic self-similar blow up profile for 3-D Euler
via physics-informed neural networks”. In: arXiv:2201.06780 [physics]
(Mar. 2022). arXiv: 2201.06780. url: http://arxiv.org/abs/2201.
06780 (visited on 04/20/2022).

[258] Zhengwei Wang, Qi She, and Tomás E. Ward. “Generative Adversarial
Networks in Computer Vision: A Survey and Taxonomy”. en. In: ACM
Computing Surveys 54.2 (Mar. 2022), pp. 1–38. issn: 0360-0300, 1557-
7341. doi: 10.1145/3439723. url: https://dl.acm.org/doi/10.
1145/3439723 (visited on 01/24/2023).

[259] J. Weatheritt and R. D. Sandberg. “The development of algebraic stress
models using a novel evolutionary algorithm”. en. In: International Jour-
nal of Heat and Fluid Flow 68 (Dec. 2017), pp. 298–318. issn: 0142-727X.
doi: 10.1016/j.ijheatfluidflow.2017.09.017. url: https://www.
sciencedirect.com/science/article/pii/S0142727X17303223 (vis-
ited on 02/20/2023).

[260] Max Welling and Yee Whye Teh. “Bayesian learning via stochastic gradi-
ent langevin dynamics”. In: Proceedings of the 28th International Confer-
ence on International Conference on Machine Learning. ICML’11. Madi-
son, WI, USA: Omnipress, June 2011, pp. 681–688. isbn: 978-1-4503-
0619-5. (Visited on 03/01/2023).

182

http://arxiv.org/abs/2106.05384
http://arxiv.org/abs/2106.05384
http://arxiv.org/abs/2001.04536
http://arxiv.org/abs/2012.10047
http://arxiv.org/abs/2012.10047
http://arxiv.org/abs/2103.10974
https://doi.org/10.1016/j.jcp.2021.110768
https://doi.org/10.1016/j.jcp.2021.110768
https://www.sciencedirect.com/science/article/pii/S002199912100663X
https://www.sciencedirect.com/science/article/pii/S002199912100663X
http://arxiv.org/abs/2201.06780
http://arxiv.org/abs/2201.06780
https://doi.org/10.1145/3439723
https://dl.acm.org/doi/10.1145/3439723
https://dl.acm.org/doi/10.1145/3439723
https://doi.org/10.1016/j.ijheatfluidflow.2017.09.017
https://www.sciencedirect.com/science/article/pii/S0142727X17303223
https://www.sciencedirect.com/science/article/pii/S0142727X17303223

[261] Steffen Wiewel et al. Latent Space Subdivision: Stable and Controllable
Time Predictions for Fluid Flow. arXiv:2003.08723 [cs, stat]. Mar. 2020.
doi: 10.48550/arXiv.2003.08723. url: http://arxiv.org/abs/
2003.08723 (visited on 04/12/2023).

[262] Mark D. Wilkinson et al. “The FAIR Guiding Principles for scientific
data management and stewardship”. In: Scientific Data 3 (Mar. 2016),
p. 160018. issn: 2052-4463. doi: 10.1038/sdata.2016.18. url: https:
//www.ncbi.nlm.nih.gov/pmc/articles/PMC4792175/ (visited on
03/01/2023).

[263] Sanghyun Woo et al. ConvNeXt V2: Co-designing and Scaling ConvNets
with Masked Autoencoders. arXiv:2301.00808 [cs]. Jan. 2023. url: http:
//arxiv.org/abs/2301.00808 (visited on 08/25/2023).

[264] BigScience Workshop et al. BLOOM: A 176B-Parameter Open-Access
Multilingual Language Model. arXiv:2211.05100 [cs]. Mar. 2023. doi: 10.
48550/arXiv.2211.05100. url: http://arxiv.org/abs/2211.05100
(visited on 05/23/2023).

