
HAL Id: tel-04394652
https://theses.hal.science/tel-04394652v1
Submitted on 15 Jan 2024 (v1), last revised 27 Feb 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient tree-based symbolic WCET computation
Sandro Grebant

To cite this version:
Sandro Grebant. Efficient tree-based symbolic WCET computation. Embedded Systems. Université
de Lille, 2023. English. �NNT : �. �tel-04394652v1�

https://theses.hal.science/tel-04394652v1
https://hal.archives-ouvertes.fr

École doctorale Mathématiques, sciences du numérique et de leurs interactions
(MADIS-631)

Calcul efficace du pire temps d’exécution symbolique à base

d’arbres
Efficient tree-based symbolic WCET computation

Thèse
Informatique et applications

Préparée par
Sandro Grebant

En vue de l’obtention du grade de
Docteur de l’Université de Lille

Soutenue publiquement le
07/11/2023

Membres du Jury

Isabelle Puaut PR, Université de Rennes Rapporteure
Matthieu Moy MCF (HDR), Université Lyon 1 Rapporteur
Emmanuel Grolleau PR, ENSMA Examinateur/Président
Clément Ballabriga MCF, Université de Lille Examinateur
Julien Forget MCF (HDR), Université de Lille Co-directeur de thèse
Giuseppe Lipari PR, Université de Lille Directeur de thèse

Résumé

Un système temps réel est un système informatique soumis à des contraintes de temps, et
en particulier à des échéances. Les systèmes temps réels critiques sont une sous-classe de
ces systèmes qui doivent impérativement respecter leurs échéances. Dans ce genre de sys-
tèmes, manquer une échéance peut avoir des conséquences catastrophiques pouvant aller
jusqu’à la perte de vies humaines. Pour s’assurer que ces systèmes ne manquent jamais
leurs échéances, l’analyse de pire temps d’exécution (PTE, ou WCET en anglais) calcule
une limite supérieure au temps d’exécution des programmes qui doivent être exécutés.

Traditionnellement, l’analyse statique du PTE produit un entier qui représente une
borne supérieure au nombre de cycles du processeur nécessaires à l’exécution de ce pro-
gramme. Cependant, le temps d’exécution d’un programme peut dépendre de paramètres
matériels, l’état du cache notamment, ou de paramètres logiciels, comme les paramètres
d’entrée du programme. Calculer un seul PTE sous la forme d’un entier, peu importe la
valeur des paramètres, est donc souvent pessimiste. Pour résoudre ce problème, l’analyse
paramétrique du PTE produit une formule arithmétique qui dépend de différents para-
mètres choisis. Instancier cette formule avec des valeurs pour chaque paramètre permet
d’obtenir un PTE plus précis qui prend en compte la valeur de ces paramètres.

Parmi les différentes analyses paramétriques, les techniques à base d’arbres montrent
une complexité faible. En effet, elles utilisent une structure arborescente qui peut facile-
ment être transformée en une formule arithmétique, ce qui permet de calculer le PTE en
incluant des symboles, et donc des paramètres, de manière efficace. Néanmoins, ces ap-
proches ont aussi des inconvénients. Tout d’abord, ces méthodes sont connues pour leurs
difficultés à tenir compte des effets des composants matériels sur le PTE. Ensuite, elles
montrent également des difficultés à prendre en compte certains aspects sémantiques du
programme, qui peuvent avoir un impact conséquent sur le PTE. Finalement, tout comme
les autres analyses paramétriques, les paramètres proposés doivent être déterminés par
l’utilisateur.

Dans cette thèse, nous étendons une technique de calcul symbolique du PTE pour
aborder trois problèmes liés à des techniques de calcul de PTE paramétrique :

1. nous avons développé une technique qui élimine les chemins sémantiquement infai-

iii

iv

sables de la représentation du programme utilisée pour calculer le PTE ;

2. nous avons adapté une technique existante d’analyse de pipeline, qui fonctionne
avec les techniques non paramétriques de calcul du PTE à base de graphes, afin de
l’utiliser dans une technique d’analyse paramétrique du PTE utilisant des arbres ;

3. nous avons développé une technique paramétrique qui prend automatiquement en
compte les effets des paramètres d’entrée du programme sur le PTE. Cette technique
produit une formule dont les paramètres sont les paramètres d’entrée du programme
et ne requiert aucune connaissance du programme de la part de l’utilisateur.

Mots-clés – Pire temps d’exécution, analyse statique, calcul symbolique

Abstract

A real-time system is a computer system subject to timing constraints, and in particular to
deadlines. Critical real-time systems are a subclass of those systems that absolutely must
meet their deadlines. In such systems, missing a deadline can have disastrous consequences
and may even cause the loss of human lives. So as to ensure that such a system never
misses a deadline, the worst-case execution time (WCET) analysis computes an upper
bound to the execution time of the programs to be executed.

Static WCET analysis traditionally takes a program and produces an integer upper
bound to the number of processor cycles required to execute this program. However, the
execution time of a program may vary according to various parameters, such as hardware
parameters, e.g. the state of the cache, or software parameters, e.g. input values passed to
the program. Thus computing a single WCET, regardless of the parameter values, is often
pessimistic. To overcome this issue, parametric WCET analysis produces an arithmetic
formula that depends on various chosen parameters. Instantiating this formula with actual
parameter values enables to produce a more precise WCET that takes into account these
parameters.

Among the different parametric techniques, tree-based WCET computation techniques
have a low complexity. Indeed, they rely on a tree structure that can easily be transformed
into an arithmetic formula, which enables to handle symbols, and thus parameters, effi-
ciently. Nevertheless, these approaches also exhibit some drawbacks. First, they struggle
to take the effect of the hardware components on the WCET into account. Second, they
also struggle to take some aspects of the program semantics into account, that can have
a big impact on the WCET. Third, as other parametric WCET analysis techniques, the
proposed parameters must be determined by the user.

In this thesis, we extend a symbolic WCET computation technique, to tackle three
issues with parametric tree-based WCET computation techniques:

1. We developed a technique that eliminates program paths that are infeasible, due
to the program semantics, from the program representation used to compute the
WCET;

2. We adapted an existing pipeline analysis, that works with graph-based non-para-

v

vi

metric WCET analysis, to use it in a parametric tree-based WCET analysis;

3. We developed a parametric technique that automatically takes into account the
effect of the program input values on the WCET. This technique produces a formula
whose parameters are the argument values passed to the program and it does not
require the user to have any knowledge about this program.

Keywords – Worst-case execution time, static analysis, symbolic computation

Remerciements

Cette thèse présente le fruit de trois années de travail et bien que mon nom soit le seul
qui y apparaisse en tant qu’auteur, ce document n’aurait probablement pas pu aboutir
sans de nombreuses personnes que je souhaite remercier dans ce chapitre.

Pour commencer, j’aimerais remercier les personnes ayant accepté de participer à mon
jury. Je tiens tout d’abord à exprimer toute ma reconnaissance envers Isabelle Puaut et
Matthieu Moy, rapporteurs, qui ont pris le temps de relire une première version de ce
document et de me faire part de leurs remarques constructives et pertinentes, me per-
mettant de ce fait d’améliorer le contenu ainsi que la présentation de cette version finale.
Je souhaite également remercier chaleureusement Emmanuel Grolleau, examinateur, qui
a pris le temps de lire cette thèse et de présider le jury lors de la soutenance.

Je souhaite également remercier les différentes personnes ayant participé à l’encadre-
ment de ma thèse. Clément Ballabriga a non seulement co-encadré ma thèse, mais m’a
aussi beaucoup appris sur Otawa. Julien Forget, co-directeur de ma thèse, s’est consi-
dérablement impliqué dans mon encadrement et m’a initié aux principes de la rédaction
scientifique. Enfin, je tiens à exprimer ma gratitude envers Giuseppe Lipari, mon directeur
de thèse, dont les conseils et l’expérience ont souvent permis de solutionner les problèmes
rencontrés.

Je souhaite à présent remercier l’équipe SyCoMoRES de CRIStAL ainsi que les anciens
doctorants de l’équipe, en particulier pour leur accueil et la bonne ambiance qu’ils ont su
instaurer dans mon environnement de travail.

Enfin, je tiens à exprimer ma reconnaissance envers toutes les autres personnes, sans
nul doute trop nombreuses pour être individuellement mentionnées, qui ont directement
ou indirectement contribué à ma thèse, je pense notamment à ma famille et à mes amis.
J’aimerais tout de même remercier particulièrement Flore-Anne Grebant, ma sœur, qui a
relu les parties françaises de ce document.

vii

Contents

1 Introduction 1
1.1 Context . 2

1.1.1 Embedded systems . 2
1.1.2 Real-time systems . 2
1.1.3 Worst-case execution time . 3
1.1.4 Parametric WCET analysis . 5

1.2 Motivations . 5
1.2.1 Limitations of current approaches 5
1.2.2 Starting point and objectives . 6

1.3 Contributions . 6
1.3.1 Related publications . 7

1.4 Thesis outline . 7

2 Static WCET analysis: state of the art 9
2.1 General framework . 11
2.2 Flow analysis . 12

2.2.1 Basic blocks . 13
2.2.2 Flow representation . 13

2.3 Hardware analysis . 16
2.3.1 Pipeline . 16
2.3.2 Cache . 20
2.3.3 Branch prediction . 24

2.4 WCET computation . 27
2.4.1 Graph-based techniques . 27
2.4.2 Tree-based techniques . 30
2.4.3 Model checking . 32

2.5 Auxiliary analyses . 33
2.5.1 Loop bound analyses . 33
2.5.2 Infeasible paths analysis . 33

ix

x CONTENTS

2.6 Parametric WCET computation . 39
2.6.1 Parametric WCET from intermediate code 40
2.6.2 Parametric integer programming 40
2.6.3 The minimum propagation algorithm 41
2.6.4 Parametric path analysis . 43
2.6.5 Tree-based parametric WCET . 43

2.7 Background: Symbolic WCET computation 44
2.7.1 Control-Flow Tree . 44
2.7.2 Abstract WCET . 45
2.7.3 Computing the WCET of a control-flow tree 47

3 Infeasible paths in tree-based WCET analysis 49
3.1 Introduction . 50
3.2 Overview . 51
3.3 Pseudo paths . 52

3.3.1 Infeasibility constraints . 53
3.3.2 Pseudo paths . 54
3.3.3 Building the pseudo paths of a tree 56

3.4 From pseudo paths to control-flow-trees . 58
3.4.1 Pseudo trees . 58
3.4.2 Building pseudo trees . 59
3.4.3 Building the feasible control-flow tree 61
3.4.4 Optimization . 63

3.5 Experiments . 64
3.5.1 Experimental setup . 64
3.5.2 Experimental results . 66

3.6 Conclusion and discussions . 69

4 Pipeline and tree-based WCET analysis 71
4.1 Introduction . 72

4.1.1 Motivating example . 72
4.1.2 Contribution . 73

4.2 From control-flow graph to control-flow tree 74
4.2.1 Trivial case: basic blocks with a single incoming edge 75
4.2.2 Basic blocks with several incoming edges 75
4.2.3 Limitation . 79

4.3 Symbols with pipeline analysis . 79
4.4 Experiments . 80

CONTENTS xi

4.4.1 Experimental setup . 80
4.4.2 Benchmark selection process . 81
4.4.3 Experimental results . 81

4.5 Conclusion and discussions . 83

5 Procedure arguments as parameters 85
5.1 Introduction . 87

5.1.1 Motivating example . 87
5.1.2 Contribution . 89

5.2 Overview . 90
5.3 Abstract interpretation of binary code . 93

5.3.1 Polyhedra . 93
5.3.2 Abstract state . 94
5.3.3 Interpretation procedure . 94

5.4 Infering input conditionals . 95
5.4.1 Identifying procedure arguments . 95
5.4.2 From polyhedra to input conditionals 96

5.5 Symbolic WCET with input conditionals 97
5.5.1 Control-flow tree with input conditionals 99
5.5.2 WCET formulas with input conditionals 99
5.5.3 Simplifying WCET formula . 100
5.5.4 Formula instantiation . 102

5.6 Towards modular WCET analysis . 103
5.6.1 Modular abstract interpretation . 103
5.6.2 Modular WCET analysis . 107

5.7 Evaluation . 109
5.7.1 Experimental setup . 109
5.7.2 Benchmark selection . 110
5.7.3 Procedure arguments as parameters 111
5.7.4 Modular WCET analysis . 116

5.8 Application to adaptive real-time systems 117
5.8.1 Semi-clairvoyant mixed-criticality scheduling 117
5.8.2 Adaptive control . 119

5.9 Conclusion . 119

6 Conclusion and perspectives 121
6.1 Summary . 122

6.1.1 Infeasible paths elimination . 122

xii CONTENTS

6.1.2 Pipeline effect modeling . 122
6.1.3 Procedure arguments as parameters 123

6.2 Perspectives . 123
6.2.1 Tree transformation complexity . 123
6.2.2 Abstract domains . 123
6.2.3 Modular abstract interpretation . 124

A Rewriting rules: equivalence proofs 125

B g723_enc_reconstruct WCET instantiation 129

List of Figures 131

List of Examples 133

Bibliography 135

Chapter 1

Introduction

Contents
1.1 Context . 2

1.1.1 Embedded systems . 2

1.1.2 Real-time systems . 2

1.1.3 Worst-case execution time . 3

1.1.4 Parametric WCET analysis . 5

1.2 Motivations . 5

1.2.1 Limitations of current approaches 5

1.2.2 Starting point and objectives 6

1.3 Contributions . 6

1.3.1 Related publications . 7

1.4 Thesis outline . 7

1

2 CHAPTER 1. INTRODUCTION

This chapter introduces the topic of the thesis. We first contextualize this thesis with a
general background. We then present the motivations for this work. We end this chapter
by introducing the different contributions of the thesis.

1.1 Context

We begin by introducing some basic notions and definitions regarding the thesis context,
so as to emphasize the crucial aspect of the execution time of a program.

1.1.1 Embedded systems

An embedded system is a computer system that is embedded within a physical device.
It is designed such that it has a specific function in that device. Many devices that we
use everyday rely on embedded systems: televisions, cars, printers and even fridges are
common examples of such devices. In fact, most of the microprocessors that are currently
sold are used in embedded systems. This demonstrates the importance of such systems in
our society. A typical example of embedded system is the personal navigation assistant
(PNA) of a car: it is embedded in a car and its function is to indicate to the driver how
to to get from his current location to another one.

1.1.2 Real-time systems

A real-time system is an embedded system subject to real-time constraints, typically
deadlines. We distinguish two kinds of real-time systems: soft real-time systems and hard
real-time systems.

Soft real-time systems are systems in which we assume that it is not crucial to al-
ways meet the deadlines. For instance, the music player software in a car is not critical.
However, it is better if the music plays fluidly and the loading time between two tracks
is not too long. Nevertheless, if the loading time between two tracks is a bit longer than
expected, it does not have any consequence on the car safety.

Hard or critical real-time systems are systems that must always meet their deadlines.
Most of the time hard real-time systems safety critical and meeting the deadlines is crucial.
For instance, consider the autonomous emergency braking system of a car. If the system
detects that something is in the way, it must activate the brakes fast enough to avoid
collision. Activating the brakes too late can have disastrous consequences for the driver
and the passengers in the car.

A real-time system is often decomposed into several tasks, which perform various
operations. Each task should complete before its own deadline to optimally execute the

1.1. CONTEXT 3

0

Measured WCET

Actual WCET

Computed WCET

Optimism Pessimism

Execution time (cycles)

Figure 1.1: Approximation of WCET

system. In order to check that the system is schedulable, which means that all the tasks
in the system meet their deadlines, a schedulability analysis is performed. This analysis
takes as inputs all the tasks that are executed on the system as well as their execution
times.

1.1.3 Worst-case execution time

Depending on the current state of the system, the behavior of a task may vary and thus
its execution time may not be constant. To perform the schedulability analysis, an upper-
bound to the execution time of the task must be provided: the worst-case execution time
(WCET) of the task, counted in processor cycles1. In practice, it is most of the time not
possible to obtain the exact WCET for a program. Indeed, obtaining the exact WCET
for any task would also solve the halting problem2. However, it is possible to determine
an approximation of the WCET of a program (or task) assuming that [Wil+08]:

1. There is no recursion in the program, or the depth of the recursion must be bounded;

2. The maximum number of iterations of the program loops is known.

The WCET analysis is performed to derive an approximate value to the WCET of a
program. There exists three kinds of methods, all with their advantages and drawbacks,

1The time in a processor is measured in processor cycles. During each cycle, transistors within the
processor open and close. The speed of a processor, also called clock speed, is often expressed in megahertz
(MHz) or gigahertz (GHz) and is the number of processor cycles that are executed in the processor at
each second.

2The halting problem is a well-known problem in computer sciences, which is to determine whether
a program will terminate or not. This problem is undecidable, which means that there is no algorithm
that is able to say, for any program, if this program will end.

4 CHAPTER 1. INTRODUCTION

to obtain a WCET: measurement-based approaches, methods based on static analysis and
hybrid techniques.

1.1.3.1 Measurement-based analysis

A first class of approaches are measurement-based analyses. These consist in measuring
the execution time of the program repeatedly, under different initial conditions. It requires
to execute the program on the processor that will be used to run the system, and easily
produces realistic values. Nevertheless, it is difficult to ensure that the set of tests used is
exhaustive. Thus, the resulting WCET approximation can be underestimated, which is
problematic for hard real-time systems. It also requires to use the actual hardware that
will execute the system to perform measurements. In Figure 1.1, the resulting value of
this kind of approaches is represented by the “Measured WCET”.

1.1.3.2 Static analysis

A second category of methods are based on static analysis. These techniques examine the
code of a program so as to derive its WCET. The analysis consists of two steps. First,
the analysis represents the control-flow of the program, most of the time with a graph or
a tree, to represent all the possible program executions, also called program paths. Then,
the WCET of each node of the tree or graph is computed using a hardware model, that
represents the system on which the program should be executed. The WCET is computed
by combining the results of theses two steps. This technique has the advantage to derive
a safe WCET bound, which means that the computed WCET cannot be lower than the
actual WCET. Since it uses a hardware model, it does not require the actual hardware
to perform the analysis. However, this category of methods also suffers from different
problems. First, the computed WCET is often overestimated, because we may consider
program executions that are infeasible in practice. Second, a precise hardware model is
difficult to design: many hardware feature behaviors are very difficult to predict statically,
which leads to pessimism. In Figure 1.1, the resulting value of such analyses is represented
by “Computed WCET”.

1.1.3.3 Hybrid WCET analysis

The last category of techniques tries to benefit from the advantages of the two other
categories of approaches. It is hybrid in the sense that it uses static analysis for the
control-flow, and often relies on measurements to estimate the WCET of nodes of the
graph or tree. The WCET can also be estimated using other techniques, e.g. machine
learning.

1.2. MOTIVATIONS 5

1.1.4 Parametric WCET analysis

The WCET of a task can exhibit large variability related to various hardware parameters,
e.g. the state of the cache, and software parameters, e.g. the input of a procedure. Para-
metric WCET analysis, instead of computing a single numerical value for the WCET of
a task, produces an arithmetic formula that depends on such parameters. This technique
can be used for programs that contain values that may impact the WCET but are un-
known statically or may change depending on the state of the system. This thesis mostly
focuses on enhancing parametric WCET analysis.

1.2 Motivations

In this section, we exhibit the limitations of the current parametric WCET analysis ap-
proaches and state our objectives.

1.2.1 Limitations of current approaches

The first parametric approaches were inspired by regular static analysis approaches. The
implicit path enumeration technique (IPET) [LM95], which relies on integer linear pro-
gramming (ILP), is the predominant technique to compute the WCET. Since this tech-
nique has been extensively studied, it supports a wide range of hardware and software
facts, most of the time represented with linear constraints3. The first parametric ap-
proaches tried to extend this technique to support parameters using parametric integer
programming (PIP) [Fea88], which seemed to be a solution to keep the advantages of
IPET to compute a parametric WCET. However, this approach is computationally very
expensive and works only with very small programs.

Other techniques have been developed, that do not rely on PIP. However, they suffer
from several limitations:

1. Less techniques have been developed to model hardware and software features;

2. These approaches often lack diversity regarding the kind of parameters they support:
most techniques focus on loop bounds as parameters or consider that parts of the
program can have an unknown WCET. Most of the time, the user must identify the
parameters and their impact on the compute WCET;

3. The supported parametric expressions are quite simple. For instance, in all the works
that have been conducted on parametric WCET so far, the most powerful expression

3In integer linear programming, a linear constraint is a linear inequality

6 CHAPTER 1. INTRODUCTION

supported for a loop bound is a sum between a parameter and a constant, which is
insufficient to express the impact of some parameters on the program WCET.

1.2.2 Starting point and objectives

In this work, we start from the tree-based parametric WCET approach proposed by
Ballabriga et al. [BFL17]. Tree-based techniques have two advantages:

1. A low complexity, i.e. polynomial in the size of the tree;

2. Since WCET computation is performed inductively on the tree structure, it is rather
simple to support parameters.

The objective of this work is to extend this tree-based technique to contribute on the
three drawbacks previously enumerated:

• Hardware and software features modeling;

• Diversity of parameters;

• Expressivity of the parametric expressions.

1.3 Contributions

In this section, we present the various contributions of this work.
My first contribution concerns software features. It focuses on infeasible paths. An

infeasible path is a sequential execution of several nodes of the program that is structurally
feasible in the tree but that is infeasible if we take into account the program semantics.
I present an algorithm that removes the infeasible paths from the tree-based control-flow
representation.

My second contribution is related to hardware features. The pipeline processes several
instructions in parallel by splitting their execution into different steps, which generally
reduces the execution time of a program. I propose an approach that adapts the pipeline
modeling technique of Rochange et al. [RS09] to the tree-based program representation.

My third contribution is concerned with a better support for software parameters.
For many programs, the variations of the WCET depend on the arguments passed to
the program (or to a procedure in that program). I propose to analyze the program to
automatically infer the impact of the program input on the control-flow of the program.
This technique combines abstract interpretation with symbolic WCET computation to
produce a parametric formula whose parameters are the program inputs.

1.4. THESIS OUTLINE 7

1.3.1 Related publications

• An outline of the thesis objectives and the foundations of our algorithm for infeasible
paths in tree-based WCET computation was presented in [GBF21];

• The pipeline model adaptations as well as the program inputs support have been
published in [Gre+23];

• Some related new challenges regarding adaptive real-time systems were presented
in [Bal+23].

1.4 Thesis outline

We begin with a presentation of the state of the art regarding static WCET analysis
in Chapter 2. Chapter 3 presents our algorithm for infeasible paths representation in
tree-based WCET analysis. Then, our adaptations of the pipeline analysis to tree-based
WCET computation are presented in Chapter 4. We continue by detailing how to use
procedure arguments as parameters of the WCET analysis in Chapter 5. Finally, we
conclude the thesis in Chapter 6.

Chapter 2

Static WCET analysis: state of the art

Contents
2.1 General framework . 11

2.2 Flow analysis . 12

2.2.1 Basic blocks . 13

2.2.2 Flow representation . 13

2.3 Hardware analysis . 16

2.3.1 Pipeline . 16

2.3.2 Cache . 20

2.3.3 Branch prediction . 24

2.4 WCET computation . 27

2.4.1 Graph-based techniques . 27

2.4.2 Tree-based techniques . 30

2.4.3 Model checking . 32

2.5 Auxiliary analyses . 33

2.5.1 Loop bound analyses . 33

2.5.2 Infeasible paths analysis . 33

2.6 Parametric WCET computation 39

2.6.1 Parametric WCET from intermediate code 40

2.6.2 Parametric integer programming 40

2.6.3 The minimum propagation algorithm 41

2.6.4 Parametric path analysis . 43

2.6.5 Tree-based parametric WCET 43

9

10 CHAPTER 2. STATIC WCET ANALYSIS: STATE OF THE ART

2.7 Background: Symbolic WCET computation 44

2.7.1 Control-Flow Tree . 44

2.7.2 Abstract WCET . 45

2.7.3 Computing the WCET of a control-flow tree 47

2.1. GENERAL FRAMEWORK 11

WCET tool

Binary code Flow
analysis

Hardware
analysis

WCET
computation WCET

Auxiliary
analyses

Hardware model

Figure 2.1: General approach to static WCET computation

In this chapter, we present a state of the art regarding static WCET analysis. Indeed,
since parametric WCET analysis is based on static WCET analysis, and thus so as to
understand how and why we developed our contributions, it is essential to review the
existing techniques and works related to static WCET analysis. To discover more tech-
niques that are not all based on static analysis, a good survey by Wilhelm et al. [Wil+08]
recaps most of the WCET analysis works.

2.1 General framework

We begin with the general framework of static WCET analysis. This framework is depicted
in figure 2.1.

Most recent approaches rely on binary code, that is to say the code of the program
that is actually executed on the system. Some older approaches rely on the source code,
which is the code written by the developer. However, the execution time of the source
code may be hard to predict since the compiler performs a lot of optimizations.

With this code, the WCET computation tool first performs a flow analysis, which
produces a program representation that represents all the execution paths of the program.
Each execution path is defined as a succession of basic blocks that leads to a complete
execution of the program.

The flow analysis often rely some external information, provided by some auxiliary
analyses. For instance, some tools can analyze the program to find an upper-bound to
the number of iterations of loops. We present the different works on the flow analysis in

12 CHAPTER 2. STATIC WCET ANALYSIS: STATE OF THE ART

1 void f(int a, int b){
2 // A
3 if(a > 10)
4 // B
5 else
6 // C
7 // D
8 for(int i=0; i<4; i++) // E
9 // F

10 // G
11 }

(a) A procedure with its basic blocks

A

B C

D

E F

G

(b) Control-flow graph of the procedure

Seq

A Alt

B C

D Loop

Seq

E F

E

G

(c) Control-flow tree of the procedure

Figure 2.2: A program with some of its control-flow representations

Section 2.2. Some auxiliary analyses are presented in section 2.5. Our work in Chapter 3
uses the results of the analyses presented in Section 2.5.2

Then, the hardware analysis models the behavior of the processor in order to estimate
the execution time of each basic block. It relies on a hardware model, that describes
the architecture of the processor. We introduce various hardware analysis methods in
Section 2.3. Our work in Chapter 4 relies on the feature presented in Section 2.3.1.

Finally, the analysis uses both the program representation produced by the flow anal-
ysis and the timing estimations of the hardware analysis to perform the WCET compu-
tation. Various approaches to WCET computation are presented in Section 2.4.

In the remainder of this chapter, we detail each of these analyses. We also present
some parametric WCET analyses in Section 2.6 and a background about the parametric
WCET computation technique that we use in this thesis is presented in Section 2.7.

2.2 Flow analysis

2.2. FLOW ANALYSIS 13

We first concentrate on the flow analysis. This analysis is performed to produce
a representation of the control-flow of the program, that is to say to represent all the
possible execution paths in a program.

2.2.1 Basic blocks

First of all, to represent those paths, the program must be cut into different pieces. The
flow of the program changes because of branching instructions. In essence, a program is
a sequence of instruction executed in order. However, a branching instruction can change
the control-flow to jump to an instruction that is not the next instruction in the sequence.

Thus, to represent the control-flow of the program, that is to say the sequences of
instructions that are possible to execute in a program, we cut the program into small
parts, called basic blocks.

Definition 2.1 (Basic block) A basic block is a sequence of instructions with a single
entry point and a single exit point, such that if the first instruction of this sequence (the
entry point) is executed, then all the other instructions in this sequence must be executed
before executing any other instruction of the program.

In other words, a basic block is a sequence of instructions, where a branching instruc-
tion, that is to say an instruction that have different possible successor instructions, can
only be the last instruction of this block. These basic blocks enable to represent the
different execution paths in a program.

Definition 2.2 (Execution path) An execution path is a sequence of basic blocks that
represents one complete execution of a program. We denote “.” the concatenation operator
for sequences.

Example 2.1 (Basic blocks and execution paths) Consider Figure 2.2a, which is a
simple function in C. The comments represent the different basic blocks of the program: A,
B, C, D, E, F and G. The program contains several execution paths, e.g. A.B.D.E.G.

2.2.2 Flow representation

The flow representation is an abstract representation of the program, that represents the
different execution paths that are possible in a program. We now present the two main
representations.

14 CHAPTER 2. STATIC WCET ANALYSIS: STATE OF THE ART

2.2.2.1 Control-flow graph

The most common representation is the control-flow graph (CFG) [All70], which represents
the control-flow of a program with directed edges between basic blocks. More formally, a
control-flow graph is a graph G = (V , E), where V is a set of vertices that correspond to
basic blocks and E is a set of directed edges between these basic blocks.

Each directed edge (X, Y) ∈ E between the basic blocks X and Y in the CFG indicates
that, after executing the basic block X, it is possible to execute the basic block Y .

Example 2.2 (Control-flow graph of a program) Consider Figure 2.2b, which rep-
resents the CFG of the function f of Figure 2.2a. This control-flow graph indicates that
we first execute A, then either B or C before executing D. After that, we execute E, and
then we can either enter the loop and execute F and E repeatedly, or exit the loop and
execute G.

A path in a control-flow graph is a sequence of basic blocks B1, B2, . . . , Bn such that
∀x ∈ [1, n−1] : (Bx, Bx+1) ∈ E . Less formally, a path in a control-flow graph is a sequence
of basic blocks such that there exists an edge in the control-flow graph between each pair
of successive basic blocks in the sequence.

Example 2.3 (Path in control-flow graph) Consider Figure 2.2b. In this graph, the
execution path of Example 2.1, A.B.D.E.G, is valid. However, a sequence of basic block
like A.D.G is not a path in the CFG.

2.2.2.2 Tree-based representations

Another way to represent the control-flow of a program is to use a tree. Tree-based
representations are very similar to CFG, albeit with a tree structure. In general, tree-
based representations are composed of several kinds of trees:

• Leaves, which are the basic blocks of the program;

• Sequences, which represent the execution in sequence of several trees;

• Alternatives, which represent the execution of a single tree among several trees;

• Loops, which represent the repeated executions of the loop test and the loop body;

• Calls, which enable to separate the trees of several functions.

The syntax tree representation [Sun+98; CP00; CP01; BB06] is the first tree-based
representation that was used in WCET analysis. The specificity of this representation

2.2. FLOW ANALYSIS 15

is that it enables to compute the WCET inductively on the tree structure. Most other
tree-based control-flow representations are similar to the syntax tree. In our work, we use
the control-flow tree representation from [BFL17].

Example 2.4 (Control-flow tree) Consider Figure 2.2c, which represents the control-
flow tree of function f of Figure 2.2a. This tree uses all the kinds of nodes, except the
call node. We can see that the root tree, a.k.a. Seq, is a sequence that indicates (as in
the CFG) that in the function we first execute A, then either B or C before executing D.
After that, we execute E and F repeatedly before exiting the loop after executing the last
loop test E to execute G (the Loop dashed edge indicates the tree that represents the exit
tree of the loop, which is the last loop test).

2.2.2.3 Auxiliary control-flow information

The flow representation of the program is crucial to analyze the different execution paths
of the program. However, this analysis alone is not enough to fully represent the control-
flow of the program: since the control-flow representation is an abstraction of the program,
some information are lost during the analysis.

A first piece of information required to compute the WCET are loop bounds: if there
is no upper-bound to the number of iterations of loops, then the number of paths in the
flow representation is unbounded.

Another missing piece of information is the presence of infeasible paths in the program
representation.

Definition 2.3 (Infeasible path) An infeasible path is a path that is feasible in the
program representation but that is not actually feasible in the program due to the program
semantics.

Example 2.5 (Infeasible paths) Consider function f in Figure 2.2. If function f is
never called with a value such that a > 10, then all the paths that pass through the basic
block B are infeasible. However, those paths remain feasible in both the control-flow graph
and the control-flow tree representations.

To overcome these shortcomings, several auxiliary analyses can be used to add sup-
plementary information from the program into the flow representation. Of course the
developer could specify information like loop bounds by himself to the tool with an anno-
tation language [Kir+11], but it involves that the user has knowledge about the program
under analysis. Furthermore, for big programs it can be a tedious work, which is prone to
errors. Some auxiliary analyses, that are not directly related to the WCET computation,
can be used to address this problem and are presented later in Section 2.5.

16 CHAPTER 2. STATIC WCET ANALYSIS: STATE OF THE ART

Now that we represented the control-flow of the program, we will focus on the WCET
estimation. First, we will focus on the WCET at the basic block level, computed by the
hardware analysis. Then, we will show how the WCET of these basic blocks can be used
to compute the WCET of a whole program.

2.3 Hardware analysis

In this section, we focus on the hardware analysis. This analysis models the behavior
of the the computer hardware that will execute the system, such that we can determine
the execution time of each basic block of the program representation. So as to produce
realistic results, three kinds of hardware components are often considered:

• The pipeline, which decomposes the execution of each instruction in several stages
so that several instructions can be executed at the same time by the processor;

• The instruction and data caches, which respectively speed up the access to the next
instructions of the program and to the data used by these instructions;

• The branch predictor, that tries to predict which instructions are executed after a
branching instruction.

The remainder of this section presents various techniques that model the effect of these
hardware components to produce precise WCET for each basic block of the program.

2.3.1 Pipeline

We start with the pipeline. In a processor, the pipeline enables to process several instruc-
tions in parallel at the same time by splitting the processor into several stages. A stage
manages a particular processing phase of an instruction. The ARM7 pipeline, which is a
great example of embedded processor pipeline, is composed of three stages:

1. Fetch (FE), which reads the instruction from the memory;

2. Decode (DE), which decodes the instruction;

3. Execute (EX), which executes the instruction.

Since it is possible to have a different instruction in each stage, this processor can execute
several instructions in parallel, which impacts the WCET [Eng02].

Example 2.6 (Pipelining effect) Consider Figure 2.3. Figure 2.3a details the instruc-
tions that are executed in the pipeline, whereas Figure 2.3b represents the execution of these

2.3. HARDWARE ANALYSIS 17

1 ldr r2, [fp , #-12] @ Load a value from the memory
2 add r3, r3, #1 @ Increment a register
3 str r2, [fp , #-16] @ Store the loaded value in memory

(a) Instructions sample

(b) Pipelined execution
Stage \ Cycle 1 2 3 4 5 6 7 8 9
Fetch
Decode
Execute

ldr
add
str

Figure 2.3: Arm instructions and the matching pipeline execution

instructions in each pipeline stage. We consider here that each stage takes one cycle to
execute, except the execute stage, which takes three cycles when a memory access occurs.
If we look at each instruction independently, the first and the third instructions take 5
cycles each to execute, while the second instruction takes 3 cycles to execute. Without
the pipeline, this would take 13 processor cycles to execute the three instructions. How-
ever, thanks to the pipelining effect, Figure 2.3b shows that the execution of the three
instructions takes 9 cycles only and thus saved 4 processor cycles.

2.3.1.1 Pipeline modeling

Numerous approaches detail how to model the processor pipeline in order to take its
effect into account during the WCET computation. Some approaches target a single
processor model [ZBN93; HWH95; Lim+95], while other techniques present more general
frameworks that can be used to model various pipelines. We present some of these general
frameworks here.

Abstract interpretation Different approaches propose to use abstract interpretation
so as to model the pipelining effect on the WCET [SF99; LTH02; HRW15]. We illustrate
the use of abstract interpretation with the approach of Schneider et al. [SF99]. This
approach considers the pipeline as a set of stages S = {s1, . . . , sm} as well as a set of
resources R = {r1, . . . , rm} of the processor. For each instruction, the set of required
resources at each stage of the pipeline is specified, and depends on the instruction type
(e.g. add) and on the operand types (e.g. register, constant value). The allocation of a
resource to an instruction is modeled by a sequence of pairs (s,R ⊆ R), where s is the
stage and R is the set of resources used to process the instruction in that stage. Each
pair in the sequence represents the execution of the instruction in the pipeline during a
single processor cycle.

18 CHAPTER 2. STATIC WCET ANALYSIS: STATE OF THE ART

Example 2.7 (Pipeline: Abstract instruction representation) Consider i, an in-
struction whose execution is represented by the sequence (s1, {r1, r2}).(s2, {r3}).(s2, {r3}).
This sequence means that this instruction first occupies s1 and use resources r1 and r2 for
one cycle, then occupies s2 and uses the resource r3 during two cycles.

A concrete state p of the pipeline represents the occupancy of the pipeline stages by
instructions, as well as the current and future resource allocations for these instructions.
The state of some special resources like the prefetch queue are also indicated. Let IS

denote the instruction set of the processor and P denote the set of concrete pipeline
states. The update function U : P × IS → P updates the state of the pipeline each time
an instruction enters the pipeline. Its implementation depends on the modeled processor.
The cycle function C : P × IS → N0 computes the number of processor cycles needed by
a new instruction to enter the pipeline, i.e. the number of cycles needed to reach U(p, i).
The empty function E : P → N0 computes the number of processor cycles needed to reach
the empty pipeline state, i.e. to finish the execution of the instructions in the pipeline.

An abstract state of the pipeline p̂ is defined as the set of all the possible concrete
pipeline states at a program point. The three functions defined for concrete states can
easily be adapted for abstract states, as Û(p̂, i) = {U(p, i)|p ∈ p̂}, Ĉ(p̂, i) = max({C(p)|p ∈
p̂}) and Ê(p̂) = max({E(p)|p ∈ p̂}).

