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Réseaux de neurones impulsionnels
pour la vision embarquée basée sur les événements

Résumé

La vision par ordinateur embarquée est récemment devenue omniprésente. Elle englobe des
tâches telles que la détection, la reconnaissance et le suivi d’éléments visuels, avec des applica-
tions en robotique (conduite autonome), dans l’industrie (évaluation de la qualité des produits,
automatisation de tâches répétitives), dans la sécurité, pour l’expérience client, dans les réseaux
sociaux, etc. Cet engouement généralisé ne fait que renforcer la nécessité de surmonter les dé-
fis posés par ce domaine de recherche, à savoir une consommation d’énergie gargantuesque,
une grande mémoire et la prise en charge d’un large éventail d’algorithmes.
Nous pensons qu’une réponse prometteuse à ces défis peut être amenée par l’utilisation
combinée de réseaux de neurones à impulsions (SNNs) et de caméras événementielles. Les
SNNs sont des réseaux de neurones artificiels bio-inspirés qui visent à imiter la dynamique des
neurones biologiques en traitant l’information sous forme de séries d’impulsions. Les caméras
événementielles sont un nouveau type de capteur visuel bio-inspiré qui génère des données
asynchrones en fonction des changements d’intensité des pixels. Elles sont idéales pour
les applications en temps réel, mais la grande quantité d’informations temporisées qu’elles
génèrent est difficile à traiter à l’aide de modèles traditionnels de vision par ordinateur.
Cependant, les données événementielles se combinent naturellement aux SNNs en termes
d’inspiration biologique, d’économie d’énergie, de latence et d’utilisation de la mémoire, pour
le traitement dynamique des données visuelles.

Cependant, la nouveauté des SNNs et caméras événementielles laisse place à de nombreuses
améliorations en termes de prétraitement optimal des données ainsi que leur traitement sub-
séquent, en tirant le meilleur parti des particularités de ces concepts scientifiques. Dans cette
thèse, nous avons identifié plusieurs problématiques liées à ce vaste champ de recherche, que
nous avons condensées en deux thèmes principaux.
La première problématique concerne l’optimisation du prétraitement embarqué des données
événementielles acquises par une caméra embarquée pour en faciliter l’analyse ultérieure. Nous
proposons trois solutions : les événements pourraient soit 1) être réduits dans l’espace ou dans
le temps, online ou offline ; 2) ne conserver que les éléments saillants et rejeter le reste ; 3) être
soumis à un mécanisme de fovéation, selon un compromis bio-plausible entre les deux solu-
tions précédentes. Nous avons comparé qualitativement et quantitativement les données obte-
nues après chaque méthode de prétraitement afin d’évaluer laquelle de ces méthodes amène
à un meilleur compromis entre entre la quantité de données (c’est-à-dire le nombre d’événe-
ments) conservées et la pertinence de l’information préservée.
Le second défi est l’exploitation de l’adéquation des SNNs pour traiter la temporalité spécifique
des événements dans un contexte embarqué.
Dans l’ensemble, nous espérons avoir apporté une contribution utile à l’exploitation des avan-
tages uniques de la combinaison des SNNs avec les caméras événementielles pour la vision
par ordinateur embarquée, en particulier en ce qui concerne le prétraitement des données évé-
nementielles.

Mots-clés : Réseaux de neurones impulsionnels, Caméras événementielles, Neuromorphique, Vi-
sion par ordinateur, Neurosciences computationnelles, Reconnaissance de motifs.
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Spiking neural networks
for embedded event-based vision

Abstract

In recent years, embedded computer vision has become omnipresent. It encompasses tasks
such as detection, recognition and tracking of visual elements, with applications in robotics (au-
tonomous driving), industries (assessment of product quality, automation of repetitive tasks),
security, customer experience, social networks, etc. This widespread impetus only reinforces
the need to overcome the challenges posed by this area of research, which requires gargantuan
energy, high memory, and support for a wide range of algorithms.
We believe a promising solution to these challenges can be found in the combined use of
spiking neural networks (SNNs) and event-based cameras. SNNs consist of a bio-inspired
artificial neural network aiming to mimic the dynamics of biological neurons by processing
the information as spike trains. Event cameras are a novel type of bio-inspired visual sensor
which generates asynchronous data according to pixel intensity changes. It is ideal for
real-time applications, but the great amount of timed information is challenging to process
using standard computer vision models. Moreover, event data make a natural match for SNNs
in terms of biological inspiration, energy savings, latency and memory use for dynamic visual
data processing.

However, the novelty of SNNs and event cameras leaves room for many improvements in terms
of optimal preprocessing of data as well as how this data is processed, making the most of the
particularities of these scientific concepts. In this thesis, we identified several questions related
to this broad field of research, which we have condensed into two main topics.
The first issue concerns the optimisation of the embedded preprocessing of event data acquired
by an onboard camera to facilitate subsequent analysis. We propose three solutions: event
data could either 1) be spatially or temporally reduced, either online or offline; 2) keep only
salient elements and discard the rest; 3) be subject to foveation, as a bio-plausible compromise
between the two previous solutions. We compared qualitatively and quantitatively the event
data obtained after applying each preprocessing method to assess which method yields the best
trade-off between the amount of data (i.e. events) kept versus the relevance of information
maintained.
The second challenge is the exploitation of the SNN relevance to processing the specific
chronology of event data in an embedded context.
Overall, we hope to have made a valuable contribution to the exploitation of the unique ad-
vantages of combining SNNs and event cameras for embedded computer vision, especially
concerning event data preprocessing.

Keywords: Spiking neural networks, Event-based cameras, Neuromorphic, Computer vision,
Computational neuroscience, Pattern recognition.
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CHAPTER 1
Introduction

Human beings have always drawn inspiration from the biological world surrounding us to
create new technologies. Over 500 years ago, Leonardo da Vinci was one of the first people to
theorise the concept of bio-mimicry — “Go take your lessons from nature, that’s where our future
lies” — and his inventions paved the way for bio-inspired technologies such as aeroplanes, Velcro,
solar panels, turbines, pressure-resistant helmets, efficient heating systems, hammers, vaccination,
... and more recently, artificial intelligence.

Talos, Golems, Frankenstein and other manufactured intelligent humanoids have been part of
the popular consciousness since ancient times. Still, it was only in 1950 that Alan Turing publi-
shed his landmark paper “Computing Machinery and Intelligence”, where he discussed machines’
potential consciousness and thinking ability. Six years later, the historic workshop Dartmouth
Summer Research Project on Artificial Intelligence was the birthplace of the field of artificial in-
telligence (AI) research, especially the Logic Theorist program, which aimed to mimic human
problem-solving skills. This conference was followed by a long period of successive success and
setbacks, which finally ended in the 2000s with the successful application of machine learning
(ML) to academia and industry tasks combined with the increase in computer hardware perfor-
mance and the size of available data.

1.1 How can visual neuroscience improve computer vision?

1.1.1 Why should computer vision draw inspiration from visual neuroscience?

In recent years, the performance of computer vision algorithms increased tremendously.
In 2010, the first winner of the ImageNet Large Scale Visual Recognition Challenge (ILS-
VRC) (Deng et al., 2009) reached a 52.9% accuracy (Russakovsky et al., 2014), which AlexNet,
i.e. the first deep convolutional neural network (CNN) applied to ImageNet, quickly outperfor-
med in 2012 (63.3% accuracy) (Krizhevsky, Sutskever, & Hinton, 2012). According to (Alom
et al., 2018), this “significant breakthrough in the field of ML and computer vision for visual
recognition and classification tasks [...] is the point in history where interest in deep learning
increased rapidly”. From this point on, the successive ILSVRC winners produced increasingly
good results, reaching in 2023 an impressive 91.1% accuracy on a global dataset of more than
14, 2M samples distributed in almost 22K classes (X. Chen et al., 2023). It is worth noting that
these DL models’ performance overcame the human performance in 2015 (see Fig. 1.1), only
three years after the breakthrough bought by AlexNet. Indeed, it was experimentally assessed
that trained human annotators reach a maximum accuracy of 94.9% (top-5 classification error)
while classifying samples from ImageNet (Russakovsky et al., 2014), which was surpassed by
ResNet-152’s validation error of 95.4% (He, Zhang, Ren, & Sun, 2016). An "optimistic" human

1
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accuracy was approximated at 97.6% — equally surpassed by a DL model in 2018 (Mahajan et
al., 2018).

Figure 1.1 – Evolution of ImageNet image classification performance over time.

Overall, these recent achievements of DL models could suggest that despite its early bio-
inspiration, ML no longer needs visual neuroscience to improve its performance. As recently de-
clared by Yann LeCun, one of the scientific leaders in AI research, the latter should no longer "be
blinded by biology" (Cox & Dean, 2014).

However, this progress must be nuanced: the superhuman performances are to be counter-
balanced by the proportionate size of these networks and by the gargantuan quantity of energy
consumed to produce these results. Let us take a closer look at some of the models mentioned
previously: ResNet-152 used 40M parameters ; AlexNet consists of 13 layers, including 5 convo-
lutional ones, implemented with 60M parameters ; and the current ILSVRC 2023 laureate reached
a substantial 2440M parameters. While the computer performance in terms of floating-point ope-
rations per second (FLOPS) is known ∗ for each of these architectures, the energy consumption
has not yet been studied — however, it has been estimated that a recognition task among 1,000
different objects performed on a standard computer consumes about 250W (Weerasinghe, 2022).

If we direct our gaze to more modern systems, Chat-GPT3 uses 175 billion parameters, and
its energy consumption during training was approximated at 1, 287MWh (Patterson et al., 2021),
i.e. around 550 tonnes of CO2eq. This corresponds to the equivalent of 550 round trips from Paris
to New York by plane and 250 times what a European citizen is supposed to consume per year
to achieve carbon neutrality ! We do not know the actual energy consumption of the most recent
version of Chat-GPT (based on GPT4), but we can only assume from its staggering number of
parameters (170 trillion) that it must approximate a 1, 000 times the consumption of GPT3.

∗. According to (Desislavov, Martínez-Plumed, & Hernández-Orallo, 2021), AlexNet performs at 1.52 GFLOPs
and ResNet-152, 22.6 GFLOPs. The number of the current ILSVRC winner has not been made publicly available yet ;
however, we can note that the 2021 laureate ViT-G/14 reached an accuracy of 91.1% using 1843M parameters and
performing at 5270 GFLOPs (Dai, Liu, Le, & Tan, 2021).
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In contrast to the neural networks described above, the human brain from which their designers
draw inspiration is significantly more energy efficient: with a power budget of only 20W , it allows
us to “make sense of a complex and ever-changing world, to plan complex actions, to navigate
our social environment and intuit the minds of others, and to learn and remember across our entire
lifespans” (Cox & Dean, 2014). Its architecture enables these impressive feats: over 100 billion
neurons operating simultaneously, interconnected by 100 trillion synapses. The latter propagate
action potentials at a relatively low speed ranging from 1 to 100m/s, with an additional slowdown
caused by dendritic and axonal delays ; the visual signal perceived by the retina reaches the pri-
mary visual cortex after 50ms, and the later stages of visual processing take place after almost
200ms. However, even though these propagation times are way slower than manufactured silicon
computers performing up to billions of computational cycles per second, the cerebral structure’s
high parallelism and dense connectivity allow information to span between distant brain regions
rapidly (Liao, Vasilakos, & He, 2017).

All the figures described above underline the brutal difference in energy consumption between
computer vision and a human being, which even the superhuman performances mentioned pre-
viously do not make up for. To close this gap and reduce the impact of the digital world on the
environment (responsible for 3.8% of greenhouse gas emissions and consuming 4.2% of primary
energy in 2019 (Bordage, 2019)), it is crucial to draw inspiration from visual neuroscience to
improve computer vision.

1.1.2 Which neuro-inspired tools should one use to improve computer vision?

Introduced as the "third generation of neural network models", SNNs represent an asynchro-
nous type of artificial neural network (ANN) closer to biology than traditional artificial networks,
mainly because they seek to mimic the dynamics of neural membrane and action potentials over
time (Maass, 1997). Their event-driven nature (the SNN’s neurons with no spikes remain idle
while the ANN’s units are always active), as well as their summation operations (binary inputs
compared to the ANN’s floating point values) that are inherently less computationally expensive,
contribute to their energy efficiency over a given period (Roy, Jaiswal, & Panda, 2019). The SNNs’
bio-inspiration allows for them to be implemented on neuromorphic hardware, i.e. silicon archi-
tectures whose elemental building blocks work as biological neurons and transmit the information
as electric impulses (the "spikes").

Event cameras are a novel bio-inspired sensor, akin to a "silicon retina" (Mahowald & Mead,
1991), which encodes the visual information as spikes ; they are bringing an emerging vision para-
digm by mimicking the biological retina. In 2008, Lichtsteiner, Posch and Delbruck presented the
first complete design of a Dynamic Vision Sensor (DVS) (Lichtsteiner, Posch, & Delbruck, 2008a)
responding only to temporal brightness change in a scene with no consideration for colours, similar
to the organic retina. This asynchronous sensor records visual data with a microsecond temporal
resolution and a high dynamic range (120dB compared to the human eye’s 35dB and traditional
red-green-blue (RGB) camera’s 60dB), with significantly low power (10mW compared to the
human eye’s 10mW ) (Gallego, Delbruck, Orchard, & al., 2020). Event data require low memory
to be stored, 1000 times less than RGB videos (Kilobytes versus Megabytes) (Rebecq, Gallego,
Mueggler, & Scaramuzza, 2018).

SNNs receive and process information as spike trains, meaning as a non-monotonous sequence
of activations. Therefore, they make for a suitable candidate for the efficient processing of inco-
ming event patterns measured by event-based cameras: each event is assimilated to an activation
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spike between two spiking neurons. As stated by (Roy et al., 2019), “a suitable spiking neuron
model with proper synaptic plasticity while exploiting event-based, data-driven updates is a major
goal among neuromorphic engineers to enable computationally efficient intelligent applications”.

Both those scientific concepts fall within the spectrum of “neuromorphic computing”, a
concept invented in the 1980s by Prof. Carver Mead at Caltech “which combines biology, elec-
trical engineering, computer science and mathematics to create ANNs able to handle information
as a human brain and nervous system would” (L, 2021). Nowadays, this concept includes both
different processing strategies, such as spintronics, in-memory computing, SNNs, photonics,
etc (Christensen et al., 2022), as well as various sensors. We can mention some for each of the
five senses: (Mahowald & Mead, 1991) and (Lichtsteiner et al., 2008a) for the sight, (Lyon &
Mead, 1988) and (Chan, Liu, & van Schaik, 2007) for the hearing, (Koickal et al., 2007) and
(Koickal et al., 2007) for the smell, (Yang et al., 2023) and (LeBow et al., 2021) for the taste and
(Birkoben, Winterfeld, Fichtner, Petraru, & Kohlstedt, 2020) and (Macdonald, Lepora, Conradt,
& Ward-Cherrier, 2022) for the touch.

In this thesis, we propose tackling this challenging task by capitalising on two compatible
scientific concepts: SNNs and event cameras, both allowing for neuromorphic computing. We
present below the scientific context and motivations of this work, as well as the contributions
achieved.

1.2 Scientific context

This PhD work has been conducted under the supervision of Prof. Jean Martinet, within the
SPARKS Team (i3S, 2023b) at the I3S laboratory in Sophia Antipolis, France (i3S, 2023a) ; and
has been co-supervised by Dr Laurent Perrinet, a researcher at the Institute of Neurosciences of
Timone in Marseille, France (INT, 2023).

This thesis is undertaken in the context of the European APROVIS3D project (April 2020-
September 2023) (APROVIS3D, 2023), supported by the European Union’s ERA-NET CHIST-
ERA 2018 research and innovation programme under grant agreement ANR-19-CHR3-0008. The
objective of the APROVIS3D project is to design and implement ML methods based on SNNs to
extract visual features and infer useful information from the visual scene using stereo event came-
ras. In particular, the project focuses on two use cases: coastline tracking and depth estimation.

The consortium from four EU countries shares a common interest in analog-based computing
and computer vision and offers a unique combination of expertise this project requires. It was
created with the following objective: SNNs specialists from various fields, such as visual sensors
(IMSE, Spain), neural network architecture and computer vision (UCA, France and University of
Lille, France) and computational neuroscience (INT, France), will team up with robotics and au-
tomatic control specialists (NTUA, Greece) and low power integrated systems designers (ETHZ,
Switzerland) to help geoinformatics researchers (UNIWA, Greece) build a demonstrator UAV for
coastal surveillance, evaluated at software level for comparison with standard image-based ap-
proaches in terms of accuracy and energy consumption, before hardware integration.

The key challenges of this project will be to design an end-to-end analog system (from sen-
sing to AI-based control of the UAV and 3D coastal volumetric reconstruction) which is energy
efficient and adapted to real conditions. The project relies on SpiNNaker applied to a stereopsis
system dedicated to coastal surveillance using an aerial robot. This project is additionally the oc-
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casion to embed and experimentally assess the neuromorphic foveation mechanism as designed by
IMSE (Serrano-Gotarredona, Faramarzi, & Linares-Barranco, 2022). APROVIS3D aims to show
that such a bioinspired analog design will bring considerable benefits regarding energy efficiency
and adaptability needed to make coastal surveillance with UAVs practical and more efficient than
digital approaches.

1.3 Our motivations and objectives

As described above, the main objectives of the APROVIS3D project are coastline detection
for autonomous navigation of a UAV and 3D reconstruction from a stereo stream of events, using
an SNN implemented on the neuromorphic hardware SpiNNaker and interfaced with two DVSs,
both embedded on a UAV. Our work falls within this broad spectrum and, more specifically, ad-
dresses the issue of optimising † the preprocessing of event data acquired by an event camera to
facilitate subsequent analysis. We specifically target their combined use for embedded systems, i.e.
hardware systems with software designed to perform real-time operations for a dedicated function
either independently or as a part of a larger system (HEAVY.AI, 2022). The UAV application task
of APROVIS3D dictates this choice, which leads to the development of frugal neural networks.

1.3.1 Neuromorphic data preprocessing for optimised online analysis

Indeed, embedded systems and even early realised neuromorphic embedded processors are
quite limited in terms of memory bandwidth. A UAV has available low processing power and
low memory: its limited battery lifetime leads to limited flight time and requires planning UAV
missions to minimise energy consumption (Abeywickrama, Jayawickrama, He, & Dutkiewicz,
2018).

While the data produced by event cameras are inherently sparse and seem ideally suited to
minimise the issue of embedded energy consumption and data storage, the event flow can be very
high. Event cameras have a very high temporal resolution (in the order of microseconds), mea-
ning that one pixel can theoretically generate 1 million events per second at most. A DVS128
of resolution 128 × 128 could produce thus 16.4 billion events per second. While this case ne-
ver happens in real use due to the events’ intrinsic sparsity and non-redundancy, several million
events per second have been recorded in highly dynamic and textured scenes (Tayarani-Najaran
& Schmuker, 2021). These heavy event streams require significant resources to handle and may
be too dense to be correctly processed by the state-of-the-art low-power embedded system. In-
deed, as stated in (Sorbaro, Liu, Bortone, & Sheik, 2019): since most neuromorphic architectures
require the neuron state to be fetched from memory at each synaptic event then be rewritten and
each of those operations consume a certain amount of energy (usually around 10−11J (Indiveri
& Sandamirskaya, 2019) – 8x10−9J for SpiNNaker (Stromatias, Galluppi, Patterson, & Furber,
2013) and 23.6x10−12J for Loihi (Davies et al., 2018)), “reducing the number [of synaptic ope-
rations] is therefore the most natural way to keep energy usage low”. Furthermore, recent study
shows that in certain lighting conditions, high-resolution event cameras produce data susceptible
to temporal noise and with an increasingly high per-pixel event rate, thus leading to the decreased
performance of some traditional computer vision tasks (D. Gehrig & Scaramuzza, 2022). While

†. Disclaimer: although we often use the term “optimal” or “optimisation” in this manuscript, we are in no way
involved in combinatorial computing. Our use of the term “optimal” in this work corresponds to its literary definition,
meaning ideal or most desirable.
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desktop event vision solutions can afford considerable computing resources, embedded processing
can suffer from hardware limitations such as energy resources, memory, computational power and
communication bandwidth. In such situations where a dense event stream can neither be stored
nor processed online, it is likely that some (if not most) events will be randomly dropped, which
will obviously impede correct processing.

Additionally, this heavy flow of information may not always be relevant to the task at hand.
Some work simply chose to reduce this information by pooling the events into frames, then pro-
cessing this data as standard visual images (Fang, Yu, Chen, Masquelier, et al., 2021 ; Huang,
2021). A concrete example can be found in real-time event-based odometry applied to robotics,
which requires only movement information and whose needs can typically be answered by frame
analysis (Rebecq, Horstschaefer, & Scaramuzza, 2017). However, its main drawback is that the
asynchronicity of the event data, which is a real advantage of event data, is disregarded ; all events
are gathered, and their timestamps are discretised at a higher temporal grain.

Other works aim to reduce the induced high storage requirements by implementing event
data compression methods, such as entropy coding (Gallego et al., 2020), dictionary-based com-
pression (Ziv & Lempel, 1977 ; Alakuijala et al., 2018), Internet of Things specific compres-
sion (Blalock, Madden, & Guttag, 2018 ; Gallego et al., 2020), fast integer compression (Khan,
Iqbal, & Martini, 2020, 2021), etc. These compression techniques can be lossy — see Poisson
Disk Sampling-based Lossy Event Compression (Banerjee, Wang, Chopp, Cossairt, & Katsag-
gelos, 2021) — or lossless — see (Khan et al., 2020, 2021). Their major disadvantage is their
inability to compress data in real-time during acquisition.

Furthermore, deep SNN models can have difficulties handling a great amount of data simul-
taneously while minimising their energy consumption, especially at a high temporal resolution.
Some chose to compress these models using attention, as proposed in (Kundu, Datta, Pedram, &
Beerel, 2021).

All in all, drawing from the multiple examples presented above, we are convinced that the
issue of event data optimisation for onboard analysis must be addressed. Therefore the first core
problem of this thesis is: How can we optimise the trade-off between quantity and quality
of the visual information as a preprocess for any embedded data processing? In other words,
what is the best method to reduce the number of events to be processed while retaining a maximum
amount of information relevant to this process to optimise the embedded system performance?

Event-data downscaling Our first approach to solving this wide-ranging issue is to reduce the
event stream by simply downscaling the spatial and temporal resolution. Downscaling vision data
is an essential feature in a system, especially if embedded, so as to be able to adjust the complexity
of data to the available resources, such as processing capability and energy consumption. Reducing
the size of visual data is straightforward for grayscale and RGB images with interpolation. When
it comes to event data, size reduction is much less trivial.

It is important to note here that our main goal above all is to reduce the number of events in the
input stream above. To solve this problem, we opted to reduce either the spatial dimension of the
sensor or the grain size of the data recording time. These solutions should reduce the number of
events by decreasing the number of possible spatial or temporal coordinates. However one should
note that the impact of event reduction on the energy consumption depends on the downstream
system: if it is event-based, the goal of lower energy consumption is valid. However, in a clock-
based system, the downscaling of the temporal resolution is more impacting than a lower number
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of events: a lower temporal resolution leads to a smaller number of timesteps to simulate, thus
a lower energy consumption and processing time ; which is not necessarily the case for a lower
number of events. Regarding spatial downscaling, the reduced map size is beneficial for both
event- and clock-based systems. Additionally, one could argue that the reduced data provided as
input would only have an impact on the resources consumed by the first layer of the downstream
network, especially in DL models. This argument can easily be dismissed here, as we are looking
to facilitate embedded event data processing and such DL models are rarely embedded due to their
high energy consumption. Furthermore, it is easily observable in many deep SNN models that the
output activity is proportional to the output activity.

Most existing event vision approaches handle event data preprocessing by simply downscaling
the pixel coordinates, which is actually a max-pooling operation in the event domain. Such as
strategy is adopted by the Tonic’s "Downsample" method (Lenz et al., 2021) (see Section 3.2.3),
which is, to the best of our knowledge, the only existing tool for event data downscaling post-
recording. One obvious issue of this simple event “funnelling”, especially in the spatial dimension,
is that the resulting event density drastically increases in the reduced spatial dimension, causing a
critical information loss. Indeed, the precision of (x, y) coordinates decreases and the fine details
of the recorded objects are lost.

Attempts to overcome this issue have been made by using hardware-integrated filters to reduce
the event rate. For example, the event camera Prophesee Gen4 implements a row-wise arbitration,
introducing systematic errors in the event timestamps, thus randomly skipping events (Finateu
et al., 2020). The authors in (Delbrück, Graca, & Paluch, 2021) introduce fixed-step feedback
controllers, which automatically adjust the camera parameters according to the input event rate
and noise: they adjust the threshold and refractory period to regulate the event rate and adapt
the bandwidth to regulate the noise. However, these filters significantly alter the visual data and
therefore are not a viable solution.

In neuromorphic ML, SNNs consider each pixel as an input neuron, and each event is produced
as an input spike to the neural model. However, they usually cannot handle the flow of information
the event data represents as this first layer is often too important for efficient computation ; thus,
most authors applying this type of neuromorphic computing on event data resolve to convolve the
input. For example, (Cordone, Miramond, & Ferrante, 2021) apply multiple convolution layers to
the dataset DVS128 Gesture before processing it. We can also mention the residual graph convo-
lutional techniques, which handle each input event as a node in the graph (Bi, Chadha, Abbas,
Bourtsoulatze, & Andreopoulos, 2019): this leads to low computational efficiency and a substan-
tial simulation run and only produces satisfying results on a sparse dataset with well-defined empty
areas like the one they use.

The aforementioned examples are just a few reasons why event downscaling is a real challenge
in neuromorphic computer vision and needs to be formalised as a step further towards sparse data
processing.

Visual attention for salient selection of OoIs Our second approach to solving the wide-ranging
issue of event data preprocessing is to process only the events belonging to the salient elements
of the visual scene, i.e. the elements noticeable and/or relevant for the task at hand. We identify
regions of interest (RoIs — or salient regions) as a set of pixels recording a high spatiotemporal
density of events. The objects of interest (OoIs) thus correspond to events that cluster together
spatiotemporally to form the structure of a visual object.
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We believe that detecting RoIs in the original visual scene to select the corresponding OoIs
(i.e. the events taking place in the detected RoIs) is the missing element to optimising the trade-
off between the quantity and the quality of the reduced event data. Additionally, it is a promising
approach to increase accuracy, reducing both latency and memory requirements. Indeed, the study
of many biological organisms highlighted the importance of limiting the processing of sensory
RoIs, thus minimising the energy spent on this task as well as the reaction delay to what is percei-
ved (Tsotsos, 1990). For prey animals, for example, this means a quicker detection of a potential
predator and a more efficient escape from danger. Attention was first described as the coalition
of "focalisation, concentration and consciousness" by William James in 1890 (James, 1890). Ac-
cording to (Borji & Itti, 2013), visual attention can be defined as the behavioural and cognitive
process of selectively focusing on a discrete aspect of sensory cues while disregarding other per-
ceivable information. In psychology, this mechanism is more recently defined as the allocation
of limited cognitive processing resources on one or a few relevant environmental elements while
ignoring others (Anderson, 2005). It can be either subjective or objective, as well as voluntary or
instinctive.

Taking inspiration from the primates’ visual attention mechanisms (Moosmann, Larlus, &
Jurie, 2006 ; Itti & Koch, 2001 ; Martinet, Lablack, Lew, & Djeraba, 2009 ; Aydemir, Hoffstetter,
Zhang, Salzmann, & Süsstrunk, 2023), many computer vision tasks (classification, object tracking,
autonomous navigation, etc.) rely on small salient items in the global scene to limit the amount of
data to be processed. As technologies for sensory information processing expanded, an increasing
number of them assimilated this idea for their own purposes. In the deep learning community,
for instance, this concept was converted into a neural network’s component weighting features by
the task’s level of importance. Attention can thus be applied to regions in images, words in text,
phonemes in speech, etc.

Works that implement neuromorphic visual attention applied to event data are rare in the li-
terature. Only a few models genuinely take advantage of the intrinsic dynamics of SNNs and the
uniqueness of event data: in particular, (Renner, Evanusa, & Sandamirskaya, 2019) make use of
the mathematical model of DNF (Sandamirskaya, 2014) as a soft Winner-Takes-All (WTA) to
implement tracking of salient objects, which position in the sensor was known due to an initial
man-made pre-activation. Therefore, we believe that the neuromorphic salient selection of OoIs is
a promising axis of research to optimise the event data to be processed.

Neuromorphic foveation We propose a third and last approach to optimise the on- and off-line
processing of event data as a combination of the two previously targeted solutions: foveation, a
visual neuroscience mechanism allowing the complex eye to acquire relevant information selec-
tively. We define here neuromorphic foveation as a feedback loop between an event camera and
a neuromorphic saliency detector, merging events at multiple resolutions according to identified
RoIs. Teresa Serrano-Gotarredona and Bernabé Linares-Barranco, two APROVIS3D collabora-
tors, recently patented an electronically foveated DVS (e-Fov DVS) (Serrano-Gotarredona et al.,
2022), whose development was considerably delayed by the sanitary crisis (see Section 5.2.3). As
a result of this impediment, this sensor has not been associated with a feedback loop saliency de-
tection mechanism and validated on a computer vision task within the timeline of this work — our
objective is to implement software neuromorphic foveation as a first step towards this direction.
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1.3.2 Neuromorphic embedded processing of spatiotemporal patterns

While this PhD thesis’ core objective is the optimisation of event data preprocessing for em-
bedded neuromorphic analysis (as described in the previous section), it only answers part of the
APROVIS3D project goals. Embedded coastline detection and 3D reconstruction will benefit si-
gnificantly from our results but cannot be achieved solely thanks to them. We thus turned our
attention to solving these tasks.

Our analysis of these problems raised the importance and relevance of applying SNNs to event
cameras to solve computer vision tasks dedicated to spatiotemporal pattern processing. The second
problem we addressed is thus the following: How can we exploit the relevance of the SNN to
exploit the specific chronology of event data in an embedded context? In other words, how do
we handle precise movements recorded by an event camera using the crucial suitability of SNNs?
The specific tasks we identified as linking this problem to APROVIS3D are coastline detection
using delay learning or simple SNN architectures ; 3D reconstruction ; and lip-reading.

1.4 Our contributions

We established in the previous section our motivations to tackle the following two wide-
ranging issues: How can we optimise the trade-off between quantity and quality of the visual
information as a preprocess for any embedded data processing? And how can we exploit the rele-
vance of the SNN to process the specific chronology of event data? In the paragraphs below, we
describe the work carried out and the results obtained during this thesis.

1.4.1 How can we optimise the trade-off between quantity and quality of the visual
information as a preprocess for any embedded data processing?

We sought to address this issue by experimenting with several neuromorphic and non-
neuromorphic mechanisms.

Event data downscaling As a first approach to solve the problem posed by the excessive flow
of events, we implemented ten event data downscaling methods:

— six "spatial" methods, i.e. influencing the spatial resolution according to a spatial dividing
factor with no effect on the temporal resolution:
> spatial funnelling ;
> event count ;
> linear log-luminance reconstruction ;
> cubic log-luminance reconstruction ;
> SNN pooling with separate handling of the polarity ;
> SNN pooling with mutual handling of the polarity ;

— four "temporal" methods, i.e. influencing the event flow temporally according to a temporal
dividing factor with no effect on the spatial resolution:
> synchronous temporal funnelling ;
> asynchronous temporal funnelling ;
> stochastic structural downscaling ;
> deterministic structural downscaling.
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To compare these various methods, we study quantitative and qualitative descriptors of the two
event-based datasets DVS 128 Gesture (Amir et al., 2017) and N-MNIST (Orchard, Jayawant, Co-
hen, & Thakor, 2015), downscaled using these methods. The quantitative descriptors correspond to
the number of events, temporal density, information entropy (as defined in Shannon’s information
theory) and the computation time for on- and off-line downscaling (respectively corresponding to
the reduction of event data as it is being recorded or of the whole dataset at once). The qualita-
tive descriptors correspond to the optical coherence (as estimated by our collaborators at IMSE,
specialists in neuromorphic sensors) and the classification performance of the two neuromorphic
classifiers using respectively the Parametric Leaky Integrate-and-Fire (PLIF) neuron model (Fang,
Yu, Chen, Masquelier, et al., 2021) and the Spike Layer Error Reassignment (SLAYER) frame-
work (Shrestha & Orchard, 2018). We also describe the results of a gesture classification task
performed by a set of human users to the latter.

Considering that our application is embedded processing of the reduced data, we give more
weight to the criteria "number of events", "online computation time" and "classification perfor-
mance" (either machine or human). The SNN pooling methods are both implemented on the neu-
romorphic hardware SpiNNaker (S. B. Furber et al., 2013) ; the results tend to show that the best
choice to perform spatial event reduction on an embedded system to adjust the size of data to the
available resources, such as processing capability and energy consumption, can be found among
the SNN pooling methods. Suppose that we do not limit our criterion to spatial downscaling. In
that case, the stochastic structural method that consists in randomly dropping events shows ex-
citing performances, with a classification accuracy that remains very high even when dropping a
high ratio of events.

Our human gesture classification assessment showed that the spatial dividing factor needs to
be maintained at a certain threshold (8 for a 128 × 128 sensor) to ensure that human performance
does not fall below the chance level. Overall, the quality of the data obtained from our downs-
caling methods is not uniform, and we identified some surprising discrepancies between human
and ML approaches to gesture classification using event data: human accuracy is higher than ma-
chine accuracy in specific dividing factors for specific methods, such as the synchronous temporal
funnelling and mutual and separate SNN techniques. This study sheds light on the potential li-
mitations of event data downscaling and provides insights into the human perception of gesture
classification using event data.

Visual attention for salient selection of OoIs Following the results presented above, we hypo-
thesised that the trade-off between the quantity of events versus the quality of the retained infor-
mation might be improved by only processing events corresponding to OoIs, i.e. salient elements
of the visual scene. In collaboration with the groups of Michele Magno (partner of APROVIS3D)
and Luca Benini, both at ETH Zürich, we implemented to this end a low-latency neuromorphic
model of visual attention and salient spatiotemporal selection, which simultaneously outputs one
or multiple OoIs detected in an event-based scene. Our architectures are designed to be lightweight
enough to enable running in real-time. The RoIs are detected thanks to intrinsic SNN dynamics
that accumulate spikes with a leaky behaviour The generalisability of the model is ensured by
dynamic adaptation rules applied to synaptic weights and neural thresholds.

We implemented various versions of our visual attention model:
— a saliency detector, which detects RoIs ;
— a model for the salient selection of one OoI at a time ;
— a model for the simultaneous salient selection of multiple OoIs at a time.
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Those models have been developed in close collaboration with fellow members of APROVIS3D
at ETH Zürich and IMSE. They have been experimentally validated on a central processing unit
(CPU) and on the neuromorphic hardware Loihi (Davies et al., 2018) and the academic platform
Kraken (Di Mauro, Scherer, Rossi, & Benini, 2022).

We demonstrated the quality of the visual attention mechanism implemented thanks to quan-
titative and qualitative descriptors. After salient selection of one OoI in the DVS 128 Gesture
dataset (where we hypothesise the OoI to be the moving arms), we obtained a repartition of events
in space reduced by 80% and a classification accuracy maintained at an acceptable 70% of the
one achieved on the original dataset. On a custom-made dataset with multiple OoIs, we confirmed
that our model performs a saliency detection akin to biological visual attention. When confronted
with a visual scene with multiple OoIs and asked to select only one, we expect a human viewer to
always select either the one with the highest density of information (i.e. highest number of events
and spatiotemporal density) or the one that comes first when the shift between the multiple OoIs
is big enough. Our model exhibited similar behaviour in our results, which could be improved by
experimental validation of our hypothesis concerning the human-like visual attention our model
mimics.

Additionally, we demonstrated the usefulness of dynamic rules for online weight and threshold
adaptations, which, to our knowledge, cannot be implemented on Loihi: the results obtained with
the adaptation rules (on CPU and Kraken) are significantly better than those obtained without
those rules (on Loihi).

Our innovative model for simultaneous salient selection of multiple OoIs at a time equally
achieves good results. While it only accurately filters out n OoIs out of n initially present in the
input event data, it reaches a selection latency of 15ms (5ms in best-case scenarios). It selects OoIs
with a quality leading to a classification performance reaching 73% of the performance obtained
on original data while reducing the activated surface of the sensor (i.e. the average number of
pixels activated over time) by 1000, all with no training phase and a reduced number of neurons
and connections compared to state-of-the-art salient detection methods.

Implementing the models described above on SpiNNaker (S. B. Furber et al., 2013) is currently
being undertaken to align with APROVIS3D constraints.

Neuromorphic foveation We finally worked on drawing benefits from both approaches descri-
bed below (event data reduction and neuromorphic visual attention mechanisms) to offer a third
and last solution to the problem posed by the excessive flow of events. Our neuromorphic fovea-
tion model merges events at multiple resolutions according to the RoIs detected using the first
model described in the previous section. We experimentally validated this mechanism on software
as a preliminary work to its hardware implementation. We implemented a "binary" version of
this mechanism, akin to the combination of sample events in high resolution and low resolution
using a mask. We applied it to the two datasets DDD17 (Binas, Neil, Liu, & Delbruck, 2017) and
DVS 128 Gesture (Amir et al., 2017) to study the performance evolution for two computer vision
tasks, respectively semantic segmentation and classification, according to the remaining number
of events. We deepened the study using additional quantitative descriptors, i.e. the spatial and
temporal densities of the RoIs.

The semantic segmentation results demonstrated that the foveated data managed to keep on
average the same performance as with the original dataset while decreasing by two-thirds the
mean number of events to reach the low-resolution value. On the classification side, the average
number of events per sample drops to 1% of the original metric after reduction and 50% after
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foveation, while the performance decreases respectively by 63% and only by 25%. This difference
is explained by the intrinsic distinction between the datasets and tasks: classifying a DVS 128
Gesture sample can be done by identifying the movement of the hands, i.e. by following the tra-
jectory of the RoIs while segmenting a driving scene requires more information and cannot rely
solely on the data provided in the RoIs, although these greatly facilitate the task. Combined ob-
servations confirm our core thesis that neuromorphic foveation leads to the best trade-off between
information quantity and quality, at least on a software level.

Furthermore, we studied the performance evolution of the dataset pre-processed with various
methods (reduction, visual attention and neuromorphic foveation) when reduced using an increa-
sing factor of stochastic structural downscaling. Interestingly, while all three data types show the
same behaviour, the averaged foveated data outperforms the high-resolution data when the 60%
threshold of decrease is crossed. This is explained by the fact that most events kept in the foveated
dataset provide relevant information to the semantic segmentation model. In contrast, a significant
part of the events in the original dataset is not as valuable.

In summary, we demonstrated the stakes of foveation applied to event data for semantic seg-
mentation and classification. Our work shows that such a strategy does concurrently preserve
the accuracy of event data processing and greatly reduces the amount of data needed for the
task, at least with the current software implementation. Further work will implement the hard-
ware neuromorphic foveation feedback process by concurrently using the foveated DVS presented
in (Serrano-Gotarredona et al., 2022) and the neuromorphic chip SpiNNaker (S. B. Furber et al.,
2013) to record foveated event data in an embedded fashion.

1.4.2 How can we exploit the relevance of the spiking neuron to process the specific
chronology of event data?

We identified multiple computer vision tasks answering this problem while falling within the
spectrum of APROVIS3D, the results of which are detailed below.

Coastline detection We participated in implementing this application, i.e. the main use case to
be addressed within the APROVIS3D project, thanks to three approaches.

The first one corresponds to ANN-to-SNN learning and is carried out by a dedicated APRO-
VIS3D workgroup composed of NTUA, INT and UCA collaborators. NTUA records event data
and RGB videos of the sea and the coastline ground, separated and mixed, using cameras embed-
ded on a UAV. Once the data is acquired, UCA verifies the provided videos’ quality and translates
the data into a universal format. This modified dataset is then forwarded to INT: having implemen-
ted the Hierarchy Of event-based Time-Surfaces (HOTS) classifier (Lagorce, Orchard, Galluppi,
Shi, & Benosman, 2016) in previous work, they update this architecture to differentiate between
sea and ground patches efficiently. Once correctly adapted to this task, UCA will implement the
HOTS network with the hyperparameters learned during training on the neuromorphic hardware
SpiNN-3. The final topology will finally be embedded in the UAV set up by NTUA. At UCA, we
handle the translation of data between different file formats (from AEDAT2 to NPY) as well as the
verification of the quality of the data, as the embedded DVS required multiple adjustment steps to
provide a usable dataset.

The second approach corresponds to delay learning, i.e. an SNN learning rule which, instead
of changing the synaptic weight, changes the delay of the electrical spike journey in the pre-
synaptic neuron’s axon (Hüning, Glünder, & Palm, 1998). We aim to implement a delay learning
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mechanism to classify between spatiotemporal patterns in an event scene, mainly applied to our
application task of coastline detection. Indeed, depending on whether the events recorded corres-
pond to the ground or the sea, their movements are quite different: the events corresponding to the
ground are generated by the sensor’s ego-motion (Chapel & Bouwmans, 2020) while the move-
ment of the events corresponding to the sea is the sum between the movement generated by the
ego-motion (vertical motion) and by the waves (mostly a motion parallel to the coastline). To this
end, we extended the bio-plausible unsupervised delay learning model introduced in (Nadafian
& Ganjtabesh, 2020) to a greater number of convolution layers and noisy and noiseless synthetic
data. Additionally, we applied various metrics (accuracy, recall, F1-score, GINI index) to assess
the training phase and ease the future adaptation to real-world data.

3D reconstruction Another use case of the APROVIS3D project targets the reconstruction of
the 3D architecture of a visual scene from two stereo event streams recorded by two DVS interfa-
ced to a neuromorphic platform. Building on (Dikov, Firouzi, Röhrbein, Conradt, & Richter, 2017)
model for neuromorphic 3D reconstruction, we embed the model on a SpiNN-3 by 1) downscaling
the input data, 2) modifying the network’s architecture, and 3) cropping the data. Once we expe-
rimentally validated our results on the toy datasets provided in (Dikov et al., 2017), we produced
some first results on the real-world dataset DSEC (M. Gehrig, Aarents, Gehrig, & Scaramuzza,
2021).

Neuromorphic lip reading Finally, we distance ourselves from the APROVIS3D spectrum and
propose an innovative application task that would strongly benefit from the SNN’s intrinsic tem-
poral processing and event data’s crucial chronology: lip reading. In order to tackle this task, we
recorded an event-based dataset of lip movement corresponding to various words. This dataset,
only the second in state of the art, subsequently allowed us to develop a neuromorphic lip reading
model classifying short sequences of events into word categories. This SNN architecture leverages
the advantages of neuromorphic computing, making it suitable for real-time embedded scenarios.
We experimentally validated this approach ; we demonstrated that this model, the first to our know-
ledge to apply an SNN to event-based data of lip movement, produces promising results while
keeping a relatively small size. This task is specifically relevant to our scientific problem because
a contrario to the others, it could not have been solved using a small set of frames (consisting of
accumulated events) but only thanks to the fine temporal resolution of events.

1.4.2.1 Overview of publications

All in all, the different articles and extended abstracts we produced during this PhD answer
the different problems described above according to the following repartition:
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Subject:

How can we optimise the trade-off
between quantity and quality of the visual information

as a preprocess for any embedded data processing ?
How can we exploit the relevance
of the SNN to process the specific

chronology of event data ?
Event reduction Visual attention Foveation

Conference
proceedings

VISAPP 2022
WACV 2023
CVPRw 2023

(human performance
assessment)

CBMI 2021
AICAS 2022
AICAS 2023
IJCNN 2023
MVA 2023

/ CVPRw 2023 (lip reading)

Extended
abstracts

/ ORASIS 2023
ORASIS 2021

NeuroVision 2022
JOBIM 2022

(delay learning)

Journals / /
Biological

Cybernetics 2022
Brain Sciences 2023

(delay learning)

TABLE 1.1 – Overview of publications published during this PhD thesis.

1.5 Manuscript outline

This manuscript is organised as follows: Chapter 1 introduces the thesis by discussing its mo-
tivations, scientific context and various objectives. The state-of-the-art is distributed between the
Chapters 2, 3, 4 and 5. SNNs and event cameras are introduced, and their history, mechanism
and applications are described in detail respectively in Chapter 2 and 3. The benefits of the com-
bined use of embedded SNNs and event cameras are amply demonstrated and documented in
Chapter 4. Finally, Chapter 5 develops the various concepts from neuroscience, which potential or
achieved application to computer science brings a significant performance boost. Chapters 6, 7, 8
and 9 constitute the contributions part. Our first issue concerning the trade-off between quantity
and quality is addressed in 6, 7 and 8, which respectively present the design, implementation and
achieved results of event data reduction, salient detection of OoIs by event density and neuromor-
phic foveation. Chapter 9 tackles the issue of drawing benefits from SNNs temporality to handle
the chronology of event data by describing the various embedded applications and achieved re-
sults. Finally, Chapter 10 concludes this work and summarises the results achieved during this
PhD thesis.
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Scientific acronyms

AI artificial intelligence
ML machine learning
SNN spiking neural network
ANN artificial neural network
DNN deep neural network
CNN convolutional neural network
IF integrate-and-fire
LIF leaky integrate-and-fire
FEF frontal eye field
WTA winner-takes-all
RoI region of interest
OoI object of interest
DNF dynamic neural field
UAV unmanned aerial vehicle
RGB red green blue (images)
DVS dynamic vision sensor
ATIS asynchronous time-based image sensor
DAVIS dynamic and active-pixel vision sensor
CPU central processing unit
GPU graphics processing unit
ASIC application-specific integrated circuit
FPGA field programmable gate array
SNE sparse neural engine
USB universal serial bus
PLIF parametric leaky integrate-and-fire
SLAYER spike layer error reassignment
HOTS hierarchy of event-based time-surfaces
RMSE root-mean-square error
MIoU mean intersection over union
FLOPS floating-point operations per second
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CHAPTER 2
Spiking neural networks

This chapter introduces the concept of spiking neural networks, a type of artificial neural
network closer to biology than traditional artificial networks. Indeed, spiking neural
networks receive and process information in the form of spike trains, meaning as a non-
monotonous sequence of activations. Therefore, they make for a suitable candidate for
efficiently processing incoming event patterns measured by silicon retinas.
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SNNs are a new type of ANN closer to biology than traditional artificial networks, also known
as the third generation of neural network model (Maass, 1997). In accordance with this high
bio-inspiration, they seek to mimic the dynamics of neural membrane and action potentials over
time (Paugam-Moisy & Bohte, 2012). Additionally, whereas information was precedently enco-
ded and processed as multi-bit numbers, SNN encodes the signal using sequences of spikes (or
activations) with varying weights, delays and frequencies. SNNs receive and process information
in the form of spike trains, meaning as a non-monotonous sequence of activations, as represented
in Fig. 2.1a. Therefore, they make for a suitable candidate for efficient processing and classifying
of incoming event patterns measured by silicon retinas.

(a) A spiking neuron receives spike trains as input and
processes this information to produce a new sequence
of activations.

(b) Evolution of the neuron’s membrane potential
over time when activated by input spikes.

Figure 2.1 – Behaviour of a spiking neuron.

2.1 Neuronal dynamics

2.1.1 Behaviour of a biological neuron

2.1.1.1 Anatomy of the human nervous system

In biology, the term "neuron" designates one type of the cells forming the nervous system. An
adult human brain comprises roughly 85 billion neurons, each 0.01 − 0.05mm in diameter and
dedicated to “sensing the environment, communicating the perceived changes and commanding
the body’s response to these sensations” (Bear, Connors, & Paradiso, 2007). As seen in Fig. 2.2,
each neuron is composed of the soma (i.e. the body of the neural cell, around 20µm in diameter
and also called perikarion) and two types of neurites, the axon and the dendrites.

The axon transfers information over long distances in the nervous system, ranging from 1mm
to over a meter long and with a diameter varying between 1 and 25µm in the human brain. We’ll
develop on the impact of both those factors on the speed of information transmission in Sec-
tion 5.3.1. At most 2mm long and forming a "dendritic tree", dendrites extend from the soma
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Figure 2.2 – Biological neuron.

and act as the "antennae" by connecting with the axons of other neurons to receive their incoming
signals. The connection point between a first neuron’s axon and a second neuron’s dendrite (or,
in certain occasions, soma) is called a synapse, derived from the Greek "to fasten together". Each
dendrite of each neuron is covered with thousands of synapses.

In order to transit from the presynaptic to the postsynaptic neuron, the information is transmit-
ted from the presynaptic neuron’s soma to the synapse as a train of electrical impulses, i.e. "action
potentials", that triggers the delivery of neurotransmitters from the pre- to the postsynaptic neuron
which finally translates the received information back into an electro-chemical format. These are
mediated by neurotransmitters, which are chemical substances endogenous to the nervous sys-
tems and responsible for the transmission of various information ; the human body contains more
than 40 different types of neurotransmitters, including acetylcholine, norepinephrine, dopamine,
gamma-aminobutyric acid and serotonin (Vasković, 2023).

