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SYNTHÈSE EN FRANÇAIS

Le domaine de la robotique a connu des avancées dans la manipulation de divers objets,
permettant aux robots d’accomplir des tâches complexes. Par exemple, les robots agri-
coles sont capables de récolter des fruits et légumes, mais cette récolte pose un défi en
raison du risque de destruction de ces produits si des forces de préhension excessives sont
appliquées. Cette tâche représente un des nombreux cas où des robots entrent en contact
avec des objets souples susceptibles de changer de forme. La manipulation d’objets dé-
formables concerne des objets tels que des tissus, des câbles ou bien encore des organes
humains qui peuvent subir des déformations non rigides. Cela nécessite des développe-
ments particuliers et des stratégies nouvelles pour une manipulation robotique efficace.
En effet, la commande des robots pour saisir ou manipuler des objets souples est com-
plexe, et les lois de commande classiques utilisées pour saisir des objets rigides ne peuvent
plus être utilisées. Néanmoins, la capacité des robots à manipuler de tels objets souples
peut aboutir à de nouvelles possibilités d’automatisation, à améliorer la productivité et
renforcer la collaboration entre homme et robot dans divers domaines, notamment dans
l’industrie pour la fabrication et l’emballage de produits, dans le domaine médical pour
l’assistance aux gestes chirurgicaux et dans de nombreux autres secteurs.

Considérons par exemple le contexte de l’emballage du saumon. Dans ce scénario, le
robot doit d’abord détecter le saumon, puis le saisir tout en maintenant sa forme d’ori-
gine ou en le déformant pour qu’il prenne la forme souhaitée, facilitant ainsi la tâche de
découpe ultérieure. Les systèmes robotiques équipés d’outils de découpe avancés utilisent
des algorithmes de découpe précis pour garantir des tailles de filets précises et uniformes,
réduisant ainsi les coûts de main-d’œuvre, améliorant la productivité et préservant l’inté-
grité du produit. Le développement d’un système robotique pour le conditionnement du
saumon constitue l’une des principales préoccupations du projet GentleMAN. Ma thèse
de doctorat fait partie de ce projet, financé par le Conseil de la recherche de Norvège,
dirigé par l’Institut Sintef à Trondheim, et impliquant comme partenaires le Laboratoire
d’informatique et d’intelligence artificielle du MIT (États-Unis), l’Université de techno-
logie du Queensland (Australie) et le centre Inria de l’Université de Rennes. Cette thèse
se concentre donc sur la manipulation d’objets déformables à l’aide de robots, plus spé-
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cifiquement de bras manipulateurs. De plus, cette recherche vise à exploiter les avancées
en robotique et en vision par ordinateur pour développer des méthodologies innovantes
et des stratégies de commande permettant aux robots de percevoir et de commander de
manière adaptative la forme des objets déformables.

Défis

La manipulation d’objets déformables est un domaine en évolution avec divers défis que les
chercheurs abordent activement, car ces objets posent d’importantes difficultés en termes
de commande et de manipulation.

Tout d’abord, les interactions entre les bras robotiques et les objets déformables im-
pliquent des incertitudes au niveau du contact et des forces de friction. Ces incertitudes
peuvent entraîner une instabilité dans la saisie ou provoquer le glissement de l’objet.

Un autre défi réside dans la prédiction du comportement des objets souples. Les maté-
riaux déformables présentent des caractéristiques non linéaires et variables dans le temps,
ce qui rend difficile le développement de modèles précis. Une solution possible est d’utiliser
des approches basées sur des algorithmes d’apprentissage automatique pour apprendre
le comportement de ces objets. Une autre solution envisageable consiste à utiliser des
modèles physiques utilisés pour représenter la dynamique de tels objets. Cependant, ces
modèles peuvent être peu précis à moins que leurs paramètres soient parfaitement connus.

De plus, estimer la forme, la pose et les déformations internes des objets déformables
est difficile en raison de leur nature complexe et non rigide. Les techniques de vision
par ordinateur, telles que la reconstruction 3D et les algorithmes d’estimation de forme,
peuvent être utilisées pour obtenir des représentations précises des objets déformables. De
plus, l’incorporation de simulations basées sur des modèles physiques qui capturent les
déformations et les interactions de ces objets peut améliorer les capacités de perception
pour les tâches de manipulation.

En outre, la manipulation d’objets déformables nécessite des stratégies de commande
robustes et adaptatives. Les techniques traditionnelles de manipulation d’objets rigides ne
sont pas directement applicables en raison de la nature flexible des corps déformables. De
nouvelles approches de commande qui tiennent compte des changements dynamiques de
la forme et de la compliance de l’objet sont nécessaires. Ces méthodes impliquent l’incor-
poration de capteurs pour estimer et mettre à jour de manière continue les informations
sur les propriétés de l’objet ou les conditions de l’environnement. Cela garantit que le
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contrôleur peut s’adapter et répondre de manière appropriée au comportement non rigide
de l’objet considéré.

En résumé, relever les défis de la manipulation d’objets déformables nécessite une
approche multidisciplinaire. En utilisant des modèles basés sur les données, des modèles
physiques, l’haptique, des stratégies de commande adaptatives et des techniques de per-
ception avancées, il est possible d’améliorer la précision, la stabilité et l’efficacité de la
manipulation d’objets déformables.

Objectifs et contributions

Cette thèse contribue à l’état de l’art de la manipulation d’objets déformables en introdui-
sant de nouvelles lois de commande basées sur un modèle physique pour la manipulation
d’objets souples en temps réel. Plus précisément, nous utilisons un modèle simple qui est
le modèle masse-ressort. Bien que ce modèle puisse capturer les caractéristiques essen-
tielles des objets déformables, il peut rencontrer des difficultés à reproduire avec précision
le comportement réel de l’objet. Cependant, en incorporant des techniques avancées de
perception visuelle en temps réel, il est possible de corriger les décalages entre le modèle
et la dynamique réelle de l’objet.

Le manuscrit de la thèse suit la méthodologie suivante :
Dans le deuxième chapitre, nous présentons une revue de l’état de l’art qui inclut

différentes approches utilisées pour modéliser un objet souple, estimer les paramètres
des modèles physiques utilisés pour décrire sa dynamique, différentes lois de commande
utilisées pour sa manipulation, et divers algorithmes employés pour le suivre.

Dans le troisième chapitre, nous présentons une nouvelle méthode basée sur le sys-
tème masse-ressort pour estimer le déplacement de chaque point du modèle en fonction
des mouvements qui lui sont appliqués. Nous désignons par les points manipulés les points
du modèle où les mouvements sont appliqués. Nous commençons par établir la relation
analytique qui relie les déplacements des points de l’objet aux mouvements successifs des
points manipulés. Cette relation forme la base de notre contribution, construite sur le
modèle masse-ressort en tenant compte du retard de propagation qu’il introduit. Nous
formulons les déplacements des points dans un maillage 1D en réponse à une succession
de mouvements appliqués à un ou deux points manipulés, puis nous généralisons cette
formulation pour un maillage 3D impliquant plusieurs points manipulés. En se basant
sur ces formes analytiques, nous introduisons une loi de commmande qui permet de po-
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sitionner indirectement plusieurs points de l’objet à leur position souhaitée en agissant
sur des points manipulés éloignés. Dans ce même chapitre, nous présentons des résultats
de simulations qui démontrent la robustesse du système en boucle fermée proposé. Nous
prenons en compte des facteurs tels que la résolution du maillage et les incertitudes des
paramètres du modèle pour évaluer l’efficacité de la loi de commande. Nous présentons
également une étude comparative entre l’approche proposée et deux méthodes de l’état
de l’art qui n’utilisent pas de modèle.

• Une vidéo qui présente divers résultats de simulation pour la tâche de positionne-
ment indirecte et qui montre également la robustesse du contrôleur proposé vis-à-vis
des incertitudes des paramètres du modèle ainsi que les résultats de comparaison,
est disponible ici : [Vidéo-positionnement-indirect].

Le quatrième chapitre se concentre sur la validation expérimentale de la tâche de posi-
tionnement indirect avec des objets déformables. Cette tâche repose sur la méthodologie
introduite dans le chapitre précédent, où nous utilisons à la fois des approches basées sur
la vision (suivi) et des approches basées sur le modèle (loi de commande) pour accomplir
le positionnement indirect de points caractéristiques d’objets souples, modélisés par un
modèle masse-ressort. L’objectif est de démontrer l’efficacité de cette approche par des
expériences réelles. Une première étape consiste à créer un modèle approximé de l’objet
souple, puisque celui-ci n’est pas connu à l’avance. Le modèle est ensuite constitué par
un maillage 3D décrivant la géométrie de l’objet et par un système masse-ressort pour
estimer son comportement physique. Cependant, ce modèle étant une approximation, il
peut y avoir un décalage entre le modèle et l’objet réel. Pour corriger cet écart, l’objet est
suivi en utilisant une caméra RGB-D, puis réaligné en appliquant des contraintes externes
sur l’objet qui dépendent des mesures visuelles. Une fois que le modèle de l’objet est créé
et que ses paramètres sont approximés, des résultats expérimentaux sont présentés pour
évaluer l’efficacité de l’approche proposée. Cette approche d’asservissement visuel com-
bine à la fois le retour visuel et le comportement dynamique de l’objet qui est prédit par
le modèle.

• Les résultats du positionnement indirect d’un point de l’objet ont été présentés
dans notre première publication [Makiyeh et al., 2022], avec une vidéo associée
disponible ici : [Vidéo-ICARCV].

• Une autre vidéo présentant divers résultats expérimentaux pour le positionnement
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indirect de deux points de l’objet peut également être trouvée ici : [Vidéo-positionnement-
indirect].

Le cinquième chapitre présente deux méthodes de commande basées sur le système masse-
ressort pour amener des objets déformables à une forme globale désirée. Ces méthodes
visent à déformer le contour pour des objets 2D et la surface complète pour des objets 3D.
Pour réduire la complexité de la forme, deux approches de réduction de dimension sont
proposées : les descripteurs de Fourier et les moments 3D. Ces approches sont évaluées
à l’aide de simulations et d’expériences pour démontrer leur efficacité dans la commande
de la forme d’objets souples. L’objectif est de permettre l’application d’une forme désirée
à ces objets en utilisant un nombre limité de points manipulés.

• Les résultats de notre approche de commande de la forme d’objets en 2D et 3D basée
sur les descripteurs de Fourier ont été présentés dans notre deuxième publication
[Makiyeh et al., 2023], avec une vidéo illustrant deux résultats expérimentaux
disponibles ici : [Vidéo-IROS].

Le dernier chapitre offre une conclusion sur les approches proposées, ainsi qu’une discus-
sion sur les perspectives à court et à long terme de la recherche future.
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Chapter 1

INTRODUCTION

1.1 Introduction

In recent years, the field of robotics has witnessed remarkable advancements in the ma-
nipulation of various objects, enabling robots to perform a wide range of complex tasks.
For example, in packaging and assembly lines, robots within manufacturing industries
are frequently utilized to grasp objects such as boxes and bottles from one location, and
to accurately place them in another. However, during such tasks, these entities can
be deformed, altering their shapes and potentially causing them to slip from the robotic
hand. Additionally, in agriculture, agricultural robots are capable of tasks such as picking
vegetables, though picking tomatoes presents a challenge due to the risk of destruction
if excessive gripping forces are applied. Furthermore, in the field of medicine, surgical
robots are employed to manipulate surgical tools during operations. However, these tools
come into contact with delicate human organs such as the liver, necessitating careful
consideration of the applied force to prevent damage.

Automating the manipulation of deformable objects with a robot presents a significant
challenge due to their non-rigid and highly variable nature. Deformable object manip-
ulation involves items like fabrics, cables, and biological tissues that can undergo non-
rigid deformations, requiring distinct skills and strategies for effective robotic handling.
This challenge is especially prominent within the field of robotics, as interacting with
deformable objects poses unique difficulties. Nonetheless, the capacity of robots to han-
dle such soft objects can unlock novel possibilities for automation, improve productivity,
and enhance human-robot collaboration across various domains, including manufacturing,
healthcare, and search-and-rescue operations.

As an illustrative example, let us consider the context of salmon packaging. In this
scenario, the robot needs to first detect the salmon, then grasp it while maintaining its
original shape or reshaping it into the desired forms that facilitate the subsequent cut-
ting task. Robotic systems equipped with advanced cutting tools utilize precise cutting
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algorithms to ensure accurate and uniform fillet sizes, thereby reducing labor costs, en-
hancing productivity, and maintaining product integrity. An example of this pipeline is
presented in Figure. 1.1, which is one of the main concerns of the GentleMAN (299757)
project. My PhD is part of this project, funded by The Research Council of Norway, led
by the Sintef Institute in Trondheim, Norway, and involving partners such as the MIT
Computer Science and Artificial Intelligence Laboratory (USA), Queensland University
of Technology (Australia), and the Inria center at University of Rennes.

This PhD research aims to address the fundamental challenges associated with de-
formable object manipulation using robotic manipulators. By leveraging cutting-edge
advancements in robotics and computer vision, this study seeks to develop novel method-
ologies and control strategies that enable robots to perceive and to control the shape of
deformable objects in an adaptive manner.

Figure 1.1: An example of automated robotic salmon fillet cutting, from [Einarsdóttir
et al., 2022].

1.2 Challenges

Deformable object manipulation is a dynamic and evolving field with various challenges
that researchers actively tackle, as these objects pose significant difficulties in terms of
accurate control and manipulation.
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Firstly, the interactions between robotic grippers and deformable objects involve un-
certainty in terms of contact and friction. Deformable materials often exhibit complex
contact behavior, such as sticking, sliding, and rolling. This uncertainty may result in
grasping instability or object slippage.

Another challenge involves predicting the deformation behavior of soft objects. In-
deed, deformable materials exhibit non-linear and time-varying characteristics, making it
challenging to develop accurate models. One possible solution is to employ data-driven
approaches, such as machine learning algorithms, to learn the behavior of deformable ob-
jects from real-world sensor data. By training models on a diverse set of examples, these
algorithms can capture the underlying dynamics and improve manipulation performance.
Another possible solution is to consider physics-based models. However, these models
may not achieve high accuracy unless the exact physics parameters of the actual soft
objet are known. To address this limitation, incorporating real-time sensing data into the
models, the object deformations can be refined.

Addionally, estimating the shape, pose, and internal deformations of deformable ob-
jects is challenging due to their complex and non-rigid nature. Computer vision tech-
niques, such as 3D reconstruction and shape estimation algorithms, can be employed to
obtain accurate representations of deformable objects. In addition, incorporating physics-
based simulation that capture the deformations and interactions of these objects can
enhance perception capabilities for manipulation tasks.

Furthermore, deformable object manipulation requires robust and adaptive control
strategies. Traditional rigid object manipulation techniques are not directly applicable
due to the flexible nature of deformable bodies. Control approaches that account for
the dynamic changes in object shape and compliance are needed. These methods involve
incorporating sensor feedback to consistently estimate and update information about the
object properties or the environment conditions. This ensures that the controller can
adapt and respond appropriately to these changes.

In summary, addressing the challenges of deformable object manipulation requires a
comprehensive approach. By leveraging data-driven models, physics-based models, tactile
sensing, adaptive control strategies, and advanced perception techniques, it is possible to
improve the accuracy, stability, and efficiency of manipulating deformable objects.
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1.3 Thesis objectives and contributions

The objective of this thesis is to develop a physics-based controller for deformable object
manipulation, focusing on real-time applications.

The research aims to investigate the effectiveness of using a simple model that is,
the mass-spring model, for shape servoing of soft objects. While this simple model can
capture the essential characteristics of deformable objects, it may struggle to accurately
replicate the real object behavior. However, by incorporating advanced real-time percep-
tion techniques, it is possible to correct any discrepancies or drift between the model and
the actual object dynamics. By doing so, this research aims to develop a computationally
efficient, interpretable, and uncertainty-aware controller.

This thesis contributes to the state-of-the-art in soft object manipulation by introduc-
ing novel control laws for controlling the shape of deformable objects. Shape servoing
involves driving specific points of the object to desired positions by deforming the object
using robotic manipulators.

To achieve this, the following chapters are included:

• Chapter 2 presents a comprehensive literature review of relevant state-of-the-art. It
includes different approaches for modeling a soft object, estimating the parameters
of physics-based models, various control laws used for manipulating a soft object,
and diverse algorithms employed for tracking it.

• Chapter 3 outlines a novel physics-based method for estimating the displacement of
any model point in function of the applied motions on the manipulated points based
on the mass-spring model. This method is then employed to design a control law
for the deformation task, enabling indirect positioning of object points by acting
on different points. Indeed, the proposed control law addresses the challenge of
considering the inertia and flexible nature of deformable objects. This chapter also
includes simulation results illustrating the success and robustness of the indirect
positioning task using the proposed approach. Furthermore, the chapter compares
the effectiveness of our approach in achieving the indirect positioning task with two
state-of-the-art model-free methods.

– A video presenting various simulation results for the indirect positioning task,
including the robustness of the proposed controller against model parameters
and the comparison results, can be found here: [Indirect-positioning-video]
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• Chapter 4 is dedicated to validating the indirect positioning task introduced in
Chapter 3 within an experimental setup, considering various soft objects. To ac-
complish this, we begin by outlining the different steps for reconstructing a model
corresponding to an unknown soft object, where both its geometry and material
properties are unknown. However, given that physics-based models are approxima-
tions of real object behavior, there may exist a gap between the object model defor-
mation and its actual behavior. To overcome this challenge, we employ a method
involving real-time tracking of the object during deformation. Whenever a drift is
detected, we rectify the object model by applying external forces, thereby aligning
it with the real deformation. Subsequently, we accomplish the indirect positioning
task of one or multiple object points to their desired positions. This is achieved by
employing our proposed method, which integrates now both vision-based (tracking
process) and model-based (control law) approaches. The deformation is achieved
using two robotic manipulators and a RGB-D camera.

– The results of the indirect potioning of one feature point were presented in our
first publication [Makiyeh et al., 2022], with an accompanying video available
here: [ICARCV-video]

– Another video showing various experimental results for the indirect positioning
of two feature points can also be found here: [Indirect-positioning-video]

• Chapter 5 introduces two physics-based methods for controlling the complete shape
of the soft object. The object shape is defined by the complete set of its surface
points in the case of 3D objects and by its 2D contour when dealing with 2D objects.
To represent the object shape effectively using a low-dimensional feature vector, we
present two distinct approaches. The first approach employs Fourier descriptors,
while the second utilizes 3D moments. For each of these approaches, we assess
the corresponding proposed control law for the deformation task by conducting a
comprehensive evaluation that combines both simulation and experimental results.

– The results of our servoing approach based on Fourier descriptors were pre-
sented in our second publication [Makiyeh et al., 2023], with an accompanying
video illustrating two experimental results available here: [IROS-video]

• Chapter 6 offers a conclusion on the proposed approaches, as well as discussing short
term and long-term perspectives on future research.
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Chapter 2

STATE OF THE ART

Deformable object manipulation has emerged as a challenging yet promising field with
applications spanning robotics, medical procedures, and virtual reality. Perceiving and
manipulating objects with flexible and complex structures, such as cloth, soft tissue, or
cables, require precise control strategies that account for their nonlinear and dynamic
behaviors.

This research specifically concentrates on the shape servoing of soft objects using
robotic manipulators. Over time, researchers have explored various control methods and
techniques to address this challenge and enhance manipulation capabilities.

To manipulate soft objects, some approaches first approximate their physical behavior
using physics-based models and then develop control laws to guide the robots in accom-
plishing the task. In these model-based approaches, object models are simulated to derive
the control laws, which are then applied to the robots in either open-loop execution or
within a closed-loop system using feedback measurements. Open-loop systems typically
rely on highly accurate models, while closed-loop systems can adapt to models of varying
accuracy, benefiting from the feedback loop to execute the task effectively. When using
physics-based models, it is crucial to note that these models depend on physical param-
eters specific to the deformable object. If these parameters are unknown, they must be
estimated. Additionally, these models are still approximations of the real behavior of the
object, meaning that the simulated deformation may deviate from the actual deformation
of the object. This deviation can be detected by tracking the object, and as a result,
continuous correction of any deviations becomes essential if they occur.

In contrast, other approaches rely solely on visual feedback information without the
need for complex modeling of soft objects to generate the corresponding control laws.
These approaches, known as model-free approaches, leverage vision feedback to identify
object relevant features, and formulate a control strategy for closed-loop execution. The
robot adjusts its position to align its observed features with the desired ones, correspond-
ing to the intended task. This approach is commonly referred to as a visual servoing
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problem.
This chapter provides an overview of the current literature in deformable object ma-

nipulation, highlighting the strengths and limitations of existing approaches. By exploring
the recent advancements, this review sets the stage for the subsequent chapters, which
aim to propose novel model-based control strategies and algorithms to enhance the ma-
nipulation of deformable objects in various practical applications.

We start by providing an introduction to the basics of visual servoing in Section 2.1,
a fundamental aspect of robotics control method that utilizes visual data from cameras
to direct a robot motion. Then, in Section 2.2, we delve into the various techniques
that have been investigated for simulating soft object deformations, which is essential
for model-based shape servoing approaches. Following that, we explore in Section 2.3
various tracking methods aimed at minimizing the discrepancy between simulated object
deformations and their real deformations. Additionally, we review in Section 2.4 different
approaches for physics-based model parameter estimation, which is necessary for model-
based shape servoing approaches. Furthermore, we explore in Section 2.5 a wide range of
techniques that have been studied for shape servoing of soft objects, encompassing model-
based and model-free approaches. Lastly, in Section 2.6, we contextualize this work in
relation to the existing literature.

2.1 Visual servoing

This section presents fundamental principles of visual servoing, which is a technique that
allows robots to interact with both rigid and deformable objects. Visual servoing control
involves using visual information provided by a visual sensor to control robot movements.
This visual feedback information can be obtained from a camera attached to a robot,
which moves along with the robot (eye-in-hand scenario), or from a stationary camera
observing the robot within the workspace (eye-to-hand scenario).

2.1.1 Basics of visual servoing

The reader can refer to [Chaumette & Hutchinson, 2008] for a detailed presentation of the
basics of visual servoing. Visual servoing is a technique that converts visual measurements
into a vector of n visual features, denoted as sss ∈ Rn, enabling the robot to interact with
its environment. The difference between the current value of this vector and the desired
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value, sss∗, is used to calculate the task error, eee, as follows:

eee = sss− sss∗ (2.1)

The task error is then used to generate control laws to be applied to the robots in order
to minimize its norm.

When the variations in sss are solely influenced by the camera motion, then the re-
lationship between the changes in the visual feature vector, ṡss, and the camera velocity
vvvc = (vvvc,ωωωc) ∈ R6, is expressed using an interaction matrix denoted as JsJsJs. Here, vvvc
represents the instantaneous linear velocity vector, and ωωωc represents the instantaneous
angular velocity vector. In case sss∗ remains constant, which induces ėee = ṡss, the expression
of the relation between ėee and vvvc is therefore as follows:

ėee = ṡss = JsJsJsvvvc = JeJeJevvvc (2.2)

Typically, the error is chosen to exhibit an exponential decoupled decrease, represented
as ėee = −λeee, where λ > 0. This specific selection plays a crucial role in designing the
camera control velocity, denoted as vvvc, which follows the formulation:

vvvc = −λĴeJeJe
+
eee (2.3)

with ĴeJeJe
+
the Moore-Penrose pseudo-inverse of ĴeJeJe, an approximation of JeJeJe.

Visual servoing can be classified into two distinct categories: Image-Based Visual
Servoing (IBVS) and Pose-Based Visual Servoing (PBVS). The former leverages the image
to extract various features, such as image points, image moments, and image Fourier
descriptors, to name a few. On the other hand, the latter employs image data to estimate
three-dimensional measurements, such as the pose of an object, which subsequently aids
in the servoing process. In this thesis, our focus lies on IBVS since it is related to our
chosen methodology.

2.1.2 Classical Image-Based visual servoing

When constructing the visual feature vector s from image points p1, p2, . . . , pn, the follow-
ing procedure is employed. Each image point pi corresponds to a pair of horizontal and
vertical coordinates (Xi, Yi) obtained from projecting 3D points Pi, with corresponding
3D coordinates (xi, yi, zi), expressed in the camera Cartesian frame. The visual feature
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vector s is then formed as s = (p1, p2, . . . , pn).
For instance, when sss is simply constructed from one image point, i.e sss = (X1, Y1), the

interaction matrix is obtained as follows:

JsJsJs =
−1
z1

0 X1
z1

X1Y1 −(1 +X2
1 ) Y1

0 −1
z1

Y1
z1

1 + Y 2
1 −X1Y1 −X1

 (2.4)

It should be noted that the matrix in (2.4) depends on the depth information of the
point. Therefore, when using a RGB camera, the depth information is not available,
and an approximation of this matrix needs to be utilized. Multiple approaches for either
estimating the point depth or directly numerically estimating the interaction matrix are
recalled in [Chaumette & Hutchinson, 2008]. We now describe two methods for numer-
ically estimating such a Jacobian matrix, the Broyden algorithm [Broyden, 2000] and
Least-Squares Minimization [de Mathelin & Lozano, 1999].

2.1.2.1 Numerical estimation of the feature Jacobian matrix using the Broy-
den algorithm

The Broyden algorithm is an iterative method used to numerically estimate the Jacobian
matrix of a function f [Broyden, 2000]. It is particularly useful when the function is
expensive to compute or when the analytical expression for the Jacobian is not available.
The Broyden algorithm updates an approximation of the Jacobian matrix based on the
changes in the function outputs and inputs.

Let consider a function f : Rm → Rn, where m is the dimension of the input vector
qqq ∈ Rm and n is the dimension of the output sss ∈ Rn. The goal is to estimate the Jacobian
matrix JfJfJf , a n × m matrix, with its approximation denoted ĴfJfJf . The different steps to
update the Jacobian matrix in the Broyden algorithm are as follows:

1. Initialization: Start by providing ĴfJfJf , an initial approximation to JfJfJf . This can be
a numerical approximation or an identity matrix, depending on the problem and
available information.

2. Evaluation: Initialize an initial guess for the inputs, evaluate the function f at the
initial guess, and compute the corresponding outputs.

3. Iterative Steps: Perform the following steps iteratively at each iteration k until
convergence:
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• Compute the difference between the function output and the previous output:

δsδsδs = f(qqqk)− sssk−1

• Compute the difference between the current input and the previous input:

δqδqδq = qqqk − qqqk−1

• Update the Jacobian matrix with an update speed α:

ĴfJfJf k = ĴfJfJf k−1 + α
δsδsδs− ĴfJfJf k−1δqδqδq

δqδqδqTδqδqδq
δqδqδqT

• Update the inputs:
qqqk+1 = qqqk − ĴfJfJf

+
k f(qqqk)

• Update the function outputs:

sssk+1 = f(qqqk+1)

• Check for convergence. If the change in the inputs and outputs is below a
specified tolerance, terminate the iterations.

4. Convergence: Once the iterations have converged, the final approximation of the
Jacobian matrix, ĴfJfJf , is obtained.

The Broyden update is computationally efficient, and supports incremental updates,
making it well-suited for situations where the matrix or its inverse requires adaptation
in response to changing data or conditions. However, this approach does have some
limitations. For instance, it can be sensitive to numerical stability issues, particularly
when dealing with ill-conditioned matrices. Furthermore, it does not guarantee global
convergence, or even convergence at all. Indeed, its convergence relies on the choice of
the initial guess.
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2.1.2.2 Numerical estimation of the feature Jacobian using Least-Squares
Minimization

The Least-Squares Minimization algorithm is another method used for the numerical
estimation of the Jacobian matrix of a function f [de Mathelin & Lozano, 1999]. This
algorithm involves formulating the problem as a least-squares minimization, where the
goal is to find the Jacobian matrix that minimizes the sum of squared residuals between
the actual function outputs and the estimated outputs based on the Jacobian.

Let consider again a function f : Rm → Rn. Here is the step-by-step explanation of
the Least-Squares Minimization algorithm for estimating the Jacobian matrix JfJfJf , by ĴfJfJf :

1. Initialization: Start by providing ĴfJfJf an initial approximation to JfJfJf .

2. Evaluation: Initialize an initial guess for the inputs, evaluate the function f at the
initial guess, and compute the corresponding outputs.

3. Iterative Steps: Perform the following steps iteratively at each iteration k until
convergence:

• Compute the difference between the function output and the previous output:

δsδsδs = f(qqqk)− sssk−1

• Compute the difference between the current input and the previous input:

δqδqδq = qqqk − qqqk−1

• Update the Jacobian matrix approximation by minimizing the sum of squared
residuals:

ĴfJfJf k = arg min‖δsδsδs− ĴfJfJfδqδqδq‖2

• Update the inputs:
qqqk+1 = qqqk − (ĴfJfJf

T

k ĴfJfJf k)
+ĴfJfJf kδsδsδs

• Update the function outputs:

sssk+1 = f(qqqk+1)

• Check for convergence.

26



2.1. Visual servoing

4. Convergence: Once the change in inputs and outputs is below a specified tolerance,
the final approximation of the Jacobian matrix JfJfJf , ĴfJfJf , is obtained.

The Least-Squares Minimization method is generally more numerically stable than
the Broyden rule, especially when dealing with ill-conditioned matrices. However, it can
be more computationally intensive. Moreover, this method can be sensitive to outliers in
the data, which can significantly impact the estimated Jacobian.

2.1.3 Conclusion

This section offered a brief overview of the fundamentals of IBVS, which is used to control
objects interacting with rigid scene, such as tracking a moving target [Papanikolopoulos
et al., 1993]. Furthermore, we introduced two potential approaches for estimating the
IBVS Jacobian matrix. These numerical estimations are useful when components of this
matrix cannot be obtained directly from analytical form. The Broyden update rule has
found application in the field of robotics. For example, [Hosoda & Asada, 1994] applied
this approach to estimate a Jacobian matrix, allowing for the convergence of features to
desired values without the need for prior knowledge of the kinematic structure of the robot
system. [Jägersand & Nelson, 1996] utilized this technique within the context of visually-
guided grasping. [Shahamiri & Jagersand, 2005] proposed an UIBVS method, an IBVS
approach without the knowledge of camera or robot calibration, to achieve positioning
tasks while avoiding obstacles. Regarding the Least-Squares Minimization algorithm,
[Shademan et al., 2010] employed a robust local least-squares (LLS) technique for the
control of a robot in a UIBVS context and for Jacobian estimation through Iteratively
Reweighted Least Squares. The LLS method introduced by [Massoud Farahmand et al.,
2007] enables the estimation of the Jacobian for any point from visual information within
a nearby region of the point in question.

While these approaches were initially designed for robots interacting with rigid objects,
which is not the primary focus of this thesis, some model-free methods have successfully
adapted classical visual servoing principles for deformable object shape servoing. These
methods will be further detailed in Section 2.5.

The next section presents principles of continuum mechanics and various approaches
used to discretize object models, which are necessary for model-based approaches to ma-
nipulate deformable objects.
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2.2 Deformation modeling

Continuum mechanics offers essential insights into the modeling and understanding of de-
formable objects. Deformable objects encompass a wide range of materials, from common
substances like metals and polymers to biological tissues and geological formations, all of
which can undergo deformation under various external forces.

Continuum mechanics provides a comprehensive framework for modeling the behavior
of deformable materials in a continuous manner, treating materials as continuous media
and encompassing concepts such as stress, strain, elasticity, and the partial differential
equations governing their behavior. Therefore, this approach allows for highly accurate
modeling of soft objects. To enable practical simulations of soft objects, numerical ap-
proximations based on continuum mechanics, such as the Finite Element Method (FEM)
and mass-spring models (MSMs), have been developed. These methods facilitate efficient
numerical solutions while introducing some level of approximation. The choice of method
depends on the specific problem, the required level of accuracy, available computational
resources, and whether real-time simulations are necessary.

In the subsequent sections, we will begin in Section 2.2.1 by providing a brief intro-
duction to continuum mechanics, followed in Section 2.2.2, Section 2.2.3 and Section 2.2.4
by an exploration of various discretization methods used to approximate continuum me-
chanics. These methods play a crucial role in bridging the gap between the continuous
mathematical descriptions of deformable objects and their practical computational im-
plementation. Moreover, they showcase diverse levels of physical accuracy and simplicity,
which are crucial considerations for the implementation of basic scenarios and adaptation
to handle increasingly complex situations.

2.2.1 Overview on continuum mechanics

Continuum mechanics provides a framework for modeling deformable objects. Deforma-
tion refers to the alteration in shape or size of the object when subjected to external
forces or loads. Deformation can be categorized as either elastic (reversible) or plastic (ir-
reversible), depending on whether the object returns to its original shape after the forces
are removed.

At time t0, we consider the object in its rest state, not subject to any deformation.
Let consider a point Pi belonging to the object material. Its corresponding coordinates
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at each time (t), xxxi(t), and velocities ẋ̇ẋxi(t), are given by:

xxxi(t) = (xi(t), yi(t), zi(t))

ẋ̇ẋxi(t) = (ẋi(t), ẏi(t), żi(t))

Then, when external forces are exerted on the object, it will deform in response to
these forces, causing its points to move to new positions corresponding to the deformed
configuration. Let uuui denote the displacement of Pi, given by:

uuui(t) = (uix, uiy, uiz) = xxxi(t) − xxxi(t0) (2.5)

An example of this deformation is represented in Figure 2.1.

Figure 2.1: Illustration of a deformation with the displacement vector uuui(t): (a) and (b)
correspond to the undeformed object and deformed object, respectively.

The object response to external displacements depends on its geometrical and physical
properties. The deformation resulting from this displacement can be calculated by consid-
ering the stress tensor (σσσ), which represents the force applied per unit area of the object
shape, and the strain (εεε), which quantifies the ratio of deformation to the original size of
the object shape. Furthermore, different types of objects exhibit different responses. For
instance, linear elastic objects undergo linear deformation, whereas viscoelastic objects
exhibit partial resistance to deformations.

For example, to model linear elastic behaviors, the Cauchy strain tensor εεεC given in
(2.6) is employed, but its validity is limited to small deformations. Nonetheless, it offers
the advantage of fast computation, making it suitable for interactive applications. On the
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other hand, the Green strain tensor εεεG, given in (2.7), enables the modeling of nonlinear
behaviors but comes with a higher computational cost. Consequently, it is less prevalent
in real-time implementations.

εεεC = 1
2(∇uuu+∇uuuT ) ∈ R3x3 (2.6)

εεεG = 1
2(∇uuu+∇uuuT +∇uuuT∇uuu) ∈ R3x3 (2.7)

with

∇uuu =


∂ux/∂x ∂ux/∂y ∂ux/∂z

∂uy/∂x ∂uy/∂y ∂uy/∂z

∂uz/∂x ∂uz/∂y ∂uz/∂z

 (2.8)

Regarding the stress tensor, a common approach for linear objects is to apply Hooke’s
law, which states that stress is linearly proportional to strain. Mathematically, the relation
can be expressed as follows:

σσσ = EEEεεε (2.9)

with EEE a tensor that depends on the material properties of the object, such as Young’s
modulus E and Poisson’s ratio ν. Young’s Modulus, also referred to as the modulus of
elasticity, serves as a measure of a material resistance to deformation when subjected
to an external force. It quantifies the relationship between stress and strain within the
material, particularly when it experiences an axial deformation. Regarding Poisson’s ratio,
it expresses the ratio of transverse (lateral) strain to axial (longitudinal) strain when a
material encounters uniaxial stress along one direction. In practical terms, Poisson’s ratio
characterizes how a material changes in dimensions, specifically in width or thickness,
when subjected to stretching or compression. This dimensionless value is typically within
the range of -1 to 0.5.

The dynamic behavior of the deformation using Newton’s law is described as:

MMMüuu = fff(u̇uu,uuu). (2.10)

where:

• MMM is the mass matrix of the object;

• (u̇uu, üuu) are respectively the first and second derivative of uuu.
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• fff represents both the internal and external forces acting on the object, often for-
mulated as a set of partial differential equations.