When a program point has several predecessors, a join function Ĵ (p̂1, . . . , p̂n) =
⋃n

i=1 p̂i

is used to produce a single abstract state from the abstract states of the predecessors.
With all these functions, we can derive the execution time of the program by perform-

ing the abstract interpretation on the whole CFG.

Execution graphs Another method to model the effect of the pipeline is to use execu-
tion graphs [LRM04; LRM06; Bar+06; RS09]. Since the execution time of a basic block
depends on the pipeline state at the beginning of the execution of the basic block, the
approach proposes to represent the WCET of a basic block as a function of its execution
context. The execution cost of a basic block is defined as the time between the completion
of the last instruction preceding this basic block and the completion of its last instruction.
The execution cost of the first basic block of the program is equal to its execution time.

An execution graph is used to model the execution of a basic block. Each node
of this graph represents the processing of an instruction by a pipeline stage or unit.
Directed edges in this graph express a precedence constraint. Different kinds of precedence
constraints can be represented:

• the program order, which defines the order in which the instructions are fetched;

• the structure of the pipeline, that orders the stages of the pipeline;

2.3. HARDWARE ANALYSIS 19

FE (ldr) DE (ldr) EX (M, ldr)

FE (add) DE (add) EX (A, add)

FE (str) DE (str) EX (M, str)

Figure 2.4: Execution graph of the instructions of Figure 2.3a

• the capacity of the instruction queues;

• the data dependencies.

Example 2.8 (Execution graph) Consider Figure 2.4, which represents the execution
graph that corresponds to the program of Figure 2.3a on a scalar in-order pipeline. On
this graph, the path of each instruction through the pipeline is depicted: each instruction
passes through the three stages of the pipeline. For the execute stage, M indicates that the
instruction uses the memory processor unit (MEM) while A indicates that the instruc-
tion uses the arithmetic and logic unit (ALU). Two kinds of precedence constraints are
represented here:

1. the horizontal directed edges represent the precedence constraints due to the pipeline
structure;

2. the vertical edges represent the precedence constraints related to the execution on
a scalar in-order processor. Scalar means that the processor has a single pipeline.
In-order means that this processor executes the instructions in the same order as in
the program code.

Note that the data dependency between the load and the store on r2 is not represented
since the scalar in-order nature of the pipeline already guaranties that the load is executed
before the store.

For each node n, a latency ln indicates the execution time of the instruction in the
specified pipeline stage. The node ready time of each node, that depends on the end of
the execution of the preceding nodes, is denoted ρn. The end of each node execution (its
completion moment) is defined as τn = ρn + ln.

So as to compute ρn, the context of the basic block has to be specified. Let R be the
set of resources of the processor (in particular its functional units), then for each node
the context is specified by:

20 CHAPTER 2. STATIC WCET ANALYSIS: STATE OF THE ART

• a vector of parameters A = {ar|r ∈ R}, which corresponds to the release time of a
resource in R;

• a vector En = {ern ∈ {0, 1}|r ∈ R} of booleans, that represents the dependence of
the node ready time to each of the context parameter;

• a vector Dn = {drn|r ∈ R} of delays, that represents the minimal distance between
the release time and the node ready time.

Then, the node ready time is computed as ρn = max (ern × (drn + ar)). en and dn are
then propagated from predecessors to successors in the graph. After the propagation,
the WCET of the basic block B can be expressed as a function of its execution context:
max ({τlast(B) − τlast(x)|x ∈ predecessors(B)}), where last(X) is the last node of the last
instruction of the basic block X.

In practice, considering the complete list of predecessors for a basic block in the context
would lead to a very high complexity. Thus, the technique presented in [RS09] proposes
to consider only a small number of basic blocks in the execution context to compute the
WCET of a basic block. The authors also demonstrated that considering such contexts
leads to a safe WCET.

2.3.2 Cache

Caches also have a big impact on the WCET of programs. Indeed, caches reduce the
average access time to data (for the data cache) or to instructions (for the instruction
cache). For instance, when the processor loads an instruction from memory, the cache
stores a small part of the memory, called a block, that contains this instruction as well
as several other instructions. Thus, when the processor use another instruction that is
located in the same block, the cache will provide it much faster than the memory, which
reduces the execution time.

In essence [TFW00], a cache is defined by:

• its capacity : the maximum number of bytes that it can contain;

• its block size (or line size): the number of bytes transferred from the memory when
a block is added into the cache;

• its associativity : the number of cache locations where a given block can reside.

With this, the number of blocks that the cache can contain is n = capacity/block size,
and the number of sets is defined as n/associativity .

If a block can reside in any cache location, the cache is said to be fully associative,
which means that the cache has only one set. At the opposite, if a block can reside only

2.3. HARDWARE ANALYSIS 21

Age Block
0 D
1 C
2 B
3 A

+E

Age Block
0 E
1 D
2 C
3 B

(a) Replacement: new block in the cache

Age Block
0 D
1 C
2 B
3 A

+B

Age Block
0 B
1 D
2 C
3 A

(b) Replacement: block already in the cache

Figure 2.5: LRU cache replacement policy

in a single location, the cache is said to be direct mapped, which means that the number
of sets in the cache corresponds to the number of blocks that the cache can contain. For
the sake of clarity, we will only consider fully-associative caches for the explanations.

When the cache is full and that a new block is added to the cache, a replacement policy
removes one of the block in the cache to store the new block. There exist many different
replacement policies, which detail which block is evicted from the cache when it is full:

• LRU: the least recently used block;

• MRU: the most recently used block;

• FIFO (first in first out): the first block that entered and is still in the cache;

• RANDOM: a randomly chosen block.

Generally, the LRU replacement policy is used for WCET analysis. Even if it is not
commonly used in caches, it is more predictable than the other policies, which makes it
easier to analyze without involving too much pessimism in the computed WCET.

Example 2.9 (LRU cache replacement policy) Consider Figure 2.5a. In this fig-
ure, the array on the left represents the state of the cache before adding E to the cache.
When E is added, the cache is full and thus the block with the highest age (A) is evicted.
The age of all the other blocks is incremented and E is added with the age 0.

When a memory access occurs, two events can happen: if the accessed element is
not in the cache, a cache miss occurs, which means that the accessed element has to be
retrieved from the memory. At the opposite, if the accessed element is in the cache, a
cache hit occurs and the element is retrieved faster from the cache.

In the particular case of the data cache, we must consider a writing policy among:

• write-through, which means that every time a write access is performed, it is written
immediately in the main memory. Generally, the modified element is also stored
into the cache, which is called write allocate policy. If the element is not stored into
the cache during the write access, it is called a no write allocate policy;

22 CHAPTER 2. STATIC WCET ANALYSIS: STATE OF THE ART

• write-back, which means that the changes are buffered, marking a cache block as
dirty. These changes are then written back into the main memory when the dirty
block is evicted from the cache.

2.3.2.1 Cache analysis

Various cache analyses has been developed for WCET analysis. The first techniques
modeled the instruction cache with static simulation [MW95] or using cache conflicts
graphs [LMW95; LMW96]. However, more recent methods [FW99; SS07; SR10; HJR11;
FGG18; Tou+19] based on abstract interpretation enable to represent both the instruction
cache and the data cache. We illustrate the principle of these techniques with the approach
of Ferdinand et al. [Alt+96; FW99; TFW00]. This analysis works on the control-flow
graph, assuming that for each basic block the sequence of memory accesses is known.
In this approach, the cache is modeled as a set of cache lines L = {l1, . . . , ln}, and the
elements stored in the cache are represented as a set of memory blocks S = {s1, . . . , sm},
and I represents the absence of block in a cache line.

Let S ′ = S ∪ {I} The concrete state of the cache is the function c : L → S ′, which
returns the content of any cache line. Cc denotes the set of all concrete cache states. The
concrete cache state can be updated whenever a memory access occurs with an update
function U : Cc×S → Cc. The effect of this function on the concrete cache state depends
on the cache replacement policy.

Example 2.10 (LRU cache update function) Consider Figure 2.5, which illustrates
the update function with an LRU replacement policy on a fully-associative cache. On
Figure 2.5a, a new block that was not in the cache is stored. Thus, the block with the
highest age (A), which is the least recently used block, is evicted from the cache. The
age of each block of the cache is incremented and the new block is added with the age 0.
Figure 2.5b depicts what happens when the stored block is already in the cache: the age of
each block with an age inferior or equal to the stored block are incremented and the age
of the stored block is reset to 0.

An abstract cache state is defined as the function ĉ : L→ 2S, which maps a cache line
to sets of memory blocks. An abstract update function Û is defined as an extension of
the update function U . For the LRU policy, storing a block into the cache only set the
age of the block to 0 (not the whole set that contains the block), and then updates the
age of all the sets of blocks in the same way as it is done on the concrete state.

The approach proposes to categorize the cache memory accesses as follows:

• always hit, which means that the accessed memory block is always in the cache;

2.3. HARDWARE ANALYSIS 23

• always miss, which means that the accessed memory block is never in the cache;

• persistent, which is related to loops and means that the first access may be a miss,
but that all the other accesses are hits;

• not classified, which means that the memory reference could not be classified (we
do not know if the data is in the cache or not).

Three analyses enable to classify the memory accesses:

1. the may analysis, which guarantees the absence of a memory block in the cache at
a program point. In an abstract state of this analysis at any program point, we
are sure that the block is not in the cache if the block is not in this abstract state,
which corresponds to an always-miss cache access;

2. the must analysis, which determines which blocks are always in the cache at a
program point. If the block is in the abstract state, then the block is definitely in
the cache, which corresponds to an always-hit cache access;

3. the persistence analysis, related to loops, detects the blocks that, for a given loop,
will never be removed from the cache once they have been loaded until we leave this
loop. At each program point, if the block is in an abstract state of this analysis,
it means that the block is persistent, i.e. that for a complete execution of a given
loop, it misses at most once.

The difference between these three analyses resides in the join operation that happens
when a node of the CFG has several predecessors. This join function Ĵ : Ĉ × Ĉ → Ĉ

merges the different abstract states of the predecessors into a single abstract state.

Example 2.11 (LRU cache join functions) Consider Figure 2.6. The LRU join op-
eration for the must analysis and the may analysis are presented respectively on Fig-
ures 2.6a and 2.6b. The must analysis is pessimistic in the sense that it detects only the
blocks that, considering the two abstract states to join, are definitely in the cache. An
intersection between the abstract states is used, which removes the blocks that are not in
the two abstract states, and then the maximum age of each block is kept. In comparison,
the may analysis is optimistic and tries to determine which blocks may be in the cache. It
performs an union of the abstract states (it keeps all the blocks that can be in the cache)
and keeps the minimum age for each block. The persistence analysis is not depicted here,
but it uses the union and keep maximal age in order to detect the blocks that miss the first
time and hit all the other times.

24 CHAPTER 2. STATIC WCET ANALYSIS: STATE OF THE ART

Age Block
0 {C,D}
1 {}
2 {B}
3 {A}

+

Age Block
0 {D}
1 {B}
2 {C}
3 {}

=

Age Block
0 {D}
1 {}
2 {B,C}
3 {}

(a) Must analysis: intersection and maximal age
Age Block

0 {C,D}
1 {}
2 {B}
3 {A}

+

Age Block
0 {D}
1 {B}
2 {C}
3 {}

=

Age Block
0 {C,D}
1 {B}
2 {}
3 {A}

(b) May analysis: union and minimal age

Figure 2.6: LRU policy join functions on abstract states

Using these three analyses, each memory block is categorized, and their categorization
can be taken into account during the WCET computation.

What we presented is sufficient for the instruction cache and the read accesses of the
data cache. However, with the data cache, we must also take the writing policy into
account for write accesses:

• In the case of a write-through/write allocate policy, the access can be treated exactly
as a read access;

• For write-through/no write allocate, the access is treated as a read access if the data
is in the cache. Otherwise, the access is ignored (the update function is the identity
function in this case);

• Regarding write-back, the block that is written into the cache is marked as dirty,
which means that its value changed into the cache but has not been saved into the
memory yet. When a block is evicted from the cache, we must consider a different
time depending on if the block is dirty (it must be written back into the memory)
or not.

2.3.3 Branch prediction

When the processor executes a branching instruction, the target address of the branching
is known. However, before the execution of this instruction, the processor does not know
which instructions will be executed after this branching instruction. If the the branch
is taken, we jump to another location into the program. Otherwise the instruction that
follows the branching instruction is executed. This means that the processor cannot load

2.3. HARDWARE ANALYSIS 25

Strongly
not taken

Weakly
not taken

Weakly
taken

Strongly
taken

taken taken taken

not takennot takennot takennot taken

taken

Not taken predicted Taken predicted

State State of the predictor Transitions

Figure 2.7: State machine BTB representation

the instructions executed after the branching instruction in the pipeline before actually
executing it. Nevertheless, modern processors include a branch predictor. This branch
predictor tries to guess if the branch will be taken or not in advance in order to fetch the
instructions into the processor pipeline in advance. Then, at the end of the execution of
the branching instruction, if the guess of the branch predictor was correct, the execution
continues normally. Otherwise, the instructions that entered the pipeline after the predic-
tion must be removed from the pipeline so as to execute the correct instructions, which
results in a timing overhead.

Predictions of the taken branch are based on the branch target buffer (BTB), a cache
that stores the history of the branches taken for each branching instruction address [CP00].
The branch predictor uses this history so as to predict the branch that will be taken the
next time the branching instruction will be executed.

Example 2.12 (Branch predictor representation) Consider Figure 2.7, which rep-
resents a branch predictor with a state machine. Four states (strongly not taken, weakly
not taken, weakly taken, strongly taken) represent the history of the decision to branch or
not for a branching instruction: taken means that we took the branch, not taken that we
executed the instruction that follows the branching instruction. If the state of the BTB is
at the right of the dashed line, the BTB will guess that the branch is taken. Otherwise,
the BTB guesses that the branch is not taken.

Colin and Puaut [CP00] proposed to use abstract interpretation so as to bound the
worst-case number of mispredictions. Their approach computes abstract buffer states
(ABSs) for each program point in the CFG. These ABSs indicate, for each BTB entry,
which control-transfer instructions (denoted CTIs), e.g. branching instructions, can be

26 CHAPTER 2. STATIC WCET ANALYSIS: STATE OF THE ART

in the BTB of the processor (here, a Pentium). The ABSs calculation depends on the
replacement policy used for the BTB. Each basic block Bi is associated to two ABSs:
ABS in

i for the ABS at the entry of the basic block and ABS out
i for the ABS at the exit

of the basic block. For instance, with a n-way set associative with m entry-sets for each
way, ABS in

i [s, k] is a set containing all the CTIs that could be in the kth entry of the
sth entry-set of the BTB before the execution of Bi. For the LRU replacement policy, k
corresponds to the age of the entry.

Note that since a basic block cannot contain any CTI other than its last instruction,
there is at maximum one update between the input state and the output state of each
basic block. Adding a new CTI to the BTB updates only the set where the CTI is stored.
Thus, ABS out

i is obtained from ABS in
i and the instruction i that is added to the ABS

using the following update function:

Û(ABS in
i , i)[s, k] =

i if s = set(i) ∧ k = 0

ABS in
i [s, k − 1] if s = set(i) ∧ k ̸= 0

ABS in
i [s, k] Otherwise

Example 2.13 (BTB update with LRU policy) Since the BTB is a cache, the be-
havior of this update function is the same as for the instruction cache. Thus, if we consider
a BTB with only one set (i.e. n = 1) with the LRU replacement policy, we have the same
updates as on Figure 2.5, where E and B are the CTI to store in the BTB.

Again, since the control-flow graph represents many different paths, when a basic block
has several predecessors, a join function is used to merge the abstract states of all the
predecessors. We denote:

• preds(i) the set of direct predecessors of Bi in the control-flow graph;

• ⊎ the ABS union operator such that ABS 1⊎ABS 2 ≜ ∀s∀k,ABS 1[s, k]∪ABS 2[s, k];

Thus, the join function, which produces ABS in
i , is expressed as the union between all the

ABS out of the predecessors, such that:

ABS in
i =

⊎
p∈preds(i)

ABS out
p

To categorize each CTI, the loop nesting level lnl of each CTI should be known. Indeed,
there exist a relation lx ⪰ ly that indicates that lx “contains” the loop ly. The loop nesting
level of an instruction corresponds to the nesting level of the loop that directly contains
the instruction. Then, each CTI can be categorized as either:

2.4. WCET COMPUTATION 27

• Always D-predicted, which means that the default prediction is used. In the paper,
it is “not taken”, but that depends on the modeled processor;

• First D-predicted, that means that the instruction is default predicted the first time
and deduced from the history the other times;

• First unknown, which means that we do not know if the instruction is default pre-
dicted or not the first time, but we know that it is history predicted all the other
times.

• Always unknown, which represents the default classification where we never know if
CTI i is default-predicted or history predicted. This classification occurs when CTI i

is compatible with none of the other classifications.

These classifications can then be used during the WCET computation by considering a
penalty when the branch prediction is incorrect.

2.4 WCET computation

Now that we have presented both the flow analysis and the hardware analysis, we can
combine the results of these two analyses so as to compute the WCET of a program.

2.4.1 Graph-based techniques

We begin with two classes of approaches that compute the WCET of a program using the
CFG.

2.4.1.1 Path-based approaches

Path-based approaches [LS99; Hea+99] explicitly explore the paths in the control-flow
graph. They often rely on classic graph algorithms to find the longest path. For instance,
Engblom et al. [EES00] implemented a path-based approach using the algorithm of Dijk-
stra [Dij59]. Generally, these techniques compute a precise WCET bound. However, they
are computationally expensive and do not scale for large programs.

2.4.1.2 Implicit path enumeration technique

Implicit path enumeration technique [LM95; LMW95] is the most widely used static
WCET computation technique. First, it can efficiently compute the WCET using the
CFG without explicitly exploring the paths by transforming the graph into a set of linear
constraints. Then, a solver can derive the WCET from the linear constraints. Since

28 CHAPTER 2. STATIC WCET ANALYSIS: STATE OF THE ART

integer linear programming is not only related to the WCET computation but also to
many other domains, this kind of solver implements many optimizations, which results in
a fast computation. A second advantage of this approach is that its usage for WCET has
been extensively studied and thus many hardware and software facts can be integrated
efficiently to the WCET computation (e.g. see section 2.3).

Integer linear programming In essence, an integer linear problem is a mathematical
optimization problem, where all the variables are integers. This problem is described
with:

• An objective function, which is a linear expression that we either want to maximize,
i.e. to find its greatest possible value, or to minimize, i.e. to find its lowest possible
value;

• Linear constraints, that represent the constraints that the optimization function is
subject to. These linear constraints are linear inequalities, that is to say expressions
of the form a1x1 + · · · + anxn OP b, where (a1, . . . , an) and b are integer values,
(x1, . . . , xn) are integer variables and OP ∈ {<,>,≤,≥=, ̸=}.

Then, an ILP solver solves the optimization problem while taking into account all the
constraints.

Applying ILP to the WCET problem Regarding the WCET computation, it is
possible to encode the control-flow graph as a set of linear constraints, and to express the
WCET of the program as a linear expression.

First, for each basic block Bi in the CFG, two values are considered:

• xi, that represents the number of times Bi is executed. This value is a variable of
the problem to solve;

• ci, which represents the WCET of Bi. This value is constant, which is required to
ensure that the optimization problem is linear. It is computed using the hardware
analysis.

With these two values for each basic block, the WCET of the whole program, which is
the objective function we want to maximize, is expressed as:

N∑
i=1

ci × xi

2.4. WCET COMPUTATION 29

Example 2.14 (IPET: objective function) Consider again the CFG of Figure 2.2b.
We assume that the low level analysis derived a WCET of 10 for all the basic blocks except
for C and E where it derived 5. The objective function of the integer linear problem is
then:

10xA + 10xB + 5xC + 10xD + 5xE + 10xF + 10xG

We ask the solver to maximize this function since we want to compute the maximum
execution time of the program.

Then, the structure of the CFG is encoded as a set of linear constraints, that implicitly
represents the paths that are possible in the graph. These constraints constitute the
structural constraints of the program.

Example 2.15 (IPET: structural constraints) Consider again the CFG presented in
Figure 2.2b. The structural constraints that translate the graph into a linear program are:

xA = eAB + eAC (2.1)

xB = eAB (2.2)

xB = eBD (2.3)

xC = eAC (2.4)

xC = eCD (2.5)

xD = eBD + eCD (2.6)

xD = eDE (2.7)

xE = eDE + eFE (2.8)

xE = eEF + eEG (2.9)

xF = eEF (2.10)

xF = eFE (2.11)

xG = eEG (2.12)

In these constraints, eXY is a variable that represents the number of times the edge between
the basic blocks X and Y is taken. For each basic block, except for the first and the last
block of the CFG, two constraints represent the number of times this basic block is executed
depending on its incoming and outgoing edges. For instance, equation (2.2) represents the
fact that the number of times the edge between A and B is taken equals the number of
times B is executed. Also, equation (2.3) represents the fact that the number of times B

is executed is equal to the number of times the edge between B and E is taken.

Then, some functionality constraints, which represent information about the flow of
the program, are needed to complete the CFG encoding. These constraints represent

30 CHAPTER 2. STATIC WCET ANALYSIS: STATE OF THE ART

various information about the flow of the program. In particular, they must bound the
number of iterations of loops, and specify the number of times the program is executed.

Example 2.16 (IPET: functionality constraints) Consider the linear program de-
duced from the CFG in Example 2.15. We add the two following constraints to the integer
linear problem:

xA = 1 (2.13)

eFE ≤ 4× eDE (2.14)

Equation (2.13) gives the number of times the program should be executed, which is one
since we want to know the WCET for a single execution of the program. The loop bound
is encoded with inequality (2.14).

Once this problem is formulated, other constraints to represent various hardware and
software facts can be added to the problem so as to take them into account during the
WCET computation. After that, the integer linear problem is passed to a solver that
optimizes the objective function. As a result, the maximum value found for the objective
function is the WCET of the program.

Example 2.17 (IPET: Full problem with lp_solve) Consider Figure 2.8. This fig-
ure summarizes the whole integer linear problem translation of the program of Figure 2.2
into the lpsolve 5 [lps] format. Solving the integer linear problem gives a WCET of 105.

2.4.2 Tree-based techniques

Another way to compute the WCET is to use a tree-based flow representation. This
kind of representation has the advantage to make the computation easy by using simple
mathematical operators such as sums, products and maximums. Another advantage of
this technique is that it is fast: its complexity polynomial in the size of the tree, while
the complexity of IPET is exponential in the number of linear constraints in the problem.
However, tree-based techniques lack support regarding hardware and software features,
which implies that the computed WCET is less accurate.

With tree-based representations, the WCET can be computed using a timing schema.
For the syntax tree, Puschner and Koza [PK89] introduced a first timing schema that
indicates for each type of tree a rule to compute the WCET of this tree using the WCET
of its children. Most tree-based WCET computation techniques are derived from this
schema. We present a simplified version of the schema used in the control-flow tree
representation [BFL17] to demonstrate how the WCET can be computed inductively on
the tree structure:

2.4. WCET COMPUTATION 31

1 /* objective function */
2 max: 10 x_A + 10 x_B + 5 x_C + 10 x_D + 5 x_E + 10 x_F +
3 10 x_G;
4
5 /* structural constraints */
6 x_A = e_AB + e_AC; /* output constraint */
7
8 x_B = e_AB; /* input constraint */
9 x_B = e_BD; /* output constraint */

10
11 x_C = e_AC; /* input constraint */
12 x_C = e_CD; /* output constraint */
13
14 x_D = e_BD + e_CD; /* input constraint */
15 x_D = e_DE; /* output constraint */
16
17 x_E = e_DE + e_FE; /* input constraint */
18 x_E = e_EF + e_EG; /* output constraint */
19
20 x_F = e_EF; /* input constraint */
21 x_F = e_FE; /* output constraint */
22
23 x_G = e_EG; /* input constraint */
24
25 /* functionality constraints */
26 x_A = 1; /* function entry constraint */
27 e_FE <= 4 e_DE; /* loop constraint */

Figure 2.8: Integer linear problem under lp_solve

32 CHAPTER 2. STATIC WCET ANALYSIS: STATE OF THE ART

• For a leaf, the WCET is obtained with the hardware analysis;

• For a sequence, the WCET is the sum of the WCET of the children trees;

• For an alternative, the WCET is a maximum among the WCET of the children
trees;

• For loops, the WCET is the WCET of the body multiplied by the loop bound, plus
one time the WCET of the loop header.

Example 2.18 (Tree-based WCET computation) Consider the tree-based control-
flow representation in Figure 2.2c. Let ω(b) be the WCET of the basic block b that is
computed with the hardware analysis. Assume that the loop bound of the loop on the
figure is 4 and the WCET of each basic block is 10, except for C and E where we assume
a WCET of 5. Thus, the WCET of the tree is:

w = ω(A) +max (ω(B), ω(C)) + ω(D) + (n× (ω(E) + ω(F)) + ω(E)) + ω(G)

= 10 +max (10, 5) + 10 + (4× (5 + 10) + 5) + 10

= 10 + 10 + 10 + 60 + 5 + 10

= 105

2.4.3 Model checking

The model checking approach [Hen+14; Met+16; Bec+19] has also been considered to
derive the WCET of a program. The principle of this technique is to construct a model
from the program, where the basic blocks are represented by their WCETs. Then, a model
checker is used to determine an upper bound to the WCET of the program. We illustrate
the principle of these methods with the approach of Becker et al. [Bec+19].

A global variable _time = 0 is added into the source code of the program to represent
its execution time. The WCET of each basic block is inserted into the source code at the
corresponding location as a value added to the global execution time variable (e.g. _time
+= x). Then, all the lines of code that are not related to the WCET computation, that is
to say all the lines that are not related to the control-flow of the program or to the _time

computation, are removed from the source code. An initial estimation of the WCET is
then inserted at the end of the program code (e.g. assert(_time <= estimated)). A
model checker, e.g. CBMC [CBM] in this work, is then used to check if the estimated
WCET is a valid upper bound to the execution time of the program.

The analysis is parameterized with a precision level, that represents the maximum
difference between the highest lower bound to the WCET (i.e. the greatest value for

2.5. AUXILIARY ANALYSES 33

which the assertion fails) and the lowest upper bound to the WCET (i.e. the lowest value
for which the assertion is true). The model checker is called iteratively with different
estimations of the WCET until the precision level is reached.

2.5 Auxiliary analyses

In this section, we present an overview of the techniques used to address two common
problems of the flow analysis:

• Bounding the number of iterations of loops;

• Eliminating infeasible paths.

Different approaches have been developed to address these issues, but none of them are
exact. For instance, being able to find a loop bound to any loop would solve the halting
problem, which is known to be an undecidable problem.

2.5.1 Loop bound analyses

The loop bound analysis is a complex problem and existing tools only solve it partially.
Thus, the bounds that the analyses are not able to infer must be provided by the user.
We present two example approaches that show how the loop bounds can be derived.

Healy et al. [Hea+98] proposed a method, implemented in a compiler, that bounds the
number of iterations in the case of loops with multiple exits. First, the method detects
the conditional branches inside of the loop body that can affect the loop bound. Then, it
produces a directed acyclic graph (DAG), a graph similar to the CFG except that it does
not contain any cycle, that represents the loop body paths for a single iteration. Then,
by analyzing the branch conditions in the DAG and the the variable value modifications
within each path of the program, it derives upper-bounds to the number of iterations of
loops.

Another method [KKZ12] relies on recurrence solving and theorem proving techniques
to derive loop bounds when the update of loop iterations can be represented as linear
expressions on the program variables. In this work, loops with multiple paths are approx-
imated to single path loops, which are then translated into recurrence equations over the
variables of the program. These equations are then solved to derive a loop bound.

2.5.2 Infeasible paths analysis

We now concentrate on some other approaches that remove infeasible paths. Various
techniques to detect infeasible paths exist [DT13] and are used in various domains, e.g.

34 CHAPTER 2. STATIC WCET ANALYSIS: STATE OF THE ART

program verification. Regarding the WCET analysis, the detection of infeasible paths
enables to reduce the pessimism. Nevertheless, since these analyses are computationally
expensive, a trade-off between analysis time and precision must be found. We present
various techniques that detect infeasible paths targeted at WCET computation.

Abstract interpretation Some approaches use abstract interpretation. This kind of
approach analyzes the possible values of the program variables so as to extract proper-
ties including loop bounds [Gus00; Bal+19], and even infeasible paths [HW02; Suh+06;
Che+07; RC15; RCM17]. We illustrate the principle of this approach with the technique
presented in [Suh+06]. This approach only considers the infeasible paths inside of loop
bodies that are pairwise conflicts. A pairwise conflict is defined as a conflict between two
edges, denoted (e, e′), or between an assignment and an edge, denoted (u, e) where u is
the basic block that contains the assignment. The technique only supports assignments of
the form x = c and branch conditions of the form x OP c, where OP ∈ {<,>,≤,≥,=, ̸=},
x is a variable and c a constant value.

The analysis is performed on the CFG of the program. Each loop body is transformed
into a DAG. Then, an abstract interpretation of this DAG keeps trace of:

• The last assignment of each variable in the loop body;

• The branching condition for each edge in the DAG.

For a conflict between an assignment and an edge, the interpreter determines if the con-
junction of the assignment and the current edge branching condition is satisfiable. If the
conjunction is not satisfiable, it means that the corresponding path can be marked as
infeasible. A similar principle is used for conflicts between two edges.

Symbolic execution Symbolic execution, an analysis method that executes a program
with symbolic inputs, is also used by some other techniques in order to detect infeasible
paths [Alt96; GEL06]. Some of those techniques detect both infeasible paths and loop
bounds [Keb06; Gus+06]. Symbolic execution is very similar to the actual execution
of a program. The difference is that instead of using real program input values for the
execution, the program inputs are represented by symbolic values. As a result, all the
values of the variables that depend on the input values are represented as expressions over
these symbolic values.

We present the principle of these approaches with the work presented in [GEL06].
The approach presents three algorithms that detect the infeasible paths using abstract
execution, an analysis that combines both abstract interpretation and symbolic execution.

2.5. AUXILIARY ANALYSES 35

A first algorithm, which is also the simplest one, detects the nodes that are never
executed in a control-flow graph. The analysis uses an array of bits, where each bit
represents the feasibility of a basic block in the CFG. At the beginning of the analysis,
all the bits are set to 0, which means that the nodes are infeasible. Then, the symbolic
execution is performed on the graph, and each time a basic block is traversed, the array
is updated and the value 1 is set for this basic block. At the end of the analysis, the basic
blocks that were never executed by the symbolic execution are still represented by 0 in
the array, thus we know that they are infeasible.

A second algorithm detects pairs of nodes that are mutually exclusive within specific
scopes. For instance, the scope can be the body of a loop, which means that in that loop,
the two nodes of the pair are never executed during the same iteration. The analysis
records all the paths that are used during the symbolic execution of the scope. A triangular
matrix of size N ×N , where N is the number of nodes in the CFG, is built. This matrix
can either contain 1 to indicate that the two nodes are not mutually exclusive 0 to indicate
that they are or ⊥ to indicate that the pair has not been analyzed. The analysis iterates
over the paths of the program. For each pair of nodes in each path, the nodes are marked
as not mutually exclusive. All the pairs that correspond to one node of the path and an
alternative to a node of the path are marked as mutually exclusive, but only if they were
not analyzed previously (i.e. only if they are ⊥). At the end, all the 0 in the matrix
indicate the infeasible pairs of nodes.

The last algorithm uses trees to represent the paths taken in the CFG. Each path
symbolically executed is represented by a tree, which contains both the nodes of the path
and their alternatives in the CFG. Then, all the trees are merged into a single tree, that
represent feasible and infeasible paths.

Example 2.19 (Infeasible paths with trees) Consider Figure 2.9. The program and
its CFG are presented in Figure 2.9a and Figure 2.9b. Consider that the symbolic exe-
cution produced two paths represented by trees of Figure 2.9c and Figure 2.9d. On these
trees, the colored nodes correspond to the nodes not taken in the CFG. In the merged tree,
the paths passing through B,E and C,F are feasible whereas the paths passing through
B,F and C,E are not.

SMT The method proposed in [BLH14] relies on a SMT solver to detect infeasible
paths in binary code. As the other approaches, it starts from the CFG of the program.
To make it amenable to a SMT solver, the control-flow graph is transformed into its single
static assignment (SSA) form. The SSA form is a representation of the program where
there is only one assignment for each variable. If the original program contains several
assignments to the same variable, we then use a different variable for each assignment.

36 CHAPTER 2. STATIC WCET ANALYSIS: STATE OF THE ART

1 int f(int x){
2 //A
3 if(x > 0)
4 // B
5 else
6 // C
7 // D
8 if(x > 0)
9 // E

10 else
11 // F
12 // G
13 }

(a) “Diamond” program

A

B C

D

E F

G

(b) CFG of the program
root

B

E F

C

(c) Path through B and E

root

B C

E F

(d) Path through C and F

root

B

E F

C

E F

(e) Merged tree

Figure 2.9: Infeasible paths with tree algorithm

The approach computes the WCET with IPET technique iteratively. First, the path
that triggered the WCET is reconstructed from the IPET solution (in particular the num-
ber of times each basic block is executed). The SMT solver checks that the corresponding
path is feasible. If the path is feasible, then the WCET of the program is found. Oth-
erwise, the CAMUS algorithm [LS08] is used to find the subset of CFG nodes that are
incompatible (that makes the path infeasible). The paths that contain all these nodes are
then excluded from the IPET representation using an ILP constraint and a new WCET
is computed. The process is repeated until the path that triggers the WCET is feasible.

2.5.2.1 Using infeasible paths during WCET computation

With these analyses, infeasible paths are detected. However, another problem is to re-
move these infeasible paths from the paths that are taken into account while computing
the WCET. In this section, we detail some generic approaches to take infeasible paths
into account during the WCET computation. All of these approaches rely either on
CFG transformations or ILP constraints to exclude the infeasible paths from the WCET
computation.

2.5. AUXILIARY ANALYSES 37

s0 s1

∗ \ {x, y}

x, y

∗ \ {x, y}

(a) Conflict automaton with
a mutual exclusion between
B and E ×

A

B C

D

E F

G

x

y

(b) CFG =

A

B

Dx

Fx

Gx

C

Dy

E Fy

Gy Gz

x

y

(c) Unfolded CFG

Figure 2.10: CFG transformation using automata product

Graph unfolding using automata product Mussot et al. [MS15; Mus+16] proposed
a technique to perform graph unfolding. By representing both the CFG and the infeasible
paths as automata, it is possible to use an automaton product to remove the infeasible
paths from the CFG.

First, the CFG is viewed as a deterministic automaton, where each basic block of the
CFG becomes a node of the automaton and each edge of the CFG becomes a labelled edge
in the automaton. Second, an infeasible path can be represented as a simple automaton,
the conflict automaton, that accepts any path except the infeasible ones.

Example 2.20 (Infeasible paths as an automaton) Consider the automaton in Fig-
ure 2.10a. It represents the mutual exclusion between the nodes B and E from Fig-
ure 2.10b. This infeasible paths uses the edges of the CFG so as to express the infeasibility:
x is the transition from A to B and y the transition between D and E. Indeed, if we pass
through one of these edges, we take the transition to s1. After this transition, we cannot
pass through B or E.

Then, the technique proposes to perform an automata product so as to remove the
infeasible paths. We do not detail the automata product algorithm here. The result of
this product is an automaton that represents the CFG without the infeasible paths, that
can then be used to perform IPET.

Example 2.21 (CFG unfolding using automata) Consider Figure 2.10. This figure
represents the product between a conflict automaton and a CFG. As a result, the CFG
is unfolded into a CFG without the infeasible path. As expected, the paths that passes
through B and E does not exist in the resulting CFG.

38 CHAPTER 2. STATIC WCET ANALYSIS: STATE OF THE ART

As demonstrated in [Mus+16], unfolding the CFG enables to take into account the
infeasibile paths even during the hardware analysis, thus it can produce a tighter WCET.
Nevertheless, this technique is also computationally expensive: for a conflict automaton
with n edges the resulting CFG contains up to 2n − 1 nodes since it duplicates many
nodes.

Encoding Infeasible paths as ILP constraints Many different works tried to express
infeasibility as ILP constraints. Most of the time, the works presented here detect some
specific infeasible paths in a program and explain how to express these specific constraints
into the integer linear program that computes the WCET.

A first approach [HW02; BLH14] consists in representing simple conflicts between
nodes. It only considers that infeasible paths are conflicting sets of n nodes {B1, . . . , Bn}
where all the basic blocks are located outside of any loop (or only in a single loop iteration).
The approach then adds, for each conflicting set, an ILP constraint of the form x1+ · · ·+
xn ≤ n−1. This constraint expresses the fact that the sum of the number of executions of
all nodes in a conflicting set can only be lower than the number of nodes in the conflicting
set.