[265] Jin-Long Wu, Heng Xiao, and Eric Paterson. “Physics-Informed Machine
Learning Approach for Augmenting Turbulence Models: A Comprehen-
sive Framework”. In: Physical Review Fluids 3.7 (July 2018). arXiv:1801.02762
[physics], p. 074602. issn: 2469-990X. doi: 10.1103/PhysRevFluids.
3 . 074602. url: http : / / arxiv . org / abs / 1801 . 02762 (visited on
02/21/2023).

[266] Jin-Long Wu et al. “Enforcing statistical constraints in generative adver-
sarial networks for modeling chaotic dynamical systems”. en. In: Journal
of Computational Physics 406 (Apr. 2020), p. 109209. issn: 0021-9991.
doi: 10.1016/j.jcp.2019.109209. url: https://www.sciencedirect.
com/science/article/pii/S0021999119309143 (visited on 03/04/2021).

[267] Xiaohua Wu. “Inflow Turbulence Generation Methods”. In: Annual Re-
view of Fluid Mechanics 49.1 (2017). eprint: https://doi.org/10.1146/annurev-
fluid-010816-060322, pp. 23–49. doi: 10.1146/annurev-fluid-010816-
060322. url: https://doi.org/10.1146/annurev-fluid-010816-
060322 (visited on 10/27/2020).

[268] Yuxin Wu and Kaiming He. Group Normalization. arXiv:1803.08494 [cs].
June 2018. url: http : / / arxiv . org / abs / 1803 . 08494 (visited on
04/05/2023).

[269] YuxinWu and Justin Johnson. Rethinking ”Batch” in BatchNorm. arXiv:2105.07576
[cs]. May 2021. url: http://arxiv.org/abs/2105.07576 (visited on
08/25/2023).

[270] Jiayang Xu and Karthik Duraisamy. “Multi-level Convolutional Autoen-
coder Networks for Parametric Prediction of Spatio-temporal Dynamics”.
In: Computer Methods in Applied Mechanics and Engineering 372 (Dec.
2020). arXiv: 1912.11114, p. 113379. issn: 00457825. doi: 10.1016/j.

183

https://doi.org/10.48550/arXiv.2003.08723
http://arxiv.org/abs/2003.08723
http://arxiv.org/abs/2003.08723
https://doi.org/10.1038/sdata.2016.18
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4792175/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4792175/
http://arxiv.org/abs/2301.00808
http://arxiv.org/abs/2301.00808
https://doi.org/10.48550/arXiv.2211.05100
https://doi.org/10.48550/arXiv.2211.05100
http://arxiv.org/abs/2211.05100
https://doi.org/10.1103/PhysRevFluids.3.074602
https://doi.org/10.1103/PhysRevFluids.3.074602
http://arxiv.org/abs/1801.02762
https://doi.org/10.1016/j.jcp.2019.109209
https://www.sciencedirect.com/science/article/pii/S0021999119309143
https://www.sciencedirect.com/science/article/pii/S0021999119309143
https://doi.org/10.1146/annurev-fluid-010816-060322
https://doi.org/10.1146/annurev-fluid-010816-060322
https://doi.org/10.1146/annurev-fluid-010816-060322
https://doi.org/10.1146/annurev-fluid-010816-060322
http://arxiv.org/abs/1803.08494
http://arxiv.org/abs/2105.07576
https://doi.org/10.1016/j.cma.2020.113379
https://doi.org/10.1016/j.cma.2020.113379

cma.2020.113379. url: http://arxiv.org/abs/1912.11114 (visited
on 07/23/2021).

[271] Ling Yang et al. Diffusion Models: A Comprehensive Survey of Meth-
ods and Applications. arXiv:2209.00796 [cs]. Oct. 2022. doi: 10.48550/
arXiv.2209.00796. url: http://arxiv.org/abs/2209.00796 (visited
on 11/10/2022).