By integrating the previous equation, the positions of the model points can be updated
and used for simulating deformable objects. Some commonly integration methods include
semi-implicit integration, implicit integration, Verlet integration, and Runge-Kutta inte-
gration. For a comprehensive review of numerical methods used, readers can refer to the
work presented in [Hauth et al., 2003].

2.2.1.1 Conclusion

In conclusion, continuum mechanics serves as a fundamental framework for modeling the
behavior of deformable materials, offering valuable insights into soft object deformation,
stress, and strain. However, its mathematical complexity often requires the aid of numer-
ical estimation methods to solve real-world problems efficiently. In the following sections,
we explore various numerical methods and their crucial role in solving complex problems
in continuum mechanics.

2.2.2 Particle-Based Models

Particle-based models are known for their computational efficiency and intuitive nature,
however, they lack achieving high levels of physical accuracy. In particle-based methods,
the material is represented as a collection of individual particles, each with properties like
mass, position, velocity, and possibly other material-specific attributes.

2.2.2.1 Particle Systems

The particles, referred to as model points, initially exist in an equilibrium state that corre-
sponds to their initial positions. When an external force is applied, the object undergoes
deformation, resulting in the particles moving to new coordinates. The movement of the
particles adheres to Newton’s second law (2.10) and is governed by a time integration
scheme with considerations for lifespan and collision detection.

Particles are commonly employed for modeling objects like clouds or liquids. However,
there are also particle frameworks that utilize dynamically coupled particles to simulate
solids [Tonnesen, 1998].

The advantage of particle systems lies in their simplicity, enabling the simulation of
complex scenes with a large number of particles. Nonetheless, a limitation of particle
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systems is the lack of an explicit surface definition. This drawback can pose challenges in
applications such as tracking the restoration of elastic objects to their original form after
a deformation was applied by a robot during a manipulation task.

2.2.2.2 Mass-Spring Systems

Another possible particle-based model is the mass-spring model (MSM), which approxi-
mates the behavior of a deformable object by the dynamics of a set of masses (points),
linked by mass-less springs with dampers as connections to create a volumetric mesh.

Similar to particle systems, the movement of particles is simulated by employing New-
ton second law of motion. Moreover, a mass point Pi is linked to finite neighbors Pj
with springs of rest length l0ij and stiffness Kij = diag(kx, ky, kz), where (kx, ky, kz) rep-
resent respectively the spring stiffness along the three axes (x, y, zx, y, zx, y, z). Then (2.10) can be
expressed for each point as follows:

miẍxxi = fsfsfsi + fDfDfDi + fefefei (2.11)

where:

• mi is the mass of any point Pi in a model with N particles, where i ∈ N = [1, ..., N ];

• (xxxi, ẋxxi = vvvi, ẍxxi = ai) are respectively the 3D coordinates of Pi, its velocity and its
acceleration;

• fsfsfsi is the 3D force vector acting on Pi due to springs with stiffness Kij connecting
Pi to its neighbors, Pj, ∀j ∈ νννi ⊂ N , given by:

fsfsfsi =
∑
j∈νννi

fsfsfsij =
∑
j∈νννi

Kij(‖xxxi − xxxj‖ − l0ij)
(xxxj − xxxi)
‖xxxj − xxxi‖

=
∑
j∈νννi

αijKij(xxxj − xxxi) (2.12)

• fDfDfDi = −Dvvvvi is the 3D force vector acting on Pi due to the damping Dv.

• fefefei combines external forces, including gravity.

MSMs offer computational efficiency and intuitive representation, and are used for
example for predicting and tracking object states during robotic manipulation, [Petit,
Lippiello, Fontanelli, et al., 2017; Schulman, Lee, et al., 2013].
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However, a challenge arises in tuning the spring stiffnesses and the damping values
of the MSM to achieve the object desired deformation behavior in accordance with its
material properties. To address this issue, some approaches proposed learning algorithms
[Arriola-Rios & Wyatt, 2017; Bianchi et al., 2004; Morris & Salisbury, 2008]. On the other
side, another approach derived an analytical expression for the stiffness of each tetrahe-
dron constituting the mesh, which is proportional to the volume of the tetrahedron and
the Young’s modulus, [Lloyd et al., 2007]. Another limitation of MSMs is their inability
to directly simulate volumetric effects, which prompted to introduce additional energy
formulations to account for volume conservation [Teschner et al., 2004]. The orientation
of springs also affects the behavior of a MSM, leading to introduce virtual springs to com-
pensate for this effect [Bourguignon & Cani, 2000]. Furthermore, an innovative approach
proposed incorporating extra elastic forces into the traditional MSM to accommodate
complex mechanical behaviors like viscoelasticity, non-linearity, and incompressibility,
[Xu et al., 2018].

2.2.2.3 Conclusion

In conclusion, particle systems offer a valuable tool for approximating continuum mechan-
ics, providing a delicate balance between accuracy and computation time [Etzmuss et al.,
2003]. While this section was limited on presenting particle systems and the MSM, it is
important to note that various alternative particle-based approaches exist. For instance,
there exists a method that uses a recurrent neural network to control MSM dynamics,
effectively representing positions, velocities, and accelerations of mass points and springs
within a mesh structure [Nurnberger et al., 1998]. Another alternative involves employ-
ing a convolutional neural network (CNN) to simulate mechanical loads, opting for the
Poisson equation instead of a MSM [J. Zhang et al., 2019].

Next, we present Position-based dynamics, which is an approximation method in con-
tinuum mechanics that simulates physical behavior by iteratively enforcing constraints on
the positions of discrete elements to achieve dynamic simulations of deformable materials.

2.2.3 Position-Based Dynamics

Unlike particle systems and MSMs, which rely on force-based approaches where model
point velocities and positions are updated using a time integration scheme and given
forces, position-based dynamics (PBD) models take a different approach. For a detailed
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explanation of PBD, readers can refer to [Bender et al., 2017].
In PBD, the positions of particles are updated iteratively by satisfying a set of geomet-

ric constraints. These constraints can represent various physical properties and behaviors
such as distance preservation, collision avoidance, bending, stretching, or even custom
constraints specific to the simulation. Let consider a generic constraint that can be ap-
plied to any type of geometric constraint. The constraint equation can be written as:

C(xxx1,xxx2, ...,xxxN) ≈ 0 (2.13)

where C represents the constraint function. To compute the updated positions that satisfy
the constraint, an iterative approach known as Gauss-Seidel projection can be used. It
adjusts the positions of particles by calculating correction vectors based on the constraint
function. At each iteration, the correction vector, δxxxi, for each particle i involved in the
constraint is computed as:

δxxxi = −λ ∇∇∇Ci
∇∇∇CT

i ∇∇∇Ci
Ci(xxx1,xxx2, ...,xxxN), (2.14)

where λ is a stiffness parameter that controls the convergence rate, ∇∇∇Ci represents
the gradient of the constraint function with respect to the position of particle i, and
Ci(xxx1,xxx2, ...,xxxN) represents the value of the constraint function for particle i.

To update the positions of the particles, the correction vector is applied as follows:

xxxi = xxxi + δxxxi (2.15)

By iteratively applying these constraint equations and updating the positions of particles,
PBD ensures that the geometric constraints are satisfied while simulating the desired
physical behavior.

PBD methods offer several notable advantages. Firstly, they are characterized by their
simplicity and computational efficiency. PBD methods do not require a mesh model,
resulting in improved memory usage and computational speed. Moreover, their particle-
based parallel nature allows for scalability, enabling simulations with a large number
of particles. PBD has found extensive application across various interactive graphical
applications [Macklin et al., 2014; Tian et al., 2013]. Its utilization has been particularly
prominent in modeling the deformation of human body parts [Romeo et al., 2020; B. Zhu
et al., 2008] as well as in robotic manipulation tasks [Caccamo et al., 2016; Güler et al.,
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2017].
However, PBD has certain limitations. One limitation is that it does not explicitly

represent the surface of the deformable object, which can be a drawback when it comes to
visualizing or interacting with the object. Additionally, PBD heavily relies on geometric
constraints and may require additional techniques or models to handle complex material
behavior. On the other hand, MSMs offer greater control over material properties by
adjusting the parameters of the springs. By using different types of springs, such as linear
or nonlinear, a wide range of materials with varying stiffness, elasticity, and damping
properties can be simulated, which allows for more fine-grained control over the behavior
of the deformable object.

In the next section, we will explore further numerical techniques, distinct from particle
systems and PBD, which are mesh-based techniques and are employed to approximate
continuum mechanics in simulations.

2.2.4 Mesh-based Models

In contrast to the particle systems discussed in previous sections, this section delves into
mesh-based models as an alternative approach to approximate continuum mechanics.
Mesh-based models provide mathematical frameworks for characterizing material behav-
ior, offering a distinct perspective on the analysis of deformable materials and structures.

2.2.4.1 Finite Element Method

The finite element method (FEM) is an effective technique used to approximate the com-
plex physical behavior exhibited by deformable objects. By dividing the deformable body
into smaller and simpler finite elements, connected through nodes forming a mesh, FEM
allows for accurate representation of the object in response to external forces. Unlike
particle-based approaches, FEM operates on node displacements rather than particles.
The deformation of a mesh containing N points is determined by computing the displace-
ment vector field uuu, which is obtained through solving (2.16):

MMMaaa+DDDvvv +KKKuuu = fefefe (2.16)

where MMM ∈ R3Nx3N , DDD ∈ R3Nx3N , KKK ∈ R3Nx3N and fefefe ∈ R3N are respectively the mass
matrix, damping matrix, stiffness matrix and external forces vector in a 3D dimension.
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At every time step t, the computation of the matrix KKK relies on material characteristics
like Young’s modulus EEE, Poisson’s ratio ν, and nodal displacement uuu.

The FEM has seen widespread use in robotics due to its capacity to generate realis-
tic simulations and accurately represent complex deformations. It has been successfully
applied in soft object tracking [Petit et al., 2018; Sengupta et al., 2019] and planning
manipulation [Frank et al., 2014]. Nonetheless, a limitation of the FEM arises from the
necessity to recalculate the dense matrix KKK at each time step, resulting in significant
computational overhead. To address this concern, researchers have adopted an alterna-
tive approach wherein the matrixKKK remains constant. However, this method restricts the
model capability to simulate solely small deformations. Alternatively, approaches such
as co-rotational FEM [Müller & Gross, 2004] can be employed to reduce computational
complexity while maintaining accuracy.

2.2.4.2 Boundary Element Method

The deformation of a surface utilizing the boundary element method (BEM) involves
solving the equation (2.16) over the surface, as opposed to the volume-based approach
employed by the FEM [Y.-M. Tang et al., 2006]. The surface is divided into N non-
overlapping mesh elements, with node coordinates representing the centroids of these
elements. In contrast to FEM, BEM offers notable speed improvements by utilizing a
reduced number of nodes and elements. However, it is worth noting that the BEM is
applicable only to objects with a composition of homogeneous materials inside.

Notably, BEM has found successful applications in real-time volumetric model simu-
lation [James & Pai, 1999], and showed enhanced tracking accuracy in scenarios involving
occlusions [Greminger & Nelson, 2008].

2.2.4.3 Modal Analysis

Modal analysis can be utilized to improve the computational efficiency of the FEM by re-
ducing the number of degrees of freedom needed for analysis. The computational burden
associated with the FEM arises from the calculation of motion using large matricesMMM ,KKK,
and DDD in (2.16). By incorporating modal analysis into the FEM workflow, the computa-
tional burden can be alleviated while still capturing the essential dynamic characteristics
of the system [Pentland & Williams, 1989]. Here is a breakdown of the mathematical
approach for enhancing FEM using modal analysis:
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1. Discretization of the system: The continuous system is divided into a finite number
of elements and nodes, where each element is defined by its geometry, material
properties, and connectivity with neighboring elements.

2. Formulation of the equations of motion: They are derived following the same ap-
proach as in the FEM and shown in (2.16).

3. Modal analysis computation: Solve the eigenvalue problemKKKvvv = λMMMvvv to obtain the
eigenvalues (λ) and corresponding eigenvectors (vvv) of the system. The eigenvectors
represent the mode shapes of the system, while the eigenvalues determine the natural
frequencies and damping ratios.

4. Selection of reduced modes: Choose a subset of modes that significantly contribute
to the system response based on criteria like mode participation factors, energy con-
tributions, or engineering requirements. For example, by examining the eigenvalues
calculated before, it becomes possible to remove the higher-frequency modes, which
allows for the selective update of the most influential modes.

5. Projection of equations onto reduced mode set: Project the equations of motion
onto the reduced mode set using the selected mode shapes.

6. Solution of the reduced system: Solve the reduced system of equations considering
only the selected modes. This considerably reduces the computational workload as
the number of degrees of freedom is reduced to the number of selected modes.

7. Computation of full response: Reconstruct the full response of the system by com-
bining the contributions from the selected modes.

In modal analysis, assuming a constant value for K can enhance computational effi-
ciency. However, this assumption holds true only for simulating small linear deformations
and introduces errors when dynamically simulating large deformations. Furthermore,
modal analysis offers a robust tool for effectively simulating the characteristics of de-
formable objects [Basdogan, 2001; Hauser et al., 2003].

2.2.4.4 As-Rigid-As-Possible

The As-Rigid-As-Possible (ARAP) modeling approach is utilized to approximate the be-
havior of deformable objects by assuming a high level of rigidity. The main objective
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of ARAP modeling is to preserve the object shape and rigidity while allowing for local
deformations [Sorkine & Alexa, 2007]. This is achieved by formulating an energy function
that enforces the rigidity constraint and encourages deformations that closely resemble
rigid motion.

The energy function typically consists of a rigidity term and a regularization term.
The rigidity term penalizes non-rigid deformations by minimizing the differences in ro-
tations and translations between neighboring vertices. The regularization term promotes
smoothness and regularity in the deformation. It penalizes high curvature and encourages
a smooth deformation. By minimizing the combined energy function, the ARAP mod-
eling achieves a balance between preserving shape and rigidity and allows for localized
deformations, providing a valuable tool for modeling deformable objects.

ARAP has gained significant popularity across diverse applications, such as 3D mesh
animation [Levi & Gotsman, 2014], regularization prior for tracking nonrigid scenes [Dou
et al., 2017], deformable object tracking during robotic manipulation [Han et al., 2018],
and shape servoing of soft objects [Shetab-Bushehri et al., 2022].

2.2.4.5 Conclusion

In summary, the selection of an appropriate modeling approach within the domain of
mesh-based models necessitates a careful consideration of the trade-off between precision
and computational efficiency. While FEM offers remarkable precision at the cost of in-
creased computational demands, Modal Analysis strikes a balance between accuracy and
efficiency, particularly for linear dynamic analysis. On the other hand, the ARAP method
excels in maintaining rigidity while prioritizing shape preservation, which is also capable
of simulating deformation with less accuracy than FEM. The ultimate choice should be
made in accordance with the specific application, the computational resources available,
and the requisite level of accuracy for the given task.

2.2.5 Conclusion

In this section, we presented the basics of continuum mechanics and different approaches
for approximating continuum mechanics. The choice between these modeling approaches
for deformable objects depends on the specific requirements of the application.

Particle systems such as MSM offer simplicity and real-time interactivity, making them
a valuable choice for applications where responsiveness and ease of implementation are
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crucial. By representing objects as interconnected masses and springs, MSM captures
the global deformations and overall structural characteristics of deformable materials ef-
ficiently.

On the other hand, PBD presents an intermediate representation between particle
systems and mesh-based models, offering a simplified yet efficient approach to enforcing
constraints, handling collisions, and simulating deformations in real-time. PBD is well-
suited for applications that require a balance between responsiveness and accuracy.

Finally, for high-fidelity simulations with complex material behavior, mesh-based mod-
els may be more appropriate but may come at a higher computational cost. For example,
by dividing objects into smaller elements, the FEM offers a detailed and accurate rep-
resentation of deformable objects, making it essential in applications where realism and
fidelity are paramount.

In the next section, we will present different approaches for tracking deformable objects
and discuss parameter estimation for the physics-based models.

2.3 Deformable object tracking

The initial shape of the object is represented using a topological model before any de-
formation is applied to it. Then, deformable object tracking is employed to adapt the
object shape online during its deformation by continuously tracking it. The process of
deformable object tracking can be approached using either a physics-based model or a
model-free method. Incorporating an explicit physics-based model can significantly en-
hance the tracking process by enabling reliable computation and prediction of internal
forces experienced by the object. These forces are often not directly measurable by visual
or force sensors. Conversely, model-free approaches are better suited for reconstructing
soft object models rather than tracking them. Since topological model reconstruction
falls outsite the scope of this thesis, we will focus hereafter mainly on the most relevant
methods for model-free and model-based visual tracking of deformable objects.

2.3.1 Model-free

Model-Free approaches do not require a predefined model of the object being tracked.
Instead, they directly track the object within the camera frames without any prior knowl-
edge about object shape or deformation properties.
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2.3.1.1 Linear deformable object tracking by CPD

A framework that encompasses state estimation, task planning, and trajectory planning,
all relying on the coherent point drift (CPD) [Myronenko & Song, 2010], was introduced
in [T. Tang et al., 2018]. CPD is a registration method that facilitates the non-rigid
mapping of one point set to another (see Figure 2.2). We particularly focus on the state
estimation proposed in their work, which is applied to a deformable linear object (DLO)
using stereo cameras and CPD. A real-time observer was proposed to estimate the states
of deformable object by using its corresponding point cloud. Considering that the DLO
is often occluded by robot arms or self-occluded during manipulation, the state estimator
is designed with robust occlusion handling capabilities. The state estimation process
involves acquiring the position of each node on the object by registering the previous
estimation results with the new point cloud measurement. As a result, the object state
can be robustly estimated in real-time, effectively handling noise, outliers, and occlusions.

The experimental results presented show that the authors approach can successfully
and efficiently track a DLO (corresponding in practice to a rope) in real-time, even when
dealing with noisy and occasionally occluded point clouds caused by obstacles.

Figure 2.2: Example of CPD registration, from [T. Tang et al., 2018].

2.3.1.2 Occlusion-robust deformable object tracking by regularizing the CPD
output

Another model-free occlusion-robust RGB-D sequence tracking framework also based on
CPD was proposed in [Chi & Berenson, 2019]. In contrast to the previous approach, the
authors stated that CPD only enforces motion coherence between consecutive RGB-D
frames, and therefore, there is a possibility of accumulating errors between the current
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tracking state shape and the true state. As a result, the topology of the tracking result
may deviate from the original model, even though the tracking result remains statistically
correct when viewed as a point set registration problem. To address this challenge, the
authors propose the use of a regularization term based on locally linear embedding (LLE),
wherein LLE performs non-linear dimensional reduction while preserving the local neigh-
borhood structure. This regularization term ensures topological consistency with respect
to the original model.

Several experiments were presented, involving the tracking of rope and 2D cloth, to
demonstrate the improved robustness of the approach against occlusion. These experi-
ments included both simulation and real-world data.

2.3.1.3 Conclusion

The presented model-free approaches enable the state estimation of 1D and 2D deformable
objects by aligning the last step state estimation with the current point cloud measure-
ment, without requiring a physics-based model. Furthermore, these approaches have
demonstrated their effectiveness and robustness against object occlusion.

2.3.2 Model-based

Model-based approaches rely on predefined models to describe the object topology, its
physics-behavior and its initial undeformed state. Then, they use registration techniques
to estimate the update state of the object and optimization techniques to estimate pa-
rameters that define an object deformation.

2.3.2.1 Deformable object tracking for model registration and parameter tun-
ing

An approach focusing on tracking and modeling deformation in soft objects using a data-
driven approach was presented by [Wang et al., 2015]. Their method involves an iterative
framework with two main components: physics-based deformation tracking and an opti-
mization of deformation parameters. The soft objects are modeled using the co-rotational
linear Finite Element Method. The optimized deformation model enhances the accuracy
of tracking results, leading to improved deformation parameter estimation in subsequent
iterations. Notably, their proposed optimization considers not only material elasticity pa-
rameters and damping coefficients but also incorporates a reference shape. It refers to the
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object geometry subject to zero external forces and can be different from the static shape,
which corresponds to the equilibrium geometry under gravity. For a visual representation
of the complete pipeline, refer to Figure 2.3.

The process begins with scanning and reconstructing the static shape (Figure 2.3(a)).
To capture the dynamic motion, three depth cameras from different viewpoints are uti-
lized, resulting in a time sequence of point clouds (Figure 2.3(b)). Employing a physics-
based probabilistic approach and using the static shape as a template, the dynamic point
cloud sequence is tracked (Figure 2.3(c)). The result is represented as 3D coordinates of a
tetrahedral mesh, closely enclosing the surface template of the static shape. Subsequently,
the parameter estimation component optimizes the elastic material parameters, damping
coefficients, and reference shape (Figure 2.3(d-e)).

Experimental results validated the ability to track soft objects while simultaneously
recovering the reference shape and estimating the deformation parameters. However, this
approach necessitates a high accurate initial mesh of the object.

Figure 2.3: The framework of a soft object tracking and estimation of its model parame-
ters, from [Wang et al., 2015].

2.3.2.2 Real-time 3D deformable object tracking using RGB-D camera

Another model-based tracking approach using RGB-D camera, which involves a real-time
tracking method designed for 3D soft objects that experiencing significant deformations,
including elastic deformations and rigid motions was proposed by [Petit et al., 2015].
The approach considers point cloud data obtained from an RGB-D sensor and utilizes
the Finite Element Method for modeling the soft object. It incorporates a consistent
mesh representation and takes into account known material properties such as the Young
modulus and Poisson ratio. The process involves initially registering the segmented point
cloud in a rigid manner, followed by non-rigid fitting of the mesh. Geometrical point-to-
point correspondences are used to calculate external forces to be applied on the mesh.
The entire workflow is illustrated in Figure 2.4.
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The object displacement can be decomposed into a rigid transformation and a pure
deformation, with rigid translation and rotation transformations being associated with
the rigid transformation. To achieve this, a rigid Iterative Closest Point (ICP) process
is applied to estimate a rigid transformation from the resulting segmented point cloud
to the mesh. Subsequently, the latter is rigidly aligned to the point cloud data. Then,
a deformable registration problem is addressed to fit this point cloud data to the rigidly
aligned tetrahedral mesh. This deformable registration involves determining external
forces exerted by the point cloud on the mesh and integrating these forces, along with the
internal forces computed using the physical model. The computation of external forces
relies on geometrical point-to-point nearest neighbor correspondences by employing K-d
tree searches from the segmented point cloud to the visible surface of the rigidly aligned
mesh and vice versa. Processing both sets of correspondences is crucial because relying
solely on a single match from one set to another might lead to inconsistent matches.

Simulation and experimental results confirm that the approach proposed by the au-
thors shows promise as a real-time tracking method capable of effectively managing diverse
deformations and motions by combining the FEM, an efficient segmentation method, and
conventional point cloud registration techniques.

An extension of the previous work was developed in [Petit, Lippiello, Fontanelli, et
al., 2017]. This study involves testing various physical models, such as MSM, FEM, and
co-rotational FEM, and comparing the tracking accuracy between these models. Addi-
tionally, the researchers applied their method to track the deformation of a pizza in a
challenging scenario, where the pizza was manipulated by a humanoid pizza chef robot
through stretching and tossing. Another extension was proposed in [Petit et al., 2018],
which enables the registration of multiple objects within a single scene. This was not pos-
sible before, and it is achieved by effectively handling collision detection model between
the different objects of the scene, which are consistently simulated using the co-rotational
FEM.

2.3.2.3 Real-time 3D soft tissue tracking in 3D ultrasound images

Another model-based tracking approach to achieve real-time tracking of deformable struc-
tures (targets) in 3D ultrasound sequences was introduced by [Royer et al., 2017]. This
method involves obtaining the target rigid and non-rigid displacements by minimizing a
visual error criteria relying on dense ultrasound visual observation and physics-based sim-
ulation. The approach integrates a physics-based model based on a MSM and a 3D object
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Figure 2.4: The framework of a soft object tracking based on FEM, from [Petit et al.,
2015].
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mesh to estimate the target motions across consecutive 3D images. For this purpose, the
mesh vertices displacements are online updated by iteratively summing their displace-
ments resulted from the MSM internal forces with external displacements that minimize
a visual error based on dense ultrasound feedback. This method also includes an ultra-
sound shadow detection process that increases the tracking robustness by a confidence
map used as a weighting mechanism in the visual error criterion. The computational flow
of the method is summarized in Figure 2.5.

The primary goal of this approach is to iteratively estimate both the external and inter-
nal displacements of the mesh. For computing the external displacements, they adopted
an intensity-based method, where the cost function is assessed using various dissimilarity
functions such as Sum of Squared Differences, Weighted Sum of Squared Differences, Sum
of Conditional Variance, and the newly proposed Sum of Confident Conditional Variance.
Concerning the estimation of internal displacements, it is accomplished using the MSM.

The results illustrate that this approach, utilizing the dissimilarity measure Sum of
Confident Conditional Variance, provides accurate motion estimation and performs well
on ultrasound sequences affected by various challenges, such as speckle noise, large shad-
ows, and ultrasound gain variation. However, it should be noted that the proposed method
may encounter inaccuracies when the target experiences significant deformation beyond
the limits defined by the provided elastic parameters.

Figure 2.5: The computational flow of the tracking method based on a MSM, from [Royer
et al., 2017].
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2.3.2.4 Deformable object tracking using coarse physics-based model

Later, [Sengupta et al., 2019] employed a model-based method for tracking deformable
objects using a RGB-D camera. They utilized a coarse co-rotational Finite Element
Method to represent the physical behavior of the object, and minimize a point-to-plane
distance-based geometric error between the point cloud and the mesh by considering
virtual forces. The proposed approach does not require an exact physical model of the
object or precise properties like Young modulus and Poisson ratio for accurate tracking.

The registration process starts with the same initial step as previous approaches [Petit
et al., 2018; Petit, Lippiello, Fontanelli, et al., 2017; Petit et al., 2015], which is rigid
registration. For that, two features, namely depth-based geometric error and keypoint-
based feature tracking [Trinh et al., 2018], take place. The second step is non-rigid
registration. In this part, only a subset of points of interest on the object surface, that
are referred to as clusters, are considered to determine the location where a limited number
of external forces needed to be applied for deforming the entire mesh. The positions of
these clusters correspond to the parts of the mesh that deviate most from the current
point cloud. The forces applied on these clusters are then computed to minimize the
geometric point-to-plane distance between the RGB-D point cloud and the entire model
surface mesh. This is accomplished by establishing a numerical Jacobian that correlates
the variation in geometric error with the variation of force applied. Indeed, an Iteratively
Reweighted Least Square formulation was employed to minimize the geometric error using
this Jacobian.

Simulation and experimental results demonstrate the effectiveness of the authors pro-
posed real-time tracking approach. In contrast to [Petit et al., 2018], the approach achieves
accurate tracking of the deforming object even when coarse parameters are considered.

2.3.2.5 Conclusion

The first step of the model-based approach involves generating a 3D tetrahedral mesh
model associated with the soft object. Once this model is defined, the approach inte-
grates a physics-based model with the previously described mesh to estimate the target
motions across consecutive 3D images. For this purpose, the vertices displacements are
calculated by iteratively summing the internal displacements estimated from the mechan-
ical component and the external displacements computed using different methods, such as
point-to-point correspondences and an intensity-based approach combined with a shadow
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detection process, among others.

2.3.3 Conclusion

In this section, we discussed various approaches to deformable object visual tracking,
ranging from model-free methods to model-based techniques. Moreover, deformable ob-
ject tracking offers diverse applications, one of which is reducing the disparity between
real object deformation and its simulated deformation. Reducing this gap enhances the
accuracy of the simulated object and allows for fine-tuning of model parameters, as we
discuss in more details in the following section.

2.4 Parameter estimation methods

Careful selections of material models and their corresponding parameters is crucial to
achieve lifelike soft deformations. The main concept behind the parameter estimation
methods is to iteratively adjust the parameters of a simulation system until the defor-
mations obtained in simulation closely match those measured on the real object. In this
section, we focus on estimating the elasticity parameters of both MSM and FEM models.

A common preliminary step for all subsequent methods is to use dense 3D reconstruc-
tion for object surface mesh generation, comprising N points to represent the undeformed
object. Afterward, the model parameters are estimated through an optimization process
aimed at identifying the values of the model elasticity parameters ppp by applying exter-
nal forces to the object (fe) and reducing the distance between the model points and a
reference model:

p̂pp = arg min
ppp

N∑
i=1
‖xxxi(ppp,fefefe)− xxxi‖2 (2.17)

with N = [1, 2, . . . , N ], and xxxi(ppp,fefefe) represents the coordinates of model point Pi, which
depend on both the model parameters, ppp, and the applied force, fefefe. In contrast, xxxi
corresponds to the measured point coordinates obtained from the reference object. This
reference model that serves as the ground truth can be either an object captured using an
RGB-D sensor or a pre-existing, accurately modeled object. In the latter case, xxxi belongs
to a coarse model.
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2.4.1 Estimation of non-linear heterogeneous FEM parameters

A data-driven approach for approximating parameters of a non-linear heterogeneous soft
tissue was presented by [Bickel et al., 2009]. The object is modeled using a FEM and
in order to capture material non-linearity, the authors defined the parameter values of
the mesh-based model through data interpolation in the strain-space. A gradual load
fefefe is applied to the object using a probe. At each loading step, with knowledge of the
applied force, a sample of the stress-strain relationship is estimated, and the material
parameters are computed. By considering measured displacements and applied forces,
spatially varying material parameters are computed using an updated version of (2.17)
which is given by:

p̂pp = argmin
ppp
{
N∑
i=1
‖xxxi(ppp,fff)− xxxi‖2 + γ‖LLLppp‖2} (2.18)

The spatial smoothness of parameters is ensured by employing the sparse Laplacian
matrix LLL, while the non-linear residual equation presented in (2.18) is iteratively solved
using the Levenberg-Marquardt algorithm [Moré, 2006].

The experimental results validated the approach of estimating the object material
elasticity using a data acquisition system that comprised force probes and a marker-based
trinocular stereo system. Nevertheless, it is important to note that the approach has
certain limitations. For instance, the minimization process may encounter local minima,
potentially resulting in inaccurate deformation synthesis. Additionally, the method does
not account for viscosity and plasticity parameters.

Another method for estimating the Young’s modulus of heterogeneous soft tissues
modeled by FEM was proposed by [Coevoet et al., 2015]. The primary innovation involved
employing an interactive inverse real-time simulation combined with manual registration
of a restricted set of points. This approach relies on utilizing a non-linear FEM within a
constraint-based framework. By receiving a limited number of registered points from the
user, the method performs real-time optimization to adjust FEM parameters and achieve
appropriate geometric deformations. The goal is to estimate the Young modulus from an
observed deformation, but for accurate estimation, the applied forces on the model need
to be known. To address this, the FEM model equations are projected into the constraint
space using Schur complement, effectively reducing the optimization space.

The validation procedure involves several steps. Firstly, an arbitrary deformation of
a deformable object is created. Next, few relevant points from the model are selected,
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and their positions are recorded when equilibrium is achieved. Then, the simulation is
reset without the deformation, and the inverse simulation approach is used to register the
chosen points. Finally, a comparison is made between the actual values of parameters used
in the process and the values estimated through the inverse method. This comparison is
utilized to update the parameter estimation.

Simulation results are utilized to validate the proposed approach for estimating the
heterogeneous material, consisting of three distinct Young moduli, one per object part.
Various forces were applied to these parts of the object, and the approach effectively
estimated the three Young moduli with an error of less than 3%.

2.4.2 Estimation of homogeneous FEM elasticity parameters us-
ing a robotic manipulator

Another approach, which focuses on determining the elasticity parameters of a FEM, in-
volves the use of a robotic manipulator equipped with a force sensor and was introduced
by [Frank et al., 2010]. The authors estimated the object elasticity parameters, the Young’
modulus and the Poisson’ ratio, by establishing a relationship between applied forces and
resulting surface deformations. The robot exerted a sequence of forces on the soft object
while simultaneously observing both the surface of the model object and the real object
using a depth camera. Next, an appropriate error function was defined (similar to (2.17)),
reflecting the differences between the measured and simulated surfaces observed by the
robot. To establish correspondences between the simulated and segmented object sur-
faces, a 3D registration technique based on point-clouds was utilized. Subsequently, they
employed a numerically approximated gradient-descent-based error minimization tech-
nique, effectively reducing the disparities between the actual and simulated deformations
with respect to the elasticity parameters.

Simulation and experiments confirmed the accuracy of estimating appropriate pa-
rameters for various soft objects. To reduce occlusions resulting from the manipulator
deforming the object, a thin wooden stick was attached to the end-effector. It is impor-
tant to note that this approach was restricted to a linear, isotropic, and homogeneous
deformation model.
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2.4.3 Estimation of MSM parameters using a FEM reference
model

A different approach estimating the parameters of an isotropic MSM by leveraging known
parameters of the same object modeled with FEM was presented by [Natsupakpong &
Çavuşoğlu, 2010]. The authors relied on the premise that FEMs derive accurate material
properties of the object, which are assumed to be known. On the other hand, MSMs do
not directly approximate the physical behavior of the object. Consequently, the proposed
approach aimed to approximate a FEM by optimizing the MSM parameters, while mini-
mizing the matrix norm of the error between the MSM and linear FEM stiffness matrices
of the same object.

The approach starts by creating a MSM with the same size and geometry as the
FEM, where the elements of the MSM are fully connected. The nodal mass values of
the elements in the MSM are assigned to match the nodal elements mass in the FEM,
approximating its dense mass matrix by a diagonal one. Concerning the stiffness matrix
of each element in the MSM, it is defined based on the unknown spring constants. On the
other hand, the stiffness matrix for the FEM element is calculated using a linear elastic
model and expressed in terms of the known FEM parameters. Due to the assumption of
isotropic material, the MSM element only necessitates two parameters to achieve symme-
try, whereas the FEM element possesses two independent elastic parameters. To identify
the parameters of the MSM element, both models are subjected to identical displace-
ments. Subsequently, the discrepancy in nodal forces between the two models is assessed
using the previously mentioned stiffness matrices. To minimize this error (2.17), an op-
timization process is undertaken, employing an appropriate matrix norm. It is crucial to
note that achieving a zero error is not feasible due to the inherent structural differences
between the stiffness matrices of the FEM and MSM elements.

Simulation results demonstrate the efficiency of estimating MSM parameters by using
a FEM as a reference model, and minimizing the error between their stiffness matrices
through an optimization process. The validity of this approach was further confirmed
by validating it across four different configurations. Planar object examples employed
triangular and quadrilateral meshes, while three-dimensional volumetric object examples
utilized tetrahedral and hexahedral meshes. Despite its effectiveness, the approach does
have several limitations. The method is not suitable for arbitrarily connected MSMs, and
it calculates the stiffness matrix per element. Furthermore, while there is an alternative
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of conducting the optimization at the whole object level instead of per element, it is not
feasible due to the high computational cost and the potential risk of encountering local
minima problems.

2.4.4 Estimation of isotropic co-rotational FEM parameters us-
ing a robotic manipulator

Another approach to estimate the Young Modulus and Poisson ratio parameters within a
co-rotational FEM was proposed by [Petit, Ficuciello, et al., 2017]. The authors assumed
a continuous isotropic material. The object elastic parameters are determined by track-
ing its deformations using a RGB-D camera, and incorporating the force measurements
obtained from a force sensor. This estimation process follows a similar approach to the
one proposed in [Frank et al., 2010], involving the minimization of a fitting error between
the real deformations obtained from the RGB-D camera and the simulated ones.