Scientists have developed various classification mechanisms to distinguish between different
types of neurons according to their number of neurites, the shape of their dendritic tree, the length
of their axon, the organs with which they connect (either sensory surfaces of the body, muscles or
other neurons) or the differences in gene expression.

Neurons are not the only cells present in the nervous system; another broad category is the
glial cells, whose representatives are just as numerous as neurons. Also known as the “sleeping
giants of neuroscience”, glia “contribute to brain function mainly by insulating, supporting and
nourishing neighbouring neurons” (Bear et al., 2007). Without it, the brain would be unable to
perform the vast array of tasks it is responsible for.

Many different types of glial cells exist, of which the most represented are the astrocytes.
Its role is not yet entirely clear, but it is believed to regulate the neurites’ growth by controlling
the chemical content of the extracellular space. Oligodendrocytes and Schwann cells compose
the myelinating glia, i.e. responsible for the concentric wrapping of myelin, a thin protein sheet
interspersed with lipid layers, around the axon. Scientific experiments have proven its essential role
in information transmission and facilitation of both the neural circuit function and the behavioural
performance (see Section 5.3.1 for more details). Other, less represented glial cells also exist in
the nervous system: we can cite the ependymal cells (cell migration the organism development)
and microglia (phagocytosis).

2.1.1.2 Chemoelectric mechanism of the biological neuron

As stated above, the neuron transmits information along its axon as a train of "action poten-
tials", electric impulses encoding data in their frequency, pattern and timing.

This mechanism is made possible by the chemical balance between the intracellular and ex-
tracellular environment surrounding the neurons. There is a high concentration of potassium within
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the neuron, alimented by a high concentration of sodium and calcium in the extracellular environ-
ment enabling the activity of the membrane sodium-potassium pumps. This disequilibrium leads
chemically to the creation of an outward potassium movement thanks to membrane potassium
channels, leaving the inside of the neuron negatively charged.

Due to this difference in electrical charge, the neuronal membrane has a resting potential of
−65mV . When the neuron is activated, its extracellular environment becomes positively charged
relative to the extracellular one during 1ms at most: this corresponds to the depolarisation or
integration. The action potential, also called "nerve impulse", "discharge", or "spike", takes place
only if the membrane potential reaches a specific value called "threshold" during the depolarisation
phase. In this case, the neuron enters a phase of hyperpolarisation where it undershoots below the
resting value and cannot be activated again before increasing back to the resting value. Otherwise,
the membrane potential will slowly decrease back to its resting value. This behaviour is presented
in Fig. 2.1b.

2.1.2 Behaviour of a spiking neuron

As seen in Fig. 2.1b, spikes are emitted by each neuron depending on its membrane potential,
which increases according to the input activation (much like the biological membrane potential
increases when the biological neuron is electrically activated) and decreases over time in the
absence of stimulation (thus simulating the leak observed in the biological neurons) (Paugam-
Moisy & Bohte, 2012). Once the membrane potential u crosses the threshold θ with a positive
slope, a spike is produced, and the membrane potential is reset at ureset. This is coherent with a
biological neuron’s behaviour when an action potential: those two steps correspond respectively
to the neuron’s depolarisation (or overshoot) and hyperpolarisation (or undershoot) as described
in Section 2.1.1.2.

By definition, a spiking neuron follows a model based on parameters describing its internal
state and its reaction to the input current with more or less faithful biological realism. A complete
review of those models is presented in (E. M. Izhikevich, 2004) (see Fig. 2.3), but we describe the
most common ones below.

Figure 2.3 – Comparison of the neurocomputational properties of spiking models, from (E. M. Iz-
hikevich, 2004). The x-axis label “# of FLOPS” is an approximate number of floating point ope-
rations (addition, multiplication, etc.) needed to simulate the model during a 1 ms period.
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2.1.2.1 Hodgkin-Huxley model

Historically the first spiking neuron model, the Hodgkin-Huxley model was developed in
1952 (Hodgkin & Huxley, 1952) and describes the neuronal dynamic by its variations of ionic
concentrations in the intra and extracellular environments. It is part of the so-called "conductance-
based" models and has been “successfully compared to numerous data from biological experi-
ments on the giant axon of the squid” (Paugam-Moisy & Bohte, 2012). Its high degree of realism
makes it far too complex to be of any real use in SNN simulation.

2.1.2.2 Integrate-and-Fire models

Drawing inspiration from Hodgkin-Huxley, the Integrate-and-Fire (IF) model places itself at a
less precise level of detail to be more computationally efficient (Lapicque, 1907). It integrates the
spikes and increases the membrane potential u only at the time of the input, according to Eq. 2.1:

C
d

dt
U = −u(t) − urest

R
+ I(t) (2.1)

The spike firing time tf is defined in the following threshold crossing equation:{
u(tf ) = θ
u′(tf ) > 0 ⇒ u(tf ) = ureset (2.2)

The main difference with Hodgkin-Huxley is the simplification of the action potential proces-
sing. While the latter considers the shape of the action potentials, the IF (and LIF described below)
consider each spike as a uniform event defined only by its timing.

2.1.2.3 Leaky Integrate-and-Fire model

The Leaky Integrate-and-Fire (LIF) model varies from its inspiration IF by adding a leaky
behaviour: if incoming spikes activate the neuron, the membrane potential increases. If it does not
reach the threshold, it decreases slowly back to its resting value when the input stops (leak). If
the membrane potential overcomes a threshold, an output spike is produced, and the membrane
potential is reset.

The dynamics of the LIF neuron’s membrane potential u are described by the equations 2.3:

τm
du

dt
= urest − u(t) + RI(t) (2.3)

where τm is the membrane’s time constant and I the input current modulated by a resistance R.
Without any input current, the membrane potential is at rest and is of value urest. When activated,
it increases according to the input current. Moreover, at each timestep a slow decrease towards
urest is driven by the time constant τm, thus modeling the voltage leakage. The firing time tf is
defined by the threshold crossing Equation 2.2.

While implementing SNN simulations, the IF and LIF models are often preferred because of
their simplicity, conferring an advantage on the issue of efficiency for computational resources.
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2.1.2.4 Izhikevich model

The Izhikevich model makes a good compromise between biophysical plausibility and com-
putational cost: according to the authors, “using this model, one can simulate tens of thousands
of spiking cortical neurons in real time (1ms resolution) using a desktop PC”(E. M. Izhikevich,
2004).

2.1.2.5 Spike Response Model

Defined by Gerstner in 1993, the Spike Response Model is a phenomenological model of
the neuron based on the occurrence of spike emissions, which makes it more intuitive and more
straightforward to implement (Gerstner, Ritz, & van Hemmen, 1993 ; Paugam-Moisy & Bohte,
2012). It generalises the IF model and its implementation abandons coupled differential equations
(as used by IF, LIF and Izhikevich) in favour of the use of kernels.

2.1.3 Parameters

Overall, the computational implementation of a spiking neuron requires setting different para-
meters influencing the network performance. The list of parameters might vary between different
models ; below are described most of the LIF parameters and their impact on neuron behaviour.

2.1.3.1 Neuronal parameters

This section brings together the parameters influencing the neuron directly.

Membrane potential Three parameters, expressed in mV , define the membrane potential:
— the resting membrane potential urest, corresponding to the value at rest (around 65mV in

the biological neuron) ;
— the reset potential ureset, corresponding to the value reached by the membrane potential

during the hyperpolarisation phase (see Fig. 2.1b) ;
— the threshold θ, setting the potential limit before a spike is emitted.

Membrane time constant The membrane time constant τm corresponds to the “amount of
time (in ms) it takes for the change in potential to reach 63% (i.e. 1 − exp−1 %) of its final
value” (Byrne, 2020). In other words, the higher the value, the longer it will take to finish its de-
polarisation phase, and the later the spike will be produced from the incoming excitation, and vice
versa.

Refractory period Expressed in ms, the refractory period τrefrac is the time needed by the mem-
brane after the hyperpolarisation phase to increase from the reset potential back to the resting
potential, i.e. the amount of time during the neuron cannot be excited after it produced a spike.

2.1.3.2 Synaptic parameters

This section covers the parameters influencing the synapse.
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Weight The weight ω defines the importance of the influence of a synapse activity on the post-
synaptic neuron. In traditional ANN, the input data is multiplied by it within the hidden layer.
In SNN, it increases the activation or inhibition of the post-synaptic neuron following the acti-
vation of the presynaptic neuron. It can be assimilated to the post-synaptic transmitters released
in the biological synapse: the higher the value, the more important the effect of the information
transmitted.

Delay The delay δ corresponds to the amount of time it takes for the information to leave the
presynaptic neuron’s soma and reach the post-synaptic soma. Biologically speaking, this parame-
ter corresponds to the combination of two elements: the dendritic delay and the axonal delay. In
addition, it can be learned using a variety of biological mechanisms and is at the origin of many
neuronal behaviours, all of which are described in more detail in Section 5.3.1. While many may
consider that this parameter concerns the neuron, we decided to include it in the "synaptic parame-
ters" as it influences the synaptic connection between two neurons, and most simulation libraries
implement it at the synapse level.

Excitatory and inhibitory decay time The decay time simulates synaptic fatigue, a biological
phenomenon taking place when the synapse is too highly activated as a way to regulate the ner-
vous system activity physiologically. It results in the temporary inhibition of neuron activity and
influences either excitatory or inhibitory synapses, depending on its type.

2.1.4 Network architecture

An SNN is constructed using populations of neurons linked together with connections with
respect to certain rules and specific architecture. A population or layer reunites neurons in a unit
that often shares the function and the initial parameters. The neurons can be arranged either li-
nearly or in 2D or 3D space (depending on the simulator used), allowing for the implementation
of distance-dependant rules.

The connections can be either excitatory, meaning that they activate the post-synaptic neuron ;
or inhibitory, indicating that the post-synaptic neuron is inhibited. The two most common types
of connective patterns are One-To-One, meaning that each neuron of the presynaptic population is
connected to only one neuron of the postsynaptic population at the same index in the layer ; and
All-To-All, meaning that each presynaptic neuron is connected to all the postsynaptic neurons.

2.1.4.1 Information encoding

By definition, SNNs use time as a basis for information coding. Indeed it has been experimen-
tally demonstrated that biological neurons transmit information with impressive efficiency: for
example, a human being requires only 100−150ms to process complex visual stimuli (S. J. Thorpe
& Fabre-Thorpe, 2001). Scientists used to theorise that the information was encoded using a
Poisson-like spike rate ; however, the visual system is composed of multiple layers firing at an
average rate of 10ms, too slowly to allow for rate coding. Instead, it seems more likely that the
information is encoded using the precise timing of the spikes.

Thorpe defined in 2001 various bio-plausible encoding mechanisms for SNN relying on
time (S. Thorpe, Delorme, & Van Rullen, 2001). Among them can be found the latency coding,
where the information is transmitted in the time it took for the spike to reach the postsynaptic
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neuron after a stimulus ; and the rank order coding, where the information is encoded in the order
in which the spikes reached the postsynaptic layer. A visual example highlighting the importance
of the choice of information encoding is presented in Fig. 2.4.

Furber later introduced an additional temporal encoding mechanism: N of M coding counts the
input spikes using a feedback inhibition circuit and blocks their spiking once a certain number has
been reached, thus implementing a k-WTA and allowing for the detection of specific combinations
of spikes (S. B. Furber, John Bainbridge, Mike Cumpstey, & Temple, 2004). The implications of
these different strategies on neuromorphic circuits are discussed by (Panzeri, Janotte, Pequeño-
Zurro, Bonato, & Bartolozzi, 2023).

Figure 2.4 – Comparison between three SNN coding schemes that can operate in a short time
window, from (S. Thorpe et al., 2001).

2.1.4.2 Dynamic adaptation rules

An SNN can be applied to various tasks (some examples can be found below in Section 2.3)
that can be achieved with and without learning. In the second case, it relies on intrinsic dynamic
behaviours and specific network architectures.

A first adaption mechanism worth mentioning is the WTA, observed in the cortical architec-
ture, is a first adaption mechanism worth mentioning. This mechanism allows for the selective
activation of a neuron, enabled by a pattern of lateral inhibition retroactively regulating the layer.
It is implemented using an All-To-All inhibitory connection, without autapses (self-connections)
and where the input and output layers are the same. Each neuron activation leads to the inhibition
of the others to prevent too many efferent neurons from receiving too many spikes from a parti-
cular afferent region, thus ensuring that different neurons code different inputs (Rolls & Milward,
2000). In the brain, lateral inhibition leads to WTA situations. Yet, other forms exist, such as inter-
group WTA competition (instead of intra-group), leading to a cohort of winner-neurons rather than
a single one (Delorme, Perrinet, Thorpe, & Samuelides, 2001). Despite WTA’s core purpose being
enhanced selectivity, it also increases feature sparsity (Falez, Tirilly, Bilasco, Devienne, & Boulet,
2019) and maintains synaptic weights within bounds (Masquelier & Thorpe, 2007). An example
of such a mechanism is provided in the model described in Section 7.2.2 and Fig. 7.2.
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Homeostasis makes a second interesting adaptation mechanism. Globally speaking, we call
"homeostasis" any mechanism that allows a system to regulate a key factor to maintain its benefi-
cial value, guaranteeing flexibility. Applied to SNN, this mechanism is “crucial in providing a more
efficient solution to the emergence of independent components” (Perrinet, 2010). It corresponds
to the dynamic adaptation of neuronal thresholds often applied to reducing the high spike fre-
quency induced by complex patterns and networks, as observed in the nervous system (W. Zhang
& Linden, 2003 ; Perrinet, Samuelides, & Thorpe, 2004).

2.1.4.3 Learning rules

In biology, learning is “achieved via local plasticity mechanisms that operate at various spatial
and temporal scales” (Christensen et al., 2022). SNN can learn patterns and specialise for specific
tasks by updating their parameters at each timestep until a specific aim is achieved. The modified
parameter is more often than not the weight ; however, other parameters can also be the subject
of learning, such as the synaptic delay (see Section 5.3), the membrane time constant (Fang, Yu,
Chen, Masquelier, et al., 2021 ; Rathi & Roy, 2021), the neuronal threshold (Rathi & Roy, 2021 ;
J. Zhang et al., 2022), or even the membrane potential which distribution is "rectified" into a
Gaussian (Y.-Z. Guo et al., 2022 ; S. Wang, Cheng, & Lim, 2023).

The strategies adopted to perform learning with SNN can be differentiated into various groups:
conversion-based versus spike-based (Roy et al., 2019), online versus offline (J. Wang, Belatreche,
Maguire, & McGinnity, 2010), on-chip versus off-chip (Christensen et al., 2022), supervised ver-
sus unsupervised (Paugam-Moisy & Bohte, 2012).

Conversion-based versus spike-based. (Roy et al., 2019) proposes to segregate the SNN lear-
ning mechanisms between conversion-based and spike-based approaches. The first one corres-
ponds to the conversion of a set of parameters trained by an ANN into parameters understandable
by an SNN with a similar architecture ; this approach produces the best results on large-scale SNN
(for example, in the context of ImageNet classification (Sengupta, Ye, Wang, Liu, & Roy, 2018)).
However, it is to be noted that this method leads to a significantly large inference time, so an
increased latency and decreased energy efficiency.

The second spike-based approach is more biologically plausible because of its exploitation of
the intrinsic temporal aspect of SNNs. Two research directions have been adopted: unsupervised
(trained without labelled data) and supervised (trained with labelled data) learning. The first one
uses local STDP-based learning rules, where the STDP is a bio-inspired unsupervised rule rein-
forcing the synaptic connections between neurons activating closely in time. This mechanism is
heavily inspired by Hebb’s rule: “cells that fire together wire together” (Hebb, 1949). It allows
for the selective selection of repeating patterns of input spikes (Delorme et al., 2001 ; Perrinet &
Samuelides, 2002 ; Masquelier & Thorpe, 2007) and is suitable for energy-efficient on-chip imple-
mentation (see below). However, it is difficult to adapt to large-scale SNN due to the "vanishing
forward-spike propagation", i.e. the decreased firing rate in deeper layers, and current research are
trying to solve this issue using feedback-based learning methods (Roy et al., 2019).

Initiated with the early ReSuMe (Ponulak & Kasiński, 2009) and tempotron (Gütig & Sompo-
linsky, 2005), the research on the supervised spike-based approach has recently directed its atten-
tion to the implementation of a “global backpropagation-like spike-based error gradient descent
to enable supervised learning in multi-layer SNNs” (Roy et al., 2019). Recent works in this vein
include SpikeProp (Bohté, Kok, & Poutré, 2000) and variants, which implement a differentiable
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approximate function for SNN using a specific output spike train as the target ; others perform
stochastic gradient-descent on membrane potentials (Lee, Delbrück, & Pfeiffer, 2016 ; Mostafa,
2016). Even though promising, these supervised methods have not been able yet to overcome
conversion-based approaches.

Offline versus online learning In (J. Wang et al., 2010), the authors underline the segregation
of SNN learning approaches between offline and online learning and the lack of representation
of the latter despite its suitability for large datasets and non-stationary tasks. The offline learning
method updates the trained parameters only once the whole dataset has been presented ; new data
cannot be added without retraining the whole network. It is thus quite fast but subject to local
minima issues. Among those methods can be found both supervised — SpikeProp (Bohté et al.,
2000), Synfire Chains (E. Izhikevich, 2006) — or unsupervised — STDP (Masquelier & Thorpe,
2007) and Hebbian learning mechanisms.

However, online learning updates the network parameters at each new training sample to mini-
mise the error per sample. It is adapted to continuous environmental changes due to its "always-on"
approach and is thus significantly more bio-coherent. Few examples of such a mechanism exist:
we can cite the four-layer hierarchical model for face recognition introduced in (Wysoski, Be-
nuskova, & Kasabov, 2006) and the gustatory model for taste recognition based on an evolving
learning algorithm in (Soltic, Wysoski, & Kasabov, 2008), which both lack adaptive fine-tuning
of the learning parameters as well as suffer from an excessive training speed. It has been more
recently applied to robotics with the self-adaptation model for optimal navigation in dynamic en-
vironments implemented in (Alnajjar, Zin, & Murase, 2008), and to event-based object recognition
in (Grimaldi, Boutin, Ieng, Benosman, & Perrinet, 2023). Online learning is specifically relevant
in the current research field since it overcomes the issue of generalisability, i.e. the mismatch bet-
ween the training dataset and the real world, by learning continuously and correcting errors as they
unfold (Christensen et al., 2022).

Off-chip versus on-chip learning Finally, the training phase can either occur off or on a synap-
tic circuit (Christensen et al., 2022). In the first case, the SNN is trained on a separate computer
with significant memory and computational power, then deployed on neuromorphic hardware (see
Section 2.2. This approach generally achieves the best inference accuracy on practical tasks since it
performs well on large available datasets and often makes use of convolutional architectures (Esser
et al., 2016).

On-chip learning consists primarily of learning dynamics taking inspiration from computatio-
nal neuroscience, such as the STDP variants or, more recently, the 3F rules (Ercsey-Ravasz et al.,
2013), and allow for online learning. However, this approach requires a large amount of memory
and routing resources, thus limiting the size of the architectures ; promising hardware alternatives
are currently being developed to allow for the storage and computation to take place at the same
place (Christensen et al., 2022). Overall, this approach helps overcome the challenge posed by the
high power requirement of state-of-the-art AI technologies (Christensen et al., 2022).

A third option can be found in hybrid learning, also known as "chip-in-the-loop", combining
both approaches while allowing for online learning.

A detailed state-of-the-art of recent SNN models with their corresponding learning mechanism
can be found in Tables 2 and 3 from (Yamazaki, Vo-Ho, Bulsara, & Le, 2022). It is interesting to
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note that the increasing size of SNN induces many challenges, amplified compared to those faced
with smaller-scale systems: controlling the neuronal activity with homeostasis, compensating local
failures with adaptation mechanisms, the application of unsupervised learning mechanisms and
online learning, and synaptogenesis and neurogenesis (Christensen et al., 2022).

2.2 Neuromorphic hardware

As of today, SNN simulations on traditional von Neuman computers require a substantial si-
mulation time ; indeed, “their simulation requires the sequential computation of several time steps,
and simulation time thus scales with the deepness of the network as well as the time resolution of
the simulation” (Bouvier et al., 2020).

However, researchers have recently designed hardware specifically adapted to the fast and low
power simulations of SNNs, using electronic circuits that faithfully reproduce the dynamics of
neurons in real time (Sorbaro et al., 2019). This novel technology is called "neuromorphic hard-
ware" and can be divided into three different designs (Javanshir, Nguyen, Mahmud, & Kouzani,
2022):

— analog designs model neurons using physical processes leading to a very efficient imple-
mentation of operations with low power consumption thanks to the natural dynamics of
the system;

— digital designs model neurons with bits, allowing for a “controllable and guaranteed pre-
cision of variables" (Javanshir et al., 2022) but with a significant impact on memory requi-
rements and energy consumption ;

— mixed designs take the best of both analog and digital, for example implementing the spike
communication digitally while modeling neurons with analog elements.

Those designs are often implemented on Application-Specific Integrated Circuits (ASICs) or
Field Programmable Gate Array (FPGA) devices: while most known neuromorphic boards are de-
veloped on ASICs (such as the digital SpiNNaker (S. B. Furber et al., 2013), TrueNorth (Akopyan
et al., 2015) and Loihi (Davies et al., 2018), or mixed BrainScaleS (Schemmel et al., 2010) and
Neurogrid (Benjamin et al., 2014)), FPGAs are gaining momentum as “a promising candidate
for acceleration of SNN, achieving better speed-up than CPUs and less energy consumption than
graphics processing units (GPUs)" (Javanshir et al., 2022). We can mention the recent applica-
tions of SNNs on FPGAs to edge-detection (Qi, Zhang, Taha, Chen, & Hasan, 2014), bio-mimetic
pattern generation (Ambroise, Levi, Joucla, Yvert, & Saïghi, 2013) and event-driven vision pro-
cessing (Yousefzadeh, Serrano-Gotarredona, & Linares-Barranco, 2015).

We present in this section first a short review of CPU and GPU simulators, then a selection of
neuromorphic hardware dedicated to SNN simulation. A more comprehensive review of existing
neuromorphic hardware and their particularities can be found in (Bouvier et al., 2020), (Roy et al.,
2019) and (J. Wang, 2022).

2.2.1 Simulation on CPU/GPU

SNN simulators can be divided into two approaches, depending on their synchroni-
city (Javanshir et al., 2022). The “event-driven” simulators are asynchronous, i.e. it only updates
the neuron when there is an incoming spike. They allow for a high operation speed and good
bio-plausibility at the cost of an increased implementation complexity, thus are more suitable for
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sparsely activated networks. The “clock-driven” simulators however update the neuron synchro-
nously “at every tick of a clock” (Javanshir et al., 2022) thus allowing for parallel computing and
an easier implementation on CPUs (small networks) and GPUS (greater networks with higher
mathematical complexity).

We adapt and complete in Table 2.1 below the list of available software frameworks for SNNs
simulation from (Yamazaki et al., 2022), with the additional information provided in (Pehle &
Pedersen, 2021).
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Table 2.1: Overview of existing SNN simulators on CPU.

Name Description Simulation type GPU Backpropagation
Auryn (Zenke & Gerstner, 2014) C++ simulator for recurrent SNN with synaptic plasticity NA No No

BindsNET (Hazan et al., 2018)
Python package geared towards the development of biologically inspired algo-
rithms for ML on CPU or GPU, using PyTorch functionality

Clock-driven Yes No

Brian2 (Romain & Dan, 2008)
free, open-source Python simulator, advertised as “widely-used, easy to use
and reliable”

Clock-driven Yes No

CARLsim (Nageswaran et al.,
2009)

C and C++ library for simulating large-scale SNN on multiple CPU and GPU
cores

Clock-driven Yes

cuSNN (Paredes-Valles et al.,
2020)

C++ GPU-accelerated simulator for large-scale networks including STDP lear-
ning rules

Clock-driven Yes No

GeNN (Yavuz et al., 2016)
GPU-accelerated SNN simulation environment based on NVIDIA CUDA tech-
nology

NA Yes No

NeMo (Fidjeland et al., 2009)
High-performance SNN simulator of networks of Izhikevich neurons on
CUDA-enabled GPUs

Clock-driven Yes No

Nengo (Bekolay et al., 2014)
Python package for building, testing and deploying neural networks, with a
useful user interface and an extension dedicated to deep learning

Clock-driven Yes No

NEST (Gewaltig & Diesmann,
2007)

Python simulator of dynamics, size and structure of neural systems, often used
in medical and biological applications but with poor performance on large da-
tasets and deep learning

Event- and
clock-driven

Yes No

NEURON (Hines & Carnevale,
2001)

Python simulation environment for building and using SNN on a local machine,
in the cloud or on an HPC and providing a graphical interface

Event-driven Yes No

Norse (Pehle & Pedersen, 2021) PyTorch extension to implement deep-learning compatible SNN components Clock-driven Yes Yes
PyGeNN (Knight et al., 2021) Python library for GeNN simulator NA

PyNN (Davison et al., 2009)
Python interface allowing to define and simulate SNN on different backends,
including software simulators (NEST, NEURON) and neuromorphic hardware
(SpiNNaker, BrainScaleS)

Event- and
clock-driven

No No

PySNN (BasBuller, 2019)
Python SNN framework building on PyTorch to implement efficient simulation
both on CPU and GPU, inspired from BindsNET and cuSNN

Clock-driven Yes No

Rockpool (SynSense, 2019a)
Python package developed by SynSense for training, simulating and deploying
SNN on several simulation backends (such as Brian2, Torch, JAX, Numba or
Numpy)

Clock-driven Yes Yes

Sinabs (SynSense, 2019b)
Python library for development and implementation of spiking CNNs, develo-
ped by SynSense

Clock-driven Yes Yes

Continued on next page
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Table 2.1: Overview of existing SNN simulators on CPU. (Continued)

SLAYER (Shrestha & Orchard,
2018)

C++ backpropagation framework for SNN, also known as Spike LAYer Error
Reassignment

Clock-driven Yes Yes

SLAYER PyTorch (Shrestha &
Orchard, 2018)

PyTorch port of the original SLAYER framework, to be used in Python and
allowing for the implementation of SNN on Loihi

Clock-driven Yes Yes

SNN toolbox (Rueckauer et al.,
2017)

Python package for automating the conversion of pre-trained network analog
to SNN

Clock-driven Yes No

snnTorch (Eshraghian et al., 2021) Python simulator extending PyTorch for deep learning and SNN Clock-driven Yes Yes
SpikingJelly (Fang, Yu, Chen,
Masquelier, et al., 2021)

Python SNN simulator extending PyTorch, using stateful neurons Clock-driven Yes Yes



34 CHAPITRE 2 — Spiking neural networks

2.2.2 Human Brain Project’s SpiNNaker

SpiNNaker is a neuromorphic hardware platform developed at the University of Manchester
under the Flagship Human Brain Project. Each SpiNNaker chip communicates and process spike
events: it contains a router that delivers each incoming spike to the corresponding neural processor
where the spike should arrive. The SpiNNaker computation is based on the availability of 18
parallel ARM processor cores per chip. Each ARM core is tightly coupled to local memory (TCM),
where the neuron parameters and states are stored. Additionally, each chip is packaged with an
external memory communicated through a DMA (direct memory access) controller allowing direct
data transference between the internal and external memory. This memory stores the synaptic
connectivity between the different neural populations allocated in the chip.

Each SpiNNaker core can simulate up to 256 spiking neurons – the initial aim was to simulate
1,000 neurons, but it proved to be a goal too optimistic. A SpiNNaker chip can thus allocate about
4,500 neurons (S. Furber & Bogdan, 2020). Additionally, each neuron can receive 1,000 incoming
synapses at most, hence a SpiNNaker chip can simulate up to 4,500,000 synapses.

Two versions of SpiNNaker boards are available. The first SpiNN-3 board contains 4 SpiN-
Naker chips, i.e. 72 cores. However, only 63 cores are available out of this total of 72, as the
remaining are used for OS, monitoring, data I/O, etc. A SpiNN-3 board can thus implement SNN
with a maximum of 18K neurons. Currently available SpiNN-5 boards contain 48 chips, having
the capacity for 195K neurons.

SpiNNaker allows the description of the SNN system to be allocated in the hardware using
sPyNNaker, a library developed for SpiNNaker in the PyNN language (University of Manches-
ter, 2021). The network and corresponding connectivity described using the PyNN SpiNNaker
library are mapped to the corresponding hardware. A software tool partitions and maps the defi-
ned network and connectivity into the physical cores and generates the corresponding routing and
synaptic tables.

2.2.3 Intel’s Loihi

Intel Loihi is a recent neuromorphic research chip (Davies et al., 2021) that can be used as a
processing platform. In particular, the Kapoho Bay platform comes in a universal serial bus (USB)
form factor with 2 Loihi chips with a total of 256 neuro-cores able to simulate 262.144 neurons and
up to 260Mn synapses. It can be easily interfaced for live communication with a host system by
programming the three embedded x86 processors used for monitoring and I/O spike management
embedded on the Loihi chip.

2.2.4 Center for Project-Based Learning’s Kraken

The Kraken chip (Di Mauro et al., 2022) comprises three main subsystems composing a he-
terogeneous architecture. The first subsystem, called the Fabric Controller, is built around a 32-
bit RISC-V core that acts as the central control unit for the entire System-on-Chip. The Fabric
Controller contains the main interconnection busses to the main L2 memory and the Advanced Per-
ipheral Bus, which controls all the System-on-Chip peripherals. Additionally, the Fabric Controller
hosts a complete set of on-chip peripherals and a power management unit.

The second subsystem is a RISC-V-based general-purpose accelerator known as the "Cluster",
which hosts eight RISC-V cores enhanced with specialised Instruction Set Architecture exten-
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sions. The cluster also features a 128 KiB L1 Tightly Coupled Data Memory and a dedicated
hardware block for fast event management, parallel thread dispatching, and synchronisation.

The third subsystem, the External Hardware Processing Engine, hosts two accelerators, in-
cluding the Sparse Neural Engine neuromorphic accelerator and CUTIE, a ternary weight neural
network accelerator. The accelerators operate on two independent clock domains and are program-
med via memory-mapped register interfaces.

The chip features a vast set of IO peripherals that can generate interrupts depending on data
transmission events. An autonomous IO subsystem called the µDMA hosts all the IO peripherals.
It can be programmed to orchestrate data transfers from the peripherals to the L2 memory and vice
versa. Kraken also has a power management scheme that allows the on/off switching of unused
system parts to control the overall energy consumption.

The Kraken chip is mounted on an evaluation board incorporating external components es-
sential to execute complete applications. A USB-C connector is used to power the board and for
JTAG and UART data transfer. The three power domains of Kraken are supplied by buck conver-
ters that are individually runtime-configurable, permitting application-controlled DVFS. External
memory includes a combined HyperFlash/HyperRAM chip and a quad-SPI flash memory chip that
can store application code for standalone booting. Additional connectivity is provided by Arduino
headers, and a Camera Parallel Interface ribbon connector and level shifters are present between
each off-chip connector and Kraken’s I/O pins.

2.3 Applications

SNN can be applied to multiple application tasks, ranging from computer vision to gustative
and tactile classification models. In 2012, (Paugam-Moisy & Bohte, 2012) outlined a first review
of existing applications of SNN to pattern recognition ; we can mention the tasks of speech proces-
sing, computer vision, robotics, motor control, and rehabilitation in medicine. In 2022, (Yamazaki
et al., 2022) published an SNN review where they summarise recent applications of SNN in
computer vision (Table 2) and robotics (Table 3). Additionally, the same year, (Christensen et
al., 2022) presented a "roadmap on neuromorphic computing and engineering" with a complete
section dedicated to SNN applications, including robotics, self-driving cars, audition, olfaction
and chemosensation.

It is interesting to mention here the recent advances in deep SNNs: these networks aim to
“bridge the gap between the big success of deep learning in AI applications and the promise of
SNNs” (Pfeiffer & Pfeil, 2018). Indeed, since its invention, the application of deep learning me-
thods allowed for significant improvements in “the state-of-the-art in speech recognition, visual
object recognition, object detection and many other domains such as drug discovery and geno-
mics" (LeCun, Bengio, & Hinton, 2015). Deep neural networks (DNNs) are composed of multiple
layers (divided into one input, one output and at least two hidden ones) allowing for multiple levels
of data representation and abstraction. Thanks to the feature discovery hierarchy, the different fea-
tures are not designed by humans but acquired from data using non-linear activation functions with
increasing complexity, abstraction and invariance (Tavanaei, Ghodrati, Kheradpisheh, Masquelier,
& Maida, 2018). Even though DNNs strongly drew inspiration from neuroscientific models of
cortical hierarchies, such as pattern recognition in the primate’s brain, they lack fundamental bio-
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plausible elements compared to the brain, most notably the communication of information as
spikes.

The introduction of deep SNNs therefore aims to overcome this issue. They seem particularly
promising for processing event-based visual and auditory inputs while deployed on neuromorphic
hardware (Tavanaei et al., 2018). The SNN intrinsic behaviours should lead to fast propagation of
salient information through multiple layers with low-power consumption (Pfeiffer & Pfeil, 2018)
— however, these promises are not yet fulfilled. Some notable limiting factors are the lack of spike-
oriented training algorithms, benchmarks not suited to the bio-inspired aspect of SNNs (more
suited to tasks based on continuous data perceived in the real world than frame-based datasets)
and evaluation metrics measuring efficient real-world performance. To bypass this pitfall, recent
works took a heightened interest in spike-based training methods and local learning rules in order
to develop a neural network “as efficient and biologically plausible as SNNs but as powerful as
DNNs in performing different tasks" (Tavanaei et al., 2018).

Of note, the recent application of surrogate gradient to SNNs, although distancing itself from
biology, seems to offer a “particularly flexible and efficient method to overcome the aforemen-
tioned challenges" (Neftci, Mostafa, & Zenke, 2019). This strategy consists in applying to SNNs
the supervised learning algorithm “back-propagation”, popular in DL and which updates synaptic
weights at each timestep in order to minimise the error, i.e. the distance between the current out-
put and the desired one (Masquelier, 2021). Applying back-propagation to SNNs is not trivial as
it requires differentiable activation functions, which are inherently absent in SNNs. (Neftci et al.,
2019) propose the Surrogate Gradient-Learning, a global approach commonly acclaimed which
approximates the LIF basis equations into a recurrent relation for the potential, thus allowing the
application of back-propagation with the help of a “surrogate gradient”. Thanks to this method’s
approximations, SNN models can maintain low firing rates while obtaining nearly state-of-the-
art accuracy. We can also mention the S4NN, a latency-based backpropagation for static stimuli
which estimates the gradients of the loss with respect to all the weights but is constrained to bellow
state-of-the-art performance due to its “at-most-one-spike-per-neuron” limitation (Kheradpisheh
& Masquelier, 2019).



CHAPTER 3
Event-based cameras

In this chapter, we introduce the notion of event-based cameras. Also called silicon re-
tinas, they represent a new kind of visual sensor that measures pixel-wise changes in
brightness and accordingly outputs asynchronous events. This novel technology allows
for a sparse, non-redundant and energy-efficient recording and storage of visual infor-
mation, which has recently led to a substantial increase in its use for computer vision
tasks, notably in robotics.
With the recent advent of event cameras, we seek to use this unusual type of data as
input to neural networks applied to selected vision tasks (scene segmentation, feature
tracking, depth estimation, etc.). Additionally, event data streams are highly compatible
with spiking neural networks due to the similarity in the information encoding ; therefore,
these features make their combined use unavoidable for the future of real-time embedded
vision systems.
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Conventional video cameras are based on the periodic acquisition of frames. Each frame is a
static representation of the visual scene acquired by measuring the average light intensity during a
certain sub-period, commonly known as exposure time. The intensity of each pixel is periodically
measured (with a typical frame period of 20-30ms) and communicated regardless of whether it
contains relevant information. Furthermore, objects moving at high speed relative to the frame
time appear blurred in the image frame.

However, biological vision systems are not frame-based, but the transmitted information is
coded as spikes. The idea of a novel bio-inspired event-based sensor, akin to a "silicon re-
tina" (Mahowald & Mead, 1991), has been developed since the 1990s. Pixels of such sensors
emit spikes whenever relevant information is captured in the visual field. In the last two decades,
different technological developments of spiking silicon retinas implementing spatial and tempo-
ral filtering have been published: retinas converting luminance to spike frequency, spatial contrast
retinas, etc. They did not reach the maturity of commercial applications due to several limitations
such as high fixed pattern noise, low fill factor, and complex circuitry resulting in low sensor
resolution.

In 2008, Lichtsteiner, Posch and Delbruck presented the first complete design of a
DVS (Lichtsteiner et al., 2008a): it implements a simplified retinal model where each pixel
computes autonomously the relative time difference of the illumination received on its photosen-
sor and responds only to temporal brightness changes in a scene with no consideration for colours,
similar to the biological retina. When pixel illumination increases and its relative change exceeds
a certain threshold, the pixel generates a positive ON output spike. Similarly, the pixel generates
a negative OFF output spike if the illumination decreases and its relative change exceeds a certain
negative threshold. DVS circuitry can be implemented with compact circuitry, which results in
low fixed pattern noise and higher resolution sensors. Furthermore, DVS exhibit high temporal
resolution (below 1 microsecond) and intrascene dynamic range as high as 120dB (Lichtsteiner
et al., 2008a). Due to these features, these sensors have emerged as the first commercially avai-
lable neuromorphic sensors and have overcome the integration density and mismatch limitation
exhibited by previous neuromorphic retinas. Advanced megapixel DVS sensors have been de-
veloped (C. Li, Longinotti, Corradi, & Delbruck, 2019 ; Suh et al., 2020 ; Kubendran, Paul, &
Cauwenberghs, 2021 ; M. Guo, Huang, & Chen, 2017) and new high-speed vision applications
and systems based on DVS sensors are emerging.

The main advantages of such an event-based camera are (Gallego et al., 2020):
— the high temporal resolution (microsecond time grain), thanks to which an event can be

emitted on the timescale of microseconds and avoid motion blur ;
— the high dynamic range (up to 120dB), which makes it possible to use them for extremely

dim as well as under bright sun illumination ;
— the high contrast range, which allows for highly contrasted images avoiding dazzling ef-

fects caused by sudden illumination changes, thus scenes with illumination expanding over
120dB can be sensed without suffering saturation ;

— the low latency and asynchronicity enabled by the independence between each pixel ;
— the absence of redundancy in the information transmitted, as compared to frame-based sen-

sors (1,000 times fewer data produced by an event camera than in RGB videos (Prophesee,
2019)) ;

— the low power consumption (10mW at the die level and less than 100mW for the whole
embedded system (Gallego et al., 2020)), following the model of biological retinas (3mW
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for the retina and less than 10mW for the whole eye (Skorka & Joseph, 2011)) and substi-
tuting the biological photoreceptors with photodiodes in the electrical circuits.

By definition, a DVS generates sparse data: since each DVS pixel generates a string of spikes
which respond to the temporal variation of the illumination, the pixel remains silent under a static
background, saving communication and computation energy of the subsequent recognition net-
work. This spatiotemporal filtering eliminates data redundancy over time and space ; this techno-
logy therefore allows for an energy-efficient recording and storage of data evolving over time and
space. However, the increasing resolution of DVS prototypes (S. Chen & Guo, 2019) has motiva-
ted the research on active reduction methods for DVS data to save communication, computation
bandwidth, and energy.

3.1 Operation of an event camera

3.1.1 Biological retina

In biological retinas, photoreceptors sense the visual scene and lead to continuous and asyn-
chronous spike generation whenever relevant information is detected, i.e. when high spatial or
temporal contrast is caught in the scene (Meister & Berry, 1999).

The human retina performs vision thanks to a wide array of photosensitive cells, of which
around 100 million (the rods) are responsible for black-and-white vision and 4 million (the cones)
for vision in colour (Steffen et al., 2019). These photoreceptors make one of the three retinal
layers presented in Fig. 3.1 ; the other two are the outer and inner plexiform layers, respectively
containing bipolar cells and ganglion cells.

The bipolar cells can be divided into ON and OFF-types, depending on their response to photo-
receptor activation linked to their glutamate receptors: an OFF cell is hyperpolarised, thus “turned
off”, when subjected to light whereas an ON cell is depolarised, i.e. “turned on’ (Bear et al.,
2007)’. The receptive field of a bipolar cell is divided into its center, from which comes direct
photoreceptor input, and its surround, receiving input from the horizontal cells (see Fig. 3.1) ; the
activation of the center and the surround lead to different responses from the membrane potential.
The bipolar cells are thus said to have “antagonistic center-surround receptive fields”. A similar
ON-OFF and center-surround organisation can be found in the ganglion cells (Bear et al., 2007).

The bipolar and ganglion sensory cells lower the activity rate produced by the photoreceptors
and received via the horizontal cells before transmitting the information through the optic nerve to
be processed by the neural layers of the visual cortex. This spike-based coding of the visual scene
results in high temporal resolution and low communication.

3.1.2 Silicon retina

Fig. 3.2 shows the conceptual schematic of an event camera pixel. A photosensor produces
a current Iph proportional to the illumination. A trans-impedance logarithmic circuitry converts
the detected current into a voltage Vlog = AT log(Iph), which depends logarithmically on the
photocurrent. This voltage is the input to a differencing capacitive amplifier so that the voltage
difference

∆Vdiff = −C1/C2∆Vlog = −C1/C2AT
∆Iph

Iph
(3.1)
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Figure 3.1 – Human retina, as presented in (Steffen et al., 2019), reduced to essential layers for
neuromorphic visual sensors: the photoreceptor layer, the outer plexiform layer including bipolar
cells and the inner plexiform layer made up of ganglion cells. Additionally, horizontal cells and
amacrine cells connect these layers.

Figure 3.2 – Block diagram of an event ca-
mera pixel.

Figure 3.3 – Illustration of event-based en-
coding of visual signals with respect to the
predefined threshold ∆I , from (Lagorce et
al., 2015).

That way, voltage Vdiff is proportional to the relative temporal variation of the photocurrent.
Voltage Vdiff is compared with upper and lower voltage thresholds. Each time it goes over the
upper (or below the lower) threshold, the pixel will generate an output ON (or OFF) event and
voltage Vdiff is reset to a resting value VR.

Fig. 3.3 illustrates the resulting behaviour of the event camera pixel. The upper subfigure
plots the variation of a pixel photocurrent over time, while the lower subfigure illustrates the
generated ON and OFF output events. As can be observed, each time the photocurrent increases
(or decreases) by a certain relative variation given by,

∆Iph

Iph
= C2(Vt − VR)

C1AT
(3.2)



42 CHAPITRE 3 — Event-based cameras

the pixel generates an ON (OFF) output event.

Multiple event camera designs have been developed since the first bio-inspired sensor was built
by Misha Mahowaldin in 1991. We can differentiate between three main architectures, whose cha-
racteristics are outlined in Table 2 of (Steffen et al., 2019): the Dynamic Vision Sensor (DVS), the
Asynchronous Time-based Image Sensor (ATIS), and the Dynamic and Active Pixel Vision Sensor
(DAVIS). (Gallego et al., 2020) presents a comprehensive comparison of existing commercial and
prototype event cameras in their Table 1.

3.2 Event data representations

Formally, an event is a tuple (x, y, t, p) that indicates the pixel x, y where the event occurred,
a timestamp t (with 10−6s time resolution), and a polarity p that indicates the direction of change:
positive for brighter and negative for darker. However, event data is often preprocessed and trans-
formed into alternative representations more adapted to given tasks (Gallego et al., 2020). These
representations can be divided into two categories described below according to whether they
retain temporal accuracy or not.

3.2.1 Representations retaining temporal accuracy

The four representations maintaining temporal accuracy are individual events (before any pre-
processing), which is a format particularly suited for SNN handling (Paredes-Valles et al., 2020 ;
Weikersdorfer & Conradt, 2012) ; the voxel grid, a 3D histogram of events where each voxel repre-
sents a particular pixel and time interval (L. Wang, Mostafavi, Ho, & Yoon, 2019 ; A. Zhu, Yuan,
Chaney, & Daniilidis, 2019) ; and the 3D point set, akin to a graph where each event is treated as
a point in 3D space (Benosman, Clercq, Lagorce, Ieng, & Bartolozzi, 2014 ; Sekikawa, Hara, &
Saito, 2019).

3.2.2 Representations losing temporal accuracy

Many methods represent events by accumulating them over time, thus losing their temporal ac-
curacy. Among them can be found the frame or 2D histogram, where the events are summed and/or
accumulated into 2D grids (Kogler, Sulzbachner, & Kubinger, 2009 ; Liu & Delbrück, 2018 ; Ma-
queda, Loquercio, Gallego, Garcıa, & Scaramuzza, 2018) ; the time surface, a 2D map where
each pixel stores the timestamp value of the last event at that pixel (Delbruck, 2008a ; Lagorce et
al., 2016 ; Grimaldi, Boutin, Ieng, Benosman, & Perrinet, 2022) ; the event packet, which gathers
events in a spatiotemporal neighbourhood to process them together (Reinbacher, Munda, & Pock,
2017 ; Mueggler, Gallego, Rebecq, & Scaramuzza, 2018) ; reconstructed brightness images that
are more motion-invariant than time surfaces (Rebecq, Ranftl, Koltun, & Scaramuzza, 2019b) ;
and motion-compensated event image where the events are wrapped to a reference time, and their
alignment is maximised (Gallego & Scaramuzza, 2017 ; Gallego, Rebecq, & Scaramuzza, 2018).

3.2.3 Tools for event data handling

As seen above, event cameras produce a novel kind of data whose novel format complicates
the processing and application of methods traditionally used in computer vision. A particular com-
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plication can be found in the wide array of file formats (AEDAT, CSV, NPY or NPZ, MAT, DAT,
HDF5... and others presented in Tab. 3.1) and the possible incompatibility of specific formats and
computer languages (for example, between AEDAT2 and Python).

Multiple tools were thus made available over time to handle event data, with various specifi-
cations described in (Robotics & Perception Group, 2020).

Among these, we were particularly interested in Tonic. This Python library for neuromorphic
data handling has been created on an original idea dating back from the 2019 Telluride neuromor-
phic workshop (Lenz et al., 2021). It facilitates dataset downloads and their conversion to different
event representations (frames, time surfaces, voxel grids, etc.). It also proposes event transfor-
mation, such as denoising, event dropping, polarities merging, spatial and temporal jittering and
downsampling.

3.3 Applications and corresponding datasets

The event cameras’ particularities grant them advantages in many application cases compa-
red to more traditional visual sensors (Gallego et al., 2020). Because of their operating mode,
event-based cameras are helpful in tasks featuring movements, such as object tracking (Glover
& Bartolozzi, 2016), gesture recognition (Amir et al., 2017), optical flow estimation (Orchard,
Benosman, Etienne-Cummings, & Thakor, 2013 ; Paredes-Valles et al., 2020), Simultaneous Lo-
calisation and Mapping (Kim, Leutenegger, & Davison, 2016 ; Vidal, Rebecq, Horstschaefer, &
Scaramuzza, 2018), etc. Their high resolution and contrast range is also valuable for astronomical
studies (Cohen et al., 2017 ; Chin, Bagchi, Eriksson, & Schaik, 2019). Research on their combined
use with traditional RGB cameras becomes more common, with applications on high-resolution
image reconstruction (Z. Zhang, Yezzi, & Gallego, 2021 ; Rebecq et al., 2019b) and video deblur-
ring (L. Zhang et al., 2021). A significant field of applications is robotics: autonomous vehicles,
drones and other embedded systems facing limitations in terms of energy resources, memory,
computational power, and communication bandwidth.

In 2020, (Gallego et al., 2020) presented a complete survey of event-based vision according
to the tasks addressed. The authors keep an up-to-date list of existing event-based datasets and
corresponding applications publicly available at (Robotics & Perception Group, 2020). We intro-
duce in the paragraphs below the datasets most commonly used in current neuromorphic research
and their corresponding applications. The last paragraph brings together 38 datasets (including the
ones detailed previously) summarised in table form.

3.3.1 DVS 128 Gesture

Hand gesture recognition is a skill used daily in human society and is tightly integrated with
verbal communication, hence the need for computational learning of such data. Since it relies
heavily on temporal information (i.e. a static representation is not enough to solve this task), this
task is well-suited for event-based computation. Building on this notion, Amir et al. presented at
CVPR 2017 a complete hand gesture neuromorphic dataset called DVS128 Gesture (Amir et al.,
2017), which has now become a standard benchmark in event data classification. To this end, 29
subjects were recorded performing 11 different hand gestures under three kinds of illumination
conditions by a DVS128 camera. A total of about 133 samples are available for each gesture,
each composed roughly of 400,000 events and of dimension 128 × 128 pixels, for a duration of
approximately 6 seconds. The dataset is split into two sub-datasets to facilitate ML training: the
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train set consists of 80% of the recorded samples and the test set 20%, with a balanced distribution
of the 11 gestures between them.