Example 2.22 (IPET: mutual exclusion outside loops) Consider the CFG in Fig-
ure 2.10b. If, as in Example 2.20, we want to express that we cannot use a path that
passes through B and E, we can add a constraint on the number of executions of these
nodes:

xB + xE ≤ 1

This constraint simply expresses that the number of executions of B, denoted xB and the
number of executions of E, denoted xE cannot be both set to 1 in the solution found by
the ILP solver, which excludes all the paths that pass through both B and E.

A second class of techniques [EE00; Gus+06; HW02] goes further by considering sets
of nodes that conflict over a complete loop execution. In such cases, the loop bound must
be used to consider the infeasible paths. The approach is very similar to the previous
one: consider that n is the bound of the loop to which all the nodes of the conflicting set
belong, then, the infeasible path can be abstracted as x1 + · · ·+ xn ≤ n.

Example 2.23 (IPET: mutual exclusion within loops) Consider the CFG in Fig-
ure 2.10b. As before, we want to express the mutual exclusion between B and E. This
time, we assume that the CFG is located in a loop that iterates at maximum 4 times.
Then, the mutual exclusion with the following linear constraint:

xB + xE ≤ 4

2.6. PARAMETRIC WCET COMPUTATION 39

This constraint simply means that when the number of iterations of the loop is 4, the sum
of the number of executions of B and E is at maximum 4, which abstracts the fact that
we cannot execute the two nodes in the same loop iteration.

Raymond [Ray14] also showed that in certain cases, it is possible to express conflicts
between different iterations of the same loop or across loop iterations (i.e. conflicts that
depend both on nodes in and out of a loop), with some ILP constraints. However, this
technique relies on ad-hoc reasoning, and is not a general approach. A more generic
solution can be to mix some ILP constraints and graph unfolding [KBC10; Ray14].

2.6 Parametric WCET computation

Now that we presented the state of the art regarding static WCET computation, we focus
on parametric WCET computation techniques. The specific nature of these methods is
that the WCET that they produce is not expressed as an integer value representing the
number of processor cycles needed to execute the program. Instead, a parametric formula
that depends on some parameters is generated. This formula can later be instantiated to
derive the WCET for some given parameter values.

This kind of technique can have different applications. First, when doing design space
exploration, a formula can be instantiated repeatedly off-line to quickly explore the pa-
rameters space with low execution cost. This can for instance be combined with sensitivity
analysis [BDB08; GC11] to determine which parameter values make the system schedu-
lable. Second, it can be instantiated on-line to perform adaptive scheduling, such as:

• Dynamic voltage and frequency scaling [Moh+05; Moh+11], that is an energy-aware
scheduling technique which consists in adjusting the voltage and the frequency of
a processor when the execution times of tasks in the system is lower than their
deadlines;

• Slack reclaiming [CBS00; LB00; Pal+08], which is able to attribute the unused
execution time of a task to another task;

• Semi-clairvoyant scheduling for mixed-criticality, which considers several WCETs
for each task. Depending on the WCET values that will be used by highly-critical
tasks, some low-critical tasks can be discarded to ensure that the highly-critical
tasks are executed before their deadlines.

40 CHAPTER 2. STATIC WCET ANALYSIS: STATE OF THE ART

2.6.1 Parametric WCET from intermediate code

A first approach presented in [Viv+01; Cof+07] proposes to derive a parametric WCET
formula from an intermediate code, that is compiled from the source code but that is not
as low-level as binary code.

This approach relies on a compiler to obtain the control-flow graph of the program.
Then, a timing analyzer uses the control-flow graph to estimate the WCET of each loop
and function (functions are considered as loops that only iterate a single time). From these
estimations, a timing analysis tree is constructed, where each node of the tree corresponds
to a loop or a function.

The WCET of the program is then computed in a bottom-up manner on this tree,
i.e. the WCET of a node of the tree can be computed when the WCET of all its children
trees are computed. For each node of the tree, the WCET is computed as the product
between the WCET of the path that correspond to a loop iteration (or the function
body) and the number of iterations of the loop. The parametric extension of this tool
consists in introducing a parameter, which represents the number of iterations of a loop,
into the WCET computation. Thus, instead of an integer value, the analysis produces a
polynomial formula that depends on the number of iterations of that loop.

This technique brings the first notion of parametric formula into WCET computation.
However, the method only support a single parameter.

2.6.2 Parametric integer programming

Another category of methods [Lis03; BL08; Alt+08] relies on a parametric extension of
integer linear programming, called parametric integer programming [Fea88], to compute
a parametric formula. We detail the approach of Altmeyer et al. [Alt+08] to illustrate
the principle of these approaches.

The first step of the analysis is the parameter analysis. This analysis attempts to
detect which elements in the program are procedure arguments. A procedure argument
is defined as a variable that is read by the program before it is written to in the binary
code. The parameters of the procedure are detected using abstract interpretation of the
code. This abstract interpretation, which represents the possible values of each variable
as an interval, is also able to detect the other variables that depend on a parameter value,
and to express their values, as a sum between the parameter and a constant value.

Then, the loops of the program are analyzed in four phases:

1. Collect the potential loop counters (the values that change in the loop body);

2. Derive the loop invariant;

2.6. PARAMETRIC WCET COMPUTATION 41

3. Evaluate the loop exit;

4. Construct the loop bound.

Finally, the rest of the analysis is very similar to IPET: the hardware analysis is used on
the CFG to estimate the WCET of each basic block, and a parametric integer program,
akin to an integer linear program but with parameters, is derived from the CFG. The
parametric integer programming solver then produces the parametric WCET formula.

This technique benefits from almost all the advantages of IPET, e.g. the hardware and
software facts modeling. The drawback, however, is the parametric integer programming,
which is known to be computationally very expensive.

2.6.3 The minimum propagation algorithm

Bygde et al. [BEL11] tried to address the complexity problem of the parametric integer
programming approach. The proposed framework is very similar to the previous one,
except that the method does not use parametric integer programming. Instead, the
approach proposes the minimum propagation algorithm (MPA).

The principle of this algorithm is based on the assumption that a basic block in the
CFG cannot be visited more time than the number of times its predecessors and successors
are visited, exactly as IPET. The algorithm builds a min-tree for each node of the CFG.
This min-tree is built from constraints similar to structural constraints derived from the
CFG. It has three kinds of nodes:

• Leaves, which represent the number of executions of basic blocks related to the value
of the number of executions of the basic block under analysis;

• Minimum nodes, represented by ♢, that represent a minimum among their children
trees;

• Plus trees, represented by ⊕, which represent the sum between their children tree.

This tree is then translated into a formula that expresses the number of time the basic
block is executed depending on the number of times its predecessors and successors are
executed.

Example 2.24 (min-tree) Consider again the CFG of Figure 2.2b. For each basic
block, a constraint is generated on the execution counts of the basic blocks to bound it
by the sum of the execution counts of its predecessors. A similar constraint is also gener-
ated for its successors, we thus have the constraints presented in Figure 2.11a. Using the
MPA algorithm on these constraints generates the min-tree of Figure 2.11b for the basic

42 CHAPTER 2. STATIC WCET ANALYSIS: STATE OF THE ART

xA ≤ xB + xC

xB ≤ xA, xD

xC ≤ xA, xD

xD ≤ xB + xC , xE

xE ≤ xD + xF , xF + xG

xF ≤ xE, xE

xG ≤ xE

(a) Constraints

♢

pG pE ⊕

♢

pF

♢

pD ⊕

♢

pC pA

♢

pB pA

(b) The min-tree for the basic block G

Figure 2.11: Minimum propagation algorithm illustration

block G. This tree is then translated to a formula that expresses the number of times G

can be executed:

tG = min(pG, pE, pF +min(pD,min(pC , pA) +min(pB, pA)))

where pi represents a symbolic maximum bound to xi.

Then, the WCET is computed using the following formula:

N∑
i=1

ci × xi

As for implicit path enumeration technique, ci must be replaced by the WCET of the basic
block, and xi is replaced by the formula derived from the min-tree of the corresponding
node (or a parameter). The formula is then simplified and can be instantiated to obtain
the WCET of the program. Since the technique generates a formula, the execution count
of basic blocks can also be replaced by symbols. This means that the approach supports
parametric loop bounds.

This approach has a lower complexity and thus is better-suited to bigger programs
than techniques that use parametric integer programming. However, the experiments
conducted on this technique show pessimism for most programs in comparison to para-
metric integer programming. This pessimism comes from the fact that the technique often
consider that when two alternative paths are possible, the two of them are executed. This

2.6. PARAMETRIC WCET COMPUTATION 43

technique can be viewed as a better trade-off between precision and analysis time for
bigger programs.

2.6.4 Parametric path analysis

An alternative to MPA is parametric path analysis [AAN11a; AAN11b]. It relies on a
property that is valid for many programs: each loop in the analyzed CFG must have a
single entry. With this assumption, the goal of the presented algorithm is to transform
the CFG into a directed acyclic graph (DAG).

In order to operate this transformation, the analysis computes the longest path of each
loop, from the inner-most loop to the outer-most loop. Once the longest path of an inner
loop is computed, the loop is replaced by a synthetic node with the WCET of the longest
path in that loop. Once all the loops have been replaced by a synthetic node, the CFG is
a DAG, in which the longest path can easily be computed.

If a loop has a symbolic loop bound, its WCET is then a parametric expression that
depends on this symbol.

In case of several paths, we must keep all the parametric paths as well as the longest
non parametric path because it is not possible to determine which of these paths is the
longest one statically.

2.6.5 Tree-based parametric WCET

Several tree-based techniques that support parameters have been developed. Since these
approaches rely on recursive computations, they are particularly well-suited for parametric
computations without increasing their complexity.

Černý et al. [Čer+15] introduced the abstract segment tree (AST). This tree is built
from the CFG using segment abstraction [CC12; CHR13] and it represents the different
paths of the CFG as a tree structure. Each node of the tree contains three pieces of
information:

• A name, which uniquely identifies the segment;

• A shape, which describes how the set of paths of the segment are constructed from
the paths of its children segments. For instance, it can represent an alternative
between the paths in its children segments;

• A Transition predicate which is a formula over the values of program variables, that
describe the values of the program variables at the beginning and at the end of
segments. For instance, it can indicate a predicate on the initial value of a variable
or the new value of a variable updated during the segment execution.

44 CHAPTER 2. STATIC WCET ANALYSIS: STATE OF THE ART

As for the other tree-based approaches, the WCET of the AST can computed depending
on the shape of the node: alternatives produce maximums between the WCET of the
children, sequences produce sums and a multiplication for loops. This approach, as the
previously introduced ones, proposes to use loop bounds as parameters.

Colin and Bernat [CB02] presented a generalization of the syntax tree that supports
symbolic computation. The main difference with the syntax tree is that each node of the
tree has two expressions:

• A cost expression, that expresses how the WCET of the node should be computed.
This expression can rely on its children tree and/or some variables (potentially some
parameters);

• A frequency expression, that defines how many times the node of the tree is executed
regarding a parent node (that may not be the direct parent of the node).

However, the authors do not provide any way to build this tree from the program.

In the next section, we detail a last tree-based approach on which this thesis focuses.
In particular, we provide the background needed to understand the various contributions
of the thesis.

2.7 Background: Symbolic WCET computation

The technique of Ballabriga et al. [BFL17] also presented a tree-based symbolic computa-
tion technique. It starts from a CFG representation of the binary program under analysis.
First, it translates the CFG into a control-flow tree (CFT). A control-flow tree is similar
to a Control-Flow Graph, in the sense that it also represents the possible execution paths
of a program, albeit with a tree structure. Being a tree structure, the CFT is prone to
recursive WCET analysis. The WCET of a CFT is expressed as a formula that follows
the tree structure and in which we can fairly easily introduce symbolic values.

2.7.1 Control-Flow Tree

A Control-Flow Tree can be one of:

• Leaf(b), which holds the basic block b of the program;

• Seq(t1, . . . , tn), which represents the sequential execution of trees t1, . . . , tn;

• Alt(t1, . . . , tn), which represents the execution of one tree among t1, . . . , tn;

2.7. BACKGROUND: SYMBOLIC WCET COMPUTATION 45

Loop (l1)

Seq

H1 Loop (l2)

Seq

H2 A

H2

H1

(a) Before transformation

Loop (l1)

Seq

H Loop (l2)

Seq

H2 fm A

H2

H

(l, [10, 0])

(b) After transformation

Figure 2.12: Instruction cache transformation

• Loop(l, tb, n, te), which represents the loop, identified uniquely by l, that repeats the
execution of tb at maximum n times and exits by executing the tree te.

The set of structurally feasible paths in a CFT t is denoted tpaths(t).

2.7.2 Abstract WCET

When located inside a loop, successive iterations of a CFT node can yield different
WCETs. The WCET of a CFT is represented as an abstract WCET, defined as a pair
(l, w), where l is a loop identifier and w is a list of integers sorted in non-increasing order.
The list can contain duplicates and its smallest element is implicitly repeated infinitely.

Example 2.25 (CFT: Abstract WCET) (l, [10, 10, 5, 3]) represents the WCET of a
node inside loop l. The WCET of the node is at most twice 10, once 5, and 3 for all other
iterations of loop l.

Example 2.26 (CFT: several WCET for several iterations) Let us illustrate how
we can represent the effect of the instruction cache. Consider the CFT of Figure 2.12a.
Assume that a cache categorization technique [Alt+96] determines that A contains a first-
miss cache access, i.e. the instruction is in the cache for all iterations except the first one.
Assume also that the cache miss penalty is 10 cycles. This is modeled in Figure 2.12b by
a leaf fm with WCET (l, [10, 0]).

The following definitions on the program topology are required to define operations
on abstract WCET:

46 CHAPTER 2. STATIC WCET ANALYSIS: STATE OF THE ART

• Loop l1 is said to contain loop l2, denoted l2 ⊑ l1, if the header of l2 is located inside
the body of l1;

• ⊤ is a fictive loop that refers to the program top-level scope;

• ⊥ is a fictive empty loop;

• Let L denote the set of loops of the program. Then, (L ∪ {⊤,⊥},⊑) is a lattice;

• l1 ⊓ l2 denotes the greatest lower bound of l1 and l2, that is to say the greatest
element of {l|l ⊑ l1 ∧ l ⊑ l2}

We now remind operations on abstract WCETs. Let a = (l, w) and a′ = (l′, w′) be
abstract WCETs. Then:

• θ is the null abstract WCET, where θ = (⊤, [0]).

• w[n] denotes the (n+ 1)th greatest element of w;

• (l”, w”) = a ⊕ a′ is a pointwise sum, such that w”[i] = w[i] + w′[i] and l” = l ⊓ l′.
This operator is used to sum two WCETs;

• a⊎ a′ = (l ⊓ l′, (w ∪w′) \ {k|k < min(w)∨ k < min(w′)}) is an order-preserving list
union, except that elements smaller than infinitely repeated ones are dropped. It is
used to compute the maximum between two WCETs;

• (l, w)n,l
′ represents an iteration over (l, w), where n is the number of iterations and

l′ the loop identifier corresponding to the loop we are iterating on. There are two
cases:

– if l = l′, then it sums the n greatest elements of w;

– if l ̸= l′, then it sums the elements of w by packs of n.

More formally (see Example 2.28 for an illustration):

(l, w)n,l
′
=

(⊤, [
∑n−1

i=0 w[i]]) if l = l′

(l,
⋃

i∈N[
∑n−1

j=0 w[i× n+ j]]) otherwise

Example 2.27 (CFT: Abstract WCET operators) We illustrate operations on ab-
stract WCET below:

• Let w = (l, [10, 10, 5, 3]). Then w[2] = 5, and w[5] = 3 since 3 is repeated infinitely;

• (l, [4, 3, 2])⊕ (l′, [3, 1]) = (l ⊓ l′, [4 + 3, 3 + 1, 2 + 1]) = (l ⊓ l′, [7, 4, 3]);

2.7. BACKGROUND: SYMBOLIC WCET COMPUTATION 47

• (l, [4, 3, 2])⊎ (l′, [3, 2, 1]) = (l⊓ l′, [4, 3, 3, 2]). Value 1 is dropped because it is smaller
than the minimum WCET of the left operand;

• (l, [5, 4])4,l = (⊤, [5 + 4 + 4 + 4]) = (⊤, [17]);

• Assuming l ̸= l′, we have (l, [5, 4])4,l
′
= (l, [5 + 4× 3, 4× 4]) = (l, [17, 16]).

2.7.3 Computing the WCET of a control-flow tree

Using the abstract WCET representation above, the abstract WCET ω(t) of a CFT t is
computed inductively on the CFT structure as follows:

ω(Leaf(b)) = ω(b)

ω(Seq(t1, . . . , tn)) = ω(t1)⊕ . . .⊕ ω(tn)

ω(Alt(t1, . . . , tn)) = ω(t1) ⊎ . . . ⊎ ω(tn)

ω(Loop(l, tb, n, te)) = ω(tb)
n,l ⊕ ω(te)

Example 2.28 (CFT: Exact first-miss representation) In Figure 2.12b, there are
two nested loops: l1 and l2. The first-miss leaf fm has WCET (l, [10, 0]). When l = l1

(resp. l = l2) a cache miss occurs each time we enter l1 (resp. l2). In the first case, for
a complete execution of the program, the miss penalty applies only once, whereas in the
second case it applies for every iteration of l1, since l2 is entered at each iteration of l1.
Assuming ω(A) = (⊤, [15]), ω(H1) = (⊤, [5]), ω(H2) = (⊤, [5]), assuming 3 iterations for
each loop l1, l2, and denoting t the CFT of Figure 2.12b, we have:

ω(t) = (⊤, [5])⊕ ((⊤, [5])⊕ (l, [10, 0])⊕ (⊤, [15]))3,l2 ⊕ (⊤, [5]))3,l1 ⊕ (⊤, [5])

= ((⊤, [5])⊕ (l, [30, 20])3,l2 ⊕ (⊤, [5]))3,l1 ⊕ (⊤, [5])

If l = l1 (single miss):

ω(t) = ((⊤, [5])⊕ (l1, [70, 60])⊕ (⊤, [5]))3,l1 ⊕ (⊤, [5])

= (l1, [80, 70])
3,l1 ⊕ (⊤, [5])

= (⊤, [220])⊕ (⊤, [5])

= (⊤, [225])

48 CHAPTER 2. STATIC WCET ANALYSIS: STATE OF THE ART

If l = l2 (three misses):

ω(t) = ((⊤, [5])⊕ (⊤, [70])⊕ (⊤, [5]))3,l1 ⊕ (⊤, [5])

= (⊤, [80])3,l1 ⊕ (⊤, [5])

= (⊤, [240])⊕ (⊤, [5])

= (⊤, [245])

When some parameters of the CFT are unknown, ω(t) produces a formula containing
symbolic values. For now, symbols can be of two kinds (this will be extended in the
following sections):

• A symbolic WCET. For instance, X ⊎ (l, {4}), where X is an unknown WCET;

• A symbolic loop bound. For instance, (l, {5, 3})N,l′ , where N is an unknown integer
loop bound.

ω(t) produces a formula that is linear in the size of t. When the formula contains
symbolic values, it cannot be reduced to a single operand. However, in order to decrease
its size and evaluation time, the formula is reduced using simplification rules based on
mathematical properties of the abstract WCET operations. For instance, ((l, {5})⊕X)⊎
((l, {4})⊕X) reduces to (l, {5})⊕X.

As a final step, the reduced formula is translated into C code, that can be used off-line
or on-line to instantiate the formula when symbol values become known. The approach
is implemented in a tool called WSymb [WSy], an OTAWA [Bal+10] extension.

Chapter 3

Infeasible paths in parametric
tree-based WCET analysis

Contents
3.1 Introduction . 50

3.2 Overview . 51

3.3 Pseudo paths . 52

3.3.1 Infeasibility constraints . 53

3.3.2 Pseudo paths . 54

3.3.3 Building the pseudo paths of a tree 56

3.4 From pseudo paths to control-flow-trees 58

3.4.1 Pseudo trees . 58

3.4.2 Building pseudo trees . 59

3.4.3 Building the feasible control-flow tree 61

3.4.4 Optimization . 63

3.5 Experiments . 64

3.5.1 Experimental setup . 64

3.5.2 Experimental results . 66

3.6 Conclusion and discussions . 69

49

50 CHAPTER 3. INFEASIBLE PATHS IN TREE-BASED WCET ANALYSIS

1 int f(int n){
2 //A
3 if(n > 10)
4 //B
5 else
6 //C
7 //D
8 if(n < 0)
9 //E

10 else
11 //F
12 //G
13 }

(a) A C procedure with
an infeasible path

A

B C

D

E F

G

(b) Control-flow graph

Seq

A Alt1

B C

D Alt2

E F

G

(c) Control-flow tree

Figure 3.1: A procedure and its control-flow representations

In this chapter, we introduce a first contribution in which we propose a method to take
infeasible paths into account in a tree-based WCET computation technique. We consider
in this chapter that each basic block is uniquely identified, that is to say a basic block
cannot appear more than once (except in the loop exit tree1).

3.1 Introduction

An infeasible paths, as defined in Section 2.2.2.3, is a succession of basic block, that
is:

1. Structurally feasible according to the control-flow representation of the program,
which means that this succession of basic block is valid in this program representa-
tion;

2. Semantically Infeasible, which means that the path is infeasible if we take into
account the program code semantics.

An example of infeasible path is depicted in Figure 3.1. We consider that in this program
the value of n is not modified. Structurally, a path exists through B and E in the control-
flow graph (CFG) as well as in the control-flow-tree (CFT). However, since the value of
n does not change in the program, this path is infeasible semantically, because n cannot
be both greater than 10 and lower than 0. Providing information about infeasible paths

1The exit tree of the loop always contains basic blocks that are in the loop body

3.2. OVERVIEW 51

to the WCET analyzer can reduce the pessimism of the computed WCET. Indeed, if the
longest path in the program representation is infeasible, then the computed WCET is
pessimistic since it uses the execution time of a path that is not actually feasible in the
program. Note that this work does not address the problem of detecting infeasible paths.
Instead, it focuses on eliminating infeasible paths from the control-flow tree representation
used to compute the WCET.

To remove infeasible paths, we propose to operate transformations on the CFT such
that no path marked as infeasible remain in the resulting CFT. As a consequence, the
symbolic computation can be directly applied on the transformed CFT and no further
extensions to the WCET computation are required to support infeasible paths.

3.2 Overview

We start by introducing the general workflow of our approach. Our goal is to remove
infeasible paths from a CFT. The main challenge is to avoid the enumeration of all the
paths in the program, which is intractable on most programs. We first define two key
concepts of our method:

• Infeasibility constraints express the infeasible paths supported by our technique
(Section 3.3.1). In essence, an infeasibility constraint is a set of basic blocks that
cannot be all together in a path. For instance, assume {B,E} is an infeasibility
constraint in Figure 3.1. This constraint means that any path including both the
basic blocks B and E, e.g. A.B.D.E.G in the CFT, is infeasible;

• Pseudo paths are a compact representation of a set of paths (Section 3.3.2). For
instance, Consider again the infeasibility constraint {B,E} on Figure 3.1. The
pseudo path {B} for the constraint {B,E} is an abstract representation of all the
paths that pass through B but not through E. The other pseudo paths for this
infeasibility constraint are:

– {B,E}, that represents all the paths that pass through both B and E;

– {E}, that represents the paths that pass through E but not through B;

– {}, which represents the paths that pass through neither B nor E.

With the help of these two concepts, we transform the CFT so as to remove all the
infeasible paths from it following the workflow depicted in Figure 3.2:

1. First, we compute all the pseudo paths for a CFT with respect to a set of infeasibility
constraints (Section 3.3.3);

52 CHAPTER 3. INFEASIBLE PATHS IN TREE-BASED WCET ANALYSIS

Contribution

CFT with infeasible paths

Pseudo path analysis

Infeasible paths removal

Pseudo trees construction

Feasible CFT

Infeasible path analysis

Pseudo paths

Feasible pseudo paths

Pseudo trees

Infeasible
paths

Figure 3.2: Workflow of the proposed infeasible paths representation technique

2. Then, we remove the pseudo paths corresponding to infeasible paths (Section 3.3.3).
For instance, consider again the CFT of Figure 3.1c with the infeasibility constraint
{B,E}. Here the pseudo path {B,E} represents the infeasible paths expressed by
the infeasibility constraint {B,E}, so we remove it from the set of pseudo paths;

3. We then build pseudo trees for each feasible pseudo path (Section 3.4.2). A pseudo
tree is a CFT that represents the concrete paths abstracted by a pseudo path. As an
example, with the infeasibility constraint {B,E}, Figure 3.4 represents the pseudo
tree of the pseudo path {B}, that is to say all the paths passing through the basic
block B but not through the basic block E since the paths passing through both
the nodes are included in another pseudo path: {B,E};

4. Finally, we build the feasible CFT with all the pseudo trees corresponding to feasible
pseudo paths in Section 3.4.3. For example, the CFT on Figure 3.6 represents the
feasible tree of the CFT on Figure 3.1c using an alternative between all the feasible
pseudo trees. On this tree, children trees of the root Alt tree are the pseudo trees
corresponding to the pseudo paths {B}, {E} and {};

3.3 Pseudo paths

In this section, we first detail the type of infeasible paths supported by our method,
represented by infeasibility constraints. Then, we explain how we can build our abstract

3.3. PSEUDO PATHS 53

paths representation, called pseudo path, from these infeasibility constraints.

3.3.1 Infeasibility constraints

We begin by defining the notion of infeasibility constraints, which represent the type of
infeasible paths supported by our approach.

Definition 3.1 (Infeasibility constraint) Let s be a set of basic blocks, b be a basic
block, and p be a program path. We define the inclusion of a set of basic blocks in a path
as:

s ⊑ p⇔ ∀b ∈ s, b ∈ p

An infeasibility constraint is a set of basic blocks, which can represent one or several
infeasible paths. Let c be an infeasibility constraint and p be a program path. The path p

is infeasible if:
c ⊑ p

Example 3.1 (Infeasibility constraint) Consider the tree of Figure 3.1c with the in-
feasibility constraint {B,E}. This infeasibility constraint means that all the paths that
pass through those two basic blocks are infeasible, e.g. A.B.D.E.G. However, the paths
that pass through none or one of these two basic blocks are still feasible, e.g. A.B.D.F.G

and A.C.D.E.G.

3.3.1.1 Scopes

Infeasibility constraints can also be associated to a scope, which extends Definition 3.1. In
such cases, the infeasibility constraint holds only in this scope (i.e. part) of the program.
In the control-flow tree model, the scope can be the root tree or any of its direct or indirect
children trees.

Example 3.2 (Infeasibility constraints and scope) Consider Figure 3.3 with the in-
feasibility constraint {B,E}. If the scope of the infeasibility constraint is the body of the
loop (the Seq child of the Loop tree), then the infeasibility constraint holds for each iter-
ation independently and we apply our transformation technique on the body of the loop.
It means that a single iteration of this loop cannot include both B and E, but that it is
possible that the concatenated path of several iterations contains all the basic blocks of the
infeasibility constraint. In this case, it means that the path H.B.E in a single iteration
is not feasible, but the path H.B.F.H.C.E, composed of the two iterations H.B.F and
H.C.E is feasible.

54 CHAPTER 3. INFEASIBLE PATHS IN TREE-BASED WCET ANALYSIS

Seq

A Loop

Seq

H Alt

B C

D Alt

E F

H

Alt

G I

Figure 3.3: Scoped infeasibility constraint

When infeasibility constraints are associated to different scopes, we must apply several
times our technique from the most inner scope to the most outer scope.

Example 3.3 (Handling multiple scopes) Consider again Figure 3.3 with two infea-
sibility constraints {B,G} and {B,E}, that are associated respectively to the root tree (the
root Seq) and to the loop body (the Seq child of the Loop tree). First, we must first apply
our technique to the most inner scope tree, i.e. the loop body with the constraint {B,E}.
Then, we apply our technique on the root tree (that includes the transformed loop body)
with the constraint {B,G}.

In the remaining part of this chapter, we assume that the scope of a constraint is always
the root tree, since the technique is easily extendable to the general case (as shown in
Example 3.3).

Note that most of the infeasible paths found using existing infeasible path detection
tools [HW02; Che+07; GEL06; BLH14; RCM17] can be expressed using this formalism.
It is however not possible to express conflicts between distinct loop iterations or to limit
the number of times we pass through a basic block like in [Ray14].

3.3.2 Pseudo paths

With the help of infeasibility constraints, we now detail how we can produce an abstract
representation of the paths in the CFT. This abstract representation will help us to remove
all the infeasible paths from the CFT without having to explicitly enumerate the feasible
and the infeasible paths in the program.

First, we begin by defining a flattening function on sets of elements, which is simply

3.3. PSEUDO PATHS 55

a union between all the elements in all the sets:

flatten(s1 , . . . , sn) =
⋃

1≤i≤n

si

With this definition, we can now define the notion of pseudo path.

Definition 3.2 (Pseudo path) A pseudo path is a set of basic blocks that represents
one or several paths in a program. It represents all the program paths that pass through all
of its basic block elements and it is always composed of basic blocks that are included in at
least one infeasibility constraint. Let t be a CFT, pp be a pseudo path and cs be a set of
infeasibility constraints related to structurally feasible paths in t. Then, the concretization
function ϕ associates program paths to the pseudo path representing them as follows:

ϕ(pp, t, cs) = {p|p ∈ tpaths(t) ∧ ∀b ∈ pp, b ∈ p ∧ ∄b′ ∈ p, b′ ∈ flatten(cs) ∧ b′ ̸∈ pp}

where tpaths(t) represents the structurally feasible paths in the CFT t.

Less formally, this function denotes that the concrete paths in a CFT t represented by
a pseudo path pp consist in all the paths that are structurally feasible in t (a.k.a. paths
that belong to tpaths(t)), that:

• pass through all the basic blocks that compose pp;

• do not pass through any other basic block that belongs to an infeasibility constraint.

Thus, note that the empty pseudo path does not represent all the paths in the tree, but
only the paths that are not included in any other pseudo path. In other words, the empty
pseudo path represents all the paths that do not pass through any basic block that belong
to an infeasibility constraint.

Example 3.4 (Pseudo paths and concretization) Consider the tree of Figure 3.1c,
denoted t1, with the infeasibility constraint {B}, which means that any path that contains
the basic block B is infeasible. Then, consider the pseudo paths {B} and {}. {B} repre-
sents the paths that pass through B and {} all the other paths, that do not pass through
B. Thus, the concretization function ϕ gives the following results:

ϕ({B}, t1, {{B}}) = {A.B.D.E.G,A.B.D.F.G)}

ϕ({}, t1, {{B}}) = {A.C.D.E.G,A.C.D.F.G}

56 CHAPTER 3. INFEASIBLE PATHS IN TREE-BASED WCET ANALYSIS

3.3.3 Building the pseudo paths of a tree

Now that we defined the notion of infeasibility constraint and the notion of pseudo paths,
we explain how a CFT can be built from pseudo paths.

Obtaining the pseudo paths of a tree is similar to finding all the paths in that tree, i.e.
with a tree traversal algorithm, except that we do not keep track of all the traversed basic
blocks (or leaves) of the tree. We only keep trace of the basic blocks that are included in
at least one infeasibility constraint.

We first give the intuition behind the algorithm before formally describing it.

3.3.3.1 Algorithmic intuition

The computation of the pseudo paths of a tree can be done inductively on its structure:

• The basic block is in the pseudo path only if it is included in an infeasibility con-
straint;

• For a sequence, the pseudo paths are a concatenation of its children pseudo paths;

• For an alternative, the pseudo paths are a union of the pseudo paths of its children;

• For loops, the pseudo paths are a union of the pseudo paths in the body of the loop
and the pseudo paths in the exit of the loop.

Example 3.5 (Pseudo paths from tree traversal) Consider again the CFT in Fig-
ure 3.1c. We analyze this control-flow tree recursively with the set of infeasibility con-
straints {{B,E}}. Starting from the basic blocks, the set of pseudo paths for each basic
block is {{}}, except for B and E. Indeed, B and E are included in the infeasibility
constraints. Thus, their pseudo paths are respectively {{B}} and {{E}}. For Alt1 and
Alt2, we perform a union of the pseudo paths of their children. Their pseudo paths are
then respectively {{B}, {}} and {{E}, {}}. We then concatenate the pseudo paths of the
children of the sequence to obtain the pseudo paths of this CFT. Since A, D and G have
only the empty pseudo paths, we only have to create the combinations of paths between the
pseudo paths of Alt1 and Alt2 , and we finally obtain {{}, {B}, {E}, {B,E}}.

3.3.3.2 Formal algorithm

Now that we presented the intuition behind our algorithm, we give a more formal definition
that describes the computation of the pseudo paths of a CFT.

First, we define the notation ⋓ for sets of pseudo paths:

pset ⋓ pset′ = {p ∪ p′|p ∈ pset, p′ ∈ pset′}

3.3. PSEUDO PATHS 57

In essence, the ⋓ operator returns the combinations of the possible concatenations between
the two sets of paths. For instance, for two sets of pseudo paths {p1, p2} and {p3, p4}, it
would produce all the possible combinations of path concatenations between the first and
the second set of pseudo paths {{p1 ∪ p3}, {p1 ∪ p4}, {p2 ∪ p3}, {p2 ∪ p4}}.

The function allPPaths returns the pseudo paths of a tree. This function is the core of
the algorithm to infer pseudo paths from a tree. It takes a set of infeasibility constraints
and the control-flow tree and returns the pseudo paths found in this tree for this set of
infeasibility constraints.

allPPaths(cs,Leaf(b)) =

{{b}} if b ∈ flatten(cs)

{{}} otherwise

allPPaths(cs, Seq(t1, t2, . . . , tn)) = allPPaths(cs, t1) ⋓ allPPaths(cs, Seq(t2, . . . , tn))

allPPaths(cs,Alt(t1, . . . , tn)) =
⋃

1≤i≤n

allPPaths(ti)

allPPaths(cs,Loop(h, tb, n, te)) = allPPaths(tb) ∪ allPPaths(te)

Example 3.6 (Pseudo paths computation) For instance, consider the tree of Fig-
ure 3.1c with the infeasibility constraint {B,E}. We use the leaves B and C and the Alt1
tree as examples:

allPPaths({{B,E}},Leaf(B)) = {{B}}

allPPaths({{B,E}},Leaf(D)) = {{}}

allPPaths({{B,E}},Alt1) = {{B}, {}}

So as to build a feasible CFT from the pseudo paths, we must first remove all the
pseudo paths that represent infeasible paths. We thus define a filtering function which
takes a set of infeasibility constraints and a set of pseudo paths and returns the set of
feasible pseudo paths:

filterIPaths(cs, ps) = {p|p ∈ ps ∧ ∄c ∈ cs, c ⊑ p}

In essence, it simply removes all the pseudo paths for which there exist an infeasibility
constraint that is included in the pseudo path. Since a pseudo path represents all the
paths that pass through its basic blocks (that belong to infeasibility constraints), all the
pseudo paths that include an infeasibility constraint thus represent paths that are actually
infeasible in the CFT. Also, since pseudo paths are an abstraction of all the paths in the

58 CHAPTER 3. INFEASIBLE PATHS IN TREE-BASED WCET ANALYSIS

Seq

A Alt1

B

D Alt2

F

G

Figure 3.4: Pseudo tree corresponding to the pseudo path {B}

CFT, removing infeasible pseudo paths removes all the infeasible paths from the program.
Finally, we define the function pPaths , which takes a set of constraints and the CFT

and returns the set of feasible pseudo paths inferred from this CFT:

pPaths(cs, t) = filterIPaths(cs, allPPaths(cs, t))

This function simply builds the set of pseudo paths for a tree and removes the infeasible
paths from it, using the previously defined functions.

3.4 From pseudo paths to control-flow-trees

In this section, we show how we can create a CFT that contains only feasible paths with
the previously computed feasible pseudo paths. First, we define the notion of pseudo tree.
Then, we detail how to build a pseudo tree for each feasible pseudo path. Finally, we use
these pseudo trees to build the feasible control-flow tree.

3.4.1 Pseudo trees

A pseudo-tree is a CFT whose paths corresponds to all the concrete paths represented by
a pseudo-path.

Definition 3.3 (Pseudo tree) Let t be a CFT, cs be a set of constraints, p a pseudo
path and pt a pseudo tree. pt is the pseudo tree of t corresponding to the pseudo path p if
and only if:

tpaths(pt) = ϕ(p, t, cs)

Example 3.7 (Pseudo tree) Consider Figure 3.1c. With the constraint {B,E}, we
have the following list of feasible pseudo paths for the tree: {B}, {E}, {}. The pseudo tree
for the pseudo path {B} is represented in Figure 3.4. In this pseudo tree, Alt1 has only B

as a child since B is in the pseudo path and thus we are forced to pass through this node

3.4. FROM PSEUDO PATHS TO CONTROL-FLOW-TREES 59

Seq

Alt1

A B

C Alt2

D E F

Figure 3.5: A CFT on which the transformations of alternative nodes are easier to detail

to match the pseudo path {B}. However, E is removed from the pseudo tree because it is
in the constraints but not in the pseudo path {B}, which means that it does not belong to
this pseudo path.