The parameter estimation problem is tackled by minimizing the deviation between
the simulated deformations and the observed ones (same form as (2.17)). The innovative
aspect of this approach lies in its consideration of distance as the summation of both the
distance from the simulated model to the real segmented object and vice versa. Addressing
the non-linear optimization problem with respect to the model parameters, the evaluation
of the objective function becomes expensive, and computing its gradients becomes non-
trivial, thereby making gradient-based optimization methods impractical. To overcome
this, the authors employed the gradient-free Nelder-Mead method [Nelder & Mead, 1965].

Experimental tests were conducted to assess the efficacy of the parameters estimation
technique. During the experimentation with different initial configurations, convergence
of the model parameter estimation was achieved, albeit the presence of local minima was
observed.

2.4.5 Estimation of coarse FEM parameters

Another approach to track the deformation of soft objects and estimate their elasticity pa-
rameters was presented by [Sengupta et al., 2020]. This method involves fusing visual data
obtained from an RGB-D camera with interactive FEM simulations of the object. The
study primarily focused on estimating the Young’s modulus, assuming that the Poisson
ratio was known beforehand. To estimate the elasticity parameters at a contact point of
the deformable object, the proposed algorithm relies on the tracking results and external
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measurements of the deformation forces obtained at the same point.
The elasticity parameter estimation process involves minimizing the error between

a tracked object and a simulated object that is deformed by a robot equipped with a
force sensor. External forces are applied at a specific point, and their measurements
are stored. Once a steady-state in the deformation tracking is achieved, these measure-
ments are transmitted to the estimation algorithm. A cost-function is computed based
on the Euclidean distance error between the object points, where the forces were applied
and obtained from the camera, and their corresponding model points at the end of the
simulation, where the same forces are replicated. The cost-function is minimized using
the Levenberg-Marquardt algorithm. The authors proposed calculating a Jacobian ma-
trix of the cost-function to update the elasticity parameters. This matrix is numerically
estimated by conducting multiple simulations with varying parameter values.

Experimental results provide evidence of the effectiveness of their method in estimating
the elasticity parameters using the applied forces and a coarse 3D mesh of the object.

2.4.6 Conclusion

In this section, we presented various approaches to estimate the elasticity parameters of
deformable objects. These objects can be modeled using discrete models such as MSM or
mesh-based models like FEM. The primary goal of parameter estimation is to minimize
discrepancies between real object deformations and their simulated deformations when
working with real data. Additionally, it serves to reduce disparities between an accurate
model of the object and a simplified, potentially less computationally one. Furthermore,
parameter estimation proves particularly advantageous in model-based deformable object
manipulation, especially when dealing with objects of unknown parameters, as will be
discussed in the following section.

2.5 Deformable object manipulation

Robotic manipulation of rigid objects has been studied and successfully implemented in
several traditional application fields. However, the manipulation of deformable objects is
still an open problem since the object response to an external mechanical action cannot
be predicted in the same simple manner as for rigid objects. Manipulating a cable,
tearing a 2D cloth, controlling the 3D shape of biological tissues are some examples of
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challenging soft object manipulations. Achieving precise and controlled shape changes in
these objects is important for a wide range of applications, such as surgical and dressing
assistance [Shin et al., 2019; Yu et al., 2017], food handling [Lehnert et al., 2017], and the
automotive industry [Shah & Shah, 2016], to name a few. The automation of these tasks
combines many areas such as control, perception and modeling/learning, where several
issues complicate it: i) the material properties of the object (stiffness, mass, and viscosity),
ii) the object geometry (dimension and shape), iii) the forces to be applied (localization,
direction and magnitude).

Ensuring stable and dexterous manipulation of soft objects without causing damage is
an ongoing challenge. To address it, researchers have developed a variety of shape servoing
techniques, which can be broadly categorized into two categories: model-based and model-
free techniques. Additionally, the object shape can be represented by some points on its
surface, which can be defined by their 3D positions or their pixel coordinates corresponding
to the projection of their 3D coordinates in the camera frame. Alternatively, the shape
can be defined by a combination of selected object surface points or by considering all
surface points.

In the following sections, we begin by reviewing model-free approaches that focus on
deformable object manipulation. We then proceed to discuss model-based approaches,
which rely on a physics-based model corresponding to the deformable object. Model-
based approaches incorporate this physics-based model, while model-free approaches rely
solely on visual information.

2.5.1 Model-free

This section concerns the model-free approaches. These methods are mainly based on
visual servoing and machine learning, and do not require prior information on deformation
behavior deduced from physics-based models. In this thesis, we will specifically focus on
the approaches based on visual servoing.

2.5.1.1 Vision-based object 2D deformation features positioning

One of the pioneering works in the field of model-free approaches was introduced by
[Navarro-Alarcon et al., 2013]. They presented a novel method for controlling robot
manipulators interacting with unknown elastic objects based on visual feedback. Their
approach involved estimating the deformation Jacobian matrix in real-time using Broy-
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den update rule [Broyden, 2000]. This matrix, as the features Jacobian matrix in classical
visual servoing, captures the relationship between the visual feedback features and the
robot manipulators motions, relying solely on the visual information. Their closed-loop
dynamic-state feedback velocity control law, implemented within a passivity-based frame-
work, ensured input-to-state stability in the presence of imperfect estimations and external
disturbances.

The authors introduced four distinct types of features presented in Figure 2.6. These
include point-based deformation, which explicitly focuses on displacing singular/multiple
2D points. Distance-based deformation regulates the distances between point features.
Angle-based deformation focuses on the relative angle of a line of interest constructed from
two 2D points. Finally, curvature-based deformation involves measuring and controlling
the contour of interest defined from three 2D points. These feature vectors were defined
as nonlinear functions of the visual feedback points.

Afterwards, the change in these feature vectors was represented in relation to the
robot manipulators using a Jacobian matrix. Utilizing this Jacobian matrix, a control law
based on energy-based dynamic-state feedback velocity was derived. The objective of this
control law was to convert the deformation behavior into a non-conservative Hamiltonian
dynamical system, aiming to achieve the desired deformation by minimizing an energy-like
functional. The authors stated that even with imperfect estimations of the deformation
Jacobian matrix, the closed-loop system exhibited input-to-state stability and complete
dissipativity in the presence of external disturbances.

The experimental results demonstrate the effectiveness of their control method in
handling real-time deformation tasks without the need for camera calibration parameters
or modeling of the deformation. However, it should be noted that the proposed method
has certain limitations. It requires slow motion of the robot manipulators and low-pass
filtering of the observation signals. Additionally, the method is applicable only to quasi-
static and elastic objects.

Subsequently, two vision-based control methods for shaping soft objects, both of which
did not rely on the identification of the deformation model or camera parameters, was
introduced in [Navarro-Alarcon et al., 2014]. The first controller enables real-time esti-
mation of the deformation Jacobian matrix. The second approach introduces an adaptive
deformation controller and combines a minimal amount of offline information with online
adaptation of variable parameters. Prior to conducting the experiments, the method re-
quires gathering some test points, which involves non-collinear end-effector displacement
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Figure 2.6: Different types of feature-based deformation, from [Navarro-Alarcon et al.,
2013]: (a), (b), (c), and (d) correspond to point-based deformation, distance-based defor-
mation, angle-based deformation, and curvature-based deformation, respectively.

vectors and visual feedback vectors. These vectors are used to construct a regression
matrix, which remains constant throughout the online deformation test. This regression
matrix is subsequently used to create an estimated projection model for a feature point
onto the image plane (see Figure 2.7). The parameter adaptation rule is determined by
a combination of two terms. The first term represents the difference between the current
position and desired position of the test points. The second term accounts for the error
in the estimated projection model (see Figure 2.7).

The effectiveness of both controllers was evaluated by implementing them on a robot
manipulator. However, there are still several limitations associated with these proposed
controllers. The first approach is sensitive to image noise, but the authors addressed
this issue by employing a low-pass filter on the signals. On the other hand, the second
control method is less affected by noise, but it may not be suitable for tasks that require
a broad range of nonlinear deformations. This method is therefore better suited to the
applications of small or localized deformations to the object.
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Figure 2.7: Geometric representation of the projection estimation error, from [Navarro-
Alarcon et al., 2014].

2.5.1.2 Simultaneous object positioning and shaping

In a subsequent work, a model-free method for automatic 3D shape servoing of soft objects
using robotic manipulators was proposed by [Navarro-Alarcon et al., 2016]. The object
shape is represented by a deformation feature vector consisting of two distinct components:
position and shape components. This approach enables the manipulation of an object to
reach a desired position while controlling its relative deformation. The pipeline of this
method is depicted in Figure 2.8.

The authors stated that the deformation model can be parameterized linearly using
an adaptive vector of unknown deformation parameters. Subsequently, they developed
an algorithm that dynamically estimates this vector and iteratively approximates the
deformation model, which does not necessarily correspond to the true deformation model.
Afterwards, the estimated vector is used to approximate the deformation Jacobian matrix,
which is necessary for computing the velocity control input with conventional controllers.
Furthermore, the visual feedback consists of two components: a positioning feedback
term and a shaping feedback term. The first term involves the location of explicit feature
points or the geometric center of multiple feature points, and is used to control the object
position. The second term evaluates the internal displacements of the object, allowing for
control of relative deformations. It encompasses the compression distance, which measures
the relative distance between two feature points. Additionally, a folding angle of the object
is defined as the measured angle between two intersecting lines computed using feature
points and a normalized curvature that quantifies the roundness of the object. All these
shape geometric descriptors are then servoed by the controller to reach desired values.

The method was tested using two manipulators and the proposed controller to ma-
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nipulate the shape of a soft object and drive it towards a desired shape. However, this
method does have certain limitations. For instance, the method is specifically designed
for slow movements of the robots and may not be effective in controlling rapidly changing
shapes. Another limitation is the assumption of the object model being purely elastic.

Figure 2.8: The pipeline of a 3D shape servoing proposed in [Navarro-Alarcon et al.,
2016].

2.5.1.3 2D contour manipulation

In a later study, a model-free approach for automatically deforming soft objects into de-
sired two-dimensional shapes using robot manipulators was proposed by [Navarro-Alarcon
& Liu, 2017]. The shape of the object is represented by its contour, and a compact feed-
back characterization of deformable object shapes is developed based on a truncated
Fourier series. This method differs from previous approaches that typically rely on dis-
placements of feature points to define the servoing task. Instead, it introduced closed-loop
deformation tasks by utilizing the truncated Fourier series of 2D image contours as a form
of visual feedback. The closed-loop controller is depicted in Figure 2.9.

The object contour can be reconstructed using the shape parameters derived from the
Fourier approximation. Therefore, the shape error corresponds to the difference between
the Fourier coefficients of the current shape representation and the one corresponding to
the desired shape. Regarding the control law, it was designed using a Jacobian-based
approach. To estimate the Jacobian matrix and to overcome the challenges associated
with the high dimensionality and nonlinear behavior of the object model, the authors
proposed an online algorithm to approximate the deformation properties. This approach
avoids the requirement of full parametric identification of the object model, as seen in
previous approaches. The proposed method employs a local deformation model that is
recalibrated at different local regions. As the robot moves into a new configuration, the
model is recalibrated using data points collected along the local trajectory. The objective
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of the iterative model estimator is to compute a local approximation of the Jacobian
matrix. However, it is important to note that since the estimator computes a locally valid
linearized model, it cannot capture the entire properties of the object in general.

The approach was validated through both numerical simulations and experimental
results. It is important to note that the proposed method is specifically designed to control
the 2D image projections of object contours and solely involves translational movements.
Additionally, it is worth mentioning that the system run into difficulties if the desired
contour is unreachable or if the number of Fourier coefficients is insufficient to accurately
describe the object shape. In such cases, the system may converge to a local minimum
configuration.

Figure 2.9: The pipeline of a model-free shape servoing using Fourier series represented
in [Navarro-Alarcon & Liu, 2017].

Another approach, which focuses on controlling the shape of soft objects, was intro-
duced by [Qi et al., 2021]. In this approach, the object shape is also represented through
its contour extracted from a 2D image of the observed object. The object contour was
parametrized using a set of 10 parameters. These parameters include the object cen-
troid coordinates (2 parameters), the logarithmic function of the 7 Hu moments [M.-K.
Hu, 1962], and the orientation of the contour principal axis in the plane [Zheng et al.,
2019]. These parameters are subsequently normalized. Similar to previous methods, this
approach establishes a relationship between changes in the object shape parameters and
the robot motions through the use of a deformation Jacobian matrix. Subsequently, a
sliding mode controller was proposed to automatically reshape the object to a desired
configuration while simultaneously estimating the Jacobian matrix. To assess the effec-
tiveness of this approach, experiments were conducted to validate the proposed control
and reshape various elastic and plastic objects to achieve desired contours. It is worth
noting, however, that this method comes with certain limitations. It is not suitable for
purely plastic objects, and the object deformation process must occur slowly.
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2.5.1.4 Fourier-based 1D shape control

An alternative method employing Fourier series for model-free shape servoing was pro-
posed by [J. Zhu et al., 2018]. The study focused on manipulating a 1D linear cable, where
the shape of the cable was approximated using Fourier series. The manipulation was car-
ried out using two robotic manipulators. The objective of this research was to establish a
framework for multi-arm robots to effectively deform a flexible cable into a desired shape
through vision-based control. The local deformation model was estimated online using
shape parameters, allowing for real-time adaptation. The local deformation model is sim-
ilar to the one proposed in [Navarro-Alarcon & Liu, 2017], with the distinction being that
this method incorporates multiple objects instead of just one, along with the inclusion of
rotational action. A small displacement of the robot results in a minor alteration in the
cable shape and subsequently affects the feature parameters. Exploiting this observation,
the authors were able to linearize the deformation model. With the deformation model, a
velocity control law was applied to the robot, enabling the deformation of the cable into
the desired shape. The effectiveness of the method was successfully confirmed through
validation using two grippers that manipulated different cables to achieve the desired
shape.

2.5.1.5 3D positioning of feature points

Another approach for shape servoing of soft objects involving an online estimation of
the deformation Jacobian was introduced by [Lagneau et al., 2020a]. The shape of the
object is represented through 3D points of interest and the Jacobian estimation employs
weighted least-squares minimization within a sliding window. Subsequently, the obtained
deformation Jacobian is employed in the control law to manipulate the object shape.

In comparison to alternative model-free approaches, the study conducted by [Lagneau
et al., 2020a] employed a limited number of parameters for online estimation of the defor-
mation Jacobian. By contrasting their method with the approach utilizing the Broyden
update rule, the authors concluded that their technique exhibits greater resistance to
noise. This is achieved by updating each row of the deformation Jacobian matrix based
on a confidence criterion derived from the observed deformations. Specifically, in their
approach, the Jacobian is updated only for degrees of freedom (DOFs) that meet the
confidence criterion. This confidence criterion serves as a filter for noisy measurements
when the system approaches the desired deformation. The update of the estimated defor-
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mation Jacobian is determined by a user-defined confidence threshold, and the confidence
criterion is determined using eigenvalue decomposition to ascertain how the Jacobian will
be updated.

Multiple experiments were conducted to verify the capability of controlling the shape
of soft objects. In [Lagneau et al., 2020a], they presented various shape-servoing tasks
involving 3D objects, where they drived specific points of interest on the object surface
to achieve desired positions. The authors demonstrated that their technique remains
independent of the quantity of points of interest and external disruptions. The experi-
ments revealed that the proposed method achieved comparable accuracy to state-of-the-
art methods, all while relying on a smaller number of parameters to tune. Furthermore,
they validated in [Lagneau et al., 2020b] their approach by actively controlling the 3D
shape of a wire, using two robotic manipulators to control its two extremities and shape
it to reach a desired 3D form.

2.5.1.6 Conclusion

In this section, we presented various model-free approaches that focus on deformable
object manipulation. The common idea among these methods is their attempt to esti-
mate the Jacobian matrix, which relates the variations of the visual feedback features
to the manipulator motions, purely from visual observation and robot odometry. These
approaches do not rely on a physics-based model of the deformable object, and in some
cases, they do not require knowledge of the camera calibration used to capture the feed-
back information. However, these methods can be sensitive to noise since their Jacobian
matrix is directly derived from inherently noisy visual data. To address this issue, some
approaches employed data filtering techniques before constructing the Jacobian matrix,
while others design robust controllers to mitigate measurement noise.

In addition to the mentioned Jacobian-based approaches, there exist numerous learning-
based approaches that have been suggested for deriving the deformation model or manip-
ulation strategies directly from data. Here, we will mention a few of them. For instance,
[Schulman, Gupta, et al., 2013] used depth images to encode the status of a manipulation
task of soft objects and learning from demonstration to allow a robot to execute multi-
step manipulation strategies. This technique has been expanded upon using reinforcement
learning [Hadfield-Menell et al., 2015] and tangent space mapping [T. Tang et al., 2016].
A deep learning-based end-to-end framework has also been proposed in [Yang et al., 2016].
Furthermore, [Clegg et al., 2017] used reinforcement learning for haptic manipulation. In
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this case, the use of a high-quality simulator was crucial for the success of the learning
process. Finally, [Z. Hu et al., 2019] employed deep learning to estimate the deformation
Jacobian matrix. This matrix was subsequently used to generate a control law aimed at
controlling both the position and shape of deformable objects.

2.5.2 Model-based

Model-based deformable object manipulation refers to the process of manipulating objects
using their physics-based models. A physics-based model is used to simulate the actual
behavior of the object when exposed to external forces. In this section, we review different
approaches on soft object shape servoing based on object models.

2.5.2.1 Indirect positioning of object feature points

Some pioneering studies have addressed the indirect positioning of soft objects, where
multiple selected object points, denoted feature points, are driven to their desired positions
indirectly by manipulating other points of the object, denoted as manipulated points.

One of the first works that proposed a control approach for simultaneously position-
ing multiple points on deformable textile fabrics was presented by [Wada et al., 1998].
The operation points in Figure 2.10(a) correspond to the manipulated points, while the
positioned points refer to the feature points. Their method involved creating a simplified
physics-based model using a two-dimensional MSM system with different spring stiff-
nesses and initial lengths along horizontal, vertical, and diagonal axes, as presented in
Figure 2.10(b).

By employing visual sensors and a linearized model in a quasi-static equilibrium state,
their control method effectively guided the positioned points to desired locations, even
without precise knowledge of the fabric physical properties.

Subsequently, in the work conducted by Kinio and Patriciu [Kinio & Patriciu, 2012],
the object was modeled using the FEM and a H∞ controller was employed for the purpose
of accomplishing the positioning task. This study involved two manipulated points and
two feature points. The authors demonstrated via simulation and experimental results
that in this case the H∞ controller presents a more advantageous design option compared
to PID (Proportional-Integral-Derivative) controllers.
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Figure 2.10: Indirect positioning of multiple feature points, from [Wada et al., 1998]: (a)
and (b) depict respectively the distribution of mesh points and the spring model of the
2D object.

2.5.2.2 Two-phase strategy for object modeling and shaping in one dimension

A two-phase strategy for shape servoing, which is depicted in Figure 2.11(a), was in-
troduced by [Higashimori et al., 2010]. In the first phase, the object is modeled using
a four-element viscoelastic model that included two elements for elasticity and two for
viscosity, then its parameters are estimated. The estimation process involved applying
a contact force to the object in a step-wise manner, as shown in Figure 2.11(b). The
force was increased up to a threshold level to avoid damaging the object, maintained for
a specific duration, gradually reduced to zero, and finally, the contact was maintained
without applying any force indefinitely. The resulting deformations during non-zero force
application represented the elastic part (red plot), while the maintained deformations af-
ter unloading represented the plastic part (green plot). In the second phase, the authors
actively controlled the plastic deformation response to achieve the desired final deforma-
tion. By using the estimated viscoelastic and plastic parameters, they determined the
necessary force required to achieve the desired shape of the object.

Experimental validation was conducted to deform a 3D parallelepipedic object in one
direction.

2.5.2.3 2D object contour servoing using MSM

[Das & Sarkar, 2011] proposed an approach for manipulating the shape of deformable
objects, using a system of manipulators. The initial and final shapes of the object are
defined by boundary curves. The object is modeled using a MSM where the connections
between nodes are modeled as a Voigt model, as shown in Figure 2.12(a). The Voigt
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Figure 2.11: 1D shape deformation of an unknown soft object, from [Higashimori et al.,
2010]. In (a), the two-phase strategy for shape servoing of an unknown rheological object
is presented. In (b), the decomposition of the object deformation response is illustrated,
with x1 representing the elastic response and x2 representing the plastic response.

model consists of a parallel arrangement of a spring and a damper. To achieve the desired
shape change, an optimization-based planner is designed, which minimizes an energy-
like criterion to determine the optimal locations of the contact points along the final
shape curve. Importantly, each manipulator operates independently without the need for
communication between them. Additionally, a robust controller was derived to handle
modeling uncertainties.

Two simulation results provided evidence of the effectiveness of the proposed method.
The first simulation involved applying the shape controller to deform a circular shape into
either an ellipse or a square, using varying numbers of actuation points. The outcomes
indicated that a higher number of actuation points resulted in improved system accu-
racy. In the second simulation, a deformable object was manipulated by a three-finger
robotic hand without causing deformation. The robust controller effectively achieved this
objective. Figure 2.12(b) illustrates an example of the first simulation task.

2.5.2.4 FEM-based soft robot control

An alternative approach for controlling the shape of soft objects was proposed in the
context of soft robots. For example, the robot needs to deform itself to maintain specific
configurations and accomplish given tasks. In this context, an approach that includes two
controllers (see Figure 2.13) for the manipulation of soft robots, utilizing visual tracking
and a simulation-based predictor, was introduced in [Z. Zhang et al., 2017].
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Figure 2.12: 2D shape deformation of a soft object presented in [Das & Sarkar, 2011]. In
(a), a model of a 2D object is presented. In (b), the shape transformation from a circle
to an ellipse is represented using 12 manipulators. The initial shape, desired shape, and
final shape are indicated by blue dashed, black dotted, and red solid lines, respectively.

The first controller, depicted in Figure 2.13(a), is designed to guide the soft robot
end effector to a desired position by applying a control law. This controller utilizes a
simulation-based predictor that calculates a Jacobian matrix using the kinematic model
of the soft robot, where a real-time FEM is employed. The open-loop controller consists
of two parts: closed-loop control of the simulation model and open-loop control of the
soft robot. The closed-loop control ensures that the Jacobian matrix of the simulation
model remains close to that of the real robot, while the open-loop control ensures that
the soft robot end effector tracks the desired trajectory. It is worth noting that the first
controller is still considered open-loop, even with the presence of closed-loop control, as
it does not require feedback from the soft robot. In this approach, both the simulation
model and the soft robot utilize the same control input, which is computed based on the
contribution of the actuators derived from the simulation model.

The second controller (see Figure 2.13(b)) utilizing infrared cameras and feedback is
developed to correct the position of the end effector. This controller is implemented to
actuate the simulation model, aligning the end effector of the simulation model with that
of the real robot. Consequently, both the simulation model and the soft robot exhibit
similar configurations.

To evaluate these methods, the authors conducted experiments on a soft robot actu-
ated by cables.
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Figure 2.13: The implementation schema of the two controllers proposed in [Z. Zhang
et al., 2017]: (a) and (b) correspond to the implementation of the open-loop controller
and closed-loop controller, respectively.

2.5.2.5 FEM-based 3D deformable object elasticity parameters estimation
and open-loop shape control

Another approach based on FEM to generate open-loop forces on anthropomorphic fin-
gertips and achieve desired displacement on a soft object was proposed by [Ficuciello
et al., 2018]. The methodology is depicted in Figure 2.14. Instead of using objects with
known parameters, they employed a vision system and a force sensor to estimate the
Young’s modulus EEE and Poisson’s ratio ν. This estimation relied on the tracking tech-
nique introduced by [Petit, Lippiello, Fontanelli, et al., 2017], which minimizes the fitting
error between simulated and RGB-D sensor-captured deformations. The authors tack-
led the nonlinear optimization problem of parameter estimation using the gradient-free
Nelder-Mead method [Nelder & Mead, 1965].

Once the model parameters were estimated, the objective is to minimize the deviation
between end-effector positions and desired positions. This task was accomplished using
an online inverse simulation technique, employing convex optimization, for adjusting the
applied forces at the fingertips during contact and achieving the desired deformation.

Additionally, since the deformation was performed in an open-loop fashion, there was
an inherent error between the expected and actual deformations on the real object. The
authors identified three sources contributing to this error: convex optimization, model
parameter approximations, and hardware limitations such as sensor uncertainties. The
experimental results presented the deformation achieved by the underactuated anthropo-
morphic SCHUNK 5-Finger Hand (S5FH) on a cylindrical object.
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Figure 2.14: The pipeline for an open-loop deformation control using FEM, from [Ficu-
ciello et al., 2018].

2.5.2.6 ARAP-based planar object shape servoing

An alternative method for shape servoing, wherein a geometric mesh was utilized to
represent the object surface instead of a physical mesh was introduced in [Shetab-Bushehri
et al., 2022]. The authors stated that in numerous practical scenarios of deformable
object manipulation, the object tends to naturally maintain local rigidity. Based on this
observation, the authors introduced a shape-servoing approach based on the As-Rigid-As-
Possible (ARAP) modeling [Sorkine & Alexa, 2007]. The authors further justified their
motivation by highlighting that this type of modeling eliminates the need to estimate
mechanical parameters of the object. The authors proposed a control scheme that aimed
to guide points of a planar object to desired positions through a closed-loop system using
the complete object surface points as a feedback measurement. To obtain the object
points, the authors therefore tracked the object during the deformation.

The proposed control scheme integrates an estimation of the deformation Jacobian
matrix based on the ARAP model. The Jacobian was approximated by establishing a
connection between the robot end-effector frame and the ARAP mesh. In this approach,
the changes in the features correspond to the variations in the model surface points, while
the velocities correspond to the applied motions on the object surface by the robot end-
effectors. Then, to obtain an initial approximation of the Jacobian matrix, the undeformed
shape of the object was taken as a starting point, and a perturbation was simulated in
one degree of freedom (DOF). This process results in a new stable shape for the object
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after the perturbation. Subsequently, a standard forward finite differences method was
utilized to estimate the column of the Jacobian associated with the perturbed DOF. By
repeating this procedure for all DOFs, an initial approximation of the Jacobian matrix
was obtained.

Regarding the shape tracking pipeline, it was developed using the approach introduced
in [Aranda et al., 2020]. This pipeline utilizes monocular vision and is built upon the
principles of shape-from-template. It relies on the presence of visual texture on the object
surface for accurate matching and assumes that the object surface undergoes isometric
deformation.

The authors made the assumption that the object shape remains statically stable,
achieving quasi-static equilibrium, and responds smoothly to robot motions. They con-
ducted several shape servoing tasks using two Franka Emika robot arms and four different
objects made of various materials to validate the effectiveness of their proposed scheme.
An example of a shape servoing task accomplished in this work is presented in Figure 2.15.
To ensure that the desired shape could be achieved, each experiment started by manually
manipulating the two arms holding the object to record the desired shape. Afterward,
the deforming object was manually adjusted to its initial shape using the two robot arms
before starting the task.

2.5.2.7 Conclusion

In this section, we presented a review of various model-based approaches for manipulating
soft objects, along with a related work concerning the deformation of soft robots. The
control laws developed to accomplish these tasks depend on the object models employed
to approximate the physical behavior of the object. These approaches either assume
that the model parameters are known in advance or involve estimating them before the
manipulation process.

2.5.3 Conclusion

Tables 2.1 and 2.2 present a summary of different methods presented in this section and
used to deform soft objects.

Model-free approaches can be categorized into two distinct groups. In the first cat-
egory, known as numerically estimated Jacobian-based approaches, some authors argue
that there is no need to estimate the object model or its physical parameters. Neverthe-
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Figure 2.15: Illustration of a shape servoing task using the ARAP model, from [Shetab-
Bushehri et al., 2022]: (a) and (b) represent the camera view of the object before and
after the deformation task, respectively. (c) and (d) illustrate the object surface points
before and after the deformation task, respectively. The blue points correspond to the
actual object surface points, and the red ones correspond to their desired positions.
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less, other methods within this category attempted to estimate these parameters during
the deformation process. These numerically estimated Jacobian-based models primarily
consider the quasi-static equilibrium of the object, limiting their applicability to dynamic
objects. Furthermore, since these approaches are mainly based on the numerical estima-
tion of a deformation Jacobian from data obtained from sensors, they are particularly
sensitive to measurement noise. In the second category, machine learning techniques have
garnered attention, but they require large datasets for effective model training.

In contrast to model-free approaches, there are model-based methods that rely on
physics-based models. These approaches not only take into account the object geometric
shape, often described by a 3D mesh, but also consider its mechanical properties. These
models aim to replicate the actual behavior of the object when subjected to external
forces. However, it is worth noting that these approaches require precise knowledge of the
object model parameters. These parameters have to be known in advance, or accurately
identified before the manipulation task.

2.6 Positioning of this thesis in relation to the exist-
ing literature

In the preceding sections, we provided an overview of the state-of-the-art in deformable
object modeling, tracking, and deformation. Our purpose in presenting these topics was
to enquire the reader with recent developments in the literature and to provide a clearer
introduction to the objectives of this thesis. In this thesis, we aim to introduce novel
physics-based methods for deformable manipulation, utilizing a simple mass-spring model.

Unlike the previously mentioned approaches in Section 2.5, we introduce a novel vision-
based and physics-based control law for shaping deformable objects, aiming to employ a
simple model that has the advantage of a low computational cost to enable fast shape
servoing tasks. The motivation for combining vision-based and physics-based approaches
arises from advancements in computer graphics, where various physics-based models were
proposed to represent deformable objects, and from computer vision, which aids in track-
ing such objects, ultimately reducing the gap between the object simulated deformation
and its real one. In our approach, the vision component plays a crucial role, where the
object is tracked during deformation. If the object model deviates from the actual ob-
ject deformation, we adjust the object model by applying constraints to it. Regarding
the object model, it imitates the physical behavior of the real object, with its associated
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Table 2.1: Summary of deformable object manipulation approaches (Part I)
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Table 2.2: Summary of deformable object manipulation approaches (Part II)
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parameters obtained prior to the deformation process through a few simple steps.
In contrast to approaches that solely rely on models, particularly model-based meth-

ods, our approach utilizes a simple mass-spring model and does not require precise knowl-
edge of the exact parameters of the soft object. Compared to model-free approaches, we
analytically develop the formulation that provides the variation of the object deformation
in function of the motion of one or multiple robotic manipulators using this simple mass-
spring model. Moreover, our approach does not rely on the assumption of quasi-static
equilibrium that is generally considered in the existing methods of the state-of-the-art. As
a result, our developed control law will be analytically derived, taking into consideration
the dynamic nature of the object.

Additionally, our approach differs from recent model-free methods in how object fea-
ture points and shape are represented thanks to the use of a RGB-D camera. Regarding
feature points, instead of relying solely on their 2D projections in the sensor image (pixels),
we use their 3D positions. Concerning object shape representation, we avoid describing it
solely through the projection of its contour, which heavily depends on the camera pose rel-
ative to the object model, or by using specific 3D points from the object surface. Instead,
we represent 3D objects using their complete set of surface points, while for 2D objects,
we define the shape through their 2D contour points. Then, we represent the object shape
using a low-dimensional feature vector. Unlike the use of 2D Fourier descriptors or 2D
moments for 3D objects, as proposed in the state-of-the-art approaches, we employ 3D
Fourier descriptors and 3D moments for 3D objects and 2D Fourier descriptors for 2D
objects. To the best of our knowledge, defining the shape of an object by its complete
set of 3D surface points and considering a dynamic object without the assumption of
quasi-static equilibrium has not been explored by other authors. Furthermore, to the
best of our knowledge, the uses of 3D Fourier descriptors and 3D moments have not been
exploited before in the context of deformable manipulation.

Finally, Figure 2.16 illustrates a general overview of our proposed closed-loop visual
control system. It incorporates a simulator emulating the dynamics of the soft object
(green box), a tracking process to correct the modeled deformation (blue box), and a
closed-loop controller (pink box).
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Figure 2.16: Block diagram of the approach: visual tracking part in blue, physics-based
simulator in green, and closed-loop control scheme in red.





Chapter 3

METHODOLOGY

This chapter presents the derivation of our first approach for deformable object manip-
ulation, which consists of indirectly positioning multiple object points to their desired
positions by acting on distant manipulated points. Within this approach, the model
points of interest are referred to as feature points, and the object is approximated using
a mass-spring model (MSM). An illustration of the desired task is depicted in Figure 3.1.
Here, we develop a control law to be applied to the manipulated points to guide the
feature points towards their desired positions.

We begin in Section 3.1 by establishing the analytical relationship that relates the
displacements of the feature points to the successive motions of the manipulated points.
This relationship forms the foundation of our contribution, built upon the MSM while
accounting for the propagation delay introduced by it. We start in Section 3.1.1 by
formulating the displacements of points within a 1D mesh in response to a series of
motions applied to one or two manipulated points. Subsequently, in Section 3.1.2, we
expand our formulation scope to encompass a 3D mesh involving multiple manipulated
points. Following this, Section 3.1.3 introduces the designed control law.

Then, Section 3.2 presents simulation results that demonstrate the robustness of the
proposed closed-loop system. Since our approach is model-based, several factors can in-
fluence the efficiency of the control law. One critical consideration is the mesh resolution,
which refers to the number of points used to represent the model, which is a significant
consideration in any numerical methods. Another important aspect is the model param-
eters, as it may not always be possible to predict the exact parameters of the soft objects
that enable a perfect imitation of the real deformation. To account for these factors,
we will include these considerations in our analysis of the proposed approach robustness.
Furthermore, this section includes additional results obtained by applying the proposed
control law to the system, whether it is fully actuated or not. It also includes comparisons
between the proposed approach (PA) and other model-free methods [Navarro-Alarcon et
al., 2013; J. Zhu et al., 2018].
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Numerical simulations are used to validate the proposed approach for the indirect
positioning task, where multiple feature points are considered. In addition, the proposed
approach is applicable for the indirect positioning of either single or multiple feature
points in real experiments involving real soft objects and robotic manipulators, as outlined
in Chapter 4. Furthermore, the pipeline can be adjusted for comprehensive shape servoing,
involving the deformation of the entire object surface, as explored in Chapter 5.

Figure 3.1: An example of indirect positioning of 3 feature points using 3 manipulated
points.

3.1 Deformable object servoing

In this modeling section, we assume that the object model is known with its corresponding
parameters.

Moreover, the object is modeled using the mass-spring-model (MSM), wherein its
dynamic behavior is described by (2.11). In all following analytical derivations related to
the modeling and design of the control law, we neglect the external forces fefefe since they are
a priori unknown. This exclusion includes the gravity force, which, although known, is not
considered. This is because the object model is created when the object is in its initial rest
state, thereby compensating for both the ground force exerted by the supporting surface
and the effects of gravity. However, fefefe is involved in the real experiments, presented in
Section 4.2.2, and we will see that these external forces do not perturb the stability and
robustness of our system. Consequently, (2.11) is simplified to:

miẍxxi = fsfsfsi + fDfDfDi (3.1)
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3.1. Deformable object servoing

where fDfDfD represents the damping force with damping value Dv. Regarding fsfsfs, it corre-
sponds to the spring force acting on Pi, which depends on the stiffness Kij connecting Pi
to its neighbors, Pj, ∀j ∈ νννi ⊂ N , and expressed as:

fsfsfsi =
∑
j∈νννi

Kij(‖xxxi − xxxj‖ − l0ij)
(xxxj − xxxi)
‖xxxj − xxxi‖

=
∑
j∈νννi

αijKij(xxxj − xxxi) (3.2)

Subsequently, we can determine the model point positions at any time (t + dt) by uti-
lizing the semi-implicit Euler integration method, given that we have knowledge of their
positions at time (t), with dt representing the simulation time step. We opt for the semi-
implicit Euler integration method due to its simplicity and computational efficiency, as
detailed in [Bhasin & Liu, 2006]. Finally, the model update is presented as follows:

xxxi(t+dt) = xxxi(t) + (dt− dt2

mi

Dv)ẋ̇ẋxi(t) + dt2

mi

fsfsfsi(t) (3.3)

with
ẋ̇ẋxi(t) = (xxxi(t) − xxxi(t−dt))/dt (3.4)

3.1.1 Simple 1D MSM

An example of a 1D mesh with N nodes is represented in Figure 3.2. In a first part, we
consider that the first point, P1, is manipulated while the other ones obey the dynamics
provided in (3.1). In a second part, we will consider the case of two manipulated points.