3.3.2 N-MNIST

The Neuromorphic-MNIST dataset is an event translation of the original MNIST dataset (for
Mixed National Institute of Standards and Technology), which was presented in 1998 by Y. Le-
Cun and which gathers size-normalised handwritten digits for pattern recognition (Lecun, Bottou,
Bengio, & Haffner, 1998). To record this neuromorphic adaptation, Orchard et al. presented an
average of 7,000 MNIST samples on a screen for each digit from 0 to 9 during 500 ms to an ATIS
sensor of resolution 28 × 28 pixels mounted on a motorised unit, moving in saccades (Orchard et
al., 2015). This produces 80,000 neuromorphic samples, each roughly composed of 4,200 events.
The set was split into train (88%) and test (12%) sub-sets for ML purposes. The authors showcase
the advantages its small resolution brings, which is a “reduce[d] processing time, allowing for
rapid testing and iteration of algorithms when prototyping new ideas”.

N-MNIST is particularly heavy in events: according to the parameters presented in the above
paragraphs, N-MNIST displays, on average, 10.71 events per pixel per second, whereas DVS128
Gesture only displays about 4.06 events per pixel per second.

3.3.3 DDD17

The DAVIS Driving Dataset 2017 (DDD17) (Binas et al., 2017) contains 40 different driving
sequences of event data captured by an event camera (around 447GB). However, since the ori-
ginal dataset provides only both grayscale images and event data without semantic segmentation
labels, (Alonso & Murillo, 2019) provides segmentation labels they produced from 20 different
sequence intervals taken from 6 of the original DDD17 sequences as well as a multi-channel
representation of the corresponding events (normalised sum, mean and standard deviation for
each polarity). One can extract the corresponding original events from DDD17 with the traditional
< x, y, p, t > structure using DDD20 tools ∗. The resulting dataset is split into a training dataset
consisting of 15,950 frames and a testing one consisting of 3,890 frames.

Ev-SegNet is a semantic segmentation model applied to DDD17 and built by (Alonso & Mu-
rillo, 2019), which outperforms all existing studies using event cameras in this kind of task. Se-
mantic segmentation is a crucial task in visual scene understanding and corresponds to a visual
classification problem which assigns a label, i.e. a given class, to each pixel in the image. This
model is inspired by current state-of-the-art semantic segmentation CNNs, slightly adapted to use
the event data encoding. As shown in Fig. 3.4, it consists of an encoder-decoder architecture: an
encoder represented by the Xception model in which all the training is concentrated, and a light
decoder connected to the encoder via skip connections to help deep neural architecture to avoid
the vanishing gradient problem and also to make the fine-grained details learned in the encoder
part used in the decoder to construct the initial image. Moreover, (Alonso & Murillo, 2019) uses
an auxiliary loss which increases convergence speed.

The model takes as input six channels representing the count, mean and standard deviation
of the normalised timestamps of events happening at each pixel within an interval of 50ms for

∗. https://github.com/SensorsINI/ddd20-utils
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Figure 3.4 – CNN architecture of Ev-SegNet, from (Alonso & Murillo, 2019).

the positive and negative polarities. It is applied to the DDD17 dataset described previously. Fi-
nally, the training is performed via backpropagation to minimise the soft-max cross-entropy loss
measured by summing the error between the estimated pixels’ classes and the true ones.

The semantic segmentation performance is measured thanks to standard metrics of semantic
segmentation: the Accuracy (Eq. 3.3) and the Mean Intersection Over Union (MIoU — Eq. 3.4).

Accuracy(y, ŷ) = 1
N

N∑
i=1

δ(yi, ŷi)

= TP + TN

TP + TN + FP + FN
(3.3)

MIoU(y, ŷ) = 1
C

C∑
j=1

∑N
i=1 δ(yi,c, 1)δ(yi,c, ŷi,c)∑N

i=1 max(1, δ(yi,c, 1)δ(ŷi,c, 1))

= TP

TP + TN + FP + FN
(3.4)

where y and ŷ are the desired output and the system output respectively. C is the number of classes.
N is the number of pixels and δ denotes the Kronecker delta function. TP , TN , FP , and FN
respectively stand for true positive, true negative, false positive, and false negative.

3.3.4 DSEC

The Driving Stereo Even t Camera dataset DSEC is a hybrid stereo event camera and video
camera dataset in driving scenarios, in both favourable and very challenging illumination condi-
tions (M. Gehrig et al., 2021). The scenes are recorded using two event cameras of resolution
640 × 480, combined with an RGB camera and a lidar. The dataset is composed of 53 sequences
in urban, suburban and rural areas in Switzerland, amounting to a total of 3193 seconds. The au-
thors wished to overcome issues present in existing similar datasets (such as the Multi Vehicle
Stereo Event Camera Dataset MVSEC, DDD17 or DDD20) and evaluate the datasets’ quality
using several established metrics in stereo matching.
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3.3.5 Lip reading

Tan et al. (Tan et al., 2022) proposed a novel dataset of event-based recordings of lip mo-
tions and an associated architecture to perform event-based lip reading: the MSTP network. As
discussed in (Tan et al., 2022), the existing event-based action recognition methods, such as point-
cloud-based, graph-based, and fixed-frame-based approaches, are not suitable for the lip reading
task since it requires the perception of fine-grained spatiotemporal features from the event data.

The performance of the MSTP on this task was experimentally proven to be superior to the
state-of-the-art event-based action recognition models and video-based lip reading models. Within
the MSTP network, the input events are consequently converted to low-rate and high-rate event
frames with different temporal bins to better preserve the spatiotemporal information of the event
stream. These two types of event frames are then fed into a multi-branch network with message
flow modules between different branches designed to perceive both complete spatial features and
fine temporal features from the event data. Following that, a sequence model decodes the visual
features into words. In their study, SNNs are mentioned but discarded because they lack an efficient
backpropagation algorithm to train them. Hence, SNNs are yet to be applied to this problem.
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3.3.6 Overview of existing datasets

Table 3.1: Overview of existing event-based datasets.

Name Task Classes Size and format
ASL DVS (Yuhuang, 2016) Object recognition Sign language for 24 letters (A to Y, excluding J) 19.9GB(MAT)

ATIS Planes (Afshar et al., 2019)
High speed detection and unsuper-
vised object extraction

Different plane models 322.8MB (MAT)

Color Event Camera Dataset (Scheerlinck
et al., 2019)

Multiple applications
Object and human motion, interior scenes, driving,
calibrations with and without infrared

32.9GB (binary rosbag)

CIFAR10-DVS (H. Li et al., s. d.) Object recognition Transportation, animals 7.81GB (AEDAT, DAT)
Combined Dynamic Vision / RGB-D Data-
set (Weikersdorfer et al., 2014)

SLAM 5 scenarios 7.8GB (TSV, BVH)

DDD17 (Binas et al., 2017) Autonomous navigation Scenes of highway and urban driving 447GB (AEDAT, HDF5)
DDD20 (Hu et al., 2020) Autonomous navigation Scenes of highway and urban driving 931GB (AEDAT, HDF5)

DET (Cheng et al., 2019)
Lane extraction, autonomous navi-
gation

Labelled lines 44.31GB (BIN, BMP)

DHP19 (Calabrese et al., 2019) 3D human pose recognition 33 movements 160GB (AEDAT)
DND21 (S. Guo & Delbruck, 2022) Background activity denoising Driving and interior scenes, moving dots 44.8GB (AEDAT2)
Driving Event Camera Dataset (Rebecq et
al., 2019b)

Autonomous driving Highway, street and parking with or without sun 124GB (rosbag)

DSEC (M. Gehrig et al., 2021)
Autonomous driving and stereovi-
sion

Driving in a variety of illumination conditions 152GB (H5)

DVS09 (Delbruck, 2008b ; Lichtsteiner et al.,
2008b)

Recognition, surveillance and tra-
cking

Walking, hand motion, driving, eye tracking, mouse
activity

450MB (DAT)

DVS 128 Gesture (Amir et al., 2017) Gesture classification 11 hand gestures 2.7GB (AEDAT, NPZ)

DVSACT16 (Hu et al., 2016 ; Hu, 2016)
Object tracking, action recognition
and object recognition

Conversion of 4 existing dynamic RGB datasets,
i.e. VOT Challenge 2015 dataset, TrackingDataset,
UCF-50 Action Recognition Dataset and Caltech-
256 Object Category Dataset

45.1GB (AEDAT, HDF5)

DVSFLOW16 (Rückauer & Delbruck, 2016) Optical flow Synthetic and real-life motions 3GB (AEDAT)

DVSMOTION20 (Almatrafi et al., 2020) Optical flow
Camera motions (checkerboard, classroom, confe-
rence room) and object motion (hands, cars)

849MB (AEDAT, MAT)

DVSNOISE20 (Baldwin et al., 2020) Denoising Interior scenes 7.9GB (AEDAT, MAT)

Continued on next page
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Table 3.1: Overview of existing event-based datasets. (Continued)

EBSSA (Cohen et al., 2017 ; Afshar et al.,
2020)

Detection and tracking for space
situational awareness

Daytime and nighttime recordings of spatial objects 12.6GB (MAT)

EDFLOW (Liu & Delbruck, 2022) Optical flow Outdoor scenes 15.8GB (AEDAT)
Event-based, Direct Camera Tra-
cking (Bryner et al., 2019 ; Gallego, Lund, et
al., 2018)

Camera tracking Indoor and outdoor camera trajectories 244MB (ROSBAG)

Event-based Lip-reading (Tan et al., 2022) Lip reading Close-ups of lips pronouncing words (100 classes) 87.4MB (NPY)
EVIMO (Mitrokhin et al., 2019, 2020 ; Para-
meshwara et al., 2021)

Motion segmentation Various backgrounds 87.4MB (BAG, NPZ, TXT)

GEN1 (de Tournemire et al., 2020) Automotive, pedestrian detection Cars, pedestrians unknown (DAT)
HQF (Stoffregen et al., 2020) Acquisition of quality ground truth Camera motions, indoor and outdoor scenes 2.7GB (BAG)

IROS2018 (Mitrokhin et al., 2018)
Moving object detection and tra-
cking

Objects with varying degree of occlusions and
brightness

200MB (TXT, PNG, BAG)

MNIST-DVS and MNIST-FLASH-
DVS (Serrano-Gotarredona & Linares-
Barranco, 2013)

Handwriting recognition Numbers from 0 to 9 6GB (AEDAT, MAT)

MVSEC (A. Z. Zhu, Thakur, et al., 2018) Optic flow and 3D reconstruction
Stereo sequences of indoor and outdoor scenes, re-
corded from a driving car, a hexacopter, a motor-
cycle or a human hand

74.7GB (rosbag, HDF5)

N-Caltech101 (Orchard et al., 2015) Object recognition 256 categories 4GB (binary data)
N-CARS (Sironi et al., 2018) Car classification Car and background 4.13GB (AEDAT)
N-MNIST (Orchard et al., 2015) Number classification Handwritten numbers (10 classes) 9GB (BIN, NPZ)

PAF (Miao et al., 2019)
Pedestrian detection, action recog-
nition and fall detection

Pedestrian, actions (10 classes) and postures (4
classes)

4.13GB (AEDAT)

POKER-DVS (Pérez-Carrasco et al.,
2013)(Serrano-Gotarredona & Linares-
Barranco, 2015) and SLOW-POKER-
DVS (Rodríguez et al., 2017)

Symbol recognition 4 classes 12MB (AEDAT)

PRED18 (Moeys et al., 2016, 2018) Predator/prey robot chasing Left, right, center and non-visible 298GB (AEDAT)
ROSHAMBO17 (Lungu et al., 2017) Symbol recognition Rock, paper, scissor and no hand 79GB (AEDAT)
SL-ANIMALS-DVS (Vasudevan et al.,
2020, 2022)

Action recognition Sign language words for 20 animals 749MB (AEDAT)
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3.4 Limits

While the event camera provides the significant advantages described above, one could pon-
der whether its microsecond resolution is relevant in any situation. In recent works, some of its
application cases could have been solved using a less precise temporal grain. for example, human
pose estimation and gesture recognition are studied in the widely used benchmark dataset DVS
128 Gesture described above — but does one really need a microsecond resolution when one ges-
ture is completed in roughly 1 second? It could be of greater interest to apply this technology to
domains where the phenomenons of interest are significantly brief, such as in high-energy physics
or detonics.

Additionally, due to their differential imaging mechanism event cameras are more subject to
noise than standard RGB cameras: both are subject to ‘inherent shot noise in photons and tran-
sistor circuit noise, but the additional quantisation of temporal contrast in event cameras is more
complex to control (Gallego et al., 2020). The noise in event data is mainly caused by to move-
ments of background objects (Padala, Basu, & Orchard, 2018). When the overall brightness of the
visual scene decreases, the noise in the recorded event data increases due to the camera continual
sampling and the logarithmic conversion (Ding et al., 2023). To overcome this issue, different stra-
tegies to implement denoising either at sensor level or in post-processing were developed in recent
works (see Section 1.3.1). (Dilmaghani, Shariff, Ryan, Lemley, & Corcoran, 2022) introduces in
2022 a complete evaluation of the different biases (i.e. sensor settings) proposed by Prophesee in
their Gen4H camera and compares the quality of output events thanks to the “average image gra-
dient magnitude" metric assessing their sharpness. It has also been demonstrated that the contrast
sensitivity of an event camera influences the amount of noise and pixel-to-pixel mismatch: the
contrast should be set above a lower bound to avoid “a storm of events" (Gallego et al., 2020).
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Because of their asynchronous operation principle, event cameras are a natural match for
SNNs: each event can be assimilated to an activated spike between two neurons. Furthermore,
the behaviour of the log-luminance recorded by the sensor displays a substantial similarity with
one of a LIF neuron, as shown in Fig. 6.10. Their combined use is of such high interest from the
point of view of biological inspiration, energy savings, decision latency, and memory use that it is
gaining momentum in the field of embedded computer vision (Gallego et al., 2020).

4.1 Embedded systems

According to De Micco et al., an embedded system is an “electronic equipment with a compu-
ting core which, unlike a personal computer, is designed to meet a specific function and is usually
optimised to satisfy strict requirements of processing time, reliability, power consumption, size
and cost” (De Micco, Vargas, & Fierens, 2020). As underlined in (Biglari & Tang, 2023), those re-
quirements still hinder the implementation of most ML algorithms. One must consider the specific
application to identify the appropriate embedded system and its equipment, such as the sensors
used. A review of the state-of-the-art research in the embedded ML area is presented in (Biglari
& Tang, 2023), according to the application tasks (autonomous driving, security, healthcare, agri-
culture, drones, etc.). Among the sensors available, they mention LIDAR, electrocardiograms, mi-
crophones, radars, motion sensors and RGB, depth, thermal and 360-degree cameras. They make
the remarkable omission of event-driven cameras, which are nevertheless particularly well suited
to onboard computer vision due to their high dynamic range and temporal grain as well as their
low memory and low energy consumption (see Chap. 3).

4.2 Why is it such a good idea?

The emerging event-based vision technology promises to significantly improve energy effi-
ciency and latency in the next generation of computer vision applications (Gallego et al., 2020).
However, classic computer vision algorithms which rely on frame-based data for applications such
as object classification (Song et al., 2019) and scene segmentation (Peng et al., 2019) are unable
to handle sparse, asynchronous event data coming from DVS. Approaches combining classic me-
thods with event-based data as input require a first step of data pre-processing at the cost of losing
temporal information (A. Z. Zhu, Yuan, Chaney, & Daniilidis, 2018).

However, recent work has shown that SNN can operate on raw event data and achieve similar
performance as conventional methods (Paredes-Vallés, Hagenaars, & de Croon, 2021). Thanks to
neuromorphic chips, and ultra-fast low-power processors, SNNs can be implemented on hardware
and interfaced directly to an embedded event camera. They thus make for a promising alternative
for the embedded handling of event-based data.

Indeed, even though the maturity of SNN-based vision algorithms is still far from state-of-the-
art conventional methods, which provide excellent results for vision tasks with traditional cameras,
asynchronous event sequences require special handling for which SNNs are better suited. Indeed,
many previous works have demonstrated the benefits of SNN and the perfect match with event-
based cameras to reach both exceptionally low latency and energy efficiency (Gallego et al., 2020)
— all of this, however, without achieving equivalent performance to DNNs.

Pushed by the objective of closing the gap with DNN accuracy, many previous works do not
consider the limits of memory and complexity that state-of-the-art embedded neuromorphic pro-
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cessors pose. Another drawback that limits the success of today’s event-based cameras and neuro-
morphic computing, especially for embedded low-power systems, is the fact that the promised low
power, low latency and energy efficiency are overpowered by the interface’s high power consump-
tion, often due to non-standard communication protocol. Although nowadays data is mainly ac-
quired using a high-power FPGA and a USB interface (Di Mauro et al., 2021), novel embedded
processors are being developed, providing the research community with reference platforms and
resources to address this issue. Large-scale, neuromorphic processors like SpiNNaker (S. B. Fur-
ber et al., 2013) or Intel Loihi (Davies et al., 2021) can simulate hundreds of thousands or even
millions of spiking neurons in real time. To achieve genuinely power-efficient real-time operation,
such platforms need to be even smaller, reach even lower power consumption and integrate the
camera interface directly on board. Such an example is given by Kraken (Di Mauro et al., 2022),
which can interface directly with event-based cameras without power-hungry FPGAs or external
interface adapters.

4.3 Applications

Traditional methods for standard vision tasks (e.g. recognition, tracking, segmentation, motion
analysis, etc.) cannot be applied straightforwardly to event-based cameras due to their unconven-
tional output type. Silicon retinas bring considerable potential in indexing and retrieval, yet only a
limited number of methods have been explored in this direction. In 2020, Gallego et al. (Gallego
et al., 2020) establish inter alia a state of the art of existing SNN algorithms for feature detection,
object tracking, 3D reconstruction and motion segmentation applied to event data. This state of
the art is maintained up to date on the team’s Github (Robotics & Perception Group, 2020).

We present below some state-of-the-art models applied to different application tasks and ex-
tend those relevant to the experiments performed during this PhD.

4.3.1 Classification

A classification task aims to assign a label to each dataset sample.

4.3.1.1 SLAYER benchmark classifier

Shrestha and Orchard developed in 2018 a Python framework called SLAYER (for Spike
Layer Error Reassignment in Time) (Shrestha & Orchard, 2018), based on the ML library Py-
Torch (Paszke et al., 2019) and designed to simulate “backpropagation based SNN learning” on
GPU. A specific “SLAYER Loihi” module has been implemented to run SNN models initially
developed on SLAYER, on Intel’s Loihi neuromorphic chips (Davies et al., 2021) without fur-
ther adaptation to the code. This module and, more globally this framework, were benchmar-
ked on a classification task applied to different spiking and non-spiking visual datasets, such as
MNIST (Lecun et al., 1998), N-MNIST (Orchard et al., 2015) and DVS128 Gesture (Amir et al.,
2017), and the audio dataset TIDIGITS converted into spikes (Leonard & Doddington, 1993). Ac-
cording to the authors, when the input is a spiking dataset, “the spike data from the DVS is directly
fed into the classifier” which removes any step of pre-process and allows the SNN to be trained
using “significantly less number of neurons and layers” than any state-of-the-art CNN classifier.
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4.3.1.2 PLIF-based classifier

Fang et al. introduced during ICCV 2021 an SNN classifier using a new spiking neuron model
called PLIF (Fang, Yu, Chen, Masquelier, et al., 2021). This model aims to better represent the
heterogeneity of biological neurons by learning the membrane time constant, whereas membrane
parameters usually correspond to hyperparameters set before training. To reproduce the biological
dynamic where all neighbouring neurons share similar properties, the time constant is the same
for all neurons belonging to the same layer but differs between layers, thus implementing diverse
phase-frequency responsiveness. The authors also opted for a max-pooling method instead of the
average-pooling method traditionally used in SNN, thus preserving the asynchronous characteris-
tic of neuron firing.

This model allows the authors to apply a backpropagation learning algorithm to a classifica-
tion task. They present the results obtained when classifying traditional RGB datasets, as well as
neuromorphic datasets such as DVS128 Gesture (Amir et al., 2017), N-MNIST (Orchard et al.,
2015) and CIFAR10-DVS (H. Li et al., s. d.).

It is important to note that the authors chose to process the neuromorphic datasets as frames
precisely because of the high number of events. The events E are thus translated from their tradi-
tional representation E(xi, yi, pi, ti) (with xi and yi the pixel’s coordinate of the ith event, pi the
polarity and ti the timestamp) into T slices of same time length. The frames F are represented as
follows:

F (j, p, x, y) =
tmax∑

t=tmin

δ(xt, x).δ(yt, y).δ(pt, p) (4.1)

with tmin and tmax the minimal and maximal timestamp in the jth slice and δ the Kronecker delta
function. When run on neuromorphic datasets, this classifier considers each frame as the input for
one timestep ; T is the number of timesteps on which the classifier is run for one epoch.

4.3.1.3 HOTS

The online classification algorithm introduced in (Grimaldi et al., 2023) is an extension of
a previous study entitled HOTS: A Hierarchy of Event-Based Time-Surfaces for Pattern Recog-
nition (Lagorce et al., 2016). In this work, they make object recognition on a stream of events
through a feedforward hierarchical architecture using time surfaces, an event-driven analog repre-
sentation of the local dynamics of a scene. Using a form of Hebbian learning, the network can
learn in an unsupervised way progressively more complex spatiotemporal features which appear
in the event stream. Once trained, one layer of this network transforms any incoming event from
the stream of events into a novel event as it is selected in a layer of spiking neurons. Using it as a
building block, such layers can be stacked together, each layer’s output address space defining a
novel input address space for the next layer.

Inspired by this dynamical processing of the visual information, (Grimaldi et al., 2023) added
a Multinomial Logistic Regression as an online classifier and transformed the previous post hoc
classification process, which counted the activity of the neurons of the last layer, into an always-on
decision process. The Multinomial Logistic Regression layer also takes time surfaces as input, and
a formal demonstration was made to assimilate this algorithm to an SNN with Hebbian learning
and homeostasis.



56 CHAPITRE 4 — Spiking neural networks applied to an embedded event camera

The classifier introduced in (Grimaldi et al., 2023) will be referred to as "HOTS" in the re-
mainder to facilitate its designation.

4.3.2 3D reconstruction

Stereo vision is the computation of depth based on the binocular disparity between the images
of an object in the left and right eyes. This requires matching up features in the two eyes, that is,
identifying features in the left and right retinas that are both images of the same point in the visual
scene. This allows to obtain the 3D information from a pair of images by estimating the relative
depth of points in the scene. These estimates are represented in a stereo disparity map, which is
constructed by matching corresponding points in the stereo pair. The disparity is computed as:

disparity = x − xi = B × f

Z
(4.2)

where x and xi are the distance between points in the image plane corresponding to the 3D scene
point and their camera centre, B is the baseline that represents the distance between two cameras,
Z is the depth, and f is the focal length of the camera.

The models we detail below will tackle this computer vision task using a stereo-matching
approach. It is interesting to note that it is far from the only existing neuromorphic approach
one could apply: for example, the StereoSpike model introduced in (Rançon, Cuadrado-Anibarro,
Cottereau, & Masquelier, 2021) reconstructs depth from a stereo-event stream using a modified
U-Net-like encoder-decoder architecture, which performs supervised learning using a surrogate
gradient and achieves good results with a remarkably low number of parameters compared to the
state-of-art.

As stated above, the models we studied in this thesis tackle 3D reconstruction using stereo
matching. This “correspondence problem” is the problem of finding a pair of corresponding pixels
or patches in a set of stereo images. Having the matching objects or pixels, we can calculate
the depth, which is inversely proportional to the disparity—the displacement along the epipolar
lines—between the matches.

The geometrical characteristics of the stereo cameras can be formulated to map a single pixel
of one image into a set of possible corresponding pixels in the other image. In classic computer
vision, there are two general approaches for matching pixel pairs: area-based and feature-based
matching. The use of DVSs introduces a separate clue that can be used for matching: time. Just
as with its biological counterpart, the asynchronous operation of the silicon retina opens the pos-
sibility of matching events based on their time of appearance. However, due to inherent sensor
variations and spatial aliasing, event coincidence alone is not reliable enough for event matching
and has to be combined with additional constraints to achieve a reasonable matching quality.

4.3.2.1 Osswald et al., 2017

(Osswald, Ieng, Benosman, & Indiveri, 2017) introduced in 2017 a “spiking neural network
model of 3d perception for event-based neuromorphic stereo vision systems”, composed of three
neuronal populations: the retinal population, the coincidence detectors and the disparity detectors.
Retina cells serve as input to the network and project excitatory connections towards the coin-
cidence detectors. The disparity detectors pool the responses from the coincidence detectors via
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excitatory and inhibitory connections. The network outputs a disparity event only when the spikes
produced by a disparity neuron and a corresponding coincidence neuron (i.e. located in a nearby
representation in disparity space) take place within a few milliseconds.

This architecture is implemented on an FPGA interfaced with the neuromorphic processor
ROLS (Qiao et al., 2015), comprising an array of 256 analog IF neuron circuits and 512 × 256
dynamic synapses. All in all, this model successfully solves the stereo correspondence problem,
as evidenced by the small local average disparity error ϵd, inferior to 1 pixel.

4.3.2.2 Dikov et al., 2017

The "spiking cooperative stereo-matching" model introduced in (Dikov et al., 2017) is com-
posed of a three-dimensional array of cells, where each cell encodes a belief in matching a hete-
rolateral pair of pixels from the left and the right visual scenes from the stereo event stream. Due
to intrinsic structural constraints, this model aims to respect the biologically plausible principles
devised by (Marr & Poggio, 1976):

— within-disparity continuity, implemented using a weak potentiation between neighbouring
cells representing similar disparity and leading to a smooth disparity map ;

— cross-disparity uniqueness, implemented via a strong inhibition between cells to allow for
the pairing of two corresponding pixels ;

— prevention of the homolateral matching, i.e. the activation of disparity neurons solely due
to the activity of one retina.

The corresponding connectivity patterns are implemented via excitatory and inhibitory synap-
tic pictured in Fig. 4.1.

Figure 4.1 – Network topology of the cooperative stereo-matching network introduced in (Dikov
et al., 2017). Figure from (Dikov et al., 2017). (a),(b) Connectivity in terms of excitatory and
inhibitory connections: neurons/cells (dots) are framed into populations and interconnected by
synaptic projections (lines). (c),(d) Inhibition and excitation pattern for an exemplary pair of retinal
input spikes (c) leading to a match, i.e. spike, in the cooperative network (d) which in turn triggers
internal inhibition and excitation according to Marr’s physical constraints.
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The third constraint, i.e. the prevention of homolateral matching, leads to the implementation
of each cell (black dots in Fig. 4.1) as a micro-ensemble instead of a simple neuron. As depicted
in Fig. 4.2, a micro-ensemble is composed of two retina pixels Rr and Rl, one disparity-sensitive
collector neuron C and two intermediary blocker neurons Bl and Br, serving as inhibitory inter-
neurons. When one retina is activated, the corresponding spike excites the collector neuron C as
well as the ipsilateral blocker neuron B. Once activated, the latter inhibits the collector neuron C.
At the same time, this retinal spike inhibits the contralateral blocker neuron B. The synaptic delays
δ between the micro-ensemble neurons are adjusted so that the spike propagation times along the
R → C and R → Bcontra → C are equal.

This mechanism prevents homolateral matching by providing for two situations:
— first scenario: only one retina is activated, and C must not activate. In this case, the retina

spike leads to the activation of C and the end of C inhibition by the contralateral blocker ;
but this overall activation is hindered by the activation of B, itself inhibiting C which thus
cannot spike.

— second scenario: both retinas are activated, and C must produce a disparity spike. In this
case, both retinas inhibit their contralateral blockers, thus preventing them from inhibiting
C. The latter is now only activated on both sides and can activate.

Figure 4.2 – Topology and working principle of neural micro-ensembles to prevent homolateral
self-matching, from (Dikov et al., 2017).

This network measures the disparity from the event stream recorded by two parallel stereo
event cameras. It is implemented using PyNN (Davison et al., 2009) on the neuromorphic board
SpiNNaker (S. B. Furber et al., 2013).

The disparity is contained in a range [dmin, dmax]. In this work, the disparity is strictly posi-
tive ; since the cameras are parallel, dmin = 0 corresponds to very distant objects. As the neural
micro-ensembles are arranged in each layer according to a trapezoid, and each layer corresponds
to one coordinate y, we can calculate the total number of neural micro-ensemble Nnme as:

Nnme = n × ymax with n = wbaseline + wtopline

2 × h (4.3)

where n is the number of neural micro-ensembles in each layer and wbaseline and wtopline are
respectively the wide and small bases of the trapezoid, computed according to Eq. 4.4.

h = dmax − dmin + 1
wbaseline = xmax − dmin

wtopline = xmax − dmax

(4.4)
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All in all, knowing that each neural micro-ensemble contains three neurons, the number of
neurons Nn in the network is:

Nn = 3 × (xmax − dmin + dmax

2 ) × (dmax − dmin + 1) × ymax (4.5)

With a sensor size of xmax = ymax = 128 with a [0, 127] disparity range, the network
implementation requires 3.15 million neurons, corresponding to at least 12,288 SpiNNaker cores,
723 SpiNNaker chips or 15 SpiNN-5 boards.

This spiking cooperative stereo-matching network is experimentally validated on three data-
sets: a synthetic dataset presenting letters in space at various depths, with no jitter or noise ; and
two experimental datasets, "two fans" and "pendulum", recorded in a controlled environment. In
the "two fans" dataset, two identical 3-blade fans with a diameter of 35cm are recorded during 10s
by two event cameras set up with a horizontal offset of 10cm. The fans are respectively 1.8m and
2.8m away from the cameras and generate approximately 140, 000 events per second per camera.
In the "pendulum" dataset, a pendulum (i.e. a tennis ball suspended on a string) swinging back and
forth at around 0.6Hz is recorded during 10s by two event cameras set up with a horizontal offset
of 10cm. The pendulum swings along the line-of-sight of the left camera and generates around
20K events per second per camera. The results are thus obtained on three datasets, one synthetic
and two real-world tests, of which one is quasi-stationary and one dynamic.

The network achieves an accuracy of 86% on the synthetic dataset. For the "two fans" dataset,
97% of the output events around the distant fan indicate a disparity d = 7 ± 1 and 06.7% of the
events around the proximate fans indicate a disparity d = 10 ± 1. Finally, 62.2% of all events
produced when presented to the "pendulum" dataset are within ±2 pixels of that metric. A sys-
tematic error causes this relatively bad matching performance: the network tends to fuse the ball
images mirror-symmetrically in this dynamic scene. According to the authors, this behaviour can
be counteracted by object-level matching or a simple ordering constraint.

4.3.2.3 Risi et al., 2020

(Risi, Aimar, Donati, Solinas, & Indiveri, 2020) proposes a spiking stereo neural network
adapted from the architecture presented above (Osswald et al., 2017). Firstly, each coincidence
detector is connected to the retina cells via a slow NMDA-like synapse on one side and a fast
AMPA-like synapse circuit block on the other. This mechanism demands that both synapses be
stimulated rapidly so that the coincidence detector neuron fires. Secondly, the authors implement
each cell as a micro-ensemble to prevent homolateral matching, similarly to (Dikov et al., 2017).

This architecture is implemented on an FPGA platform interfacing two DAVIS cameras with
three neuromorphic processors DYNAPs (Moradi, Qiao, Stefanini, & Indiveri, 2018). It is experi-
mentally validated on multiple synthetic datasets and in real-time scenarios.

4.3.3 Visual attention

An extensive review of SNN models of visual attention applied to event data can be found in
Section 5.1, along with the biological basis of visual attention.
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This chapter introduces SNN models applied to event data to solve application tasks inspired
by biological behaviours. The corresponding biological behaviour is described in detail ; each
application is the object of a comprehensive review. The three biological behaviours adapted to
neuromorphic computing studied in this PhD are: visual attention, foveation and delay learning.

5.1 Visual attention

Visual attention can be defined as the behavioural and cognitive process of selectively focu-
sing on a discrete aspect of sensory cues while disregarding other perceivable information. This
biological mechanism, more specifically saliency detection, has long been used in computer vision
to drive the analysis only on relevant parts of images or videos for further processing.

It is important here to differentiate the attention we are interested in with the concept of at-
tention as most often used in AI. Indeed the AI community comprehends attention as a piece of
additional information calculated and updated during runtime for each input vector in order to
focus learning on the most relevant input elements. This attention mechanism was originally ap-
plied to recurrent neural networks such as encoder-decoder models, which tended to give more
importance to the last input elements. It was then used as building blocks for the transformer
model, where they are now computed in parallel instead of sequentially (Vaswani et al., 2017).
Transformers were recently adapted to SNNs with the recent example of Spikformer (Zhou et al.,
2023).

What interests us in this work is the attention behaviour observed in biological organisms, as
described in further detail below.

To limit the amount of data to be processed, several approaches inspired by primates’ visual
attention mechanisms (Itti & Koch, 2001 ; Martinet et al., 2009) have proposed to focus the pro-
cessing only on the most salient parts of the scene. Indeed, the study of many biological organisms
highlighted the importance of limiting the processing of sensory RoIs, thus minimising the energy
spent on this task as well as the reaction delay to what is perceived (Tsotsos, 1990). For prey
animals, this means a quicker detection of a potential predator and a more efficient escape from
danger. Attention was first described as the coalition of “focalisation, concentration and conscious-
ness” by William James in 1890 (James, 1890). In psychology, this mechanism is now defined as
the allocation of limited cognitive processing resources on one or a few relevant environmental
elements while ignoring others (Anderson, 2005). It can be either subjective or objective, as well
as voluntary or spontaneous.

As technologies for sensory information processing expanded, an increasing number of them
assimilated this idea for their own purposes. In the DL community, for instance, this concept was
converted into a neural network’s component weighting features by the task’s level of importance.
Attention can thus be applied to regions in images, words in text, phonemes in speech, etc. For
example, some studies aim to exploit this mechanism in order to optimise CNNs (Jetley, Lord,
Lee, & Torr, 2018). We believe that studying the biological aspect of visual attention will allow
for the development of new models applicable to event vision.

5.1.1 Biological visual attention

Early work by Jonides (Jonides, 1983) distinguish two stages of visual attention, defined by
the type of processing: it can be processed either sequentially when it is concentrated on a specific
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area of the visual scene ; or it can be processed in parallel in case of a more uniform distribution
over the scene. Multiple models of visual attention have been defined over time, all coexisting with
one another. The earlier one is the spotlight model, stating that "attention has a focus, a margin
and a fringe" (James, 1890), meaning it does not entirely prevent the perception of elements out-
side the attended visual area. The zoom-lens model (Eriksen & St. James, 1986), the attentional
engagement theory (Raftopoulos, 2009) and the gradient model (LaBerge & Brown, 1989) were
all three elaborated between 1986 and 1989 and corresponded to non-exclusive psychological and
biological observations in humans. Treisman went one step further and produced the Feature Inte-
gration Theory (Treisman & Gelade, 1980), according to which visual searches are done through
combined parallel and serial stages ; the blended use of those two processes enables the integration
of the global features of a complex visual scene.

Selective visual attention can relate to other well-known bio-inspired concepts. Curiosity can
be considered as a driver for visual attention since a novel element catches more of the eye than a
known element (Shi, Zhang, & Zeng, 2020). In addition, selective visual attention suffers from the
exploration versus exploitation trade-off: should one spend more time studying a specific element
with the risk of missing crucial information or losing energy processing the entire visual scene at
all times?

5.1.1.1 Eye and visual cortex in the context of the visual attention

This section outlines what is known about the organs and pathways enabling human vision to
review human visual attention.

Human eye and retina Humans have complex eyes, allowing for colour detection and binocular
vision, thus depth perception. It is composed of three parts: the outermost layer comprises the
cornea and the sclera, whereas the middle layer contains the iris and muscles. The innermost layer,
situated at the back of the eye, is mainly composed of the retina, which permits the detection of
light and colours. The retina contains two types of light-sensing cells: the photoreceptor cells (rods
and cones) and the photosensitive ganglion cells, emulated by the event cameras (see Chapter 3).

The inside of the human eye is filled with humour which the light rays cross until they reach
the retina. They are primarily captured by the macula, a retina spot responsible for central colour
vision. A subdivision of this macula is the fovea, where the cones are more closely packed than
anywhere else in the retina. Since cones are responsible for colour discrimination and delicate
detail perception, the fovea corresponds to the central spot where the vision is optimal in bright
light. Hence any attention mechanism will aim to direct the eyes to point the "foveal gaze" towards
the interesting visual feature. It should be noted that the small size of the fovea limits the overall
perception of fine details. The organism overcomes this issue by redirecting the eye in saccades,
up to 3 times per second. A similar mechanism could be implemented, allowing for a higher
resolution on the spot targeted by the "foveal gaze", thus letting a larger amount of specifically
relevant information be processed.

Visual cortex Once the visual information has travelled from the eyes and through the thalamus,
it is processed by the visual cortex in the brain’s occipital lobe. Each hemisphere has a visual cortex
cross-handling the information output by the opposed eye. The visual data is received firstly by
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the primary visual cortex (V1) ; it then journeys through the extrastriate areas V2, V3, V4 and V5
(see Fig. 5.1).

Figure 5.1 – Schematic depiction of the visual cortex, adapted from (Bear et al., 2007).

Located in the frontal cortex, the Frontal Eye Field (FEF) has a role in visually guided sac-
cades’ target selection and selective spatial attention (Moore & Zirnsak, 2017). It encodes spatial
information into retinocentric coordinates, that is, coordinates established using the retina as a
reference. It receives inputs from and projects onto most of the visual cortex.

According to Knudsen et al. (Knudsen, 2018), high activity in the FEF brings an increased
neuronal response in V4 in a "space-specific, attention-dependant manner". Indeed, the prefrontal
cortex integrates the task according to a non-retinocentric frame of reference and translates it into
retinocentric signals by sending it to the lateral intra-parietal area. The FEF convert those signals
into topographical maps and finally outputs those maps to the retinocentric visual regions of the
posterior cortex and superior colliculus. This may hint at a pathway enabling the influence of
saccade-related signals on visual representation. Once understood, this pathway could be imple-
mented as a neural network to specifically direct attention towards the retinocentric space privile-
ged by the FEF.

Forebrain and midbrain networks. It is interesting to note that the forebrain and midbrain
networks are strongly involved in attention (Knudsen, 2018). The forebrain selects information
based on its relevance to the task at hand or its saliency. It encodes visual information via enhanced
distributed representations regulated by heterogeneous dynamics. A similar type of information
encoding, with each element interpreted according to its saliency, would speed up its processing
significantly.

The midbrain enables spatial attention by monitoring the environment for behaviourally re-
levant stimuli and then directing the gaze to the region of highest interest thanks to a powerful
inhibitory competition. It represents the visual input from the retina and the visual forebrain as a
topographic map of space following a retinocentric frame of reference. A midbrain-like neural net-
work would allow for the identification of the data relevant to the task at hand in order to optimise
the bandwidth of information to process.
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5.1.1.2 Neural mechanisms

Visual attention can be categorized using three dichotomies, differentiated by distinct and
divergent neural mechanisms (Moore & Zirnsak, 2017).

The first dichotomy can be defined between top-down and bottom-up attention. The top-down
one corresponds to a selective type of attention depending on a previously set motivation or rule.
This "endogenously generated signal" influences visually-driven signals in primates. The bottom-
up depends on physical saliency, including brightness, movements and colours. Those two inter-
dependant types of attention interact strongly during visual search, which helps to focus on salient
features relevant to the task at hand and disregard the less fitting ones.

A second dichotomy exists between spatial, temporal and feature-based attention. Spatial at-
tention is directed towards a specific location in space thanks to the occulomotor system, which
leads to the prioritisation of an area in the visual field. Furthermore, temporal attention focuses
on a specific instant in time ; this type is often tapped into for video processing and emphasises
critical video frames. It could be particularly interesting to exploit this kind of attention in human
action recognition. Finally, feature-based attention selects elements based on their resemblance to
a behaviourally relevant object by representing the corresponding features in the prefrontal cortex
anterior and the ventral pre-arcuate (Bichot, Heard, DeGennaro, & Desimone, 2015).

The last dichotomy opposes overt and covert attention. It respectively corresponds to the pre-
sence (overt) or absence (covert) of motor commands leading to saccadic eye movements. Those
two types of attention are simultaneous and complementary: overt attention comes from orienta-
ting eye movements, actively guided by salient features determined thanks to concurrent covert
attention. When attention comes to orientating movements (overt), the posterior parietal cor-
tex activity increases. In addition, the ventral stream visual area is actively involved in guiding
this motion according to salient features determined thanks to concurrent covert attention. This is
confirmed by the observation of a significant temporal correlation between the visual processing
of targets and eye movement (Moore & Zirnsak, 2017). Interestingly, covert attention is the one
most often studied by visual neuroscientists. It improves the detection and discrimination of fea-
tures (Chevallier & Tarroux, 2008) both at the fovea and in the visual periphery, thanks to a visual
enhancement in V4 and the inferior temporal cortex.

5.1.1.3 Neuromodulators

Neuromodulators are a class of extraneuronal molecules released within cortical and subcor-
tical structures which allow and influence the signal transmission between neurons. According to
Moore and Zirnsak (Moore & Zirnsak, 2017), three neuromodulators have a particularly relevant
role in attention: acetylcholine, dopamine and norepinephrine.

Acetylcholine is synthesised by the nucleus basalis of Meynert, the substantial innominata
and the basal forebrain. When collected by a certain type of receptors present on the neuron sur-
face (metabotropic muscarinic or ionotropic nicotinic receptors), it can enhance selective visual
attention. Moreover, the release of acetylcholine seems to play a role in the enhanced processing
of sensory information: its increase triggers glutamate release from retinal ganglion cells. This
release of extracellular molecules by those photosensitive cells boosts their effect and amplifies
the visual data captured from the corresponding retinal space.

Another neuromodulator of interest is dopamine: synthesised by midbrain nuclei, it appears
to alter the strength and reliability of converging glutaminergic synapses in the prefrontal cortex,
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thus affecting the FEF and selective attention. A link has been established between this molecule
and Attention Deficit Hyperactivity Disorder.

Also implicated in this disorder, norepinephrine is involved in the selective response to salient
sensory stimuli, depending on the relevance of the stimuli for the task. It is synthesised by the
locus cœruleus.

Much like dopamine pathways were studied and imitated when developing various models of
reinforcement learning, it would be highly appealing and relevant to tailor those neuromodulators’
mechanisms in order to enhance computational models applied to computer vision tasks.

5.1.2 Neuromorphic visual attention

Applications of visual attention to computer vision have been studied for the past two decades.
However, the possible impact of SNNs and event-based cameras on this domain has been little stu-
died so far. In the following section, we establish a review of state-of-the-art attention mechanism
models applied to event camera data and/or using SNNs.

Itti and Koch presented a complete overview of bottom-up visual attention models in 2001 (Itti
& Koch, 2001). They define saliency as a bottom-up type of attention, operating very quickly and
independently to the nature of the task. Most of the computer vision domain work on saliency
relies upon this definition.

In 2014, Le Callet and Niebur reviewed the various existing applications of visual attention
to multimedia technologies (Le Callet & Niebur, 2013). Their convincing synthesis of the domain
emphasises the benefit of attention particularly regarding "multimedia delivery, retargeting and
quality assessment of image and video, medical imaging, and the field of stereoscopic 3D images
applications". It strengthens our conviction that applying attention mechanisms to computer vision,
using SNNs and event data, is a highly enticing line of scientific inquiry.

5.1.2.1 Attention mechanism with SNNs

The use of SNNs instead of traditional artificial neurons has been prioritised in the mo-
delling of attention for some years, maybe due to their common bio-inspiration. Chevallier et
al. (Chevallier, Cuperlier, & Gaussier, 2010) compared the relevance of their use for this task and
concluded in favour of spiking neurons over traditional ones, following their previous work on at-
tention in the exploration of a prey-predator environment (Chevallier, Paugam-Moisy, & Lemaître,
2005).

SNNs have thus been used to model different types of attention mechanisms applied to various
tasks. For instance, Katayama et al. (Katayama, Yano, & Horiguchi, 2004) used SNNs to imple-
ment overt attention through selective visual attention with gaze shift. This model used two layers:
one representing the virtual cortex and the other the hippocampal formation. The correlation of
firing times of spikes output by these two layers determines three states: the attention state, the
non-attention state and the shift of attention.

Another application of SNNs is the modelling of covert attention (visual attention without eye
movement): Chevallier and Tarroux (Chevallier & Tarroux, 2008) use SNNs to extract saliency
and focus on the attention of a moving stimulus. This is implemented using a neural filter, a sa-
liency map and a focus map. The filter thresholds enforce a convolution on low and high spatial
frequencies. The first map gathers information from visual features on different spatial frequen-
cies thanks to synchrony detectors. The second map finally allows covert attention using a self-



68 CHAPITRE 5 — Concepts from neuroscience

connection mask. In this model, saliencies are temporally coded and arise in hierarchical order,
close to the forebrain representation of the visual scene. (Thakur et al., 2017) implement a neuro-
morphic model of visual saliency in RGB data on digital hardware, using stochastic computation
and achieving very low power consumption. They believe their model to be useful for "information
triaging, compression and analysis in computer vision tasks". The neuromorphic dynamic visual
saliency model introduced in (Molin, Thakur, Niebur, & Etienne-Cummings, 2021) is bottom-up,
feed-forward and built on the concept of proto-objects, i.e. low-level elementary features formed
rapidly and in parallel in the visual cortex. The authors compare their results to the ground truth
obtained from human eye prediction as well as implement their model on a hybrid FPGA to enable
real-time applications.

Chick et al. (Chik, Borisyuk, & Kazanovich, 2009) defined a model for selective visual atten-
tion applied to the sequential selection of objects. This top-down, temporal, feature-based attention
uses a 2-layer architecture of inhibitory, excitatory and peripheral neurons. This SNN model used
two types of inhibition to implement respectively attention focus and shift thanks to short-term
plasticity.

SNNs can also allow for object detection with saliency indexing, mimicking top-down atten-
tion. Such a model has been implemented by Wu et al. (Wu, McGinnity, Maguire, Cai, & Chen,
2013), in the form of three successive stages: a network inspired by the biological retina extracts
the low-level image features, which are then decomposed into multiple visual pathways. Finally,
“attention area maps” similar to the retinocentric output of the FEF are created, approximated by
spike rate maps and enabling the detection of RoIs.

A model of interest has been defined by Bernert and Yvert (Bernert & Yvert, 2019) with an ap-
plication to spike sorting, a common pattern recognition problem in neurosciences. Spike sorting
consists of detecting action potentials emitted by biological neurons, thanks to the classification of
the patterns present in the membrane potential measured in said neurons. This unsupervised net-
work reproduces overt temporal attention after a short learning period with little data: an attention
neuron modulates intermediate and output layers according to a combined short-term plasticity,
hysteresis and threshold adaptation mechanism.

Finally, since curiosity is one of the main drivers of attention, we can mention the work recently
introduced in (Shi et al., 2020). To perform object recognition on MNIST data, the authors regard
attention as the novelty of a stimulus. Thus their SNN model learns by estimating the novelty
of the visual samples and updating those samples when the novelty exceeds a certain threshold.
According to the authors, the attention mechanism takes place in one of the cerebral pathways re-
sponding to curiosity: more specifically, it follows the pathway starting from the ventral tegmental
area and reaching the hippocampus via the prefrontal cortex and the precuneus.

5.1.2.2 Attention mechanisms applied to silicon retinas

The processing of event-based data often takes place via the adaptation of computer vision
models initially dedicated to classic RGB visual information. One example is given by Cannici et
al. (Cannici, Ciccone, Romanoni, & Matteucci, 2018), who designed two visually attentive models
for event-based data. One aims to locate RoIs using event activity within the field of view, while the
other is based on the Deep Recurrent Attentive Writer neural model. This model was designed in
2015 by Gregor et al. (Gregor, Danihelka, Graves, & Wierstra, 2015) to generate complex images
and emulate the foveation of the human eye, thus implementing a spatial attention mechanism.
Another example of adaptation from RGB to event data is given by the evProto model introduced



5.2 – 5.1.2 Neuromorphic visual attention 69

in (Iacono et al., 2019): the authors extend the algorithm for proto-object detection and spatial-
scale estimation in RGB data introduced in (Russell, Mihalas, von der Heydt, Niebur, & Etienne-
Cummings, 2013), based on border ownership — which reacts to edges potentially belonging to a
border — and grouping — strongly activating a region enclosed by several object borders. (Ghosh
et al., 2022) further develops the previous work into a depth-based attention model by combining
it with a biologically inspired stereo disparity estimation algorithm.

Feng et al. (Feng et al., 2020) implemented an algorithm applied to denoising of event data:
the background of a scene recorded by a DVS camera is denoised thanks to the detection of event
density in a spatiotemporal neighbourhood, which can be assimilated to covert visual attention.