3.4.2 Building pseudo trees

Now that we defined the notion of pseudo tree, we explain how such CFTs can be built
from a pseudo path. The goal of this step is to derive, from the original CFT, a new CFT
that represents only the concrete paths represented by a single pseudo path. In essence,
it means that the resulting CFT must be such that:

1. all the paths in the CFT pass through all the basic blocks of the pseudo paths;

2. it does not include any basic block that is a) not in the pseudo path; b) in another
pseudo path.

We thus begin with the definition of two preliminary functions that help us with these
two requirements.

3.4.2.1 Passing through the basic blocks of the path

The first preliminary function that we define helps for the first requirement. It applies a
filter to the set of children trees to an alternative and only keep those that include basic
blocks belonging to a given pseudo path:

findChildren(ppath,Alt(t1, . . . , tn), cs) =

{tk|1 ≤ k ≤ n,∃p ∈ pPaths(cs, tk), p ̸= {} ∧ p ⊆ ppath}

In essence, findChildren finds the children trees that have non empty pseudo paths that
are included in a specified pseudo path. In other words, it tries to determine if there are
children trees that have at least one path that is included in the pseudo path of interest.

60 CHAPTER 3. INFEASIBLE PATHS IN TREE-BASED WCET ANALYSIS

Example 3.8 (findChildren result) Consider the tree of Figure 3.5 and in particular
Alt2 on this tree. With the infeasibility constraint {A,D}, we determine the children of
Alt2 that include basic blocks that must be included in the paths represented by the pseudo
path {D}:

findChildren({D},Alt(Leaf(D),Leaf(E),Leaf(F)), {{A,D}}) = {Leaf(D)}

In essence, this means that we must only keep the child tree Leaf(D) to ensure that all the
paths in the built CFT pass through D.

3.4.2.2 Filtering paths that do not belong to a pseudo path

This second preliminary function helps for the second requirement. The trees returned by
findChildren will be part of the pseudo tree constructed for the considered pseudo path. If
the function returns an empty set, we filter sub-trees that contain basic block that belong
to other pseudo paths:

filterAlt(ppath,Alt(t1, . . . , tn), cs) = {tk|1 ≤ k ≤ n,∃p ∈ pPaths(cs, tk), p ⊆ ppath}

Less formally, filterAlt returns the children of an alternative tree for which there exists
at least one pseudo path that belongs to the specified pseudo path. This function is very
similar to the previous one, except that it allows the empty pseudo path.

Example 3.9 (filterAlt result) Again, we consider the tree of Figure 3.5 and Alt2 in
particular. With the pseudo path {A}, we have:

filterAlt({A},Alt(Leaf(D),Leaf(E),Leaf(F)), {{A,D}}) = {Leaf(E),Leaf(F)}

The children leaves E and F are not in the infeasibility constraints and thus they can be
included in the pseudo tree that corresponds to the pseudo path {A}, which is included in
{A}. However, the leaf D belong to the pseudo path {D} and is not included in the pseudo
path {A}. Thus, we do not include it in the pseudo tree that corresponds the pseudo path
{A}.

3.4.2.3 Pseudo tree construction algorithm

We define below the function pTree, which builds the pseudo tree corresponding to a
pseudo path. This function takes a pseudo path, the original CFT and the set of con-
straints, and produces the tree associated with the pseudo path.

pTree(ppath,Leaf(b), cs) = Leaf(b)

3.4. FROM PSEUDO PATHS TO CONTROL-FLOW-TREES 61

pTree(ppath, Seq(t1, . . . , tn), cs) = Seq(pTree(t1), . . . , pTree(tn))

pTree(ppath,Alt(t1, . . . , tn), cs) = Alt(
⋃

1≤i≤k

pTree(t′i))

where (t′1, . . . , t
′
n) =

findChildren(ppath,Alt(t1, . . . , tn), cs) if findChildren(ppath,

Alt(t1, . . . , tn), cs) ̸= {}

filterAlt(ppath,Alt(t1, . . . , tn), cs) otherwise

pTree(ppath,Loop(h, tb, n, te), cs) =
Loop(h, pTree(ppath, tb, cs), n, pTree(ppath, te, cs)) if ∃p ∈ pPaths(cs, tb),

p ⊆ ppath

pTree(te) otherwise

Less formally:

• the pseudo tree of a leaf is always the leaf itself;

• the pseudo tree of a sequence is the sequence of the pseudo trees of all its children;

• For the alternatives, two cases can occur:

– If there is at least a child tree for which there is a non-empty pseudo path
that is included in the specified pseudo path, then we build an alternative with
these children pseudo trees;

– Otherwise, it means that there is no basic block that we must traverse in this
alternative. Thus, we just ensure that the children trees for which all the
pseudo paths include basic blocks that are not included in the pseudo path
that we are building the tree of are removed.

• For loops, we simply remove the loop body if all the pseudo paths of this loop body
include basic blocks that are not included in the pseudo path we are building the
tree of.

3.4.3 Building the feasible control-flow tree

Now that we defined how to build a CFT that corresponds to a feasible pseudo path, the
last step is to construct an alternative between all the feasible pseudo trees. This tree is

62 CHAPTER 3. INFEASIBLE PATHS IN TREE-BASED WCET ANALYSIS

Alt

Seq

A Alt1

B

D Alt2

F

G

Seq

A Alt1

C

D Alt2

E

G

Seq

A Alt1

C

D Alt2

F

G

Figure 3.6: The feasible tree of Figure 3.1c

called the feasible CFT and is computed as follows:

ftree(t, cs) = Alt(
⋃

p∈pPaths(cs,t)

pTree(p, t, cs))

Example 3.10 (Feasible CFT) For instance, the tree of Figure 3.6 represents only the
feasible paths of the tree of Figure 3.1c, i.e. without the paths passing through B and E.
The pseudo trees that correspond to the pseudo paths {B}, {E} and {} are the children
of a root alternative tree.

Now we state the validity of our approach:

Theorem 3.1 Let t be a CFT, cs be a set of constraints and pt = ftree(t, cs). Then:

tpaths(pt) ⊆ tpaths(t) (3.1)

∄p ∈ tpaths(t)|p ̸∈ tpaths(pt) ∧ ∄c ∈ cs, c ⊑ p (3.2)

∄p ∈ tpaths(pt)|∃c ∈ cs, c ⊑ p (3.3)

Intuitively, (3.1) expresses that we do not add paths that were not in the original CFT.
Equation (3.2) means that all existing feasible paths of the original CFT exist in the
feasible CFT. Finally, (3.3) states that no infeasible path remains in the transformed
tree. Put together, these properties imply that our approach is exact with respect to our
infeasible paths abstraction (i.e. infeasibility constraints), in the sense that the resulting
CFT corresponds to the original CFT without the semantically infeasible paths.

A proof intuition for this theorem is:

• Regarding property (3.1), when we build the set of pseudo paths, we infer them from
the original CFT. Then, we remove from this set the pseudo paths that include an
infeasibility constraint, thus we discard some of the paths. Finally, when we build
the pseudo trees, we copy the original tree and only discard some sub-trees of this
CFT. Thus, the paths in the feasible CFT are definitely included in the initial CFT
paths;

3.4. FROM PSEUDO PATHS TO CONTROL-FLOW-TREES 63

Seq

A D G Alt

Seq2

B F

Seq3

C E

Seq4

C F

Figure 3.7: Final tree

• Pseudo paths are an abstract representation of the concrete paths in the CFT that
pass through certain basic blocks, as denoted by the concretization function. Thus,
by removing the pseudo paths that include an infeasibility constraint (and thus
are infeasible because of the basic blocks they traverse), we implicitly remove all
the concrete paths that were infeasible because they passed through all the basic
blocks of the removed pseudo paths, that include at least an infeasibility constraint,
which corresponds to property (3.2). Since all the paths that are removed include
an infeasibility constraint, we do not remove any feasible path, which corresponds
to property (3.3).

3.4.4 Optimization

The tree built by function ftree can duplicate many nodes of the original tree. For instance,
the tree of Figure 3.6 duplicates the nodes A, D and G. To some extent, we can avoid
the duplication of those nodes to get a more compact tree, which still produces the same
WCET. We do a simple tree factorization: the nodes that are in all pseudo trees can be
taken out of each pseudo tree and put in a parent sequence of the transformed tree.

Example 3.11 (Optimization of feasible CFT) Consider the CFT in Figure 3.1c.
If we have the constraint {B,E}, the nodes A, D and G have an empty pseudo path {}.
Only the node Alt1 and the node Alt2 have non empty pseudo paths in their pseudo paths
sets, respectively {B} and {E}. It means that A, D and G exist in all the paths, so
we can avoid their duplication by removing them when we transform the tree and putting
them back into the final tree. The transformation without factorization returns the tree of
Figure 3.6, whereas the tree transformation with factorization is shown in Figure 3.7. As
we can see, the nodes A, D and G are not duplicated in each pseudo tree anymore.

This tree transformation changes the program semantics: it changes the order of the
basic blocks. Nevertheless, it is safe regarding WCET analysis if we consider that the

64 CHAPTER 3. INFEASIBLE PATHS IN TREE-BASED WCET ANALYSIS

Table 3.1: Benchmarks Summary

Program Source(s) Description
adpcm_dec TACLeBench ADPCM decoder
adpcm_enc TACLeBench ADPCM encoder

cosf TACLeBench Performs calculations of the cosinus func-
tion

countnegative TACLeBench/Mälardalen Counts signes in a matrix
cover Mälardalen Program for testing many paths

expint Mälardalen Series expansion for computing an expo-
nential integral function

fft1 Mälardalen 1024-point Fast Fourier Transform using
the Cooly-Turkey algorithm

lms TACLeBench/Mälardalen LMS adaptive signal enhancement
ludcmp TACLeBench/Mälardalen LU decomposition algorithm
md5 TACLeBench Message digest algorithm
minver TACLeBench/Mälardalen Floating point matrix inversion
ndes TACLeBench/Mälardalen Complex embedded code
prime TACLeBench/Mälardalen Prime number test

qsort-exam Mälardalen Non-recursive version of quick sort algo-
rithm

select Mälardalen Selects the Nth largest number in a float-
ing point array

statemate TACLeBench/Mälardalen Automatically generated code
ud Mälardalen Calculation of matrixes

hardware analysis has been performed before the tree transformation. Indeed, as the
WCET of a sequence is a commutative pointwise sum of the WCET of its children,
changing the order of the children has no impact on the resulting WCET.

3.5 Experiments

In this section, we present the various experiments that we conducted to evaluate our
approach. In particular, we evaluate the impact of our technique on the analysis time.
We also compare our technique with non-parametric IPET in a parametric context. We
begin with the detail of our experimental setup, and then we comment the obtained
results.

3.5.1 Experimental setup

We implemented our method with the proposed optimization as an extension of the
WSymb [WSy] tool. We tested it with various benchmarks from both the Mälardalen
benchmark suite [Gus+10] and TACLeBench [Fal+16]. We selected a subset of these

3.5. EXPERIMENTS 65

Table 3.2: Analysis time with and without considering infeasible paths

Program SLOC Time w/o
ipaths (s) Infeasible paths Time w/ ipaths (s)

adpcm_dec 397 0.159 8 1.089
adpcm_enc 413 0.173 8 58.356
cosf 631 0.075 122 5.833
countnegative 78 0.029 1 0.037
cover 231 0.018 3 0.026
expint 57 0.024 20 0.041
fft1 136 0.230 2 0.479
lms 146 0.071 2 0.101
ludcmp 71 0.045 784 0.954
md5 352 5.229 3 6.099
minver 136 0.082 405 2.730
ndes 201 0.089 140 435.758
prime 33 0.031 50 0.130
qsort-exam 69 0.039 1168 1.303
select 68 0.038 1178 1.196
statemate 1127 0.449 5468 881.128
ud 61 0.037 57 0.060

benchmarks, presented in Table 3.1, with various source code sizes and complexity. Here,
what we mean by complexity is the number of branches in a program.

We used the following hardware setup:

• Processor: no pipeline or cache are used: the execution time of each instruction is
set to 5 processor cycles;

• Compilation: each benchmark is compiled as a standalone 32-bit ARM binary file
using GCC version 9.2.1 for ARM, with flags -O1 -nostdinc -nostdlib -mtune=cortex-
a7 -mfpu=neon-vfpv4 -mfloat-abi=hard -march=armv7ve.

• Analysis time: they are measured using an Intel® Core™ i7-8550U CPU @ 1.80GHz,
with 16GB of RAM.

We implemented a tool to generate random infeasibility constraints. This tool is
based on a CFG analysis: whenever a node has several successors, we store the identifier
of those successors so as to generate constraints between them later. Note that the CFT
is obtained from the CFG, so we can generate infeasibility constraints from the CFG in
order to compare our method with IPET. For instance, consider the CFG of Figure 3.1b.
The nodes A and D have several successors:

• A has B and C as successors;

66 CHAPTER 3. INFEASIBLE PATHS IN TREE-BASED WCET ANALYSIS

• D has E and F as successors.

Our tool generates constraints by taking one random node per set of successors. So if we
want to generate a constraint of size 2 on this example, we get {B,E}, {B,F}, {C,E}
or {C,F}. For each benchmark, we generate constraints with two to five basic blocks
(the number of basic blocks is chosen randomly). So as to perform experiments that are
representative regarding the number of infeasible paths, we used the number of infeasible
paths detected by the tool presented in [RCM17] as a reference, which is reported in the
infeasible paths column in Table 3.2). Our infeasible path generator is still a prototype
and has two limitations:

1. It may generate several times the same infeasible paths for small programs because
the algorithm generates them randomly.

2. It may generate structurally incorrect infeasible paths. Indeed, a loop header has
also several successors but no difference is made between the exit edge and the loop
entry edge. In such cases, the incorrect infeasible paths are ignored.

Since when we generate infeasible paths we do not take into account loop bounds, we set
the number of iterations of all the loops to 1 to be able to compare with IPET. This is
not a problem since the idea here is to compare analysis times and not WCET precision
(since our technique is exact).

3.5.2 Experimental results

We now present our experimental results. First, we compare the analysis time of sym-
bolic computation with and without considering infeasible paths. Then, we compare this
execution time with implicit path enumeration technique.

3.5.2.1 Analysis time

The results of our experiments regarding the analysis time overhead of the infeasible path
removal are shown in Table 3.2. The first column shows the name of the benchmark
program. The SLOC column corresponds to the number of source lines of code (SLOC)
measured with the sloccount Linux utility. The Time w/o ipaths (s) column presents the
analysis time (in seconds) of the tool without using our technique (without considering
infeasible paths). The infeasible paths column shows the number of infeasible paths gen-
erated for the analysis. Finally, the Time w/ ipaths (s) indicates the average analysis time
in seconds with our infeasible paths transformation technique. As we generate random
constraints, we ran each benchmark until we reached fifty successful runs. A run is con-
sidered to be successful if there is at least one feasible path, i.e. we removed the results

3.5. EXPERIMENTS 67

Table 3.3: Comparison of the results with IPET

Program
IPET

analysis time
(s)

Parametric
analysis time

(s)

Formula in-
stantiations

(s)

Parametric
< IPET

adpcm_dec 0.050 1.089 0.012 ≥ 29
adpcm_enc 0.062 58.356 0.040 ≥ 2653
cosf 0.031 5.833 0.008 ≥ 254
countnegative 0.019 0.037 0.009 ≥ 4
cover 0.014 0.026 0.007 ≥ 4
expint 0.014 0.041 0.007 ≥ 6
fft1 0.055 0.479 0.009 ≥ 11
lms 0.032 0.101 0.008 ≥ 5
ludcmp 0.032 0.954 0.007 ≥ 39
md5 0.240 6.099 0.010 ≥ 27
minver 0.034 2.730 0.008 ≥ 105
ndes 0.041 435.758 0.108 −
prime 0.020 0.130 0.007 ≥ 10
qsort-exam 0.036 1.303 0.007 ≥ 45
select 0.034 1.196 0.007 ≥ 45
statemate 0.409 881.128 0.007 ≥ 2192
ud 0.019 0.060 0.008 ≥ 6

where no feasible paths were found, which may happen since we generate the infeasible
paths randomly. All the analysis times presented include:

• The construction of the CFT (and of the feasible CFT for Time w/ ipaths (s));

• The translation of the CFT into a parametric WCET formula;

• The simplification of this formula.

Three programs show the limitations of our technique: adpcm_enc, ndes and state-
mate. For these three programs the analysis time explodes because of the number of
distinct conditional statements involved, which produce many different pseudo paths and
thus many different pseudo trees. Note that existing control-flow graph transformation
techniques [MS15; Mus+16] exhibit the same problem. Nevertheless, results suggest that
our technique is usable for most medium sized programs, whose number of branches is
generally limited.

3.5.2.2 Comparison with implicit path enumeration technique

We compare our technique with IPET in a parametric context. The results are presented
in Table 3.3. The first column shows the name of the program. The IPET analysis time
(s) column gives the time needed to compute the WCET using OTAWA [Bal+10] with

68 CHAPTER 3. INFEASIBLE PATHS IN TREE-BASED WCET ANALYSIS

10 20 30 40 50 60 70 80 90 100 110 120 130 140
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Number of instantiations

To
ta

la
na

ly
si

s
ti

m
e

(s
)

Parametric CFT
IPET

Figure 3.8: Comparison with IPET (linear regression example with minver)

lp_solve [lps] 5, which computes the WCET using IPET. As in most other works using
IPET, the infeasible paths are introduced in the analysis by adding linear constraints
to the integer linear program computing the WCET [Ray14]. The Parametric analysis
time (s) column corresponds to the time needed to compute the parametric formula that
represents the WCET (it is the same value as the one presented in the last column of
Table 3.2). The Formula instantiations (s) column is the time needed to compute the
numeric WCET bound by replacing parameters with values. Finally, the Parametric <
IPET column shows the number of instantiations over which the total computation time
is lower using our technique. In other words, since IPET is not parametric, we have to
run the analysis again each time the parameter values change. This is not the case for
the parametric WCET computation technique that we use, which produces a feasible tree
once that is then translated into a WCET formula. Then, the formula is instantiated
with different values each time the parameter values change.

For all the benchmark programs (except ndes) the instantiation of the formula is
faster than the time needed to re-run IPET. It implies that over a certain number of
instantiations, the full runtime of our technique is lower than the analysis time of IPET.
To better understand the last column of the table and why our approach can be faster
than IPET, consider the example of Figure 3.8. It shows two lines corresponding to the
time needed to compute the WCET in a parametric context. In the case of IPET, we
need to re-run the analysis each time we want to change a parameter value. With our
technique, we only need to instantiate the formula each time we want to edit parameters.
As shown in Table 3.2, the time needed to compute the parametric formula with infeasible

3.6. CONCLUSION AND DISCUSSIONS 69

paths is higher than the time needed to compute the WCET with IPET. Thus, in the
non parametric case, IPET is more efficient than our technique. Nevertheless, in presence
of parameters, Table 3.3 shows that the instantiation of the formula is faster than the
WCET computation with IPET. Thus, the total runtime to compute n times the WCET
grows slower than the total runtime for IPET.

Results show that, for many benchmarks, our technique is faster than IPET when
we need to change parameter values dozens of times. Nevertheless, three benchmark
programs show less satisfying results. First, statemate is automatically generated code,
its code structure contains many occurrences of the same conditional statements, and thus
contains many infeasible paths which increases the number of pseudo trees to generate and
explains the high analysis time. A human programmer would probably not write code like
this. Regarding ndes and adpcm_enc, the main problem is that the computed formula is
big. Even without our infeasible path technique, the formula simplification is not really
efficient since the program contains many loops and thus the output formula is still big
after simplification. Adding our infeasible paths representation technique amplifies the
problem and thus the final formula instantiation time is higher than when computing the
WCET again with IPET. adpcm_enc also has a more complex control-flow than the other
programs, which leads to a lot more pseudo paths. The more pseudo paths, the bigger
the resulting formula and the longer the analysis.

We did not detail the analysis precision in the results since our infeasible paths rep-
resentation technique is exact (see Theorem 3.1) and thus the WCET gain is the same
as with IPET. These results show that our technique can be used to represent infeasible
paths in a parametric context, but is not adapted for non parametric usage.

3.6 Conclusion and discussions

In this chapter, we presented a method to take infeasible paths into account in parametric
WCET computation. This method consists in transforming the control-flow tree of the
program such that semantically infeasible paths become structurally infeasible in the
resulting CFT. The technique supports infeasible sets of basic blocks, that is to say a set
that contains basic blocks that cannot be all together in the same program path. The
technique uses these sets to build an abstract representation of the program paths. This
abstract representation of program paths is then used to build a feasible control-flow tree
where semantically infeasible paths are also structurally infeasible. The main benefit of
this approach is that once the CFT is transformed, we can apply the parametric WCET
computation technique proposed in previous works without further modifications. Our
experiments show that this method generally scales for medium-sized programs.

70 CHAPTER 3. INFEASIBLE PATHS IN TREE-BASED WCET ANALYSIS

Nevertheless, due to the high complexity of eliminating infeasible paths with a CFT
unfolding, the analysis takes more time and does not scale as well as the implicit path
enumeration technique, which demonstrates a better ability to manage infeasible paths.
A future work on this topic could be to find a compromise between the analysis time and
the precision of the infeasible paths removal. For instance, it may be possible to use a
complexity metric, e.g. the cyclomatic complexity [McC76], as a reference to limit the
number of pseudo tree generated. The resulting feasible CFT would be smaller and thus
the parametric tree-based WCET computation that account for infeasible paths could
scale for more programs.

Chapter 4

Tree-based WCET computation and
pipeline modeling

Contents
4.1 Introduction . 72

4.1.1 Motivating example . 72

4.1.2 Contribution . 73

4.2 From control-flow graph to control-flow tree 74

4.2.1 Trivial case: basic blocks with a single incoming edge 75

4.2.2 Basic blocks with several incoming edges 75

4.2.3 Limitation . 79

4.3 Symbols with pipeline analysis 79

4.4 Experiments . 80

4.4.1 Experimental setup . 80

4.4.2 Benchmark selection process . 81

4.4.3 Experimental results . 81

4.5 Conclusion and discussions . 83

71

72 CHAPTER 4. PIPELINE AND TREE-BASED WCET ANALYSIS

A well-known limitation of tree-based WCET computation techniques is that they are
often not able to model the effect of the hardware components on the produced WCET.
In this chapter, we propose to adapt an existing pipeline analysis technique developed on
the CFG such that it can be used in tree-based WCET computation.

4.1 Introduction

The computation of the WCET of each basic block of the program is performed during
the hardware analysis. One of the hardware components that are modeled to produce a
precise WCET is the processor pipeline. Many different approaches model the effect of
the processor pipeline on the WCET (see Section 2.3.1). However, these techniques target
the control-flow graph (CFG).

In this work, we take advantage of the fact that the CFT is built from the CFG to adapt
an existing pipeline analysis to the symbolic WCET computation technique. Essentially,
we use the results of the pipeline analysis that stores WCETs on the CFG edges and we
report them on the WCETs of the basic blocks of the CFT. Our experimental results show
that the WCET computed with the adapted control-flow tree is very close to the WCET
produced using IPET.

4.1.1 Motivating example

In OTAWA [Bal+10], the execution graph approach [RS09] is used to model the processor
pipeline. The different WCETs for a basic block are stored on its incoming edges in the
CFG. Each of these WCETs represents the WCET of this basic block for a particular
execution context. An execution context is defined as one or several basic blocks that are
executed before the basic block.

Consider Figure 4.1, which represents a simple program with two paths. In the figure,
the basic blocks are represented with an upper case letter and their WCET with the
corresponding lowercase letter. We distinguish two paths in the CFG: A.B.D.E and
A.C.D.E. Their WCET is respectively a+ b+ d1 + e and a+ c+ d2 + e. We need to find
a way to transfer information from the CFG edges into the CFT.

A trivial solution is to set the WCET of D as the maximum between d1 and d2, but
it could be overly pessimistic. Assume that a = b = d2 = e = 10 and that c = d1 = 5.
The WCET of the two possible paths in the CFG is then 10 + 10 + 5 + 10 = 35 and
10+5+10+10 = 35. However, with the trivial solution on the CFT, we would then have
10+max (10, 5) +max (5, 10) + 10 = 40. This solution is thus not satisfying because each
time a node has several predecessors, its WCET can be overestimated, which produces
an overly pessimistic result.

4.1. INTRODUCTION 73

1 int f(int x){
2 // A
3 if(x > 10)
4 // B
5 else
6 // C
7 // D
8 // E
9 }

(a) C program

A

B C

D

E

a

b c

d1 d2

e

(b) Control-flow graph

Seq

A Alt

B C

D E
a

b c

max(d1, d2) e

(c) Control-fow tree

Figure 4.1: Motivating example

OTAWA WSymb

Binary
program

Control-flow graph
construction

Pipeline
analysis

Control-flow tree
construction

control-flow tree
adaptations

WCET
computation WCET

CFG

CFG

Timed
CFG

CFT

adapted CFT

Figure 4.2: Workflow of our analysis

4.1.2 Contribution

The goal of this work is to efficiently model the effect of the pipeline in the CFT.

We propose to change the WCET of the basic blocks in the control-flow tree so as to
integrate the information provided by execution graph method the different WCETs that
a basic block may have. The workflow of our approach is depicted in Figure 4.2:

1. First, OTAWA constructs the control-flow graph from the binary program;

2. Then, the pipeline analysis is performed on this CFG. It computes the WCET of
each basic block depending on its execution context and stores the different WCETs
for a basic block on its incoming edges;

74 CHAPTER 4. PIPELINE AND TREE-BASED WCET ANALYSIS

3. WSymb [WSy], our symbolic WCET computation tool, constructs the control-flow
tree from the control-flow graph;

4. Then, we integrate the information from the CFG edges to the CFT basic block
WCETs;

5. After that, the WCET is computed normally on the CFT structure.

In the following section, we present the different adaptations applied to the CFT to
support the pipeline analysis. Then, we discuss the impact of our technique on the notion
of symbol in the symbolic computation in Section 4.3. We present some experimental
results in Section 4.4 before concluding in Section 4.5.

4.2 From control-flow graph to control-flow tree

As described in the motivating example, the pipeline modeling implementation in OTAWA
stores the different WCET for a basic block on its incoming edges. Thus, in this section,
we show various adaptations to the WCET of basic blocks in the control-flow tree that
enable us to take the effect of the processor pipeline into account during the WCET
computation.

In this section, we use the following notations. Let X be a basic block, I(X) denotes
the set of incoming edges of X. Let e be an edge, source(e) denotes the basic block that
is the source of this edge. We denote ωg(e) the WCET of the edge e in the CFG (with g

for graph). The algorithm relies on two functions:

• loopHeader(l, eentry , eback), which determines if the basic block is a loop header of
the loop l, with eentry being the entry edge of the loop and eback being the back edge
of the loop;

• body(l), which denotes the loop body.

Recall that ω(X) denotes the WCET of the basic block X in the CFT.

Algorithm 1 details the WCET computation for the basic blocks in the CFT using the
WCET of the edges of the CFG. The procedure ComputeBBWCET takes the CFT and
the CFG as argument and computes the WCET of each basic block in this CFT. Lines 2
to 10 simply call the procedure recursively on the tree structure. Starting from line 11,
it computes the WCET of basic blocks. The remainder of this section details how the
WCET of these basic blocks is computed.

4.2. FROM CONTROL-FLOW GRAPH TO CONTROL-FLOW TREE 75

Algorithm 1 Computing the WCET of CFT basic blocks
1: procedure ComputeBBWCET(t, g)
2: if t is Seq(T) then ▷ Sequences recursive calls
3: for all tc ∈ T do
4: ComputeBBWCET(tc)
5: else if t is Alt(T) then ▷ Alternatives recursive calls
6: for all tc ∈ T do
7: ComputeBBWCET(tc)
8: else if t is Loop(l, tb, n, te) then ▷ Loops recursive calls
9: ComputeBBWCET(tb)

10: ComputeBBWCET(te)
11: else if t is Leaf(b) then ▷ Basic blocks WCETs
12: if I(b) = {i} then ▷ Single predecessor
13: ω(b)← ωg(i)
14: else if b is loopHeader(l, eentry , eback) then ▷ Loop header WCETs
15: if b ∈ body(l) then ▷ Header in the body
16: ω(b)← ωg(eback)
17: else ▷ Header in the exit tree
18: ω(b)← ωg(eentry)
19: else ▷ Successor of alternative
20: for all i ∈ I(b) do
21: if ∃e ∈ I(b) \ {i} : source(i) ∈ preds(source(e)) then ▷ Artificial leaf
22: ω(artificialPred(b))← ωg(i))
23: else ▷ Update the predecessor WCET
24: ω(source(i))← ω(source(i)) + ωg(i)
25: ω(b)← θ

4.2.1 Trivial case: basic blocks with a single incoming edge

We begin with the trivial case, which corresponds to basic blocks that have only a single
incoming edge. In this case, we simply define the WCET of the basic block (i.e. the leaf
in the CFT) to be the WCET stored on its incoming edge in the CFG, which corresponds
to lines 12 and 13 in Algorithm 1.

4.2.2 Basic blocks with several incoming edges

Whenever a basic block has several incoming edges, the way the WCET of each basic
block is adapted depends on the context. We detail how we adapt the execution times in
the CFT for each of these contexts. Two kinds of basic blocks can have several incoming
edges in the CFT:

1. Successors to alternative CFTs, that have a different incoming edge for each alter-
native path in the CFG;

76 CHAPTER 4. PIPELINE AND TREE-BASED WCET ANALYSIS

2. Loop headers, that have two predecessors: the loop entry edge and the loop back
edge (the edge that mark the end of a loop iteration).

Note that the changes we present in the remainder of this section actually modify the
program semantics. However, all these changes preserve the WCET of the whole program.

4.2.2.1 Loops

We now concentrate on the adaptations made for loops. Note that for this part, we focus
on loops with a single entry, which represent most of the loops generated by intermediate
and high level programming languages. For programs that use multiple entries loops, it
is possible to transform the CFG to make sure that all the loops have a single entry using
node splitting [JC97].

When a loop has a single entry, it also has the following properties:

• The loop header has exactly two incoming edges: one when entering the loop (entry
edge of the loop) and one when iterating inside the loop (back edge of the loop);

• The entry edge is executed once each time we enter the loop and the back edge is
executed one time per iteration over the loop body;

• The CFT contains two times the loop header: one time in the loop body tree, that is
executed at each iteration, and another time in the loop exit tree, which is executed
a single time.

With these three properties, we can deduce that the WCET of the loop header in the
loop body should be the WCET of the back edge because it is executed at each iteration,
as in the CFG, and the WCET of the header in the exit tree should be the WCET of the
entry edge because it is executed once each time we enter the loop. The way to compute
the WCET of the loop header corresponds to lines 14 to 18 in Algorithm 1. In particular,
line 16 computes the WCET of the loop header located in the body of the loop and line 18
computes the WCET of the loop header located in the loop exit tree.

Example 4.1 (Loop header WCET) Consider Figure 4.3. In this figure, a simple
program with a loop is presented. On the CFG, the loop is represented by the basic blocks
B and C. The entry edge of the loop from A to B is executed once each time we enter
the loop and the back edge of the loop from C to B is executed at each iteration. On the
CFT, it is thus correct to set the WCET of B in the exit tree (denoted Bb) to the WCET
of the loop entry edge since it is executed once each time we enter the loop. Similarly, we
can set the WCET of B in the loop body (denoted Be) to be the WCET of the back edge

4.2. FROM CONTROL-FLOW GRAPH TO CONTROL-FLOW TREE 77

1 int f(int x){
2 // A
3 for(int i=0;
4 i<x;
5 i++) // B
6 // C
7 // D
8 }

(a) C program with a loop

A

B C

D

a

bentry c

bbackd

(b) Control-flow graph

Seq

A Loop

Seq

Bb C

Be

D
a

c

d

bback

bentry

(c) Control-flow tree

Figure 4.3: Program with loop

of the loop since it is executed at each loop iteration. We thus have:

ω(Bb) = bback

ω(Be) = bentry

4.2.2.2 Alternatives

In the CFG, when we have the choice between several paths, it results in an alternative
in the CFT. For instance, Figure 4.1 show that in the CFG, we can pass though either
B or C between the basic blocks A and D. In such cases, the basic block D, where the
two paths converge, can have a different WCET depending on which basic blocks were
executed before it. In Algorithm 1, this corresponds to lines 20 to 25.

Alternative between several paths In the case of n paths that converge into a single
path at a basic block X, we must consider that the basic block X can have n different
WCETs, depending on which basic blocks are executed before it. Instead of setting the
WCET of the basic block to the maximum between the WCET stored on incoming edges,
we propose to add the WCET stored on incoming edges to the WCET of the source basic
block of the edge. This corresponds to line 24 in the algorithm. Then, since the WCET
of the basic block has been added to the WCET of its predecessors, its WCET is set to
θ, the neutral WCET.

Example 4.2 (Alternative between several paths) Consider again the CFG of Fig-
ure 4.1b. We obtain the CFT of Figure 4.4. Three basic block WCETs were modified: the
WCET of the last basic block in each alternative path (B and C here) and the WCET of

78 CHAPTER 4. PIPELINE AND TREE-BASED WCET ANALYSIS

Seq

A Alt

B C

D E
a

b⊕ d1 c⊕ d2

θ e

Figure 4.4: Control-fow tree of Figure 4.1c with correct WCETs

1 int f(int x){
2 // A
3 if(x > 10)
4 // B
5 // C
6 }

(a) C program

A

B

C

a

b

c1

c2

(b) Control-flow graph

Seq

A Alt

B A

C
a

b⊕ c2 c1

θ

(c) Control-fow tree

Figure 4.5: Alternative with a null leaf

the basic block D, where the paths converge. Their WCET is expressed as follows1:

ω(B) = b⊕ d1 (4.1)

ω(C) = c⊕ d2 (4.2)

ω(D) = θ (4.3)

The case of if-then without else In this case, an edge goes from the basic block before
the control-flow split to the basic block after the control-flow converges, the pipelining
effect must still be considered. For instance, this can be the case when an if-then-else
statement has no “else” path. When this happens, an artificial leaf, that is to say a leaf
with no basic block that has a neutral WCET, is added in the CFT for the else case.
Thus, we take the WCET of the edge for the else case and use it as the WCET of the
artificial leaf of the alternative tree. This corresponds to line 22 in the algorithm.

Example 4.3 (Optional path in an alternative) Consider Figure 4.5. In this figure,
there is no else statement in the code. As a result, there is a path in the CFG between A

1Recall that the operator ⊕ is the WCET sum and that θ represents the neutral WCET, as defined
in section 2.7.2

4.3. SYMBOLS WITH PIPELINE ANALYSIS 79

and C without any basic block. In the CFT, this path is represented by an artificial leaf,
denoted A. We have:

ω(A) = c1

4.2.3 Limitation

Until now, we explained how we can handle alternatives and loops to avoid pessimism
in the computed WCET. Nevertheless, there is still a limitation in case of a loop with
multiple exit edges (due to structure breaking instructions). During the CFT construction,
these exit edges are merged (see Algorithm 1 in [BFL17]). When this occurs, we take the
maximum of the WCET of these exit edges and set this as the WCET of the basic block
after the loop.

4.3 Symbols with pipeline analysis

The introduction of the pipeline support in the control-flow tree brings up the question
of symbols. Regarding symbolic loop bounds, nothing changes. However, for symbolic
WCETs, which correspond to call to external functions (for which we may not have the
code), the impact is non-negligible.

When we have a symbolic WCET for a block of the CFT, we cannot compute statically
the impact of the previously executed basic blocks on the symbolic part of the code or the
impact of the symbolic part of the code on the following basic blocks. Thus, our solution
is to set the WCET of the basic block without considering the pipelining effect. Also, for
the basic blocks executed after the symbolic block and that have this symbolic block in
their context, we propose to compute their WCET without considering the inter block
pipelining effect. The resulting WCET is then overestimated, but still safe.

Example 4.4 (Symbolic WCET) Consider Figure 4.6. In this figure, we consider an
execution context of 1 basic block for the pipeline analysis. The code in S has an impact
on the WCET of the basic block D, thus we set the WCETs as follows:

ω(S) = χ

ω(D) = WCET (D)

where χ is a symbolic value and WCET (b) gives the WCET without considering the inter
block pipelining effect for the basic block b.

80 CHAPTER 4. PIPELINE AND TREE-BASED WCET ANALYSIS

1 int f(int x){
2 // A
3 if(x > 10)
4 // B
5 else
6 // C
7 // Symbolic WCET
8 // D
9 }

(a) A function with a sym-
bolic WCET

A

B C

S

D

a

b c

? ?

?

(b) Control-flow graph

Seq

A Alt

B C

S D
a

b c

ω(S) WCET (D)

(c) Control-flow tree

Figure 4.6: Symbolic WCET in presence of pipeline analysis

4.4 Experiments

In this section, we present the experiments that we conducted to evaluate our adaptations
of the pipeline modeling to the control-flow tree representation. We first introduce our
experimental setup. Then, we detail our benchmark selection process and finally we
discuss the results regarding analysis time and precision.