Figure 3.2: An example of a 1D mesh with N nodes connected by springs, including one
manipulated point depicted in red.

3.1.1.1 One manipulated point

For illustrative purpose, we first derive the displacements of P2 due to successive displace-
ments applied on P1. This will necessitate to also determine the position of P3. We then
generalize the obtained results to determine the position and velocity of any point in the
mesh.
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Let us consider that P1 is manipulated such that its successive positions are given by:

x1(t1) = x1(t0) + ∆1(t1) with t1 = t0 + dt,

x1(t2) = x1(t1) + ∆1(t2) with t2 = t1 + dt,

x1(t3) = x1(t2) + ∆1(t3) with t3 = t2 + dt,

where x1(t0) is the position of P1 in its initial rest state and ∆1(t) are the successive
displacements applied on P1 at each time (t) (see the red circles in Figure 3.3).

Figure 3.3: An illustration of the propagation delay introduced by the MSM in a 1D mesh
when one manipulated point is considered.

From (3.3) and (3.2), the positions of P2 and P3 are expressed as follows:

x2(t+dt) = x2(t) + (dt− dt2

m2
Dv)ẋ2(t) + dt2

m2
fs21(t) + dt2

m2
fs23(t) (3.5)

x3(t+dt) = x3(t) + (dt− dt2

m3
Dv)ẋ3(t) + dt2

m3
fs32(t) + dt2

m3
fs34(t) (3.6)

We thus deduce, as illustrated in Figure 3.3, that:
For t = t1t = t1t = t1: P2 stays at rest with x2(t1) = x2(t0) and ẋ2(t1) = 0 since ẋ2(t0) = fs21(t0) =

fs23(t0) = 0. Similarly, P3 also stays at rest. As shown in Figure 3.3, the MSM induces a
propagation delay characterized by the fact that P2 starts moving at t2 = t1 + dt due to
the motion applied to P1 at t1, whereas P3 starts moving at time t3 = t1 + 2dt, etc.
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For t2 = t1 + dtt2 = t1 + dtt2 = t1 + dt: P3 is still at rest while P2 starts moving since fs21(t1) 6= 0. More
precisely, we have from (3.2)

fs21(t1) = −K12(l0 −∆1(t1) − l0) = K12∆1(t1)

from which we obtain:

x2(t2) = x2(t1) + γ
(0)
2 1 (t2)∆1(t1), (3.7)

with γ
(0)
2 1 (t2) = dt2

m2
K12

The term γ
(q)
i j (t) will always appear in the following to represent the propagation coefficient

denoting the ratio between the displacement of any node Pi at time t and the displace-
ment of any manipulated point Pj at time t1 + qdt, whatever the mesh and number of
manipulated points.

For t3 = t2 + dtt3 = t2 + dtt3 = t2 + dt: we obtain from (3.2) and (3.7):

fs21(t2) = −K12[l0 + γ
(0)
2 1 (t2)∆1(t1)−(∆1(t1)+∆1(t2))− l0]

= K12[(1− γ(0)
2 1 (t2))∆1(t1) + ∆1(t2)] (3.8)

fs23(t2) = K23(2l0 − (l0 + γ
(0)
2 1 (t2)∆1(t1))− l0)

= −K23γ
(0)
2 1 (t2)∆1(t1) (3.9)

Then, by using (3.5) and (3.7) in (3.4), we get:

x2(t3) = x2(t2) + (1− dt

m2
Dv) γ(0)

2 1 (t2) ∆1(t1) + dt2

m2
K12[(1− γ(0)

2 1 (t2))∆1(t1) + ∆1(t2)]

− dt2

m2
K23γ

(0)
2 1 (t2)∆1(t1) (3.10)

which can be rewritten as:

x2(t3) = x2(t1) + γ
(0)
2 1 (t3)∆1(t1) + γ

(1)
2 1 (t2)∆1(t2) (3.11)
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with

γ
(0)
2 1 (t3) = γ

(0)
2 1 (t2) + (1− dt

m2
Dv)γ(0)

2 1 (t2) + dt2

m2
K12(1− γ(0)

2 1 (t2))−
dt2

m2
K23γ

(0)
2 1 (t2) (3.12)

γ
(1)
2 1 (t2) = dt2

m2
K12 (3.13)

Similarly, since fs32(t2) = −fs23(t2), we obtain for P3:

x3(t3) = x3(t1) + dt2

m3
K23γ

(0)
2 1 (t2)∆1(t1)

= x3(t1) + γ
(0)
3 1 (t3)∆1(t1) (3.14)

with

γ
(0)
3 1 (t3) = dt2

m3
K23γ

(0)
2 1 (t2). (3.15)

For t4 = t3 + dtt4 = t3 + dtt4 = t3 + dt: we obtain by following the same reasoning as before:

x2(t4) = x2(t1) + γ
(0)
2 1(t4)∆1(t1) + γ

(1)
2 1(t3)∆1(t2) + γ

(2)
2 1(t2)∆1(t3) (3.16)

with

γ
(0)
2 1 (t4) = γ

(0)
2 1 (t3) + (1− dt

m2
Dv)(γ(0)

2 1 (t3) − γ
(0)
2 1 (t2)) + dt2

m2
K12(1− γ(0)

2 1 (t3))

− dt2

m2
K23(γ(0)

2 1 (t3)−γ
(0)
3 1 (t3)) (3.17)

γ
(1)
2 1 (t3) = γ

(1)
2 1 (t2) + (1− dt

m2
Dv)γ(1)

2 1 (t2) + dt2

m2
K12(1− γ(1)

2 1 (t2))−
dt2

m2
K23γ

(1)
2 1 (t2) (3.18)

γ
(2)
2 1 (t2) = dt2

m2
K12 (3.19)

Indeed, we now have using (3.11) and (3.14):

fs21(t3) = −K12[l0 + γ
(0)
2 1 (t3)∆1(t1) + γ

(1)
2 1 (t2)∆1(t2) − (∆1(t1) + ∆1(t2) + ∆1(t3))− l0]

= K12[∆1(t3) + (1− γ(0)
2 1 (t3))∆1(t1) + (1− γ(1)

2 1 (t2))∆1(t2)]

fs23(t3) = K23[2l0 + γ
(0)
3 1 (t3)∆1(t1) − (l0 + γ

(0)
2 1 (t3)∆1(t1) + γ

(1)
2 1 (t2)∆1(t2))− l0]

= −K23[(γ(0)
2 1 (t3) − γ

(0)
3 1 (t3))∆1(t1) + γ

(1)
2 1 (t2)∆1(t2)]
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which allows getting (3.16) using (3.3) and (3.11) in (3.4) as before.
For any time ttt written as t = t1 + kdtt = t1 + kdtt = t1 + kdt: we can determine the position of P2 in

function of the successive displacements of P1 by generalizing the above equations. We
obtain:

x2(t) = x2(t1) + γ
(0)
2 1 (t)∆1(t1) + γ

(1)
2 1 (t−dt)∆1(t1+dt) + ....+ γ

(k−1)
2 1 (t2)∆1(t−dt) (3.20)

where, as general form for γ(q)
2 1 (t):

γ
(q)
2 1 (t) = γ

(q)
2 1 (t−dt) + (1− dt

m2
Dv) δ(q)

2 1 (t−dt) + dt2

m2
K12(1− γ(q)

2 1 (t−dt))

− dt2

m2
K23(γ(q)

2 1 (t−dt) − γ
(q)
3 1 (t−dt)) (3.21)

by denoting
δ

(q)
i j (t) = γ

(q)
i j (t) − γ

(q)
i j (t−dt) (3.22)

with γ(q)
2 1 (t2) = dt2

m2
K12,∀q (which is coherent with (3.7), (3.12) and (3.19)) and γ(q)

2 1 (t1) = 0
for initializing the iterative form.

Then, the velocity of P2 can be deduced by evaluating (3.20) at time t and t− dt:

ẋ2(t) = (x2(t) − x2(t−dt))/dt

= δ
(0)
21 (t)ẋ1(t1) + δ

(1)
21 (t−dt)ẋ1(t2) + ....+ δ

(k−1)
21 (t2)ẋ1(t−dt)

which can be rewritten with the simple form:

ẋ2(t) =
k−1∑
q=0

δ
(q)
2 1 (t−qdt) ẋ1(t1+qdt) (3.23)

Using the same methodology outlined above, the velocity of any arbitrary point Pn
belonging to the 1D mesh presented in Figure 3.2 can be calculated in function of its
corresponding propagation coefficient and the motion applied on P1. We obtain by analogy
with (3.23):

ẋn(t) =
k−1rn∑
q=0

δ
(q)
n 1(t−qdt)ẋ1(t1+qdt) (3.24)

with (jri − 1) the number of intermediate points between the manipulated point Pj and
the model point Pi (for instance, 1r2 = 1 since P2 is directly attached to P1 while 1r3 = 2),
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and, as a general form of the propagation coefficient γ(q)
n 1 that is involved in δ(q)

n 1:

γ
(q)
n 1(t) = γ

(q)
n 1(t−dt) + (1− dt

mn

Dv) δ(q)
n 1(t−dt) + dt2

mn

Knan(γ(q)
na 1(t−dt) − γ

(q)
n 1(t−dt))

− dt2

mn

Knnb(γ
(q)
n 1(t−dt) − γ

(q)
nb 1(t−dt)) (3.25)

where Pna and Pnb are the previous and next neighboring points of Pn (see Figure 3.2)
and γ

(q)
n 1(tn) = dt2

mn
Knanγ

(q)
na 1(tn−1), with tn = t1 + 1rndt. For example, we have γ(q)

4 1 (t4) =
dt2

m2
dt2

m3
dt2

m4
K12K23K34,∀q.

Note that in case it is no more the point P1 that is manipulated but the other end-
point PN , ẋn(t), δ(q)

nN (t) and γ
(q)
nN (t) are obtained by just replacing in (3.24) and (3.25) the

terms ẋ1, δ(q)
n 1, γ

(q)
n 1 , γ

(q)
na 1, γ

(q)
nb 1 and 1rn by ẋN , δ(q)

nN , γ
(q)
nN , γ

(q)
nbN

, γ(q)
naN and Nrn.

The previous results are valid when only one manipulated point is considered in the
1D mesh. When multiple points are used to deform the object, the velocity of the model
points is affected by all the external motions applied. This case is discussed further in
the following part.

3.1.1.2 Two manipulated points

Figure 3.4: An example of a 1D mesh with 4 nodes connected by springs, including two
manipulated points depicted in red.

In the example depicted in Figure 3.4, P1 and P4 are the manipulated points whose
successive positions are given at time t = t1 + kdt by:

x1(t) = x1(t0) +
k∑
q=0

∆1(t1+qdt)

x4(t) = x4(t0) +
k∑
q=0

∆4(t1+qdt)

At t2 = t1 + dt, P2 moves only due to the displacement ∆1(t1) of P1 while P3 moves only
due to the displacement ∆4(t1) of P4 because of the propagation delay introduced by the
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MSM. From the results obtained in the previous section, we directly obtain:

x2(t2) = x2(t1) + γ
(0)
2 1 (t2)∆1(t1)

x3(t2) = x3(t1) + γ
(0)
3 4 (t2)∆4(t1)

where γ(0)
2 1 (t2) and γ

(0)
3 4 (t2) are obtained from the general form given in (3.25) (using N = 4

instead of n and the other permutations mentioned above for computing γ34).

At t3 = t2 + dt, the position of P2 changes due to the displacements ∆1(t1) and ∆1(t2)

of P1 but also due to the displacement ∆4(t1) of P4 that has modified the position of P3

at t2 (and vice versa for the position of P3). This can be seen from the force fs23(t2)

obtained using (3.2) that now contains a supplementary term compared to (3.9):

fs23(t2) =K23[2l0+γ(0)
3 4 (t2)∆4(t1)−(l0+γ(0)

2 1 (t2)∆1(t1))−l0]

=−K23(γ(0)
2 1 (t2)∆1(t1) − γ

(0)
3 4 (t2)∆4(t1))

Since the supplementary term is nothing but a sum proportional to ∆4(t1), by injecting
this force and the other ones in (3.5) and (3.6), we obtain a very similar form as before
for the position of P2 and P3. More precisely, we obtain:

x2(t3) =x2(t1)+γ
(0)
2 1 (t3)∆1(t1)+γ

(1)
2 1 (t2)∆1(t2)+γ

(0)
2 4 (t3)∆4(t1)

x3(t3) =x3(t1)+γ
(0)
3 4 (t3)∆4(t1)+γ

(1)
3 4 (t2)∆4(t2)+γ

(0)
3 1 (t3)∆1(t1)

By following exactly the same reasoning and computations as in the previous section, it is
quite easy to generalize to a 1D mesh whose two endpoints are manipulated. For instance,
when P1 and PN in Figure 3.2 are deforming the object simultaneously, we obtain the
velocity of any point Pn under the form (note the analogy with (3.24)):

ẋn(t) =
k−1rn∑
q=0

δ
(q)
n 1(t−qdt)ẋ1(t1+qdt) +

k−Nrn∑
q=0

δ
(q)
nN (t−qdt)ẋN (t1+qdt) (3.26)

What we have developed so far reveals that the model point velocities are connected
to the applied manipulated point motions through the proposed propagation coefficients.
This holds true whether a single or two manipulated points deform the object simultane-
ously. In the subsequent paragraph, we explore the general case of a three-dimensional
mesh with several manipulated points that deform the object simultaneously.
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3.1.2 General 3D MSM

We now consider a general 3D mesh with M manipulators deforming the soft object
simultaneously. Let us denote Pml , l ∈ [1, ...,M ] one of these manipulators. Its motion
applied at time t = kdt is given by ∆∆∆ml (t) = ẋ̇ẋxml (t) dt, and we consider t1 = 0 for simplicity.

Following the methodology outlined in the previous section, we first consider a single
manipulated point and determine the motion of mesh points in its neighborhood. We
then generalize this result to all points in the mesh. Finally, we extend this formulation
when all M manipulated points are active. As will be shown below, the main difficulty
with respect to the previous 1D case lies in the fact that the forces fsfsfsij are no more linear
with respect to xxxi and xxxj, which will be solved using first-order Taylor decomposition.

3.1.2.1 One manipulated point

For t = dtt = dtt = dt: For any point Pi in the neighborhood of Pml , we obtain its position using
(3.3) as follows:

xxxi(dt) = xxxi(0) + (dt− dt2

mi

Dv)ẋ̇ẋxi(0) + dt2

mi

∑
j∈νννi

fsfsfsij(0) (3.27)

where νννi contains two parts: the manipulated point Pml and the other mesh points Pj in
νννi (νννi − {ml}). By exploiting fsfsfsij in (3.27) we deduce:

∑
j∈νννi−{ml}

fsfsfsij(0) =
∑

j∈νννi−{ml}
fsfsfsij(xxxi(0),xxxj(0)) (3.28)

For all points that do not belong to the neighborhood of Pml , they remain at their initial
positions, and consequently, the spring forces corresponding to these points are zero. This
leads to:

∑
j∈νννi−{ml}

fsfsfsij(0) = 000 (3.29)

∑
j∈νννi

fsfsfsij(0) = fsfsfsiml(xxxi(0),xxxml (0) + ∆∆∆ml (0)) (3.30)

Since fsfsfsiml(xxxi(0),xxxml (0)) = 0, using a first-order approximation of fsfsfsiml in (3.30), we
obtain: ∑

j∈νννi
fsfsfsij(0) =

∂fsfsfsiml
∂xxxml

∆∆∆ml (0) (3.31)
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where, by denoting dddij = (xxxj − xxxi), we know from (3.2) that:

∂fsfsfsij
∂xxxj

=
∂fsfsfsij
∂dddij

∂dddij
∂xxxj

(
= −

∂fsfsfsij
∂xxxi

)
= KijI3x3 −Kijl0

‖dddij‖2I3x3 − dddijdddTij
‖dddij‖3 (3.32)

Therefore, using (3.31) in (3.27), we obtain:

xxxi(dt) = xxxi(0) + dt2

mi

∂fsfsfsiml(xxxi(0),xxxml (0))
∂xxxml

∆∆∆ml (0) = xxxi(0) + γγγ
(0)
iml (dt)∆∆∆ml (0) (3.33)

where
γγγ

(0)
iml (dt) = dt2

mi

∂fsfsfsiml(xxxi(0),xxxml (0))
∂xxxml

(3.34)

and γγγ(j)
iml (t) denotes the propagation coefficient that relates the motion of Pi relative to

∆∆∆ml (jdt) of Pml at any time t.

Furthermore, for the other points Pj ∈ νννi so that mlrj = 2, we have xxxj(dt) = xxxj(0) and
γγγ

(0)
j ml (dt) = 000.

For t = 2dtt = 2dtt = 2dt: we have for Pi in the neighborhood of Pml :

xxxi(2dt) = xxxi(dt) + (dt− dt2

mi

Dv)ẋ̇ẋxi(dt) + dt2

mi

∑
j∈νννi

fsfsfsij(dt) (3.35)

where, using (3.4) and (3.33):

ẋ̇ẋxi(dt) = (xxxi(dt) − xxxi(0))/dt = γγγ
(0)
iml (dt)∆∆∆ml (0)/dt (3.36)

Concerning νννi, it is now decomposed in three parts (see Figure 3.5):

Case 1: for j ∈ νννi − {ml} and mlrj = 2, we have:

fsfsfsij(dt) = fsfsfsij(xxxi(0) + γγγ
(0)
iml (dt)∆∆∆ml (0),xxxj(0)) (3.37)

= fsfsfsij(xxxi(0),xxxj(0)) +
∂fsfsfsij(xxxi(0),xxxj(0))

∂xxxi
γγγ

(0)
iml (dt)∆∆∆ml (0)

= −
∂fsfsfsij(xxxi(0),xxxj(0))

∂xxxj
γγγ

(0)
iml (dt)∆∆∆ml (0)
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Case 2: for j ∈ νννi − {ml} and mlrj = 1, we have:

fsfsfsij(dt) =fsfsfsij(xxxi(0)+γγγ
(0)
iml (dt)∆∆∆ml (0),xxxj(0)+γγγ

(0)
j ml (dt)∆∆∆ml (0)) (3.38)

=
∂fsfsfsij(xxxi(0),xxxj(0))

∂xxxj
(γγγ(0)

j ml (dt) − γγγ
(0)
iml (dt))∆∆∆ml (0)

Case 3: for j = ml, we have:

fsfsfsij(dt) = fsfsfsij(xxxi(0) + γγγ
(0)
iml (dt)∆∆∆ml (0),xxxj(0) + ∆∆∆ml (0) + ∆∆∆ml (dt)) (3.39)

= fsfsfsij(xxxi(0) + γγγ
(0)
iml (dt)∆∆∆ml (0),xxxj(0) + ∆∆∆ml (0)) +

∂fsfsfsij(xxxi(dt),xxxj(dt))
∂xxxj

∆∆∆ml (dt)

= fsfsfsij(xxxi(0),xxxj(0)) +
∂fsfsfsij(xxxi(dt),xxxj(0) + ∆∆∆ml (0))

∂xxxj
∆∆∆ml (dt)

+
∂fsfsfsij(xxxi(0),xxxj(0))

∂xxxj
(III3x3 − γγγ(0)

iml (dt))∆∆∆ml (0)

Figure 3.5: An example of a 2D mesh consisting of 7 nodes. By selecting Pml as P1 and
Pi as P3, we have νννi = {1, 2, 4, 5, 6, 7}, 1r2 = 1r3 = 1r4 = 1 and 1r5 = 1r6 = 1r7 = 2.

By using (3.36), (3.37), (3.38) and (3.39) in (3.35), we obtain:

xxxi(2dt) = xxxi(0) + γγγ
(0)
iml (2dt)∆∆∆ml (0) + γγγ

(1)
iml (dt)∆∆∆ml (dt) (3.40)

86



3.1. Deformable object servoing

where:

γγγ
(1)
iml (dt) = dt2

mi

∂fsfsfsij(xxxi(dt),xxxml (0) + ∆∆∆ml (0))
∂xxxml

(3.41)

γγγ
(0)
iml (2dt) = γγγ

(0)
iml (dt) + (1− dt

mi

Dv)γγγ(0)
iml (dt) + dt2

mi

∂fsfsfsiml(xxxi(0),xxxml (0))
∂xxxml

(III3x3 − γγγ(0)
iml (dt))

+ dt2

mi

∑
j∈νννi−ml

∂fsfsfsij(xxxi(0),xxxj(0))
∂xxxj

(γγγ(0)
j ml (dt) − γγγ

(0)
iml (dt)) (3.42)

since γγγ(0)
j ml (dt) = 000 if mlrj = 2.

Furthermore, for the other points Pj ∈ νννi so that mlrj = 2:

xxxj(2dt) = xxxj(dt) + (dt− dt2

mj

Dv)ẋxxj(dt) + dt2

mj

∑
o∈νννj

fsfsfsjo(dt) (3.43)

We now have to consider the different cases for fsfsfsjo(dt):

1. if mlro = 3, we have:
fsfsfsjo(dt) = fsfsfsjo(xxxj(0),xxxo(0)) = 000

2. if mlro = 2, we have:
fsfsfsjo(dt) = fsfsfsjo(xxxj(0),xxxo(0)) = 000

3. if mlro = 1, we have:

fsfsfsjo(dt) = fsfsfsjo(xxxj(0),xxxo(0) + γγγ(0)
oml (dt)∆∆∆ml (0)) =

∂fsfsfsjo(xxxj(0),xxxo(0))
∂xxxo

γγγ(0)
oml (dt)∆∆∆ml (0)

Therefore, by denoting ooo the set of points belonging to νννj so that mlro = 1, we obtain:

xxxj(2dt) = xxxj(0)+
dt2

mj

∑
o∈ooo

∂fsfsfsjo(xxxj(dt),xxxo(0))
∂xxxo

γγγ(0)
oml (dt)∆∆∆ml (0)

= xxxj(0) + γγγ
(0)
j ml (2dt)∆∆∆ml (0) (3.44)

Finally, for all other points Pk in the mesh so that mlrk > 2, we have of course
xxxk(2dt) = xxxk(0).

For any t = kdtt = kdtt = kdt: From (3.33), (3.35) and (3.44), and by analogy with the 1D case,
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we can show that for any model point Pn in the 3D mesh:

xxxn(t) = x̂̂x̂xn(t) + γγγ(k−mlrn)
nml (mlrndt)

∆∆∆ml (t−mlrndt) (3.45)

The intermediate equations that leads to the derivation of (3.45) are provided at the
end of this paragraph, where x̂̂x̂xn(t) denotes the position of Pn without considering the last
effective displacement ∆∆∆ml (t−mlrndt), which is given by

x̂̂x̂xn(t) = xxxn(0) +
k−(mlrn+1)∑

q=0
γγγ(q)
nml ((k−q)dt)∆∆∆ml (qdt) (3.46)

and the propagation coefficients are given by

γγγ(q)
nml (t) = γγγ(q)

nml (t−dt) + dt2

mn

∑
j∈νννn

f̃s̃fs̃fsnj(k,q) + (1− dt

mn

Dv) δδδ(q)
nml (t−dt) (3.47)

with

f̃s̃fs̃fsnj(k,q) =
∂fsfsfsnj(x̃̃x̃xn((mlrn+q−1)dt), x̃̃x̃xj((mlrn+q−1)dt))

∂xxxj
(γγγ(q)

j ml ((k−1−q)dt) − γγγ
(q)
nml ((k−1−q)dt))

(3.48)

δδδ(q)
nml (t−dt) = γγγ(q)

nml (t−dt) − γγγ
(q)
nml (t−2dt) (3.49)

and

1. x̃̃x̃xj = x̂̂x̂xj and x̃̃x̃xn = xxxn if mlrj < mlrn

2. x̃̃x̃xj = x̂̂x̂xj and x̃̃x̃xn = x̂̂x̂xn if mlrj = mlrn

3. x̃̃x̃xj = xxxj and x̃̃x̃xn = x̂̂x̂xn if mlrj > mlrn

4. γγγ(q)
mlml

= III3x3, ∀q and ∀t

We recall that the index q is related to the displacement applied on Pml at time qdt.
It has to be noted that if t ≤ mlrndt and t ≤ mlrjdt, f̃s̃fs̃fsnj(k,q) = 000 because fsfsfsnj(t) = 000.
Indeed, we remind that the effect of ∆∆∆ml (t) applied on Pml at time t will not take place
instantaneously on Pn, but at time mltn that depends on the position of Pn with respect
to Pml . For all t < mltn, we have γγγ(q)

nml (t) = 0. Finding mltn for a 3D mesh is easy since
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the mesh can be considered as a graph, with Pml as a root and its neighbors as the leaves.
Thus, mltn depends on the number of layers between the root and Pn. If this number
is mlrn − 1, then mltn = mlrndt, similarly as for the 1D mesh considered in the previous
section.

By comparing (3.47) to (3.25) and exploiting (3.48) and (3.32), we can notice that
the form of the propagation coefficient γij given in (3.25) for a 1D mesh can be obtained
from the form (3.47) obtained for a 3D mesh by neglecting the second term of ∂fsfsfsij

∂xxxj
. This

implies that the forces fsfsfsij are linear with respect to xxxj and xxxn, i.e.,
∂fsfsfsnj
∂xxxj

= KnjI3x3.

3.1.2.2 Demonstration of (3.45), (3.46) and (3.47)

In what follows, we demonstrate by induction the recurrence relations (3.45), (3.46)
and (3.47).

First, by instantiating (3.46) and (3.45) for t = dt and t = 2dt and for any point Pi
within the vicinity of Pml , which means mlri = 1, k = 1 for t = dt, and k = 2 for t = 2dt,
we have:

x̂̂x̂xi(dt) = xxxi(0)

xxxi(dt) = xxxi(0) + γγγ
(0)
iml (dt)∆∆∆ml (0) (3.50)

x̂̂x̂xi(2dt) = xxxi(0) + γγγ
(0)
iml (2dt)∆∆∆ml (0)

xxxi(2dt) = x̂̂x̂xi(2dt) + γγγ
(1)
iml (dt)∆∆∆ml (dt)

= xxxi(0) + γγγ
(0)
iml (2dt)∆∆∆ml (0) + γγγ

(1)
iml (dt)∆∆∆ml (dt) (3.51)

where (3.50) and (3.51) respectively correspond to (3.33) and (3.40). Then, by instanti-
ating (3.47), we obtain

γγγ
(0)
iml (dt) = dt2

mi

∑
j∈νννi

∂fsfsfsij(x̃̃x̃xi(0), x̃̃x̃xj(0))
∂xxxj

γγγ
(0)
j ml (0) (3.52)

γγγ
(1)
iml (dt) = dt2

mi

∑
j∈νννi

∂fsfsfsij(x̃̃x̃xi(dt), x̃̃x̃xj(dt))
∂xxxj

γγγ
(0)
j ml (0) (3.53)

γγγ
(0)
iml (2dt) = γγγ

(0)
iml (dt) + (1− dt

mi

Dv)γγγ(0)
iml (dt) (3.54)

+ dt2

mi

∑
j∈νννi

∂fsfsfsij(x̃̃x̃xi(0), x̃̃x̃xj(0))
∂xxxj

(γγγ(0)
j ml (dt)− γγγ

(0)
iml (dt))
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At time t = dt, the displacement exerted on Pml impacts only the points Pi in its
neighborhood, since all other points remain at rest. Consequently, the only point in
νννi that has to be considered in fsfsfsij for (3.52) and (3.53) is Pj = Pml . We thus have
γγγ(0)
mlml (0) = III3x3, x̃̃x̃xi(0) = xxxi(0), x̃̃x̃xml (0) = xxxml (0), x̃̃x̃xi(dt) = xxxi(dt) and x̃̃x̃xml (dt) = xxxml (0) + ∆∆∆ml (dt),

from which we deduce:

γγγ
(0)
iml (dt) = dt2

mi

∂fsfsfsiml(xxxi(0),xxxml (0))
∂xxxml

(3.55)

γγγ
(1)
iml (dt) = dt2

mi

∂fsfsfsiml(xxxi(dt),xxxml (0) + ∆∆∆ml (dt))
∂xxxml

(3.56)

which respectively correspond to (3.34) and (3.41).

At time t = 2dt, by decomposing νννi as ml and νννi − {ml}, we obtain from (3.54):

γγγ
(0)
iml (2dt) = γγγ

(0)
iml (dt) + (1− dt

mi

Dv)γγγ(0)
iml (dt) + dt2

mi

∂fsfsfsiml(xxxi(0),xxxml (0))
∂xxxml

(III3x3 − γγγ(0)
iml (dt))

+ dt2

mi

∑
j∈νννi−ml

∂fsfsfsij(xxxi(0),xxxj(0))
∂xxxj

(γγγ(0)
j ml (dt)− γγγ

(0)
iml (dt))

which corresponds to (3.42).

We have validated (3.45), (3.46) and (3.47) for the points in the vicinity of the ma-
nipulated point at t = dt and t = 2dt. Now, we consider the points Pvi that are not in
the neighborhood of Pml . The points such that mlrvi > 2 are still at rest for t = dt and
t = 2dt, so we have just to concentrate on points such that mlrvi = 2. Let us denote vvv as
the set of these points. By instantiating (3.46), (3.45) and (3.47) at t = dt and at t = 2dt
for any point Pvi belonging to vvv, we have:

x̂̂x̂xvi (dt) = xxxvi (dt) = xxxvi (0)

x̂̂x̂xvi (2dt) = xxxvi (0)

xxxvi (2dt) = x̂̂x̂xvi (2dt) + γγγ(0)
viml (2dt)∆∆∆ml (0) = xxxvi (0) + γγγ(0)

viml (2dt)∆∆∆ml (0) (3.57)

with
γγγ(0)
viml (2dt) = dt2

mvi

∑
j∈νννvi

f̃s̃fs̃fsvij(2,0)

The only points in νννvi that need to be considered are the points Pj such that mlrj = 1.
We denote the set of these points as ooo. For points that belong to νννv but do not belong
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to ooo, the force fsfsfs is indeed zero. Therefore, we obtain x̃̃x̃xo(dt) = x̂̂x̂xo(dt) = xxxo(0) for o ∈ ooo and
x̃̃x̃xvi (dt) = xxxvi (dt) for vi ∈ vvv, which implies that:

γγγ(0)
viml (2dt) = dt2

mvi

∑
o∈ooo

∂fsfsfsvio(xxxvi (dt),xxxo(0))
∂xxxo

γγγ(0)
oml (dt) (3.58)

By injecting (3.58) in (3.57), we directly obtain (3.44), as expected.

So far, we have validated (3.45), (3.46) and (3.47) for all the model points at t = dt

and t = 2dt.

Let us now assume that the position of any point Pn is given by (3.45) at time t = kdt,
the goal is to obtain the same form at time t+ dt. As usual, from (3.3), we have:

xxxn(t+dt) = xxxn(t) + (1− dt

mn

Dv)(xxxn(t) − xxxn(t−dt)) + dt2

mn

∑
j∈νννn

fsfsfsnj(xxxn(t),xxxj(t)) (3.59)

Using successive first-order approximations of fsfsfsnj, similarly as done in (3.37)-(3.39), we
have to distinguish three cases:

Case 1: mlrj = mlrn + 1 (Pj is further from Pml than Pi):

fsfsfsnj(xxxn(t),xxxj(t)) = fsfsfsnj(x̂̂x̂xn(t),xxxj(t)) +
∂fsfsfsnj(x̂̂x̂xn(t),xxxj(t))

∂xxxj
γγγ(k−mlrn)
nml (mlrndt)

∆∆∆ml (t−mlrndt)

=fsfsfsnj(x̂̂x̂xn(t),xxxj(t)) + f̃s̃fs̃fsnj(k+1,k−mlrn)∆∆∆ml ((k−mlrn)dt)

=
k−mlrn∑
q=0

f̃s̃fs̃fsnj(k+1,q)∆∆∆ml (qdt)

which is obtained from (3.48).

Case 2: mlrj = mlrn (Pj and Pi are at the same distance of Pml):

fsfsfsnj(xxxn(t),xxxj(t)) = fsfsfsnj(x̂̂x̂xn(t), x̂̂x̂xj(t))

+
∂fsfsfsnj(x̂̂x̂xn(t), x̂̂x̂xj(t))

∂xxxj
(γγγ(k−mlrn)

j ml (mlrndt)
− γγγ(k−mlrn)

nml (mlrndt)
)∆∆∆ml (t−mlrndt)

=
k−mlrn∑
q=0

f̃s̃fs̃fsnj(k+1,q)∆∆∆ml (qdt)

91



Chapter 3 – Methodology

Case 3: mlrj = mlrn − 1 (Pj is closer from Pml than Pi):

fsfsfsnj(xxxn(t),xxxj(t)) = fsfsfsnj(xxxn(t), x̂̂x̂xj(t)) +
∂fsfsfsnj(xxxn(t), x̂̂x̂xj(t))

∂xxxj
γγγ

(k−mlrn+1)
j ml (mlrjdt)

∆∆∆ml (t−mlrndt+dt)

=
k−mlrn∑
q=0

f̃s̃fs̃fsnj(k+1,q)∆∆∆ml (qdt) +
∂fsfsfsnj(xxxn(t), x̂̂x̂xj(t))

∂xxxj
γγγ

(k−mlrn+1)
j ml (mlrjdt)

∆∆∆ml (t−mlrndt+dt)

By using (3.45), (3.46), (3.47) and the three previous equations in (3.59), we obtain

xxxn(t+dt) = xxxn(0) +
k−(mlrn+1)∑

q=0
γγγ(q)
nml ((k−q)dt)∆∆∆ml (qdt) + γγγ(k−mlrn)

nml (mlrndt)
∆∆∆ml ((k−mlrn)dt) (3.60)

+ dt2

mn

∑
j∈νννn

δ[mlrj=mlrn−1]
∂fsfsfsnj(xxxn(t), x̂̂x̂xj(t))

∂xxxj
γγγ

(k+1−mlrn)
j ml (mlrjdt)

∆∆∆ml ((k+1−mlrn)dt)

+ (1− dt

mn

Dv)
k−mlrn∑
q=0

δδδ(q)
nml (t−qdt)∆∆∆ml (qdt) + dt2

mn

∑
j∈νννn

(k−mlrn)∑
q=0

f̃s̃fs̃fsnj(k+1,q)∆∆∆ml ((q)dt)

= xxxn(0) +
γγγ(0)

nml (kdt) + (1− dt

mn

Dv) δδδ(0)
nml (kdt) + dt2

mn

∑
j∈νννi

f̃s̃fs̃fsnj(k+1,0)

∆∆∆ml (0) + . . .

+
γγγ(k−mlrn)

nml (mlrndt)
+ (1− dt

mn

Dv) δδδ(k−mlrn)
nml (mlrndt)

+ dt2

mn

∑
j∈νννn

f̃s̃fs̃fsnj(k+1,k−mlrn)

∆∆∆ml ((k−mlrn)dt)

+ dt2

mn

∑
j∈νννn

[
δ[mlrj=mlrn−1]

∂fsfsfsnj(xxxn(t), x̂̂x̂xj(t))
∂xxxj

γγγ
(k+1−mlrn)
j ml (mlrjdt)

]
∆∆∆ml ((k+1−mlrn)dt)

where δ[c] = 1 if the condition c is true and δ[c] = 0 otherwise.