5.1.2.3 Attention mechanisms with SNNs applied to silicon retinas

Works addressing visual attention by combining SNNs and event data are rare in the literature.
Recently, some authors have studied the combination of SNNs used on event-based data in

order to convey an attention mechanism. An example of such a combination is given by Bogdan
et al. (Bogdan et al., 2019), where they develop an unsupervised decomposition of elementary
motion detectors. According to them, "fast localised motion detection is crucial" for an efficient
visual attention mechanism.

Additionally, neuromorphic saliency detection models applied to event data are most often
than not derived from existing models implemented with traditional neural networks and applied to
RGB or grayscale images: (D’Angelo, Perrett, Iacono, Furber, & Bartolozzi, 2022) is for example
adapted from (Iacono et al., 2019), itself originally adapted from (Russell et al., 2013). Another
noteworthy example is given by the model recently introduced in (Lele, Fang, Anwar, & Ray-
chowdhury, 2022), where the authors combine CNN and SNN applied respectively on frames and
event data to achieve embedded target localisation in a prey/predator scenario. Both networks are
implemented on a drone and their fusion outperforms CNN-only processing in realistic 3D virtual
environments. The CNN is trained for prey detection on the intensity image reconstructed from
the embedded DVS, while the SNN allows for the cancellation of events generated from the drone
ego-motion. This combination is inspired by insects and primates’ biological behaviours: their
vestibular sensors interact with the vision "to cancel the activity corresponding to the predator’s
self-motion".

Only a few models genuinely take advantage of the intrinsic dynamics of SNNs and the uni-
queness of event data. One popular bioinspired mechanism applicable to the task of saliency de-
tection is the Dynamic Neural Field (DNF), a spatiotemporal mathematical description of activity
patterns in neuronal populations in the visual and motorcortex (Sandamirskaya, 2014). Renner et
al. (Renner et al., 2019) make use of this mechanism as a soft WTA to implement saliency tra-
cking of pre-activated objects, by manually increasing the activity in a pre-defined region. While
neuromorphic, this approach is not applicable in real scenarios where the RoI is not known be-
forehand. DNF was also used by Rasamuel et al. (Rasamuel, Khacef, Rodriguez, & Miramond,
2019) to extract a saliency map from combined DVS and standard camera, with an application for
real-world exploration and exploitation. Renner et al. also proposed a combined use of SNNs and
silicon retina, applied to object tracking (Renner et al., 2019): they implemented a recurrent SNN
emulating the activity of large homogeneous populations of biological neurons. Via a soft WTA,
this model thus adopts the attractor dynamics of DNFs.
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5.2 Foveation

5.2.1 Biological foveation

The majority of biological visual sensors have very irregular sensor grids. For example, some
insects have a peripheral vision grid used for navigation, while another is specialised to a very
specific location in the visual space and dedicated to mating behaviour. Most predatory mammals
have a central visual area on the retina with a high density of photoreceptors and the ability to
move their eyes, and thus the localisation of this area of high acuity around the centre of the gaze.
This action is driven by visual attention mechanisms (see previous Sec. 5.1.1) and can be learned
by means of a saccadic mechanism (Daucé, Albiges, & Perrinet, 2020) that has been shown to
optimise the efficiency of information gain at each saccade (Daucé & Perrinet, 2020). The wide
variety of anatomical configurations illustrates that this arrangement is closely related to the beha-
vioural repertoire of each animal (Land, 2018), and the introduction of such an irregularity, which
we refer to here as foveation for simplicity, can provide significant improvements in information
processing in event cameras.

As described in Paragraph Human eye and retina, foveation is a visual process in which the
eye directs its focus to a particular point of interest, typically by moving or adjusting the position
of the eye. In the human eye, the fovea is the central area of the retina responsible for sharp and
detailed vision. By directing the fovea towards the point of interest, the visual system can acquire
more information and process it with higher accuracy and resolution.

Figure 5.2 – Biological foveation mechanism, adapted from (Bear et al., 2007).

5.2.2 Foveation in computer vision

Foveation is important in various applications, such as image and video compression, where
selective compression is applied to regions of low visual acuity, and in robotics, where foveated
sensors can reduce the amount of data and processing required for visual tasks.
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Figure 5.3 – Visual representation of retinotopic foveation, from (Perrinet, 2023). “A picture (ex-
tract from the painting "The Ambassadors" by Hans Holbein the Younger) can be represented on
a regular grid represented by vertical (red) and horizontal (blue) lines. Retinotopy transforms this
grid, and in particular, the area representing the fovea (shaded gray) is over-represented. Applied
to the original image of the portrait, the image is strongly distorted and represents more finally the
parts under the axis of sight (here the mouth).”

The concept of foveation has been explored in (Geisler & Perry, 1998) in the late 1990s with
a foveated multiresolution pyramid with the same objective to reduce the amount of data trans-
mitted in remote vision tasks such as vehicle teleoperation, surveillance, or telemedicine. While
a pointing device was used in their experiments to select the foveated area, authors recommend
a gaze tracker like in (Martinet et al., 2009) as a preferable solution to select areas of interest. It
has been demonstrated that the retinotopic representation of images (as described in Fig. 5.3) is
beneficial in Spatial Transformer Networks among others “to learn CNN to be invariant to affine
transforms” (Dabane, Perrinet, & Daucé, 2022).

Most artificial sensors, such as the CMOS chip that powers the cameras in the average smart-
phone, have evenly spaced sensors. This is also the case for all event cameras. This is an optimal
choice when considering the trade-off between the increasing miniaturisation of each pixel and the
growing demand for higher image resolutions. However, the introduction of an irregularity such as
the one described above, which we refer to here as foveation for simplicity, can provide significant
improvements in information processing in event cameras.

A foveated sensor that mimics the retinotopic layout of a biological retina will generally use
fewer pixels than a conventional sensor and will therefore be more energy efficient. Indeed, this
would allow us to maintain a high amount of meaningful information while significantly reducing
the amount of raw data to be processed. In the particular case of neuromorphic architectures such
as SpiNNaker or Intel Loihi, the power consumption is directly proportional to the number of spi-
kes/events processed, and reducing this number is an efficient way to reduce power consumption,
a heavy constraint for embedded applications. However, we believe that the development of a me-
chanism mimicking foveation would greatly improve the processing of event-driven data beyond
the energy efficiency aspect. Indeed, recent studies have shown that the particular geometrical
layout of the log-polar mapping observed in the human retina has several advantages (Hao et al.,
2021). In particular, a rotation or a zoom is transformed into translations into a log-polar map-
ping (Traver & Pla, 2003). Further rotation and zoom-invariant processing can for example be ea-
sily implemented in a CNN, thus improving the classification performance (Jérémie, Daucé, & Per-
rinet, 2023). Moreover, foveation can lead to several improvements in image compression (Araujo
& Dias, 1997), in the efficiency of image registration (Sarvaiya, Patnaik, & Bombaywala, 2009),
or for object recognition (Pramod, Katti, & Arun, 2022). Yet, it is still not known whether such
foveation could be beneficial for event-driven imaging.
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A mechanism akin to neuromorphic foveation was introduced by D’Angelo and colleagues in
2020 (D’Angelo et al., 2020) and drew inspiration from the Spiking Elementary Motion Detector,
which detects optical flow in event data, as well as from varying sizes of receptive fields in the
mammalian retina. D’Angelo and colleagues extend this work in order to “decrease the compu-
tational resources required, by filtering the number of incoming events into the visual field while
maintaining a fine resolution in the centre of the visual field”, which comes close to the foveation
definition. However, they extrapolate the visual attention from the centre of the optical flow —
which may not contain all the salient elements of the visual scene.

5.2.3 Foveated event-based camera

The introduction of foveation at the sensor level for event-driven sensors should reduce the
energy and bandwidth consumption from the sensor level up to the computing system by dyna-
mically allocating more bandwidth and pixel resolution to the RoIs and reducing the information
of peripheral (non-interesting) regions. Recently, an electronically foveated DVS has been propo-
sed (Serrano-Gotarredona et al., 2022) where DVS pixels can be dynamically configured in high-
resolution foveal regions or grouped into low-resolution regions with arbitrary sizes. The sensor
can attend in parallel to an arbitrary number of foveal high-resolution regions. Furthermore, the
electronic reconfiguration of foveal regions makes it faster and has lower energy compared with
the configuration of the centre of the RoI using mechanical control of the sensor position.

5.3 Delay learning and detection of spiking motifs

As described in Chapter 2, an SNN is constructed using populations of neurons linked toge-
ther with connections, with respect to a certain architecture and certain rules allowing it to learn
a behaviour. These rules often concern the evolution of the synaptic weight between two pre-
and post-synaptic neurons, i.e. the amount of neurotransmitters released in the synapse following
the pre-synaptic neuron’s excitation. Hebb’s rule can be mentioned: “cells that fire together wire
together” (Hebb, 1949).

Delay learning is another of those learning rules which, instead of changing the synap-
tic weight, changes the delay of the electrical spike propagation in the pre-synaptic neuron’s
axon (Hüning et al., 1998). Depending on the definition, the delay refers to either the time a
spike takes to travel through the presynaptic axon, the postsynaptic dendrites or both.

We present below a short review of biological delay learning and neuromorphic models im-
plementing this bio-inspired learning. A more complete review of this topic can be found in our
review article (Grimaldi et al., 2022).

5.3.1 Biological delay learning

The first evidence of any neuronal delay in the information propagation within the animal brain
came from the interaural time difference, allowing for the azimuthal localization of sound by barn
owls. According to Gerstner in 1996, there is a true paradox in auditory neural systems since
“neural networks encode behaviourally relevant signals in the range of a few µs with neurons
that are at least one order of magnitude slower” (Gerstner, Kempter, van Hemmen, & Wagner,
1996). Various biological experiments have thus revealed the existence of a biological axonal
delay precisely adjusted according to variations of parameters in the brainstem (with our without
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application of plasticity) ; one of them, the "Jeffress model" is presented in Fig. 5.4. We can also
mention the Reichardt detector, a model inspired by the drosophila’s elementary motion detector
for basic motion detection (Reichardt & Rosenblith, 1961 ; Franceschini, Ruffier, & Serres, 2009)
whose mechanism is presented in Fig. 5.5.

Figure 5.4 – Schematic showing the Jeffress
model for sound localization as applied to
chicken and barn owl, adapted from (Kubke
& Carr, 2006). Neurons located in the dor-
sal edge of the nucleus laminaris respond
maximally to sounds originating from far
contralateral space, and neurons located in
more ventral positions respond maximally to
sounds originating from the front.

Figure 5.5 – Reichardt detector model as in-
troduced in (Reichardt & Rosenblith, 1961).
Two input neurons A and B connect to a
common output. The input from B and A
are delayed according respectively to a va-
lue δB and comprised in [δA1, δA2, δA3]. If
the stimulus to detect, moving from A to B
with a time tstimulus, is timed with those two
connections so that δAx = δB + tstimulus,
then the spikes will reach the output at the
same time and the model will fire.

Over and over, myelin has been identified as one of the parameters mentioned above. Indeed,
this multilaminar coating formed by the glial cells in the Vertebrates’ nervous system facilitates
both the neural circuit function and the behavioural performance (Fields, 2015). Experiments on
mammals show that myelination is directly related to learning and memory consolidation, espe-
cially motor training and in enriched environments, both at an early age and in older animals, due
to its involvement in coupling the activity of distant neuron populations. It is worth highlighting
that myelination becomes increasingly important in larger brains where conductance delays are
substantial, and brainwave rhythms are critical ; synchrony errors can lead to neuropsychiatric and
neurological dysfunctions. Some further studies show that oligodendrocytes may detect neuronal
activity thanks to growth factors or neurotransmitters released through ion channels or via exocy-
tosis. Fig. 5.6 outlines the biological mechanism behind myelination and its impact on learning.
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Figure 5.6 – Biological mechanism at the origin of delay learning via myelination.

5.3.2 Neuromorphic models for delay learning

Delay learning is a striking example of a computer science concept effectively reinforced by
ongoing neuroscience work. Indeed, more and more SNN models are being developed with an im-
petus to learn by updating delays, not just synaptic weights. One convincing instance among many
is given by (Paugam-Moisy, Martinez, & Bengio, 2008), which combines delay adaptation and
polychronisation for reservoir computing using an STDP and a supervised delay learning algo-
rithm. (Wright & Wiles, 2012) presents a Spike-Delay-Variance Learning which adapts the shape
of the postsynaptic profiles according to temporal error. (Kerr, Burkitt, Thomas, Gilson, & Gray-
den, 2013) selectively potentiates recurrent connections with different axonal and dendritic delays
during oscillation activity. (Matsubara, 2017) implements an unsupervised delay learning algo-
rithm adjusting conduction delays and synaptic weights.(Nadafian & Ganjtabesh, 2020) proposes
an STDP extended to the delay learning repeating spatiotemporal patterns described in further
detail in the paragraph below. More recently, (Grimaldi, Besnainou, Ladret, & Perrinet, 2022) in-
troduces a supervised SNN model akin to a Reichardt detector learning polychronous groups, i.e.
repeated activations of prototypical spiking motifs ; this work was then extended in (Grimaldi &
Perrinet, 2023).

Bio-plausible unsupervised delay learning (Nadafian & Ganjtabesh, 2020) introduce a non-
supervised learning mechanism of synaptic delays in an SNN model composed of four convolution
layers with a kernel size of 5 × 5 and with shared weights and delays (i.e. all the weights and
delays of one convolution layer is updated homogeneously). The network is given as input a set
of stimuli formed by a dot moving diagonally during 5 timesteps randomly in either one of four
directions (northeast, north-west, south-east and south-west - see Fig. 5.7), with additional noise.
With such an architecture and input, each convolution layer specialises in the recognition of one
specific pattern among the four given as input (see Fig. 5.8, thanks to four unsupervised learning
rules described below.

The authors propose an STDP updating both weights and delay as follows:

∆ti,j =tj − ti − di,j

∆δi,j = G(ti,j) =

−B− × exp −∆ti,j

σ−
if ∆ti,j ≥ 0

B+ × exp ∆ti,j

σ+
if ∆ti,j < 0

(5.1)

where i and j are respectively the pre and post-synaptic neurons, tx is the spiking time of the
neuron x, di,j is the synaptic delay between i and j, ∆ti,j is the delay variation after STDP, B+
and B− are the parameters controlling the value of synaptic delay reduction and increment and σ+
and σ− are the STDP time constant.
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Secondly, they implement a homeostasis mechanism based on the neural activity: the activity
of each neuron is compared to a targeted frequency ; in case of low activity, their weight will be
decreased and delay increased to approach this objective (and vice versa on the contrary) according
to the following equation:

K(t + 1) =Rtarget + Robserved

Rtarget

δ(t + 1) =δ(t) − λδ × K(t + 1)
ω(t + 1) =ω(t) − λω × K(t + 1)

(5.2)

where Rtarget and Robserved are respectively the targeted and observed activation frequencies, ω(t)
is the current weight, δ(t) is the current delay and λω and λδ are the learning rate of homeostasis
mechanism, respectively applied to weights and delays. Additionally, the thresholds are linearly
adapted according to the neural activity: the threshold of a neuron is increased when it spikes and
decreased otherwise.

Finally, they include in their model a stop condition, developed to avoid the convergence of all
delays to zero (corresponding to the biological hyper-myelination) and the loss of any temporal
feature in the learnt pattern. If one of the synaptic connections of a neuron has a delay δ inferior
to the constant c (with c > B−), the learning is stopped and the STDP is no longer applied to any
synaptic connections of this neuron.
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Figure 5.7 – Four samples of the dataset employed in (Nadafian & Ganjtabesh, 2020). The inten-
sity of each dot shows the location of it over time (black indicates the most recent location).

Figure 5.8 – Weights and delays of each convolution at different training epochs, from (Nadafian
& Ganjtabesh, 2020). The size (intensity) of each circle represents the delay (weight) of its cor-
responding synapse, where the bigger circle illustrates lower synaptic delay (black indicates the
higher synaptic weight).
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CHAPTER 6
Event data downscaling

This chapter presents our work on embedded event data downscaling. Indeed, embedded
systems face limitations in terms of energy resources, memory, computational power, and
communication bandwidth. Hence, the increasing use of event cameras in embedded
computer vision tasks calls for a way to reduce the amount of events to be processed
while keeping the relevant information for the task at hand. We thus believe that a formal
definition of event data reduction methods will provide a step further towards sparse
data processing. Ten methods will be introduced in this chapter, achieving either spatial
or temporal downscaling in order to reduce the number of events in the dataset. For
each, we will study the trade-off between their capacity to handle events in real-time, the
amount of information kept after reduction and the performance of a computer vision
task on the processed data.
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6.1 Introduction

Neuromorphic computer vision and event sensor-based applications are receiving increasing
interest from the computer vision community (classification, detection, tracking, segmentation,
etc.), especially for robotics or autonomous driving scenarios.

Downscaling event data is an important feature in a system, especially if embedded, so as to
be able to adjust the complexity of data to the available resources such as processing capability
and energy consumption. Reducing the size of visual data is straightforward for grayscale and
RGB images with interpolation. When it comes to event data, size reduction is much less trivial:
event downscaling is a real challenge in neuromorphic computer vision and needs to be formalised
as a step further towards sparse data processing.

To this end, we designed different methods to reduce the number of events in a dataset or in an
event stream. We decided to tackle this problem by reducing the spatial dimension of the sensor,
or by reducing the grain size of the data recording time. In total, we implemented ten event data
downscaling methods: six reducing the spatial resolution (designated as "spatial" methods) and
four temporally reducing the event flow ("temporal" methods). We aim to design methods which
can handle events in real time so that they can be deployed on an embedded system and reduce the
input flow of events as they come to ease their processing. Additionally, the spatial methods are
developed so that the reduced events correspond to the events that would be produced by an event
camera of smaller dimensions than the original, recording the same scene.

In order to study the impact of spatial and temporal downscaling, we compare several features
of the resulting data, such as the total number of events, event density, information entropy, optical
consistency, computation time and performance of a computer vision task as assessment criteria.

We also carried out what is to the best of our knowledge the first-ever human perception study
with event data, where we assess and compare human performance on a gesture classification
task. The implementation of this study was the subject of a work placement by three Master
students, Ms Lucía Trillo Carreras, Ms Marina Bueno Garcia and Ms Ewa Kupczyk, carried out
under our supervision. The contributions of this study are 3-fold: (1) we establish a size threshold
under which the human performance falls behind the chance level, (2) we compare several spatial
and temporal event downscaling methods and show that all methods give unequal data quality,
and (3) we highlight some unexpected discrepancies in a comparison between human vs machine
performance.

To the best of our knowledge, the proposed methods make the first attempt to formalise event
data downscaling. The methods were implemented in Python ∗.

The results presented in this chapter were published on three occasions, in the proceedings
of the VISAPP 2022 conference (spatial funnelling and log-luminance reconstruction methods
— (Gruel, Martinet, Serrano-Gotarredona, & Linares-Barranco, 2022)), the WACV 2023 confe-
rence (neuromorphic spatial methods, i.e. SNN pooling — (Gruel, Martinet, Linares-Barranco,
& Serrano-Gotarredona, 2023)) and the CVPR 2023 Workshop on Event-based Vision (temporal
methods and human assessment — (Gruel, Trillo Carreras, Bueno Garcia, Kupczyk, & Martinet,
2023)).

∗. The Python code is available online at https://github.com/amygruel/EvVisu

https://github.com/amygruel/EvVisu
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6.2 Spatial downscaling

The following subsections present the six methods that we designed and implemented to
downscale spatially the data produced by an event camera. It should be noted that a seventh method
is introduced but quickly discarded as it does not meet our criterion for embedded data downsca-
ling: indeed it cannot be performed online and requires previous training of an ANN model (see
Section 6.2.3). Each method takes as input a sample of events at maximum resolution as well as
the reduction factor for this sample and returns the downscaled events as illustrated in Fig. 6.1. The
temporal dimension is not affected by the reduction. Depending on the downscaling method used,
the number and frequency of the downscaled events will not necessarily equal those of the events
occurring in the corresponding fullscale regions. These specific methods are particularly relevant
for ML models limited in memory and bandwidth (i.e. limited in terms of the spatial resolution
of the data they handle) or tasks requiring multi-scale resolution — see Chapter 8 and the work
conducted in (D. Gehrig & Scaramuzza, 2022)).

Figure 6.1 – A set of fullscale events captured by a sensor of size height × width is r according
to a downscaling factor div, set to 2 in this example. Here, all the events of the original sample
occurring in the blue area’s pixels will correspond to the events occurring in the green pixel after
reduction.

6.2.1 Spatial funnelling

A first intuitive solution to reduce event data is to simply divide each event’s coordinates in x
and y by the downscaling factor, then remove all the reduced events duplicates (i.e., keep only one
occurrence of each event for a specific set of coordinates (x, y, t, p) – see Fig. 6.2). This method
follows the same logic as Tonic’s downscaling approach, with the slight difference that Tonic keeps
duplicates while our implementation discards them.

From a computational point of view, this downscaling method consists simply of updating
the memory address of the event’s x, y coordinates. Since this relies on one elementary operation
repeated n times, with n the number of events processed, it has a complexity O(n).

Thanks to its quickness and simplicity, this solution could answer the need for downscaling
events in real time on embedded systems. However, the main drawback is that this process does
not drop any event (except the duplicates). The reduced area undergoes a high density of events,
yielding an information loss due to the accumulation of pixel activation: the precision of (x, y)
coordinates decreases and the fine details of the recorded objects are lost (see Fig. 6.2). Spatial
funnelling drastically increases pixel activity (see Fig. 6.2), especially when the downscale factor
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is significant. In the extreme yet unlikely case where the data is downscaled to a 1 × 1 target
size, the resulting pixel is likely to be constantly active. Finally, the mechanism does not correlate
with the physical behaviour of an actual event camera: the optical consistency is very low for this
method.

6.2.2 Log luminance reconstruction

From an optical point of view, downscaling the spatial size of an event recording boils down
to averaging the luminance captured by a subset of pixels in the original sensor. In a physical
implementation of an event camera formed by a 2D array of pixels as the one shown in Fig. 3.2,
this method could be implemented by averaging the photocurrents Iph generated by neighbour
pixels and performing the trans-impedance logarithmic conversion and posterior voltage amplifi-
cation and differentiation (as explained in Chapter 3). In order to implement this behaviour, the
log-luminance is reconstructed for each pixel in the full-scale dataset: each event occurring on the
same pixel increases (if positive) or decreases (if negative) the log-luminance level by one unit.
The mean log-luminance is then computed for each region of size factor2 in the sensor. Lastly,
the downscaled events are generated: an event occurs at every timestep where the average log-
luminance crosses a threshold line ; the event is positive if the gradient is positive, and vice-versa.

To achieve a pixel’s log-luminance reconstruction, all events from this pixel are translated into
points of coordinates (x shows the timestamps, y is the level reached) where the initial level is
arbitrarily set to 0 and the contrast threshold set to 1 (see Fig. 3.3).

Figure 6.2 – Schematic illustration for spatial funnelling and event count methods. A sensor of
size 2 × 2 outputs negative and positive at each pixel across time, which are downscaled using
spatial funnelling (upper red frame) and log-luminance event count (lower green frame). In this
example, the downscaling factor is set to 2.

6.2.2.1 Event count

A first approach to log-luminance reconstruction consists in estimating the mean log-
luminance value reached by a downscaled pixel every time an event occurs in the corresponding
fullscale region. In other words, we realise a normalised event count in the fullscale region as
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presented in Fig. 6.2. If its value crosses a contrast threshold, an event is produced ; an additio-
nal value keeps track of the slope in order to set this event’s polarity depending on the slope. It
is also necessary to handle the constraint posed by the fact that an event is only produced if the
entire threshold has been crossed since the last event. The slope value allows us to ensure this by
identifying the extrema, thus preventing events from occurring when the log-luminance crosses a
threshold directly following an extremum. Therefore, no event is produced at timestamps 8,13 et
17 in Fig. 6.2, consistently with the native behaviour of an event camera.

Since the complexity of this method relies on the number n of events, it is therefore also O(n).
This approach’s main disadvantage is the loss of neuromorphic asynchrony. A reduced event

can only occur at the timesteps where a full-scale event took place, which would not be the case
with actual log-luminance reconstruction, as depicted in the following paragraphs. This drawback
is also an asset: this reduction method can easily downscale events online as they are being recor-
ded, and its algorithm simplicity is a plus for an embedded system.

6.2.2.2 Linear interpolation

The second approach consists in actually reconstructing the log-luminance curve as a poly-
line, where each event in the log-luminance graph is linked to its neighbours in time by a line as
presented in Fig. 6.3. This allows for a quick computation and interpolation of the intersections
between the thresholds and the curve.

However, it is not as faithful to the physical reality as we would like it to be: the log-luminance
curves are reconstructed as polylines and not cubic curves similar to the actual behaviour of log-
luminance recorded by an event camera. Furthermore, it has one disadvantage that it shares with
the cubic estimation approach described below: both those approaches cannot be computed strictly
in real time since the interpolation requires knowing the future behaviour of the curve, i.e. the next
events that will occur on the monitored pixel, which are obviously unknown at the current time. In
real-time scenarios, these methods require an adaptation: we propose to work around this problem
by inserting a slight delay between the data recording and processing.

The proposed adaptation strategies describe the behaviour of the reconstructed log-luminance
curves when no input event is given at a time t:

— constant strategy: the reconstructed curve remains constant until new events are triggered,
follows the equation y = c with c a constant equals to the log-luminance value reached
last (see Fig. 6.4) ;

— interpolation strategy: the reconstructed curve is interpolated (linear/cubic) given the slope
at the location of the last triggered event when it crossed the previous log-luminance thre-
shold (see Fig. 6.5).

Note that the interpolation strategy presented in Fig. 6.5 leads to negative values, which is
physically incoherent. Indeed, the log-luminance curve recorded by an event camera would not
go into the negative (as it is not physically sound) by would have a minimum bound of 0. In our
implementation, we made the choice to allow for negative values for the two following reasons:

1. the curves are interpolated for an “unseen future”, i.e. for an unknown time up until the
arrival of an event at the corresponding pixel. We thus expect the next event to arrive
quickly enough for the curve not to go too low into the negatives.

2. the curves are interpolated using a null log-luminance value at the origin. Since we do
not know when the event camera began to record, this value is arbitrary and we could
decide to set it at a much higher value, thus preventing the issue of interpolated negative
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Figure 6.3 – Schematic illustration for linear log-luminance reconstruction. A sensor of size 2 × 2
outputs negative and positive events at each pixel across time (crosses in blue, yellow, red and
green, each colour corresponding to one pixel), which are downscaled using log-luminance re-
construction with linear interpolation. The black line corresponds to the downscaled log-luminance
values, which are computed as the average of the log-luminance values recorded by each of the 4
original pixels. In this example, the downscaling factor is set to 2.

log-luminance value. The only information we need is the time at which the interpolated
curves cross the thresholds ; here we set the cross with the origin at 0 to facilitate the
reader’s comprehension.

This note also concerns the interpolation strategy applied to the cubic lo-luminance reconstruction
described below (Fig. 6.8).

6.2.2.3 Cubic interpolation

In this last approach, the log-luminance of each neuron is interpolated as a cubic curve strictly
running through the events on the log-luminance graph as seen in Fig. 6.6. The cubic interpolation
was implemented using Scipy’s method PChipInterpolator, an implementation of the Piecewise
Cubic Hermite Interpolating Polynomial. This algorithm is a third-degree piecewise polynomial
function which seeks to match the derivatives of each point with its neighbours. Thus its extrema
coincide with the data’s extrema, which is not the case for all cubic interpolation algorithms that
tend to greatly overshoot (Rabbath & Corriveau, 2019). Similarly to other cubic interpolation
algorithms, this cubic interpolator I takes as input a set of values (x, y, x′) and returns the y′ data
interpolated for all x′ values with respect to the relation between y and x:

I(x, y, x′) = y′with x′ =
⌊ xmax

threshold
⌋∑

x=⌊ xmin
threshold

⌋+threshold

(x) (6.1)
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Figure 6.4 – Illustration of the constant strategy applied to linear log-luminance reconstruction.
The input events and downscaling factors are similar to those used in Fig. 6.3.

Figure 6.5 – Illustration of the interpolation strategy applied to linear log-luminance reconstruc-
tion. The input events and downscaling factors are similar to those used in Fig. 6.3.
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In our case, the coordinates are those of the events in the corresponding log-luminance graph: the
x-axis corresponds to the timestamps and the y − absciss to the events’ log-luminance. From a
set of known log-luminance levels x′, the cubic interpolation outputs the timestamps y′ where the
events’ log-luminance crosses those levels.

Figure 6.6 – Schematic illustration for linear log-luminance reconstruction. A sensor of size 2 × 2
outputs negative and positive at each pixel across time, which are downscaled using log-luminance
reconstruction with cubic interpolation. In this example, the downscaling factor is set to 2.

This approach reconstructs a curve close to an actual log-luminance curve recorded by an
event camera, granting a high optical consistency to this approach. Indeed, this method emulates
the real-time signal averaging among neighbouring pixels that is implemented in hardware in
the electronically foveated DVS proposed by our collaborators at IMSE (Serrano-Gotarredona et
al., 2022). That way, the log-luminance reconstruction generates the output event flow that most
closely resembles the output event flow obtained by the electronically foveated DVS real hardware
observing the same scene driven by the same attention mechanism.

However, the existing tools allowing the cubic interpolation of y values according to a set of
x parameters require the x set to be strictly monotonous, without any duplicates. The first hinder
can be removed by splitting the (x, y) dataset presented in Eq. 6.1 at the different log-luminance’s
extrema:

Si(x, y) =
next∑
i=0

tyexti+1∑
t=tyexti

(xt, yt) (6.2)

with Si the ith subset of the events comprised between two extrema, next the total number of
extrema in the dataset i.e. the number of segments Si, and tyexti

and tyexti+1
respectively the

timestamps of the ith and (i + 1)th extrema.
The second hindrance mentioned above is more complex to avoid: although it is a rare oc-

currence, multiple events still happen at the same coordinates and in the same timestamps. This
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Figure 6.7 – Illustration of the constant strategy applied to cubic log-luminance reconstruction.
The input events and downscaling factors are similar to those used in Fig. 6.6.

Figure 6.8 – Illustration of the interpolation strategy applied to cubic log-luminance reconstruc-
tion. The input events and downscaling factors are similar to those used in Fig. 6.6.
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requires us to only keep one specimen of duplicates, thus lightly skewing the data processing.

The handling of event data in real-time by the cubic log-luminance interpolation method fol-
lows the strategies described for linear log-luminance reconstruction: the behaviour of the constant
strategy is described in Fig. 6.7 and the behaviour of the interpolation strategy in Fig. 6.8.

6.2.3 Events to video to events

Rebceq and colleagues introduced in (Rebecq et al., 2019b) a method to reconstruct grayscale
videos from an event stream using a recurrent neural network trained on a large amount of simula-
ted event data. Using this model, a simple technique would be to use standard image downscaling
methods on grayscale frames reconstructed from the event data and then translate this reduced
image back into events.

This is equivalent to reconstructing a downscaled luminance and computing downscaled events
from it, but it has some important drawbacks. The main one lies in the complete loss of event data’s
asynchronicity since the grayscale video produced from the event data is built from the accumula-
tion of information into frames. This method needs two sets of grayscale data to be created during
the process (fullscale from events, then downscale) leading to high memory consumption, while
embedded systems are limited in data storage. Moreover, its implementation in practice is com-
putationally heavy, which is not suited for embedded applications. Lastly, the chance of errors in
event data reduction is quite high due to the two approximations and one interpolation required by
this method.

A pipeline implementing such a downscaling process is the following:

1. translate the event data into grayscale frames thanks to Events-to-Video library introduced
in (Rebecq, Ranftl, Koltun, & Scaramuzza, 2019a). This module actually consists of a ML
model trained on a set of datasets comprising neuromorphic and grayscale recordings of
the same scenes.

2. rescale the grayscale frames thus obtained with a standard interpolation using one of the
many existing image processing tools.

3. finally translate the downscaled grayscale frames into events by using the library Video-
to-Events from (D. Gehrig, Gehrig, Hidalgo-Carrió, & Scaramuzza, 2020). This library
reconstructs the log-luminance variations between each grayscale frame, and then outputs
the corresponding events according to user-defined negative and positive contrast thre-
sholds.

Some works implement multi-scale resolution of event data using part or all of the pipeline
described above. For example, the authors in (D. Gehrig & Scaramuzza, 2022) implement steps 2
and 3 to assess the evolution of the performance of various computer vision tasks.

This pipeline requires the event dataset one wishes to downscale either to be one of the datasets
the Events-to-Video model has been trained on or to contain a set of grayscale frames recorded
simultaneously as the event data. Since this method is very arguable considering the motivations
for event downscaling, we did not pursue it further during this work. Note that the dataset used in
our experiments does not meet either of these two criteria (see Section 3.3).
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6.2.4 SNN pooling

This subsection presents two novel SNN architectures for spatial event data downscaling by
SNN pooling, introduced in (Gruel, Martinet, Linares-Barranco, & Serrano-Gotarredona, 2023).
Here, our core objective lies in designing a fully integrated energy-efficient SNN model able to
run dynamically on a neuromorphic platform. We claim the importance of providing downscaling
methods for event data in order to filter out events and reduce the data flow with care, as this
preprocessing step should be achieved while preserving the information conveyed. The design
of such a model is not straightforward, and it requires some hyper-parameter tuning to achieve
the results presented below. As far as we know, it is the first time an SNN has been studied as a
method to downscale event-based data. Knowing that the combination of SNNs with event-based
cameras seems to prove its worth in terms of compatibility of data types (Cordone et al., 2021),
information retention (Hagenaars, Paredes-Valles, & de Croon, 2021), energy efficiency (Cordone
et al., 2021 ; Debat et al., 2021) and processing latency (Debat et al., 2021) reinforces the relevance
of studying event data reduction using SNNs.

In some ways, this event processing has often been used by SNN models handling neuromor-
phic data: indeed the use of a stridded convolution or max pooling layer e.g. in (Cordone et al.,
2021) is close to event downscaling by SNN pooling, as we present here. The events are directly
translated as input spikes in a 2D layer of size height × width connected to a smaller 2D layer
of size height

ratio × width
ratio , which implements a convolutional layer with a kernel size ratio × ratio,

a stride ratio, without padding. Each spike output from this smaller layer is then interpreted as
an event, with each neuron construed as a pixel of a smaller sensor. The connection between each
output neuron and the corresponding input region is fully connected (i.e., all the spikes produced
by the region are sent to the same neuron). As we will describe in the following paragraphs, we
implemented two SNN architectures depending on whether the positive and negative events are
considered separately or not.

Both methods were implemented in this work using the Python SNN simulator PyNN (Davison
et al., 2009) to produce downscaled datasets for further comparisons. However, since this library
runs simulations on CPU, it leads to a significant run time. We thus adapted the networks to be
executed on the SpiNNaker neuromorphic chip (S. Furber & Bogdan, 2020): we chose SpiNNaker
as a simulator instead of NEST (which runs on CPU) and update the implementation of the fully
connected connections to be comprehended by the sPyNNaker library.

6.2.4.1 Separate handling of polarity

A first method of SNN pooling is proposed, where the positive and negative events are handled
differently, although during the same simulation. The architecture used is depicted in Fig. 6.9: the
2D input layer is of size height × width × 2 with two 2D grids of LIF neurons stacked together,
each one receiving either positive or negative events. Likewise, the output layer is of size height

ratio ×
width
ratio × 2 ; each of its LIF neurons is wired to the corresponding input region by an excitatory

connection. No learning is necessary here: the weight ω of the connection between the input and
the output is set after fine-tuning phase (as is the sensitivity of an event camera recording a scene
— see below) and should not be adapted along the simulation. Spatially downscaling using SNN
pooling relies entirely on the LIF neuron’s intrinsic dynamics, which come close to the behaviour
of a DVS pixel (see Chap. 4).
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Most SNNs taking events directly as input, with no intermediate preprocessing of the data,
translate each of them into a spike at the corresponding coordinates in the input 2D layer of the
network with no distinction between positive and negative events ; any time a pixel is triggered,
a spike is emitted by the corresponding input neuron (see (Cordone et al., 2021)). This may not
have an impact on some computer vision tasks, but in our case we aim to reduce event data while
keeping the information as close to the original one as possible, thus preserving polarity. From this
stems our choice for the particular architecture described above.

However, separately handling the event polarities disregards the physics behind event cameras
and embodies the main flaw of this first architecture. In the case of a burst of negative and positive
events grouped together and recorded by the same pixel, the luminance is actually quite stable
and varies around one value with a variation range slightly higher than the sensor’s sensitivity
threshold. As can be seen in Fig. 6.10, downscaling this data should lead to a smaller luminance
variation range, thus to fewer events produced since they compensate each other.

6.2.4.2 Mutual influence of positive and negative events

To resolve the aforementioned problem posed by separate processing of polarities, we imple-
mented a second architecture illustrated in Fig. 6.9 (including the grey dotted box). It builds on
the structure of the first one and adds to it a mechanism of mutual inhibition between the polari-
ties. Each receptive field of the input layer activates the corresponding output neuron of the same
polarity, but it also inhibits the corresponding output neuron of the opposite polarity with the same
weight. This way each activation of the output neuron’s membrane potential due to an event of a
certain polarity is offset by any potential event of the opposed polarity taking place in a close time
span to obtain the expected behaviour presented in Fig. 6.10.

This represents more faithfully the behaviour of an event camera of a smaller resolution, re-
cording the same luminance as the sample being downscaled. It should also be noted that the
sensitivity of this simulated recording of a downscaled luminance can be adapted simply by ad-
justing the weights of the connections, as easily as adjusting the sensitivity of a DVS: the stronger
the weights, the higher the activation of the output neurons and the more events produced, and
reciprocally. Both methods described above will respectively be referenced to as "separate SNN"
and "mutual SNN" methods in the following pages.

6.2.4.3 Influence of hyperparameter tuning on SNN pooling

As with most SNNs, hyperparameter tuning greatly influences the activation of the different
layers and the overall spiking dynamic. Hyperparameters include the synaptic weights, the neu-
rons’ thresholds, the membrane time constant, etc (see Section 2.1.3). This hyperparameter tuning
is not inconsistent with the physical operation set up of the DVS: indeed in a DVS camera, dif-
ferent parameters can be set to record a scene, such as the contrast threshold or the refractory
period.

It was thus necessary to study the activity measures of both separate and mutual architectures
described in the previous section with varying hyperparameter tuning in order to select the most
optimal one. As seen earlier, many hyperparameters can be tuned in order to obtain the ideal
results. Here, we limit our study to the synaptic weight ω (see Fig. 6.9) since we wish to simulate
the behaviour of a smaller event sensor and the weight can be assimilated to a DVS contrast
threshold. The rest of the hyperparameters are set to values commonly used to initialise a LIF
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Figure 6.9 – Architectures of separate and mutual SNN downscaling methods. The two archi-
tectures proposed by the authors for SNN Pooling either handle the positive and negative events
separately (excluding the grey dotted box in the figure) or take into account their mutual influence
(including the grey dotted box in the figure). The green arrows represent One-To-One excitatory
connections between an input receptive field and the corresponding output neuron of the same
polarity, and the red arrows All-To-All inhibitory connections between different polarities. The
synaptic weight ω is homogeneous. The green dots correspond to positive events and the blue dots
to negative events. The first step of this model is to translate these input events into input spikes
while separating the polarity ; the output spikes are translated back into events in the final step.
In this example, both architectures are applied to data recorded with a sensor size of 128 × 128
pixels, which is downscaled by a factor of 2. The output layer of each polarity is thus of size
128
2

2 × 128
2

2 = 642 × 642.

Figure 6.10 – Schematic illustration for SNN pooling. A sensor of size 2 × 2 outputs events both
negative (blue ticks) and positive (green ticks) at each pixel across time, which are downscaled
with SNN pooling handling separately the events (green frame on top) or allowing a mutual in-
fluence (pink frame at the bottom). In this example, the downscaling factor is set to 2. Best seen
in colours.



6.2 – 6.2.4 SNN pooling 93

neuron in an SNN (presented in Tab. 6.1). As pictured in Fig. 6.11, a strong ω will allow for a
stronger activation of the output layer, thus letting more events through the connections and leading
to a higher output event density. If we consider the standard deviation of the density per pixel as a
measure of information provided by the event data, we could set an upper and lower bound for the
hyperparameter in order to ensure the production of suitable downscaled data (i.e. which output
number of events is smaller than the input, but still high enough to provide information, and which
output spatial density is proportional to the input one). Conversely, a lower bound should also be
provided in order to keep enough events in the output to have a minimum of information. This is
coherent with the contrast threshold used to set up a DVS camera: the higher the threshold, the
more events are filtered and the less information the event data provides. Hyperparameter tuning
is therefore an important aspect to keep in mind when using SNNs to downscale events.

Fig. 6.11 also interestingly shows that the mutual SNN tends to output fewer events in a lower
temporal density than separate SNN, which will be confirmed in Fig. 6.14. Indeed the mutual
inhibition tends to normalise the membrane potential of each neuron (see Fig. 6.10), which can be
assimilated to the log luminance recorded by each sensor’s pixel.

Figure 6.11 – Comparison of activity measures according to a varying synaptic weight ω for
separate and mutual SNN downscaling methods applied to DVS128 Gesture.

Parameter value
Resting membrane potential -65 mV
Reset membrane potential -65 mV

Neuronal threshold -50 mV
Membrane time constant 20 ms

Refractory period 0.1 ms
Excitatory decay time 5 ms
Inhibitory decay time 5 ms

TABLE 6.1 – Hyperparameters used to initialise the separate and mu-
tual SNN downscaling methods (see description of each variable in
Section 2.1.3).

6.2.4.4 Real-time data downscaling on SpiNN-3

In order to investigate the relevance of the SNN downscaling method for real-time event hand-
ling, we implemented both SNN downscaling methods on the SpiNN-3 board (see Section 2.2.2).
The run time of this method thus suffers from the limitations of the SpiNN-3 board. The number
of input events per simulation time-step does not influence the simulation run time, contrary to the
number of neurons and connections. As described in Eq. 6.3, the proposed architecture is convo-
lutional, meaning that the number of connections c depends on the number of neurons ninput and
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noutput in both layers as well as on the convolutional kernel size kernel. The latter is actually the
same as ratio in the proposed topology: kernel = ratio. Interestingly, as described in Eq. 6.3
below, for a given width and height, the number of connections c does not depend on ratio,
whereas ratio strongly influences the number of output neurons to be simulated on the board.

ninput = 2 × height × width

noutput = ninput

ratio2

c = kernel2 × noutput = ninput

(6.3)

Technically, PyNN uses a SpikeSourceArray (resp. a SpikeInjector) data structure for off-line
(resp. online) neurons that do not need to be simulated by the SpiNN-3 board. This important detail
means that although the architecture requires ninput +noutput neurons, the board will only need to
simulate noutput neurons and their c connections. Furthermore, the SpiNN-3 board does not handle
the definition of connections over a smaller group of neurons than the whole population, which
hinders the implementation of the connections in our models. This issue was bypassed using the
FromListConnector which allows to set the weights between each neuron of the input and output
layer in an All-To-All connection, thus enabling the convolution by setting some synapses weight
to zero (University of Manchester, 2021). However, this solution requires the implementation of
synapses that will not be used during the simulation ; this reduces the overall amount of available
synapses that can be implemented on the SpiNN-3 (which upper bound is set to 1,000 synapses
according to Section 2.2.2) and might prevent scaling up to larger sensors. Depending on whether
the separate or the mutual SNN downscaling version is used, the number of connections varies ;
indeed the mutual method adds an inhibitory connection between neurons corresponding to posi-
tive events in input to those corresponding to negative events in output and reciprocally. Thus the
number of connections c doubles between the separate and mutual SNN methods.

Considering all this information, the simulation run time should decrease when the reduction
factor ratio increases for both SNN downscaling methods, while the mutual SNN computation
time is likely to remain higher than the separate SNN. This is confirmed below in Section 6.4.2
and Fig. 6.17.

6.3 Temporal downscaling

In this section, we introduce four temporal downscaling methods, reducing the data flow by
sub-sampling events and with no impact on the spatial resolution. These methods are adapted to
scenarios that highly differ from the ones where a spatial downscaling method would be used (i.e.
in cases where a model would not have enough memory to handle an input layer of the sensor size):
we believe their use is especially relevant for embedded models, whose memory and computing
power may not be sufficient to record and process all events at the time of their arrival, but which
do not necessarily have a limit on spatial resolution.

6.3.1 Temporal funnelling

The temporal funnelling method comes close to Tonic’s temporal "Downsample" me-
thod (Lenz et al., 2021). Similarly to the spatial funnelling method we implemented (see Sec-
tion 6.2.1), it involves the pooling of events according to their timestamp rather than spatial coor-
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dinates and removes any duplicates. Event data is expressed with a µs temporal precision. Pooling
them according to their timestamp amounts to keeping only one event of the current polarity at
the current pixel in the time window defined by a temporal factor t (see Fig. 6.12), which leads to
changing the temporal precision.

We establish two types of temporal funnelling (see Fig. 6.12):
— asynchronous temporal funnelling: each event kept per pixel, per polarity and per time-

window maintains its original timestamp, with a thinner temporal grain than the one defi-
ned by t.

— synchronous temporal funnelling: each event is kept but with a timestamp rounded to the
end of the current time window set by t. This aims to illustrate the behaviour of an embed-
ded system which would accumulate the kept events into frames once all the events of the
corresponding time window are processed.

Figure 6.12 – Schematic illustration of the temporal funnelling downscaling method. A sensor
of size 2 × 2 outputs negative and positive events at each pixel across time, which are downsca-
led using the asynchronous (upper red frame) or synchronous temporal funnelling (bottom green
frame) methods with a factor t = 5.

The main disadvantages of this method are the induced loss of temporal precision and the
increased event density. As for the spatial funnelling, this amounts to simply updating the content
of the memory address of the event temporal coordinates, thus having a complexity O(n) (with n
the number of events).

6.3.2 Structural downscaling

We subdivide the structural downscaling methods into a deterministic one and a stochastic
one. The deterministic method (see Fig. 6.13 top) keeps every kth event out of N . The stochastic
method (see Fig. 6.13 bottom) filters events with a probability p. This strategy has the benefit
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of maintaining the original time and space scales. It handles events efficiently, simply deciding
whether to keep or discard each new event.

It should be highlighted that this strategy simulates the real-world situation where an embed-
ded system is overflowed with a dense event stream and is not able to process them all: some
events will just be dropped (Gallego et al., 2020).

One can easily compare both structural downscaling methods by converting k in p as described
in Eq. 6.4.

p = 100 × 1
k

(6.4)

Figure 6.13 – Schematic illustration of structural downscaling methods. A sensor of size 2 × 2
outputs negative and positive events at each pixel across time, which are downscaled using the
deterministic structural (upper red frame) with a factor k = 6 ; and the deterministic structural
(lower green frame) with a factor p = 60%.

6.4 Experimental comparison

To assess the performance of the different methods of event data downscaling described
above, we applied them to the neuromorphic datasets DVS128 Gesture (Amir et al., 2017) and
N-MNIST (Orchard et al., 2013), widely used as a benchmark in event data processing, and we
assessed the results according to the criteria described in the following sections. These datasets
were chosen according to their relevance to our motivations: DVS128 Gesture represents dyna-
mic information to be processed temporally, which would be the case in most embedded systems.
As for N-MNIST, it is particularly heavy in events: according to the parameters presented in its
description, N-MNIST displays on average 10.71 events per pixel per second, whereas DVS128
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Gesture only displays about 4.06 events per pixel per second (see Sections 3.3.1 and 3.3.2). All in
all, they are different but complementary in many aspects (sensor size, amount of events, visual
information, etc).

6.4.1 Comparison according to activity measures

Methods Number of Temporal Information Generation Optical

events density entropy time consistency

Original fullscale data 194,398 1.95e−7 2.94e−6 - -

Spatial Funnelling 186,414 2.95e−6 3.65e−5 103.20 ms *

Tonic Downscale 194,398 5.40e−5 4.31e−4 3.20 ms *

SNN Pooling

Separate handling 145, 680 142.27 0.15 648.86 s **

Mutual influence 113, 431 10.77 0.15 680.43 s ***

Log-luminance

Event Count 7,778 1.25e−7 1.88e−6 0.83 s **

Linear Estimation 624 8.58e−9 1.56e−7 2.63 s ***

Cubic Estimation 435 8.92e−9 1.66e−7 2.94 s ****

TABLE 6.2 – Features of the original DVS128 Gesture dataset and of the six spatial downscaling
methods, for a downscaling factor of 4.

The spatial downscaling of event data aims to significantly reduce the number of events per
sample while keeping a sufficient amount of relevant information.

Table 6.2 compares the six spatial downscaling methods presented above and the Tonic’s
"Downsample" tool according to 5 criteria described in the following section. The mean num-
ber of events per sample was calculated over the whole DVS28 Gesture dataset at full scale and
downscaled by a reduction factor 4.