[272] Liu Yang, Dongkun Zhang, and George Em Karniadakis. “Physics-Informed
Generative Adversarial Networks for Stochastic Differential Equations”.
In: arXiv:1811.02033 [cs, math, stat] (Nov. 2018). arXiv: 1811.02033.
url: http://arxiv.org/abs/1811.02033 (visited on 05/11/2021).

[273] Yibo Yang and Paris Perdikaris. “Adversarial uncertainty quantification
in physics-informed neural networks”. en. In: Journal of Computational
Physics 394 (Oct. 2019), pp. 136–152. issn: 0021-9991. doi: 10.1016/
j.jcp.2019.05.027. url: http://www.sciencedirect.com/science/
article/pii/S0021999119303584 (visited on 10/20/2020).

[274] Zeng Yang, Jin-Long Wu, and Heng Xiao. Enforcing Deterministic Con-
straints on Generative Adversarial Networks for Emulating Physical Sys-
tems. arXiv:1911.06671 [physics, stat]. Nov. 2020. url: http://arxiv.
org/abs/1911.06671 (visited on 08/09/2023).

[275] Rongtian Ye, Fangyu Liu, and Liqiang Zhang. 3D Depthwise Convolu-
tion: Reducing Model Parameters in 3D Vision Tasks. arXiv:1808.01556
[cs]. Aug. 2018. url: http://arxiv.org/abs/1808.01556 (visited on
08/24/2023).

[276] Yuan Yin et al. Continuous PDE Dynamics Forecasting with Implicit
Neural Representations. arXiv:2209.14855 [cs, stat]. Feb. 2023. doi: 10.
48550/arXiv.2209.14855. url: http://arxiv.org/abs/2209.14855
(visited on 05/22/2023).

[277] Mustafa Z. Yousif, Linqi Yu, and HeeChang Lim. “Physics-guided deep
learning for generating turbulent inflow conditions”. en. In: Journal of
Fluid Mechanics 936 (Apr. 2022). Publisher: Cambridge University Press,
A21. issn: 0022-1120, 1469-7645. doi: 10.1017/jfm.2022.61. url:
https://www.cambridge.org/core/journals/journal-of-fluid-

mechanics/article/physicsguided-deep-learning-for-generating-

turbulent-inflow-conditions/5AC04D36A013FD8661CB8381860ADC8C

(visited on 10/13/2022).

[278] Mustafa Z. Yousif et al. “A transformer-based synthetic-inflow genera-
tor for spatially developing turbulent boundary layers”. en. In: Journal
of Fluid Mechanics 957 (Feb. 2023). Publisher: Cambridge University
Press, A6. issn: 0022-1120, 1469-7645. doi: 10.1017/jfm.2022.1088.
url: https://www.cambridge.org/core/journals/journal- of-
fluid- mechanics/article/transformerbased- syntheticinflow-

generator-for-spatially-developing-turbulent-boundary-layers/

E58DB7B8F3C0F8FB223C6488F9CBB34D (visited on 02/24/2023).