Recalling that t = kdt and rearranging the terms in (3.60), we obtain as expected:

xxxn(t+dt) = x̂̂x̂xn(t+dt) + γγγ(k+1−mlrn)
nml (mlrndt)

∆∆∆ml (t+dt−mlrndt)

with, by identifying the terms in (3.60), we get:

x̂̂x̂xn(t+dt) = xxxn(0) +
k+1−(mlrn+1)∑

q=0
γγγ(q)
nml ((k−q)dt)∆∆∆ml (qdt)

and

γγγ(q)
nml (t+dt) = γγγ(q)

nml (t) + dt2

mn

∑
j∈νννn

f̃s̃fs̃fsnj(k+1,q) + (1− dt

mn

Dv) δδδ(q)
nml (t) (3.61)
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Finally, by identifying γγγ(k+1−mlrn)
nml (mlrndt)

as the term associated to ∆∆∆ml ((k+1−mlrn)dt) in (3.60),
we see that

γγγ(k+1−mlrn)
nml (mlrndt)

= dt2

mn

∑
j∈νννn

[
δ[mlrj=mlrn−1]

∂fsfsfsnj(xxxn(t), x̂̂x̂xj(t))
∂xxxj

γγγ
(k+1−mlrn)
j ml (mlrjdt)

]
, (3.62)

which can be written under the form given by (3.61).
Indeed, setting q = k + 1 − mlrn and t = (mlrn − 1)dt in (3.61), and using (3.48), we

obtain from (3.61):

γγγ(k+1−mlrn)
nml (mlrndt)

= dt2

mn

∑
j∈νννn

[
∂fsfsfsnj(x̃̃x̃xn(kdt), x̃̃x̃xj(kdt))

∂xxxj
(γγγ((k+1−mlrn))

j ml ((mlrn−1)dt) − γγγ
((k+1−mlrn))
nml ((mlrn−1)dt))

]
(3.63)

Note that γγγ(k+1−mlrn)
nml ((mlrn−1)dt) = δδδ(k+1−mlrn)

nml ((mlrn−1)dt) = 0 since γγγ(k+1−mlrn)
nml (t) = 000, ∀t < mlrndt.

Moreover, we can notice that only γγγ((k+1−mlrn))
nml (mlrn−1)dt) corresponding to Pj with j ∈ νννn such

that mlrj = (mlrn − 1) are not equal to zero, which corresponds to Case 3 above. As
a result, we have x̃̃x̃xn(kdt) = xxxn(kdt), x̃̃x̃xj(kdt) = x̂̂x̂xj(kdt). Since γγγ((k+1−mlrn))

nml ((mlrn−1)dt) = 000, this
allows (3.63) to be presented in the form given in (3.62), which ends our demonstration.

3.1.2.3 Multiple manipulated points

What we have developed so far focused on a single manipulated point. As we showed
previously in the 1D scenario and especially in (3.26), if M manipulated points are used
to deform the object simultaneously, the motions of the model points can be determined
by summing up the effects of the manipulated points using the propagation coefficients.
Therefore, we can show by similarity with the 1D case that:

xxxn(t+dt) = xxxn(0) +
M∑
l=1

γγγ(k−mlrn)
nml (mlrndt)

∆∆∆ml (t−mlrndt) +
M∑
l=1

k−(mlrn+1)∑
q=0

γγγ(q)
nml ((k−q)dt)∆∆∆ml (qdt)

(3.64)

and
ẋ̇ẋxn(t+dt) =

M∑
l=1

k−mlrn∑
q=0

δδδ(q)
nml (t−qdt) ẋ̇ẋxml (qdt) (3.65)

where γγγ(q)
nml

and δδδ(q)
nml

are respectively given by (3.47) and (3.49).
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3.1.3 Control scheme

In this section, Q feature points are considered, and the goal is to bring them to some
desired positions by acting onM manipulated points through a kinematic controller whose
outputs are the velocities of these manipulated points. We denote [Pf1 , Pf2 , . . . , PfQ ] the
feature points and [Pm1 , Pm2 , . . . , PmM ] the manipulated points.

The measurements from a RGB-D camera are provided with a quite low frequency
(typically 33 Hz). On the other hand, the model is updated with a higher frequency than
the control law to better represent its dynamic behavior. Denoting ρ the ratio between
these two frequencies (in practice, we used dt = 1.5 ms so that ρ = 20), the control law
is updated every ρdt, which means that the velocity of the manipulated points remains
constant between hρdt and (h+1)ρdt, ∀h ∈ N. Thanks to (3.65), it is possible to determine
the link between the velocity of the features points at time (h+ 1)ρdt and the velocity of
the manipulated points at time hρdt, from which the control law will be easily designed.

We start again by considering a single manipulated point, Pml . From (3.65), we have
for any feature point Pf i:

ẋ̇ẋxfi ((h+1)ρdt) =
((h+1)ρ−mlrfi−1)∑

q=0
δδδ

(q)
fiml (t−qdt)ẋ̇ẋxml (qdt) (3.66)

Furthermore, we know that ẋ̇ẋxml (t) = ẋ̇ẋxml (hρdt), ∀t ∈ [hρdt; (h + 1)ρdt[, then (3.66) can be
rewritten as follows:

ẋ̇ẋxfi ((h+1)ρdt) =
((h+1)ρ−mlrfi−1)∑

q=hρ
δδδ

(q)
fiml (t−qdt)ẋ̇ẋxml (hρdt) +

(hρ−1)∑
q=0

δδδ
(q)
fiml (t−qdt)ẋ̇ẋxml (qdt)

which leads to the very simple form:

ẋ̇ẋxfi ((h+1)ρdt) = AAAfimlẋ̇ẋxml (hρdt) + bbbfiml

with:

AAAfiml =
((h+1)ρ−mlrfi−1)∑

q=hρ
δδδ

(q)
fiml (t−qdt) (3.67)

which combines the effects of the most recent velocity ẋ̇ẋxml (hρdt) applied on the manipulated
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point Pml , and

bbbfiml =
(hρ−1)∑
q=0

δδδ
(q)
fiml (t−qdt)ẋ̇ẋxml (qdt) (3.68)

which represents the effects of the velocities previously applied on Pml .

By now considering M manipulated points and Q feature points, we finally obtain:

ẋxxf = AAA ẋxxm + bbb, (3.69)

with ẋxxf = (ẋxxf1 , ẋxxf2 , ..., ẋxxfQ), ẋxxm = (ẋxxm1 , ẋxxm2 , ..., ẋxxmM ), and where the coefficients of
matrix AAA and vector bbb are given by:

AAA=


AAAf1m1 AAAf1m2 . . . AAAf1mM

AAAf2m1 AAAf2m2 . . . AAAf2mM
... ... . . . ...

AAAfQm1 AAAfQm2 . . . AAAfQmM

,BBB=



∑M
l=1 bbbf1ml∑M
l=1 bbbf2ml

...∑M
l=1 bbbfQml

.

Equation (3.69) presents explicitly the velocity of all feature points in function of
the motions of the manipulated points deforming the object. AAA can be considered as
the interaction matrix or the deformation Jacobian by similarity with the classical visual
servoing framework [Chaumette & Hutchinson, 2008; Lagneau et al., 2020a; Navarro-
Alarcon et al., 2013; J. Zhu et al., 2018], while bbb is a feed-forward term that does not
appear in classical shape servoing work. We will see the importance of this term in
Sections 3.2.5 and 4.2.2.2, which include simulation and experimental results.

Then, to indirectly position these feature points to their desired positions xxx∗f =
(xxx∗f1 , xxx

∗
f2 , ...,xxx

∗
fQ

) with an exponential decrease so that ẋf = −λ(xxxf − xxx∗f ) where λ > 0,
we deduce from (3.69) the closed-loop control law

ẋxxm = −λÂAA+ (xxxf − xxx∗f )− ÂAA
+
b̂bb (3.70)

where ÂAA is the approximation of AAA, and ÂAA+ denotes the Moore-Penrose pseudo-inverse of
ÂAA. Regarding b̂bb, it is the approximation of bbb. In (3.70), we used ÂAA+ and b̂bb instead ofAAA+ and
bbb because we consider that the modeling proposed in (3.69) is accurate but requires exact
knowledge of the model parameters. However, obtaining the exact parameter values can
be challenging, leading us to use model coarse parameters. Since AAA and bbb are dependent
on these model parameters, we opted for approximations, which explains our choice of ÂAA
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and b̂bb.

3.1.3.1 Stability analysis

In this paragraph, we explore the stability analysis and convergence of the closed-loop
control law proposed in (3.70) through the application of Lyapunov analysis.

In practice, in order to bring the feature points to their desired positions, it is well-
known that at least one manipulated point per feature point has to be involved [Wada
et al., 2001b], which implies M ≥ Q. However, the convergence of the system does not
solely depend on the aforementioned condition, but also depends on the rank of AAA, which
is influenced by the relative initial positions between the manipulated points and the
feature points.

Let define a Lyapunov function L = 1/2‖xxxf−xxx∗f‖2, and by considering that the desired
points are fixed and replacing (3.70) in (3.69), then we obtain:

L̇ = −λ(xxxf − xxx∗f )TAAAÂAA
+(xxxf − xxx∗f ) + (xxxf − xxx∗f )T (bbb−AAAÂAA+

b̂bb) (3.71)

By denoting the second term as εεε, where εεε = (bbb−AAAÂAA+
b̂bb) and assuming it remains bounded

during the deformation. Then, a sufficient condition to ensure the global asymptotic
stability of the system is given by:

AAAÂAA
+
> 0 (3.72)

If both matrices AAA and ÂAA+ are of full rank 3Q, and ÂAA+ is not too coarse, thus condition
(3.72) is ensured. Note that when AAAÂAA+ = III3Q, which needs ÂAA to be perfectly estimated,
the specified pure exponential decoupled decrease is expected if the MSM fits with the
true behavior of the object. Otherwise, perturbations in this decrease will occur.

In case the system is underactuated, i.e. M < Q, it is possible to demonstrate that the
system is locally asymptotically stable if the condition ÂAA

+
AAA > 0 is ensured, which occurs

in case AAA and ÂAA
+
are of full rank 3M and, once again, ÂAA

+
is not too coarse. This means

that the system will converge if the error between xxxf and xxx∗f is initially small [Chaumette
& Hutchinson, 2008].

Furthermore, when the system is stable, then the positioning error converges to a value
eee, with eee = εεε∗/λ. However, due to the system stability, it will converge to a quasi-static
state where eee → 000 because bbb → 000 and b̂̂b̂b → 000. This occurs since bbb and b̂̂b̂b encapsulate the
effects of previous velocities applied to the manipulated points, which are absorbed by
the MSM when it reaches a quasi-static state.
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Regarding the rank of AAA, it can be analyzed by examining its terms using (3.67).
Indeed, AAAfiml 6= 000 when ρ ≥ mlrfi + 1, while this condition is not ensured when a manip-
ulated point is located far away from a feature point (ρ < mlrfi + 1). Increasing ρ would
be a solution, but a compromise has to be found to maintain a real-time performance.
Furthermore, if all the manipulated points are located close to a particular feature point
Pfi and far away from the other feature points, then the row in AAA corresponding to Pfi
will be of full rank 3 while all other rows in AAA will only contain zero values, leading to
rank(AAA) = 3.

As a conclusion, when rank(AAA) < 3Q and the initial error xxxf −xxx∗f is large, the system
may reach a local minimum for which the error xxxf −xxx∗f 6= 0 at the end of the deformation
task. Looking at the rank of AAA is thus a precious indicator for the feasibility of indirectly
positioning feature points.

3.2 Simulation results

The main objective of the proposed controller (3.70) is to minimize the errors between
the current and desired positions of the feature points.

In this section, we show some simulation results using two types of objects, a 3D soft
parallelepipedal object with either 1542 or 7710 nodes, each of dimension 12.5x12.5x6.25 cm
(see Figure 3.6), and a 2D circular object of radius 10 cm with 256 nodes (see Figure 3.10).

The aim of these simulations is to demonstrate the validity and the robustness of the
proposed closed-loop system. Additionally, this section includes comparisons between the
proposed approach (PA) and two other model-free methods [Navarro-Alarcon et al., 2013;
J. Zhu et al., 2018].

To simulate the behavior of the objects, we use dt = 1.5 ms with a control scheme rate
of 33 Hz, which corresponds to a Realsense RGB-D camera frequency (ρ = 20). For all
results shown below, the same controller gain λ = 0.9 has been used. Simulation results
are accessible via this online video: [Indirect-positioning-video].

3.2.1 Object parameters

3.2.1.1 3D soft parallelepipedal object

Two models with the same geometry but with a different resolution are used to simulate
the same 3D object (see Figure 3.6). Regarding the parameters of these models, they are
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selected to ensure elasticity, as discussed in Section 4.1.2, while also guaranteeing stability.
For the low resolution (sparse) model represented using 1542 nodes and depicted in

Figure 3.6(a), the mass is considered to be the same for all points: ms
i = 0.35g. Its cor-

responding stiffness matrix KKKs
ij depends on three constant values, KKKs

ij = diag(ksx, ksy, ksz)
with ksx = ksy = ksz = 13N/m. Regarding the damping, we selected Ds

v = 2
√
ms
ik
s
x =

0.13Ns/m.
For the dense model (7710 nodes) represented in Figure 3.6(b), the number of points is

five times larger. The mass of the object is the same for both models, so the mass of each
point of the dense one is md

i = ms
i/5. For determining the stiffness KKKd

ij = diag(kdx, kdy , kdz)
of the dense model, external forces are first applied on both models. Indeed, for points that
have the same positions in these two models at their rest states, the same displacements
of these points are expected when they reach their new equilibrium states. Therefore, the
stiffness of the dense model is updated by minimizing the distance between these points
using a gradient descent algorithm. The values obtained are kdx = kdy = kdz = 8N/m.
Finally, for the damping, we selected Dd

v = 2
√
md
i k

d
x = 0.05Ns/m.

3.2.1.2 2D circular object

The 2D object is represented using 256 points, with the mass of each point being mi =
0.35g. Moreover, the stiffness of the springs connecting these nodes is chosen to be the
same as for the 3D object: KKKij = diag(kx, ky) with kx = ky = 13N/m, leading to
Dv = 0.13Ns/m.

The control law presented in Chapter 3.1.3 is designed for 3D meshes, but it can also
be applied to 1D and 2D meshes with minor modifications to account for the different
dimensions of the variables in (3.70). For a 3D mesh, AAA ∈ R3Qx3M and bbb ∈ R3Q, while for
a 2D mesh, AAA ∈ R2Qx2M and bbb ∈ R2Q.

3.2.2 Robustness analysis – 3D Object

This paragraph discusses four different configurations of the simulated 3D object and how
they affect the achievement of the deformation task using the PA.

3.2.2.1 Dense Model vs. Sparse Model

The first configuration consists in studying the influence of the mesh resolution on the
deformation results. This is accomplished by examining both dense and sparse models.
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(a) (b)

Figure 3.6: Representation of the same 3D object with different mesh resolution: (a) and
(b) represent respectively the sparse and the dense mesh.

The system is fully actuated, and 3 feature points are indirectly positioned, i.e.,M = Q =
3. Moreover, the position of the feature and manipulated points are chosen arbitrary, with
the same positions being selected for both models. Two different views of the dense object
in its initial rest state and at the end of the deformation task are shown in Figure 3.7.
The evolution of the error norm ‖xxxf − xxx∗f‖ when using the dense and sparse models is
illustrated in Figure 3.8.

As it can be noticed from the orange and blue plots, the error converged in both cases,
which demonstrates that the PA is robust to the model resolution. We can just note that
the convergence is a bit faster using a higher resolution.

3.2.2.2 Robustness of the controller against model parameters

This paragraph studies the influence of model uncertainties, which occur when dealing
with objects whose true physical properties are unknown. For that, the object is simulated
using the dense resolution, while the parameters used in the controller differ from those
used to simulate the object. More precisely, we consider the cases when the stiffness
is half or one and a half times its real value (green and dark blue plots respectively in
Figure 3.9), or the damping used in the controller is half or double of its true value (red
and pink plots respectively in Figure 3.9), or even a combination of wrong stiffness and
damping values (brown plot in Figure 3.9).

From Figure 3.9, the influence of parameter uncertainties can be outlined as follows:
when the stiffness is less than its real value, the controller considers that the object is
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(a) (b)

(c) (d)

Figure 3.7: Positioning 3 feature points with 3 manipulated points using a dense model:
(a) and (c) show the initial configuration for two different views, while (b) and (d) show
the final configuration for the same views. The red, green, purple and cyan points are
model points, manipulated points, feature points, and their desired positions respectively.
The dashed lines link the cyan points corresponding to the same desired points in the
initial and final configurations.
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Figure 3.8: Evolution of the positioning error of 3 feature points using 3 manipulated
points for two different mesh resolutions.

more elastic and therefore larger control velocities are generated, which makes the error
norm converges faster to zero with a small perturbation. This conclusion can be noticed
by comparing the orange, green, and dark blue plots. When the damping is less than its
real value, the controller considers that less friction is exerted on the object and therefore
smaller control velocities are generated, which makes the error norm converges slower to
zero (see orange, red, and purple plots). Moreover, by comparing the orange plot with
the other plots, we can notice a perturbed exponential decrease in the error norm when
coarse parameters were used in the control law, as elaborated in Section 3.1.3.1.

To conclude, the PA is robust to model uncertainties, as evidenced
by the convergence of the system across all the aforementioned test
cases, as long as the coarse stiffness and damping values used in
the controller are not set extremely wrong. It is worth noting that
the chosen range of uncertainties is appropriate. For example, if
the estimated parameters deviate too significantly from their true
values, such as being less than half or more than double the actual
values, the simulated model ceases to accurately approximate the
real object physical behavior.
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Figure 3.9: Evolution of the positioning error of 3 feature points using 3 manipulated
points for testing the PA against wrong model parameters.

3.2.3 Actuation study

This paragraph discusses the impact of the number of manipulated points in relation to
the number of feature points.

3.2.3.1 Under-actuated case

As already said in Section 3.1.3, when the system is under-actuated, i.e., M < Q, it may
reach a local minimum. In fact, there exist two possibilities.

The first case is a challenging case in which the desired positions of the feature points
are chosen arbitrarily. In this case, it may not be possible to reach the specified config-
uration using the available manipulated points, or due to the physical properties of the
object, and a local minimum may be reached.

The second case consists in teaching by showing the desired position of the feature
points during an offline teaching step. In this case, a succession of different motions are
applied on the chosen manipulated points and the positions of the feature points are saved
once the object reaches a new steady state. These saved positions are then considered as
the desired positions. Then the model is reset to its initial state and the control scheme
is applied to reach again the desired configuration. A similar strategy has already been
employed in [Shetab-Bushehri et al., 2022], where a manual deformation was performed
to select the desired positions of the feature points. The idea behind this teaching is to
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ensure that the desired configuration of feature points is achievable with the employed
manipulated points.

Under-actuated study - 2D object In this experiment, the deformation of a 2D ob-
ject is attempted using 5 manipulated points distributed around its periphery to indirectly
position 9 feature points (see Figure 3.10(a)). The arbitrary selection of the desired 2D
positions (cyan points) of the feature points (pink points) leads to the expected conver-
gence to a local minimum, because there are fewer manipulated points than feature points
(M = 9 while Q = 5). This can be shown in Figure 3.10(b) where the actual positions
of the feature points do not match their desired positions at the end of the deformation.
After updating the desired positions of the feature points to the final positions reached
in Figure 3.10(b), the deformation process is repeated once the object is returned to its
initial position (see Figure 3.11(a)). In that case, the control scheme is successful as shown
in Figure 3.11(b) despite rank(AAA) < 3Q.

(a) (b)

Figure 3.10: Positioning of 9 points of the planar object using 5 manipulated points:
the desired positions of the feature points are chosen arbitrary. The red, green, purple
and cyan points are model points, manipulated points, feature points, and their desired
positions respectively. The dashed lines connect the same desired points.

Under-actuated study - 3D object This experiment aims to deform the 3D object
using M = 2 and Q = 3. The obtained results depicted in Figure 3.12 confirm the
outcomes from the earlier 2D case study. The cyan plot indicates that selecting the
desired positions of the feature points arbitrarily results in the error norm converging to
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(a) (b)

Figure 3.11: Positioning of 9 points of the planar object using 5 manipulated points when
the desired positions of the feature points are reachable. (a)-(b) views, colored points and
dashed lines defined as in caption of Figure 3.10.

a nonzero value. However, for the teaching case (learned desired position) represented by
the black plot, the error converges to zero despite the under-actuated situation.

3.2.3.2 Over-actuated case

In this section, we discuss the cases when there are more manipulated points than feature
points, i.e M > Q.

Over-actuated study – 2D object In this part, we consider more manipulated points
than feature points. It allows us to highlight the correct management of the coupling in
the system, illustrated by γγγnml in (3.65), since each manipulated point influences the
position of several feature points.

For the first experiment (see Figure 3.13), 11 points manipulate the object simultane-
ously, and they are uniformly distributed along its periphery. Meanwhile, only 4 feature
points are selected on one side of the object. This selection not only shows that some
manipulated points act on the same feature point, but also highlights the influence of
the manipulated points that are close to the feature points versus those that are farther
away. The success of the deformation task is depicted in Figure 3.13(b), where the feature
points (pink points) have converged to their desired positions (cyan points).

For the second experiment (see Figure 3.14), the main objective is to test the amount
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Figure 3.12: Evolution of the positioning error of 3 feature points and two sets of manip-
ulated points, one with 2 and the other with 3 points.

of deformation in function of the number of manipulated points. In this experiment, we
either manipulate 5 or 9 points to position 5 feature points. As expected, the object
experiences more stretching with a lower number of manipulated points, as can be seen
by comparing Figures 3.14(b) and (c).

(a) (b)

Figure 3.13: Positioning of 4 points located on one side of the planar object using 11
manipulated points. (a)-(b) views, colored points and dashed lines defined as in caption
of Figure 3.10.
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Figure 3.14: Positioning of 5 feature points of the planar object : (a) shows the initial
configuration, while (b) and (c) show the final configuration of the deformation task when
using 5 and 9 manipulated points, respectively. The colored points and dashed lines are
defined as in the caption of Figure 3.10.

3.2.3.3 Over-actuated study - 3D object

In this experiment, we consider exactly the same configuration shown in Figure 3.7 apart
2 supplementary manipulated points have been added. For both cases, as shown on Fig-
ure 3.15, the error norm ‖xxxf − xxx∗f‖ converges to zero similarly with a nice exponential
decrease and with the same time-to-convergence. This result was expected since the same
proportional gain λ is used in the control law for both experiments. However, by com-
paring Figures 3.7 and 3.16, it is clear that when 5 manipulated points are employed, the
object exhibits less deformation, which corroborates the results presented in the previous
section.
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Figure 3.15: Evolution of the positioning error of 3 feature points using PA and two sets
of manipulated points, one with 3 and the other with 5 points.

To conclude, the system falls into a local minimum when the num-
ber of manipulated points is less than the number of feature points,
and arbitrary desired positions are chosen. However, simulation
results showed that by teaching the positions of the desired feature
points, which respect the geometry and physical properties of the
object, the feature points can be driven to their desired positions
even when M < Q. Moreover, using more manipulated points to
position the same feature points results in less deformation and a
lower risk of tearing the object.

3.2.4 Comparison with two state-of-the-art approaches

To evaluate the proposed approach, we compare its performance with two model-free
approaches [Navarro-Alarcon et al., 2013; J. Zhu et al., 2018] that are both based on
an iterative numerical estimation of the deformation Jacobian matrix equivalent to AAA
in (3.69) while neglecting the feed-forward term bbb.

In what follows, the system is considered fully actuated with M = Q = 3. Two
configurations are considered.
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(a) (b)

(c) (d)

Figure 3.16: Positioning 3 feature points with 5 manipulated points: (a)-(d) views, colored
points and dashed lines defined as in caption of Figure 3.7.
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3.2.4.1 First configuration

It consists in using manipulated points in the neighborhood of the feature points, as
presented in Figure 3.17. Then, three cases are tested to compare the performance of the
positioning task performed with the aforementioned model-free approaches and the PA.

Case 1 – Noise free The first case is an ideal case without measurements noise nor
external disturbances. In other meanings, the exact positions of the feature points are
fed to the controller. Figure 3.17 shows the configuration of the object in its rest state
and after deformation using the PA. As seen in Figure 3.17(b) and (d), the feature points
marked in pink are aligned with their desired positions marked in cyan at the end of
the deformation. The evolution of the error norm for each approach is illustrated in
Figure 3.18. The error norm converges to zero for all the three methods. However, we
can note a perfect exponential decrease using the PA that converges faster without any
perturbation (red plot).

Case 2 – Noisy data The second case differs from the first one by adding a white
noise on the positions of the feature points with a maximum magnitude of 0.4 mm on
each axis. It corresponds to the tenth of the distance between two neighboring points of
the object mesh when it is in its initial rest state. The aim is to simulate measurement
noises of the sensor in charge of providing the current positions of the feature points.
Figure 3.19 presents the evolution of the error norm for each method. We can notice
that the method proposed in [Navarro-Alarcon et al., 2013] (green plot) fails, while the
error norm for our PA (red plot) and the method proposed in [J. Zhu et al., 2018] (blue
plot) converge to a steady-state error of about 0.4 mm, which corresponds to the sensor
noise norm. Nevertheless, the PA has the advantage of exhibiting an optimal exponential
decrease of the error norm.

Case 3 – External perturbations The third case differs from the first by adding
for some duration external perturbations to 3 points on the object. This emulates a
potential situation in which the object comes into contact with its surroundings, limiting
the motion of certain parts of the object that were not anticipated beforehand. The
position of the chosen perturbation points is shown in Figure 3.20. Furthermore, these
points are periodically displaced with an amplitude of displacement indicated by the cyan
plot in Figure 3.21. We can notice in Figure 3.21 that the error norm converges to zero
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(a) (b)

(c) (d)

Figure 3.17: First configuration for comparing the PA and the model-free ap-
proaches [Navarro-Alarcon et al., 2013; J. Zhu et al., 2018]: (a)-(d) views and colored
points defined as in caption of Figure 3.7.
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Figure 3.18: Evolution of the error of the positioning task for the case shown in Fig-
ure 3.17(a, b) when using the PA and the model-free approaches [Navarro-Alarcon et al.,
2013; J. Zhu et al., 2018] in ideal conditions

.

Figure 3.19: Evolution of the error of the positioning task for the case shown in Fig-
ure 3.17(a, b) when using the PA and the two model-free approaches [Navarro-Alarcon
et al., 2013; J. Zhu et al., 2018] and when noise is added to the measurements of the
feature point positions.
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at t = 40 s using the PA and the method proposed in [J. Zhu et al., 2018] (red and blue
plots), that is, soon after the perturbation is no more considered (t > 30 s). However,
it converges around t = 80 s for the approach proposed in [Navarro-Alarcon et al., 2013]
(green plot). Additionally, during the motion of the perturbation points, that is for
t ≤ 30 s, the error exhibits less oscillations when using the PA compared to the other
approaches. This shows that the PA is less vulnerable to external disturbances.

(a) (b)

Figure 3.20: Same configuration as in Figure 3.17 showing in yellow the position of the
perturbation points.

3.2.4.2 Second configuration

It consists in using the same number of feature points as before, while their positions are
chosen a bit far from the manipulated points (see Figure 3.22). Figure 3.23 presents the
evolution of the error norm for each approach in the case where no measurement noise is
added. We can notice the convergence of the error norm using the PA and the method
proposed in [Navarro-Alarcon et al., 2013], while the method proposed in [J. Zhu et al.,
2018] fails.
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Figure 3.21: Evolution of the error of the positioning task for the case shown in Fig-
ure 3.17(a, b) when using the PA and the model-free approaches [Navarro-Alarcon et al.,
2013; J. Zhu et al., 2018] and when external perturbations are applied to the yellow points
shown in Figure 3.20. The amount of perturbation is illustrated using a cyan plot.

(a) (b)

Figure 3.22: Second configuration for comparing the PA and the model-free ap-
proaches [Navarro-Alarcon et al., 2013; J. Zhu et al., 2018], which involves choosing
manipulated points a bit far from the feature points: (a)-(b) show two distinct views of
the object and colored points defined as in caption of Figure 3.7.
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Figure 3.23: Evolution of the error of the positioning task when using the PA and the
model-free approaches [Navarro-Alarcon et al., 2013; J. Zhu et al., 2018] in the case where
the feature points are far from the manipulated points.

From this comparison study, we found that the PA improves dras-
tically the robustness to measurement noise and external perturba-
tions. Unlike the approach by [Navarro-Alarcon et al., 2013] which
struggled in the presence of measurement noise, both our PA and
the method proposed by [J. Zhu et al., 2018] demonstrated greater
robustness to sensor noise. Furthermore, our PA exhibited reduced
sensitivity to external disturbances on soft objects and quickly re-
gained stability after the disturbance ended.
Moreover, both the PA and the method proposed by [Navarro-
Alarcon et al., 2013] succeeded in performing the positioning task
even when the manipulated points were far from the feature points.
However, the method proposed by [J. Zhu et al., 2018] required the
manipulated points to be close to the feature points, limiting its
effectiveness in such scenarios.

3.2.5 Effect of the feed-forward term

In this paragraph, we analyze the effect of the feed-forward term bbb involved in the control
law (3.70) for the same example of the positioning task shown in Figure 3.17(a,c). We
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perform the indirect positioning of the feature points both with and without including
this feed-forward term. The evolution of the task error norm is shown in Figure 3.24.

Figure 3.24: Evolution of the error norm of the positioning task shown in Figure 3.17(a,c)
with and without the feed-forward term.

As can be seen, without including bbb, the error initially converges but then starts oscil-
lating. This is not the case when bbb is included, as the error converges to zero without any
issues. In conclusion, the feed-forward term plays a crucial role in the system convergence,
as its absence leads to system oscillation.

3.3 Conclusion

In this chapter, we presented a comprehensive pipeline detailing the proposed model-based
control approach for driving object feature points to desired locations through the control
of multiple manipulated points. This pipeline involves approximating spring forces using
a first-order Taylor series within a closed-loop system.

We introduced in Section 3.1 a novel analytic formulation of the visual servoing prob-
lem utilizing a mass-spring-model. The aim was to establish a relationship that connects
the velocities of feature points with the movements of the control points, which is one
of the main contributions of this work. We presented intermediary equations to derive
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this analytical formulation. We began by illustrating this process using a simplified 1D
mesh with a single control point influencing object deformation. This concept was then
expanded to encompass multiple control points. Furthermore, we extended the analytical
formulation to a general 3D mesh configuration, albeit with only a single control point.
Drawing upon insights from the 1D case, we generalized the formulation to encompass
multiple control points while adhering to a 3D mesh context.

Then, we provided in Section 3.1.3 simulation results aimed at validating the ro-
bustness of the proposed control law with respect to model uncertainties. Additionally,
expected behaviors are obtained when the system is fully actuated, under-actuated, and
over-actuated. For both the fully actuated and over-actuated cases, the positioning task
was achieved without any problem in the tested cases. For the under-actuated case, the
positioning error did not necessarily converge to zero when arbitrary desired positions
were chosen for the feature points. However, it converged to zero when the desired posi-
tion were teached during an offline procedure that consists in moving the robot to obtain
desired reachable feature point positions.

Thereafter, we compared in Section 3.2.4 the performance of our controller with respect
to two model-free approaches and obtained faster convergence, better stability, and less
sensitivity to sensor noise and external perturbations. It is important to note that our
control law includes an interaction matrix and a feed-forward term, while model-free
control laws solely rely on the interaction matrix. This feed-forward term accounts for
the dynamics of the model and that is why we did not consider the hypothesis of a quasi-
static object, which is the hypothesis held by model-free approaches. To further illustrate
the significance of this feed-forward term for system stability, we presented in Section 3.2.5
a simulation result, in which we compared a positioning task with and without this term.
Notably, when the feed-forward term was not included, the system exhibited oscillations,
whereas its inclusion ensured stable error convergence to zero.
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INDIRECT POSITIONING OF MULTIPLE

POINTS ON A SOFT OBJECT

In this chapter, we aim to demonstrate through real experiments the validity of the
proposed control law described in the previous chapter. The robotic task is defined as
indirectly positioning Q feature points on this object by manipulating M points on the
same object.

Since the proposed approach is model-based, we first need to create a model that
approximates the physical behavior of the real object. This procedure is detailed in
Section 4.1. We begin in Section 4.1.1 by providing a solution to create the object 3D
mesh that describes the geometrical part of the object. Then, the object physical behavior
is approximated using a simple MSM, and its parameters are estimated as described in
Section 4.1.2. However, the MSM provides an approximation of the real object behavior,
which in practice may lead to a drift between the real object and its model. To address
this issue, an online realignment of the model is performed by tracking the object surface
during the deformation using data provided by an RGB-D camera. The object tracking
and model correction will be discussed in Section 4.1.3.

Next, in Section 4.2, we present experimental results to demonstrate the effectiveness
of the proposed approach (PA). The approach combines vision-based and model-based
control. In the previous chapter, we presented different simulation results showing the
effectiveness of the PA whether the system is fully actuated or not. In this chapter, we
present experimental results and consider both cases, whether the system is fully actuated
or over-actuated.

Furthermore, the displacement of object feature points as a function of the applied mo-
tions on the manipulated points, as given in (3.69), is divided into two elements: AAA and bbb.
As already explained in the previous chapter, the former term is similar to the interaction
matrix in the classical visual servoing framework [Chaumette & Hutchinson, 2008] or the
deformation Jacobian in model-free approaches [Lagneau et al., 2020a; Navarro-Alarcon
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et al., 2013; J. Zhu et al., 2018]. The latter term is the feed-forward term, which does
not exist in the classical visual servoing problems. Therefore, to study its effect in the
developed control law (3.70), we will conduct multiple tests both with and without the
feed-forward term to further evaluate the effectiveness of this term.

4.1 Deformable object modeling

4.1.1 Model 3D mesh generation

In this paragraph, we present the step-by-step process for constructing the 3D mesh of an
unknown object placed on a planar support (typically a table). To achieve this, we utilize
one RGB-D camera and the open-source Point Cloud Library (PCL) [Rusu & Cousins,
2011]. If multiple cameras are used, the same processing can be applied, but extrinsic
calibration between the cameras is required. The PCL is an open-source library that
allows us to work with point clouds and perceive the world in a 3D manner. The RGB-D
camera is a 3D sensor that captures color and depth images simultaneously at a high
frame rate, typically around 30 Hz, resulting in 3D point clouds. In our work, we use
the Realsense D435 camera, which acquires high-resolution large-scale scans consisting of
several million 3D points. However, these cameras may introduce various measurement
noises, necessitating initial filtering to obtain accurate 3D models. We use several filtering
methods proposed by the Realsense library core to improve the data, specifically the
decimation filter, fast bilateral filter, temporal filter, and holes filling filter. Once the
point cloud is filtered, the data collected by the camera includes not only the deformable
object of interest but also its surrounding environment. To focus solely on the deformable
object, we need to segment the filtered point cloud.

Since the object is positioned on a flat surface, a hole is created in the plane corre-
sponding to the shadow cast by the object on this surface. We first define the planar
surface in the scene using PCL. Then, we compute the convex hull of the plane hole
thanks to the method described in [Barber et al., 1996]. In our context, the convex hull
represents the smallest convex shape that envelops the boundary of the area where the
shadow is cast on the flat surface. Next, we project the points of the point cloud onto the
plane, and finally, we determine which projected points lie inside the area enclosed by the
convex hull. These points belong to the object sitting on the flat surface.

Given now the set of point cloud corresponding to the segmented object, our objective
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is to estimate the object surface by connecting points with each other, ending up with
a continuous polygon mesh, such as triangles in our case. The surface triangulation is
performed locally by projecting the local neighborhood of a point along the point normal
and connecting unconnected points. To compute normals directly from the point cloud,
we employ an approximation algorithm called Normalestimation from [Rusu & Cousins,
2011]. This algorithm estimates a point normal from its surrounding points, and we can
adjust the level of detail by setting the value of k in the k-neighborhood concept introduced
by PCL. However, selecting the appropriate k value is crucial; a too small value might fail
to represent a local normal, while a too large value could lead to inefficient computations.
In practice, we have used k = 75 for all objects considered.