Events’ temporal density Dt corresponds to the activation probability of pixels averaged over
the whole sensor:

Dt =
∑

x∈{1,w}
∑

y∈{1,h} Px,y

w · h
(6.5)

where w and h are, respectively, the width and height of the sensor. The activation probability
Px,y of one pixel of coordinates (x, y) is calculated as the number of events (positive or negative)
occurring at a given pixel divided by the time length of the sample:

Px,y =
∑

t∈{tmin,tmax} δ(xt, x) · δ(yt, y)
tmax − tmin

(6.6)
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with tmin and tmax respectively the minimum and maximum timestamp of the sample, and δ the
Kronecker delta function, which returns 1 if the variables are equal, and 0 otherwise.

If we consider the information brought by positive (or negative) events according to Shannon’s
information theory, we can estimate the entropy H (in bits) of the dataset as the average over all
pixels and polarities p of the pixel entropy Hx,y,p:

H =
∑

p∈{−,+}
∑w

x=1
∑h

y=1 Hx,y,p

2 · w · h

with Hx,y,p =
∑

Pe∈{Px,y,p,Px,y,p}

−Pe · log2(Pe)
(6.7)

where Px,y,p is the probability of event (probability for the pixel of being active), and
Px,y,p = 1 − Px,y,p is the dual probability of no event, for the polarity p at location (x, y).
Overall, we believe that an event camera provides interesting information when the sensor is
neither too little nor too much activated, i.e. when the pixels have an activation chance close to
50%. Hx,y,p becomes lower when the pixel is either never active or always active. Entropy values
in Table 6.2 are averaged from both polarities.

Finally, the computation time of each method presented in this paper was calculated on a panel
of over 500M events. The values presented in Table 6.2 correspond to the average calculation per-
iod for the downscaling of 100K events, expressed in seconds. Optical consistency is a qualitative
estimation of the resemblance between the method implemented and the actual behaviour of an
event camera of smaller resolution recording the same scene ; this estimation was performed by
our collaborators at IMSE, specialising in micro-electronics and event cameras.

It should be noted that the values produced for the SNN Pooling method are not obtained from
the same panel of event data used by the other methods. As a matter of fact, since the computation
time for one sample using either technique exceeds 10 min, we chose to assess our criteria on a
smaller set of downsampled events using SNN Pooling.

The values of these criteria confirm the hypotheses we outlined above. Tonic’s "Downscale"
method yields the highest number of events, thus the highest event density ; this spatial reduction
does not lead to a significant drop of events and thus does not answer our need for reduced
data to handle. The same goes for spatial funnelling, which ignores all event duplicates. Even
though the computation time of those two methods is low, the output data is almost as large as
the input. We should also point out that the information entropy of the spatial funnelling is quite
low due to the constant activation of the sensor’s pixels. The log-luminance techniques are the
most consistent with the actual behaviour of event cameras. It drops a large amount of data, which
might significantly improve any embedded computation, while maintaining a relatively high level
of information entropy as intended. SNN Pooling is also promising by its behaviour, closely
related to one of an event camera, but it is extremely sensitive to the weight of its connection: here
the weight is probably too strong hence its poor results.

Fig.6.14 shows that the different event spatial downscaling methods implemented vary stron-
gly by their activity measures. The plot on the left shows quite clearly that the number of events
per sample decreases to a varying extent depending on the downscaling method used. Since we
aim for a drop in the number of events post-reduction, the least convincing method by this criterion
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Figure 6.14 – Comparison of activity measures between different methods and reduction factors
for DVS128 Gesture (above) and N-MNIST (below) datasets. The y-axes are in log scale. Since
N-MNIST has a lower resolution than DVS128 Gesture, we assess its activity measures up until a
reduction factor of 10 (instead of 50). We see here that the funnelling method keeps a high number
of events and has an increasing temporal density, whereas all the other methods (except for SNN
pooling) strongly decrease the number of events kept. The log luminance reconstructions lead to
the decrease of temporal density, while the event count maintains one similar to the original data.

is obviously the funnelling one: the number of events stays stable no matter the reduction factor,
whereas the most pronounced drop is obtained with the log luminance reconstruction methods.

The plot on the right represents the temporal event density, which we additionally study as the
number of events is not a sufficient criterion for deciding which method provides the best preser-
vation of information with an increasing reduction factor. This criterion shows the distribution of
the reduced events over the sensor: a high temporal density corresponds to event data produced
by a highly triggered sensor. Fig. 6.14 shows that the funnelling and event count methods have
a high temporal density, i.e. all the sensor’s pixels tend to trigger a lot (significantly more than
50% of the time) across time thus reducing the information transmitted. A contrario, the log
luminance reconstruction seems to provide informative data, and both SNN methods seem a good
compromise between these two extrema.

Since the spatial downscaling methods are more likely to be applied on an embedded system,
it is interesting to consider the computational cost of each method, which give an estimate of the
energy consumed. The funnelling method reduces data with nearly zero energy, as the funnelling
can be applied in the event transmission from the sensor to the processor by just ignoring some
bits in the address of the events (and removing any duplicates). On an embedded computer, the log
luminance reconstruction methods are implemented using an algorithm of higher complexity thus
requiring a greater energy expenditure. However, if we consider this reduction at the sensor level,
it can be produced at zero energy cost. Finally, the SNN methods are to be directly performed
by an embedded neuromorphic chip, whose energy consumption is directly proportional to the
number of events given as input and the number of synapses implemented between the input and
output layer, i.e. proportional to the reduction factor.
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6.4.2 Comparison of real-time downscaling

In this section, we propose to compare the different spatial downscaling methods we imple-
mented regarding offline and online data handling. Indeed, while event sensors show a number of
advantages over frame-based cameras such as high temporal resolution, low energy consumption,
high dynamic range sensing, etc, that make them unavoidable for the future of real-time embedded
vision systems, the limited processing resources make it often hard to deal with a high event den-
sity in real-time embedded vision applications when handling events as they come †. This dilemma
calls for data reduction techniques able to handle input events in real time. We investigate the time
each of the methods introduced precedently takes to process 1s of input data from the DVS 128
Gesture dataset while preserving the quality of the information provided by the output data. The
run-time is calculated both for the "real-time" processing of events, i.e. the event data is reduced
as it is being recorded, or for the "deferred" processing, where the event data is first recorded as a
whole and then downscaled. Indeed, some methods need a different implementation depending on
this choice of temporality (see the description of log-luminance reconstruction methods above).
Note that the online downscaling time of temporal methods, which were implemented more
recently, could not be measured at the time of redaction of this manuscript. The online and offline
event downscaling studied in this section was run on an Intel 8-core i9-10885H CPU at 2.4GHz.

Figure 6.15 – Run time evolution for offline spatial and temporal downscaling of 1s of real-time
event data. The dashed line shows the real-time bound. The SNN methods are run on SpiNN-
3. Run offline, the spatial funnelling method is the quickest one as expected. Considering the
temporal methods, all allow for quicker-than-real-time downscaling.

Fig. 6.15 confirms the results presented in Tab. 6.2: spatial funnelling is definitely the quickest
method among the spatial downscaling ones, followed closely by the event count. Among the
temporal methods, the funnelling methods run with the same time and are the slowest out of
the four — however, it still outperforms the log-luminance reconstruction methods and the SNN
pooling. The deterministic structural method outruns all methods (spatial included). Furthermore,

†. This issue of processing event data on the fly might not be as great when accumulating events to process them
as frames. However, we believe in the usefulness of retaining the high temporal accuracy of events for further process,
which calls for pre-processing the data event per event.



6.4 – 6.4.2 Comparison of real-time downscaling 101

Fig. 6.15 shows that the temporal and structural methods do process events online relatively fast
and stably. When the temporal reduction factor increases, the deterministic structural factor k
increases or the structural stochastic filtering probability decreases.

Figure 6.16 – Run time evolution for online spatial downscaling of 1s of real-time event data.
The dashed line shows the real-time bound. The SNN methods are run on SpiNN-3, while the log-
luminance reconstruction methods are evaluated for the two strategies constant and interpolation.
The SNN methods are undoubtedly the quickest, but still two orders of magnitude slower than
real-time.

Fig. 6.16 illustrates the computational run-time evolution. It should be noted that this CPU can
only perform a maximum of 2.4 billion cycles per second, whereas an event camera can output
up to 1M events per second per pixel. For the DVS 128 Gesture dataset, the event camera is of
size 128 × 128 pixels, thus has the capacity to output up to 16B events per second ‡. The DVS
128 Gesture comprises an average of 30k events per second, as described in Section 3.3.1. The
speed of our CPU is thus too low to simply cycle through the events in real time, so the real-time
reduction is unattainable using this hardware.

‡. The number of 16 billion events per second is hypothetical and corresponds to the worst case scena-
rio where the DVS pixels are constantly triggered during the whole second. It has been calculated as follows:
1M events per second per pixel × 1282 pixels = 16, 384M events per second ≈ 16B events per second.
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It is interesting to note that while the event count is slower than the funnelling when run
offline on the whole dataset at once (see Fig. 6.15), it is quicker in an online scenario. This is due
to the fact that the event count needs by definition to be run timestamp per timestamp — which
is how we believe any online downscaling method should be run — thus giving it an advantage
over the spatial funnelling. As for linear and cubic log-luminance reconstructions, they suffer
from an important drop in performance accuracy and an increase in run time when the reduction
factor increases ; but it is to be noted that the constant strategy is significantly quicker than the
interpolation one.

Figure 6.17 – Time required by both SNN downscaling methods to process one second of input
events (left) or 1000 incoming events (right) while run on the SpiNN-3 board, with a previous
asynchronous temporal funnelling of the input data.

The simulation run time for the SNN downscaling methods on SpiNN-3 is displayed with
more details in Fig. 6.17. We combine the SNN pooling methods with the asynchronous temporal
funnelling to reduce event data both spatially and temporally in order to assess the limitations of
the SpiNN-3 board in terms of simulation time for the simple networks that are the SNN pooling
methods. Note that this is one of many method combinations for spatiotemporal reduction that
one could implement using the methods we introduced. We downscale the event data temporally
by a factor t ∈ [1, 1e3, 1e6] (in µs). The temporal factor t = 1 corresponds to the absence of
preliminary temporal reduction.

The time required to spatially downscale 1s of input data in real-time without preliminary
temporal reduction is significantly higher than 1s, even when the reduction is run on the SpiNN-3
board. This seems to point towards a limitation of the SpiNN-3 board: to simulate a simple network
composed of two layers (one of which is the input, thus not simulated as SNN by SpiNNaker) and
one to two sets of connections, the board requires minimum time significantly greater than 10−6

seconds (grain of an event timestamp) to simulate a time step. SpiNN-3 therefore seems to require
a prior temporal reduction in order to be able to simulate event data in a reasonable time. Indeed,
Fig. 6.17 shows that a temporal funnelling of at least 103 is needed.

As discussed previously, the simulation run time decreases when the reduction factor increases.
Surprisingly, we do not observe a significant difference in run time between mutual SNN and
separate SNN methods. Similar behaviours are observed when studying the evolution of the run-
time needed by the SNN methods to process 1000 input events, i.e. around 30ms of input data.
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6.4.3 Comparison according to performance on a classification task

In the best-case scenario, an optimal spatial downscaling method for event data drastically
reduces the number of events while conserving relevant data. This section aims to discuss the
relevance of our proposed approaches compared to existing ones regarding this matter. Activity
measures are studied above as a first attempt to answer this interrogation. We further investigate
the relevance of the retained information by looking at the performance of each method against
the specific computer vision task of classification.

We have pre-trained the classifiers implemented using SLAYER and PLIF (that will be de-
signated as “SLAYER benchmark classifier” an “PLIF-based classifier” in the remainder of this
chapter — see Section 4.3.1) on the full-scale DVS 128 Gesture and N-MNIST datasets. In order
to optimise the simulation run time, we loaded and fine-tuned this classifier’s weights in a transfer
learning strategy on the downscaled datasets.

6.4.3.1 SLAYER benchmark classifier

We apply the SLAYER classifier (see Section 4.3.1.1) on the DVS128 Gesture and N-MNIST
datasets reduced using the six spatial methods introduced previously §. The resulting performances
are presented in Fig. 6.18. The optimal downscaling method should have the best accuracy perfor-
mance since it retains the most relevant information necessary for effective classification.

Unlike other classification models which accumulate input events into frames (such as the
PLIF-based classifier (Fang, Yu, Chen, Masquelier, et al., 2021) — see subsection below), the
SLAYER benchmark classifier takes as input sparse events and shows more interesting and co-
herent results than the PLIF-based one. Fig. 6.18 shows that the downscaling methods introduced
in this paper perform well, especially for the DVS 128 Gesture dataset. Regarding N-MNIST, as
seen earlier, the large number of events retained for a small reduction factor depends entirely on
the SNN pooling hyperparameters, which should be tuned for each new dataset. Moreover, this
shortcoming is compensated by the significant advantage of fast computation time for SNN poo-
ling compared to other methods (see Fig. 6.16). In contrast, the "Spatial funnelling" remains on the
lower right even when the reduction factor increases ; moreover, past a small reduction factor (2),
its performance is lower than most methods and the number of retained events is higher. It should
be noted that all methods lead to a decrease in performance when the reduction factor increases,
which validates the activity measures study performed in the above section.

6.4.3.2 PLIF-based classifier

Fig. 6.19 presents the performances obtained using the PLIF-based classifier (see Sec-
tion 4.3.1.2), which leads to the conclusion that the funnelling method is by far the most appro-
priate downscaling method, at least in the context of a classification task. This is quite surprising
compared to the results obtained using SLAYER (see Fig. 6.18. An explanation of this difference
can be found in the fact that the PLIF-based classifier, which takes in input frames, will have a
better recognition performance when the number of events is higher, as the corresponding recons-
tructed frames will provide more information than in a sparser case. Indeed classifiers based on
convolution such as the PLIF-based one tend to underperform on sparse data: they can handle

§. Due to unforeseen computational problems, we were unable to test SLAYER on the more recently introduced
temporal methods. However, these are evaluated on the PLIF-based classifier in the next section.
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Figure 6.18 – Evolution of the accuracy performance of the SLAYER benchmark classifier applied
to DVS128 Gesture (first row) and N-MNIST (second row) when the spatial diving factor increases
(columns). The dashed line connects the original data to the origin (0, 0) of the reference system.
Note that the points located in the upper left side of the dashed line correspond to results showing
interesting trade-offs for performance over data size, i.e. a high accuracy with a small number
of events. Globally, most spatial downscaling methods lead to a good trade-off, with the notable
exception of the "Spatial funnelling" which remains in the lower right side even when the reduction
factor increases.

Figure 6.19 – Evolution of the accuracy performance of the PLIF-based classifier applied to
DVS128 Gesture (first line) and N-MMNIST (second line). The dashed line separates each plot
between what we aim for – a decreased number of events for a significantly good accuracy (up-
per left) – and what we do not aim for – a decreased accuracy for a great number of events (lower
right). Globally most results are in the part that we aim for, with the notable exception of the "SNN
pooling" results.
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fullscale event data but quickly lose performance when the number of events drops, i.e. when the
data is reduced using any methods except funnelling.

Reduction factor Deterministic structural Stochastic structural
80 0.96875 0.97569
60 0.96875 0.97569
40 0.96875 0.98263
20 0.96875 0.95486
10 0.95833 0.95833
5 0.95833 0.96181
1 0.93055 0.95486
0,5 0.88541 0.94097
0,1 0.73611 0.73611
0,05 0.65277 0.625
0,01 0.45833 0.35763

TABLE 6.3 – Accuracy of the PLIF-based classifier applied to DVS128 Gesture reduced using the
temporal structural downscaling methods.

Reduction factor Asynchronous temporal funnelling Synchronous temporal funnelling
50000 0.97916 0.96875
100000 0.97569 0.97916
500000 0.9548

TABLE 6.4 – Accuracy of the PLIF-based classifier applied to DVS128 Gesture reduced using the
temporal funnelling downscaling methods.

The accuracy performance of the PLIF-based classifier obtained on DVS 128 Gesture downs-
caled temporally using the structural and funnelling methods are presented respectively in Tab. 6.3
and 6.4. According to these results, these methods maintain a quite high amount of information
even with a high reduction factor: keeping only 0.05% of the original events, the two structural
methods still reach an accuracy exceeding 60%; when accumulating events over 5s (i.e. more
than 80% of the average sample length), the temporal funnelling methods both remains at 95%
accuracy.

An interesting aside worth highlighting is that a large part of the motion information is enco-
ded in the event data polarity, as pointed out in (Oudjail & Martinet, 2019). In some examples, the
motion direction can easily be estimated using simply the spatial information (i.e. the repartition
of events of different polarities in space) without the help of temporal information. As explained
in Chapter 9 and more specifically in Fig. 9.16, the polarities displayed on a single frame recons-
tructed from 50ms of a DVS 128 Gesture sample allow us to identify the direction of the hand
motion. We confirm this intuition by comparing the results obtained on a classification task on
event data with only available polarity using the PLIF-based classifier, a model known to translate
events into 2-channel frames (one channel per polarity) and then train on those frames.

We observe in Fig. 6.20 that the PLIF-based classifier did not obtain the same results whether
the classification for DVS128 Gesture is performed on both polarities or solely one (here, nega-
tive). Instead of learning the dynamics of the events, the PLIF-based classifier easily recognises
classes by identifying the direction of the arm’s movement according to the distribution of the
positive and negative events on the frame. This questions the hardness of the dataset as well as
underlines the need to process event data using a temporal model, able to rely on the temporal
evolution of data and/or features.
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Figure 6.20 – Evolution of the accuracy performance of the PLIF-based classifier applied to
DVS128 Gesture when the spatial reduction factor increases, with both polarities and only on
negative events (clear lines).

6.5 Human assessment study

In this chapter, we introduced a wide range of downscaling methods for event data and as-
sessed their usefulness by comparing quantitatively and qualitatively between them. We wished to
identify the best method, either overall or depending on the use case, relying on the evaluators des-
cribed above — however, a last question remained: what would one really “see” in the downscaled
data? The results brought by the qualitative assessment using classifiers were a first step towards
answering this broad question from a machine point of view. We completed these results to assess
the human point of view by carrying out a human perception study, which protocol and results are
described in this section.

With the help of our interns Lucía, Marina and Ewa, we performed a study to assess and
compare human performance in a gesture classification task using event data. Original event data
from IBM’s DVS128 Gesture dataset (see Section 3.3.1) is downscaled with the several spatial and
temporal methods described above, and the classification performance is measured with human
participants.

6.5.1 Human machine interface and protocol

6.5.1.1 Event data

We aim to evaluate the evolution of human performance according to different event downsca-
ling methods at different resolutions. To achieve this objective, a participant should not correctly
classify each of the 11 gestures comprised in DVS128 Gesture but should demonstrate that they
were able to correctly separate similar gestures in order to prove that the reduction method studied
retained sufficient relevant information. For this purpose, we decided to display to the participants
only four gestures instead of eleven:

— gesture "right hand clockwise" (A),
— "right hand counter-clockwise" (B),
— "drums" (C),
— "hand rolls" (D).

The selected gestures were two by two similar together but different between the two pairs ; A and
B are both quite similar, only differentiable by the direction of the hand movement ; C and D are
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similar through the spatial distribution of events. For each figure, short samples from 5 out of the
original 29 recorded subjects were selected and randomly displayed to the participants so that they
classify the gesture itself and not the performing subject. Fig. 6.21 presents a screenshot of those
four gestures ; the participants could use this support to help them classify the videos shown to
them during the experiment.

Figure 6.21 – Poster presented to the participants, illustrating the four annotated gestures selected
from the DVS128 Gesture dataset to conduct the experiment.

The six spatial event downscaling methods described above were experimentally evaluated in
this work at four different reduction factors:

— 2 (resolution of 64 × 64),
— 4 (resolution of 32 × 32),
— 8 (resolution of 16 × 16),
— 10 (resolution of 13 × 13).
We also experimentally evaluated the four temporal downscaling methods. The two tempo-

ral structural downscaling methods were experimentally evaluated in this work at three different
structural reduction factors p: 10%, 1% and 0.1%. In other words, the deterministic factor k was
respectively set dividing 10, 100 and 1000 and k was converted into p according to Eq. 6.4. The
two temporal funnelling downscaling methods were evaluated at five funnelling reduction factors:
with time-window lengths of 0.05s, 0.1s and 0.5s for the synchronous funnelling, and 1s and 5s
for the asynchronous funnelling. These were agreed upon as it was immediately obvious to us
after studying the downscaled datasets that humans would understand the data obtained with the
asynchronous method much better and for a longer time window, while they would have a harder
time understanding events accumulated into frames displayed at the end of similar time windows.
We decided to distinguish between the factors used between the synchronous and asynchronous
methods in order to limit the experimental time for participants and not to collect data that we
expected or could easily extrapolate.
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6.5.1.2 Interface

Our interns Lucía, Marina and Ewa implemented an interface allowing participants to classify
different samples of the 4 gestures, with different downscaling techniques and resolutions recorded
from 5 different users.

To capture the user input, the interface was implemented using OpenSesame (Mathôt, Schreij,
& Theeuwes, 2012), an open-source tool for experiment creation in the fields of psychology, neu-
roscience, and experimental economics. This interface allows for easy storage of the gesture shown
in each sample, its downscaling technique and resolution, enabling also to capture the subject’s
response and its velocity.

The experiment encompassed a training phase to familiarise participants with the four gestures
and a testing phase to record the data for analysis. During both phases, every sample was displayed
during 10s in mp4 format. Afterwards, subjects could select one of the 4 options (A, B, C, D)
corresponding to the gestures or otherwise select "I don’t know" (see Fig. 6.22).

In the training phase, subjects were presented with the 4 different gestures without any downs-
caling and received short feedback on the correctness of their answer. This training was repeated
twice per participant to ensure that they could recognise the original gesture recorded with an
event camera, even if they were not previously familiar with event data. Afterwards, in the testing
phase, the samples were shown without any feedback.

The data collection for participants starts with a brief experiment explanation, as well as demo-
graphic questions, such as gender and age range. To reduce selection bias, participants of different
genders across all ages took part in the experiment (see Tab. 6.5). To reduce expectation bias, par-
ticipants were not informed of the techniques they were classifying at any moment nor were they
obliged to complete the experiment within a given timeframe. To minimise order bias, the order
of the shown samples was randomised.

Moreover, during the whole experiment, subjects had access to a poster (see Fig. 6.21) with
illustrations showing each gesture and corresponding label involved in the study.

Age 18-25 y.o.
More than

25 years old Total
Female 11 11 22
Male 20 17 37
Other 0 1 1
Total 31 29 60

TABLE 6.5 – Demographic repartition of the human assessment experiment participants.

6.5.1.3 Protocol

The study involved two experiments, one to evaluate the spatial techniques and another to
evaluate the temporal techniques. Both were performed by 30 subjects each. The participants gave
informed consent to participate and were informed of the purpose and nature of the study. The
study was conducted in designated quiet rooms intended only for participants, on laptops with
screens of similar size and quality. The participants were invited into the room in batches of 3 at
different time intervals where they could choose one of the laptops whose positioning prevented
access to the answers of other participants (see Fig. 6.23).
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In the experiment to assess spatial methods, participants had to identify 122 samples, with an
average of 8m30s in the total task. In the experiment to assess temporal methods, participants had
to identify 44 samples, and we recorded an average of 3m06s in the total task. When setting up
both experiments, we expected the participants to take around 15s to select the label corresponding
to each sample they were shown. However, in most cases, the subjects were able to respond faster,
in 4.45s on average.

Figure 6.22 – Interface presented to the participants
during the human assessment experiment.

Figure 6.23 – Participants
performing the human
assessment experiment.

6.5.2 Assessing human performance

In this subsection, we assess the quality of human classification by analysing the accuracy,
the number of unknown answers, the time to reply and the average number of events per sample
for the different downscaling methods. The last criterion “number of events” is a quantitative
evaluator relevant to our motivations: indeed, we want to implement event downscaling methods
which reduce the quantity (i.e. the number of events) while preserving the quality (i.e. the amount
of information carried) in the data. The “unknown” answers correspond to the selection of the “I
don’t know” choice in the interface, i.e. when participants did not recognise the gesture displayed.
Note that the “unknown” answer does not correspond to an additional class per se, as the interface
does not display at any point a gesture different from A, B, C or D.

As expected, the human accuracy decreases and the percentage of unknown answers increases
as the size of the data decreases across all spatial downscaling methods (see Fig. 6.24). We can ob-
serve that both SNN-based and spatial funnelling are the techniques with the best human accuracy
while log-luminance reconstruction techniques give the worst results.

Human accuracy drops below the chance level (25%) for a spatial diving factor of 10 in the
log-luminance and mutual SNN techniques. The biggest drop in human accuracy occurs from
factor 4 to factor 8. Surprisingly, the log-luminance techniques lead to accuracy varying little, even
increasing slightly but always staying close to the chance level threshold. The notable difference
in human accuracy and percentage of unknown answers between techniques does not translate to
the time per answer results, which are relatively homogeneous among techniques (see Fig. 6.24
right).

The temporal techniques achieving similar resolutions are assessed in Fig. 6.25. Amongst the
structural techniques, the stochastic outperforms the deterministic. As for the temporal funnelling
techniques, the asynchronous technique obtains better results, with a small percentage of unknown
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Figure 6.24 – Human accuracy, rate of "unknown" responses and human response time to classify
event data downsized spatially. In the figure on the left, the dotted line at 25% of the accuracy
corresponds to the chance level.

Figure 6.25 – Human accuracy, rate of "unknown" responses and human response time to classify
event data downsized temporally. In the figure on the left, the dotted line at 25% of the accuracy
corresponds to the chance level.

answers (5%) and a very notable accuracy of 70% despite an accumulation of events over 5s —
meaning that events appear only once per pixel for 80% of the original samples (that are in average
6s long). The temporal downscaling techniques result overall in better human accuracy and a lesser
amount of unknown answers than the spatial techniques, which might be explained by the higher
number of events. The response time per answer is also shorter than for spatial techniques. Only
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Figure 6.26 – Human accuracy according to the resulting number of events per sample after spatial
downscaling methods. The vertical dashed line corresponds to the number of events per sample in
the original dataset.

Figure 6.27 – Human accuracy according to the resulting number of events after temporal downs-
caling methods. The vertical dashed line corresponds to the number of events per sample in the
original dataset.

the synchronous temporal funnelling technique falls below the chance level when accumulated
over a time window of 0.5s.

Fig. 6.26 plots the human accuracy by spatial techniques against the resulting number of
events. It clearly shows that the three techniques with the best overall human performance, Spa-
tial Funnelling and both SNN pooling, also keep the highest number of events from reduction
factor 2 onwards. Moreover, the techniques with the worst human accuracy, the log-luminance
reconstruction techniques, give the smallest number of events kept.

Regarding the temporal downscaling techniques (see Fig. 6.27), we can observe that the num-
ber of events kept is the same across all reduction factors. As mentioned, the stochastic technique’s
accuracy exceeds the deterministic’s performance.

Thanks to this study on the downscaling of event data for gesture classification using human
participants, we can finally conclude that a certain size threshold needs to be maintained to ensure
that human performance does not fall below the chance level. For input data of resolution 128 ×
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128, this threshold is close to the factor 8 for spatial methods, 0.1 for temporal structural methods
and 0.5s for temporal funnelling methods.

6.5.3 Comparing human and machine performance

In this subsection, we assess the quality of human classification compared to the performance
achieved by an SNN. We compare the results collected experimentally with the results output by
the PLIF-based classifier (see Sec. 4.3.1.2).

As detailed in Chapter 1, many NNs outperform human beings in specialised tasks such as
classification. Here we expect the PLIF-based classification to outperform the recorded human
performance, especially considering many of the study participants were not familiar with event
data. Fig. 6.28 confirms that for the structural and temporal funnelling techniques, the classifier
outperforms human results with a minor exception in the synchronous temporal funnelling method
with a time window of 0.05s. The difference between human and machine performance is espe-
cially stark for the synchronous temporal funnelling since the ratio displayed in Fig. 6.28 is quite
close to 0 for this method. Machines significantly outperform humans, which cannot comprehend
a motion from successive frames that are too far apart. This confirms that the PLIF-based classifier
used here relies on the spatial repartition of events and does not take advantage of its temporal
dimension. This underlines the disadvantages of using a frame-based classifier with event data.
For the spatial methods, we encounter more obvious exceptions in the mutual and separate SNN
at the reduction factors between 2 and 4.

Figure 6.28 – Ratio of the human accuracy to the classifier accuracy, for each downscale factor,
for spatial and temporal downscaling methods. When the values exceed 100% (dotted grey line),
the human performance is higher than the classifier’s ; when they fall below 100%, the classifier
outperforms the human performance.

Fig. 6.29 sums up the four criteria evaluated until now and adds a fourth evaluation metrics
factor to the three evaluated so far (human accuracy, machine performance and number of events
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compared to the original data): the downscaling time. The best method would optimise human
and machine accuracy while minimising the number of events and downscaling time. Amongst
the spatial downscaling methods, we observe once again that the techniques with the best compro-
mise seem to be Spatial Funnelling and SNN. Mutual SNN is slightly better because it achieves an
equivalent human accuracy with a significantly lower number of events, even though the downsca-
ling time increments significantly. Once again, log-luminance methods do not provide satisfactory
results. Even if they give a very small number of events and are optically coherent with the beha-
viour of an event camera (see (Gruel et al., 2022)), the accuracy is low and the downscaling time
is high.

Amongst the temporal structural downscaling methods, the deterministic technique yields a
very similar accuracy to the stochastic method, with a much shorter time taken to downscale. Less
obvious, for temporal funnelling methods, the synchronous method offers better global results than
the asynchronous technique, with a lower downscaling time and number of events ; however these
advantages were traded off for a decrease in human accuracy.

The large standard deviations observed in Fig. 6.29 on the human accuracy measured on five
methods (spatial funnelling, event count, SNN separate and mutual and especially synchronous
temporal funnelling) can be explained by the wide variation in human performance depending on
the intensity of reduction: according to Fig. 6.26 and 6.27, the human accuracy drops when the
reduction factor increases for all methods. This reinforces the overall value of the asynchronous
temporal funnelling method, which produces event data whose standard deviation is smaller
although the performances are measured on significantly higher reduction factors, meaning it is
quite consistent in its downscaling.

Figure 6.29 – Overall comparison between spatial and temporal event downscaling methods, ac-
cording to the overall human and machine performance, number of events and downscaling time
of 1s of input event data (in s). All those criteria are weighted by the downscaling factor: the bigger
the reduction, the higher the weight of the corresponding value. The number of events corresponds
to the ratio of reduced events to the original number (in %). Each barplot presents the weighted
mean of the corresponding value, and the black error bars the weighted standard deviation.

Our results highlight some discrepancies between human and machine-learning approaches
to gesture classification using event data. Human accuracy is higher than machine accuracy in
specific reduction factors for the synchronous temporal funnelling and mutual and separate SNN
techniques. Indeed, this can be explained by the fact that humans are less susceptible to spurious
correlation (i.e. associating two samples that are in no way causally connected) in the data than
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most neural networks (Srivastava, Hashimoto, & Liang, 2020) and do not suffer from shortcut
learning (Geirhos et al., 2020), especially on the relatively small dataset that is DVS128 gesture
(only 133 samples in its entirety).

6.6 Conclusion

While standard frame-based data (grayscale and RGB) are easily downscaled – which is a very
common pre-processing step –, there existed no straightforward equivalent for event data up until
recently.

In this chapter, we introduced and compared ten methods for event data downscaling for com-
puter vision applications: six "spatial" and four "temporal". Our results show that the choice of the
reduction methods greatly influences the event features of the reduced dataset, namely the number
of events, the density, and information entropy.

While the proposed methods offer a panel of solutions to choose from, this choice is not trivial
but depends strongly on the target vision task (classification, detection, tracking, etc), the applica-
tion context, other event data preprocess it requires and the embedded computer throughput.

Our goal is to identify the best choice to perform spatial event reduction on an embedded
system in order to adjust the complexity of data to the available resources such as processing
capability and energy consumption (which is often directly linked to the amount of input data —
for example, the energy consumed by certain neuromorphic hardware such as Kraken depend on
the number of input events (Di Mauro et al., 2022)). It is important to note that our contributions are
designed to be used in a global system including downscale and processing ; the implementation
of our methods thus yields interest only if the energy consumed by the downscaling mechanism
is compensated by a major reduction of the cost of subsequent processes. The results tend to
show that this best choice can be found among the SNN pooling methods. Indeed they achieve an
efficient trade-off between the optimisation of desired activity measures, performance and energy
consumption as well as being significantly closer to real-time data handling than existing methods.
Furthermore, when neuromorphic hardware is involved, it can be deemed easier and less costly to
use either SNN method described in this chapter as a first preprocessing layer to ML models. As
no significant differences can be observed between the run time and the classification performance
of mutual and separate SNN pooling, we look at the activity measures to compare both methods.
The mutual SNN pooling is definitely the optimal one based on the results of this work regarding
these criteria, as it leads to a smaller number of events and a lower temporal density and is more
optically coherent with the behaviour of an event camera.

If we do not limit our criterion to spatial downscaling, the structural methods that consist in
randomly dropping events show very interesting performances in our experimental settings with
the PLIF-based model, with a classification accuracy that remains very high even when dropping
a high ratio of events. Additionally, the deterministic method has the lowest downscaling run time
in an offline scenario out of all the spatial and temporal methods.

It is interesting to note here that, even though they are standard benchmark event datasets,
N-MNIST and DVS 128 Gesture may not be the ideal datasets to assess the impact of temporal
downscaling since none of them requires a fine temporal resolution: N-MNIST is essentially a
static image translated in space to trigger events, and (Fang, Yu, Chen, Masquelier, et al., 2021)
demonstrated that DVS 128 Gesture can be solve with only 20 timesteps of 5ms each, i.e. only
around 1s. Thus DVS 128 Gesture and N-MNIST have been useful as a first support to validate
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these temporal methods, but a validation on temporally finer data would be welcome, for example
on a lip-reading or even faster motion classification test.

Finally, we completed the previous results with a study quantifying the effect of downscaling
of event data for gesture classification using human participants. Our study showed that a certain
size threshold needs to be maintained to ensure that human performance does not fall below the
chance level and that the quality of the data obtained from these methods is not uniform. It also
highlights some discrepancies between human and machine-learning approaches to gesture clas-
sification using event data. Human accuracy is higher than that of machine in specific reduction
factors for the Synchronous Temporal Funnelling and Mutual and Separate SNN techniques. This
study sheds light on the potential limitations of event data downscaling and provides insights into
the human perception of gesture classification using event data. The findings of this study have
implications for the design and implementation of embedded computer vision systems that rely
on event data and may also inform the development of more accurate ML algorithms for gesture
recognition.

The spatial downscaling methods subsequently allowed us to implement a software version of
the neuromorphic foveation architecture described in Chapter 8.





CHAPTER 7
Saliency detection by

event density
The combined use of SNN and event cameras is gaining momentum in the field of em-
bedded computer vision as they promise to reduce latency and computational resource
requests. However, state-of-the-art embedded neuromorphic models show little interest
in modifying input data to optimise model performance, memory usage, latency and po-
wer consumption. We propose here to leverage visual attention to optimise this trade-off.
Visual attention can be defined as the behavioural and cognitive process of selectively
focusing on a discrete aspect of sensory cues while disregarding other perceivable infor-
mation. This biological mechanism, more specifically saliency detection, has long been
used in computer vision to drive the analysis only on relevant parts of images or videos
for further processing. The recent advent of event cameras raises the question of adap-
ting attention and saliency to the unconventional type of such sensors’ output.
We introduce in this chapter a neuromorphic model of spatiotemporal salient selection,
which simultaneously outputs one or multiple segregated objects of interest detected in
an event-based scene. We propose to identify regions of interest as those corresponding
to a high spatiotemporal density of events, which allows us to rely on intrinsic spiking
neural network dynamics and online adaptation rules. We experimentally validate our
model on the open DVS128 Gesture Dataset with implementations on CPU, Loihi and
Kraken.
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7.1 Introduction

Embedded systems and even early realised neuromorphic embedded processors are limited in
terms of memory bandwidth. During this PhD, we first attempted to address the issue by propo-
sing neuromorphic and non-neuromorphic spatial reduction techniques (see Chapter 6). However,
the trade-off between the quantity and the quality of the reduced event data is not optimal, which
could be explained by a lack of emphasis on the salient elements of the visual scene during data
reduction. Indeed, we believe that detecting RoIs in the original visual scene to select the corres-
ponding OoIs (i.e. the events taking place in the detected RoIs) is a more promising approach to
increase accuracy, reducing both latency and memory requirements.

Building on top of the limited number of existing neuromorphic visual attention models (see
Section 5.1.2), we implemented a low-latency neuromorphic model of salient spatiotemporal se-
lection, which simultaneously outputs one or multiple OoIs detected in an event-based scene.

Here we based our work on the hypothesis that in an event-driven scene, the human eye is
attracted by a cluster of events that are close in time and space that one could easily assimilate to
an object and try to comprehend as such. In order to simulate a mechanism of bottom-up visual
attention similar to the behaviour described precedently, we have created a model that focuses on
the regions corresponding to a high spatiotemporal density of events. In this work, we differentiate
between RoIs and OoIs: we consider that the RoI (or "salient region") corresponds to the sensor’s
spatiotemporal region where interesting events are emitted, while the OoI (or "salient object") is
the object one can reconstruct from those events. Let’s visualise this difference with the example
of the DVS 128 Dataset: in Fig. 7.1, the red square indicates the RoI, i.e. the region where many
events take place closely in time and space ; and the purple outline indicates the OoI, i.e. the
events identified as salient and that can be assimilated to an "object" (here, the hand). One RoI can
englobe different OoIs and does not influence their shape.

Figure 7.1 – Visual example of the difference between an RoI (outlined in red) and an OoI (outli-
ned in purple), on a sample extracted from the dataset DVS128 Gesture.
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The various mechanisms described in this chapter rely solely on intrinsic SNN dynamics and
dynamic adaptation rules applied to synaptic weights and neural thresholds. Additionally, they
directly take the event data as input by considering each event (with no regard for the polarity)
as a spike emitted by a visual organ (for example, the retina). This is a crucial feature as it leads
to minimising the latency since it does not require the conversion of spiking events into a frame.
The saliency detector is not specialised for any specific context or any specific shape (in other
words, there is no training phase), which allows for a good generalisation ability of the network.
Our proposed architectures, implemented with LIF neurons due to their simplicity, are designed to
be lightweight enough to run in real time.

In order to validate our models, we experimentally validate their implementation on CPU,
Loihi, SpiNN-3 and Kraken (see Section 2.2) in collaboration with Michele Magno’s group at
ETH Zürich and researchers at IMRA Europe (Sophia Antipolis, France): the research assistant
Antonio Vitale deployed the model on Loihi ; Dr Alfio di Mauro and his intern Robin Hunziker
took care of the implementation on Kraken ; and the intern Hugo Bulzomi ∗ deployed the model
on SpiNN-3 and applied to a pedestrian detection task with the help of his co-supervisor Mr Yuta
Nakano. We qualitatively and quantitatively assess the RoI detection and OoI selection performed
on the DVS 128 Gesture dataset (Amir et al., 2017). In summary, our contribution:

— is able to simultaneously select multiple OoIs present in the visual scene in the visual scene
up to 50% of the time, with no training phase ;

— selects at least one OoI with a delay of less than 15ms, and reaching 5ms in the best cases ;
— selects OoIs with quality leading to a classification performance reaching 73% of the ori-

ginal data with a reduction of the sensor’s activated surface by a factor of 1000 ;
— should be implemented on neuromorphic hardware such as SpiNNaker, Loihi or Kraken

to optimise the simulation time and energy consumption, as we demonstrate that it is ame-
nable to resource-constrained embedded neuromorphic platforms ;

— achieves all the above with a number of neurons reduced by 10% to 46% compared to the
state-of-the-art.

To the best of our knowledge, it is the first neuromorphic model able to simultaneously select
multiple OoIs. The implementation in PyNN (Python library) of the mode †. The results presented
in this chapter were published in four articles: the model selecting one OoI and its implementation
on CPU and Loihi appear in the proceedings of AICAS 2022 (Gruel, Vitale, Martinet, & Ma-
gno, 2022), its implementation on Kraken is discussed in the proceedings of AICAS 2023 (Gruel,
di Mauro, et al., 2023) and first steps towards a complete implementation on SpiNNaker in the
context of pedestrian recognition are described in the proceedings of MVA 2023 (Bulzomi, Gruel,
Nakano, Fujita, & Martinet, 2023). Finally, the model of simultaneous multi-OoIs selection is in-
troduced in the proceedings of IJCNN 2023 (Gruel, Martinet, & Magno, 2023a). The latter was
also presented during ORASIS 2023 (Gruel, Martinet, & Magno, 2023b). It is to be noted that a
first paper presenting a global bibliographic review of visual attention in biology and associated
neuromorphic models was accepted at CBMI 2021 (Gruel & Martinet, 2021) ; however, the first
implementation of visual attention with SNN on event-data introduced in this paper did not lead
to conclusive results and we shifted our research direction to the model described below.

∗. Note that while Hugo Bulzomi was an intern in both i3S and IMRA at the time of submission, this work is
technically more of a collaboration as I was not directly his supervisor.

†. The different implementations of the model can be found online at https://github.com/amygruel/
FoveationStakes_DVS

https://github.com/amygruel/FoveationStakes_DVS
https://github.com/amygruel/FoveationStakes_DVS
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7.2 Saliency detection

We introduced a saliency detection by event density which integrates the events produced
by each pixel at a low resolution and outputs a set of coordinates for one or multiple RoIs. We
define the RoIs as the spatial regions of the sensor where the amount of events received over a
certain amount of time is more important than elsewhere over the whole scene, i.e. a region where
the number of events is significantly big in a small spatiotemporal window. This visual attention
mechanism is thus bottom up (i.e. independent from any previously set motivation or rule) and
covert (i.e. without simulated saccadic eye movements).

Fig. 7.2A presents the architecture of our saliency detector ; it is formed by the "Input events"
and "Saliency detector" layers.

7.2.1 Input layer

The input layer translates the events generated by the sensor into spikes, with no regard to the
polarity. One neuron is assimilated to one pixel of the sensor. The spikes produced by the input
layer are sent to the saliency detector via an excitatory downscaling connection. This corresponds
to a convolutional layer with a kernel size S×S and a stride S, without padding. The input neurons
are separated into non-overlapping square regions of size S × S. Each neuron in the input layer’s
subregions is connected to one corresponding neuron in the saliency detector layer, as illustrated
in Fig. 7.2A.

7.2.2 Saliency detector – soft exponential Winner-Takes-All

The model aggregates the neurons activated in the "Saliency detector" layer, corresponding to
the salient regions, into distinct segments using a soft exponential WTA. The choice of using WTA
instead of another clustering algorithm was made to respect bio-plausibility and implement clus-
tering using a native, SNN-based strategy. Since a strong WTA leads to the activation of only one
neuron in the layer and multiple RoI are to be detected by the network, the soft WTA weight has
been set experimentally to 0.02. Indeed, the higher the weight, the higher the lateral inhibition and
the stronger the selection between the neuronal activations ; a strong weight leads to the detection
of only one RoI, while a softer one (such as the one we settled on) allows for the simultaneous
detection of multiple RoIs.

In the case of the saliency detector, a specific exponential WTA is implemented according to
the radial basis function Eq. 7.1 in order to allow RoI of arbitrary sizes:

ωW T A = max( ed

w × h
, ωmax) (7.1)

where d corresponds to the Euclidean distance in number of neurons between the active and target
neuron subject to inhibition, and w and h are the width and height of the layer. The weight ωW T A

has an upper bound of wωmax = 50. The Euclidean distance d can be calculated thanks to the
arrangement of the neurons of the "Saliency detector" layer according to an orthogonal reference
frame (2D grid): each neuron has a set of (x, y) coordinates. As illustrated in Fig. 7.2B, the higher
the distance between the inhibiting neuron and its neighbours, the higher is the inhibition. Another
visualisation of this mechanism is provided by Fig. 7.3: the close neighbours of the activated
neuron are almost not inhibited, while the neurons further away are increasingly inhibited, up
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Figure 7.2 – SNN model used to detect saliency by event density.
A) The blue and green dots and shapes in the input layer corresponds to input events: the dots re-
present noisy or non-saillant events and the "cloud" shapes illustrate events aggregated into saillant
objects (OoIs).
B) Precise depiction of the activating convolution between the Input and the Saliency detector
layers as well as the soft exponential WTA on the Saliency detector. In this example, the sensor is
of size 9×9 pixels and the convolution has a kernel size of S ×S = 3×3. Each neuron is depicted
as a circle, and the increased size in the Saliency detector layer simply allows better visualisation
of the topology. The neurons are spatially positioned as a 2D rectangle. The red connections de-
pict the lateral inhibition implemented by the soft exponential WTA, and the continuity of the
lines corresponds to the intensity of the inhibition: neurons far from the activated one are highly
inhibited (continuous lines), while those close are softly inhibited (dashed lines).

to ωW T A = ωmax. The maximum inhibition weight corresponds to the weight of the WTA as
described above, i.e. the weight by which a traditional WTA inhibits all the neurons in the layer.
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Figure 7.3 – Bounded exponential WTA used as a radial basis function in the attention model.

7.2.3 Saliency detector – weight adaptation rule

Finally, the adaptive detection of saliency in this layer is enabled by a dynamic weight adap-
tation rule between the input layer and the saliency detector, inspired by Hebb’s rule: "cells that
fire together wire together" (Hebb, 1949). This rule is implemented by increasing or decreasing
the weights of synapses which pre-synaptic neurons have recently fired, as we consider them to be
more likely to fire again soon (see Eq. 7.2).

ω(t + 1) =


min(ω(t) + ∆ω, ωmax) if ftinput ≥ t − 1
ωreset if ftinput < t − ∆t
ω(t) otherwise

(7.2)

where ω(t) is the weight at the simulation step t of the synapse to which is applied the
dynamic weight adaptation rule, ∆ω the positive weight variation at each simulation step, ωreset

and ωmax the lower and upper bounds of the synaptic weight, ftinput the firing time of the last
spike transmitted by the synapse and ∆t the delay before the synaptic weight is set back to ωreset.
Fig. 7.4 illustrates the behaviour of this rule.

Figure 7.4 – Visual illustration of the behaviour of the weight adaptation rule.
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The architecture described is simulated with PyNN, a simulator-independent Python in-
terface for SNN simulators (Davison et al., 2009), combined with NEST (NEural Simulation
Tool) (Gewaltig & Diesmann, 2007), a Python simulator for SNN on CPUs.

7.3 Spatiotemporal filtering — saliency detection of one object of in-
terest at a time

We extended the saliency detection architecture described in the section above into a neuro-
morphic model of spatiotemporal attention on event data, implemented on both the CPU simu-
lator PyNN (Davison et al., 2009), Intel’s neuromorphic hardware Loihi (Davies et al., 2021)
and Kraken, an academic platform that includes a Spiking Neural Accelerators and RISC-V
cores (Di Mauro et al., 2022). This model detects the salient regions of the input sensor ; it out-
puts accordingly either the first corresponding OoI (i.e., the spikes corresponding to the detected
region) or the OoI with the greater event density (see Fig. 7.17 for a complete analysis of this
behaviour and its bio-plausibility).

7.3.1 Network architecture

The architecture of this model is described in Fig. 7.5It achieves this task using a light ar-
chitecture: three SNN layers linked by two sets of excitatory synapses (downscale connection
between the input and the RoI detector, and One-to-One connection between the input and the
output layers) and two sets of inhibitory synapses implementing WTA mechanisms. Additionally,
the model can adapt to any input data thanks to two adaptive mechanisms: the weight adaptation
rule described above — which favours the activation of the RoI detector depending on its previous
activations ; and a threshold adaptation rule — which promotes the passage of spikes in the output
regions corresponding to the salient regions identified by the RoI detector and hinders this passage
in other places.

The last layer is the output layer, of the same size as the input layer. It receives the activity
of the input layer through one-to-one connectors (i.e. each input neuron is solely connected to the
neuron located at the same coordinates in the output layer). Only the spikes corresponding to the
RoIs identified by the saliency detector, thus forming the OoIs, are emitted by this layer thanks
to an exponential WTA mechanism similar to the one described in Eq. 7.1, implemented with
a stronger weight value to prevent other neurons in the output layer to spike when one OoI has
already been selected and let through.

7.3.2 Threshold adaptation rule

In order to maintain the same information as the OoIs identified in the original data, we set
up a dynamic threshold adaptation rule aiming to facilitate the neuronal spiking at the salient
coordinates and to hinder it in other neurons of the output layer. The facilitation is implemented
via the decrease of the neuronal threshold closer to the resting value of each neuron whenever the
corresponding neurons spike in the saliency detector layer. Similarly, the hindering is implemented
via the increase of the neuronal threshold, further from its resting value, when the saliency detector
identifies no activity over a long period of time. This mechanism is described in Eq. 7.3.
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Figure 7.5 – Architecture of the spatiotemporal attention model filtering one OoI at a time.