4.4.1 Experimental setup

We implemented our method into the WSymb [WSy] tool. We used the following hardware
setup:

• Modeled processor: 1 ALU, 1 FPU, 1 MU. Integer addition costs 1 cycle, float-
ing point addition 3 cycles, multiplication 6 cycles, division 15 cycles. It has a 4
stages pipeline (fetch, decode, execute, commit), a fetch queue of size 3, fetches 2
instructions per cycle, and executes up to 4 instructions in parallel;

• Since the instruction cache implementation differs in WSymb and in Otawa, we
disabled it in order to provide a comparison only for the pipeline modeling itself;

• Compilation: each benchmark is compiled as a standalone binary file using GCC
version 10.3.1 for ARM, with flags -O0 -g -nostdinc -nostdlib -mtune=cortex-a8
-mfpu=neon -mfloat-abi=hard. cjpeg_wrbmp uses a custom memcpy implementa-
tion in order to compile with gcc, which does not compile without standard library
otherwise;

• Analyses execution times: they are measured on an Intel® Core™ i7-8550U CPU @
1.80GHz × 8 with 16 GB of RAM.

4.4. EXPERIMENTS 81

4.4.2 Benchmark selection process

We used the benchmark programs from TACLeBench [Fal+16], which is the reference
regarding WCET analysis. Among the 54 programs, 15 could not be analyzed for the
following reasons:

• 2 programs are not supported because of recursion: fac and recursion. This has to
do with OTAWA;

• 9 programs because of the incomplete support for division instructions (adpcm_dec,
adpcm_enc, ammunition, cjpeg_transupp, epic, h264_dec, huff_enc, quicksort and
susan). This also has to do with OTAWA;

• bitonic and prime are not supported by OTAWA: the analysis simply crashes with
an error related respectively to the integer linear program that is unbounded and
to the execution graph implementation;

• dijkstra and lms are not supported by WSymb, respectively because of a shortcom-
ing in the control-flow tree construction implementation and a shortcoming in the
simplification procedure.

We run our prototype on all the other programs, summarized in Table 4.1.

4.4.3 Experimental results

We compared our adaptations with the original approach, which uses the CFG and IPET,
implemented in OTAWA. Table 4.1 summarizes the results regarding the whole WCET
analysis. The Program column indicates the name of the analyzed program. For each of
these programs, the analysis used the main function as entry point. The analysis time
(s) column give the execution times in seconds for both the original implementation with
implicit path enumeration technique (IPET) and WSymb with our adaptations. The
WCET column reports the computed WCET, in processor cycles, of IPET and WSymb.
The Diff (%) column corresponds to the pessimism of the WSymb WCET over the IPET
WCET. Note that “< 0.1” in this column means that the rounded difference between the
two WCET would give 0.0%, but we use this notation to indicate the presence of a very
slight pessimism. Since IPET does not support parametric WCET computation, both the
techniques were used without parameters to ensure a fair comparison between the two of
them.

Analysis time Regarding the analysis time, both techniques show very close results for
most programs because they are quite small. For the most complex programs to analyze,

82 CHAPTER 4. PIPELINE AND TREE-BASED WCET ANALYSIS

Table 4.1: Experimental results

Program Analysis time (s) WCET
IPET WSymb IPET WSymb Diff (%)

audiobeam 1.068 0.800 13112533 13112579 < 0.1
binarysearch 0.090 0.068 12888 12888 0.0
bitcount 0.087 0.090 191072 195196 2.2
bsort 0.060 0.069 5570507 5571894 < 0.1
cjpeg_wrbmp 0.357 0.315 2480339 2480433 < 0.1
complex_updates 0.105 0.788 30117 30117 0.0
cosf 0.299 0.291 389919 389919 0.0
countnegative 0.093 0.081 268426 268426 0.0
cubic 23.463 10.314 54215426 54215426 0.0
deg2rad 0.075 0.059 93091 93091 0.0
fft 0.192 0.116 1429513437 1429513437 0.0
filterbank 0.184 0.135 149892341 149892341 0.0
fir2dim 0.214 0.147 116397 116397 0.0
fmref 2.641 1.646 14412706 14412734 < 0.1
g723_enc 0.901 0.675 19895553 19895553 0.0
gsm_dec 1.286 1.058 91539472 91613467 0.1
gsm_enc 2.712 2.371 118766285 118828185 0.1
huff_dec 0.367 0.373 8488352 8498324 0.1
iir 0.087 0.078 29348 29348 0.0
insertsort 0.068 0.077 38929 38929 0.0
isqrt 0.079 0.100 13307772 13307772 0.0
jfdctint 0.152 0.192 67717 67717 0.0
lift 0.271 0.245 17080513 17114303 0.2
ludcmp 0.151 0.210 158166 158556 0.2
matrix1 0.077 0.052 219691 219691 0.0
md5 5.337 4.959 807971215 807971236 < 0.1
minver 0.260 0.312 80819 83295 3.1
mpeg2 – 51.791 – 222513057311 –
ndes 0.347 0.321 972769 972769 0.0
petrinet 0.491 0.526 37153 37191 0.1
pm 0.824 0.887 178532565 178532565 0.0
powerwindow 4.447 2.396 1233059 1233059 0.0
rad2deg 0.037 0.045 92835 92835 0.0
rijndael_dec 1.481 1.679 67532368 67536867 < 0.1
rijndael_enc 1.488 1.744 65091507 65096007 < 0.1
sha 0.525 0.505 60055513 60162012 0.2
st 0.212 0.246 2650931 2650931 0.0
statemate 0.750 0.769 1233059 1368959 11.0
test3 – – – – –

4.5. CONCLUSION AND DISCUSSIONS 83

i.e. cubic, md5 and powerwindow, the analysis performed by WSymb is faster. This has
to do with the WCET computation technique: IPET rely on integer linear programming,
which has an exponential complexity, while WSymb rely on tree-based computation, which
has a lower complexity that depends on the size of the control-flow tree.

We considered that the analysis times out if it lasts more than 2 hours. This is the case
for test3 for both IPET and WSymb. Nevertheless, test3 is an artificial program that was
created only to stress the WCET analysis tools. It is thus not very representative of real-
life programs. Regarding mpeg2, the analysis time exceeded 2 hours only for IPET while
WSymb computed the WCET in less than one minute. This brings to light the difference
in terms of complexity between integer linear programming and tree-based arithmetic
computations.

These results are not very surprising since our method consists only into moving the
WCET of certain basic blocks to add them to the WCET of other basic blocks, which
does not seem to be complex computations. However, it shows that it is possible to model
the effect of the pipeline in a tree-based control-flow representation and still benefits from
the low complexity of the tree-based WCET computation.

WCET precision As for the execution times, the two analysis show very similar results
regarding the computed WCET, except that the WCET computed by WSymb is never
lower than the WCET computed by IPET. Still, our method and the CFT construction
can introduce pessimism.

On average, WSymb produces a WCET 0.47% greater than the WCET produced by
IPET. Still, some other programs exhibit the limitation that WSymb is subject to: the
CFT construction algorithm that may add some paths in the CFT that do not exist in
the CFG and the inability to identify a predecessor when a loop has several exit edges.
The highest pessimism that we observed is on statemate. This program contains many
structure breaking instructions both inside and outside of loops, which explains the quite
high pessimism. Note also that this program was generated by a statechart code generator
and thus may not be considered as a well-written program.

When comparing the WCET produced by IPET and WSymb, our technique shows
promising results and demonstrates that it is possible to efficiently take into account the
effect of the processor pipeline in a tree-based WCET computation technique.

4.5 Conclusion and discussions

In this chapter, we presented a technique that enables to take into account the effect of
the pipeline in a tree-based WCET computation technique. First, the pipeline analysis,

84 CHAPTER 4. PIPELINE AND TREE-BASED WCET ANALYSIS

which computes the execution times of basic blocks depending on the basic blocks that
are executed before it, is performed on the control-flow graph. Then, we showed that it is
possible to use the resulting WCET information, stored on the edges of the control-flow
graph, to adapt the WCET of the basic blocks in the control-flow tree so as to take into
account the pipelining effect.

The experiments that we conducted to evaluate our method showed great results. In
particular, they demonstrate that it is possible, with a slight pessimism, to take into
account the effect of the pipeline on the WCET computation in a tree-based WCET
analysis.

The main benefit of this technique is that it enables to use tree-based WCET com-
putation techniques as a realistic alternative to IPET. Indeed, at the cost of a slight
pessimism, the complexity of the WCET computation is reduced, which enables to an-
alyze more complex programs. Furthermore, contrary to IPET, the control-flow tree
representation is well-suited for symbolic WCET computation and thus this technique
supports parametric WCET computation without introducing too much pessimism.

Chapter 5

Procedure arguments as parameters

Contents
5.1 Introduction . 87

5.1.1 Motivating example . 87

5.1.2 Contribution . 89

5.2 Overview . 90

5.3 Abstract interpretation of binary code 93

5.3.1 Polyhedra . 93

5.3.2 Abstract state . 94

5.3.3 Interpretation procedure . 94

5.4 Infering input conditionals . 95

5.4.1 Identifying procedure arguments 95

5.4.2 From polyhedra to input conditionals 96

5.5 Symbolic WCET with input conditionals 97

5.5.1 Control-flow tree with input conditionals 99

5.5.2 WCET formulas with input conditionals 99

5.5.3 Simplifying WCET formula . 100

5.5.4 Formula instantiation . 102

5.6 Towards modular WCET analysis 103

5.6.1 Modular abstract interpretation 103

5.6.2 Modular WCET analysis . 107

5.7 Evaluation . 109

5.7.1 Experimental setup . 109

85

86 CHAPTER 5. PROCEDURE ARGUMENTS AS PARAMETERS

5.7.2 Benchmark selection . 110

5.7.3 Procedure arguments as parameters 111

5.7.4 Modular WCET analysis . 116

5.8 Application to adaptive real-time systems 117

5.8.1 Semi-clairvoyant mixed-criticality scheduling 117

5.8.2 Adaptive control . 119

5.9 Conclusion . 119

5.1. INTRODUCTION 87

Our last contribution focuses on the parametric aspect of the analysis. In this chapter,
we propose an approach that use the program input, i.e. the program arguments, as
parameters. The presented technique automatically detects and characterizes the impact
of the procedure argument values on the WCET of this procedure.

5.1 Introduction

Many different parametric approaches to the WCET problem produce a formula that
depends on parameters. Most of these techniques simply put parameters that represent
the maximum number of times loops may iterate. Altmeyer et al.[Alt+08] proposed to
automatically infer the parameters from the program. In their approach, a parameter is
defined as a value to which the program reads before it writes to. The problem of both
these techniques is that it requires knowledge of the program from the user:

• In the first type of approaches, authors assume that the user has knowledge about
all the loops in the program;

• In the technique presented by Altmeyer et al., the user should know to which value
the parameter correspond, which also require knowledge about the program.

The goal of our work is to eliminate the need for the user to have knowledge about the
program to analyze: we propose to use the arguments passed to the program, that the
user must know to run this program, as parameters. Our technique automatically infer
the impact of these arguments on the control-flow of the program. Then, this information
is used to produce a parametric formula that can be instantiated to determine the WCET
of a program depending on its argument values.

5.1.1 Motivating example

We motivate our work with the example of Figure 5.1. This procedure is part of an
implementation of the G.723 speech encoding standard, taken verbatim from TACLe-
Bench [Fal+16].

The G.723 codec is based on Adaptive Differential Pulse Code Modulation (ADPCM).
During the signal encoding, each sample sl of the input signal is compared against a value
se predicted based on previous samples. The difference d=sl-se is quantized to a loga-
rithmic factor represented by argument dqln. The procedure reconstructs the difference
signal based on that value (it also takes the sign of the value and the adaptive quanti-
zation step y as arguments). If the difference dqln is low1 compared to the quantization

1Addition on logarithmic values (dqln and y) amounts to multiplication.

88 CHAPTER 5. PROCEDURE ARGUMENTS AS PARAMETERS

1 int reconstruct(int sign , int dqln , int y) {
2 short dql , dex , dqt , dq;
3
4 dql = dqln + (y >> 2);
5 if (dql < 0)
6 return ((sign) ? -0x8000 : 0);
7 else {
8 dex = (dql >> 7) & 15;
9 dqt = 128 + (dql & 127);

10 dq = (dqt << 7) >> (14 - dex);
11 return ((sign) ? (dq - 0x8000) : dq);
12 }
13 }

Figure 5.1: Speech encoding, reconstructing the difference signal

step y (line 5), the reconstructed difference is set to 0 (line 62). Otherwise (else branch),
the procedure computes the antilog of dql, assuming a fixed-point signed representation
of the real value dqln.

Our analysis applied to the corresponding assembly code detects that the branching
instruction corresponding to source line 5 depends on two procedure arguments (arg2,
a.k.a. dqln, and arg3 a.k.a. y), and infers the branch conditions 4 × arg2 + arg3 ≤ −1
for the then case and 4× arg2 + arg3 ≥ 0 for the else case. Then, it produces a WCET
formula that depends on those branch conditions.

Let us emphasize that the WCET variations are neither due to aberrant values, nor
predictable before runtime, as they depend on the shape of the input signal.

This example has been chosen for illustrative purposes thanks to its simplicity. It shows
that we can characterize the impact of argument values on the WCET of a procedure. The
variation of WCET for such small function is a few tens of processor cycles, hence it is not
useful to instantiate its WCET formula on-line: the instantiation function takes almost
as much time as the potential maximum variability (see line g723_enc_reconstruct in
Table 5.4 in Section 5.7.3.3). However, other more complex functions show a much larger
variability and computing the formula on-line may make sense for those functions (see
Section 5.7 for a complete set of experiments).

We underline the fact that, although procedure reconstruct is only a part of the com-
plete encoder program, it is representative of many signal processing algorithms, which
are pervasive in real-time systems, and whose computations and WCET vary depending
on the input signal.

2dql is signed, in two’s complement, which explains the test at line 6.

5.1. INTRODUCTION 89

5.1.2 Contribution

Our technique is based on two previous works on symbolic WCET computation [BFL17]
and abstract interpretation [Bal+19]. Although our methodology relies on foundations
presented in these two papers, many novel contributions and extensions were necessary to
make it work in a coherent and automatic way. In this chapter, we present these extensions
as well as some use cases of our approach, which include modular WCET analysis.

First, we devise an analysis that infers input conditionals, which are predicates on
procedure arguments that serve as branch conditions, either in conditional statements or
in loops. This analysis extends the relational abstract interpretation on binary code of
Ballabriga et al. [Bal+19] and is presented in Section 5.4.

Second , we extend the symbolic WCET computation technique to support these input
conditionals:

1. We introduce a new kind of tree into the CFT model to represent conditional
branches subject to input conditionals in Section 5.5.1;

2. Section 5.5.2 extends the symbolic WCET computation to support formulae with
input conditionals;

3. New extensive simplification procedures to reduce the size of the resulting formulas
are presented in Section 5.5.3;

4. A new compiler compiles formulas to optimized C code that has a low and easy-to-
compute WCET, to evaluate the formula on-line (Section 5.5.4).

Third, we introduce an extension to this approach to perform modular WCET analysis,
in Section 5.6, that extends both the abstract interpretation and the WCET computation
parts.

We demonstrate with our experiments on TACLeBench that our approach is simulta-
neously adaptive, embeddable and automated:

• Adaptivity : the instantiated WCET can vary significantly when we take into account
the value of the procedure arguments. Our approach detects dynamically infeasible
paths, that is to say paths that are infeasible because of the current procedure
argument values.

• Embeddability : the size of the WCET formula and the instantiation time are kept
to a minimum, so as to enable on-line execution.

• Automation: our approach takes the binary code of a procedure as input and pro-
duces a WCET formula dependent on the procedure arguments as output, without
requiring assistance from the programmer.

90 CHAPTER 5. PROCEDURE ARGUMENTS AS PARAMETERS

OTAWA WSymb

Polymalys

Binary
program

CFG
extraction

Hardware
analysis

Abstract
interpretation

Control-flow tree
Construction

WCET
computation

Formula
simplification

WCET
formula

In
pu

t
C

on
di

ti
on

al
s

Figure 5.2: Workflow of our approach

5.2 Overview

The workflow of our approach is depicted in Figure 5.2. We illustrate this workflow
on the program of Figure 5.3. Starting from the binary code of function f , the analysis
consists of the following steps.

CFG extraction The binary code is translated into a control-flow graph, where nodes
are basic blocks and edges represent the control-flow of the program. We obtain a CFG
with basic blocks A to G. We rely on OTAWA [Bal+10] for this step.

Hardware analysis The hardware analysis infers the WCET of each basic block. We
assume that the resulting WCET obtained for A,E, F is 10, for C,G is 5, and that the
WCET of B and D are symbolic (denoted respectively ω(B), ω(D)). We rely on the
method presented in Chapter 4 for this step.

Inferring input conditionals The abstract interpreter identifies the value stored in
r0 (a.k.a. n) as an argument of procedure f at line 1 (as per function call conventions).
At line 7, it infers r0 ≥ 11 as the input conditional for branching to label L2 (a.k.a. block
B) and r0 ≤ 10 if we do not branch. Similarly, the input conditionals r0 ≥ 0 and r0 ≤ −1
are inferred at line 16. We extend the abstract interpretation analysis of [Bal+19] to infer
input conditionals on conditional branches and loops which depend on function arguments

5.2. OVERVIEW 91

1 f: @ int f(int n) {
2 @ ... @ /* A */
3 str r0, [fp , #-32] @ /* A */
4 @ ... @ /* A */
5 ldr r3, [fp , #-32] @ /* A */
6 cmp r3, #10 @ if (n <= 10) /* A */
7 bgt .L2 @ { /* still A */
8 @ ... @ /* C */
9 b .L3 @ } /* C */

10 .L2: @ else {
11 @ ... @ /* B */
12 .L3: @ }
13 @ ... @ /* D */
14 ldr r3, [fp , #-32] @ /* D */
15 cmp r3, #-1 @ if (n <= -1) /* D */
16 bgt .L4 @ { /* still D */
17 @ ... @ /* F */
18 b .L5 @ } /* F */
19 .L4: @ else {
20 @ ... @ /* E */
21 .L5: @ }
22 @ ... @ /* G */
23 bx lr @ return; /* still G */
24 .global main @ }
25 main: @ int main() {
26 @... @ /* ... */
27 ldr r0, [fp , #-8] @ /* Setting parameters */
28 bl f @ f(i); /* function call */
29 @ ... @ }

(a) Procedure code

A

B C

D

E F

G

(b) Control-flow graph

Figure 5.3: A procedure with an argument

92 CHAPTER 5. PROCEDURE ARGUMENTS AS PARAMETERS

Seq

A Alt1

B

r0 ≥ 11

C

r0 ≤ 10

D Alt2

E

r0 ≥ 0

F

r0 ≤ −1

G

Figure 5.4: Control-Flow Tree for function f of Figure 5.3

(see Section 5.4).

CFT with symbolic input conditionals The CFG is translated into the Control-
Flow Tree (CFT) depicted in Figure 5.4. It consists of a sequence (the root node Seq)
of basic blocks (A, D, G) and of alternatives (Alt1 , Alt2) between two sub-trees (B or
C, resp. E or F). Output edges of alternative nodes are annotated with the input
conditionals inferred by the abstract interpreter. We extend the CFT of [BFL17] with a
new type of alternative node to model conditional branches with input conditionals (see
Section 5.5.1).

WCET formula The CFT is translated into a WCET formula. The WCET of each
alternative sub-tree is multiplied by its input conditional (denoted ⊛, where the input
conditional can be seen as its binary equivalent, i.e. 1 if the input conditional is true, 0
otherwise). Thus, we obtain:

10⊕ (((r0 ≥ 11)⊛ω(B)) ⊎ ((r0 ≤ 10)⊛ 5)) ⊕

ω(D)⊕ (((r0 ≥ 0)⊛ 10) ⊎ ((r0 ≤ −1)⊛ 10))⊕ 5

The new operator ⊛ is introduced in Section 5.5.2.

Formula simplification With the introduction of the new ⊛ operator, new simplifica-
tion rules are added to the existing rules. We obtain:

25⊕ (((r0 ≥ 11)⊛ ω(B)) ⊎ ((r0 ≤ 10)⊛ 5))⊕ ω(D)

First, we simplified (((r0 ≥ 0)⊛ 10) ⊎ ((r0 ≤ −1)⊛ 10)) to 10, since r0 ≥ 0 and r0 ≤ −1
are mutually exclusive and multiply the same value (10). Then, we used commutativity
to gather and reduce constant values (10 + 5 + 10 = 25).

It is important to underline that, for the sake of clarity, in this example we show a
simplified version of the formula with integers (recall that we use a more complex repre-

5.3. ABSTRACT INTERPRETATION OF BINARY CODE 93

sentation with lists of values, as presented in Section 2.7.2). Unfortunately, we could not
reuse classical simplification procedures for integer formulae since WCETs are represented
by lists. Instead, we establish and prove the correctness of our own simplification rules.
This work is described in Section 5.5.3.

Formula instantiation The formula is instantiated when symbolic values become
known. For instance, assuming n = 0 (i.e. r0 = 0), ω(B) = ω(D) = 8, we obtain a
WCET of 38. Note that a non-parametric analysis would produce a higher WCET in
this case, namely 41. The instantiated WCET reflects the fact that execution paths that
include B are infeasible when n = 0. In Section 5.5.4, we present a simple compiler that,
starting from a (previously simplified) formula, produces C code whose WCET is low and
can be easily bounded. It can be embedded in the program to enable adaptive scheduling.

5.3 Abstract interpretation of binary code

In this section, we recall the main concepts of the abstract interpretation procedure pre-
sented in [Bal+19]. Abstract interpretation [CC77] is a general static analysis method
that infers program invariants. It propagates an abstract state of the program, which
overapproximates the set of all possible concrete states, until a fixpoint is reached. It is
sound, in the sense that the invariants it infers hold for any possible concrete program
state.

While abstract interpretation usually targets source code, we rely on the abstract
interpretation procedure for binary code proposed in [Bal+19] because we want to inject
the inferred invariants into our WCET analysis, which is applied to binary code. We
summarize the main features of this interpretation procedure below.

5.3.1 Polyhedra

We begin with a quick reminder about the definition of a polyhedron. Let V be a set
of variables and C be a set of linear constraints (equalities and/or inequalities) on the
variables in V . Then, ⟨c1, . . . , cm⟩ is the polyhedron consisting in all the vectors in Zn

that satisfy the constraints c1, . . . , cm, where ci ∈ C for 1 ≤ i ≤ m. Less formally, a
polyhedron p can be viewed as the multi-dimensional geometrical shape that represents
the set of possible values of the variables of V for which all the equalities and inequalities
in C are satisfied. The variables of a polyhedron are also called its dimensions. We denote
p” = p⊓⋄ p

′ the polyhedron consisting of the union of the constraints of p and p′; vars(p)
the set of variables of p.

94 CHAPTER 5. PROCEDURE ARGUMENTS AS PARAMETERS

One important operation is the ability to do a projection of a polyhedron p on a subset
V ′ = {x0, . . . , xn} of its variables. The result is a polyhedron p′ with less variables, such
that every possible value {v0, . . . , vn} that satisfies the constraints of p also satisfies the
constraints of p′ and vice versa. To better understand the meaning of this operation it
may be useful to think of geometric shapes in a 3D space: a projection on the variables
(x, y) of a cube in (x, y, z) is simply the geometric projection of the cube on the plane
(x, y). We will use projections in Section 5.4 to explain how we treat conditionals for
building a parametric formula.

Example 5.1 (Projection operation) This example illustrates the projection opera-
tion:

proj(⟨x2 = x0, x3 = x1 − 32, x2 ≤ 10⟩, {x0}) = ⟨x0 ≤ 10⟩

5.3.2 Abstract state

In abstract interpretation of binary code, an abstract state a is a tuple (p,R♯, ∗♯), which
consists of a polyhedron p, a register mapping R♯ and an address mapping ∗♯. We have
R♯(r) = v iff the variable v represents the value of the register r in p. Also, we have
∗♯(x1) = x2 iff x2 represents the value at the memory address represented by the variable
x1. We use the term data location to refer indistinctly to registers or memory addresses.
We denote m′ = m[x : y] the mapping such that m′(x) = y and ∀x′ ̸= x : m′(x′) = m(x′).

Example 5.2 (Abstract state) In the following abstract state, register r0 contains a
positive value and address 7872 contains a value greater than that of r0:

(⟨x1 ≥ 0, x2 = 7872, x3 ≥ x1⟩, {r0 : x1}, {x2 : x3})

5.3.3 Interpretation procedure

The procedure proceeds by forward abstract interpretation [CC77] applied to ARM A32
programs. A program P is represented as a sequence of labeled instructions l0 : I0, l1 :

I1, . . . , ln : END , where Ik is the instruction at label lk (0 ≤ k ≤ n) and END terminates
the program. The result M = interpret(P) maps each label to the abstract state imme-
diately before the execution of the corresponding instruction. An important specificity of
this interpretation procedure is that the mapping between dimensions and data-locations
can change as the interpretation progresses.

Example 5.3 (Register mapping) Table 5.1 details the abstract states at several pro-
gram points of the program of Figure 5.3. We assume that the value of n is not modified

5.4. INFERING INPUT CONDITIONALS 95

Table 5.1: Abstract states at several program points in Figure 5.3

line Polyhedron Registers Memory

2 p2 = ⟨⟩ R♯
2 = {r0 : x0, fp : x1}

4 p4 = ⟨x2 = x0, x3 = x1 − 32⟩ R♯
2 ∗♯4 = {x3 : x2}

6 p4 R♯
6 = {r0 : x4, r3 : x2, fp : x1} ∗♯4

8 p8 = p4 ⊓⋄ ⟨x2 ≤ 10⟩ R♯
6 ∗♯4

11 p11 = p4 ⊓⋄ ⟨x2 > 10⟩ R♯
6 ∗♯4

in the program. At line 4, the register r0 contains the value of the integer n, which cor-
responds to the dimension x0 in the polyhedron. However, at line 6, r0 is mapped to x4,
which means that the register r0 has a new value, which is different from the value n.

A transition function sem(I) : A → A updates the abstract state of the analysis to
represent the effect of an instruction I on the data locations of the program. When a
branching occurs, the branches are analyzed separately, and a join operation A×A → A
is executed when the branches converge in a single program point (e.g. after an if-then-
else for instance). Since program may contain loops, a widening operator ensures that
the analysis reaches a fixpoint.

5.4 Infering input conditionals

In this section, we extend this abstract interpretation to infer the input conditionals of
a binary program. We consider 32-bit ARM programs, but the analysis can easily be
extended to other architectures with similar procedure call conventions.

5.4.1 Identifying procedure arguments

By convention [Arm23], 32-bit ARM programs pass the first four arguments of a procedure
call through registers r0, r1, r2 and r3. Additional arguments are passed through the
stack. In our experiments, we found that few procedures use more than four arguments.
Therefore, in the following we only consider arguments passed through these registers,
which we call input registers.

We modify the abstract interpreter so that it identifies the polyhedron dimensions
that are associated to input registers. As the dimension-to-data-location mapping evolves
during the interpreter progression, a dimension represents a procedure argument if and
only if it is mapped to one of the input registers in the abstract state at the starting
location of the procedure.

96 CHAPTER 5. PROCEDURE ARGUMENTS AS PARAMETERS

Example 5.4 (Identifying procedure arguments) In the program of Figure 5.3, we
identify the polyhedron dimensions to which r0 is associated in the abstract state at line
1, that is to say x0. Now assume that line 4 changes the value of r0 to perform some
computations. Thus, r0 is mapped to another dimension: x4. As a result, in the subse-
quent abstract states (e.g. the branch at line 7) the analysis correctly identifies that x0

corresponds to a procedure argument and that x4 does not.

5.4.2 From polyhedra to input conditionals

In this section, we explain how we extract input conditionals from the abstract states of
the program.

5.4.2.1 Conditionals statements

When the interpreter analyzes a conditional branching instruction, it adds the correspond-
ing condition to the abstract state of the branch target; this is called filtering. We modify
the analysis so that, whenever a filtering occurs, we project the resulting polyhedron over
the dimensions previously identified as procedure arguments. As a result, we obtain a
polyhedron corresponding to the constraints that the input registers must satisfy in order
to branch to the corresponding location. These constraints consist in a conjunction of
inequations on input registers, which we call input conditionals.

Example 5.5 (Inferring branch conditions) In figure 5.3, in the abstract state at line
8 of Table 5.1, the register r3 is associated to the variable x2, which is equal to x0 (i.e.
the procedure argument). Since line 8 is in the then block of the conditional statement, it
contains the filtering condition x2 ≤ 10. To obtain the input conditional, we project the
polyhedron over the variable x0:

proj(⟨x2 = x0, x3 = x1 − 32, x2 ≤ 10⟩, {x0}) = ⟨x0 ≤ 10⟩

In the general case, the input conditionals are passed unchanged to the CFT builder.
There are however two particular cases:

• If the projected polyhedron has no constraints (universe polyhedron), this either
means that the branch condition contains no constraints on procedure arguments,
or that the constraints cannot be represented by a polyhedron (e.g. a disjunction
of constraints). From a WCET point-of-view, we can safely over-approximate to an
unconditional branch, i.e. the input conditional is set to true.

• If the projected polyhedron has unsatisfiable constraints (empty polyhedron), the
branch target is dead code, thus the input conditional is set to false.

5.5. SYMBOLIC WCET WITH INPUT CONDITIONALS 97

5.4.2.2 Loop bounds

If the branch instruction is located in a loop header, we compute a loop bound instead
of a conditional. This is done using a “ghost” register, that does not correspond to an
actual data-location used by the program register but represents the induction variable
of the loop. The register is set to 0 at the entry of the loop and is incremented at each
loop iteration.

Let p denote the polyhedron of the abstract state at the loop header, obtained af-
ter the abstract interpretation has reached a fixpoint. Let args denote the set of pro-
cedure argument variables, and g denote the variable mapped to the ghost register.
The function lbound(p, args , g) computes the loop bound as follows. First, it computes
p′ = proj(p, args ∪ {g}). From there, two cases can occur:

• p′ contains exactly two inequalities where the ghost register variable appears: one
of them indicates that the ghost register variable is positive (a loop bound is always
positive) and the other one is the loop bound.

• Otherwise, we are not able to compute a loop bound and it must be provided by
the user.

Example 5.6 (Inferring loop bounds) The code of a function f consisting of a simple
loop is detailed in Figure 5.5a. The abstract states at the entry of the first and the second
iterations of the loop are detailed in Figure 5.5b. The ghost variable gr is added to the
register mapping and its value is set to 0 at the entry of the loop. The additional constraints
of p2 show the evolution of the abstract state after one iteration. The value of the ghost
register is incremented at each iteration, as shown in the abstract state at the second loop
iteration. At the end of the loop interpretation, the state of the loop contains a bound to
the value of the ghost register. Thus, assuming that x0 has been identified as a procedure
argument, proj(s, {x0,R♯(gr)}) = ⟨R♯(gr) ≥ 0,R♯(gr) ≤ x0⟩, where s is the state of the
loop header after the interpretation of loop ended. We thus keep R♯(gr) ≤ x0 as the loop
bound and we replace R♯(gr) such that we have lb ≤ x0.

5.5 Symbolic WCET with input conditionals

In this section, we detail how we extend the symbolic WCET computation approach
from [BFL17] to support input conditionals.

98 CHAPTER 5. PROCEDURE ARGUMENTS AS PARAMETERS

1 f: @ int f(int x){
2 @ ... @ // r0 contains x
3 str r0, [fp, #-16] @ // (fp -16) contains x
4 mov r3, #1 @ int res = 1;
5 str r3, [fp, #-8] @
6 mov r3, #0 @ int i = 0;
7 str r3, [fp, #-12] @
8 .L2: @ do{ // mov gr, #0
9 ldr r3, [fp, #-8] @ // when entering the loop

10 lsl r3, r3, #1 @ res += res;
11 str r3, [fp, #-8] @
12 ldr r3, [fp, #-12] @
13 add r3, r3, #1 @ i++;
14 str r3, [fp, #-12] @
15 ldr r2, [fp, #-12] @
16 ldr r3, [fp, #-16] @ // add gr, gr , #1
17 cmp r2, r3 @ }
18 blt .L2 @ while(i < x);
19 ldr r3, [fp, #-8] @
20 mov r0, r3 @ // r0 contains res
21 @ ... @ return res;
22 bx lr @ }

(a) Assembly and C code of a loop

(b) Loop input conditionals
#it Polyhedron Registers memory

1st
p1 = ⟨x3 = x1 − 16, x5 = x1 −
8, x8 = x1 − 12, x2 = x0, x4 =
1, x6 = 0, x7 = x6, x9 = 0⟩

R♯
1 = {r0 : x0, fp :

x1, r3 : x6, gr : x9}
∗♯1 = {x3 : x2, x5 :

x4, x8 : x7}

2nd

p2 = p1 ⊓⋄ ⟨x10 =
2× x4, x11 = x10, x12 =
x7 + 1, x13 = x12, x14 =

x13, x15 = x2, x16 ≥ 0, x16 ≤
x9 + 1, x14 < x15⟩

R♯
2 = {r0 : x0, fp :

x1, r2 : x14, r3 : x15, gr :
x16}

∗♯ = {x3 : x2, x5 :
x11, x8 : x13}

Figure 5.5: Abstract states at the beginning of the loop (line 9)

5.5. SYMBOLIC WCET WITH INPUT CONDITIONALS 99

5.5.1 Control-flow tree with input conditionals

We extend the previous definition of alternative trees so that an input conditional is
associated to each alternative. This input conditional indicates whether the alternative
is feasible or not, depending on its valuation and thus on the procedure argument values.

Definition 5.1 (Deterministic alternative) Let (t1, . . . , tn) be a set of control-flow
trees, (e1, . . . , en) be a set of input conditionals and 1 ≤ k ≤ n. The deterministic
alternative3 tree Alt(e1 → t1, . . . , en → tn) represents an alternative between the execution
of one tree among (t1, . . . , tn), such that the tree tk can be executed only if ek is true.

Example 5.7 (Deterministic alternative) Figure 5.4 depicts the CFT obtained for
the program of Figure 5.3. We can see that the input conditional r0 ≥ 11, whose infer-
ence was detailed in Example 5.5, appears as an input conditional to execute B in the
deterministic alternative tree Alt1 . It means that the alternative B can be executed only
if r0 ≥ 11 is true.

Regarding loops, their definition remains unchanged, except that the loop bound n

can now be a linear expression on procedure arguments.

Example 5.8 (Loop with linear expression as bound) The loop Loop(l, t1, 4× r0+

r1, t2) represents a loop identified by l, that executes 4× r0 + r1 times the tree t1 and exits
by executing the tree t2.

5.5.2 WCET formulas with input conditionals

We define a new operator ⊛ that multiplies a WCET by an input conditional. It has
a higher precedence than ⊕ and ⊎ operators, but a lesser precedence than the other
operators. It is used to compute the WCET of a deterministic alternative tree:

ω(Alt(e1 � t1, . . . , en � tn)) = e1 ⊛ ω(t1) ⊎ . . . ⊎ en ⊛ ω(tn)

Definition 5.2 (⊛ operator) Let e be an input conditional and w be an abstract WCET.

e⊛ w =

w if e is true

θ otherwise

Example 5.9 (⊛ operator) The sub-tree Alt1 of Figure 5.4 is translated into the for-
mula (r0 ≥ 11)⊛ ω(B)⊎ (r0 ≤ 10)⊛ (⊤, {5}). This corresponds to ω(B) if r0 ≥ 11, or to
(⊤, {5}) otherwise.

3Note that input conditionals might not be mutually exclusive, thus we use the term “deterministic”
in the sense that input conditionals add a kind of determinism to the alternative CFT

100 CHAPTER 5. PROCEDURE ARGUMENTS AS PARAMETERS

Commutativity

(ek ∧ el)⊛ w1 7→ (el ∧ ek)⊛ w1 if el ◁ ek (5.1)
ek ⊛ w1 ⊕ el ⊛ w2 7→ el ⊛ w2 ⊕ ek ⊛ w1 if el ◁ ek (5.2)
ek ⊛ w1 ⊎ el ⊛ w2 7→ el ⊛ w2 ⊎ ek ⊛ w2 if el ◁ ek (5.3)

Factorization

ek ⊛ w1 ⊕ el ⊛ w1 7→ w1 if el ⇔ ¬ek (5.4)
ek ⊛ w1 ⊎ el ⊛ w1 7→ w1 if el ⇔ ¬ek (5.5)
ek ⊛ w1 ⊕ el ⊛ w2 7→ ek ⊛ (w1 ⊕ w2) if ek ⇔ el (5.6)
ek ⊛ w1 ⊎ el ⊛ w2 7→ ek ⊛ (w1 ⊎ w2) if ek ⇔ el (5.7)

ek ⊛ w1 ⊕ (ek ∧ el)⊛ w2 7→ ek ⊛ (w1 ⊕ el ⊛ w2) (5.8)
ek ⊛ w1 ⊎ (ek ∧ el)⊛ w2 7→ ek ⊛ (w1 ⊎ el ⊛ w2) (5.9)

Multiplication

ek ⊛ θ 7→ θ (5.10)
ek ⊛ w1 7→ θ if ek ⇔ false (5.11)
ek ⊛ w1 7→ w1 if ek ⇔ true (5.12)

ek ⊛ (el ⊛ w1) 7→ ek ⊛ w1 if ek ⇔ el (5.13)

Loops

(ek ⊛ w1)
it,l 7→ ek ⊛ (w1)

it,l (5.14)

Figure 5.6: Rewriting rules with input conditionals

5.5.3 Simplifying WCET formula

The size of the resulting formula is linear in the size of the CFT. To reduce the size of this
formula, we apply a simplification procedure that follows the classic integer arithmetic
simplification strategy described in [Coh03].