Once the normal estimation is completed, we combine the estimated normals with
the object surface coordinates for each point. With these estimated features, we can
proceed with the surface reconstruction using the Poisson surface reconstruction method
from [Kazhdan et al., 2006]. It is essential to note that our work does not pursue highly
accurate reconstruction but rather, to guide a servoing task effectively. The program is
written in C++ Builder and utilizes the OpenGL library for 3D display. An example of
the constructed mesh is illustrated in Figure 4.1. As can be seen from the reconstructed
mesh, the method used is robust against illumination variations.

4.1.2 Model physics parameters estimation

As discussed in Section 2.4, a common approach to estimate the rheological parameters
of soft objects involves the following methodology: external forces are applied to the soft
object using a robotic manipulator equipped with a force sensor. Then, the same forces
are replicated on the object model. Consequently, the model parameters are updated until
the deformation observed on the surface of the modeled object aligns with the surface of
the real object captured using the camera. We will use the same methodology while
employing the MSM.

We recall that the main objective of this work is not to create a perfect model but
a simple model sufficient for achieving the shape servoing task. For that purpose, we
consider a simple homogeneous MSM.

Regarding the parameters of the MSM used, some of them are imposed by the recon-
structed geometrical object mesh: the initial point coordinates, xxxi(t=0), and the length of
springs connecting any two neighboring points, l0ij, ∀i ∈ N , j ∈ νννi, at rest state. Since
the object is supposed to be homogeneous, as stated before, the mass of the object is
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(a) (b)

Figure 4.1: An example of mesh reconstruction: (a) corresponds to an ellipsoid ball image
obtained from the Realsense D435 camera. (b) represents two views of the constructed
mesh of the segmented object.

equally distributed among all points, i.e., mi = m1,∀i ∈ N .

4.1.2.1 Stiffness matrix estimation

Concerning the spring stiffnessKKKij, it depends on three constant valuesKKKij = diag(kx, ky, kz),
while kmax represents the maximum value inKKKij. This is evident from the work proposed
in [Lloyd et al., 2007], which derived an analytical expression for the stiffness of every
tetrahedron constituting a mesh and representing it using a MSM. The stiffness is pro-
portional to the volume of the tetrahedron and the Young’s modulus of the material
properties, which is considered constant according to our hypothesis. Furthermore, dur-
ing the object deformation, the volume of the tetrahedra constituting the mesh changes,
resulting in changes in the stiffnesses of the springs. Based on [Duan et al., 2014], the
biggest stiffness corresponding to the largest volume that could appear is chosen to be the
same for all springs to prevent collisions between mesh points. At the end, the stiffness
matrix is considered constant for the homogeneous object.

We estimate the stiffness matrix by updating it through a gradient descent-based
error minimization approach. Our proposed method allows for estimating the stiffness
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matrix using either a robotic manipulator equipped with a force sensor or relying solely
on vision. In the force-based method, an arbitrary sequence of forces is applied to the
real object, and the force sensed by the force sensor is then applied to the object model
at the same points where these forces were exerted. Note that these points are not
included in the participation of the stiffness matrix update. In the vision-based method,
we apply an arbitrary deformation on the real object. Then, some points belonging to the
model surface are utilized to induce deformations in the object model. The proportion
of these points, in relation to the complete set of surface points, will be analyzed later.
Subsequently, these points are moved to be aligned with their corresponding points from
the deformation observed on the real object. As for the force-based method, these model
points, once aligned, do not participate in updating the stiffness matrix, leaving the
remaining points responsible for this update.

Let us denote the set of model surface points as follows: xxxo = [xxxo1
T , ...,xxxow

T ]T , ∀ 1 ≤
i ≤ w, oi ∈ N where w is the number of the mesh surface points and oi is the indices
of their corresponding points in N . The segmented surface object using the RGB-D
camera is denoted by pppo. For every point xxxoi ∈ xxxo,∀ 1 ≤ i ≤ w, oi ∈ N , we denote by
p̂ppoi ∈ pppo its correspondent point on the point cloud of the real object. In order to get this
correspondence, we apply the same matching technique as in [Petit, Lippiello, Fontanelli,
et al., 2017]. Two sets of nearest neighbor correspondences from xxxo to pppo and from pppo to xxxo
are determined. Finally, the correspondence p̂ppoi is obtained as a trade-off between these
last two correspondences. The discrepancy between the positions of the model points and
their actual deformation from the segmented object is employed to update the stiffness
matrix. We start by calculating E , the average distance between the two point clouds, xxxo
and pppo:

E = 1
2w

w∑
i=1
‖xxxoi − p̂pp

oi‖2, (4.1)

In practice, the stiffness matrix is well estimated when the error E is minimized to
zero. As a result, the stiffness matrix is adjusted to minimize this error by computing
the gradient of the error. We analytically determine this gradient ∇E = ∂E

∂Kij
of the error

function (4.1):

∇∇∇E = 1
w

w∑
i=1

dt2
mi

∑
j∈νννoi

(αoij(xxxj − xxxoi)) (p̂ppoi − xxxoi)
 (4.2)
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with
xxxoi = xxxoi + dt2

moi

∑
j∈νννoi

αoijKKKij(xxxj − xxxoi) + (dt− dt2

moi

Dv)ẋxxoi

Finally, the iterative update of the stiffness matrix is obtained as follows:

KKKij = KKKij − 0.5III3×3∇∇∇E (4.3)

with 0.5 in (4.3) denotes the learning rate, and III3×3 the 3 × 3 identity matrix. We can
notice that this calculation does not require a high computation cost, and when xxxo and
pppo are aligned, the last term in (4.2) will be zero, resulting in a gradient of zero, which
ends the update of the stiffness matrix.

Let us note that the simulation operates at a significantly higher frequency than the
camera frame rate. As a result,∇∇∇E in (4.2) can be calculated multiple times before a new
deformation is applied to the object. Consequently, KKKij is updated several times for each
applied deformation with (4.3). For instance, when employing a typical mesh with around
5k points, KKKij undergoes updates between 5 to 10 times for each applied deformation.

Vision-based stiffness estimation In this paragraph, we want to validate the stiffness
estimation of a real soft object subjected to deformations from a robotic manipulator,
using the approach proposed above. Moreover, the employed robot is not equipped with
force sensor, therefore two distinct categories of points emerge in the stiffness matrix
estimation. The first category involves some model surface points that are constrained to
be aligned with their corresponding positions on the segmented object surface. The second
category involves model points that are free to move according to the MSM simulation,
which are used to update the stiffness matrix. This involves comparing their positions
obtained using the MSM kinematic model (3.3) with its actual stiffness matrix, and their
corresponding points on the segmented object surface.

The selection of points within the first category is not arbitrary; it has to be carefully
chosen to accurately reflect the deformation characteristics of the object. For example,
if deformation primarily occurs on one side of the object, exclusively selecting points be-
longing to the first category from that side could impede the stiffness matrix update.
This is due to the other side representing the static portion of the object, resulting in
E = 000 in (4.1). Therefore, it is necessary to strategically select points that encompass a
balanced representation of both deforming and non-deforming regions. This meticulous
selection process ensures that model refinement aligns faithfully with the real physical be-
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havior of the object, consequently fostering precise deformations and accurate mechanical
responses.

In our case, the points in both categories are uniformly spread across the object surface.
Furthermore, we explore four distinct distributions of these points denoted as y2, y3, y5,
and y10. In the context of the first distribution, y2, for any two points used in the first
category, there exists one point that belongs to the second category. Employing a similar
approach, we investigate the remaining distributions. The primary objective of these
diverse distributions is to assess their impact on the stiffness update process.

In the subsequent results, we present only Kx, the first component of the stiffness
matrix, since an identical process is replicated for the remaining elements. We initiate
the procedure by using two arbitrary stiffness values: Kx = 30 N.m−1 (see Figure 4.2)
and Kx = 1 N.m−1 (see Figure 4.3). The purpose of testing these values is to assess
whether the system might become trapped in a local minimum when the initial value is
significantly far from the optimal value. Additionally, we aim to determine the number of
steps the system takes to converge to a range within the vicinity of the optimal values. It
is important to acknowledge that there is not a singular optimal value because the object
undergoes a series of deformations. With each deformation, a distinct stiffness value is
obtained. For a small deformation, the stiffness required to replicate the physical behavior
eventually differs from the stiffness needed to simulate large deformations. Consequently,
our objective is to identify a value that proves effective for both minor and substantial
deformations.

Subsequently, all deformations are applied to the object, triggering the launch of the
stiffness estimation process. The progression of Kx values at each step is illustrated in
Figure 4.2 and Figure 4.3. Each step corresponds to a deformation, gradually incrementing
until the final step (320), which corresponds to the most significant deformation. Upon
completion, indicated by the vertical dashed line in the mentioned figures, the object is
returned to its initial state, and the same deformations are applied once more. However,
this time, the last estimated stiffness value is adopted as the initial stiffness for the model.
Ultimately, the selected stiffness value is determined based on the results obtained in the
second configuration (steps > 320).

We notice from Figure 4.2 that in just a few iterations, the stiffness value decreases
rapidly, covering a range of values between 1.5 and 4.0 across the different tested distri-
butions. This result is crucial, particularly when starting with an arbitrary initial value,
the process quickly reaches a point of agreement. This is important when dealing with
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unknown objects because setting an initial guess of the stiffness value would be difficult.
In addition, both Figure 4.2 and Figure 4.3 highlight that the range of estimated

values for Kx remains relatively narrow across different deformations (steps) for y2 and
steps > 320. This is because the object behavior is heavily influenced by visual constraints,
rather than faithfully representing its physical response. On the other hand, with other
distributions, fluctuations in stiffness are observed depending on the applied deformations.
Notably, the choice of distributions does not exert a significant influence on stiffness
estimation, given that a sufficient number of freely movable points are updated through
the MSM. However, it is important to note that this was not the case for the distribution
y2. Leveraging these results, the highest stiffness value attained is selected, yielding
Kx = 3.0 N.m−1.

Figure 4.2: Evolution of stiffness updates as a function of applied deformations at each
step for each distribution (y2, y3, y5, and y10), starting from an arbitrary initial value of
Kx = 30 N.m−1.

4.1.2.2 Damping estimation

Regarding the damping value Dv, it is calculated as presented in [Bhasin & Liu, 2006]
in order to guarantee the numerical stability of the system: For that, we have to ensure
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Figure 4.3: Evolution of stiffness updates as a function of applied deformations at each
step for each distribution (y2, y3, y5, and y10), starting from an arbitrary initial value of
Kx = 1 N.m−1.

125



Chapter 4 – Indirect Positioning of Multiple Points on a Soft Object

2
√
m1kmax ≤ Dv ≤

‖ẋxxi
m1
dt

+fsfsfsi+fDfDfDi‖
‖ẋxxi‖ for ‖ẋxxi‖ 6= 0. When ‖ẋxxi‖ = 0, Dv = 0 since the

damping has no effect on a static point. In this work, we choose:

Dv = 2
√
m1kmax (4.4)

4.1.3 Model correction by tracking

The object model is updated using (3.3), taking into account the spring forces fsfsfs given in
(3.2), which are influenced by the model parameters. However, the MSM is an approxima-
tion of the real behavior of the object. Consequently, the gap between the object model
deformation and its real one will be aggregated during the object manipulation, which
could lead to an unrealistic object representation. To address this issue and prevent the
model from drifting from reality, a continuous tracking of the object during deformation is
employed using the RGB-D camera. Whenever a deviation between the real object and its
model is detected, the model is adjusted each time the camera captures a new image. To
make this adjustment, we propose a modified versions of (3.1) and (3.3) already presented
in 2.11:

miẍxxi = fsfsfsi + fDfDfDi + fcfcfci (4.5)

xxxi(t+dt) = xxxi(t) + (dt− dt2

mi

Dv)ẋ̇ẋxi(t) + dt2

mi

fsfsfsi(t) + dt2

mi

fcfcfci(t) (4.6)

where fcfcfci is a 3D force vector representing additional external constraints, which is applied
on point Pi of the mesh each time a drift between the model and the real object is detected
at that point.

To determine the constraint forces fcfcfc, the object is first segmented in each camera
frame. Hence, by tracking xxxo and pppo, the drift can be detected. It appears when these two
point clouds are no more superimposed. To compensate the drift, the model is adjusted
by rigidly aligning xxxo on pppo, using an iterative closest point (ICP) procedure. As a result,
pppo correspond to some points of xxxo and they serve as the input displacements to xxxo.
In [Petit, Lippiello, Fontanelli, et al., 2017], Petit et al. considered these displacements
as external forces exerted by pppo on xxxo and then integrated them to the mechanical model
using co-rotational FEM. Similarly, using the same procedure but employing the MSM,
we apply the external constraint forces fcfcfc as follows:

fcfcfcoi = KKKij(p̂ppoi − xxxoi) (4.7)
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For the remaining mesh points not belonging to the surface, no external constraint is
applied to them, i.e., fcfcfc = 0. However, the effect of the force applied on the outer points
of the model is propagated to the inner points with (3.3). As a result, the correction
phase leads the volumetric model to approach the real object deformation behavior.

Since this correction is performed at a frequency of 30 Hz (camera frame rate), while
the model is updated with a higher frequency (typically around 600 Hz), the external
constraints are considered constant between two successive images.

4.1.3.1 Soft object tracking

In this paragraph, we present the tracking results achieved through the use of 4 RGB-D
cameras, a soft object, and a robotic manipulator deforming the object (see Figure 4.4).
Initially, the RGB-D cameras detect the object and construct its geometrical mesh, using
the method elaborated in Section 4.1.1. Subsequently, the model parameters are estimated
using the methodology outlined in Section 4.1.2. Once the object model is approximated
using the MSM, the tracking procedure is initiated.

The objective of this experiment is to track large deformations using exclusively RGB-
D data and the MSM. To facilitate deformation, a rigid ball acting as a contact tool is
attached to the manipulator end-effector. However, the presence of this ball creates
significant occlusion, making it impossible to track a significant part of the object surface.
To address this occlusion issue, a model of the rigid ball is created, and its points are
incorporated into the segmented object surface points for each camera frame. This step is
straightforward, as the ball points follow the rigid movements of the robot end-effector. It
is important to clarify that the displacements applied to the end-effectors do not directly
impact the tracking process. Instead, these displacements are just employed to update
the positions of the ball points. It is worth noting that if minor occlusion arises from
the end-effector, this step is no more necessary. This holds true for the experimental
results that will be presented in Section 4.2, where small sticks are attached to the robot
end-effectors.

Subsequently, using correspondences between the adjusted segmented point cloud de-
rived from the camera and the model surface points, constraint forces are computed
using (4.7), and the model is iteratively refined using (4.6). To demonstrate the efficiency
of the tracking procedure, captured images of the deformed object from the viewpoint of
one camera are showcased in the first and third rows of Figure 4.4. Beneath each image,
the corresponding resulted deformed mesh is depicted. The evolution of the mesh dur-
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ing the deformation is shown in the second and fourth rows of Figure 4.4. Furthermore,
for enhanced visualization of the alignment between the deformed mesh and the actual
object, the mesh is also projected into the previously mentioned images. The black con-
nected points on the soft object delineate the projected mesh. As evident from Figure 4.4,
the deformed mesh accurately overlays the actual deformed object throughout the entire
deformation sequence. This success underlies the effectiveness of the tracking procedure,
which enables the simple MSM to faithfully reproduce the real-world deformations of the
object.

Despite the simplicity of the selected model parameters, which al-
lows high-speed real-time capacities, we will see that it is possible to
consider large deformations on real objects thanks to the proposed
closed-loop strategy, both in terms of control and object-model reg-
istration.

4.2 Experiments

In this section, we demonstrate the validity of the PA in real experiments involving two
robotic manipulators and a RGB-D camera. We present the results of various tasks
involving the indirect positioning of points on different soft objects, as well as a comparison
between the PA and a model-free approach [Wada et al., 2001a].

4.2.1 Experimental setup

Our experimental setup is shown in Figure 4.5. It consists of two 6-dof robotic arms from
ADEPT, a Viper 850 and a Viper 650. Each robot is equipped with a rigid stick that
serves as a tool. The stick attached to the Viper 850 is dedicated solely to the deformation
process throughout the experiments. On the other hand, the stick attached to the Viper
650 serves a dual purpose depending on the specified task. It prevents the object from
rigidly sliding on the table when the Viper 850 is the sole robot deforming the object, and
contributes in the deformation process when both robots are involved. These sticks are
in contact with the object at t = 0 and their contact points are used as the manipulated
points.

The visual perception of the object is performed with a remote RGB-D Intel Realsense-
D435 camera. It acquires around 3.105 3D points at 30 frames per second. Prior to starting
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Figure 4.4: An example of the tracking results: The first and third rows show the RGB
image with the projection of the object mesh (black lines) onto the object. The second
and fourth rows show the deformed mesh.

129



Chapter 4 – Indirect Positioning of Multiple Points on a Soft Object

Figure 4.5: 1: Viper 650. 2: Viper 850. 3: RGB-D camera. 4: Soft objects. 5: Rigid
sticks attached to Viper 850 and Viper 650.

the deformation task, the camera is utilized to create a model for each soft object used,
as described in Section 4.1.1. Two types of soft objects have been considered: volumetric
and planar objects, and their model parameters are determined following the procedure
described in Section 4.1.2. Then, an eye-to-hand calibration is performed as the velocities
generated to accomplish the deformation task are calculated in the camera frame. Since
the base frame of each robot and the camera position are fixed, this calibration process
only needs to be executed once, regardless of the specific task requirements. After ob-
taining the transformations between the camera and the robots, the velocities computed
by the control scheme in the camera frame are converted and applied to the end-effectors
of the robots to apply the deformations.

Moreover, the camera is also utilized to measure the position of the features points that
are used as input of the control scheme, and to correct any drift between the simulated
deformation using the MSM and the actual deformation of the soft object. The drift occurs
when the model surface points and the real object surface points are not superimposed.
In this case, external constraints are applied to the model surface points to rectify it,
following the methodology explained in Section 4.1.3.
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4.2.2 Experimental results

For the experimental tests, we consider either one feature point or two feature points to
be positioned at some desired locations. When one feature point is considered, either
one or both robots deform the soft objects simultaneously. However, when two feature
points are considered, both robots are engaged. The selection of the desired position for
each feature point must be carefully chosen. In other words, the desired position for each
feature point should be attainable from the initial configuration of the robot(s) without
damaging the object. Therefore, for each following experiment, once one or both robots
come into contact with the object, we apply arbitrary movements to the robot(s), and
the resulting position of each feature point is considered to be the desired position. We
then repeat the experiment when the object is not deformed, aiming to achieve the same
attained position. By doing so, we can ensure that the desired task is achievable without
damaging the object.

As for the simulation study, the performance of the positioning task is evaluated from
the evolution of the error between the current and desired positions of the feature points.
In practice, this error is measured directly using the RGB-D camera by rigidly attaching
one marker per feature point. In several figures of this section, colored dots will represent
the projection of the desired 3D positions of the feature points in the RGB image.

The effectiveness of the servoing task for various experiments manipulating soft objects
is outlined in the subsequent sections. The positioning task is considered successful when
the markers and the colored dots are aligned, indicating that the feature points have
reached their targeted positions.

To be noted that the depth measurements obtained from the RGB-D camera are
subject to sensor noise in a range of 1 mm. Therefore, in what follows, the conver-
gence is considered to be reached when the error norm for each feature point is less than
1 mm. Some experimental results are available on these online videos [ICARCV-video]
and [Indirect-positioning-video].

4.2.2.1 One feature point

An example of the indirect positioning of a 3D feature point on a 3D object is presented in
Figure 4.6. The distance between the manipulated point and the feature point is chosen
arbitrary. The object is restricted on one of its sides, using the Viper 650, to prevent
its free 3D translational movement. A visual marker is rigidly attached to the object at
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the location of the feature point so that it is easily tracked. This marker is also used to
facilitate the validation of the transportation of the feature point to the desired position.
The blue dot indicates the projection of the desired 3D position of the feature point.
Figure 4.6.(a) and Figure 4.6.(b) depict respectively the initial and final states for the
positioning task using our proposed approach (PA). The red, green, blue and black lines
in Figure 4.7 represent respectively the evolution of the positioning error along (x, y, zx, y, zx, y, z)
axes and the error norm when using the PA. The proposed controller drives the error norm
within 1 mm, between the dashed magenta lines, with an initial error around 45 mm. We
can notice the nice exponential decrease of this error, which indicates the success of the
positioning task and the correct modling of the system.

(a) (b)

Figure 4.6: Indirect positioning of one feature point on a 3D object: (a) 3D soft object at
its rest state. (b) 3D soft object after the deformation process. The blue dot represents
the projection in the image of the 3D desired position of the feature point represented by
a white marker.

Another example of the indirect positioning of a 2D feature point on a planar object is
represented in Figure 4.8. The object is modeled using a 2D representation, neglecting its
thickness. The same methodology as the previous experiment is applied, where the Viper
650 robot restricts free 3D translational movement. The blue dot indicates the projection
in the camera frame of the desired 2D position of the feature point. The object before and
after deformation is depicted in Figure 4.8(a) and Figure 4.8(b), respectively. Moreover,
the evolution of the positioning error during the deformation is illustrated in Figure 4.9,
showing an exponential decrease. Furthermore, the error at the end of the deformation is
within the range of 1 mm, which validates the success of the positioning task.

Comparison to a simple PID One commonly employed approach for indirectly po-
sitioning a feature point was proposed in [Shibata & Hirai, 2006; Wada et al., 2001a],
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Figure 4.7: Evolution of the error for the feature point along the three axes (x, y, zx, y, zx, y, z) and
the error norm of the positioning task represented in Figure 4.6.

(a) (b)

Figure 4.8: Indirect positioning of one feature point on a planar object: (a) 2D soft object
at its rest state. (b) 2D soft object after the deformation process. The blue dot represents
the projection in the image of the 2D desired position of the feature point represented by
a white marker.
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Figure 4.9: Evolution of the error for the feature point along the three axes (x, y, zx, y, zx, y, z) and
the error norm of the positioning task represented in Figure 4.8.

where the authors suggested the use of a simple PID controller to accomplish the task.
They define the control law as follows:

ẋxxm = −Gp eee+Gd ėee+Gi

∫
eee (4.8)

with Gp, Gd and Gi being proportional, derivative and integral gains respectively. How-
ever, while their approach is deemed valid for small deformations, they did not explicitly
define what constitutes a small deformation. In our case, we call small deformation (S)
when the desired position of the feature point is far from its initial position by a distance
less than 10% of the largest dimension of the object, i.e., height, width and thickness, and
large deformation (L) when this distance is between 12% to 30% of the latter. In addition
to comparing our PA with the PID controller for both small and large deformations, we
perform different tests where the positions of the manipulated point and the feature one
are close (N) and far apart (F). In what follows, we use some notations, such as S-N to
represent small deformations and the case where the manipulated point is near to the
feature point. Finally, both the proposed controller and the PID controller are tested and
compared for these different types of deformations.
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The main problem when using a simple PID controller is the fine-tuning of the gains
of the controller for each task to be accomplished. For a small proportional gain and
depending on the soft object, we noticed that the error either converges towards zero,
or diverges, or converges towards a local minimum. For a large proportional gain, the
error either diverges, or oscillates around a local minimum, and sometimes the object
is destroyed. Therefore, we have adjusted the gains of the PID by a trial and error
method. Unlike this controller, our PA does not need any parameter setting except the
approximate physical model parameters and the control proportional gain, which has been
fixed to λ = 0.7.

Additionally, since the robot used is equipped with a force sensor, the applied forces are
measured during the deformation. The comparison results are summarized in Table 4.1.
The table shows that when the manipulated point is near the feature point, the proposed
method and the PID converge similarly without any problem. For the other cases, our
method guarantees that the error norm converges to less than 1 mm, while it is not the
case for the PID controller. The table summarizes the statistics of the different tests
carried out, since many experiments have been done for each case. For example, for S-N
case, many manipulated positions are chosen around the feature point within the same
distance. An example of the initial state for the near case is presented in Figure 4.10. In
addition, the measured forces clearly show that the robot applies less force to the object
using the PA, which could be sometimes half and sometimes quarter of the applied force
using the PID controller. The importance of this characteristic is that when working with
some elastic objects, a high force can cause the object to loose its elasticity.

(a): S-N, error (8,15) pixels (b): L-N, error (24,32) pixels

Figure 4.10: (a), (b) represent respectively the initial position of the feature point and its
desired position for the S-N and L-N cases. The figures also present the initial absolute
error in terms of pixels.

Moreover, an example of L-F case is represented in Figure 4.11. The distance between
the manipulated point and the feature point is around 75 mm. The yellow rectangle
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Table 4.1: PA versus a simple PID for different experiments with different initial errors,
in terms of final average error ‖eee‖ and the maximal norm of the measured force Max ‖FFF‖
(N).

Initial error (mm) Proposed Simple PID
S-N ‖eee‖ Max ‖FFF‖2 ‖eee‖ Max ‖FFF‖2

(15,10,-5) 0.7 2 0.7 4
S-F ‖eee‖ Max ‖FFF‖2 ‖eee‖ Max ‖FFF‖2

(10,10,0) 0.9 5 Diverged > 33
L-N ‖eee‖ Max ‖FFF‖2 ‖eee‖ Max ‖FFF‖2

(35,-30,10) 0.9 10 0.9 12.25
L-F ‖eee‖ Max ‖FFF‖2 ‖eee‖ Max ‖FFF‖2

(35,-30,10) 1.1 13 Diverged > 30

presents the restricted side of the object, in order to avoid the object free 3D translation.
Figure 4.11.(a) and Figure 4.11.(b) depict respectively the initial and final state for the
positioning task example using our proposed approach (PA). The red, green, blue and
black solid lines in Figure 4.12 represent respectively the evolution of the positioning
error along (x, y, zx, y, zx, y, z) axes and the error norm when using the PA. The proposed controller
drives the error norm within 1 mm, with an initial error around 55 mm. On the other
side, the positioning error when using the simple PID controller, illustrated by dashed
lines in Figure 4.12, initially decreased and then diverged.

Over-actuated case with external perturbations In this expriment, two robots are
utilized to deform one feature point while external disturbances are applied to the soft
object. The aim is to evaluate both the robustness of the PA against external perturba-
tions and the positioning of the feature point when two manipulated points deform the
object, rather than just one, leading to an over-actuated case (Q=1 and M=2).

The case where the feature point is in the vicinity of of its desired position is depicted in
Figure 4.13. The object in its rest state is represented in Figure 4.13(a). Subsequently, the
deformation process is initiated without external perturbations, except for the presence
of sensor noise, and the state of the object at the end of the deformation is shown in
Figure 4.13(b). Following this, a third stick is employed to manually apply a small
deformation to the object in order to add a perturbation, resulting in the feature point
moving from its desired position achieved previously (see Figure 4.13(c)). The system
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(a) (b)

Figure 4.11: An example of L-F indirect positioning task: (a) Soft object at its rest state.
(b) Soft object after the deformation process.

Figure 4.12: Evolution of the error for the feature point along the three axes (x, y, zx, y, zx, y, z) and
the error norm of the positioning task represented in Figure 4.8. Solid lines represent the
positioning error when using the PA, while dashed lines represent the positioning error
when employing a PID controller.
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is then allowed to re-achieve the positioning task, which is successfully accomplished as
evidenced in Figure 4.13(d). In a second attempt, the same stick is used to apply a larger
perturbation, as shown in Figure 4.13(e), and the same feature point is again driven to
its desired position, as demonstrated in Figure 4.13(f).

Finally, the evolution of the positioning error along the three axes (x, y, zx, y, zx, y, z) and the
overall error norm of the positioning task are represented in Figure 4.14. It illustrates how
the positioning error decreases exponentially to within 2 mm despite the perturbations
occurring at t = 1.0 s and t = 1.5 s.

Robustness of the controller against model parameters Additional experiments
are illustrated in Figure 4.15 to test the robustness of the PA against model parameter
errors. The variation in error norms is presented for a L-F case, using five different
controller configurations as depicted in Figure 4.15.

The error converges nicely with an exponential decrease when our PA and the identified
model parameters are used (see blue graph). In contrast, the red graph shows the evolution
of the error norm when the PID controller is used. We can see that the error oscillates
around a local-minimum then a divergence occurs, as expected from Table 4.1.

In the third configuration, the parameters are modified: stiffness is doubled, and
damping is halved. This configuration is represented by the green plot in Figure 4.15. We
can observe that the error norm converges to zero but with some perturbations during the
exponential decrease. This is explained by the perturbations introduced in the control
scheme through ÂAA. However, when the real stiffness is multiplied by 6, the system fails in
a local minimum, as indicated by the black graph. Once again, this can be explained from
our discussion in Section 3.1.3.1. Since the model converges, it ensures that the condition
(3.72) is met. However, due to the use of very coarse parameters, the non-negligible term
(bbb − AAAÂAA+

b̂bb) causes the error to converge to eee 6= 000, and its norm converges to |eee| 6= 0.
In conclusion, our controller demonstrates robustness to a considerable range of coarse
model parameter variations.

Lastly, the cyan graph in Figure 4.15 presents the error norm when our PA is used
with a reduced mesh resolution for the object model. In this configuration, the object
mesh contains 2059 nodes, as opposed to the high mesh resolution of 7103 nodes used in
previous experiments. We can notice that such a reduction induces perturbations in the
system behavior, but no divergence occurs, and the error still converges to a value less
than 2 mm.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.13: Indirect positioning of one feature point of a semi-spherical ball using two
robots: (a) and (b) depict the initial and final configurations of the positioning task,
respectively. (c) and (e) illustrate intermediate states of the object when it is subjected
to small and large external perturbations. (d) and (f) show respectively the final states
of the object once the external disturbances have been removed.
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Figure 4.14: Evolution of the error for the feature point along the three axes (x, y, zx, y, zx, y, z)
and the error norm of the positioning task represented in Figure 4.13 when external
perturbations are applied to the object.

Figure 4.15: Evolution of the positioning task error norm for a L-F case (illustrated on
the right of the figure) and for five different controller configurations.
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4.2.2.2 Two feature points

In this section, our aim is to demonstrate the validation of the proposed control law when
two feature points fixed on a soft object need to be driven to some desired positions
while manipulating two robotic manipulators simultaneously. Furthermore, as shown in
the previous section, the feed-forward term bbb distinguishes our proposed control law from
the relevant model-free approaches. Hence, we also assess the significance of this term in
our proposed approach. Subsequently, two different configurations are discussed in the
following experiments.

In the first configuration, two robots are employed to indirectly position two feature
points on distinct soft objects in a fully actuated scenario. The purpose of this configura-
tion is to validate the stability and efficiency of the PA for various objects with different
geometries and physical properties.

In the second configuration, we focus on the examination of the impact of the feed-
forward term bbb in (3.70).

First configuration - Fully actuated Case In this experiment, four objects with
different geometries and physical parameters are considered with a fully actuated system
(M = Q = 2).

The first object (semi-spherical ball) with two different initial placements of the ma-
nipulated points and feature point positions are presented in Figure 4.16(a) and (c). The
final state of the semi-spherical ball are displayed in Figure 4.16(b) and (d) respectively.
Two thumbtacks are attached to the object at the selected feature points, enabling their
easy tracking through the RGB-D camera. Furthermore, in Figure 4.16, the cyan and
blue dots represent the projection of the desired 3D positions of these feature points. As
can be seen in Figure 4.16(b) and (d), the thumbtacks are aligned with the cyan and
blue dots, indicating the successful completion of the positioning task. Furthermore, Fig-
ures 4.17 and 4.18 show the evolution of the positioning error for the tasks illustrated
in Figure 4.16(a-b) and Figure 4.16(c-d) respectively. Both cases demonstrate an expo-
nential decrease of the error norm to within 2 mm in less than 4 seconds, validating the
successful positioning task.

To test the efficiency of the model, three other objects are considered: a semi-ellipsoid
ball that differs from the first object in terms of geometry (see Figure 4.19), another
semi-spherical ball much stiffer than the one already shown (see Figure 4.20), and finally
another object with a completely different shape (see Figure 4.21). The initial and final
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(a) (b)

(c) (d)

Figure 4.16: First experience for a fully actuated case using a semi-spherical ball: two
configurations of positioning 2 feature points using 2 robots. (a) and (c) represent the
initial state of the object while (b) and (d) depict its state at the end of the deformation,
respectively. The cyan and blue dots represent the projection in the image of the 3D
desired positions of the two feature points represented by white thumbtacks.
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Figure 4.17: Evolution of the error for each feature point along the three axes (x, y, zx, y, zx, y, z),
and the overall error norm of the positioning task represented in Figure 4.16(a, b).

Figure 4.18: Evolution of the error for each feature point along the three axes (x, y, zx, y, zx, y, z),
and the overall error norm of the positioning task represented in Figure 4.16(c, d).
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configurations of the deformation process using each of these objects are shown in views (a)
and (b) respectively. We can see on all (b) views that the markers and the blue and cyan
dots are superimposed, demonstrating the success of the deformation task. Additionally,
Figure 4.22 illustrates the evolution of the error norm for each of these tasks. As shown,
the error norm converges to within 2 mm in less than 5 seconds, indicating the success of
the positioning of the three objects.

(a) (b)

Figure 4.19: Second experience for a fully actuated case using a semi-ellipsoid ball: Initial
(a) and last state (b) of the object undergoing the indirect positioning of two feature points
(white markers) using two robots. Colored points defined as in caption of Figure 4.16.

(a) (b)

Figure 4.20: Third experience for a fully actuated case using a semi-spherical ball: Initial
(a) and last state (b) of the semi-spherical ball undergoing the indirect positioning of two
feature points (white thumbtacks) using two robots. Colored points defined as in caption
of Figure 4.16.
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(a) (b)

Figure 4.21: Fourth experience for a fully actuated case using a planar object: (a) and
(b) views and colored points defined as in caption of Figure 4.20.

Figure 4.22: Evolution of the error norm measured at each time step for the positioning
tasks, represented in Figures 4.19, 4.20 and 4.21.
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Effect of the feed-forward term This paragraph presents two experiments that focus
on the positioning of two feature points employing two robots. These experiments differ
in whether the feed-forward term bbb employed in the control law (3.70) is included or not.
The goal of these experiments is therefore to analyze the impact of bbb on the stability and
successful completion of the positioning task.

The state of the object at the end of the deformation process when bbb 6= 000 is shown in
Figure 4.23(b). However, by setting bbb = 000, the deformation task fails. The convergence
and divergence for each case are illustrated in Figure 4.24.

This experiment illustrates the importance of including the feed-forward term in the
control law, as it leads to an error norm of less than 2mm (red plot), while not including
it leads to an oscillating and non-converging behavior (green plot), where a loss of contact
with the ball occurs.

(a) (b)

Figure 4.23: Indirect positioning of 2 feature points using 2 robots for testing the impact
of the feed-forward term in (3.70). Initial (a) and last state (b) of the semi-spherical ball
obtained using the feed-forward term.

4.3 Conclusion

In this chapter, we validated our proposed real-time model-based and vision-based control
law based on a simple MSM. We achieved this by driving various feature points on multiple
soft objects with diverse geometric and physical properties to their desired positions. This
manipulation was carried out by controlling one or two robotic manipulators deforming
the objects simultaneously.
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Figure 4.24: Evolution of the error norm of the positioning task, shown in Figure 4.23
with and without the feed-forward term.

In the first section, we outlined the essential steps for constructing the object model.
The initial step involved the generation of a mesh that describes the object geometrical
structure. Subsequently, we conducted parameter estimation for this model to establish
a physical representation, enabling it to accurately replicate the real-world deformations
of the actual object. These parameters are the stiffness matrix and damping coefficient
of the MSM. It is important to note that these estimated parameters are approximate,
potentially leading to discrepancies between the model and the real object. To address
this, we introduced object tracking techniques to rectify any deviations between the model
and the actual object.