θ(t + 1) =


max(θ(t) − ∆θ, θreset) if ftsaliency ≥ t − 1
min(θ(t) + ∆θ, θmax) if ftsaliency < t − tδ

θ(t) otherwise
(7.3)

where θ(t) is the threshold at simulation step t of the neuron to which is applied the dynamic
weight adaptation rule, ∆θ is the positive threshold variation at each simulation step, ftsaliency

corresponds to the firing time of the last spike transmitted by the saliency detector in the cor-
responding neuronal regions and tδ is the delay before the neuronal spiking is hindered i.e.
before the neuronal threshold is increased. Finally, θmax and θreset are respectively the upper and
lower bound (i.e. the reset value) of the neuronal threshold. Note that the ftsaliency used here
corresponds to the ftinput used in Eq. 7.2. However, while the weight adaptation rule in Eq. 7.2
was applied to the synapse linking the input and the saliency detector relies on the activity of
its post-synaptic neurons, here the thresholds modifications carried out by the adaptation rule do
not rely on the post-synaptic activity (i.e. the output layer’s activity) but on the saliency detector
acting as an external supervisor. Fig. 7.6 illustrates the behaviour of this rule.

This filtering by dynamic threshold adaptation requires first identifying the RoIs in the sensor
before lowering the corresponding threshold, in order to prevent excessive unwanted output at the
beginning of the simulation. Thus the initial thresholds are set to a high value in order to let the
saliency detector activate first. We demonstrate in the following experimental validation that such
a plasticity rule is highly preferable to a simple system of synaptic activations and inhibitions.
Indeed, applying an excitating activation to the neurons corresponding to the salient regions iden-
tified by the saliency detector would compete with the input activation and saturate these neurons.
This would "blur" the spikes from the input data, i.e. create artefact due to the additional activation
of the saliency detector, and cause the filter to lose spatiotemporal accuracy.
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Figure 7.6 – Visual illustration of the behaviour of the threshold adaptation rule implemented in
the saliency detection of one output.

7.3.3 Implementation on neuromorphic hardware

7.3.3.1 PyNN

The first experimental validation of the model described in this section was originally perfor-
med using PyNN combined with NEST (NEural Simulation Tool) (see Section 2.2), which allows
for dynamic adaptation rules. However, this software implementation is significantly limited by
the high simulation time.

7.3.3.2 Loihi

Our collaborator Antonio Vitale, from Michele Magno’s group at ETH Zürich, then adapted
this model with our help to Intel’s neuromorphic hardware Loihi. As depicted in Fig. 7.5, the
key elements in the presented SNN are both the weight and threshold adaptation mechanisms.
Currently, the Loihi platform does not support these features (i.e. the modification of neuronal
and synaptic parameters during the simulation) thus the proposed method had to be modified to
implement it on the neuromorphic chip and perform an experimental validation. The input and the
RoI layer were connected to the output in a way such that at any given timestep the neurons in the
output layer would spike only if the corresponding neurons were active in both previous layers.
The connections between the input layer and RoI detector layer, as well as the WTA mechanisms,
were kept the same. The resulting 3-layer network occupies 68 neurocores on the chip and consists
of 4.224 neurons and 81.716 synapses.

7.3.3.3 SpiNNaker

In collaboration with his co-supervisor at IMRA Europe, our intern Hugo Bulzomi deployed
this network on SpiNNaker and applied it to a pedestrian detection task. Taking inspiration from
the region proposal SNN introduced in (Acharya, Padala, & Basu, 2019), each neuron of the
saliency detector is connected to its neighbourhood via excitatory synapses, in addition to being
connected to all other neurons via exponential inhibitory connections. The weight adaptation rule
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allows the active input regions to out-compete parts of the input with less consistent activity, such
as noise. Additional noise-filtering layers such as the one described in (Acharya et al., 2019) are
then not needed.

Hugo added a clustering step to this model in order to detect objects in the visual scene and
create their bounding boxes. The spikes of the saliency detector are aggregated over a fixed period
of time. Since each neuron in the saliency detector corresponds to a patch of size S × S on the
input, we can map their activation to the detection of objects over different parts of the input
window. Patches whose corresponding neurons spiked enough times are considered to contain
an object. Adjacent activated patches are finally grouped together to form bounding boxes. The
overall network is described in Fig. 7.7.

Figure 7.7 – Architecture of the saliency detection model adapted to SpiNNaker.

7.3.3.4 Kraken

A third experiment was performed on ETH Zürich academic platform Kraken, which allows
for the online adaptation of neuronal and synaptic parameters and achieved quicker than real-time
saliency detection, thus overcoming both PyNN and Loihi’s limits. However, the Sparse Neural
Engine (SNE), Kraken’s dedicated neuromorphic accelerator, is primarily designed to accelerate
feed-forward neural networks using the framework PyTorch (Paszke et al., 2019). This framework
differs greatly from PyNN which requires a significant adaptation of the architecture’s imple-
mentation to allow the deployment of the reference model on Kraken. In PyNN, each neuronal
population is implemented first and then they are interconnected ; PyTorch however implements
a neural network by initiating layers and connections together. PyTorch-defined networks are de-
ployed on Kraken by converting them into an intermediate neural network representation format
(ONNX). Executable C code is then auto-generated by using a dedicated Kraken deployment tool-
chain. The low-level generated C code is completely available to the programmer and, therefore,
can be modified to include dynamic threshold adaptation rules as well as custom interconnection
schemes among neurons belonging to different populations.

We worked conjointly with two other persons, Alfio di Mauro and Robin Hunzinker, from
Magno’s group to deploy the saliency detection algorithm to Kraken. The original synaptic in-
terconnection schemes connecting the various neuron populations and performing the attention
mechanism have been implemented as equivalent neural network layers. The latter accounts for
the neuron synaptic connectivity supported by SNE, i.e., 1x1 and 3x3 convolutional and fully
connected synaptic connectivity, and the exact LIF neuron model implemented in SNE. Specifi-
cally, the downscale connection between the input and the RoI detector, originally implemented
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as two populations of LIF neurons connected via an excitatory downscaling connection (i.e., a
convolutional layer with no padding — see Fig. 7.5), is translated into a fully-connected synaptic
connection with no bias and by setting the weights to O in location outside of the convolution
kernel, i.e. where connections are not required. Indeed, the PyTorch linear layer is the most appro-
priate to implement All-to-All connections. The excitatory One-to-One connection between the
input and the output layers (see Fig. 7.5) is translated into a convolutional layer with a kernel of
size 3 × 3, padding of size 1 and no pooling nor bias. All the weights are null, except the kernel’s
central weight, which is set to 1, thus allowing only a connection between corresponding pre- and
post-synaptic neurons. Additionally, exponential WTA mechanisms applied to the RoI detector
and the output layer are implemented using linear layers with no bias. Since the inhibition is im-
plemented in PyTorch by setting the weights to a negative value (the lower the value, the higher
the inhibition), the exponential rule is adapted to enable a correct WTA behaviour as described in
Eq. 7.4:

ωW T A = max( −ed

w × h
+ ωW T A, 0) (7.4)

where the notation is similar to Eq. 7.1. d corresponds to the Euclidean distance between the active
and target neuron subject to inhibition, w and h are the width and height of the layer, and wmin is
the lower bound of the weight ωW T A.

7.4 Multi spatiotemporal filtering — simultaneous saliency detection
of multiple objects of interest

In this section, we introduce our saliency detection and multiple OoIs selection model, which is
an extension of the visual attention model presented in the previous Section 7.3 to simultaneously
detect and select multiple OoIs in an event-based visual scene using intrinsic SNN dynamics. The
architecture of the model depends on the number n of OoIs to select in a scene: several lateral
output layers are initiated, each connected to the input layer with an All-to-All connection and
each selecting a different OoIs in the visual scene. This model is designed to detect n OoIs —
however, in an effort to simplify the reader’s comprehension, it is depicted in Fig. 7.8 under an
architecture which would allow the detection of two OoIs at most.

This new attentional selection of n OoIs features the same saliency detector, exponential WTA
and weight adaptation rule as introduced in Section 7.2 ; however, we propose here a new dynamic
threshold adaptation rule grounded on the activity of both the saliency detector and the lateral
output layers. At each simulation timestep, for each neuron of each output layer, this dynamic rule
will first identify the lateral neuronal activity at the same coordinates (see Eq. 7.5) and maximise
the threshold if the corresponding lateral neurons are activated (see Eq. 7.7 and Eq. 7.8). The
rule will then modify the threshold depending on the activation of the saliency detector in the
corresponding neuronal regions (as described in Eq. 7.3.

The binary mask αn(t), applied to the neuron n, is calculated according to the activity of the
lateral layer λ at the simulation step t as follows:

∀λ ∈ λlateral layers, ∀n ∈ nneighbourhood,

αn(t + 1) =
{

0 if t ≥ δλ × iλ and ftλ > tδ

1 otherwise
(7.5)
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Figure 7.8 – Architecture of the multi spatiotemporal attention. Here, the maximum number of
OoIs (i.e. the number of output layers) has been set to 2 for clarity.

where ftλ corresponds to the firing time of the lateral layer λ’s neuron at the same coordinates. δλ

is the delay applied to each output’s influence on its lateral populations: as the output layers are
implemented sequentially, iλ is the arbitrary identifier given to each layer and by which the δλ is
multiplied to calculate λ’s delay. αn(t) is null if the corresponding neuron in at least one of the
lateral layers is activated — thus hindering the selection of spikes emitted in other layers.

The neuronal threshold θsaliency(t + 1) is obtained according to the saliency detector activity
as described in Eq. 7.3. It is then updated into θn(t + 1) according to the lateral neuronal activity:
first, the binary mask is applied to inhibit the neurons whose corresponding neurons are activated
in lateral layers ; secondly, this inhibition is decayed over time based on the time elapsed since this
lateral activation. In other words, θn(t + 1) is calculated according to the result of:

θn(t + 1) = fdecay(finhibition(θsaliency(t + 1))) (7.6)

The function finhibition introduced in Eq. 7.6 inhibits the neuronal activity according to the
newly calculated αn(t + 1), i.e. maximises the neuronal threshold:

finhibition(θ) =
{

θmax if αn(t + 1) = 0
θ otherwise

(7.7)

where θmax is the upper bound of the neuronal threshold. If αn(t + 1) is null, it means that the
corresponding neurons in at least one of the lateral layers λ is active and therefore the neuron of
the current layer should not fire.
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The function fdecay introduced in Eq. 7.6 reduces the inhibition applied by finhibition based
on the time elapsed since this lateral activation: ∀λ ∈ λlateral layers,

fdecay(θ) =
{

θ − ∆θ if ftλ < t − tδ

θ otherwise
(7.8)

where ∆θ is the positive threshold variation at each simulation step and ftλ(t) the firing time of
the corresponding neuron in the lateral layer λ.

Fig. 7.9 illustrates the overall behaviour of these rules.

Figure 7.9 – Visual illustration of the behaviour of the threshold adaptation rule implemented
in the saliency detection of multiple outputs, according to the activity and the firing time of the
saliency detector and lateral layers.
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7.5 Experimental validation

In the following section, we aim to demonstrate the neuromorphic models’ efficient saliency
detection and attentional selection of one or multiple OoIs in an event-based visual scene by veri-
fying their quantitative and qualitative accuracies.

7.5.1 Visual input data

To this end, we need an event dataset with a controlled number of OoIs, with known spatio-
temporal coordinates. Additionally, as we wish to assess a qualitative aspect by evaluating the
performance of a classification task on the output OoIs, the dataset must include labelled objects
corresponding to the output OoIs.

Since (to the best of our knowledge) such a dataset does not exist, we artificially created one
meeting the criteria described above by stitching together various samples from DVS 128 Gesture
(see Section 3.3.1) according to three protocols described below.

Additionally, we use a fourth dataset for the experiments led using SpiNNaker that will be
designated as “Prophesee Pedestrians” in the remainder.

7.5.1.1 Three-gesture dataset

A first combination of DVS 128 Gesture samples was performed to experimentally validate
the model implementation on PyNN et Loihi. The samples from 3 classes were used in various
combinations for the demonstration of this spatiotemporal attention model: "arm roll" (class 1),
"hand clap" (class 2) and "right hand clockwise" (class 7). This small dataset will be referenced as
"Three-gesture dataset" in the remainder.

The samples are separated into two sub-types, either "large" or "small", according to the num-
ber of events in the sample and the ratio of active pixels in the sensor. We arbitrarily decided
that "small" gestures have an active region inferior to 2.5% of the sensor and a number of events
inferior to 5000: according to Fig. 7.13, classes 1 and 2 are "small" and class 7 is "large". We
differentiate between those two characteristics in order to assess the influence of event flow on the
saliency detection. New samples with size 128×256 were generated by concatenating horizontally
samples from both types. A varying time shift to the start of the second sample is added, using
shifts of 0.5ms, 1ms, 5ms, 10ms, 20ms and 50ms, to demonstrate the accuracy of the filtering
increasing with the time shift. We balance our dataset by allowing the first gesture to start either
on the right or on the left.

The ground truth GT (x, y, t) for each experiment was defined as the event stream of the first
gesture only and all other events are GT ′(x, y, t).

7.5.1.2 Control and random symmetric combinations

Control dataset A second custom-made dataset called "control" was created by randomly se-
lecting 50 DVS 128 Gesture samples, copying them n times and concatenating them horizontally
by offsetting their x coordinates accordingly. This leads to a pool of 50 samples on which to detect
one to n OoIs (i.e. the hand doing the gesture), whose spatiotemporal localisation is approximately
known.
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Random symmetric dataset A third custom-made dataset was similarly created by randomly
selecting 50 × n DVS 128 Gesture samples and combining them together to produce a final pool
of 50 samples. As the intrinsic activity measures of each sample differ according to their class and
may affect the saliency detection (see Fig. 7.17), for each combination n − 1 others are created
by permuting the order of the samples in order to create a random but symmetric custom-made
dataset of 50 × n elements.

The two datasets described above will be respectively referred to as "control" and "random
symmetric" in the rest of this paper. An example of both custom-made datasets is shown in An-
nexes, in Fig. A.1, where n is arbitrarily set to 2 to facilitate the reader’s comprehension. It is to be
noted that the actual data used as input in the following sections have been spatially reduced by 4
using the event count method we introduce in Chapter 6, as seen in Annexes Fig. A.2 and Fig. A.3,
due to the limitations of PyNN in terms of the maximum number of simultaneously simulatable
neurons and connections. Furthermore, only the first 100ms (or 1s for any classification task) of
each sample was used to reduce the computation time.

Shift Additionally, we introduce some variations within the two kinds of custom-made datasets
presented above: the n samples are combined together according to a certain temporal shift, where
the m+1 sample’s temporal coordinate is shifted by a factor shift to the mth sample. In the follo-
wing experimental results, shift varies between 0 (all the combined samples start simultaneously)
and 5000µs.

7.5.1.3 Prophesee Pedestrian

The fourth dataset was provided by collaborators at IMRA Europe and used by Mr Hugo Bul-
zomi. This dataset contains multiple recordings of both interior and exterior scenes. Objects captu-
red are pedestrians, using a Prophesee Gen 3 of resolution 640 × 480. From this event representa-
tion, an implementation of Firenet (Scheerlinck et al., 2020) was used to generate grayscale video
frames that were then annotated by hand with the bounding boxes of each pedestrian. Fig. 7.10
shows some examples from our dataset. Whereas some interior and simple exterior recordings
involve relatively low amounts of noise, other exterior recordings in front of busy supermarkets
feature large quantities of noise over the whole sensor.

Figure 7.10 – Samples extracted from the Prophesee Pedestrian dataset, where the events are
accumulated over time. Yellow squares indicate pedestrians’ bounding boxes.

7.5.2 Validation of the attention selection of one object of interest

We performed different experimental validations of the attention selection of one OoI and
multi-OoIs during this PhD. This section describes the results concerning the case of one output,
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i.e. one OoI selected. The model was implemented on CPU using PyNN, and on two neuromorphic
hardware Loihi and Kraken ; the following results compare those three implementations.

The different hyperparameters values used to implement this architecture on PyNN and Kraken
are described in Tab. 7.1. The ones used to implement on Loihi were not communicated by our
collaborators. The change is specifically stark in Kraken since the neural network weights are
quantized to be simulated on Kraken.

Parameters PyNN Kraken / PyTorch

RoI detector
Resting membrane potential −65mV 0
Reset membrane potential −100mV NA

Neuronal threshold −25mV 0.9
Membrane time constant 2.5ms NA

Refractory period 0.1ms NA

Excitatory decay time 5ms NA

Inhibitory decay time 5ms NA

ωW T A 1 0.1
ωreset 0.7 10
∆ω 0.01 5

ωmax 2 100

Output layer
Resting membrane potential −65mV 0
Reset membrane potential −65mV NA

Neuronal threshold −20mV 0.7
Membrane time constant 25ms NA

Refractory period 0.1ms NA

Excitatory decay time 5ms NA

Inhibitory decay time 5ms NA

ωW T A 50 0.2
θreset −65mV 50
θmax 0mV 100
∆θ 10mV 1

TABLE 7.1 – Neuronal and synaptic parameters used to implement the spatiotemporal attention
model with one output on PyNN and Loihi.
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7.5.2.1 DVS 128 Gesture validation

A first validation was performed using the original samples from the DVS 128 gesture dataset
(see Sec. 3.3.1).

PyNN Using the PyNN implementation of salient selection of one OoI, we assess the evolution
of the quantitative and qualitative properties of event samples from this dataset before and after
attentional filtering.

The quantitative properties we evaluated and present in Fig. 7.11 are:
— the activated surface, i.e. the average percentage of pixels activated during a 50ms time-

window in the sample, over the total number of pixels in the sensor ;
— the ratio of OoI’s size to the original activated surface, which is the ratio between the

averaged width and height of the OoI to the width and height of the activated surface of
the sensor in the original data. The width and height are respectively calculated as the
difference between the highest and lowest x and y coordinates of events in the identified
OoI, accumulated over a 50ms time window.

Each of those properties is calculated on the model’s output compared to those of the original
dataset, averaged for each class. The last plot in Fig. 7.11 presents the classification performance
performed by the classifier implemented using PLIF (which will be referred to as “PLIF-based
classifier" in the remainder of this chapter – see Sec. 4.3.1.2) on the original and output datasets.

We aim to implement an attentional selection of one or multiple OoIs that on one side si-
gnificantly reduce the input data to handle, while on the other side maintaining a relatively good
quality. Fig. 7.11 assures us that using our saliency detection model allows for an attentional se-
lection of events answering to our needs, with a distribution of events in space reduced by 80%
and a classification accuracy maintained at 70% of the original one’s.

Figure 7.11 – Evolution of quantitative and qualitative properties of the DVS 128 Gesture dataset
after attentional filtering, according to the dataset’s various targets i.e. various labelled gestures.
The values in red indicate the average value over all the targets for each property.

Loihi On Loihi, the input event data is collected for 1ms and downsampled by a factor of 4
using an efficient bit-shift operation on Loihi’s embedded x86 cores. Each input sequence is 1.5s
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long and thus requires 1500 simulation timesteps to be fully processed. On average, measurements
showed that it takes 6ms to process 1ms of input data. This ratio of 1:6 is much closer to real-
time than the one obtained on CPU. These numbers show that processing event-based data on
neuromorphic hardware is more efficient in terms of latency. This is an important advantage not
only for running offline simulations but also paves the way for potential real-time, closed-loop
applications.

Kraken We describe here the experiments conducted on the Kraken platform (see Section 2.2),
and we discuss the results of such explorations compared to the performance achieved by our
model on PyNN and Loihi (see previous sections).

Table 7.2 provides the energy and latency breakdown for all the relevant algorithm functional
modules benchmarked on the SNE accelerator. In our experiments, we used a 6% spiking activity,
the highest spiking activity measured across DVS 128 Gesture. Table 7.3 reports the overall energy
and execution latency for the entire Kraken platform, including the energy consumption of the
RISC-V core (Fabric Controller) that supervises the algorithm execution on SNE. As multiple
tiles are executed on the SNE accelerator to run a complete saliency detection, Table 7.3 also
reports the SNE idle consumption, i.e. when the accelerator is waiting for weights to be loaded,
or the Fabric Controller pre-processes inputs. Kraken achieves real-time simulation run-time as
it requires 0.14s to execute the saliency detection algorithm on 1s of input spiking activity from
an event camera, significantly lower than both Loihi and CPU run times. Moreover, compared to
the algorithm implementation executed on Loihi and on CPU, it is possible with Kraken to fully
implement on-site the dynamic weight and threshold adaptation rules presented in (Gruel, Vitale,
et al., 2022), which are a crucial feature for online adaptation.

Layer Energy (in J) Latency (in s)

Input to RoI detector 3.46 × 10−4 1.26 × 10−2

WTA on RoI detector 2.16 × 10−5 7.86 × 10−4

Input to Output 3.63 × 10−4 1.26 × 10−2

WTA on Output 3.12 × 10−3 1.13 × 10−1

Total 3.85 × 10−3 1.39 × 10−1

TABLE 7.2 – SNE latency and energy consumption of the saliency detection functional modules.

Kraken platform Current (in A) Simulation time Energy (in J)

Fabric controller 9.5 × 10−3 1.4 × 10−1 8.62 × 10−4

SNE - active (avg) 44.4 × 10−3 1.39 × 10−1 3.85 × 10−3

SNE - idle 3.635 × 10−2 3.6 × 10−4 8.51 × 10−6

Total NA 1.4 × 10−1 4.72 × 10−3

TABLE 7.3 – Kraken platform energy consumption and latency.

Fig. 7.12 compares the simulation time of the attentional algorithm on a CPU, Loihi and Kra-
ken. We show that with Kraken, it is possible to achieve real-time saliency detection. Furthermore,
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we compare the quality of the detected OoI by comparing the classification accuracy obtained
on those detected in DVS128 Gesture, performed by the PLIF-based classifier. The classification
performance is 20% better on the OoIs detected by Kraken compared to PyNN: this significant
increase both confirms the quality of the implementation of the original model on Kraken and can
be explained by the greater number of events contained in Kraken’s OoIs. Indeed, the PLIF-based
classifier accumulates events in frames and performs better on a dataset rich in events.

Figure 7.12 – Simulation time for an event input of 1s, detection latency (i.e. how long should be
simulated before identifying the OoIs) and PLIF-based classification accuracy of the OoIs detected
in DVS128 Gesture by our saliency selection model, compared between PyNN, Loihi and Kraken
implementations. As Loihi’s data comes from collaborators no longer working on this project, no
classification accuracy could be measured on this hardware.

7.5.2.2 Three-gesture dataset validation

A second experiment was conducted on our custom-made three-gesture dataset. We first assess
the quality of event filtering by comparing in Fig. 7.13 the number of events and the active region
obtained on output data and on the original data. The values are evaluated according to different
temporal shifts applied to the original samples. We observe a decrease in the number of events, as
well as an influence of the time shift on the quality of the selection.

Figure 7.13 – Mean number of events in and percentage of sensor activated by the event data
from the three-gesture dataset. The values are computed for the original data (“ground truth data”)
and for the data output by the spatiotemporal mechanism after different time shifts, using the
corresponding original sample as input.
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Figure 7.14 – Simulation on PyNN of the attention model applied to two samples with a time shift
of 100 ms. The Input, RoI.d and Output plots in the 3 first rows represent the neurons emitting a
spike at time t (x axis) respectively in the input, saliency detector and output layers respectively.
The Weight and Threshold Rules correspond to the evolution of the weights and thresholds in the
output layer.

Fig. 7.14 presents the results of PyNN simulations on two samples from the three-gesture
dataset. The left figure presents the selection of one OoI in a sample displaying the gestures "right
hand clockwise" (on the left) and "arm roll" (on the right), each gesture lasting 200ms ; while the
right figure presents the simulation results on the same two gestures spatially inverted ("arm roll"
on the left and "right hand clockwise" on the right). The first gesture to appear on the sensor is the
one on the left in both cases. Such a permutation was tested in order to confirm that the saliency is
not dictated by the spatial location of the OoI, but indeed by its timing and size (as hypothesised
in the introduction of this chapter). The gesture on the left starts first, and overlaps over 100ms
with the second one. One can clearly see that:

— the saliency detection (second plot from the top, identified by the label "ROI.d") clearly
indicates the spatiotemporal RoIs ;

— the output layer only s through the events corresponding to the OoI detected first by the sa-
liency detection i.e. the first gesture performed, until the end of the corresponding 200ms ;

— the evolution of the weights of the input to saliency detector connections follows Eq. 7.2,
increasing at ωmax = 2 when the saliency detector activates or decreasing to omegareset =
0.7 otherwise.

— the evolution of the output thresholds follows Eq. 7.3, decreasing at θreset = −65mV
when the saliency detector activates or decreasing to θmax = 0mV in absence of activity.

Temporal filtering Both results produced using PyNN and Loihi show that this attention model
filters the region of primary interest as a function of time. The output is not significantly influenced
depending on the size of the different input RoIs: the first gesture is filtered out (see Fig. 7.14)
and as seen in Fig. 7.15 and 7.16, the error stays low and decreases with the shift between the
two samples, independently of the characteristics of the first and second occurring input gestures,
whether the size or the spatial location vary.
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Figure 7.15 – Size invariance of the attention model with selection of one OoI, run on Loihi. Error
variation of different combinations between two "small" gestures (classes 1 and 2, x-axis) and
one "large" gesture (class 7, y-axis left side), according to different time shifts (y-axis right size).
Irrespective of the gesture size, the error decreases as the time shift increases.

Figure 7.16 – Spatial invariance of the attention model with selection of one OoI run on Loihi,
and evolution of the error as the time shift increases, the larger time shit, the better filtering from
the attention model.
Right: the RMSE behaves similarly when the first gesture (i.e. the detected OoI) is on the right or
on the left. This confirms that the spatial location of the OoI does not influence its detection.
Left: Average RMSE overall: the larger the time shit, the better the selection from the attention
model.

Adaptation rules Currently, Loihi does not support online threshold adaptation. Fig. 7.15 and
7.16 present the evolution of an error metric established by our collaborators at ETH Zürich to
assess the quality of the OoI selection: assuming that a filtered OoI should have the same activation
regions as the ground truth, they implemented a Root-Mean-Square Error (RMSE) evaluating the
overlap between the active regions in the ground truth and the output of our model, weighted over
100ms time-windows. The lower the RMSE, the better the overlap and the OoI selection, and
vice-versa. The results displayed in Fig. 7.15 and 7.16 were obtained by running the modified
architecture described in Sec. 7.3.3, and not on the PyNN simulator due to the run-time limitations
mentioned above. However, to demonstrate the effectiveness of the adaptation rules, we produced
some limited results using shorter input data (400ms instead of 1.5s) on the PyNN simulator: the
RMSE equals 0.03 on average in the context described in Fig. 7.14 Left, and 0.16 for Fig. 7.14
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Right. This difference can be explained by the number of events in the OoI: in both cases, the
OoI is the one detected first, i.e. the "arm roll" (class 7) for the "Left" context and "right hand
clockwise" (class 2) for the "Right" context. As can be seen in Fig. 7.13, the "arm roll" has on
average a higher number of events and active region, which facilitates its detection as OoI and
explains the better RMSE value obtained compared to the “right-hand clockwise”. These results
point towards significant improvement using adaptation rules.

7.5.2.3 Control dataset validation

After verifying the performance of the saliency detection model with one OoI in the input
data, we now wish to assess its behaviour and its bio-plausibility. Indeed, when confronted with a
visual scene with multiple OoIs and asked to select only one, our hypothesis is that we expect a
human being to always select either the one with the highest density of information (i.e. highest
number of events and spatiotemporal density) or the one that comes first when the shift between
the multiple OoIs is big enough. A bio-plausible saliency detection model would follow a similar
behaviour ; we thus run our model on the pool of custom-made "random symmetric" samples (see
Section III.A). Fig. 7.17 displays the results of this experiment: we can see that as expected, the

Figure 7.17 – Performance of the attentional filtering according to the shift and diverse activity
measures AM . The AM used here are the number of events N , the temporal density TD and the
spatial density SD.
The first plot presents the ratio of the values N , TD and SD averaged over the whole "random
symmetric" dataset with no temporal shit, between the left and right concatenated samples. The
colour of the blocks indicates the chance of selecting the right OoI using our model. According
to this first plot, the right OoI is almost always selected first when its N , TD and SD are greater
than the left OoI.
The second, third and fourth plots detailed respectively the evolution of the detection performance
of the first OoI (i.e. the one appearing first in the sensor) for a set of temporal shifts, according to
the ratio of the N , TD and SD respectively between the first and second OoIs. The colour of the
blocks indicates the chance of detecting the first OoI: it increases with the temporal shift as well
as with the ratio. This means that the longer the timeshift between two OoIs as week as the greater
the AM of the first OoI compared to the second, the higher the chance for the model to detect the
first one as the most interesting.
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performance of detection of the first sample increases strongly with the shift, reaching nearly
100% for a shift of 1000µs and higher. On the other side, this performance is strongly degraded
when the value of the activity measure of the first sample is smaller than the second one (i.e. where
the ratio of the first sample’s value to the second is smaller than 100%, highlighted by a green line
on the figure). This is confirmed by comparing these results to the one obtained in case of no shift
(plot on the left).

We can thus conclude that detecting the saliency in event data according to the event density is
bio-plausible: the detected OoI corresponds either to the first object appearing in the scene (with at
least a 1000µs delay compared to the others) or the one with the highest spatial density of events.
We can thus indeed call such a model a spatiotemporal attention mechanism. Additionally, Fig. A.2
in Annexes allows for a visual assessment of the quality of the OoI selection on reduced input
event data, whether the dataset used is "control" (Fig. A.2a in Annexes) or "random symmetric"
(Fig. A.2b in Annexes).

7.5.2.4 Prophesee Pedestrian

We deployed our saliency model on a SpiNN-3 board and applied it to the dataset Prophe-
see Pedestrian in order to perform event denoising and pedestrian recognition. We compared our
results with two other different approaches, Hynna’s detection system and RPN-SNN. Hynna’s
detection system (Singla et al., 2020) simply applies a connected component labelling algorithm
over the input events and is meant for object detection in a similar use case. Inspired by (Acharya
et al., 2019), the RPN-SNN is closer to our approach but does not use the presented visual atten-
tion mechanisms. Instead, it features an additional refractory layer of the same size as the input
window to filter out the noise.

Tab. 7.4 presents the measured precision and recall based on IoU between ground-truth boun-
ding boxes and those predicted by our approach as well as the two models introduced above. One
predicted bounding box can match one or several ground-truth bounding boxes as long as the IoU
is over an arbitrary threshold.

Method Precision Recall F1
Hynna’s detection (Singla et al., 2020) 0.252 0.896 0.393
RPN-SNN (Acharya et al., 2019) 0.513 0.752 0.610
Ours 0.550 0.739 0.631

TABLE 7.4 – Recall, accuracy, and F1 score of compared methods over the whole dataset.

While this table alone suggests that our approach performs similarly to the RPN-SNN, these
results do not differentiate performances in low and high noise conditions. To better evaluate whe-
ther the attention mechanisms we presented are able to efficiently filter out noise, we evaluated
each video of our dataset separately and measured the noise ratio of each video. When the noise
ratio comes close to 1, the corresponding data contains a large amount of noise and vice versa
with 0. Fig. 7.18 presents performances relative to this ratio of noise. According to this figure,
RPN-SNN performs best in relatively low-noise conditions: a ratio in [0, 0.4] yields better results
than our approach. However, for higher noise values, our networks greatly surpass RPN-SNN
both in terms of precision and recall.
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Figure 7.18 – Mean precision-recall comparison in different noise ratio intervals.

Model Neurons Synapses Mean spikes
RPN-SNN (Acharya et al., 2019) 4992 10972 7092.6

Ours 192 47644 750.5

TABLE 7.5 – Size and mean spike counts comparison for an 640×480 input downscaled to 80×60.

Tab. 7.5 presents a size comparison between our network and the RPN-SNN. It shows the mean
spike count for both networks over time windows of 150ms with an 80 × 60 input window (640 ×
480 input downscaled by a factor 8). Our network uses 26 times fewer neurons and approximately
4.3 times more synapses while producing almost 10 times fewer spikes. This trade-off is explained
by the fact that we do not use an additional refractory layer to filter out noise and instead rely on
visual attention mechanisms to ignore it, which requires fewer neurons and more synapses. A
lower number of neurons and spike count, as shown in Tab. 7.5, should theoretically lead to lower
energy requirements: neurons need to have their potential constantly updated whereas synapses
are only used sparsely during the propagation of a spike. To validate this assumption, we will now
present measurements directly taken on a neuromorphic hardware implementation of the presented
networks.

We chose to implement our model on SpiNNaker to better assess the cost of our approach.
The very small size of our network largely allowed it to fit on the small 4-chip SpiNN-3 board
which can simulate up to 18K neurons. Tab. 7.2 presents energy consumption measurements for
the different processes of simulation for a 150ms video segment that have been slowed down by a
factor of 10 as the SpiNN-3 could not keep up with the flow of events.

Process Our network RPN-SNN(Acharya et al., 2019)
Chips during runtime 22.3J 22.7J
Packet transmissions 1.71mJ 1.71mJ

Mapping 286.9mJ 271.9mJ
Loading 47.9J(34.5s) 35.8J(25.2s)

Data extraction 905.0mJ 693.1mJ
Total 71.5J(35.3s) 59.6J(25.8s)

TABLE 7.6 – Energy used by the SpiNNaker implementation. The video has been slowed 10 folds
to allow the SpiNN-3 to process every event.

It should be stressed that the values from Tab. 7.6 are only meant to provide approximate
energy measurements for the sake of comparison. Still, from this last table we can see that though
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our higher number of synapses increases the cost of building and loading the model, our lower
neuron count leads to a lower energy consumption by the chips during runtime.

7.5.3 Validation of the simultaneous attention selection of multiple objects of inter-
est

Fig. 7.19 presents the evolution of the performance of detection of two different OoIs de-
pending on the tuning of synaptic and neuronal parameters: ωW T A which influences the number
and size of detected RoIs (see Eq. 7.1), ∆θ which moderates the impact of salient activity on the
output’s thresholds (see Eq. 7.3) and tδ which delays the impact of the lateral output layers (see
Eq.7.8). It highlights the importance of parameter tuning in SNN, and the difficulty to identify the
correct parameters for each dataset — although we can conclude that it seems that ∆t has little
impact on the selection performance. According to Fig. 7.19, in order to optimise the multi-OoI de-
tection performance, this work was experimentally validated on PyNN using the hyperparameters
defined in Table 7.7.

Parameters Values of the saliency detector Values of the output layers
Resting membrane potential −65mV −65mV
Reset membrane potential −100mV −65mV

Neuronal threshold −25mV −20mV
Membrane time constant 2.5ms 25ms

Refractory period 0.1ms 0.1ms
Excitatory decay time 5ms 5ms
Inhibitory decay time 5ms 5ms

ωW T A 0.5 /
∆θ / 12mV
tδ / 50ms

TABLE 7.7 – Hyperparameters used to implement the multi-OoI selection model.

We aim to assess the multi-OoIs selection performance as well as the quality of the output
OoIs. Fig. 7.20 shows the evolution of the performance of multi-OoIs detection according to the
temporal shift in the custom-made "control" datasets, as well as the detection latency and PLIF-
based classification accuracy compared to the original (in orange). The drop in accuracy compared
to the original can be explained by the smaller number of events contained in the multiple output
OoIs (see Fig. A.3 in Annexes). Indeed, the PLIF-based classifier (Fang, Yu, Chen, Masquelier, et
al., 2021) accumulates events in frames and therefore performs better on a dataset rich in events.
Finally, Fig. A.3 in Annexes allows for a visual assessment of the quality of the OoI selection on
reduced input event data, whether the dataset used is "control" (Fig. A.3a in Annexes) or "random
symmetric" (Fig. A.3b in Annexes).

In certain embedded systems performing autonomous navigation for example, the latency of
the model’s decision may be crucial to limit any risk of an accident. On Loihi, our attentional
model selecting one OoI at the time rejects more than 50% of incoming unwanted events occurring
only 20ms after activity onset. One might fear that extending this model to multiple OoIs might
lead to a significant increase in decision latency — however, Fig. 7.21 demonstrates that our model
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Figure 7.19 – Performance of simultaneous multi-OoIs detection according to the parameters
ωW T A, ∆θ and ∆t. The impact of ∆t variation was observed for the parametrisations A (ωW T A =
0.5, ∆θ = 14), B (ωW T A = 0.5, ∆θ = 13), C (ωW T A = 0.5, ∆θ = 12) and D (ωW T A = 0.5,
∆θ = 11). The plot on the right highlights the lack of influence of ∆t on the simultaneous multi-
OoI detection.

Figure 7.20 – Multi-OoIs detection performance (top), the latency of the OoIs detection (middle)
and classification accuracy of the selected OoIs (bottom) of the multi-OoIs selection model on a
"control" dataset. The performance presented in the top figure corresponds to the chance of our
model detecting two different OoIs (and not twice the same) over the complete "control dataset"
for each temporal shift. The orange line on the bottom figure indicates the classification accuracy
of the whole dataset. Since we classify between 11 classes, the chance level is around 9%.
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Figure 7.21 – Latency of the OoI selection our saliency detection model for one OoI (in blue) and
multiple OoIs (in red) according to the shift. With the exception of the dip observed for a 50µs
shift, the overall latency of OoI selection increases with the number of OoIs to be detected (from
one in blue to two in red).

maintains this latency performance, which is revised to the value of 14ms maximum without shift
and decreases down to 5ms for an increasing shift.

7.5.4 Comparison with State-of-the-Art approaches

Table 7.8 compares our contributions with the neuromorphic saliency models implemented
in (Renner et al., 2019 ; D’Angelo et al., 2022). The data presented here were either retrieved
directly from the information given by the authors or calculated from the description of each
model. Those different metrics enhance our proposed model, whose implementation is resource-
efficient while implementing additional features with lower latency.

7.6 Conclusion

We demonstrate in this chapter the significant benefits that might be derived from the appli-
cation of a visual attention mechanism on event data, selectively focusing on relevant elements of
sensory information thus improving the processing efficiency. This chapter described a neuromor-
phic algorithm for saliency detection in event data simultaneously selecting one or multiple OoIs.
We highlighted the significant improvements to our results brought by adaptation rules. Incorpo-
rating such mechanisms in the design of future neuromorphic architectures will give rise to novel
event-based attention applications.

Our proposed models are able to accurately detect and select n OoIs out of n initially present
almost 50% of the time. The multi-OoI detection model selects at least one OoI with a delay of less
than 15ms at most and reaching 5ms in the best cases. The quality of the OoIs selection is such that
their classification reaches a performance of 73% the original data’s while reducing the activated
surface of the sensor by 1000. Our models can and should be implemented on neuromorphic
hardware such as Loihi or Kraken to optimise the simulation time and energy consumption, as we
demonstrate that it is amenable to resource-constrained embedded neuromorphic platforms and
runs on the Kraken SoC platforms in 140ms. Applied to a pedestrian detection task, our largely
surpasses the performances of the detection system of Hynna (Singla et al., 2020) and shows to be
more robust to noise than the state-of-the-art (Acharya et al., 2019). Finally, our models achieve
all the above with no training phase and a reduced number of neurons and connections compared
to state-of-the-art salient detection methods.
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Perspectives - Applications and deployments In future works, we wish to validate this novel
architecture to an increasing number of n OoIs as well as implement it on the neuromorphic
hardware SpiNNaker (S. B. Furber et al., 2013), which allows for the implementation of dynamic
adaptation rules, directly interfaced with an event camera. We believe in its usefulness in a real-
time embedded task such as multi-object tracking or scene segmentation.

Additionally, we wish to validate the performance on our attention model on CV tasks with
faster motion. Indeed, the results presented in this work were obtained on DVS 128 Gesture which,
despite being a well-known dataset, requires a significant minimum observation time before deci-
sion (at least 1s according to (Fang, Yu, Chen, Huang, et al., 2021)), before which the latency of
our attention model (at most 5ms) is negligible.

Perspectives - Towards bio-inspiration The review of attention’s biological background pre-
sented in Section 5.1.1 allows us to develop some biologically-inspired proposals to adapt the
concept of attention to computational models for purposes of responding to computer vision and
multimedia tasks. Indeed, if those tasks are easily achieved by the human brain thanks to atten-
tion, the neural mechanisms involved deserve to be studied more thoroughly so as to profit from
its efficiency and its robust performance.

Firstly, the forebrain presents a promising implementation of top-down attention. Feature-
oriented tasks with specific objectives are common in the domain of computer vision and multi-
media (such as gesture recognition, object detection, etc.) and correspond fully to the forebrain’s
attention use.

An alternate perspective would be to exploit neuromodulator mechanisms. For instance, one
could reproduce acetylcholine’s modus operandi to enhance the capture of information from cer-
tain RoIs in visual scenes. Combined with a network mimicking the midbrain and its ability to
detect the visual data relevant to the task at hand, this would lead to a higher information proces-
sing performance.

Another important avenue of investigation involves the exploitation of the link between sac-
cadic eye movements and attention (Daucé et al., 2020), also understandable as the link between
overt and covert attention. Such an attention could be achieved by implementing a retinocentric
map of saliency, and then processing with a higher resolution on the place where the "focal gaze"
is directed, i.e. where the saliency is higher.
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CHAPTER 8
Neuromorphic foveation

Foveation can be defined as the organic action of directing the gaze towards a visual
region of interest, to acquire relevant information selectively. With the recent advent of
event cameras, we believe that taking advantage of this visual neuroscience mechanism
would greatly improve the efficiency of event-data processing. Indeed, applying foveation
to event data would allow to comprehend the visual scene while significantly reducing
the amount of raw data to handle.
In this respect, we demonstrate in this chapter the stakes of neuromorphic foveation
theoretically and empirically across several computer vision tasks, namely semantic seg-
mentation and classification. We show that foveated event data has a significantly better
trade-off between quantity and quality of the information conveyed than high or low
resolution event data. Furthermore, this compromise extends even over fragmented da-
tasets. The significant advantage of using foveation on embedded event data highlighted
in this chapter reinforces the interest in developing a foveated camera such as the recent
e-Fov DVS, which use will be similarly evaluated in future work.
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8.1 Introduction

Traditional and neuromorphic computer vision models can have difficulties handling a great
amount of data simultaneously while minimising their energy consumption, especially at a high
temporal resolution. We explored in this work two potential remedies for such an issue: event
data downscaling (see Chapter 6) and salient selection of OoIs in the event flow (see Chapter 7).
However, we believe that the trade-off between information retention and data reduction with
existing methods is not yet ideal and can be improved using neuromorphic foveation, a concept
designed by Teresa Serrano-Gotarredona and Bernabe Linares-Barranco at IMSE (Sevilla, Spain).
This work is a first step towards experimental validation of a neuromorphic foveated sensor.

Figure 8.1 – Overview of the neuromorphic foveation concept as defined in this work. The results
presented below correspond to the software neuromorphic foveation (red full arrows) as a valida-
tion for a future hardware neuromorphic foveation (orange dotted arrows). The multi-resolution
event sample used as an example of the output of such a process is extracted from the DDD17
dataset (Binas et al., 2017).

To demonstrate the interest in applying foveation to event data, we define in this work the
concept of neuromorphic foveation (see Fig. 8.1), which consists of a feedback loop between
an event camera and a neuromorphic saliency detector, merging events at multiple resolutions
according to the detected RoIs. The detection of such RoIs relies on the visual attention mechanism
described in Chapter 7.2: a set of coordinates in the event sensor is considered interesting if it is
strongly activated in close temporal and spatial proximity. Such a process should be allowed by a
foveated DVS as described in (Serrano-Gotarredona et al., 2022) ; however, as this sensor is not yet
available at the time of writing, we validate here the neuromorphic foveation concept with a first
software implementation (red pathway in Fig. 8.1) before extending this feedback loop system to
hardware (orange dotted pathway) in future works.

With the help of APROVIS3D collaborators, we studied the respective evolution of the amount
of event data processed in a computer vision task and its accuracy when software neuromorphic
foveation as described above is applied. In order to simulate the foveation, the event data will be
processed at a higher or lower resolution, depending on the relevance of the spatial regions in the
image at different coordinates. The proposed model goes beyond biology by allowing multiple
RoIs of arbitrary size and shape.

The following sections establish a detailed outline of the different hardware and mechanisms
involved in this work ; a complete description of the software neuromorphic foveation methodo-
logy ; and the experimental evaluation procedure. Our contributions are the following:

— A complete description of the binary foveation process and the different hyperparameters
to facilitate the reproducibility of our neuromorphic foveation mechanism;
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— A complete comparison of the semantic segmentation performance between the original,
reduced and foveated DDD17 dataset using various spatial event data downscaling, with
results provided by PhD student Dalia Hareb (i3S) ;

— The evaluation of the neuromorphic foveation on a second computer vision task, i.e. the
classification of the DVS 128 Gesture dataset, with results provided by Antoine Grimaldi
(INT) ;

— An additional comparison of the foveation to another data pre-processing, where we study
the semantic segmentation and classification performance on selected RoIs ;

— A study of the overall qualitative and quantitative aspects of saliency detection.

To the best of our knowledge, this work and our results are the first to show that foveation
offers a significantly better compromise between quantity and quality of the information than
high or low resolution, especially on fragmented datasets. Furthermore, we demonstrate that our
saliency detector is specifically efficient on data reduced using the event count method.

Our code is implemented in Python using the PyNN library (Davison et al., 2009) ∗.
The results presented in this chapter were made publicly available on three occasions: a short

abstract defining the concept and methodology was presented during the French national confe-
rence ORASIS 2021 (Gruel, Martinet, Linares-Barranco, & Serrano-Gotarredona, 2021), an exten-
ded abstract with a first proof of concept was featured in the CVPR 2022 workshop "NeuroVision:
What can computer vision learn from visual neuroscience?" (Gruel, Hareb, Martinet, Linares-
Barranco, & Serrano-Gotarredona, 2022). A journal paper was also submitted to the Biological
Cybernetics special issue "What Can Computer Vision Learn from Visual Neuroscience?" (Gruel,
Hareb, Grimaldi, et al., 2022).

8.2 Methodology — Binary foveation

In this work, we consider the foveation process akin to the combination of a sample’s events
in high resolution and low resolution using a mask, as presented by Fig. 8.2. This binary combi-
nation is a software simplification of the neuromorphic foveation concept as described above and
discriminates the fovea (events in high resolution — purple region in Fig. 8.2) from the retinal
periphery (low resolution ; i.e. spatially downscaled — yellow region in Fig. 8.2). The RoI is
detected using the saliency detector described in Section 7.2 ; it is thus assimilated to the fovea.
The saliency detection and binary foveation are performed using the hyperparameters described
in Tab. 8.1.

As explained above, the software implementation of neuromorphic foveation used in this work
is akin to a binary foveation process merging event data of two different resolutions together. As it
is more difficult to produce higher resolution data of an original dataset, we chose to use four of the
spatial event downscaling methods described in Section 6: the spatial funnelling, the event count
and the linear and cubic log luminance. In order to remain consistent with a future conversion of
this software foveation model into hardware, where the saliency is detected on aggregated pixels
before refining the resolution at the relevant areas in order to minimise the bandwidth, we follow
the process described in Fig. 8.2. The original dataset, corresponding thereafter to the denomina-

∗. The Python code is publicly available online at github.com/amygruel/FoveationStakes_DVS/

github.com/amygruel/FoveationStakes_DVS/
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Figure 8.2 – Binary foveation of events using the corresponding high and low resolution (spatially
downscaled by a dividing factor) and based on a known RoI.

tion "high resolution", is spatially reduced before being given as input to the saliency detector. A
subsequent "multi-resolution merging" process then combines both datasets into foveated event
data according to the detected RoIs.

Parameter Values

SNN model
Resting membrane potential −65mV
Reset membrane potential −100mV

Neuronal threshold −25mV
Membrane time constant 2.5ms

Refractory period 0.1ms
Excitatory decay time 5ms
Inhibitory decay time 5ms

Input to saliency synapse
S 5

ωinit 1
ωmin 0.7
∆ω 0.01
td 100

Exponential WTA
ωmax 0.02

w sensor width
S

h sensor height
S

TABLE 8.1 – Hyperparameters used to implement the saliency detection model (see Eq. 7.1 and
7.2).
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Figure 8.3 – Classification performance on DVS 128 Gesture according to the number of events
in the dataset in high resolution (in blue), low resolution (in green), with only RoIs (in yellow) and
after foveation (in red). The dashed line connects the results of high and low resolutions ; an ideal
result would lie above this line, thus achieving a better trade-off between number of events and
performance than the original and reduced data. The subplot on the left depicts the mean values
and the corresponding confidence ellipsis ; it shows that the foveation applied to classification
leads on average to a good trade-off between number of events and performance since the resulting
accuracy lies in the upper left area. The mean values are plotted as an overlay in the subsequent
subplots to assess the quality of the foveation and the reduction compared to the others. The trade-
off between classification performance and number of events per sample is overall better for the
foveated data, especially using the log-luminance reconstruction methods.