5.5.3.1 Simplification rules

The new simplification rules for WCET formulae that contain input conditionals are
detailed in Figure 5.6. ek and el are input conditionals, w1 and w2 are abstract WCETs, l
is a loop identifier and it is a loop bound. These rules are added to the rules of [BFL17].
For each rule of the form l 7→ r we must prove that l = r. We illustrate the general proof
principle for rule (5.8) below. The equivalence proofs of l and r for all these rules can be
found in Appendix A.

This proof is a case by case on the possible values of ek and el. We write 0 (resp. 1)

5.5. SYMBOLIC WCET WITH INPUT CONDITIONALS 101

as a shorthand for false (resp. true). We then demonstrate that l = r for all the possible
values of ek and el.

Proof of rule (5.8). Property: ek ⊛ w1 ⊕ (ek ∧ el)⊛ w2 = ek ⊛ (w1 ⊕ el ⊛ w2).

1. Case: ek = 0

0⊛ w1 ⊕ (0 ∧ el)⊛ w2 = θ ⊕ 0⊛ w2 = θ

0⊛ (w1 ⊕ el ⊛ w2) = θ

2. Case: el = 0

ek ⊛ w1 ⊕ (ek ∧ 0)⊛ w2 = ek ⊛ w1 ⊕ 0⊛ w2 = ek ⊛ w1

ek ⊛ (w1 ⊕ 0⊛ w2) = ek ⊛ (w1 ⊕ θ) = ek ⊛ w1

3. Case: ek = el = 1

1⊛ w1 ⊕ (1 ∧ 1)⊛ w2 = w1 ⊕ 1⊛ w2 = w1 ⊕ w2

1⊛ (w1 ⊕ 1⊛ w2) = 1⊛ (w1 ⊕ w2) = w1 ⊕ w2

□

Factorization rules require to test the equivalence of input conditionals. For distribu-
tivity rules, we rely on an order relation ◁ on input conditionals so that they can only be
applied in one direction, to ensure termination of the simplification. Multiplication rules
are direct consequences of the definition of the operator ⊛.

5.5.3.2 Testing input conditionals equivalence

Checking the equivalence of an input conditional to either true or false is straightforward.
No simplification rule can create a new predicate that is equivalent to true or false.
Therefore, we can simply check (syntactically) that the input conditional is the predicate
true or the predicate false.

In other cases, to test the equivalence of two input conditionals, we first put them in
a normal form. Then, equivalence amounts to a syntactic equality. An input conditional
is in normal form iff:

1. The left-hand side of comparison operators is 0;

2. Comparison operators are either ≤ or =;

3. Terms are ordered by increasing parameter identifiers;

102 CHAPTER 5. PROCEDURE ARGUMENTS AS PARAMETERS

4. The last term is a constant.

Example 5.10 (Normal form of input conditionals) The normal form of the input
conditional 10 ≥ 15 + r1 + r0 is 0 ≤ −r0 − r1 − 5.

5.5.3.3 Termination of the simplification procedure

The orientation of each rule is such that either of the following holds: 1) r has less
operands than l; 2) r has less parentheses than l; 3) input conditionals in l are “smaller”
than those in r according to relation ◁ (defined below). Based on these properties, we
can define a strict order relation ≺ such that we have l ≺ r for each rule. This ensures
that the simplification procedure terminates. The ordering relation on input conditionals
is defined as follows:

ek ◁ el ⇔(lid(ek) < lid(el)) ∨

(lid(ek) = lid(el) ∧ size(ek) < size(el)) ∨

((conj(ek) = false ∧ conj(el) = false) ∧ (5.15)

(lid(ek) = lid(el)) ∧ (size(ek) = size(el)) ∧

(linconst(ek) < linconst(el)))

Where lid returns the lowest parameter identifier (or −1 if there is no parameter), size
returns the number of terms in an input conditional, linconst returns the constant (−1
for a conjunction) of the input conditional and conj is true iff the input conditional is a
conjunction of input conditionals.

Example 5.11 (Order relation functions) Consider the input conditional 0 ≤ r0 +

r1 + 10 ∧ 0 ≤ r2. We have:

lid(0 ≤ r0 + r1 + 10 ∧ 0 ≤ r2) = 0

size(0 ≤ r0 + r1 + 10 ∧ 0 ≤ r2) = 6

linconst(0 ≤ r0 + r1 + 10) = 10

conj(0 ≤ r0 + r1 + 10 ∧ 0 ≤ r2) = true

5.5.4 Formula instantiation

We compile the simplified formula into a C procedure, whose arguments correspond to the
arguments of the procedure under analysis. This procedure can be compiled and executed
off-line, e.g. for sensitivity analysis, or on-line, e.g. to implement an adaptive real-time
system.

5.6. TOWARDS MODULAR WCET ANALYSIS 103

In order to improve the performance for on-line use, we ensure that the C compiler
optimizations can be applied efficiently thanks to the following rules:

1. the resulting program is standalone, i.e. no library dependencies;

2. WCET lists are represented by several integer variables, one for each list value;

3. only simple conditional statements are allowed: no loops, no pointers and no func-
tion calls.

These rules ensure that we can easily compute the WCET of the formula evaluation, and
that this WCET is very low. An example of instantiation code produced for the procedure
g723_enc_reconstruct is shown in Appendix B.

Note that since the WCET of a procedure is the worst-case for any possible execution
scenario, executing the instantiation code before executing the procedure cannot increase
the WCET of the procedure.

5.6 Towards modular WCET analysis

In this section, we present an extension of our approach, a modular analysis that analyzes
each procedure independently. This extension is currently limited to pure functions, that
is to say functions without side-effects.

5.6.1 Modular abstract interpretation

In our previous abstract interpretation analysis, procedure calls were inlined. Instead,
in this section we detail a modular abstract interpretation analysis, which relies on the
extensions previously presented in this chapter. Each procedure is analyzed only once
per program analysis instead of analyzing it each time it is called, which decreases the
overall analysis complexity. The analysis consists of two parts: 1) inferring a summary
for each procedure, representing how a call to the procedure impacts the state of the
caller; 2) deriving call predicates for each procedure call, which represent constraints on
the values of the procedure arguments at the call site. Call predicates are not required
for the modular abstract interpretation of the program, they are only used during the
symbolic WCET computation step.

We make a few additional definitions before detailing the analysis. First, a program
is represented as a set of procedures P , one of which is the main procedure, i.e. the entry
point of the program. A procedure p ∈ P is defined as a sequence of labeled instructions
l0 : I0, . . . , ln : END.

104 CHAPTER 5. PROCEDURE ARGUMENTS AS PARAMETERS

Algorithm 2 Summary construction
1: function ConstructSummary(P)
2: A♯ ← {r0 : x0, r1 : x1, r2 : x2, r3 : x3}
3: A♯

1 ← A♯

4: s← (⊤,A♯
1, ∅)

5: (pP ,R♯
P , ∗

♯
P)← interpret(s, P)

6: ps ← proj(pP ,A♯ ∪ {R♯
P (r0)})

7: return (ps,A♯,R♯
P)

5.6.1.1 Procedure summary

In the 32-bit ARM convention [Arm23], the value returned by a procedure is stored in
register r0. The summary of a procedure is defined as a tuple (p,A♯,R♯), where:

• p is a polyhedron that represents the abstract state of the analysis at the end of the
procedure interpretation;

• A♯ is an argument mapping, that associates a variable in p to each procedure argu-
ment stored in a register before the execution of f ;

• R♯ is a register mapping.

Algorithm 2 details the summary construction. Line 2 constructs a register mapping
that associate to each procedure argument (stored in register r0 to r3) a polyhedron
variable. Line 4 builds an abstract state, that specifies the initial state of the analysis
before the interpretation of the procedure. Line 5 run the interpretation on the procedure
P with, as initial state, the abstract state constructed at line 4. Since the only value that
can change during a pure procedure execution is its return value, and that this value only
depends on the procedure arguments, we perform a projection at line 6 to only keep the
constraints that express the return value depending on the procedure argument values.
Finally, line 7 creates and returns the procedure summary.

Example 5.12 (Procedure summary) Consider procedure add_nozero in Figure 5.7,
which is a pure function. Its return value depends on its two input arguments. Note that
to ease understanding the assembly code is simplified compared to what the compiler would
actually produce. The procedure is summarized as:

(proj(p8,A♯ ∪ {R♯
8(r0)}),A♯,R♯

8)⇔ (⟨x0 + x1 ≤ x4, x4 ≤ x0 + x1 + 1⟩,A♯,R♯
8)

In other words, arg1 + arg2 ≤ return_value ≤ arg1 + arg2 + 1.

5.6. TOWARDS MODULAR WCET ANALYSIS 105

1 add_nozero: @ int add_nozero(int a , int b){
2 add r2, r0, r1 @ int res = a+b;
3 cmp r2, #0 @
4 bne .L2 @ if(res == 0){
5 add r2, r2, #1 @ res++;
6 .L2: @ }
7 mov r0, r2 @ return res;
8 bx lr @ }

(a) Arm32 assembly code

(b) Abstract interpretation of the procedure
Label Polyhedron Registers

1 p1 R♯
1 = A♯ = {r0 : x0, r1 : x1}

3 p3 = ⟨x2 = x0 + x1⟩ R♯
3 = R

♯
1[r2 : x2]

5 p5 = p3 ⊓⋄ ⟨x2 = 0⟩ R♯
5 = R

♯
3

6 p6 = p5 ⊓⋄ ⟨x3 = x2 + 1⟩ R♯
6 = R

♯
3[r2 : x3]

7 p7 = ⟨x0 + x1 ≤ x2 ≤ x0 + x1 + 1⟩ R♯
7 = R

♯
3

8 p8 = p7 ⊓⋄ ⟨x4 = x2⟩ R♯
8 = R

♯
7[r0 : x4]

Figure 5.7: A simplified pure function that sums its inputs and never returns 0

1 caller: @ int caller(int x, int y, int z){
2 add r3, r0, r1 @ int f = x + y;
3 mov r1, r2 @ // set z as second argument
4 mov r0, r3 @ // set f as first argument
5 bl add_nozero @
6 mov r3, r0 @
7 mov r0, r3 @ return add_nozero(f, z);
8 bx lr @ }

(a) Arm32 assembly code

(b) Abstract interpretation of the procedure
Label Polyhedron Registers

1 p1′ R♯
1′ = {r0 : x5, r1 : x6, r2 : x7}

3 p3′ = p1′ ⊓⋄ ⟨x8 = x5 + x6⟩ R♯
3′ = R

♯
1′ [r3 : x8]

5 p5′ = p3′ ⊓⋄ ⟨x9 = x7, x10 = x8⟩ R♯
5′ = R

♯
3′ [r0 : x10, r1 : x9]

Figure 5.8: A procedure that calls add_nozero

106 CHAPTER 5. PROCEDURE ARGUMENTS AS PARAMETERS

Algorithm 3 Summary instantiation

1: function InstantiateSummary((ps,A♯
s,R♯

s), (p,R♯, ∗♯))
2: (pt,A♯

t,R
♯
t)← fresh((ps,A♯

s,R♯
s))

3: p′t ← pt
4: for all a ∈ Dom(A♯) do
5: p′t ← p′t[R♯(a)/A♯

t(a)]
6: p′ ← p ⊓⋄ p′t
7: R♯

1 ← R♯

8: for all r ∈ Dom(R♯
t) do

9: if R♯
t(r) ∈ p′ then

10: R♯
1 ← R

♯
1[r : R

♯
t(r)]

11: return (p′,R♯
1, ∗♯)

5.6.1.2 Summary instantiation

The created summary can then be instantiated into an abstract state. We denote p[xi/xj]

the polyhedron resulting from the substitution of variable xj by xi in p. It substitutes xj

by xi in the polyhedron constraints (or does nothing when xi = xj).

The instantiation of a procedure summary into an abstract state is detailed in Algo-
rithm 3, which takes the procedure summary and the abstract state at the procedure call
as arguments. First, we create a fresh summary at line 2, that is to say that we create
a copy of the polyhedron and the mappings, where all the variables are substituted by
new variables. From line 3 to line 5, we substitute the summary polyhedron variables
that represent procedure arguments by the actual argument variables at the call site. At
line 6, we perform an intersection between the previous polyhedron and the polyhedron
at the call site. The last step of the algorithm, from line 7 to line 10 creates an updated
version of the abstract state register mapping, where the registers are mapped to the new
variables that represent their value after the procedure interpretation. Line 11 creates
and returns a new abstract state that take the procedure interpretation into account. It
uses the new polyhedron as well as the new register mapping. Since we work on pure
functions that do not have any side effect, the memory mapping is not updated.

Example 5.13 (Summary instantiation) The procedure caller of Figure 5.8 calls the
procedure add_nozero at label 5. By instantiating the summary obtained in Example 5.12,
we obtain the abstract state (p6′ ,R♯

6′ , ∗
♯
6′) at label 6 of caller, with:

p6′ = p5′ ⊓⋄ (⟨x′
0 + x′

1 ≤ x′
4 ≤ x′

0 + x′
1 + 1⟩[x10/x

′
0, x9/x

′
1])

R♯
6′ = R

♯
8[r0 : x

′
4, r1 : x9]

∗♯6′ = {}

5.6. TOWARDS MODULAR WCET ANALYSIS 107

Note that for any n, x′
n denotes the fresh variable corresponding to xn in the summary.

5.6.1.3 Call predicates

We derive call predicates at each call site. Each call predicate relates one argument of the
callee to the arguments of the caller. In other words, it provides information about how
this argument passed to the callee depends on the arguments of the caller.

Definition 5.3 (Call predicate) Let f be a procedure that contains a call instruction
that calls a procedure g at label li. Let M = interpret(f), (p,R♯, ∗♯) = M [li]. We denote
Af the set of dimensions identified as f procedure arguments. Let argsgi be such that
argsgi(j) represents the value of the (j + 1)th argument passed to g at call site li

4. The
call predicate cpredgi(j) of argsgi(j) at li is defined as:

cpredgi(j) = export(proj(p,Af ∪ {argsgi(j)}))

where export substitutes Af (k) by the identifier f_k for all the k arguments of f , argsgi(j)
by the identifier gi_j, and lists the set of constraints of the polyhedron.

Example 5.14 (Call predicate) Consider the procedure caller in Figure 5.8. For the
call to caller at label 5, we have:

cpredadd_nozero(0) = export(proj(p5′ , {x5, x6, x7, } ∪ {x10})

= export(⟨x10 = x5 + x6⟩)

= {add_nozero0 = caller 0 + caller 1}

Similarly, we obtain cpredadd_nozero(1) = {add_nozero1 = caller 2}

5.6.2 Modular WCET analysis

In this section, we detail the modular WCET analysis, which relies on the input condi-
tionals and call predicates inferred by the abstract interpretation.

5.6.2.1 Procedure calls and control-flow trees

In [BFL17], a call to another procedure inlines the CFT of the callee in the CFT of the
caller. Instead, for our modular WCET analysis, we introduce a new kind of tree to
represent a procedure call.

4In the following we omit subscript i when clear from context.

108 CHAPTER 5. PROCEDURE ARGUMENTS AS PARAMETERS

Definition 5.4 (Call control-flow tree) Let f be a procedure and (m1, . . . ,mn) be a
set of call predicates. The tree Call(f, (m1, . . . ,mn)) represents a call to the procedure f ,
where mk = cpredf (k) for 1 ≤ k ≤ n.

The abstract WCET of a call is defined as:

ω(Call(f, (m1, . . . ,mn))) = f (m1, . . . ,mn)

where f identifies the WCET formula of f .

Example 5.15 (Call CFTs WCET formula) Consider the caller procedure in Fig-
ure 5.8, which calls procedure add_nozero. The WCET of caller is expressed as:

w1 ⊕ add _nozero(add_nozero0 = caller 0 + caller 1, add_nozero1 = caller 2)⊕ w2

where w1 and w2 are the WCET of the instructions before and after the procedure call.
add _nozero(add_nozero0 = caller 0 + caller 1, add_nozero1 = caller 2) is a reference to
the WCET formula of function add_nozero with caller 0 + caller 1 as first argument, i.e.
the sum of the two first arguments passed to the caller formula, and caller 2 as second
argument, i.e. the third argument passed to the caller formula.

5.6.2.2 Simplification of formulas and instantiation

We instantiate sub-formulas during formula simplification. To do so, we update input
conditionals for all the loops and all the alternatives so that they depend on arguments
of the caller rather than on arguments of the callee. More formally: let n be the number
of arguments. We introduce the following simplification rule:

f (m1, . . . ,mn) 7→ inst(f , p,Dom(p))

5.7. EVALUATION 109

where5:

p = ⟨m1, . . . ,mn⟩

inst((l,w), p, vs) = (l,w)

inst(w ⊕ w′, p, vs) = inst(w, p, vs)⊕ inst(w′, p, vs)

inst(w ⊎ w′, p, vs) = inst(w, p, vs) ⊎ inst(w′, p, vs)

inst(e⊛ w, p, vs) = proj(p ⊓⋄ ⟨e⟩, vs)⊛ inst(w, p ⊓⋄ ⟨e⟩, vs)

inst(wn,l, p, vs) =

inst(w, p, vs)n,l if n is constant

inst(w, p, vs)lbound(p⊓⋄⟨lb≤n⟩},vs,lb),l otherwise

Example 5.16 (Sub-formula instantiation) Consider the two procedures caller and
add_nozero of Figure 5.7 and Figure 5.8. Assume that the WCET of add_nozero is:
w3 ⊕ ((add_nozero1 + add_nozero2 = 0)⊛ w4)⊕ w5.

After simplification, we obtain the following WCET for procedure caller:

w1 ⊕ (w3 ⊕ ((caller 1 + caller 2 + caller 3 = 0)⊛ w4)⊕ w5)⊕ w2

5.7 Evaluation

In this section we present the experiments that we conducted to evaluate our approach.
We first detail our experimental setup, to enable the reproduction of our experiments.
Then, we detail our benchmarks selection process. Finally, we provide metrics obtained
by running our tool on the selected benchmarks.

5.7.1 Experimental setup

We implemented our approach as an extension to WSymb [WSy]. We used the following
hardware setup:

• Modeled processor: 1 ALU, 1 FPU, 1 MU. Integer addition costs 1 cycle, float-
ing point addition 3 cycles, multiplication 6 cycles, division 15 cycles. It has a 4
stages pipeline (fetch, decode, execute, commit), a fetch queue of size 3, fetches 2
instructions per cycle, and executes up to 4 instructions in parallel;

• L1 instruction cache: 64KB, LRU replacement policy, 1-way. The miss penalty is
10 cycles;

5Recall that function lbound was defined in Section 5.4.2.2

110 CHAPTER 5. PROCEDURE ARGUMENTS AS PARAMETERS

• Compilation: each benchmark is compiled as a standalone binary file using GCC
version 10.3.1 for ARM, with flags -O0 -g -nostdinc -nostdlib -mtune=cortex-a8
-mfpu=neon -mfloat-abi=hard. cjpeg_wrbmp uses a custom memcpy implementa-
tion in order to compile with gcc, which does not compile without standard library
otherwise;

• Analyses execution times: they are measured using an Intel® Core™ i7-8550U CPU
@ 1.80GHz × 8 with 16 GB of RAM.

5.7.2 Benchmark selection

We run our experiments on the TACLeBench benchmarks suite [Fal+16]. We did not
analyze all the procedures of the benchmarks:

• 11 programs are not supported by OTAWA (out of the 54 of TACLeBench): 2
because of recursions (fac and recursion), 9 because of the incomplete support for
division instructions (adpcm_dec, adpcm_enc, ammunition, cjpeg_transupp, epic,
h264_dec, huff_enc, quicksort and susan);

• 181 procedures have arguments, out of the 1032 procedures of the other programs;

• OTAWA does not handle well procedures with switch-cases, thus we do not use such
procedures;

• The polyhedra analysis only supports the integer data-type. Thus it derives in-
correct results for 4 procedures (gsm_enc_norm, isqrt_usqrt, st_calc_Var_Stddev
and st_sqrtf);

• The polyhedra analysis is intractable for 31 procedures: it either executes for more
than an hour, or runs out-of-memory. This happens for procedures with complex
memory access patterns, which leads to an explosion of the number of dimensions
in the polyhedron.

Among the remaining procedures, we present only the procedures for which the poly-
hedra analysis derived at least one input conditional. Each procedure name is prefixed
with the program it is part of (e.g. fft_modff is from the fft program). Only gsm_-
dec_Long_Term_Synthesis_Filtering and mpeg2_dist2 have more than 4 arguments;
we simply ignore the other arguments.

Four procedures contain only parametric loop bounds: audiobeam_adjust_delays,
audiobeam_calculate_energy, audiobeam_find_max_in_array and audiobeam_find_-
min_in_arr. Five procedures have both parametric loops bounds and parametric condi-

5.7. EVALUATION 111

tional statements: audiobeam_calc_distances, g723_enc_quan, ludcmp_test, minver_-
minver and minver_mmul. The remaining procedures only have parametric conditional
statements.

5.7.3 Procedure arguments as parameters

We begin by the evaluation of our technique without the modular extension6.
We compare our results with those of non-parametric IPET (from OTAWA [Bal+10])

as a reference. We were unable to reproduce the results of the related works on parametric
WCET analysis because the prototypes are unavailable, and their results are insufficiently
detailed to enable a proper comparison. Also, these related works can only analyze para-
metric loop bounds. Our work is the first to consider parametric conditional statements.

5.7.3.1 WCET adaptivity

Table 5.2 summarizes our results regarding WCET adaptivity. The Procedure column
contains the name of the analyzed procedure. We first report the WCET computed with
IPET. The CFT sub-columns indicate the Lowest and the Highest WCET computed by
our technique, as well as the difference between these two columns in percentage (in the
Diff column).

For 26 out of 31 procedures, the adaptivity, i.e. the difference between the highest and
the lowest WCET, is more than 5%. Many examples exhibit from 30% to 70% adaptivity,
usually due to parametric conditional statements. Regarding loops, our tool supports
linear loop bounds, which is not the case for related works supporting parametric loops
bounds: they support only a single parameter or the sum of one parameter and an integer.
However, the presented procedures do not rely on bounds other than a single parameter.

The highest adaptivities (those over 90%) are exhibited when loop bounds can range
down to 0, which can actually be considered unrealistic. Another case is procedure min-
ver_minver, for which the lowest WCET corresponds to an unrealistic argument value: it
occurs when the size of the matrix to inverse is lower than 2 or higher than 500, in which
case the procedure returns immediately.

Only two procedures exhibit no variability even though their WCET formula contains
parameters. The fft_modff formula contains two alternatives, one of which has the in-
put conditional true because the actual condition in the program contains a disjunction.
The WCET of the true alternative is higher than that of the other alternative, which
explains the absence of adaptivity. The audiobeam_calculate_energy formula contains a
parametric loop bound whose maximum value is 0 in TACLeBench.

6An artifact can be used to obtain our result, it is available at https://gitlab.cristal.univ-lille.fr/
sgrebant/rtns_2023_artifact.

https://gitlab.cristal.univ-lille.fr/sgrebant/rtns_2023_artifact
https://gitlab.cristal.univ-lille.fr/sgrebant/rtns_2023_artifact

112 CHAPTER 5. PROCEDURE ARGUMENTS AS PARAMETERS

Table 5.2: WCET adaptivity (in cycles)

Procedure IPET CFT
Lowest Highest Diff (%)

audiobeam_adjust_delays 9,261 1,718 9,383 81.7
audiobeam_calc_distances 174,295 340 176,550 98.1
audiobeam_calculate_energy 303 303 303 0.0
audiobeam_find_max_in_arr 5,274 1,331 5,366 75.2
audiobeam_find_min_in_arr 5,327 1,384 5,429 74.5
audiomeam_wrapped_dec 525 490 525 6.7
audiobeam_wrapped_dec_offset 316 281 316 11.1
audiobeam_wrapped_inc 563 528 563 6.2
audiobeam_wrapped_inc_offset 344 309 344 10.2
cjpeg_wrbmp_write_colormap 1,266,466 1,188,091 1,288,709 7.8
fft_modff 319 319 319 0.0
g723_enc_quan 4,621 341 5,291 93.6
g723_enc_reconstruct 702 335 702 38.9
gsm_dec_APCM_inverse_quantization 15,024 15,259 15,297 0.2
gsm_dec_APCM_quantization_-
xmaxc_to_exp_mant 1,311 1235 1,353 8.7

gsm_dec_asl 855 268 855 68.7
gsm_dec_asr 420 290 420 31.0
gsm_dec_Long_Term_Synthesis_-
Filtering 47,389 48,652 48,703 0.1

gsm_dec_sub 343 305 343 11.1
gsm_enc_asl 855 268 855 68.7
gsm_enc_asr 420 290 420 31.0
gsm_enc_div 5,072 3,287 5,092 35.4
gsm_enc_sub 343 305 343 11.1
lift_do_impulse 1,117 1,135 1,197 5.2
ludcmp_test 108,705 9,741 110,841 91.2
minver_minver 53,356 359 57,141 99.4
minver_mmul 12,300 380 12,492 97.0
mpeg2_dist2 134,023 134,305 134,368 0.0
ndes_getbit 383 349 383 8.9
rijndael_dec_fseek 470 380 470 19.1
rijndael_enc_fseek 449 381 449 15.1

5.7. EVALUATION 113

The Highest WCET is slightly higher than the WCET inferred by IPET (1.4% on
average, 0% minimum, 12.7% maximum). This is because: 1) the transformation from
CFG to CFT can introduce execution paths that do not exist in the CFG (see [BFL17]
for details); 2) the hardware analyses are slightly more pessimistic in our approach (e.g.
loops with multiple exits impair the pipeline analysis, loop headers duplicated by the
transformation to CFT impair the cache analysis).

5.7.3.2 Analysis time

The analysis times of IPET and our technique are presented in Table 5.3. The IPET
column exhibit the analysis time with IPET. The CFT sub-columns indicate the analysis
time for our technique: Polyhedra indicates the time spent in abstract interpretation,
while Symbolic WCET indicates the time spent in WCET computation. The sum of
the Polyhedra and the Symbolic WCET columns give the global execution time of our
technique.

For small procedures, the analysis times are similar for the IPET analysis, the polyhe-
dra analysis, and the symbolic WCET computation. This is because the execution time
for the CFG reconstruction dominates the execution time of the actual analysis.

For bigger procedures, the analyses times grow, and unexpectedly the analysis times of
IPET and of the Symbolic WCET computation (without considering polyhedra analysis
times) are similar. This is because the cache analysis (performed by both) dominates the
rest of the analysis. Its complexity is exponential in the depth of loop nesting. In some
cases, the polyhedra analysis has higher execution times. This corresponds to programs
with many memory accesses, which cause the polyhedra to have many dimensions and
constraints. Furthermore, we also noticed that our extensions to support input condition-
als have very little to no impact on the symbolic WCET analysis time.

The major difference between our work and IPET concerning analysis time is the
abstract interpretation part that extracts input conditionals. There remains a lot of room
for improving the scalability of this part of our approach, by adapting the rich set of
optimization techniques developed by the community on abstract interpretation over the
past decades. Nonetheless, our approach is already capable of producing WCET formulas
for programs that are currently out of the scope of other tools in the literature.

5.7.3.3 Embeddability

The size of the initial and simplified formulae are reported in Figure 5.9. A simplified
formula typically contains between 10 and 50 operands. Its size depends on the number of
input conditionals in the non-simplified formula. The largest formula (minver_minver)
is reduced to 15% of its initial size by our simplification procedure.

114 CHAPTER 5. PROCEDURE ARGUMENTS AS PARAMETERS

Table 5.3: Analysis times (in seconds)

Procedure IPET CFT
Polyhedra Symbolic WCET

audiobeam_adjust_delays 1.120 1.006 1.096
audiobeam_calc_distances 222.809 20.881 216.863
audiobeam_calculate_energy 0.242 0.099 0.246
audiobeam_find_max_in_arr 0.869 0.346 0.827
audiobeam_find_min_in_arr 0.852 0.471 0.820
audiomeam_wrapped_dec 0.303 0.034 0.297
audiobeam_wrapped_dec_offset 0.163 0.022 0.162
audiobeam_wrapped_inc 0.463 0.039 0.455
audiobeam_wrapped_inc_offset 0.241 0.015 0.238
cjpeg_wrbmp_write_colormap 7.234 113.109 7.383
fft_modff 0.140 0.007 0.141
g723_enc_quan 0.247 0.598 0.244
g723_enc_reconstruct 24.510 0.045 24.790
gsm_dec_APCM_inverse_quantization 6.551 8.199 6.441
gsm_dec_APCM_quantization_-
xmaxc_to_exp_mant 1.067 0.184 1.033

gsm_dec_asl 0.495 0.059 0.484
gsm_dec_asr 0.272 0.028 0.266
gsm_dec_Long_Term_Synthesis_-
Filtering 2.175 2.844 2.095

gsm_dec_sub 0.226 0.022 0.220
gsm_enc_asl 0.498 0.057 0.483
gsm_enc_asr 0.274 0.025 0.266
gsm_enc_div 0.904 0.409 0.874
gsm_enc_sub 0.225 0.015 0.219
lift_do_impulse 0.391 0.058 0.385
ludcmp_test 4.702 21.641 4.636
minver_minver 72.026 645.606 71.018
minver_mmul 1.714 6.300 1.640
mpeg2_dist2 9.410 37.567 9.154
ndes_getbit 0.381 0.035 0.357
rijndael_dec_fseek 0.259 0.053 0.252
rijndael_enc_fseek 0.212 0.057 0.204

5.7. EVALUATION 115

au
di

ob
ea

m
_

ad
ju

st
_

de
la

ys
au

di
ob

ea
m

_
ca

lc
_

di
st

an
ce

s
au

di
ob

ea
m

_
ca

lc
ul

at
e_

en
er

gy
au

di
ob

ea
m

_
fin

d_
m

ax
_

in
_

ar
r

au
di

ob
ea

m
_

fin
d_

m
in

_
in

_
ar

r
au

di
ob

ea
m

_
w

ra
pp

ed
_

de
c

au
di

ob
ea

m
_

w
ra

pp
ed

_
de

c_
off

se
t

au
di

ob
ea

m
_

w
ra

pp
ed

_
in

c
au

di
ob

ea
m

_
w

ra
pp

ed
_

in
c_

off
se

t
cj

pe
g_

w
rb

m
p_

w
ri
te

_
co

lo
rm

ap
fft

_
m

od
ff

g7
23

_
en

c_
qu

an
g7

23
_

en
c_

re
co

ns
tr

uc
t

gs
m

_
de

c_
[..

.]_
qu

an
ti
za

ti
on

gs
m

_
de

c_
[..

.]_
ex

p_
m

an
t

gs
m

_
de

c_
[..

.]_
F
ilt

er
in

g

gs
m

_
de

c_
as

l
gs

m
_

de
c_

as
r

gs
m

_
de

c_
su

b
gs

m
_

en
c_

as
l

gs
m

_
en

c_
as

r
gs

m
_

en
c_

di
v

gs
m

_
en

c_
su

b
lif

t_
do

_
im

pu
ls
e

lu
dc

m
p_

te
st

m
in

ve
r_

m
in

ve
r

m
in

ve
r_

m
m

ul
m

pe
g2

_
di

st
2

nd
es

_
ge

tb
it

ri
jn

da
el

_
de

c_
fs

ee
k

ri
jn

da
el

_
en

c_
fs

ee
k0

50

100

150

200

250

300

350

400

450

500

550

N
um

be
r

of
op

er
an

ds

Before simplification
After simplification

Figure 5.9: Parametric WCET formula size before and after simplification

Table 5.4: Instantiation times (in cycles)

Procedure Instantiation Max WCET Opgain
audiobeam_adjust_delays 155 7,665 9,383 5
audiobeam_calc_distances 137 176,210 176,550 19
audiobeam_find_max_in_arr 119 4,035 5,366 3
audiobeam_find_min_in_arr 119 4,045 5,429 3
audiobeam_wrapped_dec_offset 74 35 525 10
cjpeg_wrbmp_write_colormap 105 100,618 1,288,709 20
g723_enc_quan 143 4,950 5,291 8
g723_enc_reconstruct 235 273 702 18
gsm_dec_asl 232 587 855 30
ludcmp_test 1,472 101,100 110,841 42
minver_minver 2,564 56,782 57,141 87
mpeg2_dist2 100 63 134,368 18

116 CHAPTER 5. PROCEDURE ARGUMENTS AS PARAMETERS

0 1 2 3 4
0

5

10

15

20

25

Loop nesting level

A
na

ly
si

s
ti

m
e

(s
)

ln

Classic
Modular

0 1 2 3 4
0

5

10

15

20

25

Loop nesting level
A

na
ly

si
s

ti
m

e
(s

)

ln_complex

Classic
Modular

Figure 5.10: Comparison between classic and modular analysis time (in seconds)

Table 5.4 reports instantiation times (in cycles) for a selection of procedures with
various characteristics, in terms of WCET, adaptivity, and formula size. Instantiation
indicates the WCET of the instantiation program computed by OTAWA. Max gain is the
difference between the highest and the lowest WCET. WCET reports the Highest WCET
of Table 5.2. Op reports the number of operands in the formula, from Figure 5.9.

On-line instantiation can be considered only when Max gain is significantly larger
than Instantiation. This is the case for most procedures of Table 5.2, and the difference
is actually quite large. For instance, for cjpeg_wrbmp_write_colormap, the instantiation
takes 105 cycles while there are 100, 513 cycles that can be reclaimed for other tasks.
On the other extreme, the instantiation time of audiobeam_wrapped_dec_offset is larger
than its WCET, so on-line instantiation has no benefit.

5.7.4 Modular WCET analysis

We use two artificial programs7, ln and ln_complex, to emphasize the benefits of the
modular analysis. They call a procedure at different loop nest levels: from ln0 (no loop,
only a procedure call), to ln4 (loop > loop > loop > loop > procedure call). ln calls a
simple procedure that performs only 4 additions, while ln_complex calls a procedure that
has a more complex control-flow with conditional statements.

In abstract interpretation, the code located inside of a loop is analyzed repeatedly
until a fixpoint is reached. Thus, increasing the loop nest level stresses the analysis. The
number of times the procedure is analyzed is exponential in the number of nested loops

7The source code of these programs can be found at https://gitlab.cristal.univ-lille.fr/sgrebant/
artificial-benchmarks.

https://gitlab.cristal.univ-lille.fr/sgrebant/artificial-benchmarks
https://gitlab.cristal.univ-lille.fr/sgrebant/artificial-benchmarks

5.8. APPLICATION TO ADAPTIVE REAL-TIME SYSTEMS 117

(even though widening is applied to speedup convergence).
Figure 5.10 details the abstract interpretation time for different loop nest levels. Mod-

ular corresponds to the modular analysis time and Classic to the non-modular analysis
time. Results show that when there is no loop in the program (ln0), the modular abstract
interpretation is slightly slower. This is due to the overhead for computing the procedure
summary and instantiating it, which is not performed in the non-modular approach. How-
ever, when the procedure is analyzed repeatedly (i.e. ln1, ln2, ln3 and ln4), the modular
analysis is significantly faster. This is especially true for ln3 and ln4 of ln_complex,
where the non-modular analysis fails after 5 hours, with a segmentation fault, whereas
the modular analysis completes the analysis in less than 20 seconds.

We also ran the complete modular WCET analysis on compatible procedures of
TACLeBench. In comparison to the non-modular analysis, resulting WCET values are
unchanged. In terms of analysis time, the impact of the modular analysis on the symbolic
WCET computation part is negligible, because this part has a low complexity.

5.8 Application to adaptive real-time systems

In this section, we discuss the application of our WCET estimation approach to adaptive
real-time systems. Real-time literature usually focuses on schedulability analysis for such
systems. Instead, here we focus on practical implementation aspects.

5.8.1 Semi-clairvoyant mixed-criticality scheduling

Recently, adaptive scheduling has gained interest following work on semi-clairvoyant
scheduling for mixed-criticality systems [ABB19]. The system model is based on the
dual-criticality model of Vestal [Ves07], where a system has two distinct criticality lev-
els, LO (for low) and HI (for high). The workload consists of a set of tasks defined as
{τi(χi, [C

L
i , C

H
i]), Ti}0≤i<n, where:

• χi ∈ {LO,HI} denotes the criticality of the task;

• CL
i and CH

i denote the LO-criticality and HI-criticality WCETs of the task, such
that CL

i ≤ CH
i

• Ti is the period of the task and defines the minimum duration between two successive
releases, also called jobs, of the task8.

8[ABB19] assumes a more general model of jobs that may or may not be released periodically. We
opt for a periodic model to make the discussion more concrete.