184

https://doi.org/10.1016/j.cma.2020.113379
https://doi.org/10.1016/j.cma.2020.113379
https://doi.org/10.1016/j.cma.2020.113379
http://arxiv.org/abs/1912.11114
https://doi.org/10.48550/arXiv.2209.00796
https://doi.org/10.48550/arXiv.2209.00796
http://arxiv.org/abs/2209.00796
http://arxiv.org/abs/1811.02033
https://doi.org/10.1016/j.jcp.2019.05.027
https://doi.org/10.1016/j.jcp.2019.05.027
http://www.sciencedirect.com/science/article/pii/S0021999119303584
http://www.sciencedirect.com/science/article/pii/S0021999119303584
http://arxiv.org/abs/1911.06671
http://arxiv.org/abs/1911.06671
http://arxiv.org/abs/1808.01556
https://doi.org/10.48550/arXiv.2209.14855
https://doi.org/10.48550/arXiv.2209.14855
http://arxiv.org/abs/2209.14855
https://doi.org/10.1017/jfm.2022.61
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/physicsguided-deep-learning-for-generating-turbulent-inflow-conditions/5AC04D36A013FD8661CB8381860ADC8C
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/physicsguided-deep-learning-for-generating-turbulent-inflow-conditions/5AC04D36A013FD8661CB8381860ADC8C
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/physicsguided-deep-learning-for-generating-turbulent-inflow-conditions/5AC04D36A013FD8661CB8381860ADC8C
https://doi.org/10.1017/jfm.2022.1088
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/transformerbased-syntheticinflow-generator-for-spatially-developing-turbulent-boundary-layers/E58DB7B8F3C0F8FB223C6488F9CBB34D
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/transformerbased-syntheticinflow-generator-for-spatially-developing-turbulent-boundary-layers/E58DB7B8F3C0F8FB223C6488F9CBB34D
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/transformerbased-syntheticinflow-generator-for-spatially-developing-turbulent-boundary-layers/E58DB7B8F3C0F8FB223C6488F9CBB34D
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/transformerbased-syntheticinflow-generator-for-spatially-developing-turbulent-boundary-layers/E58DB7B8F3C0F8FB223C6488F9CBB34D

[279] Matthew D. Zeiler. ADADELTA: An Adaptive Learning Rate Method.
arXiv:1212.5701 [cs]. Dec. 2012. url: http://arxiv.org/abs/1212.
5701 (visited on 04/05/2023).

[280] Bowen Zhang et al. StyleSwin: Transformer-based GAN for High-resolution
Image Generation. en. arXiv:2112.10762 [cs]. July 2022. url: http://
arxiv.org/abs/2112.10762 (visited on 08/10/2022).

[281] Jiawei Zhao et al. Incremental Fourier Neural Operator. arXiv:2211.15188
[cs]. Nov. 2022. doi: 10.48550/arXiv.2211.15188. url: http://arxiv.
org/abs/2211.15188 (visited on 12/01/2022).

[282] Hongkai Zheng et al. Fast Sampling of Diffusion Models via Operator
Learning. arXiv:2211.13449 [cs]. Nov. 2022. url: http://arxiv.org/
abs/2211.13449 (visited on 12/01/2022).

[283] Yinhao Zhu et al. “Physics-constrained deep learning for high-dimensional
surrogate modeling and uncertainty quantification without labeled data”.
en. In: Journal of Computational Physics 394 (Oct. 2019), pp. 56–81.
issn: 0021-9991. doi: 10.1016/j.jcp.2019.05.024. url: http://
www.sciencedirect.com/science/article/pii/S0021999119303559

(visited on 10/20/2020).

[284] Jiawei Zhuang et al. “Learned discretizations for passive scalar advection
in a 2-D turbulent flow”. In: arXiv:2004.05477 [cond-mat, physics:physics]
(Nov. 2020). arXiv: 2004.05477. url: http://arxiv.org/abs/2004.
05477 (visited on 03/02/2021).

[285] Juntang Zhuang et al. AdaBelief Optimizer: Adapting Stepsizes by the
Belief in Observed Gradients. arXiv:2010.07468 [cs, stat]. Dec. 2020. url:
http://arxiv.org/abs/2010.07468 (visited on 04/05/2023).

[286] Zongren Zou and George EmKarniadakis. L-HYDRA: Multi-Head Physics-
Informed Neural Networks. arXiv:2301.02152 [physics]. Jan. 2023. doi:
10.48550/arXiv.2301.02152. url: http://arxiv.org/abs/2301.
02152 (visited on 01/11/2023).

[287] Kirill Zubov et al. NeuralPDE: Automating Physics-Informed Neural
Networks (PINNs) with Error Approximations. arXiv:2107.09443 [cs].
July 2021. doi: 10.48550/arXiv.2107.09443. url: http://arxiv.
org/abs/2107.09443 (visited on 02/28/2023).