8.3 Experimental validation

To validate our proposed model, we apply two traditional computer vision tasks, semantic seg-
mentation and classification, to foveated and spatially reduced datasets. All datasets are spatially
downscaled by a dividing factor of 4. This section describes the datasets and the different models
used to perform such tasks, as well as the comparative results. As presented in Tab. 3 and Fig. C.4
(in Annexes), the event data’s properties were compared for sample in high resolution (original
dataset), low resolution (spatially downscaled with factor 4) and foveated (binary combination of
the previous two).

8.3.1 Performance on a classification task

We test the impact of the neuromorphic foveation on a classification task, which assigns a
label to each sample of a dataset, using the HOTS model (see Section 4.3.1.3). Fig. 8.3 presents a
comparison between the different versions of the DVS 128 Gesture dataset (Amir et al., 2017), i.e.
in high (blue marks) and low (green marks) resolutions, after RoIs selection (yellow marks) and
after foveation (red marks), according to the classification model HOTS’s performance. Fig. 8.3
depicts the trade-off between the accuracy, the MIoU and the mean number per sample for each
reduction method — the first subplot corresponding to the mean and confidence ellipse for all
methods combined. We compare the classification performance on the foveated dataset and on the
events belonging solely to the detected RoIs in order to validate the interest of foveation: indeed,
the RoIs contain only the most interesting information in the visual scene (according to our defini-
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Figure 8.4 – Semantic segmentation performance according to the number of events in the da-
taset in high resolution (in blue), low resolution (in green), with only RoIs (in yellow) and after
foveation (in red). The dashed line connects the results of high and low resolutions ; an ideal result
would lie above this line, thus achieving a better trade-off between number of events and perfor-
mance than the original and reduced data. The subplot on the left depicts the mean values and
the corresponding confidence ellipsis ; it shows that foveated data managed to keep on average
the same performance as the original dataset while decreasing by two-thirds the mean number of
events to reach the low resolution’s value. The mean values are plotted as an overlay in the sub-
sequent subplots to assess the quality of the foveation and the reduction compared to the others.
This highlights the clear advantage of using the methods event count and linear compared to fun-
nelling.
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Figure 8.5 – Semantic segmentation performance evolution according to the percentage of total
events in the dataset after processing for the event data in high resolution (in blue), low resolution
(in green), only from RoIs (in yellow) and after foveation (in red). The different subsets are obtai-
ned by downscaling the respective datasets using the stochastic structural downscaling method for
p ∈ [0.2, 0.4, 0.6, 0.8, 1]. The subplot on the left depicts the mean values and how all four types of
data behave similarly. According to the subsequent subplots, it is interesting to note that, except
for the cubic method, the foveated data overall outperforms the high-resolution data from a 60%
decrease and downwards. The funnelling method is the one maintaining the highest accuracy for
the longest, either in the foveated or reduced dataset.
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tion of saliency) but might miss contextual information helping to classify the data correctly. For
example, in DVS 128 Gesture one might need to know about the subject shape to understand that
the moving OoI detected by the model is the arm. Foveation however keeps the information provi-
ded by the non-interesting regions but in a reduced format, thus providing interesting information
at a high resolution and contextual, less interesting information at a lesser resolution.

8.3.2 Performance on a segmentation task

To validate the neuromorphic foveation, we evaluate it using the semantic segmentation model
Ev-SegNet (see Section 3.3.3). Fig. 8.4 and 8.5 present a comparison between the different ver-
sions of the DDD17 dataset (Binas et al., 2017), i.e. in high (blue marks) and low (green marks)
resolutions, after RoIs selection (yellow marks) and after foveation (red marks), according to the
semantic segmentation model Ev-SegNet’s performance. One could wonder how a semantic seg-
mentation model would behave on data containing solely events within the identified RoIs (yellow
marks in Fig. 8.4 and 8.5). Thanks to a study performed by Dalia, we know that Ev-SegNet assigns
the class 0 (for background and sky) to segments with no events ; in the case of RoIs selection, it
means that most of the scene is labelled as background and the other classes only appear in the
RoIs, which explains the low performance of semantic segmentation on data post RoIs selection
(Fig. 8.4) compared to the classification performance observed in Fig. 8.3.

Fig. 8.4 depicts the trade-off between the accuracy, the MIoU and the mean number per sample
for each reduction method — the first subplot corresponding to the mean and confidence ellipse
for all methods combined. Fig. 8.5 shows the evolution of the segmentation performance for an
increasingly sub-sampled input dataset for each pre-process. Each pre-process including spatial
reduction (i.e. low resolution and foveated data) is detailed according to the spatial downscaling
method used. Each dataset is reduced using the structural stochastic temporal downscaling method
introduced in Sec. 6.3.2, with p ∈ [0.2, 0.4, 0.6, 0.8, 1] corresponding to the values in the x-axis of
Fig. 8.5.

In those first two figures, the foveation is obtained by detecting the saliency on the data
downscaled using the specified method, then merging it with the dataset reduced using the same
method. This allows us to stay as close as possible to the hardware foveation design by simulating
the feedback loop by using twice the same reduced data. Similarly to the classification results,
we compare the semantic segmentation performance on the foveated dataset and on the events
belonging to the detected RoIs in order to demonstrate the importance of keeping the information
provided by the non-interesting regions but in a reduced format.

Fig. 8.6 studies the qualitative aspect of saliency detection by presenting the semantic seg-
mentation according to the mean number of events per sample. Each foveation method, i.e. each
method producing data on which the saliency was detected, is indicated in different colours. The
average values for all datasets foveated using one method are presented in opaque, while each
specific dataset’s performance and number of events are overlayed.

As we want to maximise the performance while minimising the number of events, the goal to
be reached is situated in the upper left corner of this plot. Event count emerges as the method for
the most efficient salience detection.
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8.3.3 Quantitative assessment of the saliency detection

Fig. 8.7 presents the spatial and temporal density according to the mean number of RoI detec-
ted per method to discuss the quantitative aspect of saliency detection.

The temporal density Dt corresponds to the activation probability of pixels averaged over the
whole sensor and is defined in Eq. 6.5 (in Chapter 6).

A contrario, the spatial density Ds is the activation probability of the whole sensor over a
limited time-window averaged over the temporal length of the sample, as described in Eq. 8.1.

Ds =
∑T

t=twindow
P[t−tw,t]

Nw
(8.1)

with tw and T respectively the length of the time window and the length of the sample in time.
The results in Fig. 8.7 are presented for tw = 50µs. Nw corresponds to the number of successive
time windows in the sample, as presented in Eq. 8.2.

Nw = ⌈ T

tw
⌉ (8.2)

The activation probability P[t−tw,t] is calculated as the ratio between the number of pixels
activated during the time-window [t − tw, t] and the overall number of pixels in the sensor:

P[t−tw,t] =
∑t

T =t−tw

∑w
x=1

∑h
y=1 δ(tx, t) · δ(ty, t)

w · h
(8.3)

with w and h respectively the width and height of the sensor, tx and ty the timestamp of any events
occurring at coordinates (x, y) and δ the Kronecker delta function, which returns 1 if the variables
are equal, and 0 otherwise.

8.4 Discussion

To validate our initial hypothesis, the foveation would have to produce a number of events
significantly closer to the low resolution while allowing for a performance closer to the high re-
solution. In other terms, the foveated results should be above the dotted grey line on Fig. 8.3 and
Fig. 8.4. We do observe a striking decrease in the number of events between pre- (high resolu-
tion) and post-processing (low resolution and foveation) of the dataset. Concerning the DVS128
Gesture dataset and its classification performance (Fig. 8.3), the average number of events per
sample drops to 1% of the original metric after reduction and to 50% after foveation, while the
performance decreases respectively by 63% and only by 25%. A similar behaviour is found with
the DDD17 dataset (Fig. 8.4): on average, the spatial downscaling and the foveation keep 30% of
the original events. The most important drop of events is seen with the linear method: the reduced
data drops to only 1% of the original size, and the foveated data to 10%. Similarly, the foveation’s
semantic segmentation performance is averaged over all methods and is remarkably close to the
high resolution’s performance.

Fig. 8.4 pictures an outlier, the cubic method. The trade-off between performance and data
size displayed by the foveation is not as good as in other methods ; this can be explained by the
fact that the method produces too sparse data to offer a coherent saliency detection.
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Figure 8.6 – Qualitative study of the saliency detection, based on the semantic segmentation per-
formance. The plot depicts the average semantic segmentation performance according to the spa-
tial downscaling method used to generate the data. The overlayed dots correspond to different
reduction methods (with no indication of the corresponding methods) with which the multi-
resolution merging was achieved using the RoIs detected with one specific method. The goal is
to minimise the mean number of events per sample while increasing the performance, thus best
results are close to the subplot’s upper left corner. Foveated data using RoIs detected on event
count is the closest to this goal.

Figure 8.7 – Quantitative study of the saliency detection, by comparing the RoIs’ spatial and
temporal density according to the mean number of RoIs detected per sample. While there is neither
good nor bad result in this graph, it shows that the funnelling method yields a significantly higher
temporal and spatial density, as well as the highest mean number of RoIs detected.

Additionally, we compare the performance of semantic segmentation and classification on
foveated events to events belonging in the detected RoIs, pictured in yellow in Fig. 8.3, 8.4 and 8.5.
For both tasks, the performance shows a significant decrease when achieved on RoIs events. The
ratio of segmentation accuracy and MIoU to mean number of events is similar to the one obtained
on reduced data, if not worse for the event count method. The classification performance does not
show such an intense decline but is still significantly further away from the ideal compromise than
that obtained on the foveated data. This difference is explained by the intrinsic distinction between
the datasets and tasks: labelling a gesture in DVS 128 Gesture can be done by identifying the
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movement of the hands, i.e. by following the trajectory of the RoIs ; while segmenting a driving
scene requires more information spread out on the whole scene and cannot rely solely on the data
provided in the RoIs, although these greatly facilitate the task.

All in all, those observations combined do confirm our core thesis, that is, that neuromorphic
foveation leads to the best trade-off between information quantity and quality, at least on a soft-
ware level. Neuromorphic foveation is more relevant than attentional filtering to preserve event
data while minimising its size.

Furthermore, it is interesting to note that when comparing the proportional decrease of the
number of events in the dataset post-process in Fig. 8.5 while all three types of data show the same
behaviour, the averaged foveated data outperforms the high-resolution data from a 60% decrease
and downwards. This is explained by the fact that the majority of events kept in the foveated
dataset provide relevant information to the semantic segmentation model, while a significant part
of the events in the original dataset is not as useful.

The less important drop of the data size when applying foveation to the classification of DVS
128 Gesture (Fig. 8.3) compared to the one presented in Fig. 8.4 is explained by the inner proper-
ties of the DVS 128 Gesture dataset: the lower spatial density of this dataset compared to DDD17,
due to a static setting and a non-moving camera, leads to the detection of more densely aggregated
RoIs already containing most of the sample’s event data. In other words, the principal OoI in DVS
128 Gesture is the hand, which will be the main subject of saliency detection due to its constant
movement. This is confirmed in Fig. C.4 where the high resolution is only visible on the hand in
the foveated sample. As the movement of the hand is the main cause of event production while
recording the scene, the corresponding region contains the most events — thus the foveation on
the DVS 128 Gesture dataset does not decrease the data size as much as when applied to a moving
camera recording.

This theoretical reasoning is confirmed by the results presented in Fig. 8.7: the mean number of
RoIs detected on DVS 128 Gesture and its corresponding temporal and spatial densities (right sub-
graph) are all significantly greater than those detected on DDD17 (middle sub-graph). Fig. 8.7 also
highlights the important quantitative variations of the saliency detection according to the foveation
method used: funnelling produces a great amount of RoIs, due to its lack of event drop ; while
linear detects the least saliency. The choice of the method used to detect the salience is not trivial,
each one having its interests and its disadvantages. One must thus take time to think upstream
about the physical properties of the dataset and the desired intensity of the foveation. All in all,
when applying the foveation to the classification of DVS 128 Gesture and semantic segmentation
of DDD17, event count seems like a good trade-off between the three proposed methods.

The qualitative study of the saliency detection displayed in Fig. 8.6 using different methods
(i.e. detecting saliency on data reduced using those methods) reinforces the interest in using the
event count method for foveation. Indeed this figure highlights the overall advantage of event
count, as its use leads to a minimised data quantity for a maximised semantic segmentation per-
formance.
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8.5 Conclusion

In this work, we demonstrate the stakes of foveation applied to event data for semantic seg-
mentation and classification. Such a strategy does concurrently preserve the accuracy of event data
processing and greatly reduces the amount of data needed for the task.

To meet our initial goal of finding the ideal process to reduce the number of events while
maintaining the quality of the information transmitted, a final aspect can be discussed here to
complete the results presented above: that of the generation time. Indeed, the spatial reduction of
events as well as the neuromorphic detection of salience requires a non-negligible processing time.
The first has been discussed in Chapter 6 and depends strongly on the selected reduction method.
The second varies with the hist architecture used. Indeed, the SNN model can be run either on
CPU, using an SNN simulator such as PyNN (Davison et al., 2009), or on GPU with adapted
simulators such as Norse (Pehle & Pedersen, 2021). In both cases, the simulation time increases
with the number of neurons in the model and the size of the input data. A third option is to use
neuromorphic chips, such as Human Brain Project’s SpiNNaker (S. Furber & Bogdan, 2020) or
Loihi (Davies et al., 2018), which enable fast and low power simulations and which simulation
time only depends on the input data size. All in all, it is very unlikely that these two processes
(reduction and saliency detection) combined can be done in real-time.

However, we seek to convert this software neuromorphic foveation process into a hardware
implementation using the foveated sensor introduced by (Serrano-Gotarredona et al., 2022). With
such a sensor that implements spatial reduction and foveation electronically, we can disregard the
generation time.

Further work will implement the hardware neuromorphic foveation feedback process by
concurrently using the foveated DVS presented in (Serrano-Gotarredona et al., 2022) and neuro-
morphic hardware, e.g. SpiNNaker, in order to record foveated event data in an embedded fashion.





CHAPTER 9
Towards embedded

applications — First
steps and perspectives

Now that we have demonstrated the interest of using various approaches to pre-process
event data for efficient embedded processing in previous chapters, we propose in this
chapter to study original embedded applications. Two of the tasks addressed below are
motivated by our involvement in the APROVIS3D project. The target use cases of this
project are 1) the detection of the coastline by an unmanned aerial vehicle flying around
an island of the Mediterranean Sea to allow for autonomous navigation and 2) the 3D
reconstruction of this coastline. We propose various approaches to tackle these axes of
research and present some preliminary results. We also take an interest in embedded lip-
reading, an advantageous neuromorphic task to demonstrate the criticality of the time
dimension of event videos when properly exploited.
The perspectives of this work include the development of a comprehensive dataset for
coastline detection, the implementation of a demonstrator for embedded 3D reconstruc-
tion, the development and extensive experimental validation of a model of weight and
delay learning and the implementation of SpiNN-3 of an existing unsupervised delay
learning model.
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9.1 Introduction

In the Contributions part of this manuscript, previous chapters focused on various approaches
we implemented during this PhD to pre-process event data using SNN. We aimed to optimise the
performance of embedded computer vision tasks by minimising the data size while maximising
the information conveyed. Now that we demonstrated the benefits of the three proposed methodo-
logies, i.e. event data downscaling in Chapter 6, visual attention in Chapter 7) and neuromorphic
foveation in Chapter 8, we consider the embedded processing of event data applied to various
applications.

Event data interfaced with an SNN model on embedded neuromorphic hardware allow for
a large panel of energy-efficient, low-memory applications (due to both hardware architectures
and intrinsic data characteristics — see Chapter 4). We already considered two common tasks in
previous chapters, although it was for the purpose of validating various pre-processing methods
and not meant to be embedded:

— the classification of either gestures or numbers, respectively applied to the datasets DVS
128 Gesture (see Sec. 3.3.1) and N-MNIST (see Sec. 3.3.2). We used three published SNN
models: the PLIF and SLAYER benchmark classifiers as well as the HOTS model (see
Sec. 4.3.1).

— the semantic segmentation of a driving scene, applied to the DDD17 dataset using Ev-
SegNet (see Sec. 3.3.3 and 3.3.3).

During this work, we took an interest in two additional tasks for which the literature is less
extensive. Through the supervision of interns and collaborations with other members of the
APROVIS3D consortium, we have produced some first results that are described in this chapter.

The first application we address is motivated by a use case of APROVIS3D. Even though a
high temporal resolution is not required for this task, it serves as a support for a first approach to
exploiting the natural match between SNN and event data. As described above, this project aims
to implement a neuromorphic architecture embedded in an unmanned aerial vehicle (UAV) flying
over the Mediterranean Sea, which performs coastline detection for the autonomous navigation of
the drone. Our collaborators at NTUA in Athens, Greece, have recorded RGB and event videos of
the beach and the Mediterranean Sea as seen from a UAV, at different heights and with different
speeds (see the example given in Fig. 9.1). Additionally, at UCA, we similarly recorded RGB
videos of the beach and the Mediterranean Sea that we later translated into events to complete this
dataset, which we will use as input to our approaches.

To tackle this task, we propose three methodologies and describe the first results below. A first
approach would be to translate the ANN classifier HOTS to an embedded SNN for sea-ground
segmentation: HOTS would differentiate between sea and ground patches in the original data, thus
allowing to extrapolate the coastline. The "patches" are sampled and extracted from the latticed
recorded data. This approach is innovative, but may be difficult to generalise: it depends on the
environment and is based on certain conditions (rough seas, more movements in the water than
in potential vegetation, etc). It is currently the object of a work group between NTUA, UCA and
INT (in Marseille, France) in order to implement a demonstrator by the end of the APROVIS3D
project (September 2023).

A second approach uses a delay learning model to differentiate between the ground and the sea
by the movement of the events: those recorded on the ground will correspond to the ones generated
by the ego-motion of the embedded camera only, while the additional motion of waves will disrupt
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the movement of those recorded on the sea. The implementation and application of the delay
learning model introduced in (Nadafian & Ganjtabesh, 2020) have been the subject of multiple
internships supervised during this PhD. We also propose as a perspective a potential learning rule
inspired by the STDP and applied to delay — this proposition was presented as a poster during
the French national conference JOBIM 2023 (Gruel & Martinet, 2022). Additionally, a complete
review of "Precise Spiking Motifs in Neurobiological and Neuromorphic Data" was published in
the MDPI - Brain Sciences journal (Grimaldi et al., 2022).

The third and final approach we propose to tackle coastline detection is a simple line detection
model. This would allow us to remove the intermediate step of classifying patches into sea and
ground and directly detect the coastline. We present here some first promising results on simple
synthetic event data.

In this chapter, we also present various works implementing tentative first steps to answering
the second task targeted by the project, i.e. the 3D reconstruction of the Mediterranean coastline.
Two interns, Ms Huiyu Han and M. Noah Candaele, supervised during this PhD worked on this
problem over a total period of 7 months. We present below a summary of the work accomplished
during this period.

Finally, we address a third embedded application: neuromorphic lip-reading. During this PhD,
we supervised two grouped internships on this subject, leading to the recording of an event-based
lip-reading dataset and implementation of the first-ever end-to-end neuromorphic model for em-
bedded lip-reading, which could directly benefit the development of portable assistive devices or
surveillance equipment. This model and results presented below were made publicly available in
an article presented during the CVPR 2023 Workshop on Event-based Vision (Bulzomi, Schwei-
ker, Gruel, & Martinet, 2023).

9.2 Coastline detection

As presented above, the detection of the Mediterranean coastline is the main application task
targeted by the APROVIS3D consortium and a demonstrator is to be produced by the end of the
project. The following section describes the three lines of research conducted in order to answer
this problem.

9.2.1 Adapting an ANN classifier into an embedded SNN classifier

A first attempt to solve this task is carried out by a dedicated work group composed of APRO-
VIS3D members from NTUA in Athens, Greece, from INT in Marseille, France and from UCA.

At NTUA, PhD student Sotiris Aspragkathos and Prof. George C. Karras record event data and
RGB videos of the sea and the coastline ground, separated and mixed. Once the data is acquired,
at UCA, we handle the verification of the provided videos’ quality and translate their formats into
a more universal format. This modified dataset is then forwarded to PhD student Antoine Grimaldi
and Prof. Laurent Perrinet at INT. Having implemented the HOTS classifier from previous work,
they update this architecture to efficiently differentiate between patches of sea and ground.

Once it is properly adapted to this task, we at UCA will take care of implementing the HOTS
network with the hyperparameters learned during training on the neuromorphic hardware SpiNN-
3. The final topology will finally be embedded on the UAV set up by NTUA.
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Figure 9.1 – Example of accumulated synthetic events obtained from the recording of the Medi-
terranean coastline by an RGB camera onboard a drone.

9.2.1.1 Input data

NTUA records event and RGB videos using an embedded DVS sensor provided by IMSE, as
well as a CSL’s DAVIS346 mono camera. This data could only be saved as an AEDAT2 file, using
the object structure described in Tab. 4 in Annexes.

However, this format is no longer readable in Python because the associated libraries are no
longer supported. Additionally, the HOTS implementation used by INT takes input data according
to the Tonic format (Lenz et al., 2021). This library stores and handles events according to a
specific object structure, with specific intrinsic modules and attributes described below.

We thus implemented a pipeline to transform the AEDAT2 files into NPY files. Additionally,
we also developed a pipeline to produce NPY files from RGB videos recorded in a similar context.
This allows us to comparatively analyse the event data obtained from the DVS sensor and the
standard RGB camera.

Pipeline - event data, from AEDAT2 to NPY As expressed previously, the AEDAT format
has slowly evolved from version 2 to 4 over the last few years and current versions of Python
libraries can no longer handle the AEDAT2 format. After some research, we found the AedatTools
functions, implemented in Matlab and made publicly available by a Github user (qiaokaki, 2017).
We leveraged these tools to implement a Matlab script translating an AEDAT2 file into a CSV file.
A second Python script is then used to transform this CSV file into a structured Numpy array, saved
as an NPY file. The two scripts described above can be found in the Annexes (Algorithms .1 and
.2).

Pipeline - RGB data to event data When recording event data from various UAV flights, NTUA
also recorded and made available to us corresponding RGB videos. In addition, the early recorded
videos were not suitable for learning sea and ground patches only as these videos indiscriminately
mixed the two scenes. While waiting for new event data to be recorded by NTUA, we recorded
with the help of the robotic team of the I3S laboratory, some sea-only and ground-only scenes
using a RGB camera. We then translated these videos into event data using the "Video-to-events"
library (D. Gehrig et al., 2020).
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This synthetic dataset, although imperfect in its synchronous aspect, allowed us 1) to have data
on which to begin the HOTS training and 2) to compare these "ideal" data to the data recorded in
the field by the embedded DVS sensor (see Sec. 9.2.1.1).

Tonic dataset structure Tonic wraps event data according to a specific structure (Lenz, 2019):
an object is created for each dataset, inspired by TorchVision’s dataset module (Linux Fundation,
2017). It requires methods to initialise the object, get a specific element of the dataset and output
its length. The events from one sample of the dataset are stored as a structured Numpy array of
shape (N, 4), with N the number of events and the four channels corresponding to the x and y
coordinates, timestamp and polarity of each event.

We implemented our own wrapper to allow for the HOTS model to easily use the event data
recorded by NTUA as input. A custom module was added to those required by Tonic: this function
splits the input stream of events into patches defined spatially and temporally, themselves split into
training and testing samples according to a user-defined ratio.

This wrapper can be applied to event data either recorded by NTUA’s DVS sensor or produced
from RGB videos, as long as the input files are of the format NPY or NPZ.

Validation of produced datasets Once both the DVS recordings and synthetic event data were
wrapped according to the Tonic structure, we analysed both datasets to assess the quality of the
data. However, the analysis of the first dataset provided by NTUA displayed many incoherences
such as long periods of time (up to 10s) with no events and the absence of activation of certain
pixels over the whole recording. According to Prof. Teresa Serrano-Gotarredona (a microelec-
tronic researcher at IMSE, Spain and member of the APROVIS3D consortium), this behaviour is
explained by the presence of the shadow of the UAV helix in the DVS sensor’s field of view, which
causes a high flow of events. The event rate produced by the DVS sensor has an upper bound ; ad-
ditionally, the FPGA board handling the recording has a maximum speed due to the time needed
to put a timestamp to the events, temporarily store them and send them to through the USB bus
once the buffer is full. Those three elements combined lead to the saturation of the camera and
intermittent communication of the events: the intermittent activation of rows of pixels is due to
the delay in transmission of the output spikes ; the time periods of inactivation are caused by the
higher rate of buffer refills than FPGA timestamping and communication through the USB bus,
causing event loss.

Following this interpretation, Sotiris Aspragkathos recorded new data with an event rate lo-
wered by reducing the sensor sensitivity and stimulus speed and contrast. After analysis, this new
dataset is deemed adequate to be used as a support to train HOTS and perform coastline navigation.

The different datasets and analysis described above can be found in Annexes, in Sec. E.
The first dataset recorded using a DVS sensor by NTUA and presenting issues is referred to
as "NTUA_DVS_2022", and the second one recorded in similar conditions is referred to as
"NTUA_DVS_2023". The dataset recorded by an RGB camera by UCA then translated into events
is referred to as "UCA_synthetic_2022".

Perspectives We aim to record and make available to the public a more complete and improved
dataset for the coastline segmentation task, from which we ultimately wish to infer segmentation
offline. The data would be recorded using a more standard DVS (such as a DAVIS camera, whose
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characteristics will be specified when the dataset is opened to the public). We established the
following requirements to accomplish this task:

— at least three levels of UAV altitude (for example, 5, 10 and 15 meters — knowing that the
UAV does not usually fly higher than 20 meters in the project use case) ;

— at least 3 levels of UAV speed (knowing that the UAV does not usually fly more than 5 m/s
in the project use case) ;

— different textures: sea, sand, grass, bushes, rocky coast, etc ;
We would record three one-minute-long samples for each combination of requirements des-

cribed above, thus collecting a total of at least 135 samples in the complete dataset. All samples
would be labelled with the values corresponding to each requirement described above. We believe
that such additions to the dataset would make segmentation more adaptive.

9.2.1.2 Adaptation on SpiNNaker

As HOTS has a relatively simple architecture, once trained to detect patches of ground and
sea, this model will easily be implementable on an embedded SpiNN-3, using the Python library
sPyNNaker (see Sec. 2.2.2). Each set of hyperparameters learned offline will be set to enable
online inference, thus automatic coastline detection and autonomous navigation of the drone.

9.2.2 Delay learning

A second approach to coastline detection would be to classify smaller samples of the scene
captured by the sensor according to the movement of the recorded events. Indeed, depending
on whether the events recorded correspond to the ground or to the sea, their movement is quite
different: as can be seen in Fig. 9.3, the events corresponding to the ground are generated by the
sensor’s ego-motion (Chapel & Bouwmans, 2020) thus follow a vertical, north-south motion ;
however the movement of the events corresponding to the sea is the sum between the move-
ment generated by the ego-motion (vertical motion) and by the waves (horizontal motion when
following the coastline). We thus propose to classify those samples using delay learning which
performs particularly well for spatiotemporal pattern recognition (see Fig.9.2, 9.3 and 9.4).

Figure 9.2 – Delay learning changes the delay of the electrical spike journey in the pre-synaptic
neuron’s axon so that it recognises specific patterns in the visual input data.

To this end, we supervised nine interns who worked on the re-implementation and adaptation
to real-life data of the bio-plausible unsupervised delay learning model introduced in (Nadafian &
Ganjtabesh, 2020) (see Sec. 5.3.2):

— M. Hugo Bulzomi, a 1st-year student in UCA master’s degree in computer science at the
time, re-implemented the authors’ model using PyNN, generated new synthetic input data
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and produced some preliminary results. His internship conducted intermittently with his
courses, spanned the duration of the semester of Fall 2021.

— M. Sami Benyahia, Ms Carla Guerrero, M. Raphaël Julien and M. Quentin Mérilleau, 1st-
year students in UCA master’s degree in computer science, worked on the implementation
of the model on SpiNN-3 — unfortunately without much result due to the high level of
complexity of this project. Their internship was conducted in the semester of Spring 2022,
intermittently with their courses.

— M. Kévin Constantin, a 5th-year engineering student in computer science, reused Hugo’s
code and made it more modular so that the number of pattern motions to be classified
can be easily modified. Additionally, he developed tools to visualise the evolution of the
weights and delays, as well as implemented metrics to asses the training phase efficiency.
His internship conducted intermittently with his courses, spanned the duration of the se-
mester of Fall 2022.

— M. Soussoh Kevin Egbohou, M. Gabriel Reynes and M. William Fernandes, 2nd-year
work-study students in engineering, worked on adapting the model to real-life data as well
as the implementation of a real-time performance indicator. Their internship was conduc-
ted during the semester of Spring 2023, intermittently with their courses as well as their
time in enterprise.

Figure 9.3 – Overall movements of the syn-
thetic events obtained from the recording of
the Mediterranean coastline by an RGB ca-
mera embedded on a drone. The top of the
sensor corresponds to the direction of the
UAV.

Figure 9.4 – Overall movements of the syn-
thetic events obtained from the recording of
the Mediterranean coastline by an RGB ca-
mera embedded on a drone. The top of the
sensor corresponds to the direction of the
UAV.

9.2.2.1 Metrics for the assessment of the training phase

Within the framework of his internship, Hugo implemented a first index to assess the homo-
geneity of the classification performed by the model ; the Gini index, measuring the statistical
dispersion i.e. the "purity" of the clusters produced by the classification, where each cluster should
only gather similar input patterns. It is calculated as follows:
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Gini(cluster) = 1 −
n∑

j=1
(p(j/cluster))2 (9.1)

where n is the number of classes (here the number of patterns to classify) and p(j/cluster) is the
frequency of class j in the cluster. The closer the Gini index is to 0, the "purer" is the cluster. We
assess the final performance of the network as the average Gini index over each cluster populated
by the network.

In a second phase, Kévin implemented three additional metrics to assess the convergence of
the convolution kernels towards the recognition of input patterns: the precision, the recall and the
F1-Score (see Eq. 9.2).

precision = TP

TP + FP

recall = TP

TP + FN

F1Score =2 × precision × recall

precision + recall

(9.2)

where TP corresponds to the true positive events, i.e. when a spike takes place when it is meant
to happen ; FP corresponds to the false negative events, i.e. when a convolution layer spikes for
an input pattern it is not specialised for ; FN corresponds to the false negative events, i.e. when
a convolution layer does not spike for an input pattern it should recognise. The precision thus
evaluates whether the actual spike activity matches with what it should have been, and the recall
evaluates whether all the spikes that should have happened did happen. The overall performance
of the network is therefore evaluated by comparing the expected activity (i.e. the input spikes) to
the obtained activity (i.e. the output spikes) for each convolution layer.

The metrics described in Eq. 9.2 require the initial step of linking each convolution layer to a
specific input pattern. A layer is specialised once its delays and weights match an input pattern,
with delays 1) not homogeneous but progressively increasing and 2) significantly lower than the
delays of neurons external to this pattern.

9.2.2.2 Classification performance

Four convolutions trained on noiseless data Using the four initial convolution layers, we train
the model on non-noisy synthetic input data after a long phase of manual tuning of various hy-
perparameters. We first test the trained model non-noisy data ; we obtain the features presented in
Fig. 9.5a, which are quite similar to the results obtained by the authors. Each layer is specialised,
with a perfect clusterisation according to the Gini index presented in Table 9.1a. Secondly, we test
this trained model on noisy input data: in this case, the average Gini index increases to 0.24 (see
Table 9.1b) and the clusters are less homogeneous, while still acceptable.

Four convolutions trained on noisy data We wish now to assess the classification performance
of this model when trained on noisy input data, similarly to the experiments conducted in (Nadafian
& Ganjtabesh, 2020). When tested on noiseless data, the results show a less marked specialisation
than when trained on noiseless data. Additionally, the convolution layers B and C in Fig. 9.5b seem
to have specialised for a similar motion. According to Table 9.2a, two layers overpower the others
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Diagonal A Diagonal B Diagonal C Diagonal D Gini
Cluster 1 25 0 0 0 0
Cluster 2 0 25 0 0 0
Cluster 3 0 0 25 0 0
Cluster 4 0 0 0 25 0

(a) Without noise

Diagonal A Diagonal B Diagonal C Diagonal D Gini
Cluster 1 15 1 0 0 0.12
Cluster 2 4 22 0 2 0.36
Cluster 3 6 2 25 3 0.48
Cluster 4 0 0 0 20 0

(b) With noise

TABLE 9.1 – Number of each diagonal pattern per cluster and corresponding Gini index, with a
network trained on noiseless data and tested on noisy and non-noisy input data.

and seem to recognise the same trajectory. Despite those issues, the average Gini index reaches
0.25. Finally, we test this model on noisy input data and observe that the clustering has indeed
suffered from the specialisation defects observed in the convolution filters, with an average Gini
index of 0.605 (see Table 9.2b).

Diagonal A Diagonal B Diagonal C Diagonal D Gini
Cluster 1 25 25 0 0 0.5
Cluster 2 0 0 0 0 0
Cluster 3 0 0 0 0 0
Cluster 4 0 0 25 25 0.5

(a) Without noise

Diagonal A Diagonal B Diagonal C Diagonal D Gini
Cluster 1 17 13 0 1 0.52
Cluster 2 6 6 8 10 0.74
Cluster 3 2 6 2 5 0.69
Cluster 4 0 0 15 9 0.47

(b) With noise

TABLE 9.2 – Number of each diagonal pattern per cluster and corresponding Gini index, with a
network trained on noisy data and tested on noisy and non-noisy input data.

Varying number of convolutions trained on noiseless data As stated precedently, while Hugo
used an approach to visualise the learnt features similar to the authors, one goal of Kévin’s in-
ternship was to develop new visualisation tools to assess the quality of the training: we can now
visualise the actual evolution of the weight and delay values over the training phase (see Fig. 9.6).
Additionally, we updated Hugo’s code so that the model can be more modular and one can easily
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A BA

C D

(a) Without noise

A B

DC

(b) With noise

Figure 9.5 – Features learned by the delay learning model implemented in (Nadafian & Ganjta-
besh, 2020), without or with additional noise in the input data used during training. Similarly to
Fig. 5.8, the size and intensity of each circle represent respectively the delay and weight of its cor-
responding synapse, where the bigger circle illustrates lower synaptic delay and the colour black
indicates the higher synaptic weight. On features learned on non-noisy data (left), the diagonal A
corresponds to a south-east motion, B to a north-east motion, C to a north-west motion and D to a
south-west motion. Figure from (Bulzomi, 2022).

(a) Pixel inside the pattern (b) Pixel outside the pattern

Figure 9.6 – Evolution of the features learned over time by the delay learning model implemented
in (Nadafian & Ganjtabesh, 2020), trained on noiseless input data. The delays are displayed in
blue and weights in orange. The figure on the left presents the evolution of the delays and weights
of the kernel corresponding to the sensor pixel of coordinates (x = 0, y = 4), i.e. within the
pattern ; while the figure on the right presents the evolution of the delays and weights of the kernel
corresponding to the sensor pixel of coordinates (x = 0, y = 0), i.e. outside the pattern. Figure
from (Constantin, 2023).
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(a) Two convolution layers

(b) Four convolution layers

Figure 9.7 – Features learned at t = 15, 000µs by the delay learning model implemented
in (Nadafian & Ganjtabesh, 2020), without any additional noise in the input data used during trai-
ning and using two (top) or four (bottom) convolution layers. The delays and weights are displayed
separately: the first line corresponds to the delays, the second to the weights and each column to
one convolution layer. The pattern learned by each layer is identified above each column. Figure
from (Constantin, 2023).

Figure 9.8 – Issue in the identification of patterns based on delay learning.
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modify the number of convolution layers, as can be seen in Fig. 9.7. The variation in the number
of convolution layers does not seem to influence the quality of learning according to the metrics
displayed in Fig. 9.9 ; the accuracy is significantly high, meaning that the network is almost never
wrong when predicting a given motion in the input data. However, the model quite often fails to
recognise an existing motion, with a probability close to 0.5 according to the recall value.

(a) Two convolution layers (b) Four convolution layers

Figure 9.9 – Metrics (described in Eq. 9.2) to assess the quality of the classification performed by
the features learned by the delay learning model implemented in (Nadafian & Ganjtabesh, 2020),
without any additional noise in the input data used during training and using two (left) or four
(right) convolution layers (corresponding to the features displayed in Fig. 9.7). The precision is
displayed in blue, the recall in orange and the F1-Score in green. Figure from (Constantin, 2023).

Defective lateral inhibition While showing a certain learning deficiency, the results presented
in Tables 9.2a and 9.2b display a certain coherence: diagonals A and B, as well as C and D, seem
to respectively produce similar clusters of good quality, specialising for the same trajectory inde-
pendently of the motion direction. This behaviour of double specialisation can also be observed
on noiseless data in certain simulation runs, such as in Fig. 9.8.

It seems that it is common for two layers to be occluded: a layer specialised for one motion has
weights correctly adjusted for its trajectory ; only the delays allow us to differentiate between the
direction of this motion. This phenomenon is supposed to be avoided thanks to a lateral inhibition
mechanism that appears to be defective in this architecture.

This issue could be addressed by implementing a more efficient lateral inhibition mechanism
or by adjusting the parameters according to the number of convolution layers, the window size,
the event density...

9.2.2.3 Tentative model of delay learning

After studying the neuromorphic state-of-the-art and especially the bio-plausible model in-
troduced in (Nadafian & Ganjtabesh, 2020), as well as investigating the potential biological ex-
planations for delay learning in (Grimaldi et al., 2022), we propose here a tentative learning rule
for simultaneous weight and delay learning inspired from the traditional STDP learning rule, for
recognition of spatiotemporal patterns. Here the weight would follow a traditional STDP rule (see



174 CHAPITRE 9 — Towards embedded applications — First steps and perspectives

Sec. 2.1.4.3) and the delay would be updated over time according to the following equation:

∆δ =
{

−α sin(∆t
τ ) if∆t ∈ [−τπ; τπ]

0 otherwise

with ∆t = ∆tpre − tpost

and ∆tpre = tspikeA − tspikeB

= tactivationA + δA − tactivationB − δB

(9.3)

where δ is the delay of the last spiking neuron between the pre-synaptic neurons A and B, τ is the
time constant of the learning rule and α is the learning rate. When τ increases, the time window
of the learning rule increases and the learning is applied to neurons whose spikes are farther apart
(and vice versa). When α increases, the value of the ∆δ extrema increases and the learning is
steeper. The behaviour of ∆δ and ∆ω are illustrated in Fig. 9.10.

Figure 9.10 – Behaviour of the tentative model of weight and delay learning we propose in this
work. The plot on the left presents the evolution of the delay according to Eq. 9.3, and the plot on
the right the behaviour implemented by a traditional STDP.

9.2.2.4 Perspectives

Our work on delay learning is still in progress, and several avenues are open to us to improve
this model and apply it to our coastline detection application. Concerning the re-implementation of
the model of (Nadafian & Ganjtabesh, 2020), a first step would be to achieve significantly accurate
results on noisy input data, with or without noise in the training dataset, to more easily adapt the
network to real-life data. A second would be to increase the number of patterns to be detected:
the network performs well for 4 directions, but an application to real-life data would require the
distinction between at least 8 directions. However such an experiment necessitates increasing the
kernel size, thus asking to increase the computational capacities of the support machine.

Once those two steps are achieved, we could hope to apply this model to samples extracted
from latticed real-life event data, either by inferring motions from the features learnt on synthetic
data or by training our model directly on real-life data.

Finally, we aim to implement this model on an embedded SpiNN-3 board to achieve online
classification to ultimately perform coastline detection and autonomous navigation.

The last two steps could similarly be followed with our original weight and delay learning
rules, provided additional efforts have been lead towards the implementation and experimental
validation of this model.
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9.2.3 Line detection

As a third and final approach to coastline detection, we developed a small SNN for line detec-
tion, easily embedded on a SpiNN-3 to interact with an event camera. As this model is still under
development, we have only produced a few first results which we present in the paragraph below.

9.2.3.1 Horizontal and vertical lines

The first network we implemented allows for the detection of vertical and horizontal lines,
without (first version - see Fig. 9.11) or with (second version — see Fig.9.12) the position in the
sensor of the input lines.

For an input sensor of n × n, the first version of this network requires 2(n + 1) neurons
and 2(n2 + n) excitatory synaptic connections. Each input neuron is connected to one neuron
in the vertical line detector and one in the horizontal line detector according to a low weight ω
so that the latter is activated only if all the neurons of the same (vertical or horizontal) line are
activated. Each of those two detectors of n neurons, arranged in linear ways according to a 2D
orthogonal reference frame, are then respectively connected according to a strong weight ω to a
neuron playing the role of overall supervisor. If one of the two neurons is activated, at least one
line of the corresponding type is detected.

In our case, we need the detection of the coastline to allow for the autonomous navigation of
the drone, therefore we need to know the position of each detected line. We implement a second
version presented in Fig. 9.12 where the supervisor neurons from the first version are removed,
and a WTA mechanism is added to the vertical and horizontal line detectors to obtain the exact
position of the strongest line detected in the visual scene (as we wish to detect only the coastline).
We obtain a network of 2n neurons and 2n2 − n synaptic connections, of which n2 are excitatory
and n2 − n inhibitory (WTA connections).
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Figure 9.11 – SNN architecture for vertical
and horizontal line detection, with no know-
ledge of the line position.
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Figure 9.12 – SNN architecture for ver-
tical and horizontal line detection, with
knowledge of the line position.
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We produced some initial promising results on static and moving lines, randomly oriented and
positioned in the scene and with or without noise. The corresponding plots can be found in Sec. E.

9.2.3.2 Diagonal lines

The networks described above are light and perform well, but do not allow for the detection of
diagonal lines, thus are not applicable for coastline detection. We propose here a second architec-
ture extending the first one to detect diagonal lines.

As seen in Fig.9.13a, instead of two detectors specialised either for vertical or horizontal lines,
we propose four detectors, each detecting lines on half of the sensor: top detector for the upper part,
bottom detector for the lower part, left detector for the left part and right detector for the right part.
Each neuron of each part of the sensor is connected to at least one neuron of the corresponding
detector. One example of the pattern of connections is given for the lower part, for one neuron
of the bottom detector, in Fig. 9.13b: the neurons on a line starting from the border neuron at the
same index as the detector neuron, and expanding according to a varying degree alpha so that a
majority of line orientations is covered, are excitedly connected to the corresponding neuron in the
detector.

This network theoretically allows for the detection of any line in the sensor, whether it is
diagonal, vertical or horizontal (see examples given in Fig. 9.14), using only 4n neurons for an
input sensor of dimension n × n neurons.
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Figure 9.13 – SNN overall architecture (left) and pattern of connections for one detector (left) for
the detection of diagonal lines.

Perspectives However different experiments demonstrated that the current pattern of excitatory
connections is not sufficient to assure the activation of one detector by a line ending on the corres-
ponding sensor border. Indeed, in the case of the connectivity presented in Fig. 9.13b, a horizontal
line crossing the lower part of the sensor would activate the corresponding neuron in the bot-
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Figure 9.14 – Three examples of line reconstruction from various detector’s neurons activations.
Two neurons are activated in two of the detectors, thus giving the coordinates of the intersection
points of the detected lines with the edges of the sensor.

tom detector ; actually, as this pattern is similar to all neurons of the bottom detector, it would be
entirely activated thus distorting the results.

We are currently working on implementing a lateral inhibition mechanism that would ensure
that a detector neuron is activated if and only if all the neurons on the same line are activated.

9.3 3D reconstruction

As stated in the introduction of this chapter, the APROVIS3D project has a use case of 3D
reconstruction of a visual scene from the stereo matching between the recording of two event
cameras, using an SNN architecture. We investigated this question via the supervision of two
internships:

— Ms Huiyu Han, a 5th-year engineering student in applied mathematics and modelling
at the time, conducted a thorough state-of-the-art study (see Sec. 4.3.2), reimplemented
the spiking stereo-matching method introduced by (Dikov et al., 2017) on SpiNN-3 (see
Sec. 2.2.2) and adapted to be tested on real data, i.e. the DSEC dataset (see Sec. 3.3.4).
Her internship lasted from March to September 2021.

— M. Noah Candaele, a 1st-year student in a master’s degree in computer science, initiated
the implementation of a demonstrator interfacing SpiNN and event-driven camera for real-
time stereo matching. His internship conducted intermittently with his courses, spanned
the duration of the semester of Fall 2022.

9.3.1 Embedding the model on SpiNN-3

(Dikov et al., 2017) originally reduced the size of their spiking stereo-matching model so that
it can be embedded on the neuromorphic set-up they had available: indeed, to take as input the
data produced by a sensor of size 128 × 128 with a disparity range of [0, 127], their network is
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composed of around 220 cells i.e. 3.17M neurons (see Eq. 4.5, where we do not consider the retina
input as the corresponding neurons are not simulated stricto senso by the SpiNNaker boards),
which requires 15 SpiNN-5 boards. The authors filter the input event and reduce the network size
so that xmax = ymax = 106 and dmax = 32. With those new parameters, the network contains
only 315K neural micro-ensembles i.e. 945K neurons and can be run on the authors’ locally
available system of 6 interconnected SpiNN-5 boards.

In the framework of Huiyu’s internship, our main goal was to further reduce this network
and adapt it so that it can fit on a unique embedded SpiNN-3 board. In order to achieve this
goal, our first approach was to calculate the maximum number of parameters such as xmax =
ymax = dmax + 1 and Nn < 18K (see Sec. 2.2.2). However, with the set of parameters obtained
(xmax = ymax = 22 and dmax = 21) the board produces an unexpected resource error.

Indeed, this issue can be explained as follows: the SpiNNaker board places each population
on a separate core, thus allowing for a maximum of 63 populations on SpiNN-3. The network
structure originally implemented in (Dikov et al., 2017) initialises one population per vertical
column of blocker neurons and per vertical column of collector neurons ("columns" referring here
to neurons sharing the same x coordinate). The number of populations can thus be calculated as
twice the number of neural micro-ensembles n in each layer (see Eq. 4.3), with ymax the number of
neurons in each collector population and 2xmax the number of neurons in each blocker population
(since there are two blockers for each collector). With the current set of parameters, we have 552
populations that cannot be embedded on our SpiNN-3’s 63 cores ; therefore we reduced our set of
parameters to xmax = ymax = 7 and dmax = 6 to implement the original network structure on
SpiNN-3.

However, the setup described above is not optimal: we only place 7 neurons per popula-
tion/core when each core could fit up to 256 neurons. We thus adjusted the network structure to
place more neurons per population: our new structure initialises one population per horizontal
rank of blocker neurons and per horizontal layer of collector neurons ("layer" referring here to
neurons sharing the same y coordinate). The number of collector populations is now ymax and the
number of blocker populations 2ymax, for a total of 3ymax populations. Each population contains
a number of neurons that equals the total number of neural micro-ensemble Nnme described in
Eq. 4.3. This new structure allows us to take input of size xmax = ymax = 21 and dmax = 20
while maintaining the original pattern of excitatory and inhibitory connections.

A second approach to embed (Dikov et al., 2017)’s stereo-matching network on a SpiNN-3 was
to spatially reduce the input data instead of cropping it so that it fits the parameters determined
above.

9.3.2 Stereo-matching performance

We present below some initial results with both approaches on two datasets (two fans and
pendulum) provided by (Dikov et al., 2017) to reproduce their results and more innovatively on
the DSEC dataset (see Sec. 3.3.4).
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9.3.2.1 Performance on Dikov’s datasets

The authors provide two datasets, presented in Section 4.3.2.2, and corresponding results that
we wish to reproduce with our adaptations.

We present below a comparison between the results obtained with the original network as
implemented in (Dikov et al., 2017) and those obtained on EBRAINS after either downscaling
the input data by 2 or on SpiNN-3 after downscaling and cropping the input data. The spatial
downscaling is achieved using the event count method described in Sec. 6.2.2.1 using a factor
3. Table 9 (in Annexes) presents the performance of cooperative stereo-matching obtained on the
"two fans" dataset, where the network activity is quasi-stationary in terms of disparities despite the
high rotation speed of the blades thus produces good performance thanks to the reduced number of
event. However, Table 10 (in Annexes) presents similar results obtained on the "pendulum" dataset,
where the constant evolution of disparity produces a significant number of events thus asking for
more resources (as proves the high accuracy obtained on EBRAINS compared to SpiNN-3).

9.3.2.2 Performance on DSEC

Finally, we adapted this cooperative stereo-matching network to a more complicated, real-
world driving dataset: DSEC (see Sec. 3.3.4). As the spatial resolution is too important for event
Manchester’s 1 million core large scale SpiNNaker-1 system (available to us via EBRAINS), we
spatially downscaled by 5 the first 300ms of one sample of this dataset. The initial disparity map
we obtain is particularly sparse because the pixels spike less often than the network’s simulation
timesteps, thus not providing enough information at each timestep. To overcome this issue, each
non-activated pixel is given the last computed disparity value at each timestep. Table 11 presents
the disparity maps computed from ground truth and from the stereo-matching network results,
with and without solving the non-activation issue mentioned above. We explain the surprisingly
unsatisfying network results by the high speed of change of disparity at each pixel, compared
to the dataset provided by the authors where each pixel’s disparity changes much less often if
at all. Additionally, we suspect that the parameters used in (Dikov et al., 2017) are not quite so
generalisable and that a solution to this problem would be to find a method to adjust the parameters
to this more complex dataset.