118 CHAPTER 5. PROCEDURE ARGUMENTS AS PARAMETERS

1 void mixedCritTask () {
2 int inputs [4];
3
4 while (1) {
5 getInputs(inputs);
6 if(fWCET(inputs) > CLo)
7 suspendAllLo ();
8 doWork ();
9 waitPeriod ();

10 }
11 }

(a) Task code (LO or HI task)

1 void schedule () {
2 saveContext ();
3
4 if(goBackToLo ())
5 resumeAllLo ();
6 selectNextTask ();
7
8 restoreContext ();
9 }

(b) Scheduler code

Figure 5.11: Implementing semi-clairvoyant mixed-criticality scheduling

In semi-clairvoyant scheduling, the WCET of a job is estimated at its release. This
estimate γi,j is less or equal to either CL

i or CH
i . The system starts in LO-criticality mode,

where every job must complete before its deadline (the next job released by the same task).
Whenever the estimate γi,j of any job equals CH

i , the system switches to HI-criticality
mode, where only HI-criticality jobs need to complete before their deadlines.

Figure 5.11 depicts a possible implementation of such a system in C. Each job (one
step of the loop) first acquires current input values (getInputs). Its WCET estimate is
obtained by applying the WCET instantiation function of the task to the input values
(fWCET(inputs)). If it exceeds the LO-criticality WCET of the task, the system switches
to HI-criticality. Note that there is no distinction between the code of LO and HI-
criticality tasks. However, only LO-criticality tasks are suspended at mode switch (by
suspendAllLo). Function doWork implements the actual task functionality.

The scheduler function (schedule) is called at periodic time intervals (as defined by the
scheduler time granularity) and also when a task starts waiting for its next release (when
it executes waitPeriod). Before switching to the new higher priority task, it tests whether
the system can transition back to LO-criticality mode (goBackToLo), in which case it
resumes all LO-criticality tasks (resumeAllLo). Suspended tasks are simply ignored when
selecting the next task to schedule. Resuming a task puts it back into the list of tasks
ready to be scheduled.

There is a slight difference between the implementation proposed in Figure 5.11 and
the theoretical semi-clairvoyant model: in Figure 5.11, the WCET estimation occurs at
the start time of the job (i.e. at the time when it is first selected for execution by the
scheduler), while in the theoretical model it occurs at the release time of the job. To
adhere more closely to the theoretical model, we can simply move L5-7 out of the task

5.9. CONCLUSION 119

1 void adaptiveTask () {
2 int inputs [4];
3
4 while (1) {
5 getInputs(inputs);
6 if(fWCET(inputs) > getBudget ())
7 simpleWork ();
8 else
9 complexWork ();

10 waitPeriod ();
11 }
12 }

Figure 5.12: Implementing an adaptive control task

function and into the callback function of the periodic timer of the task. This timer is the
actual time triggered for new job releases. Its callback is usually triggered by interruptions
and is thus not delayed by the scheduler. The pros and cons of both options (at release
time or at start time) should be explored in future works.

5.8.2 Adaptive control

In adaptive control, the controller of the system adapts to parameters which vary or are
initially uncertain. Such control is commonly used in embedded systems, as illustrated
in the simple example of Figure 5.1. The parameter-space is often large, making control
law computation very intensive. Implementing such adaptive control in real-time systems
induces a trade-off between control precision and computation time.

Figure 5.12 depicts the implementation of an adaptive control task using our WCET
estimation approach. The time budget for a job is estimated after input acquisition
(getBudget). The estimated WCET for the job is compared against its budget. If the
estimation exceeds the WCET, the job executes a simplified version of the control law
(simpleWork), which gives imprecise results but executes quickly. Otherwise, it executes
a more refined control law (complexWork) that gives better results but takes more time
to execute.

5.9 Conclusion

We presented a parametric WCET analysis that accounts for the effect of procedure ar-
gument values on the control-flow of the procedure. It first infers input conditionals using
abstract interpretation. Then, based on these input conditionals, the analysis produces

120 CHAPTER 5. PROCEDURE ARGUMENTS AS PARAMETERS

a parametric WCET formula that depends on the procedure argument values. We also
detailed a modular version of the analysis, that supports pure procedures. Experiments
show that our automatic approach is adaptive and embeddable. We also illustrated how
this approach can be used to implement adaptive real-time systems.

There is still room for improvement. First, the complexity of the polyhedra analysis
is quite high and thus is not well-suited to analyze bigger procedures or programs. A first
future work is to reduce the complexity of this analysis, or to explore the other solutions to
trade precision for analysis time. For instance, by changing the abstract domain used for
a less expressive abstract domain might result in a better trade-off between analysis time
and the amount of input conditionals that the abstract interpretation infer. A second
future work is to extend the modular abstract interpretation so as to add support for
non-pure functions. The main challenge lies in summarizing functions with side effects at
the binary level.

Chapter 6

Conclusion and perspectives

Contents
6.1 Summary . 122

6.1.1 Infeasible paths elimination . 122

6.1.2 Pipeline effect modeling . 122

6.1.3 Procedure arguments as parameters 123

6.2 Perspectives . 123

6.2.1 Tree transformation complexity 123

6.2.2 Abstract domains . 123

6.2.3 Modular abstract interpretation 124

121

122 CHAPTER 6. CONCLUSION AND PERSPECTIVES

In this chapter, we summarize the different contributions presented in this thesis. We
also present research perspectives that can improve our contributions.

6.1 Summary

In this thesis, we formalized, implemented and evaluated three extensions to parametric
tree-based WCET computation. In particular, we first introduced a technique to remove
infeasible paths from a tree-based program representation. Then, we presented a method
to adapt an existing pipeline analysis technique to tree-based WCET computation. Fi-
nally, we proposed an approach to automatically take into account the effect of input
values on the WCET of a program.

6.1.1 Infeasible paths elimination

In chapter 3, we presented a technique that starts from the control-flow tree representation
and removes all the semantically infeasible paths, that are structurally feasible, in order to
produce a feasible control-flow tree. First, pseudo paths abstract the paths of the control-
flow tree such that the paths are grouped by the basic blocks that they traverse that
belong to infeasible paths. Then, the infeasible paths are removed from the set of pseudo
paths of the program, which implicitly remove all the infeasible paths. For each remaining
pseudo path, a pseudo tree, which represents the concrete paths that correspond to this
pseudo paths, is built. A control-flow tree without infeasible paths is then built using an
alternative between all these pseudo trees.

We implemented a prototype, which showed that this approach remains tractable for
medium-size programs. We also showed that in a parametric context, this analysis can
be more efficient that IPET for many of these programs.

6.1.2 Pipeline effect modeling

In chapter 4, we presented various adaptations to an existing pipeline analysis, such that
this analysis can be used with tree-based symbolic WCET computation. This pipeline
analysis initially stores the WCET of the basic blocks on their incoming edges in the
CFG. Our technique transfers these WCETs from the CFG to the CFT thus computing
the WCET of the basic blocks in the CFT.

We implemented this technique in our prototype and compared the results with the
original approach, implemented with IPET. Our results showed that the resulting WCETs
are very close to those computed with IPET.

6.2. PERSPECTIVES 123

6.1.3 Procedure arguments as parameters

In chapter 5, we studied the impact of procedure arguments on the WCET of programs.
First, we use abstract interpretation to infer input conditionals, i.e. predicates that depend
on the value of procedure arguments that represent either conditional statement branching
conditions or loop bounds. Then, we extended the control-flow tree representation in order
to support these input conditionals. A new product operator enables to integrate the input
conditionals into the parametric WCET formula. This formula is then simplified with the
new rules that we introduced. Finally, the formula is compiled to C code. Instantiating
this formula produces the WCET for the given parameter values.

Our experiments showed that the WCET of programs vary most of the time from
30% to 70% depending on the procedure argument values. They also demonstrate that
the produced formula can be used for on-line adaptive scheduling techniques since the
instantiation time of the WCET formula is very small compared to the execution time of
most of the procedures.

6.2 Perspectives

Although this thesis proposes contributions that enhance parametric WCET computation,
is also brings to light several interesting problems.

6.2.1 Tree transformation complexity

A first problem is related to the representation of the program that is most of the time
a graph or a tree. The various contributions that focus on transforming the program
representation, including our work on infeasible paths, reveal a high complexity. In the
case of infeasible paths, it is due to the explosion of the size of the program representation,
which slows down the WCET computation. A starting point to limit this explosion would
be to find a trade-off between the analysis time and the precision. For instance, we could
decide whether or not a tree should be transformed based on a complexity metric like the
cyclomatic complexity. This would limit the size of the program representation as well as
the resulting WCET precision.

6.2.2 Abstract domains

As demonstrated in our experiments in chapter 5, the polyhedra analysis is quite complex.
In particular, the analysis time of procedures with many memory accesses is often very
high. We also noticed that some procedures did not rely on predicates that required the
polyhedral domain. As a consequence, it could be interesting to study other abstract

124 CHAPTER 6. CONCLUSION AND PERSPECTIVES

domains with a lower complexity such as octagons [Min06]. With octagons, we may not
be able to detect as much predicates but we could run the analysis on bigger programs
that contain more memory accesses.

6.2.3 Modular abstract interpretation

Our modular WCET analysis, presented in chapter 5 has shown that it is possible to
perform a modular abstract interpretation, i.e. to analyze each function separately, for
pure procedures. Nevertheless, we are currently not able to analyze a non-pure function
and to summarize it. The difficult part of this work is that we must take into account
different kinds of elements that can safely be ignored when performing the analysis on
pure functions.

In particular, to support more than just pure functions, it is necessary to deal with
side-effects and more specifically pointers.

Appendix A

Rewriting rules: equivalence proofs

In the following proofs, ek and el are input conditionals, w1 and w2 are abstract WCETs,
it is an integer and l is a loop identifier. For the sake of readability, true and false
values are replaced respectively by 1 and 0. The proofs of all the rules of Figure 5.6 are
presented, except for rules (5.10), (5.11) and (5.12) since those are direct consequences of
the application of the ⊛ operator semantics and thus are correct by construction. All the
proofs are case by case proofs on the possible values of ek and el.

Proof of rule (5.1). Property: (ek ∧ el)⊛ w1 = (el ∧ ek)⊛ w1

1. Case ek = 0

(0 ∧ el)⊛ w1 = 0⊛ w1 = θ

(el ∧ 0)⊛ w1 = 0⊛ w1 = θ

2. Case el = 0

(ek ∧ 0)⊛ w1 = 0⊛ w1 = θ

(0 ∧ ek)⊛ w1 = 0⊛ w1 = θ

3. Case ek = el = 1

(1 ∧ 1)⊛ w1 = 1⊛ w1 = w1

□

Proof of rule (5.2). Property: ek ⊛ w1 ⊕ el ⊛ w2 = el ⊛ w2 ⊕ ek ⊛ w1

1. Case ek = 0

0⊛ w1 ⊕ el ⊛ w2 = θ ⊕ el ⊛ w2 = el ⊛ w2

el ⊛ w2 ⊕ 0⊛ w1 = el ⊛ w2 ⊕ θ = el ⊛ w2

2. Case el = 0

ek ⊛ w1 ⊕ 0⊛ w2 = ek ⊛ w1 ⊕ θ = ek ⊛ w1

0⊛ w2 ⊕ ek ⊛ w1 = θ ⊕ ek ⊛ w1 = ek ⊛ w1

125

126 APPENDIX A. REWRITING RULES: EQUIVALENCE PROOFS

3. Case ek = el = 1

1⊛ w1 ⊕ 1⊛ w2 = w1 ⊕ w2

1⊛ w2 ⊕ 1⊛ w1 = w2 ⊕ w1 = w1 ⊕ w2

□

Proof of rule (5.3). Property: ek ⊛ w1 ⊎ el ⊛ w2 = el ⊛ w2 ⊎ ek ⊛ w2

1. Case ek = 0

0⊛ w1 ⊎ el ⊛ w2 = θ ⊎ el ⊛ w2 = el ⊛ w2

el ⊛ w2 ⊎ 0⊛ w1 = el ⊛ w2 ⊎ θ = el ⊛ w2

2. Case el = 0

ek ⊛ w1 ⊎ 0⊛ w2 = ek ⊛ w1 ⊎ θ = ek ⊛ w1

0⊛ w2 ⊎ ek ⊛ w1 = θ ⊎ ek ⊛ w1 = ek ⊛ w1

3. Case ek = el = 1

1⊛ w1 ⊎ 1⊛ w2 = w1 ⊎ w2

1⊛ w2 ⊎ 1⊛ w1 = w2 ⊎ w1 = w1 ⊎ w2

□

Proof of rule (5.4). Property: ek ⊛ w1 ⊕ el ⊛ w1 = w1 if el ⇔ ¬ek

1. Case ek = 1 ∧ el = 0

1⊛ w1 ⊕ 0⊛ w1 = w1 ⊕ θ = w1

2. Case ek = 0 ∧ el = 1

0⊛ w1 ⊕ 1⊛ w1 = θ ⊕ w1 = w1

□

Proof of rule (5.5). Property: ek ⊛ w1 ⊎ el ⊛ w1 = w1 if el ⇔ ¬ek

1. Case ek = 1 ∧ el = 0

1⊛ w1 ⊎ 0⊛ w1 = w1 ⊎ θ = w1

2. Case ek = 0 ∧ el = 1

0⊛ w1 ⊎ 1⊛ w1 = θ ⊎ w1 = w1

□

Proof of rule (5.6). Property: ek ⊛ w1 ⊕ el ⊛ w2 = ek ⊛ (w1 ⊕ w2) if ek ⇔ el

1. Case ek = el = 0

0⊛ w1 ⊕ 0⊛ w2 = θ ⊕ θ = θ

0⊛ (w1 ⊕ w2) = θ

127

2. Case ek = el = 1

1⊛ w1 ⊕ 1⊛ w2 = w1 ⊕ w2

1⊛ (w1 ⊕ w2) = w1 ⊕ w2

□

Proof of rule (5.7). Property: ek ⊛ w1 ⊎ el ⊛ w2 = ek ⊛ (w1 ⊎ w2) if ek ⇔ el

1. Case ek = el = 0

0⊛ w1 ⊎ 0⊛ w2 = θ ⊎ θ = θ

0⊛ (w1 ⊎ w2) = θ

2. Case ek = el = 1

1⊛ w1 ⊎ 1⊛ w2 = w1 ⊎ w2

1⊛ (w1 ⊎ w2) = w1 ⊎ w2

□

Proof of rule (5.8). Property: ek ⊛ w1 ⊕ (ek ∧ el)⊛ w2 = ek ⊛ (w1 ⊕ el ⊛ w2)

1. Case ek = 0

0⊛ w1 ⊕ (0 ∧ el)⊛ w2 = θ ⊕ 0⊛ w2 = θ ⊕ θ = θ

0⊛ (w1 ⊕ el ⊛ w2) = θ

2. Case el = 0

ek ⊛ w1 ⊕ (ek ∧ 0)⊛ w2 = ek ⊛ w1 ⊕ 0⊛ w2 = ek ⊛ w1 ⊕ θ = ek ⊛ w1

ek ⊛ (w1 ⊕ 0⊛ w2) = ek ⊛ (w1 ⊕ θ) = ek ⊛ w1

3. Case ek = el = 1

1⊛ w1 ⊕ (1 ∧ 1)⊛ w2 = w1 ⊕ 1⊛ w2 = w1 ⊕ w2

1⊛ (w1 ⊕ 1⊛ w2) = w1 ⊕ w2

□

Proof of rule (5.9). Property: ek ⊛ w1 ⊎ (ek ∧ el)⊛ w2 = ek ⊛ (w1 ⊎ el ⊛ w2)

1. Case ek = 0

0⊛ w1 ⊎ (0 ∧ el)⊛ w2 = θ ⊎ 0⊛ w2 = θ ⊎ θ

0⊛ (w1 ⊎ el ⊛ w2) = θ

2. Case el = 0

ek ⊛ w1 ⊎ (ek ∧ 0)⊛ w2 = ek ⊛ w1 ⊎ 0⊛ w2 = ek ⊛ w1 ⊎ θ = ek ⊛ w1

ek ⊛ (w1 ⊎ 0⊛ w2) = ek ⊛ (w1 ⊎ θ) = ek ⊛ w1

128 APPENDIX A. REWRITING RULES: EQUIVALENCE PROOFS

3. Case ek = el = 1

1⊛ w1 ⊎ (1 ∧ 1)⊛ w2 = w1 ⊎ 1⊛ w2 = w1 ⊎ w2

1⊛ (w1 ⊎ 1⊛ w2) = w1 ⊎ w2

□

Proof of rule (5.13). Property: ek ⊛ (el ⊛ w1) = ek ⊛ w1 if ek ⇔ el

1. Case ek = el = 0

0⊛ (0⊛ w1) = θ

0⊛ w1 = θ

2. Case ek = el = 1

1⊛ (1⊛ w1) = w1

1⊛ w1 = w1

□

Proof of rule (5.14). Property: (ek ⊛ w1)
it,l = ek ⊛ (w1)

it,l

1. Case ek = 0

(0⊛ w1)
it,l = (θ)it,l = θ

0⊛ (w1)
it,l = θ

2. Case ek = 1

(1⊛ w1)
it,l = (w1)

it,l

1⊛ (w1)
it,l = (w1)

it,l

□

Appendix B

g723_enc_reconstruct WCET
instantiation

1 /*

2 * WCET evaluation function

3 * @param param_0 1 th procedure argument

4 * @param param_1 2 th procedure argument

5 * @param param_2 3 th procedure argument

6 * @return The WCET of the procedure depending on its

7 * arguments

8 */

9 int eval(int param_0 , int param_1 , int param_2) {

10 int cst_1_loop_id;

11 int cst_1_eta_0;

12 int cst_5_loop_id;

13 int cst_5_eta_0;

14 int cst_7_loop_id;

15 int cst_7_eta_0;

16 int alt_4_eta_0;

17 int cst_10_loop_id;

18 int cst_10_eta_0;

19 int cst_12_loop_id;

20 int cst_12_eta_0;

21 int alt_9_eta_0;

22 int alt_2_eta_0;

23 int seq_0_loop_id;

24 int seq_0_eta_0;

129

130 APPENDIX B. G723_ENC_RECONSTRUCT WCET INSTANTIATION

25
26 cst_1_loop_id = 0;

27 cst_1_eta_0 = 335;

28 cst_5_loop_id = 0;

29 cst_5_eta_0 = 367;

30 cst_7_loop_id = 0;

31 cst_7_eta_0 = 366;

32 cst_7_eta_0 = (0 == ((1)*(param_0))) ? cst_7_eta_0 : 0;

33 if (cst_7_eta_0 > cst_5_eta_0) {

34 alt_4_eta_0 = cst_7_eta_0;

35 } else {

36 alt_4_eta_0 = cst_5_eta_0;

37 }

38 alt_4_eta_0 = (0 <= ((4)*(param_1)) + ((1)*(param_2))) ?

39 alt_4_eta_0 : 0;

40 cst_10_loop_id = 0;

41 cst_10_eta_0 = 94;

42 cst_12_loop_id = 0;

43 cst_12_eta_0 = 102;

44 cst_12_eta_0 = (0 == ((1)*(param_0))) ? cst_12_eta_0 : 0;

45 if (cst_12_eta_0 > cst_10_eta_0) {

46 alt_9_eta_0 = cst_12_eta_0;

47 } else {

48 alt_9_eta_0 = cst_10_eta_0;

49 }

50 alt_9_eta_0 = (0 <= ((-4)*(param_1)) + ((-1)*(param_2)) +

51 ((-1)*(4))) ? alt_9_eta_0 : 0;

52 if (alt_9_eta_0 > alt_4_eta_0) {

53 alt_2_eta_0 = alt_9_eta_0;

54 } else {

55 alt_2_eta_0 = alt_4_eta_0;

56 }

57 seq_0_loop_id = 0;

58 seq_0_eta_0 = 0 + cst_1_eta_0 + alt_2_eta_0;

59 return seq_0_eta_0;

60 }

List of Figures

1.1 Approximation of WCET . 3

2.1 General approach to static WCET computation 11
2.2 A program with some of its control-flow representations 12
2.3 Arm instructions and the matching pipeline execution 17
2.4 Execution graph of the instructions of Figure 2.3a 19
2.5 LRU cache replacement policy . 21
2.6 LRU policy join functions on abstract states 24
2.7 State machine BTB representation . 25
2.8 Integer linear problem under lp_solve . 31
2.9 Infeasible paths with tree algorithm . 36
2.10 CFG transformation using automata product 37
2.11 Minimum propagation algorithm illustration 42
2.12 Instruction cache transformation . 45

3.1 A procedure and its control-flow representations 50
3.2 Workflow of the proposed infeasible paths representation technique 52
3.3 Scoped infeasibility constraint . 54
3.4 Pseudo tree corresponding to the pseudo path {B} 58
3.5 A CFT on which the transformations of alternative nodes are easier to detail 59
3.6 The feasible tree of Figure 3.1c . 62
3.7 Final tree . 63
3.8 Comparison with IPET (linear regression example with minver) 68

4.1 Motivating example . 73
4.2 Workflow of our analysis . 73
4.3 Program with loop . 77
4.4 Control-fow tree of Figure 4.1c with correct WCETs 78
4.5 Alternative with a null leaf . 78
4.6 Symbolic WCET in presence of pipeline analysis 80

131

132 LIST OF FIGURES

5.1 Speech encoding, reconstructing the difference signal 88
5.2 Workflow of our approach . 90
5.3 A procedure with an argument . 91
5.4 Control-Flow Tree for function f of Figure 5.3 92
5.5 Abstract states at the beginning of the loop (line 9) 98
5.6 Rewriting rules with input conditionals . 100
5.7 A simplified pure function that sums its inputs and never returns 0 105
5.8 A procedure that calls add_nozero . 105
5.9 Parametric WCET formula size before and after simplification 115
5.10 Comparison between classic and modular analysis time (in seconds) 116
5.11 Implementing semi-clairvoyant mixed-criticality scheduling 118
5.12 Implementing an adaptive control task . 119

List of Examples

2.1 Example (Basic blocks and execution paths) 13
2.2 Example (Control-flow graph of a program) 14
2.3 Example (Path in control-flow graph) . 14
2.4 Example (Control-flow tree) . 15
2.5 Example (Infeasible paths) . 15
2.6 Example (Pipelining effect) . 16
2.7 Example (Pipeline: Abstract instruction representation) 18
2.8 Example (Execution graph) . 19
2.9 Example (LRU cache replacement policy) 21
2.10 Example (LRU cache update function) . 22
2.11 Example (LRU cache join functions) . 23
2.12 Example (Branch predictor representation) 25
2.13 Example (BTB update with LRU policy) 26
2.14 Example (IPET: objective function) . 29
2.15 Example (IPET: structural constraints) . 29
2.16 Example (IPET: functionality constraints) 30
2.17 Example (IPET: Full problem with lp_solve) 30
2.18 Example (Tree-based WCET computation) 32
2.19 Example (Infeasible paths with trees) . 35
2.20 Example (Infeasible paths as an automaton) 37
2.21 Example (CFG unfolding using automata) 37
2.22 Example (IPET: mutual exclusion outside loops) 38
2.23 Example (IPET: mutual exclusion within loops) 38
2.24 Example (min-tree) . 41
2.25 Example (CFT: Abstract WCET) . 45
2.26 Example (CFT: several WCET for several iterations) 45
2.27 Example (CFT: Abstract WCET operators) 46
2.28 Example (CFT: Exact first-miss representation) 47

133

134 LIST OF EXAMPLES

3.1 Example (Infeasibility constraint) . 53
3.2 Example (Infeasibility constraints and scope) 53
3.3 Example (Handling multiple scopes) . 54
3.4 Example (Pseudo paths and concretization) 55
3.5 Example (Pseudo paths from tree traversal) 56
3.6 Example (Pseudo paths computation) . 57
3.7 Example (Pseudo tree) . 58
3.8 Example (findChildren result) . 60
3.9 Example (filterAlt result) . 60
3.10 Example (Feasible CFT) . 62
3.11 Example (Optimization of feasible CFT) 63

4.1 Example (Loop header WCET) . 76
4.2 Example (Alternative between several paths) 77
4.3 Example (Optional path in an alternative) 78
4.4 Example (Symbolic WCET) . 79

5.1 Example (Projection operation) . 94
5.2 Example (Abstract state) . 94
5.3 Example (Register mapping) . 94
5.4 Example (Identifying procedure arguments) 95
5.5 Example (Inferring branch conditions) . 96
5.6 Example (Inferring loop bounds) . 97
5.7 Example (Deterministic alternative) . 99
5.8 Example (Loop with linear expression as bound) 99
5.9 Example (⊛ operator) . 99
5.10 Example (Normal form of input conditionals) 102
5.11 Example (Order relation functions) . 102
5.12 Example (Procedure summary) . 104
5.13 Example (Summary instantiation) . 106
5.14 Example (Call predicate) . 107
5.15 Example (Call CFTs WCET formula) . 108
5.16 Example (Sub-formula instantiation) . 109

Bibliography

[AAN11a] Ernst Althaus, Sebastian Altmeyer, and Rouven Naujoks. “Precise and effi-
cient parametric path analysis”. In: SIGPLAN Not. 46.5 (Apr. 2011), pp. 141–
150. issn: 0362-1340. doi: 10.1145/2016603.1967697. url: http://doi.org/
10.1145/2016603.1967697.

[AAN11b] Ernst Althaus, Sebastian Altmeyer, and Rouven Naujoks. “Symbolic Worst
Case Execution Times”. en. In: Theoretical Aspects of Computing – ICTAC
2011. Ed. by Antonio Cerone and Pekka Pihlajasaari. Lecture Notes in Com-
puter Science. Berlin, Heidelberg: Springer, 2011, pp. 25–44. isbn: 978-3-642-
23283-1. doi: 10.1007/978-3-642-23283-1_5.

[ABB19] Kunal Agrawal, Sanjoy Baruah, and Alan Burns. “Semi-Clairvoyance in
Mixed-Criticality Scheduling”. In: 2019 IEEE Real-Time Systems Sym-
posium (RTSS). Hong Kong, China: IEEE, Dec. 2019, pp. 458–468. doi:
10.1109/RTSS46320.2019.00047.

[All70] Frances E. Allen. “Control flow analysis”. In: ACM SIGPLAN Notices 5.7
(July 1970), pp. 1–19. issn: 0362-1340. doi: 10.1145/390013.808479. url:
http://doi.org/10.1145/390013.808479.

[Alt+08] Sebastian Altmeyer, Christian Hümbert, Björn Lisper, and Reinhard Wil-
helm. “Parametric Timing Analysis for Complex Architectures”. In: 2008 14th
IEEE International Conference on Embedded and Real-Time Computing Sys-
tems and Applications. Kaohsiung, Taiwan: IEEE, Aug. 2008, pp. 367–376.
doi: 10.1109/RTCSA.2008.7.

[Alt+96] Martin Alt, Christian Ferdinand, Florian Martin, and Reinhard Wilhelm.
“Cache behavior prediction by abstract interpretation”. en. In: Static Analysis.
Ed. by Radhia Cousot and David A. Schmidt. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer, 1996, pp. 52–66. isbn: 978-3-540-70674-
8. doi: 10.1007/3-540-61739-6_33.

135

https://doi.org/10.1145/2016603.1967697
http://doi.org/10.1145/2016603.1967697
http://doi.org/10.1145/2016603.1967697
https://doi.org/10.1007/978-3-642-23283-1_5
https://doi.org/10.1109/RTSS46320.2019.00047
https://doi.org/10.1145/390013.808479
http://doi.org/10.1145/390013.808479
https://doi.org/10.1109/RTCSA.2008.7
https://doi.org/10.1007/3-540-61739-6_33

136 BIBLIOGRAPHY

[Alt96] P. Altenbernd. “On the false path problem in hard real-time programs”. In:
Proceedings of the Eighth Euromicro Workshop on Real-Time Systems. June
1996, pp. 102–107. doi: 10.1109/EMWRTS.1996.557827.

[Arm23] Arm. Procedure Call Standard for the Arm® Architecture. en. 2023. url:
https : / /developer . arm . com/Additional%20Resources /ABI - Procedure%
20Call%20Standard%20for%20the%20Arm%20Architecture.

[Bal+10] Clément Ballabriga, Hugues Cassé, Christine Rochange, and Pascal Sainrat.
“OTAWA: An Open Toolbox for Adaptive WCET Analysis”. en. In: Software
Technologies for Embedded and Ubiquitous Systems. Ed. by Sang Lyul Min,
Robert Pettit, Peter Puschner, and Theo Ungerer. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer, 2010, pp. 35–46. isbn: 978-3-642-16256-
5. doi: 10.1007/978-3-642-16256-5_6.

[Bal+19] Clément Ballabriga, Julien Forget, Laure Gonnord, Giuseppe Lipari, and
Jordy Ruiz. “Static Analysis of Binary Code with Memory Indirections Us-
ing Polyhedra”. en. In: Verification, Model Checking, and Abstract Interpreta-
tion. Ed. by Constantin Enea and Ruzica Piskac. Lecture Notes in Computer
Science. Cham: Springer International Publishing, 2019, pp. 114–135. isbn:
978-3-030-11245-5. doi: 10.1007/978-3-030-11245-5_6.

[Bal+23] Clément Ballabriga, Julien Forget, Sandro Grebant, and Giuseppe Lipari.
“New challenges in adaptive real-time systems with parametric WCET”. In:
12th International Real-Time Scheduling Open Problems Seminar. Vienne,
Austria, July 2023. url: https://hal.science/hal-04197411.

[Bar+06] J. Barre, C. Landet, C. Rochange, and P. Sainrat. “Modeling Instruction-
Level Parallelism for WCET Evaluation”. In: 12th IEEE International Con-
ference on Embedded and Real-Time Computing Systems and Applications
(RTCSA’06). Aug. 2006, pp. 61–67. doi: 10.1109/RTCSA.2006.44.

[BB06] Adam Betts and Guillem Bernat. “Tree-based WCET analysis on instru-
mentation point graphs”. In: May 2006, 8 pp. isbn: 978-0-7695-2561-7. doi:
10.1109/ISORC.2006.75.

[BDB08] Enrico Bini, Marco Di Natale, and Giorgio Buttazzo. “Sensitivity analysis for
fixed-priority real-time systems”. en. In: Real-Time Syst 39.1 (Aug. 2008),
pp. 5–30. issn: 1573-1383. doi: 10 .1007/s11241- 006- 9010- 1. url: https :
//doi.org/10.1007/s11241-006-9010-1.

https://doi.org/10.1109/EMWRTS.1996.557827
https://developer.arm.com/Additional%20Resources/ABI-Procedure%20Call%20Standard%20for%20the%20Arm%20Architecture
https://developer.arm.com/Additional%20Resources/ABI-Procedure%20Call%20Standard%20for%20the%20Arm%20Architecture
https://doi.org/10.1007/978-3-642-16256-5_6
https://doi.org/10.1007/978-3-030-11245-5_6
https://hal.science/hal-04197411
https://doi.org/10.1109/RTCSA.2006.44
https://doi.org/10.1109/ISORC.2006.75
https://doi.org/10.1007/s11241-006-9010-1
https://doi.org/10.1007/s11241-006-9010-1
https://doi.org/10.1007/s11241-006-9010-1

BIBLIOGRAPHY 137

[Bec+19] Martin Becker, Ravindra Metta, R. Venkatesh, and Samarjit Chakraborty.
“Scalable and precise estimation and debugging of the worst-case execution
time for analysis-friendly processors: a comeback of model checking”. en. In:
International Journal on Software Tools for Technology Transfer 21.5 (Oct.
2019), pp. 515–543. issn: 1433-2787. doi: 10.1007/s10009-018-0497-2. url:
https://doi.org/10.1007/s10009-018-0497-2.

[BEL11] Stefan Bygde, Andreas Ermedahl, and Björn Lisper. “An efficient algorithm
for parametric WCET calculation”. en. In: Journal of Systems Architecture.
Design and Optimization for Embedded and Real-Time Computing Systems
and Applications 57.6 (June 2011), pp. 614–624. issn: 1383-7621. doi: 10.
1016/j.sysarc.2010.06.009. url: https://www.sciencedirect.com/science/
article/pii/S1383762110000676.

[BFL17] Clément Ballabriga, Julien Forget, and Giuseppe Lipari. “Symbolic WCET
Computation”. en. In: ACM Transactions on Embedded Computing Systems
17.2 (2017), pp. 1–26. issn: 1539-9087, 1558-3465. doi: 10 .1145/3147413.
url: https://dl.acm.org/doi/10.1145/3147413.

[BL08] Stefan Bygde and Björn Lisper. “Towards an Automatic Parametric WCET
Analysis”. In: 8th International Workshop on Worst-Case Execution Time
Analysis (WCET’08). Ed. by Raimund Kirner. Vol. 8. OpenAccess Series
in Informatics (OASIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2008. isbn: 978-3-939897-10-1. doi: 10 . 4230 /
OASIcs.WCET.2008.1659. url: http://drops.dagstuhl.de/opus/volltexte/
2008/1659.

[BLH14] B. Blackham, M. Liffiton, and G. Heiser. “Trickle: Automated infeasible path
detection using all minimal unsatisfiable subsets”. In: 2014 IEEE 19th Real-
Time and Embedded Technology and Applications Symposium (RTAS). Berlin,
Germany: IEEE, Apr. 2014, pp. 169–178. doi: 10.1109/RTAS.2014.6926000.

[CB02] A. Colin and G. Bernat. “Scope-tree: a program representation for symbolic
worst-case execution time analysis”. In: Proceedings 14th Euromicro Confer-
ence on Real-Time Systems. Euromicro RTS 2002. Vienna, Austria: IEEE,
June 2002, pp. 50–59. doi: 10.1109/EMRTS.2002.1019185.

[CBM] CBMC. The CBMC Homepage. url: https://www.cprover.org/cbmc/.

[CBS00] M. Caccamo, G. Buttazzo, and Lui Sha. “Capacity sharing for overrun con-
trol”. In: Proceedings 21st IEEE Real-Time Systems Symposium. Orlando, FL,
USA: IEEE, Nov. 2000, pp. 295–304. doi: 10.1109/REAL.2000.896018.

https://doi.org/10.1007/s10009-018-0497-2
https://doi.org/10.1007/s10009-018-0497-2
https://doi.org/10.1016/j.sysarc.2010.06.009
https://doi.org/10.1016/j.sysarc.2010.06.009
https://www.sciencedirect.com/science/article/pii/S1383762110000676
https://www.sciencedirect.com/science/article/pii/S1383762110000676
https://doi.org/10.1145/3147413
https://dl.acm.org/doi/10.1145/3147413
https://doi.org/10.4230/OASIcs.WCET.2008.1659
https://doi.org/10.4230/OASIcs.WCET.2008.1659
http://drops.dagstuhl.de/opus/volltexte/2008/1659
http://drops.dagstuhl.de/opus/volltexte/2008/1659
https://doi.org/10.1109/RTAS.2014.6926000
https://doi.org/10.1109/EMRTS.2002.1019185
https://www.cprover.org/cbmc/
https://doi.org/10.1109/REAL.2000.896018

138 BIBLIOGRAPHY

[CC12] Patrick Cousot and Radhia Cousot. “An abstract interpretation framework
for termination”. In: ACM SIGPLAN Notices 47.1 (Jan. 2012), pp. 245–258.
issn: 0362-1340. doi: 10.1145/2103621.2103687. url: http://doi.org/10.
1145/2103621.2103687.

[CC77] Patrick Cousot and Radhia Cousot. “Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approximation of
fixpoints”. In: Proceedings of the 4th ACM SIGACT-SIGPLAN symposium
on Principles of programming languages. POPL ’77. New York, NY, USA:
Association for Computing Machinery, Jan. 1977, pp. 238–252. isbn: 978-1-
4503-7350-0. doi: 10.1145/512950.512973. url: http://doi.org/10.1145/
512950.512973.

[Čer+15] Pavol Černý, Thomas A. Henzinger, Laura Kovács, Arjun Radhakrishna,
and Jakob Zwirchmayr. “Segment Abstraction for Worst-Case Execution
Time Analysis”. en. In: Programming Languages and Systems. Ed. by Jan
Vitek. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2015,
pp. 105–131. isbn: 978-3-662-46669-8. doi: 10.1007/978-3-662-46669-8_5.

[Che+07] Ting Chen, Tulika Mitra, Abhik Roychoudhury, and Vivy Suhendra. “Exploit-
ing Branch Constraints without Exhaustive Path Enumeration”. In: 5th In-
ternational Workshop on Worst-Case Execution Time Analysis (WCET’05).
Ed. by Reinhard Wilhelm. Vol. 1. OpenAccess Series in Informatics (OA-
SIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik, 2007, pp. 46–49. isbn: 978-3-939897-24-8. doi: 10 . 4230 / OASIcs .
WCET.2005.816. url: http://doi.org/10.4230/OASIcs.WCET.2005.816.

[CHR13] Pavol Cerny, Thomas A. Henzinger, and Arjun Radhakrishna. “Quantitative
abstraction refinement”. In: Proceedings of the 40th annual ACM SIGPLAN-
SIGACT symposium on Principles of programming languages. POPL ’13. New
York, NY, USA: Association for Computing Machinery, Jan. 2013, pp. 115–
128. isbn: 978-1-4503-1832-7. doi: 10.1145/2429069.2429085. url: https :
//dl.acm.org/doi/10.1145/2429069.2429085.