185

http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/2112.10762
http://arxiv.org/abs/2112.10762
https://doi.org/10.48550/arXiv.2211.15188
http://arxiv.org/abs/2211.15188
http://arxiv.org/abs/2211.15188
http://arxiv.org/abs/2211.13449
http://arxiv.org/abs/2211.13449
https://doi.org/10.1016/j.jcp.2019.05.024
http://www.sciencedirect.com/science/article/pii/S0021999119303559
http://www.sciencedirect.com/science/article/pii/S0021999119303559
http://arxiv.org/abs/2004.05477
http://arxiv.org/abs/2004.05477
http://arxiv.org/abs/2010.07468
https://doi.org/10.48550/arXiv.2301.02152
http://arxiv.org/abs/2301.02152
http://arxiv.org/abs/2301.02152
https://doi.org/10.48550/arXiv.2107.09443
http://arxiv.org/abs/2107.09443
http://arxiv.org/abs/2107.09443

	I Fundamentals and Literature Review
	Introduction
	Machine Learning Fundamentals
	Preliminaries
	Supervised Learning
	Deep Learning
	Motivation: Deep Representation Learning

	Neural Networks
	Perceptrons
	Feedforward Neural Networks

	How to train Neural Networks
	Learning with Gradient Descent
	The engine: Automatic Differentiation
	Improvements to Stochastic Gradient Descent
	Regularization for Deep Neural Networks
	Normalization and Data-Augmentation

	Limitations of Deep Learning
	Deep Learning Algorithms
	Deep Learning for Computer Vision
	Deep Learning for Sequential Data
	Deep Learning And Differential Equations

	Machine Learning for Computational Fluid Dynamics
	Introduction
	Machine Learning for turbulence modeling
	The problem of data-driven closure modeling
	Neural Networks for Reynolds Stress Tensor modeling
	Machine Learning for Sub-grid scale models
	Reinforcement Learning for turbulence modeling

	Machine learning for reduced order and surrogate modeling
	Machine Learning assisted Reduced Order Models
	Neural PDE Surrogates

	Machine learning accelerated dns
	Fluid Dynamics Benchmarks and Datasets for Data-Driven cfd
	Uncertainty Quantification of Machine Learning Methods for Fluid Dynamics
	Challenges and Perspectives

	II Neural Surrogate Models of Turbulent Flows
	Towards Simulating Turbulence with Deep Learning
	Introduction
	Generating Turbulence Signals with Generative Adversarial Networks
	Problem Statement
	Improving gan training with wgan-GP
	gan with statistical and physical constraints
	The Langevin Equation
	rnn-gan for the Langevin Equation
	Results of rnn - gan on the Langevin Equation
	Synthetic Turbulence Generation
	gan for generation of 2D slices of synthetic turbulence
	Results of gan on 2D slices of synthetic Turbulence
	Conclusions on gans for generating turbulence

	Recuded order modeling of Homogenous Isotropic Turbulence with convlstm
	Problem Statement
	Background: Model Reduction for Fluid Flow Problems
	Homogenous Isotropic Turbulence Dataset
	Autoencoder for Dimensionality Reduction
	Latent Space reconstruction with Autoencoder
	Convolutional lstm for hit
	Results of convlstm on hit

	Conclusions on ae-convlstm for reduced order modeling of turbulent flows

	Surrogate Models of Turbulence Simulations with Neural Operators
	Introduction
	Problem Statement: Learning to Simulate Turbulence from Data
	Background
	Deep Learning for Reduced Order Models of Fluid Flows
	Research Objectives

	Turbulent flow Dataset
	2D Kolmogorov Flow

	Methodology
	Deep Learning Models
	Training methodology
	Gradient Loss term
	Promoting stability through regularization

	Results and Discussion
	Evaluation Metrics
	Results on 2D Kolmogorov Flow
	Effect of the loss terms
	Learning at a higher Reynolds' number
	Zero-Shot Super-Resolution at Re = 100

	Conclusions on Surrogate Modeling of Turbulence with Neural Operators

	III Epilogue
	Conclusions and Outlook