9.3.3 Live demonstrator

The main goal of Noah’s tutorship was to take up the work done during Huiyu’s internship and
from there, create a live demonstrator interfacing the cooperative stereo-matching network imple-
mented on SpiNN-3 with two locally available event cameras. A stereo event stream is recorded
using two Prophesee GEN3.1 cameras, calibrated so that they record the same visual scene from
two slightly different angles but synchronised in terms of focus, distortion, rotation, etc. If the ca-
libration is not done correctly, the images acquired will not be aligned and the depth information
will not be reliable.

The current implementation of sPyNNaker (see Sec. 2.2.2) provides different methods to re-
trieve records from an external camera, that is then stored in the chips’ SDRAM to ensure that it
is available for future access. However, sPyNNaker does not currently provide any out-of-the-box
support for real-time interactions with simulations (such as interacting with an external device and
receiving new data while a simulation is running), except the less-than-ideal solution of launching
multiple successive runs and retrieving information in between. We overcome this problem using
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the external_devices module: it provides capabilities for real-time injection and retrieval
of spikes during a running PyNN simulation, thus allowing for control over the simulation. This
live input/output interface creates a database that is subsequently used by external receivers and/or
senders to identify recently activated neurons. The overall behaviour adopted by this module for
communication between a SpiNNaker board and an external device is presented in Fig. 9.15.

Figure 9.15 – Communication between the SpiNNaker board and an external device as handled
by the external_devices module, from (Manchester, 2014).

The SpiNNaker board can thus receive event data in real-time but requires that the population
of input neurons be implemented using the specific population type SpikeInjectors, which
are sent using the send_spike() method (see Algo. .3 and .4 in Annexes). On the output side,
the spikes can be extracted in real-time, at each timestep, using a "callback" function similar to a
"listener" (see Algo. .5 in Annexes).

All in all, the module and population types described above could theoretically allow for the
interfacing between our cooperative stereo-matching network on SpiNN-3 and our two event ca-
meras to visualise the disparity map obtained from recorded data in real-time. For now, only a first
step has been achieved: the real-time visualisation of the disparity map obtained from pre-recorded
data, i.e. the "two fans" dataset (see Fig. G.7 in Annexes).

9.4 End-to-end neuromorphic lip reading

Human speech perception is intrinsically a multi-modal task since speech production requires
the speaker to move the lips, producing visual cues in addition to auditory information. Lip rea-
ding consists in visually interpreting the movements of the lips to understand speech without the
use of sound. The prospect of systems capable of reading lips is attractive for a variety of real-life
applications, like assistive devices for persons with disabilities, security and surveillance applica-
tions, or automatic transcription of video content. It can either complement an audio-based speech
recognition system or replace it when sound is not available. During this PhD, we supervised
students in UCA master’s degree in computer sciences on the subject of neuromorphic lip reading:

— M. Raphaël Pietrzak and Ms Juliette Sabatier (semester of Fall 2021) recorded and pre-
processed a new event-based dataset for the classification of lip motions.
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— M. Marcel Schweiker (semester of Fall 2022) re-implemented the ANN lip-reading model
introduced in (Tan et al., 2022) and worked on its application to the i3S dataset, recorded
by Raphaël and Juliette.

— M. Hugo Bulzomi (semester of Fall 2022) developed an SNN model for lip-reading, ap-
plied to the I3S dataset as well as to the event-based dataset introduced in (Tan et al.,
2022).

We believe that the recording of an event-based lip-reading dataset and implementation of an
end-to-end neuromorphic lip-reading system could directly benefit the development of portable
assistive devices or surveillance equipment. As of now, SNNs are yet to be applied to automatic
lip reading despite their attractiveness, supported by the arguments listed above. This innovative
work is therefore the first to exploit its advantages for the specific task of lip-reading on event data.

9.4.1 i3S dataset

The goal of Raphaël and Juliette’s internship initially was to develop and record an event-
based dataset addressing a specific task that could not be achieved by solely considering events
accumulated into a frame. Indeed, sometimes the simple observation of such a frame easily allows
any ANN to determine the class without having to take into account the sequence of the frames
(see example presented by Fig. 9.16). All in all, our motivation to propose such an internship was
to reinforce the significant interest in using SNNs to process event data due to the temporal aspect
of their learning.

We decided to focus on a dataset allowing for the classification of precise movements, where
the time value of event videos would be crucial and properly exploited. We finally settled on
registering lip movements to perform a potential reading on the lips, as no similar dataset existed
at that time (DVS-Lip was later published in June 2022, see Sec. 3.3.5). Compared to other visual
tasks, automatic lip reading deals with especially subtle movements with very precise timing and
is very sensitive to noise and other environmental factors. A model for automatic lip reading thus
needs to excel at extracting both spatial and temporal information.

All in all, the dataset we recorded, which will be referred to as the “i3S dataset” ∗ in the
remainder, contains 45 words recorded from 7 participants with 3 repetitions of each word per
participant, for a total of 945 samples representing 11 GB of data.

9.4.1.1 Desired features

The i3S dataset focuses only on lip movements and has a wide variety of words/sounds in
addition to profiles whose characteristics differentiate them from each other.

We identified different features necessary to obtain a complete and useful dataset:
— Similar recording conditions: it is necessary that the conditions (position of the face, ligh-

ting, setting, etc) be identical so that learning is not distorted by unintended elements such
as noise or an element of a class that stands out from the others due to an external factor.

— Subjects’ diversity: as this dataset records people, it is necessary to have diversity in the
profiles in order not to introduce bias during learning. Recorded subjects were selected
according to diversity in the following criteria: face shape, gender, and facial hair (hairless,

∗. We refer to this dataset as the “i3S dataset” and not the “UCA dataset” since it was recorded with funding from
CNRS and not UCA.



182 CHAPITRE 9 — Towards embedded applications — First steps and perspectives

beard, moustache, etc). We deemed the last criterion particularly important as it can hide
part of the mouth and change the appearance of the movement to the camera.

— High number and variety of classes: the more different scenarios and repetitions of the
same scenario a dataset contains, the more complete and precise it will be in its learning.
The i3S dataset is thus composed of 45 words with 2 to 4 syllables, each containing at least
one sound associated with each element of the French phonetic alphabet. The complete list
of words can be found in Sec. H.1 in Annexes.

— Ease of use of the format: the format in which the data is saved should correspond to event
data while being as easy as possible to use.

Figure 9.16 – Accumulated events from a DVS 128 Gesture sample. Here, one can easily guess
the DVS 128 Gesture class presented: the polarity (green dots for positive events, blue for negative
events) hints at movement going from right to left, and the lesser number of negative pixels at the
bottom of the forearm suggests a rotational movement.

9.4.1.2 Dataset acquisition

The data was recorded using the EVK1 - Gen. 3.1 VGA camera from Prophesee, provided
with the corresponding software Metavision and an extensive API to process the data. The event
data is saved in raw format with "EVT2" encoding.

Only the bottom of the subjects’ faces is recorded to remove any irrelevant disruptive informa-
tion and allow for the anonymisation of people who have agreed to be registered for the dataset. To
ensure the legality of the dataset, UCA’s legal department assures that the GDPR does not apply
given the tight framing on the lower part of the face and the retention of no personal data, as long
as the participants sign a short legal form.

Each participant was asked to say each word three times to get different lip movements on the
same word. The camera was placed at the level of their mouths and, using our instructions and the
feedback they could see on our computer screen, they positioned themselves so that the bottom of
their nose was visible at the top of the event video, about 10cm away from the lens. To stabilise
themselves, the participants put both hands on the table. The lip movements for one word were
performed 1s after the beginning of the recording, and an additional 1s was added before its stop.
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9.4.1.3 Recorded data postprocessing

The camera parameters used to record the data were not optimal and did not totally prevent
the formation of noise in the events. To solve this issue, the data was subsequently converted into
Numpy arrays and then processed using the denoising function provided by the Tonic library (Lenz
et al., 2021).

The operation of this function is simple: if an event occurs but no other event is detected within
a pixel radius for a period of time given in the parameter, it is removed. Thus, with the right time
parameter, the isolated events will be deleted and those participating in the movement kept.

Once processed, each sample is saved into a file tree structure adapted to the classification of
spoken words: each repertory corresponds to one class, i.e. one word. Each class is subdivided into
subclasses under the denomination "userX_Y", with X the subject number and Y their physical
particularity (beard, moustache, etc). Each subclass contains the corresponding RAW, BIAS and
NPY files, named "recording_Z.format" with Z the recording order. One example of such a tree
file can be found in Sec. H.2 in Annexes.

9.4.2 Neuromorphic lip reading model

Under our supervision during the semester of Fall 2022, the intern Hugo Bulzomi proposed a
neuromorphic model for lip reading taking as input the data produced by an event-based sensor
capturing lip motion. The model classifies short sequences of events into word categories using an
SNN architecture, thus leveraging the advantages of neuromorphic computing, including energy
efficiency and low latency, making it suitable for real-time embedded scenarios. His work draws
inspiration from Tan et al. (Tan et al., 2022), who achieved state-of-the-art results with an original
DNN architecture for an automatic lip reading task on event data (see Sec. 3.3.5). Additionally,
the model takes as input the DVS-Lip dataset Tan et al. introduced in (Tan et al., 2022). To the best
of our knowledge, the model described below is the first proposal of an end-to-end neuromorphic
lip reading model.

9.4.2.1 Event data preprocessing

As we opted to use surrogate gradient descent to train this lip reading model, it became neces-
sary to convert our data to a synchronous form. Finding efficient ways to represent event data is a
difficult problem subject of many prior studies. Since we target the DVS-Lip dataset, we chose to
use a method similar to the one described by (Tan et al., 2022). In their study, the authors converted
the asynchronous events into a 3-dimensional array, i.e. a voxel grid. Eq. 9.4 and 9.5 from (Tan et
al., 2022) show how we can create a voxel grid of a specific length T where the polarity of each
event is spread through the two closest spatiotemporal voxels:

t∗
k = T − 1

tN − t1
(tk − t1) (9.4)

V (t, y, x) =
∑

k

pkmax(0, 1 − |t − t∗
k|) (9.5)

where T is the number of frames we want to use (i.e. the time resolution of our grid), and tx is the
timestamp of the xth event from the original video. The event data are discretised accordingly into
a 3-dimensional grid of shapes (t, x, y).
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(Tan et al., 2022) uses two different values for T : 30 for the low-rate branch of their network
and 210 for their high-rate branch. However, the individual performances of each branch when
not combined are very similar (accuracy of 69.57% and 69.49% respectively). Only when both
are combined in a multi-grained network along with message flow module blocks does the overall
accuracy increase to 72.10%. After some trials, we manually set T = 30 since using a higher value
would tremendously slow the training processes for little improvement, and a lower value leads to
an accuracy collapse.

9.4.2.2 Topology exploration

To the best of our knowledge, no prior work uses SNNs to classify dynamic scenes for lip rea-
ding. Moreover, the literature on dynamic classification with SNNs is scarce. The closest studies
to our work used the DVS-Gesture dataset introduced by (Amir et al., 2017) along with reasonably
simple topologies and different variations, like in (Yao et al., 2021). The DVS-Gesture dataset it-
self is comparatively easy to classify, we hope to contribute to the area of neuromorphic computer
vision by showing that more difficult problems can be tackled with SNNs.

We tested several topologies of different levels of complexity. Fig. 9.17 presents two simple
SNN topologies that we used ; we will refer to those models as SNN1 and SNN2. SNN1 takes
inspiration from (Yao et al., 2021), who originally designed this topology to classify DVS-Gesture ;
while SNN2 takes inspiration from (L. Zhu et al., 2022), where the authors use a spiking encoder-
decoder architecture for event-video reconstruction. SNN2 is the encoder part of their model,
where the residual layers have been replaced by two more convolution layers, yielding a higher
accuracy. Batch normalisation layers have been added after each convolution since such layers
have been shown to considerably facilitate the learning process (Cordone, Miramond, & Thierion,
2022).

Figure 9.17 – Architecture of two lip reading SNN models.

Along with this simple architecture, we designed a spiking equivalent of the low-rate branch
of MSTP. AS MSTP uses ResNet (He et al., 2016) as the backbone, we first implemented a spiking
ResNet backbone (similarly to (Fang, Yu, Chen, Huang, et al., 2021)) and then applied the MSTP
architecture. The topology of our spiking MSTP low-rate branch is presented in Fig. 9.18.

One key difference between our spiking adaptation of MSTP and the original model lies in the
GRU layer employed near the architecture’s output. RNNs are generally employed when informa-
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tion has to be extracted from temporal sequences. Their output depends on both their current input
as well as their hidden state. More particularly, GRU allows each neuron to learn how much of
the previous information needs to be forgotten and how much of the current new input should be
memorised (Chung, Gulcehre, Cho, & Bengio, 2014). Though a spiking LSTM layer (adaptable
into a spiking GRU) has been proposed in (Lotfi Rezaabad & Vishwanath, 2020), we found it to
give very underwhelming results in our case: our network exhibited a very slow and inefficient
learning process, especially in the three original layers of bidirectional GRU used in MSTP. We
ultimately decided to try to find alternatives for extracting temporal information to replace this
GRU layer.

Figure 9.18 – Architecture of the overall spiking low-rate branch MSTP topology along with the
associated ResBlock.

Table 9.3 presents the parameters used to implement the various SNN lip reading models using
the PLIF neuronal model (Fang, Yu, Chen, Masquelier, et al., 2021).

Parameters Values
Initial τ 2.0

Activation threshold 1.0V
Reset potential 0.0V

TABLE 9.3 – Neurons parameters of the lip-reading SNN model.

9.4.3 Experimental validation

Experimental results demonstrate the effectiveness of the proposed model in lip reading, achie-
ving high accuracy in word classification.
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9.4.3.1 Experimental setup

Experiments with SNNs were performed on the DVS-Lip dataset using 30 timesteps (T = 30
in Eq. 9.4) to help us identify the most promising spiking topology before comparing MSTP to
this optimised SNN. The different models were implemented using the SpikingJelly library and
the Adam optimiser with a learning rate of 1e−3, and a cosine annealing scheduler to adjust the
learning rate during training (similarly to (Cordone et al., 2022)). All experiments were performed
on a laptop with an Intel Core i9-12950HX CPU (2.5 GHz x 16), 62,5 GB RAM, with an NVIDIA
RTX A5500 laptop GPU with 16 GB of VRAM.

9.4.3.2 Identification of the best topology

This paragraph presents the classification accuracy of the DVS-Lip dataset obtained with the
three SNN models described above.

The choice of the surrogate function of the gradient descent can vastly influence how the
networks perform. We tested three of the main existing surrogate functions: piecewise quadratic,
ATan, and the Gaussian error surrogate function (Erf). Table 9.4 shows preliminary classification
results on a subset of DVS-Lip, using the three functions mentioned above. As Erf’s performance
is slightly better than ATan and Piecewise’s, we use this function in subsequent experiments.

Tab. 9.5 presents the performance on the whole DVS-Lip dataset of the three architectures des-
cribed above. This second batch of experiments shows that the spiking MSTP obtains significantly
better results than the other models (SNN1 and SNN2).

9.4.3.3 Ablation study and comparison to state-of-the-art

Up until this point, our Spiking MSTP did not use any recurrent layer and the original GRU
was simply replaced by a spiking Fully Connected layer. Table 9.6 presents the results of different
experiments with possible GRU replacement in order to identify whether we could reach a higher
performance thanks to other temporal information extraction methods. The results, including the
accuracy of the original MSTP published in (Tan et al., 2022), show that significant performance
growth can be gained by using stateful synapses either as a spiking replacement for the GRU layer.

According to Table 9.6, the existing MSTP still outperforms our best SNN model. However,
we observe in Table 9.7 that our model reaches 83% of the existing MSTP accuracy but requires
an amount of memory 5 times smaller than the one used by the MSTP model. Furthermore, the
main topological difference between our model and the low-rate branch of MSTP is the absence
of the three layers of bidirectional GRU. If removed, the low-rate branch of the existing MSTP
performs slightly worse than our Spiking MSTP with similar memory size. All in all, our model
seems to be a promising option for embedded lip reading: thanks to its spiking nature, its lower
accuracy makes a good trade-off for a more energy-efficient model.

9.4.4 Limitations and perspectives

Our lip reading model is amongst the first advanced deep spiking models applied to such
a challenging task and manages to get promising results while keeping a relatively small size.
Although the accuracy of the proposed model is lower than the current state-of-the-art, we de-
monstrate that SNNs can be used for complex video classification tasks since lip reading remains
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Models Activation function Accuracy
SNN1 Erf 0.546
SNN1 Piecewise 0.531
SNN1 ATan 0.534

TABLE 9.4 – SNN1 accuracy on a subset of 10 classes from DVS-Lip, using different surrogate
functions. The classes correspond to the words: allow, allowed, America, American, benefit, be-
nefits, billion, called, challenge, and change.

Models Variation Accuracy
SNN1 Base model 0.395
SNN2 Base model 0.514

Spiking MSTP No GRU 0.522

TABLE 9.5 – SNN results on the entire DVS-Lip dataset.

Model Model Accuracy
MSTP Original ANN (Tan et al., 2022) 0.721

Spiking MSTP Simple fc layer 0.522
Spiking MSTP Spiking bi-GRU 0.463
Spiking MSTP Spiking recurrent layer 0.476
Spiking MSTP Stateful synapse 0.602

TABLE 9.6 – Spiking MSTP results on the entire DVS-Lip dataset, trying different substitutions
for the 3-layer bidirectional GRU in the classification part.

Model Accuracy Size
Event Clouds MSTP 0.721 241.5MB

MSTP low branch without GRU 0.591 47MB
SNN1 0.395 26.7MB
SNN2 0.514 88.9MB

Spiking MSTP 0.602 47MB

TABLE 9.7 – Size and accuracy comparison between our models and the state-of-the-art.
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very challenging even for humans. Moreover, this work provides valuable insights for future stu-
dies in this area. We demonstrate that surrogate gradient descent does provide a worthwhile option
for supervised training of SNNs, thus giving our spiking MSTP the potential to have competitive
results with those of regular deep ANNs.

Further experiments to improve the data pre-processing and the SNN model itself may, in the
near future, allow a state-of-the-art model to be achieved. In the absence of published deep and
complex SNNs for similar tasks, we hope to provide a spiking baseline for future work in this area.

We believe that our model can still be improved, especially regarding the replacement of the
GRU layer ; even though our stateful synapses allowed us to break the 60% accuracy line, we
believe it to be the cause of the performance gap between MSTP and this model and can be bridged
by identifying more efficient ways to extract information from the temporal component of the data.
Furthermore, even though we believe surrogate gradient descent is the current best training method
for supervised learning with SNNs, it brings many of the regular ANNs’ limitations to SNNs while
performing a lot of approximations during training. We thus hope for the development of other
training methods in the future, allowing us to tap into the full potential of SNNs.

Finally, we wish to compare the results described above, obtained on the DVS-Lip dataset, to
new experiments conducted on the cleaned-up i3S dataset.

9.5 Conclusion

This chapter thus concludes the Contributions part of this manuscript. We detailed the different
contributions we initiated and the related perspectives:

— the implementation of three approaches to tackle APROVIS3D’s task of coastline detection
to allow the autonomous navigation of a drone ;

— the extension of existing work to perform embedded 3D reconstruction using a stereo event
stream;

— the development of a model of end-to-end neuromorphic lip-reading with the associated
recording of an event-based dataset.

Each of these axes of research has potential follow-ups, described in detail in this chapter.
These include the development of a comprehensive dataset for coastline detection, the implemen-
tation of a demonstrator for embedded and self-sufficient 3D reconstruction, the development and
extensive experimental validation of a model of weight and delay learning and the implementation
of SpiNN-3 of an existing unsupervised delay learning model.



CHAPTER 10
Conclusion

As demonstrated multiple times in this manuscript, the embedded combined use of SNNs and
event cameras is significantly attractive regarding biological inspiration, reduced energy consump-
tion, decision latency, and memory use. It is gaining momentum in the field of embedded computer
vision. However, their novelty leaves room for many improvements in terms of optimal prepro-
cessing of data as well as how this data is processed, making the most of the singularity of these
scientific concepts.

10.1 Summary of contributions

Within this PhD, we identified several challenges related to this broad research topic, which
we tackled through two main questions:

1. How can we optimise the trade-off between quantity and quality of the visual information
as a preprocess for embedded data processing?

2. How can we exploit the relevance of the SNN to process the specific chronology of event
data in an embedded context ?

We answered the first axis of research with three potential solutions: event data could either
1) be spatially or temporally reduced, either online or offline ; 2) keep only salient elements and
discard the rest ; 3) be foveated, as a bio-plausible compromise between the two previous solutions.
We compared qualitatively and quantitatively the event data obtained after each preprocessing
method to assess whether the trade-off between the amount of data (i.e. events) kept versus the
relevance of information kept is optimal. We also evaluated the computation time of each method,
as their ultimate goal is to be embedded and able to run online.

The first solution, i.e. event data reduction, was implemented and experimentally assessed
as ten different downscaling methods, of which six influence the spatial resolution and four the
temporal resolution. We identified preferable methods for runtime, post-processing classification
accuracy and the number of events: SNN pooling for spatial downscaling and stochastic struc-
tural for temporal downscaling. However, we highlighted the potential limitations of event data
downscaling. There is a high variation in optimising the trade-off mentioned earlier, which stron-
gly depends on the chosen method, dividing factor and application task. Additionally, we provided
insights into the human perception of gesture classification using event data, thanks to an original
human performance assessment experiment.

As a second solution to this first axis of research, we proposed the detection and selection of
salient elements in the event scene thanks to a bio-inspired visual attention mechanism. We intro-
duced a neuromorphic model for visual attention on event data, with multiple variations enabling
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the selection of one or multiple OoIs in the visual scene. Based on event density, this adaptative
model relies solely on intrinsic SNN dynamics and requires no training, merely a fine-tuning phase
for a new type of data. It was designed on a CPU and deployed on the neuromorphic platforms
Loihi, SpiNNaker and Loihi. Using this model, we managed to reduce the spatial repartition of
events to 20% of the original one while maintaining a classification performance at 70% of the
original one, with a detection latency under 15ms. However, the simultaneous salient detection is
only effective at most 50% of the time ; this is not efficient enough for an embedded model, whose
real-life applications favour a significantly lower margin of error.

This leads us to our third and last solution: neuromorphic foveation, which corresponds to a
feedback loop between a foveated event camera and a neuromorphic saliency detector, merging
events at multiple resolutions according to the salient regions detected in the visual scene. This
solution is ultimately to be the subject of a hardware implementation ; however, in the context of
this PhD, we have implemented a first software version to begin the experimental validation of
such a concept. We have designed a "binary" version of this concept, akin to the combination of
the events of each sample in high resolution and low resolution using a mask. Using the binary
implementation, we applied neuromorphic foveation to two use cases, gesture classification and
semantic segmentation of a driving scene. We demonstrated the significant benefits of this method
for optimising the trade-off between event quantity and quality. Indeed, in the embedded scenario,
we managed to keep the same performance as with the original dataset on average while decreasing
the mean number of events by two-thirds to reach the low-resolution value. Additionally, we have
experimentally shown that most events kept in the foveated dataset provide relevant information
while a significant part of the events in the original dataset is not as valuable but still provides
interesting contextual information specifically relevant for semantic segmentation.

Overall, the results obtained during this PhD demonstrate that neuromorphic foveation leads
to a good trade-off between information quantity and quality, at least on a software level.

We have undertaken several lines of research to address our second problem introduced earlier
while remaining within the framework of the APROVIS3D project. To exploit the relevance of
SNNs to process the particular temporal aspect of event data, we identified three embedded appli-
cation tasks relevant to this issue and to APROVIS3D: coastline detection, 3D reconstruction and
neuromorphic lip reading.

We have laid the foundations for three possible approaches to the first task: ANN-to-SNN
conversion, adaptative line detection and delay learning. While the two initial approaches fail to
exploit the event data temporality and the task could have been solved using frames instead of
single events, the last one is auspicious by its bio-plausibility. Using delay learning, the events are
segmented not according to the global object they form but thanks to their specific spatiotemporal
patterns.

The second task calls for the implementation of bio-inspired stereo-matching models. We im-
plemented the first steps towards a live demonstrator for neuromorphic 3D reconstruction based on
existing work adapted to run online on a SpiNNaker board. Temporal timing of events and spikes
also intervene in this model: each network cell encodes a belief in matching a heterolateral pair of
pixels, relying on the temporal timing of the stereo activation to prevent homolateral matching.

The third task, neuromorphic lip reading, falls further away from the APROVIS3D spectrum
but highly benefits from the SNN’s intrinsic temporal processing and event data’s crucial chro-
nology. We implemented an SNN architecture requiring event data as input — as a similar task
could not easily be solved using frames instead of individual events — to perform lip reading. It
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leverages the advantages of neuromorphic computing, including energy efficiency and low latency,
which makes it suitable for real-time embedded scenarios and produces promising results while
keeping a relatively small size.

10.2 Perspectives

The results obtained during this PhD open the door to a multitude of potential developments,
aiming to optimise embedded neuromorphic computer vision in the longer or shorter term.

10.2.1 Short term perspectives

Event data downscaling We believe that the subject of event data downscaling is quite promi-
sing. Indeed, other researchers started tackling this issue as well following the publication of our
works (Rizzo, Schuman, & Plank, 2023). On our side, we believe we are still missing a final as-
sessment: the complete evaluation of real-time data downscaling with the newer temporal methods.
The diverse combinations of spatial and temporal methods could also bring a new dimension to
the research field of event data downscaling.

Additionally, we believe that it would be highly beneficial for the scientific community to gain
easier access to the methods we implemented and validated. They are currently available online on
a GitHub repository ; one way to make them more accessible overall would be to integrate them
into the Tonic library (Lenz et al., 2021), which positively encourages collaborative involvement
and outsider contributions. This library already proposes an alternative version of the temporal
and spatial funnelling methods (with no removal of duplicates) ; it could only benefit from the
additional implementation of the eight methods we introduced.

Simultaneous saliency detection of multiple OoIs We believe some SNN architectures imple-
mented during this PhD can be improved. The simultaneous saliency detection model for multiple
OoIs requires further parameter tuning to increase the multi-OoIs detection performance beyond
the current maximum of 50%. Additionally, this model was solely assessed for the simultaneous
detection of two OoIs while it could theoretically reach a greater number ; this should be the subject
of further experiments on more complex datasets and scenarios with a greater number of salient
objects. Finally, it should be applied to more complex scenarios (such as driving scenes) to assess
its viability on an embedded system.

A second possible improvement is to update this model to enable an adaptative number of OoIs
to be detected. In this ideal model, the number of output layers could be adapted to the number
of OoIs present in the visual scene, i.e. the number of regions identified by the saliency detector,
via a feedback regulation: for example, the activity of the nth output layer would give feedback
on the existence of a nth OoI in the current scene, allowing the network to add or remove output
layers appropriately. Such an implementation would require neurogenesis and synaptogenesis (i.e.
dynamic instantiation of neurons and synapses), which is currently unavailable on most SNN
simulators and neuromorphic hardware ; however, we could mimic this bio-inspired behaviour
by initiating multiple output layers and inhibiting them according to their use. Additionally, the
framework behind Kraken (Di Mauro et al., 2022) may allow such a behaviour to be implemented,
even in an embedded scenario. This possibility is still to be further confirmed with experimental
trials.
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The scientific community is producing more and more results demonstrating the benefits of
deploying SNN architectures on hardware. This will both facilitate on-board implementation and
interfacing with event cameras as well as demonstrate the advantage of these neural networks
over standard ANNs, which are still widely favoured in computer vision nowadays. Therefore,
we wish to validate our SNN architectures, particularly our visual attention model variations, on
neuromorphic hardware — further than the work begun in (Bulzomi, Gruel, et al., 2023). These
models could be deployed on SpiNNaker (S. B. Furber et al., 2013), which has the advantages
over Loihi of being academic, thus more accessible for students, and able to implement dynamic
adaptation of parameters mid-run.

Delay learning In this thesis, we proposed 1) an extension of the delay learning model introdu-
ced by (Nadafian & Ganjtabesh, 2020) and 2) the first tentative steps towards a learning rule for
simultaneous weight and delay learning inspired by the traditional STDP learning rule. Both those
works are ongoing and are to be improved in order to promote delay learning, a mechanism we
are convinced could be a significant contribution to the neuromorphic community.

Among others, the demonstration of SpiNNaker’s capacity to simulate such a model would
further support our argument ; as well as its application to a real-world use case. Indeed, we aim
to apply delay learning to the coastline detection task targeted by APROVIS3D; their deployment
on software would ease their embedded application.

10.2.2 Medium term perspectives

Neuromorphic foveation In this work, we assessed the neuromorphic foveation concept by im-
plementing a binary version (with only two resolutions) on software. However, this work draws
inspiration from a hardware concept introduced in (Serrano-Gotarredona et al., 2022), not yet
available for experimental use due to the sanitary crisis. This foveated event camera we wish to
emulate is more flexible than our binary implementation. A more thorough conceptualisation of
the neuromorphic foveation concept is required to achieve a more realistic implementation. We
could implement an adaptative number of resolutions, where the spatial dividing factor depends
on the activity in the saliency detector (see Chapter 8): the higher the spike rate is, the more inter-
esting the detected object is and the higher the resolution must be ; in a region of the sensor, the
dividing factor would thus be inversely proportional to the corresponding spike rate. This nested
foveation model would output data with several levels of finesse, starting from the lower resolution
and then refining salient areas in overlapping sub-regions.

Now that the software implementation has been validated, we wish to integrate it on the fo-
veated event camera created by IMSE (Serrano-Gotarredona et al., 2022). Indeed, this hardware
deployment would enable real-time neuromorphic foveation thanks to the feedback loop provided
by the saliency model deployed on an interfaced SpiNN-3.

Coastline detection As part of the APROVIS3D work group dedicated to embedded coastline
detection, we still have to deploy a complete live demonstrator of an embedded SNN model applied
to a live event stream and able to perform online coastline detection. This task is to be achieved in
collaboration with INT and NTUA.

We introduced in this thesis a tentative lightweight SNN that could similarly solve this task.
We believe this line of research would gain from being pursued further.
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10.2.3 Long term perspectives

Saliency mechanism We implemented a bottom-up saliency mechanism applied to event data
in this thesis. We arbitrarily defined salient elements as regions in the sensor where events take
place close in time and space. However, there exist many different ways to define saliency in the
literature, even limiting ourselves to bottom-up visual attention. We believe it would be highly
beneficial for the neuromorphic community to further research ways to implement visual attention
in event data using SNNs, since, as we demonstrated in this thesis, this is a promising challenge
for limiting the processing of event data to interesting elements of the scene.

Concerning the simultaneous detection of multiple OoIs: our proposed model adds to the com-
plexity of the network by implementing a new layer for each new OoI to be detected. This strays
farther from biology, where the human eye detects and processes one OoI at a time, quickly al-
ternating between salient elements using saccades. SNNs implementing this mechanism would
allow for the successive detection and processing of each OoI in the scene ; once processed, the
OoI is discarded using a temporal WTA mechanism, and the network outputs another OoI. Such
a mechanism could easily handle a dynamic scene by successively processing OoIs as they come
while being more bio-plausible. However, this research direction raises questions at a higher le-
vel: in the neuromorphic visual attention field of research, should we aim to stay close to biology
and benefit from its efficiency? Or take advantage of the computational power of neuromorphic
hardware which allows, among other things, massively parallel processing?

10.3 Next steps

Overall, we believe we provided results with a significant impact on embedded neuromorphic
computing, especially concerning the optimisation of data preprocessing. Concrete proof of this
can be found in the fact that the work carried out during this thesis on visual attention led to another
PhD thesis, the one of Mr Hugo Bulzomi, with an application in autonomous driving. Indeed, Hugo
will start a CIFRE PhD in Autumn 2023 in collaboration with i3S and IMRA Europe (a branch
of Aisin) ; we co-authored the first work on his thesis subject, published in MVA 2023 (Bulzomi,
Gruel, et al., 2023).

We hope to have made a valuable contribution to the exploitation of the unique advantages
of combining two innovative concepts that are SNNs and event-based cameras. We believe in
the usefulness of neuromorphic computing for the future of AI, thanks to its low memory and
energy consumption as well as its high adaptability. This field of research benefits greatly from the
interdisciplinary nature of the researchers involved, ranging from biology and computer science
to microelectronics, robotics and mathematics. This field of research benefits greatly from the
interdisciplinary nature of the researchers involved, ranging from biology and computer science
to microelectronics, robotics and mathematics. As a result, scientific knowledge is being shared,
leading to a boom in neuromorphic research.
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A Visualisation of RoIs detected by our spatiotemporal visual atten-
tion mechanism

A) Control dataset — (left and right) gesture "right
arm clockwise" performed by user 5.

B) Random symmetric dataset — (left) gesture
"hand clap" performed by user 16 and (right)

gesture "right arm counter clockwise"
performed by user 5.

Figure A.1 – Samples from control and random symmetric datasets with n = 2 and shift = 0,
constituted from the DVS 128 Gesture dataset.

(a) Input reduced data to attentional selection of a "control" sample.

(b) Input reduced data to attentional selection of a "random symmetric" sample.

Figure A.2 – Samples from control and random symmetric datasets with n = 2 and shift =
0, after spatial reduction using the event count method introduced in (Gruel et al., 2022) then
attentional selection of one OoI.

231



232 ANNEXE

(a) Input reduced data to attentional selection of multi-OoIs in a "control" sample.

(b) Input reduced data to attentional selection of multi-OoIs in a "random symmetric" sample.

Figure A.3 – Samples from control and random symmetric datasets with n = 2 and shift = 0,
after spatial reduction then attentional selection of one OoI.
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B Visualisation of different spatial downscaling methods.

Tables 1 and 2 present one frame extracted respectively from the DVS 128 Gesture (Amir et
al., 2017) and N-MNIST (Orchard et al., 2015) datasets.

Three examples are presented for each method, one corresponding to a spatial downscaling by
a factor of 2 (first column), another by a factor of 4 (second column) and the last by a factor of 10
(third column). The corresponding number of events produced by each method from this sample
is indicated below each frame.

Table 1: Frames produced from the sample user14_led_0.npz, corresponding to the gesture
"left hand clockwise" (class 6) from the DVS128 Gesture dataset, processed with the spatial
downscaling methods implemented during this PhD. Each frame corresponds to the accumu-
lation of the events occurring during the sample’s first 5 ms. Green and blue pixels corres-
pond respectively to positive and negative events.

Original

Number of events: 670, 118
Methods Downscaled by 2 Downscaled by 4 Downscaled by 10

Simple event funnelling

Number of events: 649, 507 649, 414 648, 989

Log-luminance
with event count

Number of events: 105, 164 25, 400 3, 958
Continued on next page
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Table 1: Frames produced from the sample user14_led_0.npz, corresponding to the gesture
"left hand clockwise" (class 6) from the DVS128 Gesture dataset, processed with the spatial
downscaling methods implemented during this PhD. Each frame corresponds to the accumu-
lation of the events occurring during the sample’s first 5 ms. Green and blue pixels corres-
pond respectively to positive and negative events. (Continued)

Log-luminance
with linear estimation

Number of events: 7, 016 1, 156 143

Log-luminance
with cubic estimation

Number of events: 7, 513 1, 267 129

Separate SNN pooling

Number of events: 121, 508 88, 629 48, 155

Mutual SNN pooling

Number of events: 109, 395 80, 551 43, 597
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Table 2: Frames produced from the sample user14_led_0.npz, corresponding to the number "4"
from the N-MNIST dataset, processed with the spatial downscaling methods implemented
during this PhD. Each frame corresponds to the accumulation of the events occurring during
the sample’s first 5 ms. Green and blue pixels correspond respectively to positive and nega-
tive events.

Original
Number of events: 3, 848
Methods Downscaled by 2 Downscaled by 4 Downscaled by 10

Simple event funnelling

Number of events: 3, 845 3, 844 3, 838

Log-luminance
with event count

Number of events: 716 165 19

Log-luminance
with linear estimation

Number of events: 566 76 3

Continued on next page
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Table 2: Frames produced from the sample user14_led_0.npz, corresponding to the number "4"
from the N-MNIST dataset, processed with the spatial downscaling methods implemented
during this PhD. Each frame corresponds to the accumulation of the events occurring during
the sample’s first 5 ms. Green and blue pixels correspond respectively to positive and nega-
tive events. (Continued)

Log-luminance
with cubic estimation

Number of events: 597 84 3

Separate SNN pooling

Number of events: 5, 373 3, 507 1, 766

Mutual SNN pooling

Number of events: 4, 800 3, 157 1, 617
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C Visualisation of the stakes of neuromorphic foveation

Table 3: Visual representation of the events and the different segments identified by Ev-SegNet in
the sample rec1487417411_export_1467 from the DDD17 dataset, after various
processes. The subplot on the left corresponds to the original data and in the middle–
left to the same event data spatially reduced by 4 using the event count method. The
middle-right subplot corresponds to the events contained in the RoIs detected on the
data reduced using the event count method, and the right one to the sample foveated
according to those RoIs (identified by the red bounding boxes). On the left, each frame
corresponds to the accumulation of the events over 50ms, the sample’s time-window.
Green and blue pixels correspond respectively to positive and negative events.

Accumulated events in the sample
Segments and performance values

identified by Ev-SegNet

Original data

Nevents = 20, 199 Accuracy = 86.06%
MIoU = 0.5

Reduced data

Nevents = 895 Accuracy = 78.92%
MIoU = 0.3508

Continued on next page
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Table 3: Visual representation of the events and the different segments identified by Ev-SegNet in
the sample rec1487417411_export_1467 from the DDD17 dataset, after various
processes. The subplot on the left corresponds to the original data and in the middle–
left to the same event data spatially reduced by 4 using the event count method. The
middle-right subplot corresponds to the events contained in the RoIs detected on the
data reduced using the event count method, and the right one to the sample foveated
according to those RoIs (identified by the red bounding boxes). On the left, each frame
corresponds to the accumulation of the events over 50ms, the sample’s time-window.
Green and blue pixels correspond respectively to positive and negative events. (Conti-
nued)

Only RoIs

Nevents = 4, 283 Accuracy = 74.96%
MIoU = 0.1249

Foveated data

Nevents = 4, 716 Accuracy = 84.75%
MIoU = 0.4648
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Original data Reduced data Only RoIs Foveated data

Nevents = 295, 959 Nevents = 13, 786 Nevents = 60, 648 Nevents = 67, 981

Figure C.4 – Visual representation of the events in the sample user25_led, corresponding to
the gesture "left hand clockwise" (class 6) from the DVS128 Gesture dataset (Amir et al., 2017),
after various process. The subplot on the left corresponds to the original data and in the middle-
left to the same event data spatially reduced by 4 using the event count method. The middle-right
subplot corresponds to the events contained in the RoIs detected on the dataset reduced using the
event count method, and the right one to those RoIs (identified by the red bounding boxes). Each
frame corresponds to the accumulation of the events occurring during the sample’s first 10 ms.
Green and blue pixels correspond respectively to positive and negative events.
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D Pipelines for event data handling

D.1 From AEDAT2 to CSV files

c l e a r v a r s
c l o s e a l l ;
d b s t o p i f e r r o r
a e d a t = s t r u c t ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− USER INPUT −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
a e d a t . s o u r c e = ' Dvs128 ' ;
a e d a t . impor tPa rams . f i l e P a t h = ' / p a t h _ t o _ e x i s t i n g _ a e d a t 2 _ f i l e / ' ;
c s v _ p a t h = ' / p a t h _ t o _ n e w _ c s v _ f i l e / ' ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

a e d a t = Impor tAeda t ( a e d a t ) ;

e v e n t s = z e r o s ( a e d a t . d a t a . p o l a r i t y . numEvents , 4 ) ;
e v e n t s ( : , 1 ) = a e d a t . d a t a . p o l a r i t y . x ;
e v e n t s ( : , 2 ) = a e d a t . d a t a . p o l a r i t y . y ;
e v e n t s ( : , 3 ) = d oub l e ( ( a e d a t . d a t a . p o l a r i t y . t imeStamp ) − a e d a t . d a t a . p o l a r i t y .

t imeStamp ( 1 ) ) / 1 0 0 0 0 0 0 ;
e v e n t s ( : , 4 ) = a e d a t . d a t a . p o l a r i t y . p o l a r i t y ;

c s v w r i t e ( c sv_pa th , e v e n t s ) ;

Algorithm .1 – Matlab script transforming the AEDAT2 event data provided by NTUA into CSV
files.

D.2 From CSV to NPZ files

from numpy i m p o r t g e n f r o m t x t , s ave

c s v _ p a t h = ' p a t h _ t o _ e x i s t i n g _ c s v _ f i l e ' ;
e v e n t s = g e n f r o m t x t ( c sv_pa th , d e l i m i t e r = ' , ' )
s ave ( c s v _ p a t h . r e p l a c e ( ' . c sv ' , ' . npy ' ) , e v e n t s )

Algorithm .2 – Python script transforming the event data contained in the CSV files produced by
Algo. .1 into NPZ event data.



ANNEXE 241

E Analysis of DVS and RGB coastline dataset

data polarity

numEvents
x
y
timeStamp
polarity

infos

firstTimeStamp
lastTimeStamp

numEventsInFile
dateTime

beginningOfDataPointer
source

deviceAddressSpace
fileFormat

source
importParams filePath

TABLE 4 – Structure of the AEDAT data as saved by IMSE’s embedded DVS sensor. Each attribute
is the mother of the following attributes on the same line.
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TABLE 8 – Repartition of events per x (top) and y (bottom) coordinates.
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Figure F.5 – Example of line detection on static lines produced by the line detection SNN. The
neuronal activity is presented as a raster plot according to their index (y-axis) and time (x-axis).
Static lines are generated during 10µs in input every 100µs, randomly horizontal or vertical (first
plot). The corresponding layer, either the horizontal (second plot) or the vertical line detector
(third plot), activates when it identifies the presence and type of line in the output. This activation
is correlated with the corresponding membrane threshold (fourth and fifth plots). The orange and
purple dotted lines indicate respectively the apparition of the horizontal and vertical static lines.



ANNEXE 247

Figure F.6 – Example of line detection on moving lines with background noise produced by the
line detection SNN. The neuronal activity is presented as a raster plot according to their index (y-
axis) and time (x-axis). Moving lines are generated during 10µs in input every 100µs, randomly
horizontal or vertical (first plot). The corresponding layer, either the horizontal (second plot) or the
vertical line detector (third plot), activates when it identifies the presence and type of line in the
output. This activation is correlated with the corresponding membrane threshold (fourth and fifth
plots). The orange and purple dotted lines indicate respectively the apparition of the horizontal and
vertical moving lines.
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G 3D reconstruction

G.1 "Two fans" dataset

TABLE 9 – Comparison of the performance of the cooperative stereo-network on original (first
column) and downscaled (second and third columns) data from the "two fans" dataset. The in-
put data is spatially downscaled using the event count method by a factor 3 (second column) or
downscaled similarly by a factor 2 then cropped (third column), before being fed to the cooperative
stereo-matching network implemented on SpiNN-3.

Performance
Original data
on EBRAINS

Downscaled data
(divided by 3)
on SpiNN-3

Downscaled data
(divided by 2 and cropped)

on SpiNN-3

Parameters
xmax = ymax = 80

dmax = 25
xmax = ymax = 22

dmax = 21
xmax = ymax = 22

dmax = 21

Accumulated
network
output

Network
output

over time

Disparity
map

t = 2.5s t = 4s t = 4s

Performance
accuracy

Distant fan:
95.8% of events at d = 7 ± 1

Proximate fan:
96.5% of events at d = 10 ± 1

Distant fan:
87% of events at d = 2 ± 1

Proximate fan:
90.1% of events at d = 3 ± 1

Distant fan:
92% of events at d = 3 ± 1

Proximate fan:
90% of events at d = 5
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G.4 Communication between the SpiNNaker board and an external device

my_popu la t i on = pyNN . spiNNaker . P o p u l a t i o n (
' s i z e o f p o p u l a t i o n ' ,

pyNN . spiNNaker . e x t e r n a l _ d e v i c e s . S p i k e I n j e c t o r ( ) ,
l a b e l = ' p o p u l a t i o n l a b e l ' )

Algorithm .3 – SpiNNaker’s neural population “SpikeInjector” and its attributes.

d e f s e n d _ s p i k e ( l a b e l , s e n d e r ) :
s e n d e r . s e n d _ s p i k e ( l a b e l , 0 , s e n d _ f u l l _ k e y s =True )

Algorithm .4 – Function from the sPyNNaker library to send input spikes in real time (during a
simulation run) into a neural network.

d e f r e c e i v e _ s p i k e s ( l a b e l , t ime , neuron i d s ) :
f o r n e u r o n _ i d i n n e u r o n _ i d s :

p r i n t ( t ime , l a b e l , n e u r o n _ i d )

l i v e _ s p i k e s _ c o n n e c t i o n =
pyNN . spiNNaker . e x t e r n a l _ d e v i c e s . S p y n n a k e r L i v e S p i k e s C o n n e c t i o n (

r e c e i v e _ l a b e l s = ' l a b e l ' ,
l o c a l _ p o r t = ' your p o r t number ' ,
s e n d _ l a b e l s =[ ' l a b e l ' ]

)
l i v e _ s p i k e s _ c o n n e c t i o n . a d d _ r e c e i v e _ c a l l b a c k ( ' l a b e l ' , r e c e i v e _ s p i k e s )

Algorithm .5 – Function from the sPyNNaker library to receive in real time (during a simulation
run) spikes output by a neural network.
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Figure G.7 – Real time reconstruction of the disparity map of the "two fans" dataset from the
cooperative stereo-matching results obtained on SpiNN-3.

H i3S dataset

H.1 Composition of the i3S dataset

— addition
— appétit
— attirer
— baguette
— ballon
— beau
— bonne
— carnaval
— cheval
— chiffon
— coeur
— concombre
— décider
— dessin
— doudou

— école
— fillette
— hache
— huître
— joli
— jouet
— joyeux
— lèvres
— lundi
— maison
— maman
— manoir
— moto
— musique
— neige

— panier
— papa
— parking
— pomme
— pyjama
— requin
— robe
— ruisseau
— sapin
— serpent
— tentation
— terminer
— voiture
— xylophone
— zèbre

H.2 Tree structure of the i3S dataset

words/
mot_1/

user1_XXX/
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recording_1.bias
recording_1.npy
recording_1.raw
recording_2.bias
recording_2.npy
recording_2.raw
...

user2_XXX/
...

mot_2/
...







Spiking neural networks
for embedded event-based vision

Amélie GRUEL

Abstract

In recent years, embedded computer vision has become omnipresent. It encompasses tasks
such as detection, recognition and tracking of visual elements, with applications in robotics (au-
tonomous driving), industries (assessment of product quality, automation of repetitive tasks),
security, customer experience, social networks, etc. This widespread impetus only reinforces
the need to overcome the challenges posed by this area of research, which requires gargantuan
energy, high memory, and support for a wide range of algorithms.
We believe a promising solution to these challenges can be found in the combined use of
spiking neural networks (SNNs) and event-based cameras. SNNs consist of a bio-inspired
artificial neural network aiming to mimic the dynamics of biological neurons by processing
the information as spike trains. Event cameras are a novel type of bio-inspired visual sensor
which generates asynchronous data according to pixel intensity changes. It is ideal for
real-time applications, but the great amount of timed information is challenging to process
using standard computer vision models. Moreover, event data make a natural match for SNNs
in terms of biological inspiration, energy savings, latency and memory use for dynamic visual
data processing.

However, the novelty of SNNs and event cameras leaves room for many improvements in terms
of optimal preprocessing of data as well as how this data is processed, making the most of the
particularities of these scientific concepts. In this thesis, we identified several questions related
to this broad field of research, which we have condensed into two main topics.
The first issue concerns the optimisation of the embedded preprocessing of event data acquired
by an onboard camera to facilitate subsequent analysis. We propose three solutions: event
data could either 1) be spatially or temporally reduced, either online or offline; 2) keep only
salient elements and discard the rest; 3) be subject to foveation, as a bio-plausible compromise
between the two previous solutions. We compared qualitatively and quantitatively the event
data obtained after applying each preprocessing method to assess which method yields the best
trade-off between the amount of data (i.e. events) kept versus the relevance of information
maintained.
The second challenge is the exploitation of the SNN relevance to processing the specific
chronology of event data in an embedded context.
Overall, we hope to have made a valuable contribution to the exploitation of the unique ad-
vantages of combining SNNs and event cameras for embedded computer vision, especially
concerning event data preprocessing.

Keywords: Spiking neural networks, Event-based cameras, Neuromorphic, Computer vision,
Computational neuroscience, Pattern recognition.
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