In the second section, we presented experimental results obtained from interactions
between one and two robot manipulators and various soft objects. These results further
confirm the efficiency and robustness of the proposed control approach in dealing with
external perturbations and model uncertainties. It allows to efficiently, accurately and
rapidly bring multiple points of a deformable object to desired 3D positions using a simple
MSM and without requiring the exact knowledge of the model parameters. To ensure that
the object can be deformed so that the feature points reach their desired positions, it is
however important to carefully select the positions of the manipulated points. Moreover,
the attainability of the desired configuration depends on the object being deformed. For
example, if the object has a limited range of motion, it may not be possible to deform it
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as much as desired.
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Chapter 5

SHAPE SERVOING OF A SOFT OBJECT

In this chapter, we propose a physics-based robot controller for shape servoing of soft
objects. The object shape is represented by the object 2D contour when deforming 2D
objects, while it is represented by the object complete surface when dealing with 3D ob-
jects. The objective is to manipulate the soft object shape toward a desired configuration
using a limited number of manipulated points. However, due to the high number of points
used to represent the object shape and the limited number of manipulated points, this
results in a highly under-actuated system. As a result, the targeted deformation of the
system may not be ensured. For instance, achieving the deformation task would require
at least one manipulated point for each point belonging to the object shape as proposed
in [Wada et al., 2001a] and as discussed in Chapter 3, which is not feasible. To alleviate
this problem, the shape of the deformable object is represented using a low-dimensional
feature vector.

We derive two types of dimension reduction in this chapter: the first using Fourier
descriptors (see Section 5.2), and the second employing 3D moments (see Section 5.3).
For each of these reduction techniques, we obtain a low-dimensional vector and establish
an analytical relationship describing the variation of the resulting vector in function of
the manipulated points motions. As previously, these relationships are derived by ap-
proximating the object with a mass-spring model (MSM). Subsequently, we develop a
control law for each shape representation using the aforementioned relations. Ultimately,
we apply these developed control laws to achieve shape servoing tasks.

Both simulation and experimental results are presented, which showcase the effective-
ness of our approach in soft object shape servoing.
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5.1 Problem formulation

The main objective of this section is to deform a 3D soft object with w surface points,
represented by

xxxo = (xxxo1 , ...,xxxow), (5.1)

where oi , ∀1 ≤ i ≤ w ; oi ∈ N , is the index of each surface point in N .
Let sss be a feature vector representing the 3D surface xxxo of the object. The goal is

to drive sss to a desired target shape sss∗ by simultaneously manipulating M points on the
object, represented by [Pm1 , ..., PmM ], with coordinates (xxxm1 , ...,xxxmM ).

As previously, by determining how sss changes due to the motion of these manipulated
points, the required motions to be applied on them for achieving the desired shape can
be determined as a classical visual servoing problem [Chaumette & Hutchinson, 2008].

5.2 Shape servoing of a soft object using Fourier De-
scriptors

In this section, we present a new approach that controls multiple manipulator points to
drive the entire shape of a soft object parametrized by a set of Fourier coefficients to a
desired configuration. We employ Fourier series to describe the surface of a 3D object
using spherical coordinates. In case of planar objects, Fourier series can also be used
from the polar coordinates of the 2D contour shape. We use the MSM to simulate the
object physical behavior and we develop the analytic relation that links the variation of
the Fourier coefficients to the movements of multiple manipulated points. Based on this
relation, a closed-loop control law is then developed to automatically deform the soft
object toward a desired shape.

5.2.1 3D shape servoing

By expressing the object surface points xxxoi , i ∈ [1, ..., w], with spherical coordinates, the
3D cartesian position of each point can be written as:

xoi = xgo + ρ(θoi , φoi) cos(φoi) sin(θoi)
yoi = ygo + ρ(θoi , φoi) sin(φoi) sin(θoi)
zoi = zgo + ρ(θoi , φoi) cos(θoi)

(5.2)
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with xxxgo = (xgo, ygo , zgo) the 3D coordinates of the centroid of xxxo, ρ(θoi , φoi) the radial
distance ‖xxxoi − xxxgo‖ of the point Poi from xxxgo, θoi = arccos(zoi/ρ(θoi , φoi)) the polar angle
and φoi = atan2(yoi , xoi) the azimuthal angle.

ρ(θ, φ) is a closed periodic function, which can be represented as a sum of cosine
and sine functions with increasing frequencies, known as Fourier descriptors. It can be
approximated using Fourier series as following:

ρ(θoi , φoi) =
p∑
l=0

q∑
j=0

[alj cos(lθoi) cos(jφoi) + blj cos(lθoi) sin(jφoi) (5.3)

+clj sin(lθoi) cos(jφoi) + dlj sin(lθoi) sin(jφoi)]

where alj, blj, clj and dlj are the Fourier coefficients, and p and q are the number of
harmonics corresponding to θ and φ respectively.

Hence, sss representing the shape parameters is selected as:

sss = (xgo, ygo , zgo , a00, ..., apq, b01, ..., bpq, cpq, dpq) (5.4)

As noticed from (5.4), the dimension k of sss, (k = 4(p+1)(q+1)−2(p+q)) is significantly
less than the number of object surface points for low values of p and q.

Regarding the components of sss, they are obtained as follows:

1. The centroid of the model surface points is first computed: xxxgo = 1
w

∑w
i=1xxxoi

2. The model surface points are centered with respect to the centroid: x̂xxo = xxxo − xxxgo

3. The Fourier coefficients are then computed by a least squares method. In theory,
only (dim(sss)− 3) surface points are needed, but to increase robustness to measure-
ment noise, all w points are considered in the computation.

Once sss has been calculated, an approximation of the object surface can be recon-
structed by setting the range of θ to [0, π] and φ to [0, 2π].

5.2.1.1 Modeling

By approximating the physical behavior of the object using the MSM, and using (3.69),
we demonstrated in Chapter 3 the velocity ẋxxoi , 1 ≤ i ≤ w, of any surface point due
to the velocity ẋxxm = (ẋxxm1 , ..., ẋxxmM ) applied on manipulated points (Pm1 , Pm2 , ..., PmM ).
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Therefore, we directly obtain the velocity of all points belonging to the model surface:

ẋxxo = AoAoAo ẋxxm + bobobo (5.5)

with

AoAoAo =


AAAo1m1 . . . AAAo1mM

AAAo2m1 . . . AAAo2mM
... . . . ...

AAAowm1 . . . AAAowmM

 , bobobo =


bbbo1 = ∑M

l=1 bbbo1ml
...

bbbow = ∑M
l=1 bbbowml

 , ẋxxo =


ẋxxo1
...
ẋxxow

 .

The ultimate goal is to find the variation ṡss of the features with respect to the motions ẋxxm
of the manipulated points, through the following form:

ṡss = AsAsAs ẋxxm + bsbsbs (5.6)

By deriving (5.2) and (5.3), we obtain the motion ẋxxoi = (ẋoi , ẏoi , żoi) of each point belong-
ing to the object surface, as a function of ṡss, θ̇oi and φ̇oi . However, we have to eliminate θ̇
and φ̇ in order to express the motions of these points solely in terms of ṡss. For that, we
obtain, by linearly combining the three equations in (5.2), ∀i ∈ [1, ..., w]:

αoiẋoi + βoi ẏoi + σoi żoi =
[
αoi βoi σoi

(
νoi
∂ρ(θoi , φoi)

∂qqq

)]
ṡss (5.7)

with

αoi = b1c2 − b2c1 , βoi = a2c1 − a1c2 , σoi = a1b2 − a2b1

νoi = αoi [(cos(φoi) + βol sin(φoi)) sin(θoi) + σoi cos(θoi)]

qqq = (a00, ..., apq, b01, ..., bpq, cpq, dpq)
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and

a1 =
(
∂ρ(θoi , φoi)

∂θoi
sin(θoi) + ρ(θoi , φoi) cos(θoi)

)
cos(φoi),

b1 =
(
∂ρ(θoi , φoi)

∂θoi
sin(θoi) + ρ(θoi , φoi) cos(θoi)

)
sin(φoi),

c1 = ∂ρ(θoi , φoi)
∂θoi

cos(θoi)− ρ(θoi , φoi) sin(θoi),

a2 =
(
∂ρ(θoi , φoi)

∂φoi
cos(φoi)− ρ(θoi , φoi) sin(φoi)

)
sin(θoi),

b2 =
(
∂ρ(θoi , φoi)

∂φoi
sin(φoi) + ρ(θoi , φoi) cos(φoi)

)
sin(θoi),

c2 = ∂ρ(θoi , φoi)
∂φoi

cos(θoi).

By using the same linear combination on (5.5) and identifying the equation obtained
with (5.7), we get:


αo1ẋo1 + βo1 ẏo1 + σo1 żo1

...
αow ẋow + βow ẏow + σow żow

 = LoLoLo ẋxxm + δoδoδo = CoCoCo ṡss (5.8)

with

LoLoLo =


[αo1 βo1 σo1 ]

...
[αow βow σow ]︸ ︷︷ ︸

1x3

[AAAo1m1 . . . AAAo1 mM ]
...

[AAAowm1 . . . AAAowmM ]︸ ︷︷ ︸
3x3M



δoδoδo =


[αo1 βo1 σo1 ] bbbo1

...
[αow βow σow ] bbbow



CoCoCo =


αo1 βo1 σo1 νo1

∂ρ(θo1 ,φo1 )
∂qqq

... ... ... ...
αow βow σow νow

∂ρ(θow ,φow )
∂qqq
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By identifying (5.8) with (5.6), we finally obtain:

AsAsAs = CoCoCo
+LoLoLo and bsbsbs = CoCoCo

+δoδoδo (5.9)

with CoCoCo+ the Moore-Penrose pseudo-inverse of CoCoCo. Matrix CoCoCo is of dimension w × k and
is full rank since the number w of surface points is highly larger than the number of
harmonics. AsAsAs can be considered as the interaction matrix by similarity with the classical
visual servoing framework [Chaumette & Hutchinson, 2008], while bsbsbs is an inertia term.

In this paragraph, we developed the variation of the low-dimensional feature vector sss
as a function of the manipulated point velocities, as shown in (5.6). This expression is
similar to the one presented in (3.69), which was proposed for contexts involving discrete
object feature point displacements in response to manipulated point motions. These
equations incorporate both an interaction matrix and an inertia term, and their forms
have been derived analytically.

5.2.1.2 Control scheme

This section presents the control law to be applied to the manipulated points in order
to drive the object to its desired 3D shape. Similar to what was previously exploited in
Section 3.1.3, which allowed us to obtain (3.70) from (3.69), the control velocities to be
applied to the manipulated points to drive the visual features sss to their desired values sss∗

are obtained from (5.6) as:

ẋxxm = −λÂAAsss
+

(sss− sss∗)− ÂAAsss
+
b̂sbsbs (5.10)

The stability analysis of the closed-loop control law proposed in (5.10) is similar to what
was presented in Section 3.1.3.1. Regarding the achievement of the 3D surface deforma-
tion task, it depends on the number of harmonics p and q. When k > 3M , the con-
troller (5.10) is under-actuated and cannot guarantee the asymptotic convergence of the
system. Conversely, when k ≤ 3M , the controller is either fully-actuated or over-actuated
and therefore stability and convergence of sss towards sss∗ is theoretically guaranteed as long
as ÂAAsss is not a significantly coarse approximation of AAAsss.

Note, however, that this does not necessarily mean that the entire object will reach
its desired shape, but only its representation by the selected Fourier coefficients. Thus,
the choice of the number of harmonics to be injected in sss depends on the complexity
of the shape to be obtained, i.e. complex deformations require more harmonics and
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consequently more manipulated points.

5.2.2 2D shape servoing

The method described previously can easily be applied to planar objects. The shape of
a 2D object is represented by its contour xxxc containing wc contour points xxxci . It can be
parameterized by its centroid (xgc , ygc ) and radial distance ρ(θ) that now only depends on
a single angle θ. Doing so, any point xxxci in xxxc can be expressed using polar coordinates
as follows:

xxxci = (xgc + ρ(θci) cos(θci), ygc + ρ(θci) sin(θci)). (5.11)

As ρ(θ) is periodic, it can be approximated using Fourier series as following:

ρ(θci) = ac0 +
pc∑
l=1

[acl cos(lθci) + bcl sin(lθci)] (5.12)

with pc the number of harmonics corresponding to θ. The features sssc are thus naturally
selected as:

sssc = (xgc , ygc , ac0, ac1, bc1, ..., acpc , b
c
pc) (5.13)

and dim(sssc) = (2pc +3). Following the same reasoning as in Section 5.2.1.1, the variation
of sssc with respect to the motions of the manipulated points ẋxxm can be expressed as in (5.6):

ṡssc = AscAscAsc ẋxxm + bscbscbsc (5.14)

with AscAscAsc = CcCcCc
+LcLcLc and bscbscbsc = CcCcCc

+δcδcδc where

LcLcLc =


[αc1 βc1 ][γγγc1m1 . . . γγγc1 mM ]

...
[αcwc βcwc ][γγγcwcm1 . . . γγγcwc mM ]

 ,

δcδcδc =


[αc1 βc1 ] δδδc1

...
[αcwc βcwc ] δδδcwc

 ,

CcCcCc =


αc1 βc1 νc1

∂ρ(θc1 )
∂qqqc... ... ...

αcwc βcwc νcwc
∂ρ(θcwc )
∂qqqc

 ,
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and

αci = ρ(θci) cos(θci) + ∂ρ(θci)
∂θci

sin(θci),

βci = ρ(θci) sin(θci)−
∂ρ(θci)
∂θci

cos(θci),

νci = αci(cos(θci) + βcisin(θci)),

qqqc = (ac0, ac1, bc1, ..., acpc , b
c
pc).

5.2.2.1 Control scheme

The closed-loop control law to be applied by the robotic manipulators to drive sssc to a
desired contour sssc∗ is directly deduced from (5.14):

ẋxxm = −λÂAAscscsc
+

(sssc − sssc∗)− ÂAAscscsc
+
b̂scbscbsc , (5.15)

with λ > 0 always denoting a positive gain and ÂAAscscsc
+

representing the Moore-Penrose
pseudo-inverse of the approximation of AAAscscsc .

Concerning the achievement of the contour deformation task, it depends on the number
of harmonics pc. When [dim(sssc) = (2pc + 3)] > 2M , the controller in (5.15) is under-
actuated and cannot guarantee the asymptotic convergence of sssc to sssc∗. Conversely, when
dim(sssc) < 2M , the stability and convergence of the system is theoretically guaranteed as
long as ÂAAscscsc is not a significantly coarse approximation of AAAscscsc . As before, the choice of
number of harmonics to be used depends on the complexity of the contour to be obtained,
with complex deformations requiring more harmonics and hence more manipulated points.

5.2.3 Simulation results

In this section, the proposed controller is tested in simulation for deforming a 2D object
to a desired shape using Fourier descriptors.

As already mentioned, the number of selected harmonics influences the accuracy of
the deformation task. In other terms, it is crucial to choose an appropriate number of
harmonics for obtaining a correct approximation of an object contour. For complex shapes,
selecting a higher number of harmonics will improve the accuracy of the approximation.
However, when the contour can be approximated using a low number of harmonics all
along its deformation, there is no need to select a large number, since it will make the
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system more and more under-actuated without providing any significant information.
Additionally, the desired shape must be feasible. This can be verified through applying
arbitrary motions on the chosen manipulated points in order to deform the object. The
resulting contour can then be selected as the desired one since we are sure that it is
feasible.

The chosen 2D object is depicted in Figure 5.1. It is represented using a MSM with
256 points, where the small red points are the model points while the 6 larger red points
denote the manipulated points that have been uniformly distributed around the object.
Green points denote contour points (wc = 32) and the white lines correspond to the
springs between the model points. The white points represent the target points, which
correspond to the green points acquired after manually deforming the object to obtain
a feasible desired shape. The blue ones depict the desired reconstructed contour using
pc = 8 harmonics.

The yellow points on Figure 5.1.b correspond to the reconstructed contour at the
end of the servo using the same number of 8 harmonics. We notice that the yellow
points align with the green points on one side and with the blue points on the other
side. The alignment with the green points indicates the successful reconstruction of the
contour using 8 harmonics, while the alignment with the blue points demonstrates the
accuracy and success of the shape servoing task. Furthermore, the alignment of the green
points with the white points indicates the success of the contour representation using the
proposed contour parameters (5.13).

The physical parameters of the object have been chosen as follows. The mass of
each point is mi = 0.35g. The stiffness matrix KKKij depends on one constant value: KKKij =
diag(kx, kx) with kx = 13N/m. The damping has been chosen according to Section 4.1.2.2
asDv = 2

√
mikx = 0.13Ns/m. Finally, we have selected λ = 0.9 as the gain for the control

scheme.
Different simulations have been performed by selecting a different number of harmonics

(pc = 6, 8 and 10), while the number of manipulated points is always the same (M = 6).
The purpose of testing these different numbers of harmonics is to study their effects
on the deformation performance. The higher the number of harmonics, the better the
reconstruction of the contour. However, from a certain amount of pc, the reconstruction
is perfect and we no longer need to increase it. To correctly reconstruct the contour of
the desired shape shown in Figure 5.1, at least 6 harmonics are needed. For that, we
test pc = 6. Additionally, to achieve a more accurate reconstruction, we also test two
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(a) (b)

Figure 5.1: Deformation of a planar object: (a) initial and desired configurations, (b) final
configuration (see text for explanations on color code).

larger numbers of harmonics, pc = 8 and 10. Moreover, we also aim to evaluate the
achievement of the task when the system is under-actuated (here, we have 12 DOF while
dim(sssc) = 2pc + 3).

The time evolution of the error norm ‖sssc−sssc∗‖ for the different number of harmonics
is presented in Figure 5.2. The error norm converges exponentially to nearly zero when
pc = 6, despite the system being under-actuated (green plot). For the other cases (blue
and black plots), a very small residual remains at the convergence of the system. Recall
that the same set of manipulated points is used in all these cases, and since the system
is under-actuated, the rank of AAAscscscÂAAscscsc

+
is at most rank 12 < dim(sssc). Consequently,

following the discussion provided in Section 3.1.3.1, AAAscscscÂAAscscsc
+

has a non-zero null space,
leading to a local minimum. As a result, the error norm converges to a non-zero value.
Moreover, an increase in the number of harmonics results in an increase in the feature
vector dimension, and as a result, the higher residual shape servoing error is observed
with a greater number of harmonics.

Furthermore, the difference between the actual and desired contour is shown in Fig-
ure 5.3 for the different values of pc. This difference has been computed using the Hausdorff
distance [Taha & Hanbury, 2015] by considering all contour points. We can notice a nice
exponential decrease of this error in all cases. After convergence, the remaining error is
less than 3% of the initial error using 6 harmonics (green plot) while it is reduced to less
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than 2% for pc = 8 and 10 (blue and black plots). Since the residual of the Hausdorff
distance is almost the same for two tests performed with different number of harmonics„
using 8 harmonics is here sufficient to achieve the task with high accuracy.

Figure 5.2: Evolution of the error norm for different numbers of harmonics and using 6
manipulated points.

5.2.4 Experimental results

Two experiments are described in this section to validate our approach. Additional ex-
perimental results can be found here: [IROS-video].

In the following experiments, we use (5.4) for the calculation of the features sss and we
select p = 1 and q = 3 harmonics in sss since this choice enables to correctly represent the
object without being excessively under-actuated. The convergence is considered achieved
as soon as the error ‖sss − sss∗‖ reaches 5% of its initial value. For the first experiment,
Figure 5.4(a) shows the object at its initial configuration while Figure 5.4(b) displays
the object after convergence to its desired configuration. Figure 5.5 exhibits a 3D rep-
resentation of the object surface points observed from two different viewpoints (initial
configuration in red, final and desired configurations respectively in green and blue).

The second experiment involves a more complex deformation, as can be seen in Fig-
ures 5.6 and 5.7. The deformation process begins with the object in its rest state, as
represented in Figure 5.6(a). Additionally, the object surface points and their desired
positions are represented by green points and blue points in a 3D visualization provided
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Figure 5.3: Evolution of the Hausdorff distance between the actual and desired contours
for different numbers of harmonics and using 6 manipulated points.

(a) (b)

Figure 5.4: First experiment: initial (a) and final (b) images acquired by the RGB-D
camera.
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(a) (b)

Figure 5.5: First experiment: 3D visualization from 2 different viewpoints of the object
surface points (initial positions in red, final positions in green, and desired positions in
blue).

in Figure 5.7(a). Then, the shape servoing task is launched and the deformed object
is depicted in Figure 5.6(b). As can be seen from Figure 5.7(b), the green points are
superimposed with the blue points, indicating the success of the deformation task.

(a) (b)

Figure 5.6: Second experiment: initial and final images acquired by the RGB-D camera.

For both experiments, the time evolution of the error norm ‖sss − sss∗‖ is shown in
Figure 5.8, while Figure 5.9 presents the evolution of the Hausdorff distance between the
current and desired surface points. The convergence of the error norm to a local minimum
in Figure 5.8 is evident following the same methodology provided previously. The rank of
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(a) (b)

Figure 5.7: 3D visualization for the second experiment.

AAAsssÂAAsss
+
is 6 < dim(sss) = 24. Consequently, AAAsssÂAAsss

+
has a non-zero null space, leading the

convergence to a local minimum.

Figure 5.8: Evolution of ‖sss− sss∗‖ (first experiment in red, second one in green).

The correct achievement of the deformation task is directly visible from Figures 5.5
and 5.7 where we can note that the final shapes (in green) are well superposed on the
desired ones (in blue) for the various deformations to be achieved, even in the presence
of external perturbations. For both medium and large deformations, we can see that the
features error and Hausdorff distance converge to less than 5% of their initial value in few
seconds while we recall that the system is under-actuated. The decreasing is more erratic
in the case of the large deformation, which is not surprising for this difficult case. Note
that the initial errors are smaller in this case since the rigid displacement is smaller.
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Figure 5.9: Evolution of the Hausdorff distance between the current and desired object
surface points (first experiment in red, second one in green).

5.3 Shape servoing of a soft object using 3D moments

In this section, we introduce a novel method for manipulating various points on the object
surface to change its shape, parameterized by a set of 3D moments, ultimately bringing
it to a desired configuration.

5.3.1 3D shape servoing

This work is motivated by the work presented in [Galvez & Canton, 1993], which focused
on 3D shape recognition. The 3D coordinates of the object surface points are expressed
in the origin frame (center of mass) of the object. The resulted centered surface is then
described using moments up to order 2, resulting in an ellipsoid representation of the
object. This ellipsoid can be described by 6 parameters. Among these parameters, three
correspond to the principal axes of the ellipsoid, which are associated with the eigenvectors
of the inertia matrix MMM . Additionally, the other three parameters represent the lengths
of the principal axes of the ellipsoid and are related to the eigenvalues ofMMM .

The inertia matrixMMM is given below:

MMM =


µ020 + µ002 −µ110 −µ101

−µ110 µ200 + µ002 −µ011

−µ101 −µ011 µ200 + µ020

 (5.16)

with µijk being the central moments of order i+ j+k corresponding to the surface points,
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which are defined as follows:

µijk =
w∑
l=1

(xol − xg)i(yol − yg)j(zol − zg)k (5.17)

where xxxg = (xg, yg, zg) is the centroid of the surface points. Let λ1, λ2, and λ3 be
the eigenvalues of MMM . From these eigenvalues, the lengths of the principal axes can be
calculated as follows:

l1 =
√
λ1/w , l2 =

√
λ2/w , l3 =

√
λ3/w

Let v1v1v1, v2v2v2, and v3v3v3 represent the corresponding eigenvectors ofMMM . The rotation matrix
that represents the orientation of the principles axes is then given by:

RRR =


vvv1(1)/‖vvv1‖ vvv2(1)/‖vvv2‖ vvv3(1)/‖vvv3‖
vvv1(2)/‖vvv1‖ vvv2(2)/‖vvv2‖ vvv3(2)/‖vvv3‖
vvv1(3)/‖vvv1‖ vvv2(3)/‖vvv2‖ vvv3(3)/‖vvv3‖

 (5.18)

with vvvj(i) being the ith element in the vector vvvj, and ‖vvvj‖ =
√
vvvTj vvvj.

Following a similar approach, we first propose nine parameters to represent the object
surface by an ellipsoid. The first three parameters pertain to the translational movement
of the object and are represented by the coordinates of the centroid of the surface points,
xxxg, given by:

xg =
w∑
l=1

xol/w = µ100/w , yg =
w∑
l=1

yol/w = µ010/w , zg =
w∑
l=1

zol/w = µ001/w (5.19)

The remaining six parameters include the three lengths of the principal axes computed
from the eigenvalues of the inertia matrixMMM , which are obtained via second-order central
moments, and the three angles that define the ellipsoid orientation. In this work, we
are interested in calculating this orientation using a local rotation matrix, denoted as R̃̃R̃R,
which can be obtained by computing the difference between the actual rotation matrix,
denoted as RRR, and the desired one, denoted as RRR∗, as follows: R̃̃R̃R = RRRRRR∗T . Furthermore,
we represent this local orientation matrix using [θUθUθU] vector representation, which can be
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obtained as follows:

[θUθUθU] = ([θUθUθU]x , [θUθUθU]y , [θUθUθU]z) (5.20)

cos(θ) =
(
R̃̃R̃R(1, 1) + R̃̃R̃R(2, 2) + R̃̃R̃R(3, 3)− 1.0

)
/2 (5.21)

[θUθUθU]x =
(
R̃̃R̃R(3, 2)− R̃̃R̃R(2, 3)

)
/2sin(θ) (5.22)

[θUθUθU]y =
(
R̃̃R̃R(1, 3)− R̃̃R̃R(3, 1)

)
/2sin(θ)

[θUθUθU]z =
(
R̃̃R̃R(2, 1)− R̃̃R̃R(1, 2)

)
/2sin(θ)

with R̃̃R̃R(i, j) representing the element at the ith row and jth column of the matrix R̃̃R̃R.
These nine parameters are utilized to represent the ellipsoid that best fits at each time

the object surface points, starting from its initial configuration and moving towards its
desired configuration. To efficiently represent the complete surface, additional moments
with an order greater than two are then added. For this purpose, we use the following
centered moments, which possess translational invariance:

r1 = (µ300 + µ030 + µ003)/w2 (5.23)

r2 = (µ140 + µ014 + µ401)/w2 (5.24)

Finally, the visual feature vector sss that we propose to regulate by visual servoing is
composed as follows:

sss = [xg, yg, zg, r1, r2, l1, l2, l3, [θUθUθU]x , [θUθUθU]y , [θUθUθU]z] (5.25)

5.3.1.1 Modeling

In the previous paragraph, we defined a low-dimensional feature vector sss to represent
the object surface points. In this paragraph, our objective is to analytically calculate the
variation of sss with respect to the manipulated point motions, i.e. ṡss as a function of ẋxxm.

Since each element of sss is a combination of various centered 3D moments, µijk, we begin
by providing the derivation of each element of sss in terms of the centered 3D moments.
This derivation allows us to express sss as a function of a vector of centered 3D moments,
denoted as µµµ. Subsequently, we derive µµµ as a function of ẋxxm. Afterward, we proceed to
derive ṡss as a function of ẋxxm.

The first five elements of sss are defined as combinations of µijk, as shown in (5.19),
(5.23), and (5.24). Benefiting from MMM being a real and symmetric matrix, the analytical
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formulations of eigenvalues and eigenvectors ofMMM can be derived [Deledalle et al., 2017].
More precisely, we have:

λ1 = [a+ b+ c− 2√x1cos(φ / 3)] / 3 (5.26)

λ2 = [a+ b+ c+ 2√x1cos((φ− π) / 3)] / 3 (5.27)

λ3 = [a+ b+ c− 2√x1cos((φ+ π) / 3)] / 3 (5.28)

with

a = µ020 + µ002 , b = µ200 + µ002 , c = µ200 + µ020 , d = −µ110 , e = −µ011 , f = −µ101 ,

x1 = a2 + b2 + c2 − ab− ac− bc+ 3(d2 + f 2 + e2) , φ = atan2(
√

4x3
1 − x2

2, x2)

x2 = −(2a− b− c)(2b− a− c)(2c− a− b)− 54def

+ 9[(2c− a− b)d2 + (2b− a− c)f 2 + (2a− b− c)e2]

Regarding the eigenvectors, they are calculated as follows:

vvv1 =


(λ1 − c− em1)/f

m1

1

 , vvv2 =


(λ2 − c− em2)/f

m2

1

 , vvv3 =


(λ3 − c− em3)/f

m3

1

 ,
(5.29)

with
m1 = d(c− λ1)− ef

f(b− λ1)− de , m2 = d(c− λ2)− ef
f(b− λ2)− de , m3 = d(c− λ3)− ef

f(b− λ3)− de

The [θUθUθU] vector in sss is obtained from [vvv1 vvv2 vvv3] using (5.20). These vectors depend on
the eigenvalues and other elements, all of which solely rely on centered moments. As a
result of this dependency, all the elements of the low-dimensional vector sss are analytically
calculated as functions of the centered moments. Finally, sss can be expressed as follows:

sss = ggg(µµµ) (5.30)

with µµµ = [µ100, µ010, µ001, µ110, µ101, µ011, µ200, µ020, µ002, µ300, µ030, µ003, µ140, µ014, µ401]T

By using the chain rule algorithm, ṡss can be calculated as ṡss = ∂ggg
∂µµµ
µ̇µµ. Therefore, we get:

ṡss = ∂ggg

∂µµµ
LLLµµµẋxxm + ∂ggg

∂µµµ
bbbµµµ = LLLsssẋxxm + bbbsss (5.31)
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with
µ̇µµ = LLLµµµẋxxm + bbbµµµ (5.32)

The complete derivation of LLLsss and bbbsss is given in Appendix (Section 7.1).

5.3.1.2 Control scheme

From the relation (5.31), we use the same strategy as in Section 5.2.1.2 to design the
control scheme and we obtain:

ẋxxm = −λL̂LLsss
+

(sss− sss∗)− L̂LLsss
+
b̂bbsss (5.33)

The stability analysis of the closed-loop control law introduced in (5.33) follows a similar
discussion to that presented in Section 3.1.3.1. The achievement of the 3D surface defor-
mation task depends on two primary factors. The first factor pertains to the rank of LLLsss
and to the actuation state of the system, whether it is over-actuated or under-actuated.
The dimension of sss, as defined in (5.25), is 11, which means that at least 4 manipulated
points must be engaged to ensure the transportation of sss to sss∗. Consequently, if fewer
than 4 manipulated points are used, the reduction of sss to sss∗ is not guaranteed, thereby
impeding the achievement of the shape servoing task. On the other hand, if LLLsss and L̂LLsss

+

are of full rank 11, and L̂LLsss is not too coarse, then error convergence to zero is theoretically
ensured. The second factor is related to the representation of the object surface using
the defined low-dimensional feature vector sss (5.25), which is based on 3D moments. In
essence, if the object surface can be adequately represented using these features, then
driving sss to sss∗ implies that the object surface will be transformed into its desired shape.

5.3.2 Simulation results

In this section, we test the ability of the proposed controller (5.33) to deform a semi-
spherical 3D object, as illustrated in Figure 5.10(a). The objective is to drive its actual
surface points, represented by green points, to their desired positions, indicated by blue
points. This deformation is achieved through the manipulation of a limited number of
three manipulated points, represented by big red points.

To validate the deformation process, we ensure the feasibility of the desired shape.
Initially, the object is at rest state, and then it is deformed by arbitrarily moving the
positions of the three manipulated points. The resulting deformed surface is selected
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as the desired shape since it is attainable using the chosen manipulated points. Two
different views of the deformation task are presented in Figure 5.10. In the first row
(Perspective 1), green points represent actual object surface points, blue points denote
their desired positions, and large red points correspond to manipulated points. The
second row (Perspective 1) in Figure 5.10 displays green ellipsoids, which correspond to
the ellipsoids parameterized by the 9 components of sss that best fit the object surface
points shown in the first row, while blue ellipsoids represent the ellipsoids that best fit the
desired shape points, also shown in the first row. These ellipsoids correspond to points
with the same colour represented in the images directly above them. For instance, the
green ellipsoid in Figure 5.10(c) corresponds to the ellipsoid that fits the green points
in Figure 5.10(a), while the blue ellipsoid in Figure 5.10(c) corresponds to the desired
ellipsoid that fits the blue points in Figure 5.10(a). Rows 3 and 4 provide a second
perspective view on the deformation process, analogous to rows 1 and 2, respectively.

Once the desired object shape is defined, we establish the initial and desired surface
parameters as sss and sss∗. The deformation task is then started with the goal of driving
sss towards sss∗. The resulting deformed object, obtained when the system converges, is
illustrated in Figure 5.10(b) and Figure 5.10(f). These two images depict the same object
state from different perspective views. In Figure 5.10(b), we can see the deformed state
of the object from the same perspective as in Figure 5.10(a), where the object was in its
initial state before stating the visual servoing. Similarly, we provide a second perspective
in Figure 5.10(e) and Figure 5.10(f) showing respectively the objet in its initial and final
shape.

We can observe that the green points approach the blue points in Figure 5.10(b)
and Figure 5.10(f), signifying the success of the deformation task. Furthermore, in Fig-
ure 5.10(d) and Figure 5.10(h), the actual ellipsoid closely matches the desired ellipsoid.
We further present in Figure 5.11 the evolution of ‖sss− sss∗‖, which shows an exponential
decrease of this error from an initial value of 17.5 to 0.142. By analogy with the discussion
provided in Section 3.1.3.1, we can notice that rank(LLLsssL̂LLsss

+
) = 9 < dim(sss) = 11. Con-

sequently, LLLsssL̂LLsss
+
has a non-zero null space, which explains why we obtained a non-zero

value rather than a value close to zero.

Furthermore, we analyze in Figure 5.12 the variation in the Hausdorff distance through-
out the deformation process. Initially, this distance increases slightly, mainly due to the
initial error on the orientation parameters in sss. Despite this effect, the distance error
subsequently converges to a value around 3 mm, starting from an initial value of 9 cm.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.10: 3D Deformation of a semi-spherical ball using 3D moments: The first column
depicts the initial state, while the second column illustrates the final state obtained at
the end of the shape servoing task. 169
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This low value at the convergence of the system validates the success of the deformation
task, as it indicates that the actual object surface points closely approach their desired
positions.

Figure 5.11: Evolution of the error norm for the shape servoing task using 3D moments
and represented in Figure 5.10.

5.3.3 Experimental results

In this section, our objective is to validate the proposed approach based on 3D moments
for shape servoing in an experimental scenario that includes a real soft object, two robotic
manipulators, and a RGB-D camera. Since we use two robots, we can only manipulate
two points, resulting in an under-actuated system (6 < 11). Therefore, the convergence
of the error (sss−sss∗) to a local minimum is expected. In such cases, we consider to achieve
convergence when ‖sss− sss∗‖ reaches 5% of its initial value.

We start by displaying the object states before deformation (left image) and after
deformation (right image) in Figure 5.13. As for our previous experiments, the sticks
appearing in the images are rigid sticks attached to the robotic manipulators, with their
contact points on the object serving as manipulated points. The contact between the
sticks and the object is established at t = 0, when no deformation is applied to the object.
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Figure 5.12: Evolution of the Hausdorff distance between the actual and desired surface
points for the task represented in Figure 5.10.

To present the deformation process more effectively, we show in Figure 5.14 the evolution
of the error norm ‖sss− sss∗‖ during the deformation task. As expected, since rank(LLLsssL̂LLsss

+
)

= 6 < dim(sss) = 11, the shape servoing error norm exponentially converges to a local
minimum, which is within 5% of the initial error norm.