[Cof+07] Joel Coffman, Christopher Healy, Frank Mueller, and David Whalley. “Gen-
eralizing parametric timing analysis”. In: SIGPLAN Not. 42.7 (June 2007),
pp. 152–154. issn: 0362-1340. doi: 10 .1145/1273444 .1254795. url: http :
//doi.org/10.1145/1273444.1254795.

[Coh03] Joel S. Cohen. Computer alegebra and symbolic computation: mathematical
methods. en. Natick, Mass: AK Peters, 2003. isbn: 978-1-56881-159-8.

https://doi.org/10.1145/2103621.2103687
http://doi.org/10.1145/2103621.2103687
http://doi.org/10.1145/2103621.2103687
https://doi.org/10.1145/512950.512973
http://doi.org/10.1145/512950.512973
http://doi.org/10.1145/512950.512973
https://doi.org/10.1007/978-3-662-46669-8_5
https://doi.org/10.4230/OASIcs.WCET.2005.816
https://doi.org/10.4230/OASIcs.WCET.2005.816
http://doi.org/10.4230/OASIcs.WCET.2005.816
https://doi.org/10.1145/2429069.2429085
https://dl.acm.org/doi/10.1145/2429069.2429085
https://dl.acm.org/doi/10.1145/2429069.2429085
https://doi.org/10.1145/1273444.1254795
http://doi.org/10.1145/1273444.1254795
http://doi.org/10.1145/1273444.1254795

BIBLIOGRAPHY 139

[CP00] Antoine Colin and Isabelle Puaut. “Worst Case Execution Time Analysis for
a Processor with Branch Prediction”. en. In: Real-Time Systems 18.2 (May
2000), pp. 249–274. issn: 1573-1383. doi: 10.1023/A:1008149332687. url:
https://doi.org/10.1023/A:1008149332687.

[CP01] A. Colin and I. Puaut. “A modular and retargetable framework for tree-based
WCET analysis”. In: Proceedings 13th Euromicro Conference on Real-Time
Systems. June 2001, pp. 37–44. doi: 10.1109/EMRTS.2001.933995.

[Dij59] E. W. Dijkstra. “A note on two problems in connexion with graphs”. en. In:
Numerische Mathematik 1.1 (Dec. 1959), pp. 269–271. issn: 0945-3245. doi:
10.1007/BF01386390. url: https://doi.org/10.1007/BF01386390.

[DT13] Sun Ding and Hee Beng Kuan Tan. “Detection of Infeasible Paths: Ap-
proaches and Challenges”. en. In: Evaluation of Novel Approaches to Soft-
ware Engineering. Ed. by Leszek A. Maciaszek and Joaquim Filipe. Commu-
nications in Computer and Information Science. Berlin, Heidelberg: Springer,
2013, pp. 64–78. isbn: 978-3-642-45422-6. doi: 10.1007/978-3-642-45422-
6_5.

[EE00] J. Engblom and A. Ermedahl. “Modeling complex flows for worst-case execu-
tion time analysis”. In: Proceedings 21st IEEE Real-Time Systems Symposium.
Nov. 2000, pp. 163–174. doi: 10.1109/REAL.2000.896006.

[EES00] Jakob Engblom, Andreas Ermedahl, and Friedhelm Stappert. “Comparing
Different Worst-Case Execution Time Analysis Methods”. en. In: The Work-
in-Progress session of the 21st IEEE Real-Time Systems Symposium (RTSS
2000). Orlando, Florida, 2000, p. 4.

[Eng02] Jakob Engblom. “Processor Pipelines and Static Worst-Case Execution Time
Analysis”. eng. In: (2002). url: http://urn.kb.se/resolve?urn=urn:nbn:se:uu:
diva-1832.

[Fal+16] Heiko Falk, Sebastian Altmeyer, Peter Hellinckx, Björn Lisper, Wolfgang
Puffitsch, Christine Rochange, Martin Schoeberl, Rasmus Bo Sørensen, Peter
Wägemann, and Simon Wegener. “TACLeBench: A Benchmark Collection to
Support Worst-Case Execution Time Research”. In: 16th International Work-
shop on Worst-Case Execution Time Analysis (WCET 2016). Ed. by Mar-
tin Schoeberl. Vol. 55. OpenAccess Series in Informatics (OASIcs). Dagstuhl,
Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016, 2:1–2:10.
isbn: 978-3-95977-025-5. doi: 10.4230/OASIcs.WCET.2016.2. url: http:
//drops.dagstuhl.de/opus/volltexte/2016/6895.

https://doi.org/10.1023/A:1008149332687
https://doi.org/10.1023/A:1008149332687
https://doi.org/10.1109/EMRTS.2001.933995
https://doi.org/10.1007/BF01386390
https://doi.org/10.1007/BF01386390
https://doi.org/10.1007/978-3-642-45422-6_5
https://doi.org/10.1007/978-3-642-45422-6_5
https://doi.org/10.1109/REAL.2000.896006
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-1832
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-1832
https://doi.org/10.4230/OASIcs.WCET.2016.2
http://drops.dagstuhl.de/opus/volltexte/2016/6895
http://drops.dagstuhl.de/opus/volltexte/2016/6895

140 BIBLIOGRAPHY

[Fea88] Paul Feautrier. “Parametric integer programming”. en. In: RAIRO - Oper-
ations Research 22.3 (1988), pp. 243–268. issn: 0399-0559, 1290-3868. doi:
10.1051/ro/1988220302431. url: http://www.rairo- ro.org/10.1051/ro/
1988220302431.

[FGG18] Joachim Fellmuth, Thomas Göthel, and Sabine Glesner. “Instruction Caches
in Static WCET Analysis of Artificially Diversified Software”. In: 30th Eu-
romicro Conference on Real-Time Systems (ECRTS 2018). Ed. by Sebas-
tian Altmeyer. Vol. 106. Leibniz International Proceedings in Informatics
(LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer In-
formatik, 2018, 21:1–21:23. isbn: 978-3-95977-075-0. doi: 10.4230/LIPIcs.
ECRTS.2018.21. url: http://drops.dagstuhl.de/opus/volltexte/2018/8982.

[FW99] Christian Ferdinand and Reinhard Wilhelm. “Efficient and Precise Cache
Behavior Prediction for Real-Time Systems”. en. In: Real-Time Systems 17.2
(Nov. 1999), pp. 131–181. issn: 1573-1383. doi: 10.1023/A:1008186323068.
url: https://doi.org/10.1023/A:1008186323068.

[GBF21] Sandro Grebant, Clément Ballabriga, and Julien Forget. “Efficient tree-based
symbolic WCET computation”. en. In: Compas’21 :Conférence francophone
d’informatique en Parallélisme, Architecture et Système. Lyon, France, July
2021. url: https://hal.science/hal-03428961.

[GC11] Laurent George and Pierre Courbin. “Reconfiguration of Uniprocessor Spo-
radic Real-Time Systems: The Sensitivity Approach”. en. In: Reconfigurable
Embedded Control Systems: Applications for Flexibility and Agility. Hershey,
PA: IGI Global, 2011. doi: 10.4018/978-1-60960-086-0.ch007. url: https:
//www.igi-global.com/chapter/reconfigurable-embedded-control-systems/
50429.

[GEL06] Jan Gustafsson, Andreas Ermedahl, and Björn Lisper. “Algorithms for In-
feasible Path Calculation”. In: 6th International Workshop on Worst-Case
Execution Time Analysis (WCET’06). Ed. by Frank Mueller. Vol. 4. OpenAc-
cess Series in Informatics (OASIcs). Dagstuhl, Germany: Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2006, pp. 1–6. isbn: 978-3-939897-03-3.
doi: 10 . 4230/OASIcs .WCET.2006 . 667. url: http : //doi . org/10 . 4230/
OASIcs.WCET.2006.667.

[Gre+23] Sandro Grebant, Clément Ballabriga, Julien Forget, and Giuseppe Lipari.
“WCET analysis with procedure arguments as parameters”. In: Proceedings
of the 31st International Conference on Real-Time Networks and Systems.
RTNS ’23. New York, NY, USA: Association for Computing Machinery, 2023,

https://doi.org/10.1051/ro/1988220302431
http://www.rairo-ro.org/10.1051/ro/1988220302431
http://www.rairo-ro.org/10.1051/ro/1988220302431
https://doi.org/10.4230/LIPIcs.ECRTS.2018.21
https://doi.org/10.4230/LIPIcs.ECRTS.2018.21
http://drops.dagstuhl.de/opus/volltexte/2018/8982
https://doi.org/10.1023/A:1008186323068
https://doi.org/10.1023/A:1008186323068
https://hal.science/hal-03428961
https://doi.org/10.4018/978-1-60960-086-0.ch007
https://www.igi-global.com/chapter/reconfigurable-embedded-control-systems/50429
https://www.igi-global.com/chapter/reconfigurable-embedded-control-systems/50429
https://www.igi-global.com/chapter/reconfigurable-embedded-control-systems/50429
https://doi.org/10.4230/OASIcs.WCET.2006.667
http://doi.org/10.4230/OASIcs.WCET.2006.667
http://doi.org/10.4230/OASIcs.WCET.2006.667

BIBLIOGRAPHY 141

pp. 11–22. isbn: 978-1-4503-9983-8. doi: 10 .1145/3575757 .3593655. url:
https://doi.org/10.1145/3575757.3593655.

[Gus+06] Jan Gustafsson, Andreas Ermedahl, Christer Sandberg, and Bjorn Lisper.
“Automatic Derivation of Loop Bounds and Infeasible Paths for WCET Anal-
ysis Using Abstract Execution”. In: 2006 27th IEEE International Real-Time
Systems Symposium (RTSS’06). Rio de Janeiro, Brazil: IEEE, Dec. 2006,
pp. 57–66. doi: 10.1109/RTSS.2006.12.

[Gus+10] Jan Gustafsson, Adam Betts, Andreas Ermedahl, and Björn Lisper. “The
Mälardalen WCET Benchmarks: Past, Present And Future”. In: 10th Inter-
national Workshop on Worst-Case Execution Time Analysis (WCET 2010).
Ed. by Björn Lisper. Vol. 15. OpenAccess Series in Informatics (OASIcs).
Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2010, pp. 136–146. isbn: 978-3-939897-21-7. doi: 10.4230/OASIcs.WCET.
2010.136. url: http://drops.dagstuhl.de/opus/volltexte/2010/2833.

[Gus00] Jan Gustafsson. “Analyzing execution-time of object-oriented programs using
abstract interpretation”. eng. PhD thesis. Uppsala University, May 2000. url:
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-1174.

[Hea+98] C. Healy, M. Sjodin, V. Rustagi, and D. Whalley. “Bounding loop iterations
for timing analysis”. In: Proceedings. Fourth IEEE Real-Time Technology and
Applications Symposium (Cat. No.98TB100245). June 1998, pp. 12–21. doi:
10.1109/RTTAS.1998.683183.

[Hea+99] C.A. Healy, R.D. Arnold, F. Mueller, D.B. Whalley, and M.G. Harmon.
“Bounding pipeline and instruction cache performance”. In: IEEE Trans-
actions on Computers 48.1 (Jan. 1999), pp. 53–70. issn: 1557-9956. doi:
10.1109/12.743411.

[Hen+14] Julien Henry, Mihail Asavoae, David Monniaux, and Claire Maïza. “How
to Compute Worst-Case Execution Time by Optimization modulo Theory
and a Clever Encoding of Program Semantics”. In: Proceedings of the 2014
SIGPLAN/SIGBED Conference on Languages, Compilers and Tools for Em-
bedded Systems. LCTES ’14. Edinburgh, United Kingdom: Association for
Computing Machinery, 2014, pp. 43–52. isbn: 9781450328777. doi: 10.1145/
2597809.2597817. url: https://doi.org/10.1145/2597809.2597817.

[HJR11] B. K. Huynh, L. Ju, and A. Roychoudhury. “Scope-Aware Data Cache Anal-
ysis for WCET Estimation”. In: 2011 17th IEEE Real-Time and Embedded
Technology and Applications Symposium. Apr. 2011, pp. 203–212. doi: 10.
1109/RTAS.2011.27.

https://doi.org/10.1145/3575757.3593655
https://doi.org/10.1145/3575757.3593655
https://doi.org/10.1109/RTSS.2006.12
https://doi.org/10.4230/OASIcs.WCET.2010.136
https://doi.org/10.4230/OASIcs.WCET.2010.136
http://drops.dagstuhl.de/opus/volltexte/2010/2833
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-1174
https://doi.org/10.1109/RTTAS.1998.683183
https://doi.org/10.1109/12.743411
https://doi.org/10.1145/2597809.2597817
https://doi.org/10.1145/2597809.2597817
https://doi.org/10.1145/2597809.2597817
https://doi.org/10.1109/RTAS.2011.27
https://doi.org/10.1109/RTAS.2011.27

142 BIBLIOGRAPHY

[HRW15] Sebastian Hahn, Jan Reineke, and Reinhard Wilhelm. “Toward Compact Ab-
stractions for Processor Pipelines”. en. In: Correct System Design: Symposium
in Honor of Ernst-Rüdiger Olderog on the Occasion of His 60th Birthday, Old-
enburg, Germany, September 8-9, 2015, Proceedings. Ed. by Roland Meyer,
André Platzer, and Heike Wehrheim. Lecture Notes in Computer Science.
Cham: Springer International Publishing, 2015, pp. 205–220. isbn: 978-3-
319-23506-6. doi: 10.1007/978-3-319-23506-6_14. url: https://doi.org/10.
1007/978-3-319-23506-6_14.

[HW02] C.A. Healy and D.B. Whalley. “Automatic detection and exploitation of
branch constraints for timing analysis”. In: IEEE Transactions on Software
Engineering 28.8 (Aug. 2002), pp. 763–781. issn: 1939-3520. doi: 10.1109/
TSE.2002.1027799.

[HWH95] C.A. Healy, D.B. Whalley, and M.G. Harmon. “Integrating the timing anal-
ysis of pipelining and instruction caching”. en. In: Proceedings 16th IEEE
Real-Time Systems Symposium. Pisa, Italy: IEEE Comput. Soc. Press, 1995,
pp. 288–297. isbn: 978-0-8186-7337-5. doi: 10.1109/REAL.1995.495218. url:
http://ieeexplore.ieee.org/document/495218/.

[JC97] Johan Janssen and Henk Corporaal. “Making graphs reducible with controlled
node splitting”. In: ACM Transactions on Programming Languages and Sys-
tems 19.6 (Nov. 1997), pp. 1031–1052. issn: 0164-0925. doi: 10.1145/267959.
269971. url: https://dl.acm.org/doi/10.1145/267959.269971.

[KBC10] Tai Hyo Kim, Ho Jung Bang, and Sung Deok Cha. “A systematic represen-
tation of path constraints for implicit path enumeration technique”. en. In:
Software Testing, Verification and Reliability 20.1 (2010), pp. 39–61. issn:
1099-1689. doi: https://doi.org/10.1002/stvr.406. url: http://onlinelibrary.
wiley.com/doi/abs/10.1002/stvr.406.

[Keb06] D. Kebbal. “Automatic flow analysis using symbolic execution and path enu-
meration”. In: 2006 International Conference on Parallel Processing Work-
shops (ICPPW’06). Aug. 2006, 8 pp.–404. doi: 10.1109/ICPPW.2006.26.

[Kir+11] Raimund Kirner, Jens Knoop, Adrian Prantl, Markus Schordan, and Albrecht
Kadlec. “Beyond loop bounds: comparing annotation languages for worst-case
execution time analysis”. en. In: Software & Systems Modeling 10.3 (July
2011), pp. 411–437. issn: 1619-1374. doi: 10.1007/s10270-010-0161-0. url:
https://doi.org/10.1007/s10270-010-0161-0.

https://doi.org/10.1007/978-3-319-23506-6_14
https://doi.org/10.1007/978-3-319-23506-6_14
https://doi.org/10.1007/978-3-319-23506-6_14
https://doi.org/10.1109/TSE.2002.1027799
https://doi.org/10.1109/TSE.2002.1027799
https://doi.org/10.1109/REAL.1995.495218
http://ieeexplore.ieee.org/document/495218/
https://doi.org/10.1145/267959.269971
https://doi.org/10.1145/267959.269971
https://dl.acm.org/doi/10.1145/267959.269971
https://doi.org/https://doi.org/10.1002/stvr.406
http://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.406
http://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.406
https://doi.org/10.1109/ICPPW.2006.26
https://doi.org/10.1007/s10270-010-0161-0
https://doi.org/10.1007/s10270-010-0161-0

BIBLIOGRAPHY 143

[KKZ12] Jens Knoop, Laura Kovács, and Jakob Zwirchmayr. “Symbolic Loop Bound
Computation for WCET Analysis”. en. In: Perspectives of Systems Informat-
ics. Ed. by Edmund Clarke, Irina Virbitskaite, and Andrei Voronkov. Lecture
Notes in Computer Science. Berlin, Heidelberg: Springer, 2012, pp. 227–242.
isbn: 978-3-642-29709-0. doi: 10.1007/978-3-642-29709-0_20.

[LB00] G. Lipari and S. Baruah. “Greedy reclamation of unused bandwidth in
constant-bandwidth servers”. In: Proceedings 12th Euromicro Conference on
Real-Time Systems. Euromicro RTS 2000. Stockholm, Sweden: IEEE, June
2000, pp. 193–200. doi: 10.1109/EMRTS.2000.854007.

[Lim+95] Sung-Soo Lim, Young Hyun Bae, Gyu Tae Jang, Byung-Do Rhee, Sang Lyul
Min, Chang Yun Park, Heonshik Shin, Kunsoo Park, Soo-Mook Moon, and
Chong Sang Kim. “An accurate worst case timing analysis for RISC pro-
cessors”. In: IEEE Transactions on Software Engineering 21.7 (July 1995),
pp. 593–604. issn: 1939-3520. doi: 10.1109/32.392980.

[Lis03] Björn Lisper. “Fully Automatic, Parametric Worst-Case Execution Time
Analysis”. In: Jan. 2003, pp. 99–102.

[LM95] Yau-Tsun Steven Li and Sharad Malik. “Performance analysis of embedded
software using implicit path enumeration”. In: Proceedings of the ACM SIG-
PLAN 1995 workshop on Languages, compilers, & tools for real-time systems.
LCTES ’95. New York, NY, USA: Association for Computing Machinery, Nov.
1995, pp. 88–98. isbn: 978-1-4503-7308-1. doi: 10.1145/216636.216666. url:
http://doi.org/10.1145/216636.216666.

[LMW95] Y.-T.S. Li, S. Malik, and A. Wolfe. “Efficient microarchitecture modeling and
path analysis for real-time software”. In: Proceedings 16th IEEE Real-Time
Systems Symposium. Dec. 1995, pp. 298–307. doi: 10 . 1109/REAL .1995 .
495219.

[LMW96] Y.-T. S. Li, S. Malik, and A. Wolfe. “Cache modeling for real-time software:
beyond direct mapped instruction caches”. In: 17th IEEE Real-Time Systems
Symposium. Dec. 1996, pp. 254–263. doi: 10.1109/REAL.1996.563722.

[lps] lpsolve. lpsolve. url: https://sourceforge.net/projects/lpsolve/.

[LRM04] Xianfeng Li, A. Roychoudhury, and T. Mitra. “Modeling out-of-order pro-
cessors for software timing analysis”. In: 25th IEEE International Real-Time
Systems Symposium. Dec. 2004, pp. 92–103. doi: 10.1109/REAL.2004.33.

https://doi.org/10.1007/978-3-642-29709-0_20
https://doi.org/10.1109/EMRTS.2000.854007
https://doi.org/10.1109/32.392980
https://doi.org/10.1145/216636.216666
http://doi.org/10.1145/216636.216666
https://doi.org/10.1109/REAL.1995.495219
https://doi.org/10.1109/REAL.1995.495219
https://doi.org/10.1109/REAL.1996.563722
https://sourceforge.net/projects/lpsolve/
https://doi.org/10.1109/REAL.2004.33

144 BIBLIOGRAPHY

[LRM06] Xianfeng Li, Abhik Roychoudhury, and Tulika Mitra. “Modeling out-of-order
processors for WCET analysis”. en. In: Real-Time Systems 34.3 (Nov. 2006),
pp. 195–227. issn: 1573-1383. doi: 10.1007/s11241-006-9205-5. url: https:
//doi.org/10.1007/s11241-006-9205-5.

[LS08] Mark H. Liffiton and Karem A. Sakallah. “Algorithms for Computing Minimal
Unsatisfiable Subsets of Constraints”. en. In: Journal of Automated Reasoning
40.1 (Jan. 2008), pp. 1–33. issn: 1573-0670. doi: 10.1007/s10817-007-9084-z.
url: https://doi.org/10.1007/s10817-007-9084-z.

[LS99] Thomas Lundqvist and Per Stenström. “An Integrated Path and Timing
Analysis Method based on Cycle-Level Symbolic Execution”. en. In: Real-
Time Systems 17.2 (Nov. 1999), pp. 183–207. issn: 1573-1383. doi: 10.1023/
A:1008138407139. url: https://doi.org/10.1023/A:1008138407139.

[LTH02] Marc Langenbach, Stephan Thesing, and Reinhold Heckmann. “Pipeline
Modeling for Timing Analysis”. en. In: Static Analysis. Ed. by Manuel V.
Hermenegildo and Germán Puebla. Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer, 2002, pp. 294–309. isbn: 978-3-540-45789-3.
doi: 10.1007/3-540-45789-5_22.

[McC76] T.J. McCabe. “A Complexity Measure”. In: IEEE Transactions on Software
Engineering SE-2.4 (Dec. 1976), pp. 308–320. issn: 1939-3520. doi: 10.1109/
TSE.1976.233837.

[Met+16] Ravindra Metta, Martin Becker, Prasad Bokil, Samarjit Chakraborty, and
R Venkatesh. “TIC: a scalable model checking based approach to WCET
estimation”. In: ACM SIGPLAN Notices 51.5 (June 2016), pp. 72–81. issn:
0362-1340. doi: 10.1145/2980930.2907961. url: http://doi.org/10.1145/
2980930.2907961.

[Min06] Antoine Miné. “The octagon abstract domain”. en. In: Higher-Order and Sym-
bolic Computation 19.1 (Mar. 2006), pp. 31–100. issn: 1573-0557. doi: 10.
1007/s10990-006-8609-1. url: https://doi.org/10.1007/s10990-006-8609-1.

[Moh+05] S. Mohan, F. Mueller, W. Hawkins, M. Root, C. Healy, and D. Whalley.
“ParaScale: exploiting parametric timing analysis for real-time schedulers and
dynamic voltage scaling”. In: 26th IEEE International Real-Time Systems
Symposium (RTSS’05). Miami, FL, USA: IEEE, Dec. 2005, 10 pp.–242. doi:
10.1109/RTSS.2005.33.

https://doi.org/10.1007/s11241-006-9205-5
https://doi.org/10.1007/s11241-006-9205-5
https://doi.org/10.1007/s11241-006-9205-5
https://doi.org/10.1007/s10817-007-9084-z
https://doi.org/10.1007/s10817-007-9084-z
https://doi.org/10.1023/A:1008138407139
https://doi.org/10.1023/A:1008138407139
https://doi.org/10.1023/A:1008138407139
https://doi.org/10.1007/3-540-45789-5_22
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1145/2980930.2907961
http://doi.org/10.1145/2980930.2907961
http://doi.org/10.1145/2980930.2907961
https://doi.org/10.1007/s10990-006-8609-1
https://doi.org/10.1007/s10990-006-8609-1
https://doi.org/10.1007/s10990-006-8609-1
https://doi.org/10.1109/RTSS.2005.33

BIBLIOGRAPHY 145

[Moh+11] Sibin Mohan, Frank Mueller, Michael Root, William Hawkins, Christopher
Healy, David Whalley, and Emilio Vivancos. “Parametric timing analysis and
its application to dynamic voltage scaling”. In: ACM Trans. Embed. Comput.
Syst. 10.2 (Jan. 2011), 25:1–25:34. issn: 1539-9087. doi: 10.1145/1880050.
1880061. url: http://doi.org/10.1145/1880050.1880061.

[MS15] Vincent Mussot and Pascal Sotin. “Improving WCET Analysis Precision
through Automata Product”. In: 2015 IEEE 21st International Conference on
Embedded and Real-Time Computing Systems and Applications. Aug. 2015,
pp. 207–216. doi: 10.1109/RTCSA.2015.11.

[Mus+16] Vincent Mussot, Jordy Ruiz, Pascal Sotin, Marianne De Michiel, and Hugues
Cassé. “Expressing and exploiting path conflicts in WCET analysis”. In: 16th
International Workshop on Worst-Case Execution Time Analysis (WCET
2016) in conjunction with ECRTS. Vol. 55. Toulouse, France, July 2016, pp.
1–11. url: https://hal.archives-ouvertes.fr/hal-01682967.

[MW95] F. Mueller and D. B. Whalley. “Fast instruction cache analysis via static cache
simulation”. In: Proceedings of Simulation Symposium. Apr. 1995, pp. 105–
114. doi: 10.1109/SIMSYM.1995.393589.

[Pal+08] Luigi Palopoli, Luca Abeni, Tommaso Cucinotta, Giuseppe Lipari, and San-
joy K. Baruah. “Weighted feedback reclaiming for multimedia applications”.
In: 2008 IEEE/ACM/IFIP Workshop on Embedded Systems for Real-Time
Multimedia. Atlanta, GA, USA: IEEE, Oct. 2008, pp. 121–126. doi: 10.1109/
ESTMED.2008.4697009.

[PK89] P. Puschner and Ch. Koza. “Calculating the maximum execution time of
real-time programs”. en. In: Real-Time Systems 1.2 (Sept. 1989), pp. 159–
176. issn: 1573-1383. doi: 10.1007/BF00571421. url: https://doi.org/10.
1007/BF00571421.

[Ray14] P. Raymond. “A general approach for expressing infeasibility in Implicit Path
Enumeration Technique”. In: 2014 International Conference on Embedded
Software (EMSOFT). Oct. 2014, pp. 1–9. doi: 10.1145/2656045.2656046.

[RC15] Jordy Ruiz and Hugues Cassé. “Using SMT Solving for the Lookup of Infea-
sible Paths in Binary Programs”. In: 15th International Workshop on Worst-
Case Execution Time Analysis (WCET 2015). Ed. by Francisco J. Cazorla.
Vol. 47. OpenAccess Series in Informatics (OASIcs). Dagstuhl, Germany:
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2015, pp. 95–104. isbn:
978-3-939897-95-8. doi: 10.4230/OASIcs.WCET.2015.95. url: http://doi.
org/10.4230/OASIcs.WCET.2015.95.

https://doi.org/10.1145/1880050.1880061
https://doi.org/10.1145/1880050.1880061
http://doi.org/10.1145/1880050.1880061
https://doi.org/10.1109/RTCSA.2015.11
https://hal.archives-ouvertes.fr/hal-01682967
https://doi.org/10.1109/SIMSYM.1995.393589
https://doi.org/10.1109/ESTMED.2008.4697009
https://doi.org/10.1109/ESTMED.2008.4697009
https://doi.org/10.1007/BF00571421
https://doi.org/10.1007/BF00571421
https://doi.org/10.1007/BF00571421
https://doi.org/10.1145/2656045.2656046
https://doi.org/10.4230/OASIcs.WCET.2015.95
http://doi.org/10.4230/OASIcs.WCET.2015.95
http://doi.org/10.4230/OASIcs.WCET.2015.95

146 BIBLIOGRAPHY

[RCM17] Jordy Ruiz, Hugues Cassé, and Marianne de Michiel. “Working Around Loops
for Infeasible Path Detection in Binary Programs”. In: 2017 IEEE 17th In-
ternational Working Conference on Source Code Analysis and Manipulation
(SCAM). Shanghai, China: IEEE, Sept. 2017, pp. 1–10. doi: 10.1109/SCAM.
2017.13.

[RS09] Christine Rochange and Pascal Sainrat. “A Context-Parameterized Model
for Static Analysis of Execution Times”. en. In: Transactions on High-
Performance Embedded Architectures and Compilers II. Ed. by Per Sten-
ström. Vol. 5470. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009,
pp. 222–241. isbn: 978-3-642-00904-4. doi: 10.1007/978-3-642-00904-4_12.
url: http://link.springer.com/10.1007/978-3-642-00904-4_12.

[SF99] Jörn Schneider and Christian Ferdinand. “Pipeline behavior prediction for su-
perscalar processors by abstract interpretation”. In: ACM SIGPLAN Notices
34.7 (1999), pp. 35–44. issn: 0362-1340. doi: 10.1145/315253.314432. url:
https://dl.acm.org/doi/10.1145/315253.314432.

[SR10] T. Sondag and H. Rajan. “A More Precise Abstract Domain for Multi-level
Caches for Tighter WCET Analysis”. In: 2010 31st IEEE Real-Time Systems
Symposium. Nov. 2010, pp. 395–404. doi: 10.1109/RTSS.2010.8.

[SS07] Rathijit Sen and Y. N. Srikant. “WCET estimation for executables in the
presence of data caches”. In: Proceedings of the 7th ACM & IEEE interna-
tional conference on Embedded software. EMSOFT ’07. New York, NY, USA:
Association for Computing Machinery, Sept. 2007, pp. 203–212. isbn: 978-1-
59593-825-1. doi: 10.1145/1289927.1289960. url: http://doi.org/10.1145/
1289927.1289960.

[Suh+06] Vivy Suhendra, Tulika Mitra, Abhik Roychoudhury, and Ting Chen. “Effi-
cient detection and exploitation of infeasible paths for software timing analy-
sis”. In: Proceedings of the 43rd annual Design Automation Conference. DAC
’06. New York, NY, USA: Association for Computing Machinery, July 2006,
pp. 358–363. isbn: 978-1-59593-381-2. doi: 10.1145/1146909.1147002. url:
http://doi.org/10.1145/1146909.1147002.

[Sun+98] Sung-Soo Lim, Jung Hee Han, Jihong Kim, and Sang Lyul Min. “A worst
case timing analysis technique for multiple-issue machines”. In: Proceedings
19th IEEE Real-Time Systems Symposium (Cat. No.98CB36279). Dec. 1998,
pp. 334–345. doi: 10.1109/REAL.1998.739765.

https://doi.org/10.1109/SCAM.2017.13
https://doi.org/10.1109/SCAM.2017.13
https://doi.org/10.1007/978-3-642-00904-4_12
http://link.springer.com/10.1007/978-3-642-00904-4_12
https://doi.org/10.1145/315253.314432
https://dl.acm.org/doi/10.1145/315253.314432
https://doi.org/10.1109/RTSS.2010.8
https://doi.org/10.1145/1289927.1289960
http://doi.org/10.1145/1289927.1289960
http://doi.org/10.1145/1289927.1289960
https://doi.org/10.1145/1146909.1147002
http://doi.org/10.1145/1146909.1147002
https://doi.org/10.1109/REAL.1998.739765

BIBLIOGRAPHY 147

[TFW00] Henrik Theiling, Christian Ferdinand, and Reinhard Wilhelm. “Fast and Pre-
cise WCET Prediction by Separated Cache and Path Analyses”. en. In: Real-
Time Systems 18.2 (May 2000), pp. 157–179. issn: 1573-1383. doi: 10.1023/
A:1008141130870. url: https://doi.org/10.1023/A:1008141130870.

[Tou+19] Valentin Touzeau, Claire Maïza, David Monniaux, and Jan Reineke. “Fast
and exact analysis for LRU caches”. In: Proc. ACM Program. Lang. 3.POPL
(Jan. 2019), 54:1–54:29. doi: 10.1145/3290367. url: https://doi.org/10.
1145/3290367.

[Ves07] Steve Vestal. “Preemptive Scheduling of Multi-criticality Systems with Vary-
ing Degrees of Execution Time Assurance”. In: 28th IEEE International Real-
Time Systems Symposium (RTSS 2007). Dec. 2007, pp. 239–243. doi: 10.
1109/RTSS.2007.47.

[Viv+01] Emilio Vivancos, Christopher Healy, Frank Mueller, and David Whalley.
“Parametric Timing Analysis”. In: Proceedings of the 2001 ACM SIGPLAN
workshop on Optimization of middleware and distributed systems. OM ’01.
New York, NY, USA: Association for Computing Machinery, Aug. 2001,
pp. 88–93. isbn: 978-1-58113-426-1. doi: 10.1145/384198.384230. url: http:
//doi.org/10.1145/384198.384230.

[Wil+08] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti,
Stephan Thesing, David Whalley, Guillem Bernat, Christian Ferdinand,
Reinhold Heckmann, Tulika Mitra, Frank Mueller, Isabelle Puaut, Peter
Puschner, Jan Staschulat, and Per Stenström. “The worst-case execution-
time problem—overview of methods and survey of tools”. en. In: ACM
Transactions on Embedded Computing Systems 7.3 (Apr. 2008), pp. 1–53.
issn: 1539-9087, 1558-3465. doi: 10 . 1145 / 1347375 . 1347389. url: https :
//dl.acm.org/doi/10.1145/1347375.1347389.

[WSy] WSymb. WSymb. url: https://gitlab.cristal.univ- lille.fr/otawa-plugins/
WSymb.

[ZBN93] N. Zhang, A. Burns, and M. Nicholson. “Pipelined processors and worst case
execution times”. en. In: Real-Time Systems 5.4 (Oct. 1993), pp. 319–343.
issn: 1573-1383. doi: 10.1007/BF01088834. url: https://doi.org/10.1007/
BF01088834.

https://doi.org/10.1023/A:1008141130870
https://doi.org/10.1023/A:1008141130870
https://doi.org/10.1023/A:1008141130870
https://doi.org/10.1145/3290367
https://doi.org/10.1145/3290367
https://doi.org/10.1145/3290367
https://doi.org/10.1109/RTSS.2007.47
https://doi.org/10.1109/RTSS.2007.47
https://doi.org/10.1145/384198.384230
http://doi.org/10.1145/384198.384230
http://doi.org/10.1145/384198.384230
https://doi.org/10.1145/1347375.1347389
https://dl.acm.org/doi/10.1145/1347375.1347389
https://dl.acm.org/doi/10.1145/1347375.1347389
https://gitlab.cristal.univ-lille.fr/otawa-plugins/WSymb
https://gitlab.cristal.univ-lille.fr/otawa-plugins/WSymb
https://doi.org/10.1007/BF01088834
https://doi.org/10.1007/BF01088834
https://doi.org/10.1007/BF01088834

	Introduction
	Context
	Embedded systems
	Real-time systems
	Worst-case execution time
	Parametric WCET analysis

	Motivations
	Limitations of current approaches
	Starting point and objectives

	Contributions
	Related publications

	Thesis outline

	Static WCET analysis: state of the art
	General framework
	Flow analysis
	Basic blocks
	Flow representation

	Hardware analysis
	Pipeline
	Cache
	Branch prediction

	WCET computation
	Graph-based techniques
	Tree-based techniques
	Model checking

	Auxiliary analyses
	Loop bound analyses
	Infeasible paths analysis

	Parametric WCET computation
	Parametric WCET from intermediate code
	Parametric integer programming
	The minimum propagation algorithm
	Parametric path analysis
	Tree-based parametric WCET

	Background: Symbolic WCET computation
	Control-Flow Tree
	Abstract WCET
	Computing the WCET of a control-flow tree

	Infeasible paths in tree-based WCET analysis
	Introduction
	Overview
	Pseudo paths
	Infeasibility constraints
	Pseudo paths
	Building the pseudo paths of a tree

	From pseudo paths to control-flow-trees
	Pseudo trees
	Building pseudo trees
	Building the feasible control-flow tree
	Optimization

	Experiments
	Experimental setup
	Experimental results

	Conclusion and discussions

	Pipeline and tree-based WCET analysis
	Introduction
	Motivating example
	Contribution

	From control-flow graph to control-flow tree
	Trivial case: basic blocks with a single incoming edge
	Basic blocks with several incoming edges
	Limitation

	Symbols with pipeline analysis
	Experiments
	Experimental setup
	Benchmark selection process
	Experimental results

	Conclusion and discussions

	Procedure arguments as parameters
	Introduction
	Motivating example
	Contribution

	Overview
	Abstract interpretation of binary code
	Polyhedra
	Abstract state
	Interpretation procedure

	Infering input conditionals
	Identifying procedure arguments
	From polyhedra to input conditionals

	Symbolic WCET with input conditionals
	Control-flow tree with input conditionals
	WCET formulas with input conditionals
	Simplifying WCET formula
	Formula instantiation

	Towards modular WCET analysis
	Modular abstract interpretation
	Modular WCET analysis

	Evaluation
	Experimental setup
	Benchmark selection
	Procedure arguments as parameters
	Modular WCET analysis

	Application to adaptive real-time systems
	Semi-clairvoyant mixed-criticality scheduling
	Adaptive control

	Conclusion

	Conclusion and perspectives
	Summary
	Infeasible paths elimination
	Pipeline effect modeling
	Procedure arguments as parameters

	Perspectives
	Tree transformation complexity
	Abstract domains
	Modular abstract interpretation

	Rewriting rules: equivalence proofs
	g723_enc_reconstruct WCET instantiation
	List of Figures
	Bibliography