Furthermore, to provide a clearer view of the deformation process, we visualize in Fig-
ure 5.15 the 3D surface of the object before the deformation process (red points), its final
surface (green points), and its desired surface (blue points). As shown in Figure 5.15(a)
and (b), the green points closely align with the blue points, indicating the successful
completion of the deformation task.

5.4 Conclusion

In this chapter, we proposed two real-time model-based and vision-based control laws for
driving the object shape toward a desired configuration. In other words, we validated
two approaches for indirectly positioning the object surface points at desired positions by
manipulating a limited number of points.

In the first approach, we approximated the object shape using Fourier descriptors,

171



Chapter 5 – Shape servoing of a soft object

(a) (b)

Figure 5.13: Experiment on shape servoing based on 3D moments: initial (a) and final
(b) images acquired by the RGB-D camera.

Figure 5.14: Evolution of the error norm for the experimental shape servoing task using
3D moments and represented in Figure 5.13.
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(a) (b)

Figure 5.15: 3D visualization of the surface points of the object shown in Figure 5.13
from two different viewpoints (initial positions in red, final positions in green, and desired
positions in blue).
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which construct a low-dimensional feature vector sss. For a 3D object, its shape was
defined by its 3D surface points, while for a 2D object, its shape was defined by its 2D
contours. We then analytically derived the variation of each element in sss in function of the
motions to be applied to the manipulated points by approximating the soft object with
a MSM. This relation constitutes the basis for our first control law for achieving shape
servoing. We first validated this approach by driving the 2D contour of soft planar objects
in a simulation environment. Subsequently, we validated the positioning of object surface
points in real experiments, involving a real soft object and two robotic manipulators.

In the second approach, we approximated the surface of a 3D object using a low-
dimensional feature vector sss, where its elements are obtained through a combination of 3D
moments. We then analytically formulated the variation of sss in response to the motions
to be applied to the manipulated points, once again approximating the object using a
MSM. From the equations we have developed to find this relationship, we established our
second control law for shaping the object to a desired configuration. We validated this
approach through simulations using synthetic soft objects, and experiments involving real
soft objects with two robotic manipulators.
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Chapter 6

CONCLUSION

6.1 Conclusion

This PhD thesis delved into into the field of robotic manipulation of soft objects, address-
ing various critical aspects and challenges associated with this field. The contributions
and key findings from each chapter have collectively advanced our understanding and
capabilities in controlling and manipulating deformable objects. Furthermore, there are
numerous noteworthy applications to delve into in future work for a deeper exploration
of the methodologies introduced in this thesis. These will be thoroughly examined in
Section 6.2 and Section 6.3.

6.1.1 Indirect positioning of multiple points on a soft object
using a simple mass-spring-model

In Chapter 3, we introduced our first contribution, which involves the analytical formula-
tion of the dispacement of feature points belonging to a deformable object in function of
the motions of manipulated points and the object model parameters. In our approach, we
approximated the object using a mass-spring model, with the model stiffness matrix and
damping value being its physical parameters. The success and robustness of indirectly
positioning multiple object points to their desired locations were demonstrated through
simulation results. In the robustness study, we addressed several key aspects, including
model density (whether a sparse or dense mesh was used) and testing the manipula-
tion task using our approach with coarse model parameters instead of exact parameters.
Additionally, we demonstrated the effectiveness of the deformation task under different
conditions: the positioning task error converged to zero when the system is either fully-
actuated or over-actuated, and it converged to a local minimum when the system is
under-actuated. Furthermore, a comparative analysis with two state-of-the-art model-
free methods underscored the effectiveness of our approach in accomplishing this task,
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regardless of whether the manipulated points are near or far from the feature points and
whether external measurement noise is present or not.

In Chapter 4, we validated this first contribution through practical experimentations,
involving real soft objects with varying geometries and material properties, two robotic
manipulators, and a RGB-D camera. As an initial step, we used a methodology for
reconstructing the geometric model of soft objects, enabling us to handle objects with
diverse geometries. Subsequently, we presented a parameter estimation process that allows
for the creation of a relative mass-spring model to represent the physical behavior of each
object. Since the mass-spring model reproduces a coarse approximation of the real object
behavior, there may be a drift between the model and the actual object deformations.
To address this issue, we presented a correction method for this drift by tracking the
real object using the RGB-D camera. This process realigns the simulation with the
object actual state each time a new RGB-D image is aquired. These steps serve as a
bridge from simulation results to real-world applications. Then, we validated the efficiency
of our approach in indirectly positioning one or two feature points using robot arms.
Furthermore, we tested the positioning task in both fully-actuated and over-actuated
cases, considering the presence of external perturbations. These diverse experiments
validate the applicability of our approach in real-world situations, thereby confirming the
success of our first methodological contribution from both simulation and experimental
results.

6.1.2 Shape servoing of a soft object using a simple mass-spring-
model

In Chapter 5, we expanded upon our first contribution by introducing complete shape
servoing of the soft object, which comprises the second and third contributions. The
object shape is represented by its 2D contour when dealing with 2D objects and its
complete 3D surface when dealing with 3D objects.

The second main contribution of this thesis involved representing the object shape
using Fourier descriptors, which yields a low-dimensional feature vector. We then derived
the analytical relation that links the variation of each vector element to the movements
of the manipulated points. Based on this developed relations, we formulated a physics-
based control law for deforming the shape of a soft object using Fourier descriptors. We
successfully validated the accuracy of driving the 2D object contour to its desired contour
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through simulation results. Furthermore, when dealing with 3D objects, the validation
of the approach for driving the object 3D surface to its desired 3D surface was achieved
through real experiments.

In the third contribution, the object shape was approximated using 3D moments. We
derived analyticaly their variations in function of the displacements of the malipulated
points and used this relationship in the design of the control law. In this approach, we
considered only 3D objects and ensured the validity of this contribution by presenting
both simulation and experimental results. In both cases, the desired shape of the object
was successfully obtained.

6.2 Short-term perspectives

6.2.1 Advancing precision in deformable object manipulation -
Exploring advanced control strategies and model refine-
ment

Accurate modeling of deformable objects is crucial for achieving precision in deforma-
tion tasks. Soft objects exhibit complex behaviors that challenge traditional control ap-
proaches. Here are possible strategies for improving the models used in deformable object
manipulation.

6.2.1.1 Parameter tuning

To enhance our approach, we could begin by adjusting the parameters within the mass-
spring model to better match the exact properties of the deformable object in question.
These parameter adjustments may encompass variables such as spring constants, mass
distribution, and damping coefficients, resulting in a more precise representation of the
object behavior.

While the proposed control laws were designed for a general model that allows for
varying stiffness between neighboring points and different point masses, our parameter
estimation process assumed a uniform stiffness matrix between adjacent points and uni-
form mass distribution. Therefore, a promising direction for future research would be to
refine our approach to model parameter estimation to accommodate model heterogeneity.

Additionally, addressing damping within the model is of interest. Selecting appropriate
damping values for the springs between adjacent points could provide a more comprehen-
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sive representation of real-world scenarios. However, it is important to note that modi-
fying the proposed control laws will be necessary to incorporate this choice of damping
adjustment.

6.2.1.2 Adaptive parameterization

Another interesting future research would involve the development of algorithms capable
of adaptively parameterizing the mass-spring model. These algorithms could continuously
adjust the model parameters based on the object response during manipulation, thereby
accommodating variations in object properties. In this scenario, object tracking during
deformation would be necessary, and model parameter estimation would be employed to
update the model parameters, whether choosing a simple model, as used in this thesis, or
a more complex model, as proposed in the preceding paragraph.

6.2.1.3 Enhancing deformable object manipulation: Beyond PID control

In this thesis, we used a Proportional controller, but it may not always be the most
suitable choice for deformable object manipulation. An alternative controller that could
be suited for this task is Model Predictive Control (MPC). MPC is a control strategy that
leverages a predictive model of the system to optimize control inputs over a finite time
horizon.

For shape servoing of soft objects, MPC formulates the control problem as an opti-
mization task and could rely on a mass-spring model to represent the dynamic of the
object. The objective function would typically include terms like the distance between
feature point positions and their desired locations or the norm of the difference between
shape parameters and their desired values, depending on the desired task. The goal is
to determine a sequence of control inputs, manipulating point motions, over a finite time
horizon to optimize the defined objective function.

At each time step, MPC could predict the future behavior of the system by simu-
lating the dynamic model using the current state and control inputs over the prediction
horizon. This prediction would account for how the deformable object will respond to
applied forces. Subsequently, MPC could optimize the control inputs over the prediction
horizon to minimize the objective function. Only the first control input from the opti-
mized sequence will be applied to the system, and this process will repeat at the next time
step. This iterative approach will allow the controller to adapt to changing conditions
and evolving deformable object behavior over time.

178



6.2.2 Complex scene - multiple objects

Another interesting future work is to implement multiple object modeling, rather than
focusing on a single object. This would enable the deformation of objects within com-
plex scenes, where the entities surrounding the object to be deformed are modeled and
integrated into the deformation process.

We demonstrated the robustness of our approaches against possible external pertur-
bations. When these perturbations originate from objects surrounding the target object,
and by incorporating modeling of these objects, we could consider these perturbations in
the control law. Ultimately, we would enable more precise deformations within complex
scenes. The modeling procedure will not only focus on developing algorithms to simul-
taneously track the motion of different objects but also on modeling their interactions
in a dynamic environment, including the detection and resolution of potential collisions
between them.

6.3 Long-term perspectives

6.3.1 Multi-Modal sensing to enhance perception and precision
in soft object manipulation

An interesting future work is to fuse tactile and vision sensors since many advantages
should arise.

6.3.1.1 Enhanced perception and sensing

Dealing with vision sensors poses various challenges, particularly in positioning the sensor
relative to the deformable object. For successful object parameter estimation and tracking,
the deformable object has to remain within the camera field of view. However, during
object manipulation, the object may become occluded by the robot grippers. To mitigate
this issue, we used thin sticks (see Figure 4.5) to prevent occlusion, but this may not always
be feasible. In cases like the one shown in the tracking process (see Figure 4.4), the robot
end-effector can cause significant occlusion, resulting in the loss of visual information.
Consequently, interesting future work would involve integrating tactile sensors to provide
information on contact forces. These tactile sensors would enable the recovery of visual
information lost due to occlusion by the robot grippers. For example, the estimated
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applied forces could be directly integrated into the object model as constraint forces
in (4.6), enabling the reproduction of the real deformation of the soft object.

6.3.1.2 Contact loss and slippage detection

During manipulation, another challenge such as contact loss between the soft object and
the robotic end-effector may arise. While this contact loss cannot be easily detected using
the vision sensor, tactile sensors would prove their utility in such cases. In case the tactile
sensor does not register any applied force during the deformation, it could serve as an alert
for contact loss. In such case, the deformation task may need to be repeated. Another
solution would be to add constraints on the applied forces to prevent any contact loss.

Moreover, during manipulation, brief instances of slippage between the end-effector
and the object can occur, often being unnoticed by the vision sensor. This poses a
challenge for model-based approaches. Indeed, when the stick attached to the robotic
manipulator makes initial contact with the object, the contact point is detected. We
then establish a correspondence between the object model points and this contact point,
determining the model node number, and consequently, defining the manipulated point.
This correspondence remains constant, assuming that the contact point corresponds to the
same model manipulated point throughout the deformation process. In cases of significant
slippage, this initial correspondence must be re-evaluated, otherwise, accurate deformation
may not be achieved.

In conclusion, tactile sensors provide information about contact forces and object
deformation, while vision sensors offer visual information about the object shape. In
future works, by integrating these two modalities, we could attain a more comprehensive
understanding of the objects being manipulated while surpassing the limitations of the
RGB-D sensor used.

6.3.2 Sensitive organ manipulation - Human-Machine collabo-
ration

An interesting future surgical application would involve the delicate manipulation of sen-
sitive organs, marking a significant advancement in medical technology and techniques.
Given the sensitivity of these organs, a possible approach is to break down the deforma-
tion task into incremental steps, each requiring collaboration between a skilled medical
professional, typically a surgeon, and a machine that integrates the object model and
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generates a precise control law. In this collaborative process, the surgeon assumes the
responsibility of both monitoring the manipulation task and intervening when necessary.
Simultaneously, a machine integrates the object model and generates the control law to
meet the deformation task requirements, as previously discussed in this thesis.

This paragraph delves into the intricacies of this collaborative process, shedding light
on how expertise and technology could merge to achieve desired outcomes in scenarios
requiring sensitive organ manipulation. Moreover, to achieve controlled and incremental
deformations, especially in scenarios involving sensitive organ manipulation, this method
could comprise a multi-step process. Here is a proposition of what this multi-step process
might look like:

1. Optimal trajectory planning: Before initiating each deformation step, an optimal
trajectory planning algorithm calculates the ideal path and motion trajectory for the
robotic system or surgical tool. This planning considers the organ characteristics,
constraints, and desired deformation.

2. Integration with coarse model-based control law: The results of the optimal trajec-
tory planning are integrated into a simple model-based control law. The trajectory
planning provides a set of controlled points (feature points) and intermediate de-
sired positions. This information is then integrated into the control law, which, in
turn, determines the velocities to be applied by the surgical tool to ensure that the
feature points follow the planned trajectory. This step can be accomplished using
the proposed approach for an indirect positioning task.

3. Real-Time monitoring: The medical professional continually monitors the deforma-
tion process in real-time, closely observing how the actual deformation aligns with
the planned trajectory. If the medical professional detects significant deviations
from the desired outcome or perceives potential risks to the organ integrity, he can
intervene.

4. Expert corrections: Drawing on the expertise of the medical professional and sensory
feedback, the physicians makes necessary adjustments to the deformation strategy to
rectify any discrepancies or issues within the specific procedural goals. For example,
he can halt the deformation process, correct any deviations between the output of
the controlled points and their desired positions generated by the path planning,
and then resume it. In the latter case, we ensure that errors do not accumulate
during the process for better precision.
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5. Gradual deformation progression: With each iteration, the organ undergoes a con-
trolled deformation increment. This incremental approach continues until the overall
deformation goal is achieved. The aim of these incremental iterations is to ensure
that, at each step, the medical professional can detect any potential harm to the
organ, allowing for timely intervention based on their deep knowledge of organ be-
havior and anatomical considerations.

6. Ensuring safety and precision: Throughout the entire process, the combined efforts
of trajectory planning, automated control inputs, and expert intervention maintain
a delicate balance between safety and precision, ultimately achieving the desired
organ deformation while prioritizing patient safety and optimal medical outcomes.

This multi-step approach reflects a cautious methodology for achieving controlled de-
formations in sensitive organ manipulation scenarios. It leverages both computational
models and human expertise to optimize the process while ensuring the highest standards
of patient safety and desired medical results.
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Chapter 7

APPENDIX

7.1 Shape servoing based on 3D moments - Deriva-
tion of the interaction matrix and the feed-forward
term

In this appendix, we derive analytically the required equations to obtain LLLsss and bbbsss as
defined in (5.31). We can notice that these elements depend on ∂ggg

∂µµµ
, LLLµµµ and bbbµµµ.

We begin by calculating LLLµµµ and bbbµµµ. By approximating the physical behavior of the
object using the MSM, we obtain similarly to (5.5) the following equation for any surface
point Poi , with 1 ≤ i ≤ w:

ẋoi =
M∑
l=1

AAAoiml(1, :)ẋxxml + bbboi(1) (7.1)

ẏoi =
M∑
l=1

AAAoiml(2, :)ẋxxml + bbboi(2) (7.2)

żoi =
M∑
l=1

AAAoiml(3, :)ẋxxml + bbboi(3) (7.3)

with AAAolml(i, :) representing the ith row of the 3x3 matrix AAAolml . From the definition of
µijk given in (5.17), we obtain:

µ̇ijk =
w∑
l=1

i(xol−xg)(i−1)(ẋol− ẋg) + j(yol− yg)(j−1)(ẏol− ẏg) +k(zol− zg)(k−1)(żol− żg)

which can be written using (7.1), (7.2) and (7.3) as follows:

µ̇ijk = LLLµijkẋxxm + bbbµijk (7.4)
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with

LLLµijk =
[
LLLµijk(1, 1 : 4)︸ ︷︷ ︸

1x3

. . . LLLµijk(1, 3p+ 1 : 3p+ 4) . . . LLLµijk(1, 3M − 2 : 3M + 1)
]
(7.5)

bbbµijk =
w∑
l=1

i(xol − xg)(i−1)

bbbol(1)− 1
w

w∑
q=1

bbboq(1)
 (7.6)

+ j(yol − yg)(j−1)

bbbol(2)− 1
w

w∑
q=1

bbboq(2)
 +k(zol − zg)(k−1)

bbbol(3)− 1
w

w∑
q=1

bbboq(3)


and

LLLµijk(1, 3p+ 1 : 3p+ 4) =
w∑
l=1

i(xol − xg)(i−1)

AAAolmp+1(1, :)− 1
w

w∑
q=1

AAAoqmp+1(1, :)


+ j(yol − yg)(j−1)

AAAolmp+1(2, :)− 1
w

w∑
q=1

AAAoqmp+1(2, :)


+k(zol − zg)(k−1)

AAAolmp+1(3, :)− 1
w

w∑
q=1

AAAoqmp+1(3, :)


Then, LLLµµµ and bbbµµµ are obtained as follows:

LLLµµµ =
[
LLLµ100 LLLµ010 LLLµ001 LLLµ110 LLLµ101 LLLµ011 LLLµ200 LLLµ020 LLLµ002 LLLµ300 LLLµ030 LLLµ003 LLLµ140 LLLµ014 LLLµ401

]T
,

bbbµµµ =
[
bbbµ100 bbbµ010 bbbµ001 bbbµ110 bbbµ101 bbbµ011 bbbµ200 bbbµ020 bbbµ002 bbbµ300 bbbµ030 bbbµ003 bbbµ140 bbbµ014 bbbµ401

]
,T

with each element of LLLµµµ and bbbµµµ obtained directly from (7.5) and (7.6).

Returning back to ∂ggg
∂µµµ
, its first eight rows that correspond to the first eight elements

of sss (5.25) can be obtained as follows:

∂ggg

∂µµµ
(1, :) =

[
1/w, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

]
,

∂ggg

∂µµµ
(2, :) =

[
0, 1/w, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

]
,

∂ggg

∂µµµ
(3, :) =

[
0, 0, 1/w, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

]
,

∂ggg

∂µµµ
(4, :) =

[
0, 0, 0, 0, 0, 0, 1/w2, 1/w2, 1/w2, 0, 0, 0

]
,
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∂ggg

∂µµµ
(5, :) =

[
0, 0, 0, 0, 0, 0, 0, 0, 0, 1/w2, 1/w2, 1/w2

]
,

∂ggg

∂µµµ
(6, :) =

[
g6 g6 g6 0 0 0 −g6

cos (φ3 )
√
x1

0 g6
2√x1 sin (φ3 )

3

]
QQQ,

∂ggg

∂µµµ
(7, :) =

[
g7 g7 g7 0 0 0 g7

cos (φ−π
3 )

√
x1

0 −g7
2√x1 sin (φ−π

3 )
3

]
QQQ,

∂ggg

∂µµµ
(8, :) =

[
g8 g8 g8 0 0 0 −g8

cos (φ+π
3 )

√
x1

0 g8
2√x1 sin (φ+π

3 )
3

]
QQQ

with

g6 =

√
a+ b+ c− 2√x1 cos(φ3 )

2
√

3w(a+ b+ c− 2√x1 cos(φ3 ))

g7 =

√
a+ b+ c+ 2√x1 cos(φ−π3 )

2
√

3w(a+ b+ c+ 2√x1 cos(φ−π3 ))

g8 =

√
a+ b+ c− 2√x1 cos(φ+π

3 )
2
√

3w(a+ b+ c− 2√x1 cos(φ+π
3 ))

and QQQ is a 9x15 matrix, whose non-zero elements are given below:

QQQ(1, 8) = 1 ,QQQ(1, 9) = 1 ,QQQ(2, 7) = 1 ,QQQ(2, 9) = 1 ,QQQ(3, 7) = 1 ,QQQ(3, 8) = 1,

QQQ(4, 4) = 1 ,QQQ(5, 6) = −1, QQQ(6, 5) = −1 ,QQQ(7, 4) = 6µ110 ,QQQ(7, 5) = 6µ101,

QQQ(7, 6) = 6µ011, QQQ(7, 7) = −µ002 − µ020 + 2µ200, QQQ(7, 8) = −µ002 + 2µ020 − µ200

QQQ(7, 9) = 2µ002 − µ020 − µ200, QQQ(8, 4) = −54µ011µ101 + 18µ110(−2µ002 + µ020 + µ200),

QQQ(8, 5) = −54µ011µ110 + 18µ101(µ002 − 2µ020 + µ200),

QQQ(8, 6) = 18µ011(µ002 + µ020 − 2µ200)− 54µ101µ110,

QQQ(8, 7) = −18µ2
011 + 9µ2

101 + 9µ2
110 + (−2µ002 + µ020 + µ200)(−µ002 − µ020 + 2µ200)

+ 2(−2µ002 + µ020 + µ200)(µ002 − 2µ020 + µ200)

+ (µ002 − µ020 + 2µ200)(µ002 − 2µ020 + µ200),

QQQ(8, 8) = 9µ2
011 − 18µ2

101 + 9µ2
110 − 2(−2µ002 + µ020 + µ200)(−µ002 − µ020 + 2µ200)

− (−2µ002 + µ020 + µ200)(µ002 − 2µ020 + µ200)

+ (−µ002 − µ020 + 2µ200)(µ002 − 2µ020 + µ200),

QQQ(8, 9) = 9µ2
011 + 9µ2

101 − 18µ2
110 + (−2µ002 + µ020 + µ200)(−µ002 − µ020 + 2µ200)

− (−2µ002 + µ020 + µ200)(µ002 − 2µ020 + µ200)
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− 2(−µ002 − µ020 + 2µ200)(µ002 − 2µ020 + µ200),

QQQ(9, :) = 3x2

2x1

√
4x3

1 − x2
2

QQQ(7, :) +
 x2

2

4x3
1

√
4x3

1 − x2
2

−

√
4x3

1 − x2
2

4x3
1

 QQQ(8, :)

Concerning the last three terms of ∂ggg
∂µµµ
, a more complex calculation is required. Since they

depend on the rotation matrix (5.18) that corresponds to the ellipsoid orientation, we
begin by presenting the derivatives of the inertia matrix eigenvectors. Subsequently, we
will obtain the derivative of the rotation matrix, and finally, we will derive the derivative
of its [θUθUθU] representation (5.20), denoted as

[ ˙θU̇θU̇θU
]
, which corresponds to the last three

terms of ∂ggg
∂µµµ
. The derivative of the inertia matrix eigenvectors is obtained from (5.29) as

follows:

v̇vv1(1) =



1
f

(
v11 − v12 + 1

3

)
1
f

(
v11 + 2v12 + 1

3

)
1
f

(
−2v11 − v12 − 2

3

)
1
f

(
−3v12

e
f
− v14

)
1
f

(
3v11

f
d
− 3v12

d
f
− v12

v11
d
f

)
1
f2

[
3v11

ef
d
− v12v13 − 1

3v15
]

cos (φ3 )
f
√
x1

(
−v11 + v12 − 1

3

)
0

2
3f sin

(
φ
3

)√
x1
(
v11 − v12 + 1

3

)



QQQ, v̇vv1(2) =



1
e

(−v11 + v12)
1
e

(−v11 − 2v12)
1
e

(2v11 + v12)
3
f
v12 + 1

e
v14

−3f
de
v11 + 3d

ef
v12

−3
d
v11 + v12v13

ef

−v12 cos (φ3 )
e
√
x1

+ d cos (φ3 )
3√x1v16

0
2√x1 sin

(
φ
3

) (
− d

9v16
+ fv17

9v2
16

)



QQQ

v̇vv2(1) =



1
f

(
v21 − v22 + 1

3

)
1
f

(
v21 + 2v22 + 1

3

)
1
f

(
−2v21 − v22 − 2

3

)
1
f

(
−3v22

e
f
− v24

)
1
f

(
3v21

f
d
− 3v22

d
f
− v22

v21
d
f

)
1
f2

[
3v21

ef
d
− v22v23 − 1

3v25
]

cos (π−φ
3 )

f
√
x1

(
v21 − v22 + 1

3

)
0

2
3f sin

(
π−φ

3

)√
x1
(
v21 − v22 + 1

3

)



QQQ, v̇vv2(2) =



1
e

(−v21 + v22)
1
e

(−v21 − 2v22)
1
e

(2v21 + v22)
3
f
v22 + 1

e
v24

−3f
de
v21 + 3d

ef
v22

−3
d
v21 + v22v23

ef
v22 cos (π−φ

3 )
e
√
x1

− d cos (π−φ
3 )

3√x1v26

0
2√x1 sin

(
π−φ

3

) (
− d

9v26
+ fv27

9v2
26

)



QQQ
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v̇vv3(1) =



1
f

(
v31 − v32 + 1

3

)
1
f

(
v31 + 2v32 + 1

3

)
1
f

(
−2v31 − v32 − 2

3

)
1
f

(
−3v32

e
f
− v34

)
1
f

(
3v31

f
d
− 3v32

d
f
− v32

v31
d
f

)
1
f2

[
3v31

ef
d
− v32v33 − 1

3v35
]

cos (π+φ
3 )

f
√
x1

(
−v31 + v32 − 1

3

)
0

2
3f sin

(
π+φ

3

)√
x1
(
v31 − v32 + 1

3

)



QQQ, v̇vv3(2) =



1
e

(−v31 + v32)
1
e

(−v31 − 2v32)
1
e

(2v31 + v32)
3
f
v32 + 1

e
v34

−3f
de
v31 + 3d

ef
v32

−3
d
v31 + v32v33

ef

−v32 cos (π+φ
3 )

e
√
x1

+ d cos (π+φ
3 )

3√x1v36

0
2√x1 sin

(
π+φ

3

) (
− d

9v36
+ fv37

9v2
36

)



QQQ

v̇vv1(3) = v̇vv2(3) = v̇vv3(3) = 000

with

v11 = de

−3de+ f
(
−a+ 2b− c+ 2√x1 cos

(
φ
3

))
v12 =

ef
(
d
(
−a− b+ 2c+ 2√x1 cos

(
φ
3

))
− 3ef

)
(
−3de+ f

(
−a+ 2b− c+ 2√x1 cos

(
φ
3

)))2

v13 = a− 2b+ c− 2√x1 cos
(
φ

3

)
, v16 = de

3v11

v14 =
e
(
−a− b+ 2c+ 2√x1 cos

(
φ
3

))
−3de+ f

(
−a+ 2b− c+ 2√x1 cos

(
φ
3

))
v15 = a

3 + b

3 − 2 c3 −
v12

v11

ed

f
− 2√x1 cos

(
φ

3

)

v17 = −ef + d

3

(
−a− b+ 2c+ 2√x1 cos

(
φ

3

))

v21 = de

−3de+ f
(
−a+ 2b− c− 2√x1 cos

(
π−φ

3

))
v22 =

ef
(
d
(
−a− b+ 2c− 2√x1 cos

(
π−φ

3

))
− 3ef

)
(
−3de+ f

(
−a+ 2b− c− 2√x1 cos

(
π−φ

3

)))2

v23 = a− 2b+ c+ 2√x1 cos
(
π − φ

3

)
, v26 = de

3v21

v24 =
e
(
−a− b+ 2c− 2√x1 cos

(
π−φ

3

))
−3de+ f

(
−a+ 2b− c− 2√x1 cos

(
π−φ

3

))
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v25 = a

3 + b

3 − 2 c3 −
v22

v21

ed

f
+ 2√x1 cos

(
π − φ

3

)

v27 = −ef + d

3

(
−a− b+ 2c− 2√x1 cos

(
φ

3

))

v31 = de

−3de+ f
(
−a+ 2b− c+ 2√x1 cos

(
π+φ

3

))
v32 =

ef
(
d
(
−a− b+ 2c+ 2√x1 cos

(
π+φ

3

))
− 3ef

)
(
−3de+ f

(
−a+ 2b− c+ 2√x1 cos

(
π+φ

3

)))2

v33 = a− 2b+ c− 2√x1 cos
(
π + φ

3

)
, v36 = de

3v31

v14 =
e
(
−a− b+ 2c+ 2√x1 cos

(
φ
3

))
−3de+ f

(
−a+ 2b− c+ 2√x1 cos

(
φ
3

))
v35 = a

3 + b

3 − 2 c3 −
v32

v31

ed

f
− 2√x1 cos

(
π + φ

3

)

v17 = −ef + d

3

(
−a− b+ 2c+ 2√x1 cos

(
π + φ

3

))

Next, from (5.18) we obtain the derivative of the rotation matrix as:

˙̃R̃̇R̃̇R =


v̇̇v̇v1(1)
‖vvv1‖ −

vvv1(1) ˙‖vvv1‖
‖vvv1‖2

v̇̇v̇v2(1)
‖vvv2‖ −

vvv2(1) ˙‖vvv2‖
‖vvv2‖2

v̇̇v̇v3(1)
‖vvv3‖ −

vvv3(1) ˙‖vvv3‖
‖vvv3‖2

v̇̇v̇v1(2)
‖vvv1‖ −

vvv1(2) ˙‖vvv1‖
‖vvv1‖2

v̇̇v̇v2(2)
‖vvv2‖ −

vvv2(2) ˙‖vvv2‖
‖vvv2‖2

v̇̇v̇v3(2)
‖vvv3‖ −

vvv3(2) ˙‖vvv3‖
‖vvv3‖2

− ˙‖vvv1‖
‖vvv1‖2 − ˙‖vvv2‖

‖vvv2‖2 − ˙‖vvv3‖
‖vvv3‖2

RRR∗T (7.7)

with

˙‖vvv1‖ = vvv1(1)v̇̇v̇v1(1) + vvv1(2)v̇̇v̇v1(2)
‖vvv1‖

, ˙‖vvv2‖ = vvv2(1)v̇̇v̇v2(1) + vvv2(2)v̇̇v̇v2(2)
‖vvv2‖

˙‖vvv3‖ = vvv3(1)v̇̇v̇v3(1) + vvv3(2)v̇̇v̇v3(2)
‖vvv3‖

We can simplify this expression as follows:

˙̃R̃̇R̃̇R =


gggR̃̃R̃R(1, 1)QQQ gggR̃̃R̃R(1, 2)QQQ gggR̃̃R̃R(1, 3)QQQ
gggR̃̃R̃R(2, 1)QQQ gggR̃̃R̃R(2, 2)QQQ gggR̃̃R̃R(2, 3)QQQ
gggR̃̃R̃R(3, 1)QQQ gggR̃̃R̃R(3, 2)QQQ gggR̃̃R̃R(3, 3)QQQ

 (7.8)

with gggR̃̃R̃R obtained by identifying (7.8) with (7.7). Furthermore, calculating the derivative
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of
[ ˙θU̇θU̇θU

]
requires θ̇, which is obtained from (5.21) as:

θ̇ = − [(gggR̃̃R̃R(1, 1) + gggR̃̃R̃R(2, 2) + gggR̃̃R̃R(3, 3)) /sin(θ)]QQQ

Finally, we get from (5.22):

[ ˙θU̇θU̇θU
]
x

=

(
˙̃R̃̇R̃̇R(3, 2)− ˙̃R̃̇R̃̇R(2, 3)

)
2sin(θ)− 2θ̇cos(θ)

(
R̃̃R̃R(3, 2)− R̃̃R̃R(2, 3)

)
4sin2(θ)

from which we obtain:

∂ggg

∂µµµ
(9, :) = gggR̃̃R̃R(3, 2)− gggR̃̃R̃R(2, 3)

2sin(θ) QQQ

+
cos(θ) (gggR̃̃R̃R(1, 1) + gggR̃̃R̃R(2, 2) + gggR̃̃R̃R(3, 3))

(
R̃̃R̃R(3, 2)− R̃̃R̃R(2, 3)

)
2 sin3(θ) QQQ

Similarly, by calculating
[ ˙θU̇θU̇θU

]
y
and

[ ˙θU̇θU̇θU
]
z
, we obtain:

∂ggg

∂µµµ
(10, :) = gggR̃̃R̃R(1, 3)− gggR̃̃R̃R(3, 1)

2sin(θ) QQQ

+
cos(θ) (gggR̃̃R̃R(1, 1) + gggR̃̃R̃R(2, 2) + gggR̃̃R̃R(3, 3))

(
R̃̃R̃R(1, 3)− R̃̃R̃R(3, 1)

)
2 sin3(θ) QQQ

∂ggg

∂µµµ
(11, :) = gggR̃̃R̃R(2, 1)− gggR̃̃R̃R(1, 2)

2sin(θ) QQQ

+
cos(θ) (gggR̃̃R̃R(1, 1) + gggR̃̃R̃R(2, 2) + gggR̃̃R̃R(3, 3))

(
R̃̃R̃R(2, 1)− R̃̃R̃R(1, 2)

)
2 sin3(θ) QQQ

In conclusion, in this appendix we developed analytically all the rows of the matrix
∂ggg
∂µµµ
, which can be concatenated to form the entire matrix ∂ggg

∂µµµ
. Furthermore, earlier in this

appendix, we analytically derived LLLµµµ (7.5) and bbbµµµ (7.6). Therefore, the interaction matrix
LLLsss that relates the variation of the low-dimensional feature vector sss, given in (5.25), as a
function of the manipulated points ẋxxm, can be analytically calculated using: LLLsss = ∂ggg

∂µµµ
LLLµµµ.

Moreover, the term representing the model inertia, bbbsss, is also analytically obtained as:
bbbsss = ∂ggg

∂µµµ
bbbµµµ, which concludes our development.
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Titre : Asservissement visuel d’objets déformables à partir du modèle masse-ressort

Mot clés : Asservissement visuel, manipulation d’objets déformables, modèle physique, suivi

d’objets déformables.

Résumé : La manipulation d’objets rigides a
depuis longtemps alimenté l’automatisation,
tandis que l’adaptation aux matériaux souples
reste un problème ouvert. Cette étude se
concentre sur la commande de la forme d’ob-
jets déformables en utilisant le modèle masse-
ressort (MSM) pour développer des relations
analytiques entre les déplacements des points
de l’objet et le mouvement des points manipu-
lés. Nous dérivons une loi de commande ba-
sée sur cette relation pour positionner avec
précision en temps réel plusieurs points de
l’objet dans différentes expériences mettant
en œuvre divers objets souples, deux mani-

pulateurs robotiques et une caméra RGB-D.
Nous proposons en outre deux méthodes de
déformation de la forme des objets souples,
en utilisant des vecteurs de caractéristiques
de faible dimension, en exploitant les descrip-
teurs de Fourier ou les moments 3D, pour
paramétrer la surface de l’objet. Diverses ex-
périences confirment l’efficacité de ces para-
métrisations dans la commande de la forme.
Nous détaillons également la création du mo-
dèle, l’estimation de ses paramètres et le suivi
des objets déformables, comblant ainsi l’écart
entre les déformations du modèle et celles du
monde réel.

Title: Vision-based shape servoing of soft objects using mass-spring model

Keywords: Visual servoing, real-time shape control, compliant manipulation, physics-based

model, deformable object tracking.

Abstract: Rigid object manipulation has long
driven automation, while adapting to soft ma-
terials remains an open problem. This study
focuses on deformable object shape control,
utilizing the mass-spring model for develop-
ing analytical relations between object points
displacements and manipulator motions. We
derive a control law based on this relation for
accurate real-time positioning of multiple ob-
ject points in different experiments employing
various soft objects, two robotic manipulators,

and a RGB-D camera. We further provide two
methods for soft object shape deformation,
using low-dimensional feature vectors, lever-
aging Fourier descriptors or 3D moments, to
parametrize the object surface. Various exper-
iments affirm the efficacy of these parameter-
izations in shape control. We also elaborate
on model creation, its parameter estimation,
and deformable object tracking, bridging the
gap between the model and real-world defor-
mations.
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